Science.gov

Sample records for linear control design

  1. Linear control design for guaranteed stability of uncertain linear systems

    NASA Technical Reports Server (NTRS)

    Yedavalli, R. K.

    1986-01-01

    In this paper, a linear control design algorithm based on the elemental perturbation bounds developed recently is presented for a simple second order linear uncertain system satisfying matching conditions. The proposed method is compared with Guaranteed Cost Control (GCC), Multistep Guaranteed Cost Control (MGCC) and the Matching Condition (MC) methods and is shown to give guaranteed stability with lesser values for the control gains than some of the existing methods for the example considered.

  2. Controller design approach based on linear programming.

    PubMed

    Tanaka, Ryo; Shibasaki, Hiroki; Ogawa, Hiromitsu; Murakami, Takahiro; Ishida, Yoshihisa

    2013-11-01

    This study explains and demonstrates the design method for a control system with a load disturbance observer. Observer gains are determined by linear programming (LP) in terms of the Routh-Hurwitz stability criterion and the final-value theorem. In addition, the control model has a feedback structure, and feedback gains are determined to be the linear quadratic regulator. The simulation results confirmed that compared with the conventional method, the output estimated by our proposed method converges to a reference input faster when a load disturbance is added to a control system. In addition, we also confirmed the effectiveness of the proposed method by performing an experiment with a DC motor. PMID:23910155

  3. Reaction Wheel Control Design Using Linear Quadratic Controller

    NASA Astrophysics Data System (ADS)

    Nubli Muhamad, Nur; Susanto, Erwin; Syihabuddin, Budi; Prasetya Dwi Wibawa, Ig.

    2016-01-01

    This paper studies the design of active attitude control system of a nanosatellite in a single axis. In this paper, we consider dc motor based reaction wheel as an actuator, because of its pointing accuracy. However, the power consumption of the dc motor is often relatively large and needed to be optimized. Linear quadratic controller is supposed to have an ability to minimize power consumption and able to enhance the system performance. To show the advantage of this method, simulation result of attitude response, state trajectory, and trajectory of DC motor voltage are presented.

  4. Powerful tool for design analysis of linear control systems

    SciTech Connect

    Maddux, Jr, A S

    1982-05-10

    The methods for designing linear controls for electronic or mechanical systems have been understood and put to practice. What has not been readily available to engineers, however, is a practical, quick and inexpensive method for analyzing these linear control (feedback) systems once they have been designed into the electronic or mechanical hardware. Now, the PET, manufactured by Commodore Business Machines (CBM), operating with several peripherals via the IEEE 488 Bus, brings to the engineer for about $4000 a complete set of office tools for analyzing these system designs.

  5. Non-Contact Electromagnetic Exciter Design with Linear Control Method

    NASA Astrophysics Data System (ADS)

    Wang, Lin; Xiong, Xianzhi; Xu, Hua

    2016-04-01

    A non-contact type force actuator is necessary for studying the dynamic performance of a high-speed spindle system owing to its high-speed operating conditions. A non-contact electromagnetic exciter is designed for identifying the dynamic coefficients of journal bearings in high-speed grinding spindles. A linear force control method is developed based on PID controller. The influence of amplitude and frequency of current, misalignment and rotational speed on magnetic field and excitation force is investigated based on two-dimensional finite element analysis. The electromagnetic excitation force is measured with the auxiliary coils and calibrated by load cells. The design is validated by the experimental results. Theoretical and experimental investigations show that the proposed design can accurately generate linear excitation force with sufficiently large amplitude and higher signal to noise ratio. Moreover, the fluctuations in force amplitude are reduced to a greater extent with the designed linear control method even when the air gap changes due to the rotor vibration at high-speed conditions. Besides, it is possible to apply various types of excitations: constant, synchronous, and non-synchronous excitation forces based on the proposed linear control method. This exciter can be used as linear-force exciting and controlling system for dynamic performance study of different high-speed rotor-bearing systems.

  6. Linearizing Assumptions and Control Design for Spacecraft Formation Flying Maneuvers

    NASA Astrophysics Data System (ADS)

    Kappagantula, K. C.; Crassidis, J. L.

    In this paper the validity of neglecting the relative effect of the gravitational force of the Earth on a formation of spacecraft is studied. This relative effect is treated as an unknown disturbance acting on the system and all control laws are designed using a linear model that neglects this effect. A previously designed simple linear feedback controller is tested under different conditions using the linear model and the full nonlinear model that includes the gravitational force. All tests are carried out in the presence of saturation limits. The results show that the linear controller exhibits oscillations in the transient response and poor robustness under certain conditions. It also exhibits a high saturation tendency, thereby leading to increased fuel consumption. This controller also causes a high rise in the velocity errors at ordinary values of the gains. Based on the behavior of this controller, new controllers are proposed that overcome these drawbacks without any need for modifying the gains. The controllers, when tested under saturation limits exhibit high robustness characteristics due to their low saturation tendency and nearly eliminate oscillations in the transient response. Since these controllers operate under low control forces for a greater duration of the maneuver, they reduce the fuel required for the process. Simulation results are provided to show the effectiveness of these new controllers.

  7. Linear tracking systems with applications to aircraft control system design

    NASA Technical Reports Server (NTRS)

    Lee, W. H.; Athans, M.; Castanon, D.; Bacchioloni, F.

    1977-01-01

    A class of optimal linear time invariant tracking systems, both in continuous time and discrete time, of which the number of inputs (which are restricted to be step functions) is equal to the number of system outputs, is studied. Along with derivation of equations and design procedures, two discretization schemes are presented, constraining either the control or its time derivative, to be a constant over each sampling period. Descriptions are given for the linearized model of the F-8C aircraft longitudinal dynamics, and the C* handling qualities criterion, which then serve as an illustration of the applications of these linear tracking designs. A suboptimal reduced state design is also presented. Numerical results are given for both the continuous time and discrete time designs.

  8. Analysis of integral controls in linear quadratic regulator design

    NASA Technical Reports Server (NTRS)

    Slater, G. L.

    1979-01-01

    The application of linear optimal control to the design of systems with integral control action on specified outputs is considered. Using integral terms in a quadratic performance index, an asymptotic analysis is used to determine the effect of variable quadratic weights on the eigenvalues and eigenvectors of the closed loop system. It is shown that for small integral terms the placement of integrator poles and gain calculation can be effectively decoupled from placement of the primary system eigenvalues. This technique is applied to the design of integral controls for a STOL aircraft outer loop guidance system.

  9. Design and performance of the Stanford Linear Collider Control System

    SciTech Connect

    Melen, R.E.

    1984-10-01

    The success of the Stanford Linear Collider (SLC) will be dependent upon the implementation of a very large advanced computer-based instrumentation and control system. This paper describes the architectural design of this system as well as a critique of its performance. This critique is based on experience obtained from its use in the control and monitoring of 1/3 of the SLAC linac and in support of an expensive experimental machine physics experimental program. 11 references, 3 figures.

  10. A decentralized linear quadratic control design method for flexible structures

    NASA Technical Reports Server (NTRS)

    Su, Tzu-Jeng; Craig, Roy R., Jr.

    1990-01-01

    A decentralized suboptimal linear quadratic control design procedure which combines substructural synthesis, model reduction, decentralized control design, subcontroller synthesis, and controller reduction is proposed for the design of reduced-order controllers for flexible structures. The procedure starts with a definition of the continuum structure to be controlled. An evaluation model of finite dimension is obtained by the finite element method. Then, the finite element model is decomposed into several substructures by using a natural decomposition called substructuring decomposition. Each substructure, at this point, still has too large a dimension and must be reduced to a size that is Riccati-solvable. Model reduction of each substructure can be performed by using any existing model reduction method, e.g., modal truncation, balanced reduction, Krylov model reduction, or mixed-mode method. Then, based on the reduced substructure model, a subcontroller is designed by an LQ optimal control method for each substructure independently. After all subcontrollers are designed, a controller synthesis method called substructural controller synthesis is employed to synthesize all subcontrollers into a global controller. The assembling scheme used is the same as that employed for the structure matrices. Finally, a controller reduction scheme, called the equivalent impulse response energy controller (EIREC) reduction algorithm, is used to reduce the global controller to a reasonable size for implementation. The EIREC reduced controller preserves the impulse response energy of the full-order controller and has the property of matching low-frequency moments and low-frequency power moments. An advantage of the substructural controller synthesis method is that it relieves the computational burden associated with dimensionality. Besides that, the SCS design scheme is also a highly adaptable controller synthesis method for structures with varying configuration, or varying mass

  11. PID controller design for trailer suspension based on linear model

    NASA Astrophysics Data System (ADS)

    Kushairi, S.; Omar, A. R.; Schmidt, R.; Isa, A. A. Mat; Hudha, K.; Azizan, M. A.

    2015-05-01

    A quarter of an active trailer suspension system having the characteristics of a double wishbone type was modeled as a complex multi-body dynamic system in MSC.ADAMS. Due to the complexity of the model, a linearized version is considered in this paper. A model reduction technique is applied to the linear model, resulting in a reduced-order model. Based on this simplified model, a Proportional-Integral-Derivative (PID) controller was designed in MATLAB/Simulink environment; primarily to reduce excessive roll motions and thus improving the ride comfort. Simulation results show that the output signal closely imitates the input signal in multiple cases - demonstrating the effectiveness of the controller.

  12. Control design for robust stability in linear regulators: Application to aerospace flight control

    NASA Technical Reports Server (NTRS)

    Yedavalli, R. K.

    1986-01-01

    Time domain stability robustness analysis and design for linear multivariable uncertain systems with bounded uncertainties is the central theme of the research. After reviewing the recently developed upper bounds on the linear elemental (structured), time varying perturbation of an asymptotically stable linear time invariant regulator, it is shown that it is possible to further improve these bounds by employing state transformations. Then introducing a quantitative measure called the stability robustness index, a state feedback conrol design algorithm is presented for a general linear regulator problem and then specialized to the case of modal systems as well as matched systems. The extension of the algorithm to stochastic systems with Kalman filter as the state estimator is presented. Finally an algorithm for robust dynamic compensator design is presented using Parameter Optimization (PO) procedure. Applications in a aircraft control and flexible structure control are presented along with a comparison with other existing methods.

  13. Multi Objective Controller Design for Linear System via Optimal Interpolation

    NASA Technical Reports Server (NTRS)

    Ozbay, Hitay

    1996-01-01

    We propose a methodology for the design of a controller which satisfies a set of closed-loop objectives simultaneously. The set of objectives consists of: (1) pole placement, (2) decoupled command tracking of step inputs at steady-state, and (3) minimization of step response transients with respect to envelope specifications. We first obtain a characterization of all controllers placing the closed-loop poles in a prescribed region of the complex plane. In this characterization, the free parameter matrix Q(s) is to be determined to attain objectives (2) and (3). Objective (2) is expressed as determining a Pareto optimal solution to a vector valued optimization problem. The solution of this problem is obtained by transforming it to a scalar convex optimization problem. This solution determines Q(O) and the remaining freedom in choosing Q(s) is used to satisfy objective (3). We write Q(s) = (l/v(s))bar-Q(s) for a prescribed polynomial v(s). Bar-Q(s) is a polynomial matrix which is arbitrary except that Q(O) and the order of bar-Q(s) are fixed. Obeying these constraints bar-Q(s) is now to be 'shaped' to minimize the step response characteristics of specific input/output pairs according to the maximum envelope violations. This problem is expressed as a vector valued optimization problem using the concept of Pareto optimality. We then investigate a scalar optimization problem associated with this vector valued problem and show that it is convex. The organization of the report is as follows. The next section includes some definitions and preliminary lemmas. We then give the problem statement which is followed by a section including a detailed development of the design procedure. We then consider an aircraft control example. The last section gives some concluding remarks. The Appendix includes the proofs of technical lemmas, printouts of computer programs, and figures.

  14. Nonlinearity measure and internal model control based linearization in anti-windup design

    SciTech Connect

    Perev, Kamen

    2013-12-18

    This paper considers the problem of internal model control based linearization in anti-windup design. The nonlinearity measure concept is used for quantifying the control system degree of nonlinearity. The linearizing effect of a modified internal model control structure is presented by comparing the nonlinearity measures of the open-loop and closed-loop systems. It is shown that the linearization properties are improved by increasing the control system local feedback gain. However, it is emphasized that at the same time the stability of the system deteriorates. The conflicting goals of stability and linearization are resolved by solving the design problem in different frequency ranges.

  15. A linear quality control design for high efficient wavelet-based ECG data compression.

    PubMed

    Hung, King-Chu; Tsai, Chin-Feng; Ku, Cheng-Tung; Wang, Huan-Sheng

    2009-05-01

    In ECG data compression, maintaining reconstructed signal with desired quality is crucial for clinical application. In this paper, a linear quality control design based on the reversible round-off non-recursive discrete periodized wavelet transform (RRO-NRDPWT) is proposed for high efficient ECG data compression. With the advantages of error propagation resistance and octave coefficient normalization, RRO-NRDPWT enables the non-linear quantization control to obtain an approximately linear distortion by using a single control variable. Based on the linear programming, a linear quantization scale prediction model is presented for the quality control of reconstructed ECG signal. Following the use of the MIT-BIH arrhythmia database, the experimental results show that the proposed system, with lower computational complexity, can obtain much better quality control performance than that of other wavelet-based systems. PMID:19070935

  16. CFORM- LINEAR CONTROL SYSTEM DESIGN AND ANALYSIS: CLOSED FORM SOLUTION AND TRANSIENT RESPONSE OF THE LINEAR DIFFERENTIAL EQUATION

    NASA Technical Reports Server (NTRS)

    Jamison, J. W.

    1994-01-01

    CFORM was developed by the Kennedy Space Center Robotics Lab to assist in linear control system design and analysis using closed form and transient response mechanisms. The program computes the closed form solution and transient response of a linear (constant coefficient) differential equation. CFORM allows a choice of three input functions: the Unit Step (a unit change in displacement); the Ramp function (step velocity); and the Parabolic function (step acceleration). It is only accurate in cases where the differential equation has distinct roots, and does not handle the case for roots at the origin (s=0). Initial conditions must be zero. Differential equations may be input to CFORM in two forms - polynomial and product of factors. In some linear control analyses, it may be more appropriate to use a related program, Linear Control System Design and Analysis (KSC-11376), which uses root locus and frequency response methods. CFORM was written in VAX FORTRAN for a VAX 11/780 under VAX VMS 4.7. It has a central memory requirement of 30K. CFORM was developed in 1987.

  17. Linear matrix inequality-based proportional-integral control design with application to F-16 aircraft

    NASA Astrophysics Data System (ADS)

    Theodore, Zachary B.

    A robust proportional-integral (PI) controller was synthesized for the F-16 VISTA (Variable stability In-flight Simulator Test Aircraft) using a linear matrix inequality (LMI) approach, with the goal of eventually designing and implementing a linear parameter-varying PI controller on high performance aircraft. The combination of classical and modern control theory provides theoretically guaranteed stability and performance throughout the flight envelope and ease of implementation due to the simplicity of the PI controller structure. The controller is designed by solving a set of LMIs with pole placement constraints. This closed-loop system was simulated in MATLAB/Simulink to analyze the performance of the controller. A robust Hinfinity controller was also developed to compare performance with PI controller. The simulation results showed stability, albeit with poor performance compared to the Hinfinity controlle.

  18. Designing linear systolic arrays

    SciTech Connect

    Kumar, V.K.P.; Tsai, Y.C. . Dept. of Electrical Engineering)

    1989-12-01

    The authors develop a simple mapping technique to design linear systolic arrays. The basic idea of the technique is to map the computations of a certain class of two-dimensional systolic arrays onto one-dimensional arrays. Using this technique, systolic algorithms are derived for problems such as matrix multiplication and transitive closure on linearly connected arrays of PEs with constant I/O bandwidth. Compared to known designs in the literature, the technique leads to modular systolic arrays with constant hardware in each PE, few control lines, lexicographic data input/output, and improved delay time. The unidirectional flow of control and data in this design assures implementation of the linear array in the known fault models of wafer scale integration.

  19. Central suboptimal H ∞ controller design for linear time-varying systems with unknown parameters

    NASA Astrophysics Data System (ADS)

    Basin, Michael V.; Soto, Pedro; Calderon-Alvarez, Dario

    2011-05-01

    This article presents the central finite-dimensional H ∞ controller for linear time-varying systems with unknown parameters, that is suboptimal for a given threshold γ with respect to a modified Bolza-Meyer quadratic criterion including the attenuation control term with the opposite sign. In contrast to the previously obtained results, this article reduces the original H ∞ controller problem to the corresponding H 2 controller problem, using the technique proposed in Doyle et al. [Doyle, J.C., Glover, K., Khargonekar, P.P., and Francis, B.A. (1989), 'State-space Solutions to Standard H 2 and H Infinity Control Problems', IEEE Transactions Automatic Control, 34, 831-847]. This article yields the central suboptimal H ∞ controller for linear systems with unknown parameters in a closed finite-dimensional form, based on the corresponding H 2 controller obtained in Basin and Calderon-Alvarez [Basin, M.V., and Calderon-Alvarez, D. (2008), 'Optimal LQG Controller for Linear Systems with Unknown Parameters', Journal of The Franklin Institute, 345, 293-302]. Numerical simulations are conducted to verify performance of the designed central suboptimal controller for uncertain linear systems with unknown parameters against the conventional central suboptimal H ∞ controller for linear systems with exactly known parameter values.

  20. ORACLS: A system for linear-quadratic-Gaussian control law design

    NASA Technical Reports Server (NTRS)

    Armstrong, E. S.

    1978-01-01

    A modern control theory design package (ORACLS) for constructing controllers and optimal filters for systems modeled by linear time-invariant differential or difference equations is described. Numerical linear-algebra procedures are used to implement the linear-quadratic-Gaussian (LQG) methodology of modern control theory. Algorithms are included for computing eigensystems of real matrices, the relative stability of a matrix, factored forms for nonnegative definite matrices, the solutions and least squares approximations to the solutions of certain linear matrix algebraic equations, the controllability properties of a linear time-invariant system, and the steady state covariance matrix of an open-loop stable system forced by white noise. Subroutines are provided for solving both the continuous and discrete optimal linear regulator problems with noise free measurements and the sampled-data optimal linear regulator problem. For measurement noise, duality theory and the optimal regulator algorithms are used to solve the continuous and discrete Kalman-Bucy filter problems. Subroutines are also included which give control laws causing the output of a system to track the output of a prescribed model.

  1. Prompt critical control of the ACRR using a linear quadratic regulator design

    NASA Astrophysics Data System (ADS)

    Gilkey, Jeffrey C.

    1993-01-01

    This paper describes the application of ``Modern Control'' design techniques to the problem of nuclear reactor control. The control algorithm consists of generating a nominal trajectory within the control authority of the reactor rod drives, and then following this trajectory with a gain scheduled linear quadratic regulator (LQR). A controller based on this algorithm has generated power pulses up to 100 mW on Sandia's Annular Core Research Reactor (ACRR). Prompt critical control at 1.02 net reactivity and at start-up rates over 350 decades per minute (DPM) has also been demonstrated using this controller.

  2. Intelligent, Robust Control of Deteriorated Turbofan Engines via Linear Parameter Varying Quadratic Lyapunov Function Design

    NASA Technical Reports Server (NTRS)

    Turso, James A.; Litt, Jonathan S.

    2004-01-01

    A method for accommodating engine deterioration via a scheduled Linear Parameter Varying Quadratic Lyapunov Function (LPVQLF)-Based controller is presented. The LPVQLF design methodology provides a means for developing unconditionally stable, robust control of Linear Parameter Varying (LPV) systems. The controller is scheduled on the Engine Deterioration Index, a function of estimated parameters that relate to engine health, and is computed using a multilayer feedforward neural network. Acceptable thrust response and tight control of exhaust gas temperature (EGT) is accomplished by adjusting the performance weights on these parameters for different levels of engine degradation. Nonlinear simulations demonstrate that the controller achieves specified performance objectives while being robust to engine deterioration as well as engine-to-engine variations.

  3. On stochastic control system design methods for weakly coupled large scale linear systems.

    NASA Technical Reports Server (NTRS)

    Kwong, R.; Chong, C.-Y.; Athans, M.

    1972-01-01

    This paper considers the problem of decentralized control of two weakly coupled linear stochastic systems, using quadratic performance indices. The basic idea is to have each controller control independently his own system, based upon noisy measurements of his own output. To compensate for the effects of weak coupling upon the resultant performance, fake white plant noise is introduced to each system. The appropriate intensity of the fake plant noise is obtained through the solution of an off-line deterministic matrix optimal control problem. The effects of this design method upon the overall coupled system performance are analyzed as a function of the degree of intersystem coupling.

  4. Variable-Speed Wind Turbine Controller Systematic Design Methodology: A Comparison of Non-Linear and Linear Model-Based Designs

    SciTech Connect

    Hand, M. M.

    1999-07-30

    Variable-speed, horizontal axis wind turbines use blade-pitch control to meet specified objectives for three regions of operation. This paper focuses on controller design for the constant power production regime. A simple, rigid, non-linear turbine model was used to systematically perform trade-off studies between two performance metrics. Minimization of both the deviation of the rotor speed from the desired speed and the motion of the actuator is desired. The robust nature of the proportional-integral-derivative (PID) controller is illustrated, and optimal operating conditions are determined. Because numerous simulation runs may be completed in a short time, the relationship of the two opposing metrics is easily visualized. Traditional controller design generally consists of linearizing a model about an operating point. This step was taken for two different operating points, and the systematic design approach was used. A comparison of the optimal regions selected using the n on-linear model and the two linear models shows similarities. The linearization point selection does, however, affect the turbine performance slightly. Exploitation of the simplicity of the model allows surfaces consisting of operation under a wide range of gain values to be created. This methodology provides a means of visually observing turbine performance based upon the two metrics chosen for this study. Design of a PID controller is simplified, and it is possible to ascertain the best possible combination of controller parameters. The wide, flat surfaces indicate that a PID controller is very robust in this variable-speed wind turbine application.

  5. ORACLS - A modern control theory design package. [Optimal Regulator Algorithms for Control of Linear Systems computer program

    NASA Technical Reports Server (NTRS)

    Armstrong, E. S.

    1975-01-01

    A digital computer program (ORACLS) for implementing the optimal regulator theory approach to the design of controllers for linear time-invariant systems is described. The user-oriented program employs the latest numerical techniques and is applicable to both the digital and continuous control problems.

  6. Controlling the wave propagation through the medium designed by linear coordinate transformation

    NASA Astrophysics Data System (ADS)

    Wu, Yicheng; He, Chengdong; Wang, Yuzhuo; Liu, Xuan; Zhou, Jing

    2015-01-01

    Based on the principle of transformation optics, we propose to control the wave propagating direction through the homogenous anisotropic medium designed by linear coordinate transformation. The material parameters of the medium are derived from the linear coordinate transformation applied. Keeping the space area unchanged during the linear transformation, the polarization-dependent wave control through a non-magnetic homogeneous medium can be realized. Beam benders, polarization splitter, and object illusion devices are designed, which have application prospects in micro-optics and nano-optics. The simulation results demonstrate the feasibilities and the flexibilities of the method and the properties of these devices. Design details and full-wave simulation results are provided. The work in this paper comprehensively applies the fundamental theories of electromagnetism and mathematics. The method of obtaining a new solution of the Maxwell equations in a medium from a vacuum plane wave solution and a linear coordinate transformation is introduced. These have a pedagogical value and are methodologically and motivationally appropriate for physics students and teachers at the undergraduate and graduate levels.

  7. An iterative approach to the optimal co-design of linear control systems

    NASA Astrophysics Data System (ADS)

    Jiang, Yu; Wang, Yebin; Bortoff, Scott A.; Jiang, Zhong-Ping

    2016-04-01

    This paper investigates the optimal co-design of both physical plants and control policies for a class of continuous-time linear control systems. The optimal co-design of a specific linear control system is commonly formulated as a nonlinear non-convex optimisation problem (NNOP), and solved by using iterative techniques, where the plant parameters and the control policy are updated iteratively and alternately. This paper proposes a novel iterative approach to solve the NNOP, where the plant parameters are updated by solving a standard semi-definite programming problem, with non-convexity no longer involved. The proposed system design is generally less conservative in terms of the system performance compared to the conventional system-equivalence-based design, albeit the range of applicability is slightly reduced. A practical optimisation algorithm is proposed to compute a sub-optimal solution ensuring the system stability, and the convergence of the algorithm is established. The effectiveness of the proposed algorithm is illustrated by its application to the optimal co-design of a physical load positioning system.

  8. Design of an Optimal Preview Controller for Linear Discrete-Time Descriptor Noncausal Multirate Systems

    PubMed Central

    Cao, Mengjuan; Liao, Fucheng

    2014-01-01

    The linear discrete-time descriptor noncausal multirate system is considered for the presentation of a new design approach for optimal preview control. First, according to the characteristics of causal controllability and causal observability, the descriptor noncausal system is constructed into a descriptor causal closed-loop system. Second, by using the characteristics of the causal system and elementary transformation, the descriptor causal closed-loop system is transformed into a normal system. Then, taking advantage of the discrete lifting technique, the normal multirate system is converted to a single-rate system. By making use of the standard preview control method, we construct the descriptor augmented error system. The quadratic performance index for the multirate system is given, which can be changed into one for the single-rate system. In addition, a new single-rate system is obtained, the optimal control law of which is given. Returning to the original system, the optimal preview controller for linear discrete-time descriptor noncausal multirate systems is derived. The stabilizability and detectability of the lifted single-rate system are discussed in detail. The optimal preview control design techniques are illustrated by simulation results for a simple example. PMID:24592202

  9. Controller design approaches for large space structures using LQG control theory. [Linear Quadratic Gaussian

    NASA Technical Reports Server (NTRS)

    Joshi, S. M.; Groom, N. J.

    1979-01-01

    The paper presents several approaches for the design of reduced order controllers for large space structures. These approaches are shown to be based on LQG control theory and include truncation, modified truncation regulators and estimators, use of higher order estimators, selective modal suppression, and use of polynomial estimators. Further, the use of direct sensor feedback, as opposed to a state estimator, is investigated for some of these approaches. Finally, numerical results are given for a long free beam.

  10. Output-feedback sampled-data control design for linear parameter-varying systems with delay

    NASA Astrophysics Data System (ADS)

    Ramezanifar, Amin; Mohammadpour, Javad; Grigoriadis, Karolos M.

    2014-12-01

    In this paper, we address the sampled-data output-feedback control design problem for continuous-time linear parameter-varying systems with time-varying delay in the system states. Due to the combination of the plant's continuous-time dynamics and the controller's discrete-time dynamics connected through A/D and D/A converter devices, the closed-loop system is a hybrid system. In order to analyse this hybrid system from stability and performance perspectives we use the input-delay approach to map the closed-loop system into the continuous-time domain with delay in the states. This results in a closed-loop system containing two types of delays, the system internal delay and the one imposed by the mapping. Next, we use delay-dependent conditions for analysis of stability and ?-norm performance which result in a sampled-data control synthesis procedure. The proposed output-feedback sampled-data controller is obtained based on the solution to a linear matrix inequality optimisation problem using a set of appropriately defined slack variables. A numerical example of a milling machine is presented to demonstrate the viability of the proposed sampled-data control design method to satisfy the stability and performance objectives even with a varying sampling rate.

  11. Dual-Position-Controller Design for the Linear-Motor-Driven Motion System

    NASA Astrophysics Data System (ADS)

    Huang, Yuan-Yong; Horng, Rong-Hwang; Shih, Yi-Ti; Lee, An-Chen

    This work develops a dual-controller composed of a macroscopic controller (MAC) and a microscopic controller (MIC) for improving motion precision of a linear-motor-driven motion system. Based on the macroscopic model in which Coulomb friction model is considered, the MAC is designed. In the presliding region however, the MIC design is based on the lineralized microscopic model. Furthermore, a switching algorithm is developed for bumpless transfer in shifting control action between two controllers. Thus, when the table of motion stage moves to the desired position, the control action can be smoothly switched from the MAC to the MIC. The whole system with the proposed dual-controller has the advantage that it serves as a long stroke (coarse stage) and a short stroke (fine stage) to achieve high precision motion control. The experimental results reveal that it totally takes 2.59 seconds to reach the 1000μm target position with the accuracy of one BLU (basic length unit; sensor resolution), 20nm the result has over 29% improvement when compared with the result using single MAC. In addition, good nanometer-scale tracking performance with the accuracy of one BLU, 20nm, can be obtained by using the MIC.

  12. Linear control of a boiler-turbine unit: analysis and design.

    PubMed

    Tan, Wen; Fang, Fang; Tian, Liang; Fu, Caifen; Liu, Jizhen

    2008-04-01

    Linear control of a boiler-turbine unit is discussed in this paper. Based on the nonlinear model of the unit, this paper analyzes the nonlinearity of the unit, and selects the appropriate operating points so that the linear controller can achieve wide-range performance. Simulation and experimental results at the No. 4 Unit at the Dalate Power Plant show that the linear controller can achieve the desired performance under a specific range of load variations. PMID:18280475

  13. Non-linear generalised minimum variance control state space design for a second-order Volterra series model

    NASA Astrophysics Data System (ADS)

    Maboodi, Mohsen; Camacho, Eduardo F.; Khaki-Sedigh, Ali

    2015-10-01

    This paper presents a non-linear generalised minimum variance (NGMV) controller for a second-order Volterra series model with a general linear additive disturbance. The Volterra series models provide a natural extension of a linear convolution model with the nonlinearity considered in an additive term. The design procedure is entirely carried out in the state space framework, which facilitates the application of other analysis and design methods in this framework. First, the non-linear minimum variance (NMV) controller is introduced and then by changing the cost function, NGMV controller is defined as an extended version of the linear cases. The cost function is used in the simplest form and can be easily extended to the general case. Simulation results show the effectiveness of the proposed non-linear method.

  14. Mechanical and biomechanical analysis of a linear piston design for angular-velocity-based orthotic control.

    PubMed

    Lemaire, Edward D; Samadi, Reza; Goudreau, Louis; Kofman, Jonathan

    2013-01-01

    A linear piston hydraulic angular-velocity-based control knee joint was designed for people with knee-extensor weakness to engage knee-flexion resistance when knee-flexion angular velocity reaches a preset threshold, such as during a stumble, but to otherwise allow free knee motion. During mechanical testing at the lowest angular-velocity threshold, the device engaged within 2 degrees knee flexion and resisted moment loads of over 150 Nm. The device completed 400,000 loading cycles without mechanical failure or wear that would affect function. Gait patterns of nondisabled participants were similar to normal at walking speeds that produced below-threshold knee angular velocities. Fast walking speeds, employed purposely to attain the angular-velocity threshold and cause knee-flexion resistance, reduced maximum knee flexion by approximately 25 degrees but did not lead to unsafe gait patterns in foot ground clearance during swing. In knee collapse tests, the device successfully engaged knee-flexion resistance and stopped knee flexion with peak knee moments of up to 235.6 Nm. The outcomes from this study support the potential for the linear piston hydraulic knee joint in knee and knee-ankle-foot orthoses for people with lower-limb weakness. PMID:23516082

  15. A linear control design structure to maintain loop properties during limit operation in a multi-nozzle turbofan engine

    NASA Technical Reports Server (NTRS)

    Mattern, Duane; Ouzts, Peter

    1991-01-01

    The implementation of multi-variable control systems on turbofan engines requires the use of limit protection to maintain safe engine operation. Since a turbofan engine typically encounters limits during transient operation, the use of a limit protection scheme that modifies the feedback loop may void the desired 'guarantees' associated with linear multi-variable control design methods, necessitating considerable simulation to validate the control with limited protection. An alternative control design structure is proposed that maintains the desired linear feedback properties when certain safety limits are encountered by moving the limit protection scheme outside the feedback loop. This proposed structure is compared to a structure with a limit protection scheme that modifies the feedback loop properties. The two design structures are compared using both linear and nonlinear simulations. The evaluation emphasizes responses where the fan surge margin limit is encountered.

  16. A linear control design structure to maintain loop properties during limit operation in a multi-nozzle turbofan engine

    NASA Technical Reports Server (NTRS)

    Mattern, Duane; Ouzts, Peter

    1991-01-01

    The implementation of multi-variable control systems on turbofan engines requires the use of limit protection to maintain safe engine operation. Since a turbofan engine typically encounters limits during transient operation, the use of a limit protection scheme that modifies the feedback loop may void the desired 'guarantees' associated with linear multi-variable control design methods, necessitating considerable simulation to validate the control with limit protection. An alternative control design structure is proposed that maintains the desired linear feedback properties when certain safety limits are encountered by moving the limit protection scheme outside of the feedback loop. This proposed structure is compared to a structure with a limit protection scheme that modifies the feedback loop properties. The two design structures are compared using both linear and nonlinear simulations. The evaluation emphasizes responses where the fan surge margin limit is encountered.

  17. Analysis, design, and testing of a low cost, direct force command linear proof mass actuator for structural control

    NASA Technical Reports Server (NTRS)

    Slater, G. L.; Shelley, Stuart; Jacobson, Mark

    1993-01-01

    In this paper, the design, analysis, and test of a low cost, linear proof mass actuator for vibration control is presented. The actuator is based on a linear induction coil from a large computer disk drive. Such disk drives are readily available and provide the linear actuator, current feedback amplifier, and power supply for a highly effective, yet inexpensive, experimental laboratory actuator. The device is implemented as a force command input system, and the performance is virtually the same as other, more sophisticated, linear proof mass systems.

  18. Parameter-dependent vibration-attenuation controller design for electro-hydraulic actuated linear structural systems

    NASA Astrophysics Data System (ADS)

    Weng, Falu; Mao, Weijie

    2012-03-01

    The problem of robust active vibration control for a class of electro-hydraulic actuated structural systems with time-delay in the control input channel and parameter uncertainties appearing in all the mass, damping and stiffness matrices is investigated in this paper. First, by introducing a linear varying parameter, the nonlinear system is described as a linear parameter varying (LPV) model. Second, based on this LPV model, an LMI-based condition for the system to be asymptotically stabilized is deduced. By solving these LMIs, a parameter-dependent controller is established for the closedloop system to be stable with a prescribed level of disturbance attenuation. The condition is also extended to the uncertain case. Finally, some numerical simulations demonstrate the satisfying performance of the proposed controller.

  19. Designing reduced-order linear multivariable controllers using experimentally derived plant data

    NASA Technical Reports Server (NTRS)

    Frazier, W. G.; Irwin, R. D.

    1993-01-01

    An iterative numerical algorithm for simultaneously improving multiple performance and stability robustness criteria for multivariable feedback systems is developed. The unsatisfied design criteria are improved by updating the free parameters of an initial, stabilizing controller's state-space matrices. Analytical expressions for the gradients of the design criteria are employed to determine a parameter correction that improves all of the feasible, unsatisfied design criteria at each iteration. A controller design is performed using the algorithm with experimentally derived data from a large space structure test facility. Experimental results of the controller's performance at the facility are presented.

  20. Multi-rate optimal controller design for electromagnetic suspension systems via linear matrix inequality optimization

    NASA Astrophysics Data System (ADS)

    Kim, C. H.; Park, H. J.; Lee, J.; Lee, H. W.; Lee, K. D.

    2015-05-01

    This paper develops a discrete optimal control based on the multi-rate observer method for electromagnetic suspension systems in order to levitate the vehicle, maintaining the desired gap. The proposed multi-rate compensator consists of two parts which are the discrete Kalman filter and the optimal control law. The Kalman filter estimates all states with fast sampling rate time, using a slowly measured output from the gap sensor. The optimal control law is determined by linear matrix inequality optimization for the discrete time multiple input system obtained by the lifting operator. The proposed multi-rate controller has the advantages to guarantee the stability of the slow-rate optimal control and maintain the performance of fast-rate control. The simulation and experiment show the effectiveness of the proposed control method.

  1. AESOP: A computer-aided design program for linear multivariable control systems

    NASA Technical Reports Server (NTRS)

    Lehtinen, B.; Geyser, L. C.

    1982-01-01

    An interactive computer program (AESOP) which solves quadratic optimal control and is discussed. The program can also be used to perform system analysis calculations such as transient and frequency responses, controllability, observability, etc., in support of the control and filter design computations.

  2. Aircraft ride quality controller design using new robust root clustering theory for linear uncertain systems

    NASA Technical Reports Server (NTRS)

    Yedavalli, R. K.

    1992-01-01

    The aspect of controller design for improving the ride quality of aircraft in terms of damping ratio and natural frequency specifications on the short period dynamics is addressed. The controller is designed to be robust with respect to uncertainties in the real parameters of the control design model such as uncertainties in the dimensional stability derivatives, imperfections in actuator/sensor locations and possibly variations in flight conditions, etc. The design is based on a new robust root clustering theory developed by the author by extending the nominal root clustering theory of Gutman and Jury to perturbed matrices. The proposed methodology allows to get an explicit relationship between the parameters of the root clustering region and the uncertainty radius of the parameter space. The current literature available for robust stability becomes a special case of this unified theory. The bounds derived on the parameter perturbation for robust root clustering are then used in selecting the robust controller.

  3. Output feedback non-linear decoupled control synthesis and observer design for manoeuvring aircraft

    NASA Technical Reports Server (NTRS)

    Singh, S. N.; Schy, A. A.

    1980-01-01

    A study of the applicability of nonlinear decoupling theory to the design of control systems using output feedback for maneuvering aircraft is presented. The response variables chosen for decoupled control were angular velocity components along roll, pitch, and yaw axes, angle of attack (p), and angle of sideslip, using aileron, rudder, and elevator controls. An observer design for a class of nonlinear systems was presented and this method was used to estimate angle of attack and sideslip; an approximate observer was obtained by neglecting derivatives of p and aileron deflection angles and it was used in a simulation study. A simulation study showed that precise rapid combined lateral and longitudinal maneuvers can be performed; it was also demonstrated that a bank-angle-command outer loop could be designed for precise bank angles changes and simultaneous large lift maneuvers.

  4. The Total Synthesis Problem of linear multivariable control. II - Unity feedback and the design morphism

    NASA Technical Reports Server (NTRS)

    Sain, M. K.; Antsaklis, P. J.; Gejji, R. R.; Wyman, B. F.; Peczkowski, J. L.

    1981-01-01

    Zames (1981) has observed that there is, in general, no 'separation principle' to guarantee optimality of a division between control law design and filtering of plant uncertainty. Peczkowski and Sain (1978) have solved a model matching problem using transfer functions. Taking into consideration this investigation, Peczkowski et al. (1979) proposed the Total Synthesis Problem (TSP), wherein both the command/output-response and command/control-response are to be synthesized, subject to the plant constraint. The TSP concept can be subdivided into a Nominal Design Problem (NDP), which is not dependent upon specific controller structures, and a Feedback Synthesis Problem (FSP), which is. Gejji (1980) found that NDP was characterized in terms of the plant structural matrices and a single, 'good' transfer function matrix. Sain et al. (1981) have extended this NDP work. The present investigation is concerned with a study of FSP for the unity feedback case. NDP, together with feedback synthesis, is understood as a Total Synthesis Problem.

  5. Design of Linear DC Motor Two-degree-of-freedom Positioning System using Model Reference type Sliding Mode Controller

    NASA Astrophysics Data System (ADS)

    Urushihara, Shiro; Kamano, Takuya; Yura, Satoshi; Yasuno, Takashi; Suzuki, Takayuki

    One of fundamental problems in the factory automation is how to obtain linear motion. Linear motors produce directly the linear motion force without a motion-transform mechanism. Linear d.c. motors (LDMs) have excellent performance and controllability. However, the dynamics of small-sized LDMs is adversely affected by the dead-band due to the friction between brushes and commutators. In this paper, it is described that the design of the two-degree-of-freedom positioning system with a LDM using model reference type sliding mode controller (SMC). The proposed positioning system consists of a fixed gain feedforward controller and a SMC used as a feedback controller. The objective of the SMC is to repress the influence of nonlinear characteristics (the dead-band and parameter variations etc.). The tracking performance can be improved as the fixed gain feedforward controller makes a dynamic inverse system in the feedforward path. The effectiveness of the proposed system for improvement of the tracking performance is demonstrated by experimental results.

  6. [Log-linear model used in the hybrid design of case-parents triad/control-mother dyad].

    PubMed

    Peng, W J; Zhang, H; Li, Y X; Li, C Y; Yan, W R

    2016-06-01

    This study introduced the application of a log-linear model in the hybrid design of case-parents triad/control-mother dyad. Data related to the association between cleft lip with palate (CLP) and methylenetetrahydrofolate reductase (MTHFR) gene A1298C diversity was analyzed. Log-linear model based on likelihood ratio tests (LRTs) was used to analyze the relationships between mother, offspring genotypes and CLP. Data from our study noticed that children of mothers carrying the CC genotype presented a lower risk of CLP, comparing with the children of mothers carrying the AA genotype, with S2=0.45 (95%CI: 0.26-0.79). Offspring that carrying the AC genotype presented a lower risk of CLP, comparing with the offspring that carrying the AA genotype, with R1=0.69 (95% CI: 0.48-0.97). However, no other types of relationships were found. The power of hybrid design was greater than the case-parents study (0.86>0.78). MTHFR A1298C polymorphism seemed to have played an important role in the etiology on both cleft lip and palate. Data from the hybrid design and the log-linear model could help researchers to explore the effects of genotypes from both mothers and the offspring. This study design would present stronger power than the regular case-parents studies thus suitable for studies on the etiology of diseases in early lives, as birth defects. PMID:27346122

  7. Controls/CFD Interdisciplinary Research Software Generates Low-Order Linear Models for Control Design From Steady-State CFD Results

    NASA Technical Reports Server (NTRS)

    Melcher, Kevin J.

    1997-01-01

    The NASA Lewis Research Center is developing analytical methods and software tools to create a bridge between the controls and computational fluid dynamics (CFD) disciplines. Traditionally, control design engineers have used coarse nonlinear simulations to generate information for the design of new propulsion system controls. However, such traditional methods are not adequate for modeling the propulsion systems of complex, high-speed vehicles like the High Speed Civil Transport. To properly model the relevant flow physics of high-speed propulsion systems, one must use simulations based on CFD methods. Such CFD simulations have become useful tools for engineers that are designing propulsion system components. The analysis techniques and software being developed as part of this effort are an attempt to evolve CFD into a useful tool for control design as well. One major aspect of this research is the generation of linear models from steady-state CFD results. CFD simulations, often used during the design of high-speed inlets, yield high resolution operating point data. Under a NASA grant, the University of Akron has developed analytical techniques and software tools that use these data to generate linear models for control design. The resulting linear models have the same number of states as the original CFD simulation, so they are still very large and computationally cumbersome. Model reduction techniques have been successfully applied to reduce these large linear models by several orders of magnitude without significantly changing the dynamic response. The result is an accurate, easy to use, low-order linear model that takes less time to generate than those generated by traditional means. The development of methods for generating low-order linear models from steady-state CFD is most complete at the one-dimensional level, where software is available to generate models with different kinds of input and output variables. One-dimensional methods have been extended

  8. Simplified Linear Multivariable Control Of Robots

    NASA Technical Reports Server (NTRS)

    Seraji, Homayoun

    1989-01-01

    Simplified method developed to design control system that makes joints of robot follow reference trajectories. Generic design includes independent multivariable feedforward and feedback controllers. Feedforward controller based on inverse of linearized model of dynamics of robot and implements control law that contains only proportional and first and second derivatives of reference trajectories with respect to time. Feedback controller, which implements control law of proportional, first-derivative, and integral terms, makes tracking errors converge toward zero as time passes.

  9. Linear decentralized learning control

    NASA Technical Reports Server (NTRS)

    Lee, Soo C.; Longman, Richard W.; Phan, Minh

    1992-01-01

    The new field of learning control develops controllers that learn to improve their performance at executing a given task, based on experience performing this task. The simplest forms of learning control are based on the same concept as integral control, but operating in the domain of the repetitions of the task. This paper studies the use of such controllers in a decentralized system, such as a robot with the controller for each link acting independently. The basic result of the paper is to show that stability of the learning controllers for all subsystems when the coupling between subsystems is turned off, assures stability of the decentralized learning in the coupled system, provided that the sample time in the digital learning controller is sufficiently short.

  10. Manipulator control by exact linearization

    NASA Technical Reports Server (NTRS)

    Kruetz, K.

    1987-01-01

    Comments on the application to rigid link manipulators of geometric control theory, resolved acceleration control, operational space control, and nonlinear decoupling theory are given, and the essential unity of these techniques for externally linearizing and decoupling end effector dynamics is discussed. Exploiting the fact that the mass matrix of a rigid link manipulator is positive definite, a consequence of rigid link manipulators belonging to the class of natural physical systems, it is shown that a necessary and sufficient condition for a locally externally linearizing and output decoupling feedback law to exist is that the end effector Jacobian matrix be nonsingular. Furthermore, this linearizing feedback is easy to produce.

  11. Robust design of feedback feed-forward iterative learning control based on 2D system theory for linear uncertain systems

    NASA Astrophysics Data System (ADS)

    Li, Zhifu; Hu, Yueming; Li, Di

    2016-08-01

    For a class of linear discrete-time uncertain systems, a feedback feed-forward iterative learning control (ILC) scheme is proposed, which is comprised of an iterative learning controller and two current iteration feedback controllers. The iterative learning controller is used to improve the performance along the iteration direction and the feedback controllers are used to improve the performance along the time direction. First of all, the uncertain feedback feed-forward ILC system is presented by an uncertain two-dimensional Roesser model system. Then, two robust control schemes are proposed. One can ensure that the feedback feed-forward ILC system is bounded-input bounded-output stable along time direction, and the other can ensure that the feedback feed-forward ILC system is asymptotically stable along time direction. Both schemes can guarantee the system is robust monotonically convergent along the iteration direction. Third, the robust convergent sufficient conditions are given, which contains a linear matrix inequality (LMI). Moreover, the LMI can be used to determine the gain matrix of the feedback feed-forward iterative learning controller. Finally, the simulation results are presented to demonstrate the effectiveness of the proposed schemes.

  12. Design of Feedforward Controller to Reduce Force Ripple for Linear Motor using Halbach Magnet Array with T Shape Magnet

    NASA Astrophysics Data System (ADS)

    Kim, Moojong; Kim, Jinyoung; Lee, Moon G.

    Recently, in micro/nano fabrication equipments, linear motors are widely used as an actuator to position workpiece, machining tool and measurement head. To control them faster and more precise, the motor should have high actuating force and small force ripple. High actuating force enable us to more workpiece with high acceleration. Eventually, it may provide higher throughput. Force ripple gives detrimental effect on the precision and tracking performance of the equipments. In order to accomplish more precise motion, it is important to make lower the force ripple. Force ripple is categorized into cogging and mutual ripple. First is dependent on the shape of magnets and/or core. The second is not dependent on them but dependent on current commutation. In this work, coreless mover i.e. coil winding is applied to the linear motor to avoid the cogging ripple. Therefore, the mutual ripple is only considered to be minimized. Ideal Halbach magnet array has continuously varying magnetization. The THMA (Halbach magnet array with T shape magnets) is proposed to approximate the ideal one. The THMA can not produce ideal sinusoidal flux, therefore, the linear motor with THMA and sinusoidal commutation of current generates the mutual force ripple. In this paper, in order to compensate mutual force ripple by feedforward(FF) controller, we calculate the optimized commutation of input current. The ripple is lower than 1.17% of actuating force if the commutation current agree with the magnetic flux from THMA. The performance of feedforward(FF) controller is verified by experiment.

  13. Overview of linear collider designs

    SciTech Connect

    Siemann, R.H.

    1993-04-01

    Linear collider design and development have become focused on a center-of-mass energy E{sub CM} = 0.5 TeV and a luminosity L {approximately} 5 {times} 10{sup 33} cm{sup {minus}2}sec{sup {minus}1}. There are diverse approaches to meeting these general objectives. The diversity arises from different judgements about the ease of developing new and improving existing technology, costs, extension to higher energies, experimental backgrounds and center-of-mass energy spectrum, and tolerances and beam power. The parameters of possible colliders are given in this paper. This report will focus on some of the common themes of these designs and the different between them.

  14. Control system design to cope with non-linearities of a magnetically suspended momentum wheel for satellites

    SciTech Connect

    Nam, Myeong-Ryong; Hashimoto, Tatsuaki; Ninomiya, Keiken

    1994-12-31

    Attitude control system for a satellite using a magnetic bearing momentum wheel (MBMW) with gimballing capability involves double control loops: the inner loop to control the wheel`s gimballing to be stable while it is exchanging the angular momentum with the spacecraft main body, and the outer loop for controlling satellite`s attitude. To cope with the magnetic bearing`s nonlinearity in the inner control loop, a sliding-mode controller is proposed. which is usually known to have simple control structure as well as anti-disturbance robustness. In this case, moreover, the sliding mode controller particularly provides the merit to feedback the wheel`s rotational velocity automatically into the gim-balling control. The designed controller`s performance is validated by numerical simulation. Additionally, a simple analytical form of the closed servo loop transfer function of the inner loop, which is necessary for the outer loop design, is proposed based upon numerical simulations on the system response.

  15. A direct application of the non-linear inverse transformation flight control system design on a STOVL aircraft

    NASA Technical Reports Server (NTRS)

    Chung, W. W.; Mcneill, W. E.; Stortz, M. W.

    1993-01-01

    The nonlinear inverse transformation flight control system design method is applied to the Lockheed Ft. Worth Company's E-7D short takeoff and vertical land (STOVL) supersonic fighter/attack aircraft design with a modified General Electric F110 engine which has augmented propulsive lift capability. The system is fully augmented to provide flight path control and velocity control, and rate command attitude hold for angular axes during the transition and hover operations. In cruise mode, the flight control system is configured to provide direct thrust command, rate command attitude hold for pitch and roll axes, and sideslip command with turn coordination. A control selector based on the nonlinear inverse transformation method is designed specifically to be compatible with the propulsion system's physical configuration which has a two dimensional convergent-divergent aft nozzle, a vectorable ventral nozzle, and a thrust augmented ejector. The nonlinear inverse transformation is used to determine the propulsive forces and nozzle deflections, which in combination with the aerodynamic forces and moments (including propulsive induced contributions), and gravitational force, are required to achieve the longitudinal and vertical acceleration commands. The longitudinal control axes are fully decoupled within the propulsion system's performance envelope. A piloted motion-base flight simulation was conducted on the Vertical Motion Simulator (VMS) at NASA Ames Research Center to examine the handling qualities of this design. Based on results of the simulation, refinements to the control system have been made and will also be covered in the report.

  16. Linear control of the flywheel inverted pendulum.

    PubMed

    Olivares, Manuel; Albertos, Pedro

    2014-09-01

    The flywheel inverted pendulum is an underactuated mechanical system with a nonlinear model but admitting a linear approximation around the unstable equilibrium point in the upper position. Although underactuated systems usually require nonlinear controllers, the easy tuning and understanding of linear controllers make them more attractive for designers and final users. In a recent paper, a simple PID controller was proposed by the authors, leading to an internally unstable controlled plant. To achieve global stability, two options are developed here: first by introducing an internal stabilizing controller and second by replacing the PID controller by an observer-based state feedback control. Simulation and experimental results show the effectiveness of the design. PMID:24480638

  17. Design of Linear Quadratic Regulators and Kalman Filters

    NASA Technical Reports Server (NTRS)

    Lehtinen, B.; Geyser, L.

    1986-01-01

    AESOP solves problems associated with design of controls and state estimators for linear time-invariant systems. Systems considered are modeled in state-variable form by set of linear differential and algebraic equations with constant coefficients. Two key problems solved by AESOP are linear quadratic regulator (LQR) design problem and steady-state Kalman filter design problem. AESOP is interactive. User solves design problems and analyzes solutions in single interactive session. Both numerical and graphical information available to user during the session.

  18. Linear stochastic optimal control and estimation

    NASA Technical Reports Server (NTRS)

    Geyser, L. C.; Lehtinen, F. K. B.

    1976-01-01

    Digital program has been written to solve the LSOCE problem by using a time-domain formulation. LSOCE problem is defined as that of designing controls for linear time-invariant system which is disturbed by white noise in such a way as to minimize quadratic performance index.

  19. Linear stochastic optimal control and estimation problem

    NASA Technical Reports Server (NTRS)

    Geyser, L. C.; Lehtinen, F. K. B.

    1980-01-01

    Problem involves design of controls for linear time-invariant system disturbed by white noise. Solution is Kalman filter coupled through set of optimal regulator gains to produce desired control signal. Key to solution is solving matrix Riccati differential equation. LSOCE effectively solves problem for wide range of practical applications. Program is written in FORTRAN IV for batch execution and has been implemented on IBM 360.

  20. Linear Parameter Varying Control for Actuator Failure

    NASA Technical Reports Server (NTRS)

    Shin, Jong-Yeob; Wu, N. Eva; Belcastro, Christine; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    A robust linear parameter varying (LPV) control synthesis is carried out for an HiMAT vehicle subject to loss of control effectiveness. The scheduling parameter is selected to be a function of the estimates of the control effectiveness factors. The estimates are provided on-line by a two-stage Kalman estimator. The inherent conservatism of the LPV design is reducing through the use of a scaling factor on the uncertainty block that represents the estimation errors of the effectiveness factors. Simulations of the controlled system with the on-line estimator show that a superior fault-tolerance can be achieved.

  1. Feedback linearization for control of air breathing engines

    NASA Technical Reports Server (NTRS)

    Phillips, Stephen; Mattern, Duane

    1991-01-01

    The method of feedback linearization for control of the nonlinear nozzle and compressor components of an air breathing engine is presented. This method overcomes the need for a large number of scheduling variables and operating points to accurately model highly nonlinear plants. Feedback linearization also results in linear closed loop system performance simplifying subsequent control design. Feedback linearization is used for the nonlinear partial engine model and performance is verified through simulation.

  2. Linearization of Attitude-Control Error Dynamics

    NASA Technical Reports Server (NTRS)

    Bach, Ralph; Paielli, Russell

    1993-01-01

    Direction cosines and quaternions are useful for representing rigid-body attitude because they exhibit no kinematic singularities. Each utilizes more variables than the minimum three degrees of freedom required to specify attitude. Therefore, application of a nonlinear inversion procedure to either formulation introduces singularities. Furthermore, in designing an attitude-control system, it is not appropriate to express attitude error as a difference of direction cosines (or quaternions). One should employ a measure of attitude error that not only is minimal but preserves orthogonal rotation properties as well. This note applies an inversion procedure to an appropriate measure of attitude error, so that the singularity occurs when the error reaches +/- 180 deg. This approach leads to the realization of a new model-follower attitude-control system that exhibits exact linear attitude-error dynamics.

  3. Linear transmitter design for MSAT terminals

    NASA Technical Reports Server (NTRS)

    Wilkinson, Ross; Macleod, John; Beach, Mark; Bateman, Andrew

    1990-01-01

    One of the factors that will undoubtedly influence the choice of modulation format for mobile satellites, is the availability of cheap, power-efficient, linear amplifiers for mobile terminal equipment operating in the 1.5-1.7 GHz band. Transmitter linearity is not easily achieved at these frequencies, although high power (20W) class A/AB devices are becoming available. However, these components are expensive and require careful design to achieve a modest degree of linearity. In this paper an alternative approach to radio frequency (RF) power amplifier design for mobile satellite (MSAT) terminals using readily-available, power-efficient, and cheap class C devices in a feedback amplifier architecture is presented.

  4. Linear optimal control of tokamak fusion devices

    SciTech Connect

    Kessel, C.E.; Firestone, M.A.; Conn, R.W.

    1989-05-01

    The control of plasma position, shape and current in a tokamak fusion reactor is examined using linear optimal control. These advanced tokamaks are characterized by non up-down symmetric coils and structure, thick structure surrounding the plasma, eddy currents, shaped plasmas, superconducting coils, vertically unstable plasmas, and hybrid function coils providing ohmic heating, vertical field, radial field, and shaping field. Models of the electromagnetic environment in a tokamak are derived and used to construct control gains that are tested in nonlinear simulations with initial perturbations. The issues of applying linear optimal control to advanced tokamaks are addressed, including complex equilibrium control, choice of cost functional weights, the coil voltage limit, discrete control, and order reduction. Results indicate that the linear optimal control is a feasible technique for controlling advanced tokamaks where the more common classical control will be severely strained or will not work. 28 refs., 13 figs.

  5. On linear transform design with non-linear approximation

    NASA Astrophysics Data System (ADS)

    Sezer, Osman G.; Guleryuz, Onur G.

    2013-09-01

    In this paper we share our recent observations on methods for sparsity enforced orthogonal transform design. In our previous work on this problem, our target was to design transforms (sparse orthonormal transforms - SOT) that minimize the overall sparsity-distortion cost of a collection of image patches mainly for improving the performance of compression methods. In this paper we go one step further to understand why these transforms achieve better approximation and how different they are from transforms like the DCT or the Karhunen-Loeve transform (KLT). Our study lead us to mathematically validate that for a Gaussian process the KLT is the optimal transform not only in a linear approximation sense but also in a nonlinear approximation sense, the latter forming the basis for sparsity-based regularization. This means that the search for SOTs yields the KLT in Gaussian processes, but results in transforms that are distinctly different from the KLT in non-Gaussian cases by capturing useful structures within the data. Both toy examples and real compression results in various representation domains are presented in this paper to support our observations.

  6. SLAC linear collider conceptual design report

    SciTech Connect

    Not Available

    1980-06-01

    The linear collider system is described in detail, including the transport system, the collider lattice, final focusing system, positron production, beam damping and compression, high current electron source, instrumentation and control, and the beam luminosity. The experimental facilities and the experimental uses are discussed along with the construction schedule and estimated costs. Appendices include a discussion of space charge effects in the linear accelerator, emittance growth in the collider, the final focus system, beam-beam instabilities and pinch effects, and detector backgrounds. (GHT)

  7. Piecewise linear approximation for hereditary control problems

    NASA Technical Reports Server (NTRS)

    Propst, Georg

    1990-01-01

    This paper presents finite-dimensional approximations for linear retarded functional differential equations by use of discontinuous piecewise linear functions. The approximation scheme is applied to optimal control problems, when a quadratic cost integral must be minimized subject to the controlled retarded system. It is shown that the approximate optimal feedback operators converge to the true ones both in the case where the cost integral ranges over a finite time interval, as well as in the case where it ranges over an infinite time interval. The arguments in the last case rely on the fact that the piecewise linear approximations to stable systems are stable in a uniform sense.

  8. Multispectral linear array (MLA) focal plane mechanical and thermal design

    NASA Technical Reports Server (NTRS)

    Mitchell, A. S.; Kaminski, E. F.

    1982-01-01

    The mechanical and thermal design of an integrated focal plane subsystem of a Multispectral Linear Array (MLA) instrument is discussed in terms of focal-plane alignment, thermoelastic performance, and thermal requirements. The modular construction and thermal control of the focal plane array are discussed.

  9. Feedback linearization application for LLRF control system

    SciTech Connect

    Kwon, S.; Regan, A.; Wang, Y.M.; Rohlev, T.

    1999-06-01

    The Low Energy Demonstration Accelerator (LEDA) being constructed at Los Alamos National Laboratory will serve as the prototype for the low energy section of Acceleration Production of Tritium (APT) accelerator. This paper addresses the problem of the LLRF control system for LEDA. The authors propose a control law which is based on exact feedback linearization coupled with gain scheduling which reduces the effect of the deterministic klystron cathode voltage ripple that is due to harmonics of the high voltage power supply and achieves tracking of desired set points. Also, they propose an estimator of the ripple and its time derivative and the estimates based feedback linearization controller.

  10. Feedback linearization application for LLRF control system

    SciTech Connect

    Kwon, S.; Regan, A.; Wang, Y.M.; Rohlev, T.

    1998-12-31

    The Low Energy Demonstration Accelerator (LEDA) being constructed at Los Alamos National Laboratory will serve as the prototype for the low energy section of Acceleration Production of Tritium (APT) accelerator. This paper addresses the problem of the LLRF control system for LEDA. The authors propose a control law which is based on exact feedback linearization coupled with gain scheduling which reduces the effect of the deterministic klystron cathode voltage ripple that is due to harmonics of the high voltage power supply and achieves tracking of desired set points. Also, they propose an estimator of the ripple and its time derivative and the estimates based feedback linearization controller.

  11. Linearizing feedforward/feedback attitude control

    NASA Technical Reports Server (NTRS)

    Paielli, Russell A.; Bach, Ralph E.

    1991-01-01

    An approach to attitude control theory is introduced in which a linear form is postulated for the closed-loop rotation error dynamics, then the exact control law required to realize it is derived. The nonminimal (four-component) quaternion form is used to attitude because it is globally nonsingular, but the minimal (three-component) quaternion form is used for attitude error because it has no nonlinear constraints to prevent the rotational error dynamics from being linearized, and the definition of the attitude error is based on quaternion algebra. This approach produces an attitude control law that linearizes the closed-loop rotational error dynamics exactly, without any attitude singularities, even if the control errors become large.

  12. Controllable circular Airy beams via dynamic linear potential

    NASA Astrophysics Data System (ADS)

    Zhong, Hua; Zhang, Yiqi; Belić, Milivoj R.; Li, Changbiao; Wen, Feng; Zhang, Zhaoyang; Zhang, Yanpeng

    2016-04-01

    We investigate controllable spatial modulation of circular autofocusing Airy beams, under action of different dynamic linear potentials, both theoretically and numerically. We introduce a novel treatment method in which the circular Airy beam is represented as a superposition of narrow azimuthally-modulated one-dimensional Airy beams that can be analytically treated. The dynamic linear potentials are appropriately designed, so that the autofocusing effect can either be weakened or even eliminated when the linear potential exerts a "pulling" effect on the beam, or if the linear potential exerts a "pushing" effect, the autofocusing effect can be greatly strengthened. Numerical simulations agree with the theoretical results very well.

  13. Design of a transverse-flux permanent-magnet linear generator and controller for use with a free-piston stirling engine

    NASA Astrophysics Data System (ADS)

    Zheng, Jigui; Huang, Yuping; Wu, Hongxing; Zheng, Ping

    2016-06-01

    Transverse-flux with high efficiency has been applied in Stirling engine and permanent magnet synchronous linear generator system, however it is restricted for large application because of low and complex process. A novel type of cylindrical, non-overlapping, transverse-flux, and permanent-magnet linear motor(TFPLM) is investigated, furthermore, a high power factor and less process complexity structure research is developed. The impact of magnetic leakage factor on power factor is discussed, by using the Finite Element Analysis(FEA) model of stirling engine and TFPLM, an optimization method for electro-magnetic design of TFPLM is proposed based on magnetic leakage factor. The relation between power factor and structure parameter is investigated, and a structure parameter optimization method is proposed taking power factor maximum as a goal. At last, the test bench is founded, starting experimental and generating experimental are performed, and a good agreement of simulation and experimental is achieved. The power factor is improved and the process complexity is decreased. This research provides the instruction to design high-power factor permanent-magnet linear generator.

  14. Linear, Parameter-Varying Control of Aeroservoelastic Systems

    NASA Astrophysics Data System (ADS)

    Moreno Chicunque, Claudia Patricia

    Modern aircraft designers are adopting light-weight, high-aspect ratio flexible wings to improve performance and reduce operation costs. A technical challenge associated with these designs is that the large deformations in flight of the wings lead to adverse interactions between the aircraft aerodynamic forces and structural forces. These adverse interactions produce excessive vibrations that can degrade flying qualities and may result in severe structural damages or catastrophic failure. This dissertation is focused on the application of multivariable robust control techniques for suppression of these adverse interactions in flexible aircraft. Here, the aircraft coupled nonlinear equations of motion are represented in the linear, parameter-varying framework. These equations account for the coupled aerodynamics, rigid body dynamics, and deformable body dynamics of the aircraft. Unfortunately, the inclusion of this coupled dynamics results in high-order models that increase the computational complexity of linear, parameter-varying control techniques. This dissertation addresses three key technologies for linear, parameter-varying control of flexible aircraft: (i) linear, parameter-varying model reduction; (ii) selection of actuators and sensors for vibration suppression; and (iii) design of linear, parameter-varying controllers for vibration suppression. All of these three technologies are applied to an experimental research platform located at the University of Minnesota. The objective of this dissertation is to provide to the flight control community with a set of design methodologies to safely exploit the benefits of light-weight flexible aircraft.

  15. Solar Control design package

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Information used in the evaluation of design of Solar Control's solar heating and cooling system controller and the Solarstat is given. Some of the information includes system performance specifications, design data brochures, and detailed design drawings.

  16. International linear collider reference design report

    SciTech Connect

    Aarons, G.

    2007-06-22

    The International Linear Collider will give physicists a new cosmic doorway to explore energy regimes beyond the reach of today's accelerators. A proposed electron-positron collider, the ILC will complement the Large Hadron Collider, a proton-proton collider at the European Center for Nuclear Research (CERN) in Geneva, Switzerland, together unlocking some of the deepest mysteries in the universe. With LHC discoveries pointing the way, the ILC -- a true precision machine -- will provide the missing pieces of the puzzle. Consisting of two linear accelerators that face each other, the ILC will hurl some 10 billion electrons and their anti-particles, positrons, toward each other at nearly the speed of light. Superconducting accelerator cavities operating at temperatures near absolute zero give the particles more and more energy until they smash in a blazing crossfire at the centre of the machine. Stretching approximately 35 kilometres in length, the beams collide 14,000 times every second at extremely high energies -- 500 billion-electron-volts (GeV). Each spectacular collision creates an array of new particles that could answer some of the most fundamental questions of all time. The current baseline design allows for an upgrade to a 50-kilometre, 1 trillion-electron-volt (TeV) machine during the second stage of the project. This reference design provides the first detailed technical snapshot of the proposed future electron-positron collider, defining in detail the technical parameters and components that make up each section of the 31-kilometer long accelerator. The report will guide the development of the worldwide R&D program, motivate international industrial studies and serve as the basis for the final engineering design needed to make an official project proposal later this decade.

  17. Efficient Modeling Method of Vehicle Dynamics Operating at a Low Speed and Its Application to Non-Linear Optimal Controller Design

    NASA Astrophysics Data System (ADS)

    Kim, Young Woo; Matsuzaki, Sinya; Narikiyo, Tatsuo

    In this paper, we propose a non-analytical but effective self-organizing modeling method, where system dynamics of interest are constructed in a polynomial affine formation with high granularity. The conventional data mining technique has the assessment scheme for representativeness of the developed model. However, if the model is applied to extract the desired values without considering the structural peculiarities such as input pattern used for constructing the dynamics, hardware specification used for data acquisition, and so on, it possibly shows substantial margin of modeling error. In order to correspond this type of control paradigm, we define the permissible set of state and input variables in order to characterize the data used for developing the model. The developed model is then applied to the programming based optimal control scheme where the optimal inputs are selected among the permissible set of the input variable, considering all the limitations specified by linear inequalities.

  18. Development of a digital adaptive optimal linear regulator flight controller

    NASA Technical Reports Server (NTRS)

    Berry, P.; Kaufman, H.

    1975-01-01

    Digital adaptive controllers have been proposed as a means for retaining uniform handling qualities over the flight envelope of a high-performance aircraft. Towards such an implementation, an explicit adaptive controller, which makes direct use of online parameter identification, has been developed and applied to the linearized lateral equations of motion for a typical fighter aircraft. The system is composed of an online weighted least-squares parameter identifier, a Kalman state filter, and a model following control law designed using optimal linear regulator theory. Simulation experiments with realistic measurement noise indicate that the proposed adaptive system has the potential for onboard implementation.

  19. Nutrient Control Design Manual

    EPA Science Inventory

    The Nutrient Control Design Manual will present an extensive state-of-the-technology review of the engineering design and operation of nitrogen and phosphorous control technologies and techniques applied at municipal wastewater treatment plants (WWTPs). This manual will present ...

  20. Aircraft digital control design methods

    NASA Technical Reports Server (NTRS)

    Tashker, M. G.; Powell, J. D.

    1975-01-01

    Investigations were conducted in two main areas: the first area is control system design, and the goals were to define the limits of 'digitized S-Plane design techniques' vs. sample rate, to show the results of a 'direct digital design technique', and to compare the two methods; the second area was to evaluate the roughness of autopilot designs parametrically versus sample rate. Goals of the first area were addressed by (1) an analysis of a 2nd order example using both design methods, (2) a linear analysis of the complete 737 aircraft with an autoland obtained using the digitized S-plane technique, (3) linear analysis of a high frequency 737 approximation with the autoland from a direct digital design technique, and (4) development of a simulation for evaluation of the autopilots with disturbances and nonlinearities included. Roughness evaluation was studied by defining an experiment to be carried out on the Langley motion simulator and coordinated with analysis at Stanford.

  1. Optimal Regulator Algorithms For The Control Of Linear Systems (ORACLS)

    NASA Technical Reports Server (NTRS)

    Frisch, Harold P.

    1990-01-01

    Control theory design package offers engineer full range of subroutines to manipulate and solve Linear-Quadratic-Gaussian types of problems. ORACLS is rigorous tool, intended for multi-input and multi-output dynamic systems in both continuous and discrete form. Written in FORTRAN.

  2. Control system design guide

    SciTech Connect

    Sellers, David; Friedman, Hannah; Haasl, Tudi; Bourassa, Norman; Piette, Mary Ann

    2003-05-01

    The ''Control System Design Guide'' (Design Guide) provides methods and recommendations for the control system design process and control point selection and installation. Control systems are often the most problematic system in a building. A good design process that takes into account maintenance, operation, and commissioning can lead to a smoothly operating and efficient building. To this end, the Design Guide provides a toolbox of templates for improving control system design and specification. HVAC designers are the primary audience for the Design Guide. The control design process it presents will help produce well-designed control systems that achieve efficient and robust operation. The spreadsheet examples for control valve schedules, damper schedules, and points lists can streamline the use of the control system design concepts set forth in the Design Guide by providing convenient starting points from which designers can build. Although each reader brings their own unique questions to the text, the Design Guide contains information that designers, commissioning providers, operators, and owners will find useful.

  3. AESOP- INTERACTIVE DESIGN OF LINEAR QUADRATIC REGULATORS AND KALMAN FILTERS

    NASA Technical Reports Server (NTRS)

    Lehtinen, B.

    1994-01-01

    AESOP was developed to solve a number of problems associated with the design of controls and state estimators for linear time-invariant systems. The systems considered are modeled in state-variable form by a set of linear differential and algebraic equations with constant coefficients. Two key problems solved by AESOP are the linear quadratic regulator (LQR) design problem and the steady-state Kalman filter design problem. AESOP is designed to be used in an interactive manner. The user can solve design problems and analyze the solutions in a single interactive session. Both numerical and graphical information are available to the user during the session. The AESOP program is structured around a list of predefined functions. Each function performs a single computation associated with control, estimation, or system response determination. AESOP contains over sixty functions and permits the easy inclusion of user defined functions. The user accesses these functions either by inputting a list of desired functions in the order they are to be performed, or by specifying a single function to be performed. The latter case is used when the choice of function and function order depends on the results of previous functions. The available AESOP functions are divided into several general areas including: 1) program control, 2) matrix input and revision, 3) matrix formation, 4) open-loop system analysis, 5) frequency response, 6) transient response, 7) transient function zeros, 8) LQR and Kalman filter design, 9) eigenvalues and eigenvectors, 10) covariances, and 11) user-defined functions. The most important functions are those that design linear quadratic regulators and Kalman filters. The user interacts with AESOP when using these functions by inputting design weighting parameters and by viewing displays of designed system response. Support functions obtain system transient and frequency responses, transfer functions, and covariance matrices. AESOP can also provide the user

  4. Distributed control using linear momentum exchange devices

    NASA Technical Reports Server (NTRS)

    Sharkey, J. P.; Waites, Henry; Doane, G. B., III

    1987-01-01

    MSFC has successfully employed the use of the Vibrational Control of Space Structures (VCOSS) Linear Momentum Exchange Devices (LMEDs), which was an outgrowth of the Air Force Wright Aeronautical Laboratory (AFWAL) program, in a distributed control experiment. The control experiment was conducted in MSFC's Ground Facility for Large Space Structures Control Verification (GF/LSSCV). The GF/LSSCV's test article was well suited for this experiment in that the LMED could be judiciously placed on the ASTROMAST. The LMED placements were such that vibrational mode information could be extracted from the accelerometers on the LMED. The LMED accelerometer information was processed by the control algorithms so that the LMED masses could be accelerated to produce forces which would dampen the vibrational modes of interest. Experimental results are presented showing the LMED's capabilities.

  5. Design and investigation of a linear smart actuator

    NASA Astrophysics Data System (ADS)

    Krishna Chaitanya, S.; Dhanalakshmi, K.

    2015-04-01

    Motors are nearly the sole constituents for actuation and driving applications, but there exist cases where their use proves to be impractical. Shape memory alloy (SMA), then revolutionized the actuator technology, thereby opening the door for new ideas and designs and with it what seemed unfeasible in the past have now become challenging. Many conventional actuators and sensors could be substituted with SMA, obtaining advantages in terms of reduction of weight, dimensions and its cost. SMAs are a group of metallic materials that revert to a predefined shape via phase transformation induced by a thermal procedure. Unlike metals that exhibit thermal expansion, SMA exhibits contraction when heated, which is larger by a hundredfold and exerts tremendous force for its small size. The focus of this work is to realize SMA wire as actuator which finds suitable applications (space, aerospace, biomechanics, etc.) where minimizing space, weight and cost are prime objectives. The accomplishments reported in this paper represent a significant development in the design of SMA actuator configurations for linear actuation. Report on design, fabrication and characterisation of the proposed system is presented. The design took advantage of converting the small linear displacement of the SMA wire into a large linear elastic motion under the influence of biasing element. From the results with control it is aspired that with further improvements on the design, the actuator can be utilized in enabling practical SMA technologies for potential robotic and commercial applications.

  6. [Weekly control measurement at the linear accelerator].

    PubMed

    Christ, G

    1983-05-01

    Weekly control measurements taken at the linear accelerator of the Medizinisches Strahleninstitut der Universität Tübingen are described which largely exceed those prescribed by the "Richtlinien Strahlenschutz in der Medizin" (instructions about radioprotection in medicine). Since the determination of the field homogeneity and the energy of electron and X-ray radiation is very time-consuming, a largely automatized procedure has been elaborated which is presented in this study. PMID:6857748

  7. Extended Decentralized Linear-Quadratic-Gaussian Control

    NASA Technical Reports Server (NTRS)

    Carpenter, J. Russell

    2000-01-01

    A straightforward extension of a solution to the decentralized linear-Quadratic-Gaussian problem is proposed that allows its use for commonly encountered classes of problems that are currently solved with the extended Kalman filter. This extension allows the system to be partitioned in such a way as to exclude the nonlinearities from the essential algebraic relationships that allow the estimation and control to be optimally decentralized.

  8. Designing case-control studies.

    PubMed Central

    Yanagawa, T

    1979-01-01

    Identification of confounding factors, evaluation of their influence on cause-effect associations, and the introduction of appropriate ways to account for these factors are important considerations in designing case-control studies. This paper presents designs useful for these purposes, after first providing a statistical definition of a confounding factor. Differences in the ability to identify and evaluate confounding factors and estimate disease risk between designs employing stratification (matching) and designs randomly sampling cases and controls are noted. Linear logistic models for the analysis of data from such designs are described and are shown to liberalize design requirements and to increase relative risk estimation efficiency. The methods are applied to data from a multiple factor investigation of lung cancer patients and controls. PMID:540588

  9. Physics design of linear accelerators for intense ion beams

    SciTech Connect

    Wangler, T.P.

    1988-01-01

    Advances in the physics and technology of linear accelerators for intense ion beams are leading to new methods for the design of such machines. The physical effects that limit beam current and brightness are better understood and provide the criteria for choosing the rf frequency and for determining optimum focusing configurations to control longitudinal and transverse emittances. During the past decade, the use of developments such as the radio-frequency quadrupole, multiple beams, funneling, ramped-field linac tanks, and self-matching linac tanks is leading to greater design flexibility and improved performance capabilities. 39 refs., 3 tabs., 1 fig.

  10. Colorized linear CCD data acquisition system with automatic exposure control

    NASA Astrophysics Data System (ADS)

    Li, Xiaofan; Sui, Xiubao

    2014-11-01

    Colorized linear cameras deliver superb color fidelity at the fastest line rates in the industrial inspection. It's RGB trilinear sensor eliminates image artifacts by placing a separate row of pixels for each color on a single sensor. It's advanced design minimizes distance between rows to minimize image artifacts due to synchronization. In this paper, the high-speed colorized linear CCD data acquisition system was designed take advantages of the linear CCD sensor μpd3728. The hardware and software design of the system based on FPGA is introduced and the design of the functional modules is performed. The all system is composed of CCD driver module, data buffering module, data processing module and computer interface module. The image data was transferred to computer by Camera link interface. The system which automatically adjusts the exposure time of linear CCD, is realized with a new method. The integral time of CCD can be controlled by the program. The method can automatically adjust the integration time for different illumination intensity under controlling of FPGA, and respond quickly to brightness changes. The data acquisition system is also offering programmable gains and offsets for each color. The quality of image can be improved after calibration in FPGA. The design has high expansibility and application value. It can be used in many application situations.

  11. Robust linear quadratic designs with respect to parameter uncertainty

    NASA Technical Reports Server (NTRS)

    Douglas, Joel; Athans, Michael

    1992-01-01

    The authors derive a linear quadratic regulator (LQR) which is robust to parametric uncertainty by using the overbounding method of I. R. Petersen and C. V. Hollot (1986). The resulting controller is determined from the solution of a single modified Riccati equation. It is shown that, when applied to a structural system, the controller gains add robustness by minimizing the potential energy of uncertain stiffness elements, and minimizing the rate of dissipation of energy through uncertain damping elements. A worst-case disturbance in the direction of the uncertainty is also considered. It is proved that performance robustness has been increased with the robust LQR when compared to a mismatched LQR design where the controller is designed on the nominal system, but applied to the actual uncertain system.

  12. Propulsion control of superconducting linear synchronous motor vehicle

    SciTech Connect

    Sakamoto, Tetsuzo; Shiromizu, Tsunehiro

    1997-09-01

    The armature current of a superconducting Linear Synchronous Motor (LSM) for a maglev vehicle is controlled to produce a suitable propulsion force so that the vehicle follows the reference speed signal sent from a control station. Besides the power is supplied from some inverters to the LSM armature sections where the vehicle exists. This paper shows an exact mathematical modeling of the propulsion control system to treat the system analytically, which is used for designing controllers and performance computer simulations. The calculated results include the simulations when the vehicle goes through power feeder section borders and tunnels that have a large aerodynamic drag force with taking account of an inverter failure.

  13. A non-linear programming approach to the computer-aided design of regulators using a linear-quadratic formulation

    NASA Technical Reports Server (NTRS)

    Fleming, P.

    1985-01-01

    A design technique is proposed for linear regulators in which a feedback controller of fixed structure is chosen to minimize an integral quadratic objective function subject to the satisfaction of integral quadratic constraint functions. Application of a non-linear programming algorithm to this mathematically tractable formulation results in an efficient and useful computer-aided design tool. Particular attention is paid to computational efficiency and various recommendations are made. Two design examples illustrate the flexibility of the approach and highlight the special insight afforded to the designer.

  14. Integration, control, and applications of multifunctional linear actuators

    NASA Astrophysics Data System (ADS)

    Ma, Kougen; Ghasemi-Nejhad, Mehrdad N.

    2008-03-01

    The integration, analysis, control, and application of a linear actuator are investigated. The linear actuator has super-precision, large stroke, and simultaneous precision positioning and vibration suppression capabilities. It is an integration of advanced electro-mechanical technology, smart materials technology, sensing technology, and control technology. Based on the electromechanical technology, a DC-motor driven leading screw ensures the large stroke of motion and coarse positioning. The smart piezoelectric technology makes the fine positioning and vibration suppression over a wide frequency range possible. The advanced control strategy greatly compensates the hysteresis characteristics such as backlash and/or dead zone, and enables the excellent performance of the actuator. Several sensors such as load cells, displacement sensors, and encoders are also integrated for various applications. Controller design and testing of this linear actuator are also conducted. The applications of the linear actuator are also explored in precision positioning and vibration suppression of a flexible manipulator and smart composite platform for thrust vector control of satellites.

  15. Nanoscale control designs for systems.

    PubMed

    Chen, Yung-Yue

    2014-02-01

    Nanoscale control is the science of the control of objects at dimensions with 100 nm or less and the manipulation of them at this level of precision. The desired attributes of systems under nanoscale control design are extreme high resolution, accuracy, stability, and fast response. An important perspective of investigation in nanoscale control design includes system modeling and precision control devices and materials at a nanoscale dimension, i.e., design of nanopositioners. Nanopositioners are mechatronic systems with an ultraprecise resolution down to a fraction of an atomic diameter and developed to move objects over a small range in nanoscale dimension. After reviewing a lot of existing literatures for nanoscale control designs, the way to successful nanoscale control is accurate position sensing and feedback control of the motion. An overview of nanoscale identification, linear, and nonlinear control technologies, and devices that are playing a key role in improving precision, accuracy, and response of operation of these systems are introduced in this research. PMID:24749455

  16. Linear quadratic servo control of a reusable rocket engine

    NASA Technical Reports Server (NTRS)

    Musgrave, Jeffrey L.

    1991-01-01

    A design method for a servo compensator is developed in the frequency domain using singular values. The method is applied to a reusable rocket engine. An intelligent control system for reusable rocket engines was proposed which includes a diagnostic system, a control system, and an intelligent coordinator which determines engine control strategies based on the identified failure modes. The method provides a means of generating various linear multivariable controllers capable of meeting performance and robustness specifications and accommodating failure modes identified by the diagnostic system. Command following with set point control is necessary for engine operation. A Kalman filter reconstructs the state while loop transfer recovery recovers the required degree of robustness while maintaining satisfactory rejection of sensor noise from the command error. The approach is applied to the design of a controller for a rocket engine satisfying performance constraints in the frequency domain. Simulation results demonstrate the performance of the linear design on a nonlinear engine model over all power levels during mainstage operation.

  17. A linear quadratic tracker for Control Moment Gyro based attitude control of the Space Station

    NASA Technical Reports Server (NTRS)

    Kaidy, J. T.

    1986-01-01

    The paper discusses a design for an attitude control system for the Space Station which produces fast response, with minimal overshoot and cross-coupling with the use of Control Moment Gyros (CMG). The rigid body equations of motion are linearized and discretized and a Linear Quadratic Regulator (LQR) design and analysis study is performed. The resulting design is then modified such that integral and differential terms are added to the state equations to enhance response characteristics. Methods for reduction of computation time through channelization are discussed as well as the reduction of initial torque requirements.

  18. Design of multivariable controllers for robot manipulators

    NASA Technical Reports Server (NTRS)

    Seraji, H.

    1986-01-01

    The paper presents a simple method for the design of linear multivariable controllers for multi-link robot manipulators. The control scheme consists of multivariable feedforward and feedback controllers. The feedforward controller is the minimal inverse of the linearized model of robot dynamics and contains only proportional-double-derivative (PD2) terms. This controller ensures that the manipulator joint angles track any reference trajectories. The feedback controller is of proportional-integral-derivative (PID) type and achieves pole placement. This controller reduces any initial tracking error to zero as desired and also ensures that robust steady-state tracking of step-plus-exponential trajectories is achieved by the joint angles. The two controllers are independent of each other and are designed separately based on the linearized robot model and then integrated in the overall control scheme. The proposed scheme is simple and can be implemented for real-time control of robot manipulators.

  19. Control system design method

    DOEpatents

    Wilson, David G.; Robinett, III, Rush D.

    2012-02-21

    A control system design method and concomitant control system comprising representing a physical apparatus to be controlled as a Hamiltonian system, determining elements of the Hamiltonian system representation which are power generators, power dissipators, and power storage devices, analyzing stability and performance of the Hamiltonian system based on the results of the determining step and determining necessary and sufficient conditions for stability of the Hamiltonian system, creating a stable control system based on the results of the analyzing step, and employing the resulting control system to control the physical apparatus.

  20. Robust Decentralized Controller Design: Subsystem Approach

    NASA Astrophysics Data System (ADS)

    Rosinová, Danica; Thuan, Nguyen Quang; Veselý, Vojtech; Marko, L'ubomír

    2012-01-01

    The paper addresses the problem of the robust output feedback PI controller design for complex large-scale stable systems with a state decentralized control structure. A decentralized control design procedure is proposed for static output feedback control which is based on solving robust control design problems of subsystems' size. The presented approach is based on the Generalized Gershgorin Theorem and uses the so-called equivalent subsystems approach to consider the interactions in the local robust controller design. The resulting decentralized control scheme has been successfully tested on two examples: a linearized model of three interconnected boiler-turbine subsystems and a linear model of four cooperating DC motors where the problem is to design four local PI controllers for a large scale system which will guarantee robust stability and performance of the closed-loop uncertain system.

  1. Methodological development of fuzzy-logic controllers from multivariable linear control.

    PubMed

    Tso, S K; Fung, Y H

    1997-01-01

    It is the function of the design of a fuzzy-logic controller to determine the universes of discourse of the antecedents and the consequents, number of membership labels, distribution and shape of membership functions, rule formulation, etc. Much of the information is usually extracted from expert knowledge, operator experience, or heuristic thinking. It is hence difficult to mechanize the first-stage design of fuzzy-logic controllers using linguistic labels whose performance is no worse than that of conventional multivariable linear controllers such as state-feedback controllers, PID controllers, etc. In this paper, an original systematic seven-step linear-to-fuzzy (LIN2FUZ) algorithm is proposed for generating the labels, universes of discourse of the antecedents and the consequents, and fuzzy rules of ;basically linear' fuzzy-logic controllers, given the reference design of available conventional multivariable linear controllers. The functionally equivalent fuzzy-logic controllers can thus provide the sound basis for the further development to achieve performance beyond the capability or the conventional controllers. The validity and effectiveness of the proposed LIN2FUZ algorithm are demonstrated by a four-input one-output inverted pendulum system. PMID:18255897

  2. Linear and non-linear control techniques applied to actively lubricated journal bearings

    NASA Astrophysics Data System (ADS)

    Nicoletti, R.; Santos, I. F.

    2003-03-01

    The main objectives of actively lubricated bearings are the simultaneous reduction of wear and vibration between rotating and stationary machinery parts. For reducing wear and dissipating vibration energy until certain limits, one can use the conventional hydrodynamic lubrication. For further reduction of shaft vibrations one can use the active lubrication action, which is based on injecting pressurized oil into the bearing gap through orifices machined in the bearing sliding surface. The design and efficiency of some linear (PD, PI and PID) and a non-linear controller, applied to a tilting-pad journal bearing, are analysed and discussed. Important conclusions about the application of integral controllers, responsible for changing the rotor-bearing equilibrium position and consequently the "passive" oil film damping coefficients, are achieved. Numerical results show an effective vibration reduction of unbalance response of a rigid rotor, where the PD and the non-linear P controllers show better performance for the frequency range of study (0-80 Hz). The feasibility of eliminating rotor-bearing instabilities (phenomena of whirl) by using active lubrication is also investigated, illustrating clearly one of its most promising applications.

  3. Extensibility of a linear rapid robust design methodology

    NASA Astrophysics Data System (ADS)

    Steinfeldt, Bradley A.; Braun, Robert D.

    2016-05-01

    The extensibility of a linear rapid robust design methodology is examined. This analysis is approached from a computational cost and accuracy perspective. The sensitivity of the solution's computational cost is examined by analysing effects such as the number of design variables, nonlinearity of the CAs, and nonlinearity of the response in addition to several potential complexity metrics. Relative to traditional robust design methods, the linear rapid robust design methodology scaled better with the size of the problem and had performance that exceeded the traditional techniques examined. The accuracy of applying a method with linear fundamentals to nonlinear problems was examined. It is observed that if the magnitude of nonlinearity is less than 1000 times that of the nominal linear response, the error associated with applying successive linearization will result in ? errors in the response less than 10% compared to the full nonlinear error.

  4. Nutrient Control Design Manual

    EPA Science Inventory

    The purpose of this EPA design manual is to provide updated, state‐of‐the‐technology design guidance on nitrogen and phosphorus control at municipal Wastewater Treatment Plants (WWTPs). Similar to previous EPA manuals, this manual contains extensive information on the principles ...

  5. Linear magnetoelectricity at room temperature in perovskite superlattices by design

    NASA Astrophysics Data System (ADS)

    Ghosh, Saurabh; Das, Hena; Fennie, Craig J.

    2015-11-01

    Discovering materials that display a linear magnetoelectric (ME) effect at room temperature is a challenge. Such materials could facilitate devices based on the electric field control of magnetism. Here we present simple, chemically intuitive design rules to identify a class of bulk magnetoelectric materials based on the "bicolor" layering of P b n m ferrite perovskites, e.g., LaFeO3/LnFeO3 superlattices, Ln = lanthanide cation. We use first-principles density functional theory calculations to confirm these ideas. We elucidate the origin of this effect and show it is a general consequence of the layering of any bicolor P b n m perovskite superlattice in which the number of constituent layers are odd (leading to a form of hybrid improper ferroelectricity). Our calculations suggest that the ME effect in these superlattices is larger than that observed in the prototypical magnetoelectric materials Cr2O3 and BiFeO3. Furthermore, in these proposed materials, the strength of the linear ME coupling increases with the magnitude of the induced spontaneous polarization which is controlled by the La/Ln cation radius mismatch. We use a simple mean field model to show that the proposed materials order magnetically above room temperature.

  6. The Control System for the X-33 Linear Aerospike Engine

    NASA Technical Reports Server (NTRS)

    Jackson, Jerry E.; Espenschied, Erich; Klop, Jeffrey

    1998-01-01

    The linear aerospike engine is being developed for single-stage -to-orbit (SSTO) applications. The primary advantages of a linear aerospike engine over a conventional bell nozzle engine include altitude compensation, which provides enhanced performance, and lower vehicle weight resulting from the integration of the engine into the vehicle structure. A feature of this integration is the ability to provide thrust vector control (TVC) by differential throttling of the engine combustion elements, rather than the more conventional approach of gimballing the entire engine. An analysis of the X-33 flight trajectories has shown that it is necessary to provide +/- 15% roll, pitch and yaw TVC authority with an optional capability of +/- 30% pitch at select times during the mission. The TVC performance requirements for X-33 engine became a major driver in the design of the engine control system. The thrust level of the X-33 engine as well as the amount of TVC are managed by a control system which consists of electronic, instrumentation, propellant valves, electro-mechanical actuators, spark igniters, and harnesses. The engine control system is responsible for the thrust control, mixture ratio control, thrust vector control, engine health monitoring, and communication to the vehicle during all operational modes of the engine (checkout, pre-start, start, main-stage, shutdown and post shutdown). The methodology for thrust vector control, the health monitoring approach which includes failure detection, isolation, and response, and the basic control system design are the topic of this paper. As an additional point of interest a brief description of the X-33 engine system will be included in this paper.

  7. Identification and robust control of linear parameter-varying systems

    NASA Astrophysics Data System (ADS)

    Lee, Lawton Hubert

    This dissertation deals with linear parameter-varying (LPV) systems: linear dynamic systems that depend on time-varying parameters. These systems appear in gain scheduling problems, and much recent research has been devoted to their prospective usefulness for systematic gain scheduling. We primarily focus on robust control of uncertain LPV systems and identification of LPV systems that are modelable as linear-fractional transformations (LFTs). Using parameter-dependent quadratic Lyapunov functions, linear matrix inequalities (LMIs), and scaled small-gain arguments, we define notions of stability and induced-{cal L}sb2 performance for uncertain LPV systems whose parameters and rates of parameter variation satisfy given bounds. The performance criterion involves integral quadratic constraints and implies naturally parameter-dependent induced-{cal L}sb2 norm bounds. We formulate and solve an {cal H}sb{infty}-like control problem for an LPV plant with measurable parameters and an "Output/State Feedback" structure: the feedback outputs include some noiselessly measured states. Necessary and sufficient solvability conditions reduce to LMIs that can be solved approximately using finite-dimensional convex programming. Reduced-order LPV controllers are constructed from the LMI solutions. A D-K iteration-like procedure provides robustness to structured, time-varying, parametric uncertainty. The design method is applied to a motivating example: flight control for the F-16 VISTA throughout its subsonic flight envelope. Parameter-dependent weights and {cal H}sb{infty} design principles describe the performance objectives. Closed-loop responses exhibited by nonlinear simulations indicate satisfactory flying qualities. Identification of linear-fractional LPV systems is treated using maximum-likelihood parameter estimation. Computing the gradient and Hessian of a maximum-likelihood cost function reduces to simulating one LPV filter per identified parameter. We use nonlinear

  8. 2002 Controls Design Challenge

    NASA Technical Reports Server (NTRS)

    Hess, Ronald A.; Vetter, T. K.; Wells, S. R.

    2002-01-01

    This document is intended to provide the specifications and requirements for a flight control system design challenge. The response to the challenge will involve documenting whether the particular design has met the stated requirements through analysis and computer simulation. The response should be written in the general format of a technical publication with corresponding length limits, e.g., an approximate maximum length of 45 units, with each full-size figure and double-spaced typewritten page constituting one unit.

  9. Multirate digital control system design

    NASA Technical Reports Server (NTRS)

    Berg, Martin C.; Amit, Naftali; Powell, J. David

    1988-01-01

    Methods for multirate digital control system design are discussed. A simple method for sampling rate selection based on control bandwidths is proposed. Methods for generating a discrete-time state model of a sampled-data plant and a discrete-time equivalent to an analog cost function for a sampled-data plant are described. The succesive loop closures and linear quadratic Gaussian synthesis methods are reviewed, and a constrained optimization synthesis method is introduced. The proposed sampling rate selection, discretization, and synthesis methods are applied to two example design problems. Multirate and single-rate compensators synthesized by the different methods are compared, based on closed-loop responses, with compensators having the same real-time computation load.

  10. Transverse wakefield control and feedback in the SLC (SLAC Linear Collider) linear

    SciTech Connect

    Seeman, J.T.; Campisi, I.E.; Herrmannsfeldt, W.; Lee, M.; Petersen, A.; Phinney, N.; Ross, M.; Abrams, G.S.; Adolphsen, C.; Soderstrom, E.

    1987-01-01

    Transverse wakefields in the linac of the SLAC Linear Collider (SLC) have been observed to enlarge the effective emittance of beams which are not properly centered in the accelerating structure. A fast feedback system has been constructed to minimize the enlargement under changing conditions by controlling the beam launching parameters. Theoretical aspects of this transverse feedback system are reviewed as well as the design of the beam sensors, launch controllers, communication equipment and data processing micro-computer. A variety of beam observations have been made. They show that dispersion as well as wakefield effects are important. In the near future the fast transverse feedback system will be beam tested, and algorithms tailored to the noise environment of the SLC will be tried.

  11. Approximate Linearization Control of 2-DOF Underactuated-by-1 Systems Using Higher Order Linearization Coordinate

    NASA Astrophysics Data System (ADS)

    Hoshino, Tasuku

    This paper deals with an approximate linearization control of 2-DOF underactuated-by-1 nonlinear systems, proposing a novel linearization coordinate which reduces the approximation error over the state space around the operating point. The coordinate is analytically constructed in a systematic way by solving two first order linear partial differential equations and the solution is given in an infinite series of configuration variables. The resulting linearization feedback is highly nonlinear and the basin of attraction of the stabilized system using proposed coordinate is large, comparing with those of a conventional first order or other lower order linearization coordinates. The approximate linearization control based on the proposed coordinate is applied to the stabilization of a rotational inverted pendulum; the advantage is verified in simulations and experiments. Some perspectives on availability of the linearization coordinate are discussed and they are computed also for a mobile inverted pendulum, Acrobot, and for Pendubot as examples.

  12. Linear, multivariable robust control with a mu perspective

    NASA Technical Reports Server (NTRS)

    Packard, Andy; Doyle, John; Balas, Gary

    1993-01-01

    The structured singular value is a linear algebra tool developed to study a particular class of matrix perturbation problems arising in robust feedback control of multivariable systems. These perturbations are called linear fractional, and are a natural way to model many types of uncertainty in linear systems, including state-space parameter uncertainty, multiplicative and additive unmodeled dynamics uncertainty, and coprime factor and gap metric uncertainty. The structured singular value theory provides a natural extension of classical SISO robustness measures and concepts to MIMO systems. The structured singular value analysis, coupled with approximate synthesis methods, make it possible to study the tradeoff between performance and uncertainty that occurs in all feedback systems. In MIMO systems, the complexity of the spatial interactions in the loop gains make it difficult to heuristically quantify the tradeoffs that must occur. This paper examines the role played by the structured singular value (and its computable bounds) in answering these questions, as well as its role in the general robust, multivariable control analysis and design problem.

  13. String Stability of a Linear Formation Flight Control System

    NASA Technical Reports Server (NTRS)

    Allen, Michael J.; Ryan, Jack; Hanson, Curtis E.; Parle, James F.

    2002-01-01

    String stability analysis of an autonomous formation flight system was performed using linear and nonlinear simulations. String stability is a measure of how position errors propagate from one vehicle to another in a cascaded system. In the formation flight system considered here, each i(sup th) aircraft uses information from itself and the preceding ((i-1)(sup th)) aircraft to track a commanded relative position. A possible solution for meeting performance requirements with such a system is to allow string instability. This paper explores two results of string instability and outlines analysis techniques for string unstable systems. The three analysis techniques presented here are: linear, nonlinear formation performance, and ride quality. The linear technique was developed from a worst-case scenario and could be applied to the design of a string unstable controller. The nonlinear formation performance and ride quality analysis techniques both use nonlinear formation simulation. Three of the four formation-controller gain-sets analyzed in this paper were limited more by ride quality than by performance. Formations of up to seven aircraft in a cascaded formation could be used in the presence of light gusts with this string unstable system.

  14. Linear regulator design for stochastic systems by a multiple time scales method

    NASA Technical Reports Server (NTRS)

    Teneketzis, D.; Sandell, N. R., Jr.

    1976-01-01

    A hierarchically-structured, suboptimal controller for a linear stochastic system composed of fast and slow subsystems is considered. The controller is optimal in the limit as the separation of time scales of the subsystems becomes infinite. The methodology is illustrated by design of a controller to suppress the phugoid and short period modes of the longitudinal dynamics of the F-8 aircraft.

  15. Design Optimization for Anharmonic Linear Surface-Electrode Ion Trap

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Chen, Shu-Ming; Chen, Ping-Xing; Wu, Wei

    2014-11-01

    An accurate and rapid method is proposed to optimize anharmonic linear surface-electrode ion trap design. Based on the method, we analyze the impact of the architectural parameters, including the width, number, and applied voltage of prerequisite active electrodes, on the number and spacing of trapped ions. Sets of optimal anharmonic trap design are given. Then the optimal designs are verified by using an ant colony optimization algorithm. The results show that the maximum ion position errors and maximum ion spacing errors are less than 1 μm up to 80. The mean of the maximum errors is nearly linear with respect to the number of trapped ions.

  16. Linear and reconfigurable control of wing damaged aircraft

    NASA Astrophysics Data System (ADS)

    Nespeca, Pascal

    Recently, there has been an interest in researching control techniques that might improve the overall safety of flight. The goal is to create an autopilot control system which could safely land a wing damaged aircraft. Spanwise Full-Loss (SFL) is defined as the entire removal of wing section along the chord of the wing, starting from the tip and moving toward the root. Based upon computational models of a rigid aircraft with varying SFL, obvious force-moment imbalances are likely to be the primary factor affecting survivability. Rigid aircraft with more effective ailerons or additional rolling control surfaces are more likely to survive wing damage. Computer models of wing damage suggest that wing loss in the range of 0--50% SFL will not create an abnormal dynamic instability of a rigid aircraft with a standard linear autopilot. Dynamic instability is not present because the SFL linear model is mostly triangular with longitudinal variables almost exclusively effecting lateral variables. Closed loop performance is not compromised in the range of 0--20% SFL. Resizing ailerons may be needed to accommodate wing damage beyond 20 to 30% SFL. For a flexible aircraft, wing damage that reduces the torsional stiffness of the wing could cause roll-control reversal. Roll control reversal can create closed loop instability with undamaged aircraft. SFL actually increases the torsional stiffness of the wing. However, real world wing damage may not be limited to a spanwise wing loss. Conventional control techniques are introduced by several design examples and successfully extended to wing damaged aircraft. Reconfigurable, switching and conventional control techniques are found to possess acceptable levels of technical merit for flight control. With reconfigurable and switching flight control techniques, one can avoid known instabilities due to time varying gain by simply waiting 6 to 20 seconds between controller switches. Many direct adaptive control and indirect adaptive

  17. Distributed Control of Uncertain Systems using Superpositions of Linear operators

    PubMed Central

    Sanger, Terence D.

    2011-01-01

    Control in the natural environment is difficult in part because of uncertainty in the effect of actions. Uncertainty can be due to added motor or sensory noise, unmodeled dynamics, or quantization of sensory feedback. Biological systems are faced with further difficulties, since control must be performed by networks of cooperating neurons and neural subsystems. Here, we propose a new mathematical framework for modeling and simulation of distributed control systems operating in an uncertain environment. Stochastic Differential Operators can be derived from the stochastic differential equation describing a system, and they map the current state density into the differential of the state density. Unlike discrete-time Markov update operators, stochastic differential operators combine linearly for a large class of linear and nonlinear systems, and therefore the combined effects of multiple controllable and uncontrollable subsystems can be predicted. Design using these operators yields systems whose statistical behavior can be specified throughout state space. The relationship to Bayesian estimation and discrete-time Markov processes is described. PMID:21521040

  18. Optimal Flow Control Design

    NASA Technical Reports Server (NTRS)

    Allan, Brian; Owens, Lewis

    2010-01-01

    In support of the Blended-Wing-Body aircraft concept, a new flow control hybrid vane/jet design has been developed for use in a boundary-layer-ingesting (BLI) offset inlet in transonic flows. This inlet flow control is designed to minimize the engine fan-face distortion levels and the first five Fourier harmonic half amplitudes while maximizing the inlet pressure recovery. This concept represents a potentially enabling technology for quieter and more environmentally friendly transport aircraft. An optimum vane design was found by minimizing the engine fan-face distortion, DC60, and the first five Fourier harmonic half amplitudes, while maximizing the total pressure recovery. The optimal vane design was then used in a BLI inlet wind tunnel experiment at NASA Langley's 0.3-meter transonic cryogenic tunnel. The experimental results demonstrated an 80-percent decrease in DPCPavg, the reduction in the circumferential distortion levels, at an inlet mass flow rate corresponding to the middle of the operational range at the cruise condition. Even though the vanes were designed at a single inlet mass flow rate, they performed very well over the entire inlet mass flow range tested in the wind tunnel experiment with the addition of a small amount of jet flow control. While the circumferential distortion was decreased, the radial distortion on the outer rings at the aerodynamic interface plane (AIP) increased. This was a result of the large boundary layer being distributed from the bottom of the AIP in the baseline case to the outer edges of the AIP when using the vortex generator (VG) vane flow control. Experimental results, as already mentioned, showed an 80-percent reduction of DPCPavg, the circumferential distortion level at the engine fan-face. The hybrid approach leverages strengths of vane and jet flow control devices, increasing inlet performance over a broader operational range with significant reduction in mass flow requirements. Minimal distortion level requirements

  19. Ensemble control of linear systems with parameter uncertainties

    NASA Astrophysics Data System (ADS)

    Kou, Kit Ian; Liu, Yang; Zhang, Dandan; Tu, Yanshuai

    2016-07-01

    In this paper, we study the optimal control problem for a class of four-dimensional linear systems based on quaternionic and Fourier analysis. When the control is unconstrained, the optimal ensemble controller for this linear ensemble control systems is given in terms of prolate spheroidal wave functions. For the constrained convex optimisation problem of such systems, the quadratic programming is presented to obtain the optimal control laws. Simulations are given to verity the effectiveness of the proposed theory.

  20. Design Techniques for Uniform-DFT, Linear Phase Filter Banks

    NASA Technical Reports Server (NTRS)

    Sun, Honglin; DeLeon, Phillip

    1999-01-01

    Uniform-DFT filter banks are an important class of filter banks and their theory is well known. One notable characteristic is their very efficient implementation when using polyphase filters and the FFT. Separately, linear phase filter banks, i.e. filter banks in which the analysis filters have a linear phase are also an important class of filter banks and desired in many applications. Unfortunately, it has been proved that one cannot design critically-sampled, uniform-DFT, linear phase filter banks and achieve perfect reconstruction. In this paper, we present a least-squares solution to this problem and in addition prove that oversampled, uniform-DFT, linear phase filter banks (which are also useful in many applications) can be constructed for perfect reconstruction. Design examples are included illustrate the methods.

  1. Electronically Tunable Differential Integrator: Linear Voltage Controlled Quadrature Oscillator

    PubMed Central

    Nandi, Rabindranath; Pattanayak, Sandhya; Das, Sagarika

    2015-01-01

    A new electronically tunable differential integrator (ETDI) and its extension to voltage controlled quadrature oscillator (VCQO) design with linear tuning law are proposed; the active building block is a composite current feedback amplifier with recent multiplication mode current conveyor (MMCC) element. Recently utilization of two different kinds of active devices to form a composite building block is being considered since it yields a superior functional element suitable for improved quality circuit design. The integrator time constant (τ) and the oscillation frequency (ωo) are tunable by the control voltage (V) of the MMCC block. Analysis indicates negligible phase error (θe) for the integrator and low active ωo-sensitivity relative to the device parasitic capacitances. Satisfactory experimental verifications on electronic tunability of some wave shaping applications by the integrator and a double-integrator feedback loop (DIFL) based sinusoid oscillator with linear fo variation range of 60 KHz~1.8 MHz at low THD of 2.1% are verified by both simulation and hardware tests. PMID:27347537

  2. Electronically Tunable Differential Integrator: Linear Voltage Controlled Quadrature Oscillator.

    PubMed

    Nandi, Rabindranath; Pattanayak, Sandhya; Venkateswaran, Palaniandavar; Das, Sagarika

    2015-01-01

    A new electronically tunable differential integrator (ETDI) and its extension to voltage controlled quadrature oscillator (VCQO) design with linear tuning law are proposed; the active building block is a composite current feedback amplifier with recent multiplication mode current conveyor (MMCC) element. Recently utilization of two different kinds of active devices to form a composite building block is being considered since it yields a superior functional element suitable for improved quality circuit design. The integrator time constant (τ) and the oscillation frequency (ω o ) are tunable by the control voltage (V) of the MMCC block. Analysis indicates negligible phase error (θ e ) for the integrator and low active ω o -sensitivity relative to the device parasitic capacitances. Satisfactory experimental verifications on electronic tunability of some wave shaping applications by the integrator and a double-integrator feedback loop (DIFL) based sinusoid oscillator with linear f o variation range of 60 KHz~1.8 MHz at low THD of 2.1% are verified by both simulation and hardware tests. PMID:27347537

  3. Singular linear-quadratic control problem for systems with linear delay

    SciTech Connect

    Sesekin, A. N.

    2013-12-18

    A singular linear-quadratic optimization problem on the trajectories of non-autonomous linear differential equations with linear delay is considered. The peculiarity of this problem is the fact that this problem has no solution in the class of integrable controls. To ensure the existence of solutions is required to expand the class of controls including controls with impulse components. Dynamical systems with linear delay are used to describe the motion of pantograph from the current collector with electric traction, biology, etc. It should be noted that for practical problems fact singularity criterion of quality is quite commonly occurring, and therefore the study of these problems is surely important. For the problem under discussion optimal programming control contained impulse components at the initial and final moments of time is constructed under certain assumptions on the functional and the right side of the control system.

  4. Bounded Linear Stability Margin Analysis of Nonlinear Hybrid Adaptive Control

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.; Boskovic, Jovan D.

    2008-01-01

    This paper presents a bounded linear stability analysis for a hybrid adaptive control that blends both direct and indirect adaptive control. Stability and convergence of nonlinear adaptive control are analyzed using an approximate linear equivalent system. A stability margin analysis shows that a large adaptive gain can lead to a reduced phase margin. This method can enable metrics-driven adaptive control whereby the adaptive gain is adjusted to meet stability margin requirements.

  5. Linear Equating for the NEAT Design: Parameter Substitution Models and Chained Linear Relationship Models

    ERIC Educational Resources Information Center

    Kane, Michael T.; Mroch, Andrew A.; Suh, Youngsuk; Ripkey, Douglas R.

    2009-01-01

    This paper analyzes five linear equating models for the "nonequivalent groups with anchor test" (NEAT) design with internal anchors (i.e., the anchor test is part of the full test). The analysis employs a two-dimensional framework. The first dimension contrasts two general approaches to developing the equating relationship. Under a "parameter…

  6. H(2)- and H(infinity)-design tools for linear time-invariant systems

    NASA Technical Reports Server (NTRS)

    Ly, Uy-Loi

    1989-01-01

    Recent advances in optimal control have brought design techniques based on optimization of H(2) and H(infinity) norm criteria, closer to be attractive alternatives to single-loop design methods for linear time-variant systems. Significant steps forward in this technology are the deeper understanding of performance and robustness issues of these design procedures and means to perform design trade-offs. However acceptance of the technology is hindered by the lack of convenient design tools to exercise these powerful multivariable techniques, while still allowing single-loop design formulation. Presented is a unique computer tool for designing arbitrary low-order linear time-invarient controllers than encompasses both performance and robustness issues via the familiar H(2) and H(infinity) norm optimization. Application to disturbance rejection design for a commercial transport is demonstrated.

  7. Stochastic robustness of linear control systems

    NASA Technical Reports Server (NTRS)

    Stengel, Robert F.; Ryan, Laura E.

    1990-01-01

    A simple numerical procedure for estimating the stochastic robustness of a linear, time-invariant system is described. Monte Carlo evaluation of the system's eigenvalues allows the probability of instability and the related stochastic root locus to be estimated. This definition of robustness is an alternative to existing deterministic definitions that address both structured and unstructured parameter variations directly. This analysis approach treats not only Gaussian parameter uncertainties but non-Gaussian cases, including uncertain-but-bounded variations. Trivial extensions of the procedure admit alternate discriminants to be considered. Thus, the probabilities that stipulated degrees of instability will be exceeded or that closed-loop roots will leave desirable regions also can be estimated. Results are particularly amenable to graphical presentation.

  8. Linear System Control Using Stochastic Learning Automata

    NASA Technical Reports Server (NTRS)

    Ziyad, Nigel; Cox, E. Lucien; Chouikha, Mohamed F.

    1998-01-01

    This paper explains the use of a Stochastic Learning Automata (SLA) to control switching between three systems to produce the desired output response. The SLA learns the optimal choice of the damping ratio for each system to achieve a desired result. We show that the SLA can learn these states for the control of an unknown system with the proper choice of the error criteria. The results of using a single automaton are compared to using multiple automata.

  9. To study the emittance dilution in Superconducting Linear Accelerator Design for International Linear Collider (ILC)

    NASA Astrophysics Data System (ADS)

    Ranjan, Kirti; Solyak, Nikolay; Tenenbaum, Peter

    2005-04-01

    Recently the particle physics community has chosen a single technology for the new accelerator, opening the way for the world community to unite and concentrate resources on the design of an International Linear collider (ILC) using superconducting technology. One of the key operational issues in the design of the ILC will be the preservation of the small beam emittances during passage through the main linear accelerator (linac). Sources of emittance dilution include incoherent misalignments of the quadrupole magnets and rf-structure misalignments. In this work, the study of emittance dilution for the 500-GeV center of mass energy main linac of the Superconducting Linear Accelerator design, based on adaptation of the TESLA TDR design is performed using LIAR simulation program. Based on the tolerances of the present design, effect of two important Beam-Based steering algorithms, Flat Steering and Dispersion Free Steering, are compared with respect to the emittance dilution in the main linac. We also investigated the effect of various misalignments on the emittance dilution for these two steering algorithms.

  10. Non-linear modelling and optimal control of a hydraulically actuated seismic isolator test rig

    NASA Astrophysics Data System (ADS)

    Pagano, Stefano; Russo, Riccardo; Strano, Salvatore; Terzo, Mario

    2013-02-01

    This paper investigates the modelling, parameter identification and control of an unidirectional hydraulically actuated seismic isolator test rig. The plant is characterized by non-linearities such as the valve dead zone and frictions. A non-linear model is derived and then employed for parameter identification. The results concerning the model validation are illustrated and they fully confirm the effectiveness of the proposed model. The testing procedure of the isolation systems is based on the definition of a target displacement time history of the sliding table and, consequently, the precision of the table positioning is of primary importance. In order to minimize the test rig tracking error, a suitable control system has to be adopted. The system non-linearities highly limit the performances of the classical linear control and a non-linear one is therefore adopted. The test rig mathematical model is employed for a non-linear control design that minimizes the error between the target table position and the current one. The controller synthesis is made by taking no specimen into account. The proposed approach consists of a non-linear optimal control based on the state-dependent Riccati equation (SDRE). Numerical simulations have been performed in order to evaluate the soundness of the designed control with and without the specimen under test. The results confirm that the performances of the proposed non-linear controller are not invalidated because of the presence of the specimen.

  11. Design considerations for a laser-plasma linear collider

    SciTech Connect

    Schroeder, C. B.; Esarey, E.; Geddes, C. G. R.; Toth, Cs.; Leemans, W. P.

    2009-01-22

    Design considerations for a next-generation electron-positron linear collider based on laser-plasma-accelerators are discussed. Several of the advantages and challenges of laser-plasma-based accelerator technology are addressed. An example of the parameters for a 1 TeV laser-plasma-based collider is presented.

  12. Design considerations for a laser-plasma linear collider

    SciTech Connect

    Schroeder, C. B.; Esarey, E.; Geddes, C. G. R.; Toth, Cs.; Leemans, W. P.

    2008-08-01

    Design considerations for a next-generation electron-positron linear collider based on laser-plasma-accelerators are discussed. Several of the advantages and challenges of laser-plasma based accelerator technology are addressed. An example of the parameters for a 1 TeV laser-plasma based collider is presented.

  13. Cold radiation shield design for a linear detector array. II

    NASA Astrophysics Data System (ADS)

    Dhar, Vikram; Gopal, Vishnu

    1986-11-01

    This communication reports the results of a calculation of cold-shield shading effects in the linear detector array described by Gopal and Dhar (1986), for an elliptical aperture geometry with varying major-to-minor axis ratio. The results suggest that an elliptical aperture geometry is a better design than a rectangular aperture.

  14. A design methodology for nonlinear systems containing parameter uncertainty: Application to nonlinear controller design

    NASA Technical Reports Server (NTRS)

    Young, G.

    1982-01-01

    A design methodology capable of dealing with nonlinear systems, such as a controlled ecological life support system (CELSS), containing parameter uncertainty is discussed. The methodology was applied to the design of discrete time nonlinear controllers. The nonlinear controllers can be used to control either linear or nonlinear systems. Several controller strategies are presented to illustrate the design procedure.

  15. On-line control models for the Stanford Linear Collider

    SciTech Connect

    Sheppard, J.C.; Helm, R.H.; Lee, M.J.; Woodley, M.D.

    1983-03-01

    Models for computer control of the SLAC three-kilometer linear accelerator and damping rings have been developed as part of the control system for the Stanford Linear Collider. Some of these models have been tested experimentally and implemented in the control program for routine linac operations. This paper will describe the development and implementation of these models, as well as some of the operational results.

  16. Asymptotic Linearity of Optimal Control Modification Adaptive Law with Analytical Stability Margins

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.

    2010-01-01

    Optimal control modification has been developed to improve robustness to model-reference adaptive control. For systems with linear matched uncertainty, optimal control modification adaptive law can be shown by a singular perturbation argument to possess an outer solution that exhibits a linear asymptotic property. Analytical expressions of phase and time delay margins for the outer solution can be obtained. Using the gradient projection operator, a free design parameter of the adaptive law can be selected to satisfy stability margins.

  17. Design and testing of a coaxial linear magnetic spring with integral linear motor. [for spacecraft energy storage

    NASA Technical Reports Server (NTRS)

    Patt, P. J.

    1985-01-01

    The design of a coaxial linear magnetic spring which incorporates a linear motor to control axial motion and overcome system damping is presented, and the results of static and dynamic tests are reported. The system has nominal stiffness 25,000 N/m and is designed to oscillate a 900-g component over a 4.6-mm stroke in a Stirling-cycle cryogenic refrigerator being developed for long-service (5-10-yr) space applications (Stolfi et al., 1983). Mosaics of 10 radially magnetized high-coercivity SmCO5 segments enclosed in Ti cans are employed, and the device is found to have quality factor 70-100, corresponding to energy-storage efficiency 91-94 percent. Drawings, diagrams, and graphs are provided.

  18. Non-Linear Fuzzy Logic Control for Forced Large Motions of Spinning Shafts

    NASA Astrophysics Data System (ADS)

    LEI, SHULIANG; PALAZZOLO, ALAN; NA, UHNJOO; KASCAK, ALBERT

    2000-08-01

    A unique control approach is developed for prescribed large motion control using magnetic bearings in a proposed active stall control test rig. A finite element based, flexible shaft is modeled in a closed loop system with PD controllers that generate the control signals to support and to shake the rotor shaft. A linearized force model of the stall rig with 16 magnetic poles (4 opposing C-cores) yields stability and frequency responses. The non-linear model retains the non-linearities in Ampere's law, Faraday's law and the Maxwell stress tensor. A fuzzy logic control system is then designed to show the advantages over the conventional controllers with the fully non-linear model.

  19. Linear Test Bed. Volume 2: Test Bed No. 2. [linear aerospike test bed for thrust vector control

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Test bed No. 2 consists of 10 combustors welded in banks of 5 to 2 symmetrical tubular nozzle assemblies, an upper stationary thrust frame, a lower thrust frame which can be hinged, a power package, a triaxial combustion wave ignition system, a pneumatic control system, pneumatically actuated propellant valves, a purge and drain system, and an electrical control system. The power package consists of the Mark 29-F fuel turbopump, the Mark 29-0 oxidizer turbopump, a gas generator assembly, and propellant ducting. The system, designated as a linear aerospike system, was designed to demonstrate the feasibility of the concept and to explore technology related to thrust vector control, thrust vector optimization, improved sequencing and control, and advanced ignition systems. The propellants are liquid oxygen/liquid hydrogen. The system was designed to operate at 1200-psia chamber pressure at an engine mixture ratio of 5.5. With 10 combustors, the sea level thrust is 95,000 pounds.

  20. A damping ring design for the SLAC Next Linear Collider

    SciTech Connect

    Raubenheimer, T.O.; Byrd, J.; Corlett, J.

    1995-05-01

    In this paper, we describe the design of the main damping rings and the positron pre-damping ring for the SLAC Next Linear Collider, a future linear collider with a center-of-mass energy of 0.5 to 1.5 TeV. The rings will operate at an energy of 2 GeV with a maximum repetition rate of 180 Hz. The normalized extracted beam emittances are {gamma}{epsilon}{sub x} = 3 mm-mrad and {gamma}{epsilon}{sub y} = 0.03 mm-mrad. To provide the necessary damping, the rings must damp multiple trains of bunches. Thus, the beam current is large, roughly 1 A. We will present the optical layout, magnet designs, and RF systems, along with the dynamic aperture and required alignment tolerances; collective effects will be discussed in another paper.

  1. Spacecraft flight control with the new phase space control law and optimal linear jet select

    NASA Technical Reports Server (NTRS)

    Bergmann, E. V.; Croopnick, S. R.; Turkovich, J. J.; Work, C. C.

    1977-01-01

    An autopilot designed for rotation and translation control of a rigid spacecraft is described. The autopilot uses reaction control jets as control effectors and incorporates a six-dimensional phase space control law as well as a linear programming algorithm for jet selection. The interaction of the control law and jet selection was investigated and a recommended configuration proposed. By means of a simulation procedure the new autopilot was compared with an existing system and was found to be superior in terms of core memory, central processing unit time, firings, and propellant consumption. But it is thought that the cycle time required to perform the jet selection computations might render the new autopilot unsuitable for existing flight computer applications, without modifications. The new autopilot is capable of maintaining attitude control in the presence of a large number of jet failures.

  2. Global exponential stability of recurrent neural networks for synthesizing linear feedback control systems via pole assignment.

    PubMed

    Zhang, Yunong; Wang, Jun

    2002-01-01

    Global exponential stability is the most desirable stability property of recurrent neural networks. The paper presents new results for recurrent neural networks applied to online computation of feedback gains of linear time-invariant multivariable systems via pole assignment. The theoretical analysis focuses on the global exponential stability, convergence rates, and selection of design parameters. The theoretical results are further substantiated by simulation results conducted for synthesizing linear feedback control systems with different specifications and design requirements. PMID:18244461

  3. A RECIPE FOR LINEAR COLLIDER FINAL FOCUS SYSTEM DESIGN

    SciTech Connect

    Seryi, Andrei

    2003-05-27

    The design of Final Focus systems for linear colliders is challenging because of the large demagnifications needed to produce nanometer-sized beams at the interaction point. Simple first- and second-order matrix matching have proven insufficient for this task, and minimization of third- and higher-order aberrations is essential. An appropriate strategy is required for the latter to be successful. A recipe for Final Focus design, and a set of computational tools used to implement this approach, are described herein. An example of the use of this procedure is given.

  4. Steady-state decoupling and design of linear multivariable systems

    NASA Technical Reports Server (NTRS)

    Thaler, G. J.

    1974-01-01

    A constructive criterion for decoupling the steady states of a linear time-invariant multivariable system is presented. This criterion consists of a set of inequalities which, when satisfied, will cause the steady states of a system to be decoupled. Stability analysis and a new design technique for such systems are given. A new and simple connection between single-loop and multivariable cases is found. These results are then applied to the compensation design for NASA STOL C-8A aircraft. Both steady-state decoupling and stability are justified through computer simulations.

  5. Steady state decoupling and design of linear multivariable systems

    NASA Technical Reports Server (NTRS)

    Huang, J. Y.; Thaler, G. J.

    1974-01-01

    A constructive criterion for decoupling the steady states of linear multivariable systems is developed. The criterion consists of n(n-1) inequalities with the type numbers of the compensator transfer functions as the unknowns. These unknowns can be chosen to satisfy the inequalities and hence achieve a steady state decoupling scheme. It turns out that pure integrators in the loops play an important role. An extended root locus design method is then developed to take care of the stability and transient response. The overall procedure is applied to the compensation design for STOL C-8A aircraft in the approach mode.

  6. Linear accelerator for production of tritium: Physics design challenges

    SciTech Connect

    Wangler, T.P.; Lawrence, G.P.; Bhatia, T.S.; Billen, J.H.; Chan, K.C.D.; Garnett, R.W.; Guy, F.W.; Liska, D.; Nath, S.; Neuschaefer, G.; Shubaly, M.

    1990-01-01

    In the summer of 1989, a collaboration between Los Alamos National Laboratory and Brookhaven National Laboratory conducted a study to establish a reference design of a facility for accelerator production of tritium (APT). The APT concept is that of a neutron-spallation source, which is based on the use of high-energy protons to bombard lead nuclei, resulting in the production of large quantities of neutrons. Neutrons from the lead are captured by lithium to produce tritium. This paper describes the design of a 1.6-GeV, 250-mA proton cw linear accelerator for APT.

  7. Precision Motion Control of Linear DC Solenoid Motor

    NASA Astrophysics Data System (ADS)

    Kato, Atsushi; Kubo, Takeharu; Ohnishi, Kouhei

    High speed and high precision control has been required in various cases. Hence, a new linear actuator based on Linear DC Solenoid Motor (LDSM), is developed for that purpose. In addition, we propose a precision motion control for LDSM. LDSM is composed of solenoid stator and moving permanent magnet. It has simple and light structure. Moreover, the solenoid form provides small leakage and generates more power than non-linear motor. Nevertheless, the nonlinear disturbance force such as friction force prevents LDSM from controlling precisely. In this paper, the high gain disturbance observer is applied to LDSM to suppress the force. The observer is able to estimate and compensate the nonlinear disturbance force. It is confirmed that the proposed precision motion control provides LDSM with precise observer control position and force through the experiments.

  8. Application of linear programming techniques for controlling linear dynamic plants in real time

    NASA Astrophysics Data System (ADS)

    Gabasov, R.; Kirillova, F. M.; Ha, Vo Thi Thanh

    2016-03-01

    The problem of controlling a linear dynamic plant in real time given its nondeterministic model and imperfect measurements of the inputs and outputs is considered. The concepts of current distributions of the initial state and disturbance parameters are introduced. The method for the implementation of disclosable loop using the separation principle is described. The optimal control problem under uncertainty conditions is reduced to the problems of optimal observation, optimal identification, and optimal control of the deterministic system. To extend the domain where a solution to the optimal control problem under uncertainty exists, a two-stage optimal control method is proposed. Results are illustrated using a dynamic plant of the fourth order.

  9. Feedback Linearized Aircraft Control Using Dynamic Cell Structure

    NASA Technical Reports Server (NTRS)

    Jorgensen, C. C.

    1998-01-01

    A Dynamic Cell Structure (DCS ) Neural Network was developed which learns a topology representing network (TRN) of F-15 aircraft aerodynamic stability and control derivatives. The network is combined with a feedback linearized tracking controller to produce a robust control architecture capable of handling multiple accident and off-nominal flight scenarios. This paper describes network and its performance for accident scenarios including differential stabilator lock, soft sensor failure, control, stability derivative variation, and turbulence.

  10. Design and Analysis of Tubular Permanent Magnet Linear Wave Generator

    PubMed Central

    Si, Jikai; Feng, Haichao; Su, Peng; Zhang, Lufeng

    2014-01-01

    Due to the lack of mature design program for the tubular permanent magnet linear wave generator (TPMLWG) and poor sinusoidal characteristics of the air gap flux density for the traditional surface-mounted TPMLWG, a design method and a new secondary structure of TPMLWG are proposed. An equivalent mathematical model of TPMLWG is established to adopt the transformation relationship between the linear velocity of permanent magnet rotary generator and the operating speed of TPMLWG, to determine the structure parameters of the TPMLWG. The new secondary structure of the TPMLWG contains surface-mounted permanent magnets and the interior permanent magnets, which form a series-parallel hybrid magnetic circuit, and their reasonable structure parameters are designed to get the optimum pole-arc coefficient. The electromagnetic field and temperature field of TPMLWG are analyzed using finite element method. It can be included that the sinusoidal characteristics of air gap flux density of the new secondary structure TPMLWG are improved, the cogging force as well as mechanical vibration is reduced in the process of operation, and the stable temperature rise of generator meets the design requirements when adopting the new secondary structure of the TPMLWG. PMID:25050388

  11. The design of linear algebra libraries for high performance computers

    SciTech Connect

    Dongarra, J.J. |; Walker, D.W.

    1993-08-01

    This paper discusses the design of linear algebra libraries for high performance computers. Particular emphasis is placed on the development of scalable algorithms for MIMD distributed memory concurrent computers. A brief description of the EISPACK, LINPACK, and LAPACK libraries is given, followed by an outline of ScaLAPACK, which is a distributed memory version of LAPACK currently under development. The importance of block-partitioned algorithms in reducing the frequency of data movement between different levels of hierarchical memory is stressed. The use of such algorithms helps reduce the message startup costs on distributed memory concurrent computers. Other key ideas in our approach are the use of distributed versions of the Level 3 Basic Linear Algebra Subprograms (BLAS) as computational building blocks, and the use of Basic Linear Algebra Communication Subprograms (BLACS) as communication building blocks. Together the distributed BLAS and the BLACS can be used to construct higher-level algorithms, and hide many details of the parallelism from the application developer. The block-cyclic data distribution is described, and adopted as a good way of distributing block-partitioned matrices. Block-partitioned versions of the Cholesky and LU factorizations are presented, and optimization issues associated with the implementation of the LU factorization algorithm on distributed memory concurrent computers are discussed, together with its performance on the Intel Delta system. Finally, approaches to the design of library interfaces are reviewed.

  12. Finding Optimal Gains In Linear-Quadratic Control Problems

    NASA Technical Reports Server (NTRS)

    Milman, Mark H.; Scheid, Robert E., Jr.

    1990-01-01

    Analytical method based on Volterra factorization leads to new approximations for optimal control gains in finite-time linear-quadratic control problem of system having infinite number of dimensions. Circumvents need to analyze and solve Riccati equations and provides more transparent connection between dynamics of system and optimal gain.

  13. Integrated control-structure design

    NASA Technical Reports Server (NTRS)

    Hunziker, K. Scott; Kraft, Raymond H.; Bossi, Joseph A.

    1991-01-01

    A new approach for the design and control of flexible space structures is described. The approach integrates the structure and controller design processes thereby providing extra opportunities for avoiding some of the disastrous effects of control-structures interaction and for discovering new, unexpected avenues of future structural design. A control formulation based on Boyd's implementation of Youla parameterization is employed. Control design parameters are coupled with structural design variables to produce a set of integrated-design variables which are selected through optimization-based methodology. A performance index reflecting spacecraft mission goals and constraints is formulated and optimized with respect to the integrated design variables. Initial studies have been concerned with achieving mission requirements with a lighter, more flexible space structure. Details of the formulation of the integrated-design approach are presented and results are given from a study involving the integrated redesign of a flexible geostationary platform.

  14. Use of probabilistic weights to enhance linear regression myoelectric control

    NASA Astrophysics Data System (ADS)

    Smith, Lauren H.; Kuiken, Todd A.; Hargrove, Levi J.

    2015-12-01

    Objective. Clinically available prostheses for transradial amputees do not allow simultaneous myoelectric control of degrees of freedom (DOFs). Linear regression methods can provide simultaneous myoelectric control, but frequently also result in difficulty with isolating individual DOFs when desired. This study evaluated the potential of using probabilistic estimates of categories of gross prosthesis movement, which are commonly used in classification-based myoelectric control, to enhance linear regression myoelectric control. Approach. Gaussian models were fit to electromyogram (EMG) feature distributions for three movement classes at each DOF (no movement, or movement in either direction) and used to weight the output of linear regression models by the probability that the user intended the movement. Eight able-bodied and two transradial amputee subjects worked in a virtual Fitts’ law task to evaluate differences in controllability between linear regression and probability-weighted regression for an intramuscular EMG-based three-DOF wrist and hand system. Main results. Real-time and offline analyses in able-bodied subjects demonstrated that probability weighting improved performance during single-DOF tasks (p < 0.05) by preventing extraneous movement at additional DOFs. Similar results were seen in experiments with two transradial amputees. Though goodness-of-fit evaluations suggested that the EMG feature distributions showed some deviations from the Gaussian, equal-covariance assumptions used in this experiment, the assumptions were sufficiently met to provide improved performance compared to linear regression control. Significance. Use of probability weights can improve the ability to isolate individual during linear regression myoelectric control, while maintaining the ability to simultaneously control multiple DOFs.

  15. Simple and Robust Indirect Thrust Control for Positioning of Linear Induction Motors

    NASA Astrophysics Data System (ADS)

    Martínez-Iturralde, Miguel; Martínez, Gonzalo; Castelli, Marcelo; Rico, Andrés García; Flórez, Julián

    Dealing with position control of Linear Induction Motors (LIM), most strategies in bibliography are based on Secondary Flux Oriented Control (SFOC) and Direct Thrust Control (DTC). However, SFOC of linear induction motors needs complex identification methods to compensate parameter variation during operation, mainly due to local heating and end-effects. On the other hand, DTC based methods for LIMs present thrust ripple and have problems at low and zero speeds. In this paper, a new Indirect Thrust Control (ITC) based strategy for position control of linear induction motors that makes up for these drawbacks is presented. The position control loop design methodology and the method for automatic adjustment of compensators are described. Experimental results are presented to evaluate the performance and sensitivity of the control strategy. Finally, some conclusions are drawn about the applicability of the new algorithm that demonstrate the main advantages versus SFOC and DTC.

  16. Feedback Linearization approach for Standard and Fault Tolerant control: Application to a Quadrotor UAV Testbed

    NASA Astrophysics Data System (ADS)

    Ghandour, J.; Aberkane, S.; Ponsart, J.-C.

    2014-12-01

    In this paper the control problem of a quadrotor vehicle experiencing a rotor failure is investigated. We develop a Feedback linearization approach to design a controller whose task is to make the vehicle performs trajectory following. Then we use the same approach to design a controller whose task is to make the vehicle enter a stable spin around its vertical axis, while retaining zero angular velocities around the other axis when a rotor failure is present. These conditions can be exploited to design a second control loop, which is used to perform trajectory following. The proposed double control loop architecture allows the vehicle to perform both trajectory and roll/pitch control. At last, to test the robustness of the feedback linearization technique, we applied wind to the quadrotor in mid flight.

  17. Beam Dynamics Design and Simulation in Ion Linear Accelerators (

    Energy Science and Technology Software Center (ESTSC)

    2006-08-01

    Orginally, the ray tracing code TRACK has been developed to fulfill the many special requirements for the Rare Isotope Accelerator Facility known as RIA. Since no available beam-dynamics code met all the necessary requirements, modifications to the code TRACK were introduced to allow end-to-end (from the ion souce to the production target) simulations of the RIA machine, TRACK is a general beam-dynamics code and can be applied for the design, commissioning and operation of modernmore » ion linear accelerators and beam transport systems.« less

  18. Beam Dynamics Design and Simulation in Ion Linear Accelerators (

    SciTech Connect

    Ostroumov, Peter N.; Asseev, Vladislav N.; Mustapha, and Brahim

    2006-08-01

    Orginally, the ray tracing code TRACK has been developed to fulfill the many special requirements for the Rare Isotope Accelerator Facility known as RIA. Since no available beam-dynamics code met all the necessary requirements, modifications to the code TRACK were introduced to allow end-to-end (from the ion souce to the production target) simulations of the RIA machine, TRACK is a general beam-dynamics code and can be applied for the design, commissioning and operation of modern ion linear accelerators and beam transport systems.

  19. Damping ring designs for a TeV Linear Collider

    SciTech Connect

    Raubenheimer, T.O.; Rivkin, L.Z.; Ruth, R.D.

    1988-12-01

    In this paper we present a damping ring design for the TLC (TeV Linear Collider). The ring operates at 1.8 GeV. It has normalized emittances of elepsilon/sub x/ = 2.8 mrad and elepsilon/sub y/ = 25.4 nmrad. The damping times are /tau//sub x/ = 2.5 ms and /tau//sub y/ = 4.0 ms. To achieve these extremely low emittances and fast damping times, the ring contains 22 m of wigglers. 30 refs., 7 figs., 7 tabs.

  20. Decentralized regulation of dynamic systems. [for controlling large scale linear systems

    NASA Technical Reports Server (NTRS)

    Chu, K. C.

    1975-01-01

    A special class of decentralized control problem is discussed in which the objectives of the control agents are to steer the state of the system to desired levels. Each agent is concerned about certain aspects of the state of the entire system. The state and control equations are given for linear time-invariant systems. Stability and coordination, and the optimization of decentralized control are analyzed, and the information structure design is presented.

  1. Design and laboratory testing of a prototype linear temperature sensor

    NASA Astrophysics Data System (ADS)

    Dube, C. M.; Nielsen, C. M.

    1982-07-01

    This report discusses the basic theory, design, and laboratory testing of a prototype linear temperature sensor (or "line sensor'), which is an instrument for measuring internal waves in the ocean. The operating principle of the line sensor consists of measuring the average resistance change of a vertically suspended wire (or coil of wire) induced by the passage of an internal wave in a thermocline. The advantage of the line sensor over conventional internal wave measurement techniques is that it is insensitive to thermal finestructure which contaminates point sensor measurements, and its output is approximately linearly proportional to the internal wave displacement. An approximately one-half scale prototype line sensor module was teste in the laboratory. The line sensor signal was linearly related to the actual fluid displacement to within 10%. Furthermore, the absolute output was well predicted (within 25%) from the theoretical model and the sensor material properties alone. Comparisons of the line sensor and a point sensor in a wavefield with superimposed turbulence (finestructure) revealed negligible distortion in the line sensor signal, while the point sensor signal was swamped by "turbulent noise'. The effects of internal wave strain were also found to be negligible.

  2. Linear-Parameter-Varying Antiwindup Compensation for Enhanced Flight Control Performance

    NASA Technical Reports Server (NTRS)

    Lu, Bei; Wu, Fen; Kim, Sung Wan

    2005-01-01

    Actuator saturation is one of the major issues of flight control in the high angle-of-attack region. This paper presents a saturation control scheme for linear parameter varyjing (LPV) systems from an antiwindup control perspective. The proposed control approach is advantageous from the implementation standpoint because it can be thought of as an augmented control algorithm to the existing control system. Moreover, the synthesis condition for an antiwindup compensator is formulated as a linear matrix inequality (LMI) optimization problem and can be solved efficiently. We have applied te LPV antiwindup controller to an F-16 longitudinal autopilot control system design and compared it with the thrust vectoring control scheme. The nonlinear simulations show that an LPV antiwindup controller improves flight quality and offers advantages over thrust vectoring in a high angle-of-attack region.

  3. Attitude control with realization of linear error dynamics

    NASA Technical Reports Server (NTRS)

    Paielli, Russell A.; Bach, Ralph E.

    1993-01-01

    An attitude control law is derived to realize linear unforced error dynamics with the attitude error defined in terms of rotation group algebra (rather than vector algebra). Euler parameters are used in the rotational dynamics model because they are globally nonsingular, but only the minimal three Euler parameters are used in the error dynamics model because they have no nonlinear mathematical constraints to prevent the realization of linear error dynamics. The control law is singular only when the attitude error angle is exactly pi rad about any eigenaxis, and a simple intuitive modification at the singularity allows the control law to be used globally. The forced error dynamics are nonlinear but stable. Numerical simulation tests show that the control law performs robustly for both initial attitude acquisition and attitude control.

  4. Alternative methods for the design of jet engine control systems

    NASA Technical Reports Server (NTRS)

    Sain, M. K.; Leake, R. J.; Basso, R.; Gejji, R.; Maloney, A.; Seshadri, V.

    1976-01-01

    Various alternatives to linear quadratic design methods for jet engine control systems are discussed. The main alternatives are classified into two broad categories: nonlinear global mathematical programming methods and linear local multivariable frequency domain methods. Specific studies within these categories include model reduction, the eigenvalue locus method, the inverse Nyquist method, polynomial design, dynamic programming, and conjugate gradient approaches.

  5. Linear vs. function-based dose algorithm designs.

    PubMed

    Stanford, N

    2011-03-01

    The performance requirements prescribed in IEC 62387-1, 2007 recommend linear, additive algorithms for external dosimetry [IEC. Radiation protection instrumentation--passive integrating dosimetry systems for environmental and personal monitoring--Part 1: General characteristics and performance requirements. IEC 62387-1 (2007)]. Neither of the two current standards for performance of external dosimetry in the USA address the additivity of dose results [American National Standards Institute, Inc. American National Standard for dosimetry personnel dosimetry performance criteria for testing. ANSI/HPS N13.11 (2009); Department of Energy. Department of Energy Standard for the performance testing of personnel dosimetry systems. DOE/EH-0027 (1986)]. While there are significant merits to adopting a purely linear solution to estimating doses from multi-element external dosemeters, differences in the standards result in technical as well as perception challenges in designing a single algorithm approach that will satisfy both IEC and USA external dosimetry performance requirements. The dosimetry performance testing standards in the USA do not incorporate type testing, but rely on biennial performance tests to demonstrate proficiency in a wide range of pure and mixed fields. The test results are used exclusively to judge the system proficiency, with no specific requirements on the algorithm design. Technical challenges include mixed beta/photon fields with a beta dose as low as 0.30 mSv mixed with 0.05 mSv of low-energy photons. Perception-based challenges, resulting from over 20 y of experience with this type of performance testing in the USA, include the common belief that the overall quality of the dosemeter performance can be judged from performance to pure fields. This paper presents synthetic testing results from currently accredited function-based algorithms and new developed purely linear algorithms. A comparison of the performance data highlights the benefits of each

  6. Design of turbofan engine controls using output feedback regulator theory

    NASA Technical Reports Server (NTRS)

    Merrill, W. C.

    1977-01-01

    A multivariable control design procedure based on output feedback regulator (OFR) theory is applied to the F100 turbofan engine. Results for the OFR design are compared to a design based on linear quadratic regulator (LQR) theory. The OFR feedback control is designed in the full order state space and thus eliminates any need for model reduction techniques. Using the performance measure and control structure of the LQR design, an equivalent OFR feedback control is obtained. The flexibility of the OFR as a control design procedure is demonstrated, and differing feedback control structures are evaluated.

  7. Multi-mode sliding mode control for precision linear stage based on fixed or floating stator

    NASA Astrophysics Data System (ADS)

    Fang, Jiwen; Long, Zhili; Wang, Michael Yu; Zhang, Lufan; Dai, Xufei

    2016-02-01

    This paper presents the control performance of a linear motion stage driven by Voice Coil Motor (VCM). Unlike the conventional VCM, the stator of this VCM is regulated, which means it can be adjusted as a floating-stator or fixed-stator. A Multi-Mode Sliding Mode Control (MMSMC), including a conventional Sliding Mode Control (SMC) and an Integral Sliding Mode Control (ISMC), is designed to control the linear motion stage. The control is switched between SMC and IMSC based on the error threshold. To eliminate the chattering, a smooth function is adopted instead of a signum function. The experimental results with the floating stator show that the positioning accuracy and tracking performance of the linear motion stage are improved with the MMSMC approach.

  8. A damping ring design for future linear colliders

    SciTech Connect

    Raubenheimer, T.O.; Gabella, W.E.; Morton, P.L.; Lee, M.J.; Rivkin, L.Z.; Ruth, R.D.

    1989-03-01

    In this paper we present a preliminary design of a damping ring for the TeV Linear Collider (TLC), a future linear collider with an energy of 1/2 to 1 TeV in the center of mass. Because of limits on the emittance, repetition rate and longitudinal impedance, we use combined function FODO cells with wigglers in insertion regions; there are approximately 22 meters of wigglers in the 155 meter ring. The ring has a normalized horizontal emittance, including the effect of intrabeam scattering, which is less than 3 /times/ 10/sup /minus/6/ and an emittance ratio of epsilon/sub x/ approx. 100epsilon/sub y/. It is designed to damp bunches for 7 vertical damping times while operating at a repetition rate of 360 Hz. Because of these requirements on the emittance and the damping per bunch, the ring operates at 1.8 GeV and is relatively large, allowing more bunches to be damped at once. 10 refs., 5 figs., 2 tabs.

  9. Active vibration control for nonlinear vehicle suspension with actuator delay via I/O feedback linearization

    NASA Astrophysics Data System (ADS)

    Lei, Jing; Jiang, Zuo; Li, Ya-Li; Li, Wu-Xin

    2014-10-01

    The problem of nonlinear vibration control for active vehicle suspension systems with actuator delay is considered. Through feedback linearization, the open-loop nonlinearity is eliminated by the feedback nonlinear term. Based on the finite spectrum assignment, the quarter-car suspension system with actuator delay is converted into an equivalent delay-free one. The nonlinear control includes a linear feedback term, a feedforward compensator, and a control memory term, which can be derived from a Riccati equation and a Sylvester equation, so that the effects produced by the road disturbances and the actuator delay are compensated, respectively. A predictor is designed to implement the predictive state in the designed control. Moreover, a reduced-order observer is constructed to solve its physical unrealisability problem. The stability proofs for the zero dynamics and the closed-loop system are provided. Numerical simulations illustrate the effectiveness and the simplicity of the designed control.

  10. Modular design attitude control system

    NASA Technical Reports Server (NTRS)

    Chichester, F. D.

    1982-01-01

    A hybrid multilevel linear quadratic regulator (ML-LQR) approach was developed and applied to the attitude control of models of the rotational dynamics of a prototype flexible spacecraft and of a typical space platform. Three axis rigid body flexible suspension models were developed for both the spacecraft and the space platform utilizing augmented body methods. Models of the spacecraft with hybrid ML-LQR attitude control and with LQR attitude control were simulated and their response with the two different types of control were compared.

  11. Identification of linear system models and state estimators for controls

    NASA Technical Reports Server (NTRS)

    Chen, Chung-Wen

    1992-01-01

    The following paper is presented in viewgraph format and covers topics including: (1) linear state feedback control system; (2) Kalman filter state estimation; (3) relation between residual and stochastic part of output; (4) obtaining Kalman filter gain; (5) state estimation under unknown system model and unknown noises; and (6) relationship between filter Markov parameters and system Markov parameters.

  12. Tunneling control using classical non-linear oscillator

    SciTech Connect

    Kar, Susmita; Bhattacharyya, S. P.

    2014-04-24

    A quantum particle is placed in symmetric double well potential which is coupled to a classical non-linear oscillator via a coupling function. With different spatial symmetry of the coupling and under various controlling fashions, the tunneling of the quantum particle can be enhanced or suppressed, or totally destroyed.

  13. A non-linear UAV altitude PSO-PD control

    NASA Astrophysics Data System (ADS)

    Orlando, Calogero

    2015-12-01

    In this work, a nonlinear model based approach is presented for the altitude stabilization of a hexarotor unmanned aerial vehicle (UAV). The mathematical model and control of the hexacopter airframe is presented. To stabilize the system along the vertical direction, a Proportional Derivative (PD) control is taken into account. A particle swarm optimization (PSO) approach is used in this paper to select the optimal parameters of the control algorithm taking into account different objective functions. Simulation sets are performed to carry out the results for the non-linear system to show how the PSO tuned PD controller leads to zero the error of the position along Z earth direction.

  14. SP-100 Control System Design

    NASA Astrophysics Data System (ADS)

    Shukla, Jaikaran N.; Halfen, Frank J.; Brynsvold, Glen V.; Syed, Akbar; Jiang, Thomas J.; Wong, Kwok K.; Otwell, Robert L.

    1994-07-01

    Recent work in lower power generic early applications for the SP-100 have resulted in control system design simplification for a 20 kWe design with thermoelectric power conversion. This paper presents the non-mission-dependent control system features for this design. The control system includes a digital computer based controller, dual purpose control rods and drives, temperature sensors, and neutron flux monitors. The thaw system is mission dependent and can be either electrical or based on NaK trace lines. Key features of the control system and components are discussed. As was the case for higher power applications, the initial on-orbit approach to criticality involves the relatively fast withdrawal of the control-rods to a near-critical position followed by slower movement through critical and into the power range. The control system performs operating maneuvers as well as providing for automatic startup, shutdown, restart, and reactor protection.

  15. Automatic control design procedures for restructurable aircraft control

    NASA Technical Reports Server (NTRS)

    Looze, D. P.; Krolewski, S.; Weiss, J.; Barrett, N.; Eterno, J.

    1985-01-01

    A simple, reliable automatic redesign procedure for restructurable control is discussed. This procedure is based on Linear Quadratic (LQ) design methodologies. It employs a robust control system design for the unfailed aircraft to minimize the effects of failed surfaces and to extend the time available for restructuring the Flight Control System. The procedure uses the LQ design parameters for the unfailed system as a basis for choosing the design parameters of the failed system. This philosophy alloys the engineering trade-offs that were present in the nominal design to the inherited by the restructurable design. In particular, it alloys bandwidth limitations and performance trade-offs to be incorporated in the redesigned system. The procedure also has several other desirable features. It effectively redistributes authority among the available control effectors to maximize the system performance subject to actuator limitations and constraints. It provides a graceful performance degradation as the amount of control authority lessens. When given the parameters of the unfailed aircraft, the automatic redesign procedure reproduces the nominal control system design.

  16. Dynamic range evaluation of linear permanent magnet machine through design parameters estimation and continuous motion

    NASA Astrophysics Data System (ADS)

    You, Dae-Joon; Lee, Sung-Ho; Jang, Seok-Myeong

    2008-04-01

    In the case of the manufactured linear permanent magnet synchronous machines (PMLSMs), dynamic range evaluation for system efficiency and performance limits is difficult to accomplish because of the moving length restriction with mover and the absence of interface between the design field and control field. To solve this problem, this paper presents a dynamic analysis based on design parameters by magnetic field analysis of the linear PM machine. And then, maximum operating range of the system is estimated considering the control method of a fixed dc-link voltage of the inverter. This analysis is verified from the dynamic experiments through continuous progressive motion of the manufactured disk-type PMLSM by current control.

  17. Aircraft digital control design methods

    NASA Technical Reports Server (NTRS)

    Powell, J. D.; Parsons, E.; Tashker, M. G.

    1976-01-01

    Variations in design methods for aircraft digital flight control are evaluated and compared. The methods fall into two categories; those where the design is done in the continuous domain (or s plane) and those where the design is done in the discrete domain (or z plane). Design method fidelity is evaluated by examining closed loop root movement and the frequency response of the discretely controlled continuous aircraft. It was found that all methods provided acceptable performance for sample rates greater than 10 cps except the uncompensated s plane design method which was acceptable above 20 cps. A design procedure based on optimal control methods was proposed that provided the best fidelity at very slow sample rates and required no design iterations for changing sample rates.

  18. Stochastic Stability of Sampled Data Systems with a Jump Linear Controller

    NASA Technical Reports Server (NTRS)

    Gonzalez, Oscar R.; Herencia-Zapana, Heber; Gray, W. Steven

    2004-01-01

    In this paper an equivalence between the stochastic stability of a sampled-data system and its associated discrete-time representation is established. The sampled-data system consists of a deterministic, linear, time-invariant, continuous-time plant and a stochastic, linear, time-invariant, discrete-time, jump linear controller. The jump linear controller models computer systems and communication networks that are subject to stochastic upsets or disruptions. This sampled-data model has been used in the analysis and design of fault-tolerant systems and computer-control systems with random communication delays without taking into account the inter-sample response. This paper shows that the known equivalence between the stability of a deterministic sampled-data system and the associated discrete-time representation holds even in a stochastic framework.

  19. Digital program for solving the linear stochastic optimal control and estimation problem

    NASA Technical Reports Server (NTRS)

    Geyser, L. C.; Lehtinen, B.

    1975-01-01

    A computer program is described which solves the linear stochastic optimal control and estimation (LSOCE) problem by using a time-domain formulation. The LSOCE problem is defined as that of designing controls for a linear time-invariant system which is disturbed by white noise in such a way as to minimize a performance index which is quadratic in state and control variables. The LSOCE problem and solution are outlined; brief descriptions are given of the solution algorithms, and complete descriptions of each subroutine, including usage information and digital listings, are provided. A test case is included, as well as information on the IBM 7090-7094 DCS time and storage requirements.

  20. Modular design attitude control system

    NASA Technical Reports Server (NTRS)

    Chichester, F. D.

    1984-01-01

    A sequence of single axismodels and a series of reduced state linear observers of minimum order are used to reconstruct inaccessible variables pertaining to the modular attitude control of a rigid body flexible suspension model of a flexible spacecraft. The single axis models consist of two, three, four, and five rigid bodies, each interconnected by a flexible shaft passing through the mass centers of the bodies. Modal damping is added to each model. Reduced state linear observers are developed for synthesizing the inaccessible modal state variables for each modal model.

  1. Multileaf shielding design against neutrons produced by medical linear accelerators.

    PubMed

    Rebello, W F; Silva, A X; Facure, A

    2008-01-01

    This work aims at presenting a study using Monte Carlo simulation of a Multileaf Shielding (MLS) System designed to be used for the protection of patients who undergo radiotherapy treatment, against undesired exposure to neutrons produced in the components of the medical linear accelerator heads. The choice of radiotherapy equipment as the subject of study fell on the Varian Clinac 2,100/2,300 with MLC-120 operating at 18 MeV. The general purpose Monte Carlo N-Particle radiation transport code, MCNP5, was used in the computer simulation in order to determine the ambient dose equivalent, H (10), on several points on the patient's plane, with the equipment operation with and without the MLS. The results of the simulations showed a significant neutron dose reduction after the inclusion of the proposed shielding. PMID:17569690

  2. Self-shielded electron linear accelerators designed for radiation technologies

    NASA Astrophysics Data System (ADS)

    Belugin, V. M.; Rozanov, N. E.; Pirozhenko, V. M.

    2009-09-01

    This paper describes self-shielded high-intensity electron linear accelerators designed for radiation technologies. The specific property of the accelerators is that they do not apply an external magnetic field; acceleration and focusing of electron beams are performed by radio-frequency fields in the accelerating structures. The main characteristics of the accelerators are high current and beam power, but also reliable operation and a long service life. To obtain these characteristics, a number of problems have been solved, including a particular optimization of the accelerator components and the application of a variety of specific means. The paper describes features of the electron beam dynamics, accelerating structure, and radio-frequency power supply. Several compact self-shielded accelerators for radiation sterilization and x-ray cargo inspection have been created. The introduced methods made it possible to obtain a high intensity of the electron beam and good performance of the accelerators.

  3. The Advanced Photon Source (APS) Linear Accelerator: design and performance

    SciTech Connect

    White, M.M.

    1996-06-01

    The Advanced Photon Source linear accelerator (linac) system consists of a 200-MeV, 2856-MHz S-band electron linac and a 2-radiation-length- thick tungsten target followed by a 450-MeV positron linac. The linac system has operated 24 hours per day for the past two years to support accelerator commissioning and beam studies, and to provide beam for the experimental program. It achieves the design goal for positron current of 8 mA, and produces electron energies up to 650 MeV without the target in place. The linac is described, and its operation and performance are discussed. 9 refs., 3 figs., 1 tab.

  4. Integrated controls design optimization

    DOEpatents

    Lou, Xinsheng; Neuschaefer, Carl H.

    2015-09-01

    A control system (207) for optimizing a chemical looping process of a power plant includes an optimizer (420), an income algorithm (230) and a cost algorithm (225) and a chemical looping process models. The process models are used to predict the process outputs from process input variables. Some of the process in puts and output variables are related to the income of the plant; and some others are related to the cost of the plant operations. The income algorithm (230) provides an income input to the optimizer (420) based on a plurality of input parameters (215) of the power plant. The cost algorithm (225) provides a cost input to the optimizer (420) based on a plurality of output parameters (220) of the power plant. The optimizer (420) determines an optimized operating parameter solution based on at least one of the income input and the cost input, and supplies the optimized operating parameter solution to the power plant.

  5. Receiver-exciter controller design

    NASA Astrophysics Data System (ADS)

    Jansma, P. A.

    1982-06-01

    A description of the general design of both the block 3 and block 4 receiver-exciter controllers for the Deep Space Network (DSN) Mark IV-A System is presented along with the design approach. The controllers are designed to enable the receiver-exciter subsystem (RCV) to be configured, calibrated, initialized and operated from a central location via high level instructions. The RECs are designed to be operated under the control of the DMC subsystem. The instructions are in the form of standard subsystem blocks (SSBs) received via the local area network (LAN). The centralized control provided by RECs and other DSCC controllers in Mark IV-A is intended to reduce DSN operations costs from the Mark III era.

  6. Receiver-exciter controller design

    NASA Technical Reports Server (NTRS)

    Jansma, P. A.

    1982-01-01

    A description of the general design of both the block 3 and block 4 receiver-exciter controllers for the Deep Space Network (DSN) Mark IV-A System is presented along with the design approach. The controllers are designed to enable the receiver-exciter subsystem (RCV) to be configured, calibrated, initialized and operated from a central location via high level instructions. The RECs are designed to be operated under the control of the DMC subsystem. The instructions are in the form of standard subsystem blocks (SSBs) received via the local area network (LAN). The centralized control provided by RECs and other DSCC controllers in Mark IV-A is intended to reduce DSN operations costs from the Mark III era.

  7. ORACLS - A linear-quadratic-Gaussian computer-aided design package

    NASA Technical Reports Server (NTRS)

    Armstrong, E. S.

    1982-01-01

    ORACLS, an acronym denoting Optimal Regular Algorithms for the Control of Linear Systems, is a collection of FORTRAN coded subroutines dedicated to the formulation and solution of the Linear-Quadratic-Gaussian (LQG) design problem modeled in both continuous and discrete form. The ORACLS system is under continuous development at the NASA Langley Research Center, Hampton, Virginia, and is widely used by universities and industry within the U.S.A. The current (operational) ORACLS version as well as new software under development is described.

  8. Adaptive stochastic control for a class of linear systems.

    NASA Technical Reports Server (NTRS)

    Tse, E.; Athans, M.

    1972-01-01

    The problem considered in this paper deals with the control of linear discrete-time stochastic systems with unknown (possibly time-varying and random) gain parameters. The philosophy of control is based on the use of an open-loop feedback optimal (OLFO) control using a quadratic index of performance. It is shown that the OLFO system consists of (1) an identifier that estimates the system state variables and gain parameters and (2) a controller described by an 'adaptive' gain and correction term. Several qualitative properties and asymptotic properties of the OLFO adaptive system are discussed. Simulation results dealing with the control of stable and unstable third-order plants are presented. The key quantitative result is the precise variation of the control system adaptive gains as a function of the future expected uncertainty of the parameters; thus, in this problem the ordinary 'separation theorem' does not hold.

  9. A comparison of controller designs for an experimental flexible structure

    NASA Technical Reports Server (NTRS)

    Lim, K. B.; Maghami, P. G.; Joshi, S. M.

    1991-01-01

    Control systems design and hardware testing are addressed for an experimental structure that displays the characteristics of a typical flexible spacecraft. The results of designing and implementing various control design methodologies are described. The design methodologies under investigation include linear quadratic Gaussian control, static and dynamic dissipative controls, and H-infinity optimal control. Among the three controllers considered, it is shown, through computer simulation and laboratory experiments on the evolutionary structure, that the dynamic dissipative controller gave the best results in terms of vibration suppression and robustness with respect to modeling errors.

  10. Nonaxisymmetric turbine end wall design: Part 1 -- Three-dimensional linear design system

    SciTech Connect

    Harvey, N.W.; Rose, M.G.; Taylor, M.D.; Shahpar, S.; Hartland, J.; Gregory-Smith, D.G.

    2000-04-01

    A linear design system, already in use for the forward and inverse design of three-dimensional turbine aerofoils, has been extended for the design of their end walls. This paper shows how this method has been applied to the design of a nonaxisymmetric end wall for a turbine rotor blade in linear cascade. The calculations show that nonaxisymmetric end wall profiling is a powerful tool for reducing secondary flows, in particular the secondary kinetic energy and exit angle deviations. Simple end wall profiling is shown to be at least as beneficial aerodynamically as the now standard techniques of differentially skewing aerofoil sections up the span, and (compound) leaning of the aerofoil. A design is presented that combines a number of end wall features aimed at reducing secondary loss and flow deviation. The experimental study of this geometry, aimed at validating the design method, is the subject of the second part of this paper. The effects of end wall perturbations on the flow field are calculated using a three-dimensional pressure correction based Reynolds-averaged Navier-Stokes CFD code. These calculations are normally performed overnight on a cluster of work stations. The design system then calculates the relationships between perturbations in the end wall and resulting changes in the flow field. With these available, linear superposition theory is used to enable the designer to investigate quickly the effect on the flow field of many combinations of end wall shapes (a matter of minutes for each shape).

  11. Linear Time Invariant Models for Integrated Flight and Rotor Control

    NASA Astrophysics Data System (ADS)

    Olcer, Fahri Ersel

    2011-12-01

    Recent developments on individual blade control (IBC) and physics based reduced order models of various on-blade control (OBC) actuation concepts are opening up opportunities to explore innovative rotor control strategies for improved rotor aerodynamic performance, reduced vibration and BVI noise, and improved rotor stability, etc. Further, recent developments in computationally efficient algorithms for the extraction of Linear Time Invariant (LTI) models are providing a convenient framework for exploring integrated flight and rotor control, while accounting for the important couplings that exist between body and low frequency rotor response and high frequency rotor response. Formulation of linear time invariant (LTI) models of a nonlinear system about a periodic equilibrium using the harmonic domain representation of LTI model states has been studied in the literature. This thesis presents an alternative method and a computationally efficient scheme for implementation of the developed method for extraction of linear time invariant (LTI) models from a helicopter nonlinear model in forward flight. The fidelity of the extracted LTI models is evaluated using response comparisons between the extracted LTI models and the nonlinear model in both time and frequency domains. Moreover, the fidelity of stability properties is studied through the eigenvalue and eigenvector comparisons between LTI and LTP models by making use of the Floquet Transition Matrix. For time domain evaluations, individual blade control (IBC) and On-Blade Control (OBC) inputs that have been tried in the literature for vibration and noise control studies are used. For frequency domain evaluations, frequency sweep inputs are used to obtain frequency responses of fixed system hub loads to a single blade IBC input. The evaluation results demonstrate the fidelity of the extracted LTI models, and thus, establish the validity of the LTI model extraction process for use in integrated flight and rotor control

  12. A new direct torque control scheme for induction motors using linear state feedback

    SciTech Connect

    Kandianis, A.; Manias, S.N.; Griva, G.; Profumo, F.

    1995-12-31

    In this paper a new Direct Torque Control (DTC) scheme for induction motor drives is described, based on the linear state feedback method with dynamic output feedback. The DTC has been shown to be a good solution in torque controlled drives applications when the speed control is not required (e.g. traction drives for electric vehicles). In such cases, the torque command comes directly from the user input. By considering the torque and flux as the outputs of the linearized motor model, it is possible to design an optimum controller with constant gain state feedback and dynamic output feedback through an integral term. The design procedure of the proposed control scheme is described and the simulation results are presented to show the overall performance of the system.

  13. Robust control based on feedback linearization for roll stabilizing of autonomous underwater vehicle under wave disturbances

    NASA Astrophysics Data System (ADS)

    Pan, Li-Xin; Jin, Hong-Zhang; Wang, Lin-Lin

    2011-06-01

    In the case of Autonomous Underwater Vehicle (AUV) navigating with low speed near water surface, a new method for design of roll motion controller is proposed in order to restrain wave disturbance effectively and improve roll stabilizing performance. Robust control is applied, which is based on uncertain nonlinear horizontal motion model of AUV and the principle of zero speed fin stabilizer. Feedback linearization approach is used to transform the complex nonlinear system into a comparatively simple linear system. For parameter uncertainty of motion model, the controller is designed with mixed-sensitivity method based on H-infinity robust control theory. Simulation results show better robustness improved by this control method for roll stabilizing of AUV navigating near water surface.

  14. Performance of a linear robust control strategy on a nonlinear model of spatially developing flows

    NASA Astrophysics Data System (ADS)

    Lauga, Eric; Bewley, Thomas R.

    2004-08-01

    This paper investigates the control of self-excited oscillations in spatially developing flow systems such as jets and wakes using {mathcal H}_{infty} control theory on a complex Ginzburg Landau (CGL) model. The coefficients used in this one-dimensional equation, which serves as a simple model of the evolution of hydrodynamic instability waves, are those selected by Roussopoulos & Monkewitz (Physica D 1996, vol. 97, p. 264) to model the behaviour of the near-wake of a circular cylinder. Based on noisy measurements at a point sensor typically located inside the cylinder wake, the compensator uses a linear {mathcal H}_{infty} filter based on the CGL model to construct a state estimate. This estimate is then used to compute linear {mathcal H}_{infty} control feedback at a point actuator location, which is typically located upstream of the sensor. The goal of the control scheme is to stabilize the system by minimizing a weighted average of the ‘system response’ and the ‘control effort’ while rigorously bounding the response of the controlled linear system to external disturbances. The application of such modern control and estimation rules stabilizes the linear CGL system at Reynolds numbers far above the critical Reynolds number Re_c {≈} 47 at which linear global instability appears in the uncontrolled system. In so doing, many unstable modes of the uncontrolled CGL system are linearly stabilized by the single actuator/sensor pair and the model-based feedback control strategy. Further, the linear performance of the closed-loop system, in terms of the relevant transfer function norms quantifying the linear response of the controlled system to external disturbances, is substantially improved beyond that possible with the simple proportional measurement feedback proposed in previous studies. Above Re {≈} 84, the {mathcal H}_{infty} control designs significantly outperform the corresponding {mathcal H}_2 control designs in terms of their ability to stabilize

  15. Robust multivariable controller design for flexible spacecraft

    NASA Technical Reports Server (NTRS)

    Joshi, Suresh M.; Armstrong, Ernest S.

    1986-01-01

    Large, flexible spacecraft are typically characterized by a large number of significant elastic modes with very small inherent damping, low, closely spaced natural frequencies, and the lack of accurate knowledge of the structural parameters. Summarized here is some recent research on the design of robust controllers for such spacecraft, which will maintain stability, and possible performance, despite these problems. Two types of controllers are considered, the first being the linear-quadratic-Gaussian-(LQG)-type. The second type utilizes output feedback using collocated sensors and actuators. The problem of designing robust LQG-type controllers using the frequency domain loop transfer recovery (LTR) method is considered, and the method is applied to a large antenna model. Analytical results regarding the regions of stability for LQG-type controllers in the presence of actuator nonlinearities are also presented. The results obtained for the large antenna indicate that the LQG/LTR method is a promising approach for control system design for flexible spacecraft. For the second type of controllers (collocated controllers), it is proved that the stability is maintained in the presence of certain commonly encountered nonlinearities and first-order actuator dynamics. These results indicate that collocated controllers are good candidates for robust control in situations where model errors are large.

  16. Integrated structure/control law design by multilevel optimization

    NASA Technical Reports Server (NTRS)

    Gilbert, Michael G.; Schmidt, David K.

    1989-01-01

    A new approach to integrated structure/control law design based on multilevel optimization is presented. This new approach is applicable to aircraft and spacecraft and allows for the independent design of the structure and control law. Integration of the designs is achieved through use of an upper level coordination problem formulation within the multilevel optimization framework. The method requires the use of structure and control law design sensitivity information. A general multilevel structure/control law design problem formulation is given, and the use of Linear Quadratic Gaussian (LQG) control law design and design sensitivity methods within the formulation is illustrated. Results of three simple integrated structure/control law design examples are presented. These results show the capability of structure and control law design tradeoffs to improve controlled system performance within the multilevel approach.

  17. Design, evaluation and test of an electronic, multivariable control for the F100 turbofan engine

    NASA Technical Reports Server (NTRS)

    Skira, C. A.; Dehoff, R. L.; Hall, W. E., Jr.

    1980-01-01

    A digital, multivariable control design procedure for the F100 turbofan engine is described. The controller is based on locally linear synthesis techniques using linear, quadratic regulator design methods. The control structure uses an explicit model reference form with proportional and integral feedback near a nominal trajectory. Modeling issues, design procedures for the control law and the estimation of poorly measured variables are presented.

  18. Linear and Nonlinear Schemes Applied to Pitch Control of Wind Turbines

    PubMed Central

    Yang, Geng

    2014-01-01

    Linear controllers have been employed in industrial applications for many years, but sometimes they are noneffective on the system with nonlinear characteristics. This paper discusses the structure, performance, implementation cost, advantages, and disadvantages of different linear and nonlinear schemes applied to the pitch control of the wind energy conversion systems (WECSs). The linear controller has the simplest structure and is easily understood by the engineers and thus is widely accepted by the industry. In contrast, nonlinear schemes are more complicated, but they can provide better performance. Although nonlinear algorithms can be implemented in a powerful digital processor nowadays, they need time to be accepted by the industry and their reliability needs to be verified in the commercial products. More information about the system nonlinear feature is helpful to simplify the controller design. However, nonlinear schemes independent of the system model are more robust to the uncertainties or deviations of the system parameters. PMID:25295299

  19. Linear and nonlinear schemes applied to pitch control of wind turbines.

    PubMed

    Geng, Hua; Yang, Geng

    2014-01-01

    Linear controllers have been employed in industrial applications for many years, but sometimes they are noneffective on the system with nonlinear characteristics. This paper discusses the structure, performance, implementation cost, advantages, and disadvantages of different linear and nonlinear schemes applied to the pitch control of the wind energy conversion systems (WECSs). The linear controller has the simplest structure and is easily understood by the engineers and thus is widely accepted by the industry. In contrast, nonlinear schemes are more complicated, but they can provide better performance. Although nonlinear algorithms can be implemented in a powerful digital processor nowadays, they need time to be accepted by the industry and their reliability needs to be verified in the commercial products. More information about the system nonlinear feature is helpful to simplify the controller design. However, nonlinear schemes independent of the system model are more robust to the uncertainties or deviations of the system parameters. PMID:25295299

  20. Computer-aided design of flight control systems

    NASA Technical Reports Server (NTRS)

    Stengel, Robert F.; Sircar, Subrata

    1991-01-01

    A computer program is presented for facilitating the development and assessment of flight control systems, and application to a control design is discussed. The program is a computer-aided control-system design program based on direct digital synthesis of a proportional-integral-filter controller with scheduled linear-quadratic-Gaussian gains and command generator tracking of pilot inputs. The FlightCAD system concentrates on aircraft dynamics, flight-control systems, stability and performance, and has practical engineering applications.

  1. Koopman Invariant Subspaces and Finite Linear Representations of Nonlinear Dynamical Systems for Control

    PubMed Central

    Brunton, Steven L.; Brunton, Bingni W.; Proctor, Joshua L.; Kutz, J. Nathan

    2016-01-01

    In this work, we explore finite-dimensional linear representations of nonlinear dynamical systems by restricting the Koopman operator to an invariant subspace spanned by specially chosen observable functions. The Koopman operator is an infinite-dimensional linear operator that evolves functions of the state of a dynamical system. Dominant terms in the Koopman expansion are typically computed using dynamic mode decomposition (DMD). DMD uses linear measurements of the state variables, and it has recently been shown that this may be too restrictive for nonlinear systems. Choosing the right nonlinear observable functions to form an invariant subspace where it is possible to obtain linear reduced-order models, especially those that are useful for control, is an open challenge. Here, we investigate the choice of observable functions for Koopman analysis that enable the use of optimal linear control techniques on nonlinear problems. First, to include a cost on the state of the system, as in linear quadratic regulator (LQR) control, it is helpful to include these states in the observable subspace, as in DMD. However, we find that this is only possible when there is a single isolated fixed point, as systems with multiple fixed points or more complicated attractors are not globally topologically conjugate to a finite-dimensional linear system, and cannot be represented by a finite-dimensional linear Koopman subspace that includes the state. We then present a data-driven strategy to identify relevant observable functions for Koopman analysis by leveraging a new algorithm to determine relevant terms in a dynamical system by ℓ1-regularized regression of the data in a nonlinear function space; we also show how this algorithm is related to DMD. Finally, we demonstrate the usefulness of nonlinear observable subspaces in the design of Koopman operator optimal control laws for fully nonlinear systems using techniques from linear optimal control. PMID:26919740

  2. Robust power system controller design based on measured models

    SciTech Connect

    Fatehi, F.; Smith, J.R.; Pierre, D.A.

    1996-05-01

    This paper presents combined system identification and controller design methods to dampen low-frequency oscillations in multimachine power systems. An iterative closed-loop identification method is used to find a linear model for the power system. Linear quadratic Gaussian controller design with loop transfer recovery (LQG/LTR), based on a generalized technique for the nonminimum phase (NMP) power system model, is used to design controllers. Simulation results are presented to demonstrate the robustness of controllers based on closed-loop identified plant models and the amount of loop transfer recovery that is possible for NMP plant models.

  3. The design of digital-adaptive controllers for VTOL aircraft

    NASA Technical Reports Server (NTRS)

    Stengel, R. F.; Broussard, J. R.; Berry, P. W.

    1976-01-01

    Design procedures for VTOL automatic control systems have been developed and are presented. Using linear-optimal estimation and control techniques as a starting point, digital-adaptive control laws have been designed for the VALT Research Aircraft, a tandem-rotor helicopter which is equipped for fully automatic flight in terminal area operations. These control laws are designed to interface with velocity-command and attitude-command guidance logic, which could be used in short-haul VTOL operations. Developments reported here include new algorithms for designing non-zero-set-point digital regulators, design procedures for rate-limited systems, and algorithms for dynamic control trim setting.

  4. Dissipative control for linear systems by static output feedback

    NASA Astrophysics Data System (ADS)

    Feng, Zhiguang; Lam, James; Shu, Zhan

    2013-08-01

    In this article, the problem of static output-feedback dissipative control is investigated for linear continuous-time system based on an augmented system approach. A necessary and sufficient condition for stability and strict (Q,S,R)-dissipativity of the closed-loop system is established in terms of a matrix inequality with free parametrisation matrix. An equivalent characterisation with some slack matrices for numerical solvability is then proposed. Based on this, a necessary and sufficient condition for the existence of a desired controller is given, and a corresponding iterative algorithm is developed to solve the condition. The effectiveness of results developed in this article is demonstrated by some numerical examples.

  5. Consensus of multi-agent linear dynamic systems via impulsive control protocols

    NASA Astrophysics Data System (ADS)

    Jiang, Haibo; Yu, Jianjiang; Zhou, Caigen

    2011-06-01

    In this article, we introduce impulsive control protocols for multi-agent linear dynamic systems. First, an impulsive control protocol is designed for network with fixed topology based on the local information of agents. Then sufficient conditions are given to guarantee the consensus of the multi-agent linear dynamic systems by the theory of impulsive systems. Furthermore, how to select the discrete instants and impulsive matrices is discussed. The case that the topologies of networks are switching is also considered. Numerical simulations show the effectiveness of our theoretical results.

  6. Simultaneous structural and control optimization via linear quadratic regulator eigenstructure assignment

    NASA Technical Reports Server (NTRS)

    Becus, G. A.; Lui, C. Y.; Venkayya, V. B.; Tischler, V. A.

    1987-01-01

    A method for simultaneous structural and control design of large flexible space structures (LFSS) to reduce vibration generated by disturbances is presented. Desired natural frequencies and damping ratios for the closed loop system are achieved by using a combination of linear quadratic regulator (LQR) synthesis and numerical optimization techniques. The state and control weighing matrices (Q and R) are expressed in terms of structural parameters such as mass and stiffness. The design parameters are selected by numerical optimization so as to minimize the weight of the structure and to achieve the desired closed-loop eigenvalues. An illustrative example of the design of a two bar truss is presented.

  7. Linear Parameter Varying Control Synthesis for Actuator Failure, Based on Estimated Parameter

    NASA Technical Reports Server (NTRS)

    Shin, Jong-Yeob; Wu, N. Eva; Belcastro, Christine

    2002-01-01

    The design of a linear parameter varying (LPV) controller for an aircraft at actuator failure cases is presented. The controller synthesis for actuator failure cases is formulated into linear matrix inequality (LMI) optimizations based on an estimated failure parameter with pre-defined estimation error bounds. The inherent conservatism of an LPV control synthesis methodology is reduced using a scaling factor on the uncertainty block which represents estimated parameter uncertainties. The fault parameter is estimated using the two-stage Kalman filter. The simulation results of the designed LPV controller for a HiMXT (Highly Maneuverable Aircraft Technology) vehicle with the on-line estimator show that the desired performance and robustness objectives are achieved for actuator failure cases.

  8. Design of turbofan engine controls using output feedback regulator theory

    NASA Technical Reports Server (NTRS)

    Merrill, W. C.

    1977-01-01

    A multivariable control design procedure based on output feedback regulator (OFR) theory is applied to the F100 turbofan engine. Results for the OFR design are compared to a design based on linear quadratic regulator (LQR) theory. This LQR design was obtained as part of the F100 Multivariable Control Synthesis (MVCS) program. In the MVCS program the LQR feedback control was designed in a reduced dimension state space and then applied to the original system. However, the OFR feedback control is designed in the full order state space and thus eliminates any need for model reduction techniques. Using the performance measure and control structure of the MVCS program LQR design, an equivalent OFR feedback control is obtained. The flexibility of the OFR as a control design procedure is demonstrated and differing feedback control structures are evaluated.

  9. Feedback Control Systems Loop Shaping Design with Practical Considerations

    NASA Technical Reports Server (NTRS)

    Kopsakis, George

    2007-01-01

    This paper describes loop shaping control design in feedback control systems, primarily from a practical stand point that considers design specifications. Classical feedback control design theory, for linear systems where the plant transfer function is known, has been around for a long time. But it s still a challenge of how to translate the theory into practical and methodical design techniques that simultaneously satisfy a variety of performance requirements such as transient response, stability, and disturbance attenuation while taking into account the capabilities of the plant and its actuation system. This paper briefly addresses some relevant theory, first in layman s terms, so that it becomes easily understood and then it embarks into a practical and systematic design approach incorporating loop shaping design coupled with lead-lag control compensation design. The emphasis is in generating simple but rather powerful design techniques that will allow even designers with a layman s knowledge in controls to develop effective feedback control designs.

  10. Linearized aerodynamic and control law models of the X-29A airplane and comparison with flight data

    NASA Technical Reports Server (NTRS)

    Bosworth, John T.

    1992-01-01

    Flight control system design and analysis for aircraft rely on mathematical models of the vehicle dynamics. In addition to a six degree of freedom nonlinear simulation, the X-29A flight controls group developed a set of programs that calculate linear perturbation models throughout the X-29A flight envelope. The models include the aerodynamics as well as flight control system dynamics and were used for stability, controllability, and handling qualities analysis. These linear models were compared to flight test results to help provide a safe flight envelope expansion. A description is given of the linear models at three flight conditions and two flight control system modes. The models are presented with a level of detail that would allow the reader to reproduce the linear results if desired. Comparison between the response of the linear model and flight measured responses are presented to demonstrate the strengths and weaknesses of the linear models' ability to predict flight dynamics.

  11. Hybrid Invariance and Stability of a Feedback Linearizing Controller for Powered Prostheses

    PubMed Central

    Martin, Anne E.; Gregg, Robert D.

    2015-01-01

    The development of powered lower-limb prostheses has the potential to significantly improve amputees’ quality of life. By applying advanced control schemes, such as hybrid zero dynamics (HZD), to prostheses, more intelligent prostheses could be designed. Originally developed to control bipedal robots, HZD-based control specifies the motion of the actuated degrees of freedom using output functions to be zeroed, and the required torques are calculated using feedback linearization. Previous work showed that an HZD-like prosthesis controller can successfully control the stance period of gait. This paper shows that an HZD-based prosthesis controller can be used for the entire gait cycle and that feedback linearization can be performed using only information measured with on-board sensors. An analytic metric for orbital stability of a two-step periodic gait is developed. The results are illustrated in simulation. PMID:26604427

  12. A Non-Linear Approach to Spacecraft Trajectory Control in the Vicinity of a Libration Point

    NASA Technical Reports Server (NTRS)

    Luquette, Richard J.; Sanner, Robert M.

    2001-01-01

    An expanding interest in mission design strategies that exploit libration point regions demands the continued development of enhanced, efficient, control algorithms for station-keeping and formation maintenance. This paper discusses the development of a non-linear, station-keeping, control algorithm for trajectories in the vicinity of a libration point. The control law guarantees exponential convergence, based on a Lyaponov analysis. Controller performance is evaluated using FreeFlyer(R) and MATLAB(R) for a spacecraft stationed near the L2 libration point in the Earth-Moon system, tracking a pre-defined reference trajectory. Evaluation metrics are fuel usage and tracking accuracy. Simulation results are compared with a linear-based controller for a spacecraft tracking the same reference trajectory. Although the analysis is framed in the context of station-keeping, the control algorithm is equally applicable to a formation flying problem with an appropriate definition of the reference trajectory.

  13. Integrated Aeropropulsion Control System Design

    NASA Technical Reports Server (NTRS)

    Lin, C. -F.; Hurley, Francis X.; Huang, Jie; Hadaegh, F. Y.

    1996-01-01

    %T Integrated Aeropropulsion Control System Design%A C-F. Lin%A Francis X. Hurley%A Jie Huang%A F. Y. Hadaegh%J International Conference on Control and Information(psi)995%C Hong Kong%D June 1995%K aeropropulsion, control, system%U http://jpltrs.jpl.nasa.gov/1995/95-0658.pdfAn integrated intelligent control approach is proposed to design a high performance control system for aeropropulsion systems based on advanced sensor processing, nonlinear control and neural fuzzy control integration. Our approach features the following innovations:??e complexity and uncertainty issues are addressed via the distributed parallel processing, learning, and online reoptimization properties of neural networks.??e nonlinear dynamics and the severe coupling can be naturally incorporated into the design framework.??e knowledge base and decision making logic furnished by fuzzy systems leads to a human intelligence enhanced control scheme.In addition, fault tolerance, health monitoring and reconfigurable control strategies will be accommodated by this approach to ensure stability, graceful degradation and reoptimization in the case of failures, malfunctions and damage.!.

  14. AESOP: An interactive computer program for the design of linear quadratic regulators and Kalman filters

    NASA Technical Reports Server (NTRS)

    Lehtinen, B.; Geyser, L. C.

    1984-01-01

    AESOP is a computer program for use in designing feedback controls and state estimators for linear multivariable systems. AESOP is meant to be used in an interactive manner. Each design task that the program performs is assigned a "function" number. The user accesses these functions either (1) by inputting a list of desired function numbers or (2) by inputting a single function number. In the latter case the choice of the function will in general depend on the results obtained by the previously executed function. The most important of the AESOP functions are those that design,linear quadratic regulators and Kalman filters. The user interacts with the program when using these design functions by inputting design weighting parameters and by viewing graphic displays of designed system responses. Supporting functions are provided that obtain system transient and frequency responses, transfer functions, and covariance matrices. The program can also compute open-loop system information such as stability (eigenvalues), eigenvectors, controllability, and observability. The program is written in ANSI-66 FORTRAN for use on an IBM 3033 using TSS 370. Descriptions of all subroutines and results of two test cases are included in the appendixes.

  15. Dual adaptive control: Design principles and applications

    NASA Technical Reports Server (NTRS)

    Mookerjee, Purusottam

    1988-01-01

    The design of an actively adaptive dual controller based on an approximation of the stochastic dynamic programming equation for a multi-step horizon is presented. A dual controller that can enhance identification of the system while controlling it at the same time is derived for multi-dimensional problems. This dual controller uses sensitivity functions of the expected future cost with respect to the parameter uncertainties. A passively adaptive cautious controller and the actively adaptive dual controller are examined. In many instances, the cautious controller is seen to turn off while the latter avoids the turn-off of the control and the slow convergence of the parameter estimates, characteristic of the cautious controller. The algorithms have been applied to a multi-variable static model which represents a simplified linear version of the relationship between the vibration output and the higher harmonic control input for a helicopter. Monte Carlo comparisons based on parametric and nonparametric statistical analysis indicate the superiority of the dual controller over the baseline controller.

  16. Design of a biochemical circuit motif for learning linear functions.

    PubMed

    Lakin, Matthew R; Minnich, Amanda; Lane, Terran; Stefanovic, Darko

    2014-12-01

    Learning and adaptive behaviour are fundamental biological processes. A key goal in the field of bioengineering is to develop biochemical circuit architectures with the ability to adapt to dynamic chemical environments. Here, we present a novel design for a biomolecular circuit capable of supervised learning of linear functions, using a model based on chemical reactions catalysed by DNAzymes. To achieve this, we propose a novel mechanism of maintaining and modifying internal state in biochemical systems, thereby advancing the state of the art in biomolecular circuit architecture. We use simulations to demonstrate that the circuit is capable of learning behaviour and assess its asymptotic learning performance, scalability and robustness to noise. Such circuits show great potential for building autonomous in vivo nanomedical devices. While such a biochemical system can tell us a great deal about the fundamentals of learning in living systems and may have broad applications in biomedicine (e.g. autonomous and adaptive drugs), it also offers some intriguing challenges and surprising behaviours from a machine learning perspective. PMID:25401175

  17. Design of a biochemical circuit motif for learning linear functions

    PubMed Central

    Lakin, Matthew R.; Minnich, Amanda; Lane, Terran; Stefanovic, Darko

    2014-01-01

    Learning and adaptive behaviour are fundamental biological processes. A key goal in the field of bioengineering is to develop biochemical circuit architectures with the ability to adapt to dynamic chemical environments. Here, we present a novel design for a biomolecular circuit capable of supervised learning of linear functions, using a model based on chemical reactions catalysed by DNAzymes. To achieve this, we propose a novel mechanism of maintaining and modifying internal state in biochemical systems, thereby advancing the state of the art in biomolecular circuit architecture. We use simulations to demonstrate that the circuit is capable of learning behaviour and assess its asymptotic learning performance, scalability and robustness to noise. Such circuits show great potential for building autonomous in vivo nanomedical devices. While such a biochemical system can tell us a great deal about the fundamentals of learning in living systems and may have broad applications in biomedicine (e.g. autonomous and adaptive drugs), it also offers some intriguing challenges and surprising behaviours from a machine learning perspective. PMID:25401175

  18. Sliding Mode Control Applied to Reconfigurable Flight Control Design

    NASA Technical Reports Server (NTRS)

    Hess, R. A.; Wells, S. R.; Bacon, Barton (Technical Monitor)

    2002-01-01

    Sliding mode control is applied to the design of a flight control system capable of operating with limited bandwidth actuators and in the presence of significant damage to the airframe and/or control effector actuators. Although inherently robust, sliding mode control algorithms have been hampered by their sensitivity to the effects of parasitic unmodeled dynamics, such as those associated with actuators and structural modes. It is known that asymptotic observers can alleviate this sensitivity while still allowing the system to exhibit significant robustness. This approach is demonstrated. The selection of the sliding manifold as well as the interpretation of the linear design that results after introduction of a boundary layer is accomplished in the frequency domain. The design technique is exercised on a pitch-axis controller for a simple short-period model of the High Angle of Attack F-18 vehicle via computer simulation. Stability and performance is compared to that of a system incorporating a controller designed by classical loop-shaping techniques.

  19. A method for linearizing a nonlinear system with six state variables and three control variables

    NASA Technical Reports Server (NTRS)

    Hsia, W. S.

    1986-01-01

    A nonlinear system governed by x = f(x,u) with six state variables and three control variables is considered in this project. A set of transformations from (x,u) - space to (z,v) - space is defined such that the linear tangent model is independent of the operating point in the z-space. Therefore, it is possible to design a control law satisfying all operating points in the transformed space. An algorithm to construct the above transformations and to obtain the associated linearized system is described in this report. This method is applied to a rigid body using pole placement for the control law. Results are verified by numerical simulation. Closed loop poles in x-space using traditional local linearization are compared with those pole placements in the z-space.

  20. Modern control design for flexible wind turbines

    NASA Astrophysics Data System (ADS)

    Wright, Alan Duane

    Control can improve energy capture and reduce dynamic loads in wind turbines. In the 1970s and 1980s wind turbines used classical control designs to regulate power and speed. The methods used, however, were not always successful. These systems often had bandwidths large enough to destabilize low-damped flexible modes leading to high dynamic load fatigue failures. Modern turbines are larger, mounted on taller towers, and are more dynamically active than their predecessors. Control systems to regulate turbine power and maintain stable closed-loop behavior in the presence of turbulent wind inflow will be critical for these designs. New advanced control approaches and paradigms must account for low-damped flexible modes in order to reduce structural dynamic loading and achieve the 20--25 year operational life required of today's machines. This thesis applies modern state-space control design methods to a two-bladed teetering hub upwind machine located at the National Wind Technology Center. The design objective is to regulate turbine speed and enhance damping in several low-damped flexible modes of the turbine. Starting with simple control algorithms based on linear models, complexity is added incrementally until the desired performance is firmly established. The controls approach is based on the Disturbance Accommodating Control (DAC) method and provides accountability for wind-speed fluctuations. First, controls are designed using the single control input rotor collective pitch to stabilize the 1st drive-train torsion as well as the tower 1st fore-aft bending modes. Generator torque is then incorporated as an additional control input. This reduces some of the demand placed on the rotor collective pitch control system and enhances 1st drive train torsion mode damping. Individual blade pitch control is then used to attenuate wind disturbances having spatial variation over the rotor and effectively reduces blade flap deflections due to wind shear. Finally, results from

  1. Linear Quadratic Tracking Design for a Generic Transport Aircraft with Structural Load Constraints

    NASA Technical Reports Server (NTRS)

    Burken, John J.; Frost, Susan A.; Taylor, Brian R.

    2011-01-01

    When designing control laws for systems with constraints added to the tracking performance, control allocation methods can be utilized. Control allocations methods are used when there are more command inputs than controlled variables. Constraints that require allocators are such task as; surface saturation limits, structural load limits, drag reduction constraints or actuator failures. Most transport aircraft have many actuated surfaces compared to the three controlled variables (such as angle of attack, roll rate & angle of side slip). To distribute the control effort among the redundant set of actuators a fixed mixer approach can be utilized or online control allocation techniques. The benefit of an online allocator is that constraints can be considered in the design whereas the fixed mixer cannot. However, an online control allocator mixer has a disadvantage of not guaranteeing a surface schedule, which can then produce ill defined loads on the aircraft. The load uncertainty and complexity has prevented some controller designs from using advanced allocation techniques. This paper considers actuator redundancy management for a class of over actuated systems with real-time structural load limits using linear quadratic tracking applied to the generic transport model. A roll maneuver example of an artificial load limit constraint is shown and compared to the same no load limitation maneuver.

  2. Bimanual coordination as task-dependent linear control policies.

    PubMed

    Diedrichsen, Jörn; Dowling, Noreen

    2009-06-01

    When we perform actions with two hands in everyday life, coordination has to change very quickly depending on task goals. Here, we study these task-dependent changes using a bimanual reaching task in which participants move two separate cursors to two visual targets, or move a single cursor, displayed at the average position of the two hands, to a single target. During the movement, one of the hands is perturbed in a random direction using a viscous curl field. We have previously shown that feedback control, the structure of noise, and adaptation change between these two tasks as predicted by optimal control theory: feedback control is independent when the hands control two cursors, but becomes dependent when they move one cursor together. The same changes are observed even on trials in which no visual feedback about the cursor position is given. One assumption in this model is that coordinative motor commands can be described as a linear function of the state of the left and right hands. Here we test the assumption by studying the feedback corrections for 25 combinations of force fields applied to the two hands. Our study shows that feedback gains are constant across all levels of force fields strength, providing strong evidence that intermanual coordination for this task can accurately be explained by optimal task-dependent linear feedback gains. PMID:19131136

  3. Linear quadratic Gaussian and feedforward controllers for the DSS-13 antenna

    NASA Technical Reports Server (NTRS)

    Gawronski, W. K.; Racho, C. S.; Mellstrom, J. A.

    1994-01-01

    The controller development and the tracking performance evaluation for the DSS-13 antenna are presented. A trajectory preprocessor, linear quadratic Gaussian (LQG) controller, feedforward controller, and their combination were designed, built, analyzed, and tested. The antenna exhibits nonlinear behavior when the input to the antenna and/or the derivative of this input exceeds the imposed limits; for slewing and acquisition commands, these limits are typically violated. A trajectory preprocessor was designed to ensure that the antenna behaves linearly, just to prevent nonlinear limit cycling. The estimator model for the LQG controller was identified from the data obtained from the field test. Based on an LQG balanced representation, a reduced-order LQG controller was obtained. The feedforward controller and the combination of the LQG and feedforward controller were also investigated. The performance of the controllers was evaluated with the tracking errors (due to following a trajectory) and the disturbance errors (due to the disturbances acting on the antenna). The LQG controller has good disturbance rejection properties and satisfactory tracking errors. The feedforward controller has small tracking errors but poor disturbance rejection properties. The combined LQG and feedforward controller exhibits small tracking errors as well as good disturbance rejection properties. However, the cost for this performance is the complexity of the controller.

  4. A hybrid feedback linearizing-Kalman filtering control algorithm for a distillation column.

    PubMed

    Jana, Amiya Kumar; Samanta, Amar Nath

    2006-01-01

    This paper studies the design of a discrete-time multivariable feedback linearizing control (FLC) structure. The control scheme included (i) a transformer [also called the input/output (I/O) linearizing state feedback law] that transformed the nonlinear u-y to a linearized v-y system, (ii) a closed-loop observer [extended Kalman filter (EKF)], which estimated the unmeasured states, and (iii) a conventional proportional integral (PI) controller that was employed around the v-y system as an external controller. To avoid the estimator design complexity, the design of EKF for a binary distillation column has been performed based on a reduced-order compartmental distillation model. Consequently, there is a significant process/predictor mismatch, and despite this discrepancy, the EKF estimated the required states of the simulated distillation column precisely. The FLC in conjunction with EKF (FLC-EKF) and that coupled with a measured composition-based reduced-order open-loop observer (FLC-MCROOLO) have been synthesized. The FLC structures showed better performance than the traditional proportional integral derivative controller. In practice, the presence of uncertainties and unknown disturbances are common, and in such situations, the proposed FLC-EKF control scheme ensured the superiority over the FLC-MCROOLO law. PMID:16480113

  5. A user oriented microcomputer facility for designing linear quadratic Gaussian feedback compensators

    NASA Technical Reports Server (NTRS)

    Houpt, P. K.; Wahid, J.; Johnson, T. L.; Ward, S. A.

    1979-01-01

    The paper describes a laboratory design facility for digital microprocessor implementation of Linear-Quadratic-Gaussian feedback compensators. Outputs from user interactive programs for solving infinite time horizon LQ regulator and Kalman filter problems are conditioned for implementation on a laboratory microcomputer system. The software consists of two parts: (1) an off-line high-level program for solving the LQ Ricatti equations and generating associated feedback and filter gains, and (2) a cross compiler/macro assembler which generates object code for the target microprocessor system. Application to the control of a two dimensional inverted pendulum and expanding the design/prototyping system to other target machine architectures are discussed.

  6. Steering of Frequency Standards by the Use of Linear Quadratic Gaussian Control Theory

    NASA Technical Reports Server (NTRS)

    Koppang, Paul; Leland, Robert

    1996-01-01

    Linear quadratic Gaussian control is a technique that uses Kalman filtering to estimate a state vector used for input into a control calculation. A control correction is calculated by minimizing a quadratic cost function that is dependent on both the state vector and the control amount. Different penalties, chosen by the designer, are assessed by the controller as the state vector and control amount vary from given optimal values. With this feature controllers can be designed to force the phase and frequency differences between two standards to zero either more or less aggressively depending on the application. Data will be used to show how using different parameters in the cost function analysis affects the steering and the stability of the frequency standards.

  7. Multivariable control of the Space Shuttle Remote Manipulator System using linearization by state feedback. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Gettman, Chang-Ching LO

    1993-01-01

    This thesis develops and demonstrates an approach to nonlinear control system design using linearization by state feedback. The design provides improved transient response behavior allowing faster maneuvering of payloads by the SRMS. Modeling uncertainty is accounted for by using a second feedback loop designed around the feedback linearized dynamics. A classical feedback loop is developed to provide the easy implementation required for the relatively small on board computers. Feedback linearization also allows the use of higher bandwidth model based compensation in the outer loop, since it helps maintain stability in the presence of the nonlinearities typically neglected in model based designs.

  8. Linear quadratic optimal controller for cable-driven parallel robots

    NASA Astrophysics Data System (ADS)

    Abdolshah, Saeed; Shojaei Barjuei, Erfan

    2015-12-01

    In recent years, various cable-driven parallel robots have been investigated for their advantages, such as low structural weight, high acceleration, and large work-space, over serial and conventional parallel systems. However, the use of cables lowers the stiffness of these robots, which in turn may decrease motion accuracy. A linear quadratic (LQ) optimal controller can provide all the states of a system for the feedback, such as position and velocity. Thus, the application of such an optimal controller in cable-driven parallel robots can result in more efficient and accurate motion compared to the performance of classical controllers such as the proportional- integral-derivative controller. This paper presents an approach to apply the LQ optimal controller on cable-driven parallel robots. To employ the optimal control theory, the static and dynamic modeling of a 3-DOF planar cable-driven parallel robot (Feriba-3) is developed. The synthesis of the LQ optimal control is described, and the significant experimental results are presented and discussed.

  9. Stabilizing a multimachine power system via decentralized feedback linearizing excitation control

    SciTech Connect

    Chapman, J.W.; Ilic, M.D. ); King, C.A. ); Eng, L. ); Kaufman, H. )

    1993-08-01

    A new controller for the generator excitation system is described that uses a combination of feedback linearization and the observation decoupled state space. This creates a controller that can be realistically implemented using only local measurements, and whose performance is consistent with respect to changes in network configuration, loading and power transfer conditions. The control differs in this respect from linear constant-gain controllers such as power system stabilizers, whose characteristics can vary significantly with changes in operating conditions. The design is well-suited to a multimachine setting, in that it is not based on an infinite-bus approximation. Simulations are performed on a 38-bus reduced model of the Northeast Power Coordinating Council system and benchmarked against simulations in which automatic voltage regulators with power system stabilizers are substituted in place of the nonlinear controls.

  10. Control law design to meet constraints using SYNPAC-synthesis package for active controls

    NASA Technical Reports Server (NTRS)

    Adams, W. M., Jr.; Tiffany, S. H.

    1982-01-01

    Major features of SYNPAC (Synthesis Package for Active Controls) are described. SYNPAC employs constrained optimization techniques which allow explicit inclusion of design criteria (constraints) in the control law design process. Interrelationships are indicated between this constrained optimization approach, classical and linear quadratic Gaussian design techniques. Results are presented that were obtained by applying SYNPAC to the design of a combined stability augmentation/gust load alleviation control law for the DAST ARW-2.

  11. Worst-case analysis and linear parameter-varying gain-scheduled control of aerospace systems

    NASA Astrophysics Data System (ADS)

    Shin, Jong-Yeob

    In this thesis, two main subjects are discussed. The first is a worst-case performance analysis, the second is a linear parameter varying (LPV) synthesis using a blending approach. On the first subject, a linear fractional transformation (LFT) model of the linearized X-38 Crew Return Vehicle (CRV) has been developed to facilitate the analysis of its flight control system. The LFT model represents uncertainty in nine aerodynamic stability derivatives at a given flight condition. The X-38 LFT model, combined with a controller at specific flight conditions, is used to determine the aerodynamic coefficients within a predefined set that result in the worst-case performance and worst-case gain/phase margins of the closed-loop system. LPV and mu controllers are synthesized for the X-38 CRV lateral-directional axes over the candidate flight envelope and compared with the baseline gain-scheduled classical control design. Worst-case analysis of the LPV and mu controllers are compared with the baseline gain-scheduled classical control design. Analysis and time simulations show that the LPV controller achieves significant performance and robustness improvements when compared to a linear mu controller and the baseline gain-scheduled controller. On the second subject, a quasi-LPV model of the F-16 longitudinal axes was developed using three methods: Jacobian linearization, state transformation and function substitution. Time simulations of quasi-LPV models show that the quasi-LPV models developed using state transformation and function substitution accurately represent the nonlinear dynamics of the F-16 longitudinal axes. In designing an LPV controller for the F-16 longitudinal axes, the function substitution quasi-LPV models are used since these quasi-LPV models can represent the nonlinear dynamics at non-trim points. Two LPV controllers are synthesized for the F-16 longitudinal axes for two separated flight envelopes: low and high altitude regions. Blending these controllers

  12. A Comparison of Multivariable Control Design Techniques for a Turbofan Engine Control

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay; Watts, Stephen R.

    1995-01-01

    This paper compares two previously published design procedures for two different multivariable control design techniques for application to a linear engine model of a jet engine. The two multivariable control design techniques compared were the Linear Quadratic Gaussian with Loop Transfer Recovery (LQG/LTR) and the H-Infinity synthesis. The two control design techniques were used with specific previously published design procedures to synthesize controls which would provide equivalent closed loop frequency response for the primary control loops while assuring adequate loop decoupling. The resulting controllers were then reduced in order to minimize the programming and data storage requirements for a typical implementation. The reduced order linear controllers designed by each method were combined with the linear model of an advanced turbofan engine and the system performance was evaluated for the continuous linear system. Included in the performance analysis are the resulting frequency and transient responses as well as actuator usage and rate capability for each design method. The controls were also analyzed for robustness with respect to structured uncertainties in the unmodeled system dynamics. The two controls were then compared for performance capability and hardware implementation issues.

  13. Rear-heavy car control by adaptive linear optimal preview

    NASA Astrophysics Data System (ADS)

    Thommyppillai, M.; Evangelou, S.; Sharp, R. S.

    2010-05-01

    Adaptive linear optimal preview control theory is applied to a simple but non-linear car model, with parameters chosen to make the rear axle saturate first in any quasi-steady manoeuvre. The tendency of such a car to spin above a critical speed, which is a function of its running state, causes control to be especially difficult when operating near to the limit of the rear-axle force system. As in previous work, trim states and optimal gains are computed off-line for a given speed and a full range of lateral accelerations. Gain-scheduling with interpolation over trims and gain sets is used to keep the control appropriate to the running conditions, as they change. Simulations of manoeuvres are used to test and demonstrate the system capability. It is shown that utilising the rear-axle lateral-slip ratio as the scheduling variable, in the case of this rear-heavy car, gives excellent tracking, even when the tyres are run close to full saturation. It is implied by this and previous work that the general case can be treated effectively by monitoring both front- and rear-axle slips and scheduling on a worst-case basis.

  14. Ground motion optimized orbit feedback design for the future linear collider

    NASA Astrophysics Data System (ADS)

    Pfingstner, J.; Snuverink, J.; Schulte, D.

    2013-03-01

    The future linear collider has strong stability requirements on the position of the beam along the accelerator and at the interaction point (IP). The beam position will be sensitive to dynamic imperfections in particular ground motion. A number of mitigation techniques have been proposed to be deployed in parallel: active and passive quadrupole stabilization and positioning as well as orbit and IP feedback. This paper presents a novel design of the orbit controller in the main linac and beam delivery system. One global feedback controller is proposed based on an SVD-controller (Singular Value Decomposition) that decouples the large multi-input multi-output system into many independent single-input single-output systems. A semi-automatic procedure is proposed for the controller design of the independent systems by exploiting numerical models of ground motion and measurement noise to minimize a target parameter, e.g. luminosity loss. The novel design for the orbit controller is studied for the case of the Compact Linear Collider (CLIC) in integrated simulations, which include all proposed mitigation methods. The impact of the ground motion on the luminosity performance is examined in detail. It is shown that with the proposed orbit controller the tight luminosity budget for ground motion effects is fulfilled and accordingly, an essential feasibility issue of CLIC has been addressed. The orbit controller design is robust and allows for a relaxed BPM resolution, while still maintaining a strong ground motion suppression performance compared to traditional methods. We believe that the described method could easily be applied to other accelerators and light sources.

  15. Observer-based robust-H-infinity control laws for uncertain linear systems

    NASA Technical Reports Server (NTRS)

    Shieh, Leang S.; Sunkel, J. W.; Wang, Yeih J.

    1991-01-01

    Based on the algebraic Riccati equation approach, this paper presents a simple and flexible method for designing observer-based robust-H-infinity control laws for linear systems with structured parameter uncertainty. The observer-based robust-H-infinity output-feedback control law, obtained by solving three augmented algebraic Riccati equations, provides both robust stability and disturbance attenuation with H-infinity-norm bound for the closed-loop uncertain linear system. Several tuning parameters are embedded into the augmented algebraic Riccati equations so that flexibility in finding the symmetric positive-definite solutions (and hence, the robust-H-infinity control laws) is significantly increased. A benchmark problem associated with a mass-spring system, which approximates the dynamics of a flexible structure, is used to illustrate the design methodologies, and simulation results are presented.

  16. Structural control design based on reduced-order observer

    NASA Technical Reports Server (NTRS)

    Su, Tzu-Jeng; Craig, Roy R., Jr.

    1991-01-01

    An observer-based structural control design method is proposed in this paper. The method is a semi-inverse design procedure in that the control law is not designed before the observer system, but is a result that comes from the observer design. However, the observer design is not completely independent of the control design either, but seeks to yield a control law that is close to a prescribed control law. First, the observer design problem is considered as the reconstruction of a linear function of the state vector. The linear state function to be reconstructed is the given control law. Then, based on the derivation for linear state function observers, the observer design is formulated as a parameter optimization problem. The optimization objective is to generate a matrix that is close to the optimal feedback gain matrix. Based on that matrix, the form of the observer and a new control law can be determined. The semi-inverse design procedure can yield a reduced-order observer with dimension considerably smaller than that of the system. Two examples are used to demonstrate the proposed design procedure.

  17. Field testing of linear individual pitch control on the two-bladed controls advanced research turbine

    SciTech Connect

    van Solingen, Edwin; Fleming, Paul A.; Scholbrock, Andrew; van Wingerden, Jan-Willem

    2015-04-17

    This paper presents the results of field tests using linear individual pitch control (LIPC) on the two-bladed Controls Advanced Research Turbine 2 (CART2) at the National Renewable Energy Laboratory (NREL). LIPC has recently been introduced as an alternative to the conventional individual pitch control (IPC) strategy for two-bladed wind turbines. The main advantage of LIPC over conventional IPC is that it requires, at most, only two feedback loops to potentially reduce the periodic blade loads. In previous work, LIPC was designed to implement blade pitch angles at a fixed frequency (e.g., the once-per-revolution (1P) frequency), which made it only applicable in above-rated wind turbine operating conditions. In this study, LIPC is extended to below-rated operating conditions by gain scheduling the controller on the rotor speed. With this extension, LIPC and conventional IPC are successfully applied to the NREL CART2 wind turbine. Lastly, the field-test results obtained during the measurement campaign indicate that LIPC significantly reduces the wind turbine loads for both below-rated and above-rated operation.

  18. Field testing of linear individual pitch control on the two-bladed controls advanced research turbine

    DOE PAGESBeta

    van Solingen, Edwin; Fleming, Paul A.; Scholbrock, Andrew; van Wingerden, Jan-Willem

    2015-04-17

    This paper presents the results of field tests using linear individual pitch control (LIPC) on the two-bladed Controls Advanced Research Turbine 2 (CART2) at the National Renewable Energy Laboratory (NREL). LIPC has recently been introduced as an alternative to the conventional individual pitch control (IPC) strategy for two-bladed wind turbines. The main advantage of LIPC over conventional IPC is that it requires, at most, only two feedback loops to potentially reduce the periodic blade loads. In previous work, LIPC was designed to implement blade pitch angles at a fixed frequency (e.g., the once-per-revolution (1P) frequency), which made it only applicablemore » in above-rated wind turbine operating conditions. In this study, LIPC is extended to below-rated operating conditions by gain scheduling the controller on the rotor speed. With this extension, LIPC and conventional IPC are successfully applied to the NREL CART2 wind turbine. Lastly, the field-test results obtained during the measurement campaign indicate that LIPC significantly reduces the wind turbine loads for both below-rated and above-rated operation.« less

  19. Modelling human balance using switched systems with linear feedback control.

    PubMed

    Kowalczyk, Piotr; Glendinning, Paul; Brown, Martin; Medrano-Cerda, Gustavo; Dallali, Houman; Shapiro, Jonathan

    2012-02-01

    We are interested in understanding the mechanisms behind and the character of the sway motion of healthy human subjects during quiet standing. We assume that a human body can be modelled as a single-link inverted pendulum, and the balance is achieved using linear feedback control. Using these assumptions, we derive a switched model which we then investigate. Stable periodic motions (limit cycles) about an upright position are found. The existence of these limit cycles is studied as a function of system parameters. The exploration of the parameter space leads to the detection of multi-stability and homoclinic bifurcations. PMID:21697168

  20. Application of Design Methodologies for Feedback Compensation Associated with Linear Systems

    NASA Technical Reports Server (NTRS)

    Smith, Monty J.

    1996-01-01

    The work that follows is concerned with the application of design methodologies for feedback compensation associated with linear systems. In general, the intent is to provide a well behaved closed loop system in terms of stability and robustness (internal signals remain bounded with a certain amount of uncertainty) and simultaneously achieve an acceptable level of performance. The approach here has been to convert the closed loop system and control synthesis problem into the interpolation setting. The interpolation formulation then serves as our mathematical representation of the design process. Lifting techniques have been used to solve the corresponding interpolation and control synthesis problems. Several applications using this multiobjective design methodology have been included to show the effectiveness of these techniques. In particular, the mixed H 2-H performance criteria with algorithm has been used on several examples including an F-18 HARV (High Angle of Attack Research Vehicle) for sensitivity performance.

  1. Decoupled control analysis of a large flexible space antenna with linear quadratic regulator comparisons

    NASA Technical Reports Server (NTRS)

    Young, J. W.; Hamer, H. A.; Johnson, K. G.

    1984-01-01

    A decoupled-control analysis was performed for a large flexible space antenna. Control involved commanding changes in the rigid-body modes or nulling disturbances in the flexible modes. The study provides parametric-type data which could be useful in the final design of a large space antenna control system. Results are presented to illustrate the effect on control requirements of (1) the number of modes controlled; (2) the number, type, and location of control actuators; and (3) variations in the closed-loop dynamics of the control system. Comparisons are given between the decoupled-control results and those obtained by using a linear quadratic regulator approach. Time history responses are presented to illustrate the effects of the control procedures.

  2. Time-delay control of a magnetic levitated linear positioning system

    NASA Technical Reports Server (NTRS)

    Tarn, J. H.; Juang, K. Y.; Lin, C. E.

    1994-01-01

    In this paper, a high accuracy linear positioning system with a linear force actuator and magnetic levitation is proposed. By locating a permanently magnetized rod inside a current-carrying solenoid, the axial force is achieved by the boundary effect of magnet poles and utilized to power the linear motion, while the force for levitation is governed by Ampere's Law supplied with the same solenoid. With the levitation in a radial direction, there is hardly any friction between the rod and the solenoid. The high speed motion can hence be achieved. Besides, the axial force acting on the rod is a smooth function of rod position, so the system can provide nanometer resolution linear positioning to the molecule size. Since the force-position relation is highly nonlinear, and the mathematical model is derived according to some assumptions, such as the equivalent solenoid of the permanently magnetized rod, so there exists unknown dynamics in practical application. Thus 'robustness' is an important issue in controller design. Meanwhile the load effect reacts directly on the servo system without transmission elements, so the capability of 'disturbance rejection; is also required. With the above consideration, a time-delay control scheme is chosen and applied. By comparing the input-output relation and the mathematical model, the time-delay controller calculates an estimation of unmodeled dynamics and disturbances and then composes the desired compensation into the system. Effectiveness of the linear positioning system and control scheme are illustrated with simulation results.

  3. Active disturbance rejection based trajectory linearization control for hypersonic reentry vehicle with bounded uncertainties.

    PubMed

    Shao, Xingling; Wang, Honglun

    2015-01-01

    This paper investigates a novel compound control scheme combined with the advantages of trajectory linearization control (TLC) and alternative active disturbance rejection control (ADRC) for hypersonic reentry vehicle (HRV) attitude tracking system with bounded uncertainties. Firstly, in order to overcome actuator saturation problem, nonlinear tracking differentiator (TD) is applied in the attitude loop to achieve fewer control consumption. Then, linear extended state observers (LESO) are constructed to estimate the uncertainties acting on the LTV system in the attitude and angular rate loop. In addition, feedback linearization (FL) based controllers are designed using estimates of uncertainties generated by LESO in each loop, which enable the tracking error for closed-loop system in the presence of large uncertainties to converge to the residual set of the origin asymptotically. Finally, the compound controllers are derived by integrating with the nominal controller for open-loop nonlinear system and FL based controller. Also, comparisons and simulation results are presented to illustrate the effectiveness of the control strategy. PMID:25082266

  4. Modeling and design of a normal stress electromagnetic actuator with linear characteristics for fast steering mirror

    NASA Astrophysics Data System (ADS)

    Long, Yongjun; Wei, Xiaohui; Wang, Chunlei; Dai, Xin; Wang, Shigang

    2014-05-01

    A new rotary normal stress electromagnetic actuator for fast steering mirror (FSM) is presented. The study includes concept design, actuating torque modeling, actuator design, and validation with numerical simulation. To achieve an FSM with compact structure and high bandwidth, the actuator is designed with a cross armature magnetic topology. By introducing bias flux generated by four permanent magnets (PMs), the actuator has high-force density similar to a solenoid but also has essentially linear characteristics similar to a voice coil actuator, leading to a simply control algorithm. The actuating torque output is a linear function of both driving current and rotation angle and is formulated with equivalent magnetic circuit method. To improve modeling accuracy, both the PM flux and coil flux leakages are taken into consideration through finite element simulation. Based on the established actuator model, optimal design of the actuator is presented to meet the requirement of our FSM. Numerical simulation is then presented to validate the concept design, established actuator model, and designed actuator. It is shown that the calculated results are in a good agreement with the simulation results.

  5. Evolutionary Design of Controlled Structures

    NASA Technical Reports Server (NTRS)

    Masters, Brett P.; Crawley, Edward F.

    1997-01-01

    Basic physical concepts of structural delay and transmissibility are provided for simple rod and beam structures. Investigations show the sensitivity of these concepts to differing controlled-structures variables, and to rational system modeling effects. An evolutionary controls/structures design method is developed. The basis of the method is an accurate model formulation for dynamic compensator optimization and Genetic Algorithm based updating of sensor/actuator placement and structural attributes. One and three dimensional examples from the literature are used to validate the method. Frequency domain interpretation of these controlled structure systems provide physical insight as to how the objective is optimized and consequently what is important in the objective. Several disturbance rejection type controls-structures systems are optimized for a stellar interferometer spacecraft application. The interferometric designs include closed loop tracking optics. Designs are generated for differing structural aspect ratios, differing disturbance attributes, and differing sensor selections. Physical limitations in achieving performance are given in terms of average system transfer function gains and system phase loss. A spacecraft-like optical interferometry system is investigated experimentally over several different optimized controlled structures configurations. Configurations represent common and not-so-common approaches to mitigating pathlength errors induced by disturbances of two different spectra. Results show that an optimized controlled structure for low frequency broadband disturbances achieves modest performance gains over a mass equivalent regular structure, while an optimized structure for high frequency narrow band disturbances is four times better in terms of root-mean-square pathlength. These results are predictable given the nature of the physical system and the optimization design variables. Fundamental limits on controlled performance are discussed

  6. Decentralized control of the COFS-I Mast using linear dc motors

    NASA Technical Reports Server (NTRS)

    Lindner, Douglas K.; Celano, Tom; Ide, Eric

    1989-01-01

    Consideration is given to a decentralized control design for vibration suppression in the COFS-I Mast using linear dc motors for actuators. The decentralized control design is based results from power systems using root locus techniques that are not well known. The approach is effective because the loop gain is low due to low actuator authority. The frequency-dependent nonlinearities of the actuator are taken into account. Because of the tendency of the transients to saturate the the stroke length of the actuator, its effectiveness is limited.

  7. Aerodynamic design via control theory

    NASA Technical Reports Server (NTRS)

    Jameson, Antony

    1988-01-01

    The question of how to modify aerodynamic design in order to improve performance is addressed. Representative examples are given to demonstrate the computational feasibility of using control theory for such a purpose. An introduction and historical survey of the subject is included.

  8. Cockpit control system conceptual design

    NASA Technical Reports Server (NTRS)

    Meholic, Greg; Brown, Rhonda; Hall, Melissa; Harvey, Robert; Singer, Michael; Tella, Gustavo

    1993-01-01

    The purpose of this project was to provide a means for operating the ailerons, elevator, elevator trim, rudder, nosewheel steering, and brakes in the Triton primary flight trainer. The main design goals under consideration were to illustrate system and subsystem integration, control function ability, and producibility. Weight and maintenance goals were addressed.

  9. International Linear Collider Technical Design Report (Volumes 1 through 4)

    SciTech Connect

    Harrison M.

    2013-03-27

    The design report consists of four volumes: Volume 1, Executive Summary; Volume 2, Physics; Volume 3, Accelerator (Part I, R and D in the Technical Design Phase, and Part II, Baseline Design); and Volume 4, Detectors.

  10. A fail-safe, bi-linear liquid spring controllable magnetorheological fluid damper

    NASA Astrophysics Data System (ADS)

    Maus, Nicholas; Gordaninejad, Faramarz

    2014-04-01

    The goal of this study is to demonstrate the feasibility of a fail-safe, bi-linear spring controllable magnetorheological fluid damper (BLS-CMRD). This research introduces a new device with independently pre-set spring forces in compression and rebound combined with a controllable MR fluid damping. In this work, a BLS-CMRD is designed, fabricated, tested and evaluated. Experiments are performed for sinusoidal displacements in the quasistatic and dynamic ranges to evaluate the performance of the BLS-CMRD under different magnetic fields. The experimental results prove that the device reacts with significantly different spring forces from the compression to rebound regions, while providing passive viscous and controllable MR fluid damping. With this first of a kind system it is demonstrated that the utility of a bi-linear liquid spring can be combined with the reliability of passive viscous fluid damping and the capabilities of controllable MR fluid damping into one compact and versatile device.