Science.gov

Sample records for linear evolution equations

  1. Fast wavelet based algorithms for linear evolution equations

    NASA Technical Reports Server (NTRS)

    Engquist, Bjorn; Osher, Stanley; Zhong, Sifen

    1992-01-01

    A class was devised of fast wavelet based algorithms for linear evolution equations whose coefficients are time independent. The method draws on the work of Beylkin, Coifman, and Rokhlin which they applied to general Calderon-Zygmund type integral operators. A modification of their idea is applied to linear hyperbolic and parabolic equations, with spatially varying coefficients. A significant speedup over standard methods is obtained when applied to hyperbolic equations in one space dimension and parabolic equations in multidimensions.

  2. Evolution equation for non-linear cosmological perturbations

    SciTech Connect

    Brustein, Ram; Riotto, Antonio E-mail: Antonio.Riotto@cern.ch

    2011-11-01

    We present a novel approach, based entirely on the gravitational potential, for studying the evolution of non-linear cosmological matter perturbations. Starting from the perturbed Einstein equations, we integrate out the non-relativistic degrees of freedom of the cosmic fluid and obtain a single closed equation for the gravitational potential. We then verify the validity of the new equation by comparing its approximate solutions to known results in the theory of non-linear cosmological perturbations. First, we show explicitly that the perturbative solution of our equation matches the standard perturbative solutions. Next, using the mean field approximation to the equation, we show that its solution reproduces in a simple way the exponential suppression of the non-linear propagator on small scales due to the velocity dispersion. Our approach can therefore reproduce the main features of the renormalized perturbation theory and (time)-renormalization group approaches to the study of non-linear cosmological perturbations, with some possibly important differences. We conclude by a preliminary discussion of the nature of the full solutions of the equation and their significance.

  3. Molecular representation of molar domain (volume), evolution equations, and linear constitutive relations for volume transport.

    PubMed

    Eu, Byung Chan

    2008-09-01

    In the traditional theories of irreversible thermodynamics and fluid mechanics, the specific volume and molar volume have been interchangeably used for pure fluids, but in this work we show that they should be distinguished from each other and given distinctive statistical mechanical representations. In this paper, we present a general formula for the statistical mechanical representation of molecular domain (volume or space) by using the Voronoi volume and its mean value that may be regarded as molar domain (volume) and also the statistical mechanical representation of volume flux. By using their statistical mechanical formulas, the evolution equations of volume transport are derived from the generalized Boltzmann equation of fluids. Approximate solutions of the evolution equations of volume transport provides kinetic theory formulas for the molecular domain, the constitutive equations for molar domain (volume) and volume flux, and the dissipation of energy associated with volume transport. Together with the constitutive equation for the mean velocity of the fluid obtained in a previous paper, the evolution equations for volume transport not only shed a fresh light on, and insight into, irreversible phenomena in fluids but also can be applied to study fluid flow problems in a manner hitherto unavailable in fluid dynamics and irreversible thermodynamics. Their roles in the generalized hydrodynamics will be considered in the sequel. PMID:19044872

  4. Linear Equations: Equivalence = Success

    ERIC Educational Resources Information Center

    Baratta, Wendy

    2011-01-01

    The ability to solve linear equations sets students up for success in many areas of mathematics and other disciplines requiring formula manipulations. There are many reasons why solving linear equations is a challenging skill for students to master. One major barrier for students is the inability to interpret the equals sign as anything other than…

  5. Overdetermined Systems of Linear Equations.

    ERIC Educational Resources Information Center

    Williams, Gareth

    1990-01-01

    Explored is an overdetermined system of linear equations to find an appropriate least squares solution. A geometrical interpretation of this solution is given. Included is a least squares point discussion. (KR)

  6. Mode decomposition evolution equations

    PubMed Central

    Wang, Yang; Wei, Guo-Wei; Yang, Siyang

    2011-01-01

    Partial differential equation (PDE) based methods have become some of the most powerful tools for exploring the fundamental problems in signal processing, image processing, computer vision, machine vision and artificial intelligence in the past two decades. The advantages of PDE based approaches are that they can be made fully automatic, robust for the analysis of images, videos and high dimensional data. A fundamental question is whether one can use PDEs to perform all the basic tasks in the image processing. If one can devise PDEs to perform full-scale mode decomposition for signals and images, the modes thus generated would be very useful for secondary processing to meet the needs in various types of signal and image processing. Despite of great progress in PDE based image analysis in the past two decades, the basic roles of PDEs in image/signal analysis are only limited to PDE based low-pass filters, and their applications to noise removal, edge detection, segmentation, etc. At present, it is not clear how to construct PDE based methods for full-scale mode decomposition. The above-mentioned limitation of most current PDE based image/signal processing methods is addressed in the proposed work, in which we introduce a family of mode decomposition evolution equations (MoDEEs) for a vast variety of applications. The MoDEEs are constructed as an extension of a PDE based high-pass filter (Europhys. Lett., 59(6): 814, 2002) by using arbitrarily high order PDE based low-pass filters introduced by Wei (IEEE Signal Process. Lett., 6(7): 165, 1999). The use of arbitrarily high order PDEs is essential to the frequency localization in the mode decomposition. Similar to the wavelet transform, the present MoDEEs have a controllable time-frequency localization and allow a perfect reconstruction of the original function. Therefore, the MoDEE operation is also called a PDE transform. However, modes generated from the present approach are in the spatial or time domain and can be

  7. Linear superposition in nonlinear equations.

    PubMed

    Khare, Avinash; Sukhatme, Uday

    2002-06-17

    Several nonlinear systems such as the Korteweg-de Vries (KdV) and modified KdV equations and lambda phi(4) theory possess periodic traveling wave solutions involving Jacobi elliptic functions. We show that suitable linear combinations of these known periodic solutions yield many additional solutions with different periods and velocities. This linear superposition procedure works by virtue of some remarkable new identities involving elliptic functions. PMID:12059300

  8. Supersymmetric fifth order evolution equations

    SciTech Connect

    Tian, K.; Liu, Q. P.

    2010-03-08

    This paper considers supersymmetric fifth order evolution equations. Within the framework of symmetry approach, we give a list containing six equations, which are (potentially) integrable systems. Among these equations, the most interesting ones include a supersymmetric Sawada-Kotera equation and a novel supersymmetric fifth order KdV equation. For the latter, we supply some properties such as a Hamiltonian structures and a possible recursion operator.

  9. Equating Scores from Adaptive to Linear Tests

    ERIC Educational Resources Information Center

    van der Linden, Wim J.

    2006-01-01

    Two local methods for observed-score equating are applied to the problem of equating an adaptive test to a linear test. In an empirical study, the methods were evaluated against a method based on the test characteristic function (TCF) of the linear test and traditional equipercentile equating applied to the ability estimates on the adaptive test…

  10. Successfully Transitioning to Linear Equations

    ERIC Educational Resources Information Center

    Colton, Connie; Smith, Wendy M.

    2014-01-01

    The Common Core State Standards for Mathematics (CCSSI 2010) asks students in as early as fourth grade to solve word problems using equations with variables. Equations studied at this level generate a single solution, such as the equation x + 10 = 25. For students in fifth grade, the Common Core standard for algebraic thinking expects them to…

  11. Lie algebras and linear differential equations.

    NASA Technical Reports Server (NTRS)

    Brockett, R. W.; Rahimi, A.

    1972-01-01

    Certain symmetry properties possessed by the solutions of linear differential equations are examined. For this purpose, some basic ideas from the theory of finite dimensional linear systems are used together with the work of Wei and Norman on the use of Lie algebraic methods in differential equation theory.

  12. Evolutions equations in computational anatomy.

    PubMed

    Younes, Laurent; Arrate, Felipe; Miller, Michael I

    2009-03-01

    One of the main purposes in computational anatomy is the measurement and statistical study of anatomical variations in organs, notably in the brain or the heart. Over the last decade, our group has progressively developed several approaches for this problem, all related to the Riemannian geometry of groups of diffeomorphisms and the shape spaces on which these groups act. Several important shape evolution equations that are now used routinely in applications have emerged over time. Our goal in this paper is to provide an overview of these equations, placing them in their theoretical context, and giving examples of applications in which they can be used. We introduce the required theoretical background before discussing several classes of equations of increasingly complexity. These equations include energy minimizing evolutions deriving from Riemannian gradient descent, geodesics, parallel transport and Jacobi fields. PMID:19059343

  13. Transformation matrices between non-linear and linear differential equations

    NASA Technical Reports Server (NTRS)

    Sartain, R. L.

    1983-01-01

    In the linearization of systems of non-linear differential equations, those systems which can be exactly transformed into the second order linear differential equation Y"-AY'-BY=0 where Y, Y', and Y" are n x 1 vectors and A and B are constant n x n matrices of real numbers were considered. The 2n x 2n matrix was used to transform the above matrix equation into the first order matrix equation X' = MX. Specially the matrix M and the conditions which will diagonalize or triangularize M were studied. Transformation matrices P and P sub -1 were used to accomplish this diagonalization or triangularization to return to the solution of the second order matrix differential equation system from the first order system.

  14. Congeneric Models and Levine's Linear Equating Procedures.

    ERIC Educational Resources Information Center

    Brennan, Robert L.

    In 1955, R. Levine introduced two linear equating procedures for the common-item non-equivalent populations design. His procedures make the same assumptions about true scores; they differ in terms of the nature of the equating function used. In this paper, two parameterizations of a classical congeneric model are introduced to model the variables…

  15. Symbolic Solution of Linear Differential Equations

    NASA Technical Reports Server (NTRS)

    Feinberg, R. B.; Grooms, R. G.

    1981-01-01

    An algorithm for solving linear constant-coefficient ordinary differential equations is presented. The computational complexity of the algorithm is discussed and its implementation in the FORMAC system is described. A comparison is made between the algorithm and some classical algorithms for solving differential equations.

  16. Solution Methods for Certain Evolution Equations

    NASA Astrophysics Data System (ADS)

    Vega-Guzman, Jose Manuel

    Solution methods for certain linear and nonlinear evolution equations are presented in this dissertation. Emphasis is placed mainly on the analytical treatment of nonautonomous differential equations, which are challenging to solve despite the existent numerical and symbolic computational software programs available. Ideas from the transformation theory are adopted allowing one to solve the problems under consideration from a non-traditional perspective. First, the Cauchy initial value problem is considered for a class of nonautonomous and inhomogeneous linear diffusion-type equation on the entire real line. Explicit transformations are used to reduce the equations under study to their corresponding standard forms emphasizing on natural relations with certain Riccati(and/or Ermakov)-type systems. These relations give solvability results for the Cauchy problem of the parabolic equation considered. The superposition principle allows to solve formally this problem from an unconventional point of view. An eigenfunction expansion approach is also considered for this general evolution equation. Examples considered to corroborate the efficacy of the proposed solution methods include the Fokker-Planck equation, the Black-Scholes model and the one-factor Gaussian Hull-White model. The results obtained in the first part are used to solve the Cauchy initial value problem for certain inhomogeneous Burgers-type equation. The connection between linear (the Diffusion-type) and nonlinear (Burgers-type) parabolic equations is stress in order to establish a strong commutative relation. Traveling wave solutions of a nonautonomous Burgers equation are also investigated. Finally, it is constructed explicitly the minimum-uncertainty squeezed states for quantum harmonic oscillators. They are derived by the action of corresponding maximal kinematical invariance group on the standard ground state solution. It is shown that the product of the variances attains the required minimum value

  17. Systems of Linear Equations on a Spreadsheet.

    ERIC Educational Resources Information Center

    Bosch, William W.; Strickland, Jeff

    1998-01-01

    The Optimizer in Quattro Pro and the Solver in Excel software programs make solving linear and nonlinear optimization problems feasible for business mathematics students. Proposes ways in which the Optimizer or Solver can be coaxed into solving systems of linear equations. (ASK)

  18. Simplified Linear Equation Solvers users manual

    SciTech Connect

    Gropp, W. ); Smith, B. )

    1993-02-01

    The solution of large sparse systems of linear equations is at the heart of many algorithms in scientific computing. The SLES package is a set of easy-to-use yet powerful and extensible routines for solving large sparse linear systems. The design of the package allows new techniques to be used in existing applications without any source code changes in the applications.

  19. Evolution equation for quantum coherence

    NASA Astrophysics Data System (ADS)

    Hu, Ming-Liang; Fan, Heng

    2016-07-01

    The estimation of the decoherence process of an open quantum system is of both theoretical significance and experimental appealing. Practically, the decoherence can be easily estimated if the coherence evolution satisfies some simple relations. We introduce a framework for studying evolution equation of coherence. Based on this framework, we prove a simple factorization relation (FR) for the l1 norm of coherence, and identified the sets of quantum channels for which this FR holds. By using this FR, we further determine condition on the transformation matrix of the quantum channel which can support permanently freezing of the l1 norm of coherence. We finally reveal the universality of this FR by showing that it holds for many other related coherence and quantum correlation measures.

  20. Evolution equation for quantum coherence

    PubMed Central

    Hu, Ming-Liang; Fan, Heng

    2016-01-01

    The estimation of the decoherence process of an open quantum system is of both theoretical significance and experimental appealing. Practically, the decoherence can be easily estimated if the coherence evolution satisfies some simple relations. We introduce a framework for studying evolution equation of coherence. Based on this framework, we prove a simple factorization relation (FR) for the l1 norm of coherence, and identified the sets of quantum channels for which this FR holds. By using this FR, we further determine condition on the transformation matrix of the quantum channel which can support permanently freezing of the l1 norm of coherence. We finally reveal the universality of this FR by showing that it holds for many other related coherence and quantum correlation measures. PMID:27382933

  1. Evolution equation for quantum coherence.

    PubMed

    Hu, Ming-Liang; Fan, Heng

    2016-01-01

    The estimation of the decoherence process of an open quantum system is of both theoretical significance and experimental appealing. Practically, the decoherence can be easily estimated if the coherence evolution satisfies some simple relations. We introduce a framework for studying evolution equation of coherence. Based on this framework, we prove a simple factorization relation (FR) for the l1 norm of coherence, and identified the sets of quantum channels for which this FR holds. By using this FR, we further determine condition on the transformation matrix of the quantum channel which can support permanently freezing of the l1 norm of coherence. We finally reveal the universality of this FR by showing that it holds for many other related coherence and quantum correlation measures. PMID:27382933

  2. Observed Score Linear Equating with Covariates

    ERIC Educational Resources Information Center

    Branberg, Kenny; Wiberg, Marie

    2011-01-01

    This paper examined observed score linear equating in two different data collection designs, the equivalent groups design and the nonequivalent groups design, when information from covariates (i.e., background variables correlated with the test scores) was included. The main purpose of the study was to examine the effect (i.e., bias, variance, and…

  3. From Arithmetic Sequences to Linear Equations

    ERIC Educational Resources Information Center

    Matsuura, Ryota; Harless, Patrick

    2012-01-01

    The first part of the article focuses on deriving the essential properties of arithmetic sequences by appealing to students' sense making and reasoning. The second part describes how to guide students to translate their knowledge of arithmetic sequences into an understanding of linear equations. Ryota Matsuura originally wrote these lessons for…

  4. Procedural Embodiment and Magic in Linear Equations

    ERIC Educational Resources Information Center

    de Lima, Rosana Nogueira; Tall, David

    2008-01-01

    How do students think about algebra? Here we consider a theoretical framework which builds from natural human functioning in terms of embodiment--perceiving the world, acting on it and reflecting on the effect of the actions--to shift to the use of symbolism to solve linear equations. In the main, the students involved in this study do not…

  5. Synthesizing Strategies Creatively: Solving Linear Equations

    ERIC Educational Resources Information Center

    Ponce, Gregorio A.; Tuba, Imre

    2015-01-01

    New strategies can ignite teachers' imagination to create new lessons or adapt lessons created by others. In this article, the authors present the experience of an algebra teacher and his students solving linear and literal equations and explain how the use of ideas found in past NCTM journals helped bring this lesson to life. The…

  6. The non-linear MSW equation

    NASA Astrophysics Data System (ADS)

    Thomson, Mark J.; McKellar, Bruce H. J.

    1991-04-01

    A simple, non-linear generalization of the MSW equation is presented and its analytic solution is outlined. The orbits of the polarization vector are shown to be periodic, and to lie on a sphere. Their non-trivial flow patterns fall into two topological categories, the more complex of which can become chaotic if perturbed.

  7. Stochastic thermodynamics for linear kinetic equations

    NASA Astrophysics Data System (ADS)

    Van den Broeck, C.; Toral, R.

    2015-07-01

    Stochastic thermodynamics is formulated for variables that are odd under time reversal. The invariance under spatial rotation of the collision rates due to the isotropy of the heat bath is shown to be a crucial ingredient. An alternative detailed fluctuation theorem is derived, expressed solely in terms of forward statistics. It is illustrated for a linear kinetic equation with kangaroo rates.

  8. Hypocoercivity of linear degenerately dissipative kinetic equations

    NASA Astrophysics Data System (ADS)

    Duan, Renjun

    2011-08-01

    In this paper we develop a general approach of studying the hypocoercivity for a class of linear kinetic equations with both transport and degenerately dissipative terms. As concrete examples, the relaxation operator, Fokker-Planck operator and linearized Boltzmann operator are considered when the spatial domain takes the whole space or torus and when there is a confining force or not. The key part of the developed approach is to construct some equivalent temporal energy functionals for obtaining time rates of the solution trending towards equilibrium in some Hilbert spaces. The result in the case of the linear Boltzmann equation with confining forces is new. The proof mainly makes use of the macro-micro decomposition combined with Kawashima's argument on dissipation of the hyperbolic-parabolic system. At the end, a Korn-type inequality with probability measure is provided to deal with dissipation of momentum components.

  9. Optical systolic solutions of linear algebraic equations

    NASA Technical Reports Server (NTRS)

    Neuman, C. P.; Casasent, D.

    1984-01-01

    The philosophy and data encoding possible in systolic array optical processor (SAOP) were reviewed. The multitude of linear algebraic operations achievable on this architecture is examined. These operations include such linear algebraic algorithms as: matrix-decomposition, direct and indirect solutions, implicit and explicit methods for partial differential equations, eigenvalue and eigenvector calculations, and singular value decomposition. This architecture can be utilized to realize general techniques for solving matrix linear and nonlinear algebraic equations, least mean square error solutions, FIR filters, and nested-loop algorithms for control engineering applications. The data flow and pipelining of operations, design of parallel algorithms and flexible architectures, application of these architectures to computationally intensive physical problems, error source modeling of optical processors, and matching of the computational needs of practical engineering problems to the capabilities of optical processors are emphasized.

  10. Dynamics of annihilation. I. Linearized Boltzmann equation and hydrodynamics.

    PubMed

    García de Soria, María Isabel; Maynar, Pablo; Schehr, Grégory; Barrat, Alain; Trizac, Emmanuel

    2008-05-01

    We study the nonequilibrium statistical mechanics of a system of freely moving particles, in which binary encounters lead either to an elastic collision or to the disappearance of the pair. Such a system of ballistic annihilation therefore constantly loses particles. The dynamics of perturbations around the free decay regime is investigated using the spectral properties of the linearized Boltzmann operator, which characterize linear excitations on all time scales. The linearized Boltzmann equation is solved in the hydrodynamic limit by a projection technique, which yields the evolution equations for the relevant coarse-grained fields and expressions for the transport coefficients. We finally present the results of molecular dynamics simulations that validate the theoretical predictions. PMID:18643046

  11. Localization of the eigenvalues of linear integral equations with applications to linear ordinary differential equations.

    NASA Technical Reports Server (NTRS)

    Sloss, J. M.; Kranzler, S. K.

    1972-01-01

    The equivalence of a considered integral equation form with an infinite system of linear equations is proved, and the localization of the eigenvalues of the infinite system is expressed. Error estimates are derived, and the problems of finding upper bounds and lower bounds for the eigenvalues are solved simultaneously.

  12. Linear stochastic degenerate Sobolev equations and applications†

    NASA Astrophysics Data System (ADS)

    Liaskos, Konstantinos B.; Pantelous, Athanasios A.; Stratis, Ioannis G.

    2015-12-01

    In this paper, a general class of linear stochastic degenerate Sobolev equations with additive noise is considered. This class of systems is the infinite-dimensional analogue of linear descriptor systems in finite dimensions. Under appropriate assumptions, the mild and strong well-posedness for the initial value problem are studied using elements of the semigroup theory and properties of the stochastic convolution. The final value problem is also examined and it is proved that this is uniquely strongly solvable and the solution is continuously dependent on the final data. Based on the results of the forward and backward problem, the conditions for the exact controllability are investigated for a special but important class of these equations. The abstract results are illustrated by applications in complex media electromagnetics, in the one-dimensional stochastic Dirac equation in the non-relativistic limit and in a potential application in input-output analysis in economics. Dedicated to Professor Grigoris Kalogeropoulos on the occasion of his seventieth birthday.

  13. Double distributions and evolution equations

    SciTech Connect

    A.V. Radyushkin

    1998-05-01

    Applications of perturbative QCD to deeply virtual Compton scattering and hard exclusive meson electroproduction processes require a generalization of usual parton distributions for the case when long-distance information is accumulated in nonforward matrix elements < p{prime} {vert_bar}O(0,z){vert_bar}p > of quark and gluon light-cone operators. In their previous papers the authors used two types of nonperturbative functions parameterizing such matrix elements: double distributions F(x,y;t) and nonforward distribution functions F{sub {zeta}}(X;t). Here they discuss in more detail the double distributions (DD's) and evolution equations which they satisfy. They propose simple models for F(x,y;t=0) DD's with correct spectral and symmetry properties which also satisfy the reduction relations connecting them to the usual parton densities f(x). In this way, they obtain self-consistent models for the {zeta}-dependence of nonforward distributions. They show that, for small {zeta}, one can easily obtain nonforward distributions (in the X > {zeta} region) from the parton densities: F{sub {zeta}} (X;t=0) {approx} f(X{minus}{zeta}/2).

  14. Optimal trajectories based on linear equations

    NASA Technical Reports Server (NTRS)

    Carter, Thomas E.

    1990-01-01

    The Principal results of a recent theory of fuel optimal space trajectories for linear differential equations are presented. Both impulsive and bounded-thrust problems are treated. A new form of the Lawden Primer vector is found that is identical for both problems. For this reason, starting iteratives from the solution of the impulsive problem are highly effective in the solution of the two-point boundary-value problem associated with bounded thrust. These results were applied to the problem of fuel optimal maneuvers of a spacecraft near a satellite in circular orbit using the Clohessy-Wiltshire equations. For this case two-point boundary-value problems were solved using a microcomputer, and optimal trajectory shapes displayed. The results of this theory can also be applied if the satellite is in an arbitrary Keplerian orbit through the use of the Tschauner-Hempel equations. A new form of the solution of these equations has been found that is identical for elliptical, parabolic, and hyperbolic orbits except in the way that a certain integral is evaluated. For elliptical orbits this integral is evaluated through the use of the eccentric anomaly. An analogous evaluation is performed for hyperbolic orbits.

  15. Equations of motion in the linear approximation.

    NASA Technical Reports Server (NTRS)

    Robinson, I.; Robinson, J. R.

    1972-01-01

    Attempt to develop a gauge-invariant theory of the motion of singularities in an n-dimensional Riemannian space. A gauge-invariant theory is developed for a nongeodetic particle represented by a time-like world line in the linearized field theory. The solution of the basic algebraic and differential equations is to be constructed from the source line, the future null cones emanating from it, a scale factor, and nothing else, and the leading term of the solution is the Schwarzschild field. A class of possible solutions is examined, and it is shown that this class contains just one acceptable member - namely, a particle in constant acceleration.

  16. Non-Markovian stochastic evolution equations

    NASA Astrophysics Data System (ADS)

    Costanza, G.

    2014-05-01

    Non-Markovian continuum stochastic and deterministic equations are derived from a set of discrete stochastic and deterministic evolution equations. Examples are given of discrete evolution equations whose updating rules depend on two or more previous time steps. Among them, the continuum stochastic evolution equation of the Newton second law, the stochastic evolution equation of a wave equation, the stochastic evolution equation for the scalar meson field, etc. are obtained as special cases. Extension to systems of evolution equations and other extensions are considered and examples are given. The concept of isomorphism and almost isomorphism are introduced in order to compare the coefficients of the continuum evolution equations of two different smoothing procedures that arise from two different approaches. Usually these discrepancies arising from two sources: On the one hand, the use of different representations of the generalized functions appearing in the models and, on the other hand, the different approaches used to describe the models. These new concept allows to overcome controversies that were appearing during decades in the literature.

  17. Modified non-linear Burgers' equations and cosmic ray shocks

    NASA Technical Reports Server (NTRS)

    Zank, G. P.; Webb, G. M.; Mckenzie, J. F.

    1988-01-01

    A reductive perturbation scheme is used to derive a generalized non-linear Burgers' equation, which includes the effects of dispersion, in the long wavelength regime for the two-fluid hydrodynamical model used to describe cosmic ray acceleration by the first-order Fermi process in astrophysical shocks. The generalized Burger's equation is derived for both relativistic and non-relativistic cosmic ray shocks, and describes the time evolution of weak shocks in the theory of diffusive shock acceleration. The inclusion of dispersive effects modifies the phase velocity of the shock obtained from the lower order non-linear Burger's equation through the introduction of higher order terms from the long wavelength dispersion equation. The travelling wave solution of the generalized Burgers' equation for a single shock shows that larger cosmic ray pressures result in broader shock transitions. The results for relativistic shocks show a steepening of the shock as the shock speed approaches the relativistic cosmic ray sound speed. The dependence of the shock speed on the cosmic ray pressure is also discussed.

  18. On Solving Non-Autonomous Linear Difference Equations with Applications

    ERIC Educational Resources Information Center

    Abu-Saris, Raghib M.

    2006-01-01

    An explicit formula is established for the general solution of the homogeneous non-autonomous linear difference equation. The formula developed is then used to characterize globally periodic linear difference equations with constant coefficients.

  19. Convergence of Galerkin approximations for operator Riccati equations: A nonlinear evolution equation approach

    NASA Technical Reports Server (NTRS)

    Rosen, I. G.

    1988-01-01

    An approximation and convergence theory was developed for Galerkin approximations to infinite dimensional operator Riccati differential equations formulated in the space of Hilbert-Schmidt operators on a separable Hilbert space. The Riccati equation was treated as a nonlinear evolution equation with dynamics described by a nonlinear monotone perturbation of a strongly coercive linear operator. A generic approximation result was proven for quasi-autonomous nonlinear evolution system involving accretive operators which was then used to demonstrate the Hilbert-Schmidt norm convergence of Galerkin approximations to the solution of the Riccati equation. The application of the results was illustrated in the context of a linear quadratic optimal control problem for a one dimensional heat equation.

  20. On quintic equations with a linear window

    NASA Astrophysics Data System (ADS)

    Rosenau, Philip

    2016-01-01

    We study a quintic dispersive equation ut =[ au2 + b (uuxx + β ux2) + c (uu4x + 2q1uxu3x +q2uxx2) ]x and show that if β =q1 = -q2, it may be cast into vt = [ vLω u ]x, where v =uω, ω = 2 β + 1 and Lω is a fourth order linear operator. This enables to construct traveling patterns via superposition of solutions. A plethora of bell-shaped, multi-humped and asymmetric compacton, is found. Their interaction ranges from being almost elastic to a noisy one, including fusion of bell-shaped compactons and anti-compactons into robust asymmetric structures. A stationary, zero-mass, doublet-like compacton is found to be an attractor of topologically similar, zero-mass, excitations.

  1. Dielectric polarization evolution equations and relaxation times

    SciTech Connect

    Baker-Jarvis, James; Riddle, Bill; Janezic, Michael D.

    2007-05-15

    In this paper we develop dielectric polarization evolution equations, and the resulting frequency-domain expressions, and relationships for the resulting frequency dependent relaxation times. The model is based on a previously developed equation that was derived using statistical-mechanical theory. We extract relaxation times from dielectric data and give illustrative examples for the harmonic oscillator and derive expressions for the frequency-dependent relaxation times and a time-domain integrodifferential equation for the Cole-Davidson model.

  2. Stability of Linear Equations--Algebraic Approach

    ERIC Educational Resources Information Center

    Cherif, Chokri; Goldstein, Avraham; Prado, Lucio M. G.

    2012-01-01

    This article could be of interest to teachers of applied mathematics as well as to people who are interested in applications of linear algebra. We give a comprehensive study of linear systems from an application point of view. Specifically, we give an overview of linear systems and problems that can occur with the computed solution when the…

  3. Spectrum Analysis of the Linearized Relativistic Landau Equation

    NASA Astrophysics Data System (ADS)

    Luo, Lan; Yu, Hongjun

    2016-05-01

    In this work we prove the complete spectrum structure of the linearized relativistic Landau equation in L^2 by using the semigroup theory and the linear operator perturbation theory. Our results include the physical interesting Coulombic interaction.

  4. Hot atom populations in the terrestrial atmosphere. A comparison of the nonlinear and linearized Boltzmann equations

    NASA Astrophysics Data System (ADS)

    Sospedra-Alfonso, Reinel; Shizgal, Bernie D.

    2012-11-01

    We use a finite difference discretization method to solve the space homogeneous, isotropic nonlinear Boltzmann equation. We study the time evolution of the distribution function in relation to the solution of the linearized Boltzmann equation for three different initial conditions. The relaxation process is described in terms of the Laguerre moments and the spectral properties of the linearized collision operator. The motivation is the need to include self-collisions in the study of suprathermal oxygen atoms in the terrestrial exosphere.

  5. A Cognitive Approach to Solving Systems of Linear Equations

    ERIC Educational Resources Information Center

    Ramirez, Ariel A.

    2009-01-01

    Systems of linear equations are used in a variety of fields. Exposure to the concept of systems of equations initially occurs at the high school level and continues through college. Attempts to unearth what students understand about the solutions of linear systems have been limited. Gaps exist in our knowledge of how students understand systems…

  6. Stochastic differential equations for non-linear hydrodynamics

    NASA Astrophysics Data System (ADS)

    Español, Pep

    1998-02-01

    We formulate the stochastic differential equations for non-linear hydrodynamic fluctuations. The equations incorporate the random forces through a random stres tensor and random heat flux as in the Landau and Lifshitz theory. However, the equations are non-linear and the random forces are non-Gaussian. We provide explicit expressions for these random quantities in terms of the well-defined increments of the Wienner process.

  7. Solving Systems of Linear Equations by Ratio and Proportion

    ERIC Educational Resources Information Center

    Katsaras, Vasilios J.

    1978-01-01

    The author describes and gives two illustrations of a method for solving a system of two linear equations. The ratio of left members is equated to the ratio of right members, the ratio of the two variables is solved for, and the resultant ratio is substituted into an original equation. (MN)

  8. A General Linear Method for Equating with Small Samples

    ERIC Educational Resources Information Center

    Albano, Anthony D.

    2015-01-01

    Research on equating with small samples has shown that methods with stronger assumptions and fewer statistical estimates can lead to decreased error in the estimated equating function. This article introduces a new approach to linear observed-score equating, one which provides flexible control over how form difficulty is assumed versus estimated…

  9. Non-Linear Spring Equations and Stability

    ERIC Educational Resources Information Center

    Fay, Temple H.; Joubert, Stephan V.

    2009-01-01

    We discuss the boundary in the Poincare phase plane for boundedness of solutions to spring model equations of the form [second derivative of]x + x + epsilonx[superscript 2] = Fcoswt and the [second derivative of]x + x + epsilonx[superscript 3] = Fcoswt and report the results of a systematic numerical investigation on the global stability of…

  10. Evolution of linear perturbations in spherically symmetric dust spacetimes

    NASA Astrophysics Data System (ADS)

    February, S.; Larena, J.; Clarkson, C.; Pollney, D.

    2014-09-01

    We present results from a numerical code implementing a new method to solve the master equations describing the evolution of linear perturbations in a spherically symmetric but inhomogeneous background. This method can be used to simulate several configurations of physical interest, such as relativistic corrections to structure formation, the lensing of gravitational waves (GWs) and the evolution of perturbations in a cosmological void model. This paper focuses on the latter problem, i.e. structure formation in a Hubble scale void in the linear regime. This is considerably more complicated than linear perturbations of a homogeneous and isotropic background because the inhomogeneous background leads to coupling between density perturbations and rotational modes of the spacetime geometry, as well as GWs. Previous analyses of this problem ignored this coupling in the hope that the approximation does not affect the overall dynamics of structure formation in such models. We show that for a giga-parsec void, the evolution of the density contrast is well approximated by the previously studied decoupled evolution only for very large-scale modes. However, the evolution of the gravitational potentials within the void is inaccurate at more than the 10% level, and is even worse on small scales.

  11. Technology, Linear Equations, and Buying a Car.

    ERIC Educational Resources Information Center

    Sandefur, James T.

    1992-01-01

    Discusses the use of technology in solving compound interest-rate problems that can be modeled by linear relationships. Uses a graphing calculator to solve the specific problem of determining the amount of money that can be borrowed to buy a car for a given monthly payment and interest rate. (MDH)

  12. Eulerian action principles for linearized reduced dynamical equations

    NASA Astrophysics Data System (ADS)

    Brizard, Alain

    1994-08-01

    New Eulerian action principles for the linearized gyrokinetic Maxwell-Vlasov equations and the linearized kinetic-magnetohydrodynamic (kinetic-MHD) equations are presented. The variational fields for the linearized gyrokinetic Vlasov-Maxwell equations are the perturbed electromagnetic potentials (φ1,A1) and the gyroangle-independent gyrocenter (gy) function Sgy, while the variational fields for the linearized kinetic-MHD equations are the ideal MHD fluid displacement ξ and the gyroangle-independent drift-kinetic (dk) function Sdk (defined as the drift-kinetic limit of Sgy). According to the Lie-transform approach to Vlasov perturbation theory, Sgy generates first-order perturbations in the gyrocenter distribution F1≡{Sgy, F0}gc, where F1 satisfies the linearized gyrokinetic Vlasov equation and {, }gc denotes the unperturbed guiding-center (gc) Poisson bracket. Previous quadratic variational forms were constructed ad hoc from the linearized equations, and required the linearized gyrokinetic (or drift-kinetic) Vlasov equation to be solved a priori (e.g., by integration along an unperturbed guiding-center orbit) through the use of the normal-mode and ballooning-mode representations. The presented action principles ignore these requirements and, thus, apply to more general perturbations.

  13. Evolution equation for entanglement of assistance

    SciTech Connect

    Li Zongguo; Liu, W. M.; Zhao Mingjing; Fei Shaoming

    2010-04-15

    We investigate the time evolution of the entanglement of assistance when one subsystem undergoes the action of local noisy channels. A general factorization law is presented for the evolution equation of entanglement of assistance. Our results demonstrate that the dynamics of the entanglement of assistance is determined by the action of a noisy channel on the pure maximally entangled state, in which the entanglement reduction turns out to be universal for all quantum states entering the channel. This single quantity will make it easy to characterize the entanglement dynamics of entanglement of assistance under unknown channels in the experimental process of producing entangled states by assisted entanglement.

  14. Algebraic methods for the solution of some linear matrix equations

    NASA Technical Reports Server (NTRS)

    Djaferis, T. E.; Mitter, S. K.

    1979-01-01

    The characterization of polynomials whose zeros lie in certain algebraic domains (and the unification of the ideas of Hermite and Lyapunov) is the basis for developing finite algorithms for the solution of linear matrix equations. Particular attention is given to equations PA + A'P = Q (the Lyapunov equation) and P - A'PA = Q the (discrete Lyapunov equation). The Lyapunov equation appears in several areas of control theory such as stability theory, optimal control (evaluation of quadratic integrals), stochastic control (evaluation of covariance matrices) and in the solution of the algebraic Riccati equation using Newton's method.

  15. An evolution equation modeling inversion of tulip flames

    SciTech Connect

    Dold, J.W.; Joulin, G.

    1995-02-01

    The authors attempt to reduce the number of physical ingredients needed to model the phenomenon of tulip-flame inversion to a bare minimum. This is achieved by synthesizing the nonlinear, first-order Michelson-Sivashinsky (MS) equation with the second order linear dispersion relation of Landau and Darrieus, which adds only one extra term to the MS equation without changing any of its stationary behavior and without changing its dynamics in the limit of small density change when the MS equation is asymptotically valid. However, as demonstrated by spectral numerical solutions, the resulting second-order nonlinear evolution equation is found to describe the inversion of tulip flames in good qualitative agreement with classical experiments on the phenomenon. This shows that the combined influences of front curvature, geometric nonlinearity and hydrodynamic instability (including its second-order, or inertial effects, which are an essential result of vorticity production at the flame front) are sufficient to reproduce the inversion process.

  16. On an evolution equation in a cell motility model

    NASA Astrophysics Data System (ADS)

    Mizuhara, Matthew S.; Berlyand, Leonid; Rybalko, Volodymyr; Zhang, Lei

    2016-04-01

    This paper deals with the evolution equation of a curve obtained as the sharp interface limit of a non-linear system of two reaction-diffusion PDEs. This system was introduced as a phase-field model of (crawling) motion of eukaryotic cells on a substrate. The key issue is the evolution of the cell membrane (interface curve) which involves shape change and net motion. This issue can be addressed both qualitatively and quantitatively by studying the evolution equation of the sharp interface limit for this system. However, this equation is non-linear and non-local and existence of solutions presents a significant analytical challenge. We establish existence of solutions for a wide class of initial data in the so-called subcritical regime. Existence is proved in a two step procedure. First, for smooth (H2) initial data we use a regularization technique. Second, we consider non-smooth initial data that are more relevant from the application point of view. Here, uniform estimates on the time when solutions exist rely on a maximum principle type argument. We also explore the long time behavior of the model using both analytical and numerical tools. We prove the nonexistence of traveling wave solutions with nonzero velocity. Numerical experiments show that presence of non-linearity and asymmetry of the initial curve results in a net motion which distinguishes it from classical volume preserving curvature motion. This is done by developing an algorithm for efficient numerical resolution of the non-local term in the evolution equation.

  17. Evolution equations for multi-time wavefunctions

    NASA Astrophysics Data System (ADS)

    Petrat, Soren Philipp

    Multi-time wavefunctions are of particular interest in relativistic quantum mechanics. A multi-time wavefunction has separate time-variables for each particle; this makes it a manifestly Lorentz-invariant object. The time-evolution equations are systems of Schrodinger equations; one for each particle's time variable and each with a certain Hamiltonian. We derive conditions under which these systems of equations have a common solution. Also, we derive three main results about concrete multi-time models. First we show that a model proposed by Durr and Tumulka in 2001 is inconsistent. The second result is a consistent model for a constant number of particles with a cutoff pair potential. The third result is a consistent theory for a simple quantum field theoretic model with creation and annihilation of particles. Existence and uniqueness of solutions is proven for both models.

  18. Linear systems of equations solved using mathematical algorithms

    NASA Technical Reports Server (NTRS)

    Bareiss, E. H.

    1968-01-01

    New mathematical algorithm solves linear systems of equations, AX equals B, and preserves the integer properties of the coefficients. The algorithms presented can also be used for the efficient evaluation of determinates and their leading minors.

  19. Out-of-Core Solutions of Complex Sparse Linear Equations

    NASA Technical Reports Server (NTRS)

    Yip, E. L.

    1982-01-01

    ETCLIB is library of subroutines for obtaining out-of-core solutions of complex sparse linear equations. Routines apply to dense and sparse matrices too large to be stored in core. Useful for solving any set of linear equations, but particularly useful in cases where coefficient matrix has no special properties that guarantee convergence with any of interative processes. The only assumption made is that coefficient matrix is not singular.

  20. Exact solution of some linear matrix equations using algebraic methods

    NASA Technical Reports Server (NTRS)

    Djaferis, T. E.; Mitter, S. K.

    1977-01-01

    A study is done of solution methods for Linear Matrix Equations including Lyapunov's equation, using methods of modern algebra. The emphasis is on the use of finite algebraic procedures which are easily implemented on a digital computer and which lead to an explicit solution to the problem. The action f sub BA is introduced a Basic Lemma is proven. The equation PA + BP = -C as well as the Lyapunov equation are analyzed. Algorithms are given for the solution of the Lyapunov and comment is given on its arithmetic complexity. The equation P - A'PA = Q is studied and numerical examples are given.

  1. On the Fundamental Solution of a Linearized Homogeneous Coagulation Equation

    NASA Astrophysics Data System (ADS)

    Escobedo, Miguel; Velázquez, J. J. L.

    2010-08-01

    We describe the fundamental solution of the equation that is obtained by linearization of the coagulation equation with kernel K( x, y) = ( xy)λ/2, around the steady state f( x) = x -(3+λ)/2 with {λ in (1, 2)} . Detailed estimates on its asymptotics are obtained. Some consequences are deduced for the flux properties of the particles distributions described by such models.

  2. Liapunov functions for non-linear difference equation stability analysis.

    NASA Technical Reports Server (NTRS)

    Park, K. E.; Kinnen, E.

    1972-01-01

    Liapunov functions to determine the stability of non-linear autonomous difference equations can be developed through the use of auxiliary exact difference equations. For this purpose definitions are introduced for the gradient of an implicit function of a discrete variable, a principal sum, a definite sum and an exact difference equation, and a theorem for exactness of a difference form is proved. Examples illustrate the procedure.

  3. Rational approximations to solutions of linear differential equations

    PubMed Central

    Chudnovsky, D. V.; Chudnovsky, G. V.

    1983-01-01

    Rational approximations of Padé and Padé type to solutions of differential equations are considered. One of the main results is a theorem stating that a simultaneous approximation to arbitrary solutions of linear differential equations over C(x) cannot be “better” than trivial ones implied by the Dirichlet box principle. This constitutes, in particular, the solution in the linear case of Kolchin's problem that the “Roth's theorem” holds for arbitrary solutions of algebraic differential equations. Complete effective proofs for several valuations are presented based on the Wronskian methods and graded subrings of Picard-Vessiot extensions. PMID:16593357

  4. Semigroup theory and numerical approximation for equations in linear viscoelasticity

    NASA Technical Reports Server (NTRS)

    Fabiano, R. H.; Ito, K.

    1990-01-01

    A class of abstract integrodifferential equations used to model linear viscoelastic beams is investigated analytically, applying a Hilbert-space approach. The basic equation is rewritten as a Cauchy problem, and its well-posedness is demonstrated. Finite-dimensional subspaces of the state space and an estimate of the state operator are obtained; approximation schemes for the equations are constructed; and the convergence is proved using the Trotter-Kato theorem of linear semigroup theory. The actual convergence behavior of different approximations is demonstrated in numerical computations, and the results are presented in tables.

  5. Evolution equations: Frobenius integrability, conservation laws and travelling waves

    NASA Astrophysics Data System (ADS)

    Prince, Geoff; Tehseen, Naghmana

    2015-10-01

    We give new results concerning the Frobenius integrability and solution of evolution equations admitting travelling wave solutions. In particular, we give a powerful result which explains the extraordinary integrability of some of these equations. We also discuss ‘local’ conservations laws for evolution equations in general and demonstrate all the results for the Korteweg-de Vries equation.

  6. Problems with the linear q-Fokker Planck equation

    NASA Astrophysics Data System (ADS)

    Yano, Ryosuke

    2015-05-01

    In this letter, we discuss the linear q-Fokker Planck equation, whose solution follows Tsallis distribution, from the viewpoint of kinetic theory. Using normal definitions of moments, we can expand the distribution function with infinite moments for 0 ⩽ q < 1, whereas we cannot expand the distribution function with infinite moments for 1 < q owing to emergences of characteristic points in moments. From Grad's 13 moment equations for the linear q-Fokker Planck equation, the dissipation rate of the heat flux via the linear q-Fokker Planck equation diverges at 0 ⩽ q < 2/3. In other words, the thermal conductivity, which defines the heat flux with the spatial gradient of the temperature and the thermal conductivity, which defines the heat flux with the spacial gradient of the density, jumps to zero at q = 2/3, discontinuously.

  7. Solutions to Class of Linear and Nonlinear Fractional Differential Equations

    NASA Astrophysics Data System (ADS)

    Abdel-Salam, Emad A.-B.; Hassan, Gamal F.

    2016-02-01

    In this paper, the fractional auxiliary sub-equation expansion method is proposed to solve nonlinear fractional differential equations. To illustrate the effectiveness of the method, we discuss the space-time fractional KdV equation, the space-time fractional RLW equation, the space-time fractional Boussinesq equation, and the (3+1)-space-time fractional ZK equation. The solutions are expressed in terms of fractional hyperbolic and fractional trigonometric functions. These solutions are useful to understand the mechanisms of the complicated nonlinear physical phenomena and fractional differential equations. Among these solutions, some are found for the first time. The analytical solution of homogenous linear FDEs with constant coefficients are obtained by using the series and the Mittag–Leffler function methods. The obtained results recover the well-know solutions when α = 1.

  8. Solutions to Class of Linear and Nonlinear Fractional Differential Equations

    NASA Astrophysics Data System (ADS)

    Emad A-B., Abdel-Salam; Gamal, F. Hassan

    2016-02-01

    In this paper, the fractional auxiliary sub-equation expansion method is proposed to solve nonlinear fractional differential equations. To illustrate the effectiveness of the method, we discuss the space-time fractional KdV equation, the space-time fractional RLW equation, the space-time fractional Boussinesq equation, and the (3+1)-space-time fractional ZK equation. The solutions are expressed in terms of fractional hyperbolic and fractional trigonometric functions. These solutions are useful to understand the mechanisms of the complicated nonlinear physical phenomena and fractional differential equations. Among these solutions, some are found for the first time. The analytical solution of homogenous linear FDEs with constant coefficients are obtained by using the series and the Mittag-Leffler function methods. The obtained results recover the well-know solutions when α = 1.

  9. Evolution equation for geometric quantum correlation measures

    NASA Astrophysics Data System (ADS)

    Hu, Ming-Liang; Fan, Heng

    2015-05-01

    A simple relation is established for the evolution equation of quantum-information-processing protocols such as quantum teleportation, remote state preparation, Bell-inequality violation, and particularly the dynamics of geometric quantum correlation measures. This relation shows that when the system traverses the local quantum channel, various figures of merit of the quantum correlations for different protocols demonstrate a factorization decay behavior for dynamics. We identified the family of quantum states for different kinds of quantum channels under the action of which the relation holds. This relation simplifies the assessment of many quantum tasks.

  10. An integrable shallow water equation with linear and nonlinear dispersion.

    PubMed

    Dullin, H R; Gottwald, G A; Holm, D D

    2001-11-01

    We use asymptotic analysis and a near-identity normal form transformation from water wave theory to derive a 1+1 unidirectional nonlinear wave equation that combines the linear dispersion of the Korteweg-deVries (KdV) equation with the nonlinear/nonlocal dispersion of the Camassa-Holm (CH) equation. This equation is one order more accurate in asymptotic approximation beyond KdV, yet it still preserves complete integrability via the inverse scattering transform method. Its traveling wave solutions contain both the KdV solitons and the CH peakons as limiting cases. PMID:11690414

  11. Monitoring derivation of the quantum linear Boltzmann equation

    SciTech Connect

    Hornberger, Klaus; Vacchini, Bassano

    2008-02-15

    We show how the effective equation of motion for a distinguished quantum particle in an ideal gas environment can be obtained by means of the monitoring approach introduced by Hornberger [EPL 77, 50007 (2007)]. The resulting Lindblad master equation accounts for the quantum effects of the scattering dynamics in a nonperturbative fashion and it describes decoherence and dissipation in a unified framework. It incorporates various established equations as limiting cases and reduces to the classical linear Boltzmann equation once the state is diagonal in momentum.

  12. New Equating Methods and Their Relationships with Levine Observed Score Linear Equating under the Kernel Equating Framework

    ERIC Educational Resources Information Center

    Chen, Haiwen; Holland, Paul

    2010-01-01

    In this paper, we develop a new curvilinear equating for the nonequivalent groups with anchor test (NEAT) design under the assumption of the classical test theory model, that we name curvilinear Levine observed score equating. In fact, by applying both the kernel equating framework and the mean preserving linear transformation of…

  13. Dark soliton solutions of (N+1)-dimensional nonlinear evolution equations

    NASA Astrophysics Data System (ADS)

    Demiray, Seyma Tuluce; Bulut, Hasan

    2016-06-01

    In this study, we investigate exact solutions of (N+1)-dimensional double sinh-Gordon equation and (N+1)-dimensional generalized Boussinesq equation by using generalized Kudryashov method. (N+1)-dimensional double sinh-Gordon equation and (N+1)-dimensional generalized Boussinesq equation can be returned to nonlinear ordinary differential equation by suitable transformation. Then, generalized Kudryashov method has been used to seek exact solutions of the (N+1)-dimensional double sinh-Gordon equation and (N+1)-dimensional generalized Boussinesq equation. Also, we obtain dark soliton solutions for these (N+1)-dimensional nonlinear evolution equations. Finally, we denote that this method can be applied to solve other nonlinear evolution equations.

  14. Construction of the wave operator for non-linear dispersive equations

    NASA Astrophysics Data System (ADS)

    Tsuruta, Kai Erik

    In this thesis, we will study non-linear dispersive equations. The primary focus will be on the construction of the positive-time wave operator for such equations. The positive-time wave operator problem arises in the study of the asymptotics of a partial differential equation. It is a map from a space of initial data X into itself, and is loosely defined as follows: Suppose that for a solution ψlin to the dispersive equation with no non-linearity and initial data ψ +, there exists a unique solution ψ to the non-linear equation with initial data ψ0 such that ψ behaves as ψ lin as t → infinity. Then the wave operator is the map W+ that takes ψ + to ψ0. By its definition, W+ is injective. An important additional question is whether or not the map is also surjective. If so, then every non-linear solution emanating from X behaves, in some sense, linearly as it evolves (this is known as asymptotic completeness). Thus, there is some justification for treating these solutions as their much simpler linear counterparts. The main results presented in this thesis revolve around the construction of the wave operator(s) at critical non-linearities. We will study the "semi-relativistic" Schrodinger equation as well as the Klein-Gordon-Schrodinger system on R2 . In both cases, we will impose fairly general quadratic non-linearities for which conservation laws cannot be relied upon. These non-linearities fall below the scaling required to employ such tools as the Strichartz estimates. We instead adapt the "first iteration method" of Jang, Li, and Zhang to our setting which depends crucially on the critical decay of the non-linear interaction of the linear evolution. To see the critical decay in our problem, careful analysis is needed to treat the regime where one has spatial and/or time resonance.

  15. An Object Oriented, Finite Element Framework for Linear Wave Equations

    SciTech Connect

    Koning, J M

    2004-08-12

    This dissertation documents an object oriented framework which can be used to solve any linear wave equation. The linear wave equations are expressed in the differential forms language. This differential forms expression allows a strict discrete interpretation of the system. The framework is implemented using the Galerkin Finite Element Method to define the discrete differential forms and operators. Finite element basis functions including standard scalar Nodal and vector Nedelec basis functions are used to implement the discrete differential forms resulting in a mixed finite element system. Discretizations of scalar and vector wave equations in the time and frequency domains will be demonstrated in both differential forms and vector calculi. This framework conserves energy, maintains physical continuity, is valid on unstructured grids, conditionally stable and second order accurate. Examples including linear electrodynamics, acoustics, elasticity and magnetohydrodynamics are demonstrated.

  16. Improved local linearization algorithm for solving the quaternion equations

    NASA Technical Reports Server (NTRS)

    Yen, K.; Cook, G.

    1980-01-01

    The objective of this paper is to develop a new and more accurate local linearization algorithm for numerically solving sets of linear time-varying differential equations. Of special interest is the application of this algorithm to the quaternion rate equations. The results are compared, both analytically and experimentally, with previous results using local linearization methods. The new algorithm requires approximately one-third more calculations per step than the previously developed local linearization algorithm; however, this disadvantage could be reduced by using parallel implementation. For some cases the new algorithm yields significant improvement in accuracy, even with an enlarged sampling interval. The reverse is true in other cases. The errors depend on the values of angular velocity, angular acceleration, and integration step size. One important result is that for the worst case the new algorithm can guarantee eigenvalues nearer the region of stability than can the previously developed algorithm.

  17. Solitary pulses in linearly coupled Ginzburg-Landau equations.

    PubMed

    Malomed, Boris A

    2007-09-01

    This article presents a brief review of dynamical models based on systems of linearly coupled complex Ginzburg-Landau (CGL) equations. In the simplest case, the system features linear gain, cubic nonlinearity (possibly combined with cubic loss), and group-velocity dispersion (GVD) in one equation, while the other equation is linear, featuring only intrinsic linear loss. The system models a dual-core fiber laser, with a parallel-coupled active core and an additional stabilizing passive (lossy) one. The model gives rise to exact analytical solutions for stationary solitary pulses (SPs). The article presents basic results concerning stability of the SPs; interactions between pulses are also considered, as are dark solitons (holes). In the case of the anomalous GVD, an unstable stationary SP may transform itself, via the Hopf bifurcation, into a stable localized breather. Various generalizations of the basic system are briefly reviewed too, including a model with quadratic (second-harmonic-generating) nonlinearity and a recently introduced model of a different but related type, based on linearly coupled CGL equations with cubic-quintic nonlinearity. The latter system features spontaneous symmetry breaking of stationary SPs, and also the formation of stable breathers. PMID:17903024

  18. Monte Carlo studies of multiwavelength pyrometry using linearized equations

    NASA Astrophysics Data System (ADS)

    Gathers, G. R.

    1992-03-01

    Multiwavelength pyrometry has been advertised as giving significant improvement in precision by overdetermining the solution with extra wavelengths and using least squares methods. Hiernaut et al. [1] have described a six-wavelength pyrometer for measurements in the range 2000 to 5000 K. They use the Wien approximation and model the logarithm of the emissivity as a linear function of wavelength in order to produce linear equations. The present work examines the measurement errors associated with their technique.

  19. Linear Equating for the NEAT Design: Parameter Substitution Models and Chained Linear Relationship Models

    ERIC Educational Resources Information Center

    Kane, Michael T.; Mroch, Andrew A.; Suh, Youngsuk; Ripkey, Douglas R.

    2009-01-01

    This paper analyzes five linear equating models for the "nonequivalent groups with anchor test" (NEAT) design with internal anchors (i.e., the anchor test is part of the full test). The analysis employs a two-dimensional framework. The first dimension contrasts two general approaches to developing the equating relationship. Under a "parameter…

  20. A Comparison of Chained Linear and Poststratification Linear Equating under Different Testing Conditions

    ERIC Educational Resources Information Center

    Puhan, Gautam

    2010-01-01

    In this study I compared results of chained linear, Tucker, and Levine-observed score equatings under conditions where the new and old forms samples were similar in ability and also when they were different in ability. The length of the anchor test was also varied to examine its effect on the three different equating methods. The three equating…

  1. Time-harmonic Maxwell equations with asymptotically linear polarization

    NASA Astrophysics Data System (ADS)

    Qin, Dongdong; Tang, Xianhua

    2016-06-01

    This paper is concerned with the following time-harmonic semilinear Maxwell equation: nabla× (nabla× u)+λ u=f(x,u), &in Ω ν × u=0, &on partialΩ, where {Ωsubset {R}3} is a bounded, convex domain and {ν : partial Ωto {R}3} is the exterior normal. Motivated by recent work of Bartsch and Mederski and based on some observations and new techniques, we study above equation by developing the generalized Nehari manifold method. Particularly, existence of ground-state solutions of Nehari-Pankov type for the equation is established with asymptotically linear nonlinearity.

  2. Exact solution of some linear matrix equations using algebraic methods

    NASA Technical Reports Server (NTRS)

    Djaferis, T. E.; Mitter, S. K.

    1979-01-01

    Algebraic methods are used to construct the exact solution P of the linear matrix equation PA + BP = - C, where A, B, and C are matrices with real entries. The emphasis of this equation is on the use of finite algebraic procedures which are easily implemented on a digital computer and which lead to an explicit solution to the problem. The paper is divided into six sections which include the proof of the basic lemma, the Liapunov equation, and the computer implementation for the rational, integer and modular algorithms. Two numerical examples are given and the entire calculation process is depicted.

  3. Regularized 13 moment equations for hard sphere molecules: Linear bulk equations

    NASA Astrophysics Data System (ADS)

    Struchtrup, Henning; Torrilhon, Manuel

    2013-05-01

    The regularized 13 moment equations of rarefied gas dynamics are derived for a monatomic hard sphere gas in the linear regime. The equations are based on an extended Grad-type moment system, which is systematically reduced by means of the Order of Magnitude Method [H. Struchtrup, "Stable transport equations for rarefied gases at high orders in the Knudsen number," Phys. Fluids 16(11), 3921-3934 (2004)], 10.1063/1.1782751. Chapman-Enskog expansion of the final equations yields the linear Burnett and super-Burnett equations. While the Burnett coefficients agree with literature values, this seems to be the first time that super-Burnett coefficients are computed for a hard sphere gas. As a first test of the equations the dispersion and damping of sound waves is considered.

  4. Symbolic computation of recurrence equations for the Chebyshev series solution of linear ODE's. [ordinary differential equations

    NASA Technical Reports Server (NTRS)

    Geddes, K. O.

    1977-01-01

    If a linear ordinary differential equation with polynomial coefficients is converted into integrated form then the formal substitution of a Chebyshev series leads to recurrence equations defining the Chebyshev coefficients of the solution function. An explicit formula is presented for the polynomial coefficients of the integrated form in terms of the polynomial coefficients of the differential form. The symmetries arising from multiplication and integration of Chebyshev polynomials are exploited in deriving a general recurrence equation from which can be derived all of the linear equations defining the Chebyshev coefficients. Procedures for deriving the general recurrence equation are specified in a precise algorithmic notation suitable for translation into any of the languages for symbolic computation. The method is algebraic and it can therefore be applied to differential equations containing indeterminates.

  5. Linear System of Equations, Matrix Inversion, and Linear Programming Using MS Excel

    ERIC Educational Resources Information Center

    El-Gebeily, M.; Yushau, B.

    2008-01-01

    In this note, we demonstrate with illustrations two different ways that MS Excel can be used to solve Linear Systems of Equation, Linear Programming Problems, and Matrix Inversion Problems. The advantage of using MS Excel is its availability and transparency (the user is responsible for most of the details of how a problem is solved). Further, we…

  6. Effects of Classroom Instruction on Student Performance on, and Understanding of, Linear Equations and Linear Inequalities

    ERIC Educational Resources Information Center

    Vaiyavutjamai, Pongchawee; Clements, M. A.

    2006-01-01

    Two-hundred and thirty-one students in 6 Grade 9 classes in 2 secondary schools in Thailand attempted 54 pencil-and-paper tasks related to linear equations and linear inequalities immediately before and after they participated in 13 lessons on those topics. Students' written responses, and transcripts of pre- and postteaching interviews with 18…

  7. Teaching Linear Equations: Case Studies from Finland, Flanders and Hungary

    ERIC Educational Resources Information Center

    Andrews, Paul; Sayers, Judy

    2012-01-01

    In this paper we compare how three teachers, one from each of Finland, Flanders and Hungary, introduce linear equations to grade 8 students. Five successive lessons were videotaped and analysed qualitatively to determine how teachers, each of whom was defined against local criteria as effective, addressed various literature-derived…

  8. Insights into the School Mathematics Tradition from Solving Linear Equations

    ERIC Educational Resources Information Center

    Buchbinder, Orly; Chazan, Daniel; Fleming, Elizabeth

    2015-01-01

    In this article, we explore how the solving of linear equations is represented in English­-language algebra text books from the early nineteenth century when schooling was becoming institutionalized, and then survey contemporary teachers. In the text books, we identify the increasing presence of a prescribed order of steps (a canonical method) for…

  9. Effective vs. Efficient: Teaching Methods of Solving Linear Equations

    ERIC Educational Resources Information Center

    Ivey, Kathy M. C.

    2003-01-01

    The choice of teaching an effective method--one that most students can master--or an efficient method--one that takes the fewest steps--occurs daily in Algebra I classrooms. This decision may not be made in the abstract, however, but rather in a ready-to-hand mode. This study examines how teachers solve linear equations when the purpose is…

  10. Constructive Development of the Solutions of Linear Equations in Introductory Ordinary Differential Equations

    ERIC Educational Resources Information Center

    Mallet, D. G.; McCue, S. W.

    2009-01-01

    The solution of linear ordinary differential equations (ODEs) is commonly taught in first-year undergraduate mathematics classrooms, but the understanding of the concept of a solution is not always grasped by students until much later. Recognizing what it is to be a solution of a linear ODE and how to postulate such solutions, without resorting to…

  11. Pseudospectral Methods of Solution of the Linear and Linearized Boltzmann Equations; Transport and Relaxation

    NASA Astrophysics Data System (ADS)

    Shizgal, Bernie D.

    2011-05-01

    The study of the solution of the linearized Boltzmann equation has a very long history arising from the classic work by Chapman and Cowling. For small departures from a Maxwellian, the nonlinear Boltzmann equation can be linearized and the transport coefficients calculated with the Chapman-Enskog approach. This procedure leads to a set of linear integral equations which are generally solved with the expansion of the departure from Maxwellian in Sonine polynomials. The method has been used successfully for many decades to compare experimental transport data in atomic gases with theory generally carried out for realistic atom-atom differential cross sections. There are alternate pseudospectral methods which involve the discretization of the distribution function on a discrete grid. This paper considers a pseudospectral method of solution of the linearized hard sphere Boltzmann equation for the viscosity in a simple gas. The relaxation of a small departure from a Maxwellian is also considered for the linear test particle problem with unit mass ratio which is compared with the relaxation for the linearized one component Boltzmann equation.

  12. Parallel linear equation solvers for finite element computations

    NASA Technical Reports Server (NTRS)

    Ortega, James M.; Poole, Gene; Vaughan, Courtenay; Cleary, Andrew; Averick, Brett

    1989-01-01

    The overall objective of this research is to develop efficient methods for the solution of linear and nonlinear systems of equations on parallel and supercomputers, and to apply these methods to the solution of problems in structural analysis. Attention has been given so far only to linear equations. The methods considered for the solution of the stiffness equation Kx=f have been Choleski factorization and the conjugate gradient iteration with SSOR and Incomplete Choleski preconditioning. More detail on these methods will be given on subsequent slides. These methods have been used to solve for the static displacements for the mast and panel focus problems in conjunction with the CSM testbed system based on NICE/SPAR.

  13. The Linearized Kinetic Equation -- A Functional Analytic Approach

    NASA Astrophysics Data System (ADS)

    Brinkmann, Ralf Peter

    2009-10-01

    Kinetic models of plasma phenomena are difficult to address for two reasons. They i) are given as systems of nonlinear coupled integro-differential equations, and ii) involve generally six-dimensional distribution functions f(r,v,t). In situations which can be addressed in a linear regime, the first difficulty disappears, but the second one still poses considerable practical problems. This contribution presents an abstract approach to linearized kinetic theory which employs the methods of functional analysis. A kinetic electron equation with elastic electron-neutral interaction is studied in the electrostatic approximation. Under certain boundary conditions, a nonlinear functional, the kinetic free energy, exists which has the properties of a Lyapunov functional. In the linear regime, the functional becomes a quadratic form which motivates the definition of a bilinear scalar product, turning the space of all distribution functions into a Hilbert space. The linearized kinetic equation can then be described in terms of dynamical operators with well-defined properties. Abstract solutions can be constructed which have mathematically plausible properties. As an example, the formalism is applied to the example of the multipole resonance probe (MRP). Under the assumption of a Maxwellian background distribution, the kinetic model of that diagnostics device is compared to a previously investigated fluid model.

  14. Nonsingular big bounces and the evolution of linear fluctuations

    NASA Astrophysics Data System (ADS)

    Hwang, Jai-Chan; Noh, Hyerim

    2002-06-01

    We consider the evolutions of linear fluctuations as the background Friedmann world model goes from contracting to expanding phases through smooth and nonsingular bouncing phases. As long as gravity dominates over the pressure gradient in the perturbation equation, the growing mode in the expanding phase is characterized by a conserved amplitude; we call this a C mode. In spherical geometry with a pressureless medium, we show that there exists a special gauge-invariant combination Φ which stays constant throughout the evolution from the big bang to the big crunch, with the same value even after the bounce: it characterizes the coefficient of the C mode. We show this result by using a bounce model where the pressure gradient term is negligible during the bounce; this requires the additional presence of exotic matter. In such a bounce, even in more general situations for the equation of state before and after the bounce, the C mode in the expanding phase is affected only by the C mode in the contracting phase; thus the growing mode in the contracting phase decays away as the world model enters the expanding phase. When the background curvature plays a significant role during the bounce, the pressure gradient term becomes important and we cannot trace the C mode in the expanding phase to the one before the bounce. In such situations, perturbations in a fluid bounce model show exponential instability, whereas perturbations in a scalar field bounce model show oscillatory behavior.

  15. An analytically solvable eigenvalue problem for the linear elasticity equations.

    SciTech Connect

    Day, David Minot; Romero, Louis Anthony

    2004-07-01

    Analytic solutions are useful for code verification. Structural vibration codes approximate solutions to the eigenvalue problem for the linear elasticity equations (Navier's equations). Unfortunately the verification method of 'manufactured solutions' does not apply to vibration problems. Verification books (for example [2]) tabulate a few of the lowest modes, but are not useful for computations of large numbers of modes. A closed form solution is presented here for all the eigenvalues and eigenfunctions for a cuboid solid with isotropic material properties. The boundary conditions correspond physically to a greased wall.

  16. Novel algorithm of large-scale simultaneous linear equations.

    PubMed

    Fujiwara, T; Hoshi, T; Yamamoto, S; Sogabe, T; Zhang, S-L

    2010-02-24

    We review our recently developed methods of solving large-scale simultaneous linear equations and applications to electronic structure calculations both in one-electron theory and many-electron theory. This is the shifted COCG (conjugate orthogonal conjugate gradient) method based on the Krylov subspace, and the most important issue for applications is the shift equation and the seed switching method, which greatly reduce the computational cost. The applications to nano-scale Si crystals and the double orbital extended Hubbard model are presented. PMID:21386384

  17. On identifying transfer functions and state equations for linear systems.

    NASA Technical Reports Server (NTRS)

    Shieh, L. S.; Chen, C. F.; Huang, C. J.

    1972-01-01

    Two methods are established for identifying constant-coefficient, C to the 2n power type of noise-free linear systems if the time response data of the input-output or of all states are known. 2n response data are required to identify an nth-order transfer function or state equation for an unknown linear system. The order of the unknown system can be identified by checking a sequence of determinants. The Z transform and its inversion are mainly used.

  18. What happens to linear properties as we move from the Klein-Gordon equation to the sine-Gordon equation

    SciTech Connect

    Kovalyov, Mikhail

    2010-06-15

    In this article the sets of solutions of the sine-Gordon equation and its linearization the Klein-Gordon equation are discussed and compared. It is shown that the set of solutions of the sine-Gordon equation possesses a richer structure which partly disappears during linearization. Just like the solutions of the Klein-Gordon equation satisfy the linear superposition principle, the solutions of the sine-Gordon equation satisfy a nonlinear superposition principle.

  19. Approximate solutions for non-linear iterative fractional differential equations

    NASA Astrophysics Data System (ADS)

    Damag, Faten H.; Kiliçman, Adem; Ibrahim, Rabha W.

    2016-06-01

    This paper establishes approximate solution for non-linear iterative fractional differential equations: d/γv (s ) d sγ =ℵ (s ,v ,v (v )), where γ ∈ (0, 1], s ∈ I := [0, 1]. Our method is based on some convergence tools for analytic solution in a connected region. We show that the suggested solution is unique and convergent by some well known geometric functions.

  20. Affine Vertex Operator Algebras and Modular Linear Differential Equations

    NASA Astrophysics Data System (ADS)

    Arike, Yusuke; Kaneko, Masanobu; Nagatomo, Kiyokazu; Sakai, Yuichi

    2016-05-01

    In this paper, we list all affine vertex operator algebras of positive integral levels whose dimensions of spaces of characters are at most 5 and show that a basis of the space of characters of each affine vertex operator algebra in the list gives a fundamental system of solutions of a modular linear differential equation. Further, we determine the dimensions of the spaces of characters of affine vertex operator algebras whose numbers of inequivalent simple modules are not exceeding 20.

  1. Parallel iterative methods for sparse linear and nonlinear equations

    NASA Technical Reports Server (NTRS)

    Saad, Youcef

    1989-01-01

    As three-dimensional models are gaining importance, iterative methods will become almost mandatory. Among these, preconditioned Krylov subspace methods have been viewed as the most efficient and reliable, when solving linear as well as nonlinear systems of equations. There has been several different approaches taken to adapt iterative methods for supercomputers. Some of these approaches are discussed and the methods that deal more specifically with general unstructured sparse matrices, such as those arising from finite element methods, are emphasized.

  2. An interpretation and solution of ill-conditioned linear equations

    NASA Technical Reports Server (NTRS)

    Ojalvo, I. U.; Ting, T.

    1989-01-01

    Data insufficiency, poorly conditioned matrices and singularities in equations occur regularly in complex optimization, correlation, and interdisciplinary model studies. This work concerns itself with two methods of obtaining certain physically realistic solutions to ill-conditioned or singular algebraic systems of linear equations arising from such studies. Two efficient computational solution procedures that generally lead to locally unique solutions are presented when there is insufficient data to completely define the model, or a least-squares error formulation of this system results in an ill-conditioned system of equations. If it is assumed that a reasonable estimate of the uncertain data is available in both cases cited above, then we shall show how to obtain realistic solutions efficiently, in spite of the insufficiency of independent data. The proposed methods of solution are more efficient than singular-value decomposition for dealing with such systems, since they do not require solutions for all the non-zero eigenvalues of the coefficient matrix.

  3. Runge-Kutta Methods for Linear Ordinary Differential Equations

    NASA Technical Reports Server (NTRS)

    Zingg, David W.; Chisholm, Todd T.

    1997-01-01

    Three new Runge-Kutta methods are presented for numerical integration of systems of linear inhomogeneous ordinary differential equations (ODES) with constant coefficients. Such ODEs arise in the numerical solution of the partial differential equations governing linear wave phenomena. The restriction to linear ODEs with constant coefficients reduces the number of conditions which the coefficients of the Runge-Kutta method must satisfy. This freedom is used to develop methods which are more efficient than conventional Runge-Kutta methods. A fourth-order method is presented which uses only two memory locations per dependent variable, while the classical fourth-order Runge-Kutta method uses three. This method is an excellent choice for simulations of linear wave phenomena if memory is a primary concern. In addition, fifth- and sixth-order methods are presented which require five and six stages, respectively, one fewer than their conventional counterparts, and are therefore more efficient. These methods are an excellent option for use with high-order spatial discretizations.

  4. Nonlinear Riccati equations as a unifying link between linear quantum mechanics and other fields of physics

    NASA Astrophysics Data System (ADS)

    Schuch, Dieter

    2014-04-01

    Theoretical physics seems to be in a kind of schizophrenic state. Many phenomena in the observable macroscopic world obey nonlinear evolution equations, whereas the microscopic world is governed by quantum mechanics, a fundamental theory that is supposedly linear. In order to combine these two worlds in a common formalism, at least one of them must sacrifice one of its dogmas. I claim that linearity in quantum mechanics is not as essential as it apparently seems since quantum mechanics can be reformulated in terms of nonlinear Riccati equations. In a first step, it will be shown where complex Riccati equations appear in time-dependent quantum mechanics and how they can be treated and compared with similar space-dependent Riccati equations in supersymmetric quantum mechanics. Furthermore, the time-independent Schrödinger equation can also be rewritten as a complex Riccati equation. Finally, it will be shown that (real and complex) Riccati equations also appear in many other fields of physics, like statistical thermodynamics and cosmology.

  5. Derivation of the Linear Landau Equation and Linear Boltzmann Equation from the Lorentz Model with Magnetic Field

    NASA Astrophysics Data System (ADS)

    Marcozzi, M.; Nota, A.

    2016-03-01

    We consider a test particle moving in a random distribution of obstacles in the plane, under the action of a uniform magnetic field, orthogonal to the plane. We show that, in a weak coupling limit, the particle distribution behaves according to the linear Landau equation with a magnetic transport term. Moreover, we show that, in a low density regime, when each obstacle generates an inverse power law potential, the particle distribution behaves according to the linear Boltzmann equation with a magnetic transport term. We provide an explicit control of the error in the kinetic limit by estimating the contributions of the configurations which prevent the Markovianity. We compare these results with those ones obtained for a system of hard disks in Bobylev et al. (Phys Rev Lett 75:2, 1995), which show instead that the memory effects are not negligible in the Boltzmann-Grad limit.

  6. Obtaining General Relativity's N-body non-linear Lagrangian from iterative, linear algebraic scaling equations

    NASA Astrophysics Data System (ADS)

    Nordtvedt, K.

    2015-11-01

    A local system of bodies in General Relativity whose exterior metric field asymptotically approaches the Minkowski metric effaces any effects of the matter distribution exterior to its Minkowski boundary condition. To enforce to all orders this property of gravity which appears to hold in nature, a method using linear algebraic scaling equations is developed which generates by an iterative process an N-body Lagrangian expansion for gravity's motion-independent potentials which fulfills exterior effacement along with needed metric potential expansions. Then additional properties of gravity - interior effacement and Lorentz time dilation and spatial contraction - produce additional iterative, linear algebraic equations for obtaining the full non-linear and motion-dependent N-body gravity Lagrangian potentials as well.

  7. Charged anisotropic matter with linear or nonlinear equation of state

    SciTech Connect

    Varela, Victor; Rahaman, Farook; Ray, Saibal; Chakraborty, Koushik; Kalam, Mehedi

    2010-08-15

    Ivanov pointed out substantial analytical difficulties associated with self-gravitating, static, isotropic fluid spheres when pressure explicitly depends on matter density. Simplifications achieved with the introduction of electric charge were noticed as well. We deal with self-gravitating, charged, anisotropic fluids and get even more flexibility in solving the Einstein-Maxwell equations. In order to discuss analytical solutions we extend Krori and Barua's method to include pressure anisotropy and linear or nonlinear equations of state. The field equations are reduced to a system of three algebraic equations for the anisotropic pressures as well as matter and electrostatic energy densities. Attention is paid to compact sources characterized by positive matter density and positive radial pressure. Arising solutions satisfy the energy conditions of general relativity. Spheres with vanishing net charge contain fluid elements with unbounded proper charge density located at the fluid-vacuum interface. Notably the electric force acting on these fluid elements is finite, although the acting electric field is zero. Net charges can be huge (10{sup 19}C) and maximum electric field intensities are very large (10{sup 23}-10{sup 24} statvolt/cm) even in the case of zero net charge. Inward-directed fluid forces caused by pressure anisotropy may allow equilibrium configurations with larger net charges and electric field intensities than those found in studies of charged isotropic fluids. Links of these results with charged strange quark stars as well as models of dark matter including massive charged particles are highlighted. The van der Waals equation of state leading to matter densities constrained by cubic polynomial equations is briefly considered. The fundamental question of stability is left open.

  8. Chaotic dynamics and diffusion in a piecewise linear equation

    NASA Astrophysics Data System (ADS)

    Shahrear, Pabel; Glass, Leon; Edwards, Rod

    2015-03-01

    Genetic interactions are often modeled by logical networks in which time is discrete and all gene activity states update simultaneously. However, there is no synchronizing clock in organisms. An alternative model assumes that the logical network is preserved and plays a key role in driving the dynamics in piecewise nonlinear differential equations. We examine dynamics in a particular 4-dimensional equation of this class. In the equation, two of the variables form a negative feedback loop that drives a second negative feedback loop. By modifying the original equations by eliminating exponential decay, we generate a modified system that is amenable to detailed analysis. In the modified system, we can determine in detail the Poincaré (return) map on a cross section to the flow. By analyzing the eigenvalues of the map for the different trajectories, we are able to show that except for a set of measure 0, the flow must necessarily have an eigenvalue greater than 1 and hence there is sensitive dependence on initial conditions. Further, there is an irregular oscillation whose amplitude is described by a diffusive process that is well-modeled by the Irwin-Hall distribution. There is a large class of other piecewise-linear networks that might be analyzed using similar methods. The analysis gives insight into possible origins of chaotic dynamics in periodically forced dynamical systems.

  9. Chaotic dynamics and diffusion in a piecewise linear equation

    SciTech Connect

    Shahrear, Pabel; Glass, Leon; Edwards, Rod

    2015-03-15

    Genetic interactions are often modeled by logical networks in which time is discrete and all gene activity states update simultaneously. However, there is no synchronizing clock in organisms. An alternative model assumes that the logical network is preserved and plays a key role in driving the dynamics in piecewise nonlinear differential equations. We examine dynamics in a particular 4-dimensional equation of this class. In the equation, two of the variables form a negative feedback loop that drives a second negative feedback loop. By modifying the original equations by eliminating exponential decay, we generate a modified system that is amenable to detailed analysis. In the modified system, we can determine in detail the Poincaré (return) map on a cross section to the flow. By analyzing the eigenvalues of the map for the different trajectories, we are able to show that except for a set of measure 0, the flow must necessarily have an eigenvalue greater than 1 and hence there is sensitive dependence on initial conditions. Further, there is an irregular oscillation whose amplitude is described by a diffusive process that is well-modeled by the Irwin-Hall distribution. There is a large class of other piecewise-linear networks that might be analyzed using similar methods. The analysis gives insight into possible origins of chaotic dynamics in periodically forced dynamical systems.

  10. Exact traveling wave solutions for system of nonlinear evolution equations.

    PubMed

    Khan, Kamruzzaman; Akbar, M Ali; Arnous, Ahmed H

    2016-01-01

    In this work, recently deduced generalized Kudryashov method is applied to the variant Boussinesq equations, and the (2 + 1)-dimensional breaking soliton equations. As a result a range of qualitative explicit exact traveling wave solutions are deduced for these equations, which motivates us to develop, in the near future, a new approach to obtain unsteady solutions of autonomous nonlinear evolution equations those arise in mathematical physics and engineering fields. It is uncomplicated to extend this method to higher-order nonlinear evolution equations in mathematical physics. And it should be possible to apply the same method to nonlinear evolution equations having more general forms of nonlinearities by utilizing the traveling wave hypothesis. PMID:27347461

  11. The Linear KdV Equation with an Interface

    NASA Astrophysics Data System (ADS)

    Deconinck, Bernard; Sheils, Natalie E.; Smith, David A.

    2016-07-01

    The interface problem for the linear Korteweg-de Vries (KdV) equation in one-dimensional piecewise homogeneous domains is examined by constructing an explicit solution in each domain. The location of the interface is known and a number of compatibility conditions at the boundary are imposed. We provide an explicit characterization of sufficient interface conditions for the construction of a solution using Fokas's Unified Transform Method. The problem and the method considered here extend that of earlier papers to problems with more than two spatial derivatives.

  12. Some approximations in the linear dynamic equations of thin cylinders

    NASA Technical Reports Server (NTRS)

    El-Raheb, M.; Babcock, C. D., Jr.

    1981-01-01

    Theoretical analysis is performed on the linear dynamic equations of thin cylindrical shells to find the error committed by making the Donnell assumption and the neglect of in-plane inertia. At first, the effect of these approximations is studied on a shell with classical simply supported boundary condition. The same approximations are then investigated for other boundary conditions from a consistent approximate solution of the eigenvalue problem. The Donnell assumption is valid at frequencies high compared with the ring frequencies, for finite length thin shells. The error in the eigenfrequencies from omitting tangential inertia is appreciable for modes with large circumferential and axial wavelengths, independent of shell thickness and boundary conditions.

  13. A Solution to the Fundamental Linear Fractional Order Differential Equation

    NASA Technical Reports Server (NTRS)

    Hartley, Tom T.; Lorenzo, Carl F.

    1998-01-01

    This paper provides a solution to the fundamental linear fractional order differential equation, namely, (sub c)d(sup q, sub t) + ax(t) = bu(t). The impulse response solution is shown to be a series, named the F-function, which generalizes the normal exponential function. The F-function provides the basis for a qth order "fractional pole". Complex plane behavior is elucidated and a simple example, the inductor terminated semi- infinite lossy line, is used to demonstrate the theory.

  14. Invariant tori for a class of nonlinear evolution equations

    SciTech Connect

    Kolesov, A Yu; Rozov, N Kh

    2013-06-30

    The paper looks at quite a wide class of nonlinear evolution equations in a Banach space, including the typical boundary value problems for the main wave equations in mathematical physics (the telegraph equation, the equation of a vibrating beam, various equations from the elastic stability and so on). For this class of equations a unified approach to the bifurcation of invariant tori of arbitrary finite dimension is put forward. Namely, the problem of the birth of such tori from the zero equilibrium is investigated under the assumption that in the stability problem for this equilibrium the situation arises close to an infinite-dimensional degeneracy. Bibliography: 28 titles.

  15. The condition of regular degeneration for singularly perturbed systems of linear differential-difference equations.

    NASA Technical Reports Server (NTRS)

    Cooke, K. L.; Meyer, K. R.

    1966-01-01

    Extension of problem of singular perturbation for linear scalar constant coefficient differential- difference equation with single retardation to several retardations, noting degenerate equation solution

  16. The relativistic equations of stellar structure and evolution

    NASA Technical Reports Server (NTRS)

    Thorne, K. S.

    1977-01-01

    The general-relativistic equations of stellar structure and evolution are reformulated in a notation which makes easy contact with Newtonian theory. Also, a general-relativistic version of the mixing-length formalism for convection is presented.

  17. Standard Errors of Equating for the Percentile Rank-Based Equipercentile Equating with Log-Linear Presmoothing

    ERIC Educational Resources Information Center

    Wang, Tianyou

    2009-01-01

    Holland and colleagues derived a formula for analytical standard error of equating using the delta-method for the kernel equating method. Extending their derivation, this article derives an analytical standard error of equating procedure for the conventional percentile rank-based equipercentile equating with log-linear smoothing. This procedure is…

  18. Unpacking the Complexity of Linear Equations from a Cognitive Load Theory Perspective

    ERIC Educational Resources Information Center

    Ngu, Bing Hiong; Phan, Huy P.

    2016-01-01

    The degree of element interactivity determines the complexity and therefore the intrinsic cognitive load of linear equations. The unpacking of linear equations at the level of operational and relational lines allows the classification of linear equations in a hierarchical level of complexity. Mapping similar operational and relational lines across…

  19. Landscape evolution models: A review of their fundamental equations

    NASA Astrophysics Data System (ADS)

    Chen, Alex; Darbon, Jérôme; Morel, Jean-Michel

    2014-08-01

    This paper reviews the main physical laws proposed in landscape evolution models (LEMs). It discusses first the main partial differential equations involved in these models and their variants. These equations govern water runoff, stream incision, regolith-bedrock interaction, hillslope evolution, and sedimentation. A synthesis of existing LEMs is proposed. It proposes three models with growing complexity and with a growing number of components: two-equation models with only two components, governing water and bedrock evolution; three-equation models with three components where water, bedrock, and sediment interact; and finally models with four equations and four interacting components, namely water, bedrock, suspended sediment, and regolith. This analysis is not a mere compilation of existing LEMs. It attempts at giving the simplest and most general physically consistent set of equations, coping with all requirements stated in LEMs and LEM software. Three issues are in particular addressed and hopefully resolved. The first one is a correct formulation of the water transport equation down slopes. A general formulation for this equation is proposed, coping not only with the simplest form computing the drainage area but also with a sound energy dissipation argument associated with the Saint-Venant shallow water equations. The second issue arises from the coexistence of two competing modes, namely the detachment-limited erosion mode on hillslopes, and the transport-limited sediment transport on river beds. The third issue (linked to the second) is the fact that no conservation law is available for material in these two modes. A simple solution proposed to resolve these issues is the introduction, as suggested by several authors, of an additional variable for suspended sediment load in water. With only three variables and three equations, the above-mentioned contradictions seem to be eliminated. Several numerical experiments on real digital elevation models (DEMs

  20. On the solutions of some linear complex quaternionic equations.

    PubMed

    Bolat, Cennet; İpek, Ahmet

    2014-01-01

    Some complex quaternionic equations in the type AX - XB = C are investigated. For convenience, these equations were called generalized Sylvester-quaternion equations, which include the Sylvester equation as special cases. By the real matrix representations of complex quaternions, the necessary and sufficient conditions for the solvability and the general expressions of the solutions are obtained. PMID:25101318

  1. Transport equations for linear surface waves with random underlying flows

    NASA Astrophysics Data System (ADS)

    Bal, Guillaume; Chou, Tom

    1999-11-01

    We define the Wigner distribution and use it to develop equations for linear surface capillary-gravity wave propagation in the transport regime. The energy density a(r, k) contained in waves propagating with wavevector k at field point r is given by dota(r,k) + nabla_k[U_⊥(r,z=0) \\cdotk + Ω(k)]\\cdotnabla_ra [13pt] \\: hspace1in - (nabla_r\\cdotU_⊥)a - nabla_r(k\\cdotU_⊥)\\cdotnabla_ka = Σ(δU^2) where U_⊥(r, z=0) is a slowly varying surface current, and Ω(k) = √(k^3+k)tanh kh is the free capillary-gravity dispersion relation. Note that nabla_r\\cdotU_⊥(r,z=0) neq 0, and that the surface currents exchange energy density with the propagating waves. When an additional weak random current √\\varepsilon δU(r/\\varepsilon) varying on the scale of k-1 is included, we find an additional scattering term Σ(δU^2) as a function of correlations in δU. Our results can be applied to the study of surface wave energy transport over a turbulent ocean.

  2. A Unified Approach to Linear Equating for the Nonequivalent Groups Design

    ERIC Educational Resources Information Center

    von Davier, Alina A.; Kong, Nan

    2005-01-01

    This article describes a new, unified framework for linear equating in a non-equivalent groups anchor test (NEAT) design. The authors focus on three methods for linear equating in the NEAT design--Tucker, Levine observed-score, and chain--and develop a common parameterization that shows that each particular equating method is a special case of the…

  3. Linear Spatial Evolution Formulation of Two-Dimensional Waves on Liquid Films Under Evaporating/Isothermal/Condensing Conditions

    SciTech Connect

    Xuemin Ye; Chunxi Li; Weiping Yan

    2002-07-01

    The linear spatial evolution formulation of the two-dimensional waves of the evaporating or isothermal or condensing liquid films falling down an inclined wall is established for the film thickness with the collocation method based on the boundary layer theory and complete boundary conditions. The evolution equation indicates that there are two different modes of waves in spatial evolution. And the flow stability is highly dependent on the evaporation or condensation, thermo-capillarity, surface tension, inclination angle and Reynolds number. (authors)

  4. New Results on the Linear Equating Methods for the Non-Equivalent-Groups Design

    ERIC Educational Resources Information Center

    von Davier, Alina A.

    2008-01-01

    The two most common observed-score equating functions are the linear and equipercentile functions. These are often seen as different methods, but von Davier, Holland, and Thayer showed that any equipercentile equating function can be decomposed into linear and nonlinear parts. They emphasized the dominant role of the linear part of the nonlinear…

  5. A Procedure to Construct Conservation Laws of Nonlinear Evolution Equations

    NASA Astrophysics Data System (ADS)

    Yaşar, Emrullah; San, Sait

    2016-05-01

    In this article, we established abundant local conservation laws to some nonlinear evolution equations by a new combined approach, which is a union of multiplier and Ibragimov's new conservation theorem method. One can conclude that the solutions of the adjoint equations corresponding to the new conservation theorem can be obtained via multiplier functions. Many new families of conservation laws of the Pochammer-Chree (PC) equation and the Kaup-Boussinesq type of coupled KdV system are successfully obtained. The combined method presents a wider applicability for handling the conservation laws of nonlinear wave equations. The conserved vectors obtained here can be important for the explanation of some practical physical problems, reductions, and solutions of the underlying equations.

  6. Fokker-Planck equation of Schramm-Loewner evolution.

    PubMed

    Najafi, M N

    2015-08-01

    In this paper we statistically analyze the Fokker-Planck (FP) equation of Schramm-Loewner evolution (SLE) and its variant SLE(κ,ρc). After exploring the derivation and the properties of the Langevin equation of the tip of the SLE trace, we obtain the long- and short-time behaviors of the chordal SLE traces. We analyze the solutions of the FP and the corresponding Langevin equations and connect it to the conformal field theory (CFT) and present some exact results. We find the perturbative FP equation of the SLE(κ,ρc) traces and show that it is related to the higher-order correlation functions. Using the Langevin equation we find the long-time behaviors in this case. The CFT correspondence of this case is established and some exact results are presented. PMID:26382350

  7. Wave packet dynamics for a non-linear Schrödinger equation describing continuous position measurements

    NASA Astrophysics Data System (ADS)

    Zander, C.; Plastino, A. R.; Díaz-Alonso, J.

    2015-11-01

    We investigate time-dependent solutions for a non-linear Schrödinger equation recently proposed by Nassar and Miret-Artés (NM) to describe the continuous measurement of the position of a quantum particle (Nassar, 2013; Nassar and Miret-Artés, 2013). Here we extend these previous studies in two different directions. On the one hand, we incorporate a potential energy term in the NM equation and explore the corresponding wave packet dynamics, while in the previous works the analysis was restricted to the free-particle case. On the other hand, we investigate time-dependent solutions while previous studies focused on a stationary one. We obtain exact wave packet solutions for linear and quadratic potentials, and approximate solutions for the Morse potential. The free-particle case is also revisited from a time-dependent point of view. Our analysis of time-dependent solutions allows us to determine the stability properties of the stationary solution considered in Nassar (2013), Nassar and Miret-Artés (2013). On the basis of these results we reconsider the Bohmian approach to the NM equation, taking into account the fact that the evolution equation for the probability density ρ =| ψ | 2 is not a continuity equation. We show that the effect of the source term appearing in the evolution equation for ρ has to be explicitly taken into account when interpreting the NM equation from a Bohmian point of view.

  8. The relativistic equations of stellar structure and evolution

    NASA Technical Reports Server (NTRS)

    Thorne, K. S.

    1975-01-01

    The general relativistic equations of stellar structure and evolution are reformulated in a notation which makes easy contact with Newtonian theory. A general relativistic version of the mixing-length formalism for convection is presented. It is argued that in work on spherical systems, general relativity theorists have identified the wrong quantity as total mass-energy inside radius r.

  9. Nonlinear evolution of two fast-particle-driven modes near the linear stability threshold

    NASA Astrophysics Data System (ADS)

    Zaleśny, Jarosław; Galant, Grzegorz; Lisak, Mietek; Marczyński, Sławomir; Berczyński, Paweł; Gałkowski, Andrzej; Berczyński, Stefan

    2011-06-01

    A system of two coupled integro-differential equations is derived and solved for the non-linear evolution of two waves excited by the resonant interaction with fast ions just above the linear instability threshold. The effects of a resonant particle source and classical relaxation processes represented by the Krook, diffusion, and dynamical friction collision operators are included in the model, which exhibits different nonlinear evolution regimes, mainly depending on the type of relaxation process that restores the unstable distribution function of fast ions. When the Krook collisions or diffusion dominate, the wave amplitude evolution is characterized by modulation and saturation. However, when the dynamical friction dominates, the wave amplitude is in the explosive regime. In addition, it is found that the finite separation in the phase velocities of the two modes weakens the interaction strength between the modes.

  10. Symmetry Lie algebras and properties of linear ordinary differential equations with maximal dimension

    NASA Astrophysics Data System (ADS)

    Folly-Gbetoula, Mensah; Kara, A. H.

    2015-04-01

    Solutions of linear iterative equations and expressions for these solutions in terms of the parameters of the first-order source equation are obtained. Based on certain properties of iterative equations, finding the solutions is reduced to finding solutions of the second-order source equation. We have therefore found classes of solutions to the source equations by letting the parameters of the source equation be functions of a specific type such as monomials, functions of exponential and logarithmic type.

  11. Equivalence groupoids of classes of linear ordinary differential equations and their group classification

    NASA Astrophysics Data System (ADS)

    Boyko, Vyacheslav M.; Popovych, Roman O.; Shapoval, Nataliya M.

    2015-06-01

    Admissible point transformations of classes of rth order linear ordinary differential equations (in particular, the whole class of such equations and its subclasses of equations in the rational form, the Laguerre-Forsyth form, the first and second Arnold forms) are exhaustively described. Using these results, the group classification of such equations is carried out within the algebraic approach in three different ways.

  12. Variations in the Solution of Linear First-Order Differential Equations. Classroom Notes

    ERIC Educational Resources Information Center

    Seaman, Brian; Osler, Thomas J.

    2004-01-01

    A special project which can be given to students of ordinary differential equations is described in detail. Students create new differential equations by changing the dependent variable in the familiar linear first-order equation (dv/dx)+p(x)v=q(x) by means of a substitution v=f(y). The student then creates a table of the new equations and…

  13. Encouraging Students to Think Strategically when Learning to Solve Linear Equations

    ERIC Educational Resources Information Center

    Robson, Daphne; Abell, Walt; Boustead, Therese

    2012-01-01

    Students who are preparing to study science and engineering need to understand equation solving but adult students returning to study can find this difficult. In this paper, the design of an online resource, Equations2go, for helping students learn to solve linear equations is investigated. Students learning to solve equations need to consider…

  14. Soliton evolution and radiation loss for the Korteweg--de Vries equation

    SciTech Connect

    Kath, W.L.; Smyth, N.F. Department of Mathematics and Statistics, University of Edinburgh, The King's Buildings, Mayfield Road, Edinburgh EH93JZ, Scotland )

    1995-01-01

    The time-dependent behavior of solutions of the Korteweg--de Vries (KdV) equation for nonsoliton initial conditions is considered. While the exact solution of the KdV equation can in principle be obtained using the inverse scattering transform, in practice it can be extremely difficult to obtain information about a solution's transient evolution by this method. As an alternative, we present here an approximate method for investigating this transient evolution which is based upon the conservation laws associated with the KdV equation. Initial conditions which form one or two solitons are considered, and the resulting approximate evolution is found to be in good agreement with the numerical solution of the KdV equation. Justification for the approximations employed is also given by way of the linearized inverse scattering solution of the KdV equation. In addition, the final soliton state determined from the approximate equations agrees very well with the final state determined from the exact inverse scattering transform solution.

  15. Exponentially Stable Stationary Solutions for Stochastic Evolution Equations and Their Perturbation

    SciTech Connect

    Caraballo, Tomas Kloeden, Peter E. Schmalfuss, Bjoern

    2004-10-15

    We consider the exponential stability of stochastic evolution equations with Lipschitz continuous non-linearities when zero is not a solution for these equations. We prove the existence of anon-trivial stationary solution which is exponentially stable, where the stationary solution is generated by the composition of a random variable and the Wiener shift. We also construct stationary solutions with the stronger property of attracting bounded sets uniformly. The existence of these stationary solutions follows from the theory of random dynamical systems and their attractors. In addition, we prove some perturbation results and formulate conditions for the existence of stationary solutions for semilinear stochastic partial differential equations with Lipschitz continuous non-linearities.

  16. High resolution numerical simulation of the linearized Euler equations in conservation law form

    NASA Technical Reports Server (NTRS)

    Sreenivas, Kidambi; Whitfield, David L.; Huff, Dennis L.

    1993-01-01

    A linearized Euler solver based on a high resolution numerical scheme is presented. The approach is to linearize the flux vector as opposed to carrying through the complete linearization analysis with the dependent variable vector written as a sum of the mean and the perturbed flow. This allows the linearized equations to be maintained in conservation law form. The linearized equations are used to compute unsteady flows in turbomachinery blade rows arising due to blade vibrations. Numerical solutions are compared to theoretical results (where available) and to numerical solutions of the nonlinear Euler equations.

  17. Multi-soliton rational solutions for some nonlinear evolution equations

    NASA Astrophysics Data System (ADS)

    Osman, Mohamed S.

    2016-01-01

    The Korteweg-de Vries equation (KdV) and the (2+ 1)-dimensional Nizhnik-Novikov-Veselov system (NNV) are presented. Multi-soliton rational solutions of these equations are obtained via the generalized unified method. The analysis emphasizes the power of this method and its capability of handling completely (or partially) integrable equations. Compared with Hirota's method and the inverse scattering method, the proposed method gives more general exact multi-wave solutions without much additional effort. The results show that, by virtue of symbolic computation, the generalized unified method may provide us with a straightforward and effective mathematical tool for seeking multi-soliton rational solutions for solving many nonlinear evolution equations arising in different branches of sciences.

  18. A Harnack's inequality for mixed type evolution equations

    NASA Astrophysics Data System (ADS)

    Paronetto, Fabio

    2016-03-01

    We define a homogeneous parabolic De Giorgi classes of order 2 which suits a mixed type class of evolution equations whose simplest example is μ (x)∂ u/∂ t - Δu = 0 where μ can be positive, null and negative, so in particular elliptic-parabolic and forward-backward parabolic equations are included. For functions belonging to this class we prove local boundedness and show a Harnack inequality which, as by-products, gives Hölder-continuity, in particular in the interface I where μ changes sign, and a maximum principle.

  19. Operator Factorization and the Solution of Second-Order Linear Ordinary Differential Equations

    ERIC Educational Resources Information Center

    Robin, W.

    2007-01-01

    The theory and application of second-order linear ordinary differential equations is reviewed from the standpoint of the operator factorization approach to the solution of ordinary differential equations (ODE). Using the operator factorization approach, the general second-order linear ODE is solved, exactly, in quadratures and the resulting…

  20. Supporting Students' Understanding of Linear Equations with One Variable Using Algebra Tiles

    ERIC Educational Resources Information Center

    Saraswati, Sari; Putri, Ratu Ilma Indra; Somakim

    2016-01-01

    This research aimed to describe how algebra tiles can support students' understanding of linear equations with one variable. This article is a part of a larger research on learning design of linear equations with one variable using algebra tiles combined with balancing method. Therefore, it will merely discuss one activity focused on how students…

  1. Cauchy problem for non-linear systems of equations in the critical case

    NASA Astrophysics Data System (ADS)

    Kaikina, E. I.; Naumkin, P. I.; Shishmarev, I. A.

    2004-12-01

    The large-time asymptotic behaviour is studied for a system of non-linear evolution dissipative equations \\displaystyle u_t+\\mathscr N(u,u)+\\mathscr Lu=0, \\qquad x\\in\\mathbb R^n, \\quad t>0, \\displaystyle u(0,x)=\\widetilde u(x), \\qquad x\\in\\mathbb R^n, where \\mathscr L is a linear pseudodifferential operator \\mathscr Lu=\\overline{\\mathscr F}_{\\xi\\to x}(L(\\xi)\\widehat u(\\xi)) and the non-linearity \\mathscr N is a quadratic pseudodifferential operator \\displaystyle \\mathscr N(u,u)=\\overline{\\mathscr F}_{\\xi\\to x}\\sum_{k,l=1}^m\\int_{\\mathbb R^n}A^{kl}(t,\\xi,y)\\widehat u_k(t,\\xi-y)\\widehat u_l(t,y)\\,dy,where \\widehat u\\equiv\\mathscr F_{x\\to\\xi}u is the Fourier transform. Under the assumptions that the initial data \\widetilde u\\in\\mathbf H^{\\beta,0}\\cap\\mathbf H^{0,\\beta}, \\beta>n/2 are sufficiently small, where \\displaystyle \\mathbf H^{n,m}=\\{\\phi\\in\\mathbf L^2:\\Vert\\langle x\\rangle^m\\lang......\\phi(x)\\Vert _{\\mathbf L^2}<\\infty\\}, \\qquad \\langle x\\rangle=\\sqrt{1+x^2}\\,,is a Sobolev weighted space, and that the total mass vector \\displaystyle M=\\int\\widetilde u(x)\\,dx\

  2. An iterative method for indefinite systems of linear equations

    NASA Technical Reports Server (NTRS)

    Ito, K.

    1984-01-01

    An iterative method for solving nonsymmetric indefinite linear systems is proposed. The method involves the successive use of a modified version of the conjugate residual method. A numerical example is given to illustrate the method.

  3. Symmetry classification and joint invariants for the scalar linear (1 + 1) elliptic equation

    NASA Astrophysics Data System (ADS)

    Mahomed, F. M.; Johnpillai, A. G.; Aslam, A.

    2015-08-01

    The equations for the classification of symmetries of the scalar linear (1 + 1) elliptic partial differential equation (PDE) are obtained in terms of Cotton's invariants. New joint differential invariants of the scalar linear elliptic (1 + 1) PDE in two independent variables are derived in terms of Cotton's invariants by application of the infinitesimal method. Joint differential invariants of the scalar linear elliptic equation are also deduced from the basis of the joint differential invariants of the scalar linear (1 + 1) hyperbolic equation under the application of the complex linear transformation. We also find a basis of joint differential invariants for such type of equations by utilization of the operators of invariant differentiation. The other invariants are functions of the basis elements and their invariant derivatives. Examples are given to illustrate our results.

  4. Linear equations in general purpose codes for stiff ODEs

    SciTech Connect

    Shampine, L. F.

    1980-02-01

    It is noted that it is possible to improve significantly the handling of linear problems in a general-purpose code with very little trouble to the user or change to the code. In such situations analytical evaluation of the Jacobian is a lot cheaper than numerical differencing. A slight change in the point at which the Jacobian is evaluated results in a more accurate Jacobian in linear problems. (RWR)

  5. Fast and local non-linear evolution of steep wave-groups on deep water: A comparison of approximate models to fully non-linear simulations

    NASA Astrophysics Data System (ADS)

    Adcock, T. A. A.; Taylor, P. H.

    2016-01-01

    The non-linear Schrödinger equation and its higher order extensions are routinely used for analysis of extreme ocean waves. This paper compares the evolution of individual wave-packets modelled using non-linear Schrödinger type equations with packets modelled using fully non-linear potential flow models. The modified non-linear Schrödinger Equation accurately models the relatively large scale non-linear changes to the shape of wave-groups, with a dramatic contraction of the group along the mean propagation direction and a corresponding extension of the width of the wave-crests. In addition, as extreme wave form, there is a local non-linear contraction of the wave-group around the crest which leads to a localised broadening of the wave spectrum which the bandwidth limited non-linear Schrödinger Equations struggle to capture. This limitation occurs for waves of moderate steepness and a narrow underlying spectrum.

  6. Accurate numerical solution of compressible, linear stability equations

    NASA Technical Reports Server (NTRS)

    Malik, M. R.; Chuang, S.; Hussaini, M. Y.

    1982-01-01

    The present investigation is concerned with a fourth order accurate finite difference method and its application to the study of the temporal and spatial stability of the three-dimensional compressible boundary layer flow on a swept wing. This method belongs to the class of compact two-point difference schemes discussed by White (1974) and Keller (1974). The method was apparently first used for solving the two-dimensional boundary layer equations. Attention is given to the governing equations, the solution technique, and the search for eigenvalues. A general purpose subroutine is employed for solving a block tridiagonal system of equations. The computer time can be reduced significantly by exploiting the special structure of two matrices.

  7. Application of variational and Galerkin equations to linear and nonlinear finite element analysis

    NASA Technical Reports Server (NTRS)

    Yu, Y.-Y.

    1974-01-01

    The paper discusses the application of the variational equation to nonlinear finite element analysis. The problem of beam vibration with large deflection is considered. The variational equation is shown to be flexible in both the solution of a general problem and in the finite element formulation. Difficulties are shown to arise when Galerkin's equations are used in the consideration of the finite element formulation of two-dimensional linear elasticity and of the linear classical beam.

  8. Integrability of the Wong Equations in the Class of Linear Integrals of Motion

    NASA Astrophysics Data System (ADS)

    Magazev, A. A.

    2016-04-01

    The Wong equations, which describe the motion of a classical charged particle with isospin in an external gauge field, are considered. The structure of the Lie algebra of the linear integrals of motion of these equations is investigated. An algebraic condition for integrability of the Wong equations is formulated. Some examples are considered.

  9. Convolutions of Rayleigh functions and their application to semi-linear equations in circular domains

    NASA Astrophysics Data System (ADS)

    Varlamov, Vladimir

    2007-03-01

    Rayleigh functions [sigma]l([nu]) are defined as series in inverse powers of the Bessel function zeros [lambda][nu],n[not equal to]0, where ; [nu] is the index of the Bessel function J[nu](x) and n=1,2,... is the number of the zeros. Convolutions of Rayleigh functions with respect to the Bessel index, are needed for constructing global-in-time solutions of semi-linear evolution equations in circular domains [V. Varlamov, On the spatially two-dimensional Boussinesq equation in a circular domain, Nonlinear Anal. 46 (2001) 699-725; V. Varlamov, Convolution of Rayleigh functions with respect to the Bessel index, J. Math. Anal. Appl. 306 (2005) 413-424]. The study of this new family of special functions was initiated in [V. Varlamov, Convolution of Rayleigh functions with respect to the Bessel index, J. Math. Anal. Appl. 306 (2005) 413-424], where the properties of R1(m) were investigated. In the present work a general representation of Rl(m) in terms of [sigma]l([nu]) is deduced. On the basis of this a representation for the function R2(m) is obtained in terms of the [psi]-function. An asymptotic expansion is computed for R2(m) as m-->[infinity]. Such asymptotics are needed for establishing function spaces for solutions of semi-linear equations in bounded domains with periodicity conditions in one coordinate. As an example of application of Rl(m) a forced Boussinesq equationutt-2b[Delta]ut=-[alpha][Delta]2u+[Delta]u+[beta][Delta](u2)+f with [alpha],b=const>0 and [beta]=const[set membership, variant]R is considered in a unit disc with homogeneous boundary and initial data. Construction of its global-in-time solutions involves the use of the functions R1(m) and R2(m) which are responsible for the nonlinear smoothing effect.

  10. Parameterization and Monte Carlo solutions to PDF evolution equations

    NASA Astrophysics Data System (ADS)

    Suciu, Nicolae; Schüler, Lennart; Attinger, Sabine; Knabner, Peter

    2015-04-01

    The probability density function (PDF) of the chemical species concentrations transported in random environments is governed by unclosed evolution equations. The PDF is transported in the physical space by drift and diffusion processes described by coefficients derived by standard upscaling procedures. Its transport in the concentration space is described by a drift determined by reaction rates, in a closed form, as well as a term accounting for the sub-grid mixing process due to molecular diffusion and local scale hydrodynamic dispersion. Sub-grid mixing processes are usually described by models of the conditionally averaged diffusion flux or models of the conditional dissipation rate. We show that in certain situations mixing terms can also be derived, in the form of an Itô process, from simulated or measured concentration time series. Monte Carlo solutions to PDF evolution equations are usually constructed with systems of computational particles, which are well suited for highly dimensional advection-dominated problems. Such solutions require the fulfillment of specific consistency conditions relating the statistics of the random concentration field, function of both space and time, to that of the time random function describing an Itô process in physical and concentration spaces which governs the evolution of the system of particles. We show that the solution of the Fokker-Planck equation for the concentration-position PDF of the Itô process coincides with the solution of the PDF equation only for constant density flows in spatially statistically homogeneous systems. We also find that the solution of the Fokker-Planck equation is still equivalent to the solution of the PDF equation weighted by the variable density or by other conserved scalars. We illustrate the parameterization of the sub-grid mixing by time series and the Monte Carlo solution for a problem of contaminant transport in groundwater. The evolution of the system of computational particles whose

  11. On the relationship between ODE solvers and iterative solvers for linear equations

    SciTech Connect

    Lorber, A.; Joubert, W.; Carey, G.F.

    1994-12-31

    The connection between the solution of linear systems of equations by both iterative methods and explicit time stepping techniques is investigated. Based on the similarities, a suite of Runge-Kutta time integration schemes with extended stability domains are developed using Chebyshev iteration polynomials. These Runge-Kutta schemes are applied to linear and non-linear systems arising from the numerical solution of PDE`s containing either physical or artificial transient terms. Specifically, the solutions of model linear convection and convection-diffusion equations are presented, as well as the solution of a representative non-linear Navier-Stokes fluid flow problem. Included are results of parallel computations.

  12. Evolution of Linear Mitochondrial Genomes in Medusozoan Cnidarians

    PubMed Central

    Kayal, Ehsan; Bentlage, Bastian; Collins, Allen G.; Pirro, Stacy; Lavrov, Dennis V.

    2012-01-01

    In nearly all animals, mitochondrial DNA (mtDNA) consists of a single circular molecule that encodes several subunits of the protein complexes involved in oxidative phosphorylation as well as part of the machinery for their expression. By contrast, mtDNA in species belonging to Medusozoa (one of the two major lineages in the phylum Cnidaria) comprises one to several linear molecules. Many questions remain on the ubiquity of linear mtDNA in medusozoans and the mechanisms responsible for its evolution, replication, and transcription. To address some of these questions, we determined the sequences of nearly complete linear mtDNA from 24 species representing all four medusozoan classes: Cubozoa, Hydrozoa, Scyphozoa, and Staurozoa. All newly determined medusozoan mitochondrial genomes harbor the 17 genes typical for cnidarians and map as linear molecules with a high degree of gene order conservation relative to the anthozoans. In addition, two open reading frames (ORFs), polB and ORF314, are identified in cubozoan, schyphozoan, staurozoan, and trachyline hydrozoan mtDNA. polB belongs to the B-type DNA polymerase gene family, while the product of ORF314 may act as a terminal protein that binds telomeres. We posit that these two ORFs are remnants of a linear plasmid that invaded the mitochondrial genomes of the last common ancestor of Medusozoa and are responsible for its linearity. Hydroidolinan hydrozoans have lost the two ORFs and instead have duplicated cox1 at each end of their mitochondrial chromosome(s). Fragmentation of mtDNA occurred independently in Cubozoa and Hydridae (Hydrozoa, Hydroidolina). Our broad sampling allows us to reconstruct the evolutionary history of linear mtDNA in medusozoans. PMID:22113796

  13. Collection of parallel linear equations routines for the Denelcor HEP

    SciTech Connect

    Dongarra, J.J.; Hiromoto, R.E.

    1983-09-01

    This note describes the implementation and performance results for a few standard linear algebra routines on the Denelcor HEP computer. The algorithms used here are based on high-level modules which facilitate portability and perform efficiently in a wide range of environments.

  14. Mixed finite elements for the Richards' equation: linearization procedure

    NASA Astrophysics Data System (ADS)

    Pop, I. S.; Radu, F.; Knabner, P.

    2004-07-01

    We consider mixed finite element discretization for a class of degenerate parabolic problems including the Richards' equation. After regularization, time discretization is achieved by an Euler implicit scheme, while mixed finite elements are employed for the discretization in space. Based on the results obtained in (Radu et al. RANA Preprint 02-06, Eindhoven University of Technology, 2002), this paper considers a simple iterative scheme to solve the emerging nonlinear elliptic problems.

  15. Who Needs Linear Equating under the NEAT Design?

    ERIC Educational Resources Information Center

    Maris, Gunter; Schmittmann, Verena D.; Borsboom, Denny

    2010-01-01

    Test equating under the NEAT design is, at best, a necessary evil. At bottom, the procedure aims to reach a conclusion on what a tested person would have done, if he or she were administered a set of items that were in fact never administered. It is not possible to infer such a conclusion from the data, because one simply has not made the required…

  16. Tidal evolution of the Galilean satellites - A linearized theory

    NASA Technical Reports Server (NTRS)

    Greenberg, R.

    1981-01-01

    The Laplace resonance among the Galilean satellites Io, Europa, and Ganymede is traditionally reduced to a pendulum-like dynamical problem by neglecting short-period variations of several orbital elements. However, some of these variations that can now be neglected may once have had longer periods, comparable to the 'pendulum' period, if the system was formerly in deep resonance (pairs of periods even closer to the ratio 2:1 than they are now). In that case, the dynamical system cannot be reduced to fewer than nine dimensions. The nine-dimensional system is linearized here in order to study small variations about equilibrium. When tidal effects are included, the resulting evolution is substantially the same as was indicated by the pendulum approach, except that evolution out of deep resonance is found to be somewhat slower than suggested by extrapolation of the pendulum results. This slower rate helps support the hypothesis that the system may have evolved from deep resonance.

  17. A quasi-linear kinetic equation for cosmic rays in the interplanetary medium

    NASA Technical Reports Server (NTRS)

    Luhmann, J. G.

    1976-01-01

    A kinetic equation for interplanetary cosmic rays is set up with the aid of weak-plasma-turbulence theory for an idealized radially symmetric model of the interplanetary magnetic field. As a starting point, this treatment invokes the Vlasov equation instead of the traditional Fokker-Planck equation. Quasi-linear theory is applied to obtain a momentum diffusion equation for the heliocentric frame of reference which describes the interaction of cosmic rays with convecting magnetic irregularities in the solar-wind plasma. Under restricted conditions, the well-known equation of solar modulation can be obtained from this kinetic equation.

  18. Comparing the full time-dependent Bogoliubov-de-Gennes equations to their linear approximation: a numerical investigation

    NASA Astrophysics Data System (ADS)

    Hainzl, Christian; Seyrich, Jonathan

    2016-05-01

    In this paper we report on the results of a numerical study of the nonlinear time-dependent Bardeen-Cooper-Schrieffer (BCS) equations, often also denoted as Bogoliubov-de-Gennes (BdG) equations, for a one-dimensional system of fermions with contact interaction. We show that, even above the critical temperature, the full equations and their linear approximation give rise to completely different evolutions. In contrast to its linearization, the full nonlinear equation does not show any diffusive behavior in the order parameter. This means that the order parameter does not follow a Ginzburg-Landau-type of equation, in accordance with a recent theoretical result in [R.L. Frank, C. Hainzl, B. Schlein, R. Seiringer, to appear in Lett. Math. Phys., arXiv:1504.05885 (2016)]. We include a full description on the numerical implementation of the partial differential BCS/BdG equations.

  19. Special functions arising in the study of semi-linear equations in circular domains

    NASA Astrophysics Data System (ADS)

    Varlamov, Vladimir

    2007-05-01

    Rayleigh functions are defined by the formulawhere are zeros of the Bessel function J[nu](x) and n=1,2,3,..., is the number of the zero. These functions appear in the classical problems of vibrating circular membranes, heat conduction in cylinders and diffraction through circular apertures. In the present paper it is shown that a new family of special functions, convolutions of Rayleigh functions with respect to the Bessel index,arises in constructing solutions of semi-linear evolution equations in circular domains (see also [V. Varlamov, Convolution of Rayleigh functions with respect to the Bessel index, J. Math. Anal. Appl. 306 (2005) 413-424]). As an example of its application a forced Cahn-Hilliard equation is considered in a unit disc with homogeneous boundary and initial conditions. Construction of its global-in-time solutions involves the use of R1(m) and R2(m). A general representation of Rl(m) is deduced and on the basis of that a particular result for R2(m) is obtained convenient for computing its asymptotics as m-->[infinity]. The latter issue is important for establishing a function space to which a solution of the corresponding problem belongs.

  20. Finding linear dependencies in integration-by-parts equations: A Monte Carlo approach

    NASA Astrophysics Data System (ADS)

    Kant, Philipp

    2014-05-01

    The reduction of a large number of scalar integrals to a small set of master integrals via Laporta’s algorithm is common practice in multi-loop calculations. It is also a major bottleneck in terms of running time and memory consumption. It involves solving a large set of linear equations where many of the equations are linearly dependent. We propose a simple algorithm that eliminates all linearly dependent equations from a given system, reducing the time and space requirements of a subsequent run of Laporta’s algorithm.

  1. Integrals and integral equations in linearized wing theory

    NASA Technical Reports Server (NTRS)

    Lomax, Harvard; Heaslet, Max A; Fuller, Franklyn B

    1951-01-01

    The formulas of subsonic and supersonic wing theory for source, doublet, and vortex distributions are reviewed and a systematic presentation is provided which relates these distributions to the pressure and to the vertical induced velocity in the plane of the wing. It is shown that care must be used in treating the singularities involved in the analysis and that the order of integration is not always reversible. Concepts suggested by the irreversibility of order of integration are shown to be useful in the inversion of singular integral equations when operational techniques are used. A number of examples are given to illustrate the methods presented, attention being directed to supersonic flight speed.

  2. Modeling taper charge with a non-linear equation

    NASA Technical Reports Server (NTRS)

    Mcdermott, P. P.

    1985-01-01

    Work aimed at modeling the charge voltage and current characteristics of nickel-cadmium cells subject to taper charge is presented. Work reported at previous NASA Battery Workshops has shown that the voltage of cells subject to constant current charge and discharge can be modeled very accurately with the equation: voltage = A + (B/(C-X)) + De to the -Ex where A, B, D, and E are fit parameters and x is amp-hr of charge removed during discharge or returned during charge. In a constant current regime, x is also equivalent to time on charge or discharge.

  3. Clutter locus equation for more general linear array orientation

    NASA Astrophysics Data System (ADS)

    Bickel, Douglas L.

    2011-06-01

    The clutter locus is an important concept in space-time adaptive processing (STAP) for ground moving target indicator (GMTI) radar systems. The clutter locus defines the expected ground clutter location in the angle-Doppler domain. Typically in literature, the clutter locus is presented as a line, or even a set of ellipsoids, under certain assumptions about the geometry of the array. Most often, the array is assumed to be in the horizontal plane containing the velocity vector. This paper will give a more general 3-dimensional interpretation of the clutter locus for a general linear array orientation.

  4. Evolution equation for soft physics at high energy

    NASA Astrophysics Data System (ADS)

    Brogueira, P.; Dias de Deus, J.

    2010-07-01

    Based on the nonlinear logistic equation we study, in a qualitative and semi-quantitative way, the evolution with energy and saturation of the elastic differential cross-section in pp(\\bar{p}p) collisions at high energy. Geometrical scaling occurs at the black disc limit, and scaling develops first for small values of the scaling variable |t|σtot.. Our prediction for dσ/dt at LHC, with two zeros and a minimum at large |t| differs, as far as we know, from all existing ones.

  5. Prediction of Undsteady Flows in Turbomachinery Using the Linearized Euler Equations on Deforming Grids

    NASA Technical Reports Server (NTRS)

    Clark, William S.; Hall, Kenneth C.

    1994-01-01

    A linearized Euler solver for calculating unsteady flows in turbomachinery blade rows due to both incident gusts and blade motion is presented. The model accounts for blade loading, blade geometry, shock motion, and wake motion. Assuming that the unsteadiness in the flow is small relative to the nonlinear mean solution, the unsteady Euler equations can be linearized about the mean flow. This yields a set of linear variable coefficient equations that describe the small amplitude harmonic motion of the fluid. These linear equations are then discretized on a computational grid and solved using standard numerical techniques. For transonic flows, however, one must use a linear discretization which is a conservative linearization of the non-linear discretized Euler equations to ensure that shock impulse loads are accurately captured. Other important features of this analysis include a continuously deforming grid which eliminates extrapolation errors and hence, increases accuracy, and a new numerically exact, nonreflecting far-field boundary condition treatment based on an eigenanalysis of the discretized equations. Computational results are presented which demonstrate the computational accuracy and efficiency of the method and demonstrate the effectiveness of the deforming grid, far-field nonreflecting boundary conditions, and shock capturing techniques. A comparison of the present unsteady flow predictions to other numerical, semi-analytical, and experimental methods shows excellent agreement. In addition, the linearized Euler method presented requires one or two orders-of-magnitude less computational time than traditional time marching techniques making the present method a viable design tool for aeroelastic analyses.

  6. Analytic solutions of the Rayleigh equation for linear density profiles

    NASA Astrophysics Data System (ADS)

    Cherfils, C.; Lafitte, O.

    2000-08-01

    We consider the Rayleigh-Taylor instability in linear density profiles and we derive the exact analytic expressions of the growth rates and associated eigenfunctions. We study the behavior of the multiple eigenvalues in both the short- and the long-wavelength limit. As the largest eigenvalue γmax reduces to the classical Rayleigh growth rate; the other eigenvalues vanish as the front thickness tends to zero. Furthermore, the simple expression of γmax exact to first order in the long-wavelength limit differs from the widely used estimate Akg/(1+AkL0), where g is the acceleration, A the Atwood number, k the wave number of the perturbation, and L0 the minimum density gradient scale length.

  7. Promoting Understanding of Linear Equations with the Median-Slope Algorithm

    ERIC Educational Resources Information Center

    Edwards, Michael Todd

    2005-01-01

    The preliminary findings resulting when invented algorithm is used with entry-level students while introducing linear equations is described. As calculations are accessible, the algorithm is preferable to more rigorous statistical procedures in entry-level classrooms.

  8. On the compatibility equations of nonlinear and linear elasticity in the presence of boundary conditions

    NASA Astrophysics Data System (ADS)

    Angoshtari, Arzhang; Yavari, Arash

    2015-12-01

    We use Hodge-type orthogonal decompositions for studying the compatibility equations of the displacement gradient and the linear strain with prescribed boundary displacements. We show that the displacement gradient is compatible if and only if for any equilibrated virtual first Piola-Kirchhoff stress tensor field, the virtual work done by the displacement gradient is equal to the virtual work done by the prescribed boundary displacements. This condition is very similar to the classical compatibility equations for the linear strain. Since these compatibility equations for linear and nonlinear strains involve infinite-dimensional spaces and consequently are not easy to use in practice, we derive alternative compatibility equations, which are written in terms of some finite-dimensional spaces and are more useful in practice. Using these new compatibility equations, we present some non-trivial examples that show that compatible strains may become incompatible in the presence of prescribed boundary displacements.

  9. Polynomial elimination theory and non-linear stability analysis for the Euler equations

    NASA Technical Reports Server (NTRS)

    Kennon, S. R.; Dulikravich, G. S.; Jespersen, D. C.

    1986-01-01

    Numerical methods are presented that exploit the polynomial properties of discretizations of the Euler equations. It is noted that most finite difference or finite volume discretizations of the steady-state Euler equations produce a polynomial system of equations to be solved. These equations are solved using classical polynomial elimination theory, with some innovative modifications. This paper also presents some preliminary results of a new non-linear stability analysis technique. This technique is applicable to determining the stability of polynomial iterative schemes. Results are presented for applying the elimination technique to a one-dimensional test case. For this test case, the exact solution is computed in three iterations. The non-linear stability analysis is applied to determine the optimal time step for solving Burgers' equation using the MacCormack scheme. The estimated optimal time step is very close to the time step that arises from a linear stability analysis.

  10. Perturbations of linear delay differential equations at the verge of instability

    NASA Astrophysics Data System (ADS)

    Lingala, N.; Namachchivaya, N. Sri

    2016-06-01

    The characteristic equation for a linear delay differential equation (DDE) has countably infinite roots on the complex plane. This paper considers linear DDEs that are on the verge of instability, i.e., a pair of roots of the characteristic equation lies on the imaginary axis of the complex plane and all other roots have negative real parts. It is shown that when small noise perturbations are present, the probability distribution of the dynamics can be approximated by the probability distribution of a certain one-dimensional stochastic differential equation (SDE) without delay. This is advantageous because equations without delay are easier to simulate and one-dimensional SDEs are analytically tractable. When the perturbations are also linear, it is shown that the stability depends on a specific complex number. The theory is applied to study oscillators with delayed feedback. Some errors in other articles that use multiscale approach are pointed out.

  11. Spatio-temporal dynamics induced by competing instabilities in two asymmetrically coupled nonlinear evolution equations

    SciTech Connect

    Schüler, D.; Alonso, S.; Bär, M.; Torcini, A.

    2014-12-15

    Pattern formation often occurs in spatially extended physical, biological, and chemical systems due to an instability of the homogeneous steady state. The type of the instability usually prescribes the resulting spatio-temporal patterns and their characteristic length scales. However, patterns resulting from the simultaneous occurrence of instabilities cannot be expected to be simple superposition of the patterns associated with the considered instabilities. To address this issue, we design two simple models composed by two asymmetrically coupled equations of non-conserved (Swift-Hohenberg equations) or conserved (Cahn-Hilliard equations) order parameters with different characteristic wave lengths. The patterns arising in these systems range from coexisting static patterns of different wavelengths to traveling waves. A linear stability analysis allows to derive a two parameter phase diagram for the studied models, in particular, revealing for the Swift-Hohenberg equations, a co-dimension two bifurcation point of Turing and wave instability and a region of coexistence of stationary and traveling patterns. The nonlinear dynamics of the coupled evolution equations is investigated by performing accurate numerical simulations. These reveal more complex patterns, ranging from traveling waves with embedded Turing patterns domains to spatio-temporal chaos, and a wide hysteretic region, where waves or Turing patterns coexist. For the coupled Cahn-Hilliard equations the presence of a weak coupling is sufficient to arrest the coarsening process and to lead to the emergence of purely periodic patterns. The final states are characterized by domains with a characteristic length, which diverges logarithmically with the coupling amplitude.

  12. Trajectory approach to the Schrödinger-Langevin equation with linear dissipation for ground states

    NASA Astrophysics Data System (ADS)

    Chou, Chia-Chun

    2015-11-01

    The Schrödinger-Langevin equation with linear dissipation is integrated by propagating an ensemble of Bohmian trajectories for the ground state of quantum systems. Substituting the wave function expressed in terms of the complex action into the Schrödinger-Langevin equation yields the complex quantum Hamilton-Jacobi equation with linear dissipation. We transform this equation into the arbitrary Lagrangian-Eulerian version with the grid velocity matching the flow velocity of the probability fluid. The resulting equation is simultaneously integrated with the trajectory guidance equation. Then, the computational method is applied to the harmonic oscillator, the double well potential, and the ground vibrational state of methyl iodide. The excellent agreement between the computational and the exact results for the ground state energies and wave functions shows that this study provides a synthetic trajectory approach to the ground state of quantum systems.

  13. A block iterative LU solver for weakly coupled linear systems. [in fluid dynamics equations

    NASA Technical Reports Server (NTRS)

    Cooke, C. H.

    1977-01-01

    A hybrid technique, called the block iterative LU solver, is proposed for solving the linear equations resulting from a finite element numerical analysis of certain fluid dynamics problems where the equations are weakly coupled between distinct sets of variables. Either the block Jacobi iterative method or the block Gauss-Seidel iterative solver is combined with LU decomposition.

  14. Boundedness of solutions for non-linear quasi-periodic differential equations with Liouvillean frequency

    NASA Astrophysics Data System (ADS)

    Wang, Jing; You, Jiangong

    2016-07-01

    We study the boundedness of solutions for non-linear quasi-periodic differential equations with Liouvillean frequencies. We proved that if the forcing is quasi-periodic in time with two frequencies which is not super-Liouvillean, then all solutions of the equation are bounded. The proof is based on action-angle variables and modified KAM theory.

  15. On group classification of normal systems of linear second-order ordinary differential equations

    NASA Astrophysics Data System (ADS)

    Meleshko, S. V.; Moyo, S.

    2015-05-01

    In this paper we study the general group classification of systems of linear second-order ordinary differential equations inspired from earlier works and recent results on the group classification of such systems. Some interesting results and subsequent theorem arising from this particular study are discussed here. This paper considers the study of irreducible systems of second-order ordinary differential equations.

  16. Stochastic differential equation model for linear growth birth and death processes with immigration and emigration

    NASA Astrophysics Data System (ADS)

    Granita, Bahar, A.

    2015-03-01

    This paper discusses on linear birth and death with immigration and emigration (BIDE) process to stochastic differential equation (SDE) model. Forward Kolmogorov equation in continuous time Markov chain (CTMC) with a central-difference approximation was used to find Fokker-Planckequation corresponding to a diffusion process having the stochastic differential equation of BIDE process. The exact solution, mean and variance function of BIDE process was found.

  17. Stochastic differential equation model for linear growth birth and death processes with immigration and emigration

    SciTech Connect

    Granita; Bahar, A.

    2015-03-09

    This paper discusses on linear birth and death with immigration and emigration (BIDE) process to stochastic differential equation (SDE) model. Forward Kolmogorov equation in continuous time Markov chain (CTMC) with a central-difference approximation was used to find Fokker-Planckequation corresponding to a diffusion process having the stochastic differential equation of BIDE process. The exact solution, mean and variance function of BIDE process was found.

  18. Linear Ordinary Differential Equations with Constant Coefficients. Revisiting the Impulsive Response Method Using Factorization

    ERIC Educational Resources Information Center

    Camporesi, Roberto

    2011-01-01

    We present an approach to the impulsive response method for solving linear constant-coefficient ordinary differential equations based on the factorization of the differential operator. The approach is elementary, we only assume a basic knowledge of calculus and linear algebra. In particular, we avoid the use of distribution theory, as well as of…

  19. Chesterton and Mathematics: The Three Riders of Apocalypse (Introduction to Systems of Linear Equations, Workshop).

    ERIC Educational Resources Information Center

    Ramirez, Rene; Flores, Homero

    This paper takes G.K. Chesterton's short story, "The Three Horsemen of Apocalypse," as a motivating introduction to the study of linear equations systems, as well as a review of the concept of linear function. The guide has three objectives: (1) to illustrate how to use non-mathematical sources to create math problems; (2) to use the graphing…

  20. A Classroom Note on: An Alternative Method for Solving Linear Equations

    ERIC Educational Resources Information Center

    Klikovac, Ida; Riedinger, Michael

    2011-01-01

    The method of "Double False Position" is an arithmetic approach to solving linear equations that pre-dates current algebraic methods by more than 3,000 years. The method applies to problems that, in algebraic notation, would be expressed as y = L(x), where L(x) is a linear function of x. Double False Position works by evaluating the described…

  1. Fractional hereditariness of lipid membranes: Instabilities and linearized evolution.

    PubMed

    Deseri, L; Pollaci, P; Zingales, M; Dayal, K

    2016-05-01

    In this work lipid ordering phase changes arising in planar membrane bilayers is investigated both accounting for elasticity alone and for effective viscoelastic response of such assemblies. The mechanical response of such membranes is studied by minimizing the Gibbs free energy which penalizes perturbations of the changes of areal stretch and their gradients only (Deseri and Zurlo, 2013). As material instabilities arise whenever areal stretches characterizing homogeneous configurations lie inside the spinoidal zone of the free energy density, bifurcations from such configurations are shown to occur as oscillatory perturbations of the in-plane displacement. Experimental observations (Espinosa et al., 2011) show a power-law in-plane viscous behavior of lipid structures allowing for an effective viscoelastic behavior of lipid membranes, which falls in the framework of Fractional Hereditariness. A suitable generalization of the variational principle invoked for the elasticity is applied in this case, and the corresponding Euler-Lagrange equation is found together with a set of boundary and initial conditions. Separation of variables allows for showing how Fractional Hereditariness owes bifurcated modes with a larger number of spatial oscillations than the corresponding elastic analog. Indeed, the available range of areal stresses for material instabilities is found to increase with respect to the purely elastic case. Nevertheless, the time evolution of the perturbations solving the Euler-Lagrange equation above exhibits time-decay and the large number of spatial oscillation slowly relaxes, thereby keeping the features of a long-tail type time-response. PMID:26897568

  2. CFORM- LINEAR CONTROL SYSTEM DESIGN AND ANALYSIS: CLOSED FORM SOLUTION AND TRANSIENT RESPONSE OF THE LINEAR DIFFERENTIAL EQUATION

    NASA Technical Reports Server (NTRS)

    Jamison, J. W.

    1994-01-01

    CFORM was developed by the Kennedy Space Center Robotics Lab to assist in linear control system design and analysis using closed form and transient response mechanisms. The program computes the closed form solution and transient response of a linear (constant coefficient) differential equation. CFORM allows a choice of three input functions: the Unit Step (a unit change in displacement); the Ramp function (step velocity); and the Parabolic function (step acceleration). It is only accurate in cases where the differential equation has distinct roots, and does not handle the case for roots at the origin (s=0). Initial conditions must be zero. Differential equations may be input to CFORM in two forms - polynomial and product of factors. In some linear control analyses, it may be more appropriate to use a related program, Linear Control System Design and Analysis (KSC-11376), which uses root locus and frequency response methods. CFORM was written in VAX FORTRAN for a VAX 11/780 under VAX VMS 4.7. It has a central memory requirement of 30K. CFORM was developed in 1987.

  3. Reconciling the eigenmode analysis with the Maxwell Bloch equations approach to superradiance in the linear regime

    NASA Astrophysics Data System (ADS)

    Friedberg, Richard; Manassah, Jamal T.

    2008-07-01

    The superradiance from a slab of inverted two-level atoms is theoretically analyzed in the linear regime from both the perspective of the expansion in eigenfunctions of the integral equation with the Lienard-Wiechert potential as kernel, and that of linearizing the Maxwell-Bloch equations. We show the equivalence of both approaches. We show that the so-called Reduced Maxwell-Bloch equations do not yield even approximately the correct solution when applied in the obvious way, but that they can be made to give the correct solution by adding a fictitious input field.

  4. Soliton solutions to a few fractional nonlinear evolution equations in shallow water wave dynamics

    NASA Astrophysics Data System (ADS)

    Mirzazadeh, Mohammad; Ekici, Mehmet; Sonmezoglu, Abdullah; Ortakaya, Sami; Eslami, Mostafa; Biswas, Anjan

    2016-05-01

    This paper studies a few nonlinear evolution equations that appear with fractional temporal evolution and fractional spatial derivatives. These are Benjamin-Bona-Mahoney equation, dispersive long wave equation and Nizhnik-Novikov-Veselov equation. The extended Jacobi's elliptic function expansion method is implemented to obtain soliton and other periodic singular solutions to these equations. In the limiting case, when the modulus of ellipticity approaches zero or unity, these doubly periodic functions approach solitary waves or shock waves or periodic singular solutions emerge.

  5. Approximating electronically excited states with equation-of-motion linear coupled-cluster theory

    SciTech Connect

    Byrd, Jason N. Rishi, Varun; Perera, Ajith; Bartlett, Rodney J.

    2015-10-28

    A new perturbative approach to canonical equation-of-motion coupled-cluster theory is presented using coupled-cluster perturbation theory. A second-order Møller-Plesset partitioning of the Hamiltonian is used to obtain the well known equation-of-motion many-body perturbation theory equations and two new equation-of-motion methods based on the linear coupled-cluster doubles and linear coupled-cluster singles and doubles wavefunctions. These new methods are benchmarked against very accurate theoretical and experimental spectra from 25 small organic molecules. It is found that the proposed methods have excellent agreement with canonical equation-of-motion coupled-cluster singles and doubles state for state orderings and relative excited state energies as well as acceptable quantitative agreement for absolute excitation energies compared with the best estimate theory and experimental spectra.

  6. Central equation of state in spherical characteristic evolutions

    SciTech Connect

    Barreto, W.; Castillo, L.; Barrios, E.

    2009-10-15

    We study the evolution of a perfect-fluid sphere coupled to a scalar radiation field. By ensuring a Ricci invariant regularity as a conformally flat spacetime at the central world line we find that the fluid coupled to the scalar field satisfies the equation of state {rho}{sub c}+3p{sub c}=const at the center of the sphere, where the energy {rho}{sub c} density and the pressure p{sub c} do not necessarily contain the scalar field contribution. The fluid can be interpreted as anisotropic and radiant because of the scalar field, but it becomes perfect and nonradiative at the center of the sphere. These results are currently being considered to build up a numerical relativistic hydrodynamic solver.

  7. Initial-value problem for a linear ordinary differential equation of noninteger order

    SciTech Connect

    Pskhu, Arsen V

    2011-04-30

    An initial-value problem for a linear ordinary differential equation of noninteger order with Riemann-Liouville derivatives is stated and solved. The initial conditions of the problem ensure that (by contrast with the Cauchy problem) it is uniquely solvable for an arbitrary set of parameters specifying the orders of the derivatives involved in the equation; these conditions are necessary for the equation under consideration. The problem is reduced to an integral equation; an explicit representation of the solution in terms of the Wright function is constructed. As a consequence of these results, necessary and sufficient conditions for the solvability of the Cauchy problem are obtained. Bibliography: 7 titles.

  8. Entropy production and the geometry of dissipative evolution equations.

    PubMed

    Reina, Celia; Zimmer, Johannes

    2015-11-01

    Purely dissipative evolution equations are often cast as gradient flow structures, z ̇=K(z)DS(z), where the variable z of interest evolves towards the maximum of a functional S according to a metric defined by an operator K. While the functional often follows immediately from physical considerations (e.g., the thermodynamic entropy), the operator K and the associated geometry does not necessarily do so (e.g., Wasserstein geometry for diffusion). In this paper, we present a variational statement in the sense of maximum entropy production that directly delivers a relationship between the operator K and the constraints of the system. In particular, the Wasserstein metric naturally arises here from the conservation of mass or energy, and depends on the Onsager resistivity tensor, which, itself, may be understood as another metric, as in the steepest entropy ascent formalism. This variational principle is exemplified here for the simultaneous evolution of conserved and nonconserved quantities in open systems. It thus extends the classical Onsager flux-force relationships and the associated variational statement to variables that do not have a flux associated to them. We further show that the metric structure K is intimately linked to the celebrated Freidlin-Wentzell theory of stochastically perturbed gradient flows, and that the proposed variational principle encloses an infinite-dimensional fluctuation-dissipation statement. PMID:26651657

  9. The non-linear coupled spin 2-spin 3 Cotton equation in three dimensions

    NASA Astrophysics Data System (ADS)

    Linander, Hampus; Nilsson, Bengt E. W.

    2016-07-01

    In the context of three-dimensional conformal higher spin theory we derive, in the frame field formulation, the full non-linear spin 3 Cotton equation coupled to spin 2. This is done by solving the corresponding Chern-Simons gauge theory system of equations, that is, using F = 0 to eliminate all auxiliary fields and thus expressing the Cotton equation in terms of just the spin 3 frame field and spin 2 covariant derivatives and tensors (Schouten). In this derivation we neglect the spin 4 and higher spin sectors and approximate the star product commutator by a Poisson bracket. The resulting spin 3 Cotton equation is complicated but can be related to linearized versions in the metric formulation obtained previously by other authors. The expected symmetry (spin 3 "translation", "Lorentz" and "dilatation") properties are verified for Cotton and other relevant tensors but some perhaps unexpected features emerge in the process, in particular in relation to the non-linear equations. We discuss the structure of this non-linear spin 3 Cotton equation but its explicit form is only presented here, in an exact but not completely refined version, in appended files obtained by computer algebra methods. Both the frame field and metric formulations are provided.

  10. Calculation of unsteady flows in turbomachinery using the linearized Euler equations

    NASA Astrophysics Data System (ADS)

    Hall, Kenneth C.; Crawley, Edward F.

    1989-06-01

    A method for calculating unsteady flows in cascades is presented. The model, which is based on the linearized unsteady Euler equations, accounts for blade loading shock motion, wake motion, and blade geometry. The mean flow through the cascade is determined by solving the full nonlinear Euler equations. Assuming the unsteadiness in the flow is small, then the Euler equations are linearized about the mean flow to obtain a set of linear variable coefficient equations which describe the small amplitude, harmonic motion of the flow. These equations are discretized on a computational grid via a finite volume operator and solved directly subject to an appropriate set of linearized boundary conditions. The steady flow, which is calculated prior to the unsteady flow, is found via a Newton iteration procedure. An important feature of the analysis is the use of shock fitting to model steady and unsteady shocks. Use of the Euler equations with the unsteady Rankine-Hugoniot shock jump conditions correctly models the generation of steady and unsteady entropy and vorticity at shocks. In particular, the low frequency shock displacement is correctly predicted. Results of this method are presented for a variety of test cases. Predicted unsteady transonic flows in channels are compared to full nonlinear Euler solutions obtained using time-accurate, time-marching methods. The agreement between the two methods is excellent for small to moderate levels of flow unsteadiness. The method is also used to predict unsteady flows in cascades due to blade motion (flutter problem) and incoming disturbances (gust response problem).

  11. Determining mixed linear-nonlinear coupled differential equations from multivariate discrete time series sequences

    NASA Astrophysics Data System (ADS)

    Irving, A. D.; Dewson, T.

    1997-02-01

    A new method is described for extracting mixed linear-nonlinear coupled differential equations from multivariate discrete time series data. It is assumed in the present work that the solution of the coupled ordinary differential equations can be represented as a multivariate Volterra functional expansion. A tractable hierarchy of moment equations is generated by operating on a suitably truncated Volterra functional expansion. The hierarchy facilitates the calculation of the coefficients of the coupled differential equations. In order to demonstrate the method's ability to accurately estimate the coefficients of the governing differential equations, it is applied to data derived from the numerical solution of the Lorenz equations with additive noise. The method is then used to construct a dynamic global mid- and high-magnetic latitude ionospheric model where nonlinear phenomena such as period doubling and quenching occur. It is shown that the estimated inhomogeneous coupled second-order differential equation model for the ionospheric foF2 peak plasma density can accurately forecast the future behaviour of a set of ionosonde stations which encompass the earth. Finally, the method is used to forecast the future behaviour of a portfolio of Japanese common stock prices. The hierarchy method can be used to characterise the observed behaviour of a wide class of coupled linear and mixed linear-nonlinear phenomena.

  12. Regularized moment equations for binary gas mixtures: Derivation and linear analysis

    NASA Astrophysics Data System (ADS)

    Gupta, Vinay Kumar; Struchtrup, Henning; Torrilhon, Manuel

    2016-04-01

    The applicability of the order of magnitude method [H. Struchtrup, "Stable transport equations for rarefied gases at high orders in the Knudsen number," Phys. Fluids 16, 3921-3934 (2004)] is extended to binary gas mixtures in order to derive various sets of equations—having minimum number of moments at a given order of accuracy in the Knudsen number—for binary mixtures of monatomic-inert-ideal gases interacting with the Maxwell interaction potential. For simplicity, the equations are derived in the linear regime up to third order accuracy in the Knudsen number. At zeroth order, the method produces the Euler equations; at first order, it results into the Fick, Navier-Stokes, and Fourier equations; at second order, it yields a set of 17 moment equations; and at third order, it leads to the regularized 17-moment equations. The transport coefficients in the Fick, Navier-Stokes, and Fourier equations obtained through order of magnitude method are compared with those obtained through the classical Chapman-Enskog expansion method. It is established that the different temperatures of different constituents do not play a role up to second order accurate theories in the Knudsen number, whereas they do contribute to third order accurate theory in the Knudsen number. Furthermore, it is found empirically that the zeroth, first, and second order accurate equations are linearly stable for all binary gas mixtures; however, although the third order accurate regularized 17-moment equations are linearly stable for most of the mixtures, they are linearly unstable for mixtures having extreme difference in molecular masses.

  13. A note on improved F-expansion method combined with Riccati equation applied to nonlinear evolution equations

    PubMed Central

    Islam, Md. Shafiqul; Khan, Kamruzzaman; Akbar, M. Ali; Mastroberardino, Antonio

    2014-01-01

    The purpose of this article is to present an analytical method, namely the improved F-expansion method combined with the Riccati equation, for finding exact solutions of nonlinear evolution equations. The present method is capable of calculating all branches of solutions simultaneously, even if multiple solutions are very close and thus difficult to distinguish with numerical techniques. To verify the computational efficiency, we consider the modified Benjamin–Bona–Mahony equation and the modified Korteweg-de Vries equation. Our results reveal that the method is a very effective and straightforward way of formulating the exact travelling wave solutions of nonlinear wave equations arising in mathematical physics and engineering. PMID:26064530

  14. Construction of rogue wave and lump solutions for nonlinear evolution equations

    NASA Astrophysics Data System (ADS)

    Lü, Zhuosheng; Chen, Yinnan

    2015-07-01

    Based on symbolic computation and an ansatz, we present a constructive algorithm to seek rogue wave and lump solutions for nonlinear evolution equations. As illustrative examples, we consider the potential-YTSF equation and a variable coefficient KP equation, and obtain nonsingular rational solutions of the two equations. The solutions can be rogue wave or lump solutions under different parameter conditions. We also present graphic illustration of some special solutions which would help better understand the evolution of solution waves.

  15. Non-linear evolution of the cosmic neutrino background

    SciTech Connect

    Villaescusa-Navarro, Francisco; Viel, Matteo; Peña-Garay, Carlos E-mail: spb@ias.edu E-mail: viel@oats.inaf.it

    2013-03-01

    We investigate the non-linear evolution of the relic cosmic neutrino background by running large box-size, high resolution N-body simulations which incorporate cold dark matter (CDM) and neutrinos as independent particle species. Our set of simulations explore the properties of neutrinos in a reference ΛCDM model with total neutrino masses between 0.05-0.60 eV in cold dark matter haloes of mass 10{sup 11}−10{sup 15} h{sup −1}M{sub s}un, over a redshift range z = 0−2. We compute the halo mass function and show that it is reasonably well fitted by the Sheth-Tormen formula, once the neutrino contribution to the total matter is removed. More importantly, we focus on the CDM and neutrino properties of the density and peculiar velocity fields in the cosmological volume, inside and in the outskirts of virialized haloes. The dynamical state of the neutrino particles depends strongly on their momentum: whereas neutrinos in the low velocity tail behave similarly to CDM particles, neutrinos in the high velocity tail are not affected by the clustering of the underlying CDM component. We find that the neutrino (linear) unperturbed momentum distribution is modified and mass and redshift dependent deviations from the expected Fermi-Dirac distribution are in place both in the cosmological volume and inside haloes. The neutrino density profiles around virialized haloes have been carefully investigated and a simple fitting formula is provided. The neutrino profile, unlike the cold dark matter one, is found to be cored with core size and central density that depend on the neutrino mass, redshift and mass of the halo, for halos of masses larger than ∼ 10{sup 13.5}h{sup −1}M{sub s}un. For lower masses the neutrino profile is best fitted by a simple power-law relation in the range probed by the simulations. The results we obtain are numerically converged in terms of neutrino profiles at the 10% level for scales above ∼ 200 h{sup −1}kpc at z = 0, and are stable with

  16. Anisotropic static spheres with linear equation of state in isotropic coordinates

    NASA Astrophysics Data System (ADS)

    Govender, M.; Thirukkanesh, S.

    2015-08-01

    In this paper we present a general framework for generating exact solutions to the Einstein field equations for static, anisotropic fluid spheres in comoving, isotropic coordinates obeying a linear equation of state of the form . We show that all possible solutions can be obtained via a single generating function defined in terms of one of the gravitational potentials. The physical viability of our solution-generating method is illustrated by modeling a static fluid sphere describing a strange star.

  17. Exact solutions and linear stability analysis for two-dimensional Ablowitz-Ladik equation

    NASA Astrophysics Data System (ADS)

    Zhang, Jin-Liang; Wang, Hong-Xian

    2014-04-01

    The Ablowitz-Ladik equation is a very important model in nonlinear mathematical physics. In this paper, the hyperbolic function solitary wave solutions, the trigonometric function periodic wave solutions, and the rational wave solutions with more arbitrary parameters of two-dimensional Ablowitz-Ladik equation are derived by using the (G'/G)-expansion method, and the effects of the parameters (including the coupling constant and other parameters) on the linear stability of the exact solutions are analysed and numerically simulated.

  18. Master equation solutions in the linear regime of characteristic formulation of general relativity

    NASA Astrophysics Data System (ADS)

    Cedeño M., C. E.; de Araujo, J. C. N.

    2015-12-01

    From the field equations in the linear regime of the characteristic formulation of general relativity, Bishop, for a Schwarzschild's background, and Mädler, for a Minkowski's background, were able to show that it is possible to derive a fourth order ordinary differential equation, called master equation, for the J metric variable of the Bondi-Sachs metric. Once β , another Bondi-Sachs potential, is obtained from the field equations, and J is obtained from the master equation, the other metric variables are solved integrating directly the rest of the field equations. In the past, the master equation was solved for the first multipolar terms, for both the Minkowski's and Schwarzschild's backgrounds. Also, Mädler recently reported a generalisation of the exact solutions to the linearised field equations when a Minkowski's background is considered, expressing the master equation family of solutions for the vacuum in terms of Bessel's functions of the first and the second kind. Here, we report new solutions to the master equation for any multipolar moment l , with and without matter sources in terms only of the first kind Bessel's functions for the Minkowski, and in terms of the Confluent Heun's functions (Generalised Hypergeometric) for radiative (nonradiative) case in the Schwarzschild's background. We particularize our families of solutions for the known cases for l =2 reported previously in the literature and find complete agreement, showing the robustness of our results.

  19. Analysis and accurate numerical solutions of the integral equation derived from the linearized BGKW equation for the steady Couette flow

    NASA Astrophysics Data System (ADS)

    Jiang, Shidong; Luo, Li-Shi

    2016-07-01

    The integral equation for the flow velocity u (x ; k) in the steady Couette flow derived from the linearized Bhatnagar-Gross-Krook-Welander kinetic equation is studied in detail both theoretically and numerically in a wide range of the Knudsen number k between 0.003 and 100.0. First, it is shown that the integral equation is a Fredholm equation of the second kind in which the norm of the compact integral operator is less than 1 on Lp for any 1 ≤ p ≤ ∞ and thus there exists a unique solution to the integral equation via the Neumann series. Second, it is shown that the solution is logarithmically singular at the endpoints. More precisely, if x = 0 is an endpoint, then the solution can be expanded as a double power series of the form ∑n=0∞∑m=0∞cn,mxn(xln ⁡ x) m about x = 0 on a small interval x ∈ (0 , a) for some a > 0. And third, a high-order adaptive numerical algorithm is designed to compute the solution numerically to high precision. The solutions for the flow velocity u (x ; k), the stress Pxy (k), and the half-channel mass flow rate Q (k) are obtained in a wide range of the Knudsen number 0.003 ≤ k ≤ 100.0; and these solutions are accurate for at least twelve significant digits or better, thus they can be used as benchmark solutions.

  20. An efficient parallel algorithm for the solution of a tridiagonal linear system of equations

    NASA Technical Reports Server (NTRS)

    Stone, H. S.

    1971-01-01

    Tridiagonal linear systems of equations are solved on conventional serial machines in a time proportional to N, where N is the number of equations. The conventional algorithms do not lend themselves directly to parallel computations on computers of the ILLIAC IV class, in the sense that they appear to be inherently serial. An efficient parallel algorithm is presented in which computation time grows as log sub 2 N. The algorithm is based on recursive doubling solutions of linear recurrence relations, and can be used to solve recurrence relations of all orders.

  1. A Piecewise Linear Finite Element Discretization of the Diffusion Equation for Arbitrary Polyhedral Grids

    SciTech Connect

    Bailey, T S; Adams, M L; Yang, B; Zika, M R

    2005-07-15

    We develop a piecewise linear (PWL) Galerkin finite element spatial discretization for the multi-dimensional radiation diffusion equation. It uses piecewise linear weight and basis functions in the finite element approximation, and it can be applied on arbitrary polygonal (2D) or polyhedral (3D) grids. We show that this new PWL method gives solutions comparable to those from Palmer's finite-volume method. However, since the PWL method produces a symmetric positive definite coefficient matrix, it should be substantially more computationally efficient than Palmer's method, which produces an asymmetric matrix. We conclude that the Galerkin PWL method is an attractive option for solving diffusion equations on unstructured grids.

  2. An efficient parallel algorithm for the solution of a tridiagonal linear system of equations.

    NASA Technical Reports Server (NTRS)

    Stone, H. S.

    1973-01-01

    Tridiagonal linear systems of equations can be solved on conventional serial machines in a time proportional to N, where N is the number of equations. The conventional algorithms do not lend themselves directly to parallel computation on computers of the Illiac IV class, in the sense that they appear to be inherently serial. An efficient parallel algorithm is presented in which computation time grows as log(sub-2) N. The algorithm is based on recursive doubling solutions of linear recurrence relations, and can be used to solve recurrence relations of all orders.

  3. On absorbing boundary conditions for linearized Euler equations by a perfectly matched layer

    NASA Technical Reports Server (NTRS)

    Hu, Fang Q.

    1995-01-01

    Recently, Berenger introduced a Perfectly Matched Layer (PML) technique for absorbing electromagnetic waves. In the present paper, a perfectly matched layer is proposed for absorbing out-going two-dimensional waves in a uniform mean flow, generated by linearized Euler equations. It is well known that the linearized Euler equations support acoustic waves, which travel with the speed of sound relative to the mean flow, and vorticity and entropy waves, which travel with the mean flow. The PML equations to be used at a region adjacent to the artificial boundary for absorbing these linear waves are defined. Plane waves solutions to the PML equations are developed and wave propagation and absorption properties are given. It is shown that the theoretical reflection coefficients at an interface between the Euler and PML domains are zero, independent of the angle of incidence and frequency of the waves. As such, the present study points out a possible alternative approach for absorbing out-going waves of the Euler equations with little or no reflection in computation. Numerical examples that demonstrate the validity of the proposed PML equations are also presented.

  4. Quasi-linear equation for magnetoplasma oscillations in the weakly relativistic approximation

    NASA Astrophysics Data System (ADS)

    Rizzato, F. B.

    Some limitations which are present in the dynamical equations for collisionless plasmas are discussed. Some elementary corrections to the linear theories are obtained in a heuristic form, which directly lead to the so-called quasi-linear theories in its non-relativistic and relativistic forms. The effect of the relativistic variation of the gyrofrequency on the diffusion coefficient is examined in a typically perturbative approximation.

  5. Green's function-stochastic methods framework for probing nonlinear evolution problems: Burger's equation, the nonlinear Schroedinger's equation, and hydrodynamic organization of near-molecular-scale vorticity

    SciTech Connect

    Keanini, R.G.

    2011-04-15

    Research Highlights: > Systematic approach for physically probing nonlinear and random evolution problems. > Evolution of vortex sheets corresponds to evolution of an Ornstein-Uhlenbeck process. > Organization of near-molecular scale vorticity mediated by hydrodynamic modes. > Framework allows calculation of vorticity evolution within random strain fields. - Abstract: A framework which combines Green's function (GF) methods and techniques from the theory of stochastic processes is proposed for tackling nonlinear evolution problems. The framework, established by a series of easy-to-derive equivalences between Green's function and stochastic representative solutions of linear drift-diffusion problems, provides a flexible structure within which nonlinear evolution problems can be analyzed and physically probed. As a preliminary test bed, two canonical, nonlinear evolution problems - Burgers' equation and the nonlinear Schroedinger's equation - are first treated. In the first case, the framework provides a rigorous, probabilistic derivation of the well known Cole-Hopf ansatz. Likewise, in the second, the machinery allows systematic recovery of a known soliton solution. The framework is then applied to a fairly extensive exploration of physical features underlying evolution of randomly stretched and advected Burger's vortex sheets. Here, the governing vorticity equation corresponds to the Fokker-Planck equation of an Ornstein-Uhlenbeck process, a correspondence that motivates an investigation of sub-sheet vorticity evolution and organization. Under the assumption that weak hydrodynamic fluctuations organize disordered, near-molecular-scale, sub-sheet vorticity, it is shown that these modes consist of two weakly damped counter-propagating cross-sheet acoustic modes, a diffusive cross-sheet shear mode, and a diffusive cross-sheet entropy mode. Once a consistent picture of in-sheet vorticity evolution is established, a number of analytical results, describing the motion

  6. Distribution of error in least-squares solution of an overdetermined system of linear simultaneous equations

    NASA Technical Reports Server (NTRS)

    Miller, C. D.

    1972-01-01

    Probability density functions were derived for errors in the evaluation of unknowns by the least squares method in system of nonhomogeneous linear equations. Coefficients of the unknowns were assumed correct and computational precision were also assumed. A vector space was used, with number of dimensions equal to the number of equations. An error vector was defined and assumed to have uniform distribution of orientation throughout the vector space. The density functions are shown to be insensitive to the biasing effects of the source of the system of equations.

  7. FAST TRACK COMMUNICATION: On the Liouvillian solution of second-order linear differential equations and algebraic invariant curves

    NASA Astrophysics Data System (ADS)

    Man, Yiu-Kwong

    2010-10-01

    In this communication, we present a method for computing the Liouvillian solution of second-order linear differential equations via algebraic invariant curves. The main idea is to integrate Kovacic's results on second-order linear differential equations with the Prelle-Singer method for computing first integrals of differential equations. Some examples on using this approach are provided.

  8. The primer vector in linear, relative-motion equations. [spacecraft trajectory optimization

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Primer vector theory is used in analyzing a set of linear, relative-motion equations - the Clohessy-Wiltshire equations - to determine the criteria and necessary conditions for an optimal, N-impulse trajectory. Since the state vector for these equations is defined in terms of a linear system of ordinary differential equations, all fundamental relations defining the solution of the state and costate equations, and the necessary conditions for optimality, can be expressed in terms of elementary functions. The analysis develops the analytical criteria for improving a solution by (1) moving any dependent or independent variable in the initial and/or final orbit, and (2) adding intermediate impulses. If these criteria are violated, the theory establishes a sufficient number of analytical equations. The subsequent satisfaction of these equations will result in the optimal position vectors and times of an N-impulse trajectory. The solution is examined for the specific boundary conditions of (1) fixed-end conditions, two-impulse, and time-open transfer; (2) an orbit-to-orbit transfer; and (3) a generalized rendezvous problem. A sequence of rendezvous problems is solved to illustrate the analysis and the computational procedure.

  9. First-Order System Least Squares for the Stokes Equations, with Application to Linear Elasticity

    NASA Technical Reports Server (NTRS)

    Cai, Z.; Manteuffel, T. A.; McCormick, S. F.

    1996-01-01

    Following our earlier work on general second-order scalar equations, here we develop a least-squares functional for the two- and three-dimensional Stokes equations, generalized slightly by allowing a pressure term in the continuity equation. By introducing a velocity flux variable and associated curl and trace equations, we are able to establish ellipticity in an H(exp 1) product norm appropriately weighted by the Reynolds number. This immediately yields optimal discretization error estimates for finite element spaces in this norm and optimal algebraic convergence estimates for multiplicative and additive multigrid methods applied to the resulting discrete systems. Both estimates are uniform in the Reynolds number. Moreover, our pressure-perturbed form of the generalized Stokes equations allows us to develop an analogous result for the Dirichlet problem for linear elasticity with estimates that are uniform in the Lame constants.

  10. Validity and slopes of the linear equation of state for natural brines in salt lake systems

    NASA Astrophysics Data System (ADS)

    Kohfahl, C.; Post, V. E. A.; Hamann, E.; Prommer, H.; Simmons, C. T.

    2015-04-01

    Many density-dependent groundwater flow simulations rely on a linear equation of state that relates the fluid density to the total dissolved solute content (TDS). This approach ignores non-linear volume of mixing effects, as well as the impact of any chemical reactions. These effects can be considered by using geochemical codes that implement algorithms that calculate the density of a fluid based on the concentration of individual solute species. While in principle such algorithms could be used in-lieu of a linear equation of state in a groundwater model, the computational overhead is such that the use of a more simplified equation of state is preferred. This requires that the assumption of linearity as well as the appropriate value of the linear slope have to be determined. Here, published density measurements of 7 chemically-distinct salt lake brines are compared with densities calculated by PHREEQC-3, confirming the applicability of PHREEQC's algorithm to salt lake brines, as well as to seawater brines and artificial brines from laboratory experiments. Further, calculations with PHREEQC-3 are used to assess the impact of mineral precipitation reactions during evaporative concentration. Results show that the density-TDS relationship is essentially linear over a wide concentration range, and that slopes range between 0.64 and 0.75, with the upper end of the range applying to Na-CO3-Cl brines and the lower end to Na-Cl brines. Mineral precipitation of highly-soluble evaporate minerals such as halite and trona limit TDS, and may lead to considerable errors in coupled flow simulations based on a linear equation of state at high concentrations. Misrepresentation of the slope may lead to an error of up to 20% in the calculated length of the brine nose bordering a salt lake, or of the Rayleigh number, which indicates if a density stratification is stable or not.

  11. Futility of Log-Linear Smoothing When Equating with Unrepresentative Small Samples

    ERIC Educational Resources Information Center

    Puhan, Gautam

    2011-01-01

    The impact of log-linear presmoothing on the accuracy of small sample chained equipercentile equating was evaluated under two conditions. In the first condition the small samples differed randomly in ability from the target population. In the second condition the small samples were systematically different from the target population. Results…

  12. Solving System Of Linear Equations Using The Bimodal Optical Computer (Experimental Results)

    NASA Astrophysics Data System (ADS)

    Habli, M. A.; Abushagur, M. A. G.; Caulfield, H. J.

    1988-08-01

    Hardware and software design of the Bimodal Optical Computer (BOC) and its implementations are presented. Experimental results of the BOC for solving a system of linear equations Ax = b is reported. The effect of calibration, the convergence reliability of the BOC, and the convergence of problems with singular matrices are studied.

  13. Standard Error of Linear Observed-Score Equating for the NEAT Design with Nonnormally Distributed Data

    ERIC Educational Resources Information Center

    Zu, Jiyun; Yuan, Ke-Hai

    2012-01-01

    In the nonequivalent groups with anchor test (NEAT) design, the standard error of linear observed-score equating is commonly estimated by an estimator derived assuming multivariate normality. However, real data are seldom normally distributed, causing this normal estimator to be inconsistent. A general estimator, which does not rely on the…

  14. The Integration of Teacher's Pedagogical Content Knowledge Components in Teaching Linear Equation

    ERIC Educational Resources Information Center

    Yusof, Yusminah Mohd.; Effandi, Zakaria

    2015-01-01

    This qualitative research aimed to explore the integration of the components of pedagogical content knowledge (PCK) in teaching Linear Equation with one unknown. For the purpose of the study, a single local case study with multiple participants was used. The selection of the participants was made based on various criteria: having more than 5 years…

  15. Lines of Eigenvectors and Solutions to Systems of Linear Differential Equations

    ERIC Educational Resources Information Center

    Rasmussen, Chris; Keynes, Michael

    2003-01-01

    The purpose of this paper is to describe an instructional sequence where students invent a method for locating lines of eigenvectors and corresponding solutions to systems of two first order linear ordinary differential equations with constant coefficients. The significance of this paper is two-fold. First, it represents an innovative alternative…

  16. On the equivalence of a class of inverse decomposition algorithms for solving systems of linear equations

    NASA Technical Reports Server (NTRS)

    Tsao, Nai-Kuan

    1989-01-01

    A class of direct inverse decomposition algorithms for solving systems of linear equations is presented. Their behavior in the presence of round-off errors is analyzed. It is shown that under some mild restrictions on their implementation, the class of direct inverse decomposition algorithms presented are equivalent in terms of the error complexity measures.

  17. Flipping an Algebra Classroom: Analyzing, Modeling, and Solving Systems of Linear Equations

    ERIC Educational Resources Information Center

    Kirvan, Rebecca; Rakes, Christopher R.; Zamora, Regie

    2015-01-01

    The present study investigated whether flipping an algebra classroom led to a stronger focus on conceptual understanding and improved learning of systems of linear equations for 54 seventh- and eighth-grade students using teacher journal data and district-mandated unit exam items. Multivariate analysis of covariance was used to compare scores on…

  18. Using the Number Line to Investigate the Solving of Linear Equations

    ERIC Educational Resources Information Center

    Dickinson, Paul; Eade, Frank

    2004-01-01

    The curriculum for eleven-year old students in the United Kingdom, currently adopted by most schools, includes solving linear equations with the unknown on one side only before moving onto those with the unknown on both sides in later years. School textbooks struggle with the balance between developing algebraic understanding and training…

  19. The method of local linear approximation in the theory of nonlinear functional-differential equations

    SciTech Connect

    Slyusarchuk, Vasilii E

    2010-10-06

    Conditions for the existence of solutions to the nonlinear functional-differential equation (d{sup m}x(t))/dt{sup m} + (fx)(t)=h(t), t element of R in the space of functions bounded on the axes are obtained by using local linear approximation to the operator F. Bibliography: 21 items.

  20. Effect of Coannular Flow on Linearized Euler Equation Predictions of Jet Noise

    NASA Technical Reports Server (NTRS)

    Hixon, R.; Shih, S.-H.; Mankbadi, Reda R.

    1997-01-01

    An improved version of a previously validated linearized Euler equation solver is used to compute the noise generated by coannular supersonic jets. Results for a single supersonic jet are compared to the results from both a normal velocity profile and an inverted velocity profile supersonic jet.

  1. Lie symmetries of systems of second-order linear ordinary differential equations with constant coefficients.

    PubMed

    Boyko, Vyacheslav M; Popovych, Roman O; Shapoval, Nataliya M

    2013-01-01

    Lie symmetries of systems of second-order linear ordinary differential equations with constant coefficients are exhaustively described over both the complex and real fields. The exact lower and upper bounds for the dimensions of the maximal Lie invariance algebras possessed by such systems are obtained using an effective algebraic approach. PMID:23564972

  2. The Green's function for the three-dimensional linear Boltzmann equation via Fourier transform

    NASA Astrophysics Data System (ADS)

    Machida, Manabu

    2016-04-01

    The linear Boltzmann equation with constant coefficients in the three-dimensional infinite space is revisited. It is known that the Green's function can be calculated via the Fourier transform in the case of isotropic scattering. In this paper, we show that the three-dimensional Green's function can be computed with the Fourier transform even in the case of arbitrary anisotropic scattering.

  3. Solution of the Schrodinger Equation for a Diatomic Oscillator Using Linear Algebra: An Undergraduate Computational Experiment

    ERIC Educational Resources Information Center

    Gasyna, Zbigniew L.

    2008-01-01

    Computational experiment is proposed in which a linear algebra method is applied to the solution of the Schrodinger equation for a diatomic oscillator. Calculations of the vibration-rotation spectrum for the HCl molecule are presented and the results show excellent agreement with experimental data. (Contains 1 table and 1 figure.)

  4. The Use of Graphs in Specific Situations of the Initial Conditions of Linear Differential Equations

    ERIC Educational Resources Information Center

    Buendía, Gabriela; Cordero, Francisco

    2013-01-01

    In this article, we present a discussion on the role of graphs and its significance in the relation between the number of initial conditions and the order of a linear differential equation, which is known as the initial value problem. We propose to make a functional framework for the use of graphs that intends to broaden the explanations of the…

  5. An Empirical Comparison of Five Linear Equating Methods for the NEAT Design

    ERIC Educational Resources Information Center

    Suh, Youngsuk; Mroch, Andrew A.; Kane, Michael T.; Ripkey, Douglas R.

    2009-01-01

    In this study, a data base containing the responses of 40,000 candidates to 90 multiple-choice questions was used to mimic data sets for 50-item tests under the "nonequivalent groups with anchor test" (NEAT) design. Using these smaller data sets, we evaluated the performance of five linear equating methods for the NEAT design with five levels of…

  6. Solving Linear Equations: A Comparison of Concrete and Virtual Manipulatives in Middle School Mathematics

    ERIC Educational Resources Information Center

    Magruder, Robin Lee

    2012-01-01

    The purpose of this embedded quasi-experimental mixed methods research was to use solving simple linear equations as the lens for looking at the effectiveness of concrete and virtual manipulatives as compared to a control group using learning methods without manipulatives. Further, the researcher wanted to investigate unique benefits and drawbacks…

  7. Analysis of the linear stability of compressible boundary layers using the PSE. [parabolic stability equations

    NASA Technical Reports Server (NTRS)

    Bertolotti, F. P.; Herbert, TH.

    1991-01-01

    The application of linearized parabolic stability equations (PSE) to compressible flow is considered. The effect of mean-flow nonparallelism is found to be weak on 2D waves and strong on 3D waves. Results for a single choice of free-stream parameters that corresponds to the atmospheric conditions at 15,000 m above sea level are presented.

  8. Generalization of the relaxation method for the inverse solution of nonlinear and linear transfer equations

    NASA Technical Reports Server (NTRS)

    Chahine, M. T.

    1977-01-01

    A mapping transformation is derived for the inverse solution of nonlinear and linear integral equations of the types encountered in remote sounding studies. The method is applied to the solution of specific problems for the determination of the thermal and composition structure of planetary atmospheres from a knowledge of their upwelling radiance.

  9. A Graphical Method for Assessing the Identification of Linear Structural Equation Models

    ERIC Educational Resources Information Center

    Eusebi, Paolo

    2008-01-01

    A graphical method is presented for assessing the state of identifiability of the parameters in a linear structural equation model based on the associated directed graph. We do not restrict attention to recursive models. In the recent literature, methods based on graphical models have been presented as a useful tool for assessing the state of…

  10. The Multifaceted Variable Approach: Selection of Method in Solving Simple Linear Equations

    ERIC Educational Resources Information Center

    Tahir, Salma; Cavanagh, Michael

    2010-01-01

    This paper presents a comparison of the solution strategies used by two groups of Year 8 students as they solved linear equations. The experimental group studied algebra following a multifaceted variable approach, while the comparison group used a traditional approach. Students in the experimental group employed different solution strategies,…

  11. A new approach to parton recombination in the QCD evolution equations

    NASA Astrophysics Data System (ADS)

    Wei Zhu

    1999-06-01

    Parton recombination is reconsidered in perturbation theory without using the AGK cutting rules in the leading order of the recombination. We use time-ordered perturbation theory to sum the cut diagrams, which are neglected in the GLR evolution equation. We present a set of new evolution equations including parton recombination.

  12. The cosmic microwave background bispectrum from the non-linear evolution of the cosmological perturbations

    SciTech Connect

    Pitrou, Cyril; Uzan, Jean-Philippe; Bernardeau, Francis E-mail: uzan@iap.fr

    2010-07-01

    This article presents the first computation of the complete bispectrum of the cosmic microwave background temperature anisotropies arising from the evolution of all cosmic fluids up to second order, including neutrinos. Gravitational couplings, electron density fluctuations and the second order Boltzmann equation are fully taken into account. Comparison to limiting cases that appeared previously in the literature are provided. These are regimes for which analytical insights can be given. The final results are expressed in terms of equivalent f{sub NL} for different configurations. It is found that for moments up to l{sub max} = 2000, the signal generated by non-linear effects is equivalent to f{sub NL} ≅ 5 for both local-type and equilateral-type primordial non-Gaussianity.

  13. Analytical solution of boundary integral equations for 2-D steady linear wave problems

    NASA Astrophysics Data System (ADS)

    Chuang, J. M.

    2005-10-01

    Based on the Fourier transform, the analytical solution of boundary integral equations formulated for the complex velocity of a 2-D steady linear surface flow is derived. It has been found that before the radiation condition is imposed, free waves appear both far upstream and downstream. In order to cancel the free waves in far upstream regions, the eigensolution of a specific eigenvalue, which satisfies the homogeneous boundary integral equation, is found and superposed to the analytical solution. An example, a submerged vortex, is used to demonstrate the derived analytical solution. Furthermore, an analytical approach to imposing the radiation condition in the numerical solution of boundary integral equations for 2-D steady linear wave problems is proposed.

  14. The linear Boltzmann equation in slab geometry - Development and verification of a reliable and efficient solution

    NASA Technical Reports Server (NTRS)

    Stamnes, K.; Lie-Svendsen, O.; Rees, M. H.

    1991-01-01

    The linear Boltzmann equation can be cast in a form mathematically identical to the radiation-transport equation. A multigroup procedure is used to reduce the energy (or velocity) dependence of the transport equation to a series of one-speed problems. Each of these one-speed problems is equivalent to the monochromatic radiative-transfer problem, and existing software is used to solve this problem in slab geometry. The numerical code conserves particles in elastic collisions. Generic examples are provided to illustrate the applicability of this approach. Although this formalism can, in principle, be applied to a variety of test particle or linearized gas dynamics problems, it is particularly well-suited to study the thermalization of suprathermal particles interacting with a background medium when the thermal motion of the background cannot be ignored. Extensions of the formalism to include external forces and spherical geometry are also feasible.

  15. Solution of a singularly perturbed Cauchy problem for linear systems of ordinary differential equations by the method of spectral decomposition

    NASA Astrophysics Data System (ADS)

    Shaldanbayev, Amir; Shomanbayeva, Manat; Kopzhassarova, Asylzat

    2016-08-01

    This paper proposes a fundamentally new method of investigation of a singularly perturbed Cauchy problem for a linear system of ordinary differential equations based on the spectral theory of equations with deviating argument.

  16. Equations of State: Gateway to Planetary Origin and Evolution (Invited)

    NASA Astrophysics Data System (ADS)

    Melosh, J.

    2013-12-01

    Research over the past decades has shown that collisions between solid bodies govern many crucial phases of planetary origin and evolution. The accretion of the terrestrial planets was punctuated by planetary-scale impacts that generated deep magma oceans, ejected primary atmospheres and probably created the moons of Earth and Pluto. Several extrasolar planetary systems are filled with silicate vapor and condensed 'tektites', probably attesting to recent giant collisions. Even now, long after the solar system settled down from its violent birth, a large asteroid impact wiped out the dinosaurs, while other impacts may have played a role in the origin of life on Earth and perhaps Mars, while maintaining a steady exchange of small meteorites between the terrestrial planets and our moon. Most of these events are beyond the scale at which experiments are possible, so that our main research tool is computer simulation, constrained by the laws of physics and the behavior of materials during high-speed impact. Typical solar system impact velocities range from a few km/s in the outer solar system to 10s of km/s in the inner system. Extrasolar planetary systems expand that range to 100s of km/sec typical of the tightly clustered planetary systems now observed. Although computer codes themselves are currently reaching a high degree of sophistication, we still rely on experimental studies to determine the Equations of State (EoS) of materials critical for the correct simulation of impact processes. The recent expansion of the range of pressures available for study, from a few 100 GPa accessible with light gas guns up to a few TPa from current high energy accelerators now opens experimental access to the full velocity range of interest in our solar system. The results are a surprise: several groups in both the USA and Japan have found that silicates and even iron melt and vaporize much more easily in an impact than previously anticipated. The importance of these findings is

  17. Linearized model collision operators for multiple ion species plasmas and gyrokinetic entropy balance equations

    SciTech Connect

    Sugama, H.; Watanabe, T.-H.; Nunami, M.

    2009-11-15

    Linearized model collision operators for multiple ion species plasmas are presented that conserve particles, momentum, and energy and satisfy adjointness relations and Boltzmann's H-theorem even for collisions between different particle species with unequal temperatures. The model collision operators are also written in the gyrophase-averaged form that can be applied to the gyrokinetic equation. Balance equations for the turbulent entropy density, the energy of electromagnetic fluctuations, the turbulent transport fluxes of particle and heat, and the collisional dissipation are derived from the gyrokinetic equation including the collision term and Maxwell equations. It is shown that, in the steady turbulence, the entropy produced by the turbulent transport fluxes is dissipated in part by collisions in the nonzonal-mode region and in part by those in the zonal-mode region after the nonlinear entropy transfer from nonzonal to zonal modes.

  18. On a hierarchy of nonlinearly dispersive generalized Korteweg - de Vries evolution equations

    SciTech Connect

    Christov, Ivan C.

    2015-08-20

    We propose a hierarchy of nonlinearly dispersive generalized Korteweg–de Vries (KdV) evolution equations based on a modification of the Lagrangian density whose induced action functional the KdV equation extremizes. Two recent nonlinear evolution equations describing wave propagation in certain generalized continua with an inherent material length scale are members of the proposed hierarchy. Like KdV, the equations from the proposed hierarchy possess Hamiltonian structure. Unlike KdV, the solutions to these equations can be compact (i.e., they vanish outside of some open interval) and, in addition, peaked. Implicit solutions for these peaked, compact traveling waves (“peakompactons”) are presented.

  19. Operational method of solution of linear non-integer ordinary and partial differential equations.

    PubMed

    Zhukovsky, K V

    2016-01-01

    We propose operational method with recourse to generalized forms of orthogonal polynomials for solution of a variety of differential equations of mathematical physics. Operational definitions of generalized families of orthogonal polynomials are used in this context. Integral transforms and the operational exponent together with some special functions are also employed in the solutions. The examples of solution of physical problems, related to such problems as the heat propagation in various models, evolutional processes, Black-Scholes-like equations etc. are demonstrated by the operational technique. PMID:26900541

  20. About simple nonlinear and linear superpositions of special exact solutions of Veselov-Novikov equation

    SciTech Connect

    Dubrovsky, V. G.; Topovsky, A. V.

    2013-03-15

    New exact solutions, nonstationary and stationary, of Veselov-Novikov (VN) equation in the forms of simple nonlinear and linear superpositions of arbitrary number N of exact special solutions u{sup (n)}, n= 1, Horizontal-Ellipsis , N are constructed via Zakharov and Manakov {partial_derivative}-dressing method. Simple nonlinear superpositions are represented up to a constant by the sums of solutions u{sup (n)} and calculated by {partial_derivative}-dressing on nonzero energy level of the first auxiliary linear problem, i.e., 2D stationary Schroedinger equation. It is remarkable that in the zero energy limit simple nonlinear superpositions convert to linear ones in the form of the sums of special solutions u{sup (n)}. It is shown that the sums u=u{sup (k{sub 1})}+...+u{sup (k{sub m})}, 1 Less-Than-Or-Slanted-Equal-To k{sub 1} < k{sub 2} < Horizontal-Ellipsis < k{sub m} Less-Than-Or-Slanted-Equal-To N of arbitrary subsets of these solutions are also exact solutions of VN equation. The presented exact solutions include as superpositions of special line solitons and also superpositions of plane wave type singular periodic solutions. By construction these exact solutions represent also new exact transparent potentials of 2D stationary Schroedinger equation and can serve as model potentials for electrons in planar structures of modern electronics.

  1. About simple nonlinear and linear superpositions of special exact solutions of Veselov-Novikov equation

    NASA Astrophysics Data System (ADS)

    Dubrovsky, V. G.; Topovsky, A. V.

    2013-03-01

    New exact solutions, nonstationary and stationary, of Veselov-Novikov (VN) equation in the forms of simple nonlinear and linear superpositions of arbitrary number N of exact special solutions u(n), n = 1, …, N are constructed via Zakharov and Manakov overline{partial }-dressing method. Simple nonlinear superpositions are represented up to a constant by the sums of solutions u(n) and calculated by overline{partial }-dressing on nonzero energy level of the first auxiliary linear problem, i.e., 2D stationary Schrödinger equation. It is remarkable that in the zero energy limit simple nonlinear superpositions convert to linear ones in the form of the sums of special solutions u(n). It is shown that the sums u= u^{(k_1)}+ldots + u^{(k_m)}, 1 ⩽ k1 < k2 < … < km ⩽ N of arbitrary subsets of these solutions are also exact solutions of VN equation. The presented exact solutions include as superpositions of special line solitons and also superpositions of plane wave type singular periodic solutions. By construction these exact solutions represent also new exact transparent potentials of 2D stationary Schrödinger equation and can serve as model potentials for electrons in planar structures of modern electronics.

  2. Solution of dense systems of linear equations in electromagnetic scattering calculations

    SciTech Connect

    Rahola, J.

    1994-12-31

    The discrete-dipole approximation (DDA) is a method for calculating the scattering of light by an irregular particle. The DDA has been used for example in calculations of optical properties of cosmic dust. In this method the particle is approximated by interacting electromagnetic dipoles. Computationally the DDA method includes the solution of large dense systems of linear equations where the coefficient matrix is complex symmetric. In the author`s work, the linear systems of equations are solved by various iterative methods such as the conjugate gradient method applied to the normal equations and QMR. The linear systems have rather low condition numbers due to which many iterative methods perform quite well even without any preconditioning. Some possible preconditioning strategies are discussed. Finally, some fast special methods for computing the matrix-vector product in the iterative methods are considered. In some cases, the matrix-vector product can be computed with the fast Fourier transform, which enables the author to solve dense linear systems of hundreds of thousands of unknowns.

  3. Solving large-scale sparse eigenvalue problems and linear systems of equations for accelerator modeling

    SciTech Connect

    Gene Golub; Kwok Ko

    2009-03-30

    The solutions of sparse eigenvalue problems and linear systems constitute one of the key computational kernels in the discretization of partial differential equations for the modeling of linear accelerators. The computational challenges faced by existing techniques for solving those sparse eigenvalue problems and linear systems call for continuing research to improve on the algorithms so that ever increasing problem size as required by the physics application can be tackled. Under the support of this award, the filter algorithm for solving large sparse eigenvalue problems was developed at Stanford to address the computational difficulties in the previous methods with the goal to enable accelerator simulations on then the world largest unclassified supercomputer at NERSC for this class of problems. Specifically, a new method, the Hemitian skew-Hemitian splitting method, was proposed and researched as an improved method for solving linear systems with non-Hermitian positive definite and semidefinite matrices.

  4. Analytical solutions of linear and nonlinear Klein-Fock-Gordon equation

    NASA Astrophysics Data System (ADS)

    Khan, Najeeb Alam; Rasheed, Sajida

    2015-03-01

    In this paper, we deal with some linear and nonlinear Klein-Fock-Gordon (KFG) equations, which is a relativistic version of the Schrödinger equation. The approximate analytical solutions are obtained by using the homotopy analysis method (HAM). The efficiency of the HAM is that it provides a practical way to control the convergence region of series solutions by introducing an auxiliary parameter }. Analytical results presented are in agreement with the existing results in open literature, which confirm the effectiveness of this method.

  5. Parallel FE Approximation of the Even/Odd Parity Form of the Linear Boltzmann Equation

    SciTech Connect

    Drumm, Clifton R.; Lorenz, Jens

    1999-07-21

    A novel solution method has been developed to solve the linear Boltzmann equation on an unstructured triangular mesh. Instead of tackling the first-order form of the equation, this approach is based on the even/odd-parity form in conjunction with the conventional mdtigroup discrete-ordinates approximation. The finite element method is used to treat the spatial dependence. The solution method is unique in that the space-direction dependence is solved simultaneously, eliminating the need for the conventional inner iterations, and the method is well suited for massively parallel computers.

  6. Non-classical symmetries and invariant solutions of non-linear Dirac equations

    NASA Astrophysics Data System (ADS)

    Rocha, P. M. M.; Khanna, F. C.; Rocha Filho, T. M.; Santana, A. E.

    2015-09-01

    We apply Lie and non-classical symmetry methods to partial differential equations in order to derive solutions of the non-linear Dirac equation corresponding to the Gross-Neveu model in d = (1 + 1) and d = (2 + 1) space-time dimensions. For each d, we first identify sub-algebras of the Poincaré-Lie algebra and for each such sub-algebra, we calculate the invariant solution. Non-classical symmetries are also determined and used to derive new solutions for the Gross-Neveu model.

  7. Second order non-linear equations of motion for spinning highly flexible line elements

    NASA Technical Reports Server (NTRS)

    Salama, M.; Trubert, M.; Essawi, M.; Utku, S.

    1982-01-01

    The second order nonlinear equations of motion are formulated for spinning line elements having little or no intrinsic structural stiffness. The derivation is based on the extended Hamilton's principle and includes the effect of initial geometric imperfections (axial, curvature, and twist) on the line element dynamics. For comparison with previous work, the nonlinear equations are reduced to a linearized form frequently found in the literature. The comparison revealed several new spin-stiffening terms that have not been previously identified and/or retained. They combine geometric imperfections, rotary inertia, Coriolis, and gyroscopic terms.

  8. On exponential stability of linear Levin-Nohel integro-differential equations

    NASA Astrophysics Data System (ADS)

    Tien Dung, Nguyen

    2015-02-01

    The aim of this paper is to investigate the exponential stability for linear Levin-Nohel integro-differential equations with time-varying delays. To the best of our knowledge, the exponential stability for such equations has not yet been discussed. In addition, since we do not require that the kernel and delay are continuous, our results improve those obtained in Becker and Burton [Proc. R. Soc. Edinburgh, Sect. A: Math. 136, 245-275 (2006)]; Dung [J. Math. Phys. 54, 082705 (2013)]; and Jin and Luo [Comput. Math. Appl. 57(7), 1080-1088 (2009)].

  9. A bivariate Chebyshev spectral collocation quasilinearization method for nonlinear evolution parabolic equations.

    PubMed

    Motsa, S S; Magagula, V M; Sibanda, P

    2014-01-01

    This paper presents a new method for solving higher order nonlinear evolution partial differential equations (NPDEs). The method combines quasilinearisation, the Chebyshev spectral collocation method, and bivariate Lagrange interpolation. In this paper, we use the method to solve several nonlinear evolution equations, such as the modified KdV-Burgers equation, highly nonlinear modified KdV equation, Fisher's equation, Burgers-Fisher equation, Burgers-Huxley equation, and the Fitzhugh-Nagumo equation. The results are compared with known exact analytical solutions from literature to confirm accuracy, convergence, and effectiveness of the method. There is congruence between the numerical results and the exact solutions to a high order of accuracy. Tables were generated to present the order of accuracy of the method; convergence graphs to verify convergence of the method and error graphs are presented to show the excellent agreement between the results from this study and the known results from literature. PMID:25254252

  10. A Bivariate Chebyshev Spectral Collocation Quasilinearization Method for Nonlinear Evolution Parabolic Equations

    PubMed Central

    Motsa, S. S.; Magagula, V. M.; Sibanda, P.

    2014-01-01

    This paper presents a new method for solving higher order nonlinear evolution partial differential equations (NPDEs). The method combines quasilinearisation, the Chebyshev spectral collocation method, and bivariate Lagrange interpolation. In this paper, we use the method to solve several nonlinear evolution equations, such as the modified KdV-Burgers equation, highly nonlinear modified KdV equation, Fisher's equation, Burgers-Fisher equation, Burgers-Huxley equation, and the Fitzhugh-Nagumo equation. The results are compared with known exact analytical solutions from literature to confirm accuracy, convergence, and effectiveness of the method. There is congruence between the numerical results and the exact solutions to a high order of accuracy. Tables were generated to present the order of accuracy of the method; convergence graphs to verify convergence of the method and error graphs are presented to show the excellent agreement between the results from this study and the known results from literature. PMID:25254252

  11. Consistency and inconsistency radii for solving systems of linear equations and inequalities

    NASA Astrophysics Data System (ADS)

    Murav'eva, O. V.

    2015-03-01

    Problems that reduce to consistency or inconsistency of systems of linear equations or inequalities arise in many divisions of theoretical informatics. The examples are problems in linear programming, machine learning, multicriteria optimization, etc. There exist different stability measures for the property of consistency or inconsistency, and different information constituents are possible (all the input parameters, the coefficient matrix, the vector of constraints). In this paper, variations of all parameters are examined in combination with an additional constraint important in applications, namely, the nonnegativity of feasible points.

  12. Exact Travelling Wave Solutions of the Nonlinear Evolution Equations by Auxiliary Equation Method

    NASA Astrophysics Data System (ADS)

    Kaplan, Melike; Akbulut, Arzu; Bekir, Ahmet

    2015-10-01

    The auxiliary equation method presents wide applicability to handling nonlinear wave equations. In this article, we establish new exact travelling wave solutions of the nonlinear Zoomeron equation, coupled Higgs equation, and equal width wave equation. The travelling wave solutions are expressed by the hyperbolic functions, trigonometric functions, and rational functions. It is shown that the proposed method provides a powerful mathematical tool for solving nonlinear wave equations in mathematical physics and engineering. Throughout the article, all calculations are made with the aid of the Maple packet program.

  13. A piecewise linear finite element discretization of the diffusion equation for arbitrary polyhedral grids

    SciTech Connect

    Bailey, Teresa S. Adams, Marvin L. Yang, Brian Zika, Michael R.

    2008-04-01

    We develop a piecewise linear (PWL) Galerkin finite element spatial discretization for the multi-dimensional radiation diffusion equation. It uses recently introduced piecewise linear weight and basis functions in the finite element approximation and it can be applied on arbitrary polygonal (2D) or polyhedral (3D) grids. We first demonstrate some analytical properties of the PWL method and perform a simple mode analysis to compare the PWL method with Palmer's vertex-centered finite-volume method and with a bilinear continuous finite element method. We then show that this new PWL method gives solutions comparable to those from Palmer's. However, since the PWL method produces a symmetric positive-definite coefficient matrix, it should be substantially more computationally efficient than Palmer's method, which produces an asymmetric matrix. We conclude that the Galerkin PWL method is an attractive option for solving diffusion equations on unstructured grids.

  14. A GPU-accelerated toolbox for the solutions of systems of linear equations

    NASA Astrophysics Data System (ADS)

    Humphrey, John R., Jr.; Paolini, Aaron L.; Price, Daniel K.; Kelmelis, Eric J.

    2009-05-01

    The modern graphics processing unit (GPU) found in many off-the shelf personal computers is a very high performance computing engine that often goes unutilized. The tremendous computing power coupled with reasonable pricing has made the GPU a topic of interest in recent research. An application for such power would be the solution to large systems of linear equations. Two popular solution domains are direct solution, via the LU decomposition, and iterative solution, via a solver such as the Generalized Method of Residuals (GMRES). Our research focuses on the acceleration of such processes, utilizing the latest in GPU technologies. We show performance that exceeds that of a standard computer by an order of magnitude, thus significantly reducing the run time of the numerous applications that depend on the solution of a set of linear equations.

  15. Controllability of process described by system of linear integro-differential equations with restrictions

    NASA Astrophysics Data System (ADS)

    Aisagaliev, Serikbai A.; Sevryugin, Ilya

    2016-08-01

    In this work, we study controllability problem for linear integro-differential equation x ˙=A (t )x +B (t )u (t )+C (t ) ∫a b K (t ,τ ) w (τ )d τ +μ (t ), t ∈I =[t0,t1] with boundary conditions and some restrictions. For this problem we have obtained necessary and sufficient conditions of its solvability. The solution of initial problem is reduced to minimization of functional using minimizing sequences.

  16. Solution of large linear systems of equations on the massively parallel processor

    NASA Technical Reports Server (NTRS)

    Ida, Nathan; Udawatta, Kapila

    1987-01-01

    The Massively Parallel Processor (MPP) was designed as a special machine for specific applications in image processing. As a parallel machine, with a large number of processors that can be reconfigured in different combinations it is also applicable to other problems that require a large number of processors. The solution of linear systems of equations on the MPP is investigated. The solution times achieved are compared to those obtained with a serial machine and the performance of the MPP is discussed.

  17. A numerical method for solving systems of linear ordinary differential equations with rapidly oscillating solutions

    NASA Technical Reports Server (NTRS)

    Bernstein, Ira B.; Brookshaw, Leigh; Fox, Peter A.

    1992-01-01

    The present numerical method for accurate and efficient solution of systems of linear equations proceeds by numerically developing a set of basis solutions characterized by slowly varying dependent variables. The solutions thus obtained are shown to have a computational overhead largely independent of the small size of the scale length which characterizes the solutions; in many cases, the technique obviates series solutions near singular points, and its known sources of error can be easily controlled without a substantial increase in computational time.

  18. ANGEL program: Solution of large systems of linear differential equations describing nonstationary processes using CUDA technology

    SciTech Connect

    Moryakov, A. V. Pylyov, S. S.

    2012-12-15

    This paper presents the formulation of the problem and the methodical approach for solving large systems of linear differential equations describing nonstationary processes with the use of CUDA technology; this approach is implemented in the ANGEL program. Results for a test problem on transport of radioactive products over loops of a nuclear power plant are given. The possibilities for the use of the ANGEL program for solving various problems that simulate arbitrary nonstationary processes are discussed.

  19. On the Use of Linearized Euler Equations in the Prediction of Jet Noise

    NASA Technical Reports Server (NTRS)

    Mankbadi, Reda R.; Hixon, R.; Shih, S.-H.; Povinelli, L. A.

    1995-01-01

    Linearized Euler equations are used to simulate supersonic jet noise generation and propagation. Special attention is given to boundary treatment. The resulting solution is stable and nearly free from boundary reflections without the need for artificial dissipation, filtering, or a sponge layer. The computed solution is in good agreement with theory and observation and is much less CPU-intensive as compared to large-eddy simulations.

  20. Dynamic scaling behaviors of linear fractal Langevin-type equation driven by nonconserved and conserved noise

    NASA Astrophysics Data System (ADS)

    Zhang, Zhe; Xun, Zhi-Peng; Wu, Ling; Chen, Yi-Li; Xia, Hui; Hao, Da-Peng; Tang, Gang

    2016-06-01

    In order to study the effects of the microscopic details of fractal substrates on the scaling behavior of the growth model, a generalized linear fractal Langevin-type equation, ∂h / ∂t =(- 1) m + 1 ν∇ mzrw h (zrw is the dynamic exponent of random walk on substrates), driven by nonconserved and conserved noise is proposed and investigated theoretically employing scaling analysis. Corresponding dynamic scaling exponents are obtained.

  1. A Family of Ellipse Methods for Solving Non-Linear Equations

    ERIC Educational Resources Information Center

    Gupta, K. C.; Kanwar, V.; Kumar, Sanjeev

    2009-01-01

    This note presents a method for the numerical approximation of simple zeros of a non-linear equation in one variable. In order to do so, the method uses an ellipse rather than a tangent approach. The main advantage of our method is that it does not fail even if the derivative of the function is either zero or very small in the vicinity of the…

  2. On the equivalence of Gaussian elimination and Gauss-Jordan reduction in solving linear equations

    NASA Technical Reports Server (NTRS)

    Tsao, Nai-Kuan

    1989-01-01

    A novel general approach to round-off error analysis using the error complexity concepts is described. This is applied to the analysis of the Gaussian Elimination and Gauss-Jordan scheme for solving linear equations. The results show that the two algorithms are equivalent in terms of our error complexity measures. Thus the inherently parallel Gauss-Jordan scheme can be implemented with confidence if parallel computers are available.

  3. Linear differential equations and multiple zeta-values. III. Zeta(3)

    NASA Astrophysics Data System (ADS)

    Zakrzewski, Michał; Żoładek, Henryk

    2012-01-01

    We consider the hypergeometric equation (1 - t)∂t∂t∂g + x3g = 0, whose unique analytic solution φ1(t; x) = 1 + O(t) near t = 0 for t = 1 becomes a generating function for multiple zeta values φ1(1; x) = f3(x) = 1 - ζ(3)x3 + ζ(3, 3)x6 - …. We apply the so-called WKB method to study solutions of the hypergeometric equation for large x and we calculate corresponding Stokes matrices. We prove that the function f3(x) near x = ∞ is also expressed via WKB type functions which subject to some Stokes phenomenon. This implies that f3(x) satisfies a sixth order linear differential equation with irregular singularity at infinity.

  4. Second-order non-iterative ADI solution of non-linear partial differential equations. [Alternating Direction Implicit scheme

    NASA Technical Reports Server (NTRS)

    Wolfshtein, M.; Hirsh, R. S.; Pitts, B. H.

    1975-01-01

    A new method for the solution of non-linear partial differential equations by an ADI procedure is described. Although the method is second order accurate in time, it does not require either iterations or predictor corrector methods to overcome the nonlinearity of the equations. Thus the computational effort required for the solution of the non-linear problem becomes similar to that required for the linear case. The method is applied to a two-dimensional 'extended Burgers equation'. Linear stability is studied, and some numerical solutions obtained. The improved accuracy obtained by the 2nd order truncation error is clearly manifested.

  5. A New Linearized Crank-Nicolson Mixed Element Scheme for the Extended Fisher-Kolmogorov Equation

    PubMed Central

    Wang, Jinfeng; Li, Hong; He, Siriguleng; Gao, Wei

    2013-01-01

    We present a new mixed finite element method for solving the extended Fisher-Kolmogorov (EFK) equation. We first decompose the EFK equation as the two second-order equations, then deal with a second-order equation employing finite element method, and handle the other second-order equation using a new mixed finite element method. In the new mixed finite element method, the gradient ∇u belongs to the weaker (L2(Ω))2 space taking the place of the classical H(div; Ω) space. We prove some a priori bounds for the solution for semidiscrete scheme and derive a fully discrete mixed scheme based on a linearized Crank-Nicolson method. At the same time, we get the optimal a priori error estimates in L2 and H1-norm for both the scalar unknown u and the diffusion term w = −Δu and a priori error estimates in (L2)2-norm for its gradient χ = ∇u for both semi-discrete and fully discrete schemes. PMID:23864831

  6. Unsteady Solution of Non-Linear Differential Equations Using Walsh Function Series

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.

    2015-01-01

    Walsh functions form an orthonormal basis set consisting of square waves. The discontinuous nature of square waves make the system well suited for representing functions with discontinuities. The product of any two Walsh functions is another Walsh function - a feature that can radically change an algorithm for solving non-linear partial differential equations (PDEs). The solution algorithm of non-linear differential equations using Walsh function series is unique in that integrals and derivatives may be computed using simple matrix multiplication of series representations of functions. Solutions to PDEs are derived as functions of wave component amplitude. Three sample problems are presented to illustrate the Walsh function series approach to solving unsteady PDEs. These include an advection equation, a Burgers equation, and a Riemann problem. The sample problems demonstrate the use of the Walsh function solution algorithms, exploiting Fast Walsh Transforms in multi-dimensions (O(Nlog(N))). Details of a Fast Walsh Reciprocal, defined here for the first time, enable inversion of aWalsh Symmetric Matrix in O(Nlog(N)) operations. Walsh functions have been derived using a fractal recursion algorithm and these fractal patterns are observed in the progression of pairs of wave number amplitudes in the solutions. These patterns are most easily observed in a remapping defined as a fractal fingerprint (FFP). A prolongation of existing solutions to the next highest order exploits these patterns. The algorithms presented here are considered a work in progress that provide new alternatives and new insights into the solution of non-linear PDEs.

  7. Customized Steady-State Constraints for Parameter Estimation in Non-Linear Ordinary Differential Equation Models

    PubMed Central

    Rosenblatt, Marcus; Timmer, Jens; Kaschek, Daniel

    2016-01-01

    Ordinary differential equation models have become a wide-spread approach to analyze dynamical systems and understand underlying mechanisms. Model parameters are often unknown and have to be estimated from experimental data, e.g., by maximum-likelihood estimation. In particular, models of biological systems contain a large number of parameters. To reduce the dimensionality of the parameter space, steady-state information is incorporated in the parameter estimation process. For non-linear models, analytical steady-state calculation typically leads to higher-order polynomial equations for which no closed-form solutions can be obtained. This can be circumvented by solving the steady-state equations for kinetic parameters, which results in a linear equation system with comparatively simple solutions. At the same time multiplicity of steady-state solutions is avoided, which otherwise is problematic for optimization. When solved for kinetic parameters, however, steady-state constraints tend to become negative for particular model specifications, thus, generating new types of optimization problems. Here, we present an algorithm based on graph theory that derives non-negative, analytical steady-state expressions by stepwise removal of cyclic dependencies between dynamical variables. The algorithm avoids multiple steady-state solutions by construction. We show that our method is applicable to most common classes of biochemical reaction networks containing inhibition terms, mass-action and Hill-type kinetic equations. Comparing the performance of parameter estimation for different analytical and numerical methods of incorporating steady-state information, we show that our approach is especially well-tailored to guarantee a high success rate of optimization. PMID:27243005

  8. Customized Steady-State Constraints for Parameter Estimation in Non-Linear Ordinary Differential Equation Models.

    PubMed

    Rosenblatt, Marcus; Timmer, Jens; Kaschek, Daniel

    2016-01-01

    Ordinary differential equation models have become a wide-spread approach to analyze dynamical systems and understand underlying mechanisms. Model parameters are often unknown and have to be estimated from experimental data, e.g., by maximum-likelihood estimation. In particular, models of biological systems contain a large number of parameters. To reduce the dimensionality of the parameter space, steady-state information is incorporated in the parameter estimation process. For non-linear models, analytical steady-state calculation typically leads to higher-order polynomial equations for which no closed-form solutions can be obtained. This can be circumvented by solving the steady-state equations for kinetic parameters, which results in a linear equation system with comparatively simple solutions. At the same time multiplicity of steady-state solutions is avoided, which otherwise is problematic for optimization. When solved for kinetic parameters, however, steady-state constraints tend to become negative for particular model specifications, thus, generating new types of optimization problems. Here, we present an algorithm based on graph theory that derives non-negative, analytical steady-state expressions by stepwise removal of cyclic dependencies between dynamical variables. The algorithm avoids multiple steady-state solutions by construction. We show that our method is applicable to most common classes of biochemical reaction networks containing inhibition terms, mass-action and Hill-type kinetic equations. Comparing the performance of parameter estimation for different analytical and numerical methods of incorporating steady-state information, we show that our approach is especially well-tailored to guarantee a high success rate of optimization. PMID:27243005

  9. A numerical method for solving systems of higher order linear functional differential equations

    NASA Astrophysics Data System (ADS)

    Yüzbasi, Suayip; Gök, Emrah; Sezer, Mehmet

    2016-01-01

    Functional differential equations have importance in many areas of science such as mathematical physics. These systems are difficult to solve analytically.In this paper we consider the systems of linear functional differential equations [1-9] including the term y(αx + β) and advance-delay in derivatives of y .To obtain the approximate solutions of those systems, we present a matrix-collocation method by using Müntz-Legendre polynomials and the collocation points. For this purpose, to obtain the approximate solutions of those systems, we present a matrix-collocation method by using Müntz-Legendre polynomials and the collocation points. This method transform the problem into a system of linear algebraic equations. The solutions of last system determine unknown co-efficients of original problem. Also, an error estimation technique is presented and the approximate solutions are improved by using it. The program of method is written in Matlab and the approximate solutions can be obtained easily. Also some examples are given to illustrate the validity of the method.

  10. Fast solution of elliptic partial differential equations using linear combinations of plane waves.

    PubMed

    Pérez-Jordá, José M

    2016-02-01

    Given an arbitrary elliptic partial differential equation (PDE), a procedure for obtaining its solution is proposed based on the method of Ritz: the solution is written as a linear combination of plane waves and the coefficients are obtained by variational minimization. The PDE to be solved is cast as a system of linear equations Ax=b, where the matrix A is not sparse, which prevents the straightforward application of standard iterative methods in order to solve it. This sparseness problem can be circumvented by means of a recursive bisection approach based on the fast Fourier transform, which makes it possible to implement fast versions of some stationary iterative methods (such as Gauss-Seidel) consuming O(NlogN) memory and executing an iteration in O(Nlog(2)N) time, N being the number of plane waves used. In a similar way, fast versions of Krylov subspace methods and multigrid methods can also be implemented. These procedures are tested on Poisson's equation expressed in adaptive coordinates. It is found that the best results are obtained with the GMRES method using a multigrid preconditioner with Gauss-Seidel relaxation steps. PMID:26986436

  11. Fast solution of elliptic partial differential equations using linear combinations of plane waves

    NASA Astrophysics Data System (ADS)

    Pérez-Jordá, José M.

    2016-02-01

    Given an arbitrary elliptic partial differential equation (PDE), a procedure for obtaining its solution is proposed based on the method of Ritz: the solution is written as a linear combination of plane waves and the coefficients are obtained by variational minimization. The PDE to be solved is cast as a system of linear equations A x =b , where the matrix A is not sparse, which prevents the straightforward application of standard iterative methods in order to solve it. This sparseness problem can be circumvented by means of a recursive bisection approach based on the fast Fourier transform, which makes it possible to implement fast versions of some stationary iterative methods (such as Gauss-Seidel) consuming O (N logN ) memory and executing an iteration in O (N log2N ) time, N being the number of plane waves used. In a similar way, fast versions of Krylov subspace methods and multigrid methods can also be implemented. These procedures are tested on Poisson's equation expressed in adaptive coordinates. It is found that the best results are obtained with the GMRES method using a multigrid preconditioner with Gauss-Seidel relaxation steps.

  12. Non linear evolution: revisiting the solution in the saturation region

    NASA Astrophysics Data System (ADS)

    Contreras, Carlos; Levin, Eugene; Meneses, Rodrigo

    2014-10-01

    In this paper we revisit the problem of the solution to Balitsky-Kovchegov equation deeply in the saturation domain. We find that solution has the form given in ref. [23] but it depends on variable and the value of Const is calculated in this paper. We propose the solution for full BFKL kernel at large in the entire kinematic region that satisfies the McLerran-Venugopalan-type [3-7] initial condition.

  13. An Algebraic Approach to the Evolution of Emittances upon Crossing the Linear Coupling Difference Resonance

    SciTech Connect

    Gardner,C.

    2008-09-01

    One of the hallmarks of linear coupling is the resonant exchange of oscillation amplitude between the horizontal and vertical planes when the difference between the unperturbed tunes is close to an integer. The standard derivation of this phenomenon (known as the difference resonance) can be found, for example, in the classic papers of Guignard [1, 2]. One starts with an uncoupled lattice and adds a linear perturbation that couples the two planes. The equations of motion are expressed in hamiltonian form. As the difference between the unperturbed tunes approaches an integer, one finds that the perturbing terms in the hamiltonian can be divided into terms that oscillate slowly and ones that oscillate rapidly. The rapidly oscillating terms are discarded or transformed to higher order with an appropriate canonical transformation. The resulting approximate hamiltonian gives equations of motion that clearly exhibit the exchange of oscillation amplitude between the two planes. If, instead of the hamiltonian, one is given the four-by-four matrix for one turn around a synchrotron, then one has the complete solution for the turn-by-turn (TBT) motion. However, the conditions for the phenomenon of amplitude exchange are not obvious from a casual inspection of the matrix. These conditions and those that give rise to the related sum resonance are identified in this report. The identification is made using the well known formalism of Edwards and Teng [3, 4, 5] and, in particular, the normalized coupling matrix of Sagan and Rubin [6]. The formulae obtained are general in that no particular hamiltonian or coupling elements are assumed. The only assumptions are that the one-turn matrix is symplectic and that it has distinct eigenvalues on the unit circle in the complex plane. Having identified the conditions of the one-turn matrix that give rise to the resonances, we focus on the difference resonance and apply the formulae to the evolution of the horizontal and vertical emittances

  14. Solving nonlinear evolution equation system using two different methods

    NASA Astrophysics Data System (ADS)

    Kaplan, Melike; Bekir, Ahmet; Ozer, Mehmet N.

    2015-12-01

    This paper deals with constructing more general exact solutions of the coupled Higgs equation by using the (G0/G, 1/G)-expansion and (1/G0)-expansion methods. The obtained solutions are expressed by three types of functions: hyperbolic, trigonometric and rational functions with free parameters. It has been shown that the suggested methods are productive and will be used to solve nonlinear partial differential equations in applied mathematics and engineering. Throughout the paper, all the calculations are made with the aid of the Maple software.

  15. Linear tearing mode stability equations for a low collisionality toroidal plasma

    NASA Astrophysics Data System (ADS)

    Connor, J. W.; Hastie, R. J.; Helander, P.

    2009-01-01

    Tearing mode stability is normally analysed using MHD or two-fluid Braginskii plasma models. However for present, or future, large hot tokamaks like JET or ITER the collisionality is such as to place them in the banana regime. Here we develop a linear stability theory for the resonant layer physics appropriate to such a regime. The outcome is a set of 'fluid' equations whose coefficients encapsulate all neoclassical physics: the neoclassical Ohm's law, enhanced ion inertia, cross-field transport of particles, heat and momentum all play a role. While earlier treatments have also addressed this type of neoclassical physics we differ in incorporating the more physically relevant 'semi-collisional fluid' regime previously considered in cylindrical geometry; semi-collisional effects tend to screen the resonant surface from the perturbed magnetic field, preventing reconnection. Furthermore we also include thermal physics, which may modify the results. While this electron description is of wide relevance and validity, the fluid treatment of the ions requires the ion banana orbit width to be less than the semi-collisional electron layer. This limits the application of the present theory to low magnetic shear—however, this is highly relevant to the sawtooth instability—or to colder ions. The outcome of the calculation is a set of one-dimensional radial differential equations of rather high order. However, various simplifications that reduce the computational task of solving these are discussed. In the collisional regime, when the set reduces to a single second-order differential equation, the theory extends previous work by Hahm et al (1988 Phys. Fluids 31 3709) to include diamagnetic-type effects arising from plasma gradients, both in Ohm's law and the ion inertia term of the vorticity equation. The more relevant semi-collisional regime pertaining to JET or ITER, is described by a pair of second-order differential equations, extending the cylindrical equations of Drake

  16. Efficient yet accurate solution of the linear transport equation in the presence of internal sources - The exponential-linear-in-depth approximation

    NASA Technical Reports Server (NTRS)

    Kylling, Arve; Stamnes, Knut

    1992-01-01

    The present solutions to the linear transport equation pertain to monoenergetic particles' interaction with a multiple scattering/absorbing layered medium with a general anisotropic internal source term. Attention is given to a novel exponential-linear approximation to the internal source, as a function of scattering depth, which furnishes an at-once efficient and accurate solution to the linear transport equation through its reduction of the spatial mesh size. The great superiority of the proposed method is demonstrated by the numerical results obtained in the illustrative cases of (1) an embedded thermal source and (2) a rapidly varying beam pseudosource.

  17. Unification of the general non-linear sigma model and the Virasoro master equation

    SciTech Connect

    Boer, J. de; Halpern, M.B. |

    1997-06-01

    The Virasoro master equation describes a large set of conformal field theories known as the affine-Virasoro constructions, in the operator algebra (affinie Lie algebra) of the WZW model, while the einstein equations of the general non-linear sigma model describe another large set of conformal field theories. This talk summarizes recent work which unifies these two sets of conformal field theories, together with a presumable large class of new conformal field theories. The basic idea is to consider spin-two operators of the form L{sub ij}{partial_derivative}x{sup i}{partial_derivative}x{sup j} in the background of a general sigma model. The requirement that these operators satisfy the Virasoro algebra leads to a set of equations called the unified Einstein-Virasoro master equation, in which the spin-two spacetime field L{sub ij} cuples to the usual spacetime fields of the sigma model. The one-loop form of this unified system is presented, and some of its algebraic and geometric properties are discussed.

  18. Perfectly Matched Layer for Linearized Euler Equations in Open and Ducted Domains

    NASA Technical Reports Server (NTRS)

    Tam, Christopher K. W.; Auriault, Laurent; Cambuli, Francesco

    1998-01-01

    Recently, perfectly matched layer (PML) as an absorbing boundary condition has widespread applications. The idea was first introduced by Berenger for electromagnetic waves computations. In this paper, it is shown that the PML equations for the linearized Euler equations support unstable solutions when the mean flow has a component normal to the layer. To suppress such unstable solutions so as to render the PML concept useful for this class of problems, it is proposed that artificial selective damping terms be added to the discretized PML equations. It is demonstrated that with a proper choice of artificial mesh Reynolds number, the PML equations can be made stable. Numerical examples are provided to illustrate that the stabilized PML performs well as an absorbing boundary condition. In a ducted environment, the wave mode are dispersive. It will be shown that the group velocity and phase velocity of these modes can have opposite signs. This results in a confined environment, PML may not be suitable as an absorbing boundary condition.

  19. The Analysis and Construction of Perfectly Matched Layers for the Linearized Euler Equations

    NASA Technical Reports Server (NTRS)

    Hesthaven, J. S.

    1997-01-01

    We present a detailed analysis of a recently proposed perfectly matched layer (PML) method for the absorption of acoustic waves. The split set of equations is shown to be only weakly well-posed, and ill-posed under small low order perturbations. This analysis provides the explanation for the stability problems associated with the split field formulation and illustrates why applying a filter has a stabilizing effect. Utilizing recent results obtained within the context of electromagnetics, we develop strongly well-posed absorbing layers for the linearized Euler equations. The schemes are shown to be perfectly absorbing independent of frequency and angle of incidence of the wave in the case of a non-convecting mean flow. In the general case of a convecting mean flow, a number of techniques is combined to obtain a absorbing layers exhibiting PML-like behavior. The efficacy of the proposed absorbing layers is illustrated though computation of benchmark problems in aero-acoustics.

  20. Determination of the linear equations of position-sensing detectors for small motion measurement systems.

    PubMed

    Liu, Chien-Sheng; Lin, Psang Dain

    2010-11-01

    Small motion measurement systems are widely used in industry measurement fields to measure small positional/angular motions. These systems usually consist of two parts: a measuring assembly and a reference assembly. The position-sensing detectors (PSDs) are embedded in either measuring assembly or reference assembly to sense the variations of laser light incidence points when there are any small positional/angular motions. To use these systems, it is necessary to determine the linear equations of PSD readings, which relate the six-degrees-of-freedom small positional/angular motions and PSD readings. The purpose of this paper is to derive these equations based on the paraxial raytracing method. Two measurement systems are used as illustrative examples to validate the proposed methodology. The methodology of this study will be useful for system design of PSD-based measurement systems and their applications. PMID:21045913

  1. Fast Stable Solvers for Sequentially Semi-Seperable Linear Systems of Equations

    SciTech Connect

    Chandrasekaran, S; DeWilde, P; Gu, M; Pals, T; van der Veen, A J; White, D A

    2003-01-17

    We define the class of sequentially semi-separable matrices in this paper. Essentially this is the class of matrices which have low numerical rank on their off diagonal blocks. Examples include banded matrices, semi-separable matrices, their sums as well as inverses of these sums. Fast and stable algorithms for solving linear systems of equations involving such matrices and computing Moore-Penrose inverses are presented. Supporting numerical results are also presented. In addition, fast algorithms to construct and update this matrix structure for any given matrix are presented. Finally, numerical results that show that the coefficient matrices resulting from global spectral discretizations of certain integral equations indeed have this matrix structure are given.

  2. An asymptotic-preserving scheme for linear kinetic equation with fractional diffusion limit

    NASA Astrophysics Data System (ADS)

    Wang, Li; Yan, Bokai

    2016-05-01

    We present a new asymptotic-preserving scheme for the linear Boltzmann equation which, under appropriate scaling, leads to a fractional diffusion limit. Our scheme rests on novel micro-macro decomposition to the distribution function, which splits the original kinetic equation following a reshuffled Hilbert expansion. As opposed to classical diffusion limit, a major difficulty comes from the fat tail in the equilibrium which makes the truncation in velocity space depending on the small parameter. Our idea is, while solving the macro-micro part in a truncated velocity domain (truncation only depends on numerical accuracy), to incorporate an integrated tail over the velocity space that is beyond the truncation, and its major component can be precomputed once with any accuracy. Such an addition is essential to drive the solution to the correct asymptotic limit. Numerical experiments validate its efficiency in both kinetic and fractional diffusive regimes.

  3. Hadamard States for the Linearized Yang-Mills Equation on Curved Spacetime

    NASA Astrophysics Data System (ADS)

    Gérard, C.; Wrochna, M.

    2015-07-01

    We construct Hadamard states for the Yang-Mills equation linearized around a smooth, space-compact background solution. We assume the spacetime is globally hyperbolic and its Cauchy surface is compact or equal . We first consider the case when the spacetime is ultra-static, but the background solution depends on time. By methods of pseudodifferential calculus we construct a parametrix for the associated vectorial Klein-Gordon equation. We then obtain Hadamard two-point functions in the gauge theory, acting on Cauchy data. A key role is played by classes of pseudodifferential operators that contain microlocal or spectral type low-energy cutoffs. The general problem is reduced to the ultra-static spacetime case using an extension of the deformation argument of Fulling, Narcowich and Wald. As an aside, we derive a correspondence between Hadamard states and parametrices for the Cauchy problem in ordinary quantum field theory.

  4. Electron dynamics inside a vacuum tube diode through linear differential equations

    NASA Astrophysics Data System (ADS)

    González, Gabriel; Orozco, Fco. Javier González; Orozco

    2014-04-01

    In this paper we analyze the motion of charged particles in a vacuum tube diode by solving linear differential equations. Our analysis is based on expressing the volume charge density as a function of the current density and coordinates only, i.e. ρ=ρ(J,z), while in the usual scheme the volume charge density is expressed as a function of the current density and electrostatic potential, i.e. ρ=ρ(J,V). We show that, in the case of slow varying charge density, the space-charge-limited current is reduced up to 50%. Our approach gives the well-known behavior of the classical current density proportional to the three-halves power of the bias potential and inversely proportional to the square of the gap distance between electrodes, and does not require the solution of the nonlinear differential equation normally associated with the Child-Langmuir formulation.

  5. Note on linearized stability of Schwarzschild thin-shell wormholes with variable equations of state

    NASA Astrophysics Data System (ADS)

    Varela, Victor

    2015-08-01

    We discuss how the assumption of variable equation of state (EoS) allows the elimination of the instability at equilibrium throat radius a0=3 M featured by previous Schwarzschild thin-shell wormhole models. Unobstructed stability regions are found for three choices of variable EoS. Two of these EoS entail linear stability at every equilibrium radius. Particularly, the thin shell remains stable as a0 approaches the Schwarzschild radius 2 M . A perturbative analysis of the wormhole equation of motion is carried out in the case of variable Chaplygin EoS. The squared proper angular frequency ω02 of small throat oscillations is linked with the second derivative of the thin-shell potential. In various situations ω02 remains positive and bounded in the limit a0→2 M .

  6. New differential equations governing the response cross-correlations of linear systems subjected to coloured loads

    NASA Astrophysics Data System (ADS)

    Falsone, G.; Settineri, D.

    2011-06-01

    A procedure for evaluating the response cross-correlation of a linear structural system subjected to the action of stationary random multi-correlated processes is presented in this work. It is based on the definition of the fourth-order differential equation governing the modal response cross-correlation and of the corresponding solution. This is expressed in terms of the corresponding fundamental matrix, whose expression is related to the fundamental matrices of the differential equations governing the modal responses. The properties of this matrix allows to define a particular unconditionally stable numerical integration approach, which is composed of two independent step-by-step procedures, a progressive one and a regressive one. The applications have shown a level of accuracy comparable to that corresponding to the numerical solution of the double convolution integral, but the presented approach is characterised by a reduced computational effort.

  7. On the 'delta-equations' for vortex sheet evolution

    NASA Technical Reports Server (NTRS)

    Rottman, James W.; Stansby, Peter K.

    1993-01-01

    We use a set of equations, sometimes referred to as the 'delta-equations', to approximate the two-dimensional inviscid motion of an initially circular vortex sheet released from rest in a cross-flow. We present numerical solutions of these equations for the case with delta-square = 0 (for which the equations are exact) and for delta-square greater than 0. For small values of the smoothing parameter delta, a spectral filter must be used to eliminate spurious instabilities due to round-off error. Two singularities appear simultaneously in the vortex sheet when delta-square = 0 at a critical time t(c). After t(c), the solutions do not converge as the computational mesh is refined. With delta-square greater than 0, converged solutions were found for all values of delta-square when t is less than t(c), and for all but the two smallest values of delta-square used when t is greater than t(c). Our results show that, when delta-square is greater than 0, the vortex sheet deforms into two doubly branched spirals some time after t(c). The limiting solution as delta approaching 0 clearly exists and equals the delta = 0 solution when t is less than t(c).

  8. STAR adaptation of QR algorithm. [program for solving over-determined systems of linear equations

    NASA Technical Reports Server (NTRS)

    Shah, S. N.

    1981-01-01

    The QR algorithm used on a serial computer and executed on the Control Data Corporation 6000 Computer was adapted to execute efficiently on the Control Data STAR-100 computer. How the scalar program was adapted for the STAR-100 and why these adaptations yielded an efficient STAR program is described. Program listings of the old scalar version and the vectorized SL/1 version are presented in the appendices. Execution times for the two versions applied to the same system of linear equations, are compared.

  9. Algorithms for solving large sparse systems of simultaneous linear equations on vector processors

    NASA Technical Reports Server (NTRS)

    David, R. E.

    1984-01-01

    Very efficient algorithms for solving large sparse systems of simultaneous linear equations have been developed for serial processing computers. These involve a reordering of matrix rows and columns in order to obtain a near triangular pattern of nonzero elements. Then an LU factorization is developed to represent the matrix inverse in terms of a sequence of elementary Gaussian eliminations, or pivots. In this paper it is shown how these algorithms are adapted for efficient implementation on vector processors. Results obtained on the CYBER 200 Model 205 are presented for a series of large test problems which show the comparative advantages of the triangularization and vector processing algorithms.

  10. Bayesian analysis of non-linear differential equation models with application to a gut microbial ecosystem.

    PubMed

    Lawson, Daniel J; Holtrop, Grietje; Flint, Harry

    2011-07-01

    Process models specified by non-linear dynamic differential equations contain many parameters, which often must be inferred from a limited amount of data. We discuss a hierarchical Bayesian approach combining data from multiple related experiments in a meaningful way, which permits more powerful inference than treating each experiment as independent. The approach is illustrated with a simulation study and example data from experiments replicating the aspects of the human gut microbial ecosystem. A predictive model is obtained that contains prediction uncertainty caused by uncertainty in the parameters, and we extend the model to capture situations of interest that cannot easily be studied experimentally. PMID:21681780

  11. On the linear Boltzmann equation with rough granular collisions and spin

    NASA Astrophysics Data System (ADS)

    Pettersson, Rolf

    2012-11-01

    This paper considers the time-and space-dependent linear Boltzmann equation with general boundary conditions in the case of inelastic rough granular collisions. First, in the angular cut-off case or hard sphere case, mild L1-solutions are constructed as limits of the iterate functions and boundedness of higher velocity moments are discussed in the case of hard inverse power collisions or hard sphere collisions. Furthermore, convergence of solutions to a stationary state, when time goes to infinity, is discussed, using a generalized H-theorem.

  12. A two-qubit photonic quantum processor and its application to solving systems of linear equations

    PubMed Central

    Barz, Stefanie; Kassal, Ivan; Ringbauer, Martin; Lipp, Yannick Ole; Dakić, Borivoje; Aspuru-Guzik, Alán; Walther, Philip

    2014-01-01

    Large-scale quantum computers will require the ability to apply long sequences of entangling gates to many qubits. In a photonic architecture, where single-qubit gates can be performed easily and precisely, the application of consecutive two-qubit entangling gates has been a significant obstacle. Here, we demonstrate a two-qubit photonic quantum processor that implements two consecutive CNOT gates on the same pair of polarisation-encoded qubits. To demonstrate the flexibility of our system, we implement various instances of the quantum algorithm for solving of systems of linear equations. PMID:25135432

  13. A nonlinear singular eigenvalue problem for a linear system of ordinary differential equations with redundant conditions

    NASA Astrophysics Data System (ADS)

    Abramov, A. A.; Yukhno, L. F.

    2016-07-01

    A nonlinear eigenvalue problem for a linear system of ordinary differential equations is examined on a semi-infinite interval. The problem is supplemented by nonlocal conditions specified by a Stieltjes integral. At infinity, the solution must be bounded. In addition to these basic conditions, the solution must satisfy certain redundant conditions, which are also nonlocal. A numerically stable method for solving such a singular overdetermined eigenvalue problem is proposed and analyzed. The essence of the method is that this overdetermined problem is replaced by an auxiliary problem consistent with all the above conditions.

  14. Fokas method for a multi-domain linear reaction-diffusion equation with discontinuous diffusivity

    NASA Astrophysics Data System (ADS)

    Asvestas, M.; Sifalakis, A. G.; Papadopoulou, E. P.; Saridakis, Y. G.

    2014-03-01

    Motivated by proliferation-diffusion mathematical models for studying highly diffusive brain tumors, that also take into account the heterogeneity of the brain tissue, in the present work we consider a multi-domain linear reaction-diffusion equation with a discontinuous diffusion coefficient. For the solution of the problem at hand we implement Fokas transform method by directly following, and extending in this way, our recent work for a white-gray-white matter brain model pertaining to high grade gliomas. Fokas's novel approach for the solution of linear PDE problems, yields novel integral representations of the solution in the complex plane that, for appropriately chosen integration contours, decay exponentially fast and converge uniformly at the boundaries. Combining these method-inherent advantages with simple numerical quadrature rules, we produce an efficient method, with fast decaying error properties, for the solution of the discontinuous reaction-diffusion problem.

  15. Second order particle motion equations and linear chromaticity calculation in accelerator rings

    SciTech Connect

    Liu, R.Z.

    1984-01-01

    The first part of this note presents a thorough study on the second order particle motion equations, both in continuous field and in hard edges, with emphasis put on the latter. Having quite general conditions and strict mathematical treatments, it provides a sound ground from which many problems can be solved without fear of being misled. Then the linear CHR calculation is inspected, the first step being a general analytical expression of the transverse oscillation phase increment due to a small disturbance. The expression for the CHR is then readily obtained since tune is the transverse oscillation number per turn and the CHR is the linear dependence of the tune on particle energy/momentum deviation. The last part gives the formulae for practical CHR calculation, which are general enough to include almost all the magnet types commonly used in various accelerator rings and are simpler than can be found elsewhere.

  16. The influence of cell geometry on the Godunov scheme applied to the linear wave equation

    NASA Astrophysics Data System (ADS)

    Dellacherie, Stéphane; Omnes, Pascal; Rieper, Felix

    2010-08-01

    By studying the structure of the discrete kernel of the linear acoustic operator discretized with a Godunov scheme, we clearly explain why the behaviour of the Godunov scheme applied to the linear wave equation deeply depends on the space dimension and, especially, on the type of mesh. This approach allows us to explain why, in the periodic case, the Godunov scheme applied to the resolution of the compressible Euler or Navier-Stokes system is accurate at low Mach number when the mesh is triangular or tetrahedral and is not accurate when the mesh is a 2D (or 3D) cartesian mesh. This approach confirms also the fact that a Godunov scheme remains accurate when it is modified by simply centering the discretization of the pressure gradient.

  17. Derivation of a Differential Equation Exhibiting Replicative Time-Evolution Patterns by Inverse Ultra-Discretization

    NASA Astrophysics Data System (ADS)

    Tanaka, Hiroshi; Nakajima, Asumi; Nishiyama, Akinobu; Tokihiro, Tetsuji

    2009-03-01

    A differential equation exhibiting replicative time-evolution patterns is derived by inverse ultradiscretizatrion of Fredkin’s game, which is one of the simplest replicative cellular automaton (CA) in two dimensions. This is achieved by employing a certain filter and a clock function in the equation. These techniques are applicable to the inverse ultra-discretization (IUD) of other CA and stabilize the time-evolution of the obtained differential equation. Application to the game of life, another CA in two dimensions, is also presented.

  18. Numerical study of fourth-order linearized compact schemes for generalized NLS equations

    NASA Astrophysics Data System (ADS)

    Liao, Hong-lin; Shi, Han-sheng; Zhao, Ying

    2014-08-01

    The fourth-order compact approximation for the spatial second-derivative and several linearized approaches, including the time-lagging method of Zhang et al. (1995), the local-extrapolation technique of Chang et al. (1999) and the recent scheme of Dahlby et al. (2009), are considered in constructing fourth-order linearized compact difference (FLCD) schemes for generalized NLS equations. By applying a new time-lagging linearized approach, we propose a symmetric fourth-order linearized compact difference (SFLCD) scheme, which is shown to be more robust in long-time simulations of plane wave, breather, periodic traveling-wave and solitary wave solutions. Numerical experiments suggest that the SFLCD scheme is a little more accurate than some other FLCD schemes and the split-step compact difference scheme of Dehghan and Taleei (2010). Compared with the time-splitting pseudospectral method of Bao et al. (2003), our SFLCD method is more suitable for oscillating solutions or the problems with a rapidly varying potential.

  19. Binarization method based on evolution equation for document images produced by cameras

    NASA Astrophysics Data System (ADS)

    Wang, Yan; He, Chuanjiang

    2012-04-01

    We present an evolution equation-based binarization method for document images produced by cameras. Unlike the existing thresholding techniques, the idea behind our method is that a family of gradually binarized images is obtained by the solution of an evolution partial differential equation, starting with an original image. In our formulation, the evolution is controlled by a global force and a local force, both of which have opposite sign inside and outside the object of interests in the original image. A simple finite difference scheme with a significantly larger time step is used to solve the evolution equation numerically; the desired binarization is typically obtained after only one or two iterations. Experimental results on 122 camera document images show that our method yields good visual quality and OCR performance.

  20. Consistent nonlinear deterministic and stochastic evolution equations for deep to shallow water wave shoaling

    NASA Astrophysics Data System (ADS)

    Vrecica, Teodor; Toledo, Yaron

    2015-04-01

    One-dimensional deterministic and stochastic evolution equations are derived for the dispersive nonlinear waves while taking dissipation of energy into account. The deterministic nonlinear evolution equations are formulated using operational calculus by following the approach of Bredmose et al. (2005). Their formulation is extended to include the linear and nonlinear effects of wave dissipation due to friction and breaking. The resulting equation set describes the linear evolution of the velocity potential for each wave harmonic coupled by quadratic nonlinear terms. These terms describe the nonlinear interactions between triads of waves, which represent the leading-order nonlinear effects in the near-shore region. The equations are translated to the amplitudes of the surface elevation by using the approach of Agnon and Sheremet (1997) with the correction of Eldeberky and Madsen (1999). The only current possibility for calculating the surface gravity wave field over large domains is by using stochastic wave evolution models. Hence, the above deterministic model is formulated as a stochastic one using the method of Agnon and Sheremet (1997) with two types of stochastic closure relations (Benney and Saffman's, 1966, and Hollway's, 1980). These formulations cannot be applied to the common wave forecasting models without further manipulation, as they include a non-local wave shoaling coefficients (i.e., ones that require integration along the wave rays). Therefore, a localization method was applied (see Stiassnie and Drimer, 2006, and Toledo and Agnon, 2012). This process essentially extracts the local terms that constitute the mean nonlinear energy transfer while discarding the remaining oscillatory terms, which transfer energy back and forth. One of the main findings of this work is the understanding that the approximated non-local coefficients behave in two essentially different manners. In intermediate water depths these coefficients indeed consist of rapidly

  1. Dromion interactions of (2+1)-dimensional nonlinear evolution equations

    PubMed

    Ruan; Chen

    2000-10-01

    Starting from two line solitons, the solution of integrable (2+1)-dimensional mKdV system and KdV system in bilinear form yields a dromion solution or a "Solitoff" solution. Such a dromion solution is localized in all directions and the Solitoff solution decays exponentially in all directions except a preferred one for the physical field or a suitable potential. The interactions between two dromions and between the dromion and Solitoff are studied by the method of figure analysis for a (2+1)-dimensional modified KdV equation and a (2+1)-dimensional KdV type equation. Our analysis shows that the interactions between two dromions may be elastic or inelastic for different forms of solutions. PMID:11089133

  2. Exact Solutions of Coupled Multispecies Linear Reaction–Diffusion Equations on a Uniformly Growing Domain

    PubMed Central

    Simpson, Matthew J.; Sharp, Jesse A.; Morrow, Liam C.; Baker, Ruth E.

    2015-01-01

    Embryonic development involves diffusion and proliferation of cells, as well as diffusion and reaction of molecules, within growing tissues. Mathematical models of these processes often involve reaction–diffusion equations on growing domains that have been primarily studied using approximate numerical solutions. Recently, we have shown how to obtain an exact solution to a single, uncoupled, linear reaction–diffusion equation on a growing domain, 0 < x < L(t), where L(t) is the domain length. The present work is an extension of our previous study, and we illustrate how to solve a system of coupled reaction–diffusion equations on a growing domain. This system of equations can be used to study the spatial and temporal distributions of different generations of cells within a population that diffuses and proliferates within a growing tissue. The exact solution is obtained by applying an uncoupling transformation, and the uncoupled equations are solved separately before applying the inverse uncoupling transformation to give the coupled solution. We present several example calculations to illustrate different types of behaviour. The first example calculation corresponds to a situation where the initially–confined population diffuses sufficiently slowly that it is unable to reach the moving boundary at x = L(t). In contrast, the second example calculation corresponds to a situation where the initially–confined population is able to overcome the domain growth and reach the moving boundary at x = L(t). In its basic format, the uncoupling transformation at first appears to be restricted to deal only with the case where each generation of cells has a distinct proliferation rate. However, we also demonstrate how the uncoupling transformation can be used when each generation has the same proliferation rate by evaluating the exact solutions as an appropriate limit. PMID:26407013

  3. Linear vs non-linear QCD evolution in the neutrino-nucleon cross section

    NASA Astrophysics Data System (ADS)

    Albacete, Javier L.; Illana, José I.; Soto-Ontoso, Alba

    2016-03-01

    Evidence for an extraterrestrial flux of ultra-high-energy neutrinos, in the order of PeV, has opened a new era in Neutrino Astronomy. An essential ingredient for the determination of neutrino fluxes from the number of observed events is the precise knowledge of the neutrino-nucleon cross section. In this work, based on [1], we present a quantitative study of σνN in the neutrino energy range 104 < Eν < 1014 GeV within two transversal QCD approaches: NLO DGLAP evolution using different sets of PDFs and BK small-x evolution with running coupling and kinematical corrections. Further, we translate this theoretical uncertainty into upper bounds for the ultra-high-energy neutrino flux for different experiments.

  4. A General Method for Solving Systems of Non-Linear Equations

    NASA Technical Reports Server (NTRS)

    Nachtsheim, Philip R.; Deiss, Ron (Technical Monitor)

    1995-01-01

    The method of steepest descent is modified so that accelerated convergence is achieved near a root. It is assumed that the function of interest can be approximated near a root by a quadratic form. An eigenvector of the quadratic form is found by evaluating the function and its gradient at an arbitrary point and another suitably selected point. The terminal point of the eigenvector is chosen to lie on the line segment joining the two points. The terminal point found lies on an axis of the quadratic form. The selection of a suitable step size at this point leads directly to the root in the direction of steepest descent in a single step. Newton's root finding method not infrequently diverges if the starting point is far from the root. However, the current method in these regions merely reverts to the method of steepest descent with an adaptive step size. The current method's performance should match that of the Levenberg-Marquardt root finding method since they both share the ability to converge from a starting point far from the root and both exhibit quadratic convergence near a root. The Levenberg-Marquardt method requires storage for coefficients of linear equations. The current method which does not require the solution of linear equations requires more time for additional function and gradient evaluations. The classic trade off of time for space separates the two methods.

  5. Damping of Bloch oscillations: Variational solutions of the Boltzmann equation beyond linear response

    NASA Astrophysics Data System (ADS)

    Mandt, Stephan

    2014-11-01

    Variational solutions of the Boltzmann equation usually rely on the concept of linear response. We extend the variational approach for tight-binding models at high entropies to a regime far beyond linear response. We analyze both weakly interacting fermions and incoherent bosons on a lattice. We consider a case where the particles are driven by a constant force, leading to the well-known Bloch oscillations, and we consider interactions that are weak enough not to overdamp these oscillations. This regime is computationally demanding and relevant for ultracold atoms in optical lattices. We derive a simple theory in terms of coupled dynamic equations for the particle density, energy density, current, and heat current, allowing for analytic solutions. As an application, we identify damping coefficients for Bloch oscillations in the Hubbard model at weak interactions and compute them for a one-dimensional toy model. We also approximately solve the long-time dynamics of a weakly interacting, strongly Bloch-oscillating cloud of fermionic particles in a tilted lattice, leading to a subdiffusive scaling exponent.

  6. The linear stage of evolution of electron-hole avalanches in semiconductors

    SciTech Connect

    Kyuregyan, A. S.

    2008-01-15

    A complete analytical solution of the problem of the linear stage of evolution of electron-hole avalanches in the uniform time-independent electric field E{sub ext} is derived. The theory accounts for the drift, diffusion, and impact ionization of electrons and holes, thus providing a means for calculating the space-time distributions of fields and charges as well as all the basic parameters of the avalanches up to the onset of nonlinear effects at the time t{sub a}. Formulas for the group velocity of the avalanches and for the velocity of its leading fronts are derived. It is shown that the time t{sub a} must be determined from the condition that the impact ionization coefficient {alpha} in the center of the avalanche be reduced by a specified small quantity {eta}. A transcendent equation is derived, which allows the calculation of the time t{sub a} as a function of the quantity {eta}, the unperturbed coefficient {alpha}(E{sub ext}), and other parameters of the semiconductor. It is found that, when {alpha}(E{sub ext}) is increased by two orders of magnitude, the total number of electron-hole pairs generated up to the point t{sub a} decreases by nearly three orders of magnitude.

  7. Nonlinear (time domain) and linearized (time and frequency domain) solutions to the compressible Euler equations in conservation law form

    NASA Technical Reports Server (NTRS)

    Sreenivas, Kidambi; Whitfield, David L.

    1995-01-01

    Two linearized solvers (time and frequency domain) based on a high resolution numerical scheme are presented. The basic approach is to linearize the flux vector by expressing it as a sum of a mean and a perturbation. This allows the governing equations to be maintained in conservation law form. A key difference between the time and frequency domain computations is that the frequency domain computations require only one grid block irrespective of the interblade phase angle for which the flow is being computed. As a result of this and due to the fact that the governing equations for this case are steady, frequency domain computations are substantially faster than the corresponding time domain computations. The linearized equations are used to compute flows in turbomachinery blade rows (cascades) arising due to blade vibrations. Numerical solutions are compared to linear theory (where available) and to numerical solutions of the nonlinear Euler equations.

  8. Decoupling of the DGLAP evolution equations by Laplace method

    NASA Astrophysics Data System (ADS)

    Boroun, G. R.; Zarrin, S.; Teimoury, F.

    2015-10-01

    In this paper we derive two second-order differential equations for the gluon and singlet distribution functions by using the Laplace transform method. We decoupled the solutions of the singlet and gluon distributions into the initial conditions (function and derivative of the function) at the virtuality Q 0 2 separately as these solutions are defined by F 2 s ( x, Q 2) = F( F 0 ,∂ F s0 and G( x, Q 2)= G( G 0, ∂ G 0. We compared our results with the MSTW parameterization and the experimental measurements of F 2 p ( x, Q 2.

  9. Stable two-dimensional solitary pulses in linearly coupled dissipative Kadomtsev-Petviashvili equations.

    PubMed

    Feng, Bao-Feng; Malomed, Boris A; Kawahara, Takuji

    2002-11-01

    We present a two-dimensional (2D) generalization of the stabilized Kuramoto-Sivashinsky system, based on the Kadomtsev-Petviashvili (KP) equation including dissipation of the generic [Newell-Whitehead-Segel (NWS)] type and gain. The system directly applies to the description of gravity-capillary waves on the surface of a liquid layer flowing down an inclined plane, with a surfactant diffusing along the layer's surface. Actually, the model is quite general, offering a simple way to stabilize nonlinear media, combining the weakly 2D dispersion of the KP type with gain and NWS dissipation. Other applications are internal waves in multilayer fluids flowing down an inclined plane, double-front flames in gaseous mixtures, etc. Parallel to this weakly 2D model, we also introduce and study a semiphenomenological one, whose dissipative terms are isotropic, rather than of the NWS type, in order to check if qualitative results are sensitive to the exact form of the lossy terms. The models include an additional linear equation of the advection-diffusion type, linearly coupled to the main KP-NWS equation. The extra equation provides for stability of the zero background in the system, thus opening a way for the existence of stable localized pulses. We focus on the most interesting case, when the dispersive part of the system is of the KP-I type, which corresponds, e.g., to capillary waves, and makes the existence of completely localized 2D pulses possible. Treating the losses and gain as small perturbations and making use of the balance equation for the field momentum, we find that the equilibrium between the gain and losses may select two steady-state solitons from their continuous family existing in the absence of the dissipative terms (the latter family is found in an exact analytical form, and is numerically demonstrated to be stable). The selected soliton with the larger amplitude is expected to be stable. Direct simulations completely corroborate the analytical predictions

  10. Unified Einstein-Virasoro Master Equation in the General Non-Linear Sigma Model

    SciTech Connect

    Boer, J. de; Halpern, M.B.

    1996-06-05

    The Virasoro master equation (VME) describes the general affine-Virasoro construction $T=L^abJ_aJ_b+iD^a \\dif J_a$ in the operator algebra of the WZW model, where $L^ab$ is the inverse inertia tensor and $D^a $ is the improvement vector. In this paper, we generalize this construction to find the general (one-loop) Virasoro construction in the operator algebra of the general non-linear sigma model. The result is a unified Einstein-Virasoro master equation which couples the spacetime spin-two field $L^ab$ to the background fields of the sigma model. For a particular solution $L_G^ab$, the unified system reduces to the canonical stress tensors and conventional Einstein equations of the sigma model, and the system reduces to the general affine-Virasoro construction and the VME when the sigma model is taken to be the WZW action. More generally, the unified system describes a space of conformal field theories which is presumably much larger than the sum of the general affine-Virasoro construction and the sigma model with its canonical stress tensors. We also discuss a number of algebraic and geometrical properties of the system, including its relation to an unsolved problem in the theory of $G$-structures on manifolds with torsion.

  11. Genetic demixing and evolution in linear stepping stone models

    NASA Astrophysics Data System (ADS)

    Korolev, K. S.; Avlund, Mikkel; Hallatschek, Oskar; Nelson, David R.

    2010-04-01

    Results for mutation, selection, genetic drift, and migration in a one-dimensional continuous population are reviewed and extended. The population is described by a continuous limit of the stepping stone model, which leads to the stochastic Fisher-Kolmogorov-Petrovsky-Piscounov equation with additional terms describing mutations. Although the stepping stone model was first proposed for population genetics, it is closely related to “voter models” of interest in nonequilibrium statistical mechanics. The stepping stone model can also be regarded as an approximation to the dynamics of a thin layer of actively growing pioneers at the frontier of a colony of micro-organisms undergoing a range expansion on a Petri dish. The population tends to segregate into monoallelic domains. This segregation slows down genetic drift and selection because these two evolutionary forces can only act at the boundaries between the domains; the effects of mutation, however, are not significantly affected by the segregation. Although fixation in the neutral well-mixed (or “zero-dimensional”) model occurs exponentially in time, it occurs only algebraically fast in the one-dimensional model. An unusual sublinear increase is also found in the variance of the spatially averaged allele frequency with time. If selection is weak, selective sweeps occur exponentially fast in both well-mixed and one-dimensional populations, but the time constants are different. The relatively unexplored problem of evolutionary dynamics at the edge of an expanding circular colony is studied as well. Also reviewed are how the observed patterns of genetic diversity can be used for statistical inference and the differences are highlighted between the well-mixed and one-dimensional models. Although the focus is on two alleles or variants, q -allele Potts-like models of gene segregation are considered as well. Most of the analytical results are checked with simulations and could be tested against recent spatial

  12. Modeling Individual Damped Linear Oscillator Processes with Differential Equations: Using Surrogate Data Analysis to Estimate the Smoothing Parameter

    ERIC Educational Resources Information Center

    Deboeck, Pascal R.; Boker, Steven M.; Bergeman, C. S.

    2008-01-01

    Among the many methods available for modeling intraindividual time series, differential equation modeling has several advantages that make it promising for applications to psychological data. One interesting differential equation model is that of the damped linear oscillator (DLO), which can be used to model variables that have a tendency to…

  13. A Bohmian approach to the non-Markovian non-linear Schrödinger–Langevin equation

    SciTech Connect

    Vargas, Andrés F.; Morales-Durán, Nicolás; Bargueño, Pedro

    2015-05-15

    In this work, a non-Markovian non-linear Schrödinger–Langevin equation is derived from the system-plus-bath approach. After analyzing in detail previous Markovian cases, Bohmian mechanics is shown to be a powerful tool for obtaining the desired generalized equation.

  14. A Fresh Look at Linear Ordinary Differential Equations with Constant Coefficients. Revisiting the Impulsive Response Method Using Factorization

    ERIC Educational Resources Information Center

    Camporesi, Roberto

    2016-01-01

    We present an approach to the impulsive response method for solving linear constant-coefficient ordinary differential equations of any order based on the factorization of the differential operator. The approach is elementary, we only assume a basic knowledge of calculus and linear algebra. In particular, we avoid the use of distribution theory, as…

  15. Linear and nonlinear properties of numerical methods for the rotating shallow water equations

    NASA Astrophysics Data System (ADS)

    Eldred, Chris

    The shallow water equations provide a useful analogue of the fully compressible Euler equations since they have similar conservation laws, many of the same types of waves and a similar (quasi-) balanced state. It is desirable that numerical models posses similar properties, and the prototypical example of such a scheme is the 1981 Arakawa and Lamb (AL81) staggered (C-grid) total energy and potential enstrophy conserving scheme, based on the vector invariant form of the continuous equations. However, this scheme is restricted to a subset of logically square, orthogonal grids. The current work extends the AL81 scheme to arbitrary non-orthogonal polygonal grids, by combining Hamiltonian methods (work done by Salmon, Gassmann, Dubos and others) and Discrete Exterior Calculus (Thuburn, Cotter, Dubos, Ringler, Skamarock, Klemp and others). It is also possible to obtain these properties (along with arguably superior wave dispersion properties) through the use of a collocated (Z-grid) scheme based on the vorticity-divergence form of the continuous equations. Unfortunately, existing examples of these schemes in the literature for general, spherical grids either contain computational modes; or do not conserve total energy and potential enstrophy. This dissertation extends an existing scheme for planar grids to spherical grids, through the use of Nambu brackets (as pioneered by Rick Salmon). To compare these two schemes, the linear modes (balanced states, stationary modes and propagating modes; with and without dissipation) are examined on both uniform planar grids (square, hexagonal) and quasi-uniform spherical grids (geodesic, cubed-sphere). In addition to evaluating the linear modes, the results of the two schemes applied to a set of standard shallow water test cases and a recently developed forced-dissipative turbulence test case from John Thuburn (intended to evaluate the ability the suitability of schemes as the basis for a climate model) on both hexagonal

  16. Quasi-Linear Evolution of the Modulational Instability in the Presence of Partial Incoherence

    NASA Astrophysics Data System (ADS)

    Lisak, M.; Anderson, D.; Helczynski-Wolf, L.; Berczynski, P.; Fedele, R.; Semenov, V.

    2004-01-01

    A basic system of model equations describing the quasi-linear development of the modulational instability in the presence of partial incoherence is derived. This system can be interpreted as balance equations for the number of quasi-particles in the Wigner spectrum where the basic processes which are active are emission and absorption of quasi-particles by quasi-particles with different wave vectors.

  17. Solving the Linear Balance Equation on the Globe as a Generalized Inverse Problem

    NASA Technical Reports Server (NTRS)

    Lu, Huei-Iin; Robertson, Franklin R.

    1999-01-01

    A generalized (pseudo) inverse technique was developed to facilitate a better understanding of the numerical effects of tropical singularities inherent in the spectral linear balance equation (LBE). Depending upon the truncation, various levels of determinancy are manifest. The traditional fully-determined (FD) systems give rise to a strong response, while the under-determined (UD) systems yield a weak response to the tropical singularities. The over-determined (OD) systems result in a modest response and a large residual in the tropics. The FD and OD systems can be alternatively solved by the iterative method. Differences in the solutions of an UD system exist between the inverse technique and the iterative method owing to the non- uniqueness of the problem. A realistic balanced wind was obtained by solving the principal components of the spectral LBE in terms of vorticity in an intermediate resolution. Improved solutions were achieved by including the singular-component solutions which best fit the observed wind data.

  18. Phonon-limited low-field mobility in silicon: Quantum transport vs. linearized Boltzmann Transport Equation

    NASA Astrophysics Data System (ADS)

    Rhyner, Reto; Luisier, Mathieu

    2013-12-01

    We propose to check and validate the approximations made in dissipative quantum transport (QT) simulations solved in the Non-equilibrium Green's Function formalism by comparing them with the exact solution of the linearized Boltzmann Transport Equation (LB) in the stationary regime. For that purpose, we calculate the phonon-limited electron and hole mobility in bulk Si and ultra-scaled Si nanowires for different crystal orientations ⟨100⟩, ⟨110⟩, and ⟨111⟩. In both QT and LB simulations, we use the same sp3d5s* tight-binding model to describe the electron/hole properties and the same valence-force-field approach to account for the phonon properties. It is found that the QT simplifications work well for electrons, but are less accurate for holes, where a renormalization of the phonon scattering strength is proved useful to improve the results.

  19. A numerical solution of the linear Boltzmann equation using cubic B-splines

    NASA Astrophysics Data System (ADS)

    Khurana, Saheba; Thachuk, Mark

    2012-03-01

    A numerical method using cubic B-splines is presented for solving the linear Boltzmann equation. The collision kernel for the system is chosen as the Wigner-Wilkins kernel. A total of three different representations for the distribution function are presented. Eigenvalues and eigenfunctions of the collision matrix are obtained for various mass ratios and compared with known values. Distribution functions, along with first and second moments, are evaluated for different mass and temperature ratios. Overall it is shown that the method is accurate and well behaved. In particular, moments can be predicted with very few points if the representation is chosen well. This method produces sparse matrices, can be easily generalized to higher dimensions, and can be cast into efficient parallel algorithms.

  20. Growth of Sobolev Norms in Linear Schrödinger Equations with Quasi-Periodic Potential

    NASA Astrophysics Data System (ADS)

    Bourgain, J.

    In this paper, we consider the following problem. Let iut+Δu+V(x,t)u= 0 be a linear Schrödinger equation ( periodic boundary conditions) where V is a real, bounded, real analytic potential which is periodic in x and quasi periodic in t with diophantine frequency vector λ. Denote S(t) the corresponding flow map. Thus S(t) preserves the L2-norm and our aim is to study its behaviour on Hs(TD), s> 0. Our main result is the growth in time is at most logarithmic; thus if φ∈Hs, then More precisely, (*) is proven in 1D and 2D when V is small. We also exhibit examples showing that a growth of higher Sobolev norms may occur in this context and (*) is thus essentially best possible.

  1. Toward a gauge theory for evolution equations on vector-valued spaces

    SciTech Connect

    Cardanobile, Stefano; Mugnolo, Delio

    2009-10-15

    We investigate symmetry properties of vector-valued diffusion and Schroedinger equations. For a separable Hilbert space H we characterize the subspaces of L{sup 2}(R{sup 3};H) that are local (i.e., defined pointwise) and discuss the issue of their invariance under the time evolution of the differential equation. In this context, the possibility of a connection between our results and the theory of gauge symmetries in mathematical physics is explored.

  2. A constrained regularization method for inverting data represented by linear algebraic or integral equations

    NASA Astrophysics Data System (ADS)

    Provencher, Stephen W.

    1982-09-01

    CONTIN is a portable Fortran IV package for inverting noisy linear operator equations. These problems occur in the analysis of data from a wide variety experiments. They are generally ill-posed problems, which means that errors in an unregularized inversion are unbounded. Instead, CONTIN seeks the optimal solution by incorporating parsimony and any statistical prior knowledge into the regularizor and absolute prior knowledge into equallity and inequality constraints. This can be greatly increase the resolution and accuracyh of the solution. CONTIN is very flexible, consisting of a core of about 50 subprograms plus 13 small "USER" subprograms, which the user can easily modify to specify special-purpose constraints, regularizors, operator equations, simulations, statistical weighting, etc. Specjial collections of USER subprograms are available for photon correlation spectroscopy, multicomponent spectra, and Fourier-Bessel, Fourier and Laplace transforms. Numerically stable algorithms are used throughout CONTIN. A fairly precise definition of information content in terms of degrees of freedom is given. The regularization parameter can be automatically chosen on the basis of an F-test and confidence region. The interpretation of the latter and of error estimates based on the covariance matrix of the constrained regularized solution are discussed. The strategies, methods and options in CONTIN are outlined. The program itself is described in the following paper.

  3. Iterative methods for the solution of very large complex symmetric linear systems of equations in electrodynamics

    SciTech Connect

    Clemens, M.; Weiland, T.

    1996-12-31

    In the field of computational electrodynamics the discretization of Maxwell`s equations using the Finite Integration Theory (FIT) yields very large, sparse, complex symmetric linear systems of equations. For this class of complex non-Hermitian systems a number of conjugate gradient-type algorithms is considered. The complex version of the biconjugate gradient (BiCG) method by Jacobs can be extended to a whole class of methods for complex-symmetric algorithms SCBiCG(T, n), which only require one matrix vector multiplication per iteration step. In this class the well-known conjugate orthogonal conjugate gradient (COCG) method for complex-symmetric systems corresponds to the case n = 0. The case n = 1 yields the BiCGCR method which corresponds to the conjugate residual algorithm for the real-valued case. These methods in combination with a minimal residual smoothing process are applied separately to practical 3D electro-quasistatical and eddy-current problems in electrodynamics. The practical performance of the SCBiCG methods is compared with other methods such as QMR and TFQMR.

  4. Subleading-N corrections in non-linear small-x evolution

    NASA Astrophysics Data System (ADS)

    Kovchegov, Yuri V.; Kuokkanen, Janne; Rummukainen, Kari; Weigert, Heribert

    2009-05-01

    We explore the subleading- N corrections to the large- N Balitsky-Kovchegov (BK) evolution equation by comparing its solution to that of the all- N Jalilian-Marian-Iancu-McLerran-Weigert-Leonidov-Kovner (JIMWLK) equation. In earlier simulations it was observed that the difference between the solutions of JIMWLK and BK is unusually small for a quark dipole scattering amplitude, of the order of 0.1%, which is two orders of magnitude smaller than the naively expected 1/Nc2≈11%. In this paper we argue that this smallness is not accidental. We provide analytical arguments showing that saturation effects and correlator coincidence limits fixed by group theory constraints conspire with the particular structure of the dipole kernel to suppress subleading- N corrections reducing the difference between the solutions of JIMWLK and BK to 0.1%. We solve the JIMWLK equation with improved numerical accuracy and verify that the remaining 1/N corrections, while small, still manage to slow down the rapidity-dependence of JIMWLK evolution compared to that of BK. We demonstrate that a truncation of JIMWLK evolution in the form of a minimal Gaussian generalization of the BK equation captures some of the remaining 1/N contributions leading to an even better agreement with JIMWLK evolution. As the 1/N corrections to BK include multi-reggeon exchanges one may conclude that the net effect of multi-reggeon exchanges on the dipole amplitude is rather small.

  5. Fast linear solver for radiative transport equation with multiple right hand sides in diffuse optical tomography

    NASA Astrophysics Data System (ADS)

    Jia, Jingfei; Kim, Hyun K.; Hielscher, Andreas H.

    2015-12-01

    It is well known that radiative transfer equation (RTE) provides more accurate tomographic results than its diffusion approximation (DA). However, RTE-based tomographic reconstruction codes have limited applicability in practice due to their high computational cost. In this article, we propose a new efficient method for solving the RTE forward problem with multiple light sources in an all-at-once manner instead of solving it for each source separately. To this end, we introduce here a novel linear solver called block biconjugate gradient stabilized method (block BiCGStab) that makes full use of the shared information between different right hand sides to accelerate solution convergence. Two parallelized block BiCGStab methods are proposed for additional acceleration under limited threads situation. We evaluate the performance of this algorithm with numerical simulation studies involving the Delta-Eddington approximation to the scattering phase function. The results show that the single threading block RTE solver proposed here reduces computation time by a factor of 1.5-3 as compared to the traditional sequential solution method and the parallel block solver by a factor of 1.5 as compared to the traditional parallel sequential method. This block linear solver is, moreover, independent of discretization schemes and preconditioners used; thus further acceleration and higher accuracy can be expected when combined with other existing discretization schemes or preconditioners.

  6. Relativistic stars with a linear equation of state: analogy with classical isothermal spheres and black holes

    NASA Astrophysics Data System (ADS)

    Chavanis, P. H.

    2008-06-01

    We complete our previous investigations concerning the structure and the stability of “isothermal” spheres in general relativity. This concerns objects that are described by a linear equation of state, P=qɛ, so that the pressure is proportional to the energy density. In the Newtonian limit q→ 0, this returns the classical isothermal equation of state. We specifically consider a self-gravitating radiation (q=1/3), the core of neutron stars (q=1/3), and a gas of baryons interacting through a vector meson field (q=1). Inspired by recent works, we study how the thermodynamical parameters (entropy, temperature, baryon number, mass-energy, etc.) scale with the size of the object and find unusual behaviours due to the non-extensivity of the system. We compare these scaling laws with the area scaling of the black hole entropy. We also determine the domain of validity of these scaling laws by calculating the critical radius (for a given central density) above which relativistic stars described by a linear equation of state become dynamically unstable. For photon stars (self-gravitating radiation), we show that the criteria of dynamical and thermodynamical stability coincide. Considering finite spheres, we find that the mass and entropy present damped oscillations as a function of the central density. We obtain an upper bound for the entropy S and the mass-energy M above which there is no equilibrium state. We give the critical value of the central density corresponding to the first mass peak, above which the series of equilibria becomes unstable. We also determine the deviation from the Stefan-Boltzmann law due to self-gravity and plot the corresponding caloric curve. It presents a striking spiraling behaviour like the caloric curve of isothermal spheres in Newtonian gravity. We extend our results to d-dimensional spheres and show that the oscillations of mass-versus-central density disappear above a critical dimension d_crit(q). For Newtonian isothermal stars (q

  7. Blow-up of solutions of non-linear equations of Kadomtsev-Petviashvili and Zakharov-Kuznetsov types

    NASA Astrophysics Data System (ADS)

    Korpusov, M. O.; Sveshnikov, A. G.; Yushkov, E. V.

    2014-06-01

    The Kadomtsev-Petviashvili equation and Zakharov-Kuznetsov equation are important in physical applications. We obtain sufficient conditions for finite-time blow-up of solutions of these equations in bounded and unbounded domains. We describe how the initial data influence the blow-up time. To do this, we use the non-linear capacity method suggested by Pokhozhaev and Mitidieri and combine it with the method of test functions, which was developed in joint papers with Galaktionov. Note that our results are the first blow-up results for many equations in this class.

  8. Evaluation of out-of-core computer programs for the solution of symmetric banded linear equations. [simultaneous equations

    NASA Technical Reports Server (NTRS)

    Dunham, R. S.

    1976-01-01

    FORTRAN coded out-of-core equation solvers that solve using direct methods symmetric banded systems of simultaneous algebraic equations. Banded, frontal and column (skyline) solvers were studied as well as solvers that can partition the working area and thus could fit into any available core. Comparison timings are presented for several typical two dimensional and three dimensional continuum type grids of elements with and without midside nodes. Extensive conclusions are also given.

  9. Periodic boundary value problems for nonlinear impulsive evolution equations on Banach spaces

    NASA Astrophysics Data System (ADS)

    Yu, Xiulan; Wang, JinRong

    2015-05-01

    In this paper, we consider periodic boundary value problems for two new type nonlinear impulsive evolution equations on Banach spaces. By using the theory of semigroup, a mixed type Gronwall inequality and fixed point methods, we establish several sufficient conditions on the existence of mild solutions for such problems. Finally, examples are given to illustrate our main results.

  10. Exact power series solutions of the structure equations of the general relativistic isotropic fluid stars with linear barotropic and polytropic equations of state

    NASA Astrophysics Data System (ADS)

    Harko, T.; Mak, M. K.

    2016-09-01

    Obtaining exact solutions of the spherically symmetric general relativistic gravitational field equations describing the interior structure of an isotropic fluid sphere is a long standing problem in theoretical and mathematical physics. The usual approach to this problem consists mainly in the numerical investigation of the Tolman-Oppenheimer-Volkoff and of the mass continuity equations, which describes the hydrostatic stability of the dense stars. In the present paper we introduce an alternative approach for the study of the relativistic fluid sphere, based on the relativistic mass equation, obtained by eliminating the energy density in the Tolman-Oppenheimer-Volkoff equation. Despite its apparent complexity, the relativistic mass equation can be solved exactly by using a power series representation for the mass, and the Cauchy convolution for infinite power series. We obtain exact series solutions for general relativistic dense astrophysical objects described by the linear barotropic and the polytropic equations of state, respectively. For the polytropic case we obtain the exact power series solution corresponding to arbitrary values of the polytropic index n. The explicit form of the solution is presented for the polytropic index n=1, and for the indexes n=1/2 and n=1/5, respectively. The case of n=3 is also considered. In each case the exact power series solution is compared with the exact numerical solutions, which are reproduced by the power series solutions truncated to seven terms only. The power series representations of the geometric and physical properties of the linear barotropic and polytropic stars are also obtained.

  11. Evolution Equation for a Joint Tomographic Probability Distribution of Spin-1 Particles

    NASA Astrophysics Data System (ADS)

    Korennoy, Ya. A.; Man'ko, V. I.

    2016-07-01

    The nine-component positive vector optical tomographic probability portrait of quantum state of spin-1 particles containing full spatial and spin information about the state without redundancy is constructed. Also the suggested approach is expanded to symplectic tomography representation and to representations with quasidistributions like Wigner function, Husimi Q-function, and Glauber-Sudarshan P-function. The evolution equations for constructed vector optical and symplectic tomograms and vector quasidistributions for arbitrary Hamiltonian are found. The evolution equations are also obtained in special case of the quantum system of charged spin-1 particle in arbitrary electro-magnetic field, which are analogs of non-relativistic Proca equation in appropriate representations. The generalization of proposed approach to the cases of arbitrary spin is discussed. The possibility of formulation of quantum mechanics of the systems with spins in terms of joint probability distributions without the use of wave functions or density matrices is explicitly demonstrated.

  12. Variational principles, Lie point symmetries, and similarity solutions of the vector Maxwell equations in non-linear optics

    NASA Astrophysics Data System (ADS)

    Webb, Garry; Sørensen, Mads Peter; Brio, Moysey; Zakharian, Aramis R.; Moloney, Jerome V.

    2004-04-01

    The vector Maxwell equations of non-linear optics coupled to a single Lorentz oscillator and with instantaneous Kerr non-linearity are investigated by using Lie symmetry group methods. Lagrangian and Hamiltonian formulations of the equations are obtained. The aim of the analysis is to explore the properties of Maxwell’s equations in non-linear optics, without resorting to the commonly used non-linear Schrödinger (NLS) equation approximation in which a high frequency carrier wave is modulated on long length and time scales due to non-linear sideband wave interactions. This is important in femto-second pulse propagation in which the NLS approximation is expected to break down. The canonical Hamiltonian description of the equations involves the solution of a polynomial equation for the electric field E, in terms of the canonical variables, with possible multiple real roots for E. In order to circumvent this problem, non-canonical Poisson bracket formulations of the equations are obtained in which the electric field is one of the non-canonical variables. Noether’s theorem, and the Lie point symmetries admitted by the equations are used to obtain four conservation laws, including the electromagnetic momentum and energy conservation laws, corresponding to the space and time translation invariance symmetries. The symmetries are used to obtain classical similarity solutions of the equations. The traveling wave similarity solutions for the case of a cubic Kerr non-linearity, are shown to reduce to a single ordinary differential equation for the variable y= E2, where E is the electric field intensity. The differential equation has solutions y= y( ξ), where ξ= z- st is the traveling wave variable and s is the velocity of the wave. These solutions exhibit new phenomena not obtainable by the NLS approximation. The characteristics of the solutions depends on the values of the wave velocity s and the energy integration constant ɛ. Both smooth periodic traveling waves and

  13. Ab initio electronic transport model with explicit solution to the linearized Boltzmann transport equation

    NASA Astrophysics Data System (ADS)

    Faghaninia, Alireza; Ager, Joel W.; Lo, Cynthia S.

    2015-06-01

    Accurate models of carrier transport are essential for describing the electronic properties of semiconductor materials. To the best of our knowledge, the current models following the framework of the Boltzmann transport equation (BTE) either rely heavily on experimental data (i.e., semiempirical), or utilize simplifying assumptions, such as the constant relaxation time approximation (BTE-cRTA). While these models offer valuable physical insights and accurate calculations of transport properties in some cases, they often lack sufficient accuracy—particularly in capturing the correct trends with temperature and carrier concentration. We present here a transport model for calculating low-field electrical drift mobility and Seebeck coefficient of n -type semiconductors, by explicitly considering relevant physical phenomena (i.e., elastic and inelastic scattering mechanisms). We first rewrite expressions for the rates of elastic scattering mechanisms, in terms of ab initio properties, such as the band structure, density of states, and polar optical phonon frequency. We then solve the linear BTE to obtain the perturbation to the electron distribution—resulting from the dominant scattering mechanisms—and use this to calculate the overall mobility and Seebeck coefficient. Therefore, we have developed an ab initio model for calculating mobility and Seebeck coefficient using the Boltzmann transport (aMoBT) equation. Using aMoBT, we accurately calculate electrical transport properties of the compound n -type semiconductors, GaAs and InN, over various ranges of temperature and carrier concentration. aMoBT is fully predictive and provides high accuracy when compared to experimental measurements on both GaAs and InN, and vastly outperforms both semiempirical models and the BTE-cRTA. Therefore, we assert that this approach represents a first step towards a fully ab initio carrier transport model that is valid in all compound semiconductors.

  14. Subspace orthogonalization for substructuring preconditioners for nonsymmetric systems of linear equations

    SciTech Connect

    Starke, G.

    1994-12-31

    For nonselfadjoint elliptic boundary value problems which are preconditioned by a substructuring method, i.e., nonoverlapping domain decomposition, the author introduces and studies the concept of subspace orthogonalization. In subspace orthogonalization variants of Krylov methods the computation of inner products and vector updates, and the storage of basis elements is restricted to a (presumably small) subspace, in this case the edge and vertex unknowns with respect to the partitioning into subdomains. The author investigates subspace orthogonalization for two specific iterative algorithms, GMRES and the full orthogonalization method (FOM). This is intended to eliminate certain drawbacks of the Arnoldi-based Krylov subspace methods mentioned above. Above all, the length of the Arnoldi recurrences grows linearly with the iteration index which is therefore restricted to the number of basis elements that can be held in memory. Restarts become necessary and this often results in much slower convergence. The subspace orthogonalization methods, in contrast, require the storage of only the edge and vertex unknowns of each basis element which means that one can iterate much longer before restarts become necessary. Moreover, the computation of inner products is also restricted to the edge and vertex points which avoids the disturbance of the computational flow associated with the solution of subdomain problems. The author views subspace orthogonalization as an alternative to restarting or truncating Krylov subspace methods for nonsymmetric linear systems of equations. Instead of shortening the recurrences, one restricts them to a subset of the unknowns which has to be carefully chosen in order to be able to extend this partial solution to the entire space. The author discusses the convergence properties of these iteration schemes and its advantages compared to restarted or truncated versions of Krylov methods applied to the full preconditioned system.

  15. Method of Multiple Scales and Travelling Wave Solutions for (2+1)-Dimensional KdV Type Nonlinear Evolution Equations

    NASA Astrophysics Data System (ADS)

    Ayhan, Burcu; Özer, M. Naci; Bekir, Ahmet

    2016-08-01

    In this article, we applied the method of multiple scales for Korteweg-de Vries (KdV) type equations and we derived nonlinear Schrödinger (NLS) type equations. So we get a relation between KdV type equations and NLS type equations. In addition, exact solutions were found for KdV type equations. The ( G'} over G )-expansion methods and the ( {G'} over G, {1 over G}} )-expansion methods were proposed to establish new exact solutions for KdV type differential equations. We obtained periodic and hyperbolic function solutions for these equations. These methods are very effective for getting travelling wave solutions of nonlinear evolution equations (NEEs).

  16. A study of equation solvers for linear and non-linear finite element analysis on parallel processing computers

    NASA Technical Reports Server (NTRS)

    Watson, Brian C.; Kamat, Manohar P.

    1992-01-01

    Concurrent computing environments provide the means to achieve very high performance for finite element analysis of systems, provided the algorithms take advantage of multiple processors. The authors have examined several algorithms for both linear and nonlinear finite element analysis. The performance of these algorithms on an Alliant FX/80 parallel supercomputer has been studied. For single load case linear analysis, the optimal solution algorithm is strongly problem dependent. For multiple load cases or nonlinear analysis through a modified Newton-Raphson method, decomposition algorithms are shown to have a decided advantage over element-by-element preconditioned conjugate gradient algorithms.

  17. Non-linear evolution of a second mode wave in supersonic boundary layers

    NASA Technical Reports Server (NTRS)

    Erlebacher, Gordon; Hussaini, M. Y.

    1989-01-01

    The nonlinear time evolution of a second mode instability in a Mach 4.5 wall-bounded flow is computed by solving the full compressible, time-dependent Navier-Stokes equations. High accuracy is achieved by using a Fourier-Chebyshev collocation algorithm. Primarily inviscid in nature, second modes are characterized by high frequency and high growth rates compared to first modes. Time evolution of growth rate as a function of distance from the plate suggests this problem is amenable to the Stuart-Watson perturbation theory as generalized by Herbert.

  18. Modeling the Philippines' real gross domestic product: A normal estimation equation for multiple linear regression

    NASA Astrophysics Data System (ADS)

    Urrutia, Jackie D.; Tampis, Razzcelle L.; Mercado, Joseph; Baygan, Aaron Vito M.; Baccay, Edcon B.

    2016-02-01

    The objective of this research is to formulate a mathematical model for the Philippines' Real Gross Domestic Product (Real GDP). The following factors are considered: Consumers' Spending (x1), Government's Spending (x2), Capital Formation (x3) and Imports (x4) as the Independent Variables that can actually influence in the Real GDP in the Philippines (y). The researchers used a Normal Estimation Equation using Matrices to create the model for Real GDP and used α = 0.01.The researchers analyzed quarterly data from 1990 to 2013. The data were acquired from the National Statistical Coordination Board (NSCB) resulting to a total of 96 observations for each variable. The data have undergone a logarithmic transformation particularly the Dependent Variable (y) to satisfy all the assumptions of the Multiple Linear Regression Analysis. The mathematical model for Real GDP was formulated using Matrices through MATLAB. Based on the results, only three of the Independent Variables are significant to the Dependent Variable namely: Consumers' Spending (x1), Capital Formation (x3) and Imports (x4), hence, can actually predict Real GDP (y). The regression analysis displays that 98.7% (coefficient of determination) of the Independent Variables can actually predict the Dependent Variable. With 97.6% of the result in Paired T-Test, the Predicted Values obtained from the model showed no significant difference from the Actual Values of Real GDP. This research will be essential in appraising the forthcoming changes to aid the Government in implementing policies for the development of the economy.

  19. Local polynomial chaos expansion for linear differential equations with high dimensional random inputs

    SciTech Connect

    Chen, Yi; Jakeman, John; Gittelson, Claude; Xiu, Dongbin

    2015-01-08

    In this paper we present a localized polynomial chaos expansion for partial differential equations (PDE) with random inputs. In particular, we focus on time independent linear stochastic problems with high dimensional random inputs, where the traditional polynomial chaos methods, and most of the existing methods, incur prohibitively high simulation cost. Furthermore, the local polynomial chaos method employs a domain decomposition technique to approximate the stochastic solution locally. In each subdomain, a subdomain problem is solved independently and, more importantly, in a much lower dimensional random space. In a postprocesing stage, accurate samples of the original stochastic problems are obtained from the samples of the local solutions by enforcing the correct stochastic structure of the random inputs and the coupling conditions at the interfaces of the subdomains. Overall, the method is able to solve stochastic PDEs in very large dimensions by solving a collection of low dimensional local problems and can be highly efficient. In our paper we present the general mathematical framework of the methodology and use numerical examples to demonstrate the properties of the method.

  20. Iterative solution of dense linear systems arising from the electrostatic integral equation in MEG.

    PubMed

    Rahol, Jussi; Tissari, Satu

    2002-03-21

    We study the iterative solution of dense linear systems that arise from boundary element discretizations of the electrostatic integral equation in magnetoencephalography (MEG). We show that modern iterative methods can be used to decrease the total computation time by avoiding the time-consuming computation of the LU decomposition of the coefficient matrix. More importantly, the modern iterative methods make it possible to avoid the explicit formation of the coefficient matrix which is needed when a large number of unknowns are used. To study the convergence of iterative solvers we examine the eigenvalue distributions of the coefficient matrices. For the sphere we show how the eigenvalues of the integral operator are approximated by the eigenvalues of the coefficient matrix when the collocation and Galerkin methods are used as discretization methods. The collocation method approximates the eigenvalues of the integral operator directly. The Galerkin method produces a coefficient matrix that needs to be preconditioned in order to maintain optimal convergence speed. With the ILU(0) preconditioner iterative methods converge fast and independent of the number of discretization points for both the collocation and Galerkin approaches. The preconditioner has no significant effect on the total computational time. PMID:11936181

  1. On Dirac equations for linear magnetoacoustic waves propagating in an isothermal atmosphere

    NASA Technical Reports Server (NTRS)

    Alicki, R.; Musielak, E. Z.; Sikorski, J.; Makowiec, D.

    1994-01-01

    A new analytical approach to study linear magnetoacoustic waves propagating in an isothermal, stratified, and uniformly magnetized atmosphere is presented. The approach is based on Dirac equations, and the theory of Sturm-Liouville operators is used to investigate spectral properties of the obtained Dirac Hamiltonians. Two cases are considered: (1) the background magnetic field is vertical, and the waves are separated into purely magnetic (transverse) and purely acoustic (longitudinal) modes; and (2) the field is tilted with respect to the vertical direction and the magnetic and acoustic modes become coupled giving magnetoacoustic waves. For the first case, the Dirac Hamiltonian possesses either a discrete spectrum, which corresponds to standing magnetic waves, or a continuous spectrum, which can be clearly identified with freely propagating acoustic waves. For the second case, the quantum mechanical perturbation calculus is used to study coupling and energy exchange between the magnetic and acoustic components of magnetoacoustic waves. It is shown that this coupling may efficiently prevent trapping of magnetoacoustic waves instellar atmospheres.

  2. Iterative solution of dense linear systems arising from the electrostatic integral equation in MEG

    NASA Astrophysics Data System (ADS)

    Rahola, Jussi; Tissari, Satu

    2002-03-01

    We study the iterative solution of dense linear systems that arise from boundary element discretizations of the electrostatic integral equation in magnetoencephalography (MEG). We show that modern iterative methods can be used to decrease the total computation time by avoiding the time-consuming computation of the LU decomposition of the coefficient matrix. More importantly, the modern iterative methods make it possible to avoid the explicit formation of the coefficient matrix which is needed when a large number of unknowns are used. To study the convergence of iterative solvers we examine the eigenvalue distributions of the coefficient matrices. For the sphere we show how the eigenvalues of the integral operator are approximated by the eigenvalues of the coefficient matrix when the collocation and Galerkin methods are used as discretization methods. The collocation method approximates the eigenvalues of the integral operator directly. The Galerkin method produces a coefficient matrix that needs to be preconditioned in order to maintain optimal convergence speed. With the ILU(0) preconditioner iterative methods converge fast and independent of the number of discretization points for both the collocation and Galerkin approaches. The preconditioner has no significant effect on the total computational time.

  3. Multi-source apportionment of polycyclic aromatic hydrocarbons using simultaneous linear equations

    NASA Astrophysics Data System (ADS)

    Marinaite, Irina; Semenov, Mikhail

    2014-05-01

    A new approach to identify multiple sources of polycyclic aromatic hydrocarbons (PAHs) and to evaluate the source contributions to atmospheric deposition of particulate PAHs is proposed. The approach is based on differences in concentrations of sums of PAHs with the same molecular weight among the sources. The data on PAHs accumulation in snow as well as the source profiles were used for calculations. Contributions of aluminum production plant, oil-fired central heating boilers, and residential wood and coal combustion were calculated using the linear mixing models. The concentrations of PAH pairs such as Benzo[b]fluorantene + Benzo[k]fluorantene and Benzo[g,h,i]perylene + Indeno[1,2,3-c,d]pyrene normalized to Benzo[a]antracene + Chrysene were used as tracers in mixing equations. The results obtained using ratios of sums of PAHs were compared with those obtained using molecular diagnostic ratios such as Benzo[a]antracene/Chrysene and Benzo[g,h,i]perylene/Indeno[1,2,3-c,d]pyrene. It was shown that the results obtained using diagnostic ratios as tracers are less reliable than results obtained using ratios of sums of PAHs. Funding was provided by Siberian Branch of Russian Academy of Sciences grant No. 8 (2012-2014).

  4. Inverse problems for abstract evolution equations with applications in electrodynamics and elasticity

    NASA Astrophysics Data System (ADS)

    Kirsch, Andreas; Rieder, Andreas

    2016-08-01

    It is common knowledge—mainly based on experience—that parameter identification problems in partial differential equations are ill-posed. Yet, a mathematical sound argumentation is missing, except for some special cases. We present a general theory for inverse problems related to abstract evolution equations which explains not only their local ill-posedness but also provides the Fréchet derivative and its adjoint of the corresponding parameter-to-solution map which are needed, e.g., in Newton-like solvers. Our abstract results are applied to inverse problems related to the following first order hyperbolic systems: Maxwell’s equation (electromagnetic scattering in conducting media) and elastic wave equation (seismic imaging).

  5. Linear complexity integral-equation based methods for large-scale electromagnetic analysis

    NASA Astrophysics Data System (ADS)

    Chai, Wenwen

    In general, to solve problems with N parameters, the optimal computational complexity is linear complexity O( N). However, for most computational electromagnetic methods, the complexity is higher than O(N). In this work, we introduced and further developed the H - and H2 -matrix based mathematical framework to break the computational barrier of existing integral-equation (IE)-based methods for large-scale electromagnetic analysis. Our significant contributions include the first-time dense matrix inversion and LU factorization of O(N) complexity for large-scale 3-D circuit extraction and a fast direct integral equation solver that outperforms existing direct solvers for large-scale electrodynamic analysis having millions of unknowns and ˜100 wavelengths. The major contributions of this work are: (1) Direct Matrix Solution of Linear Complexity for 3-D Integrated Circuit (IC) and Package Extraction • O(N) complexity dense matrix inversion and LU factorization algorithms and their applications to capacitance extraction and impedance extraction of large-scale 3-D circuits • O(N) direct matrix solution of highly irregular matrices consisting of both dense and sparse matrix blocks arising from full-wave analysis of general 3-D circuits with lossy conductors in multiple dielectrics. (2) Fast H - and H2 -Based IE Solvers for Large-Scale Electrodynamic Analysis • theoretical proof on the error bounded low-rank representation of electrodynamic integral operators • fast H2 -based iterative solver with O(N) computational cost and controlled accuracy from small to tens of wavelengths • fast H -based direct solver with computational cost minimized based on accuracy • Findings on how to reduce the complexity of H - and H2 -based methods for electrodynamic analysis, which are also applicable to many other fast IE solvers. (3) Fast Algorithms for Accelerating H - and H2 -Based Iterative and Direct Solvers • Optimal H -based representation and its applications from

  6. A Hybrid Particle Swarm with Differential Evolution Operator Approach (DEPSO) for Linear Array Synthesis

    NASA Astrophysics Data System (ADS)

    Sarkar, Soham; Das, Swagatam

    In recent years particle swarm optimization emerges as one of the most efficient global optimization tools. In this paper, a hybrid particle swarm with differential evolution operator, termed DEPSO, is applied for the synthesis of linear array geometry. Here, the minimum side lobe level and null control, both are obtained by optimizing the spacing between the array elements by this technique. Moreover, a statistical comparison is also provided to establish its performance against the results obtained by Genetic Algorithm (GA), classical Particle Swarm Optimization (PSO), Tabu Search Algorithm (TSA), Differential Evolution (DE) and Memetic Algorithm (MA).

  7. The non-linear evolution of the tearing mode in electromagnetic turbulence using gyrokinetic simulations

    NASA Astrophysics Data System (ADS)

    Hornsby, W. A.; Migliano, P.; Buchholz, R.; Grosshauser, S.; Weikl, A.; Zarzoso, D.; Casson, F. J.; Poli, E.; Peeters, A. G.

    2016-01-01

    The non-linear evolution of a magnetic island is studied using the Vlasov gyro-kinetic code GKW. The interaction of electromagnetic turbulence with a self-consistently growing magnetic island, generated by a tearing unstable {{Δ }\\prime}>0 current profile, is considered. The turbulence is able to seed the magnetic island and bypass the linear growth phase by generating structures that are approximately an ion gyro-radius in width. The non-linear evolution of the island width and its rotation frequency, after this seeding phase, is found to be modified and is dependent on the value of the plasma beta and equilibrium pressure gradients. At low values of beta the island evolves largely independent of the turbulence, while at higher values the interaction has a dramatic effect on island growth, causing the island to grow exponentially at the growth rate of its linear phase, even though the island is larger than linear theory validity. The turbulence forces the island to rotate in the ion-diamagnetic direction as opposed to the electron diamagnetic direction in which it rotates when no turbulence is present. In addition, it is found that the mode rotation slows as the island grows in size.

  8. Exact travelling wave solutions of non-linear reaction-convection-diffusion equations—An Abel equation based approach

    NASA Astrophysics Data System (ADS)

    Harko, T.; Mak, M. K.

    2015-11-01

    We consider quasi-stationary (travelling wave type) solutions to a general nonlinear reaction-convection-diffusion equation with arbitrary, autonomous coefficients. The second order nonlinear equation describing one dimensional travelling waves can be reduced to a first kind first order Abel equation. By using two integrability conditions for the Abel equation (the Chiellini lemma and the Lemke transformation), several classes of exact travelling wave solutions of the general reaction-convection-diffusion equation are obtained, corresponding to different functional relations imposed between the diffusion, convection and reaction functions. In particular, we obtain travelling wave solutions for two non-linear second order partial differential equations, representing generalizations of the standard diffusion equation and of the classical Fisher-Kolmogorov equation, to which they reduce for some limiting values of the model parameters. The models correspond to some specific, power law type choices of the reaction and convection functions, respectively. The travelling wave solutions of these two classes of differential equation are investigated in detail by using both numerical and semi-analytical methods.

  9. On the removal of boundary errors caused by Runge-Kutta integration of non-linear partial differential equations

    NASA Technical Reports Server (NTRS)

    Abarbanel, Saul; Gottlieb, David; Carpenter, Mark H.

    1994-01-01

    It has been previously shown that the temporal integration of hyperbolic partial differential equations (PDE's) may, because of boundary conditions, lead to deterioration of accuracy of the solution. A procedure for removal of this error in the linear case has been established previously. In the present paper we consider hyperbolic (PDE's) (linear and non-linear) whose boundary treatment is done via the SAT-procedure. A methodology is present for recovery of the full order of accuracy, and has been applied to the case of a 4th order explicit finite difference scheme.

  10. Using a Linear Regression Method to Detect Outliers in IRT Common Item Equating

    ERIC Educational Resources Information Center

    He, Yong; Cui, Zhongmin; Fang, Yu; Chen, Hanwei

    2013-01-01

    Common test items play an important role in equating alternate test forms under the common item nonequivalent groups design. When the item response theory (IRT) method is applied in equating, inconsistent item parameter estimates among common items can lead to large bias in equated scores. It is prudent to evaluate inconsistency in parameter…

  11. On the Definition of the Ordinary Points and the Regular Singular Points of a Homogeneous Linear Ordinary Differential Equation

    ERIC Educational Resources Information Center

    Dobbs, David E.

    2005-01-01

    The author discusses the definition of the ordinary points and the regular singular points of a homogeneous linear ordinary differential equation (ODE). The material of this note can find classroom use as enrichment material in courses on ODEs, in particular, to reinforce the unit on the Existence-Uniqueness Theorem for solutions of initial value…

  12. Polish Teachers' Conceptions of and Approaches to the Teaching of Linear Equations to Grade Six Students: An Exploratory Case Study

    ERIC Educational Resources Information Center

    Marschall, Gosia; Andrews, Paul

    2015-01-01

    In this article we present an exploratory case study of six Polish teachers' perspectives on the teaching of linear equations to grade six students. Data, which derived from semi-structured interviews, were analysed against an extant framework and yielded a number of commonly held beliefs about what teachers aimed to achieve and how they would…

  13. The oscillation on solutions of some classes of linear differential equations with meromorphic coefficients of finite [p, q]-order.

    PubMed

    Xu, Hong-Yan; Tu, Jin; Xuan, Zu-Xing

    2013-01-01

    This paper considers the oscillation on meromorphic solutions of the second-order linear differential equations with the form f'' + A(z)f = 0, where A(z) is a meromorphic function with [p, q]-order. We obtain some theorems which are the improvement and generalization of the results given by Bank and Laine, Cao and Li, Kinnunen, and others. PMID:24453816

  14. Spatially variable water table recharge and the hillslope hydrologic response: Analytical solutions to the linearized hillslope Boussinesq equation

    NASA Astrophysics Data System (ADS)

    Dralle, David N.; Boisramé, Gabrielle F. S.; Thompson, Sally E.

    2014-11-01

    The linearized hillslope Boussinesq equation, introduced by Brutsaert (1994), describes the dynamics of saturated, subsurface flow from hillslopes with shallow, unconfined aquifers. In this paper, we use a new analytical technique to solve the linearized hillslope Boussinesq equation to predict water table dynamics and hillslope discharge to channels. The new solutions extend previous analytical treatments of the linearized hillslope Boussinesq equation to account for the impact of spatiotemporal heterogeneity in water table recharge. The results indicate that the spatial character of recharge may significantly alter both steady state subsurface storage characteristics and the transient hillslope hydrologic response, depending strongly on similarity measures of controls on the subsurface flow dynamics. Additionally, we derive new analytical solutions for the linearized hillslope-storage Boussinesq equation and explore the interaction effects of recharge structure and hillslope morphology on water storage and base flow recession characteristics. A theoretical recession analysis, for example, demonstrates that decreasing the relative amount of downslope recharge has a similar effect as increasing hillslope convergence. In general, the theory suggests that recharge heterogeneity can serve to diminish or enhance the hydrologic impacts of hillslope morphology.

  15. The piecewise linear discontinuous finite element method applied to the RZ and XYZ transport equations

    NASA Astrophysics Data System (ADS)

    Bailey, Teresa S.

    In this dissertation we discuss the development, implementation, analysis and testing of the Piecewise Linear Discontinuous Finite Element Method (PWLD) applied to the particle transport equation in two-dimensional cylindrical (RZ) and three-dimensional Cartesian (XYZ) geometries. We have designed this method to be applicable to radiative-transfer problems in radiation-hydrodynamics systems for arbitrary polygonal and polyhedral meshes. For RZ geometry, we have implemented this method in the Capsaicin radiative-transfer code being developed at Los Alamos National Laboratory. In XYZ geometry, we have implemented the method in the Parallel Deterministic Transport code being developed at Texas A&M University. We discuss the importance of the thick diffusion limit for radiative-transfer problems, and perform a thick diffusion-limit analysis on our discretized system for both geometries. This analysis predicts that the PWLD method will perform well in this limit for many problems of physical interest with arbitrary polygonal and polyhedral cells. Finally, we run a series of test problems to determine some useful properties of the method and verify the results of our thick diffusion limit analysis. Finally, we test our method on a variety of test problems and show that it compares favorably to existing methods. With these test problems, we also show that our method performs well in the thick diffusion limit as predicted by our analysis. Based on PWLD's solid finite-element foundation, the desirable properties it shows under analysis, and the excellent performance it demonstrates on test problems even with highly distorted spatial grids, we conclude that it is an excellent candidate for radiative-transfer problems that need a robust method that performs well in thick diffusive problems or on distorted grids.

  16. The Sturm-Liouville Hierarchy of Evolution Equations and Limits of Algebro-Geometric Initial Data

    NASA Astrophysics Data System (ADS)

    Johnson, Russell; Zampogni, Luca

    2014-03-01

    The Sturm-Liouville hierarchy of evolution equations was introduced in [Adv. Nonlinear Stud. 11 (2011), 555-591] and includes the Korteweg-de Vries and the Camassa-Holm hierarchies. We discuss some solutions of this hierarchy which are obtained as limits of algebro-geometric solutions. The initial data of our solutions are (generalized) reflectionless Sturm-Liouville potentials [Stoch. Dyn. 8 (2008), 413-449].

  17. Hamiltonian structures of nonlinear evolution equations connected with a polynomial pencil

    SciTech Connect

    Gadzhiev, I.T.; Gerdzhikov, V.S.; Ivanov, M.I.

    1986-09-10

    For a generalized Zakharov-Shabat system in which the matrix potential is a polynomial in the spectral parameter a generating operator is constructed which makes it possible to compactly write out the nonlinear evolution equations (NEE) connected with the system. The eigenfunctions of the generating operator - the squares of solutions of the original system - are found. The Hamiltonian property of the NEE and the existence of a hierarchy of Hamiltonian structures are established.

  18. Hamiltonian structures of nonlinear evolution equations associated with a polynomial bundle

    SciTech Connect

    Gadzhiev, I.T.; Gerdzhikov, V.S.; Ivanov, M.I.

    1987-05-20

    For the generalized Zakharov-Shabat system with the matrix potential a polynomial in the spectral parameter, they construct a generating operator which leads to a compact representation of the nonlinear evolution equations (NEE) associated with the system. The eigenfunctions of the generating operator are obtained as the squares of the solutions of the original system. The Hamiltonian nature of the NEE and the existence of a hierarchy of Hamiltonian structures is established.

  19. Hamiltonian structures of nonlinear evolution equations connected with a polynomial pencil

    SciTech Connect

    Gadzhiev, I.T.; Gerdzhikov, V.S.; Ivanov, M.I.

    1986-09-01

    For a generalized Zakharov-Shabat system in which the matrix potential is a polynomial in the spectral parameter a generating operator is constructed which makes it possible to compactly write out the nonlinear evolution equations (NEE) connected with the system. The eigenfunctions of the generating operator - the ''squares'' of solutions of the original system - are found. The Hamiltonian property of the NEE and the existence of a hierachy of Hamiltonian structures are established.

  20. Novel quantum description for nonadiabatic evolution of light wave propagation in time-dependent linear media.

    PubMed

    Lakehal, Halim; Maamache, Mustapha; Choi, Jeong Ryeol

    2016-01-01

    A simple elegant expression of nonadiabatic light wave evolution is necessary in order to have a deeper insight for complicated optical phenomena in light science as well as in everyday life. Light wave propagation in linear media which have time-dependent electromagnetic parameters is investigated by utilizing a quadratic invariant of the system. The time behavior of the nonadiabatic geometric phase of the waves that yield a cyclic nonadiabatic evolution is analyzed in detail. Various quantum properties of light waves in this situation, such as variances of electric and magnetic fields, uncertainty product, coherent and squeezed states, and their classical limits, are developed. For better understanding of our research, we applied our analysis in a particular case. The variances of the fields D and B are illustrated and their time behaviors are addressed. Equivalent results for the corresponding classical systems are deduced from the study of the time evolution of the appropriate coherent and squeezed states. PMID:26847267

  1. Novel quantum description for nonadiabatic evolution of light wave propagation in time-dependent linear media

    PubMed Central

    Lakehal, Halim; Maamache, Mustapha; Choi, Jeong Ryeol

    2016-01-01

    A simple elegant expression of nonadiabatic light wave evolution is necessary in order to have a deeper insight for complicated optical phenomena in light science as well as in everyday life. Light wave propagation in linear media which have time-dependent electromagnetic parameters is investigated by utilizing a quadratic invariant of the system. The time behavior of the nonadiabatic geometric phase of the waves that yield a cyclic nonadiabatic evolution is analyzed in detail. Various quantum properties of light waves in this situation, such as variances of electric and magnetic fields, uncertainty product, coherent and squeezed states, and their classical limits, are developed. For better understanding of our research, we applied our analysis in a particular case. The variances of the fields D and B are illustrated and their time behaviors are addressed. Equivalent results for the corresponding classical systems are deduced from the study of the time evolution of the appropriate coherent and squeezed states. PMID:26847267

  2. Presentation of special series with computed recurrently coefficients of solutions of nonlinear evolution equations

    NASA Astrophysics Data System (ADS)

    Filimonov, M.; Masih, A.

    2016-06-01

    One of the analytical methods of presenting solutions of nonlinear partial differential equations is the method of special series in powers of specially selected functions called basis functions. The coefficients of such series are found successively as solutions of linear differential equations. To find recurrence, the coefficient is achieved by the choice of basis functions, which may also contain arbitrary functions. By using such functional arbitrariness, it allows in some cases to prove the global convergence of the corresponding constructed series, as well as the solvability of the boundary value problem.

  3. An equation for the evolution of solar and stellar flare loops

    NASA Technical Reports Server (NTRS)

    Fisher, George H.; Hawley, Suzanne L.

    1990-01-01

    An ordinary differential equation describing the evolution of a coronal loop subjected to a spatially uniform but time-varying heating rate is discussed. It is assumed that the duration of heating is long compared to the sound transit time through the loop, which is assumed to have uniform cross section area. The form of the equation changes as the loop evolves through three states: 'strong evaporation', 'scaling law behavior', and 'strong condensation'. Solutions to the equation may be used to compute the time dependence of the average coronal temperature and emission measure for an assumed temporal variation of the flare heating rate. The results computed from the model agree reasonably well with recent published numerical simulations and may be obtained with far less computational effort. The model is then used to study the May 21, 1980, solar flare observed by SMM and the giant April 12, 1985, flare observed on the star AD Leo.

  4. Birth and death master equation for the evolution of complex networks

    NASA Astrophysics Data System (ADS)

    Alvarez-Martínez, R.; Cocho, G.; Rodríguez, R. F.; Martínez-Mekler, G.

    2014-05-01

    Master equations for the evolution of complex networks with positive (birth) and negative (death) transition probabilities per unit time are analyzed. Explicit equations for the time evolution of the total number of nodes and for the relative node frequencies are given. It is shown that, in the continuous limit, the master equation reduces to a Fokker-Planck equation (FPE). The basic dynamical function for its stationary solution is the ratio between its drift and diffusion coefficients. When this ratio is approximated by partial fractions (Padé's approximants), a hierarchy of stationary solutions of the FPE is obtained analytically, which are expressed as an exponential times the product of powers of monomials and binomials. It is also shown that if the difference between birth and death transition probabilities goes asymptotically to zero, the exponential factor in the solution is absent. Fits to real complex network probability distribution functions are shown. Comparison with rank-ordered data shows that, in general, the value of this exponential factor is close to unity, evidencing crossovers among power-law scale invariant regimes which might be associated to an underlying criticality and are related to a generalization of the beta distribution. The time dependent solution is also obtained analytically in terms of hyper-geometric functions. It is also shown that the FPE has similarity solutions. The limitations of the approach here presented are also discussed.

  5. New evolution equations for the joint response-excitation probability density function of stochastic solutions to first-order nonlinear PDEs

    SciTech Connect

    Venturi, D.; Karniadakis, G.E.

    2012-08-30

    By using functional integral methods we determine new evolution equations satisfied by the joint response-excitation probability density function (PDF) associated with the stochastic solution to first-order nonlinear partial differential equations (PDEs). The theory is presented for both fully nonlinear and for quasilinear scalar PDEs subject to random boundary conditions, random initial conditions or random forcing terms. Particular applications are discussed for the classical linear and nonlinear advection equations and for the advection-reaction equation. By using a Fourier-Galerkin spectral method we obtain numerical solutions of the proposed response-excitation PDF equations. These numerical solutions are compared against those obtained by using more conventional statistical approaches such as probabilistic collocation and multi-element probabilistic collocation methods. It is found that the response-excitation approach yields accurate predictions of the statistical properties of the system. In addition, it allows to directly ascertain the tails of probabilistic distributions, thus facilitating the assessment of rare events and associated risks. The computational cost of the response-excitation method is order magnitudes smaller than the one of more conventional statistical approaches if the PDE is subject to high-dimensional random boundary or initial conditions. The question of high-dimensionality for evolution equations involving multidimensional joint response-excitation PDFs is also addressed.

  6. Non-linear evolution of tidally forced inertial waves in rotating fluid bodies

    NASA Astrophysics Data System (ADS)

    Favier, B.; Barker, A. J.; Baruteau, C.; Ogilvie, G. I.

    2014-03-01

    We perform one of the first studies into the non-linear evolution of tidally excited inertial waves in a uniformly rotating fluid body, exploring a simplified model of the fluid envelope of a planet (or the convective envelope of a solar-type star) subject to the gravitational tidal perturbations of an orbiting companion. Our model contains a perfectly rigid spherical core, which is surrounded by an envelope of incompressible uniform density fluid. The corresponding linear problem was studied in previous papers which this work extends into the non-linear regime, at moderate Ekman numbers (the ratio of viscous to Coriolis accelerations). By performing high-resolution numerical simulations, using a combination of pseudo-spectral and spectral element methods, we investigate the effects of non-linearities, which lead to time-dependence of the flow and the corresponding dissipation rate. Angular momentum is deposited non-uniformly, leading to the generation of significant differential rotation in the initially uniformly rotating fluid, i.e. the body does not evolve towards synchronism as a simple solid body rotator. This differential rotation modifies the properties of tidally excited inertial waves, changes the dissipative properties of the flow and eventually becomes unstable to a secondary shear instability provided that the Ekman number is sufficiently small. Our main result is that the inclusion of non-linearities eventually modifies the flow and the resulting dissipation from what linear calculations would predict, which has important implications for tidal dissipation in fluid bodies. We finally discuss some limitations of our simplified model, and propose avenues for future research to better understand the tidal evolution of rotating planets and stars.

  7. Primer vector theory applied to the linear relative-motion equations. [for N-impulse space trajectory optimization

    NASA Technical Reports Server (NTRS)

    Jezewski, D.

    1980-01-01

    Prime vector theory is used in analyzing a set of linear relative-motion equations - the Clohessy-Wiltshire (C/W) equations - to determine the criteria and necessary conditions for an optimal N-impulse trajectory. The analysis develops the analytical criteria for improving a solution by: (1) moving any dependent or independent variable in the initial and/or final orbit, and (2) adding intermediate impulses. If these criteria are violated, the theory establishes a sufficient number of analytical equations. The subsequent satisfaction of these equations will result in the optimal position vectors and times of an N-impulse trajectory. The solution is examined for the specific boundary conditions of: (1) fixed-end conditions, two impulse, and time-open transfer; (2) an orbit-to-orbit transfer; and (3) a generalized renezvous problem.

  8. Linear stability analysis of the Vlasov-Poisson equations in high density plasmas in the presence of crossed fields and density gradients

    NASA Technical Reports Server (NTRS)

    Kaup, D. J.; Hansen, P. J.; Choudhury, S. Roy; Thomas, Gary E.

    1986-01-01

    The equations for the single-particle orbits in a nonneutral high density plasma in the presence of inhomogeneous crossed fields are obtained. Using these orbits, the linearized Vlasov equation is solved as an expansion in the orbital radii in the presence of inhomogeneities and density gradients. A model distribution function is introduced whose cold-fluid limit is exactly the same as that used in many previous studies of the cold-fluid equations. This model function is used to reduce the linearized Vlasov-Poisson equations to a second-order ordinary differential equation for the linearized electrostatic potential whose eigenvalue is the perturbation frequency.

  9. Exact finite difference schemes for the non-linear unidirectional wave equation

    NASA Technical Reports Server (NTRS)

    Mickens, R. E.

    1985-01-01

    Attention is given to the construction of exact finite difference schemes for the nonlinear unidirectional wave equation that describes the nonlinear propagation of a wave motion in the positive x-direction. The schemes constructed for these equations are compared with those obtained by using the usual procedures of numerical analysis. It is noted that the order of the exact finite difference models is equal to the order of the differential equation.

  10. Payoff non-linearity sways the effect of mistakes on the evolution of reciprocity.

    PubMed

    Kurokawa, Shun

    2016-09-01

    The existence of cooperation is considered to require explanation, and reciprocity is a potential explanatory mechanism. Animals sometimes fail to cooperate even when they attempt to do so, and a reciprocator has an Achilles' heel: it is vulnerable to error (the interaction between two reciprocators can lead to an endless vendetta.). However, the strategy favored by natural selection is determined also by its interaction with other strategies. The relationship between two reciprocators leading to a collapse of cooperation through error does not straightforwardly imply that mistakes make the conditions under which reciprocity evolves stringent. Hence, mistakes may facilitate the evolution of reciprocity. However, it has been shown through the analysis of the interaction between reciprocators and unconditional defectors that the existence of mistakes makes the conditions for reciprocators stable against invasion by an unconditional defector more stringent, which indicates that mistakes discourage the evolution of reciprocity. However, this result is based on the assumption that the effects of cooperation are additive (payoff is linear), while the game played by real animals does not always display this feature. In such cases, the result may be swayed. In this paper, we remove this assumption, reexamining whether mistakes disturb the evolution of reciprocity. Using the analysis of an evolutionarily stable strategy (ESS), we show that when extra fitness costs are present in cases where mutual cooperation is established, mistakes can facilitate the evolution of reciprocity; whereas, when the effect of cooperation is additive, mistakes always disturb the evolution of reciprocity, as has been shown previously. PMID:27424953

  11. New extended (G'/G)-expansion method to solve nonlinear evolution equation: the (3 + 1)-dimensional potential-YTSF equation.

    PubMed

    Roshid, Harun-Or-; Akbar, M Ali; Alam, Md Nur; Hoque, Md Fazlul; Rahman, Nizhum

    2014-01-01

    In this article, a new extended (G'/G) -expansion method has been proposed for constructing more general exact traveling wave solutions of nonlinear evolution equations with the aid of symbolic computation. In order to illustrate the validity and effectiveness of the method, we pick the (3 + 1)-dimensional potential-YTSF equation. As a result, abundant new and more general exact solutions have been achieved of this equation. It has been shown that the proposed method provides a powerful mathematical tool for solving nonlinear wave equations in applied mathematics, engineering and mathematical physics. PMID:25674431

  12. Wavy film flows down an inclined plane: Perturbation theory and general evolution equation for the film thickness

    SciTech Connect

    Frenkel, A.L.; Indireshkumar, K.

    1999-10-01

    Wavy film flow of incompressible Newtonian fluid down an inclined plane is considered. The question is posed as to the parametric conditions under which the description of evolution can be approximately reduced for all time to a single evolution equation for the film thickness. An unconventional perturbation approach yields the most general evolution equation and least restrictive conditions on its validity. The advantages of this equation for analytical and numerical studies of three-dimensional waves in inclined films are pointed out. {copyright} {ital 1999} {ital The American Physical Society}

  13. Quantifying foodweb interactions with simultaneous linear equations: Stable isotope models of the Truckee River, USA

    USGS Publications Warehouse

    Saito, L.; Redd, C.; Chandra, S.; Atwell, L.; Fritsen, C.H.; Rosen, Michael R.

    2007-01-01

    Aquatic foodweb models for 2 seasons (relatively high- [March] and low-flow [August] conditions) were constructed for 4 reaches on the Truckee River using ??13C and ??15N data from periphyton, macroinvertebrate, and fish samples collected in 2003 and 2004. The models were constructed with isotope values that included measured periphyton signatures and calculated mean isotope values for detritus and seston as basal food sources of each food web. The pseudo-optimization function in Excel's Solver module was used to minimize the sum of squared error between predicted and observed stable-isotope values while simultaneously solving for diet proportions for all foodweb consumers and estimating ??13C and ??15N trophic enrichment factors. This approach used an underdetermined set of simultaneous linear equations and was tested by running the pseudo-optimization procedure for 500 randomly selected sets of initial conditions. Estimated diet proportions had average standard deviations (SDs) of 0.03 to 0.04??? and SDs of trophic enrichment factors ranged from <0.005 to 0.05??? based on the results of the 500 runs, indicating that the modeling approach was very robust. However, sensitivity analysis of calculated detritus and seston ??13C and ??15N values indicated that the robustness of the approach is dependent on having accurate measures of all observed foodweb-component ??13c and ??15N values. Model results from the 500 runs using the mean isotope values for detritus and seston indicated that upstream food webs were the simplest, with fewer feeding groups and trophic interactions (e.g., 21 interactions for 10 feeding groups), whereas food webs for the reach downstream of the Reno-Sparks metropolitan area were the most complex (e.g., 58 interactions for 16 feeding groups). Nonnative crayfish were important omnivores in each reach and drew energy from multiple sources, but appeared to be energetic dead ends because they generally were not consumed. Predatory macroinvertebrate

  14. Item Characteristic Curve Parameters: Effects of Sample Size on Linear Equating.

    ERIC Educational Resources Information Center

    Ree, Malcom James; Jensen, Harald E.

    By means of computer simulation of test responses, the reliability of item analysis data and the accuracy of equating were examined for hypothetical samples of 250, 500, 1000, and 2000 subjects for two tests with 20 equating items plus 60 additional items on the same scale. Birnbaum's three-parameter logistic model was used for the simulation. The…

  15. A Nested Genetic Algorithm for the Numerical Solution of Non-Linear Coupled Equations in Water Quality Modeling

    NASA Astrophysics Data System (ADS)

    García, Hermes A.; Guerrero-Bolaño, Francisco J.; Obregón-Neira, Nelson

    2010-05-01

    Due to both mathematical tractability and efficiency on computational resources, it is very common to find in the realm of numerical modeling in hydro-engineering that regular linearization techniques have been applied to nonlinear partial differential equations properly obtained in environmental flow studies. Sometimes this simplification is also made along with omission of nonlinear terms involved in such equations which in turn diminishes the performance of any implemented approach. This is the case for example, for contaminant transport modeling in streams. Nowadays, a traditional and one of the most common used water quality model such as QUAL2k, preserves its original algorithm, which omits nonlinear terms through linearization techniques, in spite of the continuous algorithmic development and computer power enhancement. For that reason, the main objective of this research was to generate a flexible tool for non-linear water quality modeling. The solution implemented here was based on two genetic algorithms, used in a nested way in order to find two different types of solutions sets: the first set is composed by the concentrations of the physical-chemical variables used in the modeling approach (16 variables), which satisfies the non-linear equation system. The second set, is the typical solution of the inverse problem, the parameters and constants values for the model when it is applied to a particular stream. From a total of sixteen (16) variables, thirteen (13) was modeled by using non-linear coupled equation systems and three (3) was modeled in an independent way. The model used here had a requirement of fifty (50) parameters. The nested genetic algorithm used for the numerical solution of a non-linear equation system proved to serve as a flexible tool to handle with the intrinsic non-linearity that emerges from the interactions occurring between multiple variables involved in water quality studies. However because there is a strong data limitation in

  16. Dirac equation for the harmonic scalar and vector potentials and linear plus coulomb-like tensor potential; the SUSY approach

    NASA Astrophysics Data System (ADS)

    Zarrinkamar, S.; Rajabi, A. A.; Hassanabadi, H.

    2010-11-01

    The problem of analytical solutions of the 3-dimensional Dirac equation is usually studied via techniques such as The Nikiforov-Uvarov (NU) method. Here, we see that one of the most attractive potentials can be brought into a well-known form of Schrödinger-like problem possessing known solutions via the methodology of supersymmetry (SUSY). Next, using the idea of shape invariance, we calculate exact solutions of Dirac equation for quadratic scalar and vector potentials in the presence of a tensor potential that depends on the radial component either linearly or inversely. The tensor potential itself, besides its applications, removes degeneracy, too.

  17. Arbitrary-order difference schemes for solving linear advection equations with constant coefficients by the Godunov method with antidiffusion

    NASA Astrophysics Data System (ADS)

    Moiseev, N. Ya.; Silant'eva, I. Yu.

    2008-07-01

    An approach to the construction of second-and higher order accurate difference schemes in time and space is described for solving the linear one-and multidimensional advection equations with constant coefficients by the Godunov method with antidiffusion. The differential approximations for schemes of up to the fifth order are constructed and written. For multidimensional advection equations with constant coefficients, it is shown that Godunov schemes with splitting over spatial variables are preferable, since they have a smaller truncation error than schemes without splitting. The high resolution and efficiency of the difference schemes are demonstrated using test computations.

  18. Some efficient methods for obtaining infinite series solutions of n-th order linear ordinary differential equations

    NASA Technical Reports Server (NTRS)

    Allen, G.

    1972-01-01

    The use of the theta-operator method and generalized hypergeometric functions in obtaining solutions to nth-order linear ordinary differential equations is explained. For completeness, the analysis of the differential equation to determine whether the point of expansion is an ordinary point or a regular singular point is included. The superiority of the two methods shown over the standard method is demonstrated by using all three of the methods to work out several examples. Also included is a compendium of formulae and properties of the theta operator and generalized hypergeometric functions which is complete enough to make the report self-contained.

  19. Analytic study of developing flows in a tube laden with non-evaporating and evaporating drops via a modified linearization of the two-phase momentum equations

    NASA Astrophysics Data System (ADS)

    Khosid, S.; Tambour, Y.

    A novel modification of the classical Langhaar linearization of the mutually coupled momentum equations for developing two-phase flows in circular ducts is presented. This modification enables us to treat: (i) flows developing from spatially periodic initial velocity distributions without the presence of droplets, and (ii) two-phase flows in which monosize, non-evaporating and evaporating droplets suspended in a developing gas flow of an initially uniform velocity distribution exchange momentum with the host-gas flow. New solutions are presented for the downstream evolution in the velocity profiles which develop from spatially periodic initial velocity distributions that eventually reach the fully developed Poiseuille velocity profile. These solutions are validated by employing known numerical procedures, providing strong support for the physical underpinnings of the present modified linearization. New solutions are also presented for the evolution in drop velocities and vapour spatial distributions for evaporating droplets suspended in an initially uniform velocity profile of the host gas. Asymptotic solutions are presented for the flow region which lies very close to the inlet of the tube, where the relative velocity between the droplets and the host gas is high, and thus the velocity fields of the two phases are mutually coupled. These solutions provide new explicit formulae for the droplet velocity field as a function of the initial conditions and droplet diameter (relative to the tube diameter) for non-evaporating drops, and also as a function of evaporation rate for evaporating drops.

  20. TH-E-BRE-02: A Forward Scattering Approximation to Dose Calculation Using the Linear Boltzmann Transport Equation

    SciTech Connect

    Catt, B; Snyder, M

    2014-06-15

    Purpose: To investigate the use of the linear Boltzmann transport equation as a dose calculation tool which can account for interface effects, while still having faster computation times than Monte Carlo methods. In particular, we introduce a forward scattering approximation, in hopes of improving calculation time without a significant hindrance to accuracy. Methods: Two coupled Boltzmann transport equations were constructed, one representing the fluence of photons within the medium, and the other, the fluence of electrons. We neglect the scattering term within the electron transport equation, resulting in an extreme forward scattering approximation to reduce computational complexity. These equations were then solved using a numerical technique for solving partial differential equations, known as a finite difference scheme, where the fluence at each discrete point in space is calculated based on the fluence at the previous point in the particle's path. Using this scheme, it is possible to develop a solution to the Boltzmann transport equations by beginning with boundary conditions and iterating across the entire medium. The fluence of electrons can then be used to find the dose at any point within the medium. Results: Comparisons with Monte Carlo simulations indicate that even simplistic techniques for solving the linear Boltzmann transport equation yield expected interface effects, which many popular dose calculation algorithms are not capable of predicting. Implementation of a forward scattering approximation does not appear to drastically reduce the accuracy of this algorithm. Conclusion: Optimized implementations of this algorithm have been shown to be very accurate when compared with Monte Carlo simulations, even in build up regions where many models fail. Use of a forward scattering approximation could potentially give a reasonably accurate dose distribution in a shorter amount of time for situations where a completely accurate dose distribution is not

  1. A Piecewise Linear Discontinuous Finite Element Spatial Discretization of the Transport Equation in 2D Cylindrical Geometry

    SciTech Connect

    Bailey, T S; Adams, M L; Chang, J H

    2008-10-01

    We present a new spatial discretization of the discrete-ordinates transport equation in two-dimensional cylindrical (RZ) geometry for arbitrary polygonal meshes. This discretization is a discontinuous finite element method that utilizes the piecewise linear basis functions developed by Stone and Adams. We describe an asymptotic analysis that shows this method to be accurate for many problems in the thick diffusion limit on arbitrary polygons, allowing this method to be applied to radiative transfer problems with these types of meshes. We also present numerical results for multiple problems on quadrilateral grids and compare these results to the well-known bi-linear discontinuous finite element method.

  2. Nonlinear fluctuations-induced rate equations for linear birth-death processes

    NASA Astrophysics Data System (ADS)

    Honkonen, J.

    2008-05-01

    The Fock-space approach to the solution of master equations for one-step Markov processes is reconsidered. It is shown that in birth-death processes with an absorbing state at the bottom of the occupation-number spectrum and occupation-number independent annihilation probability of occupation-number fluctuations give rise to rate equations drastically different from the polynomial form typical of birth-death processes. The fluctuation-induced rate equations with the characteristic exponential terms are derived for Mikhailov’s ecological model and Lanchester’s model of modern warfare.

  3. Markovian Monte Carlo program EvolFMC v.2 for solving QCD evolution equations

    NASA Astrophysics Data System (ADS)

    Jadach, S.; Płaczek, W.; Skrzypek, M.; Stokłosa, P.

    2010-02-01

    We present the program EvolFMC v.2 that solves the evolution equations in QCD for the parton momentum distributions by means of the Monte Carlo technique based on the Markovian process. The program solves the DGLAP-type evolution as well as modified-DGLAP ones. In both cases the evolution can be performed in the LO or NLO approximation. The quarks are treated as massless. The overall technical precision of the code has been established at 5×10. This way, for the first time ever, we demonstrate that with the Monte Carlo method one can solve the evolution equations with precision comparable to the other numerical methods. New version program summaryProgram title: EvolFMC v.2 Catalogue identifier: AEFN_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEFN_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including binary test data, etc.: 66 456 (7407 lines of C++ code) No. of bytes in distributed program, including test data, etc.: 412 752 Distribution format: tar.gz Programming language: C++ Computer: PC, Mac Operating system: Linux, Mac OS X RAM: Less than 256 MB Classification: 11.5 External routines: ROOT ( http://root.cern.ch/drupal/) Nature of problem: Solution of the QCD evolution equations for the parton momentum distributions of the DGLAP- and modified-DGLAP-type in the LO and NLO approximations. Solution method: Monte Carlo simulation of the Markovian process of a multiple emission of partons. Restrictions:Limited to the case of massless partons. Implemented in the LO and NLO approximations only. Weighted events only. Unusual features: Modified-DGLAP evolutions included up to the NLO level. Additional comments: Technical precision established at 5×10. Running time: For the 10 6 events at 100 GeV: DGLAP NLO: 27s; C-type modified DGLAP NLO: 150s (MacBook Pro with Mac OS X v.10

  4. Linear regression models, least-squares problems, normal equations, and stopping criteria for the conjugate gradient method

    NASA Astrophysics Data System (ADS)

    Arioli, M.; Gratton, S.

    2012-11-01

    Minimum-variance unbiased estimates for linear regression models can be obtained by solving least-squares problems. The conjugate gradient method can be successfully used in solving the symmetric and positive definite normal equations obtained from these least-squares problems. Taking into account the results of Golub and Meurant (1997, 2009) [10,11], Hestenes and Stiefel (1952) [17], and Strakoš and Tichý (2002) [16], which make it possible to approximate the energy norm of the error during the conjugate gradient iterative process, we adapt the stopping criterion introduced by Arioli (2005) [18] to the normal equations taking into account the statistical properties of the underpinning linear regression problem. Moreover, we show how the energy norm of the error is linked to the χ2-distribution and to the Fisher-Snedecor distribution. Finally, we present the results of several numerical tests that experimentally validate the effectiveness of our stopping criteria.

  5. Scrutiny of non-linear differential equations Euler-Bernoulli beam with large rotational deviation by AGM

    NASA Astrophysics Data System (ADS)

    Akbari, M. R.; Nimafar, M.; Ganji, D. D.; Akbarzade, M. M.

    2014-12-01

    The kinematic assumptions upon which the Euler-Bernoulli beam theory is founded allow it to be extended to more advanced analysis. Simple superposition allows for three-dimensional transverse loading. Using alternative constitutive equations can allow for viscoelastic or plastic beam deformation. Euler-Bernoulli beam theory can also be extended to the analysis of curved beams, beam buckling, composite beams and geometrically nonlinear beam deflection. In this study, solving the nonlinear differential equation governing the calculation of the large rotation deviation of the beam (or column) has been discussed. Previously to calculate the rotational deviation of the beam, the assumption is made that the angular deviation of the beam is small. By considering the small slope in the linearization of the governing differential equation, the solving is easy. The result of this simplification in some cases will lead to an excessive error. In this paper nonlinear differential equations governing on this system are solved analytically by Akbari-Ganji's method (AGM). Moreover, in AGM by solving a set of algebraic equations, complicated nonlinear equations can easily be solved and without any mathematical operations such as integration solving. The solution of the problem can be obtained very simply and easily. Furthermore, to enhance the accuracy of the results, the Taylor expansion is not needed in most cases via AGM manner. Also, comparisons are made between AGM and numerical method (Runge-Kutta 4th). The results reveal that this method is very effective and simple, and can be applied for other nonlinear problems.

  6. Analytical solutions for non-linear differential equations with the help of a digital computer

    NASA Technical Reports Server (NTRS)

    Cromwell, P. C.

    1964-01-01

    A technique was developed with the help of a digital computer for analytic (algebraic) solutions of autonomous and nonautonomous equations. Two operational transform techniques have been programmed for the solution of these equations. Only relatively simple nonlinear differential equations have been considered. In the cases considered it has been possible to assimilate the secular terms into the solutions. For cases where f(t) is not a bounded function, a direct series solution is developed which can be shown to be an analytic function. All solutions have been checked against results obtained by numerical integration for given initial conditions and constants. It is evident that certain nonlinear differential equations can be solved with the help of a digital computer.

  7. Time Parallel Solution of Linear Partial Differential Equations on the Intel Touchstone Delta Supercomputer

    NASA Technical Reports Server (NTRS)

    Toomarian, N.; Fijany, A.; Barhen, J.

    1993-01-01

    Evolutionary partial differential equations are usually solved by decretization in time and space, and by applying a marching in time procedure to data and algorithms potentially parallelized in the spatial domain.

  8. Tensor-vector-scalar cosmology: Covariant formalism for the background evolution and linear perturbation theory

    NASA Astrophysics Data System (ADS)

    Skordis, Constantinos

    2006-11-01

    A relativistic theory of gravity has recently been proposed by Bekenstein, where gravity is mediated by a tensor, a vector, and a scalar field, thus called TeVeS. The theory aims at modifying gravity in such a way as to reproduce Milgrom’s modified Newtonian dynamics (MOND) in the weak field, nonrelativistic limit, which provides a framework to solve the missing mass problem in galaxies without invoking dark matter. In this paper I apply a covariant approach to formulate the cosmological equations for this theory, for both the background and linear perturbations. I derive the necessary perturbed equations for scalar, vector, and tensor modes without adhering to a particular gauge. Special gauges are considered in the appendixes.

  9. A Family of Symmetric Linear Multistep Methods for the Numerical Solution of the Schroedinger Equation and Related Problems

    SciTech Connect

    Anastassi, Z. A.; Simos, T. E.

    2010-09-30

    We develop a new family of explicit symmetric linear multistep methods for the efficient numerical solution of the Schroedinger equation and related problems with oscillatory solution. The new methods are trigonometrically fitted and have improved intervals of periodicity as compared to the corresponding classical method with constant coefficients and other methods from the literature. We also apply the methods along with other known methods to real periodic problems, in order to measure their efficiency.

  10. A recurrent neural network with exponential convergence for solving convex quadratic program and related linear piecewise equations.

    PubMed

    Xia, Youshen; Feng, Gang; Wang, Jun

    2004-09-01

    This paper presents a recurrent neural network for solving strict convex quadratic programming problems and related linear piecewise equations. Compared with the existing neural networks for quadratic program, the proposed neural network has a one-layer structure with a low model complexity. Moreover, the proposed neural network is shown to have a finite-time convergence and exponential convergence. Illustrative examples further show the good performance of the proposed neural network in real-time applications. PMID:15312842

  11. On the boundedness and integration of non-oscillatory solutions of certain linear differential equations of second order.

    PubMed

    Tunç, Cemil; Tunç, Osman

    2016-01-01

    In this paper, certain system of linear homogeneous differential equations of second-order is considered. By using integral inequalities, some new criteria for bounded and [Formula: see text]-solutions, upper bounds for values of improper integrals of the solutions and their derivatives are established to the considered system. The obtained results in this paper are considered as extension to the results obtained by Kroopnick (2014) [1]. An example is given to illustrate the obtained results. PMID:26843982

  12. ILUBCG2-11: Solution of 11-banded nonsymmetric linear equation systems by a preconditioned biconjugate gradient routine

    NASA Astrophysics Data System (ADS)

    Chen, Y.-M.; Koniges, A. E.; Anderson, D. V.

    1989-10-01

    The biconjugate gradient method (BCG) provides an attractive alternative to the usual conjugate gradient algorithms for the solution of sparse systems of linear equations with nonsymmetric and indefinite matrix operators. A preconditioned algorithm is given, whose form resembles the incomplete L-U conjugate gradient scheme (ILUCG2) previously presented. Although the BCG scheme requires the storage of two additional vectors, it converges in a significantly lesser number of iterations (often half), while the number of calculations per iteration remains essentially the same.

  13. A nodal inverse problem for a quasi-linear ordinary differential equation in the half-line

    NASA Astrophysics Data System (ADS)

    Pinasco, Juan P.; Scarola, Cristian

    2016-07-01

    In this paper we study an inverse problem for a quasi-linear ordinary differential equation with a monotonic weight in the half-line. First, we find the asymptotic behavior of the singular eigenvalues, and we obtain a Weyl-type asymptotics imposing an appropriate integrability condition on the weight. Then, we investigate the inverse problem of recovering the coefficients from nodal data. We show that any dense subset of nodes of the eigenfunctions is enough to recover the weight.

  14. Conservative finite volume solutions of a linear hyperbolic transport equation in two and three dimensions using multiple grids

    NASA Technical Reports Server (NTRS)

    Tiwari, Surendra N.; Kathong, Monchai

    1987-01-01

    The feasibility of the multiple grid technique is investigated by solving linear hyperbolic equations for simple two- and three-dimensional cases. The results are compared with exact solutions and those obtained from the single grid calculations. It is demonstrated that the technique works reasonably well when two grid systems contain grid cells of comparative sizes. The study indicates that use of the multiple grid does not introduce any significant error and that it can be used to attack more complex problems.

  15. Linear force and moment equations for an annular smooth shaft seal perturbed both angularly and laterally

    NASA Technical Reports Server (NTRS)

    Fenwick, J.; Dijulio, R.; Ek, M. C.; Ehrgott, R.

    1982-01-01

    Coefficients are derived for equations expressing the lateral force and pitching moments associated with both planar translation and angular perturbations from a nominally centered rotating shaft with respect to a stationary seal. The coefficients for the lowest order and first derivative terms emerge as being significant and are of approximately the same order of magnitude as the fundamental coefficients derived by means of Black's equations. Second derivative, shear perturbation, and entrance coefficient variation effects are adjudged to be small.

  16. Fast Chebyshev-polynomial method for simulating the time evolution of linear dynamical systems.

    PubMed

    Loh, Y L; Taraskin, S N; Elliott, S R

    2001-05-01

    We present a fast method for simulating the time evolution of any linear dynamical system possessing eigenmodes. This method does not require an explicit calculation of the eigenvectors and eigenfrequencies, and is based on a Chebyshev polynomial expansion of the formal operator matrix solution in the eigenfrequency domain. It does not suffer from the limitations of ordinary time-integration methods, and can be made accurate to almost machine precision. Among its possible applications are harmonic classical mechanical systems, quantum diffusion, and stochastic transport theory. An example of its use is given for the problem of vibrational wave-packet propagation in a disordered lattice. PMID:11415044

  17. Non-linear corrections to the time-covariance function derived from a multi-state chemical master equation.

    PubMed

    Scott, M

    2012-08-01

    The time-covariance function captures the dynamics of biochemical fluctuations and contains important information about the underlying kinetic rate parameters. Intrinsic fluctuations in biochemical reaction networks are typically modelled using a master equation formalism. In general, the equation cannot be solved exactly and approximation methods are required. For small fluctuations close to equilibrium, a linearisation of the dynamics provides a very good description of the relaxation of the time-covariance function. As the number of molecules in the system decrease, deviations from the linear theory appear. Carrying out a systematic perturbation expansion of the master equation to capture these effects results in formidable algebra; however, symbolic mathematics packages considerably expedite the computation. The authors demonstrate that non-linear effects can reveal features of the underlying dynamics, such as reaction stoichiometry, not available in linearised theory. Furthermore, in models that exhibit noise-induced oscillations, non-linear corrections result in a shift in the base frequency along with the appearance of a secondary harmonic. PMID:23039692

  18. Hall-Petch and multiple linear regression equations for the prediction of mechanical properties in gamma-based titanium aluminides

    SciTech Connect

    Soboyejo, W.O.; Soboyejo, A.B.O.; Ni, Y.; Mercer, C.

    1997-12-31

    In a recent paper, Mercer and Soboyejo demonstrated the Hall-Petch dependence of basic room- and elevated-temperature (815 C) mechanical properties (0.2% offset strength, ultimate tensile strength, plastic elongation to failure and fracture toughness) on the average equiaxed/lamellar grain size. Simple Hall-Petch behavior was shown to occur in a wide range of extruded duplex {alpha}{sub 2}+{gamma} alloys (Ti-48Al, Ti-48Al-1.4Mn Ti-48Al-2Mn and Ti-48Al-1.5Cr). As in steels and other materials, simple Hall-Petch equations were derived for the above properties. However, the Hall-Petch equations did not include the effect of other variables that can affect the basic mechanical properties of gamma alloys. Multiple linear regression equations for the prediction of the combined effects of several (alloying, microstructure and temperature) variables on basic mechanical properties temperature are presented in this paper.

  19. Smooth and singular multisoliton solutions of a modified Camassa-Holm equation with cubic nonlinearity and linear dispersion

    NASA Astrophysics Data System (ADS)

    Matsuno, Yoshimasa

    2014-03-01

    We develop a direct method for solving a modified Camassa-Holm equation with cubic nonlinearity and linear dispersion under the rapidly decreasing boundary condition. We obtain a compact parametric representation for the multisoliton solutions and investigate their properties. We show that the introduction of a linear dispersive term exhibits various new features in the structure of solutions. In particular, we find the smooth solitons whose characteristics are different from those of the Camassa-Holm equation, as well as the novel types of singular solitons. A remarkable feature of the soliton solutions is that the underlying structure of the associated tau-functions is the same as that of a model equation for shallow-water waves introduced by Ablowitz et al (1974 Stud. Appl. Math. 53 249-315). Finally, we demonstrate that the short-wave limit of the soliton solutions recovers the soliton solutions of the short pulse equation which describes the propagation of ultra-short optical pulses in nonlinear media.

  20. Boussinesq Equations and Other Systems for Small-Amplitude Long Waves in Nonlinear Dispersive Media. I: Derivation and Linear Theory

    NASA Astrophysics Data System (ADS)

    Bona, G.; Chen, J. A.; Saut, Jing Ping

    2002-08-01

    Considered herein are a number of variants of the classical Boussinesq system and their higher-order generalizations. Such equations were first derived by Boussinesq to describe the two-way propagation of small-amplitude, long wavelength, gravity waves on the surface of water in a canal. These systems arise also when modeling the propagation of long-crested waves on large lakes or the ocean and in other contexts. Depending on the modeling of dispersion, the resulting system may or may not have a linearization about the rest state which is well posed. Even when well posed, the linearized system may exhibit a lack of conservation of energy that is at odds with its status as an approximation to the Euler equations. In the present script, we derive a four-parameter family of Boussinesq systems from the two-dimensional Euler equations for free-surface flow and formulate criteria to help decide which of these equations one might choose in a given modeling situation. The analysis of the systems according to these criteria is initiated.

  1. Evolution of linear mitochondrial DNA in three known lineages of Polytomella.

    PubMed

    Smith, David Roy; Hua, Jimeng; Lee, Robert W

    2010-10-01

    Although DNA sequences of linear mitochondrial genomes are available for a wide variety of species, sequence and conformational data from the extreme ends of these molecules (i.e., the telomeres) are limited. Data on the telomeres is important because it can provide insights into how linear genomes overcome the end-replication problem. This study explores the evolution of linear mitochondrial DNAs (mtDNAs) in the green-algal genus Polytomella (Chlorophyceae, Chlorophyta), the members of which are non-photosynthetic. Earlier works analyzed the linear and linear-fragmented mitochondrial genomes of Polytomella capuana and Polytomella parva. Here we present the mtDNA sequence for Polytomella strain SAG 63-10 [also known as Polytomella piriformis (Pringsheim 1963)], which is the only known representative of a mostly unexplored Polytomella lineage. We show that the P. piriformis mtDNA is made up of two linear fragments of 13 and 3 kb. The telomeric sequences of the large and small fragments are terminally inverted, and appear to end in vitro with either closed (hairpin-loop) or open (nicked-loop) structures as also shown here for P. parva and shown earlier for P. capuana. The structure of the P. piriformis mtDNA is more similar to that of P. parva, which is also fragmented, than to that of P. capuana, which is contained in a single chromosome. Phylogenetic analyses reveal high substitution rates in the mtDNA of all three Polytomella species relative to other chlamydomonadalean algae. These elevated rates could be the result of a greater number of vegetative cell divisions and/or small population sizes in Polytomella species as compared with other chlamydomonadalean algae. PMID:20574726

  2. Evolution of a superfluid vortex filament tangle driven by the Gross-Pitaevskii equation

    NASA Astrophysics Data System (ADS)

    Villois, Alberto; Proment, Davide; Krstulovic, Giorgio

    2016-06-01

    The development and decay of a turbulent vortex tangle driven by the Gross-Pitaevskii equation is studied. Using a recently developed accurate and robust tracking algorithm, all quantized vortices are extracted from the fields. The Vinen's decay law for the total vortex length with a coefficient that is in quantitative agreement with the values measured in helium II is observed. The topology of the tangle is then investigated showing that linked rings may appear during the evolution. The tracking also allows for determining the statistics of small-scale quantities of vortex lines, exhibiting large fluctuations of curvature and torsion. Finally, the temporal evolution of the Kelvin wave spectrum is obtained providing evidence of the development of a weak-wave turbulence cascade.

  3. Evolution of a superfluid vortex filament tangle driven by the Gross-Pitaevskii equation.

    PubMed

    Villois, Alberto; Proment, Davide; Krstulovic, Giorgio

    2016-06-01

    The development and decay of a turbulent vortex tangle driven by the Gross-Pitaevskii equation is studied. Using a recently developed accurate and robust tracking algorithm, all quantized vortices are extracted from the fields. The Vinen's decay law for the total vortex length with a coefficient that is in quantitative agreement with the values measured in helium II is observed. The topology of the tangle is then investigated showing that linked rings may appear during the evolution. The tracking also allows for determining the statistics of small-scale quantities of vortex lines, exhibiting large fluctuations of curvature and torsion. Finally, the temporal evolution of the Kelvin wave spectrum is obtained providing evidence of the development of a weak-wave turbulence cascade. PMID:27415198

  4. Linear Stability and Nonlinear Evolution of 3D Vortices in Rotating Stratified Flows

    NASA Astrophysics Data System (ADS)

    Mahdinia, Mani; Hassanzadeh, Pedram; Marcus, Philip

    2014-11-01

    Axisymmetric Gaussian vortices are widely-used to model oceanic vortices. We study their stability in rotating, stratified flows by using the full Boussinesq equations. We created a stability map as a function of the Burger and Rossby numbers of the vortices. We computed the linear growth rates of the most-unstable eigenmodes and their corresponding eigenmodes. Our map shows a significant cyclone/anti-cyclone asymmetry. The vortices are linearly unstable in most of the parameter space that we studied. However, the anticyclonic vortices, over most of the parameter space, have eigenmodes with only very weak growth rates - longer than 50 vortex turn-around times. For oceanic vortices, that time corresponds to several months, so we argue that this slow growth rate means that the oceanic anticyclones lifetimes are not determined by linear stability, but by other processes. We also use our full, nonlinear simulations to show an example of an unstable cyclone with a very fast growing linear eigenmodes. However, we show that cyclone quickly redistributes its vorticity and becomes a stable tripole with a large core that is nearly axisymmetric.

  5. An inverse problem for a class of conditional probability measure-dependent evolution equations

    NASA Astrophysics Data System (ADS)

    Mirzaev, Inom; Byrne, Erin C.; Bortz, David M.

    2016-09-01

    We investigate the inverse problem of identifying a conditional probability measure in measure-dependent evolution equations arising in size-structured population modeling. We formulate the inverse problem as a least squares problem for the probability measure estimation. Using the Prohorov metric framework, we prove existence and consistency of the least squares estimates and outline a discretization scheme for approximating a conditional probability measure. For this scheme, we prove general method stability. The work is motivated by partial differential equation models of flocculation for which the shape of the post-fragmentation conditional probability measure greatly impacts the solution dynamics. To illustrate our methodology, we apply the theory to a particular PDE model that arises in the study of population dynamics for flocculating bacterial aggregates in suspension, and provide numerical evidence for the utility of the approach.

  6. Neutron Star Evolutions Using Nuclear Equations of State with a New Execution Model

    NASA Astrophysics Data System (ADS)

    Neilsen, David; Anderson, Matthew; Sterling, Thomas; Kaiser, Hartmut

    2015-01-01

    The addition of nuclear and neutrino physics to general relativistic fluid codes allows for a more realistic description of hot nuclear matter in neutron star and black hole systems. This additional microphysics requires that each processor have access to large tables of data, such as equations of state. Modern many-tasking execution models contain special semantic constructs designed to simplify distributed access to such tables and to reduce the negative impact in distributed large table access through network latency hiding measures such as local control objects. We present evolutions of a neutron star obtained using a message driven multi-threaded execution model known as ParalleX.

  7. Simple Derivation of the Lindblad Equation

    ERIC Educational Resources Information Center

    Pearle, Philip

    2012-01-01

    The Lindblad equation is an evolution equation for the density matrix in quantum theory. It is the general linear, Markovian, form which ensures that the density matrix is Hermitian, trace 1, positive and completely positive. Some elementary examples of the Lindblad equation are given. The derivation of the Lindblad equation presented here is…

  8. Evolution of Central Moments for a General-Relativistic Boltzmann Equation

    NASA Astrophysics Data System (ADS)

    Banach, Zbigniew; Larecki, Wieslaw

    Beginning from the relativistic Boltzmann equation in a curved space-time, and assuming that there exists a fiducial congruence of timelike world lines with four-velocity vector field u, it is the aim of this paper to present a systematic derivation of a hierarchy of closed systems of moment equations. These systems are found by using the closure by entropy maximization. Our concepts are primarily applied to the formalism of central moments because if an alternative and more familiar theory of covariant moments is taken into account, then the method of maximum entropy is ill-defined in a neighborhood of equilibrium states. The central moments are not covariant in the following sense: two observers looking at the same relativistic gas will, in general, extract two different sets of central moments, not related to each other by a tensorial linear transformation. After a brief review of the formalism of trace-free symmetric spacelike tensors, the differential equations for irreducible central moments are obtained and compared with those of Ellis et al. [Ann. Phys. (NY) 150 (1983) 455]. We derive some auxiliary algebraic identities which involve the set of central moments and the corresponding set of Lagrange multipliers; these identities enable us to show that there is an additional balance law interpreted as the equation of balance of entropy. The above results are valid for an arbitrary choice of the Lorentzian metric g and the four-velocity vector field u. Later, the definition of u as in the well-known theory of Arnowitt, Deser, and Misner is proposed in order to construct a hierarchy of symmetric hyperbolic systems of field equations. Also, the Eckart and Landau-Lifshitz definitions of u are discussed. Specifically, it is demonstrated that they lead, in general, to the systems of nonconservative equations.

  9. New stability conditions for mixed linear Levin-Nohel integro-differential equations

    NASA Astrophysics Data System (ADS)

    Dung, Nguyen Tien

    2013-08-01

    For the mixed Levin-Nohel integro-differential equation, we obtain new necessary and sufficient conditions of asymptotic stability. These results improve those obtained by Becker and Burton ["Stability, fixed points and inverse of delays," Proc. - R. Soc. Edinburgh, Sect. A 136, 245-275 (2006)], 10.1017/S0308210500004546 and Jin and Luo ["Stability of an integro-differential equation," Comput. Math. Appl. 57(7), 1080-1088 (2009)], 10.1016/j.camwa.2009.01.006 when b(t) = 0 and supplement the 3/2-stability theorem when a(t, s) = 0. In addition, the case of the equations with several delays is discussed as well.

  10. Filtering of non-linear instabilities. [from finite difference solution of fluid dynamics equations

    NASA Technical Reports Server (NTRS)

    Khosla, P. K.; Rubin, S. G.

    1979-01-01

    For Courant numbers larger than one and cell Reynolds numbers larger than two, oscillations and in some cases instabilities are typically found with implicit numerical solutions of the fluid dynamics equations. This behavior has sometimes been associated with the loss of diagonal dominance of the coefficient matrix. It is shown here that these problems can in fact be related to the choice of the spatial differences, with the resulting instability related to aliasing or nonlinear interaction. Appropriate 'filtering' can reduce the intensity of these oscillations and in some cases possibly eliminate the instability. These filtering procedures are equivalent to a weighted average of conservation and non-conservation differencing. The entire spectrum of filtered equations retains a three-point character as well as second-order spatial accuracy. Burgers equation has been considered as a model. Several filters are examined in detail, and smooth solutions have been obtained for extremely large cell Reynolds numbers.

  11. Choosing among Tucker or Chained Linear Equating in Two Testing Situations: Rater Comparability Scoring and Randomly Equivalent Groups with an Anchor

    ERIC Educational Resources Information Center

    Puhan, Gautam

    2012-01-01

    Tucker and chained linear equatings were evaluated in two testing scenarios. In Scenario 1, referred to as rater comparability scoring and equating, the anchor-to-total correlation is often very high for the new form but moderate for the reference form. This may adversely affect the results of Tucker equating, especially if the new and reference…

  12. Spectral evolution and extreme value analysis of non-linear numerical simulations of narrow band random surface gravity waves.

    NASA Astrophysics Data System (ADS)

    Socquet-Juglard, H.; Dysthe, K. B.; Trulsen, K.; Liu, J.; Krogstad, H. E.

    2003-04-01

    Numerical simulations of a narrow band gaussian spectrum of random surface gravity waves have been carried out in two and three spatial dimensions [7]. Different types of non-linear Schr&{uml;o}dinger equations, [1] and [4], have been used in these simulations. Simulations have now been carried with a JONSWAP spectrum associated with a spreading function of the type cosine-squared [5]. The evolution of the spectrum, skewness, kurtosis, ... will be presented. In addition, some results about stochastic properties of the surface will be shown. Based on the approach found in [2], [3] and [6], the results are presented in terms of deviations from linear Gaussian theory and the standard second order small slope perturbation theory. begin{thebibliography}{9} bibitem{kk96} Trulsen, K. &Dysthe, K. B. (1996). A modified nonlinear Schr&{uml;o}dinger equation for broader bandwidth gravity waves on deep water. Wave Motion, 24, pp. 281-289. bibitem{BK2000} Krogstad, H.E. and S.F. Barstow (2000). A uniform approach to extreme value analysis of ocean waves, Proc. ISOPE'2000, Seattle, USA, 3, pp. 103-108. bibitem{PRK} Prevosto, M., H. E. Krogstad and A. Robin (2000). Probability distributions for maximum wave and crest heights, Coast. Eng., 40, 329-360. bibitem{ketal} Trulsen, K., Kliakhandler, I., Dysthe, K. B. &Velarde, M. G. (2000) On weakly nonlinear modulation of waves on deep water, Phys. Fluids, 12, pp. L25-L28. bibitem{onorato} Onorato, M., Osborne, A.R. and Serio, M. (2002) Extreme wave events in directional, random oceanic sea states, Phys. Fluids, 14, pp. 2432-2437. bibitem{BK2002} Krogstad, H.E. and S.F. Barstow (2002). Analysis and Applications of Second Order Models for the Maximum Crest height, % Proc. 21nd Int. Conf. Offshore Mechanics and Arctic Engineering, Oslo. Paper no. OMAE2002-28479. bibitem{JFMP} Dysthe, K. B., Trulsen, K., Krogstad, H. E. and Socquet-Juglard, H. (2002, in press) Evolution of a narrow band spectrum of random surface gravity waves, J. Fluid

  13. Reduced order feedback control equations for linear time and frequency domain analysis

    NASA Technical Reports Server (NTRS)

    Frisch, H. P.

    1981-01-01

    An algorithm was developed which can be used to obtain the equations. In a more general context, the algorithm computes a real nonsingular similarity transformation matrix which reduces a real nonsymmetric matrix to block diagonal form, each block of which is a real quasi upper triangular matrix. The algorithm works with both defective and derogatory matrices and when and if it fails, the resultant output can be used as a guide for the reformulation of the mathematical equations that lead up to the ill conditioned matrix which could not be block diagonalized.

  14. Linear response to perturbation of nonexponential renewal process: A generalized master equation approach

    NASA Astrophysics Data System (ADS)

    Sokolov, I. M.

    2006-06-01

    The work by Barbi, Bologna, and Grigolini [Phys. Rev. Lett. 95, 220601 (2005)] discusses a response to alternating external field of a non-Markovian two-state system, where the waiting time between the two attempted changes of state follows a power law. It introduced a new instrument for description of such situations based on a stochastic master equation with reset. In the present Brief Report we provide an alternative description of the situation within the framework of a generalized master equation. The results of our analytical approach are corroborated by direct numerical simulations of the system.

  15. Eighth Grade Students' Representations of Linear Equations Based on a Cups and Tiles Model

    ERIC Educational Resources Information Center

    Caglayan, Gunhan; Olive, John

    2010-01-01

    This study examines eighth grade students' use of a representational metaphor (cups and tiles) for writing and solving equations in one unknown. Within this study, we focused on the obstacles and difficulties that students experienced when using this metaphor, with particular emphasis on the operations that can be meaningfully represented through…

  16. Computer subroutine ISUDS accurately solves large system of simultaneous linear algebraic equations

    NASA Technical Reports Server (NTRS)

    Collier, G.

    1967-01-01

    Computer program, an Iterative Scheme Using a Direct Solution, obtains double precision accuracy using a single-precision coefficient matrix. ISUDS solves a system of equations written in matrix form as AX equals B, where A is a square non-singular coefficient matrix, X is a vector, and B is a vector.

  17. An efficient non-linear multigrid procedure for the incompressible Navier-Stokes equations

    NASA Astrophysics Data System (ADS)

    Sivaloganathan, S.; Shaw, G. J.

    An efficient Full Approximation multigrid scheme for finite volume discretizations of the Navier-Stokes equations is presented. The algorithm is applied to the driven cavity test problem. Numerical results are presented and a comparison made with PACE, a Rolls-Royce industrial code, which uses the SIMPLE pressure correction method as an iterative solver.

  18. On preconditioning techniques for dense linear systems arising from singular boundary integral equations

    SciTech Connect

    Chen, Ke

    1996-12-31

    We study various preconditioning techniques for the iterative solution of boundary integral equations, and aim to provide a theory for a class of sparse preconditioners. Two related ideas are explored here: singularity separation and inverse approximation. Our preliminary conclusion is that singularity separation based preconditioners perform better than approximate inverse based while it is desirable to have both features.

  19. Teacher-Designed Software for Interactive Linear Equations: Concepts, Interpretive Skills, Applications & Word-Problem Solving.

    ERIC Educational Resources Information Center

    Lawrence, Virginia

    No longer just a user of commercial software, the 21st century teacher is a designer of interactive software based on theories of learning. This software, a comprehensive study of straightline equations, enhances conceptual understanding, sketching, graphic interpretive and word problem solving skills as well as making connections to real-life and…

  20. Bounds on the Fourier coefficients for the periodic solutions of non-linear oscillator equations

    NASA Technical Reports Server (NTRS)

    Mickens, R. E.

    1988-01-01

    The differential equations describing nonlinear oscillations (as seen in mechanical vibrations, electronic oscillators, chemical and biochemical reactions, acoustic systems, stellar pulsations, etc.) are investigated analytically. The boundedness of the Fourier coefficients for periodic solutions is demonstrated for two special cases, and the extrapolation of the results to higher-dimensionsal systems is briefly considered.

  1. The Effects of Test Disclosure on Linear Equating Relationships under the Common Item Nonequivalent Groups Design.

    ERIC Educational Resources Information Center

    Gilmer, Jerry S.

    The proponents of test disclosure argue that disclosure is a matter of fairness; the opponents argue that fairness is enhanced by score equating which is dependent on test security. This research simulated disclosure on a professional licensing examination by placing response keys to selected items in some examinees' records, and comparing their…

  2. Chemical fronts in Hele-Shaw cells: Linear stability analysis based on the three-dimensional Stokes equations

    NASA Astrophysics Data System (ADS)

    Demuth, Rainer; Meiburg, Eckart

    2003-03-01

    We present linear stability results based on the three-dimensional Stokes equations for chemically reacting, propagating fronts giving rise to an unstable density stratification in a Hele-Shaw cell. The results are compared with the experiments in M. Böckmann and S. C. Müller [Phys. Rev. Lett. 85, 2506 (2000)], as well as with a corresponding linear stability analysis based on the Darcy equations that was performed in A. De Wit [Phys. Rev. Lett. 87, 054502 (2001)]. The reason for the good agreement between these earlier Darcy data and the experimentally observed growth rates is found in the relatively low experimental value of the Rayleigh number, Ra=79, for which the flow is approximately of Poiseuille type. Already for Ra values as low as 300, we observe a discrepancy between the stability results based on the Darcy and Stokes equations, respectively, with the Darcy results overpredicting both the most amplified wavenumber, as well as the corresponding growth rate, by about a factor of two. This indicates that three-dimensional effects quickly gain importance as Ra increases, so that the stability analysis needs to be based on the full, three-dimensional Stokes equations. The stability results based on the Stokes equations furthermore demonstrate the stabilizing influences of both an increasing interfacial thickness, as well as increasing frontal propagation velocities, confirming the earlier Darcy-based findings by De Wit. An argument in terms of vorticity is forwarded to explain the latter effect. A more rapidly advancing front deposits vorticity over a wider layer of fluid particles, so that the concentrated regions of vorticity needed for rapid instability growth cannot form. Somewhat surprisingly, however, slowly propagating fronts are seen to be more unstable than nonreacting fronts of equivalent thickness, as the chemical reaction leads to the formation of more compact perturbations in the interfacial region.

  3. The Minimum-Mass Surface Density of the Solar Nebula using the Disk Evolution Equation

    NASA Technical Reports Server (NTRS)

    Davis, Sanford S.

    2005-01-01

    The Hayashi minimum-mass power law representation of the pre-solar nebula (Hayashi 1981, Prog. Theo. Phys.70,35) is revisited using analytic solutions of the disk evolution equation. A new cumulative-planetary-mass-model (an integrated form of the surface density) is shown to predict a smoother surface density compared with methods based on direct estimates of surface density from planetary data. First, a best-fit transcendental function is applied directly to the cumulative planetary mass data with the surface density obtained by direct differentiation. Next a solution to the time-dependent disk evolution equation is parametrically adapted to the planetary data. The latter model indicates a decay rate of r -1/2 in the inner disk followed by a rapid decay which results in a sharper outer boundary than predicted by the minimum mass model. The model is shown to be a good approximation to the finite-size early Solar Nebula and by extension to extra solar protoplanetary disks.

  4. Optical laboratory solution and error model simulation of a linear time-varying finite element equation

    NASA Technical Reports Server (NTRS)

    Taylor, B. K.; Casasent, D. P.

    1989-01-01

    The use of simplified error models to accurately simulate and evaluate the performance of an optical linear-algebra processor is described. The optical architecture used to perform banded matrix-vector products is reviewed, along with a linear dynamic finite-element case study. The laboratory hardware and ac-modulation technique used are presented. The individual processor error-source models and their simulator implementation are detailed. Several significant simplifications are introduced to ease the computational requirements and complexity of the simulations. The error models are verified with a laboratory implementation of the processor, and are used to evaluate its potential performance.

  5. Comparing Regression Coefficients between Nested Linear Models for Clustered Data with Generalized Estimating Equations

    ERIC Educational Resources Information Center

    Yan, Jun; Aseltine, Robert H., Jr.; Harel, Ofer

    2013-01-01

    Comparing regression coefficients between models when one model is nested within another is of great practical interest when two explanations of a given phenomenon are specified as linear models. The statistical problem is whether the coefficients associated with a given set of covariates change significantly when other covariates are added into…

  6. Analysis of Formation Flying in Eccentric Orbits Using Linearized Equations of Relative Motion

    NASA Technical Reports Server (NTRS)

    Lane, Christopher; Axelrad, Penina

    2004-01-01

    Geometrical methods for formation flying design based on the analytical solution to Hill's equations have been previously developed and used to specify desired relative motions in near circular orbits. By generating relationships between the vehicles that are intuitive, these approaches offer valuable insight into the relative motion and allow for the rapid design of satellite configurations to achieve mission specific requirements, such as vehicle separation at perigee or apogee, minimum separation, or a specific geometrical shape. Furthermore, the results obtained using geometrical approaches can be used to better constrain numerical optimization methods; allowing those methods to converge to optimal satellite configurations faster. This paper presents a set of geometrical relationships for formations in eccentric orbits, where Hill.s equations are not valid, and shows how these relationships can be used to investigate formation designs and how they evolve with time.

  7. The solution of non-linear hyperbolic equation systems by the finite element method

    NASA Technical Reports Server (NTRS)

    Loehner, R.; Morgan, K.; Zienkiewicz, O. C.

    1984-01-01

    A finite-element method for the solution of nonlinear hyperbolic systems of equations, such as those encountered in non-self-adjoint problems of transient phenomena in convection-diffusion or in the mixed representation of wave problems, is developed and demonstrated. The problem is rewritten in moving coordinates and reinterpolated to the original mesh by a Taylor expansion prior to a standard Galerkin spatial discretization, and it is shown that this procedure is equivalent to the time-discretization approach of Donea (1984). Numerical results for sample problems are presented graphically, including such shallow-water problems as the breaking of a dam, the shoaling of a wave, and the outflow of a river; compressible flows such as the isothermal flow in a nozzle and the Riemann shock-tube problem; and the two-dimensional scalar-advection, nonlinear-shallow-water, and Euler equations.

  8. Comment on "Direct linear term in the equation of state of plasmas".

    PubMed

    Alastuey, A; Ballenegger, V; Ebeling, W

    2015-10-01

    In a recent paper [Phys. Rev. E 91, 013108 (2015)], Kraeft et al. criticize known exact results on the equation of state of quantum plasmas, which have been obtained independently by several authors. They argue about a difference in the definition of the direct two-body function Q(x), which appears in virial expansions of thermodynamical quantities, but Q(x) is not a measurable quantity in itself. Differences in definitions of intermediate quantities are irrelevant, and only differences in physical quantities are meaningful. Beyond Kraeft et al.'s broad statement that there is no agreement at order ρ(5/2) in the virial equation for the pressure, we show that their published results for this quantity are in fact in perfect agreement with previous existing expressions. PMID:26565369

  9. Chaos vs linear instability in the Vlasov equation: A fractal analysis characterization

    SciTech Connect

    Atalmi, A.; Baldo, M.; Burgio, G.F.; Rapisarda, A.

    1996-05-01

    In this paper we discuss the most recent results concerning the Vlasov dynamics inside the spinodal region. The chaotic behavior which follows an initial regular evolution is characterized through the calculation of the fractal dimension of the distribution of the final modes excited. The ambiguous role of the largest Lyapunov exponent for unstable systems is also critically reviewed. This investigation seems to confirm the crucial role played by deterministic chaos in nuclear multifragmentation. {copyright} {ital 1996 The American Physical Society.}

  10. A new (2+1) dimensional integrable evolution equation for an ion acoustic wave in a magnetized plasma

    SciTech Connect

    Mukherjee, Abhik Janaki, M. S. Kundu, Anjan

    2015-07-15

    A new, completely integrable, two dimensional evolution equation is derived for an ion acoustic wave propagating in a magnetized, collisionless plasma. The equation is a multidimensional generalization of a modulated wavepacket with weak transverse propagation, which has resemblance to nonlinear Schrödinger (NLS) equation and has a connection to Kadomtsev-Petviashvili equation through a constraint relation. Higher soliton solutions of the equation are derived through Hirota bilinearization procedure, and an exact lump solution is calculated exhibiting 2D structure. Some mathematical properties demonstrating the completely integrable nature of this equation are described. Modulational instability using nonlinear frequency correction is derived, and the corresponding growth rate is calculated, which shows the directional asymmetry of the system. The discovery of this novel (2+1) dimensional integrable NLS type equation for a magnetized plasma should pave a new direction of research in the field.

  11. Legendre-tau approximation for functional differential equations. Part 2: The linear quadratic optimal control problem

    NASA Technical Reports Server (NTRS)

    Ito, K.; Teglas, R.

    1984-01-01

    The numerical scheme based on the Legendre-tau approximation is proposed to approximate the feedback solution to the linear quadratic optimal control problem for hereditary differential systems. The convergence property is established using Trotter ideas. The method yields very good approximations at low orders and provides an approximation technique for computing closed-loop eigenvalues of the feedback system. A comparison with existing methods (based on averaging and spline approximations) is made.

  12. Legendre-tau approximation for functional differential equations. II - The linear quadratic optimal control problem

    NASA Technical Reports Server (NTRS)

    Ito, Kazufumi; Teglas, Russell

    1987-01-01

    The numerical scheme based on the Legendre-tau approximation is proposed to approximate the feedback solution to the linear quadratic optimal control problem for hereditary differential systems. The convergence property is established using Trotter ideas. The method yields very good approximations at low orders and provides an approximation technique for computing closed-loop eigenvalues of the feedback system. A comparison with existing methods (based on averaging and spline approximations) is made.

  13. Some aspects of high-order numerical solutions of the linear convection equation with forced boundary conditions

    NASA Technical Reports Server (NTRS)

    Zingg, D. W.; Lomax, H.

    1993-01-01

    A six-stage low-storage Runge-Kutta time-marching method is presented and shown to be an efficient method for use with high-accuracy spatial difference operators for wave propagation problems. The accuracy of the method for inhomogeneous ordinary differential equations is demonstrated through numerical solutions of the linear convection equation with forced boundary conditions. Numerical experiments are presented simulating a sine wave and a Gaussian pulse propagating into and through the domain. For practical levels of mesh refinement corresponding to roughly ten points per wavelength, the six-stage Runge-Kutta method is more accurate than the popular fourth-order Runge-Kutta method. Further numerical experiments are presented which show that the numerical boundary scheme at an inflow boundary can be a significant source of error when high-accuracy spatial discretizations are used.

  14. Nonlinear Equations for Bending of Rotating Beams with Application to Linear Flap-Lag Stability of Hingeless Rotors

    NASA Technical Reports Server (NTRS)

    Hodges, D. H.; Ormiston, R. A.

    1973-01-01

    The nonlinear partial differential equations for the flapping and lead-lag degrees of freedom of a torisonally rigid, rotating cantilevered beam are derived. These equations are linearized about an equilibrium condition to study the flap-lag stability characteristics of hingeless helicopter rotor blades with zero twist and uniform mass and stiffness in the hovering flight condition. The results indicate that these configurations are stable because the effect of elastic coupling more than compensates for the destabilizing flap-lag Coriolis and aerodynamic coupling. The effect of higher bending modes on the lead-lag damping was found to be small and the common, centrally hinged, spring restrained, rigid blade approximation for elastic rotor blades was shown to be resonably satisfactory for determining flap-lag stability. The effect of pre-cone was generally stabilizing and the effects of rotary inertia were negligible.

  15. Kranc: a Mathematica package to generate numerical codes for tensorial evolution equations

    NASA Astrophysics Data System (ADS)

    Husa, Sascha; Hinder, Ian; Lechner, Christiane

    2006-06-01

    We present a suite of Mathematica-based computer-algebra packages, termed "Kranc", which comprise a toolbox to convert certain (tensorial) systems of partial differential evolution equations to parallelized C or Fortran code for solving initial boundary value problems. Kranc can be used as a "rapid prototyping" system for physicists or mathematicians handling very complicated systems of partial differential equations, but through integration into the Cactus computational toolkit we can also produce efficient parallelized production codes. Our work is motivated by the field of numerical relativity, where Kranc is used as a research tool by the authors. In this paper we describe the design and implementation of both the Mathematica packages and the resulting code, we discuss some example applications, and provide results on the performance of an example numerical code for the Einstein equations. Program summaryTitle of program: Kranc Catalogue identifier: ADXS_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADXS_v1_0 Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Distribution format: tar.gz Computer for which the program is designed and others on which it has been tested: General computers which run Mathematica (for code generation) and Cactus (for numerical simulations), tested under Linux Programming language used: Mathematica, C, Fortran 90 Memory required to execute with typical data: This depends on the number of variables and gridsize, the included ADM example requires 4308 KB Has the code been vectorized or parallelized: The code is parallelized based on the Cactus framework. Number of bytes in distributed program, including test data, etc.: 1 578 142 Number of lines in distributed program, including test data, etc.: 11 711 Nature of physical problem: Solution of partial differential equations in three space dimensions, which are formulated as an initial value problem. In particular, the program is geared

  16. The Chemical Master Equation Approach to Nonequilibrium Steady-State of Open Biochemical Systems: Linear Single-Molecule Enzyme Kinetics and Nonlinear Biochemical Reaction Networks

    PubMed Central

    Qian, Hong; Bishop, Lisa M.

    2010-01-01

    We develop the stochastic, chemical master equation as a unifying approach to the dynamics of biochemical reaction systems in a mesoscopic volume under a living environment. A living environment provides a continuous chemical energy input that sustains the reaction system in a nonequilibrium steady state with concentration fluctuations. We discuss the linear, unimolecular single-molecule enzyme kinetics, phosphorylation-dephosphorylation cycle (PdPC) with bistability, and network exhibiting oscillations. Emphasis is paid to the comparison between the stochastic dynamics and the prediction based on the traditional approach based on the Law of Mass Action. We introduce the difference between nonlinear bistability and stochastic bistability, the latter has no deterministic counterpart. For systems with nonlinear bistability, there are three different time scales: (a) individual biochemical reactions, (b) nonlinear network dynamics approaching to attractors, and (c) cellular evolution. For mesoscopic systems with size of a living cell, dynamics in (a) and (c) are stochastic while that with (b) is dominantly deterministic. Both (b) and (c) are emergent properties of a dynamic biochemical network; We suggest that the (c) is most relevant to major cellular biochemical processes such as epi-genetic regulation, apoptosis, and cancer immunoediting. The cellular evolution proceeds with transitions among the attractors of (b) in a “punctuated equilibrium” manner. PMID:20957107

  17. The chemical master equation approach to nonequilibrium steady-state of open biochemical systems: linear single-molecule enzyme kinetics and nonlinear biochemical reaction networks.

    PubMed

    Qian, Hong; Bishop, Lisa M

    2010-01-01

    We develop the stochastic, chemical master equation as a unifying approach to the dynamics of biochemical reaction systems in a mesoscopic volume under a living environment. A living environment provides a continuous chemical energy input that sustains the reaction system in a nonequilibrium steady state with concentration fluctuations. We discuss the linear, unimolecular single-molecule enzyme kinetics, phosphorylation-dephosphorylation cycle (PdPC) with bistability, and network exhibiting oscillations. Emphasis is paid to the comparison between the stochastic dynamics and the prediction based on the traditional approach based on the Law of Mass Action. We introduce the difference between nonlinear bistability and stochastic bistability, the latter has no deterministic counterpart. For systems with nonlinear bistability, there are three different time scales: (a) individual biochemical reactions, (b) nonlinear network dynamics approaching to attractors, and (c) cellular evolution. For mesoscopic systems with size of a living cell, dynamics in (a) and (c) are stochastic while that with (b) is dominantly deterministic. Both (b) and (c) are emergent properties of a dynamic biochemical network; We suggest that the (c) is most relevant to major cellular biochemical processes such as epi-genetic regulation, apoptosis, and cancer immunoediting. The cellular evolution proceeds with transitions among the attractors of (b) in a "punctuated equilibrium" manner. PMID:20957107

  18. Evolution equations for the joint probability of several compositions in turbulent combustion

    SciTech Connect

    Bakosi, Jozsef

    2010-01-01

    One-point statistical simulations of turbulent combustion require models to represent the molecular mixing of species mass fractions, which then determine the reaction rates. For multi-species mixing the Dirichlet distribution has been used to characterize the assumed joint probability density function (PDF) of several scalars, parametrized by solving modeled evolution equations for their means and the sum of their variances. The PDF is then used to represent the mixing state and to obtain the chemical reactions source terms in moment closures or large eddy simulation. We extend the Dirichlet PDF approach to transported PDF methods by developing its governing stochastic differential equation (SDE). The transport equation, as opposed to parametrizing the assumed PDF, enables (1) the direct numerical computation of the joint PDF (and therefore the mixing model to directly account for the flow dynamics (e.g. reaction) on the shape of the evolving PDF), and (2) the individual specification of the mixing timescales of each species. From the SDE, systems of equations are derived that govern the first two moments, based on which constraints are established that provide consistency conditions for material mixing. A SDE whose solution is the generalized Dirichlet PDF is also developed and some of its properties from the viewpoint of material mixing are investigated. The generalized Dirichlet distribution has the following advantages over the standard Dirichlet distribution due to its more general covariance structure: (1) its ability to represent differential diffusion (i.e. skewness) without affecting the scalar means, and (2) it can represent both negatively and positively correlated scalars. The resulting development is a useful representation of the joint PDF of inert or reactive scalars in turbulent flows: (1) In moment closures, the mixing physics can be consistently represented by one underlying modeling principle, the Dirichlet or the generalized Dirichlet PDF, and

  19. Generalized linear Boltzmann equation, describing non-classical particle transport, and related asymptotic solutions for small mean free paths

    NASA Astrophysics Data System (ADS)

    Rukolaine, Sergey A.

    2016-05-01

    In classical kinetic models a particle free path distribution is exponential, but this is more likely to be an exception than a rule. In this paper we derive a generalized linear Boltzmann equation (GLBE) for a general free path distribution in the framework of Alt's model. In the case that the free path distribution has at least first and second finite moments we construct an asymptotic solution to the initial value problem for the GLBE for small mean free paths. In the special case of the one-speed transport problem the asymptotic solution results in a diffusion approximation to the GLBE.

  20. On the solution of two-point linear differential eigenvalue problems. [numerical technique with application to Orr-Sommerfeld equation

    NASA Technical Reports Server (NTRS)

    Antar, B. N.

    1976-01-01

    A numerical technique is presented for locating the eigenvalues of two point linear differential eigenvalue problems. The technique is designed to search for complex eigenvalues belonging to complex operators. With this method, any domain of the complex eigenvalue plane could be scanned and the eigenvalues within it, if any, located. For an application of the method, the eigenvalues of the Orr-Sommerfeld equation of the plane Poiseuille flow are determined within a specified portion of the c-plane. The eigenvalues for alpha = 1 and R = 10,000 are tabulated and compared for accuracy with existing solutions.

  1. Linear scaling solution of the time-dependent self-consistent-field equations with quasi-independent Rayleigh quotient iteration

    SciTech Connect

    Challacombe, Matt

    2009-01-01

    An algorithm for solution of the Time-Dependent Self-Consistent-Field (TD-SCF) equations is developed, based on dual solution channels for non-linear optimization of the Tsiper functional [J.Phys.B, 34 L401 (2001)]. This formulation poses the TD-SCF problem as two Rayleigh quotients, coupled weakly through biorthogonality. Convergence rates for the Random Phase Approximation (RPA) are found to be equivalent to the Tamm-Dancoff approximation (TDA). Moreover, the variational nature of the quotient is robust to approximation errors, allowing linear scaling solution to the bulk limit of the RPA matrix-eigenvalue and exchange operator problem for molecular wires with extended conjugation, including polyphenylene vinylene and the (4,3) nanotube.

  2. Linearized Boltzmann transport model for jet propagation in the quark-gluon plasma: Heavy quark evolution

    NASA Astrophysics Data System (ADS)

    Cao, Shanshan; Luo, Tan; Qin, Guang-You; Wang, Xin-Nian

    2016-07-01

    A linearized Boltzmann transport (LBT) model coupled with hydrodynamical background is established to describe the evolution of jet shower partons and medium excitations in high energy heavy-ion collisions. We extend the LBT model to include both elastic and inelastic processes for light and heavy partons in the quark-gluon plasma. A hybrid model of fragmentation and coalescence is developed for the hadronization of heavy quarks. Within this framework, we investigate how heavy flavor observables depend on various ingredients, such as different energy loss and hadronization mechanisms, the momentum and temperature dependences of the transport coefficients, and the radial flow of the expanding fireball. Our model calculations show good descriptions of the D meson suppression and elliptic flow observed at the Larege Hadron Collider and the Relativistic Heavy-Ion Collider. The prediction for the Pb-Pb collisions at √{sN N}=5.02 TeV is provided.

  3. Linear and non-linear high order accurate residual distribution schemes for the discretization of the steady compressible Navier-Stokes equations

    NASA Astrophysics Data System (ADS)

    Abgrall, R.; De Santis, D.

    2015-02-01

    A robust and high order accurate Residual Distribution (RD) scheme for the discretization of the steady Navier-Stokes equations is presented. The proposed method is very flexible: it is formulated for unstructured grids, regardless the shape of the elements and the number of spatial dimensions. A continuous approximation of the solution is adopted and standard Lagrangian shape functions are used to construct the discrete space, as in Finite Element methods. The traditional technique for designing RD schemes is adopted: evaluate, for any element, a total residual, split it into nodal residuals sent to the degrees of freedom of the element, solve the non-linear system that has been assembled and then iterate up to convergence. The main issue addressed by the paper is that the technique relies in depth on the continuity of the normal flux across the element boundaries: this is no longer true since the gradient of the state solution appears in the flux, hence continuity is lost when using standard finite element approximations. Naive solution methods lead to very poor accuracy. To cope with the fact that the normal component of the gradient of the numerical solution is discontinuous across the faces of the elements, a continuous approximation of the gradient of the numerical solution is recovered at each degree of freedom of the grid and then interpolated with the same shape functions used for the solution, preserving the optimal accuracy of the method. Linear and non-linear schemes are constructed, and their accuracy is tested with the method of the manufactured solutions. The numerical method is also used for the discretization of smooth and shocked laminar flows in two and three spatial dimensions.

  4. On the evolution of perturbations to solutions of the Kadomtsev-Petviashvilli equation using the Benney-Luke equation

    NASA Astrophysics Data System (ADS)

    Ablowitz, Mark J.; Curtis, Christopher W.

    2011-05-01

    The Benney-Luke equation, which arises as a long wave asymptotic approximation of water waves, contains the Kadomtsev-Petviashvilli (KP) equation as a leading-order maximal balanced approximation. The question analyzed is how the Benney-Luke equation modifies the so-called web solutions of the KP equation. It is found that the Benney-Luke equation introduces dispersive radiation which breaks each of the symmetric soliton-like humps well away from the interaction region of the KP web solution into a tail of multi-peaked oscillating profiles behind the main solitary hump. Computation indicates that the wave structure is modified near the center of the interaction region. Both analytical and numerical techniques are employed for working with non-periodic, non-decaying solutions on unbounded domains.

  5. A multiscale asymptotic analysis of time evolution equations on the complex plane

    NASA Astrophysics Data System (ADS)

    Braga, Gastão A.; Conti, William R. P.

    2016-07-01

    Using an appropriate norm on the space of entire functions, we extend to the complex plane the renormalization group method as developed by Bricmont et al. The method is based upon a multiscale approach that allows for a detailed description of the long time asymptotics of solutions to initial value problems. The time evolution equation considered here arises in the study of iterations of the block spin renormalization group transformation for the hierarchical N-vector model. We show that, for initial conditions belonging to a certain Fréchet space of entire functions of exponential type, the asymptotics is universal in the sense that it is dictated by the fixed point of a certain operator acting on the space of initial conditions.

  6. Diffusion-equation representations of landform evolution in the simplest circumstances: Appendix C

    USGS Publications Warehouse

    Hanks, Thomas C.

    2009-01-01

    Most of us here know that the diffusion equation has also been used to describe the evolution through time of scarp-like landforms, including fault scarps, shoreline scarps, or a set of marine terraces. The methods, models, and data employed in such studies have been described in the literature many times over the past 25 years. For most situations, everything you will ever need (or want) to know can be found in Hanks et al. (1984) and Hanks (2000), the latter being a review of numerous studies of the 1980s and 1990s and a summary of available estimates of the mass diffusivity κ. The geometric parameterization of scarp-like landforms is shown in Figure 1.

  7. Solving systems of linear equations by GPU-based matrix factorization in a Science Ground Segment

    NASA Astrophysics Data System (ADS)

    Legendre, Maxime; Schmidt, Albrecht; Moussaoui, Saïd; Lammers, Uwe

    2013-11-01

    Recently, Graphics Cards have been used to offload scientific computations from traditional CPUs for greater efficiency. This paper investigates the adaptation of a real-world linear system solver, which plays a central role in the data processing of the Science Ground Segment of ESA's astrometric Gaia mission. The paper quantifies the resource trade-offs between traditional CPU implementations and modern CUDA based GPU implementations. It also analyses the impact on the pipeline architecture and system development. The investigation starts from both a selected baseline algorithm with a reference implementation and a traditional linear system solver and then explores various modifications to control flow and data layout to achieve higher resource efficiency. It turns out that with the current state of the art, the modifications impact non-technical system attributes. For example, the control flow of the original modified Cholesky transform is modified so that locality of the code and verifiability deteriorate. The maintainability of the system is affected as well. On the system level, users will have to deal with more complex configuration control and testing procedures.

  8. Linear forms in p-adic logarithms and the Diophantine equation formula here

    NASA Astrophysics Data System (ADS)

    Bugeaud, Yann

    1999-11-01

    A longstanding conjecture claims that the Diophantine equationformula herehas finitely many solutions and, maybe, only those given byformula hereAmong the known results, let us mention that Ljunggren [9] solved (1) completely when q = 2 and that very recently Bugeaud et al. [3] showed that (1) has no solution when x is a square. For more information and in particular for finiteness type results under some extra hypotheses, we refer the reader to Nagell [11], Shorey & Tijdeman [16, 17] and to the recent survey of Shorey [15]. One of the main tools used in most of the proofs is Baker's theory of linear form in archimedean logarithms of algebraic numbers and especially a dramatic sharpening obtained when the algebraic numbers involved are closed to 1. This was first noticed by Shorey [14], and has been applied in numerous works relating to (1) or to the Diophantine equationformula heresee for instance [1, 5, 10]. The purpose of the present work is to prove a similar sharpening for linear forms in p-adic logarithms and to show how it can be applied in the context of (1). Further, following previous investigations by Sander [12] and Saradha & Shorey [13], we derive from our results an irrationality statement for Mahler's numbers.

  9. A research of 3D gravity inversion based on the recovery of sparse underdetermined linear equations

    NASA Astrophysics Data System (ADS)

    Zhaohai, M.

    2014-12-01

    Because of the properties of gravity data, it is made difficult to solve the problem of multiple solutions. There are two main types of 3D gravity inversion methods:One of two methods is based on the improvement of the instability of the sensitive matrix, solving the problem of multiple solutions and instability in 3D gravity inversion. Another is to join weight function into the 3D gravity inversion iteration. Through constant iteration, it can renewal density values and weight function to achieve the purpose to solve the multiple solutions and instability of the 3D gravity data inversion. Thanks to the sparse nature of the solutions of 3D gravity data inversions, we can transform it into a sparse equation. Then, through solving the sparse equations, we can get perfect 3D gravity inversion results. The main principle is based on zero norm of sparse matrix solution of the equation. Zero norm is mainly to solve the nonzero solution of the sparse matrix. However, the method of this article adopted is same as the principle of zero norm. But the method is the opposite of zero norm to obtain zero value solution. Through the form of a Gaussian fitting solution of the zero norm, we can find the solution by using regularization principle. Moreover, this method has been proved that it had a certain resistance to random noise in the mathematics, and it was more suitable than zero norm for the solution of the geophysical data. 3D gravity which is adopted in this article can well identify abnormal body density distribution characteristics, and it can also recognize the space position of abnormal distribution very well. We can take advantage of the density of the upper and lower limit penalty function to make each rectangular residual density within a reasonable range. Finally, this 3D gravity inversion is applied to a variety of combination model test, such as a single straight three-dimensional model, the adjacent straight three-dimensional model and Y three

  10. Non-linear macro evolution of a dc driven micro atmospheric glow discharge

    SciTech Connect

    Xu, S. F.; Zhong, X. X.

    2015-10-15

    We studied the macro evolution of the micro atmospheric glow discharge generated between a micro argon jet into ambient air and static water. The micro discharge behaves similarly to a complex ecosystem. Non-linear behaviors are found for the micro discharge when the water acts as a cathode, different from the discharge when water behaves as an anode. Groups of snapshots of the micro discharge formed at different discharge currents are captured by an intensified charge-coupled device with controlled exposure time, and each group consisted of 256 images taken in succession. Edge detection methods are used to identify the water surface and then the total brightness is defined by adding up the signal counts over the area of the micro discharge. Motions of the water surface at different discharge currents show that the water surface lowers increasingly rapidly when the water acts as a cathode. In contrast, the water surface lowers at a constant speed when the water behaves as an anode. The light curves are similar to logistic growth curves, suggesting that a self-inhibition process occurs in the micro discharge. Meanwhile, the total brightness increases linearly during the same time when the water acts as an anode. Discharge-water interactions cause the micro discharge to evolve. The charged particle bomb process is probably responsible for the different behaviors of the micro discharges when the water acts as cathode and anode.

  11. Non-linear macro evolution of a dc driven micro atmospheric glow discharge

    NASA Astrophysics Data System (ADS)

    Xu, S. F.; Zhong, X. X.

    2015-10-01

    We studied the macro evolution of the micro atmospheric glow discharge generated between a micro argon jet into ambient air and static water. The micro discharge behaves similarly to a complex ecosystem. Non-linear behaviors are found for the micro discharge when the water acts as a cathode, different from the discharge when water behaves as an anode. Groups of snapshots of the micro discharge formed at different discharge currents are captured by an intensified charge-coupled device with controlled exposure time, and each group consisted of 256 images taken in succession. Edge detection methods are used to identify the water surface and then the total brightness is defined by adding up the signal counts over the area of the micro discharge. Motions of the water surface at different discharge currents show that the water surface lowers increasingly rapidly when the water acts as a cathode. In contrast, the water surface lowers at a constant speed when the water behaves as an anode. The light curves are similar to logistic growth curves, suggesting that a self-inhibition process occurs in the micro discharge. Meanwhile, the total brightness increases linearly during the same time when the water acts as an anode. Discharge-water interactions cause the micro discharge to evolve. The charged particle bomb process is probably responsible for the different behaviors of the micro discharges when the water acts as cathode and anode.

  12. On the modeling of the bottom particles segregation with non-linear diffusion equations: application to the marine sand ripples

    NASA Astrophysics Data System (ADS)

    Tiguercha, Djlalli; Bennis, Anne-claire; Ezersky, Alexander

    2015-04-01

    The elliptical motion in surface waves causes an oscillating motion of the sand grains leading to the formation of ripple patterns on the bottom. Investigation how the grains with different properties are distributed inside the ripples is a difficult task because of the segration of particle. The work of Fernandez et al. (2003) was extended from one-dimensional to two-dimensional case. A new numerical model, based on these non-linear diffusion equations, was developed to simulate the grain distribution inside the marine sand ripples. The one and two-dimensional models are validated on several test cases where segregation appears. Starting from an homogeneous mixture of grains, the two-dimensional simulations demonstrate different segregation patterns: a) formation of zones with high concentration of light and heavy particles, b) formation of «cat's eye» patterns, c) appearance of inverse Brazil nut effect. Comparisons of numerical results with the new set of field data and wave flume experiments show that the two-dimensional non-linear diffusion equations allow us to reproduce qualitatively experimental results on particles segregation.

  13. Analysis of linear and nonlinear conductivity of plasma-like systems on the basis of the Fokker-Planck equation

    SciTech Connect

    Trigger, S. A.; Ebeling, W.; Heijst, G. J. F. van; Litinski, D.

    2015-04-15

    The problems of high linear conductivity in an electric field, as well as nonlinear conductivity, are considered for plasma-like systems. First, we recall several observations of nonlinear fast charge transport in dusty plasma, molecular chains, lattices, conducting polymers, and semiconductor layers. Exploring the role of noise we introduce the generalized Fokker-Planck equation. Second, one-dimensional models are considered on the basis of the Fokker-Planck equation with active and passive velocity-dependent friction including an external electrical field. On this basis, it is possible to find the linear and nonlinear conductivities for electrons and other charged particles in a homogeneous external field. It is shown that the velocity dependence of the friction coefficient can lead to an essential increase of the electron average velocity and the corresponding conductivity in comparison with the usual model of constant friction, which is described by the Drude-type conductivity. Applications including novel forms of controlled charge transfer and non-Ohmic conductance are discussed.

  14. Algorithm 937: MINRES-QLP for Symmetric and Hermitian Linear Equations and Least-Squares Problems.

    PubMed

    Choi, Sou-Cheng T; Saunders, Michael A

    2014-02-01

    We describe algorithm MINRES-QLP and its FORTRAN 90 implementation for solving symmetric or Hermitian linear systems or least-squares problems. If the system is singular, MINRES-QLP computes the unique minimum-length solution (also known as the pseudoinverse solution), which generally eludes MINRES. In all cases, it overcomes a potential instability in the original MINRES algorithm. A positive-definite pre-conditioner may be supplied. Our FORTRAN 90 implementation illustrates a design pattern that allows users to make problem data known to the solver but hidden and secure from other program units. In particular, we circumvent the need for reverse communication. Example test programs input and solve real or complex problems specified in Matrix Market format. While we focus here on a FORTRAN 90 implementation, we also provide and maintain MATLAB versions of MINRES and MINRES-QLP. PMID:25328255

  15. Algorithm 937: MINRES-QLP for Symmetric and Hermitian Linear Equations and Least-Squares Problems

    PubMed Central

    Choi, Sou-Cheng T.; Saunders, Michael A.

    2014-01-01

    We describe algorithm MINRES-QLP and its FORTRAN 90 implementation for solving symmetric or Hermitian linear systems or least-squares problems. If the system is singular, MINRES-QLP computes the unique minimum-length solution (also known as the pseudoinverse solution), which generally eludes MINRES. In all cases, it overcomes a potential instability in the original MINRES algorithm. A positive-definite pre-conditioner may be supplied. Our FORTRAN 90 implementation illustrates a design pattern that allows users to make problem data known to the solver but hidden and secure from other program units. In particular, we circumvent the need for reverse communication. Example test programs input and solve real or complex problems specified in Matrix Market format. While we focus here on a FORTRAN 90 implementation, we also provide and maintain MATLAB versions of MINRES and MINRES-QLP. PMID:25328255

  16. A (Not Really) Complex Method for Finding Solutions to Linear Differential Equations. Modules and Monographs in Undergraduate Mathematics and Its Applications Project. UMAP Unit 497.

    ERIC Educational Resources Information Center

    Uebelacker, James W.

    This module considers ordinary linear differential equations with constant coefficients. The "complex method" used to find solutions is discussed, with numerous examples. The unit includes both problem sets and an exam, with answers provided for both. (MP)

  17. Cultural transmission and the evolution of human behaviour: a general approach based on the Price equation.

    PubMed

    El Mouden, C; André, J-B; Morin, O; Nettle, D

    2014-02-01

    Transmitted culture can be viewed as an inheritance system somewhat independent of genes that is subject to processes of descent with modification in its own right. Although many authors have conceptualized cultural change as a Darwinian process, there is no generally agreed formal framework for defining key concepts such as natural selection, fitness, relatedness and altruism for the cultural case. Here, we present and explore such a framework using the Price equation. Assuming an isolated, independently measurable culturally transmitted trait, we show that cultural natural selection maximizes cultural fitness, a distinct quantity from genetic fitness, and also that cultural relatedness and cultural altruism are not reducible to or necessarily related to their genetic counterparts. We show that antagonistic coevolution will occur between genes and culture whenever cultural fitness is not perfectly aligned with genetic fitness, as genetic selection will shape psychological mechanisms to avoid susceptibility to cultural traits that bear a genetic fitness cost. We discuss the difficulties with conceptualizing cultural change using the framework of evolutionary theory, the degree to which cultural evolution is autonomous from genetic evolution, and the extent to which cultural change should be seen as a Darwinian process. We argue that the nonselection components of evolutionary change are much more important for culture than for genes, and that this and other important differences from the genetic case mean that different approaches and emphases are needed for cultural than genetic processes. PMID:24329934

  18. Multidimensional extension of the continuity equation method for debris clouds evolution

    NASA Astrophysics Data System (ADS)

    Letizia, Francesca; Colombo, Camilla; Lewis, Hugh G.

    2016-04-01

    As the debris spatial density increases due to recent collisions and inoperative spacecraft, the probability of collisions in space grows. Even a collision involving small objects may produce thousands of fragments due to the high orbital velocity and the high energy released. The propagation of the trajectories of all the objects produced by a breakup would be prohibitive in terms of computational time; therefore, simplified models are needed to describe the consequences of a collision with a reasonable computational effort. The continuity approach can be applied to this purpose as it allows switching the point of view from the analysis of each single fragment to the study of the evolution of the debris cloud globally. Previous formulations of the continuity equation approach focussed on the representation of the drag effect on the fragment spatial density. This work proposes how the continuity equation approach can be extended to multiple dimensions in the phase space defined by the relevant orbital parameters. This novel approach allows including in the propagation also the effect of the Earth's oblateness and improving the description of the drag effect by considering the distribution of area-to-mass ratio and eccentricity among the fragments. Results for these three applications are shown and discussed in terms of accuracy compared to the numerical propagation and to the one-dimensional approach.

  19. Adjustment of highly non-linear redundant systems of equations using a numerical, topology-based approach

    NASA Astrophysics Data System (ADS)

    Saltogianni, Vasso; Stiros, Stathis

    2012-11-01

    The adjustment of systems of highly non-linear, redundant equations, deriving from observations of certain geophysical processes and geodetic data cannot be based on conventional least-squares techniques, and is based on various numerical inversion techniques. Still these techniques lead to solutions trapped in local minima, to correlated estimates and to solution with poor error control. To overcome these problems, we propose an alternative numerical-topological approach inspired by lighthouse beacon navigation, usually used in 2-D, low-accuracy applications. In our approach, an m-dimensional grid G of points around the real solution (an m-dimensional vector) is at first specified. Then, for each equation an uncertainty is assigned to the corresponding measurement, and the sets of the grid points which satisfy the condition are detected. This process is repeated for all equations, and the common section A of the sets of grid points is defined. From this set of grid points, which define a space including the real solution, we compute its center of weight, which corresponds to an estimate of the solution, and its variance-covariance matrix. An optimal solution can be obtained through optimization of the uncertainty in each observation. The efficiency of the overall process was assessed in comparison with conventional least squares adjustment.

  20. Aerodynamic airfoil design using the Euler equations based on the dynamic evolution method and the control theory

    NASA Astrophysics Data System (ADS)

    Gao, YingYing; He, Feng; Shen, MengYu

    2011-04-01

    Based on the idea of adjoint method and the dynamic evolution method, a new optimum aerodynamic design technique is presented in this paper. It can be applied to the optimum problems with a large number of design variables and is time saving. The key of the new method lies in that the optimization process is regarded as an unsteady evolution, i.e., the optimization is executed, simultaneously with solving the unsteady flow governing equations and adjoint equations. Numerical examples for both the inverse problem and drag minimization using Euler equations have been presented, and the results show that the method presented in this paper is more efficient than the optimum methods based on the steady flow solution and the steady solution of adjoint equations.

  1. Legendre wavelet operational matrix of fractional derivative through wavelet-polynomial transformation and its applications on non-linear system of fractional order differential equations

    NASA Astrophysics Data System (ADS)

    Isah, Abdulnasir; Chang, Phang

    2016-06-01

    In this article we propose the wavelet operational method based on shifted Legendre polynomial to obtain the numerical solutions of non-linear systems of fractional order differential equations (NSFDEs). The operational matrix of fractional derivative derived through wavelet-polynomial transformation are used together with the collocation method to turn the NSFDEs to a system of non-linear algebraic equations. Illustrative examples are given in order to demonstrate the accuracy and simplicity of the proposed techniques.

  2. A Combined MPI-CUDA Parallel Solution of Linear and Nonlinear Poisson-Boltzmann Equation

    PubMed Central

    Colmenares, José; Galizia, Antonella; Ortiz, Jesús; Clematis, Andrea; Rocchia, Walter

    2014-01-01

    The Poisson-Boltzmann equation models the electrostatic potential generated by fixed charges on a polarizable solute immersed in an ionic solution. This approach is often used in computational structural biology to estimate the electrostatic energetic component of the assembly of molecular biological systems. In the last decades, the amount of data concerning proteins and other biological macromolecules has remarkably increased. To fruitfully exploit these data, a huge computational power is needed as well as software tools capable of exploiting it. It is therefore necessary to move towards high performance computing and to develop proper parallel implementations of already existing and of novel algorithms. Nowadays, workstations can provide an amazing computational power: up to 10 TFLOPS on a single machine equipped with multiple CPUs and accelerators such as Intel Xeon Phi or GPU devices. The actual obstacle to the full exploitation of modern heterogeneous resources is efficient parallel coding and porting of software on such architectures. In this paper, we propose the implementation of a full Poisson-Boltzmann solver based on a finite-difference scheme using different and combined parallel schemes and in particular a mixed MPI-CUDA implementation. Results show great speedups when using the two schemes, achieving an 18.9x speedup using three GPUs. PMID:25013789

  3. A combined MPI-CUDA parallel solution of linear and nonlinear Poisson-Boltzmann equation.

    PubMed

    Colmenares, José; Galizia, Antonella; Ortiz, Jesús; Clematis, Andrea; Rocchia, Walter

    2014-01-01

    The Poisson-Boltzmann equation models the electrostatic potential generated by fixed charges on a polarizable solute immersed in an ionic solution. This approach is often used in computational structural biology to estimate the electrostatic energetic component of the assembly of molecular biological systems. In the last decades, the amount of data concerning proteins and other biological macromolecules has remarkably increased. To fruitfully exploit these data, a huge computational power is needed as well as software tools capable of exploiting it. It is therefore necessary to move towards high performance computing and to develop proper parallel implementations of already existing and of novel algorithms. Nowadays, workstations can provide an amazing computational power: up to 10 TFLOPS on a single machine equipped with multiple CPUs and accelerators such as Intel Xeon Phi or GPU devices. The actual obstacle to the full exploitation of modern heterogeneous resources is efficient parallel coding and porting of software on such architectures. In this paper, we propose the implementation of a full Poisson-Boltzmann solver based on a finite-difference scheme using different and combined parallel schemes and in particular a mixed MPI-CUDA implementation. Results show great speedups when using the two schemes, achieving an 18.9x speedup using three GPUs. PMID:25013789

  4. An extended structure-based model based on a stochastic eddy-axis evolution equation

    NASA Technical Reports Server (NTRS)

    Kassinos, S. C.; Reynolds, W. C.

    1995-01-01

    We have proposed and implemented an extension of the structure-based model for weak deformations. It was shown that the extended model will correctly reduce to the form of standard k-e models for the case of equilibrium under weak mean strain. The realizability of the extended model is guaranteed by the method of its construction. The predictions of the proposed model were very good for rotating homogeneous shear flows and for irrotational axisymmetric contraction, but were seriously deficient in the case of plane strain and axisymmetric expansion. We have concluded that the problem behind these difficulties lies in the algebraic constitutive equation relating the Reynolds stresses to the structure parameters rather than in the slow model developed here. In its present form, this equation assumes that under irrotational strain the principal axes of the Reynolds stresses remain locked onto those of the eddy-axis tensor. This is correct in the RDT limit, but inappropriate under weaker mean strains, when the non-linear eddy-eddy interactions tend to misalign the two sets of principal axes and create some non-zero theta and gamma.

  5. An exact solution of the linearized Boltzmann transport equation and its application to mobility calculations in graphene bilayers

    NASA Astrophysics Data System (ADS)

    Paussa, A.; Esseni, D.

    2013-03-01

    This paper revisits the problem of the linearized Boltzmann transport equation (BTE), or, equivalently, of the momentum relaxation time, momentum relaxation time (MRT), for the calculation of low field mobility, which in previous works has been almost universally solved in approximated forms. We propose an energy driven discretization method that allows an exact determination of the relaxation time by solving a linear, algebraic problem, where multiple scattering mechanisms are naturally accounted for by adding the corresponding scattering rates before the calculation of the MRT, and without resorting to the semi-empirical Matthiessen's rule for the relaxation times. The application of our rigorous solution of the linearized BTE to a graphene bilayer reveals that, for a non monotonic energy relation, the relaxation time can legitimately take negative values with no unphysical implications. We finally compare the mobility calculations provided by an exact solution of the MRT problem with the results obtained with some of the approximations most frequently employed in the literature and so discuss their accuracy.

  6. On the sensitivity of a least-squares fit of discretized linear hyperbolic equations to data

    NASA Astrophysics Data System (ADS)

    Callies, U.; Eppel, D. P.

    1995-01-01

    Difficulties are investigated which occur when trying to specify a noise-free initial model state as the solution of a variational data assimilation problem. A linear shallow water model is used to investigate the existence and physical basis of the model fit to data. As in this context the shape of the cost function is of crucial importance, the interrelations between the cost function's Hessian and specific model-data configurations are investigated. Special emphasis is put on the influence of the temporal/spatial data distribution and the choice of the scheme used for numerical model integration. It is illustrated how such details may cause intolerable uncertainties for those aspects of the recovered solution that are related to very small eigenvalues of the curvature operator. Due to the shortcomings of descent algorithms, uncontrolled large-amplitude error modes may remain invisible if a limited number of minimization cycles is applied. However, to render the retrieved smooth fields stable with respect to further iterations, prior knowledege has to be taken into account in the cost function definition.

  7. Construction of reduced order models for the non-linear Navier-Stokes equations using the proper orthogonal fecomposition (POD)/Galerkin method.

    SciTech Connect

    Fike, Jeffrey A.

    2013-08-01

    The construction of stable reduced order models using Galerkin projection for the Euler or Navier-Stokes equations requires a suitable choice for the inner product. The standard L2 inner product is expected to produce unstable ROMs. For the non-linear Navier-Stokes equations this means the use of an energy inner product. In this report, Galerkin projection for the non-linear Navier-Stokes equations using the L2 inner product is implemented as a first step toward constructing stable ROMs for this set of physics.

  8. Communication: A reduced-space algorithm for the solution of the complex linear response equations used in coupled cluster damped response theory

    NASA Astrophysics Data System (ADS)

    Kauczor, Joanna; Norman, Patrick; Christiansen, Ove; Coriani, Sonia

    2013-12-01

    We present a reduced-space algorithm for solving the complex (damped) linear response equations required to compute the complex linear response function for the hierarchy of methods: coupled cluster singles, coupled cluster singles and iterative approximate doubles, and coupled cluster singles and doubles. The solver is the keystone element for the development of damped coupled cluster response methods for linear and nonlinear effects in resonant frequency regions.

  9. Unique signature of bivalent analyte surface plasmon resonance model: A model governed by non-linear differential equations

    NASA Astrophysics Data System (ADS)

    Tiwari, Purushottam; Wang, Xuewen; Darici, Yesim; He, Jin; Uren, Aykut

    Surface plasmon resonance (SPR) is a biophysical technique for the quantitative analysis of bimolecular interactions. Correct identification of the binding model is crucial for the interpretation of SPR data. Bivalent SPR model is governed by non-linear differential equations, which, in general, have no analytical solutions. Therefore, an analytical based approach cannot be employed in order to identify this particular model. There exists a unique signature in the bivalent analyte model, existence of an `optimal analyte concentration', which can distinguish this model from other biphasic models. The unambiguous identification and related analysis of the bivalent analyte model is demonstrated by using theoretical simulations and experimentally measured SPR sensorgrams. Experimental SPR sensorgrams were measured by using Biacore T200 instrument available in Biacore Molecular Interaction Shared Resource facility, supported by NIH Grant P30CA51008, at Georgetown University.

  10. The effects of the Asselin time filter on numerical solutions to the linearized shallow-water wave equations

    NASA Technical Reports Server (NTRS)

    Schlesinger, R. E.; Johnson, D. R.; Uccellini, L. W.

    1983-01-01

    In the present investigation, a one-dimensional linearized analysis is used to determine the effect of Asselin's (1972) time filter on both the computational stability and phase error of numerical solutions for the shallow water wave equations, in cases with diffusion but without rotation. An attempt has been made to establish the approximate optimal values of the filtering parameter nu for each of the 'lagged', Dufort-Frankel, and Crank-Nicholson diffusion schemes, suppressing the computational wave mode without materially altering the physical wave mode. It is determined that in the presence of diffusion, the optimum filter length depends on whether waves are undergoing significant propagation. When moderate propagation is present, with or without diffusion, the Asselin filter has little effect on the spatial phase lag of the physical mode for the leapfrog advection scheme of the three diffusion schemes considered.

  11. A new approach for the forward and backward substitutions of parallel solution of sparse linear equations based on dataflow architecture

    SciTech Connect

    Yu, D.C.; Wang, H. )

    1990-05-01

    This paper presents a new parallel computational method to solve the forward and backward substitutions (F/B) of sparse linear equations. The architectural model is a multiprocessor hypercube, based on the Taged Token Dataflow Architecture (TTDA). Communication overhead is considered. The differences of the operating time-units among the subtraction, multiplication, and division are modelled. A processor scheduling algorithm is also introduced. In the algorithm, a highly sparse operational sequence matrix C is developed. From the C matrix, the minimal completion time, the critical path, and the scheduling of the processors for the proposed parallel F/B can be determined. Detailed explanation of the implementation of the TTDA architecture in the proposed method is provided. A number of power systems have been examined and a number of scenarios have been simulated to test the performance of the proposed method. The results are presented and discussed in this paper.

  12. Analytic solution to leading order coupled DGLAP evolution equations: A new perturbative QCD tool

    NASA Astrophysics Data System (ADS)

    Block, Martin M.; Durand, Loyal; Ha, Phuoc; McKay, Douglas W.

    2011-03-01

    We have analytically solved the LO perturbative QCD singlet DGLAP equations [V. N. Gribov and L. N. Lipatov, Sov. J. Nucl. Phys. 15, 438 (1972)SJNCAS0038-5506][G. Altarelli and G. Parisi, Nucl. Phys. B126, 298 (1977)][Y. L. Dokshitzer, Sov. Phys. JETP 46, 641 (1977)SPHJAR0038-5646] using Laplace transform techniques. Newly developed, highly accurate, numerical inverse Laplace transform algorithms [M. M. Block, Eur. Phys. J. C 65, 1 (2010)EPCFFB1434-604410.1140/epjc/s10052-009-1195-8][M. M. Block, Eur. Phys. J. C 68, 683 (2010)EPCFFB1434-604410.1140/epjc/s10052-010-1374-7] allow us to write fully decoupled solutions for the singlet structure function Fs(x,Q2) and G(x,Q2) as Fs(x,Q2)=Fs(Fs0(x0),G0(x0)) and G(x,Q2)=G(Fs0(x0),G0(x0)), where the x0 are the Bjorken x values at Q02. Here Fs and G are known functions—found using LO DGLAP splitting functions—of the initial boundary conditions Fs0(x)≡Fs(x,Q02) and G0(x)≡G(x,Q02), i.e., the chosen starting functions at the virtuality Q02. For both G(x) and Fs(x), we are able to either devolve or evolve each separately and rapidly, with very high numerical accuracy—a computational fractional precision of O(10-9). Armed with this powerful new tool in the perturbative QCD arsenal, we compare our numerical results from the above equations with the published MSTW2008 and CTEQ6L LO gluon and singlet Fs distributions [A. D. Martin, W. J. Stirling, R. S. Thorne, and G. Watt, Eur. Phys. J. C 63, 189 (2009)EPCFFB1434-604410.1140/epjc/s10052-009-1072-5], starting from their initial values at Q02=1GeV2 and 1.69GeV2, respectively, using their choice of αs(Q2). This allows an important independent check on the accuracies of their evolution codes and, therefore, the computational accuracies of their published parton distributions. Our method completely decouples the two LO distributions, at the same time guaranteeing that both G and Fs satisfy the singlet coupled DGLAP equations. It also allows one to easily obtain the effects of

  13. The relativistic equations of stellar structure and evolution. Stars with degenerate neutron cores. 1: Structure of equilibrium models

    NASA Technical Reports Server (NTRS)

    Thorne, K. S.; Zytkow, A. N.

    1976-01-01

    The general relativistic equations of stellar structure and evolution are reformulated in a notation which makes easy contact with Newtonian theory. Also, a general relativistic version of the mixing-length formalism for convection is presented. Finally, it is argued that in previous work on spherical systems general relativity theorists have identified the wrong quantity as "total mass-energy inside radius r."

  14. Infinite-dimensional evolution equations and the representation of their solutions in the form of feynman integrals

    NASA Astrophysics Data System (ADS)

    Kravtseva, A. K.

    2013-04-01

    In the paper, existence conditions for Feynman integrals in the sense of analytic continuation of Gaussian integrals with respect to operator arguments are found. A representation of Feynman integrals in the form of Gaussian integrals is also constructed and, finally, the class of evolution equations having solutions representable by Feynman integrals is described.

  15. Time-evolution of quantum systems via a complex nonlinear Riccati equation. I. Conservative systems with time-independent Hamiltonian

    SciTech Connect

    Cruz, Hans; Schuch, Dieter; Castaños, Octavio; Rosas-Ortiz, Oscar

    2015-09-15

    The sensitivity of the evolution of quantum uncertainties to the choice of the initial conditions is shown via a complex nonlinear Riccati equation leading to a reformulation of quantum dynamics. This sensitivity is demonstrated for systems with exact analytic solutions with the form of Gaussian wave packets. In particular, one-dimensional conservative systems with at most quadratic Hamiltonians are studied.

  16. A Chess-Like Game for Teaching Engineering Students to Solve Large System of Simultaneous Linear Equations

    NASA Technical Reports Server (NTRS)

    Nguyen, Duc T.; Mohammed, Ahmed Ali; Kadiam, Subhash

    2010-01-01

    Solving large (and sparse) system of simultaneous linear equations has been (and continues to be) a major challenging problem for many real-world engineering/science applications [1-2]. For many practical/large-scale problems, the sparse, Symmetrical and Positive Definite (SPD) system of linear equations can be conveniently represented in matrix notation as [A] {x} = {b} , where the square coefficient matrix [A] and the Right-Hand-Side (RHS) vector {b} are known. The unknown solution vector {x} can be efficiently solved by the following step-by-step procedures [1-2]: Reordering phase, Matrix Factorization phase, Forward solution phase, and Backward solution phase. In this research work, a Game-Based Learning (GBL) approach has been developed to help engineering students to understand crucial details about matrix reordering and factorization phases. A "chess-like" game has been developed and can be played by either a single player, or two players. Through this "chess-like" open-ended game, the players/learners will not only understand the key concepts involved in reordering algorithms (based on existing algorithms), but also have the opportunities to "discover new algorithms" which are better than existing algorithms. Implementing the proposed "chess-like" game for matrix reordering and factorization phases can be enhanced by FLASH [3] computer environments, where computer simulation with animated human voice, sound effects, visual/graphical/colorful displays of matrix tables, score (or monetary) awards for the best game players, etc. can all be exploited. Preliminary demonstrations of the developed GBL approach can be viewed by anyone who has access to the internet web-site [4]!

  17. A non-linear irreversible thermodynamic perspective on organic pigment proliferation and biological evolution

    NASA Astrophysics Data System (ADS)

    Michaelian, K.

    2013-12-01

    The most important thermodynamic work performed by life today is the dissipation of the solar photon flux into heat through organic pigments in water. From this thermodynamic perspective, biological evolution is thus just the dispersal of organic pigments and water throughout Earth's surface, while adjusting the gases of Earth's atmosphere to allow the most intense part of the solar spectrum to penetrate the atmosphere and reach the surface to be intercepted by these pigments. The covalent bonding of atoms in organic pigments provides excited levels compatible with the energies of these photons. Internal conversion through vibrational relaxation to the ground state of these excited molecules when in water leads to rapid dissipation of the solar photons into heat, and this is the major source of entropy production on Earth. A non-linear irreversible thermodynamic analysis shows that the proliferation of organic pigments on Earth is a direct consequence of the pigments catalytic properties in dissipating the solar photon flux. A small part of the energy of the photon goes into the production of more organic pigments and supporting biomass, while most of the energy is dissipated and channeled into the hydrological cycle through the latent heat of vaporization of surface water. By dissipating the surface to atmosphere temperature gradient, the hydrological cycle further increases the entropy production of Earth. This thermodynamic perspective of solar photon dissipation by life has implications to the possibility of finding extra-terrestrial life in our solar system and the Universe.

  18. The solution of linear systems of equations with a structural analysis code on the NAS CRAY-2

    NASA Technical Reports Server (NTRS)

    Poole, Eugene L.; Overman, Andrea L.

    1988-01-01

    Two methods for solving linear systems of equations on the NAS Cray-2 are described. One is a direct method; the other is an iterative method. Both methods exploit the architecture of the Cray-2, particularly the vectorization, and are aimed at structural analysis applications. To demonstrate and evaluate the methods, they were installed in a finite element structural analysis code denoted the Computational Structural Mechanics (CSM) Testbed. A description of the techniques used to integrate the two solvers into the Testbed is given. Storage schemes, memory requirements, operation counts, and reformatting procedures are discussed. Finally, results from the new methods are compared with results from the initial Testbed sparse Choleski equation solver for three structural analysis problems. The new direct solvers described achieve the highest computational rates of the methods compared. The new iterative methods are not able to achieve as high computation rates as the vectorized direct solvers but are best for well conditioned problems which require fewer iterations to converge to the solution.

  19. Parallel High Order Accuracy Methods Applied to Non-Linear Hyperbolic Equations and to Problems in Materials Sciences

    SciTech Connect

    Jan Hesthaven

    2012-02-06

    Final report for DOE Contract DE-FG02-98ER25346 entitled Parallel High Order Accuracy Methods Applied to Non-Linear Hyperbolic Equations and to Problems in Materials Sciences. Principal Investigator Jan S. Hesthaven Division of Applied Mathematics Brown University, Box F Providence, RI 02912 Jan.Hesthaven@Brown.edu February 6, 2012 Note: This grant was originally awarded to Professor David Gottlieb and the majority of the work envisioned reflects his original ideas. However, when Prof Gottlieb passed away in December 2008, Professor Hesthaven took over as PI to ensure proper mentoring of students and postdoctoral researchers already involved in the project. This unusual circumstance has naturally impacted the project and its timeline. However, as the report reflects, the planned work has been accomplished and some activities beyond the original scope have been pursued with success. Project overview and main results The effort in this project focuses on the development of high order accurate computational methods for the solution of hyperbolic equations with application to problems with strong shocks. While the methods are general, emphasis is on applications to gas dynamics with strong shocks.

  20. High Temperature Equation of State of Enstatite and Forsterite: Implications for Thermal Origins and Evolution

    NASA Astrophysics Data System (ADS)

    Fratanduono, D.

    2015-12-01

    The thermal history of terrestrial planets depends upon the melt boundary as it represents the largest rheological transition a material can undergo. This change in rheological behavior with solidification corresponds to a dramatic change in the thermal and chemical transport properties. Because of this dramatic change in thermal transport, recent work by Stixrude et al.[1] suggests that the silicate melt curve sets the thermal profile within super-Earths during their early thermal evolution. Here we present recent decaying shock wave experiments studying both enstatite and forsterite. The continuously measured shock pressure and temperature in these studies ranged from 8 to 1.5 Mbar and 20,000-4,000 K, respectively. We find a point on the MgSiO3 liquidus at 6800 K and 285 GPa, which is nearly a factor of two higher pressure than previously measured and provides a strong constraint on the temperature profile within super-Earths. Our shock temperature measurements on forsterite and enstatite provide much needed equation of state information to the planetary impact modeling community since the shock temperature data can be used to constrain the initial entropy state of a growing planet. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. 1. Stixrude, L., Melting in super-earths. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 2014. 372(2014).

  1. A quantitative comparison of numerical methods for the compressible Euler equations: fifth-order WENO and piecewise-linear Godunov

    NASA Astrophysics Data System (ADS)

    Greenough, J. A.; Rider, W. J.

    2004-05-01

    A numerical study is undertaken comparing a fifth-order version of the weighted essentially non-oscillatory numerical (WENO5) method to a modern piecewise-linear, second-order, version of Godunov's (PLMDE) method for the compressible Euler equations. A series of one-dimensional test problems are examined beginning with classical linear problems and ending with complex shock interactions. The problems considered are: (1) linear advection of a Gaussian pulse in density, (2) Sod's shock tube problem, (3) the "peak" shock tube problem, (4) a version of the Shu and Osher shock entropy wave interaction and (5) the Woodward and Colella interacting shock wave problem. For each problem and method, run times, density error norms and convergence rates are reported for each method as produced from a common code test-bed. The linear problem exhibits the advertised convergence rate for both methods as well as the expected large disparity in overall error levels; WENO5 has the smaller errors and an enormous advantage in overall efficiency (in accuracy per unit CPU time). For the nonlinear problems with discontinuities, however, we generally see both first-order self-convergence of error as compared to an exact solution, or when an analytic solution is not available, a converged solution generated on an extremely fine grid. The overall comparison of error levels shows some variation from problem to problem. For Sod's shock tube, PLMDE has nearly half the error, while on the peak problem the errors are nearly the same. For the interacting blast wave problem the two methods again produce a similar level of error with a slight edge for the PLMDE. On the other hand, for the Shu-Osher problem, the errors are similar on the coarser grids, but favors WENO by a factor of nearly 1.5 on the finer grids used. In all cases holding mesh resolution constant though, PLMDE is less costly in terms of CPU time by approximately a factor of 6. If the CPU cost is taken as fixed, that is run times are

  2. Temporal evolution of linear alkylbenzene sulfonates and heavy metals in sludge from wastewater treatment plant.

    PubMed

    Villar, M; Callejón, M; Villar, P; Fernández-Torres, R; Bello, M A; Guiraúm, A

    2011-05-01

    Five homologues of linear alkylbenzene sulfonates (LAS)-LAS C-10, LAS C-11, LAS C-12, and LAS C-13 and total LAS-were monitored during a one-year period in primary, secondary, and digested sludge to evaluate their presence and temporal evolution. Extraction of LAS was carried out using microwaves energy, and determination was performed using high-performance liquid chromatographic- fluorescence (HPLC-FL). The results showed that concentrations of total LAS were between 9 337 mg/kg(-1) dry matter for primary sludge and 33.3 mg/kg(-1)(DM) for secondary sludge. Concentrations of total LAS were greater than 2 113 mg/kg(-1) in primary and digested sludge and were less than 260 mg/kg(-) in secondary sludge. On the other hand, the highest concentrations of LAS in primary sludge were found in summer, probably because of lack of rain during those months. Concentrations tend to be constant throughout the year in digested sludge. In addition heavy metals also were analyzed. Heavy metals, including zinc, copper, nickel, lead, and chromium are persistent environmental contaminants that cannot be destroyed. Biomagnification through the food-chain and potential accumulation in human tissues can cause both human health and environmental concerns. Concern regarding total heavy metal content of sludge limits sludge recycling for use on agricultural lands. This paper presents a comparative study of wastewater sludge that are going to be used as fertilizer based on the requirements of legislation proposed in the European Union. This research found that concentrations of total LAS in digested sludge are higher than the limits established in the proposed new draft. PMID:21657192

  3. Chandrasekhar equations for infinite dimensional systems

    NASA Technical Reports Server (NTRS)

    Ito, K.; Powers, R. K.

    1985-01-01

    Chandrasekhar equations are derived for linear time invariant systems defined on Hilbert spaces using a functional analytic technique. An important consequence of this is that the solution to the evolutional Riccati equation is strongly differentiable in time and one can define a strong solution of the Riccati differential equation. A detailed discussion on the linear quadratic optimal control problem for hereditary differential systems is also included.

  4. Evolution of Channels Draining Mount St. Helens: Linking Non-Linear and Rapid, Threshold Responses

    NASA Astrophysics Data System (ADS)

    Simon, A.

    2010-12-01

    The catastrophic eruption of Mount St. Helens buried the valley of the North Fork Toutle River (NFT) to a depth of up to 140 m. Initial integration of a new drainage network took place episodically by the “filling and spilling” (from precipitation and seepage) of depressions formed during emplacement of the debris avalanche deposit. Channel incision to depths of 20-30 m occurred in the debris avalanche and extensive pyroclastic flow deposits, and headward migration of the channel network followed, with complete integration taking place within 2.5 years. Downstream reaches were converted from gravel-cobble streams with step-pool sequences to smoothed, infilled channels dominated by sand-sized materials. Subsequent channel evolution was dominated by channel widening with the ratio of changes in channel width to changes in channel depth ranging from about 60 to 100. Widening resulted in significant adjustment of hydraulic variables that control sediment-transport rates. For a given discharge over time, flow depths were reduced, relative roughness increased and flow velocity and boundary shear stress decreased non-linearly. These changes, in combination with coarsening of the channel bed with time resulted in systematically reduced rates of degradation (in upstream reaches), aggradation (in downstream reaches) and sediment-transport rates through much of the 1990s. Vertical adjustments were, therefore, easy to characterize with non-linear decay functions with bed-elevation attenuating with time. An empirical model of bed-level response was then created by plotting the total dimensionless change in elevation against river kilometer for both initial and secondary vertical adjustments. High magnitude events generated from the generated from upper part of the mountain, however, can cause rapid (threshold) morphologic changes. For example, a rain-on-snow event in November 2006 caused up to 9 m of incision along a 6.5 km reach of Loowit Creek and the upper NFT. The event

  5. A micromechanics-based nonlocal constitutive equation incorporating three-point statistics for random linear elastic composite materials

    NASA Astrophysics Data System (ADS)

    Drugan, W. J.; Willis, J. R.

    2016-06-01

    A variational formulation employing the minimum potential and complementary energy principles is used to derive a micromechanics-based nonlocal constitutive equation for random linear elastic composite materials, relating ensemble averages of stress and strain in the most general situation when mean fields vary spatially. All information contained in the energy principles is retained; we employ stress polarization trial fields utilizing one-point statistics so that the resulting nonlocal constitutive equation incorporates up through three-point statistics. The variational structure is developed first for arbitrary heterogeneous linear elastic materials, then for randomly inhomogeneous materials, then for general n-phase composite materials, and finally for two-phase composite materials, in which case explicit variational upper and lower bounds on the nonlocal effective modulus tensor operator are derived. For statistically uniform infinite-body composites, these bounds are determined even more explicitly in Fourier transform space. We evaluate these in detail in an example case: longitudinal shear of an aligned fiber or void composite. We determine the full permissible ranges of the terms involving two- and three-point statistics in these bounds, and thereby exhibit explicit results that encompass arbitrary isotropic in-plane phase distributions; we also develop a nonlocal "Milton parameter", the variation of whose eigenvalues throughout the interval [0, 1] describes the full permissible range of the three-point term. Example plots of the new bounds show them to provide substantial improvement over the (two-point) Hashin-Shtrikman bounds on the nonlocal operator tensor, for all permissible values of the two- and three-point parameters. We next discuss further applications of the general nonlocal operator bounds: to any three-dimensional scalar transport problem e.g. conductivity, for which explicit results are given encompassing the full permissible ranges of the

  6. Development and application of a local linearization algorithm for the integration of quaternion rate equations in real-time flight simulation problems

    NASA Technical Reports Server (NTRS)

    Barker, L. E., Jr.; Bowles, R. L.; Williams, L. H.

    1973-01-01

    High angular rates encountered in real-time flight simulation problems may require a more stable and accurate integration method than the classical methods normally used. A study was made to develop a general local linearization procedure of integrating dynamic system equations when using a digital computer in real-time. The procedure is specifically applied to the integration of the quaternion rate equations. For this application, results are compared to a classical second-order method. The local linearization approach is shown to have desirable stability characteristics and gives significant improvement in accuracy over the classical second-order integration methods.

  7. Post-equinox observations of Uranus: Berg's evolution, vertical structure, and track towards the equator

    NASA Astrophysics Data System (ADS)

    de Pater, Imke; Sromovsky, L. A.; Hammel, Heidi B.; Fry, P. M.; LeBeau, R. P.; Rages, Kathy; Showalter, Mark; Matthews, Keith

    2011-09-01

    We present observations of Uranus taken with the near-infrared camera NIRC2 on the 10-m W.M. Keck II telescope, the Wide Field Planetary Camera 2 (WFPC2) and the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST) from July 2007 through November 2009. In this paper we focus on a bright southern feature, referred to as the "Berg." In Sromovsky et al. (Sromovsky, L.A., Fry, P.M., Hammel, H.B., Ahue, A.W., de Pater, I., Rages, K.A., Showalter, M.R., van Dam, M. [2009]. Icarus 203, 265-286), we reported that this feature, which oscillated between latitudes of -32° and -36° for several decades, suddenly started on a northward track in 2005. In this paper we show the complete record of observations of this feature's track towards the equator, including its demise. After an initially slow linear drift, the feature's drift rate accelerated at latitudes ∣ θ∣ < 25°. By late 2009 the feature, very faint by then, was spotted at a latitude of -5° before disappearing from view. During its northward track, the feature's morphology changed dramatically, and several small bright unresolved features were occasionally visible poleward of the main "streak." These small features were sometimes visible at a wavelength of 2.2 μm, indicative that the clouds reached altitudes of ˜0.6 bar. The main part of the Berg, which is generally a long sometimes multipart streak, is estimated to be much deeper in the atmosphere, near 3.5 bars in 2004, but rising to 1.8-2.5 bars in 2007 after it began its northward drift. Through comparisons with Neptune's Great Dark Spot and simulations of the latter, we discuss why the Berg may be tied to a vortex, an anticyclone deeper in the atmosphere that is visible only through orographic companion clouds.

  8. Numerical study of acoustic instability in a partly lined flow duct using the full linearized Navier-Stokes equations

    NASA Astrophysics Data System (ADS)

    Xin, Bo; Sun, Dakun; Jing, Xiaodong; Sun, Xiaofeng

    2016-07-01

    Lined ducts are extensively applied to suppress noise emission from aero-engines and other turbomachines. The complex noise/flow interaction in a lined duct possibly leads to acoustic instability in certain conditions. To investigate the instability, the full linearized Navier-Stokes equations with eddy viscosity considered are solved in frequency domain using a Galerkin finite element method to compute the sound transmission in shear flow in the lined duct as well as the flow perturbation over the impedance wall. A good agreement between the numerical predictions and the published experimental results is obtained for the sound transmission, showing that a transmission peak occurs around the resonant frequency of the acoustic liner in the presence of shear flow. The eddy viscosity is an important influential factor that plays the roles of both providing destabilizing and making coupling between the acoustic and flow motions over the acoustic liner. Moreover, it is shown from the numerical investigation that the occurrence of the sound amplification and the magnitude of transmission coefficient are closely related to the realistic velocity profile, and we find it essential that the actual variation of the velocity profile in the axial direction over the liner surface be included in the computation. The simulation results of the periodic flow patterns possess the proper features of the convective instability over the liner, as observed in Marx et al.'s experiment. A quantitative comparison between numerical and experimental results of amplitude and phase of the instability is performed. The corresponding eigenvalues achieve great agreement.

  9. Kadomtsev—Petviashvili (KP) Burgers Equation in Dusty Negative Ion Plasmas: Evolution of Dust-Ion Acoustic Shocks

    NASA Astrophysics Data System (ADS)

    A. N., Dev; Sarma, J.; M. K., Deka; A. P., Misra; N. C., Adhikary

    2014-12-01

    We study the nonlinear propagation of dust-ion acoustic (DIA) shock waves in an un-magnetized dusty plasma which consists of electrons, both positive and negative ions and negatively charged immobile dust grains. Starting from a set of hydrodynamic equations with the ion thermal pressures and ion kinematic viscosities included, and using a standard reductive perturbation method, the Kadomtsev—Petviashivili—Burgers (K-P-Burgers) equation is derived, which governs the evolution of DIA shocks. A stationary solution of the K-P-Burgers equation is obtained and its properties are analysed with different plasma number densities, ion temperatures and masses. It is shown that a transition from shocks with negative potential to positive one occurs depending on the negative ion concentration in the plasma and the obliqueness of propagation of DIA waves.

  10. Evolution of the linear-polarization-angle-dependence of the radiation-induced magnetoresistance-oscillations with microwave power

    SciTech Connect

    Ye, Tianyu; Mani, R. G.; Wegscheider, W.

    2014-11-10

    We examine the role of the microwave power in the linear polarization angle dependence of the microwave radiation induced magnetoresistance oscillations observed in the high mobility GaAs/AlGaAs two dimensional electron system. The diagonal resistance R{sub xx} was measured at the fixed magnetic fields of the photo-excited oscillatory extrema of R{sub xx} as a function of both the microwave power, P, and the linear polarization angle, θ. Color contour plots of such measurements demonstrate the evolution of the lineshape of R{sub xx} versus θ with increasing microwave power. We report that the non-linear power dependence of the amplitude of the radiation-induced magnetoresistance oscillations distorts the cosine-square relation between R{sub xx} and θ at high power.

  11. The role of non-equilibrium fluxes in the relaxation processes of the linear chemical master equation

    SciTech Connect

    Oliveira, Luciana Renata de; Bazzani, Armando; Giampieri, Enrico; Castellani, Gastone C.

    2014-08-14

    We propose a non-equilibrium thermodynamical description in terms of the Chemical Master Equation (CME) to characterize the dynamics of a chemical cycle chain reaction among m different species. These systems can be closed or open for energy and molecules exchange with the environment, which determines how they relax to the stationary state. Closed systems reach an equilibrium state (characterized by the detailed balance condition (D.B.)), while open systems will reach a non-equilibrium steady state (NESS). The principal difference between D.B. and NESS is due to the presence of chemical fluxes. In the D.B. condition the fluxes are absent while for the NESS case, the chemical fluxes are necessary for the state maintaining. All the biological systems are characterized by their “far from equilibrium behavior,” hence the NESS is a good candidate for a realistic description of the dynamical and thermodynamical properties of living organisms. In this work we consider a CME written in terms of a discrete Kolmogorov forward equation, which lead us to write explicitly the non-equilibrium chemical fluxes. For systems in NESS, we show that there is a non-conservative “external vector field” whose is linearly proportional to the chemical fluxes. We also demonstrate that the modulation of these external fields does not change their stationary distributions, which ensure us to study the same system and outline the differences in the system's behavior when it switches from the D.B. regime to NESS. We were interested to see how the non-equilibrium fluxes influence the relaxation process during the reaching of the stationary distribution. By performing analytical and numerical analysis, our central result is that the presence of the non-equilibrium chemical fluxes reduces the characteristic relaxation time with respect to the D.B. condition. Within a biochemical and biological perspective, this result can be related to the “plasticity property” of biological systems

  12. From clouds to stars. Protostellar collapse and the evolution to the pre-main sequence I. Equations and evolution in the Hertzsprung-Russell diagram

    NASA Astrophysics Data System (ADS)

    Wuchterl, G.; Tscharnuter, W. M.

    2003-02-01

    We present the first study of early stellar evolution with ``cloud'' initial conditions utilizing a system of equations that comprises a solar model solution. All previous studies of protostellar collapse either make numerous assumptions specifically tailored for different parts of the flow and different parts of the evolution or they do not reach the pre-main sequence phase. We calculate the pre-main sequence properties of marginally gravitationally unstable, isothermal, equilibrium ``Bonnor-Ebert'' spheres with an initial temperature of 10 K and masses of 0.05 to 10 Msun. The mass accretion rate is determined by the solution of the flow equations rather than being prescribed or neglected. In our study we determine the protostar's radii and the thermal structure together with the mass and mass accretion rate, luminosity and effective temperature during its evolution to a stellar pre-main sequence object. We calculate the time needed to accrete the final stellar masses, the corresponding mean mass accretion rates and median luminosities, and the corresponding evolutionary tracks in the theoretical Hertzsprung-Russell diagram. We derive these quantities from the gas flow resulting from cloud collapse. We do not assume a value for an ``initial'' stellar radius and an ``initial'' stellar thermal structure at the ``top of the track'', the Hayashi-line or any other instant of the evolution. Instead we solve the flow equations for a cloud fragment with spherical symmetry. The system of equations we use contains the equations of stellar structure and evolution as a limiting case and has been tested by a standard solar model and by classical stellar pulsations (Wuchterl & Feuchtinger \\cite{Wuchterl1998}; Feuchtinger \\cite{Feuchtinger1999a}; Dorfi & Feuchtinger \\cite{Dorfi1999}). When dynamical accretion effects have become sufficiently small so that a comparison to existing hydrostatic stellar evolution calculations for corresponding masses can be made, young stars of 2

  13. CPDES2: A preconditioned conjugate gradient solver for linear asymmetric matrix equations arising from coupled partial differential equations in two dimensions

    NASA Astrophysics Data System (ADS)

    Anderson, D. V.; Koniges, A. E.; Shumaker, D. E.

    1988-11-01

    Many physical problems require the solution of coupled partial differential equations on two-dimensional domains. When the time scales of interest dictate an implicit discretization of the equations a rather complicated global matrix system needs solution. The exact form of the matrix depends on the choice of spatial grids and on the finite element or finite difference approximations employed. CPDES2 allows each spatial operator to have 5 or 9 point stencils and allows for general couplings between all of the component PDE's and it automatically generates the matrix structures needed to perform the algorithm. The resulting sparse matrix equation is solved by either the preconditioned conjugate gradient (CG) method or by the preconditioned biconjugate gradient (BCG) algorithm. An arbitrary number of component equations are permitted only limited by available memory. In the sub-band representation used, we generate an algorithm that is written compactly in terms of indirect indices which is vectorizable on some of the newer scientific computers.

  14. Asymptotic and Sampling-Based Standard Errors for Two Population Invariance Measures in the Linear Equating Case

    ERIC Educational Resources Information Center

    Rijmen, Frank; Manalo, Jonathan R.; von Davier, Alina A.

    2009-01-01

    This article describes two methods for obtaining the standard errors of two commonly used population invariance measures of equating functions: the root mean square difference of the subpopulation equating functions from the overall equating function and the root expected mean square difference. The delta method relies on an analytical…

  15. Chained versus Post-Stratification Equating in a Linear Context: An Evaluation Using Empirical Data. Research Report. ETS RR-10-06

    ERIC Educational Resources Information Center

    Puhan, Gautam

    2010-01-01

    This study used real data to construct testing conditions for comparing results of chained linear, Tucker, and Levine-observed score equatings. The comparisons were made under conditions where the new- and old-form samples were similar in ability and when they differed in ability. The length of the anchor test was also varied to enable examination…

  16. A Comparison of Four Linear Equating Methods for the Common-Item Nonequivalent Groups Design Using Simulation Methods. ACT Research Report Series, 2013 (2)

    ERIC Educational Resources Information Center

    Topczewski, Anna; Cui, Zhongmin; Woodruff, David; Chen, Hanwei; Fang, Yu

    2013-01-01

    This paper investigates four methods of linear equating under the common item nonequivalent groups design. Three of the methods are well known: Tucker, Angoff-Levine, and Congeneric-Levine. A fourth method is presented as a variant of the Congeneric-Levine method. Using simulation data generated from the three-parameter logistic IRT model we…

  17. Application of a local linearization technique for the solution of a system of stiff differential equations associated with the simulation of a magnetic bearing assembly

    NASA Technical Reports Server (NTRS)

    Kibler, K. S.; Mcdaniel, G. A.

    1981-01-01

    A digital local linearization technique was used to solve a system of stiff differential equations which simulate a magnetic bearing assembly. The results prove the technique to be accurate, stable, and efficient when compared to a general purpose variable order Adams method with a stiff option.

  18. Second order time evolution of the multigroup diffusion and P{sub 1} equations for radiation transport

    SciTech Connect

    Olson, Gordon L.

    2011-08-20

    Highlights: {yields} An existing multigroup transport algorithm is extended to be second-order in time. {yields} A new algorithm is presented that does not require a grey acceleration solution. {yields} The two algorithms are tested with 2D, multi-material problems. {yields} The two algorithms have comparable computational requirements. - Abstract: An existing solution method for solving the multigroup radiation equations, linear multifrequency-grey acceleration, is here extended to be second order in time. This method works for simple diffusion and for flux-limited diffusion, with or without material conduction. A new method is developed that does not require the solution of an averaged grey transport equation. It is effective solving both the diffusion and P{sub 1} forms of the transport equation. Two dimensional, multi-material test problems are used to compare the solution methods.

  19. Conversion of linear time-invariant time-delay feedback systems into delay-differential equations with commensurate delays

    NASA Astrophysics Data System (ADS)

    Yamazaki, Tatsuya; Hagiwara, Tomomichi

    2014-08-01

    A new stability analysis method of time-delay systems (TDSs) called the monodromy operator approach has been studied under the assumption that a TDS is represented as a time-delay feedback system consisting of a finite-dimensional linear time-invariant (LTI) system and a pure delay. For applying this approach to TDSs described by delay-differential equations (DDEs), the problem of converting DDEs into representation as time-delay feedback systems has been studied. With regard to such a problem, it was shown that, under discontinuous initial functions, it is natural to define the solutions of DDEs in two different ways, and the above conversion problem was solved for each of these two definitions. More precisely, the solution of a DDE was represented as either the state of the finite-dimensional part of a time-delay feedback system or a part of the output of another time-delay feedback system, depending on which definition of the DDE solution one is talking about. Motivated by the importance in establishing a thorough relationship between time-delay feedback systems and DDEs, this paper discusses the opposite problem of converting time-delay feedback systems into representation as DDEs, including the discussions about the conversion of the initial conditions. We show that the state of (the finite-dimensional part of) a time-delay feedback system can be represented as the solution of a DDE in the sense of one of the two definitions, while its 'essential' output can be represented as that of another DDE in the sense of the other type of definition. Rigorously speaking, however, it is also shown that the latter representation is possible regardless of the initial conditions, while some initial condition could prevent the conversion into the former representation. This study hence establishes that the representation of TDSs as time-delay feedback systems possesses higher ability than that with DDEs, as description methods for LTI TDSs with commensurate delays.

  20. Periodic energy switching of bright solitons in mixed coupled nonlinear Schrödinger equations with linear self-coupling and cross-coupling terms

    NASA Astrophysics Data System (ADS)

    Kanna, T.; Vijayajayanthi, M.; Lakshmanan, M.

    2007-07-01

    The bright soliton solutions of the mixed coupled nonlinear Schrödinger equations with two components (2-CNLS) with linear self- and cross-coupling terms have been obtained by identifying a transformation that transforms the corresponding equation to the integrable mixed 2-CNLS equations. The study on the collision dynamics of bright solitons shows that there exists periodic energy switching, due to the coupling terms. This periodic energy switching can be controlled by the new type of shape changing collisions of bright solitons arising in a mixed 2-CNLS system, characterized by intensity redistribution, amplitude dependent phase shift, and relative separation distance. We also point out that this system exhibits large periodic intensity switching even with very small linear self-coupling strengths.