Menu-Driven Solver Of Linear-Programming Problems
NASA Technical Reports Server (NTRS)
Viterna, L. A.; Ferencz, D.
1992-01-01
Program assists inexperienced user in formulating linear-programming problems. A Linear Program Solver (ALPS) computer program is full-featured LP analysis program. Solves plain linear-programming problems as well as more-complicated mixed-integer and pure-integer programs. Also contains efficient technique for solution of purely binary linear-programming problems. Written entirely in IBM's APL2/PC software, Version 1.01. Packed program contains licensed material, property of IBM (copyright 1988, all rights reserved).
Multiobjective fuzzy stochastic linear programming problems with inexact probability distribution
Hamadameen, Abdulqader Othman; Zainuddin, Zaitul Marlizawati
2014-06-19
This study deals with multiobjective fuzzy stochastic linear programming problems with uncertainty probability distribution which are defined as fuzzy assertions by ambiguous experts. The problem formulation has been presented and the two solutions strategies are; the fuzzy transformation via ranking function and the stochastic transformation when α{sup –}. cut technique and linguistic hedges are used in the uncertainty probability distribution. The development of Sen’s method is employed to find a compromise solution, supported by illustrative numerical example.
Multiobjective fuzzy stochastic linear programming problems with inexact probability distribution
NASA Astrophysics Data System (ADS)
Hamadameen, Abdulqader Othman; Zainuddin, Zaitul Marlizawati
2014-06-01
This study deals with multiobjective fuzzy stochastic linear programming problems with uncertainty probability distribution which are defined as fuzzy assertions by ambiguous experts. The problem formulation has been presented and the two solutions strategies are; the fuzzy transformation via ranking function and the stochastic transformation when α-. cut technique and linguistic hedges are used in the uncertainty probability distribution. The development of Sen's method is employed to find a compromise solution, supported by illustrative numerical example.
NASA Astrophysics Data System (ADS)
Lachhwani, Kailash; Nehra, Suresh
2015-09-01
In this paper, we present modified fuzzy goal programming (FGP) approach and generalized MATLAB program for solving multi-level linear fractional programming problems (ML-LFPPs) based on with some major modifications in earlier FGP algorithms. In proposed modified FGP approach, solution preferences by the decision makers at each level are not considered and fuzzy goal for the decision vectors is defined using individual best solutions. The proposed modified algorithm as well as MATLAB program simplifies the earlier algorithm on ML-LFPP by eliminating solution preferences by the decision makers at each level, thereby avoiding difficulties associate with multi-level programming problems and decision deadlock situation. The proposed modified technique is simple, efficient and requires less computational efforts in comparison of earlier FGP techniques. Also, the proposed coding of generalized MATLAB program based on this modified approach for solving ML-LFPPs is the unique programming tool toward dealing with such complex mathematical problems with MATLAB. This software based program is useful and user can directly obtain compromise optimal solution of ML-LFPPs with it. The aim of this paper is to present modified FGP technique and generalized MATLAB program to obtain compromise optimal solution of ML-LFP problems in simple and efficient manner. A comparative analysis is also carried out with numerical example in order to show efficiency of proposed modified approach and to demonstrate functionality of MATLAB program.
Zhao, Yingfeng; Liu, Sanyang
2016-01-01
We present a practical branch and bound algorithm for globally solving generalized linear multiplicative programming problem with multiplicative constraints. To solve the problem, a relaxation programming problem which is equivalent to a linear programming is proposed by utilizing a new two-phase relaxation technique. In the algorithm, lower and upper bounds are simultaneously obtained by solving some linear relaxation programming problems. Global convergence has been proved and results of some sample examples and a small random experiment show that the proposed algorithm is feasible and efficient. PMID:27547676
NASA Astrophysics Data System (ADS)
Vasant, P.; Ganesan, T.; Elamvazuthi, I.
2012-11-01
A fairly reasonable result was obtained for non-linear engineering problems using the optimization techniques such as neural network, genetic algorithms, and fuzzy logic independently in the past. Increasingly, hybrid techniques are being used to solve the non-linear problems to obtain better output. This paper discusses the use of neuro-genetic hybrid technique to optimize the geological structure mapping which is known as seismic survey. It involves the minimization of objective function subject to the requirement of geophysical and operational constraints. In this work, the optimization was initially performed using genetic programming, and followed by hybrid neuro-genetic programming approaches. Comparative studies and analysis were then carried out on the optimized results. The results indicate that the hybrid neuro-genetic hybrid technique produced better results compared to the stand-alone genetic programming method.
LP-DIT interchange tool for linear programming problems
Makowski, M.
1994-12-31
LP-DIT is a small library that provides an easy handling of LP problem data between a problem generator, solver and other modules (problem modification, generation of multi-criteria problem, report writers, etc). So far LP-DIT has been implemented with 4 LP (including one MIP) solvers and is being used as a module for model-based Decision Support System. LP-DIT will be released as a public domain soft-ware in the coming weeks.
An application of a linear programing technique to nonlinear minimax problems
NASA Technical Reports Server (NTRS)
Schiess, J. R.
1973-01-01
A differential correction technique for solving nonlinear minimax problems is presented. The basis of the technique is a linear programing algorithm which solves the linear minimax problem. By linearizing the original nonlinear equations about a nominal solution, both nonlinear approximation and estimation problems using the minimax norm may be solved iteratively. Some consideration is also given to improving convergence and to the treatment of problems with more than one measured quantity. A sample problem is treated with this technique and with the least-squares differential correction method to illustrate the properties of the minimax solution. The results indicate that for the sample approximation problem, the minimax technique provides better estimates than the least-squares method if a sufficient amount of data is used. For the sample estimation problem, the minimax estimates are better if the mathematical model is incomplete.
NASA Technical Reports Server (NTRS)
Tuey, R. C.
1972-01-01
Computer solutions of linear programming problems are outlined. Information covers vector spaces, convex sets, and matrix algebra elements for solving simultaneous linear equations. Dual problems, reduced cost analysis, ranges, and error analysis are illustrated.
Digital program for solving the linear stochastic optimal control and estimation problem
NASA Technical Reports Server (NTRS)
Geyser, L. C.; Lehtinen, B.
1975-01-01
A computer program is described which solves the linear stochastic optimal control and estimation (LSOCE) problem by using a time-domain formulation. The LSOCE problem is defined as that of designing controls for a linear time-invariant system which is disturbed by white noise in such a way as to minimize a performance index which is quadratic in state and control variables. The LSOCE problem and solution are outlined; brief descriptions are given of the solution algorithms, and complete descriptions of each subroutine, including usage information and digital listings, are provided. A test case is included, as well as information on the IBM 7090-7094 DCS time and storage requirements.
NASA Astrophysics Data System (ADS)
Takabe, Satoshi; Hukushima, Koji
2014-04-01
The typical behavior of the linear programming (LP) problem is studied as a relaxation of the minimum vertex cover problem, which is a type of integer programming (IP) problem. To deal with LP and IP using statistical mechanics, a lattice-gas model on the Erdös-Rényi random graphs is analyzed by a replica method. It is found that the LP optimal solution is typically equal to that given by IP below the critical average degree c*=e in the thermodynamic limit. The critical threshold for LP = IP extends the previous result c = 1, and coincides with the replica symmetry-breaking threshold of the IP.
Averaging and Linear Programming in Some Singularly Perturbed Problems of Optimal Control
Gaitsgory, Vladimir; Rossomakhine, Sergey
2015-04-15
The paper aims at the development of an apparatus for analysis and construction of near optimal solutions of singularly perturbed (SP) optimal controls problems (that is, problems of optimal control of SP systems) considered on the infinite time horizon. We mostly focus on problems with time discounting criteria but a possibility of the extension of results to periodic optimization problems is discussed as well. Our consideration is based on earlier results on averaging of SP control systems and on linear programming formulations of optimal control problems. The idea that we exploit is to first asymptotically approximate a given problem of optimal control of the SP system by a certain averaged optimal control problem, then reformulate this averaged problem as an infinite-dimensional linear programming (LP) problem, and then approximate the latter by semi-infinite LP problems. We show that the optimal solution of these semi-infinite LP problems and their duals (that can be found with the help of a modification of an available LP software) allow one to construct near optimal controls of the SP system. We demonstrate the construction with two numerical examples.
A strictly improving linear programming alorithm based on a series of Phase 1 problems
Leichner, S.A.; Dantzig, G.B.; Davis, J.W.
1992-04-01
When used on degenerate problems, the simplex method often takes a number of degenerate steps at a particular vertex before moving to the next. In theory (although rarely in practice), the simplex method can actually cycle at such a degenerate point. Instead of trying to modify the simplex method to avoid degenerate steps, we have developed a new linear programming algorithm that is completely impervious to degeneracy. This new method solves the Phase II problem of finding an optimal solution by solving a series of Phase I feasibility problems. Strict improvement is attained at each iteration in the Phase I algorithm, and the Phase II sequence of feasibility problems has linear convergence in the number of Phase I problems. When tested on the 30 smallest NETLIB linear programming test problems, the computational results for the new Phase II algorithm were over 15% faster than the simplex method; on some problems, it was almost two times faster, and on one problem it was four times faster.
IESIP - AN IMPROVED EXPLORATORY SEARCH TECHNIQUE FOR PURE INTEGER LINEAR PROGRAMMING PROBLEMS
NASA Technical Reports Server (NTRS)
Fogle, F. R.
1994-01-01
IESIP, an Improved Exploratory Search Technique for Pure Integer Linear Programming Problems, addresses the problem of optimizing an objective function of one or more variables subject to a set of confining functions or constraints by a method called discrete optimization or integer programming. Integer programming is based on a specific form of the general linear programming problem in which all variables in the objective function and all variables in the constraints are integers. While more difficult, integer programming is required for accuracy when modeling systems with small numbers of components such as the distribution of goods, machine scheduling, and production scheduling. IESIP establishes a new methodology for solving pure integer programming problems by utilizing a modified version of the univariate exploratory move developed by Robert Hooke and T.A. Jeeves. IESIP also takes some of its technique from the greedy procedure and the idea of unit neighborhoods. A rounding scheme uses the continuous solution found by traditional methods (simplex or other suitable technique) and creates a feasible integer starting point. The Hook and Jeeves exploratory search is modified to accommodate integers and constraints and is then employed to determine an optimal integer solution from the feasible starting solution. The user-friendly IESIP allows for rapid solution of problems up to 10 variables in size (limited by DOS allocation). Sample problems compare IESIP solutions with the traditional branch-and-bound approach. IESIP is written in Borland's TURBO Pascal for IBM PC series computers and compatibles running DOS. Source code and an executable are provided. The main memory requirement for execution is 25K. This program is available on a 5.25 inch 360K MS DOS format diskette. IESIP was developed in 1990. IBM is a trademark of International Business Machines. TURBO Pascal is registered by Borland International.
Stable computation of search directions for near-degenerate linear programming problems
Hough, P.D.
1997-03-01
In this paper, we examine stability issues that arise when computing search directions ({delta}x, {delta}y, {delta} s) for a primal-dual path-following interior point method for linear programming. The dual step {delta}y can be obtained by solving a weighted least-squares problem for which the weight matrix becomes extremely il conditioned near the boundary of the feasible region. Hough and Vavisis proposed using a type of complete orthogonal decomposition (the COD algorithm) to solve such a problem and presented stability results. The work presented here addresses the stable computation of the primal step {delta}x and the change in the dual slacks {delta}s. These directions can be obtained in a straight-forward manner, but near-degeneracy in the linear programming instance introduces ill-conditioning which can cause numerical problems in this approach. Therefore, we propose a new method of computing {delta}x and {delta}s. More specifically, this paper describes and orthogonal projection algorithm that extends the COD method. Unlike other algorithms, this method is stable for interior point methods without assuming nondegeneracy in the linear programming instance. Thus, it is more general than other algorithms on near-degenerate problems.
TOPSIS approach to linear fractional bi-level MODM problem based on fuzzy goal programming
NASA Astrophysics Data System (ADS)
Dey, Partha Pratim; Pramanik, Surapati; Giri, Bibhas C.
2014-07-01
The objective of this paper is to present a technique for order preference by similarity to ideal solution (TOPSIS) algorithm to linear fractional bi-level multi-objective decision-making problem. TOPSIS is used to yield most appropriate alternative from a finite set of alternatives based upon simultaneous shortest distance from positive ideal solution (PIS) and furthest distance from negative ideal solution (NIS). In the proposed approach, first, the PIS and NIS for both levels are determined and the membership functions of distance functions from PIS and NIS of both levels are formulated. Linearization technique is used in order to transform the non-linear membership functions into equivalent linear membership functions and then normalize them. A possible relaxation on decision for both levels is considered for avoiding decision deadlock. Then fuzzy goal programming models are developed to achieve compromise solution of the problem by minimizing the negative deviational variables. Distance function is used to identify the optimal compromise solution. The paper presents a hybrid model of TOPSIS and fuzzy goal programming. An illustrative numerical example is solved to clarify the proposed approach. Finally, to demonstrate the efficiency of the proposed approach, the obtained solution is compared with the solution derived from existing methods in the literature.
Coelho, Clarimar José; Galvão, Roberto K H; de Araújo, Mário César U; Pimentel, Maria Fernanda; da Silva, Edvan Cirino
2003-01-01
A novel strategy for the optimization of wavelet transforms with respect to the statistics of the data set in multivariate calibration problems is proposed. The optimization follows a linear semi-infinite programming formulation, which does not display local maxima problems and can be reproducibly solved with modest computational effort. After the optimization, a variable selection algorithm is employed to choose a subset of wavelet coefficients with minimal collinearity. The selection allows the building of a calibration model by direct multiple linear regression on the wavelet coefficients. In an illustrative application involving the simultaneous determination of Mn, Mo, Cr, Ni, and Fe in steel samples by ICP-AES, the proposed strategy yielded more accurate predictions than PCR, PLS, and nonoptimized wavelet regression. PMID:12767151
Takabe, Satoshi; Hukushima, Koji
2016-05-01
Typical behavior of the linear programming (LP) problem is studied as a relaxation of the minimum vertex cover (min-VC), a type of integer programming (IP) problem. A lattice-gas model on the Erdös-Rényi random graphs of α-uniform hyperedges is proposed to express both the LP and IP problems of the min-VC in the common statistical mechanical model with a one-parameter family. Statistical mechanical analyses reveal for α=2 that the LP optimal solution is typically equal to that given by the IP below the critical average degree c=e in the thermodynamic limit. The critical threshold for good accuracy of the relaxation extends the mathematical result c=1 and coincides with the replica symmetry-breaking threshold of the IP. The LP relaxation for the minimum hitting sets with α≥3, minimum vertex covers on α-uniform random graphs, is also studied. Analytic and numerical results strongly suggest that the LP relaxation fails to estimate optimal values above the critical average degree c=e/(α-1) where the replica symmetry is broken. PMID:27301006
NASA Astrophysics Data System (ADS)
Takabe, Satoshi; Hukushima, Koji
2016-05-01
Typical behavior of the linear programming (LP) problem is studied as a relaxation of the minimum vertex cover (min-VC), a type of integer programming (IP) problem. A lattice-gas model on the Erdös-Rényi random graphs of α -uniform hyperedges is proposed to express both the LP and IP problems of the min-VC in the common statistical mechanical model with a one-parameter family. Statistical mechanical analyses reveal for α =2 that the LP optimal solution is typically equal to that given by the IP below the critical average degree c =e in the thermodynamic limit. The critical threshold for good accuracy of the relaxation extends the mathematical result c =1 and coincides with the replica symmetry-breaking threshold of the IP. The LP relaxation for the minimum hitting sets with α ≥3 , minimum vertex covers on α -uniform random graphs, is also studied. Analytic and numerical results strongly suggest that the LP relaxation fails to estimate optimal values above the critical average degree c =e /(α -1 ) where the replica symmetry is broken.
An improved exploratory search technique for pure integer linear programming problems
NASA Technical Reports Server (NTRS)
Fogle, F. R.
1990-01-01
The development is documented of a heuristic method for the solution of pure integer linear programming problems. The procedure draws its methodology from the ideas of Hooke and Jeeves type 1 and 2 exploratory searches, greedy procedures, and neighborhood searches. It uses an efficient rounding method to obtain its first feasible integer point from the optimal continuous solution obtained via the simplex method. Since this method is based entirely on simple addition or subtraction of one to each variable of a point in n-space and the subsequent comparison of candidate solutions to a given set of constraints, it facilitates significant complexity improvements over existing techniques. It also obtains the same optimal solution found by the branch-and-bound technique in 44 of 45 small to moderate size test problems. Two example problems are worked in detail to show the inner workings of the method. Furthermore, using an established weighted scheme for comparing computational effort involved in an algorithm, a comparison of this algorithm is made to the more established and rigorous branch-and-bound method. A computer implementation of the procedure, in PC compatible Pascal, is also presented and discussed.
A Mixed Integer Linear Program for Solving a Multiple Route Taxi Scheduling Problem
NASA Technical Reports Server (NTRS)
Montoya, Justin Vincent; Wood, Zachary Paul; Rathinam, Sivakumar; Malik, Waqar Ahmad
2010-01-01
Aircraft movements on taxiways at busy airports often create bottlenecks. This paper introduces a mixed integer linear program to solve a Multiple Route Aircraft Taxi Scheduling Problem. The outputs of the model are in the form of optimal taxi schedules, which include routing decisions for taxiing aircraft. The model extends an existing single route formulation to include routing decisions. An efficient comparison framework compares the multi-route formulation and the single route formulation. The multi-route model is exercised for east side airport surface traffic at Dallas/Fort Worth International Airport to determine if any arrival taxi time savings can be achieved by allowing arrivals to have two taxi routes: a route that crosses an active departure runway and a perimeter route that avoids the crossing. Results indicate that the multi-route formulation yields reduced arrival taxi times over the single route formulation only when a perimeter taxiway is used. In conditions where the departure aircraft are given an optimal and fixed takeoff sequence, accumulative arrival taxi time savings in the multi-route formulation can be as high as 3.6 hours more than the single route formulation. If the departure sequence is not optimal, the multi-route formulation results in less taxi time savings made over the single route formulation, but the average arrival taxi time is significantly decreased.
NASA Technical Reports Server (NTRS)
Young, Katherine C.; Sobieszczanski-Sobieski, Jaroslaw
1988-01-01
This project has two objectives. The first is to determine whether linear programming techniques can improve performance when handling design optimization problems with a large number of design variables and constraints relative to the feasible directions algorithm. The second purpose is to determine whether using the Kreisselmeier-Steinhauser (KS) function to replace the constraints with one constraint will reduce the cost of total optimization. Comparisons are made using solutions obtained with linear and non-linear methods. The results indicate that there is no cost saving using the linear method or in using the KS function to replace constraints.
Sparse linear programming subprogram
Hanson, R.J.; Hiebert, K.L.
1981-12-01
This report describes a subprogram, SPLP(), for solving linear programming problems. The package of subprogram units comprising SPLP() is written in Fortran 77. The subprogram SPLP() is intended for problems involving at most a few thousand constraints and variables. The subprograms are written to take advantage of sparsity in the constraint matrix. A very general problem statement is accepted by SPLP(). It allows upper, lower, or no bounds on the variables. Both the primal and dual solutions are returned as output parameters. The package has many optional features. Among them is the ability to save partial results and then use them to continue the computation at a later time.
NASA Technical Reports Server (NTRS)
Ferencz, Donald C.; Viterna, Larry A.
1991-01-01
ALPS is a computer program which can be used to solve general linear program (optimization) problems. ALPS was designed for those who have minimal linear programming (LP) knowledge and features a menu-driven scheme to guide the user through the process of creating and solving LP formulations. Once created, the problems can be edited and stored in standard DOS ASCII files to provide portability to various word processors or even other linear programming packages. Unlike many math-oriented LP solvers, ALPS contains an LP parser that reads through the LP formulation and reports several types of errors to the user. ALPS provides a large amount of solution data which is often useful in problem solving. In addition to pure linear programs, ALPS can solve for integer, mixed integer, and binary type problems. Pure linear programs are solved with the revised simplex method. Integer or mixed integer programs are solved initially with the revised simplex, and the completed using the branch-and-bound technique. Binary programs are solved with the method of implicit enumeration. This manual describes how to use ALPS to create, edit, and solve linear programming problems. Instructions for installing ALPS on a PC compatible computer are included in the appendices along with a general introduction to linear programming. A programmers guide is also included for assistance in modifying and maintaining the program.
Linear Programming across the Curriculum
ERIC Educational Resources Information Center
Yoder, S. Elizabeth; Kurz, M. Elizabeth
2015-01-01
Linear programming (LP) is taught in different departments across college campuses with engineering and management curricula. Modeling an LP problem is taught in every linear programming class. As faculty teaching in Engineering and Management departments, the depth to which teachers should expect students to master this particular type of…
NASA Astrophysics Data System (ADS)
Noor-E-Alam, Md.; Doucette, John
2015-08-01
Grid-based location problems (GBLPs) can be used to solve location problems in business, engineering, resource exploitation, and even in the field of medical sciences. To solve these decision problems, an integer linear programming (ILP) model is designed and developed to provide the optimal solution for GBLPs considering fixed cost criteria. Preliminary results show that the ILP model is efficient in solving small to moderate-sized problems. However, this ILP model becomes intractable in solving large-scale instances. Therefore, a decomposition heuristic is proposed to solve these large-scale GBLPs, which demonstrates significant reduction of solution runtimes. To benchmark the proposed heuristic, results are compared with the exact solution via ILP. The experimental results show that the proposed method significantly outperforms the exact method in runtime with minimal (and in most cases, no) loss of optimality.
NASA Technical Reports Server (NTRS)
Utku, S.
1969-01-01
A general purpose digital computer program for the in-core solution of linear equilibrium problems of structural mechanics is documented. The program requires minimum input for the description of the problem. The solution is obtained by means of the displacement method and the finite element technique. Almost any geometry and structure may be handled because of the availability of linear, triangular, quadrilateral, tetrahedral, hexahedral, conical, triangular torus, and quadrilateral torus elements. The assumption of piecewise linear deflection distribution insures monotonic convergence of the deflections from the stiffer side with decreasing mesh size. The stresses are provided by the best-fit strain tensors in the least squares at the mesh points where the deflections are given. The selection of local coordinate systems whenever necessary is automatic. The core memory is used by means of dynamic memory allocation, an optional mesh-point relabelling scheme and imposition of the boundary conditions during the assembly time.
NASA Technical Reports Server (NTRS)
Lawson, C. L.; Krogh, F. T.; Gold, S. S.; Kincaid, D. R.; Sullivan, J.; Williams, E.; Hanson, R. J.; Haskell, K.; Dongarra, J.; Moler, C. B.
1982-01-01
The Basic Linear Algebra Subprograms (BLAS) library is a collection of 38 FORTRAN-callable routines for performing basic operations of numerical linear algebra. BLAS library is portable and efficient source of basic operations for designers of programs involving linear algebriac computations. BLAS library is supplied in portable FORTRAN and Assembler code versions for IBM 370, UNIVAC 1100 and CDC 6000 series computers.
The linear separability problem: some testing methods.
Elizondo, D
2006-03-01
The notion of linear separability is used widely in machine learning research. Learning algorithms that use this concept to learn include neural networks (single layer perceptron and recursive deterministic perceptron), and kernel machines (support vector machines). This paper presents an overview of several of the methods for testing linear separability between two classes. The methods are divided into four groups: Those based on linear programming, those based on computational geometry, one based on neural networks, and one based on quadratic programming. The Fisher linear discriminant method is also presented. A section on the quantification of the complexity of classification problems is included. PMID:16566462
ERIC Educational Resources Information Center
Nakhanu, Shikuku Beatrice; Musasia, Amadalo Maurice
2015-01-01
The topic Linear Programming is included in the compulsory Kenyan secondary school mathematics curriculum at form four. The topic provides skills for determining best outcomes in a given mathematical model involving some linear relationship. This technique has found application in business, economics as well as various engineering fields. Yet many…
NASA Astrophysics Data System (ADS)
Skerget, P.; Brebbia, C. A.
In many practical applications of boundary elements, the potential problems may be nonlinear. The use of Kirchoff's transform provides an approach to convert a nonlinear material problem into a linear one. A description of several different shape functions to define the conductivity is presented. Attention is given to the type of integral equations which are obtained if the Kirchoff's transform is applied for nonlinear material in the presence of mixed boundary conditions. The integral formulation for nonlinear radiation boundary conditions with and without potential dependent conductivity is also considered. For steady heat conduction problems with constant conductivity a boundary integral equation relating boundary values for temperatures (or potentials) and its normal derivatives over the boundary can be obtained. Applications which concern the solution of steady state conduction problems are investigated. The problems are related to a hollow cylinder, a nuclear reactor pressure vessel, and an industrial furnace.
Linear stochastic optimal control and estimation problem
NASA Technical Reports Server (NTRS)
Geyser, L. C.; Lehtinen, F. K. B.
1980-01-01
Problem involves design of controls for linear time-invariant system disturbed by white noise. Solution is Kalman filter coupled through set of optimal regulator gains to produce desired control signal. Key to solution is solving matrix Riccati differential equation. LSOCE effectively solves problem for wide range of practical applications. Program is written in FORTRAN IV for batch execution and has been implemented on IBM 360.
Linearization problem in pseudolite surveys
NASA Astrophysics Data System (ADS)
Cellmer, Slawomir; Rapinski, Jacek
2010-06-01
GPS augmented with pseudolites (PL), can be used in various engineering surveys. Also pseudolite—only navigation system can be designed and used in any place, even if GPS signal is not available (Kee et al. Development of indoor navigation system using asynchronous pseudolites, 1038-1045, 2000). Especially in engineering surveys, where harsh survey environment is common, pseudolites have a lot of applications. Pseudolites may be used in construction sites, open pit mines, city canyons, GPS and PL baseline processing is similar, although there are few differences that must be taken into account. One of the major issues is linearization problem. The source of the problem is neglecting second terms of Taylor series expansion in GPS baseline processing software. This problem occurs when the pseudolite is relatively close to the receiver, which is the case in PL surveys. In this paper authors presents the algorithm for GPS + PL data processing including, neglected in classical GPS only approach, second terms of Taylor series expansion. The mathematical model of adjustment problem, detailed proposal of application in baseline processing algorithms, and numerical tests are presented.
NASA Technical Reports Server (NTRS)
Klumpp, A. R.; Lawson, C. L.
1988-01-01
Routines provided for common scalar, vector, matrix, and quaternion operations. Computer program extends Ada programming language to include linear-algebra capabilities similar to HAS/S programming language. Designed for such avionics applications as software for Space Station.
Long term fuel scheduling linear programming
Asgarpoor, S. . Dept. of Electrical Engineering); Gul, N. )
1992-01-01
This paper presents an application of linear programming (LP) revised simplex method in order to solve the fuel scheduling problem. A regression method is applied to determine the polynomial cost curves, and a separable programming technique is used to linearize the objective function and the constraints for LP application. Results based on sample data obtained from Omaha Public Power District (OPPD) are presented to demonstrate the LP application to this problem.
ALPS - A LINEAR PROGRAM SOLVER
NASA Technical Reports Server (NTRS)
Viterna, L. A.
1994-01-01
Linear programming is a widely-used engineering and management tool. Scheduling, resource allocation, and production planning are all well-known applications of linear programs (LP's). Most LP's are too large to be solved by hand, so over the decades many computer codes for solving LP's have been developed. ALPS, A Linear Program Solver, is a full-featured LP analysis program. ALPS can solve plain linear programs as well as more complicated mixed integer and pure integer programs. ALPS also contains an efficient solution technique for pure binary (0-1 integer) programs. One of the many weaknesses of LP solvers is the lack of interaction with the user. ALPS is a menu-driven program with no special commands or keywords to learn. In addition, ALPS contains a full-screen editor to enter and maintain the LP formulation. These formulations can be written to and read from plain ASCII files for portability. For those less experienced in LP formulation, ALPS contains a problem "parser" which checks the formulation for errors. ALPS creates fully formatted, readable reports that can be sent to a printer or output file. ALPS is written entirely in IBM's APL2/PC product, Version 1.01. The APL2 workspace containing all the ALPS code can be run on any APL2/PC system (AT or 386). On a 32-bit system, this configuration can take advantage of all extended memory. The user can also examine and modify the ALPS code. The APL2 workspace has also been "packed" to be run on any DOS system (without APL2) as a stand-alone "EXE" file, but has limited memory capacity on a 640K system. A numeric coprocessor (80X87) is optional but recommended. The standard distribution medium for ALPS is a 5.25 inch 360K MS-DOS format diskette. IBM, IBM PC and IBM APL2 are registered trademarks of International Business Machines Corporation. MS-DOS is a registered trademark of Microsoft Corporation.
Gadgets, approximation, and linear programming
Trevisan, L.; Sudan, M.; Sorkin, G.B.; Williamson, D.P.
1996-12-31
We present a linear-programming based method for finding {open_quotes}gadgets{close_quotes}, i.e., combinatorial structures reducing constraints of one optimization problems to constraints of another. A key step in this method is a simple observation which limits the search space to a finite one. Using this new method we present a number of new, computer-constructed gadgets for several different reductions. This method also answers a question posed by on how to prove the optimality of gadgets-we show how LP duality gives such proofs. The new gadgets improve hardness results for MAX CUT and MAX DICUT, showing that approximating these problems to within factors of 60/61 and 44/45 respectively is N P-hard. We also use the gadgets to obtain an improved approximation algorithm for MAX 3SAT which guarantees an approximation ratio of .801. This improves upon the previous best bound of .7704.
Generalised Assignment Matrix Methodology in Linear Programming
ERIC Educational Resources Information Center
Jerome, Lawrence
2012-01-01
Discrete Mathematics instructors and students have long been struggling with various labelling and scanning algorithms for solving many important problems. This paper shows how to solve a wide variety of Discrete Mathematics and OR problems using assignment matrices and linear programming, specifically using Excel Solvers although the same…
The Vertical Linear Fractional Initialization Problem
NASA Technical Reports Server (NTRS)
Lorenzo, Carl F.; Hartley, Tom T.
1999-01-01
This paper presents a solution to the initialization problem for a system of linear fractional-order differential equations. The scalar problem is considered first, and solutions are obtained both generally and for a specific initialization. Next the vector fractional order differential equation is considered. In this case, the solution is obtained in the form of matrix F-functions. Some control implications of the vector case are discussed. The suggested method of problem solution is shown via an example.
Singular linear-quadratic control problem for systems with linear delay
Sesekin, A. N.
2013-12-18
A singular linear-quadratic optimization problem on the trajectories of non-autonomous linear differential equations with linear delay is considered. The peculiarity of this problem is the fact that this problem has no solution in the class of integrable controls. To ensure the existence of solutions is required to expand the class of controls including controls with impulse components. Dynamical systems with linear delay are used to describe the motion of pantograph from the current collector with electric traction, biology, etc. It should be noted that for practical problems fact singularity criterion of quality is quite commonly occurring, and therefore the study of these problems is surely important. For the problem under discussion optimal programming control contained impulse components at the initial and final moments of time is constructed under certain assumptions on the functional and the right side of the control system.
Random generation of structured linear optimization problems
Arthur, J.; Frendewey, J. Jr.
1994-12-31
We describe the on-going development of a random generator for linear optimization problems (LPs) founded on the concept of block structure. The general LP: minimize z = cx subject to Ax = b, x {ge} 0 can take a variety of special forms determined (primarily) by predefined structures on the matrix A of constraint coefficients. The authors have developed several random problem generators which provide instances of LPs having such structure; in particular (i) general (non-structured) problems, (ii) generalized upper bound (GUB) constraints, (iii) minimum cost network flow problems, (iv) transportation and assignment problems, (v) shortest path problems, (vi) generalized network flow problems, and (vii) multicommodity network flow problems. This paper discusses the general philosophy behind the construction of these generators. In addition, the task of combining the generators into a single generator -- in which the matrix A can contain various blocks, each of a prescribed structure from those mentioned above -- is described.
Piecewise linear approximation for hereditary control problems
NASA Technical Reports Server (NTRS)
Propst, Georg
1990-01-01
This paper presents finite-dimensional approximations for linear retarded functional differential equations by use of discontinuous piecewise linear functions. The approximation scheme is applied to optimal control problems, when a quadratic cost integral must be minimized subject to the controlled retarded system. It is shown that the approximate optimal feedback operators converge to the true ones both in the case where the cost integral ranges over a finite time interval, as well as in the case where it ranges over an infinite time interval. The arguments in the last case rely on the fact that the piecewise linear approximations to stable systems are stable in a uniform sense.
Linear System of Equations, Matrix Inversion, and Linear Programming Using MS Excel
ERIC Educational Resources Information Center
El-Gebeily, M.; Yushau, B.
2008-01-01
In this note, we demonstrate with illustrations two different ways that MS Excel can be used to solve Linear Systems of Equation, Linear Programming Problems, and Matrix Inversion Problems. The advantage of using MS Excel is its availability and transparency (the user is responsible for most of the details of how a problem is solved). Further, we…
Linear programming computational experience with onyx
Atrek, E.
1994-12-31
ONYX is a linear programming software package based on an efficient variation of the gradient projection method. When fully configured, it is intended for application to industrial size problems. While the computational experience is limited at the time of this abstract, the technique is found to be robust and competitive with existing methodology in terms of both accuracy and speed. An overview of the approach is presented together with a description of program capabilities, followed by a discussion of up-to-date computational experience with the program. Conclusions include advantages of the approach and envisioned future developments.
Numerical linear algebra for reconstruction inverse problems
NASA Astrophysics Data System (ADS)
Nachaoui, Abdeljalil
2004-01-01
Our goal in this paper is to discuss various issues we have encountered in trying to find and implement efficient solvers for a boundary integral equation (BIE) formulation of an iterative method for solving a reconstruction problem. We survey some methods from numerical linear algebra, which are relevant for the solution of this class of inverse problems. We motivate the use of our constructing algorithm, discuss its implementation and mention the use of preconditioned Krylov methods.
The linear regulator problem for parabolic systems
NASA Technical Reports Server (NTRS)
Banks, H. T.; Kunisch, K.
1983-01-01
An approximation framework is presented for computation (in finite imensional spaces) of Riccati operators that can be guaranteed to converge to the Riccati operator in feedback controls for abstract evolution systems in a Hilbert space. It is shown how these results may be used in the linear optimal regulator problem for a large class of parabolic systems.
A program for identification of linear systems
NASA Technical Reports Server (NTRS)
Buell, J.; Kalaba, R.; Ruspini, E.; Yakush, A.
1971-01-01
A program has been written for the identification of parameters in certain linear systems. These systems appear in biomedical problems, particularly in compartmental models of pharmacokinetics. The method presented here assumes that some of the state variables are regularly modified by jump conditions. This simulates administration of drugs following some prescribed drug regime. Parameters are identified by a least-square fit of the linear differential system to a set of experimental observations. The method is especially suited when the interval of observation of the system is very long.
Successive linear optimization approach to the dynamic traffic assignment problem
Ho, J.K.
1980-11-01
A dynamic model for the optimal control of traffic flow over a network is considered. The model, which treats congestion explicitly in the flow equations, gives rise to nonlinear, nonconvex mathematical programming problems. It has been shown for a piecewise linear version of this model that a global optimum is contained in the set of optimal solutions of a certain linear program. A sufficient condition for optimality which implies that a global optimum can be obtained by successively optimizing at most N + 1 objective functions for the linear program, where N is the number of time periods in the planning horizon is presented. Computational results are reported to indicate the efficiency of this approach.
A path-following interior-point algorithm for linear and quadratic problems
Wright, S.J.
1993-12-01
We describe an algorithm for the monotone linear complementarity problem that converges for many positive, not necessarily feasible, starting point and exhibits polynomial complexity if some additional assumptions are made on the starting point. If the problem has a strictly complementary solution, the method converges subquadratically. We show that the algorithm and its convergence extend readily to the mixed monotone linear complementarity problem and, hence, to all the usual formulations of the linear programming and convex quadratic programming problems.
Numerical stability in problems of linear algebra.
NASA Technical Reports Server (NTRS)
Babuska, I.
1972-01-01
Mathematical problems are introduced as mappings from the space of input data to that of the desired output information. Then a numerical process is defined as a prescribed recurrence of elementary operations creating the mapping of the underlying mathematical problem. The ratio of the error committed by executing the operations of the numerical process (the roundoff errors) to the error introduced by perturbations of the input data (initial error) gives rise to the concept of lambda-stability. As examples, several processes are analyzed from this point of view, including, especially, old and new processes for solving systems of linear algebraic equations with tridiagonal matrices. In particular, it is shown how such a priori information can be utilized as, for instance, a knowledge of the row sums of the matrix. Information of this type is frequently available where the system arises in connection with the numerical solution of differential equations.
Computer Program For Linear Algebra
NASA Technical Reports Server (NTRS)
Krogh, F. T.; Hanson, R. J.
1987-01-01
Collection of routines provided for basic vector operations. Basic Linear Algebra Subprogram (BLAS) library is collection from FORTRAN-callable routines for employing standard techniques to perform basic operations of numerical linear algebra.
Investigating Integer Restrictions in Linear Programming
ERIC Educational Resources Information Center
Edwards, Thomas G.; Chelst, Kenneth R.; Principato, Angela M.; Wilhelm, Thad L.
2015-01-01
Linear programming (LP) is an application of graphing linear systems that appears in many Algebra 2 textbooks. Although not explicitly mentioned in the Common Core State Standards for Mathematics, linear programming blends seamlessly into modeling with mathematics, the fourth Standard for Mathematical Practice (CCSSI 2010, p. 7). In solving a…
Strengthening Programs through Problem Solving.
ERIC Educational Resources Information Center
Dyer, Jim
1993-01-01
Describes a secondary agricultural education program that was a dumping ground for academically disadvantaged students. Discusses how such a program can be improved by identifying problems and symptoms, treating problems, and goal setting. (JOW)
Multiobjective power dispatch using fuzzy linear programming
Yang, H.T.; Huang, C.M.; Lee, H.M.; Huang, C.L.
1995-12-31
This paper presents a new fuzzy linear programming (FLP) approach to determine the multiobjective power dispatch problem by taking into account fuel cost and environmental impact of NO{sub x} emission. The FLP technique first separately optimizes each objective. To further offer the best compromise solution out of the non-inferiority domain obtained by the FLP based operator, a preference index of distance membership function is used to aid the power system operator to adjust the generation levels in a most economic manner but also with minimal impact on the environments. The effectiveness of the proposed approach has been demonstrated on a 10-bus 5-generator system. Numerical results reveal that the FLP is a promising and efficient approach for dealing with the multiobjective nature of power dispatch problem.
Comparison of open-source linear programming solvers.
Gearhart, Jared Lee; Adair, Kristin Lynn; Durfee, Justin D.; Jones, Katherine A.; Martin, Nathaniel; Detry, Richard Joseph
2013-10-01
When developing linear programming models, issues such as budget limitations, customer requirements, or licensing may preclude the use of commercial linear programming solvers. In such cases, one option is to use an open-source linear programming solver. A survey of linear programming tools was conducted to identify potential open-source solvers. From this survey, four open-source solvers were tested using a collection of linear programming test problems and the results were compared to IBM ILOG CPLEX Optimizer (CPLEX) [1], an industry standard. The solvers considered were: COIN-OR Linear Programming (CLP) [2], [3], GNU Linear Programming Kit (GLPK) [4], lp_solve [5] and Modular In-core Nonlinear Optimization System (MINOS) [6]. As no open-source solver outperforms CPLEX, this study demonstrates the power of commercial linear programming software. CLP was found to be the top performing open-source solver considered in terms of capability and speed. GLPK also performed well but cannot match the speed of CLP or CPLEX. lp_solve and MINOS were considerably slower and encountered issues when solving several test problems.
Convergence of linear programming using a Hopfield net
Lu, Shin-yee; Berryman, J.G.
1990-11-01
Hopfield nets are interconnected networks of simple analog Processors. Such networks have been applied to a variety of optimization problems including linear programming problems. We revised the energy function used in a Hopfield net such that the network can be implemented on a digital computer to solve linearing programming problems. We also proved that the revised discrete Hopfield net coverages, and gave the conditions of convergence. The approach is tested on two large and sparse linear programming problems. In both cases we could not reach the optimal solutions, but solutions with 1% error can be attained in less than 3 minutes of CPU time on a SUN SPARC station. The optimal solutions can be obtained by the simplex method, but required five times more CPU time. 10 refs., 1 tab.
Boolean approach to zero-one linear programming
Hulme, B.L.; Baca, L.S.
1984-07-01
Problems of minimizing or maximizing a linear objective function in zero-one variables subject to linear constraints can be solved by Boolean algebraic methods. This report gives both a general procedure for stating such problems in Boolean form and a solution procedure that has been implemented by a SETS user program. The program uses the Boolean algebraic formula manipulation techniques of the SETS language. Sample problems illustrate how to make optimum choices in the contexts of physical protection, packing knapsacks, designing manufacturing processes and making assignments.
Hybrid evolutionary programming for heavily constrained problems.
Myung, H; Kim, J H
1996-01-01
A hybrid of evolutionary programming (EP) and a deterministic optimization procedure is applied to a series of non-linear and quadratic optimization problems. The hybrid scheme is compared with other existing schemes such as EP alone, two-phase (TP) optimization, and EP with a non-stationary penalty function (NS-EP). The results indicate that the hybrid method can outperform the other methods when addressing heavily constrained optimization problems in terms of computational efficiency and solution accuracy. PMID:8833746
Breadboard linear array scan imager program
NASA Technical Reports Server (NTRS)
1975-01-01
The performance was evaluated of large scale integration photodiode arrays in a linear array scan imaging system breadboard for application to multispectral remote sensing of the earth's resources. Objectives, approach, implementation, and test results of the program are presented.
From Parity and Payoff Games to Linear Programming
NASA Astrophysics Data System (ADS)
Schewe, Sven
This paper establishes a surprising reduction from parity and mean payoff games to linear programming problems. While such a connection is trivial for solitary games, it is surprising for two player games, because the players have opposing objectives, whose natural translations into an optimisation problem are minimisation and maximisation, respectively. Our reduction to linear programming circumvents the need for concurrent minimisation and maximisation by replacing one of them, the maximisation, by approximation. The resulting optimisation problem can be translated to a linear programme by a simple space transformation, which is inexpensive in the unit cost model, but results in an exponential growth of the coefficients. The discovered connection opens up unexpected applications - like μ-calculus model checking - of linear programming in the unit cost model, and thus turns the intriguing academic problem of finding a polynomial time algorithm for linear programming in this model of computation (and subsequently a strongly polynomial algorithm) into a problem of paramount practical importance: All advancements in this area can immediately be applied to accelerate solving parity and payoff games, or to improve their complexity analysis.
A multistage linear array assignment problem
NASA Technical Reports Server (NTRS)
Nicol, David M.; Shier, D. R.; Kincaid, R. K.; Richards, D. S.
1988-01-01
The implementation of certain algorithms on parallel processing computing architectures can involve partitioning contiguous elements into a fixed number of groups, each of which is to be handled by a single processor. It is desired to find an assignment of elements to processors that minimizes the sum of the maximum workloads experienced at each stage. This problem can be viewed as a multi-objective network optimization problem. Polynomially-bounded algorithms are developed for the case of two stages, whereas the associated decision problem (for an arbitrary number of stages) is shown to be NP-complete. Heuristic procedures are therefore proposed and analyzed for the general problem. Computational experience with one of the exact problems, incorporating certain pruning rules, is presented with one of the exact problems. Empirical results also demonstrate that one of the heuristic procedures is especially effective in practice.
Solution of the linear regression problem using matrix correction methods in the l 1 metric
NASA Astrophysics Data System (ADS)
Gorelik, V. A.; Trembacheva (Barkalova), O. S.
2016-02-01
The linear regression problem is considered as an improper interpolation problem. The metric l 1 is used to correct (approximate) all the initial data. A probabilistic justification of this metric in the case of the exponential noise distribution is given. The original improper interpolation problem is reduced to a set of a finite number of linear programming problems. The corresponding computational algorithms are implemented in MATLAB.
An amoeboid algorithm for solving linear transportation problem
NASA Astrophysics Data System (ADS)
Gao, Cai; Yan, Chao; Zhang, Zili; Hu, Yong; Mahadevan, Sankaran; Deng, Yong
2014-03-01
Transportation Problem (TP) is one of the basic operational research problems, which plays an important role in many practical applications. In this paper, a bio-inspired mathematical model is proposed to handle the Linear Transportation Problem (LTP) in directed networks by modifying the original amoeba model Physarum Solver. Several examples are used to prove that the provided model can effectively solve Balanced Transportation Problem (BTP), Unbalanced Transportation Problem (UTP), especially the Generalized Transportation Problem (GTP), in a nondiscrete way.
Technology Transfer Automated Retrieval System (TEKTRAN)
A stochastic/linear program Excel workbook was developed consisting of two worksheets illustrating linear and stochastic program approaches. Both approaches used the Excel Solver add-in. A published linear program problem served as an example for the ingredients, nutrients and costs and as a benchma...
Optimized remedial groundwater extraction using linear programming
Quinn, J.J.
1995-12-31
Groundwater extraction systems are typically installed to remediate contaminant plumes or prevent further spread of contamination. These systems are expensive to install and maintain. A traditional approach to designing such a wellfield uses a series of trial-and-error simulations to test the effects of various well locations and pump rates. However, the optimal locations and pump rates of extraction wells are difficult to determine when objectives related to the site hydrogeology and potential pumping scheme are considered. This paper describes a case study of an application of linear programming theory to determine optimal well placement and pump rates. The objectives of the pumping scheme were to contain contaminant migration and reduce contaminant concentrations while minimizing the total amount of water pumped and treated. Past site activities at the area under study included disposal of contaminants in pits. Several groundwater plumes have been identified, and others may be present. The area of concern is bordered on three sides by a wetland, which receives a portion of its input budget as groundwater discharge from the pits. Optimization of the containment pumping scheme was intended to meet three goals: (1) prevent discharge of contaminated groundwater to the wetland, (2) minimize the total water pumped and treated (cost benefit), and (3) avoid dewatering of the wetland (cost and ecological benefits). Possible well locations were placed at known source areas. To constrain the problem, the optimization program was instructed to prevent any flow toward the wetland along a user-specified border. In this manner, the optimization routine selects well locations and pump rates so that a groundwater divide is produced along this boundary.
Planning under uncertainty solving large-scale stochastic linear programs
Infanger, G. . Dept. of Operations Research Technische Univ., Vienna . Inst. fuer Energiewirtschaft)
1992-12-01
For many practical problems, solutions obtained from deterministic models are unsatisfactory because they fail to hedge against certain contingencies that may occur in the future. Stochastic models address this shortcoming, but up to recently seemed to be intractable due to their size. Recent advances both in solution algorithms and in computer technology now allow us to solve important and general classes of practical stochastic problems. We show how large-scale stochastic linear programs can be efficiently solved by combining classical decomposition and Monte Carlo (importance) sampling techniques. We discuss the methodology for solving two-stage stochastic linear programs with recourse, present numerical results of large problems with numerous stochastic parameters, show how to efficiently implement the methodology on a parallel multi-computer and derive the theory for solving a general class of multi-stage problems with dependency of the stochastic parameters within a stage and between different stages.
Sparse Substring Pattern Set Discovery Using Linear Programming Boosting
NASA Astrophysics Data System (ADS)
Kashihara, Kazuaki; Hatano, Kohei; Bannai, Hideo; Takeda, Masayuki
In this paper, we consider finding a small set of substring patterns which classifies the given documents well. We formulate the problem as 1 norm soft margin optimization problem where each dimension corresponds to a substring pattern. Then we solve this problem by using LPBoost and an optimal substring discovery algorithm. Since the problem is a linear program, the resulting solution is likely to be sparse, which is useful for feature selection. We evaluate the proposed method for real data such as movie reviews.
Spline smoothing of histograms by linear programming
NASA Technical Reports Server (NTRS)
Bennett, J. O.
1972-01-01
An algorithm for an approximating function to the frequency distribution is obtained from a sample of size n. To obtain the approximating function a histogram is made from the data. Next, Euclidean space approximations to the graph of the histogram using central B-splines as basis elements are obtained by linear programming. The approximating function has area one and is nonnegative.
Synthesizing Dynamic Programming Algorithms from Linear Temporal Logic Formulae
NASA Technical Reports Server (NTRS)
Rosu, Grigore; Havelund, Klaus
2001-01-01
The problem of testing a linear temporal logic (LTL) formula on a finite execution trace of events, generated by an executing program, occurs naturally in runtime analysis of software. We present an algorithm which takes an LTL formula and generates an efficient dynamic programming algorithm. The generated algorithm tests whether the LTL formula is satisfied by a finite trace of events given as input. The generated algorithm runs in linear time, its constant depending on the size of the LTL formula. The memory needed is constant, also depending on the size of the formula.
Train Repathing in Emergencies Based on Fuzzy Linear Programming
Cui, Bingmou
2014-01-01
Train pathing is a typical problem which is to assign the train trips on the sets of rail segments, such as rail tracks and links. This paper focuses on the train pathing problem, determining the paths of the train trips in emergencies. We analyze the influencing factors of train pathing, such as transferring cost, running cost, and social adverse effect cost. With the overall consideration of the segment and station capability constraints, we build the fuzzy linear programming model to solve the train pathing problem. We design the fuzzy membership function to describe the fuzzy coefficients. Furthermore, the contraction-expansion factors are introduced to contract or expand the value ranges of the fuzzy coefficients, coping with the uncertainty of the value range of the fuzzy coefficients. We propose a method based on triangular fuzzy coefficient and transfer the train pathing (fuzzy linear programming model) to a determinate linear model to solve the fuzzy linear programming problem. An emergency is supposed based on the real data of the Beijing-Shanghai Railway. The model in this paper was solved and the computation results prove the availability of the model and efficiency of the algorithm. PMID:25121128
Train repathing in emergencies based on fuzzy linear programming.
Meng, Xuelei; Cui, Bingmou
2014-01-01
Train pathing is a typical problem which is to assign the train trips on the sets of rail segments, such as rail tracks and links. This paper focuses on the train pathing problem, determining the paths of the train trips in emergencies. We analyze the influencing factors of train pathing, such as transferring cost, running cost, and social adverse effect cost. With the overall consideration of the segment and station capability constraints, we build the fuzzy linear programming model to solve the train pathing problem. We design the fuzzy membership function to describe the fuzzy coefficients. Furthermore, the contraction-expansion factors are introduced to contract or expand the value ranges of the fuzzy coefficients, coping with the uncertainty of the value range of the fuzzy coefficients. We propose a method based on triangular fuzzy coefficient and transfer the train pathing (fuzzy linear programming model) to a determinate linear model to solve the fuzzy linear programming problem. An emergency is supposed based on the real data of the Beijing-Shanghai Railway. The model in this paper was solved and the computation results prove the availability of the model and efficiency of the algorithm. PMID:25121128
Breathing Problems: An Individualized Program.
ERIC Educational Resources Information Center
Vodola, Thomas M.
As one of the components of the Project ACTIVE (All Children Totally Involved Exercising) Teacher Training Model Kit, the manual is designed to enable the educator to organize, conduct, and evaluate individualized-personalized physical education programs for children (prekindergarten through high school) with breathing problems. An introductory…
Multisplitting for linear, least squares and nonlinear problems
Renaut, R.
1996-12-31
In earlier work, presented at the 1994 Iterative Methods meeting, a multisplitting (MS) method of block relaxation type was utilized for the solution of the least squares problem, and nonlinear unconstrained problems. This talk will focus on recent developments of the general approach and represents joint work both with Andreas Frommer, University of Wupertal for the linear problems and with Hans Mittelmann, Arizona State University for the nonlinear problems.
Experiences with linear solvers for oil reservoir simulation problems
Joubert, W.; Janardhan, R.; Biswas, D.; Carey, G.
1996-12-31
This talk will focus on practical experiences with iterative linear solver algorithms used in conjunction with Amoco Production Company`s Falcon oil reservoir simulation code. The goal of this study is to determine the best linear solver algorithms for these types of problems. The results of numerical experiments will be presented.
Inverse Modelling Problems in Linear Algebra Undergraduate Courses
ERIC Educational Resources Information Center
Martinez-Luaces, Victor E.
2013-01-01
This paper will offer an analysis from a theoretical point of view of mathematical modelling, applications and inverse problems of both causation and specification types. Inverse modelling problems give the opportunity to establish connections between theory and practice and to show this fact, a simple linear algebra example in two different…
Linear Programming Problems for Generalized Uncertainty
ERIC Educational Resources Information Center
Thipwiwatpotjana, Phantipa
2010-01-01
Uncertainty occurs when there is more than one realization that can represent an information. This dissertation concerns merely discrete realizations of an uncertainty. Different interpretations of an uncertainty and their relationships are addressed when the uncertainty is not a probability of each realization. A well known model that can handle…
Transmission network planning using linear programming
Villasana, R.; Garver, L.L.; Salon, S.J.
1985-02-01
In long range transmission planning, where new load growth, new generation sites and perhaps a new voltage level are to be considered, a computer aided method of visualizing new circuits in a network context is needed. The new method presented meets this need by the combined use of a linear (dc) power flow transmission model and a transportation model (also known as a trans-shipment model). The dc transmission model is solved for the facilities network by obeying both of Kirchhoff's laws, flow conservation at each bus and voltage conservation around each loop. The transportation model is solved for the overloads by obeying only the bus flow conservation law while minimizing a cost objective function. The linear programming solution of the two models together identifies where capacity shortages exist, where to add new circuits, and how much new capacity is needed. A standard linear programming computer package is used to solve the two model formulation. The overload network model is only a mathematical assistance in selecting new lines and is completely unused when the network design is complete and contains no overloads. An application of the model to the horizon-year planning of a six bus network serves to illustrate the method.
Controller design approach based on linear programming.
Tanaka, Ryo; Shibasaki, Hiroki; Ogawa, Hiromitsu; Murakami, Takahiro; Ishida, Yoshihisa
2013-11-01
This study explains and demonstrates the design method for a control system with a load disturbance observer. Observer gains are determined by linear programming (LP) in terms of the Routh-Hurwitz stability criterion and the final-value theorem. In addition, the control model has a feedback structure, and feedback gains are determined to be the linear quadratic regulator. The simulation results confirmed that compared with the conventional method, the output estimated by our proposed method converges to a reference input faster when a load disturbance is added to a control system. In addition, we also confirmed the effectiveness of the proposed method by performing an experiment with a DC motor. PMID:23910155
Voila: A visual object-oriented iterative linear algebra problem solving environment
Edwards, H.C.; Hayes, L.J.
1994-12-31
Application of iterative methods to solve a large linear system of equations currently involves writing a program which calls iterative method subprograms from a large software package. These subprograms have complex interfaces which are difficult to use and even more difficult to program. A problem solving environment specifically tailored to the development and application of iterative methods is needed. This need will be fulfilled by Voila, a problem solving environment which provides a visual programming interface to object-oriented iterative linear algebra kernels. Voila will provide several quantum improvements over current iterative method problem solving environments. First, programming and applying iterative methods is considerably simplified through Voila`s visual programming interface. Second, iterative method algorithm implementations are independent of any particular sparse matrix data structure through Voila`s object-oriented kernels. Third, the compile-link-debug process is eliminated as Voila operates as an interpreter.
Fuzzy Linear Programming and its Application in Home Textile Firm
NASA Astrophysics Data System (ADS)
Vasant, P.; Ganesan, T.; Elamvazuthi, I.
2011-06-01
In this paper, new fuzzy linear programming (FLP) based methodology using a specific membership function, named as modified logistic membership function is proposed. The modified logistic membership function is first formulated and its flexibility in taking up vagueness in parameter is established by an analytical approach. The developed methodology of FLP has provided a confidence in applying to real life industrial production planning problem. This approach of solving industrial production planning problem can have feedback with the decision maker, the implementer and the analyst.
Optimized groundwater containment using linear programming
Quinn, J.J.; Johnson, R.L.; Durham, L.A.
1998-07-01
Groundwater extraction systems are typically installed to contain contaminant plumes. These systems are expensive to install and maintain. A traditional approach to designing such a wellfield is to use a series of trial-and-error simulations to test the effects of various well locations and pump rates. However, optimal locations and pump rates of extraction wells are difficult to determine when the objectives of the potential pumping scheme and the site hydrogeology are considered. This paper describes a case study of an application of linear programming theory to determine optimal well placement and pump rates. Calculations were conducted by using ModMan to link a calibrated MODFLOW flow model with LINDO, a linear programming package. Past activities at the site under study included disposal of contaminants in pits. Several groundwater plumes have been identified, and others may be present. The area of concern is bordered on three sides by a wetland, which receives a portion of its input water budget as groundwater discharge from the disposal area. The objective function of the optimization was to minimize the rate of groundwater extraction while preventing discharge to the marsh across a user-specified boundary. In this manner, the optimization routine selects well locations and pump rates to produce a groundwater divide along this boundary.
Finding Optimal Gains In Linear-Quadratic Control Problems
NASA Technical Reports Server (NTRS)
Milman, Mark H.; Scheid, Robert E., Jr.
1990-01-01
Analytical method based on Volterra factorization leads to new approximations for optimal control gains in finite-time linear-quadratic control problem of system having infinite number of dimensions. Circumvents need to analyze and solve Riccati equations and provides more transparent connection between dynamics of system and optimal gain.
User's manual for LINEAR, a FORTRAN program to derive linear aircraft models
NASA Technical Reports Server (NTRS)
Duke, Eugene L.; Patterson, Brian P.; Antoniewicz, Robert F.
1987-01-01
This report documents a FORTRAN program that provides a powerful and flexible tool for the linearization of aircraft models. The program LINEAR numerically determines a linear system model using nonlinear equations of motion and a user-supplied nonlinear aerodynamic model. The system model determined by LINEAR consists of matrices for both state and observation equations. The program has been designed to allow easy selection and definition of the state, control, and observation variables to be used in a particular model.
Towards an ideal preconditioner for linearized Navier-Stokes problems
Murphy, M.F.
1996-12-31
Discretizing certain linearizations of the steady-state Navier-Stokes equations gives rise to nonsymmetric linear systems with indefinite symmetric part. We show that for such systems there exists a block diagonal preconditioner which gives convergence in three GMRES steps, independent of the mesh size and viscosity parameter (Reynolds number). While this {open_quotes}ideal{close_quotes} preconditioner is too expensive to be used in practice, it provides a useful insight into the problem. We then consider various approximations to the ideal preconditioner, and describe the eigenvalues of the preconditioned systems. Finally, we compare these preconditioners numerically, and present our conclusions.
Regularized total least squares approach for nonconvolutional linear inverse problems.
Zhu, W; Wang, Y; Galatsanos, N P; Zhang, J
1999-01-01
In this correspondence, a solution is developed for the regularized total least squares (RTLS) estimate in linear inverse problems where the linear operator is nonconvolutional. Our approach is based on a Rayleigh quotient (RQ) formulation of the TLS problem, and we accomplish regularization by modifying the RQ function to enforce a smooth solution. A conjugate gradient algorithm is used to minimize the modified RQ function. As an example, the proposed approach has been applied to the perturbation equation encountered in optical tomography. Simulation results show that this method provides more stable and accurate solutions than the regularized least squares and a previously reported total least squares approach, also based on the RQ formulation. PMID:18267442
Measurement problem in PROGRAM UNIVERSE
Noyes, H.P.; Gefwert, C.
1984-12-01
We present a discrete theory that meets the measurement problem in a new way. We generate a growing universe of bit strings, labeled by 2/sup 127/ + 136 strings organized by some representation of the closed, four level, combinatorial hierarchy, of bit-length N/sub 139/ greater than or equal to 139. The rest of the strings for each label, which grow in both length and number, are called addresses. The generating algorithm, called PROGRAM UNIVERSE, starts from a random choice between the two symbols ''0'' and ''1'' and grows (a) by discriminating between two randomly chosen strings and adjoining a novel result to the universe, or when the string so generated is not novel, by (b) adjoining a randomly chosen bit at the growing end of each string. We obtain, by appropriate definitions and interpretations, stable ''particles'' which satisfy the usual relativistic kinematics and quantized angular momentum without being localizable in a continuum space-time. The labeling scheme is congruent with the ''standard model'' of quarks and leptons with three generations, but for the problem at hand, the implementation of this aspect of the theory is unimportant. What matters most is that (a) these complicated ''particles'' have the periodicities familiar from relativistic ''deBroglie waves'' and resolve in a discrete way the ''wave-particle dualism'' and (b) can be ''touched'' by our discrete equivalent of ''soft photons'' in such a way as to follow, macroscopically, the usual Rutherford scattering trajectories with the associated bound states. Thus our theory could provide a discrete description of ''measurement'' in a way that allows no conceptual barrier between the ''micro'' and the ''macro'' worlds, if we are willing to base our physics on counting and exclude the ambiguities associated with the unobservable ''continuum''. 27 refs.
An analytically solvable eigenvalue problem for the linear elasticity equations.
Day, David Minot; Romero, Louis Anthony
2004-07-01
Analytic solutions are useful for code verification. Structural vibration codes approximate solutions to the eigenvalue problem for the linear elasticity equations (Navier's equations). Unfortunately the verification method of 'manufactured solutions' does not apply to vibration problems. Verification books (for example [2]) tabulate a few of the lowest modes, but are not useful for computations of large numbers of modes. A closed form solution is presented here for all the eigenvalues and eigenfunctions for a cuboid solid with isotropic material properties. The boundary conditions correspond physically to a greased wall.
Hlaing, Lwin Mar; Fahmida, Umi; Htet, Min Kyaw; Utomo, Budi; Firmansyah, Agus; Ferguson, Elaine L
2016-07-01
Poor feeding practices result in inadequate nutrient intakes in young children in developing countries. To improve practices, local food-based complementary feeding recommendations (CFR) are needed. This cross-sectional survey aimed to describe current food consumption patterns of 12-23-month-old Myanmar children (n 106) from Ayeyarwady region in order to identify nutrient requirements that are difficult to achieve using local foods and to formulate affordable and realistic CFR to improve dietary adequacy. Weekly food consumption patterns were assessed using a 12-h weighed dietary record, single 24-h recall and a 5-d food record. Food costs were estimated by market surveys. CFR were formulated by linear programming analysis using WHO Optifood software and evaluated among mothers (n 20) using trial of improved practices (TIP). Findings showed that Ca, Zn, niacin, folate and Fe were 'problem nutrients': nutrients that did not achieve 100 % recommended nutrient intake even when the diet was optimised. Chicken liver, anchovy and roselle leaves were locally available nutrient-dense foods that would fill these nutrient gaps. The final set of six CFR would ensure dietary adequacy for five of twelve nutrients at a minimal cost of 271 kyats/d (based on the exchange rate of 900 kyats/USD at the time of data collection: 3rd quarter of 2012), but inadequacies remained for niacin, folate, thiamin, Fe, Zn, Ca and vitamin B6. TIP showed that mothers believed liver and vegetables would cause worms and diarrhoea, but these beliefs could be overcome to successfully promote liver consumption. Therefore, an acceptable set of CFR were developed to improve the dietary practices of 12-23-month-old Myanmar children using locally available foods. Alternative interventions such as fortification, however, are still needed to ensure dietary adequacy of all nutrients. PMID:26696232
Analysing seismic-source mechanisms by linear-programming methods.
Julian, B.R.
1986-01-01
Linear-programming methods are powerful and efficient tools for objectively analysing seismic focal mechanisms and are applicable to a wide range of problems, including tsunami warning and nuclear explosion identification. The source mechanism is represented as a point in the 6-D space of moment-tensor components. The present method can easily be extended to fit observed seismic-wave amplitudes (either signed or absolute) subject to polarity constraints, and to assess the range of mechanisms consistent with a set of measured amplitudes. -from Author
A scalable parallel algorithm for multiple objective linear programs
NASA Technical Reports Server (NTRS)
Wiecek, Malgorzata M.; Zhang, Hong
1994-01-01
This paper presents an ADBASE-based parallel algorithm for solving multiple objective linear programs (MOLP's). Job balance, speedup and scalability are of primary interest in evaluating efficiency of the new algorithm. Implementation results on Intel iPSC/2 and Paragon multiprocessors show that the algorithm significantly speeds up the process of solving MOLP's, which is understood as generating all or some efficient extreme points and unbounded efficient edges. The algorithm gives specially good results for large and very large problems. Motivation and justification for solving such large MOLP's are also included.
The Effect of Data Scaling on Dual Prices and Sensitivity Analysis in Linear Programs
ERIC Educational Resources Information Center
Adlakha, V. G.; Vemuganti, R. R.
2007-01-01
In many practical situations scaling the data is necessary to solve linear programs. This note explores the relationships in translating the sensitivity analysis between the original and the scaled problems.
User's manual for interactive LINEAR: A FORTRAN program to derive linear aircraft models
NASA Technical Reports Server (NTRS)
Antoniewicz, Robert F.; Duke, Eugene L.; Patterson, Brian P.
1988-01-01
An interactive FORTRAN program that provides the user with a powerful and flexible tool for the linearization of aircraft aerodynamic models is documented in this report. The program LINEAR numerically determines a linear system model using nonlinear equations of motion and a user-supplied linear or nonlinear aerodynamic model. The nonlinear equations of motion used are six-degree-of-freedom equations with stationary atmosphere and flat, nonrotating earth assumptions. The system model determined by LINEAR consists of matrices for both the state and observation equations. The program has been designed to allow easy selection and definition of the state, control, and observation variables to be used in a particular model.
An algorithm for the solution of dynamic linear programs
NASA Technical Reports Server (NTRS)
Psiaki, Mark L.
1989-01-01
The algorithm's objective is to efficiently solve Dynamic Linear Programs (DLP) by taking advantage of their special staircase structure. This algorithm constitutes a stepping stone to an improved algorithm for solving Dynamic Quadratic Programs, which, in turn, would make the nonlinear programming method of Successive Quadratic Programs more practical for solving trajectory optimization problems. The ultimate goal is to being trajectory optimization solution speeds into the realm of real-time control. The algorithm exploits the staircase nature of the large constraint matrix of the equality-constrained DLPs encountered when solving inequality-constrained DLPs by an active set approach. A numerically-stable, staircase QL factorization of the staircase constraint matrix is carried out starting from its last rows and columns. The resulting recursion is like the time-varying Riccati equation from multi-stage LQR theory. The resulting factorization increases the efficiency of all of the typical LP solution operations over that of a dense matrix LP code. At the same time numerical stability is ensured. The algorithm also takes advantage of dynamic programming ideas about the cost-to-go by relaxing active pseudo constraints in a backwards sweeping process. This further decreases the cost per update of the LP rank-1 updating procedure, although it may result in more changes of the active set that if pseudo constraints were relaxed in a non-stagewise fashion. The usual stability of closed-loop Linear/Quadratic optimally-controlled systems, if it carries over to strictly linear cost functions, implies that the saving due to reduced factor update effort may outweigh the cost of an increased number of updates. An aerospace example is presented in which a ground-to-ground rocket's distance is maximized. This example demonstrates the applicability of this class of algorithms to aerospace guidance. It also sheds light on the efficacy of the proposed pseudo constraint relaxation
Using linear programming to minimize the cost of nurse personnel.
Matthews, Charles H
2005-01-01
Nursing personnel costs make up a major portion of most hospital budgets. This report evaluates and optimizes the utility of the nurse personnel at the Internal Medicine Outpatient Clinic of Wake Forest University Baptist Medical Center. Linear programming (LP) was employed to determine the effective combination of nurses that would allow for all weekly clinic tasks to be covered while providing the lowest possible cost to the department. Linear programming is a standard application of standard spreadsheet software that allows the operator to establish the variables to be optimized and then requires the operator to enter a series of constraints that will each have an impact on the ultimate outcome. The application is therefore able to quantify and stratify the nurses necessary to execute the tasks. With the report, a specific sensitivity analysis can be performed to assess just how sensitive the outcome is to the stress of adding or deleting a nurse to or from the payroll. The nurse employee cost structure in this study consisted of five certified nurse assistants (CNA), three licensed practicing nurses (LPN), and five registered nurses (RN). The LP revealed that the outpatient clinic should staff four RNs, three LPNs, and four CNAs with 95 percent confidence of covering nurse demand on the floor. This combination of nurses would enable the clinic to: 1. Reduce annual staffing costs by 16 percent; 2. Force each level of nurse to be optimally productive by focusing on tasks specific to their expertise; 3. Assign accountability more efficiently as the nurses adhere to their specific duties; and 4. Ultimately provide a competitive advantage to the clinic as it relates to nurse employee and patient satisfaction. Linear programming can be used to solve capacity problems for just about any staffing situation, provided the model is indeed linear. PMID:18972976
Optimization Research of Generation Investment Based on Linear Programming Model
NASA Astrophysics Data System (ADS)
Wu, Juan; Ge, Xueqian
Linear programming is an important branch of operational research and it is a mathematical method to assist the people to carry out scientific management. GAMS is an advanced simulation and optimization modeling language and it will combine a large number of complex mathematical programming, such as linear programming LP, nonlinear programming NLP, MIP and other mixed-integer programming with the system simulation. In this paper, based on the linear programming model, the optimized investment decision-making of generation is simulated and analyzed. At last, the optimal installed capacity of power plants and the final total cost are got, which provides the rational decision-making basis for optimized investments.
Rees algebras, Monomial Subrings and Linear Optimization Problems
NASA Astrophysics Data System (ADS)
Dupont, Luis A.
2010-06-01
In this thesis we are interested in studying algebraic properties of monomial algebras, that can be linked to combinatorial structures, such as graphs and clutters, and to optimization problems. A goal here is to establish bridges between commutative algebra, combinatorics and optimization. We study the normality and the Gorenstein property-as well as the canonical module and the a-invariant-of Rees algebras and subrings arising from linear optimization problems. In particular, we study algebraic properties of edge ideals and algebras associated to uniform clutters with the max-flow min-cut property or the packing property. We also study algebraic properties of symbolic Rees algebras of edge ideals of graphs, edge ideals of clique clutters of comparability graphs, and Stanley-Reisner rings.
Efficient algorithms for linear dynamic inverse problems with known motion
NASA Astrophysics Data System (ADS)
Hahn, B. N.
2014-03-01
An inverse problem is called dynamic if the object changes during the data acquisition process. This occurs e.g. in medical applications when fast moving organs like the lungs or the heart are imaged. Most regularization methods are based on the assumption that the object is static during the measuring procedure. Hence, their application in the dynamic case often leads to serious motion artefacts in the reconstruction. Therefore, an algorithm has to take into account the temporal changes of the investigated object. In this paper, a reconstruction method that compensates for the motion of the object is derived for dynamic linear inverse problems. The algorithm is validated at numerical examples from computerized tomography.
NASA Astrophysics Data System (ADS)
Kreischer, K. E.
1982-01-01
A program which calculates the linear characteristics of a gyrotron is presented. This program is capable of: (1) calculating the starting current or frequency detuning for each gyrotron mode; (2) generating mode spectra; (3) plotting these linear characteristics as a function of device parameters; and (4) doing the above for any axial RF field profile.
Split diversity in constrained conservation prioritization using integer linear programming
Chernomor, Olga; Minh, Bui Quang; Forest, Félix; Klaere, Steffen; Ingram, Travis; Henzinger, Monika; von Haeseler, Arndt
2015-01-01
Phylogenetic diversity (PD) is a measure of biodiversity based on the evolutionary history of species. Here, we discuss several optimization problems related to the use of PD, and the more general measure split diversity (SD), in conservation prioritization. Depending on the conservation goal and the information available about species, one can construct optimization routines that incorporate various conservation constraints. We demonstrate how this information can be used to select sets of species for conservation action. Specifically, we discuss the use of species' geographic distributions, the choice of candidates under economic pressure, and the use of predator–prey interactions between the species in a community to define viability constraints. Despite such optimization problems falling into the area of NP hard problems, it is possible to solve them in a reasonable amount of time using integer programming. We apply integer linear programming to a variety of models for conservation prioritization that incorporate the SD measure. We exemplarily show the results for two data sets: the Cape region of South Africa and a Caribbean coral reef community. Finally, we provide user-friendly software at http://www.cibiv.at/software/pda. PMID:25893087
Moryakov, A. V. Pylyov, S. S.
2012-12-15
This paper presents the formulation of the problem and the methodical approach for solving large systems of linear differential equations describing nonstationary processes with the use of CUDA technology; this approach is implemented in the ANGEL program. Results for a test problem on transport of radioactive products over loops of a nuclear power plant are given. The possibilities for the use of the ANGEL program for solving various problems that simulate arbitrary nonstationary processes are discussed.
NASA Technical Reports Server (NTRS)
Bowman, L. M.
1984-01-01
An interactive steady state frequency response computer program with graphics is documented. Single or multiple forces may be applied to the structure using a modal superposition approach to calculate response. The method can be reapplied to linear, proportionally damped structures in which the damping may be viscous or structural. The theoretical approach and program organization are described. Example problems, user instructions, and a sample interactive session are given to demonstate the program's capability in solving a variety of problems.
Accurate construction of consensus genetic maps via integer linear programming.
Wu, Yonghui; Close, Timothy J; Lonardi, Stefano
2011-01-01
We study the problem of merging genetic maps, when the individual genetic maps are given as directed acyclic graphs. The computational problem is to build a consensus map, which is a directed graph that includes and is consistent with all (or, the vast majority of) the markers in the input maps. However, when markers in the individual maps have ordering conflicts, the resulting consensus map will contain cycles. Here, we formulate the problem of resolving cycles in the context of a parsimonious paradigm that takes into account two types of errors that may be present in the input maps, namely, local reshuffles and global displacements. The resulting combinatorial optimization problem is, in turn, expressed as an integer linear program. A fast approximation algorithm is proposed, and an additional speedup heuristic is developed. Our algorithms were implemented in a software tool named MERGEMAP which is freely available for academic use. An extensive set of experiments shows that MERGEMAP consistently outperforms JOINMAP, which is the most popular tool currently available for this task, both in terms of accuracy and running time. MERGEMAP is available for download at http://www.cs.ucr.edu/~yonghui/mgmap.html. PMID:20479505
Program Budgeting: Promise and Problems.
ERIC Educational Resources Information Center
Huff, Robert A.
Planning, Programming, and Budgeting Systems (PPBS) are increasingly mentioned as effective means for improving the management of educational resources in institutions of higher education. PPBS has several advantages over conventional accounting systems, which still would be needed for day to day operations. First, it relates cost to output;…
Some problems in applications of the linear variational method
NASA Astrophysics Data System (ADS)
Pupyshev, Vladimir I.; Montgomery, H. E.
2015-09-01
The linear variational method is a standard computational method in quantum mechanics and quantum chemistry. As taught in most classes, the general guidance is to include as many basis functions as practical in the variational wave function. However, if it is desired to study the patterns of energy change accompanying the change of system parameters such as the shape and strength of the potential energy, the problem becomes more complicated. We use one-dimensional systems with a particle in a rectangular or in a harmonic potential confined in an infinite rectangular box to illustrate situations where a variational calculation can give incorrect results. These situations result when the energy of the lowest eigenvalue is strongly dependent on the parameters that describe the shape and strength of the potential. The numerical examples described in this work are provided as cautionary notes for practitioners of numerical variational calculations.
Using parallel banded linear system solvers in generalized eigenvalue problems
NASA Technical Reports Server (NTRS)
Zhang, Hong; Moss, William F.
1993-01-01
Subspace iteration is a reliable and cost effective method for solving positive definite banded symmetric generalized eigenproblems, especially in the case of large scale problems. This paper discusses an algorithm that makes use of two parallel banded solvers in subspace iteration. A shift is introduced to decompose the banded linear systems into relatively independent subsystems and to accelerate the iterations. With this shift, an eigenproblem is mapped efficiently into the memories of a multiprocessor and a high speed-up is obtained for parallel implementations. An optimal shift is a shift that balances total computation and communication costs. Under certain conditions, we show how to estimate an optimal shift analytically using the decay rate for the inverse of a banded matrix, and how to improve this estimate. Computational results on iPSC/2 and iPSC/860 multiprocessors are presented.
First integrals for the Kepler problem with linear drag
NASA Astrophysics Data System (ADS)
Margheri, Alessandro; Ortega, Rafael; Rebelo, Carlota
2016-07-01
In this work we consider the Kepler problem with linear drag, and prove the existence of a continuous vector-valued first integral, obtained taking the limit as t→ +∞ of the Runge-Lenz vector. The norm of this first integral can be interpreted as an asymptotic eccentricity e_{∞} with 0≤ e_{∞} ≤ 1 . The orbits satisfying e_{∞} <1 approach the singularity by an elliptic spiral and the corresponding solutions x(t)=r(t)e^{iθ (t)} have a norm r(t) that goes to zero like a negative exponential and an argument θ (t) that goes to infinity like a positive exponential. In particular, the difference between consecutive times of passage through the pericenter, say T_{n+1} -T_n , goes to zero as 1/n.
Polynomial interior-point algorithms for horizontal linear complementarity problem
NASA Astrophysics Data System (ADS)
Wang, G. Q.; Bai, Y. Q.
2009-11-01
In this paper a class of polynomial interior-point algorithms for horizontal linear complementarity problem based on a new parametric kernel function, with parameters p[set membership, variant][0,1] and [sigma]>=1, are presented. The proposed parametric kernel function is not exponentially convex and also not strongly convex like the usual kernel functions, and has a finite value at the boundary of the feasible region. It is used both for determining the search directions and for measuring the distance between the given iterate and the [mu]-center for the algorithm. The currently best known iteration bounds for the algorithm with large- and small-update methods are derived, namely, and , respectively, which reduce the gap between the practical behavior of the algorithms and their theoretical performance results. Numerical tests demonstrate the behavior of the algorithms for different results of the parameters p,[sigma] and [theta].
LINPRO: Linear inverse problem library for data contaminated by statistical noise
NASA Astrophysics Data System (ADS)
Magierski, Piotr; Wlazłowski, Gabriel
2012-10-01
The library LINPRO which provides the solution to the linear inverse problem for data contaminated by a statistical noise is presented. The library makes use of two methods: Maximum Entropy Method and Singular Value Decomposition. As an example it has been applied to perform an analytic continuation of the imaginary time propagator obtained within the Quantum Monte Carlo method. Program summary Program title: LINPRO v1.0. Catalogue identifier: AEMT_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEMT_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland. Licensing provisions: GNU Lesser General Public Licence. No. of lines in distributed program, including test data, etc.: 110620. No. of bytes in distributed program, including test data, etc.: 3208593. Distribution format: tar.gz. Programming language: C++. Computer: LINPRO library should compile on any computing system that has C++ compiler. Operating system: Linux or Unix. Classification: 4.9, 4.12, 4.13. External routines: OPT++: An Object-Oriented Nonlinear Optimization Library [1] (included in the distribution). Nature of problem: LINPRO library solves linear inverse problems with an arbitrary kernel and arbitrary external constraints imposed on the solution. Solution method: LINPRO library implements two complementary methods: Maximum Entropy Method and SVD method. Additional comments: Tested with compilers-GNU Compiler g++, Intel Compiler icpc. Running time: Problem dependent, ranging from seconds to hours. Each of the examples takes less than a minute to run. References: [1] OPT++: An Object-Oriented Nonlinear Optimization Library, https://software.sandia.gov/opt++/.
On-Off Minimum-Time Control With Limited Fuel Usage: Global Optima Via Linear Programming
DRIESSEN,BRIAN
1999-09-01
A method for finding a global optimum to the on-off minimum-time control problem with limited fuel usage is presented. Each control can take on only three possible values: maximum, zero, or minimum. The simplex method for linear systems naturally yields such a solution for the re-formulation presented herein because it always produces an extreme point solution to the linear program. Numerical examples for the benchmark linear flexible system are presented.
Application of fuzzy linear programming to maintenance scheduling
Noor, S.F.; McDonald, J.R.
1995-10-01
In this paper initially, methods of fuzzy linear programming are discussed, which is then followed by an explanation of fuzzy 0-1 programming and finally the authors show how this method is applied to maintenance scheduling of a series of generators. Fuzzy linear 0-1 programming may be used for maintenance scheduling of generating units, this makes it possible to represent some of the maintenance constraints in flexible form and hence better suited to the requirements of maintenance personnel.
Dynamic programming in applied optimization problems
NASA Astrophysics Data System (ADS)
Zavalishchin, Dmitry
2015-11-01
Features of the use dynamic programming in applied problems are investigated. In practice such problems as finding the critical paths in network planning and control, finding the optimal supply plan in transportation problem, objects territorial distribution are traditionally solved by special methods of operations research. It should be noted that the dynamic programming is not provided computational advantages, but facilitates changes and modifications of tasks. This follows from the Bellman's optimality principle. The features of the multistage decision processes construction in applied problems are provided.
Measuring Astronomical Distances with Linear Programming
ERIC Educational Resources Information Center
Narain, Akshar
2015-01-01
A few years ago it was suggested that the distance to celestial bodies could be computed by tracking their position over about 24 hours and then solving a regression problem. One only needed to use inexpensive telescopes, cameras, and astrometry tools, and the experiment could be done from one's backyard. However, it is not obvious to an amateur…
Micosoft Excel Sensitivity Analysis for Linear and Stochastic Program Feed Formulation
Technology Transfer Automated Retrieval System (TEKTRAN)
Sensitivity analysis is a part of mathematical programming solutions and is used in making nutritional and economic decisions for a given feed formulation problem. The terms, shadow price and reduced cost, are familiar linear program (LP) terms to feed formulators. Because of the nonlinear nature of...
Algorithm 937: MINRES-QLP for Symmetric and Hermitian Linear Equations and Least-Squares Problems.
Choi, Sou-Cheng T; Saunders, Michael A
2014-02-01
We describe algorithm MINRES-QLP and its FORTRAN 90 implementation for solving symmetric or Hermitian linear systems or least-squares problems. If the system is singular, MINRES-QLP computes the unique minimum-length solution (also known as the pseudoinverse solution), which generally eludes MINRES. In all cases, it overcomes a potential instability in the original MINRES algorithm. A positive-definite pre-conditioner may be supplied. Our FORTRAN 90 implementation illustrates a design pattern that allows users to make problem data known to the solver but hidden and secure from other program units. In particular, we circumvent the need for reverse communication. Example test programs input and solve real or complex problems specified in Matrix Market format. While we focus here on a FORTRAN 90 implementation, we also provide and maintain MATLAB versions of MINRES and MINRES-QLP. PMID:25328255
Algorithm 937: MINRES-QLP for Symmetric and Hermitian Linear Equations and Least-Squares Problems
Choi, Sou-Cheng T.; Saunders, Michael A.
2014-01-01
We describe algorithm MINRES-QLP and its FORTRAN 90 implementation for solving symmetric or Hermitian linear systems or least-squares problems. If the system is singular, MINRES-QLP computes the unique minimum-length solution (also known as the pseudoinverse solution), which generally eludes MINRES. In all cases, it overcomes a potential instability in the original MINRES algorithm. A positive-definite pre-conditioner may be supplied. Our FORTRAN 90 implementation illustrates a design pattern that allows users to make problem data known to the solver but hidden and secure from other program units. In particular, we circumvent the need for reverse communication. Example test programs input and solve real or complex problems specified in Matrix Market format. While we focus here on a FORTRAN 90 implementation, we also provide and maintain MATLAB versions of MINRES and MINRES-QLP. PMID:25328255
SUBOPT: A CAD program for suboptimal linear regulators
NASA Technical Reports Server (NTRS)
Fleming, P. J.
1985-01-01
An interactive software package which provides design solutions for both standard linear quadratic regulator (LQR) and suboptimal linear regulator problems is described. Intended for time-invariant continuous systems, the package is easily modified to include sampled-data systems. LQR designs are obtained by established techniques while the large class of suboptimal problems containing controller and/or performance index options is solved using a robust gradient minimization technique. Numerical examples demonstrate features of the package and recent developments are described.
The treatment of contact problems as a non-linear complementarity problem
Bjorkman, G.
1994-12-31
Contact and friction problems are of great importance in many engineering applications, for example in ball bearings, bolted joints, metal forming and also car crashes. In these problems the behavior on the contact surface has a great influence on the overall behavior of the structure. Often problems such as wear and initiation of cracks occur on the contact surface. Contact problems are often described using complementarity conditions, w {>=} 0, p {>=} 0, w{sup T}p = 0, which for example represents the following behavior: (i) two bodies can not penetrate each other, i.e. the gap must be greater than or equal to zero, (ii) the contact pressure is positive and different from zero only if the two bodies are in contact with each other. Here it is shown that by using the theory of non-linear complementarity problems the unilateral behavior of the problem can be treated in a straightforward way. It is shown how solution methods for discretized frictionless contact problem can be formulated. By formulating the problem either as a generalized equation or as a B-differentiable function, it is pointed out how Newton`s method may be extended to contact problems. Also an algorithm for tracing the equilibrium path of frictionless contact problems is described. It is shown that, in addition to the {open_quotes}classical{close_quotes} bifurcation and limit points, there can be points where the equilibrium path has reached an end point or points where bifurcation is possible even if the stiffness matrix is non-singular.
Problem Solving. Workplace Education Program Curriculum.
ERIC Educational Resources Information Center
Burkhart, Jennifer
The BUILD Program (Businesses United to Increase Literacy Development) was conducted from June 1991 through December 1992 as a cooperative workplace literacy program joining Arapahoe Community College and four companies in Littleton, Colorado. This document consists of three modules for the problem-solving and computer learning systems classes of…
Application of fractional derivative models in linear viscoelastic problems
NASA Astrophysics Data System (ADS)
Sasso, M.; Palmieri, G.; Amodio, D.
2011-11-01
Appropriate knowledge of viscoelastic properties of polymers and elastomers is of fundamental importance for a correct modelization and analysis of structures where such materials are present, especially when dealing with dynamic and vibration problems. In this paper experimental results of a series of compression and tension tests on specimens of styrene-butadiene rubber and polypropylene plastic are presented; tests consist of creep and relaxation tests, as well as cyclic loading at different frequencies. Experimental data are then used to calibrate some linear viscoelastic models; besides the classical approach based on a combination in series or parallel of standard mechanical elements as springs and dashpots, particular emphasis is given to the application of models whose constitutive equations are based on differential equations of fractional order (Fractional Derivative Model). The two approaches are compared analyzing their capability to reproduce all the experimental data for given materials; also, the main computational issues related with these models are addressed, and the advantage of using a limited number of parameters is demonstrated.
Approximate labeling via graph cuts based on linear programming.
Komodakis, Nikos; Tziritas, Georgios
2007-08-01
A new framework is presented for both understanding and developing graph-cut-based combinatorial algorithms suitable for the approximate optimization of a very wide class of Markov Random Fields (MRFs) that are frequently encountered in computer vision. The proposed framework utilizes tools from the duality theory of linear programming in order to provide an alternative and more general view of state-of-the-art techniques like the \\alpha-expansion algorithm, which is included merely as a special case. Moreover, contrary to \\alpha-expansion, the derived algorithms generate solutions with guaranteed optimality properties for a much wider class of problems, for example, even for MRFs with nonmetric potentials. In addition, they are capable of providing per-instance suboptimality bounds in all occasions, including discrete MRFs with an arbitrary potential function. These bounds prove to be very tight in practice (that is, very close to 1), which means that the resulting solutions are almost optimal. Our algorithms' effectiveness is demonstrated by presenting experimental results on a variety of low-level vision tasks, such as stereo matching, image restoration, image completion, and optical flow estimation, as well as on synthetic problems. PMID:17568146
The RANDOM computer program: A linear congruential random number generator
NASA Technical Reports Server (NTRS)
Miles, R. F., Jr.
1986-01-01
The RANDOM Computer Program is a FORTRAN program for generating random number sequences and testing linear congruential random number generators (LCGs). The linear congruential form of random number generator is discussed, and the selection of parameters of an LCG for a microcomputer described. This document describes the following: (1) The RANDOM Computer Program; (2) RANDOM.MOD, the computer code needed to implement an LCG in a FORTRAN program; and (3) The RANCYCLE and the ARITH Computer Programs that provide computational assistance in the selection of parameters for an LCG. The RANDOM, RANCYCLE, and ARITH Computer Programs are written in Microsoft FORTRAN for the IBM PC microcomputer and its compatibles. With only minor modifications, the RANDOM Computer Program and its LCG can be run on most micromputers or mainframe computers.
Experience with two parallel programs solving the traveling salesman problem
Mohan, J.
1983-01-01
The traveling salesman problem is solved on CM*, a multiprocessor system, using two parallel search programs based on the branch and bound algorithm of Little, Murty, Sweeny and Karel. One of these programs is synchronous and has a master-slave process structure, while the other is asynchronous and has an egalitarian structure. The absolute execution times and the speedups of the two programs differ significantly. Their execution times differ because of the difference in their process structure. Their speedups differ because they require different amounts of computation to solve the same problem. This difference in the amount of computation is explained by their different heuristic granularities. The difference between the speedup of the asynchronous second program and linear speedup is attributed to processors idling owing to resource contention. 6 references.
Dynamic Programming for Structured Continuous Markov Decision Problems
NASA Technical Reports Server (NTRS)
Dearden, Richard; Meuleau, Nicholas; Washington, Richard; Feng, Zhengzhu
2004-01-01
We describe an approach for exploiting structure in Markov Decision Processes with continuous state variables. At each step of the dynamic programming, the state space is dynamically partitioned into regions where the value function is the same throughout the region. We first describe the algorithm for piecewise constant representations. We then extend it to piecewise linear representations, using techniques from POMDPs to represent and reason about linear surfaces efficiently. We show that for complex, structured problems, our approach exploits the natural structure so that optimal solutions can be computed efficiently.
A linear analytical boundary element method (BEM) for 2D homogeneous potential problems
NASA Astrophysics Data System (ADS)
Friedrich, Jürgen
2002-06-01
The solution of potential problems is not only fundamental for geosciences, but also an essential part of related subjects like electro- and fluid-mechanics. In all fields, solution algorithms are needed that should be as accurate as possible, robust, simple to program, easy to use, fast and small in computer memory. An ideal technique to fulfill these criteria is the boundary element method (BEM) which applies Green's identities to transform volume integrals into boundary integrals. This work describes a linear analytical BEM for 2D homogeneous potential problems that is more robust and precise than numerical methods because it avoids numerical schemes and coordinate transformations. After deriving the solution algorithm, the introduced approach is tested against different benchmarks. Finally, the gained method was incorporated into an existing software program described before in this journal by the same author.
The Intelligence of Dual Simplex Method to Solve Linear Fractional Fuzzy Transportation Problem
Narayanamoorthy, S.; Kalyani, S.
2015-01-01
An approach is presented to solve a fuzzy transportation problem with linear fractional fuzzy objective function. In this proposed approach the fractional fuzzy transportation problem is decomposed into two linear fuzzy transportation problems. The optimal solution of the two linear fuzzy transportations is solved by dual simplex method and the optimal solution of the fractional fuzzy transportation problem is obtained. The proposed method is explained in detail with an example. PMID:25810713
Application of linear programming techniques for controlling linear dynamic plants in real time
NASA Astrophysics Data System (ADS)
Gabasov, R.; Kirillova, F. M.; Ha, Vo Thi Thanh
2016-03-01
The problem of controlling a linear dynamic plant in real time given its nondeterministic model and imperfect measurements of the inputs and outputs is considered. The concepts of current distributions of the initial state and disturbance parameters are introduced. The method for the implementation of disclosable loop using the separation principle is described. The optimal control problem under uncertainty conditions is reduced to the problems of optimal observation, optimal identification, and optimal control of the deterministic system. To extend the domain where a solution to the optimal control problem under uncertainty exists, a two-stage optimal control method is proposed. Results are illustrated using a dynamic plant of the fourth order.
NASA Technical Reports Server (NTRS)
Frost, Susan A.; Bodson, Marc; Acosta, Diana M.
2009-01-01
The Next Generation (NextGen) transport aircraft configurations being investigated as part of the NASA Aeronautics Subsonic Fixed Wing Project have more control surfaces, or control effectors, than existing transport aircraft configurations. Conventional flight control is achieved through two symmetric elevators, two antisymmetric ailerons, and a rudder. The five effectors, reduced to three command variables, produce moments along the three main axes of the aircraft and enable the pilot to control the attitude and flight path of the aircraft. The NextGen aircraft will have additional redundant control effectors to control the three moments, creating a situation where the aircraft is over-actuated and where a simple relationship does not exist anymore between the required effector deflections and the desired moments. NextGen flight controllers will incorporate control allocation algorithms to determine the optimal effector commands and attain the desired moments, taking into account the effector limits. Approaches to solving the problem using linear programming and quadratic programming algorithms have been proposed and tested. It is of great interest to understand their relative advantages and disadvantages and how design parameters may affect their properties. In this paper, we investigate the sensitivity of the effector commands with respect to the desired moments and show on some examples that the solutions provided using the l2 norm of quadratic programming are less sensitive than those using the l1 norm of linear programming.
Interactive Problem Solving Tutorials Through Visual Programming
NASA Astrophysics Data System (ADS)
Undreiu, Lucian; Schuster, David; Undreiu, Adriana
2008-10-01
We have used LabVIEW visual programming to build an interactive tutorial to promote conceptual understanding in physics problem solving. This programming environment is able to offer a web-accessible problem solving experience that enables students to work at their own pace and receive feedback. Intuitive graphical symbols, modular structures and the ability to create templates are just a few of the advantages this software has to offer. The architecture of an application can be designed in a way that allows instructors with little knowledge of LabVIEW to easily personalize it. Both the physics solution and the interactive pedagogy can be visually programmed in LabVIEW. Our physics pedagogy approach is that of cognitive apprenticeship, in that the tutorial guides students to develop conceptual understanding and physical insight into phenomena, rather than purely formula-based solutions. We demonstrate how this model is reflected in the design and programming of the interactive tutorials.
Fast pricing of American options by linear programming
Dempster, M.; Hutton, J.P.
1994-12-31
This paper describes a new method for computation of the value of various American options on underlying dividend bearing securities under standard Black-Scholes assumptions. It is well known that the problem of valuing the American put can be expressed as solving an abstract linear complementarity problem in terms of a parabolic partial differential operator. Generalizing earlier work of Cryer, Dempster and Borwein for elliptic operators, we show that the American put option value function is the solution of an abstract linear programme bounded by the payoff at exercise. Different American options require only different payoff function bounds. Standard finite difference or finite element approximations to the complementarity problem lead to ordinary linear programmes. We report promising computational results for several American option types using IBM`s Optimization System Library on an RS6000/590.
Program Helps Decompose Complicated Design Problems
NASA Technical Reports Server (NTRS)
Rogers, James L., Jr.
1993-01-01
Time saved by intelligent decomposition into smaller, interrelated problems. DeMAID is knowledge-based software system for ordering sequence of modules and identifying possible multilevel structure for design problem. Displays modules in N x N matrix format. Requires investment of time to generate and refine list of modules for input, it saves considerable amount of money and time in total design process, particularly new design problems in which ordering of modules has not been defined. Program also implemented to examine assembly-line process or ordering of tasks and milestones.
Multigrid approaches to non-linear diffusion problems on unstructured meshes
NASA Technical Reports Server (NTRS)
Mavriplis, Dimitri J.; Bushnell, Dennis M. (Technical Monitor)
2001-01-01
The efficiency of three multigrid methods for solving highly non-linear diffusion problems on two-dimensional unstructured meshes is examined. The three multigrid methods differ mainly in the manner in which the nonlinearities of the governing equations are handled. These comprise a non-linear full approximation storage (FAS) multigrid method which is used to solve the non-linear equations directly, a linear multigrid method which is used to solve the linear system arising from a Newton linearization of the non-linear system, and a hybrid scheme which is based on a non-linear FAS multigrid scheme, but employs a linear solver on each level as a smoother. Results indicate that all methods are equally effective at converging the non-linear residual in a given number of grid sweeps, but that the linear solver is more efficient in cpu time due to the lower cost of linear versus non-linear grid sweeps.
Employee assistance program treats personal problems.
Bednarek, R J; Featherston, H J
1984-03-01
Though the concept of employee assistance programs (EAPs) is widely accepted throughout business and industry, few hospitals have established similar channels for dealing with workers whose personal problems cause work-related problems. Among the reasons for the health care profession's lack of involvement in this area are: lack of information about costs and benefits of EAPs; the hospital's multidisciplinary environment in which standards of employee competence and behavior are set by persons from many disciplines; hospital working hours; and health care workers' attitudes about their vulnerability to illness. St. Benedict's Hospital, Ogden, UT, however, has confronted the question of how to demonstrate Christian concern for its employees. St. Benedict's EAP, the Helping Hand, which was created in 1979, combines progressive disciplinary action with the opportunity for early intervention in and treatment of employees' personal problems. When a worker with personal problems is referred to the EAP coordinator, he or she is matched with the appropriate community or hospital resource for treatment. Supervisors are trained to identify employee problems and to focus on employee job performance rather than on attempting to diagnose the problem. St. Benedict's records during the program's first three years illustrate the human benefits as well as the cost savings of an EAP. Of 92 hospital employees who took part in the EAP, 72 improved their situations or resolved their problems. The hospital's turnover rates declined from 36 percent to 20 percent, and approximately $40,800 in turnover and replacement costs were saved. PMID:10317423
A linear-programming approach to temporal reasoning
Jonsson, P.; Baeckstroem, C.
1996-12-31
We present a new formalism, Horn Disjunctive Linear Relations (Horn DLRs), for reasoning about temporal constraints. We prove that deciding satisfiability of sets of Horn DLRs is polynomial by exhibiting an algorithm based upon linear programming. Furthermore, we prove that most other approaches to tractable temporal constraint reasoning can be encoded as Horn DLRs, including the ORD-Horn algebra and most methods for purely quantitative reasoning.
A Mixed Integer Linear Program for Airport Departure Scheduling
NASA Technical Reports Server (NTRS)
Gupta, Gautam; Jung, Yoon Chul
2009-01-01
Aircraft departing from an airport are subject to numerous constraints while scheduling departure times. These constraints include wake-separation constraints for successive departures, miles-in-trail separation for aircraft bound for the same departure fixes, and time-window or prioritization constraints for individual flights. Besides these, emissions as well as increased fuel consumption due to inefficient scheduling need to be included. Addressing all the above constraints in a single framework while allowing for resequencing of the aircraft using runway queues is critical to the implementation of the Next Generation Air Transport System (NextGen) concepts. Prior work on airport departure scheduling has addressed some of the above. However, existing methods use pre-determined runway queues, and schedule aircraft from these departure queues. The source of such pre-determined queues is not explicit, and could potentially be a subjective controller input. Determining runway queues and scheduling within the same framework would potentially result in better scheduling. This paper presents a mixed integer linear program (MILP) for the departure-scheduling problem. The program takes as input the incoming sequence of aircraft for departure from a runway, along with their earliest departure times and an optional prioritization scheme based on time-window of departure for each aircraft. The program then assigns these aircraft to the available departure queues and schedules departure times, explicitly considering wake separation and departure fix restrictions to minimize total delay for all aircraft. The approach is generalized and can be used in a variety of situations, and allows for aircraft prioritization based on operational as well as environmental considerations. We present the MILP in the paper, along with benefits over the first-come-first-serve (FCFS) scheme for numerous randomized problems based on real-world settings. The MILP results in substantially reduced
Problems with the linear q-Fokker Planck equation
NASA Astrophysics Data System (ADS)
Yano, Ryosuke
2015-05-01
In this letter, we discuss the linear q-Fokker Planck equation, whose solution follows Tsallis distribution, from the viewpoint of kinetic theory. Using normal definitions of moments, we can expand the distribution function with infinite moments for 0 ⩽ q < 1, whereas we cannot expand the distribution function with infinite moments for 1 < q owing to emergences of characteristic points in moments. From Grad's 13 moment equations for the linear q-Fokker Planck equation, the dissipation rate of the heat flux via the linear q-Fokker Planck equation diverges at 0 ⩽ q < 2/3. In other words, the thermal conductivity, which defines the heat flux with the spatial gradient of the temperature and the thermal conductivity, which defines the heat flux with the spacial gradient of the density, jumps to zero at q = 2/3, discontinuously.
Linear combination reading program for capture gamma rays
Tanner, Allan B.
1971-01-01
This program computes a weighting function, Qj, which gives a scalar output value of unity when applied to the spectrum of a desired element and a minimum value (considering statistics) when applied to spectra of materials not containing the desired element. Intermediate values are obtained for materials containing the desired element, in proportion to the amount of the element they contain. The program is written in the BASIC language in a format specific to the Hewlett-Packard 2000A Time-Sharing System, and is an adaptation of an earlier program for linear combination reading for X-ray fluorescence analysis (Tanner and Brinkerhoff, 1971). Following the program is a sample run from a study of the application of the linear combination technique to capture-gamma-ray analysis for calcium (report in preparation).
Fixed Point Problems for Linear Transformations on Pythagorean Triples
ERIC Educational Resources Information Center
Zhan, M.-Q.; Tong, J.-C.; Braza, P.
2006-01-01
In this article, an attempt is made to find all linear transformations that map a standard Pythagorean triple (a Pythagorean triple [x y z][superscript T] with y being even) into a standard Pythagorean triple, which have [3 4 5][superscript T] as their fixed point. All such transformations form a monoid S* under matrix product. It is found that S*…
A linear regression solution to the spatial autocorrelation problem
NASA Astrophysics Data System (ADS)
Griffith, Daniel A.
The Moran Coefficient spatial autocorrelation index can be decomposed into orthogonal map pattern components. This decomposition relates it directly to standard linear regression, in which corresponding eigenvectors can be used as predictors. This paper reports comparative results between these linear regressions and their auto-Gaussian counterparts for the following georeferenced data sets: Columbus (Ohio) crime, Ottawa-Hull median family income, Toronto population density, southwest Ohio unemployment, Syracuse pediatric lead poisoning, and Glasgow standard mortality rates, and a small remotely sensed image of the High Peak district. This methodology is extended to auto-logistic and auto-Poisson situations, with selected data analyses including percentage of urban population across Puerto Rico, and the frequency of SIDs cases across North Carolina. These data analytic results suggest that this approach to georeferenced data analysis offers considerable promise.
An alternative method on quadratic programming problems
NASA Astrophysics Data System (ADS)
Dasril, Y.; Mohd, I. B.; Mustaffa, I.; Aminuddin, MMM.
2015-05-01
In this paper we proposed an alternative approach to find the optimum solution of quadratic programming problems (QPP) in its original form without additional information such as slack variable, surplus variable or artificial variable as done in other favourite methods. This approached is based on the violated constraints by the unconstrained optimum. The optimal solution of QPP obtained by searching from initial point to another point alongside of feasible region.
NASA Astrophysics Data System (ADS)
Xu, Jiuping; Li, Jun
2002-09-01
In this paper a class of stochastic multiple-objective programming problems with one quadratic, several linear objective functions and linear constraints has been introduced. The former model is transformed into a deterministic multiple-objective nonlinear programming model by means of the introduction of random variables' expectation. The reference direction approach is used to deal with linear objectives and results in a linear parametric optimization formula with a single linear objective function. This objective function is combined with the quadratic function using the weighted sums. The quadratic problem is transformed into a linear (parametric) complementary problem, the basic formula for the proposed approach. The sufficient and necessary conditions for (properly, weakly) efficient solutions and some construction characteristics of (weakly) efficient solution sets are obtained. An interactive algorithm is proposed based on reference direction and weighted sums. Varying the parameter vector on the right-hand side of the model, the DM can freely search the efficient frontier with the model. An extended portfolio selection model is formed when liquidity is considered as another objective to be optimized besides expectation and risk. The interactive approach is illustrated with a practical example.
An aftercare program for problem patients.
Wasylenki, D A; Plummer, E; Littmann, S
1981-07-01
The high readmission rates of discharged psychiatric patients have forced mental health professionals to play closer attention to aftercare planning. A program was developed at a psychiatric hospital in Ontario in 1977 to deal with "problem patients"--those who were deemed difficult to place in the community by the referral person or department. The program was characterized by shared institutional-community staffing, systematic aftercare assessment and planning, a crisis intervention approach to discharge, the use of a transitional staff member with patients, and the development of close relationships with community agencies. Study data show that the program was effective in limiting the number of readmissions during its first two years to 20 per cent. PMID:6263785
LFSPMC: Linear feature selection program using the probability of misclassification
NASA Technical Reports Server (NTRS)
Guseman, L. F., Jr.; Marion, B. P.
1975-01-01
The computational procedure and associated computer program for a linear feature selection technique are presented. The technique assumes that: a finite number, m, of classes exists; each class is described by an n-dimensional multivariate normal density function of its measurement vectors; the mean vector and covariance matrix for each density function are known (or can be estimated); and the a priori probability for each class is known. The technique produces a single linear combination of the original measurements which minimizes the one-dimensional probability of misclassification defined by the transformed densities.
NASA Technical Reports Server (NTRS)
Banks, H. T.; Silcox, R. J.; Keeling, S. L.; Wang, C.
1989-01-01
A unified treatment of the linear quadratic tracking (LQT) problem, in which a control system's dynamics are modeled by a linear evolution equation with a nonhomogeneous component that is linearly dependent on the control function u, is presented; the treatment proceeds from the theoretical formulation to a numerical approximation framework. Attention is given to two categories of LQT problems in an infinite time interval: the finite energy and the finite average energy. The behavior of the optimal solution for finite time-interval problems as the length of the interval tends to infinity is discussed. Also presented are the formulations and properties of LQT problems in a finite time interval.
NASA Astrophysics Data System (ADS)
Bakker, Lennard F.; Ouyang, Tiancheng; Yan, Duokui; Simmons, Skyler; Roberts, Gareth E.
2010-10-01
We apply the analytic-numerical method of Roberts to determine the linear stability of time-reversible periodic simultaneous binary collision orbits in the symmetric collinear four-body problem with masses 1, m, m, 1, and also in a symmetric planar four-body problem with equal masses. In both problems, the assumed symmetries reduce the determination of linear stability to the numerical computation of a single real number. For the collinear problem, this verifies the earlier numerical results of Sweatman for linear stability with respect to collinear and symmetric perturbations.
Algorithmic Trading with Developmental and Linear Genetic Programming
NASA Astrophysics Data System (ADS)
Wilson, Garnett; Banzhaf, Wolfgang
A developmental co-evolutionary genetic programming approach (PAM DGP) and a standard linear genetic programming (LGP) stock trading systemare applied to a number of stocks across market sectors. Both GP techniques were found to be robust to market fluctuations and reactive to opportunities associated with stock price rise and fall, with PAMDGP generating notably greater profit in some stock trend scenarios. Both algorithms were very accurate at buying to achieve profit and selling to protect assets, while exhibiting bothmoderate trading activity and the ability to maximize or minimize investment as appropriate. The content of the trading rules produced by both algorithms are also examined in relation to stock price trend scenarios.
Towards Resolving the Crab Sigma-Problem: A Linear Accelerator?
NASA Technical Reports Server (NTRS)
Contopoulos, Ioannis; Kazanas, Demosthenes; White, Nicholas E. (Technical Monitor)
2002-01-01
Using the exact solution of the axisymmetric pulsar magnetosphere derived in a previous publication and the conservation laws of the associated MHD flow, we show that the Lorentz factor of the outflowing plasma increases linearly with distance from the light cylinder. Therefore, the ratio of the Poynting to particle energy flux, generically referred to as sigma, decreases inversely proportional to distance, from a large value (typically approx. greater than 10(exp 4)) near the light cylinder to sigma approx. = 1 at a transition distance R(sub trans). Beyond this distance the inertial effects of the outflowing plasma become important and the magnetic field geometry must deviate from the almost monopolar form it attains between R(sub lc), and R(sub trans). We anticipate that this is achieved by collimation of the poloidal field lines toward the rotation axis, ensuring that the magnetic field pressure in the equatorial region will fall-off faster than 1/R(sup 2) (R being the cylindrical radius). This leads both to a value sigma = a(sub s) much less than 1 at the nebular reverse shock at distance R(sub s) (R(sub s) much greater than R(sub trans)) and to a component of the flow perpendicular to the equatorial component, as required by observation. The presence of the strong shock at R = R(sub s) allows for the efficient conversion of kinetic energy into radiation. We speculate that the Crab pulsar is unique in requiring sigma(sub s) approx. = 3 x 10(exp -3) because of its small translational velocity, which allowed for the shock distance R(sub s) to grow to values much greater than R(sub trans).
Molecular solutions to the binary integer programming problem based on DNA computation.
Yeh, Chung-Wei; Chu, Chih-Ping; Wu, Kee-Rong
2006-01-01
Binary optimization is a widely investigated topic in integer linear programming. This study proposes a DNA-based computing algorithm for solving the significantly large binary integer programming (BIP) problem. The proposed approach is based upon Adleman and Lipton's DNA operations to solve the BIP problem. The potential of DNA computation for the BIP problem is promising given the operational time complexity of O(nxk). PMID:16229936
NASA Technical Reports Server (NTRS)
Snow, L. S.; Kuhn, A. E.
1975-01-01
Previous error analyses conducted by the Guidance and Dynamics Branch of NASA have used the Guidance Analysis Program (GAP) as the trajectory simulation tool. Plans are made to conduct all future error analyses using the Space Vehicle Dynamics Simulation (SVDS) program. A study was conducted to compare the inertial measurement unit (IMU) error simulations of the two programs. Results of the GAP/SVDS comparison are presented and problem areas encountered while attempting to simulate IMU errors, vehicle performance uncertainties and environmental uncertainties using SVDS are defined. An evaluation of the SVDS linear error analysis capability is also included.
Gene Golub; Kwok Ko
2009-03-30
The solutions of sparse eigenvalue problems and linear systems constitute one of the key computational kernels in the discretization of partial differential equations for the modeling of linear accelerators. The computational challenges faced by existing techniques for solving those sparse eigenvalue problems and linear systems call for continuing research to improve on the algorithms so that ever increasing problem size as required by the physics application can be tackled. Under the support of this award, the filter algorithm for solving large sparse eigenvalue problems was developed at Stanford to address the computational difficulties in the previous methods with the goal to enable accelerator simulations on then the world largest unclassified supercomputer at NERSC for this class of problems. Specifically, a new method, the Hemitian skew-Hemitian splitting method, was proposed and researched as an improved method for solving linear systems with non-Hermitian positive definite and semidefinite matrices.
Global symmetry relations in linear and viscoplastic mobility problems
NASA Astrophysics Data System (ADS)
Kamrin, Ken; Goddard, Joe
2014-11-01
The mobility tensor of a textured surface is a homogenized effective boundary condition that describes the effective slip of a fluid adjacent to the surface in terms of an applied shear traction far above the surface. In the Newtonian fluid case, perturbation analysis yields a mobility tensor formula, which suggests that regardless of the surface texture (i.e. nonuniform hydrophobicity distribution and/or height fluctuations) the mobility tensor is always symmetric. This conjecture is verified using a Lorentz reciprocity argument. It motivates the question of whether such symmetries would arise for nonlinear constitutive relations and boundary conditions, where the mobility tensor is not a constant but a function of the applied stress. We show that in the case of a strongly dissipative nonlinear constitutive relation--one whose strain-rate relates to the stress solely through a scalar Edelen potential--and strongly dissipative surface boundary conditions--one whose hydrophobic character is described by a potential relating slip to traction--the mobility function of the surface also maintains tensorial symmetry. By extension, the same variational arguments can be applied in problems such as the permeability tensor for viscoplastic flow through porous media, and we find that similar symmetries arise. These findings could be used to simplify the characterization of viscoplastic drag in various anisotropic media. (Joe Goddard is a former graduate student of Acrivos).
Solution algorithms for non-linear singularly perturbed optimal control problems
NASA Technical Reports Server (NTRS)
Ardema, M. D.
1983-01-01
The applicability and usefulness of several classical and other methods for solving the two-point boundary-value problem which arises in non-linear singularly perturbed optimal control are assessed. Specific algorithms of the Picard, Newton and averaging types are formally developed for this class of problem. The computational requirements associated with each algorithm are analysed and compared with the computational requirement of the method of matched asymptotic expansions. Approximate solutions to a linear and a non-linear problem are obtained by each method and compared.
Carey, G.F.; Young, D.M.
1993-12-31
The program outlined here is directed to research on methods, algorithms, and software for distributed parallel supercomputers. Of particular interest are finite element methods and finite difference methods together with sparse iterative solution schemes for scientific and engineering computations of very large-scale systems. Both linear and nonlinear problems will be investigated. In the nonlinear case, applications with bifurcation to multiple solutions will be considered using continuation strategies. The parallelizable numerical methods of particular interest are a family of partitioning schemes embracing domain decomposition, element-by-element strategies, and multi-level techniques. The methods will be further developed incorporating parallel iterative solution algorithms with associated preconditioners in parallel computer software. The schemes will be implemented on distributed memory parallel architectures such as the CRAY MPP, Intel Paragon, the NCUBE3, and the Connection Machine. We will also consider other new architectures such as the Kendall-Square (KSQ) and proposed machines such as the TERA. The applications will focus on large-scale three-dimensional nonlinear flow and reservoir problems with strong convective transport contributions. These are legitimate grand challenge class computational fluid dynamics (CFD) problems of significant practical interest to DOE. The methods developed and algorithms will, however, be of wider interest.
Semidefinite programming formulation of linear-scaling electronic structure theories
NASA Astrophysics Data System (ADS)
Veeraraghavan, Srikant; Mazziotti, David A.
2015-08-01
We present a linear-scaling approach based on semidefinite programs (SDPs) to compute the density matrix for effective one-electron theories. Traditional methods constrain the density matrix to represent a Slater determinant and hence rely on parameterization or purification. We eliminate the need for such a constraint by performing an energy minimization over all the convex combinations of density matrices representing Slater determinants. By not relying on purification, the SDP approach not only eliminates accumulation error present in some methods but also reduces the amount of truncation error. Sparsity in the Hamiltonian can be exploited to make the SDP approach scale linearly with system size. Crossovers in computational time with a cubically scaling algorithm are demonstrated for one-dimensional hydrogen chains ranging from H50 to H1500.
LTSTAR- SUPERSONIC WING NON-LINEAR AERODYNAMICS PROGRAM
NASA Technical Reports Server (NTRS)
Carlson, H. W.
1994-01-01
The Supersonic Wing Nonlinear Aerodynamics computer program, LTSTAR, was developed to provide for the estimation of the nonlinear aerodynamic characteristics of a wing at supersonic speeds. This corrected linearized-theory method accounts for nonlinearities in the variation of basic pressure loadings with local surface slopes, predicts the degree of attainment of theoretical leading-edge thrust forces, and provides an estimate of detached leading-edge vortex loadings that result when the theoretical thrust forces are not fully realized. Comparisons of LTSTAR computations with experimental results show significant improvements in detailed wing pressure distributions, particularly for large angles of attack and for regions of the wing where the flow is highly three-dimensional. The program provides generally improved predictions of the wing overall force and moment coefficients. LTSTAR could be useful in design studies aimed at aerodynamic performance optimization and for providing more realistic trade-off information for selection of wing planform geometry and airfoil section parameters. Input to the LTSTAR program includes wing planform data, freestream conditions, wing camber, wing thickness, scaling options, and output options. Output includes pressure coefficients along each chord, section normal and axial force coefficients, and the spanwise distribution of section force coefficients. With the chordwise distributions and section coefficients at each angle of attack, three sets of polars are output. The first set is for linearized theory with and without full leading-edge thrust, the second set includes nonlinear corrections, and the third includes estimates of attainable leading-edge thrust and vortex increments along with the nonlinear corrections. The LTSTAR program is written in FORTRAN IV for batch execution and has been implemented on a CDC 6000 series computer with a central memory requirement of approximately 150K (octal) of 60 bit words. The LTSTAR
NASA Technical Reports Server (NTRS)
Armstrong, E. S.
1975-01-01
A digital computer program (ORACLS) for implementing the optimal regulator theory approach to the design of controllers for linear time-invariant systems is described. The user-oriented program employs the latest numerical techniques and is applicable to both the digital and continuous control problems.
NASA Technical Reports Server (NTRS)
Nguyen, D. T.; Al-Nasra, M.; Zhang, Y.; Baddourah, M. A.; Agarwal, T. K.; Storaasli, O. O.; Carmona, E. A.
1991-01-01
Several parallel-vector computational improvements to the unconstrained optimization procedure are described which speed up the structural analysis-synthesis process. A fast parallel-vector Choleski-based equation solver, pvsolve, is incorporated into the well-known SAP-4 general-purpose finite-element code. The new code, denoted PV-SAP, is tested for static structural analysis. Initial results on a four processor CRAY 2 show that using pvsolve reduces the equation solution time by a factor of 14-16 over the original SAP-4 code. In addition, parallel-vector procedures for the Golden Block Search technique and the BFGS method are developed and tested for nonlinear unconstrained optimization. A parallel version of an iterative solver and the pvsolve direct solver are incorporated into the BFGS method. Preliminary results on nonlinear unconstrained optimization test problems, using pvsolve in the analysis, show excellent parallel-vector performance indicating that these parallel-vector algorithms can be used in a new generation of finite-element based structural design/analysis-synthesis codes.
Bramble, J.H.; Pasciak, J.E.
1981-01-01
The linearized scalar potential formulation of the magnetostatic field problem is considered. The approach involves a reformulation of the continuous problem as a parametric boundary problem. By the introduction of a spherical interface and the use of spherical harmonics, the infinite boundary condition can also be satisfied in the parametric framework. The reformulated problem is discretized by finite element techniques and a discrete parametric problem is solved by conjugate gradient iteration. This approach decouples the problem in that only standard Neumann type elliptic finite element systems on separate bounded domains need be solved. The boundary conditions at infinity and the interface conditions are satisfied during the boundary parametric iteration.
NASA Technical Reports Server (NTRS)
Gibson, J. S.; Rosen, I. G.
1986-01-01
An abstract approximation framework is developed for the finite and infinite time horizon discrete-time linear-quadratic regulator problem for systems whose state dynamics are described by a linear semigroup of operators on an infinite dimensional Hilbert space. The schemes included the framework yield finite dimensional approximations to the linear state feedback gains which determine the optimal control law. Convergence arguments are given. Examples involving hereditary and parabolic systems and the vibration of a flexible beam are considered. Spline-based finite element schemes for these classes of problems, together with numerical results, are presented and discussed.
NASA Astrophysics Data System (ADS)
Diwaker; Chakraborty, Aniruddha
2015-12-01
In the present work we have reported a simple exact analytical solution to the curve crossing problem of two linear diabatic potentials by transfer matrix method. Our problem assumes the crossing of two linear diabatic potentials which are coupled to each other by an arbitrary coupling (in contrast to linear potentials in the vicinity of crossing points) and for numerical calculation purposes this arbitrary coupling is taken as Gaussian coupling which is further expressed as a collection of Dirac delta functions. Further we calculated the transition probability from one diabatic potential to another by the use of this method.
Illusion of Linearity in Geometry: Effect in Multiple-Choice Problems
ERIC Educational Resources Information Center
Vlahovic-Stetic, Vesna; Pavlin-Bernardic, Nina; Rajter, Miroslav
2010-01-01
The aim of this study was to examine if there is a difference in the performance on non-linear problems regarding age, gender, and solving situation, and whether the multiple-choice answer format influences students' thinking. A total of 112 students, aged 15-16 and 18-19, were asked to solve problems for which solutions based on proportionality…
Fast and Robust Newton strategies for non-linear geodynamics problems
NASA Astrophysics Data System (ADS)
Le Pourhiet, Laetitia; May, Dave
2014-05-01
Geodynamic problems are inherently non-linear, with sources of non-inearities arising from the (i) rheology, (ii) boundary conditions and (iii) the choice of time integration scheme. We have developed a robust non-linear scheme utilizing PETSc's non-linear solver framework; SNES. Through the SNES framework, we have access to a wide range of globalization techniques. In this work we extensively use line search implementation. We explored a wide range different strategies for solving a variety of non-linear problems specific to geodynamics. In this presentation, we report of the most robust line-searching techniques which we have found for the three classes of non-linearities previously identified. Among the class of rheological non-linearities, the shear banding instability using visco-plastic flow rules is the most difficult to solve. Distinctively from its sibling, the elasto-plastic rheology, the visco-plastic rheology causes instantaneous shear localisation. As a results, decreasing time-stepping is not a viable approach to better capture the initial phase of localisation. Furthermore, return map algorithms based on a consistent tangent cannot be used as the slope of the tangent is infinite. Obtaining a converged non-linear solution to this problem only relies on the robustness non-linear solver. After presenting a Newton methodology suitable for rheological non-linearities, we examine the performance of this formulation when frictional sliding boundary conditions are introduced. We assess the robustness of the non-linear solver when applied to critical taper type problems.
NASA Astrophysics Data System (ADS)
Schröder, Jörg; Keip, Marc-André
2012-08-01
The contribution addresses a direct micro-macro transition procedure for electromechanically coupled boundary value problems. The two-scale homogenization approach is implemented into a so-called FE2-method which allows for the computation of macroscopic boundary value problems in consideration of microscopic representative volume elements. The resulting formulation is applicable to the computation of linear as well as nonlinear problems. In the present paper, linear piezoelectric as well as nonlinear electrostrictive material behavior are investigated, where the constitutive equations on the microscale are derived from suitable thermodynamic potentials. The proposed direct homogenization procedure can also be applied for the computation of effective elastic, piezoelectric, dielectric, and electrostrictive material properties.
ERIC Educational Resources Information Center
Moody, John Charles
Assessed were the effects of linear and modified linear programed materials on the achievement of slow learners in tenth grade Biological Sciences Curriculum Study (BSCS) Special Materials biology. Two hundred and six students were randomly placed into four programed materials formats: linear programed materials, modified linear program with…
On high-continuity transfinite element formulations for linear-nonlinear transient thermal problems
NASA Technical Reports Server (NTRS)
Tamma, Kumar K.; Railkar, Sudhir B.
1987-01-01
This paper describes recent developments in the applicability of a hybrid transfinite element methodology with emphasis on high-continuity formulations for linear/nonlinear transient thermal problems. The proposed concepts furnish accurate temperature distributions and temperature gradients making use of a relatively smaller number of degrees of freedom; and the methodology is applicable to linear/nonlinear thermal problems. Characteristic features of the formulations are described in technical detail as the proposed hybrid approach combines the major advantages and modeling features of high-continuity thermal finite elements in conjunction with transform methods and classical Galerkin schemes. Several numerical test problems are evaluated and the results obtained validate the proposed concepts for linear/nonlinear thermal problems.
Some comparison of restarted GMRES and QMR for linear and nonlinear problems
Morgan, R.; Joubert, W.
1994-12-31
Comparisons are made between the following methods: QMR including its transpose-free version, restarted GMRES, and a modified restarted GMRES that uses approximate eigenvectors to improve convergence, For some problems, the modified GMRES is competitive with or better than QMR in terms of the number of matrix-vector products. Also, the GMRES methods can be much better when several similar systems of linear equations must be solved, as in the case of nonlinear problems and ODE problems.
NASA Astrophysics Data System (ADS)
Abramov, A. A.; Yukhno, L. F.
2016-07-01
A nonlinear eigenvalue problem for a linear system of ordinary differential equations is examined on a semi-infinite interval. The problem is supplemented by nonlocal conditions specified by a Stieltjes integral. At infinity, the solution must be bounded. In addition to these basic conditions, the solution must satisfy certain redundant conditions, which are also nonlocal. A numerically stable method for solving such a singular overdetermined eigenvalue problem is proposed and analyzed. The essence of the method is that this overdetermined problem is replaced by an auxiliary problem consistent with all the above conditions.
Initial-value problem for a linear ordinary differential equation of noninteger order
Pskhu, Arsen V
2011-04-30
An initial-value problem for a linear ordinary differential equation of noninteger order with Riemann-Liouville derivatives is stated and solved. The initial conditions of the problem ensure that (by contrast with the Cauchy problem) it is uniquely solvable for an arbitrary set of parameters specifying the orders of the derivatives involved in the equation; these conditions are necessary for the equation under consideration. The problem is reduced to an integral equation; an explicit representation of the solution in terms of the Wright function is constructed. As a consequence of these results, necessary and sufficient conditions for the solvability of the Cauchy problem are obtained. Bibliography: 7 titles.
Research program with no ''measurement problem''
Noyes, H.P.; Gefwert, C.; Manthey, M.J.
1985-07-01
The ''measurement problem'' of contemporary physics is met by recognizing that the physicist participates when constructing and when applying the theory consisting of the formulated formal and measurement criteria (the expressions and rules) providing the necessary conditions which allow him to compute and measure facts, yet retains objectivity by requiring that these criteria, rules and facts be in corroborative equilibrium. We construct the particulate states of quantum physics by a recursive program which incorporates the non-determinism born of communication between asynchronous processes over a shared memory. Their quantum numbers and coupling constants arise from the construction via the unique 4-level combinatorial hierarchy. The construction defines indivisible quantum events with the requisite supraluminal correlations, yet does not allow supraluminal communication. Measurement criteria incorporate c, h-bar, and m/sub p/ or (not ''and'') G. The resulting theory is discrete throughout, contains no infinities, and, as far as we have developed it, is in agreement with quantum mechanical and cosmological fact.
Correlates of Problem-Solving in Programming.
ERIC Educational Resources Information Center
Chung, Choi-man
1988-01-01
Examines some correlates of programing ability that can predict the computer programing performance of students. Finds that students who score high on mathematics and spatial tests will score high on programing ability tests. Finds that boys perform significantly better than girls in programing ability, as do those who possess home computers. (KO)
Microgrid Reliability Modeling and Battery Scheduling Using Stochastic Linear Programming
Cardoso, Goncalo; Stadler, Michael; Siddiqui, Afzal; Marnay, Chris; DeForest, Nicholas; Barbosa-Povoa, Ana; Ferrao, Paulo
2013-05-23
This paper describes the introduction of stochastic linear programming into Operations DER-CAM, a tool used to obtain optimal operating schedules for a given microgrid under local economic and environmental conditions. This application follows previous work on optimal scheduling of a lithium-iron-phosphate battery given the output uncertainty of a 1 MW molten carbonate fuel cell. Both are in the Santa Rita Jail microgrid, located in Dublin, California. This fuel cell has proven unreliable, partially justifying the consideration of storage options. Several stochastic DER-CAM runs are executed to compare different scenarios to values obtained by a deterministic approach. Results indicate that using a stochastic approach provides a conservative yet more lucrative battery schedule. Lower expected energy bills result, given fuel cell outages, in potential savings exceeding 6percent.
Study Abroad Programs: Probleme und Loesungsvorschlage (Problems and Suggested Solutions)
ERIC Educational Resources Information Center
Schild, Kurt W.
1977-01-01
Describes an apparently very successful study program for Americans, conducted by Michigan State University in Mayen, Rheinland-Pfalz. The small (pop. 22,000) non-university city offered many advantages, including relatively low living costs. All students lived with German families. Various contacts are described, including weekend trips. (Text is…
Solution of Mixed-Integer Programming Problems on the XT5
Hartman-Baker, Rebecca J; Busch, Ingrid Karin; Hilliard, Michael R; Middleton, Richard S; Schultze, Michael
2009-01-01
In this paper, we describe our experience with solving difficult mixed-integer linear programming problems (MILPs) on the petaflop Cray XT5 system at the National Center for Computational Sciences at Oak Ridge National Laboratory. We describe the algorithmic, software, and hardware needs for solving MILPs and present the results of using PICO, an open-source, parallel, mixed-integer linear programming solver developed at Sandia National Laboratories, to solve canonical MILPs as well as problems of interest arising from the logistics and supply chain management field.
Djukanovic, M.; Babic, B.; Milosevic, B.; Sobajic, D.J.; Pao, Y.H. |
1996-05-01
In this paper the blending/transloading facilities are modeled using an interactive fuzzy linear programming (FLP), in order to allow the decision-maker to solve the problem of uncertainty of input information within the fuel scheduling optimization. An interactive decision-making process is formulated in which decision-maker can learn to recognize good solutions by considering all possibilities of fuzziness. The application of the fuzzy formulation is accompanied by a careful examination of the definition of fuzziness, appropriateness of the membership function and interpretation of results. The proposed concept provides a decision support system with integration-oriented features, whereby the decision-maker can learn to recognize the relative importance of factors in the specific domain of optimal fuel scheduling (OFS) problem. The formulation of a fuzzy linear programming problem to obtain a reasonable nonfuzzy solution under consideration of the ambiguity of parameters, represented by fuzzy numbers, is introduced. An additional advantage of the FLP formulation is its ability to deal with multi-objective problems.
Conflict Management: A Premarital Training Program in Mutual Problem Solving.
ERIC Educational Resources Information Center
Ridley, Carl A.; And Others
1981-01-01
Evaluated the effectiveness of a structured educational program to train premarital couples in communication and mutual problem-solving skills. Couples (N=26) participated in a problem-solving training program, while similar couples (N=28) participated in a relationship discussion group. The problem-solving group showed a greater increase in…
SLFP: A stochastic linear fractional programming approach for sustainable waste management
Zhu, H.; Huang, G.H.
2011-12-15
Highlights: > A new fractional programming (SLFP) method is developed for waste management. > SLFP can solve ratio optimization problems associated with random inputs. > A case study of waste flow allocation demonstrates its applicability. > SLFP helps compare objectives of two aspects and reflect system efficiency. > This study supports in-depth analysis of tradeoffs among multiple system criteria. - Abstract: A stochastic linear fractional programming (SLFP) approach is developed for supporting sustainable municipal solid waste management under uncertainty. The SLFP method can solve ratio optimization problems associated with random information, where chance-constrained programming is integrated into a linear fractional programming framework. It has advantages in: (1) comparing objectives of two aspects, (2) reflecting system efficiency, (3) dealing with uncertainty expressed as probability distributions, and (4) providing optimal-ratio solutions under different system-reliability conditions. The method is applied to a case study of waste flow allocation within a municipal solid waste (MSW) management system. The obtained solutions are useful for identifying sustainable MSW management schemes with maximized system efficiency under various constraint-violation risks. The results indicate that SLFP can support in-depth analysis of the interrelationships among system efficiency, system cost and system-failure risk.
An iterative method to solve the heat transfer problem under the non-linear boundary conditions
NASA Astrophysics Data System (ADS)
Zhu, Zhenggang; Kaliske, Michael
2012-02-01
The aim of the paper is to determine the approximation of the tangential matrix for solving the non-linear heat transfer problem. Numerical model of the strongly non-linear heat transfer problem based on the theory of the finite element method is presented. The tangential matrix of the Newton method is formulated. A method to solve the heat transfer with the non-linear boundary conditions, based on the secant slope of a reference function, is developed. The contraction mapping principle is introduced to verify the convergence of this method. The application of the method is shown by two examples. Numerical results of these examples are comparable to the ones solved with the Newton method and the commercial software COMSOL for the heat transfer problem under the radiative boundary conditions.
Solving Fractional Programming Problems based on Swarm Intelligence
NASA Astrophysics Data System (ADS)
Raouf, Osama Abdel; Hezam, Ibrahim M.
2014-04-01
This paper presents a new approach to solve Fractional Programming Problems (FPPs) based on two different Swarm Intelligence (SI) algorithms. The two algorithms are: Particle Swarm Optimization, and Firefly Algorithm. The two algorithms are tested using several FPP benchmark examples and two selected industrial applications. The test aims to prove the capability of the SI algorithms to solve any type of FPPs. The solution results employing the SI algorithms are compared with a number of exact and metaheuristic solution methods used for handling FPPs. Swarm Intelligence can be denoted as an effective technique for solving linear or nonlinear, non-differentiable fractional objective functions. Problems with an optimal solution at a finite point and an unbounded constraint set, can be solved using the proposed approach. Numerical examples are given to show the feasibility, effectiveness, and robustness of the proposed algorithm. The results obtained using the two SI algorithms revealed the superiority of the proposed technique among others in computational time. A better accuracy was remarkably observed in the solution results of the industrial application problems.
The Physics Program at the International Linear Collider
NASA Astrophysics Data System (ADS)
Strube, Jan; International Linear Collider Physics; Detector study groups Team
2016-03-01
The precise exploration of all aspects of the Higgs sector is one of the key goals for future colliders at the Energy Frontier. The International Linear Collider (ILC) provides the capability for model-independent measurements of all relevant couplings of the Higgs boson to fermions and gauge bosons, including direct measurements of the Top Yukawa coupling as well as of the Higgs self-coupling. In addition, it has a discovery potential for physics beyond the Standard Model that is complementary to the LHC. This contribution will review the highlights of ILC physics in the context of a 20-year-long program. This program covers different collision energies up to 500 GeV with various beam polarizations, each contributing important aspects to the exploration of this new sector of particle physics. Beyond this initial scope of the ILC, we will also discuss the prospects of a 1 TeV upgrade, which offers complementary capabilities for the measurement of double Higgs production and the Higgs self-coupling and increases the reach of direct and indirect searches. This work is presented on behalf of the groups contributing to ILC physics and detector studies in Asia, Europe and the US.
Multigrid for the Galerkin least squares method in linear elasticity: The pure displacement problem
Yoo, Jaechil
1996-12-31
Franca and Stenberg developed several Galerkin least squares methods for the solution of the problem of linear elasticity. That work concerned itself only with the error estimates of the method. It did not address the related problem of finding effective methods for the solution of the associated linear systems. In this work, we prove the convergence of a multigrid (W-cycle) method. This multigrid is robust in that the convergence is uniform as the parameter, v, goes to 1/2 Computational experiments are included.
Wang, C.Y.
1985-01-01
A three-dimensional computer program for linear/non-linear, static/dynamic analyses of reactor-piping systems under various accident loads is described. In the analysis, the hydrodynamic calculation can be performed in the implicit or semi-implicit manner. The structure response can be calculated using either a purely explicit or implicit time-integration scheme. Coupling between the fluid and structure is achieved by utilizing either the implicit-explicit or implicit-implicit link. Thus, a wide range of piping safety problems can be analyzed by the suitable choice of options available in the hydrodynamics and structural analysis. In this paper, several salient features are presented. Sample problems illustrating the versatility of the program are given. The results are discussed in detail.
Weighted linear least squares problem: an interval analysis approach to rank determination
Manteuffel, T. A.
1980-08-01
This is an extension of the work in SAND--80-0655 to the weighted linear least squares problem. Given the weighted linear least squares problem WAx approx. = Wb, where W is a diagonal weighting matrix, and bounds on the uncertainty in the elements of A, we define an interval matrix A/sup I/ that contains all perturbations of A due to these uncertainties and say that the problem is rank deficient if any member of A/sup I/ is rank deficient. It is shown that, if WA = QR is the QR decomposition of WA, then Q and R/sup -1/ can be used to bound the rank of A/sup I/. A modification of the Modified Gram--Schmidt QR decomposition yields an algorithm that implements these results. The extra arithmetic is 0(MN). Numerical results show the algorithm to be effective on problems in which the weights vary greatly in magnitude.
An Application of Parametric Mixed-Integer Linear Programming to Hydropower Development
NASA Astrophysics Data System (ADS)
Turgeon, André
1987-03-01
The problem consists in selecting the sites on the river where reservoirs and hydroelectric power plants are to be built and then determining the type and size of the projected installations. The solution obviously depends on the amount of money the utility is willing to invest, which itself is a function of what the new installations will produce. It is therefore necessary to solve the problem for all possible amounts of firm energy produced, since it is not known at the outset which production level the utility will select. This is done in the paper by a parametric mixed-integer linear programming (MILP) method whose efficiency derives from the fact that the branch-and-bound algorithm for selecting the sites to be developed (and consuming most of the computer time) is solved a minimum number of times. Between the points where the MILP problem is solved, LP parametric analysis is applied.
Preschool-Based Programs for Externalizing Problems
ERIC Educational Resources Information Center
Arnold, David H.; Brown, Sharice A.; Meagher, Susan; Baker, Courtney N.; Dobbs, Jennifer; Doctoroff, Greta L.
2006-01-01
Few mental health initiatives for young children have used classroom programs. Preschool-based efforts targeting externalizing behavior could help prevent conduct disorders. Additional benefits may include improved academic achievement and reduced risk for other mental health difficulties. Pro-grams that target multiple developmental domains are…
Bilingual Program Management: A Problem Solving Approach.
ERIC Educational Resources Information Center
De George, George P., Ed.
A collection of essays on the management of bilingual education programs is organized in three units: managing in a culturally diverse setting, balancing critical interactions, and special issues. The following papers are included: "Recruiting and Retaining Competent Personnel for Bilingual Education Programs" (Joan E. Friedenberg, Curtis H.…
Evaluating the impact of AND/OR search on 0-1 integer linear programming
Dechter, R.
2010-01-01
AND/OR search spaces accommodate advanced algorithmic schemes for graphical models which can exploit the structure of the model. We extend and evaluate the depth-first and best-first AND/OR search algorithms to solving 0-1 Integer Linear Programs (0-1 ILP) within this framework. We also include a class of dynamic variable ordering heuristics while exploring an AND/OR search tree for 0-1 ILPs. We demonstrate the effectiveness of these search algorithms on a variety of benchmarks, including real-world combinatorial auctions, random uncapacitated warehouse location problems and MAX-SAT instances. PMID:21052484
The Use of the Fourier Transform for Solving Linear Elasticity Problems
NASA Astrophysics Data System (ADS)
Kozubek, Tomas; Mocek, Lukas
2011-11-01
This paper deals with solving linear elasticity problems using a modified fictitious domain method and an effective solver based on the discrete Fourier transform and the Schur complement reduction in combination with the null space method. The main goal is to show step by step all ingredients of the numerical solution.
NASA Astrophysics Data System (ADS)
Mocek, Lukas; Kozubek, Tomas
2011-09-01
The paper deals with the numerical solution of elliptic boundary value problems for 2D linear elasticity using the fictitious domain method in combination with the discrete Fourier transform and the FETI domain decomposition. We briefly mention the theoretical background of these methods, introduce resulting solvers, and demonstrate their efficiency on model benchmarks.
High Order Finite Difference Methods, Multidimensional Linear Problems and Curvilinear Coordinates
NASA Technical Reports Server (NTRS)
Nordstrom, Jan; Carpenter, Mark H.
1999-01-01
Boundary and interface conditions are derived for high order finite difference methods applied to multidimensional linear problems in curvilinear coordinates. The boundary and interface conditions lead to conservative schemes and strict and strong stability provided that certain metric conditions are met.
Linear Integro-differential Schroedinger and Plate Problems Without Initial Conditions
Lorenzi, Alfredo
2013-06-15
Via Carleman's estimates we prove uniqueness and continuous dependence results for the temporal traces of solutions to overdetermined linear ill-posed problems related to Schroedinger and plate equation. The overdetermination is prescribed in an open subset of the (space-time) lateral boundary.
The problem of scheduling for the linear section of a single-track railway
NASA Astrophysics Data System (ADS)
Akimova, Elena N.; Gainanov, Damir N.; Golubev, Oleg A.; Kolmogortsev, Ilya D.; Konygin, Anton V.
2016-06-01
The paper is devoted to the problem of scheduling for the linear section of a single-track railway: how to organize the flow in both directions in the most efficient way. In this paper, the authors propose an algorithm for scheduling, examine the properties of this algorithm and perform the computational experiments.
Monthly pan evaporation modeling using linear genetic programming
NASA Astrophysics Data System (ADS)
Guven, Aytac; Kisi, Ozgur
2013-10-01
This study compares the accuracy of linear genetic programming (LGP), fuzzy genetic (FG), adaptive neuro-fuzzy inference system (ANFIS), artificial neural networks (ANN) and Stephens-Stewart (SS) methods in modeling pan evaporations. Monthly climatic data including solar radiation, air temperature, relative humidity, wind speed and pan evaporation from Antalya and Mersin stations, in Turkey are used in the study. The study composed of two parts. First part of the study focuses the comparison of LGP models with those of the FG, ANFIS, ANN and SS models in estimating pan evaporations of Antalya and Mersin stations, separately. From the comparison results, the LGP models are found to be better than the other models. Comparison of LGP models with the other models in estimating pan evaporations of the Mersin Station by using both stations' inputs is focused in the second part of the study. The results indicate that the LGP models better accuracy than the FG, ANFIS, ANN and SS models. It is seen that the pan evaporations can be successfully estimated by the LGP method.
Geometric tools for solving the FDI problem for linear periodic discrete-time systems
NASA Astrophysics Data System (ADS)
Longhi, Sauro; Monteriù, Andrea
2013-07-01
This paper studies the problem of detecting and isolating faults in linear periodic discrete-time systems. The aim is to design an observer-based residual generator where each residual is sensitive to one fault, whilst remaining insensitive to the other faults that can affect the system. Making use of the geometric tools, and in particular of the outer observable subspace notion, the Fault Detection and Isolation (FDI) problem is formulated and necessary and solvability conditions are given. An algorithmic procedure is described to determine the solution of the FDI problem.
NASA Technical Reports Server (NTRS)
Kent, James; Holdaway, Daniel
2015-01-01
A number of geophysical applications require the use of the linearized version of the full model. One such example is in numerical weather prediction, where the tangent linear and adjoint versions of the atmospheric model are required for the 4DVAR inverse problem. The part of the model that represents the resolved scale processes of the atmosphere is known as the dynamical core. Advection, or transport, is performed by the dynamical core. It is a central process in many geophysical applications and is a process that often has a quasi-linear underlying behavior. However, over the decades since the advent of numerical modelling, significant effort has gone into developing many flavors of high-order, shape preserving, nonoscillatory, positive definite advection schemes. These schemes are excellent in terms of transporting the quantities of interest in the dynamical core, but they introduce nonlinearity through the use of nonlinear limiters. The linearity of the transport schemes used in Goddard Earth Observing System version 5 (GEOS-5), as well as a number of other schemes, is analyzed using a simple 1D setup. The linearized version of GEOS-5 is then tested using a linear third order scheme in the tangent linear version.
The linearized characteristics method and its application to practical nonlinear supersonic problems
NASA Technical Reports Server (NTRS)
Ferri, Antonio
1952-01-01
The methods of characteristics has been linearized by assuming that the flow field can be represented as a basic flow field determined by nonlinearized methods and a linearized superposed flow field that accounts for small changes of boundary conditions. The method has been applied to two-dimensional rotational flow where the basic flow is potential flow and to axially symmetric problems where conical flows have been used as the basic flows. In both cases the method allows the determination of the flow field to be simplified and the numerical work to be reduced to a few calculations. The calculations of axially symmetric flow can be simplified if tabulated values of some coefficients of the conical flow are obtained. The method has also been applied to slender bodies without symmetry and to some three-dimensional wing problems where two-dimensional flow can be used as the basic flow. Both problems were unsolved before in the approximation of nonlinear flow.
Modified Cholesky factorizations in interior-point algorithms for linear programming.
Wright, S.; Mathematics and Computer Science
1999-01-01
We investigate a modified Cholesky algorithm typical of those used in most interior-point codes for linear programming. Cholesky-based interior-point codes are popular for three reasons: their implementation requires only minimal changes to standard sparse Cholesky algorithms (allowing us to take full advantage of software written by specialists in that area); they tend to be more efficient than competing approaches that use alternative factorizations; and they perform robustly on most practical problems, yielding good interior-point steps even when the coefficient matrix of the main linear system to be solved for the step components is ill conditioned. We investigate this surprisingly robust performance by using analytical tools from matrix perturbation theory and error analysis, illustrating our results with computational experiments. Finally, we point out the potential limitations of this approach.
Improve Problem Solving Skills through Adapting Programming Tools
NASA Technical Reports Server (NTRS)
Shaykhian, Linda H.; Shaykhian, Gholam Ali
2007-01-01
There are numerous ways for engineers and students to become better problem-solvers. The use of command line and visual programming tools can help to model a problem and formulate a solution through visualization. The analysis of problem attributes and constraints provide insight into the scope and complexity of the problem. The visualization aspect of the problem-solving approach tends to make students and engineers more systematic in their thought process and help them catch errors before proceeding too far in the wrong direction. The problem-solver identifies and defines important terms, variables, rules, and procedures required for solving a problem. Every step required to construct the problem solution can be defined in program commands that produce intermediate output. This paper advocates improved problem solving skills through using a programming tool. MatLab created by MathWorks, is an interactive numerical computing environment and programming language. It is a matrix-based system that easily lends itself to matrix manipulation, and plotting of functions and data. MatLab can be used as an interactive command line or a sequence of commands that can be saved in a file as a script or named functions. Prior programming experience is not required to use MatLab commands. The GNU Octave, part of the GNU project, a free computer program for performing numerical computations, is comparable to MatLab. MatLab visual and command programming are presented here.
New computer program solves wide variety of heat flow problems
NASA Technical Reports Server (NTRS)
Almond, J. C.
1966-01-01
Boeing Engineering Thermal Analyzer /BETA/ computer program uses numerical methods to provide accurate heat transfer solutions to a wide variety of heat flow problems. The program solves steady-state and transient problems in almost any situation that can be represented by a resistance-capacitance network.
Lefkoff, L.J.; Gorelick, S.M.
1987-01-01
A FORTRAN-77 computer program code that helps solve a variety of aquifer management problems involving the control of groundwater hydraulics. It is intended for use with any standard mathematical programming package that uses Mathematical Programming System input format. The computer program creates the input files to be used by the optimization program. These files contain all the hydrologic information and management objectives needed to solve the management problem. Used in conjunction with a mathematical programming code, the computer program identifies the pumping or recharge strategy that achieves a user 's management objective while maintaining groundwater hydraulic conditions within desired limits. The objective may be linear or quadratic, and may involve the minimization of pumping and recharge rates or of variable pumping costs. The problem may contain constraints on groundwater heads, gradients, and velocities for a complex, transient hydrologic system. Linear superposition of solutions to the transient, two-dimensional groundwater flow equation is used by the computer program in conjunction with the response matrix optimization method. A unit stress is applied at each decision well and transient responses at all control locations are computed using a modified version of the U.S. Geological Survey two dimensional aquifer simulation model. The program also computes discounted cost coefficients for the objective function and accounts for transient aquifer conditions. (Author 's abstract)
Xia, Youshen; Feng, Gang; Wang, Jun
2004-09-01
This paper presents a recurrent neural network for solving strict convex quadratic programming problems and related linear piecewise equations. Compared with the existing neural networks for quadratic program, the proposed neural network has a one-layer structure with a low model complexity. Moreover, the proposed neural network is shown to have a finite-time convergence and exponential convergence. Illustrative examples further show the good performance of the proposed neural network in real-time applications. PMID:15312842
NASA Technical Reports Server (NTRS)
Pilkey, W. D.; Chen, Y. H.
1974-01-01
An indirect synthesis method is used in the efficient optimal design of multi-degree of freedom, multi-design element, nonlinear, transient systems. A limiting performance analysis which requires linear programming for a kinematically linear system is presented. The system is selected using system identification methods such that the designed system responds as closely as possible to the limiting performance. The efficiency is a result of the method avoiding the repetitive systems analyses accompanying other numerical optimization methods.
NASA Astrophysics Data System (ADS)
Gallagher, Kerry; Sambridge, Malcolm; Drijkoningen, Guy
In providing a method for solving non-linear optimization problems Monte Carlo techniques avoid the need for linearization but, in practice, are often prohibitive because of the large number of models that must be considered. A new class of methods known as Genetic Algorithms have recently been devised in the field of Artificial Intelligence. We outline the basic concept of genetic algorithms and discuss three examples. We show that, in locating an optimal model, the new technique is far superior in performance to Monte Carlo techniques in all cases considered. However, Monte Carlo integration is still regarded as an effective method for the subsequent model appraisal.
Linear Stability of Elliptic Lagrangian Solutions of the Planar Three-Body Problem via Index Theory
NASA Astrophysics Data System (ADS)
Hu, Xijun; Long, Yiming; Sun, Shanzhong
2014-09-01
It is well known that the linear stability of Lagrangian elliptic equilateral triangle homographic solutions in the classical planar three-body problem depends on the mass parameter and the eccentricity . We are not aware of any existing analytical method which relates the linear stability of these solutions to the two parameters directly in the full rectangle [0, 9] × [0, 1), aside from perturbation methods for e > 0 small enough, blow-up techniques for e sufficiently close to 1, and numerical studies. In this paper, we introduce a new rigorous analytical method to study the linear stability of these solutions in terms of the two parameters in the full ( β, e) range [0, 9] × [0, 1) via the ω-index theory of symplectic paths for ω belonging to the unit circle of the complex plane, and the theory of linear operators. After establishing the ω-index decreasing property of the solutions in β for fixed , we prove the existence of three curves located from left to right in the rectangle [0, 9] × [0, 1), among which two are -1 degeneracy curves and the third one is the right envelope curve of the ω-degeneracy curves, and show that the linear stability pattern of such elliptic Lagrangian solutions changes if and only if the parameter ( β, e) passes through each of these three curves. Interesting symmetries of these curves are also observed. The linear stability of the singular case when the eccentricity e approaches 1 is also analyzed in detail.
Development and validation of a general purpose linearization program for rigid aircraft models
NASA Technical Reports Server (NTRS)
Duke, E. L.; Antoniewicz, R. F.
1985-01-01
A FORTRAN program that provides the user with a powerful and flexible tool for the linearization of aircraft models is discussed. The program LINEAR numerically determines a linear systems model using nonlinear equations of motion and a user-supplied, nonlinear aerodynamic model. The system model determined by LINEAR consists of matrices for both the state and observation equations. The program has been designed to allow easy selection and definition of the state, control, and observation variables to be used in a particular model. Also, included in the report is a comparison of linear and nonlinear models for a high performance aircraft.
ERIC Educational Resources Information Center
Kim, SugHee; Chung, KwangSik; Yu, HeonChang
2013-01-01
The purpose of this paper is to propose a training program for creative problem solving based on computer programming. The proposed program will encourage students to solve real-life problems through a creative thinking spiral related to cognitive skills with computer programming. With the goal of enhancing digital fluency through this proposed…
Warid, Warid; Hizam, Hashim; Mariun, Norman; Abdul-Wahab, Noor Izzri
2016-01-01
This paper proposes a new formulation for the multi-objective optimal power flow (MOOPF) problem for meshed power networks considering distributed generation. An efficacious multi-objective fuzzy linear programming optimization (MFLP) algorithm is proposed to solve the aforementioned problem with and without considering the distributed generation (DG) effect. A variant combination of objectives is considered for simultaneous optimization, including power loss, voltage stability, and shunt capacitors MVAR reserve. Fuzzy membership functions for these objectives are designed with extreme targets, whereas the inequality constraints are treated as hard constraints. The multi-objective fuzzy optimal power flow (OPF) formulation was converted into a crisp OPF in a successive linear programming (SLP) framework and solved using an efficient interior point method (IPM). To test the efficacy of the proposed approach, simulations are performed on the IEEE 30-busand IEEE 118-bus test systems. The MFLP optimization is solved for several optimization cases. The obtained results are compared with those presented in the literature. A unique solution with a high satisfaction for the assigned targets is gained. Results demonstrate the effectiveness of the proposed MFLP technique in terms of solution optimality and rapid convergence. Moreover, the results indicate that using the optimal DG location with the MFLP algorithm provides the solution with the highest quality. PMID:26954783
Warid, Warid; Hizam, Hashim; Mariun, Norman; Abdul-Wahab, Noor Izzri
2016-01-01
This paper proposes a new formulation for the multi-objective optimal power flow (MOOPF) problem for meshed power networks considering distributed generation. An efficacious multi-objective fuzzy linear programming optimization (MFLP) algorithm is proposed to solve the aforementioned problem with and without considering the distributed generation (DG) effect. A variant combination of objectives is considered for simultaneous optimization, including power loss, voltage stability, and shunt capacitors MVAR reserve. Fuzzy membership functions for these objectives are designed with extreme targets, whereas the inequality constraints are treated as hard constraints. The multi-objective fuzzy optimal power flow (OPF) formulation was converted into a crisp OPF in a successive linear programming (SLP) framework and solved using an efficient interior point method (IPM). To test the efficacy of the proposed approach, simulations are performed on the IEEE 30-busand IEEE 118-bus test systems. The MFLP optimization is solved for several optimization cases. The obtained results are compared with those presented in the literature. A unique solution with a high satisfaction for the assigned targets is gained. Results demonstrate the effectiveness of the proposed MFLP technique in terms of solution optimality and rapid convergence. Moreover, the results indicate that using the optimal DG location with the MFLP algorithm provides the solution with the highest quality. PMID:26954783
Decomposition and (importance) sampling techniques for multi-stage stochastic linear programs
Infanger, G.
1993-11-01
The difficulty of solving large-scale multi-stage stochastic linear programs arises from the sheer number of scenarios associated with numerous stochastic parameters. The number of scenarios grows exponentially with the number of stages and problems get easily out of hand even for very moderate numbers of stochastic parameters per stage. Our method combines dual (Benders) decomposition with Monte Carlo sampling techniques. We employ importance sampling to efficiently obtain accurate estimates of both expected future costs and gradients and right-hand sides of cuts. The method enables us to solve practical large-scale problems with many stages and numerous stochastic parameters per stage. We discuss the theory of sharing and adjusting cuts between different scenarios in a stage. We derive probabilistic lower and upper bounds, where we use importance path sampling for the upper bound estimation. Initial numerical results turned out to be promising.
Kim, D.; Ghanem, R.
1994-12-31
Multigrid solution technique to solve a material nonlinear problem in a visual programming environment using the finite element method is discussed. The nonlinear equation of equilibrium is linearized to incremental form using Newton-Rapson technique, then multigrid solution technique is used to solve linear equations at each Newton-Rapson step. In the process, adaptive mesh refinement, which is based on the bisection of a pair of triangles, is used to form grid hierarchy for multigrid iteration. The solution process is implemented in a visual programming environment with distributed computing capability, which enables more intuitive understanding of solution process, and more effective use of resources.
Evaluation of boundary element methods for the EEG forward problem: Effect of linear interpolation
Schlitt, H.A.; Heller, L.; Best, E.; Ranken, D.M. ); Aaron, R. )
1995-01-01
We implement the approach for solving the boundary integral equation for the electroencephalography (EEG) forward problem proposed by de Munck, in which the electric potential varies linearly across each plane triangle of the mesh. Previous solutions have assumed the potential is constant across an element. We calculate the electric potential and systematically investigate the effect of different mesh choices and dipole locations by using a three concentric sphere head model for which there is an analytic solution. Implementing the linear interpolation approximation results in errors that are approximately half those of the same mesh when the potential is assumed to be constant, and provides a reliable method for solving the problem. 12 refs., 8 figs.
Solution of second order quasi-linear boundary value problems by a wavelet method
Zhang, Lei; Zhou, Youhe; Wang, Jizeng
2015-03-10
A wavelet Galerkin method based on expansions of Coiflet-like scaling function bases is applied to solve second order quasi-linear boundary value problems which represent a class of typical nonlinear differential equations. Two types of typical engineering problems are selected as test examples: one is about nonlinear heat conduction and the other is on bending of elastic beams. Numerical results are obtained by the proposed wavelet method. Through comparing to relevant analytical solutions as well as solutions obtained by other methods, we find that the method shows better efficiency and accuracy than several others, and the rate of convergence can even reach orders of 5.8.
The conjugate gradient method for linear ill-posed problems with operator perturbations
NASA Astrophysics Data System (ADS)
Plato, Robert
1999-03-01
We consider an ill-posed problem Ta = f* in Hilbert spaces and suppose that the linear bounded operator T is approximately available, with a known estimate for the operator perturbation at the solution. As a numerical scheme the CGNR-method is considered, that is, the classical method of conjugate gradients by Hestenes and Stiefel applied to the associated normal equations. Two a posteriori stopping rules are introduced, and convergence results are provided for the corresponding approximations, respectively. As a specific application, a parameter estimation problem is considered.
NASA Technical Reports Server (NTRS)
Gibson, J. S.; Rosen, I. G.
1985-01-01
In the optimal linear quadratic regulator problem for finite dimensional systems, the method known as an alpha-shift can be used to produce a closed-loop system whose spectrum lies to the left of some specified vertical line; that is, a closed-loop system with a prescribed degree of stability. This paper treats the extension of the alpha-shift to hereditary systems. As infinite dimensions, the shift can be accomplished by adding alpha times the identity to the open-loop semigroup generator and then solving an optimal regulator problem. However, this approach does not work with a new approximation scheme for hereditary control problems recently developed by Kappel and Salamon. Since this scheme is among the best to date for the numerical solution of the linear regulator problem for hereditary systems, an alternative method for shifting the closed-loop spectrum is needed. An alpha-shift technique that can be used with the Kappel-Salamon approximation scheme is developed. Both the continuous-time and discrete-time problems are considered. A numerical example which demonstrates the feasibility of the method is included.
NASA Technical Reports Server (NTRS)
Gibson, J. S.; Rosen, I. G.
1987-01-01
In the optimal linear quadratic regulator problem for finite dimensional systems, the method known as an alpha-shift can be used to produce a closed-loop system whose spectrum lies to the left of some specified vertical line; that is, a closed-loop system with a prescribed degree of stability. This paper treats the extension of the alpha-shift to hereditary systems. As infinite dimensions, the shift can be accomplished by adding alpha times the identity to the open-loop semigroup generator and then solving an optimal regulator problem. However, this approach does not work with a new approximation scheme for hereditary control problems recently developed by Kappel and Salamon. Since this scheme is among the best to date for the numerical solution of the linear regulator problem for hereditary systems, an alternative method for shifting the closed-loop spectrum is needed. An alpha-shift technique that can be used with the Kappel-Salamon approximation scheme is developed. Both the continuous-time and discrete-time problems are considered. A numerical example which demonstrates the feasibility of the method is included.
Lorber, A.A.; Carey, G.F.; Bova, S.W.; Harle, C.H.
1996-12-31
The connection between the solution of linear systems of equations by iterative methods and explicit time stepping techniques is used to accelerate to steady state the solution of ODE systems arising from discretized PDEs which may involve either physical or artificial transient terms. Specifically, a class of Runge-Kutta (RK) time integration schemes with extended stability domains has been used to develop recursion formulas which lead to accelerated iterative performance. The coefficients for the RK schemes are chosen based on the theory of Chebyshev iteration polynomials in conjunction with a local linear stability analysis. We refer to these schemes as Chebyshev Parameterized Runge Kutta (CPRK) methods. CPRK methods of one to four stages are derived as functions of the parameters which describe an ellipse {Epsilon} which the stability domain of the methods is known to contain. Of particular interest are two-stage, first-order CPRK and four-stage, first-order methods. It is found that the former method can be identified with any two-stage RK method through the correct choice of parameters. The latter method is found to have a wide range of stability domains, with a maximum extension of 32 along the real axis. Recursion performance results are presented below for a model linear convection-diffusion problem as well as non-linear fluid flow problems discretized by both finite-difference and finite-element methods.
A Conforming Multigrid Method for the Pure Traction Problem of Linear Elasticity: Mixed Formulation
NASA Technical Reports Server (NTRS)
Lee, Chang-Ock
1996-01-01
A multigrid method using conforming P-1 finite element is developed for the two-dimensional pure traction boundary value problem of linear elasticity. The convergence is uniform even as the material becomes nearly incompressible. A heuristic argument for acceleration of the multigrid method is discussed as well. Numerical results with and without this acceleration as well as performance estimates on a parallel computer are included.
A linear-quadratic-Gaussian control problem with innovations-feedthrough solution
NASA Technical Reports Server (NTRS)
Platzman, L. K.; Johnson, T. L.
1976-01-01
The structure of the separation-theorem solution to the standard linear-quadratic-Gaussian (LQG) control problem does not involve direct output feedback as a consequence of the form of the performance index. It is shown that the performance index may be generalized in a natural fashion so that the optimal control law involves output feedback or, equivalently, innovations feedthrough (IF). Applications where this formulation may be advantageous are indicated through an examination of properties of the IF control law.
NASA Technical Reports Server (NTRS)
Ito, K.; Teglas, R.
1984-01-01
The numerical scheme based on the Legendre-tau approximation is proposed to approximate the feedback solution to the linear quadratic optimal control problem for hereditary differential systems. The convergence property is established using Trotter ideas. The method yields very good approximations at low orders and provides an approximation technique for computing closed-loop eigenvalues of the feedback system. A comparison with existing methods (based on averaging and spline approximations) is made.
NASA Technical Reports Server (NTRS)
Ito, Kazufumi; Teglas, Russell
1987-01-01
The numerical scheme based on the Legendre-tau approximation is proposed to approximate the feedback solution to the linear quadratic optimal control problem for hereditary differential systems. The convergence property is established using Trotter ideas. The method yields very good approximations at low orders and provides an approximation technique for computing closed-loop eigenvalues of the feedback system. A comparison with existing methods (based on averaging and spline approximations) is made.
NASA Technical Reports Server (NTRS)
Arneson, Heather M.; Dousse, Nicholas; Langbort, Cedric
2014-01-01
We consider control design for positive compartmental systems in which each compartment's outflow rate is described by a concave function of the amount of material in the compartment.We address the problem of determining the routing of material between compartments to satisfy time-varying state constraints while ensuring that material reaches its intended destination over a finite time horizon. We give sufficient conditions for the existence of a time-varying state-dependent routing strategy which ensures that the closed-loop system satisfies basic network properties of positivity, conservation and interconnection while ensuring that capacity constraints are satisfied, when possible, or adjusted if a solution cannot be found. These conditions are formulated as a linear programming problem. Instances of this linear programming problem can be solved iteratively to generate a solution to the finite horizon routing problem. Results are given for the application of this control design method to an example problem. Key words: linear programming; control of networks; positive systems; controller constraints and structure.
A linear programming model for reducing system peak through customer load control programs
Kurucz, C.N.; Brandt, D.; Sim, S.
1996-11-01
A Linear Programming (LP) model was developed to optimize the amount of system peak load reduction through scheduling of control periods in commercial/industrial and residential load control programs at Florida Power and Light Company. The LP model can be used to determine both long and short term control scheduling strategies and for planning the number of customers which should be enrolled in each program. Results of applying the model to a forecasted late 1990s summer peak day load shape are presented. It is concluded that LP solutions provide a relatively inexpensive and powerful approach to planning and scheduling load control. Also, it is not necessary to model completely general scheduling of control periods in order to obtain near best solutions to peak load reduction.
Robust parallel iterative solvers for linear and least-squares problems, Final Technical Report
Saad, Yousef
2014-01-16
The primary goal of this project is to study and develop robust iterative methods for solving linear systems of equations and least squares systems. The focus of the Minnesota team is on algorithms development, robustness issues, and on tests and validation of the methods on realistic problems. 1. The project begun with an investigation on how to practically update a preconditioner obtained from an ILU-type factorization, when the coefficient matrix changes. 2. We investigated strategies to improve robustness in parallel preconditioners in a specific case of a PDE with discontinuous coefficients. 3. We explored ways to adapt standard preconditioners for solving linear systems arising from the Helmholtz equation. These are often difficult linear systems to solve by iterative methods. 4. We have also worked on purely theoretical issues related to the analysis of Krylov subspace methods for linear systems. 5. We developed an effective strategy for performing ILU factorizations for the case when the matrix is highly indefinite. The strategy uses shifting in some optimal way. The method was extended to the solution of Helmholtz equations by using complex shifts, yielding very good results in many cases. 6. We addressed the difficult problem of preconditioning sparse systems of equations on GPUs. 7. A by-product of the above work is a software package consisting of an iterative solver library for GPUs based on CUDA. This was made publicly available. It was the first such library that offers complete iterative solvers for GPUs. 8. We considered another form of ILU which blends coarsening techniques from Multigrid with algebraic multilevel methods. 9. We have released a new version on our parallel solver - called pARMS [new version is version 3]. As part of this we have tested the code in complex settings - including the solution of Maxwell and Helmholtz equations and for a problem of crystal growth.10. As an application of polynomial preconditioning we considered the
Sun Wei; Huang, Guo H.; Lv Ying; Li Gongchen
2012-06-15
Highlights: Black-Right-Pointing-Pointer Inexact piecewise-linearization-based fuzzy flexible programming is proposed. Black-Right-Pointing-Pointer It's the first application to waste management under multiple complexities. Black-Right-Pointing-Pointer It tackles nonlinear economies-of-scale effects in interval-parameter constraints. Black-Right-Pointing-Pointer It estimates costs more accurately than the linear-regression-based model. Black-Right-Pointing-Pointer Uncertainties are decreased and more satisfactory interval solutions are obtained. - Abstract: To tackle nonlinear economies-of-scale (EOS) effects in interval-parameter constraints for a representative waste management problem, an inexact piecewise-linearization-based fuzzy flexible programming (IPFP) model is developed. In IPFP, interval parameters for waste amounts and transportation/operation costs can be quantified; aspiration levels for net system costs, as well as tolerance intervals for both capacities of waste treatment facilities and waste generation rates can be reflected; and the nonlinear EOS effects transformed from objective function to constraints can be approximated. An interactive algorithm is proposed for solving the IPFP model, which in nature is an interval-parameter mixed-integer quadratically constrained programming model. To demonstrate the IPFP's advantages, two alternative models are developed to compare their performances. One is a conventional linear-regression-based inexact fuzzy programming model (IPFP2) and the other is an IPFP model with all right-hand-sides of fussy constraints being the corresponding interval numbers (IPFP3). The comparison results between IPFP and IPFP2 indicate that the optimized waste amounts would have the similar patterns in both models. However, when dealing with EOS effects in constraints, the IPFP2 may underestimate the net system costs while the IPFP can estimate the costs more accurately. The comparison results between IPFP and IPFP3 indicate
Solving Integer Programming Problems by Using Artificial Bee Colony Algorithm
NASA Astrophysics Data System (ADS)
Akay, Bahriye; Karaboga, Dervis
This paper presents a study that applies the Artificial Bee Colony algorithm to integer programming problems and compares its performance with those of Particle Swarm Optimization algorithm variants and Branch and Bound technique presented to the literature. In order to cope with integer programming problems, in neighbour solution production unit, solutions are truncated to the nearest integer values. The experimental results show that Artificial Bee Colony algorithm can handle integer programming problems efficiently and Artificial Bee Colony algorithm can be considered to be very robust by the statistics calculated such as mean, median, standard deviation.
Measurement problem in Program Universe. Revision
Noyes, H.P.; Gefwert, C.; Manthey, M.J.
1985-07-01
The ''measurement problem'' of contemporary physics is in our view an artifact of its philosophical and mathematical underpinnings. We describe a new philosophical view of theory formation, rooted in Wittgenstein, and Bishop's and Martin-Loef's constructivity, which obviates such discussions. We present an unfinished, but very encouraging, theory which is compatible with this philosophical framework. The theory is based on the concepts of counting and combinatorics in the framework provided by the combinatorial hierarchy, a unique hierarchy of bit strings which interact by an operation called discrimination. Measurement criteria incorporate c, h-bar and m/sub p/ or (not ''and'') G. The resulting theory is discrete throughout, contains no infinities, and, as far as we have developed it, is in agreement with quantum mechanical and cosmological fact. 15 refs.
Two Computer Programs for the Statistical Evaluation of a Weighted Linear Composite.
ERIC Educational Resources Information Center
Sands, William A.
1978-01-01
Two computer programs (one batch, one interactive) are designed to provide statistics for a weighted linear combination of several component variables. Both programs provide mean, variance, standard deviation, and a validity coefficient. (Author/JKS)
NASA Astrophysics Data System (ADS)
Veera Raghavan, Srikant
Semidefinite programming (SDP) is a relatively modern subfield of convex optimization which has been applied to many problems in the reduced density matrix (RDM) formulation of electronic structure. SDPs deal with minimization (or maximization) of linear objective functions of matrices, subject to linear equality and inequality constraints and positivity constraints on the eigenvalues of the matrices. Energies of chemical systems can be expressed as linear functions of RDMs, whose eigenvalues are electron occupation numbers or their products which are expected to be non-negative. Therefore, it is perhaps not surprising that SDPs fit rather naturally in the RDM framework in electronic structure. This dissertation presents SDP applications to two electronic structure theories. The first part of this dissertation (chaps. 1-3) reformulates Hartree-Fock theory in terms of SDPs in order to obtain upper and lower bounds to global Hartree-Fock energies. The upper and lower bounds on the energies are frequently equal thereby providing a first-ever certificate of global optimality for many Hartree-Fock solutions. The SDP approach provides an alternative to the conventional self-consistent field method of obtaining Hartree-Fock energies and densities with the added benefit of global optimality or a rigorous lower bound. Applications are made to the potential energy curves of (H 4)2, N2, C2, CN, Cr2 and NO2. Energies of the first-row transition elements are also calculated. In chapter 4, the effect of using the Hartree-Fock solutions that we calculate as references for coupled cluster singles doubles calculations is presented for some of the above molecules. The second part of this dissertation (chap. 5) presents a SDP approach to electronic structure methods which scale linearly with system size. Linear scaling electronic structure methods are essential in order to make calculations on large systems feasible. Among these methods the so-called density matrix based ones seek to
Symbolic programming language in molecular multicenter integral problem
NASA Astrophysics Data System (ADS)
Safouhi, Hassan; Bouferguene, Ahmed
It is well known that in any ab initio molecular orbital (MO) calculation, the major task involves the computation of molecular integrals, among which the computation of three-center nuclear attraction and Coulomb integrals is the most frequently encountered. As the molecular system becomes larger, computation of these integrals becomes one of the most laborious and time-consuming steps in molecular systems calculation. Improvement of the computational methods of molecular integrals would be indispensable to further development in computational studies of large molecular systems. To develop fast and accurate algorithms for the numerical evaluation of these integrals over B functions, we used nonlinear transformations for improving convergence of highly oscillatory integrals. These methods form the basis of new methods for solving various problems that were unsolvable otherwise and have many applications as well. To apply these nonlinear transformations, the integrands should satisfy linear differential equations with coefficients having asymptotic power series in the sense of Poincaré, which in their turn should satisfy some limit conditions. These differential equations are very difficult to obtain explicitly. In the case of molecular integrals, we used a symbolic programming language (MAPLE) to demonstrate that all the conditions required to apply these nonlinear transformation methods are satisfied. Differential equations are obtained explicitly, allowing us to demonstrate that the limit conditions are also satisfied.
NASA Technical Reports Server (NTRS)
Wei, Peng; Sridhar, Banavar; Chen, Neil Yi-Nan; Sun, Dengfent
2012-01-01
A class of strategies has been proposed to reduce contrail formation in the United States airspace. A 3D grid based on weather data and the cruising altitude level of aircraft is adjusted to avoid the persistent contrail potential area with the consideration to fuel-efficiency. In this paper, the authors introduce a contrail avoidance strategy on 3D grid by considering additional operationally feasible constraints from an air traffic controller's aspect. First, shifting too many aircraft to the same cruising level will make the miles-in-trail at this level smaller than the safety separation threshold. Furthermore, the high density of aircraft at one cruising level may exceed the workload for the traffic controller. Therefore, in our new model we restrict the number of total aircraft at each level. Second, the aircraft count variation for successive intervals cannot be too drastic since the workload to manage climbing/descending aircraft is much larger than managing cruising aircraft. The contrail reduction is formulated as an integer-programming problem and the problem is shown to have the property of total unimodularity. Solving the corresponding relaxed linear programming with the simplex method provides an optimal and integral solution to the problem. Simulation results are provided to illustrate the methodology.
LQR problem of linear discrete time systems with nonnegative state constraints
NASA Astrophysics Data System (ADS)
Kostova, S.; Imsland, L.; Ivanov, I.
2015-10-01
In the paper the infinite-horizon Linear Quadratic Regulator (LQR) problem of linear discrete time systems with non-negative state constraints is presented. Such kind of constraints on the system determine the class of positive systems. They have big application in many fields like economics, biology, ecology, ICT and others. The standard infinite LQR-optimal state feedback law is used for solving the problem. In order to guarantee the nonnegativity of the system states, we define the admissible set of initial states. It is proven that, for each initial state from this set the nonnegative orthant is invariant set. Two cases are considered, first, when the initial state belongs to the admissible set, and the second, when the initial state does not belong to the admissible set. The procedures for solving the problem are given for two cases. In second case we use a dual-mode approach for solving the problem. The first mode is until the state trajectory enters the admissible set and after that the procedure for the first case is used. The illustrative examples are given for both cases.
DRIESSEN,BRIAN; SADEGH,NADER
2000-04-25
This work presents a method of finding near global optima to minimum-time trajectory generation problem for systems that would be linear if it were not for the presence of Coloumb friction. The required final state of the system is assumed to be maintainable by the system, and the input bounds are assumed to be large enough so that they can overcome the maximum static Coloumb friction force. Other than the previous work for generating minimum-time trajectories for non redundant robotic manipulators for which the path in joint space is already specified, this work represents, to the best of the authors' knowledge, the first approach for generating near global optima for minimum-time problems involving a nonlinear class of dynamic systems. The reason the optima generated are near global optima instead of exactly global optima is due to a discrete-time approximation of the system (which is usually used anyway to simulate such a system numerically). The method closely resembles previous methods for generating minimum-time trajectories for linear systems, where the core operation is the solution of a Phase I linear programming problem. For the nonlinear systems considered herein, the core operation is instead the solution of a mixed integer linear programming problem.
Promising Parenting Programs for Reducing Adolescent Problem Behaviors
Haggerty, Kevin P.; McGlynn-Wright, Anne; Klima, Tali
2013-01-01
Purpose Adolescent problem behaviors (substance use, delinquency, school dropout, pregnancy, and violence) are costly not only for individuals, but for entire communities. Policymakers and practitioners that are interested in preventing these problem behaviors are faced with many programming options. In this review, we discuss two criteria for selecting relevant parenting programs, and provide five examples of such programs. Design/methodology/approach The first criterion for program selection is theory based. Well-supported theories, such as the social development model, have laid out key family-based risk and protective factors for problem behavior. Programs that target these risk and protective factors are more likely to be effective. Second, programs should have demonstrated efficacy; these interventions have been called “evidence-based programs” (EBP). This review highlights the importance of evidence from rigorous research designs, such as randomized clinical trials, in order to establish program efficacy. Findings Nurse-Family Partnership, The Incredible Years, Positive Parenting Program, Strengthening Families 10–14, and Staying Connected with Your Teen are examined. The unique features of each program are briefly presented. Evidence showing impact on family risk and protective factors, as well as long-term problem behaviors, is reviewed. Finally, a measure of cost effectiveness of each program is provided. Originality/value We propose that not all programs are of equal value, and suggest two simple criteria for selecting a parenting program with a high likelihood for positive outcomes. Furthermore, although this review is not exhaustive, the five examples of EBPs offer a good start for policymakers and practitioners seeking to implement effective programs in their communities. Thus, this paper offers practical suggestions for those grappling with investments in child and adolescent programs on the ground. PMID:24416068
A Linear Time Algorithm for the Minimum Spanning Caterpillar Problem for Bounded Treewidth Graphs
NASA Astrophysics Data System (ADS)
Dinneen, Michael J.; Khosravani, Masoud
We consider the Minimum Spanning Caterpillar Problem (MSCP) in a graph where each edge has two costs, spine (path) cost and leaf cost, depending on whether it is used as a spine or a leaf edge. The goal is to find a spanning caterpillar in which the sum of its edge costs is the minimum. We show that the problem has a linear time algorithm when a tree decomposition of the graph is given as part of the input. Despite the fast growing constant factor of the time complexity of our algorithm, it is still practical and efficient for some classes of graphs, such as outerplanar, series-parallel (K 4 minor-free), and Halin graphs. We also briefly explain how one can modify our algorithm to solve the Minimum Spanning Ring Star and the Dual Cost Minimum Spanning Tree Problems.
ERIC Educational Resources Information Center
Schmitt, M. A.; And Others
1994-01-01
Compares traditional manure application planning techniques calculated to meet agronomic nutrient needs on a field-by-field basis with plans developed using computer-assisted linear programming optimization methods. Linear programming provided the most economical and environmentally sound manure application strategy. (Contains 15 references.) (MDH)
Sun, Wei; Huang, Guo H; Lv, Ying; Li, Gongchen
2012-06-01
To tackle nonlinear economies-of-scale (EOS) effects in interval-parameter constraints for a representative waste management problem, an inexact piecewise-linearization-based fuzzy flexible programming (IPFP) model is developed. In IPFP, interval parameters for waste amounts and transportation/operation costs can be quantified; aspiration levels for net system costs, as well as tolerance intervals for both capacities of waste treatment facilities and waste generation rates can be reflected; and the nonlinear EOS effects transformed from objective function to constraints can be approximated. An interactive algorithm is proposed for solving the IPFP model, which in nature is an interval-parameter mixed-integer quadratically constrained programming model. To demonstrate the IPFP's advantages, two alternative models are developed to compare their performances. One is a conventional linear-regression-based inexact fuzzy programming model (IPFP2) and the other is an IPFP model with all right-hand-sides of fussy constraints being the corresponding interval numbers (IPFP3). The comparison results between IPFP and IPFP2 indicate that the optimized waste amounts would have the similar patterns in both models. However, when dealing with EOS effects in constraints, the IPFP2 may underestimate the net system costs while the IPFP can estimate the costs more accurately. The comparison results between IPFP and IPFP3 indicate that their solutions would be significantly different. The decreased system uncertainties in IPFP's solutions demonstrate its effectiveness for providing more satisfactory interval solutions than IPFP3. Following its first application to waste management, the IPFP can be potentially applied to other environmental problems under multiple complexities. PMID:22370050
Boundary parametric approximation to the linearized scalar potential magnetostatic field problem
Bramble, J.H.; Pasciak, J.E.
1984-01-01
We consider the linearized scalar potential formulation of the magnetostatic field problem in this paper. Our approach involves a reformulation of the continuous problem as a parametric boundary problem. By the introduction of a spherical interface and the use of spherical harmonics, the infinite boundary conditions can also be satisfied in the parametric framework. That is, the field in the exterior of a sphere is expanded in a harmonic series of eigenfunctions for the exterior harmonic problem. The approach is essentially a finite element method coupled with a spectral method via a boundary parametric procedure. The reformulated problem is discretized by finite element techniques which lead to a discrete parametric problem which can be solved by well conditioned iteration involving only the solution of decoupled Neumann type elliptic finite element systems and L/sup 2/ projection onto subspaces of spherical harmonics. Error and stability estimates given show exponential convergence in the degree of the spherical harmonics and optimal order convergence with respect to the finite element approximation for the resulting fields in L/sup 2/. 24 references.
Experiences in Rural Mental Health. VIII: Programming and Administrative Problems.
ERIC Educational Resources Information Center
Hollister, William G.; And Others
Based on a North Carolina Feasibility study (1967-73) which focused on development of a pattern for providing comprehensive mental health services to rural people, this guide deals with programming and administrative problems in Vance and Franklin counties. Describing those problems believed to be most likely to occur in rural areas, this booklet…
Problem Solving Variations in an Online Programming Course
ERIC Educational Resources Information Center
Ebrahimi, Alireza
2007-01-01
An observation on teaching introductory programming courses on SLN for a period of two terms led me to believe that online students try various ways to solve a problem. In the beginning, I got the impression that some of their approaches for a solution were wrong; but after a little investigation, I found that some of the problem-solving…
Acceleration of multiple solution of a boundary value problem involving a linear algebraic system
NASA Astrophysics Data System (ADS)
Gazizov, Talgat R.; Kuksenko, Sergey P.; Surovtsev, Roman S.
2016-06-01
Multiple solution of a boundary value problem that involves a linear algebraic system is considered. New approach to acceleration of the solution is proposed. The approach uses the structure of the linear system matrix. Particularly, location of entries in the right columns and low rows of the matrix, which undergo variation due to the computing in the range of parameters, is used to apply block LU decomposition. Application of the approach is considered on the example of multiple computing of the capacitance matrix by method of moments used in numerical electromagnetics. Expressions for analytic estimation of the acceleration are presented. Results of the numerical experiments for solution of 100 linear systems with matrix orders of 1000, 2000, 3000 and different relations of variated and constant entries of the matrix show that block LU decomposition can be effective for multiple solution of linear systems. The speed up compared to pointwise LU factorization increases (up to 15) for larger number and order of considered systems with lower number of variated entries.
NASA Technical Reports Server (NTRS)
Fleming, P.
1985-01-01
A design technique is proposed for linear regulators in which a feedback controller of fixed structure is chosen to minimize an integral quadratic objective function subject to the satisfaction of integral quadratic constraint functions. Application of a non-linear programming algorithm to this mathematically tractable formulation results in an efficient and useful computer-aided design tool. Particular attention is paid to computational efficiency and various recommendations are made. Two design examples illustrate the flexibility of the approach and highlight the special insight afforded to the designer.
Problems in Choosing Tools and Methods for Teaching Programming
ERIC Educational Resources Information Center
Vitkute-Adžgauskiene, Davia; Vidžiunas, Antanas
2012-01-01
The paper analyses the problems in selecting and integrating tools for delivering basic programming knowledge at the university level. Discussion and analysis of teaching the programming disciplines, the main principles of study programme design, requirements for teaching tools, methods and corresponding languages is presented, based on literature…
Analytical solution of boundary integral equations for 2-D steady linear wave problems
NASA Astrophysics Data System (ADS)
Chuang, J. M.
2005-10-01
Based on the Fourier transform, the analytical solution of boundary integral equations formulated for the complex velocity of a 2-D steady linear surface flow is derived. It has been found that before the radiation condition is imposed, free waves appear both far upstream and downstream. In order to cancel the free waves in far upstream regions, the eigensolution of a specific eigenvalue, which satisfies the homogeneous boundary integral equation, is found and superposed to the analytical solution. An example, a submerged vortex, is used to demonstrate the derived analytical solution. Furthermore, an analytical approach to imposing the radiation condition in the numerical solution of boundary integral equations for 2-D steady linear wave problems is proposed.
Variable-permittivity linear inverse problem for the H(sub z)-polarized case
NASA Technical Reports Server (NTRS)
Moghaddam, M.; Chew, W. C.
1993-01-01
The H(sub z)-polarized inverse problem has rarely been studied before due to the complicated way in which the unknown permittivity appears in the wave equation. This problem is equivalent to the acoustic inverse problem with variable density. We have recently reported the solution to the nonlinear variable-permittivity H(sub z)-polarized inverse problem using the Born iterative method. Here, the linear inverse problem is solved for permittivity (epsilon) and permeability (mu) using a different approach which is an extension of the basic ideas of diffraction tomography (DT). The key to solving this problem is to utilize frequency diversity to obtain the required independent measurements. The receivers are assumed to be in the far field of the object, and plane wave incidence is also assumed. It is assumed that the scatterer is weak, so that the Born approximation can be used to arrive at a relationship between the measured pressure field and two terms related to the spatial Fourier transform of the two unknowns, epsilon and mu. The term involving permeability corresponds to monopole scattering and that for permittivity to dipole scattering. Measurements at several frequencies are used and a least squares problem is solved to reconstruct epsilon and mu. It is observed that the low spatial frequencies in the spectra of epsilon and mu produce inaccuracies in the results. Hence, a regularization method is devised to remove this problem. Several results are shown. Low contrast objects for which the above analysis holds are used to show that good reconstructions are obtained for both permittivity and permeability after regularization is applied.
On Linear Instability and Stability of the Rayleigh-Taylor Problem in Magnetohydrodynamics
NASA Astrophysics Data System (ADS)
Jiang, Fei; Jiang, Song
2015-12-01
We investigate the stabilizing effects of the magnetic fields in the linearized magnetic Rayleigh-Taylor (RT) problem of a nonhomogeneous incompressible viscous magnetohydrodynamic fluid of zero resistivity in the presence of a uniform gravitational field in a three-dimensional bounded domain, in which the velocity of the fluid is non-slip on the boundary. By adapting a modified variational method and careful deriving a priori estimates, we establish a criterion for the instability/stability of the linearized problem around a magnetic RT equilibrium state. In the criterion, we find a new phenomenon that a sufficiently strong horizontal magnetic field has the same stabilizing effect as that of the vertical magnetic field on growth of the magnetic RT instability. In addition, we further study the corresponding compressible case, i.e., the Parker (or magnetic buoyancy) problem, for which the strength of a horizontal magnetic field decreases with height, and also show the stabilizing effect of a sufficiently large magnetic field.
Auger-Méthé, Marie; Field, Chris; Albertsen, Christoffer M; Derocher, Andrew E; Lewis, Mark A; Jonsen, Ian D; Mills Flemming, Joanna
2016-01-01
State-space models (SSMs) are increasingly used in ecology to model time-series such as animal movement paths and population dynamics. This type of hierarchical model is often structured to account for two levels of variability: biological stochasticity and measurement error. SSMs are flexible. They can model linear and nonlinear processes using a variety of statistical distributions. Recent ecological SSMs are often complex, with a large number of parameters to estimate. Through a simulation study, we show that even simple linear Gaussian SSMs can suffer from parameter- and state-estimation problems. We demonstrate that these problems occur primarily when measurement error is larger than biological stochasticity, the condition that often drives ecologists to use SSMs. Using an animal movement example, we show how these estimation problems can affect ecological inference. Biased parameter estimates of a SSM describing the movement of polar bears (Ursus maritimus) result in overestimating their energy expenditure. We suggest potential solutions, but show that it often remains difficult to estimate parameters. While SSMs are powerful tools, they can give misleading results and we urge ecologists to assess whether the parameters can be estimated accurately before drawing ecological conclusions from their results. PMID:27220686
Auger-Méthé, Marie; Field, Chris; Albertsen, Christoffer M.; Derocher, Andrew E.; Lewis, Mark A.; Jonsen, Ian D.; Mills Flemming, Joanna
2016-01-01
State-space models (SSMs) are increasingly used in ecology to model time-series such as animal movement paths and population dynamics. This type of hierarchical model is often structured to account for two levels of variability: biological stochasticity and measurement error. SSMs are flexible. They can model linear and nonlinear processes using a variety of statistical distributions. Recent ecological SSMs are often complex, with a large number of parameters to estimate. Through a simulation study, we show that even simple linear Gaussian SSMs can suffer from parameter- and state-estimation problems. We demonstrate that these problems occur primarily when measurement error is larger than biological stochasticity, the condition that often drives ecologists to use SSMs. Using an animal movement example, we show how these estimation problems can affect ecological inference. Biased parameter estimates of a SSM describing the movement of polar bears (Ursus maritimus) result in overestimating their energy expenditure. We suggest potential solutions, but show that it often remains difficult to estimate parameters. While SSMs are powerful tools, they can give misleading results and we urge ecologists to assess whether the parameters can be estimated accurately before drawing ecological conclusions from their results. PMID:27220686
Using Perturbed QR Factorizations To Solve Linear Least-Squares Problems
Avron, Haim; Ng, Esmond G.; Toledo, Sivan
2008-03-21
We propose and analyze a new tool to help solve sparse linear least-squares problems min{sub x} {parallel}Ax-b{parallel}{sub 2}. Our method is based on a sparse QR factorization of a low-rank perturbation {cflx A} of A. More precisely, we show that the R factor of {cflx A} is an effective preconditioner for the least-squares problem min{sub x} {parallel}Ax-b{parallel}{sub 2}, when solved using LSQR. We propose applications for the new technique. When A is rank deficient we can add rows to ensure that the preconditioner is well-conditioned without column pivoting. When A is sparse except for a few dense rows we can drop these dense rows from A to obtain {cflx A}. Another application is solving an updated or downdated problem. If R is a good preconditioner for the original problem A, it is a good preconditioner for the updated/downdated problem {cflx A}. We can also solve what-if scenarios, where we want to find the solution if a column of the original matrix is changed/removed. We present a spectral theory that analyzes the generalized spectrum of the pencil (A*A,R*R) and analyze the applications.
On the classical solution to the linear-constrained minimum energy problem
NASA Astrophysics Data System (ADS)
Boissaux, Marc; Schiltz, Jang
2012-02-01
Minimum energy problems involving linear systems with quadratic performance criteria are classical in optimal control theory. The case where controls are constrained is discussed in Athans and Falb (1966) [Athans, M. and Falb, P.L. (1966), Optimal Control: An Introduction to the Theory and Its Applications, New York: McGraw-Hill Book Co.] who obtain a componentwise optimal control expression involving a saturation function expression. We show why the given expression is not generally optimal in the case where the dimension of the control is greater than one and provide a numerical counterexample.
Short communication : a linear assignment approach for the least-squares protein morphing problem.
Anitescu, M.; Park, S.; Mathematics and Computer Science
2009-02-01
This work addresses the computation of free-energy differences between protein conformations by using morphing (i.e., transformation) of a source conformation into a target conformation. To enhance the morphing procedure, we employ permutations of atoms: we seek to find the permutation s that minimizes the mean-square distance traveled by the atoms. Instead of performing this combinatorial search in the space of permutations, we show that the best permutation can be found by solving a linear assignment problem. We demonstrate that the use of such optimal permutations significantly improves the efficiency of the free-energy computation.
Programmable calculator program for linear somatic cell scores to estimate mastitis yield losses.
Kirk, J H
1984-02-01
A programmable calculator program calculates loss of milk yield in dairy cows based on linear somatic cell count scores. The program displays the distribution of the herd by lactation number and linear score for present and optimal goal situations. Loss of yield is in pounds and dollars by cow and herd. The program estimates optimal milk production and numbers of fewer cows at the goal for mastitis infection. PMID:6546938
Leontidis, S; Fernández, A; Rodrigo, C; Fernández, P S; Magraner, L; Martínez, A
1999-08-01
A systematic study of the inactivation kinetics of Bacillus stearothermophilus spores was carried out in nonisothermic heating conditions using a linear temperature increase program and analyzing the experimental data by means of a one-step nonlinear regression. The D and z values estimated are close to those obtained in isothermic conditions and estimated by using a two-step model, first D values are calculated, and then in the second step a z value is deduced (D(121 degrees C) = 3.08 and 4.38 min, respectively, and z = 7 and 7.9 degrees C, respectively). No convergence problems were observed when using the one-step nonlinear regression proposed. The results indicated that the methodology applied in this study can be used to obtain kinetic data for bacterial spores, which could mean a significant reduction in the amount of experimental work employed to generate these data. PMID:10456754
A Vector Study of Linearized Supersonic Flow Applications to Nonplanar Problems
NASA Technical Reports Server (NTRS)
Martin, John C
1953-01-01
A vector study of the partial-differential equation of steady linearized supersonic flow is presented. General expressions which relate the velocity potential in the stream to the conditions on the disturbing surfaces, are derived. In connection with these general expressions the concept of the finite part of an integral is discussed. A discussion of problems dealing with planar bodies is given and the conditions for the solution to be unique are investigated. Problems concerning nonplanar systems are investigated, and methods are derived for the solution of some simple nonplanar bodies. The surface pressure distribution and the damping in roll are found for rolling tails consisting of four, six, and eight rectangular fins for the Mach number range where the region of interference between adjacent fins does not affect the fin tips.
Parallel solution of sparse one-dimensional dynamic programming problems
NASA Technical Reports Server (NTRS)
Nicol, David M.
1989-01-01
Parallel computation offers the potential for quickly solving large computational problems. However, it is often a non-trivial task to effectively use parallel computers. Solution methods must sometimes be reformulated to exploit parallelism; the reformulations are often more complex than their slower serial counterparts. We illustrate these points by studying the parallelization of sparse one-dimensional dynamic programming problems, those which do not obviously admit substantial parallelization. We propose a new method for parallelizing such problems, develop analytic models which help us to identify problems which parallelize well, and compare the performance of our algorithm with existing algorithms on a multiprocessor.
NASA Astrophysics Data System (ADS)
Bayati, Mohsen; Borgs, Christian; Chayes, Jennifer; Zecchina, Riccardo
2008-06-01
We consider the general problem of finding the minimum weight b-matching on arbitrary graphs. We prove that, whenever the linear programing relaxation of the problem has no fractional solutions, then the cavity or belief propagation equations converge to the correct solution both for synchronous and asynchronous updating.
A linear programming approach for placement of applicants to academic programs.
Kassa, Biniyam Asmare
2013-01-01
This paper reports a linear programming approach for placement of applicants to study programs developed and implemented at the college of Business & Economics, Bahir Dar University, Bahir Dar, Ethiopia. The approach is estimated to significantly streamline the placement decision process at the college by reducing required man hour as well as the time it takes to announce placement decisions. Compared to the previous manual system where only one or two placement criteria were considered, the new approach allows the college's management to easily incorporate additional placement criteria, if needed. Comparison of our approach against manually constructed placement decisions based on actual data for the 2012/13 academic year suggested that about 93 percent of the placements from our model concur with the actual placement decisions. For the remaining 7 percent of placements, however, the actual placements made by the manual system display inconsistencies of decisions judged against the very criteria intended to guide placement decisions by the college's program management office. Overall, the new approach proves to be a significant improvement over the manual system in terms of efficiency of the placement process and the quality of placement decisions. PMID:24386626
Integer Linear Programming for Constrained Multi-Aspect Committee Review Assignment
Karimzadehgan, Maryam; Zhai, ChengXiang
2011-01-01
Automatic review assignment can significantly improve the productivity of many people such as conference organizers, journal editors and grant administrators. A general setup of the review assignment problem involves assigning a set of reviewers on a committee to a set of documents to be reviewed under the constraint of review quota so that the reviewers assigned to a document can collectively cover multiple topic aspects of the document. No previous work has addressed such a setup of committee review assignments while also considering matching multiple aspects of topics and expertise. In this paper, we tackle the problem of committee review assignment with multi-aspect expertise matching by casting it as an integer linear programming problem. The proposed algorithm can naturally accommodate any probabilistic or deterministic method for modeling multiple aspects to automate committee review assignments. Evaluation using a multi-aspect review assignment test set constructed using ACM SIGIR publications shows that the proposed algorithm is effective and efficient for committee review assignments based on multi-aspect expertise matching. PMID:22711970
Parametric integer linear programming: a synthesis of branch and bound with cutting planes
Rountree, S.L.K.; Gillett, B.E.
1980-01-01
A branch and bound algorithm is designed to solve the general integer linear programing problem with parametric right-hand sides. The right-hand sides have the form b + THETA d, where b and d are conformable vectors, d consists of nonegative constants, and THETA varies from zero to one. The method consists of first determining all possible right-hand side ineger constants and appending this set of integer constants to the initial tableau to form an expanded problem with a finite number of family members. The implicit enumeration method gives a lower bound on the integer solutions. The branch and bound method is used with fathoming tests that allow one family member possibly to fathom other family members. A cutting plane option applies a finite number of cuts to each node before branching. In addition, the cutting plane method is invoked whenever some members are feasible at a node and others are infeasible. The branching and cutting process is repeated until the entire family of problems has been solved. 3 tables.
General Purpose Unfolding Program with Linear and Nonlinear Regularizations.
Energy Science and Technology Software Center (ESTSC)
1987-05-07
Version 00 The interpretation of several physical measurements requires the unfolding or deconvolution of the solution of Fredholm integral equations of the first kind. Examples include neutron spectroscopy with activation detectors, moderating spheres, or proton recoil measurements. LOUHI82 is designed to be applicable to a large number of physical problems and to be extended to incorporate other unfolding methods.
Linear stability of the Couette flow of a vibrationally excited gas. 2. viscous problem
NASA Astrophysics Data System (ADS)
Grigor'ev, Yu. N.; Ershov, I. V.
2016-03-01
Based on the linear theory, stability of viscous disturbances in a supersonic plane Couette flow of a vibrationally excited gas described by a system of linearized equations of two-temperature gas dynamics including shear and bulk viscosity is studied. It is demonstrated that two sets are identified in the spectrum of the problem of stability of plane waves, similar to the case of a perfect gas. One set consists of viscous acoustic modes, which asymptotically converge to even and odd inviscid acoustic modes at high Reynolds numbers. The eigenvalues from the other set have no asymptotic relationship with the inviscid problem and are characterized by large damping decrements. Two most unstable viscous acoustic modes (I and II) are identified; the limits of these modes were considered previously in the inviscid approximation. It is shown that there are domains in the space of parameters for both modes, where the presence of viscosity induces appreciable destabilization of the flow. Moreover, the growth rates of disturbances are appreciably greater than the corresponding values for the inviscid flow, while thermal excitation in the entire considered range of parameters increases the stability of the viscous flow. For a vibrationally excited gas, the critical Reynolds number as a function of the thermal nonequilibrium degree is found to be greater by 12% than for a perfect gas.
Sixth SIAM conference on applied linear algebra: Final program and abstracts. Final technical report
1997-12-31
Linear algebra plays a central role in mathematics and applications. The analysis and solution of problems from an amazingly wide variety of disciplines depend on the theory and computational techniques of linear algebra. In turn, the diversity of disciplines depending on linear algebra also serves to focus and shape its development. Some problems have special properties (numerical, structural) that can be exploited. Some are simply so large that conventional approaches are impractical. New computer architectures motivate new algorithms, and fresh ways to look at old ones. The pervasive nature of linear algebra in analyzing and solving problems means that people from a wide spectrum--universities, industrial and government laboratories, financial institutions, and many others--share an interest in current developments in linear algebra. This conference aims to bring them together for their mutual benefit. Abstracts of papers presented are included.
NASA Technical Reports Server (NTRS)
1979-01-01
The computer program Linear SCIDNT which evaluates rotorcraft stability and control coefficients from flight or wind tunnel test data is described. It implements the maximum likelihood method to maximize the likelihood function of the parameters based on measured input/output time histories. Linear SCIDNT may be applied to systems modeled by linear constant-coefficient differential equations. This restriction in scope allows the application of several analytical results which simplify the computation and improve its efficiency over the general nonlinear case.
User's manual for interfacing a leading edge, vortex rollup program with two linear panel methods
NASA Technical Reports Server (NTRS)
Desilva, B. M. E.; Medan, R. T.
1979-01-01
Sufficient instructions are provided for interfacing the Mangler-Smith, leading edge vortex rollup program with a vortex lattice (POTFAN) method and an advanced higher order, singularity linear analysis for computing the vortex effects for simple canard wing combinations.
NASA Astrophysics Data System (ADS)
Dotti, Gustavo; Gleiser, Reinaldo J.
2009-11-01
The coupled equations for the scalar modes of the linearized Einstein equations around Schwarzschild's spacetime were reduced by Zerilli to a (1+1) wave equation \\partial ^2 \\Psi _z / \\partial t^2 + {\\cal H} \\Psi _z =0 , where {\\cal H} = -\\partial ^2 / \\partial x^2 + V(x) is the Zerilli 'Hamiltonian' and x is the tortoise radial coordinate. From its definition, for smooth metric perturbations the field Ψz is singular at rs = -6M/(ell - 1)(ell +2), with ell being the mode harmonic number. The equation Ψz obeys is also singular, since V has a second-order pole at rs. This is irrelevant to the black hole exterior stability problem, where r > 2M > 0, and rs < 0, but it introduces a non-trivial problem in the naked singular case where M < 0, then rs > 0, and the singularity appears in the relevant range of r (0 < r < ∞). We solve this problem by developing a new approach to the evolution of the even mode, based on a new gauge invariant function, \\hat{\\Psi} , that is a regular function of the metric perturbation for any value of M. The relation of \\hat{\\Psi} to Ψz is provided by an intertwiner operator. The spatial pieces of the (1 + 1) wave equations that \\hat{\\Psi} and Ψz obey are related as a supersymmetric pair of quantum Hamiltonians {\\cal H} and \\hat{\\cal H} . For M<0, \\hat{\\cal H} has a regular potential and a unique self-adjoint extension in a domain {\\cal D} defined by a physically motivated boundary condition at r = 0. This allows us to address the issue of evolution of gravitational perturbations in this non-globally hyperbolic background. This formulation is used to complete the proof of the linear instability of the Schwarzschild naked singularity, by showing that a previously found unstable mode belongs to a complete basis of \\hat{\\cal H} in {\\cal D} , and thus is excitable by generic initial data. This is further illustrated by numerically solving the linearized equations for suitably chosen initial data.
Optimizing the Teaching-Learning Process Through a Linear Programming Model--Stage Increment Model.
ERIC Educational Resources Information Center
Belgard, Maria R.; Min, Leo Yoon-Gee
An operations research method to optimize the teaching-learning process is introduced in this paper. In particular, a linear programing model is proposed which, unlike dynamic or control theory models, allows the computer to react to the responses of a learner in seconds or less. To satisfy the assumptions of linearity, the seemingly complicated…
NASA Astrophysics Data System (ADS)
Shaldanbayev, Amir; Shomanbayeva, Manat; Kopzhassarova, Asylzat
2016-08-01
This paper proposes a fundamentally new method of investigation of a singularly perturbed Cauchy problem for a linear system of ordinary differential equations based on the spectral theory of equations with deviating argument.
The MARX Modulator Development Program for the International Linear Collider
Leyh, G.E.; /SLAC
2006-06-12
The ILC Marx Modulator Development Program at SLAC is working towards developing a full-scale ILC Marx ''Reference Design'' modulator prototype, with the goal of significantly reducing the size and cost of the ILC modulator while improving overall modulator efficiency and availability. The ILC Reference Design prototype will provide a proof-of-concept model to industry in advance of Phase II SBIR funding, and also allow operation of the new 10MW L-Band Klystron prototypes immediately upon their arrival at SLAC.
Users manual for linear Time-Varying Helicopter Simulation (Program TVHIS)
NASA Technical Reports Server (NTRS)
Burns, M. R.
1979-01-01
A linear time-varying helicopter simulation program (TVHIS) is described. The program is designed as a realistic yet efficient helicopter simulation. It is based on a linear time-varying helicopter model which includes rotor, actuator, and sensor models, as well as a simulation of flight computer logic. The TVHIS can generate a mean trajectory simulation along a nominal trajectory, or propagate covariance of helicopter states, including rigid-body, turbulence, control command, controller states, and rigid-body state estimates.
Alaska Problem Resource Manual: Alaska Future Problem Solving Program. Alaska Problem 1985-86.
ERIC Educational Resources Information Center
Gorsuch, Marjorie, Ed.
"Alaska's Image in the Lower 48," is the theme selected by a Blue Ribbon panel of state and national leaders who felt that it was important for students to explore the relationship between Alaska's outside image and the effect of that image on the federal programs/policies that impact Alaska. An overview of Alaska is presented first in this…
SAGUARO: A finite-element computer program for partially saturated porous flow problems
NASA Astrophysics Data System (ADS)
Easton, R. R.; Gartling, D. K.; Larson, D. E.
1983-11-01
SAGUARO is finite element computer program designed to calculate two-dimensional flow of mass and energy through porous media. The media may be saturated or partially saturated. SAGUARO solves the parabolic time-dependent mass transport equation which accounts for the presence of partially saturated zones through the use of highly non-linear material characteristic curves. The energy equation accounts for the possibility of partially saturated regions by adjusting the thermal capacitances and thermal conductivities according to the volume fraction of water present in the local pores. Program capabilities, user instructions and a sample problem are presented in this manual.
Solving the Linear Balance Equation on the Globe as a Generalized Inverse Problem
NASA Technical Reports Server (NTRS)
Lu, Huei-Iin; Robertson, Franklin R.
1999-01-01
A generalized (pseudo) inverse technique was developed to facilitate a better understanding of the numerical effects of tropical singularities inherent in the spectral linear balance equation (LBE). Depending upon the truncation, various levels of determinancy are manifest. The traditional fully-determined (FD) systems give rise to a strong response, while the under-determined (UD) systems yield a weak response to the tropical singularities. The over-determined (OD) systems result in a modest response and a large residual in the tropics. The FD and OD systems can be alternatively solved by the iterative method. Differences in the solutions of an UD system exist between the inverse technique and the iterative method owing to the non- uniqueness of the problem. A realistic balanced wind was obtained by solving the principal components of the spectral LBE in terms of vorticity in an intermediate resolution. Improved solutions were achieved by including the singular-component solutions which best fit the observed wind data.
First-order system least squares for the pure traction problem in planar linear elasticity
Cai, Z.; Manteuffel, T.; McCormick, S.; Parter, S.
1996-12-31
This talk will develop two first-order system least squares (FOSLS) approaches for the solution of the pure traction problem in planar linear elasticity. Both are two-stage algorithms that first solve for the gradients of displacement, then for the displacement itself. One approach, which uses L{sup 2} norms to define the FOSLS functional, is shown under certain H{sup 2} regularity assumptions to admit optimal H{sup 1}-like performance for standard finite element discretization and standard multigrid solution methods that is uniform in the Poisson ratio for all variables. The second approach, which is based on H{sup -1} norms, is shown under general assumptions to admit optimal uniform performance for displacement flux in an L{sup 2} norm and for displacement in an H{sup 1} norm. These methods do not degrade as other methods generally do when the material properties approach the incompressible limit.
An exact solution to a certain non-linear random vibration problem
NASA Astrophysics Data System (ADS)
Dimentberg, M. F.
A single-degree-of-freedom system with a special type of nonlinear damping and both external and parametric white-noise excitations is considered. For the special case, when the intensities of coordinates and velocity modulation satisfy a certain condition an exact analytical solution is obtained to the corresponding stationary Fokker-Planck-Kolmogorov equation yielding an expression for joint probability density of coordinate and velocity. This solution is analyzed particularly in connection with stochastic stability problem for the corresponding linear system; certain implications are illustrated for the system, which is stable with respect to probability but unstable in the mean square. The solution obtained may be used to check different approximate methods for analysis of systems with randomly varying parameters.
An Interdisciplinary Program in Technical Communications: Problems Encountered.
ERIC Educational Resources Information Center
Eckman, Martha
The need for experts in technical communication is growing significantly while the number of college graduates in the field accounts for less than one percent of the need. Three major types of problems should be considered in trying to establish a technical communication program: those involving society's need for better technical communicators,…
EARLY DETECTION AND PROGRAMING FOR CHILDREN WITH SCHOOL ADJUSTMENT PROBLEMS.
ERIC Educational Resources Information Center
MCGAHAN, F.E.
THE GALENA PARK SPECIAL PROGRAM IS AN EFFORT ON THE PART OF THE SCHOOL ADMINISTRATION TO DETECT, AT THE EARLIEST TIME, ANY STUDENT PROBLEM WHICH MAY LEAD TO DIFFICULTIES IN SCHOOL ADJUSTMENT. ALL PHASES OF PUPIL PERSONNEL SERVICES ARE PLACED UNDER ONE COORDINATOR TO EXPEDITE SERVICES TO THE CHILD IN DIFFICULTY. EARLY DETECTION OF POTENTIAL PROBLEM…
A linear stability analysis for nonlinear, grey, thermal radiative transfer problems
Wollaber, Allan B.; Larsen, Edward W.
2011-02-20
We present a new linear stability analysis of three time discretizations and Monte Carlo interpretations of the nonlinear, grey thermal radiative transfer (TRT) equations: the widely used 'Implicit Monte Carlo' (IMC) equations, the Carter Forest (CF) equations, and the Ahrens-Larsen or 'Semi-Analog Monte Carlo' (SMC) equations. Using a spatial Fourier analysis of the 1-D Implicit Monte Carlo (IMC) equations that are linearized about an equilibrium solution, we show that the IMC equations are unconditionally stable (undamped perturbations do not exist) if {alpha}, the IMC time-discretization parameter, satisfies 0.5 < {alpha} {<=} 1. This is consistent with conventional wisdom. However, we also show that for sufficiently large time steps, unphysical damped oscillations can exist that correspond to the lowest-frequency Fourier modes. After numerically confirming this result, we develop a method to assess the stability of any time discretization of the 0-D, nonlinear, grey, thermal radiative transfer problem. Subsequent analyses of the CF and SMC methods then demonstrate that the CF method is unconditionally stable and monotonic, but the SMC method is conditionally stable and permits unphysical oscillatory solutions that can prevent it from reaching equilibrium. This stability theory provides new conditions on the time step to guarantee monotonicity of the IMC solution, although they are likely too conservative to be used in practice. Theoretical predictions are tested and confirmed with numerical experiments.
Solution of mathematical programming formulations of subgame perfect equilibrium problems
Macal, C.M.; Hurter, A.P.
1992-02-12
Mathematical programming models have been developed to represent imperfectly competitive (oligopolistic) market structures and the interdependencies of decision-making units in establishing prices and production levels. The solution of these models represents an economic equilibrium. A subgame perfect equilibrium formulation explicitly considers that each agent`s strategies depend on the current state of the system; the state depends solely on previous decisions made by the economic agents. The structure of an industry-wide model that is formulated as a subgame perfect equilibrium problem is a matrix of simultaneous mathematical programming problems, where the rows represent time periods and the columns represent agents. This paper formally defines the subgame perfect equilibrium problem that includes mathematical programs for agent decision problems, and it characterizes the feasible space in a way that is conducive to the solution of the problem. The existence of equilibrium solutions on convex subspaces of the feasible region is proved, and this set is shown to contain the subgame perfect equilibrium solutions. A procedure for computing equilibrium solutions and systematically searching the subspaces is illustrated by a numerical example.
Mitsos, Alexander; Melas, Ioannis N; Morris, Melody K; Saez-Rodriguez, Julio; Lauffenburger, Douglas A; Alexopoulos, Leonidas G
2012-01-01
Modeling of signal transduction pathways plays a major role in understanding cells' function and predicting cellular response. Mathematical formalisms based on a logic formalism are relatively simple but can describe how signals propagate from one protein to the next and have led to the construction of models that simulate the cells response to environmental or other perturbations. Constrained fuzzy logic was recently introduced to train models to cell specific data to result in quantitative pathway models of the specific cellular behavior. There are two major issues in this pathway optimization: i) excessive CPU time requirements and ii) loosely constrained optimization problem due to lack of data with respect to large signaling pathways. Herein, we address both issues: the former by reformulating the pathway optimization as a regular nonlinear optimization problem; and the latter by enhanced algorithms to pre/post-process the signaling network to remove parts that cannot be identified given the experimental conditions. As a case study, we tackle the construction of cell type specific pathways in normal and transformed hepatocytes using medium and large-scale functional phosphoproteomic datasets. The proposed Non Linear Programming (NLP) formulation allows for fast optimization of signaling topologies by combining the versatile nature of logic modeling with state of the art optimization algorithms. PMID:23226239
The toxic waste dump problem and a suggested insurance program
Fisher, A.
1980-01-01
The extent of the hazardous waste problem in the U.S. is explored. To emphasize the enormous scope of the problem, several recent cases involving hazardous waste disasters, including the Love Canal incident, are reviewed. Legislation related to toxic waste disposal is discussed. A Nat'l Hazardous Waste Insurance Program, based on the policies of the Nat'l Flood Insurance Program, is proposed. The rationale for government involvement in insurance provision is examined. The cost to taxpayers of this toxic waste insurance program will depend on several factors, including: the types of coverage available/ upper limits on each type of coverage/ the premium rates charged for each type of coverage/ the number and size of potential impact acres/ the number of people who would actually buy the insurance/ the actual incidence of hazardous waste damages/ and the time frame chosen for mapping all potential impact areas. (138 references)
Biomedical image analysis using Markov random fields & efficient linear programing.
Komodakis, Nikos; Besbes, Ahmed; Glocker, Ben; Paragios, Nikos
2009-01-01
Computer-aided diagnosis through biomedical image analysis is increasingly considered in health sciences. This is due to the progress made on the acquisition side, as well as on the processing one. In vivo visualization of human tissues where one can determine both anatomical and functional information is now possible. The use of these images with efficient intelligent mathematical and processing tools allows the interpretation of the tissues state and facilitates the task of the physicians. Segmentation and registration are the two most fundamental tools in bioimaging. The first aims to provide automatic tools for organ delineation from images, while the second focuses on establishing correspondences between observations inter and intra subject and modalities. In this paper, we present some recent results towards a common formulation addressing these problems, called the Markov Random Fields. Such an approach is modular with respect to the application context, can be easily extended to deal with various modalities, provides guarantees on the optimality properties of the obtained solution and is computationally efficient. PMID:19963682
NASA Astrophysics Data System (ADS)
Kuchment, Peter; Steinhauer, Dustin
2015-12-01
In the previous paper (Kuchment and Steinhauer in Inverse Probl 28(8):084007, 2012), the authors introduced a simple procedure that allows one to detect whether and explain why internal information arising in several novel coupled physics (hybrid) imaging modalities could turn extremely unstable techniques, such as optical tomography or electrical impedance tomography, into stable, good-resolution procedures. It was shown that in all cases of interest, the Fréchet derivative of the forward mapping is a pseudo-differential operator with an explicitly computable principal symbol. If one can set up the imaging procedure in such a way that the symbol is elliptic, this would indicate that the problem was stabilized. In the cases when the symbol is not elliptic, the technique suggests how to change the procedure (e.g., by adding extra measurements) to achieve ellipticity. In this article, we consider the situation arising in acousto-optical tomography (also called ultrasound modulated optical tomography), where the internal data available involves the Green's function, and thus depends globally on the unknown parameter(s) of the equation and its solution. It is shown that the technique of (Kuchment and Steinhauer in Inverse Probl 28(8):084007, 2012) can be successfully adopted to this situation as well. A significant part of the article is devoted to results on generic uniqueness for the linearized problem in a variety of situations, including those arising in acousto-electric and quantitative photoacoustic tomography.
NASA Technical Reports Server (NTRS)
Antoniewicz, Robert F.; Duke, Eugene L.; Menon, P. K. A.
1991-01-01
The design of nonlinear controllers has relied on the use of detailed aerodynamic and engine models that must be associated with the control law in the flight system implementation. Many of these controllers were applied to vehicle flight path control problems and have attempted to combine both inner- and outer-loop control functions in a single controller. An approach to the nonlinear trajectory control problem is presented. This approach uses linearizing transformations with measurement feedback to eliminate the need for detailed aircraft models in outer-loop control applications. By applying this approach and separating the inner-loop and outer-loop functions two things were achieved: (1) the need for incorporating detailed aerodynamic models in the controller is obviated; and (2) the controller is more easily incorporated into existing aircraft flight control systems. An implementation of the controller is discussed, and this controller is tested on a six degree-of-freedom F-15 simulation and in flight on an F-15 aircraft. Simulation data are presented which validates this approach over a large portion of the F-15 flight envelope. Proof of this concept is provided by flight-test data that closely matches simulation results. Flight-test data are also presented.
Interval analysis approach to rank determination in linear least squares problems
Manteuffel, T.A.
1980-06-01
The linear least-squares problem Ax approx. = b has a unique solution only if the matrix A has full column rank. Numerical rank determination is difficult, especially in the presence of uncertainties in the elements of A. This paper proposes an interval analysis approach. A set of matrices A/sup I/ is defined that contains all possible perturbations of A due to uncertainties; A/sup I/ is said to be rank deficient if any member of A/sup I/ is rank deficient. A modification to the Q-R decomposition method of solution of the least-squares problem allows a determination of the rank of A/sup I/ and a partial interval analysis of the solution vector x. This procedure requires the computation of R/sup -1/. Another modification is proposed which determines the rank of A/sup I/ without computing R/sup -1/. The additional computational effort is O(N/sup 2/), where N is the column dimension of A. 4 figures.
Linearized Programming of Memristors for Artificial Neuro-Sensor Signal Processing.
Yang, Changju; Kim, Hyongsuk
2016-01-01
A linearized programming method of memristor-based neural weights is proposed. Memristor is known as an ideal element to implement a neural synapse due to its embedded functions of analog memory and analog multiplication. Its resistance variation with a voltage input is generally a nonlinear function of time. Linearization of memristance variation about time is very important for the easiness of memristor programming. In this paper, a method utilizing an anti-serial architecture for linear programming is proposed. The anti-serial architecture is composed of two memristors with opposite polarities. It linearizes the variation of memristance due to complimentary actions of two memristors. For programming a memristor, additional memristor with opposite polarity is employed. The linearization effect of weight programming of an anti-serial architecture is investigated and memristor bridge synapse which is built with two sets of anti-serial memristor architecture is taken as an application example of the proposed method. Simulations are performed with memristors of both linear drift model and nonlinear model. PMID:27548186
Boggs, P.; Tolle, J.; Kearsley, A.
1994-12-31
We have developed a large scale sequential quadratic programming (SQP) code based on an interior-point method for solving general (convex or nonconvex) quadratic programs (QP). We often halt this QP solver prematurely by employing a trust-region strategy. This procedure typically reduces the overall cost of the code. In this talk we briefly review the algorithm and some of its theoretical justification and then discuss recent enhancements including automatic procedures for both increasing and decreasing the parameter in the merit function, a regularization procedure for dealing with linearly dependent active constraint gradients, and a method for modifying the linearized equality constraints. Some numerical results on a significant set of {open_quotes}real-world{close_quotes} problems will be presented.
Solving seismological problems using sgraph program: II-waveform modeling
Abdelwahed, Mohamed F.
2012-09-26
One of the seismological programs to manipulate seismic data is SGRAPH program. It consists of integrated tools to perform advanced seismological techniques. SGRAPH is considered a new system for maintaining and analyze seismic waveform data in a stand-alone Windows-based application that manipulate a wide range of data formats. SGRAPH was described in detail in the first part of this paper. In this part, I discuss the advanced techniques including in the program and its applications in seismology. Because of the numerous tools included in the program, only SGRAPH is sufficient to perform the basic waveform analysis and to solve advanced seismological problems. In the first part of this paper, the application of the source parameters estimation and hypocentral location was given. Here, I discuss SGRAPH waveform modeling tools. This paper exhibits examples of how to apply the SGRAPH tools to perform waveform modeling for estimating the focal mechanism and crustal structure of local earthquakes.
NASA Astrophysics Data System (ADS)
Zhou, Qinglong; Long, Yiming
2015-06-01
In this paper, we prove that the linearized system of elliptic triangle homographic solution of planar charged three-body problem can be transformed to that of the elliptic equilateral triangle solution of the planar classical three-body problem. Consequently, the results of Martínez, Samà and Simó (2006) [15] and results of Hu, Long and Sun (2014) [6] can be applied to these solutions of the charged three-body problem to get their linear stability.
Behavior problems and group-based parent education programs.
Barlow, J; Stewart-Brown, S
2000-10-01
Behavior problems in children are an important social, educational, and health issue. The prevalence of these problems, their stability over time, their poor prognosis, and their costs to both individuals and the society, all point to the need for primary prevention and early effective interventions. A systematic review examined the effectiveness of group parent education programs that aimed to improve behavior problems in 3- to 10-year-old children. The phrase "parent education program" is used here to refer to group-based programs with a standardized format aimed at enhancing parenting skills. The term "behavior problems" is used to refer to children exhibiting externalizing problems such as temper tantrums, aggression, and noncompliance. It does not include children diagnosed as having attention-deficit hyperactivity disorder. This review focused explicitly on measures of child behavioral outcomes, which are only small, albeit important, outcomes of parent education programs. Reviews focusing on other clinically relevant outcomes are also needed, including parental well-being and attitudes towards parenting. Other reviews are also needed to collate evidence concerning the effectiveness of parent education programs with other age-groups, i.e., preschoolers and adolescents, and in improving other aspects of child well-being. The review included published studies only and as such may have been influenced by a "publication bias." Inclusion criteria comprised the use of a waiting list, a no-treatment or placebo control group, and at least one standardized measure assessing the child's behavior. Only studies published after 1970 that included at least one "group-based" parent education program were included. A total of 255 primary studies were identified, but only 16 of these and 2 follow-up studies met all of the specified inclusion criteria. Critical appraisal of these 16 studies revealed considerable heterogeneity in the interventions, the populations studied, and
A convergence theory for a class of nonlinear programming problems.
NASA Technical Reports Server (NTRS)
Rauch, S. W.
1973-01-01
A recent convergence theory of Elkin concerning methods for unconstrained minimization is extended to a certain class of nonlinear programming problems. As in Elkin's original approach, the analysis of a variety of step-length algorithms is treated entirely separately from that of several direction algorithms. This allows for their combination into many different methods for solving the constrained problem. These include some of the methods of Rosen and Zoutendijk. We also extend the results of Topkis and Veinott to nonconvex sets and drop their requirement of the uniform feasibility of a subsequence of the search directions.
Abgrall, Rémi; Congedo, Pietro Marco
2013-02-15
This paper deals with the formulation of a semi-intrusive (SI) method allowing the computation of statistics of linear and non linear PDEs solutions. This method shows to be very efficient to deal with probability density function of whatsoever form, long-term integration and discontinuities in stochastic space. Given a stochastic PDE where randomness is defined on Ω, starting from (i) a description of the solution in term of a space variables, (ii) a numerical scheme defined for any event ω∈Ω and (iii) a (family) of random variables that may be correlated, the solution is numerically described by its conditional expectancies of point values or cell averages and its evaluation constructed from the deterministic scheme. One of the tools is a tessellation of the random space as in finite volume methods for the space variables. Then, using these conditional expectancies and the geometrical description of the tessellation, a piecewise polynomial approximation in the random variables is computed using a reconstruction method that is standard for high order finite volume space, except that the measure is no longer the standard Lebesgue measure but the probability measure. This reconstruction is then used to formulate a scheme on the numerical approximation of the solution from the deterministic scheme. This new approach is said semi-intrusive because it requires only a limited amount of modification in a deterministic solver to quantify uncertainty on the state when the solver includes uncertain variables. The effectiveness of this method is illustrated for a modified version of Kraichnan–Orszag three-mode problem where a discontinuous pdf is associated to the stochastic variable, and for a nozzle flow with shocks. The results have been analyzed in terms of accuracy and probability measure flexibility. Finally, the importance of the probabilistic reconstruction in the stochastic space is shown up on an example where the exact solution is computable, the viscous
NASA Astrophysics Data System (ADS)
Abgrall, Rémi; Congedo, Pietro Marco
2013-02-01
This paper deals with the formulation of a semi-intrusive (SI) method allowing the computation of statistics of linear and non linear PDEs solutions. This method shows to be very efficient to deal with probability density function of whatsoever form, long-term integration and discontinuities in stochastic space. Given a stochastic PDE where randomness is defined on Ω, starting from (i) a description of the solution in term of a space variables, (ii) a numerical scheme defined for any event ω∈Ω and (iii) a (family) of random variables that may be correlated, the solution is numerically described by its conditional expectancies of point values or cell averages and its evaluation constructed from the deterministic scheme. One of the tools is a tessellation of the random space as in finite volume methods for the space variables. Then, using these conditional expectancies and the geometrical description of the tessellation, a piecewise polynomial approximation in the random variables is computed using a reconstruction method that is standard for high order finite volume space, except that the measure is no longer the standard Lebesgue measure but the probability measure. This reconstruction is then used to formulate a scheme on the numerical approximation of the solution from the deterministic scheme. This new approach is said semi-intrusive because it requires only a limited amount of modification in a deterministic solver to quantify uncertainty on the state when the solver includes uncertain variables. The effectiveness of this method is illustrated for a modified version of Kraichnan-Orszag three-mode problem where a discontinuous pdf is associated to the stochastic variable, and for a nozzle flow with shocks. The results have been analyzed in terms of accuracy and probability measure flexibility. Finally, the importance of the probabilistic reconstruction in the stochastic space is shown up on an example where the exact solution is computable, the viscous
Christophersen, A; McKinley-McKee, J S
1984-01-01
An interactive program for analysing enzyme activity-time data using non-linear regression analysis is described. Protection studies can also be dealt with. The program computes inactivation rates, dissociation constants and promotion or inhibition parameters with their standard errors. It can also be used to distinguish different inactivation models. The program is written in SIMULA and is menu-oriented for refining or correcting data at the different levels of computing. PMID:6546558
A Hybrid Constraint Programming Approach for Nurse Rostering Problems
NASA Astrophysics Data System (ADS)
Qu, Rong; He, Fang
Due to the complexity of nurse rostering problems (NRPs), Constraint Programming (CP) approaches on their own have shown to be ineffective in solving these highly constrained problems. We investigate a two-stage hybrid CP approach on real world benchmark NRPs. In the first stage, a constraint satisfaction model is used to generate weekly rosters consist of high quality shift sequences satisfying a subset of constraints. An iterative forward search is then adapted to extend them to build complete feasible solutions. Variable and value selection heuristics are employed to improve the efficiency. In the second stage, a simple Variable Neighborhood Search is used to quickly improve the solution obtained. The basic idea of the hybrid approach is based on the observations that high quality nurse rosters consist of high quality shift sequences. By decomposing the problems into solvable sub-problems for CP, the search space of the original problems are significantly reduced. The results on benchmark problems demonstrate the efficiency of this hybrid CP approach when compared to the state-of-the-art approaches in the literature.
A Structural Connection between Linear and 0-1 Integer Linear Formulations
ERIC Educational Resources Information Center
Adlakha, V.; Kowalski, K.
2007-01-01
The connection between linear and 0-1 integer linear formulations has attracted the attention of many researchers. The main reason triggering this interest has been an availability of efficient computer programs for solving pure linear problems including the transportation problem. Also the optimality of linear problems is easily verifiable…
Evaluation of parallel direct sparse linear solvers in electromagnetic geophysical problems
NASA Astrophysics Data System (ADS)
Puzyrev, Vladimir; Koric, Seid; Wilkin, Scott
2016-04-01
High performance computing is absolutely necessary for large-scale geophysical simulations. In order to obtain a realistic image of a geologically complex area, industrial surveys collect vast amounts of data making the computational cost extremely high for the subsequent simulations. A major computational bottleneck of modeling and inversion algorithms is solving the large sparse systems of linear ill-conditioned equations in complex domains with multiple right hand sides. Recently, parallel direct solvers have been successfully applied to multi-source seismic and electromagnetic problems. These methods are robust and exhibit good performance, but often require large amounts of memory and have limited scalability. In this paper, we evaluate modern direct solvers on large-scale modeling examples that previously were considered unachievable with these methods. Performance and scalability tests utilizing up to 65,536 cores on the Blue Waters supercomputer clearly illustrate the robustness, efficiency and competitiveness of direct solvers compared to iterative techniques. Wide use of direct methods utilizing modern parallel architectures will allow modeling tools to accurately support multi-source surveys and 3D data acquisition geometries, thus promoting a more efficient use of the electromagnetic methods in geophysics.
Taming the non-linearity problem in GPR full-waveform inversion for high contrast media
NASA Astrophysics Data System (ADS)
Meles, Giovanni; Greenhalgh, Stewart; van der Kruk, Jan; Green, Alan; Maurer, Hansruedi
2012-03-01
We present a new algorithm for the inversion of full-waveform ground-penetrating radar (GPR) data. It is designed to tame the non-linearity issue that afflicts inverse scattering problems, especially in high contrast media. We first investigate the limitations of current full-waveform time-domain inversion schemes for GPR data and then introduce a much-improved approach based on a combined frequency-time-domain analysis. We show by means of several synthetic tests and theoretical considerations that local minima trapping (common in full bandwidth time-domain inversion) can be avoided by starting the inversion with only the low frequency content of the data. Resolution associated with the high frequencies can then be achieved by progressively expanding to wider bandwidths as the iterations proceed. Although based on a frequency analysis of the data, the new method is entirely implemented by means of a time-domain forward solver, thus combining the benefits of both frequency-domain (low frequency inversion conveys stability and avoids convergence to a local minimum; whereas high frequency inversion conveys resolution) and time-domain methods (simplicity of interpretation and recognition of events; ready availability of FDTD simulation tools).
Taming the non-linearity problem in GPR full-waveform inversion for high contrast media
NASA Astrophysics Data System (ADS)
Meles, Giovanni; Greenhalgh, Stewart; van der Kruk, Jan; Green, Alan; Maurer, Hansruedi
2011-02-01
We present a new algorithm for the inversion of full-waveform ground-penetrating radar (GPR) data. It is designed to tame the non-linearity issue that afflicts inverse scattering problems, especially in high contrast media. We first investigate the limitations of current full-waveform time-domain inversion schemes for GPR data and then introduce a much-improved approach based on a combined frequency-time-domain analysis. We show by means of several synthetic tests and theoretical considerations that local minima trapping (common in full bandwidth time-domain inversion) can be avoided by starting the inversion with only the low frequency content of the data. Resolution associated with the high frequencies can then be achieved by progressively expanding to wider bandwidths as the iterations proceed. Although based on a frequency analysis of the data, the new method is entirely implemented by means of a time-domain forward solver, thus combining the benefits of both frequency-domain (low frequency inversion conveys stability and avoids convergence to a local minimum; whereas high frequency inversion conveys resolution) and time-domain methods (simplicity of interpretation and recognition of events; ready availability of FDTD simulation tools).
NASA Technical Reports Server (NTRS)
Belcastro, Christine M.
1998-01-01
Robust control system analysis and design is based on an uncertainty description, called a linear fractional transformation (LFT), which separates the uncertain (or varying) part of the system from the nominal system. These models are also useful in the design of gain-scheduled control systems based on Linear Parameter Varying (LPV) methods. Low-order LFT models are difficult to form for problems involving nonlinear parameter variations. This paper presents a numerical computational method for constructing and LFT model for a given LPV model. The method is developed for multivariate polynomial problems, and uses simple matrix computations to obtain an exact low-order LFT representation of the given LPV system without the use of model reduction. Although the method is developed for multivariate polynomial problems, multivariate rational problems can also be solved using this method by reformulating the rational problem into a polynomial form.
Triple/quadruple patterning layout decomposition via novel linear programming and iterative rounding
NASA Astrophysics Data System (ADS)
Lin, Yibo; Xu, Xiaoqing; Yu, Bei; Baldick, Ross; Pan, David Z.
2016-03-01
As feature size of the semiconductor technology scales down to 10nm and beyond, multiple patterning lithography (MPL) has become one of the most practical candidates for lithography, along with other emerging technologies such as extreme ultraviolet lithography (EUVL), e-beam lithography (EBL) and directed self assembly (DSA). Due to the delay of EUVL and EBL, triple and even quadruple patterning are considered to be used for lower metal and contact layers with tight pitches. In the process of MPL, layout decomposition is the key design stage, where a layout is split into various parts and each part is manufactured through a separate mask. For metal layers, stitching may be allowed to resolve conflicts, while it is forbidden for contact and via layers. In this paper, we focus on the application of layout decomposition where stitching is not allowed such as for contact and via layers. We propose a linear programming and iterative rounding (LPIR) solving technique to reduce the number of non-integers in the LP relaxation problem. Experimental results show that the proposed algorithms can provide high quality decomposition solutions efficiently while introducing as few conflicts as possible.
Poos, Alexandra M; Maicher, André; Dieckmann, Anna K; Oswald, Marcus; Eils, Roland; Kupiec, Martin; Luke, Brian; König, Rainer
2016-06-01
Understanding telomere length maintenance mechanisms is central in cancer biology as their dysregulation is one of the hallmarks for immortalization of cancer cells. Important for this well-balanced control is the transcriptional regulation of the telomerase genes. We integrated Mixed Integer Linear Programming models into a comparative machine learning based approach to identify regulatory interactions that best explain the discrepancy of telomerase transcript levels in yeast mutants with deleted regulators showing aberrant telomere length, when compared to mutants with normal telomere length. We uncover novel regulators of telomerase expression, several of which affect histone levels or modifications. In particular, our results point to the transcription factors Sum1, Hst1 and Srb2 as being important for the regulation of EST1 transcription, and we validated the effect of Sum1 experimentally. We compiled our machine learning method leading to a user friendly package for R which can straightforwardly be applied to similar problems integrating gene regulator binding information and expression profiles of samples of e.g. different phenotypes, diseases or treatments. PMID:26908654
Optimal Reservoir Operation for Hydropower Generation using Non-linear Programming Model
NASA Astrophysics Data System (ADS)
Arunkumar, R.; Jothiprakash, V.
2012-05-01
Hydropower generation is one of the vital components of reservoir operation, especially for a large multi-purpose reservoir. Deriving optimal operational rules for such a large multi-purpose reservoir serving various purposes like irrigation, hydropower and flood control are complex, because of the large dimension of the problem and the complexity is more if the hydropower production is not an incidental. Thus optimizing the operations of a reservoir serving various purposes requires a systematic study. In the present study such a large multi-purpose reservoir, namely, Koyna reservoir operations are optimized for maximizing the hydropower production subject to the condition of satisfying the irrigation demands using a non-linear programming model. The hydropower production from the reservoir is analysed for three different dependable inflow conditions, representing wet, normal and dry years. For each dependable inflow conditions, various scenarios have been analyzed based on the constraints on the releases and the results are compared. The annual power production, combined monthly power production from all the powerhouses, end of month storage levels, evaporation losses and surplus are discussed. From different scenarios, it is observed that more hydropower can be generated for various dependable inflow conditions, if the restrictions on releases are slightly relaxed. The study shows that Koyna dam is having potential to generate more hydropower.
Poos, Alexandra M.; Maicher, André; Dieckmann, Anna K.; Oswald, Marcus; Eils, Roland; Kupiec, Martin; Luke, Brian; König, Rainer
2016-01-01
Understanding telomere length maintenance mechanisms is central in cancer biology as their dysregulation is one of the hallmarks for immortalization of cancer cells. Important for this well-balanced control is the transcriptional regulation of the telomerase genes. We integrated Mixed Integer Linear Programming models into a comparative machine learning based approach to identify regulatory interactions that best explain the discrepancy of telomerase transcript levels in yeast mutants with deleted regulators showing aberrant telomere length, when compared to mutants with normal telomere length. We uncover novel regulators of telomerase expression, several of which affect histone levels or modifications. In particular, our results point to the transcription factors Sum1, Hst1 and Srb2 as being important for the regulation of EST1 transcription, and we validated the effect of Sum1 experimentally. We compiled our machine learning method leading to a user friendly package for R which can straightforwardly be applied to similar problems integrating gene regulator binding information and expression profiles of samples of e.g. different phenotypes, diseases or treatments. PMID:26908654
Automatic design of synthetic gene circuits through mixed integer non-linear programming.
Huynh, Linh; Kececioglu, John; Köppe, Matthias; Tagkopoulos, Ilias
2012-01-01
Automatic design of synthetic gene circuits poses a significant challenge to synthetic biology, primarily due to the complexity of biological systems, and the lack of rigorous optimization methods that can cope with the combinatorial explosion as the number of biological parts increases. Current optimization methods for synthetic gene design rely on heuristic algorithms that are usually not deterministic, deliver sub-optimal solutions, and provide no guaranties on convergence or error bounds. Here, we introduce an optimization framework for the problem of part selection in synthetic gene circuits that is based on mixed integer non-linear programming (MINLP), which is a deterministic method that finds the globally optimal solution and guarantees convergence in finite time. Given a synthetic gene circuit, a library of characterized parts, and user-defined constraints, our method can find the optimal selection of parts that satisfy the constraints and best approximates the objective function given by the user. We evaluated the proposed method in the design of three synthetic circuits (a toggle switch, a transcriptional cascade, and a band detector), with both experimentally constructed and synthetic promoter libraries. Scalability and robustness analysis shows that the proposed framework scales well with the library size and the solution space. The work described here is a step towards a unifying, realistic framework for the automated design of biological circuits. PMID:22536398
Earthquake mechanisms from linear-programming inversion of seismic-wave amplitude ratios
Julian, B.R.; Foulger, G.R.
1996-01-01
The amplitudes of radiated seismic waves contain far more information about earthquake source mechanisms than do first-motion polarities, but amplitudes are severely distorted by the effects of heterogeneity in the Earth. This distortion can be reduced greatly by using the ratios of amplitudes of appropriately chosen seismic phases, rather than simple amplitudes, but existing methods for inverting amplitude ratios are severely nonlinear and require computationally intensive searching methods to ensure that solutions are globally optimal. Searching methods are particularly costly if general (moment tensor) mechanisms are allowed. Efficient linear-programming methods, which do not suffer from these problems, have previously been applied to inverting polarities and wave amplitudes. We extend these methods to amplitude ratios, in which formulation on inequality constraint for an amplitude ratio takes the same mathematical form as a polarity observation. Three-component digital data for an earthquake at the Hengill-Grensdalur geothermal area in southwestern Iceland illustrate the power of the method. Polarities of P, SH, and SV waves, unusually well distributed on the focal sphere, cannot distinguish between diverse mechanisms, including a double couple. Amplitude ratios, on the other hand, clearly rule out the double-couple solution and require a large explosive isotropic component.
An integer programming model for gate assignment problem at airline terminals
NASA Astrophysics Data System (ADS)
Chun, Chong Kok; Nordin, Syarifah Zyurina
2015-05-01
In this paper, we concentrate on a gate assignment problem (GAP) at the airlines terminal. Our problem is to assign an arrival plane to a suitable gate. There are two considerations needed to take. One of its is passenger walking distance from arrival gate to departure gate while another consideration is the transport baggage distance from one gate to another. Our objective is to minimize the total distance between the gates that related to assign the arrival plane to the suitable gates. An integer linear programming (ILP) model is proposed to solve this gate assignment problem. We also conduct a computational experiment using CPLEX 12.1 solver in AIMMS 3.10 software to analyze the performance of the model. Results of the computational experiments are presented. The efficiency of flights assignment is depends on the ratio of the weight for both total passenger traveling distances and total baggage transport distances.
Fault detection and initial state verification by linear programming for a class of Petri nets
NASA Technical Reports Server (NTRS)
Rachell, Traxon; Meyer, David G.
1992-01-01
The authors present an algorithmic approach to determining when the marking of a LSMG (live safe marked graph) or a LSFC (live safe free choice) net is in the set of live safe markings M. Hence, once the marking of a net is determined to be in M, then if at some time thereafter the marking of this net is determined not to be in M, this indicates a fault. It is shown how linear programming can be used to determine if m is an element of M. The worst-case computational complexity of each algorithm is bounded by the number of linear programs necessary to compute.
Understanding change among multi-problem families: Learnings from a formative program assessment.
Millett, Lina Sapokaite; Ben-David, Vered; Jonson-Reid, Melissa; Echele, Greg; Moussette, Pam; Atkins, Valerie
2016-10-01
This paper describes the implementation of a long-term voluntary intervention to prevent chronic maltreatment among multi-problem families with histories of child welfare involvement. A small formative evaluation included a limited number of interviews with program participants during the first year of program implementation (n=10), a retrospective case file review (n=17) of closed cases following the first three years of implementation, and notes from ongoing meetings and discussion with program staff. Findings regarding client engagement, long-term interaction between risk and services, and program refinement are discussed. Despite the program's voluntary nature, positive comments from families, and extensive engagement strategies, only about 22% of families remained engaged for the full two-year program. Material hardship was one of the most persistent risk factors from baseline to termination. In many cases, unforeseen negative events occurred that, at least partly, derailed progress. In all cases, progress made was not reflective of a consistent linear process used in the design of most child welfare programs. Implications for program theory and design are discussed. PMID:27419622
NASA Technical Reports Server (NTRS)
Mitchell, C. E.; Eckert, K.
1979-01-01
A program for predicting the linear stability of liquid propellant rocket engines is presented. The underlying model assumptions and analytical steps necessary for understanding the program and its input and output are also given. The rocket engine is modeled as a right circular cylinder with an injector with a concentrated combustion zone, a nozzle, finite mean flow, and an acoustic admittance, or the sensitive time lag theory. The resulting partial differential equations are combined into two governing integral equations by the use of the Green's function method. These equations are solved using a successive approximation technique for the small amplitude (linear) case. The computational method used as well as the various user options available are discussed. Finally, a flow diagram, sample input and output for a typical application and a complete program listing for program MODULE are presented.
Anastassi, Z. A.; Simos, T. E.
2010-09-30
We develop a new family of explicit symmetric linear multistep methods for the efficient numerical solution of the Schroedinger equation and related problems with oscillatory solution. The new methods are trigonometrically fitted and have improved intervals of periodicity as compared to the corresponding classical method with constant coefficients and other methods from the literature. We also apply the methods along with other known methods to real periodic problems, in order to measure their efficiency.
A nodal inverse problem for a quasi-linear ordinary differential equation in the half-line
NASA Astrophysics Data System (ADS)
Pinasco, Juan P.; Scarola, Cristian
2016-07-01
In this paper we study an inverse problem for a quasi-linear ordinary differential equation with a monotonic weight in the half-line. First, we find the asymptotic behavior of the singular eigenvalues, and we obtain a Weyl-type asymptotics imposing an appropriate integrability condition on the weight. Then, we investigate the inverse problem of recovering the coefficients from nodal data. We show that any dense subset of nodes of the eigenfunctions is enough to recover the weight.
NASA Astrophysics Data System (ADS)
Maiti, Sumit Kumar; Roy, Sankar Kumar
2016-05-01
In this paper, a Multi-Choice Stochastic Bi-Level Programming Problem (MCSBLPP) is considered where all the parameters of constraints are followed by normal distribution. The cost coefficients of the objective functions are multi-choice types. At first, all the probabilistic constraints are transformed into deterministic constraints using stochastic programming approach. Further, a general transformation technique with the help of binary variables is used to transform the multi-choice type cost coefficients of the objective functions of Decision Makers(DMs). Then the transformed problem is considered as a deterministic multi-choice bi-level programming problem. Finally, a numerical example is presented to illustrate the usefulness of the paper.
ERIC Educational Resources Information Center
Findorff, Irene K.
This document summarizes the results of a project at Tulane University that was designed to adapt, test, and evaluate a computerized information and menu planning system utilizing linear programing techniques for use in school lunch food service operations. The objectives of the menu planning were to formulate menu items into a palatable,…
Secret Message Decryption: Group Consulting Projects Using Matrices and Linear Programming
ERIC Educational Resources Information Center
Gurski, Katharine F.
2009-01-01
We describe two short group projects for finite mathematics students that incorporate matrices and linear programming into fictional consulting requests presented as a letter to the students. The students are required to use mathematics to decrypt secret messages in one project involving matrix multiplication and inversion. The second project…
POLARCALC: A program for calculating the linear-polarization factor using an area detector
Molodenskii, D. S.; Sul’yanov, S. N.
2015-05-15
A graphical interface program has been developed to determine the linear-polarization factor of a monochromatic X-ray beam when analyzing scattering from an amorphous object. An area coordinate detector is used in measurements. The change in intensity over the azimuthal angle at a constant diffraction angle is interpolated by a theoretical cosine dependence, which contains the polarization factor.
ERIC Educational Resources Information Center
Dyehouse, Melissa; Bennett, Deborah; Harbor, Jon; Childress, Amy; Dark, Melissa
2009-01-01
Logic models are based on linear relationships between program resources, activities, and outcomes, and have been used widely to support both program development and evaluation. While useful in describing some programs, the linear nature of the logic model makes it difficult to capture the complex relationships within larger, multifaceted…
Tuning of power system controllers using symbolic eigensensitivity analysis and linear programming
Xu, L.; Ahmed-Zaid, S.
1995-02-01
In this paper, a systematic method for the tuning of multiple power system controllers using symbolic eigensensitivity analysis and linear programming is presented. The concept of eigenvalue sensitivity is used here to formulate the linear first-order variation of the real part of the dominant system eigenvalue as a symbolic function of controller parameters. This eigenvalue variation is minimized iteratively subject to linear equality and inequality constraints. All controller parameters are tuned correctly when the objective function meets the desired performance criteria. In this method, no special assumptions are made on the type of power devices and linear feedback controllers present in the system. The proposed method is illustrated with three examples of a single-machine system with a power system stabilizer and a controller for a thyristor-controlled series capacitor. The tested configurations are supplemented with nonlinear time-domain simulations validating the small-signal stability results.
NASA Technical Reports Server (NTRS)
Cooke, C. H.
1975-01-01
STICAP (Stiff Circuit Analysis Program) is a FORTRAN 4 computer program written for the CDC-6400-6600 computer series and SCOPE 3.0 operating system. It provides the circuit analyst a tool for automatically computing the transient responses and frequency responses of large linear time invariant networks, both stiff and nonstiff (algorithms and numerical integration techniques are described). The circuit description and user's program input language is engineer-oriented, making simple the task of using the program. Engineering theories underlying STICAP are examined. A user's manual is included which explains user interaction with the program and gives results of typical circuit design applications. Also, the program structure from a systems programmer's viewpoint is depicted and flow charts and other software documentation are given.
NASA Astrophysics Data System (ADS)
Jain, Ruchika; Sinha, Deepa
2014-09-01
The non-linear stability of L 4 in the restricted three-body problem when both primaries are finite straight segments in the presence of third and fourth order resonances has been investigated. Markeev's theorem (Markeev in Libration Points in Celestial Mechanics and Astrodynamics, 1978) is used to examine the non-linear stability for the resonance cases 2:1 and 3:1. It is found that the non-linear stability of L 4 depends on the lengths of the segments in both resonance cases. It is also found that the range of stability increases when compared with the classical restricted problem. The results have been applied in the following asteroids systems: (i) 216 Kleopatra-951 Gaspara, (ii) 9 Metis-433 Eros, (iii) 22 Kalliope-243 Ida.
STAR adaptation of QR algorithm. [program for solving over-determined systems of linear equations
NASA Technical Reports Server (NTRS)
Shah, S. N.
1981-01-01
The QR algorithm used on a serial computer and executed on the Control Data Corporation 6000 Computer was adapted to execute efficiently on the Control Data STAR-100 computer. How the scalar program was adapted for the STAR-100 and why these adaptations yielded an efficient STAR program is described. Program listings of the old scalar version and the vectorized SL/1 version are presented in the appendices. Execution times for the two versions applied to the same system of linear equations, are compared.
Hinselmann, Georg; Rosenbaum, Lars; Jahn, Andreas; Fechner, Nikolas; Ostermann, Claude; Zell, Andreas
2011-02-28
The goal of this study was to adapt a recently proposed linear large-scale support vector machine to large-scale binary cheminformatics classification problems and to assess its performance on various benchmarks using virtual screening performance measures. We extended the large-scale linear support vector machine library LIBLINEAR with state-of-the-art virtual high-throughput screening metrics to train classifiers on whole large and unbalanced data sets. The formulation of this linear support machine has an excellent performance if applied to high-dimensional sparse feature vectors. An additional advantage is the average linear complexity in the number of non-zero features of a prediction. Nevertheless, the approach assumes that a problem is linearly separable. Therefore, we conducted an extensive benchmarking to evaluate the performance on large-scale problems up to a size of 175000 samples. To examine the virtual screening performance, we determined the chemotype clusters using Feature Trees and integrated this information to compute weighted AUC-based performance measures and a leave-cluster-out cross-validation. We also considered the BEDROC score, a metric that was suggested to tackle the early enrichment problem. The performance on each problem was evaluated by a nested cross-validation and a nested leave-cluster-out cross-validation. We compared LIBLINEAR against a Naïve Bayes classifier, a random decision forest classifier, and a maximum similarity ranking approach. These reference approaches were outperformed in a direct comparison by LIBLINEAR. A comparison to literature results showed that the LIBLINEAR performance is competitive but without achieving results as good as the top-ranked nonlinear machines on these benchmarks. However, considering the overall convincing performance and computation time of the large-scale support vector machine, the approach provides an excellent alternative to established large-scale classification approaches. PMID
User's Guide to the Weighted-Multiple-Linear Regression Program (WREG version 1.0)
Eng, Ken; Chen, Yin-Yu; Kiang, Julie.E.
2009-01-01
Streamflow is not measured at every location in a stream network. Yet hydrologists, State and local agencies, and the general public still seek to know streamflow characteristics, such as mean annual flow or flood flows with different exceedance probabilities, at ungaged basins. The goals of this guide are to introduce and familiarize the user with the weighted multiple-linear regression (WREG) program, and to also provide the theoretical background for program features. The program is intended to be used to develop a regional estimation equation for streamflow characteristics that can be applied at an ungaged basin, or to improve the corresponding estimate at continuous-record streamflow gages with short records. The regional estimation equation results from a multiple-linear regression that relates the observable basin characteristics, such as drainage area, to streamflow characteristics.
NASA Astrophysics Data System (ADS)
Arioli, M.; Gratton, S.
2012-11-01
Minimum-variance unbiased estimates for linear regression models can be obtained by solving least-squares problems. The conjugate gradient method can be successfully used in solving the symmetric and positive definite normal equations obtained from these least-squares problems. Taking into account the results of Golub and Meurant (1997, 2009) [10,11], Hestenes and Stiefel (1952) [17], and Strakoš and Tichý (2002) [16], which make it possible to approximate the energy norm of the error during the conjugate gradient iterative process, we adapt the stopping criterion introduced by Arioli (2005) [18] to the normal equations taking into account the statistical properties of the underpinning linear regression problem. Moreover, we show how the energy norm of the error is linked to the χ2-distribution and to the Fisher-Snedecor distribution. Finally, we present the results of several numerical tests that experimentally validate the effectiveness of our stopping criteria.
Genetic programming as an analytical tool for non-linear dielectric spectroscopy.
Woodward, A M; Gilbert, R J; Kell, D B
1999-05-01
By modelling the non-linear effects of membranous enzymes on an applied oscillating electromagnetic field using supervised multivariate analysis methods, Non-Linear Dielectric Spectroscopy (NLDS) has previously been shown to produce quantitative information that is indicative of the metabolic state of various organisms. The use of Genetic Programming (GP) for the multivariate analysis of NLDS data recorded from yeast fermentations is discussed, and GPs are compared with previous results using Partial Least Squares (PLS) and Artificial Neural Nets (NN). GP considerably outperforms these methods, both in terms of the precision of the predictions and their interpretability. PMID:10379559
ERIC Educational Resources Information Center
Myers-Breslin, Linda
Addressing the issues and problems faced by writing program administrators (WPAs) and writing center directors (WCDs), and how they can most effectively resolve the political, pedagogical, and financial questions that arise, this book presents essays from experienced WPAs and WCDs at a wide variety of institutions that offer scenarios and case…
Fast Combinatorial Algorithm for the Solution of Linearly Constrained Least Squares Problems
Van Benthem, Mark H.; Keenan, Michael R.
2008-11-11
A fast combinatorial algorithm can significantly reduce the computational burden when solving general equality and inequality constrained least squares problems with large numbers of observation vectors. The combinatorial algorithm provides a mathematically rigorous solution and operates at great speed by reorganizing the calculations to take advantage of the combinatorial nature of the problems to be solved. The combinatorial algorithm exploits the structure that exists in large-scale problems in order to minimize the number of arithmetic operations required to obtain a solution.
Numerical Scheme for Viability Computation Using Randomized Technique with Linear Programming
Djeridane, Badis
2008-06-12
We deal with the problem of computing viability sets for nonlinear continuous or hybrid systems. Our main objective is to beat the curse of dimensionality, that is, we want to avoid the exponential growth of required computational resource with respect to the dimension of the system. We propose a randomized approach for viability computation: we avoid griding the state-space, use random extraction of points instead, and the computation of viable set test is formulated as a classical feasibility problem. This algorithm was implemented successfully to linear and nonlinear examples. We provide comparison of our results with results of other method.
Influence of geometrical parameters on the linear stability of a Bénard-Marangoni problem.
Hoyas, S; Fajardo, P; Pérez-Quiles, M J
2016-04-01
A linear stability analysis of a thin liquid film flowing over a plate is performed. The analysis is performed in an annular domain when momentum diffusivity and thermal diffusivity are comparable (relatively low Prandtl number, Pr=1.2). The influence of the aspect ratio (Γ) and gravity, through the Bond number (Bo), in the linear stability of the flow are analyzed together. Two different regions in the Γ-Bo plane have been identified. In the first one the basic state presents a linear regime (in which the temperature gradient does not change sign with r). In the second one, the flow presents a nonlinear regime, also called return flow. A great diversity of bifurcations have been found just by changing the domain depth d. The results obtained in this work are in agreement with some reported experiments, and give a deeper insight into the effect of physical parameters on bifurcations. PMID:27176388
Influence of geometrical parameters on the linear stability of a Bénard-Marangoni problem
NASA Astrophysics Data System (ADS)
Hoyas, S.; Fajardo, P.; Pérez-Quiles, M. J.
2016-04-01
A linear stability analysis of a thin liquid film flowing over a plate is performed. The analysis is performed in an annular domain when momentum diffusivity and thermal diffusivity are comparable (relatively low Prandtl number, Pr =1.2 ). The influence of the aspect ratio (Γ ) and gravity, through the Bond number (Bo ), in the linear stability of the flow are analyzed together. Two different regions in the Γ -Bo plane have been identified. In the first one the basic state presents a linear regime (in which the temperature gradient does not change sign with r ). In the second one, the flow presents a nonlinear regime, also called return flow. A great diversity of bifurcations have been found just by changing the domain depth d . The results obtained in this work are in agreement with some reported experiments, and give a deeper insight into the effect of physical parameters on bifurcations.
LDRD final report on massively-parallel linear programming : the parPCx system.
Parekh, Ojas; Phillips, Cynthia Ann; Boman, Erik Gunnar
2005-02-01
This report summarizes the research and development performed from October 2002 to September 2004 at Sandia National Laboratories under the Laboratory-Directed Research and Development (LDRD) project ''Massively-Parallel Linear Programming''. We developed a linear programming (LP) solver designed to use a large number of processors. LP is the optimization of a linear objective function subject to linear constraints. Companies and universities have expended huge efforts over decades to produce fast, stable serial LP solvers. Previous parallel codes run on shared-memory systems and have little or no distribution of the constraint matrix. We have seen no reports of general LP solver runs on large numbers of processors. Our parallel LP code is based on an efficient serial implementation of Mehrotra's interior-point predictor-corrector algorithm (PCx). The computational core of this algorithm is the assembly and solution of a sparse linear system. We have substantially rewritten the PCx code and based it on Trilinos, the parallel linear algebra library developed at Sandia. Our interior-point method can use either direct or iterative solvers for the linear system. To achieve a good parallel data distribution of the constraint matrix, we use a (pre-release) version of a hypergraph partitioner from the Zoltan partitioning library. We describe the design and implementation of our new LP solver called parPCx and give preliminary computational results. We summarize a number of issues related to efficient parallel solution of LPs with interior-point methods including data distribution, numerical stability, and solving the core linear system using both direct and iterative methods. We describe a number of applications of LP specific to US Department of Energy mission areas and we summarize our efforts to integrate parPCx (and parallel LP solvers in general) into Sandia's massively-parallel integer programming solver PICO (Parallel Interger and Combinatorial Optimizer). We
Refining and end use study of coal liquids II - linear programming analysis
Lowe, C.; Tam, S.
1995-12-31
A DOE-funded study is underway to determine the optimum refinery processing schemes for producing transportation fuels that will meet CAAA regulations from direct and indirect coal liquids. The study consists of three major parts: pilot plant testing of critical upgrading processes, linear programming analysis of different processing schemes, and engine emission testing of final products. Currently, fractions of a direct coal liquid produced form bituminous coal are being tested in sequence of pilot plant upgrading processes. This work is discussed in a separate paper. The linear programming model, which is the subject of this paper, has been completed for the petroleum refinery and is being modified to handle coal liquids based on the pilot plant test results. Preliminary coal liquid evaluation studies indicate that, if a refinery expansion scenario is adopted, then the marginal value of the coal liquid (over the base petroleum crude) is $3-4/bbl.
Linear-phase approximation in the triangular facet near-field physical optics computer program
NASA Technical Reports Server (NTRS)
Imbriale, W. A.; Hodges, R. E.
1990-01-01
Analyses of reflector antenna surfaces use a computer program based on a discrete approximation of the radiation integral. The calculation replaces the actual surface with a triangular facet representation; the physical optics current is assumed to be constant over each facet. Described here is a method of calculation using linear-phase approximation of the surface currents of parabolas, ellipses, and shaped subreflectors and compares results with a previous program that used a constant-phase approximation of the triangular facets. The results show that the linear-phase approximation is a significant improvement over the constant-phase approximation, and enables computation of 100 to 1,000 lambda reflectors within a reasonable time on a Cray computer.
NASA Technical Reports Server (NTRS)
Sain, M. K.; Antsaklis, P. J.; Gejji, R. R.; Wyman, B. F.; Peczkowski, J. L.
1981-01-01
Zames (1981) has observed that there is, in general, no 'separation principle' to guarantee optimality of a division between control law design and filtering of plant uncertainty. Peczkowski and Sain (1978) have solved a model matching problem using transfer functions. Taking into consideration this investigation, Peczkowski et al. (1979) proposed the Total Synthesis Problem (TSP), wherein both the command/output-response and command/control-response are to be synthesized, subject to the plant constraint. The TSP concept can be subdivided into a Nominal Design Problem (NDP), which is not dependent upon specific controller structures, and a Feedback Synthesis Problem (FSP), which is. Gejji (1980) found that NDP was characterized in terms of the plant structural matrices and a single, 'good' transfer function matrix. Sain et al. (1981) have extended this NDP work. The present investigation is concerned with a study of FSP for the unity feedback case. NDP, together with feedback synthesis, is understood as a Total Synthesis Problem.
Annular precision linear shaped charge flight termination system for the ODES program
Vigil, M.G.; Marchi, D.L.
1994-06-01
The work for the development of an Annular Precision Linear Shaped Charge (APLSC) Flight Termination System (FTS) for the Operation and Deployment Experiment Simulator (ODES) program is discussed and presented in this report. The Precision Linear Shaped Charge (PLSC) concept was recently developed at Sandia. The APLSC component is designed to produce a copper jet to cut four inch diameter holes in each of two spherical tanks, one containing fuel and the other an oxidizer that are hyperbolic when mixed, to terminate the ODES vehicle flight if necessary. The FTS includes two detonators, six Mild Detonating Fuse (MDF) transfer lines, a detonator block, detonation transfer manifold, and the APLSC component. PLSCs have previously been designed in ring components where the jet penetrating axis is either directly away or toward the center of the ring assembly. Typically, these PLSC components are designed to cut metal cylinders from the outside inward or from the inside outward. The ODES program requires an annular linear shaped charge. The (Linear Shaped Charge Analysis) LESCA code was used to design this 65 grain/foot APLSC and data comparing the analytically predicted to experimental data are presented. Jet penetration data are presented to assess the maximum depth and reproducibility of the penetration. Data are presented for full scale tests, including all FTS components, and conducted with nominal 19 inch diameter, spherical tanks.
Constructive Processes in Linear Order Problems Revealed by Sentence Study Times
ERIC Educational Resources Information Center
Mynatt, Barbee T.; Smith, Kirk H.
1977-01-01
This research was a further test of the theory of constructive processes proposed by Foos, Smith, Sabol, and Mynatt (1976) to account for differences among presentation orders in the construction of linear orders. This theory is composed of different series of mental operations that must be performed when an order relationship is integrated with…
A linear programming approach to characterizing norm bounded uncertainty from experimental data
NASA Technical Reports Server (NTRS)
Scheid, R. E.; Bayard, D. S.; Yam, Y.
1991-01-01
The linear programming spectral overbounding and factorization (LPSOF) algorithm, an algorithm for finding a minimum phase transfer function of specified order whose magnitude tightly overbounds a specified nonparametric function of frequency, is introduced. This method has direct application to transforming nonparametric uncertainty bounds (available from system identification experiments) into parametric representations required for modern robust control design software (i.e., a minimum-phase transfer function multiplied by a norm-bounded perturbation).
Mathematical models for the control program of the SLAC linear collider
Lee, M.J.; Blocker, C.; Chao, A.W.
1981-02-01
The operation of the SLAC two-mile linear accelerator in the single pass collider mode will be computer controlled. Mathematical models will be used in the control program to set up and restore the beam optics and to correct orbits. Some of the requirements imposed upon the on-line model calculations and the ways to satisfy these requirements will be described in this paper.
NASA Technical Reports Server (NTRS)
Lehtinen, B.; Geyser, L. C.
1984-01-01
AESOP is a computer program for use in designing feedback controls and state estimators for linear multivariable systems. AESOP is meant to be used in an interactive manner. Each design task that the program performs is assigned a "function" number. The user accesses these functions either (1) by inputting a list of desired function numbers or (2) by inputting a single function number. In the latter case the choice of the function will in general depend on the results obtained by the previously executed function. The most important of the AESOP functions are those that design,linear quadratic regulators and Kalman filters. The user interacts with the program when using these design functions by inputting design weighting parameters and by viewing graphic displays of designed system responses. Supporting functions are provided that obtain system transient and frequency responses, transfer functions, and covariance matrices. The program can also compute open-loop system information such as stability (eigenvalues), eigenvectors, controllability, and observability. The program is written in ANSI-66 FORTRAN for use on an IBM 3033 using TSS 370. Descriptions of all subroutines and results of two test cases are included in the appendixes.
NASA Technical Reports Server (NTRS)
Rosen, I. G.; Wang, C.
1990-01-01
The convergence of solutions to the discrete or sampled time linear quadratic regulator problem and associated Riccati equation for infinite dimensional systems to the solutions to the corresponding continuous time problem and equation, as the length of the sampling interval (the sampling rate) tends toward zero (infinity) is established. Both the finite and infinite time horizon problems are studied. In the finite time horizon case, strong continuity of the operators which define the control system and performance index together with a stability and consistency condition on the sampling scheme are required. For the infinite time horizon problem, in addition, the sampled systems must be stabilizable and detectable, uniformly with respect to the sampling rate. Classes of systems for which this condition can be verified are discussed. Results of numerical studies involving the control of a heat/diffusion equation, a hereditary of delay system, and a flexible beam are presented and discussed.
NASA Technical Reports Server (NTRS)
Rosen, I. G.; Wang, C.
1992-01-01
The convergence of solutions to the discrete- or sampled-time linear quadratic regulator problem and associated Riccati equation for infinite-dimensional systems to the solutions to the corresponding continuous time problem and equation, as the length of the sampling interval (the sampling rate) tends toward zero(infinity) is established. Both the finite-and infinite-time horizon problems are studied. In the finite-time horizon case, strong continuity of the operators that define the control system and performance index, together with a stability and consistency condition on the sampling scheme are required. For the infinite-time horizon problem, in addition, the sampled systems must be stabilizable and detectable, uniformly with respect to the sampling rate. Classes of systems for which this condition can be verified are discussed. Results of numerical studies involving the control of a heat/diffusion equation, a hereditary or delay system, and a flexible beam are presented and discussed.
Zhuk, Sergiy
2013-10-15
In this paper we present Kalman duality principle for a class of linear Differential-Algebraic Equations (DAE) with arbitrary index and time-varying coefficients. We apply it to an ill-posed minimax control problem with DAE constraint and derive a corresponding dual control problem. It turns out that the dual problem is ill-posed as well and so classical optimality conditions are not applicable in the general case. We construct a minimizing sequence u-circumflex{sub {epsilon}} for the dual problem applying Tikhonov method. Finally we represent u-circumflex{sub {epsilon}} in the feedback form using Riccati equation on a subspace which corresponds to the differential part of the DAE.
NASA Astrophysics Data System (ADS)
Eghnam, Karam M.; Sheta, Alaa F.
2008-06-01
Development of accurate models is necessary in critical applications such as prediction. In this paper, a solution to the stock prediction problem of the Barents Sea capelin is introduced using Artificial Neural Network (ANN) and Multiple Linear model Regression (MLR) models. The Capelin stock in the Barents Sea is one of the largest in the world. It normally maintained a fishery with annual catches of up to 3 million tons. The Capelin stock problem has an impact in the fish stock development. The proposed prediction model was developed using an ANNs with their weights adapted using Genetic Algorithm (GA). The proposed model was compared to traditional linear model the MLR. The results showed that the ANN-GA model produced an overall accuracy of 21% better than the MLR model.
ERIC Educational Resources Information Center
Paraschiv, Irina; Olley, J. Gregory
This paper describes the "Problem Solving for Life" training program which trains adolescents and adults with mental retardation in skills for solving social problems. The program requires group participants to solve social problems by practicing two prerequisite skills (relaxation and positive self-statements) and four problem solving steps: (1)…
The Linear Programming to evaluate the performance of Oral Health in Primary Care
Colussi, Claudia Flemming; Calvo, Maria Cristina Marino; de Freitas, Sergio Fernando Torres
2013-01-01
ABSTRACT Objective To show the use of Linear Programming to evaluate the performance of Oral Health in Primary Care. Methods This study used data from 19 municipalities of Santa Catarina city that participated of the state evaluation in 2009 and have more than 50,000 habitants. A total of 40 indicators were evaluated, calculated using the Microsoft Excel 2007, and converted to the interval [0, 1] in ascending order (one indicating the best situation and zero indicating the worst situation). Applying the Linear Programming technique municipalities were assessed and compared among them according to performance curve named “quality estimated frontier”. Municipalities included in the frontier were classified as excellent. Indicators were gathered, and became synthetic indicators. Results The majority of municipalities not included in the quality frontier (values different of 1.0) had lower values than 0.5, indicating poor performance. The model applied to the municipalities of Santa Catarina city assessed municipal management and local priorities rather than the goals imposed by pre-defined parameters. In the final analysis three municipalities were included in the “perceived quality frontier”. Conclusion The Linear Programming technique allowed to identify gaps that must be addressed by city managers to enhance actions taken. It also enabled to observe each municipal performance and compare results among similar municipalities. PMID:23579751
Application of fuzzy goal programming approach to multi-objective linear fractional inventory model
NASA Astrophysics Data System (ADS)
Dutta, D.; Kumar, Pavan
2015-09-01
In this paper, we propose a model and solution approach for a multi-item inventory problem without shortages. The proposed model is formulated as a fractional multi-objective optimisation problem along with three constraints: budget constraint, space constraint and budgetary constraint on ordering cost of each item. The proposed inventory model becomes a multiple criteria decision-making (MCDM) problem in fuzzy environment. This model is solved by multi-objective fuzzy goal programming (MOFGP) approach. A numerical example is given to illustrate the proposed model.
Zhang, Xiaoling; Huang, Kai; Zou, Rui; Liu, Yong; Yu, Yajuan
2013-01-01
The conflict of water environment protection and economic development has brought severe water pollution and restricted the sustainable development in the watershed. A risk explicit interval linear programming (REILP) method was used to solve integrated watershed environmental-economic optimization problem. Interval linear programming (ILP) and REILP models for uncertainty-based environmental economic optimization at the watershed scale were developed for the management of Lake Fuxian watershed, China. Scenario analysis was introduced into model solution process to ensure the practicality and operability of optimization schemes. Decision makers' preferences for risk levels can be expressed through inputting different discrete aspiration level values into the REILP model in three periods under two scenarios. Through balancing the optimal system returns and corresponding system risks, decision makers can develop an efficient industrial restructuring scheme based directly on the window of "low risk and high return efficiency" in the trade-off curve. The representative schemes at the turning points of two scenarios were interpreted and compared to identify a preferable planning alternative, which has the relatively low risks and nearly maximum benefits. This study provides new insights and proposes a tool, which was REILP, for decision makers to develop an effectively environmental economic optimization scheme in integrated watershed management. PMID:24191144
Zou, Rui; Liu, Yong; Yu, Yajuan
2013-01-01
The conflict of water environment protection and economic development has brought severe water pollution and restricted the sustainable development in the watershed. A risk explicit interval linear programming (REILP) method was used to solve integrated watershed environmental-economic optimization problem. Interval linear programming (ILP) and REILP models for uncertainty-based environmental economic optimization at the watershed scale were developed for the management of Lake Fuxian watershed, China. Scenario analysis was introduced into model solution process to ensure the practicality and operability of optimization schemes. Decision makers' preferences for risk levels can be expressed through inputting different discrete aspiration level values into the REILP model in three periods under two scenarios. Through balancing the optimal system returns and corresponding system risks, decision makers can develop an efficient industrial restructuring scheme based directly on the window of “low risk and high return efficiency” in the trade-off curve. The representative schemes at the turning points of two scenarios were interpreted and compared to identify a preferable planning alternative, which has the relatively low risks and nearly maximum benefits. This study provides new insights and proposes a tool, which was REILP, for decision makers to develop an effectively environmental economic optimization scheme in integrated watershed management. PMID:24191144
Cauchy problem for non-linear systems of equations in the critical case
NASA Astrophysics Data System (ADS)
Kaikina, E. I.; Naumkin, P. I.; Shishmarev, I. A.
2004-12-01
The large-time asymptotic behaviour is studied for a system of non-linear evolution dissipative equations \\displaystyle u_t+\\mathscr N(u,u)+\\mathscr Lu=0, \\qquad x\\in\\mathbb R^n, \\quad t>0, \\displaystyle u(0,x)=\\widetilde u(x), \\qquad x\\in\\mathbb R^n, where \\mathscr L is a linear pseudodifferential operator \\mathscr Lu=\\overline{\\mathscr F}_{\\xi\\to x}(L(\\xi)\\widehat u(\\xi)) and the non-linearity \\mathscr N is a quadratic pseudodifferential operator \\displaystyle \\mathscr N(u,u)=\\overline{\\mathscr F}_{\\xi\\to x}\\sum_{k,l=1}^m\\int_{\\mathbb R^n}A^{kl}(t,\\xi,y)\\widehat u_k(t,\\xi-y)\\widehat u_l(t,y)\\,dy,where \\widehat u\\equiv\\mathscr F_{x\\to\\xi}u is the Fourier transform. Under the assumptions that the initial data \\widetilde u\\in\\mathbf H^{\\beta,0}\\cap\\mathbf H^{0,\\beta}, \\beta>n/2 are sufficiently small, where \\displaystyle \\mathbf H^{n,m}=\\{\\phi\\in\\mathbf L^2:\\Vert\\langle x\\rangle^m\\lang......\\phi(x)\\Vert _{\\mathbf L^2}<\\infty\\}, \\qquad \\langle x\\rangle=\\sqrt{1+x^2}\\,,is a Sobolev weighted space, and that the total mass vector \\displaystyle M=\\int\\widetilde u(x)\\,dx\
NASA Astrophysics Data System (ADS)
Sanan, P.; Schnepp, S. M.; May, D.; Schenk, O.
2014-12-01
Geophysical applications require efficient forward models for non-linear Stokes flow on high resolution spatio-temporal domains. The bottleneck in applying the forward model is solving the linearized, discretized Stokes problem which takes the form of a large, indefinite (saddle point) linear system. Due to the heterogeniety of the effective viscosity in the elliptic operator, devising effective preconditioners for saddle point problems has proven challenging and highly problem-dependent. Nevertheless, at least three approaches show promise for preconditioning these difficult systems in an algorithmically scalable way using multigrid and/or domain decomposition techniques. The first is to work with a hierarchy of coarser or smaller saddle point problems. The second is to use the Schur complement method to decouple and sequentially solve for the pressure and velocity. The third is to use the Schur decomposition to devise preconditioners for the full operator. These involve sub-solves resembling inexact versions of the sequential solve. The choice of approach and sub-methods depends crucially on the motivating physics, the discretization, and available computational resources. Here we examine the performance trade-offs for preconditioning strategies applied to idealized models of mantle convection and lithospheric dynamics, characterized by large viscosity gradients. Due to the arbitrary topological structure of the viscosity field in geodynamical simulations, we utilize low order, inf-sup stable mixed finite element spatial discretizations which are suitable when sharp viscosity variations occur in element interiors. Particular attention is paid to possibilities within the decoupled and approximate Schur complement factorization-based monolithic approaches to leverage recently-developed flexible, communication-avoiding, and communication-hiding Krylov subspace methods in combination with `heavy' smoothers, which require solutions of large per-node sub-problems, well
NASA Astrophysics Data System (ADS)
Lachhwani, Kailash; Poonia, Mahaveer Prasad
2012-08-01
In this paper, we show a procedure for solving multilevel fractional programming problems in a large hierarchical decentralized organization using fuzzy goal programming approach. In the proposed method, the tolerance membership functions for the fuzzily described numerator and denominator part of the objective functions of all levels as well as the control vectors of the higher level decision makers are respectively defined by determining individual optimal solutions of each of the level decision makers. A possible relaxation of the higher level decision is considered for avoiding decision deadlock due to the conflicting nature of objective functions. Then, fuzzy goal programming approach is used for achieving the highest degree of each of the membership goal by minimizing negative deviational variables. We also provide sensitivity analysis with variation of tolerance values on decision vectors to show how the solution is sensitive to the change of tolerance values with the help of a numerical example.
Linear and nonlinear pattern selection in Rayleigh-Benard stability problems
NASA Technical Reports Server (NTRS)
Davis, Sanford S.
1993-01-01
A new algorithm is introduced to compute finite-amplitude states using primitive variables for Rayleigh-Benard convection on relatively coarse meshes. The algorithm is based on a finite-difference matrix-splitting approach that separates all physical and dimensional effects into one-dimensional subsets. The nonlinear pattern selection process for steady convection in an air-filled square cavity with insulated side walls is investigated for Rayleigh numbers up to 20,000. The internalization of disturbances that evolve into coherent patterns is investigated and transient solutions from linear perturbation theory are compared with and contrasted to the full numerical simulations.
ERIC Educational Resources Information Center
Lawrence, Virginia
No longer just a user of commercial software, the 21st century teacher is a designer of interactive software based on theories of learning. This software, a comprehensive study of straightline equations, enhances conceptual understanding, sketching, graphic interpretive and word problem solving skills as well as making connections to real-life and…
ERIC Educational Resources Information Center
Stamovlasis, Dimitrios
2010-01-01
The aim of the present paper is two-fold. First, it attempts to support previous findings on the role of some psychometric variables, such as, M-capacity, the degree of field dependence-independence, logical thinking and the mobility-fixity dimension, on students' achievement in chemistry problem solving. Second, the paper aims to raise some…
Linear perturbative theory of the discrete cosmological N-body problem
Marcos, B.; Baertschiger, T.; Joyce, M.; Gabrielli, A.; Labini, F. Sylos
2006-05-15
We present a perturbative treatment of the evolution under their mutual self-gravity of particles displaced off an infinite perfect lattice, both for a static space and for a homogeneously expanding space as in cosmological N-body simulations. The treatment, analogous to that of perturbations to a crystal in solid state physics, can be seen as a discrete (i.e. particle) generalization of the perturbative solution in the Lagrangian formalism of a self-gravitating fluid. Working to linear order, we show explicitly that this fluid evolution is recovered in the limit that the initial perturbations are restricted to modes of wavelength much larger than the lattice spacing. The full spectrum of eigenvalues of the simxple cubic lattice contains both oscillatory modes and unstable modes which grow slightly faster than in the fluid limit. A detailed comparison of our perturbative treatment, at linear order, with full numerical simulations is presented, for two very different classes of initial perturbation spectra. We find that the range of validity is similar to that of the perturbative fluid approximation (i.e. up to close to ''shell-crossing''), but that the accuracy in tracing the evolution is superior. The formalism provides a powerful tool to systematically calculate discreteness effects at early times in cosmological N-body simulations.
NASA Astrophysics Data System (ADS)
Bostan, Mohamad; Hadi Afshar, Mohamad; Khadem, Majed
2015-04-01
This article proposes a hybrid linear programming (LP-LP) methodology for the simultaneous optimal design and operation of groundwater utilization systems. The proposed model is an extension of an earlier LP-LP model proposed by the authors for the optimal operation of a set of existing wells. The proposed model can be used to optimally determine the number, configuration and pumping rates of the operational wells out of potential wells with fixed locations to minimize the total cost of utilizing a two-dimensional confined aquifer under steady-state flow conditions. The model is able to take into account the well installation, piping and pump installation costs in addition to the operational costs, including the cost of energy and maintenance. The solution to the problem is defined by well locations and their pumping rates, minimizing the total cost while satisfying a downstream demand, lower/upper bound on the pumping rates, and lower/upper bound on the water level drawdown at the wells. A discretized version of the differential equation governing the flow is first embedded into the model formulation as a set of additional constraints. The resulting mixed-integer highly constrained nonlinear optimization problem is then decomposed into two subproblems with different sets of decision variables, one with a piezometric head and the other with the operational well locations and the corresponding pumping rates. The binary variables representing the well locations are approximated by a continuous variable leading to two LP subproblems. Having started with a random value for all decision variables, the two subproblems are solved iteratively until convergence is achieved. The performance and ability of the proposed method are tested against a hypothetical problem from the literature and the results are presented and compared with those obtained using a mixed-integer nonlinear programming method. The results show the efficiency and effectiveness of the proposed method for
Teaching Introductory Programming to IS Students: Java Problems and Pitfalls
ERIC Educational Resources Information Center
Pendergast, Mark O.
2006-01-01
This paper examines the impact the use of the Java programming language has had on the way our students learn to program and the success they achieve. The importance of a properly constructed first course in programming cannot be overstated. A course well experienced will leave students with good programming habits, the ability to learn on their…
On Implicit Active Constraints in Linear Semi-Infinite Programs with Unbounded Coefficients
Goberna, M. A.; Lancho, G. A.; Todorov, M. I.; Vera de Serio, V. N.
2011-04-15
The concept of implicit active constraints at a given point provides useful local information about the solution set of linear semi-infinite systems and about the optimal set in linear semi-infinite programming provided the set of gradient vectors of the constraints is bounded, commonly under the additional assumption that there exists some strong Slater point. This paper shows that the mentioned global boundedness condition can be replaced by a weaker local condition (LUB) based on locally active constraints (active in a ball of small radius whose center is some nominal point), providing geometric information about the solution set and Karush-Kuhn-Tucker type conditions for the optimal solution to be strongly unique. The maintaining of the latter property under sufficiently small perturbations of all the data is also analyzed, giving a characterization of its stability with respect to these perturbations in terms of the strong Slater condition, the so-called Extended-Nuernberger condition, and the LUB condition.
The incomplete inverse and its applications to the linear least squares problem
NASA Technical Reports Server (NTRS)
Morduch, G. E.
1977-01-01
A modified matrix product is explained, and it is shown that this product defiles a group whose inverse is called the incomplete inverse. It was proven that the incomplete inverse of an augmented normal matrix includes all the quantities associated with the least squares solution. An answer is provided to the problem that occurs when the data residuals are too large and when insufficient data to justify augmenting the model are available.
A linear decomposition method for large optimization problems. Blueprint for development
NASA Technical Reports Server (NTRS)
Sobieszczanski-Sobieski, J.
1982-01-01
A method is proposed for decomposing large optimization problems encountered in the design of engineering systems such as an aircraft into a number of smaller subproblems. The decomposition is achieved by organizing the problem and the subordinated subproblems in a tree hierarchy and optimizing each subsystem separately. Coupling of the subproblems is accounted for by subsequent optimization of the entire system based on sensitivities of the suboptimization problem solutions at each level of the tree to variables of the next higher level. A formalization of the procedure suitable for computer implementation is developed and the state of readiness of the implementation building blocks is reviewed showing that the ingredients for the development are on the shelf. The decomposition method is also shown to be compatible with the natural human organization of the design process of engineering systems. The method is also examined with respect to the trends in computer hardware and software progress to point out that its efficiency can be amplified by network computing using parallel processors.
NASA Astrophysics Data System (ADS)
Moroni, Giovanni; Syam, Wahyudin P.; Petrò, Stefano
2014-08-01
Product quality is a main concern today in manufacturing; it drives competition between companies. To ensure high quality, a dimensional inspection to verify the geometric properties of a product must be carried out. High-speed non-contact scanners help with this task, by both speeding up acquisition speed and increasing accuracy through a more complete description of the surface. The algorithms for the management of the measurement data play a critical role in ensuring both the measurement accuracy and speed of the device. One of the most fundamental parts of the algorithm is the procedure for fitting the substitute geometry to a cloud of points. This article addresses this challenge. Three relevant geometries are selected as case studies: a non-linear least-squares fitting of a circle, sphere and cylinder. These geometries are chosen in consideration of their common use in practice; for example the sphere is often adopted as a reference artifact for performance verification of a coordinate measuring machine (CMM) and a cylinder is the most relevant geometry for a pin-hole relation as an assembly feature to construct a complete functioning product. In this article, an improvement of the initial point guess for the Levenberg-Marquardt (LM) algorithm by employing a chaos optimization (CO) method is proposed. This causes a performance improvement in the optimization of a non-linear function fitting the three geometries. The results show that, with this combination, a higher quality of fitting results a smaller norm of the residuals can be obtained while preserving the computational cost. Fitting an ‘incomplete-point-cloud’, which is a situation where the point cloud does not cover a complete feature e.g. from half of the total part surface, is also investigated. Finally, a case study of fitting a hemisphere is presented.
CAD of control systems: Application of nonlinear programming to a linear quadratic formulation
NASA Technical Reports Server (NTRS)
Fleming, P.
1983-01-01
The familiar suboptimal regulator design approach is recast as a constrained optimization problem and incorporated in a Computer Aided Design (CAD) package where both design objective and constraints are quadratic cost functions. This formulation permits the separate consideration of, for example, model following errors, sensitivity measures and control energy as objectives to be minimized or limits to be observed. Efficient techniques for computing the interrelated cost functions and their gradients are utilized in conjunction with a nonlinear programming algorithm. The effectiveness of the approach and the degree of insight into the problem which it affords is illustrated in a helicopter regulation design example.
NASA Technical Reports Server (NTRS)
Heaslet, Max A; Lomax, Harvard
1950-01-01
Following the introduction of the linearized partial differential equation for nonsteady three-dimensional compressible flow, general methods of solution are given for the two and three-dimensional steady-state and two-dimensional unsteady-state equations. It is also pointed out that, in the absence of thickness effects, linear theory yields solutions consistent with the assumptions made when applied to lifting-surface problems for swept-back plan forms at sonic speeds. The solutions of the particular equations are determined in all cases by means of Green's theorem, and thus depend on the use of Green's equivalent layer of sources, sinks, and doublets. Improper integrals in the supersonic theory are treated by means of Hadamard's "finite part" technique.
Cobb, J.W.
1995-02-01
There is an increasing need for more accurate numerical methods for large-scale nonlinear magneto-fluid turbulence calculations. These methods should not only increase the current state of the art in terms of accuracy, but should also continue to optimize other desired properties such as simplicity, minimized computation, minimized memory requirements, and robust stability. This includes the ability to stably solve stiff problems with long time-steps. This work discusses a general methodology for deriving higher-order numerical methods. It also discusses how the selection of various choices can affect the desired properties. The explicit discussion focuses on third-order Runge-Kutta methods, including general solutions and five examples. The study investigates the linear numerical analysis of these methods, including their accuracy, general stability, and stiff stability. Additional appendices discuss linear multistep methods, discuss directions for further work, and exhibit numerical analysis results for some other commonly used lower-order methods.
Difficulty in Establishing Problem Solving Programs within Regular Curriculums.
ERIC Educational Resources Information Center
Bogue, Carole
Many students are not skilled "thinkers" or "problem solvers." Extensive research has been conducted to describe the mental processes involved in problem solving in the hope of establishing a theoretical basis for training students to become more adept at reasoning. Certain problems become evident, however, when reviewing literature for designing…
Finding Trustworthy Experts to Help Problem Solving on the Programming Learning Forum
ERIC Educational Resources Information Center
Tseng, Shian-Shyong; Weng, Jui-Feng
2010-01-01
The most important thing for learners in Programming Language subject is problem solving. During the practical programming project, various problems may occur and learners usually need consultation from the senior programmers (i.e. the experts) to assist them in solving the problems. Thus, the inquiry-based learning with learning forum is applied…
NASA Astrophysics Data System (ADS)
Artem'eva, L. A.
2014-12-01
The parametric problem of equilibrium programming is examined. The mathematical programming problem, the search for a saddle-point, the multicriteria search for a Pareto point, etc. are particular cases of this parametric problem. The primal and dual variants of the extragradient method are proposed as a tool for searching for equilibrium points. The convergence of both variants is analyzed.
A Non-linear Temperature-Time Program for Non-isothermal Kinetic Measurements
NASA Astrophysics Data System (ADS)
Sohn, Hong Yong
2016-04-01
A new temperature-time program for non-isothermal measurements of chemical reaction rates has been developed. The major advantages of the proposed temperature-time function are twofold: Firstly, the analysis of kinetic information in the high temperature range of the measurement is improved over the conventional linear temperature program by slowing the rate of temperature increase in the high temperature range and secondly, the new temperature program greatly facilitates the data analysis by providing a closed-form solution of the temperature integral and allows a convenient way to obtain the kinetic parameters by eliminating the need for the approximate evaluation of the temperature integral. The procedures for applying the new temperature-time program to the analysis of experimental data are demonstrated in terms of the determination of the kinetic parameters based on the selection of a suitable conversion function in the rate equation as well as the direct determination of activation energy at different conversion extents without the need for a conversion function. The rate analysis based on the new temperature program is robust and does not appear to be sensitive to errors in experimental measurements.
An improved multiple linear regression and data analysis computer program package
NASA Technical Reports Server (NTRS)
Sidik, S. M.
1972-01-01
NEWRAP, an improved version of a previous multiple linear regression program called RAPIER, CREDUC, and CRSPLT, allows for a complete regression analysis including cross plots of the independent and dependent variables, correlation coefficients, regression coefficients, analysis of variance tables, t-statistics and their probability levels, rejection of independent variables, plots of residuals against the independent and dependent variables, and a canonical reduction of quadratic response functions useful in optimum seeking experimentation. A major improvement over RAPIER is that all regression calculations are done in double precision arithmetic.
A FORTRAN program for the analysis of linear continuous and sample-data systems
NASA Technical Reports Server (NTRS)
Edwards, J. W.
1976-01-01
A FORTRAN digital computer program which performs the general analysis of linearized control systems is described. State variable techniques are used to analyze continuous, discrete, and sampled data systems. Analysis options include the calculation of system eigenvalues, transfer functions, root loci, root contours, frequency responses, power spectra, and transient responses for open- and closed-loop systems. A flexible data input format allows the user to define systems in a variety of representations. Data may be entered by inputing explicit data matrices or matrices constructed in user written subroutines, by specifying transfer function block diagrams, or by using a combination of these methods.
COYOTE: a finite-element computer program for nonlinear heat-conduction problems
Gartling, D.K.
1982-10-01
COYOTE is a finite element computer program designed for the solution of two-dimensional, nonlinear heat conduction problems. The theoretical and mathematical basis used to develop the code is described. Program capabilities and complete user instructions are presented. Several example problems are described in detail to demonstrate the use of the program.
Exact analysis to any order of the linear coupling problem in the thin lens model
Ruggiero, A.G.
1991-12-31
In this report we attempt the exact solution of the motion of a charged particle in a circular accelerator under the effects of skew quadrupole errors. We adopt the model of error distributions, lumped in locations with zero extensions. This thin-lens approximation provides an analytical insight to the problem to any order. The total solution is expressed in terms of driving terms which are actually correlation factors to several order. An application follows on the calculation and correction of tune-splitting and on the estimate of the role the higher-order terms play in the correction method.
Exact analysis to any order of the linear coupling problem in the thin lens model
Ruggiero, A.G.
1991-01-01
In this report we attempt the exact solution of the motion of a charged particle in a circular accelerator under the effects of skew quadrupole errors. We adopt the model of error distributions, lumped in locations with zero extensions. This thin-lens approximation provides an analytical insight to the problem to any order. The total solution is expressed in terms of driving terms which are actually correlation factors to several order. An application follows on the calculation and correction of tune-splitting and on the estimate of the role the higher-order terms play in the correction method.
NASA Astrophysics Data System (ADS)
Bonometto, Silvio A.; Mainini, Roberto; Macciò, Andrea V.
2015-10-01
In this first paper we discuss the linear theory and the background evolution of a new class of models we dub SCDEW: Strongly Coupled DE, plus WDM. In these models, WDM dominates today's matter density; like baryons, WDM is uncoupled. Dark energy is a scalar field Φ; its coupling to ancillary cold dark matter (CDM), whose today's density is ≪1 per cent, is an essential model feature. Such coupling, in fact, allows the formation of cosmic structures, in spite of very low WDM particle masses (˜100 eV). SCDEW models yield cosmic microwave background and linear large scale features substantially undistinguishable from ΛCDM, but thanks to the very low WDM masses they strongly alleviate ΛCDM issues on small scales, as confirmed via numerical simulations in the second associated paper. Moreover SCDEW cosmologies significantly ease the coincidence and fine tuning problems of ΛCDM and, by using a field theory approach, we also outline possible links with inflationary models. We also discuss a possible fading of the coupling at low redshifts which prevents non-linearities on the CDM component to cause computational problems. The (possible) low-z coupling suppression, its mechanism, and its consequences are however still open questions - not necessarily problems - for SCDEW models. The coupling intensity and the WDM particle mass, although being extra parameters in respect to ΛCDM, are found to be substantially constrained a priori so that, if SCDEW is the underlying cosmology, we expect most data to fit also ΛCDM predictions.
NASA Technical Reports Server (NTRS)
Parker, Peter A.; Geoffrey, Vining G.; Wilson, Sara R.; Szarka, John L., III; Johnson, Nels G.
2010-01-01
The calibration of measurement systems is a fundamental but under-studied problem within industrial statistics. The origins of this problem go back to basic chemical analysis based on NIST standards. In today's world these issues extend to mechanical, electrical, and materials engineering. Often, these new scenarios do not provide "gold standards" such as the standard weights provided by NIST. This paper considers the classic "forward regression followed by inverse regression" approach. In this approach the initial experiment treats the "standards" as the regressor and the observed values as the response to calibrate the instrument. The analyst then must invert the resulting regression model in order to use the instrument to make actual measurements in practice. This paper compares this classical approach to "reverse regression," which treats the standards as the response and the observed measurements as the regressor in the calibration experiment. Such an approach is intuitively appealing because it avoids the need for the inverse regression. However, it also violates some of the basic regression assumptions.
Extended cubic B-spline method for solving a linear system of second-order boundary value problems.
Heilat, Ahmed Salem; Hamid, Nur Nadiah Abd; Ismail, Ahmad Izani Md
2016-01-01
A method based on extended cubic B-spline is proposed to solve a linear system of second-order boundary value problems. In this method, two free parameters, [Formula: see text] and [Formula: see text], play an important role in producing accurate results. Optimization of these parameters are carried out and the truncation error is calculated. This method is tested on three examples. The examples suggest that this method produces comparable or more accurate results than cubic B-spline and some other methods. PMID:27547688
NASA Technical Reports Server (NTRS)
Antar, B. N.
1976-01-01
A numerical technique is presented for locating the eigenvalues of two point linear differential eigenvalue problems. The technique is designed to search for complex eigenvalues belonging to complex operators. With this method, any domain of the complex eigenvalue plane could be scanned and the eigenvalues within it, if any, located. For an application of the method, the eigenvalues of the Orr-Sommerfeld equation of the plane Poiseuille flow are determined within a specified portion of the c-plane. The eigenvalues for alpha = 1 and R = 10,000 are tabulated and compared for accuracy with existing solutions.
Consideration in selecting crops for the human-rated life support system: a Linear Programming model
NASA Technical Reports Server (NTRS)
Wheeler, E. F.; Kossowski, J.; Goto, E.; Langhans, R. W.; White, G.; Albright, L. D.; Wilcox, D.; Henninger, D. L. (Principal Investigator)
1996-01-01
A Linear Programming model has been constructed which aids in selecting appropriate crops for CELSS (Controlled Environment Life Support System) food production. A team of Controlled Environment Agriculture (CEA) faculty, staff, graduate students and invited experts representing more than a dozen disciplines, provided a wide range of expertise in developing the model and the crop production program. The model incorporates nutritional content and controlled-environment based production yields of carefully chosen crops into a framework where a crop mix can be constructed to suit the astronauts' needs. The crew's nutritional requirements can be adequately satisfied with only a few crops (assuming vitamin mineral supplements are provided) but this will not be satisfactory from a culinary standpoint. This model is flexible enough that taste and variety driven food choices can be built into the model.
Modeling Granular Materials as Compressible Non-Linear Fluids: Heat Transfer Boundary Value Problems
Massoudi, M.C.; Tran, P.X.
2006-01-01
We discuss three boundary value problems in the flow and heat transfer analysis in flowing granular materials: (i) the flow down an inclined plane with radiation effects at the free surface; (ii) the natural convection flow between two heated vertical walls; (iii) the shearing motion between two horizontal flat plates with heat conduction. It is assumed that the material behaves like a continuum, similar to a compressible nonlinear fluid where the effects of density gradients are incorporated in the stress tensor. For a fully developed flow the equations are simplified to a system of three nonlinear ordinary differential equations. The equations are made dimensionless and a parametric study is performed where the effects of various dimensionless numbers representing the effects of heat conduction, viscous dissipation, radiation, and so forth are presented.
Samet Y. Kadioglu; Robert R. Nourgaliev; Vincent A. Mousseau
2008-03-01
We perform a comparative study for the harmonic versus arithmetic averaging of the heat conduction coefficient when solving non-linear heat transfer problems. In literature, the harmonic average is the method of choice, because it is widely believed that the harmonic average is more accurate model. However, our analysis reveals that this is not necessarily true. For instance, we show a case in which the harmonic average is less accurate when a coarser mesh is used. More importantly, we demonstrated that if the boundary layers are finely resolved, then the harmonic and arithmetic averaging techniques are identical in the truncation error sense. Our analysis further reveals that the accuracy of these two techniques depends on how the physical problem is modeled.
Generalized Uncertainty Quantification for Linear Inverse Problems in X-ray Imaging
Fowler, Michael James
2014-04-25
In industrial and engineering applications, X-ray radiography has attained wide use as a data collection protocol for the assessment of material properties in cases where direct observation is not possible. The direct measurement of nuclear materials, particularly when they are under explosive or implosive loading, is not feasible, and radiography can serve as a useful tool for obtaining indirect measurements. In such experiments, high energy X-rays are pulsed through a scene containing material of interest, and a detector records a radiograph by measuring the radiation that is not attenuated in the scene. One approach to the analysis of these radiographs is to model the imaging system as an operator that acts upon the object being imaged to produce a radiograph. In this model, the goal is to solve an inverse problem to reconstruct the values of interest in the object, which are typically material properties such as density or areal density. The primary objective in this work is to provide quantitative solutions with uncertainty estimates for three separate applications in X-ray radiography: deconvolution, Abel inversion, and radiation spot shape reconstruction. For each problem, we introduce a new hierarchical Bayesian model for determining a posterior distribution on the unknowns and develop efficient Markov chain Monte Carlo (MCMC) methods for sampling from the posterior. A Poisson likelihood, based on a noise model for photon counts at the detector, is combined with a prior tailored to each application: an edge-localizing prior for deconvolution; a smoothing prior with non-negativity constraints for spot reconstruction; and a full covariance sampling prior based on a Wishart hyperprior for Abel inversion. After developing our methods in a general setting, we demonstrate each model on both synthetically generated datasets, including those from a well known radiation transport code, and real high energy radiographs taken at two U. S. Department of Energy
A wavelet-linear genetic programming model for sodium (Na+) concentration forecasting in rivers
NASA Astrophysics Data System (ADS)
Ravansalar, Masoud; Rajaee, Taher; Zounemat-Kermani, Mohammad
2016-06-01
The prediction of water quality parameters in water resources such as rivers is of importance issue that needs to be considered in better management of irrigation systems and water supplies. In this respect, this study proposes a new hybrid wavelet-linear genetic programming (WLGP) model for prediction of monthly sodium (Na+) concentration. The 23-year monthly data used in this study, were measured from the Asi River at the Demirköprü gauging station located in Antakya, Turkey. At first, the measured discharge (Q) and Na+ datasets are initially decomposed into several sub-series using discrete wavelet transform (DWT). Then, these new sub-series are imposed to the ad hoc linear genetic programming (LGP) model as input patterns to predict monthly Na+ one month ahead. The results of the new proposed WLGP model are compared with LGP, WANN and ANN models. Comparison of the models represents the superiority of the WLGP model over the LGP, WANN and ANN models such that the Nash-Sutcliffe efficiencies (NSE) for WLGP, WANN, LGP and ANN models were 0.984, 0.904, 0.484 and 0.351, respectively. The achieved results even points to the superiority of the single LGP model than the ANN model. Continuously, the capability of the proposed WLGP model in terms of prediction of the Na+ peak values is also presented in this study.
Matthew J. Tonkin; Claire R. Tiedeman; D. Matthew Ely; and Mary C. Hill
2007-08-16
The OPR-PPR program calculates the Observation-Prediction (OPR) and Parameter-Prediction (PPR) statistics that can be used to evaluate the relative importance of various kinds of data to simulated predictions. The data considered fall into three categories: (1) existing observations, (2) potential observations, and (3) potential information about parameters. The first two are addressed by the OPR statistic; the third is addressed by the PPR statistic. The statistics are based on linear theory and measure the leverage of the data, which depends on the location, the type, and possibly the time of the data being considered. For example, in a ground-water system the type of data might be a head measurement at a particular location and time. As a measure of leverage, the statistics do not take into account the value of the measurement. As linear measures, the OPR and PPR statistics require minimal computational effort once sensitivities have been calculated. Sensitivities need to be calculated for only one set of parameter values; commonly these are the values estimated through model calibration. OPR-PPR can calculate the OPR and PPR statistics for any mathematical model that produces the necessary OPR-PPR input files. In this report, OPR-PPR capabilities are presented in the context of using the ground-water model MODFLOW-2000 and the universal inverse program UCODE_2005. The method used to calculate the OPR and PPR statistics is based on the linear equation for prediction standard deviation. Using sensitivities and other information, OPR-PPR calculates (a) the percent increase in the prediction standard deviation that results when one or more existing observations are omitted from the calibration data set; (b) the percent decrease in the prediction standard deviation that results when one or more potential observations are added to the calibration data set; or (c) the percent decrease in the prediction standard deviation that results when potential information on one
Tonkin, Matthew J.; Tiedeman, Claire R.; Ely, D. Matthew; Hill, Mary C.
2007-01-01
The OPR-PPR program calculates the Observation-Prediction (OPR) and Parameter-Prediction (PPR) statistics that can be used to evaluate the relative importance of various kinds of data to simulated predictions. The data considered fall into three categories: (1) existing observations, (2) potential observations, and (3) potential information about parameters. The first two are addressed by the OPR statistic; the third is addressed by the PPR statistic. The statistics are based on linear theory and measure the leverage of the data, which depends on the location, the type, and possibly the time of the data being considered. For example, in a ground-water system the type of data might be a head measurement at a particular location and time. As a measure of leverage, the statistics do not take into account the value of the measurement. As linear measures, the OPR and PPR statistics require minimal computational effort once sensitivities have been calculated. Sensitivities need to be calculated for only one set of parameter values; commonly these are the values estimated through model calibration. OPR-PPR can calculate the OPR and PPR statistics for any mathematical model that produces the necessary OPR-PPR input files. In this report, OPR-PPR capabilities are presented in the context of using the ground-water model MODFLOW-2000 and the universal inverse program UCODE_2005. The method used to calculate the OPR and PPR statistics is based on the linear equation for prediction standard deviation. Using sensitivities and other information, OPR-PPR calculates (a) the percent increase in the prediction standard deviation that results when one or more existing observations are omitted from the calibration data set; (b) the percent decrease in the prediction standard deviation that results when one or more potential observations are added to the calibration data set; or (c) the percent decrease in the prediction standard deviation that results when potential information on one
ERIC Educational Resources Information Center
CSR, Inc., Washington, DC.
This handbook is for administrators of programs in higher education settings which deal with alcohol and other drug (AOD) related problems. Chapter 1, "Defining the Problem, Issues, and Trends" examines the problem from various perspectives and presents the latest statistics on the extent of AOD use on campuses, specific problems affecting…
ERIC Educational Resources Information Center
Frey, James S.
This review examines the various undergraduate study abroad programs and the problems involved in evaluating the programs for the granting of transfer credits. The five major factors influencing the credit evaluation decision are enumerated, and their importance is discussed. (MML)
Modern Problems: Sociology Units. An Experimental Program for Grade 12.
ERIC Educational Resources Information Center
Carlson, Marshall; Fennig, Lois
GRADES OR AGES: Grade 12. SUBJECT MATTER: Sociology; modern problems. ORGANIZATION AND PHYSICAL APPEARANCE: The guide contains two units, one on the problems of minority groups and the other on social pathology. Sub-sections of unit 2 include crime and criminals, criminal investigation, gun control, U.S. criminal law, criminal procedure,…
Effects of Language Features, Templates, and Procedural Skills on Problem-Solving In Programming.
ERIC Educational Resources Information Center
Kong, Siu Cheung; Chung, Choi Man
1989-01-01
Presents a study that investigates the knowledge and skills that relate to computer programing. Finds that knowledge and procedural skills are related to computer programing. Recommends that since instruction in computer programing facilitates problem-solving, computer programing courses should be augmented to include teaching template and…
ERIC Educational Resources Information Center
Keating, Xiaofen Deng
2003-01-01
This paper aims to examine current nationwide youth fitness test programs, address problems embedded in the programs, and possible solutions. The current Fitnessgram, President's Challenge, and YMCA youth fitness test programs were selected to represent nationwide youth fitness test programs. Sponsors of the nationwide youth fitness test programs…
ERIC Educational Resources Information Center
Larmar, Stephen; Gatfield, Terry
2007-01-01
The Early Impact (EI) program is an early intervention and prevention program for reducing the incidence of conduct problems in pre-school aged children. The EI intervention framework is ecological in design and includes universal and indicated components. This paper delineates key principles and associated strategies that underpin the EI program.…
Special Concretes and Field Problems; Instructor's Guide; Pilot Program Edition.
ERIC Educational Resources Information Center
Portland Cement Association, Cleveland, OH.
This guide, prepared for a 2-year program in junior colleges and technical institutes, is designed for a national program to train persons for employment as technicians in the cement and concrete industries. Included are 48 session oultines divided into four units of study. Each unit contains session objectives and outlines, presentation outlines,…
UNITE and Management Training Program for Workplace Communication & Problem Solving.
ERIC Educational Resources Information Center
Kaufman, Sanda
This curriculum provides materials for a training program designed to enable front-line supervisors and union stewards to minimize production disruptions stemming from ongoing, unresolved conflicts among production workers. The program accomplishes this goal by giving participants the tools and confidence to design, implement, and run a process…
Ryan, Jason C; Banerjee, Ashis Gopal; Cummings, Mary L; Roy, Nicholas
2014-06-01
Planning operations across a number of domains can be considered as resource allocation problems with timing constraints. An unexplored instance of such a problem domain is the aircraft carrier flight deck, where, in current operations, replanning is done without the aid of any computerized decision support. Rather, veteran operators employ a set of experience-based heuristics to quickly generate new operating schedules. These expert user heuristics are neither codified nor evaluated by the United States Navy; they have grown solely from the convergent experiences of supervisory staff. As unmanned aerial vehicles (UAVs) are introduced in the aircraft carrier domain, these heuristics may require alterations due to differing capabilities. The inclusion of UAVs also allows for new opportunities for on-line planning and control, providing an alternative to the current heuristic-based replanning methodology. To investigate these issues formally, we have developed a decision support system for flight deck operations that utilizes a conventional integer linear program-based planning algorithm. In this system, a human operator sets both the goals and constraints for the algorithm, which then returns a proposed schedule for operator approval. As a part of validating this system, the performance of this collaborative human-automation planner was compared with that of the expert user heuristics over a set of test scenarios. The resulting analysis shows that human heuristics often outperform the plans produced by an optimization algorithm, but are also often more conservative. PMID:23934675
Linear ground-water flow, flood-wave response program for programmable calculators
Kernodle, John Michael
1978-01-01
Two programs are documented which solve a discretized analytical equation derived to determine head changes at a point in a one-dimensional ground-water flow system. The programs, written for programmable calculators, are in widely divergent but commonly encountered languages and serve to illustrate the adaptability of the linear model to use in situations where access to true computers is not possible or economical. The analytical method assumes a semi-infinite aquifer which is uniform in thickness and hydrologic characteristics, bounded on one side by an impermeable barrier and on the other parallel side by a fully penetrating stream in complete hydraulic connection with the aquifer. Ground-water heads may be calculated for points along a line which is perpendicular to the impermeable barrie and the fully penetrating stream. Head changes at the observation point are dependent on (1) the distance between that point and the impermeable barrier, (2) the distance between the line of stress (the stream) and the impermeable barrier, (3) aquifer diffusivity, (4) time, and (5) head changes along the line of stress. The primary application of the programs is to determine aquifer diffusivity by the flood-wave response technique. (Woodard-USGS)
NASA Astrophysics Data System (ADS)
Grayver, Alexander V.; Kuvshinov, Alexey V.
2016-02-01
This paper presents a methodology to sample equivalence domain (ED) in non-linear PDE-constrained inverse problems. For this purpose, we first applied state-of-the-art stochastic optimization algorithm called Covariance Matrix Adaptation Evolution Strategy (CMAES) to identify low misfit regions of the model space. These regions were then randomly sampled to create an ensemble of equivalent models and quantify uncertainty. CMAES is aimed at exploring model space globally and is robust on very ill-conditioned problems. We show that the number of iterations required to converge grows at a moderate rate with respect to number of unknowns and the algorithm is embarrassingly parallel. We formulated the problem by using the generalized Gaussian distribution. This enabled us to seamlessly use arbitrary norms for residual and regularization terms. We show that various regularization norms facilitate studying different classes of equivalent solutions. We further show how performance of the standard Metropolis-Hastings Markov chain Monte Carlo (MCMC) algorithm can be substantially improved by using information CMAES provides. This methodology was tested by using individual and joint inversions of Magneotelluric, Controlled-source Electromagnetic (EM) and Global EM induction data.
Robust Programming Problems Based on the Mean-Variance Model Including Uncertainty Factors
NASA Astrophysics Data System (ADS)
Hasuike, Takashi; Ishii, Hiroaki
2009-01-01
This paper considers robust programming problems based on the mean-variance model including uncertainty sets and fuzzy factors. Since these problems are not well-defined problems due to fuzzy factors, it is hard to solve them directly. Therefore, introducing chance constraints, fuzzy goals and possibility measures, the proposed models are transformed into the deterministic equivalent problems. Furthermore, in order to solve these equivalent problems efficiently, the solution method is constructed introducing the mean-absolute deviation and doing the equivalent transformations.
Power Minimization for Dual- and Triple-Supply Digital Circuits via Integer Linear Programming
NASA Astrophysics Data System (ADS)
Ahn, Ki-Yong; Kyung, Chong-Min
This paper proposes an Integer Linear Programming (ILP)-based power minimization method by partitioning into regions, first, with three different VDD's(PM3V), and, secondly, with two different VDD's(PM2V). To reduce the solving time of triple-VDD case (PM3V), we also proposed a partitioned ILP method(p-PM3V). The proposed method provides 29% power saving on the average in the case of triple-VDD compared to the case of single VDD. Power reduction of PM3V compared to Clustered Voltage Scaling (CVS) was about 18%. Compared to the unpartitioned ILP formulation(PM3V), the partitioned ILP method(p-PM3V) reduced the total solution time by 46% at the cost of additional power consumption within 1.3%.
Neji, Radhouène; Besbes, Ahmed; Komodakis, Nikos; Deux, Jean-François; Maatouk, Mezri; Rahmouni, Alain; Bassez, Guillaume; Fleury, Gilles; Paragios, Nikos
2009-01-01
In this paper, we present a manifold clustering method fo the classification of fibers obtained from diffusion tensor images (DTI) of the human skeletal muscle. Using a linear programming formulation of prototype-based clustering, we propose a novel fiber classification algorithm over manifolds that circumvents the necessity to embed the data in low dimensional spaces and determines automatically the number of clusters. Furthermore, we propose the use of angular Hilbertian metrics between multivariate normal distributions to define a family of distances between tensors that we generalize to fibers. These metrics are used to approximate the geodesic distances over the fiber manifold. We also discuss the case where only geodesic distances to a reduced set of landmark fibers are available. The experimental validation of the method is done using a manually annotated significant dataset of DTI of the calf muscle for healthy and diseased subjects. PMID:19694249
Approximating high-dimensional dynamics by barycentric coordinates with linear programming
Hirata, Yoshito Aihara, Kazuyuki; Suzuki, Hideyuki; Shiro, Masanori; Takahashi, Nozomu; Mas, Paloma
2015-01-15
The increasing development of novel methods and techniques facilitates the measurement of high-dimensional time series but challenges our ability for accurate modeling and predictions. The use of a general mathematical model requires the inclusion of many parameters, which are difficult to be fitted for relatively short high-dimensional time series observed. Here, we propose a novel method to accurately model a high-dimensional time series. Our method extends the barycentric coordinates to high-dimensional phase space by employing linear programming, and allowing the approximation errors explicitly. The extension helps to produce free-running time-series predictions that preserve typical topological, dynamical, and/or geometric characteristics of the underlying attractors more accurately than the radial basis function model that is widely used. The method can be broadly applied, from helping to improve weather forecasting, to creating electronic instruments that sound more natural, and to comprehensively understanding complex biological data.
ERIC Educational Resources Information Center
Nowak, Christoph; Heinrichs, Nina
2008-01-01
A meta-analysis encompassing all studies evaluating the impact of the Triple P-Positive Parenting Program on parent and child outcome measures was conducted in an effort to identify variables that moderate the program's effectiveness. Hierarchical linear models (HLM) with three levels of data were employed to analyze effect sizes. The results (N =…
PAPR reduction in FBMC using an ACE-based linear programming optimization
NASA Astrophysics Data System (ADS)
van der Neut, Nuan; Maharaj, Bodhaswar TJ; de Lange, Frederick; González, Gustavo J.; Gregorio, Fernando; Cousseau, Juan
2014-12-01
This paper presents four novel techniques for peak-to-average power ratio (PAPR) reduction in filter bank multicarrier (FBMC) modulation systems. The approach extends on current PAPR reduction active constellation extension (ACE) methods, as used in orthogonal frequency division multiplexing (OFDM), to an FBMC implementation as the main contribution. The four techniques introduced can be split up into two: linear programming optimization ACE-based techniques and smart gradient-project (SGP) ACE techniques. The linear programming (LP)-based techniques compensate for the symbol overlaps by utilizing a frame-based approach and provide a theoretical upper bound on achievable performance for the overlapping ACE techniques. The overlapping ACE techniques on the other hand can handle symbol by symbol processing. Furthermore, as a result of FBMC properties, the proposed techniques do not require side information transmission. The PAPR performance of the techniques is shown to match, or in some cases improve, on current PAPR techniques for FBMC. Initial analysis of the computational complexity of the SGP techniques indicates that the complexity issues with PAPR reduction in FBMC implementations can be addressed. The out-of-band interference introduced by the techniques is investigated. As a result, it is shown that the interference can be compensated for, whilst still maintaining decent PAPR performance. Additional results are also provided by means of a study of the PAPR reduction of the proposed techniques at a fixed clipping probability. The bit error rate (BER) degradation is investigated to ensure that the trade-off in terms of BER degradation is not too severe. As illustrated by exhaustive simulations, the SGP ACE-based technique proposed are ideal candidates for practical implementation in systems employing the low-complexity polyphase implementation of FBMC modulators. The methods are shown to offer significant PAPR reduction and increase the feasibility of FBMC as
Developing Student Programming and Problem-Solving Skills with Visual Basic
ERIC Educational Resources Information Center
Siegle, Del
2009-01-01
Although most computer users will never need to write a computer program, many students enjoy the challenge of creating one. Computer programming enhances students' problem solving by forcing students to break a problem into its component pieces and reassemble it in a generic format that can be understood by a nonsentient entity. It promotes…
The Effects of Computer Programming on Problem-Solving Skills and Attitudes.
ERIC Educational Resources Information Center
Dalton, David W.; Goodrum, David A.
1991-01-01
Describes a study that investigated the effects of computer programing activities, supplemented with problem-solving strategy instruction, on programing skills and on learner attitudes toward computers and toward problem-solving skills. The instruction of elementary students in LOGO and junior high students in BASIC is described, and further…
Effects of Pascal and FORTRAN Programming on the Problem-Solving Abilities of College Students.
ERIC Educational Resources Information Center
Choi, Won Sik; Repman, Judi
1993-01-01
Describes a study that was conducted to determine whether learning to program a computer in Pascal or FORTRAN improved problem-solving skills of college students when compared to a control group and to determine which programing language was more effective in the development of problem-solving abilities. (26 references) (LRW)
Stacked Deck: An Effective, School-Based Program for the Prevention of Problem Gambling
ERIC Educational Resources Information Center
Williams, Robert J.; Wood, Robert T.; Currie, Shawn R.
2010-01-01
School-based prevention programs are an important component of problem gambling prevention, but empirically effective programs are lacking. Stacked Deck is a set of 5-6 interactive lessons that teach about the history of gambling; the true odds and "house edge"; gambling fallacies; signs, risk factors, and causes of problem gambling; and skills…
Documentation as Problem Solving for Literacy Outreach Programs
Girill, T R
2004-07-06
Age-appropriate technical writing lessons for underperforming high-school students can offer them an innovative, ''authentic'' way to improve how they read and write. Thus the techniques and principles of effective technical communication routinely applied at work also provide a positive response to one of today's great educational challenges. This workshop shows participants how to (1) introduce English and science teachers to the value of technical writing as a response to school literacy problems, (2) prepare plausible practice exercises to help students improve their basic literacy, and (3) recognize and respond to known literacy outreach pitfalls. Every effective literacy outreach project based on technical writing needs to address four key problems.
Application of the program package TURBO problem solver for some fluid dynamics problems
NASA Astrophysics Data System (ADS)
Belotserkovskaya, M. S.; Pronina, A. P.; Fortova, S. V.; Shepelev, V. V.
2016-06-01
A technology for building parallel applications for numerical simulation based on hyperbolic partial differential equations is described. A formalization of problems and methods that makes it possible to describe new problems and methods for their solution by configuring the universal technology for specific cases is proposed. Results of numerical simulation of spatial flows in shear layers of a compressible inviscid perfect medium and of the Rayleigh-Taylor instability are presented.
NASA Astrophysics Data System (ADS)
Khan, Junaid Ali; Zahoor Raja, Muhammad Asif; Rashidi, Mohammad Mehdi; Syam, Muhammad Ibrahim; Majid Wazwaz, Abdul
2015-10-01
In this research, the well-known non-linear Lane-Emden-Fowler (LEF) equations are approximated by developing a nature-inspired stochastic computational intelligence algorithm. A trial solution of the model is formulated as an artificial feed-forward neural network model containing unknown adjustable parameters. From the LEF equation and its initial conditions, an energy function is constructed that is used in the algorithm for the optimisation of the networks in an unsupervised way. The proposed scheme is tested successfully by applying it on various test cases of initial value problems of LEF equations. The reliability and effectiveness of the scheme are validated through comprehensive statistical analysis. The obtained numerical results are in a good agreement with their corresponding exact solutions, which confirms the enhancement made by the proposed approach.
Li, Jing; Jiang, Tao
2005-01-01
We study the problem of reconstructing haplotype configurations from genotypes on pedigree data with missing alleles under the Mendelian law of inheritance and the minimum-recombination principle, which is important for the construction of haplotype maps and genetic linkage/association analyses. Our previous results show that the problem of finding a minimum-recombinant haplotype configuration (MRHC) is in general NP-hard. This paper presents an effective integer linear programming (ILP) formulation of the MRHC problem with missing data and a branch-and-bound strategy that utilizes a partial order relationship and some other special relationships among variables to decide the branching order. Nontrivial lower and upper bounds on the optimal number of recombinants are introduced at each branching node to effectively prune the search tree. When multiple solutions exist, a best haplotype configuration is selected based on a maximum likelihood approach. The paper also shows for the first time how to incorporate marker interval distance into a rule-based haplotyping algorithm. Our results on simulated data show that the algorithm could recover haplotypes with 50 loci from a pedigree of size 29 in seconds on a Pentium IV computer. Its accuracy is more than 99.8% for data with no missing alleles and 98.3% for data with 20% missing alleles in terms of correctly recovered phase information at each marker locus. A comparison with a statistical approach SimWalk2 on simulated data shows that the ILP algorithm runs much faster than SimWalk2 and reports better or comparable haplotypes on average than the first and second runs of SimWalk2. As an application of the algorithm to real data, we present some test results on reconstructing haplotypes from a genome-scale SNP dataset consisting of 12 pedigrees that have 0.8% to 14.5% missing alleles. PMID:16108713
NASA Astrophysics Data System (ADS)
Barutello, Vivina; Jadanza, Riccardo D.; Portaluri, Alessandro
2016-01-01
It is well known that the linear stability of the Lagrangian elliptic solutions in the classical planar three-body problem depends on a mass parameter β and on the eccentricity e of the orbit. We consider only the circular case ( e = 0) but under the action of a broader family of singular potentials: α-homogeneous potentials, for α in (0, 2), and the logarithmic one. It turns out indeed that the Lagrangian circular orbit persists also in this more general setting. We discover a region of linear stability expressed in terms of the homogeneity parameter α and the mass parameter β, then we compute the Morse index of this orbit and of its iterates and we find that the boundary of the stability region is the envelope of a family of curves on which the Morse indices of the iterates jump. In order to conduct our analysis we rely on a Maslov-type index theory devised and developed by Y. Long, X. Hu and S. Sun; a key role is played by an appropriate index theorem and by some precise computations of suitable Maslov-type indices.
Modern Problems Economic Units. A Program for Grade Twelve.
ERIC Educational Resources Information Center
Carlson, Marshall; Hutton, Joseph
GRADES OR AGES: Grade 12. SUBJECT MATTER: Modern problems, economic units. ORGANIZATION AND PHYSICAL APPEARANCE: The introductory material includes an outline of the Bloomington school philosophy, identification of main areas of modern economics, basic objectives, and techniques for evaluating objectives. The guide covers six units: a) importance…
Proof test of the computer program BUCKY for plasticity problems
NASA Technical Reports Server (NTRS)
Smith, James P.
1994-01-01
A theoretical equation describing the elastic-plastic deformation of a cantilever beam subject to a constant pressure is developed. The theoretical result is compared numerically to the computer program BUCKY for the case of an elastic-perfectly plastic specimen. It is shown that the theoretical and numerical results compare favorably in the plastic range. Comparisons are made to another research code to further validate the BUCKY results. This paper serves as a quality test for the computer program BUCKY developed at NASA Johnson Space Center.
International health program: preventing health problems associated with living abroad.
Butcher, Carol A
2004-02-01
1. The components of the international health program consist of identifying health risks overseas, the availability of the medical resources, the assessment of the medical facility, primary care, as well as the pre-departure health evaluations. 2. The organization should develop and implement standards of care while working toward maintaining and improving those standards to achieve an innovative, effective international medical program. This should be linked by a top down commitment to insure success. 3. The implementation of the emergency response plan will help support employees and their family members while working abroad if a serious illness or injury should occur. PMID:14979618
Higher order sensitivity of solutions to convex programming problems without strict complementarity
NASA Technical Reports Server (NTRS)
Malanowski, Kazimierz
1988-01-01
Consideration is given to a family of convex programming problems which depend on a vector parameter. It is shown that the solutions of the problems and the associated Lagrange multipliers are arbitrarily many times directionally differentiable functions of the parameter, provided that the data of the problems are sufficiently regular. The characterizations of the respective derivatives are given.
ERIC Educational Resources Information Center
Lower, Stephen K.
A brief overview of CHEMEX--a problem-solving, tutorial style computer-assisted instructional course--is provided and sample problems are offered. In CHEMEX, students receive problems in advance and attempt to solve them before moving through the computer program, which assists them in overcoming difficulties and serves as a review mechanism.…
Solving mixed integer nonlinear programming problems using spiral dynamics optimization algorithm
NASA Astrophysics Data System (ADS)
Kania, Adhe; Sidarto, Kuntjoro Adji
2016-02-01
Many engineering and practical problem can be modeled by mixed integer nonlinear programming. This paper proposes to solve the problem with modified spiral dynamics inspired optimization method of Tamura and Yasuda. Four test cases have been examined, including problem in engineering and sport. This method succeeds in obtaining the optimal result in all test cases.
Patterns of Problem Solving and Its Peer Teaching Program: An Interdisciplinary Innovation.
ERIC Educational Resources Information Center
Manus, Lee Aura; Zipser, Dean
An interdisciplinary course in problem solving, entitled "patterns of problem solving," and its unique peer program offered at the University of California, Los Angeles, are described. The emphasis in the subject matter and approach is to expose the student to the wide range of alternative problem solving techniques and to enable the student to…
A two-stage sequential linear programming approach to IMRT dose optimization
Zhang, Hao H; Meyer, Robert R; Wu, Jianzhou; Naqvi, Shahid A; Shi, Leyuan; D’Souza, Warren D
2010-01-01
The conventional IMRT planning process involves two stages in which the first stage consists of fast but approximate idealized pencil beam dose calculations and dose optimization and the second stage consists of discretization of the intensity maps followed by intensity map segmentation and a more accurate final dose calculation corresponding to physical beam apertures. Consequently, there can be differences between the presumed dose distribution corresponding to pencil beam calculations and optimization and a more accurately computed dose distribution corresponding to beam segments that takes into account collimator-specific effects. IMRT optimization is computationally expensive and has therefore led to the use of heuristic (e.g., simulated annealing and genetic algorithms) approaches that do not encompass a global view of the solution space. We modify the traditional two-stage IMRT optimization process by augmenting the second stage via an accurate Monte-Carlo based kernel-superposition dose calculations corresponding to beam apertures combined with an exact mathematical programming based sequential optimization approach that uses linear programming (SLP). Our approach was tested on three challenging clinical test cases with multileaf collimator constraints corresponding to two vendors. We compared our approach to the conventional IMRT planning approach, a direct-aperture approach and a segment weight optimization approach. Our results in all three cases indicate that the SLP approach outperformed the other approaches, achieving superior critical structure sparing. Convergence of our approach is also demonstrated. Finally, our approach has also been integrated with a commercial treatment planning system and may be utilized clinically. PMID:20071764
PROGRAMED INSTRUCTION AND FOREIGN LANGUAGE LEARNING--PROBLEMS AND PROSPECTS.
ERIC Educational Resources Information Center
VALDMAN, ALBERT
THE RESULTS OF INVESTIGATIONS CONDUCTED DURING THE PAST 6 YEARS IN SELF-INSTRUCTION IN FOREIGN LANGUAGES HAVE LED RESEARCHERS TO CONCLUDE THAT TOTAL PROGRAMED INSTRUCTION SEEMS PRODUCTIVE ONLY IN CASES WHERE THE TERMINAL BEHAVIOR TO BE ACHIEVED IS VERY LIMITED. EXPERIMENTS HAVE SHOWN THAT IT IS MOST USEFUL IN MODULES AT EARLY LEVELS FOR TEACHING…
Deviant Peer Influences in Programs for Youth Problems and Solutions
ERIC Educational Resources Information Center
Dodge, Kenneth A., Ed.; Dishion, Thomas J., Ed.; Lansford, Jennifer E., Ed.
2006-01-01
Most interventions for at-risk youth are group based. Yet, emerging research indicates that young people often learn to become deviant by interacting with deviant peers. In this important volume, leading intervention and prevention experts from psychology, education, criminology, and related fields analyze how, and to what extent, programs that…
Prevention of ADHD Related Problems: A Universal Preschool Program
ERIC Educational Resources Information Center
Christiansen, Hanna; Hirsch, Oliver; König, Anika; Steinmayr, Ricarda; Roehrle, Bernd
2015-01-01
Purpose: Early onset of behavioral disorders is predictive of long term adverse outcomes. There are some indicated and selective early prevention programs for attention deficit/hyperactivity disorder (ADHD), one of the most common behavioral disorders in childhood and adolescence. The purpose of this paper is to present a universal preschool…
Step and Hip, Humanistic Programs for Problem Secondary Students.
ERIC Educational Resources Information Center
Utah Univ., Salt Lake City. Graduate School of Education.
Alternative programs in open education for student teachers in both the Department and the Graduate School of Education at the University of Utah are making substantial contributions to promoting growth in education students; genuine interpersonal relationships between themselves and their students; and humanistic values, attitudes, and behaviors.…
Reconstructing Program Theories: Methods Available and Problems To Be Solved.
ERIC Educational Resources Information Center
Leeuw, Frans L.
2003-01-01
Discusses methods for reconstructing theories underlying programs and policies, focusing on three approaches: (1) an empirical approach that focuses on interviews, documents, and argumentational analysis; (2) an approach based on strategic assessment, group dynamics, and dialogue; and (3) an approach based on cognitive and organizational…
A Program for Solving the Brain Ischemia Problem
DeGracia, Donald J.
2013-01-01
Our recently described nonlinear dynamical model of cell injury is here applied to the problems of brain ischemia and neuroprotection. We discuss measurement of global brain ischemia injury dynamics by time course analysis. Solutions to proposed experiments are simulated using hypothetical values for the model parameters. The solutions solve the global brain ischemia problem in terms of “master bifurcation diagrams” that show all possible outcomes for arbitrary durations of all lethal cerebral blood flow (CBF) decrements. The global ischemia master bifurcation diagrams: (1) can map to a single focal ischemia insult, and (2) reveal all CBF decrements susceptible to neuroprotection. We simulate measuring a neuroprotectant by time course analysis, which revealed emergent nonlinear effects that set dynamical limits on neuroprotection. Using over-simplified stroke geometry, we calculate a theoretical maximum protection of approximately 50% recovery. We also calculate what is likely to be obtained in practice and obtain 38% recovery; a number close to that often reported in the literature. The hypothetical examples studied here illustrate the use of the nonlinear cell injury model as a fresh avenue of approach that has the potential, not only to solve the brain ischemia problem, but also to advance the technology of neuroprotection. PMID:24961411
NASA Astrophysics Data System (ADS)
Yaakob, Shamshul Bahar; Watada, Junzo
In this paper, a hybrid neural network approach to solve mixed integer quadratic bilevel programming problems is proposed. Bilevel programming problems arise when one optimization problem, the upper problem, is constrained by another optimization, the lower problem. The mixed integer quadratic bilevel programming problem is transformed into a double-layered neural network. The combination of a genetic algorithm (GA) and a meta-controlled Boltzmann machine (BM) enables us to formulate a hybrid neural network approach to solving bilevel programming problems. The GA is used to generate the feasible partial solutions of the upper level and to provide the parameters for the lower level. The meta-controlled BM is employed to cope with the lower level problem. The lower level solution is transmitted to the upper level. This procedure enables us to obtain the whole upper level solution. The iterative processes can converge on the complete solution of this problem to generate an optimal one. The proposed method leads the mixed integer quadratic bilevel programming problem to a global optimal solution. Finally, a numerical example is used to illustrate the application of the method in a power system environment, which shows that the algorithm is feasible and advantageous.
34 CFR 356.11 - What types of problems may be researched under the fellowship program?
Code of Federal Regulations, 2011 CFR
2011-07-01
... fellowship program? 356.11 Section 356.11 Education Regulations of the Offices of the Department of Education... REHABILITATION RESEARCH: RESEARCH FELLOWSHIPS What Kinds of Activities Does the Department Support Under This Program? § 356.11 What types of problems may be researched under the fellowship program?...
34 CFR 356.11 - What types of problems may be researched under the fellowship program?
Code of Federal Regulations, 2010 CFR
2010-07-01
... fellowship program? 356.11 Section 356.11 Education Regulations of the Offices of the Department of Education... REHABILITATION RESEARCH: RESEARCH FELLOWSHIPS What Kinds of Activities Does the Department Support Under This Program? § 356.11 What types of problems may be researched under the fellowship program?...
34 CFR 356.11 - What types of problems may be researched under the fellowship program?
Code of Federal Regulations, 2014 CFR
2014-07-01
... fellowship program? 356.11 Section 356.11 Education Regulations of the Offices of the Department of Education... REHABILITATION RESEARCH: RESEARCH FELLOWSHIPS What Kinds of Activities Does the Department Support Under This Program? § 356.11 What types of problems may be researched under the fellowship program?...
34 CFR 356.11 - What types of problems may be researched under the fellowship program?
Code of Federal Regulations, 2013 CFR
2013-07-01
... fellowship program? 356.11 Section 356.11 Education Regulations of the Offices of the Department of Education... REHABILITATION RESEARCH: RESEARCH FELLOWSHIPS What Kinds of Activities Does the Department Support Under This Program? § 356.11 What types of problems may be researched under the fellowship program?...
34 CFR 356.11 - What types of problems may be researched under the fellowship program?
Code of Federal Regulations, 2012 CFR
2012-07-01
... fellowship program? 356.11 Section 356.11 Education Regulations of the Offices of the Department of Education... REHABILITATION RESEARCH: RESEARCH FELLOWSHIPS What Kinds of Activities Does the Department Support Under This Program? § 356.11 What types of problems may be researched under the fellowship program?...
How Does Early Feedback in an Online Programming Course Change Problem Solving?
ERIC Educational Resources Information Center
Ebrahimi, Alireza
2012-01-01
How does early feedback change the programming problem solving in an online environment and help students choose correct approaches? This study was conducted in a sample of students learning programming in an online course entitled Introduction to C++ and OOP (Object Oriented Programming) using the ANGEL learning management system platform. My…
The Child Development Program: Preventing and Remediating Learning Problems (with Appendix).
ERIC Educational Resources Information Center
Levine, Suzanne Sosna
The Child Development Program at John Adams School in North Brunswick, New Jersey, was designed to be an immediate intervention for children with learning problems in the early elementary grades. This two-volume guide describes the work done in the program and how the program can be replicated. The first book details characteristics of the…
NASA Astrophysics Data System (ADS)
Christober, C.; Rajan, Asir
2011-01-01
This paper presents a new approach to solve the short-term unit commitment problem using An Evolutionary Programming Based tabu search method with cooling and banking constraints. Numerical results are shown comparing the cost solutions and computation time obtained by using the evolutionary programming method and other conventional methods like dynamic programming, lagrangian relaxation.
A Computer Program for the Management of Prescription-Based Problems.
ERIC Educational Resources Information Center
Cotter, Patricia M.; Gumtow, Robert H.
1991-01-01
The Prescription Management Program, a software program using Apple's HyperCard on a MacIntosh, was developed to simplify the creation, storage, modification, and general management of prescription-based problems. Pharmacy instructors may customize the program to serve their individual teaching needs. (Author/DB)
NASA Technical Reports Server (NTRS)
Patera, Anthony T.; Paraschivoiu, Marius
1998-01-01
We present a finite element technique for the efficient generation of lower and upper bounds to outputs which are linear functionals of the solutions to the incompressible Stokes equations in two space dimensions; the finite element discretization is effected by Crouzeix-Raviart elements, the discontinuous pressure approximation of which is central to our approach. The bounds are based upon the construction of an augmented Lagrangian: the objective is a quadratic "energy" reformulation of the desired output; the constraints are the finite element equilibrium equations (including the incompressibility constraint), and the intersubdomain continuity conditions on velocity. Appeal to the dual max-min problem for appropriately chosen candidate Lagrange multipliers then yields inexpensive bounds for the output associated with a fine-mesh discretization; the Lagrange multipliers are generated by exploiting an associated coarse-mesh approximation. In addition to the requisite coarse-mesh calculations, the bound technique requires solution only of local subdomain Stokes problems on the fine-mesh. The method is illustrated for the Stokes equations, in which the outputs of interest are the flowrate past, and the lift force on, a body immersed in a channel.
Jan Hesthaven
2012-02-06
Final report for DOE Contract DE-FG02-98ER25346 entitled Parallel High Order Accuracy Methods Applied to Non-Linear Hyperbolic Equations and to Problems in Materials Sciences. Principal Investigator Jan S. Hesthaven Division of Applied Mathematics Brown University, Box F Providence, RI 02912 Jan.Hesthaven@Brown.edu February 6, 2012 Note: This grant was originally awarded to Professor David Gottlieb and the majority of the work envisioned reflects his original ideas. However, when Prof Gottlieb passed away in December 2008, Professor Hesthaven took over as PI to ensure proper mentoring of students and postdoctoral researchers already involved in the project. This unusual circumstance has naturally impacted the project and its timeline. However, as the report reflects, the planned work has been accomplished and some activities beyond the original scope have been pursued with success. Project overview and main results The effort in this project focuses on the development of high order accurate computational methods for the solution of hyperbolic equations with application to problems with strong shocks. While the methods are general, emphasis is on applications to gas dynamics with strong shocks.
NASA Technical Reports Server (NTRS)
Lee, Y. M.
1971-01-01
Using a linearized theory of thermally and mechanically interacting mixture of linear elastic solid and viscous fluid, we derive a fundamental relation in an integral form called a reciprocity relation. This reciprocity relation relates the solution of one initial-boundary value problem with a given set of initial and boundary data to the solution of a second initial-boundary value problem corresponding to a different initial and boundary data for a given interacting mixture. From this general integral relation, reciprocity relations are derived for a heat-conducting linear elastic solid, and for a heat-conducting viscous fluid. An initial-boundary value problem is posed and solved for the mixture of linear elastic solid and viscous fluid. With the aid of the Laplace transform and the contour integration, a real integral representation for the displacement of the solid constituent is obtained as one of the principal results of the analysis.
Cabrera, V E
2010-01-01
The purpose of the study was 2-fold: 1) to propose a novel modeling framework using Markovian linear programming to optimize dairy farmer-defined goals under different decision schemes and 2) to illustrate the model with a practical application testing diets for entire lactations. A dairy herd population was represented by cow state variables defined by parity (1 to 15), month in lactation (1 to 24), and pregnancy status (0 nonpregnant and 1 to 9 mo of pregnancy). A database of 326,000 lactations of Holsteins from AgSource Dairy Herd Improvement service (http://agsource.crinet.com/page249/DHI) was used to parameterize reproduction, mortality, and involuntary culling. The problem was set up as a Markovian linear program model containing 5,580 decision variables and 8,731 constraints. The model optimized the net revenue of the steady state dairy herd population having 2 options in each state: keeping or replacing an animal. Five diets were studied to assess economic, environmental, and herd structural outcomes. Diets varied in proportions of alfalfa silage (38 to 98% of dry matter), high-moisture ear corn (0 to 42% of dry matter), and soybean meal (0 to 18% of dry matter) within and between lactations, which determined dry matter intake, milk production, and N excretion. Diet ingredient compositions ranged from one of high concentrates to alfalfa silage only. Hence, the model identified the maximum net revenue that included the value of nutrient excretion and the cost of manure disposal associated with the optimal policy. Outcomes related to optimal solutions included the herd population structure, the replacement policy, and the amount of N excreted under each diet experiment. The problem was solved using the Excel Risk Solver Platform with the Standard LP/Quadratic Engine. Consistent replacement policies were to (1) keep pregnant cows, (2) keep primiparous cows longer than multiparous cows, and (3) decrease replacement rates when milk and feed prices are favorable
ERIC Educational Resources Information Center
Harder, Amy; Moore, Austen; Mazurkewicz, Melissa; Benge, Matt
2013-01-01
Needs assessments are an important tool for informing organizational development efforts in Extension. The purpose of the study reported here was to identify problems faced by county units within UF/IFAS Extension during county program reviews. The findings were drawn from the reports created after five county units experienced program reviews in…
The application of MINIQUASI to thermal program boundary and initial value problems
NASA Technical Reports Server (NTRS)
1974-01-01
The feasibility of applying the solution techniques of Miniquasi to the set of equations which govern a thermoregulatory model is investigated. For solving nonlinear equations and/or boundary conditions, a Taylor Series expansion is required for linearization of both equations and boundary conditions. The solutions are iterative and in each iteration, a problem like the linear case is solved. It is shown that Miniquasi cannot be applied to the thermoregulatory model as originally planned.
Bellingham Bay action program: Initial data summaries and problem identification
Decker, D.S.; Sonnerup, R.; Greene, J.J.
1989-08-01
The report provides a synthesis of information describing the geographic extent and severity of estuarine contamination in Bellingham Bay within Puget Sound in Washington State. Summaries of existing data are provided for chemical contamination of sediment and biota, microbial contamination, eutrophication and contaminant sources. Original, summarized, tabulated, and mapped data are presented. The objective of the report is to provide a mechanism for comprehensively evaluating pollution problems in the more urbanized embayments and for providing a basis for prioritizing corrective actions. A decision making framework is presented for evaluating and prioritizing both sub-areas within Bellingham Bay and specific contaminant sources.
Addona, Davide
2015-08-15
We obtain weighted uniform estimates for the gradient of the solutions to a class of linear parabolic Cauchy problems with unbounded coefficients. Such estimates are then used to prove existence and uniqueness of the mild solution to a semi-linear backward parabolic Cauchy problem, where the differential equation is the Hamilton–Jacobi–Bellman equation of a suitable optimal control problem. Via backward stochastic differential equations, we show that the mild solution is indeed the value function of the controlled equation and that the feedback law is verified.
Helping solve Georgia's water problems - the USGS Cooperative Water Program
Clarke, John S.
2006-01-01
The U.S. Geological Survey (USGS) addresses a wide variety of water issues in the State of Georgia through the Cooperative Water Program (CWP). As the primary Federal science agency for water-resource information, the USGS monitors the quantity and quality of water in the Nation's rivers and aquifers, assesses the sources and fate of contaminants in aquatic systems, collects and analyzes data on aquatic ecosystems, develops tools to improve the application of hydrologic information, and ensures that its information and tools are available to all potential users. This broad, diverse mission cannot be accomplished effectively without the contributions of the CWP.
Carbon dioxide problem: DOE program and a general assessment
Abarbanel, H.; Chamberlain, J.; Foley, H.; MacDonald, G.; Nierenberg, W.; Ruderman, M.
1980-10-01
From the view of a potential national or international policy on CO/sub 2/, progress towards these goals is reported along with suggestions for additions to and implementation of the present work. After the introduction, conclusions and recommendations are presented. The third and fourth sections contain discussions of the present research programs on the carbon cycle and on climate modeling. The fifth section considers physical effects of CO/sub 2/-induced climate change that may be of social or economic importance. The last section considers some early warning signals for climate changes due to increased atmospheric CO/sub 2/.
A linear programming model to optimize diets in environmental policy scenarios.
Moraes, L E; Wilen, J E; Robinson, P H; Fadel, J G
2012-03-01
The objective was to develop a linear programming model to formulate diets for dairy cattle when environmental policies are present and to examine effects of these policies on diet formulation and dairy cattle nitrogen and mineral excretions as well as methane emissions. The model was developed as a minimum cost diet model. Two types of environmental policies were examined: a tax and a constraint on methane emissions. A tax was incorporated to simulate a greenhouse gas emissions tax policy, and prices of carbon credits in the current carbon markets were attributed to the methane production variable. Three independent runs were made, using carbon dioxide equivalent prices of $5, $17, and $250/t. A constraint was incorporated into the model to simulate the second type of environmental policy, reducing methane emissions by predetermined amounts. The linear programming formulation of this second alternative enabled the calculation of marginal costs of reducing methane emissions. Methane emission and manure production by dairy cows were calculated according to published equations, and nitrogen and mineral excretions were calculated by mass conservation laws. Results were compared with respect to the values generated by a base least-cost model. Current prices of the carbon credit market did not appear onerous enough to have a substantive incentive effect in reducing methane emissions and altering diet costs of our hypothetical dairy herd. However, when emissions of methane were assumed to be reduced by 5, 10, and 13.5% from the base model, total diet costs increased by 5, 19.1, and 48.5%, respectively. Either these increased costs would be passed onto the consumer or dairy producers would go out of business. Nitrogen and potassium excretions were increased by 16.5 and 16.7% with a 13.5% reduction in methane emissions from the base model. Imposing methane restrictions would further increase the demand for grains and other human-edible crops, which is not a progressive
Lee, Dongyul; Lee, Chaewoo
2014-01-01
The advancement in wideband wireless network supports real time services such as IPTV and live video streaming. However, because of the sharing nature of the wireless medium, efficient resource allocation has been studied to achieve a high level of acceptability and proliferation of wireless multimedia. Scalable video coding (SVC) with adaptive modulation and coding (AMC) provides an excellent solution for wireless video streaming. By assigning different modulation and coding schemes (MCSs) to video layers, SVC can provide good video quality to users in good channel conditions and also basic video quality to users in bad channel conditions. For optimal resource allocation, a key issue in applying SVC in the wireless multicast service is how to assign MCSs and the time resources to each SVC layer in the heterogeneous channel condition. We formulate this problem with integer linear programming (ILP) and provide numerical results to show the performance under 802.16 m environment. The result shows that our methodology enhances the overall system throughput compared to an existing algorithm. PMID:25276862
Lee, Chaewoo
2014-01-01
The advancement in wideband wireless network supports real time services such as IPTV and live video streaming. However, because of the sharing nature of the wireless medium, efficient resource allocation has been studied to achieve a high level of acceptability and proliferation of wireless multimedia. Scalable video coding (SVC) with adaptive modulation and coding (AMC) provides an excellent solution for wireless video streaming. By assigning different modulation and coding schemes (MCSs) to video layers, SVC can provide good video quality to users in good channel conditions and also basic video quality to users in bad channel conditions. For optimal resource allocation, a key issue in applying SVC in the wireless multicast service is how to assign MCSs and the time resources to each SVC layer in the heterogeneous channel condition. We formulate this problem with integer linear programming (ILP) and provide numerical results to show the performance under 802.16 m environment. The result shows that our methodology enhances the overall system throughput compared to an existing algorithm. PMID:25276862
NASA Astrophysics Data System (ADS)
Hung, Linda; Huang, Chen; Shin, Ilgyou; Ho, Gregory S.; Lignères, Vincent L.; Carter, Emily A.
2010-12-01
Orbital-free density functional theory (OFDFT) is a first principles quantum mechanics method to find the ground-state energy of a system by variationally minimizing with respect to the electron density. No orbitals are used in the evaluation of the kinetic energy (unlike Kohn-Sham DFT), and the method scales nearly linearly with the size of the system. The PRinceton Orbital-Free Electronic Structure Software (PROFESS) uses OFDFT to model materials from the atomic scale to the mesoscale. This new version of PROFESS allows the study of larger systems with two significant changes: PROFESS is now parallelized, and the ion-electron and ion-ion terms scale quasilinearly, instead of quadratically as in PROFESS v1 (L. Hung and E.A. Carter, Chem. Phys. Lett. 475 (2009) 163). At the start of a run, PROFESS reads the various input files that describe the geometry of the system (ion positions and cell dimensions), the type of elements (defined by electron-ion pseudopotentials), the actions you want it to perform (minimize with respect to electron density and/or ion positions and/or cell lattice vectors), and the various options for the computation (such as which functionals you want it to use). Based on these inputs, PROFESS sets up a computation and performs the appropriate optimizations. Energies, forces, stresses, material geometries, and electron density configurations are some of the values that can be output throughout the optimization. New version program summaryProgram Title: PROFESS Catalogue identifier: AEBN_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEBN_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 68 721 No. of bytes in distributed program, including test data, etc.: 1 708 547 Distribution format: tar.gz Programming language: Fortran 90 Computer
Wos, L.; McCune, W.
1988-01-01
In this paper, we offer a set of problems for evaluating the power of automated theorem-proving programs and the potential of new ideas. Since the problems published in the proceedings of the first CADE conference proved to be so useful, and since researchers are now far more disposed to implementing and testing their ideas, a new set of problems to complement those that have been widely studied is in order. In general, the new problems provide a far greater challenge for an automated theorem-proving program than those in the first set do. Indeed, to our knowledge, five of the six problems we propose for study have never been proved with a theorem-proving program. For each problem, we give a set of statements that can easily be translated into a standard set of clauses. We also state each problem in its mathematical and logical form. In many cases, we also provide a proof of the theorem from which a problem is taken so that one can measure a program's progress in its attempt to solve the problem. Two of the theorems we discuss are of especial interest in that they answer questions that had been open concerning the constructibility of two types of combinator. We also include a brief description of a new strategy for restricting the application of paramodulation. All of the problems we propose for study emphasize the role of equality. This paper is tutorial in nature.
First results, problems of French deep gasification program
NASA Astrophysics Data System (ADS)
Gaussens, P.
1983-01-01
The development of a technology for the gasification of deep coal reserves that are technically and economically not exploitable by classic mining methods was investigated. The principal problem is the very low permeability of the deep coal which makes it necessary to create an artificial connection between the injection and production wells which is done of hydrofracturing method. The possibilities of an electrical connection are studied. Difficulties related to the spontaneous ignition of the coal and the creation of a backward combustion are revealed. Exploration of the factors that might limit the quality of the gas produced or the quantity of coal extracted by doublet is suggested which should lead to obtaining criteria for site selection. Knowledge of the natural conditions of a site is essential for the decision and the selection of the operating method. The characterization can be obtained by using exploration methods such as coring, logging, surface geophysics.
Gartling, D.K.; Hogan, R.E.
1994-10-01
The theoretical and numerical background for the finite element computer program, COYOTE II, is presented in detail. COYOTE II is designed for the multi-dimensional analysis of nonlinear heat conduction problems and other types of diffusion problems. A general description of the boundary value problems treated by the program is presented. The finite element formulation and the associated numerical methods used in COYOTE II are also outlined. Instructions for use of the code are documented in SAND94-1179; examples of problems analyzed with the code are provided in SAND94-1180.
Identification of student misconceptions in genetics problem solving via computer program
NASA Astrophysics Data System (ADS)
Browning, Mark E.; Lehman, James D.
A genetics problem practice program and tutor on microcomputer was used by 135 undergraduate education majors enrolled in an introductory biology course at Purdue University. The program presented four genetics problems, two monohybrid and two dihybrid, and required the users to predict the number and type of each class of offspring. Student responses were recorded on diskette and analyzed for evidence of misconceptions and difficulties in the genetics problem-solving process. Three main areas of difficulty were identified: difficulties with computational skills, difficulties in the determination of gametes, and inappropriate application of previous learning to new problem situations.
NASA Technical Reports Server (NTRS)
Heidergott, K. W.
1979-01-01
The computer program known as QR is described. Classical control systems analysis and synthesis (root locus, time response, and frequency response) can be performed using this program. Programming details of the QR program are presented.
2013-01-01
that these constraints can often lead to significant reductions in the gap between the optimal solution and its non-integral linear programming bound relative to the prior art as well as often substantially faster processing of moderately hard problem instances. Conclusion We provide an indication of the conditions under which such an optimal enumeration approach is likely to be feasible, suggesting that these strategies are usable for relatively large numbers of taxa, although with stricter limits on numbers of variable sites. The work thus provides methodology suitable for provably optimal solution of some harder instances that resist all prior approaches. PMID:23343437
Zheng, Jialin; Zhuang, Wei; Yan, Nian; Kou, Gang; Peng, Hui; McNally, Clancy; Erichsen, David; Cheloha, Abby; Herek, Shelley; Shi, Chris
2004-01-01
The ability to identify neuronal damage in the dendritic arbor during HIV-1-associated dementia (HAD) is crucial for designing specific therapies for the treatment of HAD. To study this process, we utilized a computer-based image analysis method to quantitatively assess HIV-1 viral protein gp120 and glutamate-mediated individual neuronal damage in cultured cortical neurons. Changes in the number of neurites, arbors, branch nodes, cell body area, and average arbor lengths were determined and a database was formed (http://dm.ist.unomaha. edu/database.htm). We further proposed a two-class model of multiple criteria linear programming (MCLP) to classify such HIV-1-mediated neuronal dendritic and synaptic damages. Given certain classes, including treatments with brain-derived neurotrophic factor (BDNF), glutamate, gp120 or non-treatment controls from our in vitro experimental systems, we used the two-class MCLP model to determine the data patterns between classes in order to gain insight about neuronal dendritic damages. This knowledge can be applied in principle to the design and study of specific therapies for the prevention or reversal of neuronal damage associated with HAD. Finally, the MCLP method was compared with a well-known artificial neural network algorithm to test for the relative potential of different data mining applications in HAD research. PMID:15365193
NASA Astrophysics Data System (ADS)
Vorwerk, Kristoffer; Kennings, Andrew; Anjos, Miguel
2008-06-01
In VLSI layout, floorplanning refers to the task of placing macrocells on a chip without overlap while minimizing design objectives such as timing, congestion, and wire length. Experienced VLSI designers have traditionally been able to produce more efficient floorplans than automated methods. However, with the increasing complexity of modern circuits, manual design flows have become infeasible. An efficient top-down strategy for overlap removal which repairs overlaps in floorplans produced by placement algorithms or rough floorplanning methodologies is presented in this article. The algorithmic framework proposed incorporates a novel geometric shifting technique coupled with topological constraint graphs and linear programming within a top-down flow. The effectiveness of this framework is quantified across a broad range of floorplans produced by multiple tools. The method succeeds in producing valid placements in almost all cases; moreover, compared with leading methods, it requires only one-fifth of the run-time and produces placements with 4-13% less wire length and up to 43% less cell movement.
Christodoulou, Manolis A; Kontogeorgou, Chrysa
2008-10-01
In recent years there has been a great effort to convert the existing Air Traffic Control system into a novel system known as Free Flight. Free Flight is based on the concept that increasing international airspace capacity will grant more freedom to individual pilots during the enroute flight phase, thereby giving them the opportunity to alter flight paths in real time. Under the current system, pilots must request, then receive permission from air traffic controllers to alter flight paths. Understandably the new system allows pilots to gain the upper hand in air traffic. At the same time, however, this freedom increase pilot responsibility. Pilots face a new challenge in avoiding the traffic shares congested air space. In order to ensure safety, an accurate system, able to predict and prevent conflict among aircraft is essential. There are certain flight maneuvers that exist in order to prevent flight disturbances or collision and these are graded in the following categories: vertical, lateral and airspeed. This work focuses on airspeed maneuvers and tries to introduce a new idea for the control of Free Flight, in three dimensions, using neural networks trained with examples prepared through non-linear programming. PMID:18991361
Linear genetic programming application for successive-station monthly streamflow prediction
NASA Astrophysics Data System (ADS)
Danandeh Mehr, Ali; Kahya, Ercan; Yerdelen, Cahit
2014-09-01
In recent decades, artificial intelligence (AI) techniques have been pronounced as a branch of computer science to model wide range of hydrological phenomena. A number of researches have been still comparing these techniques in order to find more effective approaches in terms of accuracy and applicability. In this study, we examined the ability of linear genetic programming (LGP) technique to model successive-station monthly streamflow process, as an applied alternative for streamflow prediction. A comparative efficiency study between LGP and three different artificial neural network algorithms, namely feed forward back propagation (FFBP), generalized regression neural networks (GRNN), and radial basis function (RBF), has also been presented in this study. For this aim, firstly, we put forward six different successive-station monthly streamflow prediction scenarios subjected to training by LGP and FFBP using the field data recorded at two gauging stations on Çoruh River, Turkey. Based on Nash-Sutcliffe and root mean squared error measures, we then compared the efficiency of these techniques and selected the best prediction scenario. Eventually, GRNN and RBF algorithms were utilized to restructure the selected scenario and to compare with corresponding FFBP and LGP. Our results indicated the promising role of LGP for successive-station monthly streamflow prediction providing more accurate results than those of all the ANN algorithms. We found an explicit LGP-based expression evolved by only the basic arithmetic functions as the best prediction model for the river, which uses the records of the both target and upstream stations.
ERIC Educational Resources Information Center
Elkins, John, Ed.; Izard, John, Ed.
The conference papers in this collection are grouped under the following topics: behavior problems in context; interpersonal relationships; initiatives by systems and schools; and programs in special settings. Papers included are: (1) National Trends in Discipline Policy Development (Roger Slee); (2) Balancing: The Protocols of Discipline (William…
NASA Technical Reports Server (NTRS)
Tapia, R. A.; Vanrooy, D. L.
1976-01-01
A quasi-Newton method is presented for minimizing a nonlinear function while constraining the variables to be nonnegative and sum to one. The nonnegativity constraints were eliminated by working with the squares of the variables and the resulting problem was solved using Tapia's general theory of quasi-Newton methods for constrained optimization. A user's guide for a computer program implementing this algorithm is provided.
Linearly Adjustable International Portfolios
Fonseca, R. J.; Kuhn, D.; Rustem, B.
2010-09-30
We present an approach to multi-stage international portfolio optimization based on the imposition of a linear structure on the recourse decisions. Multiperiod decision problems are traditionally formulated as stochastic programs. Scenario tree based solutions however can become intractable as the number of stages increases. By restricting the space of decision policies to linear rules, we obtain a conservative tractable approximation to the original problem. Local asset prices and foreign exchange rates are modelled separately, which allows for a direct measure of their impact on the final portfolio value.
NASA Technical Reports Server (NTRS)
Hall, Philip
1989-01-01
Goertler vortices are thought to be the cause of transition in many fluid flows of practical importance. A review of the different stages of vortex growth is given. In the linear regime, nonparallel effects completely govern this growth, and parallel flow theories do not capture the essential features of the development of the vortices. A detailed comparison between the parallel and nonparallel theories is given and it is shown that at small vortex wavelengths, the parallel flow theories have some validity; otherwise nonparallel effects are dominant. New results for the receptivity problem for Goertler vortices are given; in particular vortices induced by free stream perturbations impinging on the leading edge of the walls are considered. It is found that the most dangerous mode of this type can be isolated and it's neutral curve is determined. This curve agrees very closely with the available experimental data. A discussion of the different regimes of growth of nonlinear vortices is also given. Again it is shown that, unless the vortex wavelength is small, nonparallel effects are dominant. Some new results for nonlinear vortices of 0(1) wavelengths are given and compared to experimental observations.
NASA Astrophysics Data System (ADS)
Monticelli, Dario D.; Rodney, Scott
2015-10-01
In this paper we study existence and spectral properties for weak solutions of Neumann and Dirichlet problems associated with second order linear degenerate elliptic partial differential operators X with rough coefficients, of the form X = - div (P∇) + HR +S‧ G + F, where the n × n matrix function P = P (x) is nonnegative definite and allowed to degenerate, R, S are families of subunit vector fields, G, H are vector valued functions and F is a scalar function. We operate in a geometric homogeneous space setting and we assume the validity of certain Sobolev and Poincaré inequalities related to a symmetric nonnegative definite matrix of weights Q = Q (x) that is comparable to P; we do not assume that the underlying measure is doubling. We give a maximum principle for weak solutions of Xu ≤ 0, and we follow this with a result describing a relationship between compact projection of the degenerate Sobolev space QH 1, p, related to the matrix of weights Q, into Lq and a Poincaré inequality with gain adapted to Q.
NASA Astrophysics Data System (ADS)
Shepherd, James J.; Scuseria, Gustavo E.; Spencer, James S.
2014-10-01
We investigate the sign problem for full configuration interaction quantum Monte Carlo (FCIQMC), a stochastic algorithm for finding the ground-state solution of the Schrödinger equation with substantially reduced computational cost compared with exact diagonalization. We find k -space Hubbard models for which the solution is yielded with storage that grows sublinearly in the size of the many-body Hilbert space, in spite of using a wave function that is simply a linear combination of states. The FCIQMC algorithm is able to find this sublinear scaling regime without bias and with only a choice of the Hamiltonian basis. By means of a demonstration we solve for the energy of a 70-site half-filled system (with a space of 1038 determinants) in 250 core hours, substantially quicker than the ˜1036 core hours that would be required by exact diagonalization. This is the largest space that has been sampled in an unbiased fashion. The challenge for the recently developed FCIQMC method is made clear: Expand the sublinear scaling regime while retaining exact-on-average accuracy. We comment upon the relationship between this and the scaling law previously observed in the initiator adaptation (i-FCIQMC). We argue that our results change the landscape for the development of FCIQMC and related methods.
NEWBOX: A computer program for parameter estimation in diffusion problems
Nestor, C.W. Jr.; Godbee, H.W.; Joy, D.S. )
1989-01-01
In the analysis of experiments to determine amounts of material transferred form 1 medium to another (e.g., the escape of chemically hazardous and radioactive materials from solids), there are at least 3 important considerations. These are (1) is the transport amenable to treatment by established mass transport theory; (2) do methods exist to find estimates of the parameters which will give a best fit, in some sense, to the experimental data; and (3) what computational procedures are available for evaluating the theoretical expressions. The authors have made the assumption that established mass transport theory is an adequate model for the situations under study. Since the solutions of the diffusion equation are usually nonlinear in some parameters (diffusion coefficient, reaction rate constants, etc.), use of a method of parameter adjustment involving first partial derivatives can be complicated and prone to errors in the computation of the derivatives. In addition, the parameters must satisfy certain constraints; for example, the diffusion coefficient must remain positive. For these reasons, a variant of the constrained simplex method of M. J. Box has been used to estimate parameters. It is similar, but not identical, to the downhill simplex method of Nelder and Mead. In general, they calculate the fraction of material transferred as a function of time from expressions obtained by the inversion of the Laplace transform of the fraction transferred, rather than by taking derivatives of a calculated concentration profile. With the above approaches to the 3 considerations listed at the outset, they developed a computer program NEWBOX, usable on a personal computer, to calculate the fractional release of material from 4 different geometrical shapes (semi-infinite medium, finite slab, finite circular cylinder, and sphere), accounting for several different boundary conditions.
A case study in programming a quantum annealer for hard operational planning problems
NASA Astrophysics Data System (ADS)
Rieffel, Eleanor G.; Venturelli, Davide; O'Gorman, Bryan; Do, Minh B.; Prystay, Elicia M.; Smelyanskiy, Vadim N.
2015-01-01
We report on a case study in programming an early quantum annealer to attack optimization problems related to operational planning. While a number of studies have looked at the performance of quantum annealers on problems native to their architecture, and others have examined performance of select problems stemming from an application area, ours is one of the first studies of a quantum annealer's performance on parametrized families of hard problems from a practical domain. We explore two different general mappings of planning problems to quadratic unconstrained binary optimization (QUBO) problems, and apply them to two parametrized families of planning problems, navigation-type and scheduling-type. We also examine two more compact, but problem-type specific, mappings to QUBO, one for the navigation-type planning problems and one for the scheduling-type planning problems. We study embedding properties and parameter setting and examine their effect on the efficiency with which the quantum annealer solves these problems. From these results, we derive insights useful for the programming and design of future quantum annealers: problem choice, the mapping used, the properties of the embedding, and the annealing profile all matter, each significantly affecting the performance.
NASA Technical Reports Server (NTRS)
Geyser, L. C.
1978-01-01
A digital computer program, DYGABCD, was developed that generates linearized, dynamic models of simulated turbofan and turbojet engines. DYGABCD is based on an earlier computer program, DYNGEN, that is capable of calculating simulated nonlinear steady-state and transient performance of one- and two-spool turbojet engines or two- and three-spool turbofan engines. Most control design techniques require linear system descriptions. For multiple-input/multiple-output systems such as turbine engines, state space matrix descriptions of the system are often desirable. DYGABCD computes the state space matrices commonly referred to as the A, B, C, and D matrices required for a linear system description. The report discusses the analytical approach and provides a users manual, FORTRAN listings, and a sample case.
Technology Transfer Automated Retrieval System (TEKTRAN)
Ready-to-use therapeutic food (RUTF) is the standard of care for children suffering from noncomplicated severe acute malnutrition (SAM). The objective was to develop a comprehensive linear programming (LP) tool to create novel RUTF formulations for Ethiopia. A systematic approach that surveyed inter...
ERIC Educational Resources Information Center
Reid, Barbara J., Ed.
This monograph presents nine articles that describe innovative programs within small special education teacher education programs at a variety of institutions of higher education. The papers are: (1) "Furman University: A Field-Based Model for Small Liberal Arts Teacher Education Programs" (Shirley A. Ritter and Lesley A. Quast); (2) "Providing a…
ERIC Educational Resources Information Center
Schlundt, David G.; Flannery, Mary Ellen; Davis, Dianne L.; Kinzer, Charles K.; Pichert, James W.
1999-01-01
Examines a two-week summer program using problem-based learning and behavior therapy to help adolescents with insulin-dependent diabetes improve their ability to cope with obstacles to dietary management. Improvements were observed in self-efficacy, problem-solving skills, and self-reported coping strategies. No significant changes were observed…
Arithmetical Problem Solving: A Program Demonstration by Teachers of the Mentally Handicapped.
ERIC Educational Resources Information Center
Cawley, John F.; Goodman, John O.
The purposes of the study were to investigate the effects of the combination of a trained teacher and a planned program on the problem solving abilities of mentally handicapped children, to develop measures of verbal problem solving (IDES) and arithmetic understanding (PUT), and to analyze the interrelationships among primary mental abilities and…
ERIC Educational Resources Information Center
Joachimsthaler, Erich A.; Stam, Antonie
1990-01-01
Mathematical programing formulas are introduced as new approaches to solve the classification problem in discriminant analysis. The research literature is reviewed, and an illustration using a real-world classification problem is provided. Issues relevant to potential uses of these formulations are discussed. (TJH)
Learning Problem-Solving through Making Games at the Game Design and Learning Summer Program
ERIC Educational Resources Information Center
Akcaoglu, Mete
2014-01-01
Today's complex and fast-evolving world necessitates young students to possess design and problem-solving skills more than ever. One alternative method of teaching children problem-solving or thinking skills has been using computer programming, and more recently, game-design tasks. In this pre-experimental study, a group of middle school…
Integrating genomics and proteomics data to predict drug effects using binary linear programming.
Ji, Zhiwei; Su, Jing; Liu, Chenglin; Wang, Hongyan; Huang, Deshuang; Zhou, Xiaobo
2014-01-01
The Library of Integrated Network-Based Cellular Signatures (LINCS) project aims to create a network-based understanding of biology by cataloging changes in gene expression and signal transduction that occur when cells are exposed to a variety of perturbations. It is helpful for understanding cell pathways and facilitating drug discovery. Here, we developed a novel approach to infer cell-specific pathways and identify a compound's effects using gene expression and phosphoproteomics data under treatments with different compounds. Gene expression data were employed to infer potential targets of compounds and create a generic pathway map. Binary linear programming (BLP) was then developed to optimize the generic pathway topology based on the mid-stage signaling response of phosphorylation. To demonstrate effectiveness of this approach, we built a generic pathway map for the MCF7 breast cancer cell line and inferred the cell-specific pathways by BLP. The first group of 11 compounds was utilized to optimize the generic pathways, and then 4 compounds were used to identify effects based on the inferred cell-specific pathways. Cross-validation indicated that the cell-specific pathways reliably predicted a compound's effects. Finally, we applied BLP to re-optimize the cell-specific pathways to predict the effects of 4 compounds (trichostatin A, MS-275, staurosporine, and digoxigenin) according to compound-induced topological alterations. Trichostatin A and MS-275 (both HDAC inhibitors) inhibited the downstream pathway of HDAC1 and caused cell growth arrest via activation of p53 and p21; the effects of digoxigenin were totally opposite. Staurosporine blocked the cell cycle via p53 and p21, but also promoted cell growth via activated HDAC1 and its downstream pathway. Our approach was also applied to the PC3 prostate cancer cell line, and the cross-validation analysis showed very good accuracy in predicting effects of 4 compounds. In summary, our computational model can be
ERIC Educational Resources Information Center
Oakes, Jane; Gardiner, Paula; McLaughlin, Kristin; Battersby, Malcolm
2012-01-01
An innovative pilot treatment program was developed for problem gamblers living in rural areas of Australia using cognitive behaviour therapy (CBT) modified from an established specialist therapy service. The standard 12 weekly group program was delivered on site by adapting it to two 1 week blocks with daily group sessions and 1 week of patient…
ERIC Educational Resources Information Center
Feldhusen, John F.; And Others
1992-01-01
The COMET summer residential program at Purdue University (Indiana) offers gifted and talented youth in grades 4-6 a week of intensive study in a single content area. Courses stress specific problem-solving skills and development of a rich knowledge base. Extensive program evaluation by students, teachers, counselors, and parents was highly…
Developing a Pedagogical Problem Solving View for Mathematics Teachers with Two Reflection Programs
ERIC Educational Resources Information Center
Kramarski, Bracha
2009-01-01
The study investigated the effects of two reflection support programs on elementary school mathematics teachers' pedagogical problem solving view. Sixty-two teachers participated in a professional development program. Thirty teachers were assigned to the self-questioning (S_Q) training and thirty two teachers were assigned to the reflection…
ERIC Educational Resources Information Center
Newby, Michael; Nguyen, ThuyUyen H.
2010-01-01
This paper examines the effectiveness of a technique that first appeared as a Teaching Tip in the Journal of Information Systems Education. In this approach the same problem is used in every programming assignment within a course, but the students are required to use different programming techniques. This approach was used in an intermediate C++…
ERIC Educational Resources Information Center
Allinjawi, Arwa A.; Al-Nuaim, Hana A.; Krause, Paul
2014-01-01
Students often face difficulties while learning object-oriented programming (OOP) concepts. Many papers have presented various assessment methods for diagnosing learning problems to improve the teaching of programming in computer science (CS) higher education. The research presented in this article illustrates that although max-min composition is…
A Pilot Study of a Self-Voicing Computer Program for Prealgebra Math Problems
ERIC Educational Resources Information Center
Beal, Carole R.; Rosenblum, L. Penny; Smith, Derrick W.
2011-01-01
Fourteen students with visual impairments in Grades 5-12 participated in the field-testing of AnimalWatch-VI-Beta. This computer program delivered 12 prealgebra math problems and hints through a self-voicing audio feature. The students provided feedback about how the computer program can be improved and expanded to make it accessible to all users.…
RURAL YOUTH-WORK PROGRAMS--PROBLEMS OF SIZE AND SCOPE.
ERIC Educational Resources Information Center
MUNK, MICHAEL
DEMOGRAPHIC AND GEOGRAPHIC PROBLEMS IN RURAL YOUTH EMPLOYMENT OPPORTUNITY PROGRAMS ARE PRESENTED. STATISTICAL ANALYSIS INDICATES A HIGH PROPORTION OF EMPLOYMENT OPPORTUNITY PROGRAMS SHOULD BE DIRECTED IN SUBURBAN AND RURAL AREAS OF THE NATION. TRANSPORTATION, WORK SITE AVAILABILITY, AND EXISTING HUMAN RESOURCES ARE LISTED AS MAJOR PROBLEMS…
NASA Technical Reports Server (NTRS)
Jedrziewski, S.
1976-01-01
The emission problem or source points were defined and new materials, hardware, or operational procedures were developed to exercise the trends defined by the data collected. The programs to reduce the emission output of aircraft powerplants were listed. Continued establishment of baseline emissions for various engine models, continued characterization of effect of production tolerances on emissions, carbureted engine development and flight tests, and cylinder cooling/fin design programs were several of the programs investigated.
NASA Astrophysics Data System (ADS)
Gartling, D. K.
1987-04-01
The theoretical and numerical background for the finite element computer program, NACHOS 2, is presented in detail. The NACHOS 2 code is designed for the two-dimensional analysis of viscous incompressible fluid flows, including the effects of heat transfer and/or other transport processes. A general description of the boundary value problems treated by the program is presented. The finite element formulations and the associated numerical methods used in the NACHOS 2 code are also outlined. Instructions for use of the program are documented in SAND-86-1817; examples of problems analyzed by the code are provided in SAND-86-1818.
Application of program generation technology in solving heat and flow problems
NASA Astrophysics Data System (ADS)
Wan, Shui; Wu, Bangxian; Chen, Ningning
2007-05-01
Based on a new DIY concept for software development, an automatic program-generating technology attached on a software system called as Finite Element Program Generator (FEPG) provides a platform of developing programs, through which a scientific researcher can submit his special physico-mathematical problem to the system in a more direct and convenient way for solution. For solving flow and heat problems by using finite element method, the stabilization technologies and fraction-step methods are adopted to overcome the numerical difficulties caused mainly due to the dominated convection. A couple of benchmark problems are given in this paper as examples to illustrate the usage and the superiority of the automatic program generation technique, including the flow in a lid-driven cavity, the starting flow in a circular pipe, the natural convection in a square cavity, and the flow past a circular cylinder, etc. They are also shown as the verification of the algorithms.
NASA Technical Reports Server (NTRS)
Dieudonne, J. E.
1978-01-01
A numerical technique was developed which generates linear perturbation models from nonlinear aircraft vehicle simulations. The technique is very general and can be applied to simulations of any system that is described by nonlinear differential equations. The computer program used to generate these models is discussed, with emphasis placed on generation of the Jacobian matrices, calculation of the coefficients needed for solving the perturbation model, and generation of the solution of the linear differential equations. An example application of the technique to a nonlinear model of the NASA terminal configured vehicle is included.
A PROGRAMED PRIMER ON PROGRAMING. VOLUME II, PRACTICAL PROBLEMS. SECOND EDITION.
ERIC Educational Resources Information Center
MARKLE, SUSAN MEYER
KEY CONCEPTS, TERMS, AND TECHNIQUES IN PROGRAMED INSTRUCTION ARE PRESENTED IN THIS PROGRAMED PRIMER, WHICH BEGINS BY DEMONSTRATING THE USE OF FORMAL AND THEMATIC PROMPTS IN THE UTILIZATION OF A STUDENT'S REPERTOIRE. NEW RESPONSES ARE INTRODUCED INTO THIS REPERTOIRE BY THE USE OF COPYING FRAMES, EMPHASIS PROMPTS, AND PANELS. THE DESIGN OF SEQUENCES…
ERIC Educational Resources Information Center
Reed, W. Michael; Liu, Min
This study compared the effectiveness of the BASIC programming language and the HyperCard authoring language on promoting problem-solving skills and the reduction of computer anxiety. Two groups of students participated in the study. One group (N=13) received instruction on BASIC and the other (N=8) on HyperCard. Students in both groups responded…
Tsantili, Ivi C; Karim, M Nazmul; Klapa, Maria I
2007-01-01
Background The need for discovery of alternative, renewable, environmentally friendly energy sources and the development of cost-efficient, "clean" methods for their conversion into higher fuels becomes imperative. Ethanol, whose significance as fuel has dramatically increased in the last decade, can be produced from hexoses and pentoses through microbial fermentation. Importantly, plant biomass, if appropriately and effectively decomposed, is a potential inexpensive and highly renewable source of the hexose and pentose mixture. Recently, the engineered (to also catabolize pentoses) anaerobic bacterium Zymomonas mobilis has been widely discussed among the most promising microorganisms for the microbial production of ethanol fuel. However, Z. mobilis genome having been fully sequenced in 2005, there is still a small number of published studies of its in vivo physiology and limited use of the metabolic engineering experimental and computational toolboxes to understand its metabolic pathway interconnectivity and regulation towards the optimization of its hexose and pentose fermentation into ethanol. Results In this paper, we reconstructed the metabolic network of the engineered Z. mobilis to a level that it could be modelled using the metabolic engineering methodologies. We then used linear programming (LP) analysis and identified the Z. mobilis metabolic boundaries with respect to various biological objectives, these boundaries being determined only by Z. mobilis network's stoichiometric connectivity. This study revealed the essential for bacterial growth reactions and elucidated the association between the metabolic pathways, especially regarding main product and byproduct formation. More specifically, the study indicated that ethanol and biomass production depend directly on anaerobic respiration stoichiometry and activity. Thus, enhanced understanding and improved means for analyzing anaerobic respiration and redox potential in vivo are needed to yield further
2012-01-01
Background Acupuncture has been practiced in China for thousands of years as part of the Traditional Chinese Medicine (TCM) and has gradually accepted in western countries as an alternative or complementary treatment. However, the underlying mechanism of acupuncture, especially whether there exists any difference between varies acupoints, remains largely unknown, which hinders its widespread use. Results In this study, we develop a novel Linear Programming based Feature Selection method (LPFS) to understand the mechanism of acupuncture effect, at molecular level, by revealing the metabolite biomarkers for acupuncture treatment. Specifically, we generate and investigate the high-throughput metabolic profiles of acupuncture treatment at several acupoints in human. To select the subsets of metabolites that best characterize the acupuncture effect for each meridian point, an optimization model is proposed to identify biomarkers from high-dimensional metabolic data from case and control samples. Importantly, we use nearest centroid as the prototype to simultaneously minimize the number of selected features and the leave-one-out cross validation error of classifier. We compared the performance of LPFS to several state-of-the-art methods, such as SVM recursive feature elimination (SVM-RFE) and sparse multinomial logistic regression approach (SMLR). We find that our LPFS method tends to reveal a small set of metabolites with small standard deviation and large shifts, which exactly serves our requirement for good biomarker. Biologically, several metabolite biomarkers for acupuncture treatment are revealed and serve as the candidates for further mechanism investigation. Also biomakers derived from five meridian points, Zusanli (ST36), Liangmen (ST21), Juliao (ST3), Yanglingquan (GB34), and Weizhong (BL40), are compared for their similarity and difference, which provide evidence for the specificity of acupoints. Conclusions Our result demonstrates that metabolic profiling
Li, Y P; Huang, G H
2006-11-01
In this study, an interval-parameter two-stage mixed integer linear programming (ITMILP) model is developed for supporting long-term planning of waste management activities in the City of Regina. In the ITMILP, both two-stage stochastic programming and interval linear programming are introduced into a general mixed integer linear programming framework. Uncertainties expressed as not only probability density functions but also discrete intervals can be reflected. The model can help tackle the dynamic, interactive and uncertain characteristics of the solid waste management system in the City, and can address issues concerning plans for cost-effective waste diversion and landfill prolongation. Three scenarios are considered based on different waste management policies. The results indicate that reasonable solutions have been generated. They are valuable for supporting the adjustment or justification of the existing waste flow allocation patterns, the long-term capacity planning of the City's waste management system, and the formulation of local policies and regulations regarding waste generation and management. PMID:16678336
ERIC Educational Resources Information Center
Strickland, Tricia K.; Maccini, Paula
2013-01-01
We examined the effects of the Concrete-Representational-Abstract Integration strategy on the ability of secondary students with learning disabilities to multiply linear algebraic expressions embedded within contextualized area problems. A multiple-probe design across three participants was used. Results indicated that the integration of the…
NASA Astrophysics Data System (ADS)
Sumin, M. I.
2014-01-01
A parametric convex programming problem with an operator equality constraint and a finite set of functional inequality constraints is considered in a Hilbert space. The instability of this problem and, as a consequence, the instability of the classical Lagrange principle for it is closely related to its regularity and the subdifferentiability properties of the value function in the optimization problem. A sequential Lagrange principle in nondifferential form is proved for the indicated convex programming problem. The principle is stable with respect to errors in the initial data and covers the normal, regular, and abnormal cases of the problem and the case where the classical Lagrange principle does not hold. It is shown that the classical Lagrange principle in this problem can be naturally treated as a limiting variant of its stable sequential counterpart. The possibility of using the stable sequential Lagrange principle for directly solving unstable optimal control problems and inverse problems is discussed. For two illustrative problems of these kinds, the corresponding stable Lagrange principles are formulated in sequential form.
NASA Technical Reports Server (NTRS)
Crawford, J. L.; Rodney, G. A.
1989-01-01
This paper describes the NASA Space Shuttle Trend Analysis program. The four main areas of the program - problem/reliability, performance, supportability, and programmatic trending - are defined, along with motivation for these areas, the statistical methods used, and illustrative Space Shuttle applications. Also described is the NASA Safety, Reliability, Maintainability and Quality Assurance (SRM&QA) Management Information Center, used to focus management attention on key near-term launch concerns and long-range mission trend issues. Finally, the computer data bases used to support the program and future program enhancements are discussed.
NASA Technical Reports Server (NTRS)
Voorhies, Coerte V.
1993-01-01
The problem of estimating a steady fluid velocity field near the top of Earth's core which induces the secular variation (SV) indicated by models of the observed geomagnetic field is examined in the source-free mantle/frozen-flux core (SFI/VFFC) approximation. This inverse problem is non-linear because solutions of the forward problem are deterministically chaotic. The SFM/FFC approximation is inexact, and neither the models nor the observations they represent are either complete or perfect. A method is developed for solving the non-linear inverse motional induction problem posed by the hypothesis of (piecewise, statistically) steady core surface flow and the supposition of a complete initial geomagnetic condition. The method features iterative solution of the weighted, linearized least-squares problem and admits optional biases favoring surficially geostrophic flow and/or spatially simple flow. Two types of weights are advanced radial field weights for fitting the evolution of the broad-scale portion of the radial field component near Earth's surface implied by the models, and generalized weights for fitting the evolution of the broad-scale portion of the scalar potential specified by the models.
ERIC Educational Resources Information Center
Newton, Xiaoxia A.; Llosa, Lorena
2010-01-01
Most K-12 evaluations are designed to make inferences about how a program implemented at the classroom or school level affects student learning outcomes and such inferences inherently involve hierarchical data structure. One methodological challenge for evaluators is linking program implementation factors typically measured at the classroom or…
[Self-help program: a new tool to facilitate the access to treatment for problem gamblers].
Saeremans, M; Noël, X; Verbanck, P
2015-01-01
Shame, fear of stigmatization, denial, accessibility to and the cost of treatment program may explain why only a small proportion of problem gamblers sought clinical treatment. In the hope to overcome these barriers, the Gambling Clinic and Other Behavioral Addictions of C.H.U. Brugmann (Brussels) has developed its own self-help program for excessive gamblers. Our goals were to foster readiness to change gambling behaviors and when appropriate to facilitate the transition from self-help program to classical face-to-face clinical intervention. In a sample of 172 problem gamblers who participated, 40% had never sought help (e.g., clinical treatment) and/or never attempted quit gambling. Interestingly, for some, internet-based self-help treatment preceded their determination for seeking a traditional face-to-face therapeutic setting. Those results led us to discuss this program as a valid clinical tool within a broader health care setting in excessive gamblers. PMID:26164965
NASA Technical Reports Server (NTRS)
Lansing, F. L.
1979-01-01
A computer program which can distinguish between different receiver designs, and predict transient performance under variable solar flux, or ambient temperatures, etc. has a basic structure that fits a general heat transfer problem, but with specific features that are custom-made for solar receivers. The code is written in MBASIC computer language. The methodology followed in solving the heat transfer problem is explained. A program flow chart, an explanation of input and output tables, and an example of the simulation of a cavity-type solar receiver are included.
NASA Technical Reports Server (NTRS)
Barker, L. E., Jr.; Bowles, R. L.; Williams, L. H.
1973-01-01
High angular rates encountered in real-time flight simulation problems may require a more stable and accurate integration method than the classical methods normally used. A study was made to develop a general local linearization procedure of integrating dynamic system equations when using a digital computer in real-time. The procedure is specifically applied to the integration of the quaternion rate equations. For this application, results are compared to a classical second-order method. The local linearization approach is shown to have desirable stability characteristics and gives significant improvement in accuracy over the classical second-order integration methods.
Non-Linear Editing for the Smaller College-Level Production Program, Rev. 2.0.
ERIC Educational Resources Information Center
Tetzlaff, David
This paper focuses on a specific topic and contention: Non-linear editing earns its place in a liberal arts setting because it is a superior tool to teach the concepts of how moving picture discourse is constructed through editing. The paper first points out that most students at small liberal arts colleges are not going to wind up working…
NASA Astrophysics Data System (ADS)
Kiani, Keivan; Nikkhoo, Ali
2012-02-01
This paper deals with the capabilities of linear and nonlinear beam theories in predicting the dynamic response of an elastically supported thin beam traversed by a moving mass. To this end, the discrete equations of motion are developed based on Lagrange's equations via reproducing kernel particle method (RKPM). For a particular case of a simply supported beam, Galerkin method is also employed to verify the results obtained by RKPM, and a reasonably good agreement is achieved. Variations of the maximum dynamic deflection and bending moment associated with the linear and nonlinear beam theories are investigated in terms of moving mass weight and velocity for various beam boundary conditions. It is demonstrated that for majority of the moving mass velocities, the differences between the results of linear and nonlinear analyses become remarkable as the moving mass weight increases, particularly for high levels of moving mass velocity. Except for the cantilever beam, the nonlinear beam theory predicts higher possibility of moving mass separation from the base beam compared to the linear one. Furthermore, the accuracy levels of the linear beam theory are determined for thin beams under large deflections and small rotations as a function of moving mass weight and velocity in various boundary conditions.
Yang, X.
1998-12-31
Modeling ground motions from multi-shot, delay-fired mining blasts is important to the understanding of their source characteristics such as spectrum modulation. MineSeis is a MATLAB{reg_sign} (a computer language) Graphical User Interface (GUI) program developed for the effective modeling of these multi-shot mining explosions. The program provides a convenient and interactive tool for modeling studies. Multi-shot, delay-fired mining blasts are modeled as the time-delayed linear superposition of identical single shot sources in the program. These single shots are in turn modeled as the combination of an isotropic explosion source and a spall source. Mueller and Murphy`s (1971) model for underground nuclear explosions is used as the explosion source model. A modification of Anandakrishnan et al.`s (1997) spall model is developed as the spall source model. Delays both due to the delay-firing and due to the single-shot location differences are taken into account in calculating the time delays of the superposition. Both synthetic and observed single-shot seismograms can be used to construct the superpositions. The program uses MATLAB GUI for input and output to facilitate user interaction with the program. With user provided source and path parameters, the program calculates and displays the source time functions, the single shot synthetic seismograms and the superimposed synthetic seismograms. In addition, the program provides tools so that the user can manipulate the results, such as filtering, zooming and creating hard copies.
AESOP: A computer-aided design program for linear multivariable control systems
NASA Technical Reports Server (NTRS)
Lehtinen, B.; Geyser, L. C.
1982-01-01
An interactive computer program (AESOP) which solves quadratic optimal control and is discussed. The program can also be used to perform system analysis calculations such as transient and frequency responses, controllability, observability, etc., in support of the control and filter design computations.
PREDICTION OF EFFECTS WITH SELECTED CHARACTERISTICS OF LINEAR PROGRAMMED INSTRUCTION. FINAL REPORT.
ERIC Educational Resources Information Center
SEIBERT, WARREN F.; SMITH, MARTIN E.
ULTIMATE OBJECTIVE OF THIS STUDY IS A SYSTEM IN WHICH INSTRUCTORS MAY IDENTIFY RELEVANT AUDIENCE CHARACTERISTICS AND THEN DESIGN A PROGRAM TO OPTIMIZE LEARNING. MULTIPLE REGRESSION, FACTOR ANALYSIS, AND CROSS-VALIDATING PROCEDURES WERE USED TO ASSESS THE IMMEDIATE AND DELAYED LEARNING EFFECTS OF PROGRAMMED INSTRUCTION. INDEPENDENT VARIABLES…
Ahlfeld, D.P.; Dougherty, D.E.
1994-11-01
MODLP is a computational tool that may help design capture zones for controlling the movement of contaminated groundwater. It creates and solves linear optimization programs that contain constraints on hydraulic head or head differences in a groundwater system. The groundwater domain is represented by USGS MODFLOW groundwater flow simulation model. This document describes the general structure of the computer program, MODLP, the types of constraints that may be imposed, detailed input instructions, interpretation of the output, and the interaction with the MODFLOW simulation kernel.