Science.gov

Sample records for linear response strength

  1. Near-linear response of mean monsoon strength to a broad range of radiative forcings.

    PubMed

    Boos, William R; Storelvmo, Trude

    2016-02-01

    Theoretical models have been used to argue that seasonal mean monsoons will shift abruptly and discontinuously from wet to dry stable states as their radiative forcings pass a critical threshold, sometimes referred to as a "tipping point." Further support for a strongly nonlinear response of monsoons to radiative forcings is found in the seasonal onset of the South Asian summer monsoon, which is abrupt compared with the annual cycle of insolation. Here it is shown that the seasonal mean strength of monsoons instead exhibits a nearly linear dependence on a wide range of radiative forcings. First, a previous theory that predicted a discontinuous, threshold response is shown to omit a dominant stabilizing term in the equations of motion; a corrected theory predicts a continuous and nearly linear response of seasonal mean monsoon strength to forcings. A comprehensive global climate model is then used to show that the seasonal mean South Asian monsoon exhibits a near-linear dependence on a wide range of isolated greenhouse gas, aerosol, and surface albedo forcings. This model reproduces the observed abrupt seasonal onset of the South Asian monsoon but produces a near-linear response of the mean monsoon by changing the duration of the summer circulation and the latitude of that circulation's ascent branch. Thus, neither a physically correct theoretical model nor a comprehensive climate model support the idea that seasonal mean monsoons will undergo abrupt, nonlinear shifts in response to changes in greenhouse gas concentrations, aerosol emissions, or land surface albedo. PMID:26811462

  2. Near-linear response of mean monsoon strength to a broad range of radiative forcings

    PubMed Central

    Boos, William R.; Storelvmo, Trude

    2016-01-01

    Theoretical models have been used to argue that seasonal mean monsoons will shift abruptly and discontinuously from wet to dry stable states as their radiative forcings pass a critical threshold, sometimes referred to as a “tipping point.” Further support for a strongly nonlinear response of monsoons to radiative forcings is found in the seasonal onset of the South Asian summer monsoon, which is abrupt compared with the annual cycle of insolation. Here it is shown that the seasonal mean strength of monsoons instead exhibits a nearly linear dependence on a wide range of radiative forcings. First, a previous theory that predicted a discontinuous, threshold response is shown to omit a dominant stabilizing term in the equations of motion; a corrected theory predicts a continuous and nearly linear response of seasonal mean monsoon strength to forcings. A comprehensive global climate model is then used to show that the seasonal mean South Asian monsoon exhibits a near-linear dependence on a wide range of isolated greenhouse gas, aerosol, and surface albedo forcings. This model reproduces the observed abrupt seasonal onset of the South Asian monsoon but produces a near-linear response of the mean monsoon by changing the duration of the summer circulation and the latitude of that circulation’s ascent branch. Thus, neither a physically correct theoretical model nor a comprehensive climate model support the idea that seasonal mean monsoons will undergo abrupt, nonlinear shifts in response to changes in greenhouse gas concentrations, aerosol emissions, or land surface albedo. PMID:26811462

  3. Optimal Mixing Rate in Linear Solvent Strength Gradient Liquid Chromatography.

    PubMed

    Blumberg, Leonid M; Desmet, Gert

    2016-02-16

    The mixing rate (Rϕ) is the temporal rate of increase in the solvent strength in gradient LC. The optimal Rϕ (Rϕ,Opt) for a gradient analysis is the one at which a required separation capacity and peak capacity of the analysis are obtained in the shortest time. The Rϕ,Opt of LSS (linear solvent strength) gradient LC is found in dimensionless form (rϕ,Opt) expressing Rϕ,Opt in units of hold-up time (t0) and characteristic strength-constant (Φchar). Previously unknown effect of the gradient band compression on the peak capacity is taken into account. The rϕ,Opt depends on the solvent composition range covered by the mixing ramp and on the available pressure. A default rϕ at which the analysis time is contained within 30% margin of its minimum at rϕ,Opt for a broad range of conditions is proposed. As an example, the recommended default for small-molecule samples is 5% increase in the solvent strength per each t0-long increment in time. At this rate, approximately 0.2√N units of peak capacity are generated per each 10% solvent strength increment. The effect of a column kinetic optimization is also evaluated. PMID:26756262

  4. Linear Response for Intermittent Maps

    NASA Astrophysics Data System (ADS)

    Baladi, Viviane; Todd, Mike

    2016-02-01

    We consider the one parameter family {α mapsto T_{α}} ({α in [0,1)} ) of Pomeau-Manneville type interval maps {T_{α}(x) = x(1+2^{α} x^{α})} for {x in [0,1/2)} and {T_{α}(x)=2x-1} for {x in [1/2, 1]} , with the associated absolutely continuous invariant probability measure {μ_{α}} . For {α in (0,1)} , Sarig and Gouëzel proved that the system mixes only polynomially with rate {n^{1-1/{α}}} (in particular, there is no spectral gap). We show that for any {ψ in Lq} , the map {α to int_01 ψ d μ_{α}} is differentiable on {[0,1-1/q)} , and we give a (linear response) formula for the value of the derivative. This is the first time that a linear response formula for the SRB measure is obtained in the setting of slowly mixing dynamics. Our argument shows how cone techniques can be used in this context. For {α ≥ 1/2} we need the {n^{-1/{α}}} decorrelation obtained by Gouëzel under additional conditions.

  5. The principal components of response strength.

    PubMed Central

    Killeen, P R; Hall, S S

    2001-01-01

    As Skinner (1938) described it, response strength is the "state of the reflex with respect to all its static properties" (p. 15), which include response rate, latency, probability, and persistence. The relations of those measures to one another was analyzed by probabilistically reinforcing, satiating, and extinguishing pigeons' key pecking in a trials paradigm. Reinforcement was scheduled according to variable-interval, variable-ratio, and fixed-interval contingencies. Principal components analysis permitted description in terms of a single latent variable, strength, and this was validated with confirmatory factor analyses. Overall response rate was an excellent predictor of this state variable. PMID:11394483

  6. The principal components of response strength.

    PubMed

    Killeen, P R; Hall, S S

    2001-03-01

    As Skinner (1938) described it, response strength is the "state of the reflex with respect to all its static properties" (p. 15), which include response rate, latency, probability, and persistence. The relations of those measures to one another was analyzed by probabilistically reinforcing, satiating, and extinguishing pigeons' key pecking in a trials paradigm. Reinforcement was scheduled according to variable-interval, variable-ratio, and fixed-interval contingencies. Principal components analysis permitted description in terms of a single latent variable, strength, and this was validated with confirmatory factor analyses. Overall response rate was an excellent predictor of this state variable. PMID:11394483

  7. Linear optical response of finite systems using multishift linear system solvers

    SciTech Connect

    Hübener, Hannes; Giustino, Feliciano

    2014-07-28

    We discuss the application of multishift linear system solvers to linear-response time-dependent density functional theory. Using this technique the complete frequency-dependent electronic density response of finite systems to an external perturbation can be calculated at the cost of a single solution of a linear system via conjugate gradients. We show that multishift time-dependent density functional theory yields excitation energies and oscillator strengths in perfect agreement with the standard diagonalization of the response matrix (Casida's method), while being computationally advantageous. We present test calculations for benzene, porphin, and chlorophyll molecules. We argue that multishift solvers may find broad applicability in the context of excited-state calculations within density-functional theory and beyond.

  8. Optically isolated signal coupler with linear response

    DOEpatents

    Kronberg, James W.

    1994-01-01

    An optocoupler for isolating electrical signals that translates an electrical input signal linearly to an electrical output signal. The optocoupler comprises a light emitter, a light receiver, and a light transmitting medium. The light emitter, preferably a blue, silicon carbide LED, is of the type that provides linear, electro-optical conversion of electrical signals within a narrow wavelength range. Correspondingly, the light receiver, which converts light signals to electrical signals and is preferably a cadmium sulfide photoconductor, is linearly responsive to light signals within substantially the same wavelength range as the blue LED.

  9. Response Strength in Extreme Multiple Schedules

    PubMed Central

    McLean, Anthony P; Grace, Randolph C; Nevin, John A

    2012-01-01

    Four pigeons were trained in a series of two-component multiple schedules. Reinforcers were scheduled with random-interval schedules. The ratio of arranged reinforcer rates in the two components was varied over 4 log units, a much wider range than previously studied. When performance appeared stable, prefeeding tests were conducted to assess resistance to change. Contrary to the generalized matching law, logarithms of response ratios in the two components were not a linear function of log reinforcer ratios, implying a failure of parameter invariance. Over a 2 log unit range, the function appeared linear and indicated undermatching, but in conditions with more extreme reinforcer ratios, approximate matching was observed. A model suggested by McLean (1991), originally for local contrast, predicts these changes in sensitivity to reinforcer ratios somewhat better than models by Herrnstein (1970) and by Williams and Wixted (1986). Prefeeding tests of resistance to change were conducted at each reinforcer ratio, and relative resistance to change was also a nonlinear function of log reinforcer ratios, again contrary to conclusions from previous work. Instead, the function suggests that resistance to change in a component may be determined partly by the rate of reinforcement and partly by the ratio of reinforcers to responses. PMID:22287804

  10. Linear Response Laws and Causality in Electrodynamics

    ERIC Educational Resources Information Center

    Yuffa, Alex J.; Scales, John A.

    2012-01-01

    Linear response laws and causality (the effect cannot precede the cause) are of fundamental importance in physics. In the context of classical electrodynamics, students often have a difficult time grasping these concepts because the physics is obscured by the intermingling of the time and frequency domains. In this paper, we analyse the linear…

  11. Acoustic methods to monitor sliver linear density and yarn strength

    DOEpatents

    Sheen, Shuh-Haw; Chien, Hual-Te; Raptis, Apostolos C.

    1997-01-01

    Methods and apparatus are provided for monitoring sliver and yarn characteristics. Transverse waves are generated relative to the sliver or yarn. At least one acoustic sensor is in contact with the sliver or yarn for detecting waves coupled to the sliver or yarn and for generating a signal. The generated signal is processed to identify the predefined characteristics including sliver or yarn linear density. The transverse waves can be generated with a high-powered acoustic transmitter spaced relative to the sliver or yarn with large amplitude pulses having a central frequency in a range between 20 KHz and 40 KHz applied to the transmitter. The transverse waves can be generated by mechanically agitating the sliver or yarn with a tapping member.

  12. Investigation of Torsional Strength of the VT6 Weld Joint Produced by Linear Friction Welding

    NASA Astrophysics Data System (ADS)

    Suleimanova, G. R.; Kabirov, R. R.; Karavaeva, M. V.; Ershova, Yu. A.; Zhilyaev, A. P.

    2015-10-01

    Results of measurement of torsional strength of the weld joint of the VT6 titanium alloy produced by linear friction welding are presented. For a comparison, the same method was used to test monolithic specimens of the VT6 alloy. Torsional strength values of the weld joint (τUS = 861 MPa and φ = 110°) correspond to the strength of the monolithic material. In this case, the specimens fail along the base metal.

  13. Qubit Measurement with a Nonlinear Cavity Detector Beyond Linear Response

    NASA Astrophysics Data System (ADS)

    Laflamme, Catherine; Clerk, Aashish

    2012-02-01

    We consider theoretically the use of a driven, nonlinear superconducting microwave cavity to measure a coupled superconducting qubit. This is similar to setups studied in recent experiments.ootnotetextM. Hatridge et al. Phys.Rev.B, 83,134501 (2011)^,ootnotetextF.R. Ong et al. PRL 106,167002 (2011) In a previous work, we demonstrated that for weak coupling (where linear response theory holds) one misses the quantum limit on QND detection in this system by a large factor proportional to the parametric gain.ootnotetextC. Laflamme and A.A. Clerk, Phys. Rev. A 83, 033803 (2011) Here we calculate measurement backaction beyond linear response by using an approximate mapping to a detuned degenerate parametric amplifier having both linear and dispersive couplings to the qubit. We find surprisingly that the backaction dephasing rate is far more sensitive to corrections beyond linear response than the detector response. Thus, increasing the coupling strength can significantly increase the efficiency of the measurement. We interpret this behavior in terms of the non-Gaussian photon number fluctuations of the nonlinear cavity. Our results have applications to quantum information processing and quantum amplification with superconducting microwave circuits.

  14. Linear response to nonstationary random excitation.

    NASA Technical Reports Server (NTRS)

    Hasselman, T.

    1972-01-01

    Development of a method for computing the mean-square response of linear systems to nonstationary random excitation of the form given by y(t) = f(t) x(t), in which x(t) = a stationary process and f(t) is deterministic. The method is suitable for application to multidegree-of-freedom systems when the mean-square response at a point due to excitation applied at another point is desired. Both the stationary process, x(t), and the modulating function, f(t), may be arbitrary. The method utilizes a fundamental component of transient response dependent only on x(t) and the system, and independent of f(t) to synthesize the total response. The role played by this component is analogous to that played by the Green's function or impulse response function in the convolution integral.

  15. Ballistic transport in graphene beyond linear response

    SciTech Connect

    Rosenstein, B.; Korniyenko, Y.; Lewkowicz, M.; Kao, H. C.

    2010-01-15

    The process of coherent creation of particle-hole excitations by an electric field in graphene is quantitatively described beyond linear response. We calculate the evolution of current density, number of pairs and energy in ballistic regime for electric field E using the tight-binding model. While for ballistic flight times smaller than t{sub nl}propor toE{sup -1/2} current is linear in E and independent of time, for larger ballistic times the current increases after t{sub nl} as Jpropor toE{sup 3/2}t and finally at yet larger times (t>t{sub B}propor toE{sup -1}) Bloch oscillations set in. It is shown that the number of pairs follows the 2D generalization of the Schwinger's creation rate npropor toE{sup 3/2} only on certain time segments with a prefactor different from that obtained using the asymptotic formula.

  16. Random Response of Linear Hysteretic Damping

    SciTech Connect

    Floris, Claudio

    2008-07-08

    The probabilistic characterization of the response of a single-degree-of-freedom (SDOF) oscillator with linear hysteretic damping excited by ground motion described by zero mean stationary Gaussian processes is achieved by profiting from a steady-state solution of the motion equation, valid when the excitation is given by the superposition of harmonics. The model of linear hysteretic damping has been introduced to fit damping mechanisms in which the dissipation rate is independent of frequency, and mathematically it is described by the Hilbert transform of the response. Though this model is debated since it violates the principle of causality, its intrinsic simplicity makes it preferable to other models. The steady-state solution of the motion equation proposed in this paper allows a closed form evaluation of the respone mean square value. However, the numerical examples show that this quantity is affected by the mechanism of energy dissipation only when this is large. On the contrary, for a low capacity of dissipation the response mean square value is rather insensitive to the dissipation mechanism.

  17. Shortcuts to adiabaticity from linear response theory.

    PubMed

    Acconcia, Thiago V; Bonança, Marcus V S; Deffner, Sebastian

    2015-10-01

    A shortcut to adiabaticity is a finite-time process that produces the same final state as would result from infinitely slow driving. We show that such shortcuts can be found for weak perturbations from linear response theory. With the help of phenomenological response functions, a simple expression for the excess work is found-quantifying the nonequilibrium excitations. For two specific examples, i.e., the quantum parametric oscillator and the spin 1/2 in a time-dependent magnetic field, we show that finite-time zeros of the excess work indicate the existence of shortcuts. Finally, we propose a degenerate family of protocols, which facilitates shortcuts to adiabaticity for specific and very short driving times. PMID:26565209

  18. Shortcuts to adiabaticity from linear response theory

    NASA Astrophysics Data System (ADS)

    Acconcia, Thiago V.; Bonança, Marcus V. S.; Deffner, Sebastian

    2015-10-01

    A shortcut to adiabaticity is a finite-time process that produces the same final state as would result from infinitely slow driving. We show that such shortcuts can be found for weak perturbations from linear response theory. With the help of phenomenological response functions, a simple expression for the excess work is found—quantifying the nonequilibrium excitations. For two specific examples, i.e., the quantum parametric oscillator and the spin 1/2 in a time-dependent magnetic field, we show that finite-time zeros of the excess work indicate the existence of shortcuts. Finally, we propose a degenerate family of protocols, which facilitates shortcuts to adiabaticity for specific and very short driving times.

  19. Shortcuts to adiabaticity from linear response theory

    SciTech Connect

    Acconcia, Thiago V.; Bonança, Marcus V. S.; Deffner, Sebastian

    2015-10-23

    A shortcut to adiabaticity is a finite-time process that produces the same final state as would result from infinitely slow driving. We show that such shortcuts can be found for weak perturbations from linear response theory. Moreover, with the help of phenomenological response functions, a simple expression for the excess work is found—quantifying the nonequilibrium excitations. For two specific examples, i.e., the quantum parametric oscillator and the spin 1/2 in a time-dependent magnetic field, we show that finite-time zeros of the excess work indicate the existence of shortcuts. We finally propose a degenerate family of protocols, which facilitates shortcuts to adiabaticity for specific and very short driving times.

  20. Shortcuts to adiabaticity from linear response theory

    DOE PAGESBeta

    Acconcia, Thiago V.; Bonança, Marcus V. S.; Deffner, Sebastian

    2015-10-23

    A shortcut to adiabaticity is a finite-time process that produces the same final state as would result from infinitely slow driving. We show that such shortcuts can be found for weak perturbations from linear response theory. Moreover, with the help of phenomenological response functions, a simple expression for the excess work is found—quantifying the nonequilibrium excitations. For two specific examples, i.e., the quantum parametric oscillator and the spin 1/2 in a time-dependent magnetic field, we show that finite-time zeros of the excess work indicate the existence of shortcuts. We finally propose a degenerate family of protocols, which facilitates shortcuts tomore » adiabaticity for specific and very short driving times.« less

  1. Linear response and hydrodynamics for granular fluids.

    PubMed

    Dufty, James; Baskaran, Aparna; Brey, J Javier

    2008-03-01

    A formal derivation of linear hydrodynamics for a granular fluid is given. The linear response to small spatial perturbations of a homogeneous reference state is studied in detail, using methods of nonequilibrium statistical mechanics. A transport matrix for macroscopic excitations in the fluid is defined in terms of the response functions. An expansion in the wave vector to second order allows identification of all phenomenological susceptibilities and transport coefficients through Navier-Stokes order in terms of appropriate time correlation functions. The transport coefficients in this representation are the generalization to granular fluids of the familiar Helfand and Green-Kubo relations for normal fluids. The analysis applies to a variety of collision rules. Important differences in both the analysis and results from those for normal fluids are identified and discussed. A scaling limit is described corresponding to the conditions under which idealized inelastic hard sphere models can apply. Further details and interpretation are provided in the paper following this one, by specialization to the case of smooth, inelastic hard spheres with constant coefficient of restitution. PMID:18517373

  2. Hydration thermodynamics beyond the linear response approximation.

    PubMed

    Raineri, Fernando O

    2016-10-19

    The solvation energetics associated with the transformation of a solute molecule at infinite dilution in water from an initial state A to a final state B is reconsidered. The two solute states have different potentials energies of interaction, [Formula: see text] and [Formula: see text], with the solvent environment. Throughout the A [Formula: see text] B transformation of the solute, the solvation system is described by a Hamiltonian [Formula: see text] that changes linearly with the coupling parameter ξ. By focusing on the characterization of the probability density [Formula: see text] that the dimensionless perturbational solute-solvent interaction energy [Formula: see text] has numerical value y when the coupling parameter is ξ, we derive a hierarchy of differential equation relations between the ξ-dependent cumulant functions of various orders in the expansion of the appropriate cumulant generating function. On the basis of this theoretical framework we then introduce an inherently nonlinear solvation model for which we are able to find analytical results for both [Formula: see text] and for the solvation thermodynamic functions. The solvation model is based on the premise that there is an upper or a lower bound (depending on the nature of the interactions considered) to the amplitude of the fluctuations of Y in the solution system at equilibrium. The results reveal essential differences in behavior for the model when compared with the linear response approximation to solvation, particularly with regards to the probability density [Formula: see text]. The analytical expressions for the solvation properties show, however, that the linear response behavior is recovered from the new model when the room for the thermal fluctuations in Y is not restricted by the existence of a nearby bound. We compare the predictions of the model with the results from molecular dynamics computer simulations for aqueous solvation, in which either (1) the solute

  3. On The Linearity of Enso's Atmospheric Response

    NASA Astrophysics Data System (ADS)

    Nigam, S.; Deweaver, E.

    The linearity, or extent of anti-symmetry, of El Nino and La Nina heating and circula- tion anomalies is examined by compositing the winter season anomalies for positive and negative values of the Nino3.4 SST index in excess of one standard deviation. Eight winters meet this condition in each ENSO phase during 1950-2000, and the warm and cold years are equitably distributed relative to the 1976/77 climate transi- tion. ENSO SSTs have a direct effect on the large-scale atmospheric circulation through their impact on diabatic heating and subsequent upper-level divergence over the equa- torial Pacific. These fields show a significant westward displacement for the La Nina composite compared to the El Nino composite, as expected from the SST threshold condition for convection. But despite the westward shift in convection, the 200mb height composites are almost anti-symmetric over the Pacific, with only a small (about 10) westward shift for the extratropical La Nina pattern. The upper-level height re- sponse in the tropics, including the position of the El Nino anticyclones, is found to be even more anti-symmetric than the extratropical response. Our finding of anti-symmetry in the upper-level Pacific height responses to warm and cold ENSO events is in disagreement with the observational composites of Hoerling et al. (1997), which show a large shift between El Nino and La Nina height patterns over the North Pacific. In their composites, the La Nina response resembles the PNA pat- tern, a result not in evidence here. This difference can be understood as a consequence of decadal variability, particularly the 1976/77 climate transition.

  4. Fluctuation Relation beyond Linear Response Theory

    NASA Astrophysics Data System (ADS)

    Giuliani, A.; Zamponi, F.; Gallavotti, G.

    2005-05-01

    The Fluctuation Relation (FR) is an asymptotic result onthe distribution of certain observables averaged over timeintervals τ as τ → ∞ and it is a generalization of thefluctuation-dissipation theorem to far from equilibrium systemsin a steady state, which reduces to the usual Green-Kubo (GK)relation in the limit of small external non-conservative forces.FR is a theorem for smooth uniformly hyperbolic systems, and it isassumed to be true in all dissipative `chaotic enough' systemsin a steady state. In this paper, we develop a theory of finitetime corrections to FR, needed to compare the asymptoticprediction of FR with numerical observations, which necessarilyinvolve fluctuations of observables averaged over finite timeintervals τ. We perform a numerical test of FR in two cases inwhich non-Gaussian fluctuations are observable, while GK does notapply and we get a non-trivial verification of FR that is independent of and different from linear response theory.Our results are compatible with the theory of finite timecorrections to FR, while FR would be observably violated,well within the precision of our experiments, if such correctionswere neglected.

  5. Respiratory muscle strength effect on linear and nonlinear heart rate variability parameters in COPD patients

    PubMed Central

    Goulart, Cássia Da Luz; Simon, Julio Cristiano; Schneiders, Paloma De Borba; San Martin, Elisabete Antunes; Cabiddu, Ramona; Borghi-Silva, Audrey; Trimer, Renata; da Silva, Andréa Lúcia Gonçalves

    2016-01-01

    Introduction Chronic obstructive pulmonary disease (COPD) is recognized as a multisystemic inflammatory disease associated with extrapulmonary comorbidities, including respiratory muscle weakness and cardiovascular and cardiac autonomic regulation disorders. We investigated whether alterations in respiratory muscle strength (RMS) would affect cardiac autonomic modulation in COPD patients. Methods This study was a cross-sectional study done in ten COPD patients affected by moderate to very severe disease. The heart rate variability (HRV) signal was recorded using a Polar cardiofrequencimeter at rest in the sitting position (10 minutes) and during a respiratory sinus arrhythmia maneuver (RSA-M; 4 minutes). Linear analysis in the time and frequency domains and nonlinear analysis were performed on the recorded signals. RMS was assessed using a digital manometer, which provided the maximum inspiratory pressure (PImax) and the maximum expiratory pressure (PEmax). Results During the RSA-M, patients presented an HRV power increase in the low-frequency band (LFnu) (46.9±23.7 vs 75.8±27.2; P=0.01) and a decrease in the high-frequency band (HFnu) (52.8±23.5 vs 24.0±27.0; P=0.01) when compared to the resting condition. Significant associations were found between RMS and HRV spectral indices: PImax and LFnu (r=−0.74; P=0.01); PImax and HFnu (r=0.74; P=0.01); PEmax and LFnu (r=−0.66; P=0.01); PEmax and HFnu (r=0.66; P=0.03); between PEmax and sample entropy (r=0.83; P<0.01) and between PEmax and approximate entropy (r=0.74; P=0.01). Using a linear regression model, we found that PImax explained 44% of LFnu behavior during the RSA-M. Conclusion COPD patients with impaired RMS presented altered cardiac autonomic control, characterized by marked sympathetic modulation and a reduced parasympathetic response; reduced HRV complexity was observed during the RSA-M. PMID:27555757

  6. Linear-response calculation in the time-dependent density functional theory

    SciTech Connect

    Nakatsukasa, Takashi; Inakura, Tsunenori; Avogadro, Paolo; Ebata, Shuichiro; Sato, Koichi; Yabana, Kazuhiro

    2012-11-12

    Linear response calculations based on the time-dependent density-functional theory are presented. Especially, we report results of the finite amplitude method which we have recently proposed as an alternative and feasible approach to the (quasiparticle-)random-phase approximation. Calculated properties of the giant resonances and low-energy E1 modes are discussed. We found a universal linear correlation between the low-energy E1 strength and the neutron skin thickness.

  7. Molecular analyses of the principal components of response strength.

    PubMed Central

    Killeen, Peter R; Hall, Scott S; Reilly, Mark P; Kettle, Lauren C

    2002-01-01

    Killeen and Hall (2001) showed that a common factor called strength underlies the key dependent variables of response probability, latency, and rate, and that overall response rate is a good predictor of strength. In a search for the mechanisms that underlie those correlations, this article shows that (a) the probability of responding on a trial is a two-state Markov process; (b) latency and rate of responding can be described in terms of the probability and period of stochastic machines called clocked Bernoulli modules, and (c) one such machine, the refractory Poisson process, provides a functional relation between the probability of observing a response during any epoch and the rate of responding. This relation is one of proportionality at low rates and curvilinearity at higher rates. PMID:12216975

  8. Achieving large linear elasticity and high strength in bulk nanocompsite via synergistic effect

    SciTech Connect

    Hao, Shijie; Cui, Lishan; Guo, Fangmin; Liu, Yinong; Shi, Xiaobin; Jiang, Daqiang; Brown, Dennis E.; Ren, Yang

    2015-03-09

    Elastic strain in bulk metallic materials is usually limited to only a fraction of 1%. Developing bulk metallic materials showing large linear elasticity and high strength has proven to be difficult. Here, based on the synergistic effect between nanowires and orientated martensite NiTi shape memory alloy, we developed an in-situ Nb nanowires -orientated martensitic NiTi matrix composite showing an ultra-large linear elastic strain of 4% and an ultrahigh yield strength of 1.8 GPa. This material also has a high mechanical energy storage efficiency of 96% and a high energy storage density of 36 J/cm³ that is almost one order of larger than that of spring steel. It is demonstrated that the synergistic effect allows the exceptional mechanical properties of nanowires to be harvested at macro scale and the mechanical properties of matrix to be greatly improved, resulting in these superior properties. This study provides new avenues for developing advanced composites with superior properties by using effective synergistic effect between components.

  9. Achieving large linear elasticity and high strength in bulk nanocompsite via synergistic effect

    NASA Astrophysics Data System (ADS)

    Hao, Shijie; Cui, Lishan; Guo, Fangmin; Liu, Yinong; Shi, Xiaobin; Jiang, Daqiang; Brown, Dennis E.; Ren, Yang

    2015-03-01

    Elastic strain in bulk metallic materials is usually limited to only a fraction of 1%. Developing bulk metallic materials showing large linear elasticity and high strength has proven to be difficult. Here, based on the synergistic effect between nanowires and orientated martensite NiTi shape memory alloy, we developed an in-situ Nb nanowires -orientated martensitic NiTi matrix composite showing an ultra-large linear elastic strain of 4% and an ultrahigh yield strength of 1.8 GPa. This material also has a high mechanical energy storage efficiency of 96% and a high energy storage density of 36 J/cm3 that is almost one order of larger than that of spring steel. It is demonstrated that the synergistic effect allows the exceptional mechanical properties of nanowires to be harvested at macro scale and the mechanical properties of matrix to be greatly improved, resulting in these superior properties. This study provides new avenues for developing advanced composites with superior properties by using effective synergistic effect between components.

  10. Achieving large linear elasticity and high strength in bulk nanocompsite via synergistic effect

    DOE PAGESBeta

    Hao, Shijie; Cui, Lishan; Guo, Fangmin; Liu, Yinong; Shi, Xiaobin; Jiang, Daqiang; Brown, Dennis E.; Ren, Yang

    2015-03-09

    Elastic strain in bulk metallic materials is usually limited to only a fraction of 1%. Developing bulk metallic materials showing large linear elasticity and high strength has proven to be difficult. Here, based on the synergistic effect between nanowires and orientated martensite NiTi shape memory alloy, we developed an in-situ Nb nanowires -orientated martensitic NiTi matrix composite showing an ultra-large linear elastic strain of 4% and an ultrahigh yield strength of 1.8 GPa. This material also has a high mechanical energy storage efficiency of 96% and a high energy storage density of 36 J/cm³ that is almost one order ofmore » larger than that of spring steel. It is demonstrated that the synergistic effect allows the exceptional mechanical properties of nanowires to be harvested at macro scale and the mechanical properties of matrix to be greatly improved, resulting in these superior properties. This study provides new avenues for developing advanced composites with superior properties by using effective synergistic effect between components.« less

  11. Achieving large linear elasticity and high strength in bulk nanocompsite via synergistic effect.

    PubMed

    Hao, Shijie; Cui, Lishan; Guo, Fangmin; Liu, Yinong; Shi, Xiaobin; Jiang, Daqiang; Brown, Dennis E; Ren, Yang

    2015-01-01

    Elastic strain in bulk metallic materials is usually limited to only a fraction of 1%. Developing bulk metallic materials showing large linear elasticity and high strength has proven to be difficult. Here, based on the synergistic effect between nanowires and orientated martensite NiTi shape memory alloy, we developed an in-situ Nb nanowires -orientated martensitic NiTi matrix composite showing an ultra-large linear elastic strain of 4% and an ultrahigh yield strength of 1.8 GPa. This material also has a high mechanical energy storage efficiency of 96% and a high energy storage density of 36 J/cm(3) that is almost one order of larger than that of spring steel. It is demonstrated that the synergistic effect allows the exceptional mechanical properties of nanowires to be harvested at macro scale and the mechanical properties of matrix to be greatly improved, resulting in these superior properties. This study provides new avenues for developing advanced composites with superior properties by using effective synergistic effect between components. PMID:25749549

  12. Achieving large linear elasticity and high strength in bulk nanocompsite via synergistic effect

    PubMed Central

    Hao, Shijie; Cui, Lishan; Guo, Fangmin; Liu, Yinong; Shi, Xiaobin; Jiang, Daqiang; Brown, Dennis E.; Ren, Yang

    2015-01-01

    Elastic strain in bulk metallic materials is usually limited to only a fraction of 1%. Developing bulk metallic materials showing large linear elasticity and high strength has proven to be difficult. Here, based on the synergistic effect between nanowires and orientated martensite NiTi shape memory alloy, we developed an in-situ Nb nanowires -orientated martensitic NiTi matrix composite showing an ultra-large linear elastic strain of 4% and an ultrahigh yield strength of 1.8 GPa. This material also has a high mechanical energy storage efficiency of 96% and a high energy storage density of 36 J/cm3 that is almost one order of larger than that of spring steel. It is demonstrated that the synergistic effect allows the exceptional mechanical properties of nanowires to be harvested at macro scale and the mechanical properties of matrix to be greatly improved, resulting in these superior properties. This study provides new avenues for developing advanced composites with superior properties by using effective synergistic effect between components. PMID:25749549

  13. Error Analysis for RADAR Neighbor Matching Localization in Linear Logarithmic Strength Varying Wi-Fi Environment

    PubMed Central

    Tian, Zengshan; Xu, Kunjie; Yu, Xiang

    2014-01-01

    This paper studies the statistical errors for the fingerprint-based RADAR neighbor matching localization with the linearly calibrated reference points (RPs) in logarithmic received signal strength (RSS) varying Wi-Fi environment. To the best of our knowledge, little comprehensive analysis work has appeared on the error performance of neighbor matching localization with respect to the deployment of RPs. However, in order to achieve the efficient and reliable location-based services (LBSs) as well as the ubiquitous context-awareness in Wi-Fi environment, much attention has to be paid to the highly accurate and cost-efficient localization systems. To this end, the statistical errors by the widely used neighbor matching localization are significantly discussed in this paper to examine the inherent mathematical relations between the localization errors and the locations of RPs by using a basic linear logarithmic strength varying model. Furthermore, based on the mathematical demonstrations and some testing results, the closed-form solutions to the statistical errors by RADAR neighbor matching localization can be an effective tool to explore alternative deployment of fingerprint-based neighbor matching localization systems in the future. PMID:24683349

  14. Cumulative Violence Exposures: Black Women's Responses and Sources of Strength.

    PubMed

    Sabri, Bushra; Holliday, Charvonne N; Alexander, Kamila A; Huerta, Julia; Cimino, Andrea; Callwood, Gloria B; Campbell, Jacquelyn C

    2016-01-01

    Black women with cumulative violence exposures (CVE) may have unique needs for health care and safety. Qualitative data was analyzed from interviews with nine Black women with CVE to explore factors that motivated women to leave abusive relationships, women's sources of strengths, and their responses to abuse. Quantitative data (N = 163) was analyzed to examine relationships between CVEs by intimate partner and health among Black women to further characterize the challenges these women face in making changes and finding their sources of strengths. Findings highlight the need to assess for CVE and identify multiple motivators for change, sources of strengths and coping strategies that could be potential points of intervention for women with CVE. PMID:26954765

  15. Response of a rotorcraft model with damping non-linearities

    NASA Astrophysics Data System (ADS)

    Tongue, B. H.

    1985-11-01

    The linearized equations of motion of a helicopter in contact with the ground have solutions which can be linearly stable or unstable, depending on the system parameters. The present study includes physical non-linearities in the helicopter model. This allows one to determine if a steady-state response exists and, if so, what the frequency and amplitude of the oscillations will be. In this way, one can determine how serious the linearly unstable operating regime is and whether destructive oscillations are possible when the system is in the linearly stable regime. The present analysis applies to helicopters having fully articulated rotors.

  16. Descriptive Linear modeling of steady-state visual evoked response

    NASA Technical Reports Server (NTRS)

    Levison, W. H.; Junker, A. M.; Kenner, K.

    1986-01-01

    A study is being conducted to explore use of the steady state visual-evoke electrocortical response as an indicator of cognitive task loading. Application of linear descriptive modeling to steady state Visual Evoked Response (VER) data is summarized. Two aspects of linear modeling are reviewed: (1) unwrapping the phase-shift portion of the frequency response, and (2) parsimonious characterization of task-loading effects in terms of changes in model parameters. Model-based phase unwrapping appears to be most reliable in applications, such as manual control, where theoretical models are available. Linear descriptive modeling of the VER has not yet been shown to provide consistent and readily interpretable results.

  17. Static compressive strength prediction of open-hole structure based on non-linear shear behavior and micro-mechanics

    NASA Astrophysics Data System (ADS)

    Li, Wangnan; Cai, Hongneng; Li, Chao

    2014-11-01

    This paper deals with the characterization of the strength of the constituents of carbon fiber reinforced plastic laminate (CFRP), and a prediction of the static compressive strength of open-hole structure of polymer composites. The approach combined with non-linear analysis in macro-level and a linear elastic micromechanical failure analysis in microlevel (non-linear MMF) is proposed to improve the prediction accuracy. A face-centered cubic micromechanics model is constructed to analyze the stresses in fiber and matrix in microlevel. Non-interactive failure criteria are proposed to characterize the strength of fiber and matrix. The non-linear shear behavior of the laminate is studied experimentally, and a novel approach of cubic spline interpolation is used to capture significant non-linear shear behavior of laminate. The user-defined material subroutine UMAT for the non-linear share behavior is developed and combined in the mechanics analysis in the macro-level using the Abaqus Python codes. The failure mechanism and static strength of open-hole compressive (OHC) structure of polymer composites is studied based on non-linear MMF. The UTS50/E51 CFRP is used to demonstrate the application of theory of non-linear MMF.

  18. Mechanical response tissue analyzer for estimating bone strength

    NASA Technical Reports Server (NTRS)

    Arnaud, Sara B.; Steele, Charles; Mauriello, Anthony

    1991-01-01

    One of the major concerns for extended space flight is weakness of the long bones of the legs, composed primarily of cortical bone, that functions to provide mechanical support. The strength of cortical bone is due to its complex structure, described simplistically as cylinders of parallel osteons composed of layers of mineralized collagen. The reduced mechanical stresses during space flight or immobilization of bone on Earth reduces the mineral content, and changes the components of its matrix and structure so that its strength is reduced. Currently, the established clinical measures of bone strength are indirect. The measures are based on determinations of mineral density by means of radiography, photon absorptiometry, and quantitative computer tomography. While the mineral content of bone is essential to its strength, there is growing awareness of the limitations of the measurement as the sole predictor of fracture risk in metabolic bone diseases, especially limitations of the measurement as the sole predictor of fracture risk in metabolic bone diseases, especially osteoporosis. Other experimental methods in clinical trials that more directly evaluate the physical properties of bone, and do not require exposure to radiation, include ultrasound, acoustic emission, and low-frequency mechanical vibration. The last method can be considered a direct measure of the functional capacity of a long bone since it quantifies the mechanical response to a stimulus delivered directly to the bone. A low frequency vibration induces a response (impedance) curve with a minimum at the resonant frequency, that a few investigators use for the evaluation of the bone. An alternative approach, the method under consideration, is to use the response curve as the basis for determination of the bone bending stiffness EI (E is the intrinsic material property and I is the cross-sectional moment of inertia) and mass, fundamental mechanical properties of bone.

  19. Improvement of impact strength in linear low density polyethylene (LLDPE) by blending with amorphous polymers

    SciTech Connect

    Mirabella, F.M. Jr.

    1996-12-31

    The objective of the current work was to improve the film impact strength of commercial linear low density polyethylene (LLDPE) resins, while maintaining or improving other desirable properties. The approach used was to blend rubber-like (i.e. essentially noncrystalline) polymer resins with the base resin LLDPE. The choice of the rubber-like components was largely dictated by their commercial availability. The rubber-like polymers chosen were poly (ethylene-vinyl acetate) [EVA], poly (ethylene-n-butyl acrylate) [EnBA], and poly (ethylene-propylene) rubber [EPR]. The weight percent range of addition of the rubber-like component was restricted to 5% - 20%. The preferred range was only up to 10%. The structure of the base LLDPE resin, rubber-like components and the blends thereof was characterized. The physical and mechanical properties of the blown films of the resin blends were measured and correlations between structure and properties were determined.

  20. Calculated and experimental chromatograms for distorted gradients and non-linear solvation strength retention models.

    PubMed

    Gritti, Fabrice; Guiochon, Georges

    2014-08-22

    Computer calculations of gradient chromatograms were performed by taking into account the adsorption behavior of the strong eluent in RPLC and the true Henry constant of the analytes. This improves the accuracy of classical gradient calculations, which all assume no affinity of the eluent modifier for the stationary phase and that the linear solvation strength model (LSSM) applies. The excess adsorption isotherm of acetonitrile with respect to water was measured by the minor disturbance method onto a Symmetry-C₁₈ RPLC adsorbent. The variations of the Henry constants of a nine compound mixture with the volume fraction of acetonitrile in the aqueous mobile phase were measured. The equilibrium dispersive model of chromatography combined with orthogonal collocation on finite elements was used to calculate chromatograms of the sample mixture for four gradient times decreasing from 25 to 1 min. The results predict a loss of resolution for the less retained analytes when the gradient times becomes smaller than 4 min. They also predict that this behavior can be eliminated when applying a quadratic gradient profile rather than a classical linear gradient. The predictions were validated by the agreement between the calculated and experimental chromatograms. PMID:24999065

  1. Response properties of pigeon otolith afferents to linear acceleration

    NASA Technical Reports Server (NTRS)

    Si, X.; Angelaki, D. E.; Dickman, J. D.

    1997-01-01

    In the present study, the sensitivity to sinusoidal linear accelerations in the plane of the utricular macula was tested in afferents. The head orientation relative to the translation axis was varied in order to determine the head position that elicited the maximal and minimal responses for each afferent. The response gain and phase values obtained to 0.5-Hz and 2-Hz linear acceleration stimuli were then plotted as a function of head orientation and a modified cosine function was fit to the data. From the best-fit cosine function, the predicted head orientations that would produce the maximal and minimal response gains were estimated. The estimated maximum response gains to linear acceleration in the utricular plane for the afferents varied between 75 and 1420 spikes s-1 g-1. The mean maximal gains for all afferents to 0.5-Hz and 2-Hz sinusoidal linear acceleration stimuli were 282 and 367 spikes s-1 g-1, respectively. The minimal response gains were essentially zero for most units. The response phases always led linear acceleration and remained constant for each afferent, regardless of head orientation. These response characteristics indicate that otolith afferents are cosine tuned and behave as one-dimensional linear accelerometers. The directions of maximal sensitivity to linear acceleration for the afferents varied throughout the plane of the utricle; however, most vectors were directed out of the opposite ear near the interaural axis. The response dynamics of the afferents were tested using stimulus frequencies ranging between 0.25 Hz and 10 Hz (0.1 g peak acceleration). Across stimulus frequencies, most afferents had increasing gains and constant phase values. These dynamic properties for individual afferents were fit with a simple transfer function that included three parameters: a mechanical time constant, a gain constant, and a fractional order distributed adaptation operator.

  2. The Distribution of Subjective Memory Strength: List Strength and Response Bias

    ERIC Educational Resources Information Center

    Criss, Amy H.

    2009-01-01

    Models of recognition memory assume that memory decisions are based partially on the subjective strength of the test item. Models agree that the subjective strength of targets increases with additional time for encoding however the origin of the subjective strength of foils remains disputed. Under the fixed strength assumption the distribution of…

  3. Influence of strength training background on postactivation potentiation response.

    PubMed

    Batista, Mauro A B; Roschel, Hamilton; Barroso, Renato; Ugrinowitsch, Carlos; Tricoli, Valmor

    2011-09-01

    The aim of this study was to evaluate the influence of the subjects' level of maximal dynamic strength and training background on postactivation potentiation (PAP). A group of 23 subjects, composed of power track-and-field athletes (PT = 8), bodybuilders (BB = 7), and physically active subjects (PA = 8), participated in the study. Maximal dynamic strength (1 repetition maximum test) was assessed in the leg press exercise for subjects' characterization. Their countermovement vertical jump (CMJ) performance was assessed before and after 2 different conditioning activity (CA) protocols (1 or 3 maximum voluntary isometric contractions [MVICs] of 5-second duration in the leg press exercise) or after control (no CA), performed on separate days. No significant differences among groups were found for CMJ height or take-off velocity after any of the CA protocols (p ≤ 0.05). However, individual analysis showed that some subjects increased performance in response to the CA, despite their previous training history. We concluded that subjects' level of maximal dynamic strength and training background have no influence on PAP manifestation. Our data suggest that coaches should individually identify the athletes that are PAP responders before introducing MVICs as part of their warm-up routines. PMID:21747294

  4. The role of linear interference in the Annular Mode response to Tropical SST forcing

    NASA Astrophysics Data System (ADS)

    Fletcher, C. G.; Kushner, P. J.

    2010-12-01

    Sea-surface temperature (SST) anomalies in different parts of the Tropics are known to drive very different teleconnections into the extratropics on monthly-to-seasonal timescales. For example, wintertime El Nino SST warming in the tropical Pacific Ocean (TPO) is associated with an equatorward shifted subtropical jet, a weaker stratospheric polar vortex, and high pressure over the northern polar regions characteristic of the negative phase of the Northern Annular Mode (NAM). By contrast, SST warming in the Tropical Indian Ocean (TIO) has been shown to be associated with a poleward shifted subtropical jet, strengthened polar vortex, and and a positive phase NAM. This study presents a simple dynamical framework for understanding these different responses. It is shown that the sign and strength of the NAM response to tropical SST forcing is often simply related to the phasing, and hence the linear interference, between the Rossby wave response and the climatological stationary wave. The TPO (TIO) wave response reinforces (attenuates) the climatological wave and therefore weakens (strengthens) the stratospheric jet and leads to a negative (positive) NAM response. In additional simulations, it is shown that decreasing the strength of the climatological stationary wave reduces the importance of linear interference and increases the importance of nonlinearity. This work demonstrates that the simulated extratropical Annular Mode responses to climate forcings can depend sensitively on the amplitude and phase of the climatological stationary wave and the wave response.

  5. Media ionic strength impacts embryonic responses to engineered nanoparticle exposure

    PubMed Central

    Truong, Lisa; Zaikova, Tatiana; Richman, Erik K.; Hutchison, James E.; Tanguay, Robert L.

    2012-01-01

    Embryonic zebrafish were used to assess the impact of solution ion concentrations on agglomeration and resulting in vivo biological responses of gold nanoparticles (AuNPs). The minimum ion concentration necessary to support embryonic development was determined. Surprisingly, zebrafish exhibit no adverse outcomes when raised in nearly ion-free media. During a rapid throughput screening of AuNPs, 1.2-nm 3-mercaptopropionic acid-functionalized AuNPs (1.2-nm 3-MPA-AuNPs) rapidly agglomerate in exposure solutions. When embryos were exposed to 1.2-nm 3-MPA-AuNPs dispersed in low ionic media, both morbidity and mortality were induced, but when suspended in high ionic media, there was little to no biological response. We demonstrated that the media ionic strength greatly affects agglomeration rates and biological responses. Most importantly, the insensitivity of the zebrafish embryo to external ions indicates that it is possible, and necessary, to adjust the exposure media conditions to optimize NP dispersion prior to assessment. PMID:21809903

  6. Conceptual DFT: chemistry from the linear response function.

    PubMed

    Geerlings, Paul; Fias, Stijn; Boisdenghien, Zino; De Proft, Frank

    2014-07-21

    Within the context of reactivity descriptors known in conceptual DFT, the linear response function (χ(r,r')) remained nearly unexploited. Although well known, in its time dependent form, in the solid state physics and time-dependent DFT communities the study of the "chemistry" present in the kernel was, until recently, relatively unexplored. The evaluation of the linear response function as such and its study in the time independent form are highlighted in the present review. On the fundamental side, the focus is on the approaches of increasing complexity to compute and represent χ(r,r'), its visualisation going from plots of the unintegrated χ(r,r') to an atom condensed matrix. The study on atoms reveals its physical significance, retrieving atomic shell structure, while the results on molecules illustrate that a variety of chemical concepts are retrieved: inductive and mesomeric effects, electron delocalisation, aromaticity and anti-aromaticity, σ and π aromaticity,…. The applications show that the chemistry of aliphatic (saturated and unsaturated) chains, saturated and aromatic/anti-aromatic rings, organic, inorganic or metallic in nature, can be retrieved via the linear response function, including the variation of the electronic structure of the reagents along a reaction path. The connection of the linear response function with the concept of nearsightedness and the alchemical derivatives is also highlighted. PMID:24531142

  7. Testing Linear Models for Ability Parameters in Item Response Models

    ERIC Educational Resources Information Center

    Glas, Cees A. W.; Hendrawan, Irene

    2005-01-01

    Methods for testing hypotheses concerning the regression parameters in linear models for the latent person parameters in item response models are presented. Three tests are outlined: A likelihood ratio test, a Lagrange multiplier test and a Wald test. The tests are derived in a marginal maximum likelihood framework. They are explicitly formulated…

  8. Non-linear dielectric response of ferrofluids under magnetic field

    NASA Astrophysics Data System (ADS)

    Licinio, Pedro; Teixeira, Alvaro V.; Figueiredo, José Marcos A.

    2005-03-01

    The dielectric response of a water-based magnetic fluid is investigated at room temperature and in the frequency range of 100-10 7 rad/s. The response is linear in the electric fields used. Upon application of a constant magnetic field of 40 mT, which is well below the sample saturation, the response becomes non-linear. Magnetic field effects are isolated by performing a differential analysis of the inverse dielectric permittivity with and without applied field in both perpendicular and parallel configurations. The imaginary part of the differential inverse permittivity displays two peaks. The low-frequency peak is seen to correspond to the orientation relaxation of aggregates also detected in SAXS, photon correlation and atomic force microscopy measurements. The high-frequency peak corresponds to single magnetic particle reorientation.

  9. Contact nonlinearities and linear response in jammed particulate packings.

    PubMed

    Goodrich, Carl P; Liu, Andrea J; Nagel, Sidney R

    2014-08-01

    Packings of frictionless athermal particles that interact only when they overlap experience a jamming transition as a function of packing density. Such packings provide the foundation for the theory of jamming. This theory rests on the observation that, despite the multitude of disordered configurations, the mechanical response to linear order depends only on the distance to the transition. We investigate the validity and utility of such measurements that invoke the harmonic approximation and show that, despite particles coming in and out of contact, there is a well-defined linear regime in the thermodynamic limit. PMID:25215727

  10. Array of Hall Effect Sensors for Linear Positioning of a Magnet Independently of Its Strength Variation. A Case Study: Monitoring Milk Yield during Milking in Goats

    PubMed Central

    García-Diego, Fernando-Juan; Sánchez-Quinche, Angel; Merello, Paloma; Beltrán, Pedro; Peris, Cristófol

    2013-01-01

    In this study we propose an electronic system for linear positioning of a magnet independent of its modulus, which could vary because of aging, different fabrication process, etc. The system comprises a linear array of 24 Hall Effect sensors of proportional response. The data from all sensors are subject to a pretreatment (normalization) by row (position) making them independent on the temporary variation of its magnetic field strength. We analyze the particular case of the individual flow in milking of goats. The multiple regression analysis allowed us to calibrate the electronic system with a percentage of explanation R2 = 99.96%. In our case, the uncertainty in the linear position of the magnet is 0.51 mm that represents 0.019 L of goat milk. The test in farm compared the results obtained by direct reading of the volume with those obtained by the proposed electronic calibrated system, achieving a percentage of explanation of 99.05%. PMID:23793020

  11. Linearity in the response of photopolymers as optical recording media.

    PubMed

    Gallego, Sergi; Marquez, Andrés; Guardiola, Francisco J; Riquelme, Marina; Fernández, Roberto; Pascual, Inmaculada; Beléndez, Augusto

    2013-05-01

    Photopolymer are appealing materials for diffractive elements recording. Two of their properties when they are illuminated are useful for this goal: the relief surface changes and the refractive index modifications. To this goal the linearity in the material response is crucial to design the optimum irradiance for each element. In this paper we measured directly some parameters to know how linear is the material response, in terms of the refractive index modulation versus exposure, then we can predict the refractive index distributions during recording. We have analyzed at different recording intensities the evolution of monomer diffusion during recording for photopolymers based on PVA/Acrylamide. This model has been successfully applied to PVA/Acrylamide photopolymers to predict the transmitted diffracted orders and the agreement with experimental values has been increased. PMID:23669956

  12. Gaussian fluctuations and linear response in an electron transfer protein

    PubMed Central

    Simonson, Thomas

    2002-01-01

    In response to charge separation or transfer, polar liquids respond in a simple linear fashion. A similar linear response for proteins might be expected from the central limit theorem and is postulated in widely used theories of protein electrostatics, including the Marcus electron transfer theory and dielectric continuum theories. Although these theories are supported by a variety of experimental data, the exact validity of a linear protein dielectric response has been difficult to determine. Molecular dynamics simulations are presented that establish a linear dielectric response of both protein and surrounding solvent over the course of a biologically relevant electron transfer reaction: oxido-reduction of yeast cytochrome c in solution. Using an umbrella-sampling free energy approach with long simulations, an accurate treatment of long-range electrostatics and both classical and quantum models of the heme, good agreement is obtained with experiment for the redox potential relative to a heme–octapeptide complex. We obtain a reorganization free energy that is only half that for heme–octapeptide and is reproduced with a dielectric continuum model where the heme vicinity has a dielectric constant of only 1.1. This value implies that the contribution of protein reorganization to the electron transfer free energy barrier is reduced almost to the theoretical limit (a dielectric of one), and that the fluctuations of the electrostatic potential on the heme have a simple harmonic form, in accord with Marcus theory, even though the fluctuations of many individual protein groups (especially at the protein surface) are anharmonic. PMID:12011418

  13. Linear response of tripartite entanglement to infinitesimal noise

    SciTech Connect

    Zhang, Fu-Lin; Chen, Jing-Ling

    2014-10-15

    Recent experimental progress in prolonging the coherence time of a quantum system prompts us to explore the behavior of quantum entanglement at the beginning of the decoherence process. The response of the entanglement under an infinitesimal noise can serve as a signature of the robustness of entangled states. A crucial problem of this topic in multipartite systems is to compute the degree of entanglement in a mixed state. We find a family of global noise in three-qubit systems, which is composed of four W states. Under its influence, the linear response of the tripartite entanglement of a symmetrical three-qubit pure state is studied. A lower bound of the linear response is found to depend completely on the initial tripartite and bipartite entanglement. This result shows that the decay of tripartite entanglement is hastened by the bipartite one. - Highlights: • We study a set of W-type noise and its linear effect on symmetric pure states. • Its effect on two-qubit entanglement depends only on the initial concurrence. • A lower bound of the effect on 3-tangle is found in terms of initial entanglements. • We obtain the time of three-tangle sudden death for two families of typical states. • These reveal that the bipartite entanglement speeds up the decay of the tripartite one.

  14. Identifying the Hamiltonian structure in linear response theory

    NASA Astrophysics Data System (ADS)

    List, Nanna Holmgaard; Coriani, Sonia; Christiansen, Ove; Kongsted, Jacob

    2014-06-01

    We present a unifying framework for linear response eigenvalue equations that encompasses both variational Hartree-Fock and Kohn-Sham density functional theory as well as non-variational coupled-cluster theory. The joint description is rooted in the so-called Hamiltonian structure of the response kernel matrices, whose properties permit an immediate identification of the well-known paired eigenvalue spectrum describing a molecule in the isolated state. Recognizing the Hamiltonian structure underlying the equations further enables a generalization to the case of a polarizable-embedded molecule treated in variational and, in particular, in non-variational theories.

  15. Linear response to long wavelength fluctuations using curvature simulations

    NASA Astrophysics Data System (ADS)

    Baldauf, Tobias; Seljak, Uroš; Senatore, Leonardo; Zaldarriaga, Matias

    2016-09-01

    We study the local response to long wavelength fluctuations in cosmological N-body simulations, focusing on the matter and halo power spectra, halo abundance and non-linear transformations of the density field. The long wavelength mode is implemented using an effective curved cosmology and a mapping of time and distances. The method provides an alternative, more direct, way to measure the isotropic halo biases. Limiting ourselves to the linear case, we find generally good agreement between the biases obtained from the curvature method and the traditional power spectrum method at the level of a few percent. We also study the response of halo counts to changes in the variance of the field and find that the slope of the relation between the responses to density and variance differs from the naïve derivation assuming a universal mass function by approximately 8–20%. This has implications for measurements of the amplitude of local non-Gaussianity using scale dependent bias. We also analyze the halo power spectrum and halo-dark matter cross-spectrum response to long wavelength fluctuations and derive second order halo bias from it, as well as the super-sample variance contribution to the galaxy power spectrum covariance matrix.

  16. Linear response as a singular limit for a periodically driven closed quantum system

    NASA Astrophysics Data System (ADS)

    Russomanno, Angelo; Silva, Alessandro; Santoro, Giuseppe E.

    2013-09-01

    We address the issue of the validity of linear response theory for a closed quantum system subject to a periodic external driving. Linear response theory (LRT) predicts energy absorption at frequencies of the external driving where the imaginary part of the appropriate response function is different from zero. Here we show that, for a fairly general nonlinear many-body system on a lattice subject to an extensive perturbation, this approximation should be expected to be valid only up to a time t* depending on the strength of the driving, beyond which the true coherent Schrödinger evolution departs from the linear response prediction and the system stops absorbing energy from the driving. We exemplify this phenomenon in detail with the example of a quantum Ising chain subject to a time-periodic modulation of the transverse field, by comparing an exact Floquet analysis with the standard results of LRT. In this context, we also show that if the perturbation is just local, the system is expected in the thermodynamic limit to keep absorbing energy, and LRT works at all times. We finally argue more generally the validity of the scenario presented for closed quantum many-body lattice systems with a bound on the energy-per-site spectrum, discussing the experimental relevance of our findings in the context of cold atoms in optical lattices and ultra-fast spectroscopy experiments.

  17. Linear-scaling time-dependent density-functional theory in the linear response formalism.

    PubMed

    Zuehlsdorff, T J; Hine, N D M; Spencer, J S; Harrison, N M; Riley, D J; Haynes, P D

    2013-08-14

    We present an implementation of time-dependent density-functional theory (TDDFT) in the linear response formalism enabling the calculation of low energy optical absorption spectra for large molecules and nanostructures. The method avoids any explicit reference to canonical representations of either occupied or virtual Kohn-Sham states and thus achieves linear-scaling computational effort with system size. In contrast to conventional localised orbital formulations, where a single set of localised functions is used to span the occupied and unoccupied state manifold, we make use of two sets of in situ optimised localised orbitals, one for the occupied and one for the unoccupied space. This double representation approach avoids known problems of spanning the space of unoccupied Kohn-Sham states with a minimal set of localised orbitals optimised for the occupied space, while the in situ optimisation procedure allows for efficient calculations with a minimal number of functions. The method is applied to a number of medium sized organic molecules and a good agreement with traditional TDDFT methods is observed. Furthermore, linear scaling of computational cost with system size is demonstrated on (10,0) carbon nanotubes of different lengths. PMID:23947840

  18. Linearity of Climate Response to Increases in Black Carbon Aerosols

    SciTech Connect

    Mahajan, Salil; Evans, Katherine J.; Hack, James J.; Truesdale, John

    2013-04-19

    The impact of absorbing aerosols on global climate are not completely understood. Here, we present results of idealized experiments conducted with the Community Atmosphere Model (CAM4) coupled to a slab ocean model (CAM4-SOM) to simulate the climate response to increases in tropospheric black carbon aerosols (BC) by direct and semi-direct effects. CAM4-SOM was forced with 0, 1x, 2x, 5x and 10x an estimate of the present day concentration of BC while maintaining their estimated present day global spatial and vertical distribution. The top of the atmosphere (TOA) radiative forcing of BC in these experiments is positive (warming) and increases linearly as the BC burden increases. The total semi-direct effect for the 1x experiment is positive but becomes increasingly negative for higher BC concentrations. The global average surface temperature response is found to be a linear function of the TOA radiative forcing. The climate sensitivity to BC from these experiments is estimated to be 0.42 K $ W^{-1} m^{2}$ when the semi-direct effects are accounted for and 0.22 K $ W^{-1} m^{2}$ with only the direct effects considered. Global average precipitation decreases linearly as BC increases, with a precipitation sensitivity to atmospheric absorption of 0.4 $\\%$ $W^{-1}m^{2}$ . The hemispheric asymmetry of BC also causes an increase in southward cross-equatorial heat transport and a resulting northward shift of the inter-tropical convergence zone in the simulations at a rate of 4$^{\\circ}$N $ PW^{-1}$. Global average mid- and high-level clouds decrease, whereas the low-level clouds increase linearly with BC. The increase in marine stratocumulus cloud fraction over the south tropical Atlantic is caused by increased BC-induced diabatic heating of the free troposphere.

  19. Non-Linear Stress Analysis of Threaded Connection With High Strength Ratio Materials

    SciTech Connect

    Khair, K.R.; Singh, P.N.

    2002-07-01

    When the relative strength ratio of nut-to-bolt thread is high, the weaker of the two threads will deflect under the relatively stiff action of the other. The rules of the ASME B1.1-1989 provide general design rules for designing non-critical threaded joints. Most threaded joint designs are based on these rules. In most cases, the strengths of the stud and the nut are about the same. This paper addresses plastic deformation and strain in the threaded part of a component (stud) whose strength is about 7 times more than the mating threads. An axisymmetric finite element analysis was performed using nonlinear material properties and nonlinear contact elements between the surfaces of the threads. The results were used to calculate the collapse load for the thread following the rules of Appendix F of the ASME B and PV. It was found that the collapse (maximum allowed) load calculated using this nonlinear finite element approach and Appendix F of ASME code is 50% higher than the load calculated using the conventional elastic methods given in the ASME code rules would be acceptable. (authors)

  20. Dynamic deformation and fragmentation response of maraging steel linear cellular alloy

    NASA Astrophysics Data System (ADS)

    Jakus, Adam E.; Fredenberg, David A.; McCoy, Tammy; Thadhani, Naresh; Cochran, Joe K.

    2012-03-01

    The dynamic deformation and fragmentation response of 25% dense 9-cell linear cellular alloy (LCA) made of unaged 250 maraging steel, fabricated using a direct reduction and extrusion technique, is investigated. Explicit finite element simulations were implemented using AUTODYN finite element code. The maraging steel properties were defined using a Johnson-Cook strength model with previously validated parameters. Rod-on-anvil impact tests were performed using the 7.6mm helium gas gun and the transient deformation and fragmentation response was recorded with highspeed imaging. Analysis of observed deformation states of specimens and finite element simulations reveal that in the case of the 9-cell LCA, dissipation of stress and strain occurs along the interior cell wells resulting in significant and ubiquitous buckling prior to confined fragmentation.

  1. Nonequilibrium thermal transport and its relation to linear response

    NASA Astrophysics Data System (ADS)

    Karrasch, C.; Ilan, R.; Moore, J. E.

    2013-11-01

    We study the real-time dynamics of spin chains driven out of thermal equilibrium by an initial temperature gradient TL≠TR using density matrix renormalization group methods. We demonstrate that the nonequilibrium energy current saturates fast to a finite value if the linear-response thermal conductivity is infinite, i.e., if the Drude weight D is nonzero. Our data suggest that a nonintegrable dimerized chain might support such dissipationless transport (D>0). We show that the steady-state value JE of the current for arbitrary TL≠TR is of the functional form JE=f(TL)-f(TR), i.e., it is completely determined by the linear conductance. We argue for this functional form, which is essentially a Stefan-Boltzmann law in this integrable model; for the XXX ferromagnet, f can be computed via the thermodynamic Bethe ansatz in good agreement with the numerics. Inhomogeneous systems exhibiting different bulk parameters as well as Luttinger liquid boundary physics induced by single impurities are discussed briefly.

  2. Finite orbit energetic particle linear response to toroidal Alfven eigenmodes

    SciTech Connect

    Berk, H.L.; Ye, Huanchun . Inst. for Fusion Studies); Breizman, B.N. . Inst. Yadernoj Fiziki)

    1991-07-01

    The linear response of energetic particles to the TAE modes is calculated taking into account their finite orbit excursion from the flux surfaces. The general expression reproduces the previously derived theory for small banana width: when the banana width {triangle}{sub b} is much larger than the mode thickness {triangle}{sub m}, we obtain a new compact expression for the linear power transfer. When {triangle}{sub m}/{triangle}{sub b} {much lt} 1, the banana orbit effect reduces the power transfer by a factor of {triangle}{sub m}/{triangle}{sub b} from that predicted by the narrow orbit theory. A comparison is made of the contribution to the TAE growth rate of energetic particles with a slowing-down distribution arising from an isotropic source, and a balance-injected beam source when the source speed is close to the Alfven speed. For the same stored energy density, the contribution from the principal resonances ({vert bar}{upsilon}{sub {parallel}}{vert bar} = {upsilon}{sub A} is substantially enhanced in the beam case compared to the isotropic case, while the contribution at the higher sidebands ({vert bar}{upsilon}{sub {parallel}}{vert bar}) = {upsilon}{sub A}/(2{ell} {minus} 1) with {ell} {ge} 2) is substantially reduced. 10 refs.

  3. Linear versus nonlinear response of a forced wave turbulence system.

    PubMed

    Cadot, Olivier; Touzé, Cyril; Boudaoud, Arezki

    2010-10-01

    A vibrating plate is set into a chaotic state of wave turbulence by a forcing having periodic and random components. Both components are weighted in order to explore continuously intermediate forcing from the periodic to the random one, but keeping constant its rms value. The transverse velocity of the plate is measured at the application point of the force. It is found that whatever the detail of the forcing is, the velocity spectra exhibit a universal cascade for frequencies larger than the forcing frequency range. In contrast, the velocity spectra strongly depend on the nature of the forcing within the range of forcing frequencies. The coherence function is used to extract the contribution of the velocity fluctuations that display a linear relationship with the forcing. The nonlinear contribution to the velocity fluctuations is found to be almost constant, about 55% of the total velocity fluctuations whatever the nature of the forcing from random to periodic. On the other hand, the nonlinear contribution to the fluctuations of the injected power depends on the nature of the forcing; it is significantly larger for the periodic forcing (60%) and decreases continuously as the randomness is increased, reaching a value of 40% for the pure random forcing. For all the cases of intermediate forcing from random to periodic, a simple model of the velocity response recovers in a fairly good agreement the probability density function of the injected power. The consequence of the existence of a linear-response component is discussed in the context of the fluctuation-dissipation theorem validation in experiments of out-of-equilibrium systems. PMID:21230369

  4. Comparative study of the linear solvation energy relationship, linear solvent strength theory, and typical-conditions model for retention prediction in reversed-phase liquid chromatography.

    PubMed

    Wang, Aosheng; Carr, Peter W

    2002-08-01

    This paper describes two new retention models for predicting retention under different reversed-phase liquid chromatography (RPLC) conditions. The first one is a global linear solvation energy relationship (LSER) that expresses retention as a function of both solute LSER descriptors and mobile phase composition. The second is a so-called "typical-conditions model" that expresses retention under a given chromatographic condition as a linear function of retention under different so-called "typical" conditions. The global LSER was derived by combining the local LSER model and the linear solvent strength theory (LSST) of RPLC. Compared to local LSER and the LSST models, the global LSER model requires far fewer retention measurements for calibrating the model when different solutes and different mobile phase compositions are involved. Its fitting performance is equal to the local LSER model but worse than that of LSST. The poor fit of the global LSER results primarily from the local LSER model and not from the LSST model. The typical-conditions model (TCM) was developed based on a concept of multivariate space that is conceptually compatible with LSER. However, no LSER descriptors are used in the TCM approach. The number of input conditions needed in the typical-conditions model is determined by the chemical diversity of the solutes and the conditions involved. Principal component analysis (PCA) and iterative key set factor analysis (IKSFA) were used to find the number of typical conditions needed for a given data set. Compared to LSER, LSST, and global LSER, the typical-conditions model is more precise and requires fewer retention measurements for calibrating the model when different solutes and different stationary and/or mobile phases are involved. PMID:12236532

  5. Responses of proteins to different ionic environment are linearly interrelated.

    PubMed

    Ferreira, Luisa A; Madeira, Pedro P; Uversky, Alexey V; Uversky, Vladimir N; Zaslavsky, Boris Y

    2015-03-27

    Protein partitioning in aqueous two-phase systems (ATPS) is widely used as a convenient, inexpensive, and readily scaled-up separation technique. Protein partition behavior in ATPS is known to be readily manipulated by ionic composition. However, the available data on the effects of salts and buffer concentrations on protein partitioning are very limited. To fill this gap, partitioning of 15 proteins was examined in dextran-poly(ethylene glycol) ATPSs with different salt additives (Na2SO4, NaClO4, NaSCN, CsCl) in 0.11 M sodium phosphate buffer, pH 7.4. This analysis reveals that there is a linear relationship between the logarithms of the protein partition coefficients determined in the presence of different salts. This relationship suggests that the protein response to ionic environment is determined by the protein structure and type and concentrations of the ions present. Analysis of the differences between protein structures (described in terms of proteins responses to different salts) and that of cytochrome c chosen as a reference showed that the peculiarities of the protein surface structure and B-factor used as a measure of the protein flexibility are the determining parameters. Our results provide better insight into the use of different salts in manipulating protein partitioning in aqueous two-phase systems. These data also demonstrate that the protein responses to different ionic environments are interrelated and are determined by the structural peculiarities of protein surface. It is suggested that changes in ionic microenvironment of proteins may regulate protein transport and behavior in biological systems. PMID:25708470

  6. Superimposed linear psoriasis: differential therapeutic response of linear and nonlinear lesions.

    PubMed

    Seitz, C S; Garbaraviciene, J; Bröcker, E-B; Hamm, H

    2009-07-01

    Linear psoriasis is a very unusual clinical variation of psoriasis. Typical clinical features include early onset of erythematosquamous lesions along Blaschko's lines, ability to elicit psoriatic features, absence of pruritus and positive family history for psoriasis. Recently, the term 'superimposed linear psoriasis' was coined for cases with development of nonlinear psoriatic lesions at predilection sites in later life. We report a 19-year-old woman meeting all criteria for the diagnosis of superimposed linear psoriasis including typical histological features. Remarkably, treatment with topical steroids and dithranol cleared the psoriatic lesions on predilection sites whereas the linear lesions were resistant to topical therapy. Linear psoriatic lesions are believed to be caused by genetic alterations in early embryogenesis leading to loss of heterozygosity at a gene locus involved in the pathogenesis of psoriasis. Comparison of mosaic keratinocytes derived from linear lesions with wild-type keratinocytes from the same person may therefore allow identification of key regulatory genes. PMID:19094135

  7. Optimization versus response-strength accounts of behavior.

    PubMed Central

    Vaughan, W; Miller, H L

    1984-01-01

    Pigeons were run in both single-key and concurrent-key experiments in which, over most of the range of response rates, an increase in response rate gave rise to a continuous decrease in reinforcement rate. In spite of the fact that a low response rate would have produced a high reinforcement rate, all birds responded at relatively high rates, thus keeping reinforcement rates substantially below the maximum possible. In the concurrent-key experiment, in addition to responding at relatively high rates, the birds' ratios of responses approximately matched the corresponding ratios of obtained reinforcers. The results are inconsistent with most theories of optimal performance, which assume that organisms behave in ways that either maximize reinforcement value or minimize deviations from a free-behavior point. On the other hand, the results are consistent with the assumption that reinforcement strengthens the tendency to respond. PMID:6502069

  8. Linear plasma response, electrostatic fluctuations and Thomson scattering

    NASA Astrophysics Data System (ADS)

    Rozmus, Wojciech; Zheng, Zhen; Bychenkov, Valery Yu.; Brantov, Andrei V.

    2011-10-01

    Our nonlocal and nonstationary transport theory provides a method of solution of the initial value problem for the full set of linearized Fokker-Planck kinetic equations with Landau collision operators. The closure relations reduce the problem of finding particle distribution functions to the solution of the close set of fluid equations. This has been recently realized for the electron-ion plasma in the entire range of plasma collisionality. No particular choice of the initial distribution function is necessary to derive the longitudinal plasma susceptibility from the full set of kinetic equations. We will discuss new complete results for in electron-ion plasmas. The full description of the longitudinal plasma response is used in the derivation of damping and dispersion relations for electrostatic fluctuations such as Langmuir waves, ion-acoustic and entropy modes. Particle collision effects are rigorously accounted for. The Onsager's regression of fluctuations method is applied to derive dynamical form factor S(k,w) and Thomson scattering (TS) cross-section from the set of fluid equations. We will discuss application of the nonlocal hydrodynamics to the derivation of S(k,w). In particular, we will examine the importance of an entropy mode peak as the direct measure of ion temperature in TS experiments.

  9. Broadband linear and nonlinear optical response of plasmonic quasicrystals

    NASA Astrophysics Data System (ADS)

    Ravishankar, Ajith P.; Yallapragada, V. J.; Kasture, S.; Nagarajan, Arvind; Achanta, Venu Gopal

    2016-05-01

    Plasmonic quasicrystals with 5-fold rotation symmetry are shown to offer broadband transmission enhancement. The observed linear transmission enhancement leads to broadband second harmonic generation in a wide incident angle range contrary to unpatterned gold film. From the measured linear and harmonic transmitted powers, we estimate the 2nd order susceptibility values in the 760-840 nm range.

  10. Strength training prior to endurance exercise: impact on the neuromuscular system, endurance performance and cardiorespiratory responses.

    PubMed

    Conceição, Matheus; Cadore, Eduardo Lusa; González-Izal, Miriam; Izquierdo, Mikel; Liedtke, Giane Veiga; Wilhelm, Eurico Nestor; Pinto, Ronei Silveira; Goltz, Fernanda Reistenbach; Schneider, Cláudia Dornelles; Ferrari, Rodrigo; Bottaro, Martim; Kruel, Luiz Fernando Martins

    2014-12-01

    This study aimed to investigate the acute effects of two strength-training protocols on the neuromuscular and cardiorespiratory responses during endurance exercise. Thirteen young males (23.2 ± 1.6 years old) participated in this study. The hypertrophic strength-training protocol was composed of 6 sets of 8 squats at 75% of maximal dynamic strength. The plyometric strength-training protocol was composed of 6 sets of 8 jumps performed with the body weight as the workload. Endurance exercise was performed on a cycle ergometer at a power corresponding to the second ventilatory threshold until exhaustion. Before and after each protocol, a maximal voluntary contraction was performed, and the rate of force development and electromyographic parameters were assessed. After the hypertrophic strength-training and plyometric strength-training protocol, significant decreases were observed in the maximal voluntary contraction and rate of force development, whereas no changes were observed in the electromyographic parameters. Oxygen uptake and a heart rate during endurance exercise were not significantly different among the protocols. However, the time-to-exhaustion was significantly higher during endurance exercise alone than when performed after hypertrophic strength-training or plyometric strength-training (p <0.05). These results suggest that endurance performance may be impaired when preceded by strength-training, with no oxygen uptake or heart rate changes during the exercise. PMID:25713678

  11. Standardized F1: a consistent measure of strength of modulation of visual responses to sine-wave drifting gratings.

    PubMed

    Wypych, M; Wang, C; Nagy, A; Benedek, G; Dreher, B; Waleszczyk, W J

    2012-11-01

    The magnitude of spike-responses of neurons in the mammalian visual system to sine-wave luminance-contrast-modulated drifting gratings is modulated by the temporal frequency of the stimulation. However, there are serious problems with consistency and reliability of the traditionally used methods of assessment of strength of such modulation. Here we propose an intuitive and simple tool for assessment of the strength of modulations in the form of standardized F1 index, zF1. We define zF1 as the ratio of the difference between the F1 (component of amplitude spectrum of the spike-response at temporal frequency of stimulation) and the mean value of spectrum amplitudes to standard deviation along all frequencies in the spectrum. In order to assess the validity of this measure, we have: (1) examined behavior of zF1 using spike-responses to optimized drifting gratings of single neurons recorded from four 'visual' structures (area V1 of primary visual cortex, superior colliculus, suprageniculate nucleus and caudate nucleus) in the brain of commonly used visual mammal - domestic cat; (2) compared the behavior of zF1 with that of classical statistics commonly employed in the analysis of steady-state responses; (3) tested the zF1 index on simulated spike-trains generated with threshold-linear model. Our analyses indicate that zF1 is resistant to distortions due to the low spike count in responses and therefore can be particularly useful in the case of recordings from neurons with low firing rates and/or low net mean responses. While most V1 and a half of caudate neurons exhibit high zF1 indices, the majorities of collicular and suprageniculate neurons exhibit low zF1 indices. We conclude that despite the general shortcomings of measuring strength of modulation inherent in the linear system approach, zF1 can serve as a sensitive and easy to interpret tool for detection of modulation and assessment of its strength in responses of visual neurons. PMID:23000273

  12. Development of data optimization methodology for nondestructive testing of concrete strength by the parameters of the electric response to impact excitation

    NASA Astrophysics Data System (ADS)

    Fursa, T. V.; Surzhikov, A. P.; Petrov, M. V.

    2016-02-01

    The paper presents the research results by the improvement of the non-destructive testing method of concrete strength by the parameters of the electric response to impact excitation. The electric response parameters from the set of identical concrete samples sized of 100×100×100 mm were studied. It is shown that the use of linear filtering procedure reduces the variance of diagnostic electric parameter for concrete strength determination and is in a good agreement with the elastic characteristics of the material.

  13. Dynamic Deformation and Fragmentation Response of Maraging Steel Linear Cellular Alloy

    NASA Astrophysics Data System (ADS)

    Jakus, Adam; Fredenburg, D. A.; McCoy, T.; Thadhani, N. N.; Cochran, J.

    2011-06-01

    The dynamic deformation and fragmentation response of 25% dense 9-cell linear cellular alloy (LCA) made of unaged 250 maraging steel, fabricated using a direct reduction and extrusion technique, is investigated. Explicit finite element simulations were implemented using AUTODYN. The maraging steel properties were defined using a Johnson-Cook strength model with previously validated parameters. Rod-on-anvil impact tests were performed using the 7.6 mm helium gas gun and the transient deformation and fragmentation response was recorded with high-speed imaging. For purpose of comparison, the response of 25% dense hollow cylinders of same density as the 9-cell LCA was also studied. Analysis of observed states of specimens and finite element simulations reveal that in the case of the 9-cell LCA, dissipation of stress and strain occurs along the interior cell wells resulting in significant and ubiquitous buckling prior to confined fragmentation. In comparison, the simple hollow cylinder undergoes significant radial lipping, eventually producing larger sized, external fragments. DTRA Grant No. HDTRA1-07-1-0018 and NDSEG Fellowship Program.

  14. Phase Response Synchronization in Neuronal Population with Time-Varying Coupling Strength

    PubMed Central

    Jiao, Xianfa; Zhao, Wanyu; Cao, Jinde

    2015-01-01

    We present the dynamic model of global coupled neuronal population subject to external stimulus by the use of phase sensitivity function. We investigate the effect of time-varying coupling strength on the synchronized phase response of neural population subjected to external harmonic stimulus. For a time-periodic coupling strength, we found that the stimulus with increasing intensity or frequency can reinforce the phase response synchronization in neuronal population of the weakly coupled neural oscillators, and the neuronal population with stronger coupling strength has good adaptability to stimulus. When we consider the dynamics of coupling strength, we found that a strong stimulus can quickly cause the synchronization in the neuronal population, the degree of synchronization grows with the increasing stimulus intensity, and the period of synchronized oscillation induced by external stimulation is related to stimulus frequency. PMID:26640514

  15. Linear sea-level response to abrupt ocean warming of major West Antarctic ice basin

    NASA Astrophysics Data System (ADS)

    Mengel, M.; Feldmann, J.; Levermann, A.

    2016-01-01

    Antarctica's contribution to global sea-level rise has recently been increasing. Whether its ice discharge will become unstable and decouple from anthropogenic forcing or increase linearly with the warming of the surrounding ocean is of fundamental importance. Under unabated greenhouse-gas emissions, ocean models indicate an abrupt intrusion of warm circumpolar deep water into the cavity below West Antarctica's Filchner-Ronne ice shelf within the next two centuries. The ice basin's retrograde bed slope would allow for an unstable ice-sheet retreat, but the buttressing of the large ice shelf and the narrow glacier troughs tend to inhibit such instability. It is unclear whether future ice loss will be dominated by ice instability or anthropogenic forcing. Here we show in regional and continental-scale ice-sheet simulations, which are capable of resolving unstable grounding-line retreat, that the sea-level response of the Filchner-Ronne ice basin is not dominated by ice instability and follows the strength of the forcing quasi-linearly. We find that the ice loss reduces after each pulse of projected warm water intrusion. The long-term sea-level contribution is approximately proportional to the total shelf-ice melt. Although the local instabilities might dominate the ice loss for weak oceanic warming, we find that the upper limit of ice discharge from the region is determined by the forcing and not by the marine ice-sheet instability.

  16. Thermally-induced structural dynamic response of flexural configurations influenced by linear/non-linear thermal effects

    NASA Technical Reports Server (NTRS)

    Namburu, Raju R.; Tamma, Kumar K.

    1991-01-01

    The thermally-induced strucural dynamic response of flexural configurations influenced by linear/nonlinear thermal effects is presented in conjunction with 'unified' transient approaches for effectively tackling this class of interdisciplinary problems. For illustrative purposes, the flexural structural models are assumed to be of the Euler-Bernoulli type. The purpose of the present paper is to not only provide an understanding of the influence of general linear/nonlinear thermal effects on flexural configurations, but also to provide to the analyst effective computational tools which help preserve a unified technology for the interdisciplinary areas encompassing structural mechanics/dynamics and thermal sciences. Several numerical test models illustrate the representative thermally-induced structural dynamic response of flexural configurations subjected to general linear/nonlinear temperature effects.

  17. Linear optical response of carbon nanotubes under axial magnetic field

    NASA Astrophysics Data System (ADS)

    Moradian, Rostam; Chegel, Raad; Behzad, Somayeh

    2010-04-01

    We considered single walled carbon naotubes (SWCNTs) as real three dimensional (3D) systems in a cylindrical coordinate. The optical matrix elements and linear susceptibility, χ(ω), in the tight binding approximation in terms of one-dimensional wave vector, kz and subband index, l are calculated. In an external axial magnetic field optical frequency dependence of linear susceptibility are investigated. We found that axial magnetic field has two effects on the imaginary part of the linear susceptibility spectrum, in agreement with experimental results. The first effect is broadening and the second, splitting. Also we found that for all metallic zigzag and armchair SWCNTs, the axial magnetic field leads to the creation of a peak with energy less than 1.5 eV, contrary to what is observed in the absence of a magnetic field.

  18. CFORM- LINEAR CONTROL SYSTEM DESIGN AND ANALYSIS: CLOSED FORM SOLUTION AND TRANSIENT RESPONSE OF THE LINEAR DIFFERENTIAL EQUATION

    NASA Technical Reports Server (NTRS)

    Jamison, J. W.

    1994-01-01

    CFORM was developed by the Kennedy Space Center Robotics Lab to assist in linear control system design and analysis using closed form and transient response mechanisms. The program computes the closed form solution and transient response of a linear (constant coefficient) differential equation. CFORM allows a choice of three input functions: the Unit Step (a unit change in displacement); the Ramp function (step velocity); and the Parabolic function (step acceleration). It is only accurate in cases where the differential equation has distinct roots, and does not handle the case for roots at the origin (s=0). Initial conditions must be zero. Differential equations may be input to CFORM in two forms - polynomial and product of factors. In some linear control analyses, it may be more appropriate to use a related program, Linear Control System Design and Analysis (KSC-11376), which uses root locus and frequency response methods. CFORM was written in VAX FORTRAN for a VAX 11/780 under VAX VMS 4.7. It has a central memory requirement of 30K. CFORM was developed in 1987.

  19. Polarizable embedding with a multiconfiguration short-range density functional theory linear response method

    SciTech Connect

    Hedegård, Erik Donovan; Olsen, Jógvan Magnus Haugaard; Knecht, Stefan; Kongsted, Jacob Jensen, Hans Jørgen Aagaard

    2015-03-21

    We present here the coupling of a polarizable embedding (PE) model to the recently developed multiconfiguration short-range density functional theory method (MC-srDFT), which can treat multiconfigurational systems with a simultaneous account for dynamical and static correlation effects. PE-MC-srDFT is designed to combine efficient treatment of complicated electronic structures with inclusion of effects from the surrounding environment. The environmental effects encompass classical electrostatic interactions as well as polarization of both the quantum region and the environment. Using response theory, molecular properties such as excitation energies and oscillator strengths can be obtained. The PE-MC-srDFT method and the additional terms required for linear response have been implemented in a development version of DALTON. To benchmark the PE-MC-srDFT approach against the literature data, we have investigated the low-lying electronic excitations of acetone and uracil, both immersed in water solution. The PE-MC-srDFT results are consistent and accurate, both in terms of the calculated solvent shift and, unlike regular PE-MCSCF, also with respect to the individual absolute excitation energies. To demonstrate the capabilities of PE-MC-srDFT, we also investigated the retinylidene Schiff base chromophore embedded in the channelrhodopsin protein. While using a much more compact reference wave function in terms of active space, our PE-MC-srDFT approach yields excitation energies comparable in quality to CASSCF/CASPT2 benchmarks.

  20. Response of silicon-Based Linear Energy Transfer Spectrometers

    NASA Technical Reports Server (NTRS)

    Aman, A.; Bman, B.; Badhwar, G. D.; ONeill, P. M. O.

    2000-01-01

    Silicon-based linear energy transfer (LET) telescope,(e. g., DOSTEL and RRMD) have recently been flown in space. LET spectra measured using tissue equivalent proportional counters show differences that need to be fully understood. A Monte Carlo technique based on: 1. radiation transport cluster intra-cascade model. 2. Landau-Vavilov distribution, 3. telescope geometry and detector coincidence & discriminator settings, 4. spacecraft shielding geometry, and 5. the external free space radiation environment, including recent albedo measurements, was developed.

  1. The Simplest Complete Model of Choice Response Time: Linear Ballistic Accumulation

    ERIC Educational Resources Information Center

    Brown, Scott D.; Heathcote, Andrew

    2008-01-01

    We propose a linear ballistic accumulator (LBA) model of decision making and reaction time. The LBA is simpler than other models of choice response time, with independent accumulators that race towards a common response threshold. Activity in the accumulators increases in a linear and deterministic manner. The simplicity of the model allows…

  2. Laboratory observations of fault strength in response to changes in normal stress

    USGS Publications Warehouse

    Kilgore, Brian D.; Lozos, Julian; Beeler, Nicholas M.; Oglesby, David

    2012-01-01

    Changes in fault normal stress can either inhibit or promote rupture propagation, depending on the fault geometry and on how fault shear strength varies in response to the normal stress change. A better understanding of this dependence will lead to improved earthquake simulation techniques, and ultimately, improved earthquake hazard mitigation efforts. We present the results of new laboratory experiments investigating the effects of step changes in fault normal stress on the fault shear strength during sliding, using bare Westerly granite samples, with roughened sliding surfaces, in a double direct shear apparatus. Previous experimental studies examining the shear strength following a step change in the normal stress produce contradictory results: a set of double direct shear experiments indicates that the shear strength of a fault responds immediately, and then is followed by a prolonged slip-dependent response, while a set of shock loading experiments indicates that there is no immediate component, and the response is purely gradual and slip-dependent. In our new, high-resolution experiments, we observe that the acoustic transmissivity and dilatancy of simulated faults in our tests respond immediately to changes in the normal stress, consistent with the interpretations of previous investigations, and verify an immediate increase in the area of contact between the roughened sliding surfaces as normal stress increases. However, the shear strength of the fault does not immediately increase, indicating that the new area of contact between the rough fault surfaces does not appear preloaded with any shear resistance or strength. Additional slip is required for the fault to achieve a new shear strength appropriate for its new loading conditions, consistent with previous observations made during shock loading.

  3. Beyond ROC curvature: Strength effects and response time data support continuous-evidence models of recognition memory.

    PubMed

    Dube, Chad; Starns, Jeffrey J; Rotello, Caren M; Ratcliff, Roger

    2012-10-01

    A classic question in the recognition memory literature is whether retrieval is best described as a continuous-evidence process consistent with signal detection theory (SDT), or a threshold process consistent with many multinomial processing tree (MPT) models. Because receiver operating characteristics (ROCs) based on confidence ratings are typically curved as predicted by SDT, this model has been preferred in many studies of recognition memory (Wixted, 2007). Recently, Bröder and Schütz (2009) argued that curvature in ratings ROCs may be produced by variability in scale usage; therefore, ratings ROCs are not diagnostic in deciding between the two approaches. From this standpoint, only ROCs constructed via experimental manipulations of response bias ('binary' ROCs) are predicted to be linear by threshold MPT models. The authors claimed that binary ROCs are linear, consistent with the assumptions of threshold MPT models. We compared SDT and the double high-threshold MPT model using binary ROCs differing in target strength. Results showed that the SDT model provided a superior account of both the ROC curvature and the effect of strength compared to the MPT model. Moreover, the bias manipulation produced differences in RT distributions that were well described by the diffusion model (Ratcliff, 1978), a dynamic version of SDT. PMID:22988336

  4. Response Characteristics of a Linear Rotorcraft Vibration Model

    NASA Technical Reports Server (NTRS)

    Kunz, Donald L.

    1982-01-01

    A fully coupled vibration model, consisting of a rotor with only flapping degrees of freedom plus pylon and fuselage pitching motion, was used in a parametric study undertaken to investigate the response characteristics of a simplified helicopter. Among the parameters studied were uncoupled body frequency, blade stiffness, hinge offset, advance ratio, and mast height. Results from the harmonic balance solution of the equations of motion show how each of these quantities affects the response of the model. The results also indicate that there is a potential for reducing vibration response through the judicious definition of the design parameters.

  5. Effects of two deep water training programs on cardiorespiratory and muscular strength responses in older adults.

    PubMed

    Kanitz, Ana Carolina; Delevatti, Rodrigo Sudatti; Reichert, Thais; Liedtke, Giane Veiga; Ferrari, Rodrigo; Almada, Bruna Pereira; Pinto, Stephanie Santana; Alberton, Cristine Lima; Kruel, Luiz Fernando Martins

    2015-04-01

    This study aimed to investigate the effects of two deep water training programs on cardiorespiratory and muscular strength responses in older adults. Thirty-four older adults men were placed into two groups: deep water endurance training (ET; n = 16; 66 ± 4 years) and deep water strength prior to endurance training (concurrent training: CT; n = 18; 64 ± 4 years). The training period lasted 12 weeks, with three sessions a week. The resting heart rate and the oxygen uptake at peak (VO2peak) and at the second ventilatory threshold (VO2VT2) were evaluated during a maximal incremental test on a cycle ergometer before and after training. In addition, maximal dynamic strength (one repetition maximum test--1RM) and local muscular resistance (maximum repetitions at 60% 1RM) of the knee extensors and flexors were evaluated. After the training period, the heart rate at rest decreased significantly, while the VO2peak and VO2VT2 showed significant increases in both groups (p<0.05). Only the VO2VT2 resulted in significantly greater values for the ET compared to the CT group after the training (p<0.05). In addition, after training, there was a significant increase in the maximal dynamic strength of the knee extensors and the local muscular endurance of the knee extensors and flexors, with no difference between the groups (p > 0.05). In summary, the two training programs were effective at producing significant improvements in cardiorespiratory and muscular strength responses in older adult men. However, deep water endurance training at high intensities provides increased cardiorespiratory responses compared to CT and results in similar muscular strength responses. PMID:25700846

  6. Linear Response Theory for Hard and Soft Glassy Materials

    SciTech Connect

    Langer, J.; Bouchbinder, Eran

    2011-01-01

    Despite qualitative differences in their underlying physics, both hard and soft glassy materials exhibit almost identical linear rheological behaviors. We show that these nearly universal properties emerge naturally in a shear-transformation-zone (STZ) theory of amorphous plasticity, extended to include a broad distribution of internal thermal-activation barriers. The principal features of this barrier distribution are predicted by nonequilibrium, effective-temperature thermodynamics. Our theoretical loss modulus G{double_prime}({omega}) has a peak at the {alpha} relaxation rate, and a power law decay of the form {omega}{sup -{zeta}} for higher frequencies, in quantitative agreement with experimental data.

  7. A Meta-Analysis To Determine the Dose Response for Strength Development.

    ERIC Educational Resources Information Center

    Rhea, Matthew R.; Alvar, Brent A.; Burkett, Lee N.; Ball, Stephen D.

    2003-01-01

    Examined the quantitative dose-response relationship for strength development by calculating the magnitude of gains elicited by various levels of training intensity, frequency, and volume; thus clarifying the effort to benefit ratio. A meta-analysis of 140 studies with 1,433 effect sizes (ES) was conducted. ES demonstrated different responses…

  8. Linear response of doped graphene sheets to vector potentials

    NASA Astrophysics Data System (ADS)

    Principi, A.; Polini, Marco; Vignale, G.

    2009-08-01

    A two-dimensional gas of massless Dirac fermions (MDFs) is a very useful model to describe low-energy electrons in monolayer graphene. Because the MDF current operator is directly proportional to the (sublattice) pseudospin operator, the MDF current-current response function, which describes the response to a vector potential, happens to coincide with the pseudospin-pseudospin response function. In this work, we present analytical results for the wave vector- and frequency-dependent longitudinal and transverse pseudospin-pseudospin response functions of noninteracting MDFs. The transverse response in the static limit is then used to calculate the noninteracting orbital magnetic susceptibility. These results are a starting point for the construction of approximate pseudospin-pseudospin response functions that would take into account electron-electron interactions (for example at the random-phase-approximation level). They also constitute a very useful input for future applications of current-density-functional theory to graphene sheets subjected to time and spatially varying vector potentials.

  9. The stratospheric response to external factors based on MERRA data using linear multivariate linear regression analysis

    NASA Astrophysics Data System (ADS)

    Kozubek, M.; Rozanov, E.; Krizan, P.

    2014-09-01

    The stratosphere is influenced by many external forcings (natural or anthropogenic). There are many studies which are focused on this problem and that is why we can compare our results with them. This study is focused on the variability and trends of temperature and circulation characteristics (zonal and meridional wind component) in connection with different phenomena variation in the stratosphere and lower mesosphere. We consider the interactions between the troposphere-stratosphere-lower mesosphere system and external and internal phenomena, e.g. solar cycle, QBO, NAO or ENSO using multiple linear techniques. The analysis was applied to the period 1979-2012 based on the current reanalysis data, mainly the MERRA reanalysis dataset (Modern Era Retrospective-analysis for Research and Applications) for pressure levels: 1000-0.1 hPa. We do not find a strong temperature signal for solar flux over the tropics about 30 hPa (ERA-40 results) but the strong positive signal has been observed near stratopause almost in the whole analyzed area. This could indicate that solar forcing is not represented well in the higher pressure levels in MERRA. The analysis of ENSO and ENSO Modoki shows that we should take into account more than one ENSO index for similar analysis. Previous studies show that the volcanic activity is important parameter. The signal of volcanic activity in MERRA is very weak and insignificant.

  10. Item Response Theory Using Hierarchical Generalized Linear Models

    ERIC Educational Resources Information Center

    Ravand, Hamdollah

    2015-01-01

    Multilevel models (MLMs) are flexible in that they can be employed to obtain item and person parameters, test for differential item functioning (DIF) and capture both local item and person dependence. Papers on the MLM analysis of item response data have focused mostly on theoretical issues where applications have been add-ons to simulation…

  11. MODELING STREAM-AQUIFIER INTERACTIONS WITH LINEAR RESPONSE FUNCTIONS

    EPA Science Inventory

    The problem of stream-aquifer interactions is pertinent to conjunctive-use management of water resources and riparian zone hydrology. Closed form solutions are derived for stream-aquifer interactions in rates and volumes expressed as convolution integrals of impulse response and ...

  12. Efficient Algorithms for Estimating the Absorption Spectrum within Linear Response TDDFT

    SciTech Connect

    Brabec, Jiri; Lin, Lin; Shao, Meiyue; Govind, Niranjan; Yang, Chao; Saad, Yousef; Ng, Esmond

    2015-10-06

    We present two iterative algorithms for approximating the absorption spectrum of molecules within linear response of time-dependent density functional theory (TDDFT) framework. These methods do not attempt to compute eigenvalues or eigenvectors of the linear response matrix. They are designed to approximate the absorption spectrum as a function directly. They take advantage of the special structure of the linear response matrix. Neither method requires the linear response matrix to be constructed explicitly. They only require a procedure that performs the multiplication of the linear response matrix with a vector. These methods can also be easily modified to efficiently estimate the density of states (DOS) of the linear response matrix without computing the eigenvalues of this matrix. We show by computational experiments that the methods proposed in this paper can be much more efficient than methods that are based on the exact diagonalization of the linear response matrix. We show that they can also be more efficient than real-time TDDFT simulations. We compare the pros and cons of these methods in terms of their accuracy as well as their computational and storage cost.

  13. Linear-response reflection coefficient of the recorder air-jet amplifier.

    PubMed

    Price, John C; Johnston, William A; McKinnon, Daniel D

    2015-11-01

    In a duct-flute such as the recorder, steady-state oscillations are controlled by two parameters, the blowing pressure and the frequency of the acoustic resonator. As in most feedback oscillators, the oscillation amplitude is determined by gain-saturation of the amplifier, and thus it cannot be controlled independently of blowing pressure and frequency unless the feedback loop is opened. In this work, the loop is opened by replacing the recorder body with a waveguide reflectometer: a section of transmission line with microphones, a signal source, and an absorbing termination. When the mean flow from the air-jet into the transmission line is not blocked, the air-jet amplifier is unstable to edge-tone oscillations through a feedback path that does not involve the acoustic resonator. When it is blocked, the air-jet is deflected somewhat outward and the system becomes stable. It is then possible to measure the reflection coefficient of the air-jet amplifier versus blowing pressure and acoustic frequency under linear response conditions, avoiding the complication of gain-saturation. The results provide a revealing test of flute drive models under the simplest conditions and with few unknown parameters. The strengths and weaknesses of flute drive models are discussed. PMID:26627801

  14. Cyclic Strain Resistance, Stress Response, Fatigue Life, and Fracture Behavior of High Strength Low Alloy Steel 300 M

    NASA Astrophysics Data System (ADS)

    Manigandan, K.; Srivatsan, T. S.; Tammana, Deepthi; Poorgangi, Behrang; Vasudevan, Vijay K.

    2014-05-01

    The focus of this technical manuscript is a record of the specific role of microstructure and test specimen orientation on cyclic stress response, cyclic strain resistance, and cyclic stress versus strain response, deformation and fracture behavior of alloy steel 300 M. The cyclic strain amplitude-controlled fatigue properties of this ultra-high strength alloy steel revealed a linear trend for the variation of log elastic strain amplitude with log reversals-to-failure, and log plastic strain amplitude with log reversals-to-failure for both longitudinal and transverse orientations. Test specimens of the longitudinal orientation showed only a marginal improvement over the transverse orientation at equivalent values of plastic strain amplitude. Cyclic stress response revealed a combination of initial hardening for the first few cycles followed by gradual softening for a large portion of fatigue life before culminating in rapid softening prior to catastrophic failure by fracture. Fracture characteristics of test specimens of this alloy steel were different at both the macroscopic and fine microscopic levels over the entire range of cyclic strain amplitudes examined. Both macroscopic and fine microscopic observations revealed fracture to be a combination of both brittle and ductile mechanisms. The underlying mechanisms governing stress response, deformation characteristics, fatigue life, and final fracture behavior are presented and discussed in light of the competing and mutually interactive influences of test specimen orientation, intrinsic microstructural effects, deformation characteristics of the microstructural constituents, cyclic strain amplitude, and response stress.

  15. Cumulative Violence Exposures: Black Women’s Responses and Sources of Strength

    PubMed Central

    Sabri, Bushra; Holliday, Charvonne N.; Alexander, Kamila A.; Huerta, Julia; Cimino, Andrea; Callwood, Gloria B.; Campbell, Jacquelyn C.

    2016-01-01

    Black women with cumulative violence exposures (CVE) may have unique needs for health care and safety. Qualitative data was analyzed from interviews with nine Black women with CVE to explore factors that motivated women to leave abusive relationships, women’s sources of strengths, and their responses to abuse. Quantitative data (N = 163) was analyzed to examine relationships between CVEs by intimate partner and health among Black women to further characterize the challenges these women face in making changes and finding their sources of strengths. Findings highlight the need to assess for CVE and identify multiple motivators for change, sources of strengths and coping strategies that could be potential points of intervention for women with CVE. PMID:26954765

  16. Critical scaling in linear response of frictionless granular packings near jamming.

    PubMed

    Ellenbroek, Wouter G; Somfai, Ellák; van Hecke, Martin; van Saarloos, Wim

    2006-12-22

    We study the origin of the scaling behavior in frictionless granular media above the jamming transition by analyzing their linear response. The response to local forcing is non-self-averaging and fluctuates over a length scale that diverges at the jamming transition. The response to global forcing becomes increasingly nonaffine near the jamming transition. This is due to the proximity of floppy modes, the influence of which we characterize by the local linear response. We show that the local response also governs the anomalous scaling of elastic constants and contact number. PMID:17280395

  17. CNTF 1357 G → A polymorphism and the muscle strength response to resistance training

    PubMed Central

    Walsh, Sean; Kelsey, Bethany K.; Angelopoulos, Theodore J.; Clarkson, Priscilla M.; Gordon, Paul M.; Moyna, Niall M.; Visich, Paul S.; Zoeller, Robert F.; Seip, Richard L.; Bilbie, Steve; Thompson, Paul D.; Hoffman, Eric P.; Price, Thomas B.; Devaney, Joseph M.

    2009-01-01

    The present study examined associations between the ciliary neurotrophic factor (CNTF) 1357 G → A polymorphism and the muscle strength response to a unilateral, upper arm resistance-training (RT) program among healthy, young adults. Subjects were 754 Caucasian men (40%) and women (60%) who were genotyped and performed a training program of the nondominant (trained) arm with the dominant (untrained) arm as a comparison. Peak elbow flexor strength was measured with one repetition maximum, isometric strength with maximum voluntary contraction, and bicep cross-sectional area with MRI in the trained and untrained arms before and after training. Women with the CNTF GG genotype gained more absolute isometric strength, as measured by MVC (6.5 ± 0.3 vs. 5.2 ± 0.5 kg), than carriers of the CNTF A1357 allele in the trained arm pre- to posttraining (P < 0.05). No significant associations were seen in men. Women with the CNTF GG genotype gained more absolute dynamic (1.0 ± 0.1 vs. 0.6 ± 0.1 kg) and allometric (0.022 ± 0.0 vs. 0.015 ± 0.0 kg/kg−0.67) strength, as measured by 1 RM, than carriers of the CNTF A1357 allele in the untrained arm pre- to posttraining (P < 0.05). No significant associations were seen in men. No significant associations, as measured by cross-sectional area, were seen in men or women. The CNTF 1357 G → A polymorphism explains only a small portion of the variability in the muscle strength response to training in women. PMID:19628720

  18. Thermal shifts and intermittent linear response of aging systems

    NASA Astrophysics Data System (ADS)

    Sibani, Paolo; Christiansen, Simon

    2008-04-01

    At time t after an initial quench, an aging system responds to a perturbation turned on at time twresponse on the ratio t/tw . Further insight is obtained imposing small temperature steps, so-called T shifts. The average response as a function of t/tw,eff , where tw,eff is the effective age, is similar to the response of a system aged isothermally at the final temperature. Using an Ising model with plaquette interactions, the applicability of analytic formulas for the average isothermal magnetization is confirmed. The T -shifted aging behavior of the model is approximately described using effective ages. Large positive shifts nearly reset the effective age. Negative T shifts offer a more detailed probe of the dynamics. Assuming the marginal stability of the “current” attractor against thermal noise fluctuations, the scaling form tw,eff=twx and the dependence of the exponent x on the aging temperatures before and after the shift are theoretically available. The predicted form of x has no adjustable parameters. Both the algebraic scaling of the effective age and the form of the exponent reasonably agree with the data. The present simulations thus confirm the crucial role of marginal stability in glassy relaxation.

  19. Modeling and Simulation of the Impact Response of Maraging Steel Linear Cellular Alloys for Structural Energetic Material Applications

    NASA Astrophysics Data System (ADS)

    Jakus, Adam; Fredenburg, Anthony; McCoy, Tammy; Cochran, Joe; Thadhani, Naresh

    2009-06-01

    A refined Johnson-Cook material strength model is developed for predicting the dynamic strain and fracture response of Maraging 250 steel at high-strain rates. Finite element simulations of rod-on-anvil impacts are carried out at velocities exceeding 100m/s and compared with experimental impact tests performed on a 7.62mm gas gun. The transient and final dimensions of the simulated and experimentally impacted rods are compared and Johnson-Cook strength parameters are modified accordingly. The newly developed Maraging 250 steel Johnson-cook strength model is then applied to simulate the impact response of multiple, 25% dense linear cellular alloys (LCA) of various geometries at velocities exceeding 100m/s. Analyses of the deformation, fragmentation, and stress transfer behavior of the simulated LCAs are performed and validated through comparison of corresponding impact experiments performed on the LCAs produced via an extrusion and reduction process. Stress transfer to the interior walls varies as a function of LCA geometry, which also influences the outward fragmentation and energy retention at the cross-section of impact.

  20. Responsive nanoporous metals: recoverable modulations on strength and shape by watering.

    PubMed

    Ye, Xing-Long; Liu, Ling-Zhi; Jin, Hai-Jun

    2016-08-12

    Many biological materials can readily modulate their mechanical properties and shape by interacting with water in the surrounding environment, which is essential to their high performance in application. In contrast, typical inorganic materials (such as the metals) cannot change their strength and shape without involving thermal/mechanical treatments. By introducing nano-scale porous structure and exploiting a simple physical concept-the water-capillarity in nanopores, here we report that a 'dead' metal can be transformed into a 'smart' material with water-responsive properties. We demonstrate that the apparent strength, volume and shape of nanoporous Au and Au(Pt) can be modulated in situ, dramatically and recoverably, in response to water-dipping and partial-drying. The amplitude of strength-modulation reaches 20 MPa, which is nearly 50% of the yield strength at initial state. This approach also leads to reversible length change up to 1.3% in nanoporous Au and a large reversible bending motion of a bi-layer strip with tip displacement of ∼20 mm, which may be used for actuation. This method is simple and effective, occurring in situ under ambient conditions and requiring no external power, analogous to biological materials. The findings may open up novel applications in many areas such as micro-robotics and bio-medical devices. PMID:27347850

  1. Responsive nanoporous metals: recoverable modulations on strength and shape by watering

    NASA Astrophysics Data System (ADS)

    Ye, Xing-Long; Liu, Ling-Zhi; Jin, Hai-Jun

    2016-08-01

    Many biological materials can readily modulate their mechanical properties and shape by interacting with water in the surrounding environment, which is essential to their high performance in application. In contrast, typical inorganic materials (such as the metals) cannot change their strength and shape without involving thermal/mechanical treatments. By introducing nano-scale porous structure and exploiting a simple physical concept—the water-capillarity in nanopores, here we report that a ‘dead’ metal can be transformed into a ‘smart’ material with water-responsive properties. We demonstrate that the apparent strength, volume and shape of nanoporous Au and Au(Pt) can be modulated in situ, dramatically and recoverably, in response to water-dipping and partial-drying. The amplitude of strength-modulation reaches 20 MPa, which is nearly 50% of the yield strength at initial state. This approach also leads to reversible length change up to 1.3% in nanoporous Au and a large reversible bending motion of a bi-layer strip with tip displacement of ∼20 mm, which may be used for actuation. This method is simple and effective, occurring in situ under ambient conditions and requiring no external power, analogous to biological materials. The findings may open up novel applications in many areas such as micro-robotics and bio-medical devices.

  2. Linear Ordinary Differential Equations with Constant Coefficients. Revisiting the Impulsive Response Method Using Factorization

    ERIC Educational Resources Information Center

    Camporesi, Roberto

    2011-01-01

    We present an approach to the impulsive response method for solving linear constant-coefficient ordinary differential equations based on the factorization of the differential operator. The approach is elementary, we only assume a basic knowledge of calculus and linear algebra. In particular, we avoid the use of distribution theory, as well as of…

  3. RESPONSE LINEARIZATION OF A DIODE DETECTOR TYPE RADIO FREQUENCY ELECTRIC FIELD PROBE

    EPA Science Inventory

    An EPROM-based linearization circuit with a resolution of 0.1 percent of full scale has been designed to linearize the response of an orthogonal dipole electric field probe terminated with diodes. Design approach, performance, and probe characteristics are discussed. The nonlinea...

  4. Linear and nonlinear piezoelectric response of charged cellular polypropylene

    NASA Astrophysics Data System (ADS)

    Kressmann, Reiner

    2001-10-01

    Piezoelectricity in a charged cellular polypropylene, called EMFi, is investigated with respect to nonlinearities to explain the strong differences in longitudinal piezoelectric constants published in the literature and ranging from 90 to 250 pC/N. The inverse constant was measured interferometrically to be 90 pm/V. Quasistatic and dynamic measurements with small loads yielded the same value for the direct constant. The direct constant was also investigated with respect to large-signal behavior becoming noticeable at static and dynamic loads higher than 10 kPa. Both the quasistatic and the dynamic constant increase up to 130 pC/N at such loads. Furthermore, an additional resonance appears under strong loading in the range of about 10 Hz shifting down with increasing load. In addition, the piezoelectric constant increases also with increasing dynamic load under constant static load. The nonlinearity also results in the generation of harmonics. Finally, boundary effects can be detected if just a small area of the sample is loaded. This effect appearing mainly at frequencies below 20 Hz is attributed to airflow between the air bubbles. A load-dependent Young's modulus, mainly responsible for the nonlinear behavior, is calculated from the experiments. It diminishes from 2 to 1.5 MPa at a load of 60 kPa.

  5. Dependences of Q-branch integrated intensity of linear-molecule pendular spectra on electric-field strength and rotational temperature and its potential applications

    PubMed Central

    Deng, Min; Wang, Hailing; Wang, Qin; Yin, Jianping

    2016-01-01

    We calculate the pendular-state spectra of cold linear molecules, and investigated the dependences of “Q-branch” integrated intensity of pendular spectra on both electric-field strength and molecular rotation-temperature. A new multi-peak structure in the “Q-branch” spectrum is appearing when the Stark interaction strength ω = μE/B equal to or larger than the critical value. Our study shows that the above results can be used not only to measure the electric-field vector and its spatial distribution in some electrostatic devices, such as the Stark decelerator, Stark velocity filter and electrostatic trap and so on, but also to survey the orientation degree of cold linear molecules in a strong electrostatic field. PMID:27231057

  6. Dependences of Q-branch integrated intensity of linear-molecule pendular spectra on electric-field strength and rotational temperature and its potential applications.

    PubMed

    Deng, Min; Wang, Hailing; Wang, Qin; Yin, Jianping

    2016-01-01

    We calculate the pendular-state spectra of cold linear molecules, and investigated the dependences of "Q-branch" integrated intensity of pendular spectra on both electric-field strength and molecular rotation-temperature. A new multi-peak structure in the "Q-branch" spectrum is appearing when the Stark interaction strength ω = μE/B equal to or larger than the critical value. Our study shows that the above results can be used not only to measure the electric-field vector and its spatial distribution in some electrostatic devices, such as the Stark decelerator, Stark velocity filter and electrostatic trap and so on, but also to survey the orientation degree of cold linear molecules in a strong electrostatic field. PMID:27231057

  7. Dependences of Q-branch integrated intensity of linear-molecule pendular spectra on electric-field strength and rotational temperature and its potential applications

    NASA Astrophysics Data System (ADS)

    Deng, Min; Wang, Hailing; Wang, Qin; Yin, Jianping

    2016-05-01

    We calculate the pendular-state spectra of cold linear molecules, and investigated the dependences of “Q-branch” integrated intensity of pendular spectra on both electric-field strength and molecular rotation-temperature. A new multi-peak structure in the “Q-branch” spectrum is appearing when the Stark interaction strength ω = μE/B equal to or larger than the critical value. Our study shows that the above results can be used not only to measure the electric-field vector and its spatial distribution in some electrostatic devices, such as the Stark decelerator, Stark velocity filter and electrostatic trap and so on, but also to survey the orientation degree of cold linear molecules in a strong electrostatic field.

  8. Linear and cubic response to the initial eccentricity in heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Noronha-Hostler, Jacquelyn; Yan, Li; Gardim, Fernando G.; Ollitrault, Jean-Yves

    2016-01-01

    We study the relation between elliptic flow, v2, and the initial eccentricity, ɛ2, in heavy-ion collisions, using hydrodynamic simulations. Significant deviations from linear eccentricity scaling are seen in more peripheral collisions. We identify the mechanism responsible for these deviations as a cubic response, which we argue is a generic property of the hydrodynamic response to the initial density profile. The cubic response increases elliptic flow fluctuations, thereby improving agreement of initial condition models with experimental data.

  9. Prediction of Nociceptive Responses during Sedation by Linear and Non-Linear Measures of EEG Signals in High Frequencies

    PubMed Central

    Melia, Umberto; Vallverdú, Montserrat; Borrat, Xavier; Valencia, Jose Fernando; Jospin, Mathieu; Jensen, Erik Weber; Gambus, Pedro; Caminal, Pere

    2015-01-01

    The level of sedation in patients undergoing medical procedures evolves continuously, affected by the interaction between the effect of the anesthetic and analgesic agents and the pain stimuli. The monitors of depth of anesthesia, based on the analysis of the electroencephalogram (EEG), have been progressively introduced into the daily practice to provide additional information about the state of the patient. However, the quantification of analgesia still remains an open problem. The purpose of this work is to improve the prediction of nociceptive responses with linear and non-linear measures calculated from EEG signal filtered in frequency bands higher than the traditional bands. Power spectral density and auto-mutual information function was applied in order to predict the presence or absence of the nociceptive responses to different stimuli during sedation in endoscopy procedure. The proposed measures exhibit better performances than the bispectral index (BIS). Values of prediction probability of Pk above 0.75 and percentages of sensitivity and specificity above 70% were achieved combining EEG measures from the traditional frequency bands and higher frequency bands. PMID:25901571

  10. Effect of microstructure on the fracture response of advanced high strength steels

    NASA Astrophysics Data System (ADS)

    Taylor, Mark D.

    2013-01-01

    The materials selected to observe microstructural effects on formability included four 780 MPa strength, and four 980 MPa strength AHSS grades produced with varying processing conditions. The grades were an uncoated DP780, a high yield DP780, a galvanized DP780, a TRIP780, a galvannealed DP980, a galvanized DP980, an uncoated DP980, and a fine grained DP980. All AHSS grades were tensile tested to obtain values for ultimate tensile strength, yield strength, percent uniform and total elongation. An analysis was performed to quantify the average grain size of the primary and second phase constituents, as well as the second phase volume fraction present in each AHSS grade. Nanoindentation was performed for each AHSS grade to determine the average hardness of the primary and second phase constituents present. Evolution of microstructural damage in response to deformation was analyzed using a plane strain tensile method developed to impose a localized through-thickness shear fracture. Samples of each AHSS grade were strained to progressively higher percentages of their failure displacement, and microstructural damage was observed using a scanning electron microscope on a metallographic section removed from the localized shear deformation region. Micrographs were analyzed using ImageJ®, and the resulting void percent and number of voids were determined for each test performed. A direct correlation was observed between the number of voids and hardness ratio. The strength of the microstructural constituents affected mechanical properties, suggesting that constituent strength values should be considered when predicting formability limits for higher strength AHSS grades. Since all AHSS grades experienced some critical number of voids before fracture, it was concluded that suppression of void formation can extend the formability limits to higher strains. After observing a percent failure displacement value of 95%, it was determined that the final stage of fracture (void

  11. Acute Physiological Responses to Strongman Training Compared to Traditional Strength Training.

    PubMed

    Harris, Nigel K; Woulfe, Colm J; Wood, Matthew R; Dulson, Deborah K; Gluchowski, Ashley K; Keogh, Justin B

    2016-05-01

    Harris, NK, Woulfe, CJ, Wood, MR, Dulson, DK, Gluchowski, AK, and Keogh, JB. Acute physiological responses to strongman training compared to traditional strength training. J Strength Cond Res 30(5): 1397-1408, 2016-Strongman training (ST) has become an increasingly popular modality, but data on physiological responses are limited. This study sought to determine physiological responses to an ST session compared to a traditional strength exercise training (RST) session. Ten healthy men (23.6 ± 27.5 years, 85.8 ± 10.3 kg) volunteered in a crossover design, where all participants performed an ST session, an RST session, and a resting session within 7 days apart. The ST consisted of sled drag, farmer's walk, 1 arm dumbbell clean and press, and tire flip at loads eliciting approximately 30 seconds of near maximal effort per set. The RST consisted of squat, deadlift, bench press, and power clean, progressing to 75% of 1 repetition maximum. Sessions were equated for approximate total set duration. Blood lactate and salivary testosterone were recorded immediately before and after training sessions. Heart rate, caloric expenditure, and substrate utilization were measured throughout the resting session, both training protocols and for 80 minutes after training sessions. Analyses were conducted to determine differences in physiological responses within and between protocols. No significant changes in testosterone occurred at any time point for either session. Lactate increased significantly immediately after both sessions. Heart rate, caloric expenditure, and substrate utilization were all elevated significantly during ST and RST. Heart rate and fat expenditure were significantly elevated compared to resting in both sessions' recovery periods; calorie and carbohydrate expenditures were not. Compared to RST, ST represents an equivalent physiological stimulus on key parameters indicative of potential training-induced adaptive responses. Such adaptations could conceivably

  12. Ligand-Induced Protein Responses and Mechanical Signal Propagation Described by Linear Response Theories

    PubMed Central

    Yang, Lee-Wei; Kitao, Akio; Huang, Bang-Chieh; Gō, Nobuhiro

    2014-01-01

    In this study, a general linear response theory (LRT) is formulated to describe time-dependent and -independent protein conformational changes upon CO binding with myoglobin. Using the theory, we are able to monitor protein relaxation in two stages. The slower relaxation is found to occur from 4.4 to 81.2 picoseconds and the time constants characterized for a couple of aromatic residues agree with those observed by UV Resonance Raman (UVRR) spectrometry and time resolved x-ray crystallography. The faster “early responses”, triggered as early as 400 femtoseconds, can be best described by the theory when impulse forces are used. The newly formulated theory describes the mechanical propagation following ligand-binding as a function of time, space and types of the perturbation forces. The “disseminators”, defined as the residues that propagate signals throughout the molecule the fastest among all the residues in protein when perturbed, are found evolutionarily conserved and the mutations of which have been shown to largely change the CO rebinding kinetics in myoglobin. PMID:25229149

  13. RESPONSE LATENCY AS AN INDEX OF RESPONSE STRENGTH DURING FUNCTIONAL ANALYSES OF PROBLEM BEHAVIOR

    PubMed Central

    Thomason-Sassi, Jessica L; Iwata, Brian A; Neidert, Pamela L; Roscoe, Eileen M

    2011-01-01

    Dependent variables in research on problem behavior typically are based on measures of response repetition, but these measures may be problematic when behavior poses high risk or when its occurrence terminates a session. We examined response latency as the index of behavior during assessment. In Experiment 1, we compared response rate and latency to the first response under acquisition and maintenance conditions. In Experiment 2, we compared data from existing functional analyses when graphed as rate versus latency. In Experiment 3, we compared results from pairs of independent functional analyses. Sessions in the first analysis were terminated following the first occurrence of behavior, whereas sessions in the second analysis lasted for 10 min. Results of all three studies showed an inverse relation between rate and latency, indicating that latency might be a useful measure of responding when repeated occurrences of behavior are undesirable or impractical to arrange. PMID:21541141

  14. Activation of bone remodeling after fatigue: differential response to linear microcracks and diffuse damage.

    PubMed

    Herman, B C; Cardoso, L; Majeska, R J; Jepsen, K J; Schaffler, M B

    2010-10-01

    Recent experiments point to two predominant forms of fatigue microdamage in bone: linear microcracks (tens to a few hundred microns in length) and "diffuse damage" (patches of diffuse stain uptake in fatigued bone comprised of clusters of sublamellar-sized cracks). The physiological relevance of diffuse damage in activating bone remodeling is not known. In this study microdamage amount and type were varied to assess whether linear or diffuse microdamage has similar effects on the activation of intracortical resorption. Activation of resorption was correlated to the number of linear microcracks (Cr.Dn) in the bone (R(2)=0.60, p<0.01). In contrast, there was no activation of resorption in response to diffuse microdamage alone. Furthermore, there was no significant change in osteocyte viability in response to diffuse microdamage, suggesting that osteocyte apoptosis, which is known to activate remodeling at typical linear microcracks in bone, does not result from sublamellar damage. These findings indicate that inability of diffuse microdamage to activate resorption may be due to lack of a focal injury response. Finally, we found that duration of loading does not affect the remodeling response. In conclusion, our data indicate that osteocytes activate resorption in response to linear microcracks but not diffuse microdamage, perhaps due to lack of a focal injury-induced apoptotic response. PMID:20633708

  15. Age and response bias: evidence from the strength-based mirror effect.

    PubMed

    Criss, Amy H; Aue, William; Kılıç, Aslı

    2014-10-01

    Performance in episodic memory is determined both by accurate retrieval from memory and by decision processes. A substantial body of literature suggests slightly poorer episodic memory accuracy for older than younger adults; however, age-related changes in the decision mechanisms in memory have received much less attention. Response bias, the willingness to endorse an item as remembered, is an important decision factor that contributes to episodic memory performance, and therefore understanding age-related changes in response bias is critical to theoretical development. We manipulate list strength in order to investigate two aspects of response bias. First, we evaluate whether criterion placement in episodic memory differs for older and younger adults. Second, we ask whether older adults have the same degree of flexibility to adjust the criterion in response to task demands as younger adults. Participants were tested on weakly and strongly encoded lists where word frequency (Experiment 1) or similarity between targets and foils (Experiment 2) was manipulated. Both older and younger adults had higher hit rates and lower false-alarm rates for strong lists than for weak lists (i.e., a strength-based mirror effect). Older adults were more conservative (less likely to endorse an item as studied) than younger adults, and we found no evidence that older and younger adults differ in their ability to flexibly adjust their criterion based on the demands of the task. PMID:24386987

  16. Comparison of Finite Element Non-Linear Beam Random Response with Experimental Results

    NASA Astrophysics Data System (ADS)

    Chen, R. R.; Mei, C.; Wolfe, HF

    1996-09-01

    A finite element formulation combined with the equivalent linearization technique and normal mode method is developed for the non-linear random response of beams subjected to acoustic and thermal loads applied simultaneously. To validate the present formulation and solution procedure, results are compared with the classical continuum solution and the Fokker-Planck-Kolmogorov equation solution. Comparison is also made with experimental data for a pre-stretched clamped beam. Random responses of thermally buckled simply supported beam, clamped beam and simply supported-clamped beam are presented. The comparison of the present simultaneously loaded response with the existing sequentially loaded results shows a significant difference between them.

  17. Response surface characterization of impact damage and residual strength degradation in composite sandwich panels

    NASA Astrophysics Data System (ADS)

    Samarah, Issam Khder

    2003-06-01

    The influence of material configuration and impact parameters on the damage tolerance characteristics of sandwich composites comprised of carbon-epoxy woven fabric facesheets and Nomex honeycomb cores was investigated using empirically based response surfaces. A series of carefully selected tests were used to isolate the coupled influence of various combinations of the number of facesheet plies, core density, core thickness, impact energy, impactor diameter, and impact velocity on the damage formation and residual strength degradation due to normal impact. The ranges of selected material parameters were typical of those found in common aircraft applications. The diameter of the planar damage area associated with Through Transmission Ultrasonic C-scan measurements and the peak residual facesheet indentation depth were used to describe the extent of internal and detectable surface damage, respectively. Standard analysis of variance techniques were used to assess the significance of the regression models, individual model terms, and model lack-of-fit. In addition, the inherent variability associated with given types of experimental measurements was evaluated. Response surface estimates of the size of the planar damage region and compressive residual strength as a continuous function of material system and impact parameters correlated reasonably well with experimentally determined values. For a fixed set of impact parameters, regression results suggest that impact damage development and residual strength degradation is highly material and lay-up configuration dependent. Increasing the number of facesheet plies and the thickness of the core material generally resulted in the greatest improvement in the damage tolerance characteristics. An increase in the impact energy can result in a significant decrease in the estimated residual strength, particularly for those sandwich panels with thicker facesheets. The effects of variable impact velocity on damage formation and loss

  18. The spin polarized linear response from density functional theory: theory and application to atoms.

    PubMed

    Fias, Stijn; Boisdenghien, Zino; De Proft, Frank; Geerlings, Paul

    2014-11-14

    Within the context of spin polarized conceptual density functional theory, the spin polarized linear response functions are introduced both in the [N, N(s)] and [N(α), N(β)] representations. The mathematical relations between the spin polarized linear response functions in both representations are examined and an analytical expression for the spin polarized linear response functions in the [N(α), N(β)] representation is derived. The spin polarized linear response functions were calculated for all atoms up to and including argon. To simplify the plotting of our results, we integrated χ(r, r') to a quantity χ(r, r'), circumventing the θ and ϕ dependence. This allows us to plot and to investigate the periodicity throughout the first three rows in the periodic table within the two different representations. For the first time, χ(αβ)(r, r'), χ(βα)(r, r'), and χ(SS)(r, r') plots have been calculated and discussed. By integration of the spin polarized linear response functions, different components to the polarisability, α(αα), α(αβ), α(βα), and α(ββ) have been calculated. PMID:25399132

  19. The spin polarized linear response from density functional theory: Theory and application to atoms

    SciTech Connect

    Fias, Stijn Boisdenghien, Zino; De Proft, Frank; Geerlings, Paul

    2014-11-14

    Within the context of spin polarized conceptual density functional theory, the spin polarized linear response functions are introduced both in the [N, N{sub s}] and [N{sub α}, N{sub β}] representations. The mathematical relations between the spin polarized linear response functions in both representations are examined and an analytical expression for the spin polarized linear response functions in the [N{sub α}, N{sub β}] representation is derived. The spin polarized linear response functions were calculated for all atoms up to and including argon. To simplify the plotting of our results, we integrated χ(r, r′) to a quantity χ(r, r{sup ′}), circumventing the θ and ϕ dependence. This allows us to plot and to investigate the periodicity throughout the first three rows in the periodic table within the two different representations. For the first time, χ{sub αβ}(r, r{sup ′}), χ{sub βα}(r, r{sup ′}), and χ{sub SS}(r, r{sup ′}) plots have been calculated and discussed. By integration of the spin polarized linear response functions, different components to the polarisability, α{sub αα}, α{sub αβ}, α{sub βα}, and α{sub ββ} have been calculated.

  20. NMR nuclear magnetic shielding anisotropy of linear molecules within the linear response within the elimination of the small component approach

    NASA Astrophysics Data System (ADS)

    Ruiz de Azúa, Martín C.; Giribet, Claudia G.; Melo, Juan I.

    2011-01-01

    The influence of the spin-Zeeman (SZ) operator in the evaluation of the spin-orbit effect on the nuclear magnetic shielding tensor in the context of the linear response within the elimination of the small component approach is critically discussed. It is shown that such term yields no contribution to the isotropic nuclear magnetic shielding constant, but it may be of great importance in the determination of individual tensor components, and particularly of the tensor anisotropy. In particular, an interesting relation between the SZ and orbital Zeeman contributions to the spin-orbit effect for the case of linear molecules is shown to hold. Numerical examples for the BrH, IH, and XeF2 molecules are presented which show that, provided the SZ term is taken into account, results of the individual shielding tensor components and the tensor anisotropy are in good agreement with those obtained by other theoretical methods, and particularly by the Dirac-Hartree-Fock approach.

  1. Linear Viscoelastic Response of PBX-9501 Binder using Molecular Dynamics Simulations

    NASA Astrophysics Data System (ADS)

    Davande, Hemali

    2005-03-01

    Quantum-chemistry based force fields for Estane, bis-dinitropropyl formal (BDNPF) and bis dinitropropyl acetal (BDNPA) plasticizer have been developed, validated and utilized in atomistic molecular dynamics (MD) simulations of a model PBX-9501 binder. The viscoelastic response of unentangled binder melt using MD simulations was studied. These results were then used in prediction of linear viscoelastic response of an entangled melt using theoretical models for viscoelastic response of block copolymers and compared with experiments.

  2. Signal transmission from motor axons to group Ia muscle spindle afferents: frequency responses and second-order non-linearities.

    PubMed

    Windhorst, U; Kokkoroyiannis, T; Laouris, Y; Meyer-Lohmann, J

    1994-03-01

    Spinal recurrent inhibition via Renshaw cells and proprioceptive feedback via skeletal muscle and muscle spindle afferents have been hypothesized to constitute a compound feedback system [Windhorst (1989) Afferent Control of Posture and Locomotion; Windhorst (1993) Robots and Biological Systems--Towards a New Bionics]. To assess their detailed functions, it is necessary to know their dynamic characteristics. Previously we have extensively described the properties of signal transmission from motor axons to Renshaw cells using random motor axon stimulation and data analysis methods based thereupon. Using the same methods, we here compare these properties, in the cat, with those between motor axons and group Ia muscle spindle afferents in terms of frequency responses and nonlinear features. The frequency responses depend on the mean rate (carrier rate) of activation of motor axons and on the strength of coupling between motor units and spindles. In general, they are those of a second-order low-pass system with a cut-off at fairly low frequencies. This contrasts with the dynamics of motor axon-Renshaw cell couplings which are those of a much broader band-pass with its peak in the range of c. 2-15 Hz [Christakos (1987) Neuroscience 23, 613-623]. The second-order non-linearities in motor unit-muscle spindle signal lines are much more diverse than those in motor axon-Renshaw cell couplings. Although the average strength of response declines with mean stimulus rate in both subsystems, there is no systematic relationship between the amount of non-linearity and the average response in the former, whilst there is in the latter. The qualitative appearance of motor unit-muscle spindle non-linearities was complicated as was the average response to motor unit twitches. Thus, whilst Renshaw cells appear to dynamically reflect motor output rather faithfully, muscle spindles seem to signal local muscle fibre length changes and their dynamics. This would be consistent with the

  3. Frequency Response of Synthetic Vocal Fold Models with Linear and Nonlinear Material Properties

    PubMed Central

    Shaw, Stephanie M.; Thomson, Scott L.; Dromey, Christopher; Smith, Simeon

    2014-01-01

    Purpose The purpose of this study was to create synthetic vocal fold models with nonlinear stress-strain properties and to investigate the effect of linear versus nonlinear material properties on fundamental frequency during anterior-posterior stretching. Method Three materially linear and three materially nonlinear models were created and stretched up to 10 mm in 1 mm increments. Phonation onset pressure (Pon) and fundamental frequency (F0) at Pon were recorded for each length. Measurements were repeated as the models were relaxed in 1 mm increments back to their resting lengths, and tensile tests were conducted to determine the stress-strain responses of linear versus nonlinear models. Results Nonlinear models demonstrated a more substantial frequency response than did linear models and a more predictable pattern of F0 increase with respect to increasing length (although range was inconsistent across models). Pon generally increased with increasing vocal fold length for nonlinear models, whereas for linear models, Pon decreased with increasing length. Conclusions Nonlinear synthetic models appear to more accurately represent the human vocal folds than linear models, especially with respect to F0 response. PMID:22271874

  4. Responses to LBNP in men with varying profiles of strength and aerobic capacity: Implications for flight crews

    NASA Technical Reports Server (NTRS)

    Convertino, Victor A.; Mathes, Karen L.; Lasley, Mary L.; Tomaselli, Clare Marie; Frey, Mary Anne Bassett; Hoffler, G. Wyckliffe

    1993-01-01

    Hemodynamic and hormonal responses to lower-body negative pressure (LBNP) were examined in 24 healthy men to test the hypothesis that responsiveness of reflex control of blood pressure during orthostatic stress is associated with strength and/or aerobic capacity. Subjects underwent treadmill tests to determine peak oxygen uptake (peak VO2) and isokinetic dynamo meter tests to determine leg strength. Based on predetermined criteria, the subjects were classified into one of four fitness profiles of six subjects each matched for age, height, and weight: (1) low strength/low aerobic fitness; (2) low strength/high aerobic fitness; (3) high strength/low aerobic fitness; and (4) high strength/high aerobic fitness. Following 90 min of 6 degree head-down tilt (HDT), each subject underwent graded LBNP through -50 mmHg or presyncope, with maximal duration 15 min. All groups exhibited typical hemodynamic, hormonal, and fluid shift responses during LBNP, with no intergroup differences except for catecholamines. Seven subjects, distributed among the four fitness profiles, became presyncopal. Subjects who showed greatest reduction in mean arterial pressure (MAP) during LBNP had greater elevations in vasopressin and lesser increases in heart rate and peripheral resistance. Peak VO2 nor leg strength were correlated with fall in MAP or with syncopal episodes. We conclude that neither aerobic nor strength fitness characteristics are good predictors of responses to LBNP stress.

  5. Quasi-Linear Cochlear Responses to Noise Can Result from Instantaneous Nonlinearities

    NASA Astrophysics Data System (ADS)

    Liu, Yi-Wen; Neely, Stephen T.

    2011-11-01

    Responses to acoustic stimuli in the cochlea are known to be nonlinear. Many existing models of cochlear mechanics were built upon three basic assumptions: traveling-wave amplification is provided by active mechanisms in the outer hair cells (OHCs). Second, as the stimulus level increases, the gain decreases due to saturation nonlinearity in the OHCs. Finally, the saturation non-linearity is "instantaneous"; its input-output relation does not possess memory. These assumptions were recently challenged by reports that basilar-membrane (BM) responses to noise can be predicted well by level-dependent Wiener filters and are thus quasi-linear. It was argued that the quasi-linear responses could not result from instantaneous nonlinearity. In this paper, we present a model of cochlear mechanics which has instantaneous OHC saturation nonlinearity but produces quasi-linear responses to noise. Correlation coefficients were consistently greater than 0.9 between simulated noise responses and the responses predicted by equivalent Wiener filters. Further, Gaussianity in the acoustic stimuli was preserved on the BM. We conclude that the results support the common understandings and assumptions of cochlear mechanics.

  6. Linear response theory for symmetry improved two particle irreducible effective actions

    NASA Astrophysics Data System (ADS)

    Brown, Michael J.; Whittingham, Ian B.; Kosov, Daniel S.

    2016-05-01

    We investigate the linear response of an O (N ) scalar quantum field theory subject to external perturbations using the symmetry-improved two-particle irreducible effective action (SI-2PIEA) formalism [A. Pilaftsis and D. Teresi, Nucl. Phys. B874, 594 (2013)]. Despite satisfactory equilibrium behavior, we find a number of unphysical effects at the linear response level. Goldstone boson field fluctuations are overdetermined, with the only consistent solution being to set the fluctuations and their driving sources to zero, except for momentum modes where the Higgs and Goldstone self-energies obey a particular relationship. Also Higgs field fluctuations propagate masslessly, despite the Higgs propagator having the correct mass. These pathologies are independent of any truncation of the effective action and still exist even if we relax the overdetermining Ward identities, so long as the constraint is formulated O (N ) covariantly. We discuss possible reasons for the apparent incompatibility of the constraints and linear response approximation and possible ways forward.

  7. Transition to Coherence in Populations of Coupled Chaotic Oscillators: A Linear Response Approach

    SciTech Connect

    Topaj, Dmitri; Kye, Won-Ho; Pikovsky, Arkady

    2001-08-13

    We consider the collective dynamics in an ensemble of globally coupled chaotic maps. The transition to the coherent state with a macroscopic mean field is analyzed in the framework of the linear response theory. The linear response function for the chaotic system is obtained using the perturbation approach to the Frobenius-Perron operator. The transition point is defined from this function by virtue of the self-excitation condition for the feedback loop. Analytical results for the coupled Bernoulli maps are confirmed by the numerics.

  8. The linearity response of the Planck-LFI flight model receivers

    NASA Astrophysics Data System (ADS)

    Mennella, A.; Villa, F.; Terenzi, L.; Cuttaia, F.; Battaglia, P.; Bersanelli, M.; Butler, R. C.; D'Arcangelo, O.; Artal, E.; Davis, R.; Frailis, M.; Franceschet, C.; Galeotta, S.; Gregorio, A.; Hughes, N.; Jukkala, P.; Kettle, D.; Kilpiä, V.-H.; Laaninen, M.; Lapolla, P. M.; Leonardi, R.; Leutenegger, P.; Lowe, S.; Mandolesi, N.; Maris, M.; Meinhold, P.; Mendes, L.; Miccolis, M.; Morgante, G.; Roddis, N.; Sandri, M.; Silvestri, R.; Stringhetti, L.; Tomasi, M.; Tuovinen, J.; Valenziano, L.; Zacchei, A.; Varis, J.; Wilkinson, A.; Zonca, A.

    2009-12-01

    In this paper we discuss the linearity response of the Planck-LFI receivers, with particular reference to signal compression measured on the 30 and 44 GHz channels. In the article we discuss the various sources of compression and present a model that accurately describes data measured during tests performed with individual radiomeric chains. After discussing test results we present the best parameter set representing the receiver response and discuss the impact of non linearity on in-flight calibration, which is shown to be negligible.

  9. Application of linear response theory to magnetotransport properties of dense plasmas

    SciTech Connect

    Adams, J. R.; Redmer, R.; Reinholz, H.

    2010-03-15

    Linear response theory, as developed within the Zubarev formalism, is a quantum statistical approach for describing systems out of but close to equilibrium, which has been successfully applied to a wide variety of plasmas in an external electric field and/or containing a temperature gradient. We present here an extension of linear response theory to include the effects of an external magnetic field. General expressions for the complete set of relevant transport properties are given. In particular, the Hall effect and the influence of a magnetic field on the dc electrical conductivity are discussed. Low-density limits including electron-electron scattering are presented as well as results for arbitrary degeneracy.

  10. Galilean invariance and linear response theory for Fractional Quantum Hall Effect

    NASA Astrophysics Data System (ADS)

    Gromov, Andrey; Abanov, Alexandre

    2013-03-01

    We study a general effective field theory of Galilean invariant two-dimensional charged fluid in external electro-magnetic and gravitational fields. We find that combination of the generalized Galilean and gauge invariance implies nontrivial Ward identities between gravitational and electro-magnetic linear responses in the system. This identity appears to hold in all orders of gradient expansion and it generalizes the relation between Hall viscosity and Hall conductivity recently found by Hoyos and Son. We also check the relation in the case of free electrons with integer filling of Landau levels where corresponding linear responses can be calculated directly. Was supported by the NSF under Grant No. DMR-1206790.

  11. Relationship between response rates and measures of reinforcing strength using a choice procedure in monkeys.

    PubMed

    Banks, Matthew L; Gould, Robert W; Czoty, Paul W; Nader, Michael A

    2008-07-01

    Concurrent schedules of reinforcement are increasingly being used to investigate the reinforcing strength of abused drugs. A purported advantage of concurrent schedules is that the primary dependent measure, percentage of responses emitted on the drug-associated manipulandum, is independent of the rate-altering effects of drugs. Data supporting this hypothesis are, however, rarely presented, which was one goal of this study. In addition, we tested the hypothesis that drug-induced decreases in response rates provides an additional index to characterize abuse liability of drugs. This study examined the relationship between response rate and response allocation (i.e. drug choice) when 3,4-methylenedioxymethamphetamine (MDMA, 0.03-0.3 mg/kg/inj) or cocaine (0.003-0.1 mg/kg/inj) was the alternative to food under concurrent fixed-ratio reinforcement schedules in rhesus (n=4) and cynomolgus (n=16) monkeys, respectively. Increasing doses of MDMA or cocaine resulted in increased drug choice and dose-dependent decreases in overall response rates. For both drugs, response rates on the drug-associated lever were not affected by dose and were not different from saline. Furthermore, at most doses, rates of responding on the food-associated lever were significantly higher than response rates on the drug-associated lever. Finally, MDMA but not cocaine decreased food-reinforced responding, providing evidence for potential differences between the drugs. These results demonstrate that under concurrent food-drug reinforcement schedules, response rates on the drug-associated lever are independent of measures of reinforcement, whereas disruptions in food-maintained responding may be inversely related to abuse liability. PMID:18622187

  12. A theoretical and experimental investigation of the linear and nonlinear impulse responses from a magnetoplasma column

    NASA Technical Reports Server (NTRS)

    Grody, N. C.

    1973-01-01

    Linear and nonlinear responses of a magnetoplasma resulting from inhomogeneity in the background plasma density are studied. The plasma response to an impulse electric field was measured and the results are compared with the theory of an inhomogeneous cold plasma. Impulse responses were recorded for the different plasma densities, static magnetic fields, and neutral pressures and generally appeared as modulated, damped oscillations. The frequency spectra of the waveforms consisted of two separated resonance peaks. For weak excitation, the results correlate with the linear theory of a cold, inhomogeneous, cylindrical magnetoplasma. The damping mechanism is identified with that of phase mixing due to inhomogeneity in plasma density. With increasing excitation voltage, the nonlinear impulse responses display stronger damping and a small increase in the frequency of oscillation.

  13. Strength and hypertrophy responses to constant and decreasing rest intervals in trained men using creatine supplementation

    PubMed Central

    2011-01-01

    Background The purpose of the current study was to compare strength and hypertrophy responses to resistance training programs that instituted constant rest intervals (CI) and decreasing rest intervals (DI) between sets over the course of eight weeks by trained men who supplemented with creatine monohydrate (CR). Methods Twenty-two recreationally trained men were randomly assigned to a CI group (n = 11; 22.3 ± 1 years; 77.7 ± 5.4 kg; 180 ± 2.2 cm) or a DI group (n = 11; 22 ± 2.5 years; 75.8 ± 4.9 kg; 178.8 ± 3.4 cm). Subjects in both groups supplemented with CR; the only difference between groups was the rest interval instituted between sets; the CI group used 2 minutes rest intervals between sets and exercises for the entire 8-weeks of training, while the DI group started with a 2 minute rest interval the first two weeks; after which the rest interval between sets was decreased 15 seconds per week (i.e. 2 minutes decreasing to 30 seconds between sets). Pre- and post-intervention maximal strength for the free weight back squat and bench press exercises and isokinetic peak torque were assessed for the knee extensors and flexors. Additionally, muscle cross-sectional area (CSA) of the right thigh and upper arm was measured using magnetic resonance imaging. Results Both groups demonstrated significant increases in back squat and bench press maximal strength, knee extensor and flexor isokinetic peak torque, and upper arm and right thigh CSA from pre- to post-training (p ≤ 0.0001); however, there were no significant differences between groups for any of these variables. The total volume for the bench press and back squat were significantly greater for CI group versus the DI group. Conclusions We report that the combination of CR supplementation and resistance training can increase muscular strength, isokinetic peak torque, and muscle CSA, irrespective of the rest interval length between sets. Because the volume of training was greater for the CI group versus the

  14. VIBRA: An interactive computer program for steady-state vibration response analysis of linear damped structures

    NASA Technical Reports Server (NTRS)

    Bowman, L. M.

    1984-01-01

    An interactive steady state frequency response computer program with graphics is documented. Single or multiple forces may be applied to the structure using a modal superposition approach to calculate response. The method can be reapplied to linear, proportionally damped structures in which the damping may be viscous or structural. The theoretical approach and program organization are described. Example problems, user instructions, and a sample interactive session are given to demonstate the program's capability in solving a variety of problems.

  15. Non-linear dual-axis biodynamic response to vertical whole-body vibration

    NASA Astrophysics Data System (ADS)

    Nawayseh, N.; Griffin, M. J.

    2003-11-01

    Seated human subjects have been exposed to vertical whole-body vibration so as to investigate the non-linearity in their biodynamic responses and quantify the response in directions other than the direction of excitation. Twelve males were exposed to random vertical vibration in the frequency range 0.25-25 Hz at four vibration magnitudes (0.125, 0.25, 0.625, and 1.25 m s -2 r.m.s.). The subjects sat in four sitting postures having varying foot heights so as to produce differing thigh contact with the seat (feet hanging, feet supported with maximum thigh contact, feet supported with average thigh contact, and feet supported with minimum thigh contact). Forces were measured in the vertical, fore-and-aft, and lateral directions on the seat and in the vertical direction at the footrest. The characteristic non-linear response of the human body with reducing resonance frequency at increasing vibration magnitudes was seen in all postures, but to a lesser extent with minimum thigh contact. Appreciable forces in the fore-and-aft direction also showed non-linearity, while forces in the lateral direction were low and showed no consistent trend. Forces at the feet were non-linear with a multi-resonant behaviour and were affected by the position of the legs. The decreased non-linearity with the minimum thigh contact posture suggests the tissues of the buttocks affect the non-linearity of the body more than the tissues of the thighs. The forces in the fore-and-aft direction are consistent with the body moving in two directions when exposed to vertical vibration. The non-linear behaviour of the body, and the considerable forces in the fore-aft direction should be taken into account when optimizing vibration isolation devices.

  16. Flutter and Forced Response Analyses of Cascades using a Two-Dimensional Linearized Euler Solver

    NASA Technical Reports Server (NTRS)

    Reddy, T. S. R.; Srivastava, R.; Mehmed, O.

    1999-01-01

    Flutter and forced response analyses for a cascade of blades in subsonic and transonic flow is presented. The structural model for each blade is a typical section with bending and torsion degrees of freedom. The unsteady aerodynamic forces due to bending and torsion motions. and due to a vortical gust disturbance are obtained by solving unsteady linearized Euler equations. The unsteady linearized equations are obtained by linearizing the unsteady nonlinear equations about the steady flow. The predicted unsteady aerodynamic forces include the effect of steady aerodynamic loading due to airfoil shape, thickness and angle of attack. The aeroelastic equations are solved in the frequency domain by coupling the un- steady aerodynamic forces to the aeroelastic solver MISER. The present unsteady aerodynamic solver showed good correlation with published results for both flutter and forced response predictions. Further improvements are required to use the unsteady aerodynamic solver in a design cycle.

  17. Evaluating and interpreting the chemical relevance of the linear response kernel for atoms II: open shell.

    PubMed

    Boisdenghien, Zino; Fias, Stijn; Van Alsenoy, Christian; De Proft, Frank; Geerlings, Paul

    2014-07-28

    Most of the work done on the linear response kernel χ(r,r') has focussed on its atom-atom condensed form χAB. Our previous work [Boisdenghien et al., J. Chem. Theory Comput., 2013, 9, 1007] was the first effort to truly focus on the non-condensed form of this function for closed (sub)shell atoms in a systematic fashion. In this work, we extend our method to the open shell case. To simplify the plotting of our results, we average our results to a symmetrical quantity χ(r,r'). This allows us to plot the linear response kernel for all elements up to and including argon and to investigate the periodicity throughout the first three rows in the periodic table and in the different representations of χ(r,r'). Within the context of Spin Polarized Conceptual Density Functional Theory, the first two-dimensional plots of spin polarized linear response functions are presented and commented on for some selected cases on the basis of the atomic ground state electronic configurations. Using the relation between the linear response kernel and the polarizability we compare the values of the polarizability tensor calculated using our method to high-level values. PMID:24837234

  18. Analysis of bipolar linear circuit response mechanisms for high and low dose rate total dose irradiations

    SciTech Connect

    Barnaby, H.; Tausch, H.J.; Turfler, R.; Cole, P.; Baker, P.; Pease, R.L.

    1996-12-01

    A methodology is presented for the identification of circuit total dose response mechanisms in bipolar linear microcircuits irradiated at high and low dose rates. This methodology includes manual circuit analysis, circuit simulations with SPICE using extracted device parameters, and selective irradiations of portions of the circuit using a scanning electron microscope.

  19. Determining polarizable force fields with electrostatic potentials from quantum mechanical linear response theory.

    PubMed

    Wang, Hao; Yang, Weitao

    2016-06-14

    We developed a new method to calculate the atomic polarizabilities by fitting to the electrostatic potentials (ESPs) obtained from quantum mechanical (QM) calculations within the linear response theory. This parallels the conventional approach of fitting atomic charges based on electrostatic potentials from the electron density. Our ESP fitting is combined with the induced dipole model under the perturbation of uniform external electric fields of all orientations. QM calculations for the linear response to the external electric fields are used as input, fully consistent with the induced dipole model, which itself is a linear response model. The orientation of the uniform external electric fields is integrated in all directions. The integration of orientation and QM linear response calculations together makes the fitting results independent of the orientations and magnitudes of the uniform external electric fields applied. Another advantage of our method is that QM calculation is only needed once, in contrast to the conventional approach, where many QM calculations are needed for many different applied electric fields. The molecular polarizabilities obtained from our method show comparable accuracy with those from fitting directly to the experimental or theoretical molecular polarizabilities. Since ESP is directly fitted, atomic polarizabilities obtained from our method are expected to reproduce the electrostatic interactions better. Our method was used to calculate both transferable atomic polarizabilities for polarizable molecular mechanics' force fields and nontransferable molecule-specific atomic polarizabilities. PMID:27305996

  20. Analysis of aromaticity in planar metal systems using the linear response kernel.

    PubMed

    Fias, Stijn; Boisdenghien, Zino; Stuyver, Thijs; Audiffred, Martha; Merino, Gabriel; Geerlings, Paul; de Proft, Frank

    2013-04-25

    The linear response kernel is used to gain insight into the aromatic behavior of the less classical metal aromatic E4(2-) and CE4(2-) (E = Al, Ga) clusters. The effect of the systematic replacement of the aluminum atoms in Al4(2-) and CAl4(2-) by germanium atoms is studied using, Al3Ge-, Al2Ge2, AlGe3+, Ge4(2+), CAl3Ge-, CAl2Ge2, CAlGe3+, and CGe4(2+). The results are compared with the values of the delocalization index (δ(1,3)) and nucleus independent chemical shifts (NICS(zz)). Unintegrated plots of the linear response, computed for the first time on molecules, are used to analyze the delocalization in these clusters. All aromaticity indices studied, the linear response, δ(1,3), and NICS(zz), predict that the systems with a central carbon are less aromatic than the systems without a central carbon atom. Also, the linear response is more pronounced in the σ-electron density than in the π-density, pointing out that the systems are mainly σ-aromatic. PMID:23534921

  1. Study of non-linear energy response of POLAR plastic scintillators to electrons

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaofeng; Xiao, Hualin; Yu, Boxiang; Orsi, Silvio; Wu, Bobing; Hu, Wei; Zhang, Xuan

    2015-10-01

    The POLAR experiment is a joint Chinese-European project conceived for a precise measurement of gamma ray polarization and optimized for the detection of the prompt emission of Gamma-Ray Bursts (GRBs) in the energy range 50-500 keV. POLAR is a novel compact space-borne Compton polarimeter consisting of 1600 low-Z plastic scintillator bars (EJ-248M), read out by 25 flat-panel multi-anode photomultiplier tubes. In the paper, we first present a dedicated experiment to study the non-linear energy response of EJ-248M plastic scintillator bars to electrons and the detailed data analysis. Second we obtained the Birks' constant of EJ-248M plastic scintillator as kB = 0.143 mm / MeV by least squares fitting. Finally we used Geant4 simulation to study the influence of non-linear energy response on the performance of POLAR, through which it was found that non-linear energy response will lead to a significant decrease in statistics and result in larger uncertainty in polarization measurement. The paper presents a general solution to the study of non-linear energy response of plastic scintillators to electrons.

  2. IS THE DOSE-RESPONSE LINEAR OR NONLINEAR FOR GENOTOXIC EFFECTS?

    EPA Science Inventory

    IS THE DOSE-RESPONSE LINEAR OR NONLINEAR FOR GENOTOXIC EFFECTS?
    Preston, RJ. Environmental Carcinogenesis Division, NHEERL, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

    For considerations of cancer risk assessment from exposure to environmenta...

  3. Evaluating and Interpreting the Chemical Relevance of the Linear Response Kernel for Atoms.

    PubMed

    Boisdenghien, Zino; Van Alsenoy, Christian; De Proft, Frank; Geerlings, Paul

    2013-02-12

    Although a lot of work has been done on the chemical relevance of the atom-condensed linear response kernel χAB regarding inductive, mesomeric, and hyperconjugative effects as well as (anti)aromaticity of molecules, the same cannot be said about its not condensed form χ(r,r'). Using a single Slater determinant KS type ansatz involving second order perturbation theory, we set out to investigate the linear response kernel for a number of judiciously chosen closed (sub)shell atoms throughout the periodic table and its relevance, e.g., in relation to the shell structure and polarizability. The numerical results are to the best of our knowledge the first systematic study on this noncondensed linear response function, the results for He and Be being in line with earlier work by Savin. Different graphical representations of the kernel are presented and discussed. Moreover, a frontier orbital approach has been tested illustrating the sensitivity of the nonintegrated kernel to the nodal structure of the orbitals. As a test of our method, a numerical integration of the linear response kernel was performed, yielding an accuracy of 10(-4). We also compare calculated values of the polarizability tensor and their evolution throughout the periodic table to high-level values found in the literature. PMID:26588743

  4. Hemodynamic and hormonal responses to lower body negative pressure in men with varying profiles of strength and aerobic power

    NASA Technical Reports Server (NTRS)

    Convertino, V. A.; Mathes, K. L.; Lasley, M. L.; Tomaselli, C. M.; Frey, M. A.; Hoffler, G. W.

    1993-01-01

    Hemodynamic, cardiac, and hormonal responses to lower-body negative pressure (LBNP) were examined in 24 healthy men to test the hypothesis that responsiveness of reflex control of blood pressure during orthostatic challenge is associated with interactions between strength and aerobic power. Subjects underwent treadmill tests to determine peak oxygen uptake (VO2max) and isokinetic dynamometer tests to determine knee extensor strength. Based on predetermined criteria, subjects were classified into one of four fitness profiles of six subjects each, matched for age, height, and body mass: (a) low strength/average aerobic fitness, (b) low strength/high aerobic fitness, (c) high strength/average aerobic fitness, and (d) high strength/high aerobic fitness. Following 90 min of 0.11 rad (6 degrees) head-down tilt (HDT), each subject underwent graded LBNP to -6.7 kPa or presyncope, with maximal duration 15 min, while hemodynamic, cardiac, and hormonal responses were measured. All groups exhibited typical hemodynamic, hormonal, and fluid shift responses during LBNP, with no intergroup differences between high and low strength characteristics. Subjects with high aerobic power exhibited greater (P < 0.05) stroke volume and lower (P < 0.05) heart rate, vascular peripheral resistance, and mean arterial pressure during rest, HDT, and LBNP. Seven subjects, distributed among the four fitness profiles, became presyncopal. These subjects showed greatest reduction in mean arterial pressure during LBNP, had greater elevations in vasopressin, and lesser increases in heart rate and peripheral resistance. Neither VO2max nor leg strength were associated with fall in arterial pressure or with syncopal episodes. We conclude that interactions between aerobic and strength fitness characteristics do not influence responses to LBNP challenge.

  5. A study of non-linearity in rainfall-runoff response using 120 UK catchments

    NASA Astrophysics Data System (ADS)

    Mathias, Simon A.; McIntyre, Neil; Oughton, Rachel H.

    2016-09-01

    This study presents a catchment characteristic sensitivity analysis concerning the non-linearity of rainfall-runoff response in 120 UK catchments. Two approaches were adopted. The first approach involved, for each catchment, regression of a power-law to flow rate gradient data for recession events only. This approach was referred to as the recession analysis (RA). The second approach involved calibrating a rainfall-runoff model to the full data set (both recession and non-recession events). The rainfall-runoff model was developed by combining a power-law streamflow routing function with a one parameter probability distributed model (PDM) for soil moisture accounting. This approach was referred to as the rainfall-runoff model (RM). Step-wise linear regression was used to derive regionalization equations for the three parameters. An advantage of the RM approach is that it utilizes much more of the observed data. Results from the RM approach suggest that catchments with high base-flow and low annual precipitation tend to exhibit greater non-linearity in rainfall-runoff response. In contrast, the results from the RA approach suggest that non-linearity is linked to low evaporative demand. The difference in results is attributed to the aggregation of storm-flow and base-flow into a single system giving rise to a seemingly more non-linear response when applying the RM approach to catchments that exhibit a strongly dual storm-flow base-flow response. The study also highlights the value and limitations in a regionlization context of aggregating storm-flow and base-flow pathways into a single non-linear routing function.

  6. Linear mode conversion of Langmuir/z-mode waves to radiation in plasmas with various magnetic field strength

    SciTech Connect

    Kim, Eun-Hwa; Johnson, Jay R.; Cairns, Iver H.

    2013-12-15

    Linear mode conversion of Langmuir/z waves to electromagnetic radiation near the plasma and upper hybrid frequency in the presence of density gradients is potentially relevant to type II and III solar radio bursts, ionospheric radar experiments, pulsars, and continuum radiation for planetary magnetospheres. Here, we study mode conversion in warm, magnetized plasmas using a numerical electron fluid simulation code when the density gradient has a wide range of angle, δ, to the ambient magnetic field, B{sub 0}, for a range of incident Langmuir/z wavevectors. Our results include: (1) Left-handed polarized ordinary (oL) and right-handed polarized extraordinary (xR) mode waves are produced in various ranges of δ for Ω{sub 0} = (ωL/c){sup 1/3}(ω{sub ce}/ω) < 1.5, where ω{sub ce} is the (angular) electron cyclotron frequency, ω is the angular wave frequency, L is the length scale of the (linear) density gradient, and c is the speed of light; (2) the xR mode is produced most strongly in the range, 40° < δ < 60°, for intermediately magnetized plasmas with Ω{sub 0} = 1.0 and 1.5, while it is produced over a wider range, 0° ≤ δ ≤ 90°, for weakly magnetized plasmas with Ω{sub 0} = 0.1 and 0.7; (3) the maximum total conversion efficiencies for wave power from the Langmuir/z mode to radiation are of order 50%–99% and the corresponding energy conversion efficiencies are 5%–14% (depending on the adiabatic index γ and β = T{sub e}/m{sub e}c{sup 2}, where T{sub e} is the electron temperature and m{sub e} is the electron) for various Ω{sub 0}; (4) the mode conversion window becomes wider as Ω{sub 0} and δ increase. Hence, the results in this paper confirm that linear mode conversion under these conditions can explain the weak total circular polarization of interplanetary type II and III solar radio bursts because a strong xR mode can be generated via linear mode conversion near δ ∼ 45°.

  7. Nonlinear Response and Residual Strength of Damaged Stiffened Shells Subjected to Combined Loads

    NASA Technical Reports Server (NTRS)

    Starnes, James H., Jr.; Britt, Vicki O.; Rose, Cheryl A.; Rankin, Charles C.

    1996-01-01

    The results of an analytical study of the nonlinear response of stiffened fuselage shells with long cracks are presented. The shells are modeled with a hierarchical modeling strategy and analyzed with a nonlinear shell analysis code that maintains the shell in a nonlinear equilibrium state while the crack is grown. The analysis accurately accounts for global and local structural response phenomena. Fuselage skins, frames stringers and failsafe straps are included in the models. Results are presented for various combinations of internal pressure and mechanical bending, vertical shear and torsion loads, and the effects of crack orientation and location on the shell response are described. These results indicate that the nonlinear interaction between the in-plane stress resultants and the out-of-plane displacements near a crack can significantly affect the structural response of the shell, and the stress-intensity factors associated with a crack that are used to predict residual strength. The effects of representative combined loading conditions on the stress-intensity factors associated with a crack are presented. The effects of varying structural parameters on the stress-intensity factors associated with a crack, and on self-similar and non-self-similar crack-growth are also presented.

  8. On the unphysical solutions of the Kadanoff-Baym equations in linear response: Correlation-induced homogeneous density-distribution and attractors

    NASA Astrophysics Data System (ADS)

    Stan, Adrian

    2016-01-01

    The Kadanoff-Baym equations, which allow for the calculation of time-dependent expectation values of all one-particle observables, are found to yield unphysical electron density dynamics in the linear and nonlinear response, for Φ -derivable approximations, irrespective of interaction strength or type. In particular, we show that when calculated from the Kadanoff-Baym equations using correlated self-energy approximations, the linear response dynamics of isolated electron systems damps to an unphysical homogeneous density-distribution. The damping is also present for Hartree or Hartree-Fock self-energies. These surprising results supplement previous findings on the nonlinear response, and complement them by showing that the linear response is also plagued by unphysical dynamics. Being universal, this additional feature indicates the possible presence of an attractor that leads to amplitude death and a subsequent tendency to a homogeneous charge and density distribution. This unveils a scenario in which the Kadanoff-Baym dynamics simply breaks down, drastically restricting the parameter space for which the method can give physically meaningful insights. In addition to their relevance to the field of ultrafast electron dynamics in isolated and open systems, these findings may also impact the results obtained with the Bethe-Salpeter equation in linear response, due to the well-known equivalency between the two methods. This suggests the need for a different approach to the dynamics of quantum systems.

  9. Optical measurement of the weak non-linearity in the eardrum vibration response to auditory stimuli

    NASA Astrophysics Data System (ADS)

    Aerts, Johan

    The mammalian hearing organ consists of the external ear (auricle and ear canal) followed by the middle ear (eardrum and ossicles) and the inner ear (cochlea). Its function is to convert the incoming sound waves and convert them into nerve pulses which are processed in the final stage by the brain. The main task of the external and middle ear is to concentrate the incoming sound waves on a smaller surface to reduce the loss that would normally occur in transmission from air to inner ear fluid. In the past it has been shown that this is a linear process, thus without serious distortions, for sound waves going up to pressures of 130 dB SPL (˜90 Pa). However, at large pressure changes up to several kPa, the middle ear movement clearly shows non-linear behaviour. Thus, it is possible that some small non-linear distortions are also present in the middle ear vibration at lower sound pressures. In this thesis a sensitive measurement set-up is presented to detect this weak non-linear behaviour. Essentially, this set-up consists of a loud-speaker which excites the middle ear, and the resulting vibration is measured with an heterodyne vibrometer. The use of specially designed acoustic excitation signals (odd random phase multisines) enables the separation of the linear and non-linear response. The application of this technique on the middle ear demonstrates that there are already non-linear distortions present in the vibration of the middle ear at a sound pressure of 93 dB SPL. This non-linear component also grows strongly with increasing sound pressure. Knowledge of this non-linear component can contribute to the improvement of modern hearing aids, which operate at higher sound pressures where the non-linearities could distort the signal considerably. It is also important to know the contribution of middle ear non-linearity to otoacoustic emissions. This are non-linearities caused by the active feedback amplifier in the inner ear, and can be detected in the external and

  10. Disentangling linear and nonlinear brain responses to evoked deep tissue pain

    PubMed Central

    Loggia, Marco L.; Edwards, Robert R.; Kim, Jieun; Vangel, Mark G.; Wasan, Ajay; Gollub, Randy L.; Harris, Richard E.; Park, Kyungmo; Napadow, Vitaly

    2012-01-01

    Pain stimuli evoke widespread responses in the brain. However, our understanding of the physiological significance underlying heterogeneous response within different pain-activated and -deactivated regions is still limited. Using functional MRI, we evaluated brain responses to a wide range of stimulus intensity levels (1 innocuous, 7 painful) in order to estimate region-specific stimulus-response functions, which we hypothesized could illuminate that region’s functional relationship to pain. Linear and nonlinear brain responses to pain were estimated through independent Legendre polynomial transformations of pain ratings within a general linear model. This approach identified at least five different, regionally-specific activity profiles in the brain. Linearly increasing (e.g., primary somatosensory/motor cortex, insulae) and intensity-independent (e.g., secondary somatosensory cortex) activation was noted in traditional pain processing areas, potentially reflecting sensory encoding and all-or-none salience responses, respectively. Multiple activity profiles were seen in areas of the default mode network (DMN): intensity-independent deactivation (e.g., posterior cingulate cortex), linearly decreasing (e.g., contralateral inferior parietal lobule), and quadratic (U-shaped; e.g., medial prefrontal cortex). The latter observation suggests that: 1) different DMN subregions exhibit functional heterogeneity and 2) some DMN subregions respond in a percept-related manner to pain, suggesting closer linkage between the DMN and pain processing than previously thought. Future studies should apply a similar approach using innocuous stimuli of multiple intensities in order to evaluate whether the response profiles reported here can also be generalized to nonpainful somatosensory processing. PMID:22883925

  11. Physiological responses of radiata pine roots to soil strength and soil water deficit.

    PubMed

    Zou, Chris; Sands, Roger; Sun, Osbert

    2000-11-01

    We investigated physiological responses of radiata pine (Pinus radiata D. Don) roots to soil strength and soil water deficit by measuring the osmotic potential (Psi(pi)) and yield turgor (Y) in the elongation zone of root segments of seedlings growing (i) in polyethylene glycol 4000-containing rooting solution of different water potentials (Psi(s)) and (ii) in soil of different soil strengths (Q) at the same soil matric potential (Psi(m)). Root elongation rate (Deltal/Deltat) decreased progressively with decreasing Psi(s) and was associated with decreased Psi(pi) and decreased turgor pressure (P). Osmotic adjustment occurred at Psi(s) < -0.2 MPa. Over a range in Psi(s) of -0.01 to -1.0 MPa, Psi(pi) fell 0.3 MPa whereas P fell 0.7 MPa. Mean Psi in the solution experiment was 0.37 MPa and did not differ significantly with Psi(s) (P = 0.10). Root elongation rate decreased exponentially as Q increased from 0 to 3.0 MPa, and was associated with an increase in P of 0.11 MPa as a consequence of Psi(pi) decreasing by the same amount. Mean Y in the soil experiment was 0.49 MPa and did not change significantly with Q (P = 0.87). PMID:12651497

  12. Linear response theory for annealing of radiation damage in semiconductor devices

    NASA Technical Reports Server (NTRS)

    Litovchenko, Vitaly

    1988-01-01

    A theoretical study of the radiation/annealing response of MOS ICs is described. Although many experiments have been performed in this field, no comprehensive theory dealing with radiation/annealing response has been proposed. Many attempts have been made to apply linear response theory, but no theoretical foundation has been presented. The linear response theory outlined here is capable of describing a broad area of radiation/annealing response phenomena in MOS ICs, in particular, both simultaneous irradiation and annealing, as well as short- and long-term annealing, including the case when annealing is nearing completion. For the first time, a simple procedure is devised to determine the response function from experimental radiation/annealing data. In addition, this procedure enables us to study the effect of variable temperature and dose rate, effects which are of interest in spaceflight. In the past, the shift in threshold potential due to radiation/annealing has usually been assumed to depend on one variable: the time lapse between an impulse dose and the time of observation. While such a suggestion of uniformity in time is certainly true for a broad range of radiation annealing phenomena, it may not hold for some ranges of the variables of interest (temperature, dose rate, etc.). A response function is projected which is dependent on two variables: the time of observation and the time of the impulse dose. This dependence on two variables allows us to extend the theory to the treatment of a variable dose rate. Finally, the linear theory is generalized to the case in which the response is nonlinear with impulse dose, but is proportional to some impulse function of dose. A method to determine both the impulse and response functions is presented.

  13. The response of a linear baroclinic equatorial ocean to periodic forcing

    NASA Technical Reports Server (NTRS)

    Cane, M. A.; Sarachik, E. S.

    1981-01-01

    An investigation is conducted regarding the periodic response of the linear inviscid shallow water equations in a meridionally unbounded basin to zonal forcings at a single low frequency omega. A general solution in the long wave approximation and on an equatorial beta-plane is obtained by summing the Kelvin mode and the finite sum of Rossby modes whose turning points lie equatorward of the turning latitude at frequency omega. The results of the investigation suggest that even if the low frequency forcing has a simple structure, considerable spatial inhomogeneity in the deep ocean response would have to be expected. On the basis of linear inviscid theory, some conclusions are drawn about the causes of the differences between equatorial thermocline response in the Atlantic and Pacific.

  14. Shear and Turbulence Estimates for Calculation of Wind Turbine Loads and Responses Under Hurricane Strength Winds

    NASA Astrophysics Data System (ADS)

    Kosovic, B.; Bryan, G. H.; Haupt, S. E.

    2012-12-01

    would encounter under hurricane strength winds. These flow fields can be used to estimate wind turbine loads and responses with AeroDyn (http://wind.nrel.gov/designcodes/simulators/aerodyn/) and FAST (http://wind.nrel.gov/designcodes/simulators/fast/) codes also developed by NREL.

  15. [Physiological response of corn seedlings to changes of wind-sand flow strength].

    PubMed

    Zhao, Ha-lin; Li, Jin; Zhou, Rui-lian; Qu, Hao; Yun, Jian-ying; Pan, Cheng-chen

    2015-01-01

    Corn seedlings are often harmed by strong wind-sand in the spring in semi-arid wind-sand area of west of Northeast China. In order to understand physiological response mechanisms of the corn seedlings to wind-sand damage, the changes in MDA content, membrane permeability, protective enzymes activities and osmotic regulation substances at 0 (CK) , 6, 9, 12, 15 and 18 m . s-1 wind speed (wind-sand flow strength: 0, 1.00, 28.30, 63.28, 111.82 and 172.93 g . cm-1 . min-1, respectively) for 10 min duration were studied during the spring, 2013 in the Horqin Sand Land of Inner Mongolia. The results showed that effects of wind-sand flow blowing on the RWC of the corn seedling were lighter in the 6-12 m . s-1 treatments, but the RWC decreased by 19.0% and 18.7% in the 15 m . s-1 and 18 m . s-1 treatments compared to the CK, respectively. The MDA content tended to decline with increasing the wind-sand flow strength, and decreased by 35.0% and 39.0% in the 15 m . s-1 and 18 m . s-1 treatments compared to the CK, respectively. The membrane permeability increased significantly with increasing the wind-sand flow strength, and increased by 191.3% and 187.8% in the 15 m . s-1 and 18 m . s-1 treatments compared to the CK, respectively. With the increase of wind-sand flow strength, SOD activities decreased and changes of CAT activities were not significant, only POD activities increased significantly, which played an important role in the process of scavenging reactive oxygen species and protecting cell membrane against damage. For lighter water stress caused, by wind-sand flow blowing, proline and soluble sugar did not play any role in osmotic adjustment, but the proline content increased by 11.4% and 24.5% in the 15 m . s-1 and 18 m . s-1 treatments compared to the CK, respectively, which played an important role in osmotic adjustment. PMID:25985654

  16. Extinction in multiple contexts: Effects on the rate of extinction and the strength of response recovery.

    PubMed

    Bustamante, Javier; Uengoer, Metin; Thorwart, Anna; Lachnit, Harald

    2016-09-01

    In two human predictive-learning experiments, we investigated the effects of extinction in multiple contexts on the rate of extinction and the strength of response recovery. In each experiment, participants initially received acquisition training with a target cue in one context, followed by extinction either in a different context (extinction in a single context) or in three different contexts (extinction in multiple contexts). The results of both experiments showed that conducting extinction in multiple contexts led to higher levels of responding during extinction than did extinction in a single context. Additionally, Experiment 2 showed that extinction in multiple contexts prevented ABC renewal but had no detectable impact on ABA renewal. Our results are discussed within the framework of contemporary learning theories of contextual control and extinction. PMID:26895976

  17. Vestibular afferent responses to linear accelerations in the alert squirrel monkey

    NASA Technical Reports Server (NTRS)

    Somps, Christopher J.; Schor, Robert H.; Tomko, David L.

    1994-01-01

    The spontaneous activity of 40 otolith afferents and 44 canal afferents was recorded in 4 alert, intact squirrel monkeys. Polarization vectors and response properties of otolith afferents were determined during static re-orientations relative to gravity and during Earth-horizontal, sinusoidal, linear oscillations. Canal afferents were tested for sensitivity to linear accelerations. For regular otolith afferents, a significant correlation between upright discharge rate and sensitivity to dynamic acceleration in the horizontal plane was observed. This correlation was not present in irregular units. The sensitivity of otolith afferents to both static tilts and dynamic linear acceleration was much greater in irregularly discharging units than in regularly discharging units. The spontaneous activity and static and dynamic response properties of regularly discharging otolith afferents were similar to those reported in barbiturate-anesthetized squirrel monkeys. Irregular afferents also had similar dynamic response properties when compared to anesthetized monkeys. However, this sample of irregular afferents in alert animals had higher resting discharge rates and greater sensitivity to static tilts. The majority of otolith polarization vectors were oriented near the horizontal in the plane of the utricular maculae; however, directions of maximum sensitivity were different during dynamic and static testing. Canal afferents were not sensitive to static tilts or linear oscillations of the head.

  18. Modeling and Simulation of the Impact Response of Filled and Unfilled Linear Cellular Alloys for Structural Energetic Material Applications

    NASA Astrophysics Data System (ADS)

    Jakus, Adam; Fredenburg, Anthony; Thadhani, Naresh

    2008-04-01

    We are investigating the mechanics of impact-induced stress transfer between a linear cellular alloy (LCA) and a reactive filler to determine the effect of cell geometry on deformation and fragmentation. LCAs are honeycomb structures made of maraging steel, and provide structural integrity for the reactive filler such as a powder mixture of Ta+Fe2O3. 3-D computations are used to determine stress and strain distributions in both filled and unfilled LCAs during impact. The strength and failure models used for maraging steel and the response of Ta+Fe2O3 are validated through experiment. The failure response of three different geometries: 9-cell, pie, and reinforced pie, are compared with the response of a hollow cylinder, for impact velocities of 100, 200, and 300 m/s. Unfilled, the cylindrical geometry provides the least resistance to deformation and fragmentation, while the reinforced pie LCA provides the most resistance. Understanding of the mechanics of deformation and failure is used to determine the most effective geometry for stress transfer to the filler.

  19. Damage of composite structures: Detection technique, dynamic response and residual strength

    NASA Astrophysics Data System (ADS)

    Lestari, Wahyu

    2001-10-01

    Reliable and accurate health monitoring techniques can prevent catastrophic failures of structures. Conventional damage detection methods are based on visual or localized experimental methods and very often require prior information concerning the vicinity of the damage or defect. The structure must also be readily accessible for inspections. The techniques are also labor intensive. In comparison to these methods, health-monitoring techniques that are based on the structural dynamic response offers unique information on failure of structures. However, systematic relations between the experimental data and the defect are not available and frequently, the number of vibration modes needed for an accurate identification of defects is much higher than the number of modes that can be readily identified in the experiment. These motivated us to develop an experimental data based detection method with systematic relationships between the experimentally identified information and the analytical or mathematical model representing the defective structures. The developed technique use changes in vibrational curvature modes and natural frequencies. To avoid misinterpretation of the identified information, we also need to understand the effects of defects on the structural dynamic response prior to developing health-monitoring techniques. In this thesis work we focus on two type of defects in composite structures, namely delamination and edge notch like defect. Effects of nonlinearity due to the presence of defect and due to the axial stretching are studied for beams with delamination. Once defects are detected in a structure, next concern is determining the effects of the defects on the strength of the structure and its residual stiffness under dynamic loading. In this thesis, energy release rate due to dynamic loading in a delaminated structure is studied, which will be a foundation toward determining the residual strength of the structure.

  20. Prediction strength modulates responses in human area CA1 to sequence violations

    PubMed Central

    Cook, Paul A.; Wagner, Anthony D.

    2015-01-01

    Emerging human, animal, and computational evidence suggest that, within the hippocampus, stored memories are compared with current sensory input to compute novelty, i.e., detecting when inputs deviate from expectations. Hippocampal subfield CA1 is thought to detect mismatches between past and present, and detected novelty is thought to modulate encoding processes, providing a mechanism for gating the entry of information into memory. Using high-resolution functional MRI, we examined human hippocampal subfield and medial temporal lobe cortical activation during prediction violations within a sequence of events unfolding over time. Subjects encountered sequences of four visual stimuli that were then reencountered in the same temporal order (Repeat) or a rearranged order (Violation). Prediction strength was manipulated by varying whether the sequence was initially presented once (Weak) or thrice (Strong) prior to the critical Repeat or Violation sequence. Analyses of blood oxygen level-dependent signals revealed that task-responsive voxels in anatomically defined CA1, CA23/dentate gyrus, and perirhinal cortex were more active when expectations were violated than when confirmed. Additionally, stronger prediction violations elicited greater activity than weaker violations in CA1, and CA1 contained the greatest proportion of voxels displaying this prediction violation pattern relative to other medial temporal lobe regions. Finally, a memory test with a separate group of subjects showed that subsequent recognition memory was superior for items that had appeared in prediction violation trials than in prediction confirmation trials. These findings indicate that CA1 responds to temporal order prediction violations, and that this response is modulated by prediction strength. PMID:26063773

  1. Encoding of head acceleration in vestibular neurons. I. Spatiotemporal response properties to linear acceleration

    NASA Technical Reports Server (NTRS)

    Bush, G. A.; Perachio, A. A.; Angelaki, D. E.

    1993-01-01

    1. Extracellular recordings were made in and around the medial vestibular nuclei in decerebrated rats. Neurons were functionally identified according to their semicircular canal input on the basis of their responses to angular head rotations around the yaw, pitch, and roll head axes. Those cells responding to angular acceleration were classified as either horizontal semicircular canal-related (HC) or vertical semicircular canal-related (VC) neurons. The HC neurons were further characterized as either type I or type II, depending on the direction of rotation producing excitation. Cells that lacked a response to angular head acceleration, but exhibited sensitivity to a change in head position, were classified as purely otolith organ-related (OTO) neurons. All vestibular neurons were then tested for their response to sinusoidal linear translation in the horizontal head plane. 2. Convergence of macular and canal inputs onto central vestibular nuclei neurons occurred in 73% of the type I HC, 79% of the type II HC, and 86% of the VC neurons. Out of the 223 neurons identified as receiving macular input, 94 neurons were further studied, and their spatiotemporal response properties to sinusoidal stimulation with pure linear acceleration were quantified. Data were obtained from 33 type I HC, 22 type II HC, 22 VC, and 17 OTO neurons. 3. For each neuron the angle of the translational stimulus vector was varied by 15, 30, or 45 degrees increments in the horizontal head plane. In all tested neurons, a direction of maximum sensitivity was identified. An interesting difference among neurons was their response to translation along the direction perpendicular to that that produced the maximum response ("null" direction). For the majority of neurons tested, it was possible to evoke a nonzero response during stimulation along the null direction always had response phases that varied as a function of stimulus direction. 4. These spatiotemporal response properties were quantified in two

  2. Improving linear accelerator service response with a real- time electronic event reporting system.

    PubMed

    Hoisak, Jeremy D P; Pawlicki, Todd; Kim, Gwe-Ya; Fletcher, Richard; Moore, Kevin L

    2014-01-01

    To track linear accelerator performance issues, an online event recording system was developed in-house for use by therapists and physicists to log the details of technical problems arising on our institution's four linear accelerators. In use since October 2010, the system was designed so that all clinical physicists would receive email notification when an event was logged. Starting in October 2012, we initiated a pilot project in collaboration with our linear accelerator vendor to explore a new model of service and support, in which event notifications were also sent electronically directly to dedicated engineers at the vendor's technical help desk, who then initiated a response to technical issues. Previously, technical issues were reported by telephone to the vendor's call center, which then disseminated information and coordinated a response with the Technical Support help desk and local service engineers. The purpose of this work was to investigate the improvements to clinical operations resulting from this new service model. The new and old service models were quantitatively compared by reviewing event logs and the oncology information system database in the nine months prior to and after initiation of the project. Here, we focus on events that resulted in an inoperative linear accelerator ("down" machine). Machine downtime, vendor response time, treatment cancellations, and event resolution were evaluated and compared over two equivalent time periods. In 389 clinical days, there were 119 machine-down events: 59 events before and 60 after introduction of the new model. In the new model, median time to service response decreased from 45 to 8 min, service engineer dispatch time decreased 44%, downtime per event decreased from 45 to 20 min, and treatment cancellations decreased 68%. The decreased vendor response time and reduced number of on-site visits by a service engineer resulted in decreased downtime and decreased patient treatment cancellations. PMID

  3. The adequate stimulus for avian short latency vestibular responses to linear translation

    NASA Technical Reports Server (NTRS)

    Jones, T. A.; Jones, S. M.; Colbert, S.

    1998-01-01

    Transient linear acceleration stimuli have been shown to elicit eighth nerve vestibular compound action potentials in birds and mammals. The present study was undertaken to better define the nature of the adequate stimulus for neurons generating the response in the chicken (Gallus domesticus). In particular, the study evaluated the question of whether the neurons studied are most sensitive to the maximum level of linear acceleration achieved or to the rate of change in acceleration (da/dt, or jerk). To do this, vestibular response thresholds were measured as a function of stimulus onset slope. Traditional computer signal averaging was used to record responses to pulsed linear acceleration stimuli. Stimulus onset slope was systematically varied. Acceleration thresholds decreased with increasing stimulus onset slope (decreasing stimulus rise time). When stimuli were expressed in units of jerk (g/ms), thresholds were virtually constant for all stimulus rise times. Moreover, stimuli having identical jerk magnitudes but widely varying peak acceleration levels produced virtually identical responses. Vestibular response thresholds, latencies and amplitudes appear to be determined strictly by stimulus jerk magnitudes. Stimulus attributes such as peak acceleration or rise time alone do not provide sufficient information to predict response parameter quantities. Indeed, the major response parameters were shown to be virtually independent of peak acceleration levels or rise time when these stimulus features were isolated and considered separately. It is concluded that the neurons generating short latency vestibular evoked potentials do so as "jerk encoders" in the chicken. Primary afferents classified as "irregular", and which traditionally fall into the broad category of "dynamic" or "phasic" neurons, would seem to be the most likely candidates for the neural generators of short latency vestibular compound action potentials.

  4. Measuring the Strength of Teachers' Unions: An Empirical Application of the Partial Independence Item Response Approach

    ERIC Educational Resources Information Center

    Strunk, Katharine O.; Reardon, Sean F.

    2010-01-01

    The literature on teachers' unions is relatively silent about the role of union strength in affecting important outcomes, due in large part to the difficulty in measuring union strength. In this article, we illustrate a method for obtaining valid, reliable, and replicable measures of union strength through the use of a Partial Independence Item…

  5. Linear response range characterization and in vivo application of laser speckle imaging of blood flow dynamics

    NASA Astrophysics Data System (ADS)

    Choi, Bernard; Ramírez-San-Juan, Julio C.; Lotfi, Justin; Nelson, J. S.

    2006-07-01

    Noninvasive blood flow imaging can provide critical information on the state of biological tissue and the efficacy of approaches to treat disease. With laser speckle imaging (LSI), relative changes in blood flow are typically reported, with the assumption that the measured values are on a linear scale. A linear relationship between the measured and actual flow rate values has been suggested. The actual flow rate range, over which this linear relationship is valid, is unknown. Herein we report the linear response range and velocity dynamic range (VDR) of our LSI instrument at two relevant camera integration times. For integration times of 1 and 10 ms, the best case VDR was 80 and 60 dB, respectively, and the worst case VDR was 20 and 50 dB. The best case VDR values were similar to those reported in the literature for optical Doppler tomography. We also demonstrate the potential of LSI for monitoring blood flow dynamics in the rodent dorsal skinfold chamber model. These findings imply that LSI can provide accurate wide-field maps of microvascular blood flow rate dynamics and highlight heterogeneities in flow response to the application of exogenous agents.

  6. Quasi-static and dynamic responses of advanced high strength steels: Experiments and modeling

    SciTech Connect

    Khan, Akhtar; Baig, Muneer; Choi, Shi Hoon; Yang, Hoe Seok; Sun, Xin

    2012-03-01

    Measured responses of advanced high strength steels (AHSS) and their tailor welded blanks (TWBs), over a wide range of strain-rates (10*4 to 103 s*1) are presented. The steels investigated include transformation induced plasticity (TRIP), dual phase (DP), and drawing quality (DQ) steels. The TWBs include DQ-DQ and DP-DP laser welds. A tensile split Hopkinson pressure bar (SHPB) was used for the dynamic experiments. AHSS and their TWB's were found to exhibit positive strain-rate sensitivity. The Khan-Huang-Liang (KHL) constitutive model is shown to correlate and predict the observed responses reasonably well. Micro-texture characterization of DQ steels, DQ-DQ and DP-DP laser welds were performed to investigate the effect of strain-rate on texture evolution of these materials. Electron backscatter diffraction (EBSD) technique was used to analyze the micro-texture evolution and kernel average misorientation (KAM) map. Measurement of micro-hardness profile across the cross section of tensile samples was conducted to understand the effect of initial microstructure on ductility of laser weld samples.

  7. Mechanical Strength and Viscoelastic Response of the Periodontal Ligament in Relation to Structure

    PubMed Central

    Komatsu, Koichiro

    2010-01-01

    The mechanical strength of the periodontal ligament (PDL) was first measured as force required to extract a tooth from its socket using human specimens. Thereafter, tooth-PDL-bone preparations have extensively been used for measurement of the mechanical response of the PDL. In vitro treatments of such specimens with specific enzymes allowed one to investigate into the roles of the structural components in the mechanical support of the PDL. The viscoelastic responses of the PDL may be examined by analysis of the stress-relaxation. Video polarised microscopy suggested that the collagen molecules and fibrils in the stretched fibre bundles progressively align along the deformation direction during the relaxation. The stress-relaxation process of the PDL can be well expressed by a function with three exponential decay terms. Analysis after in vitro digestion of the collagen fibres by collagenase revealed that the collagen fibre components may play an important role in the long-term relaxation component of the stress-relaxation process of the PDL. The dynamic measurements of the viscoelastic properties of the PDL have recently suggested that the PDL can absorb more energy in compression than in shear and tension. These viscoelastic mechanisms of the PDL tissue could reduce the risk of injury to the PDL. PMID:20948569

  8. Communication: A reduced-space algorithm for the solution of the complex linear response equations used in coupled cluster damped response theory

    NASA Astrophysics Data System (ADS)

    Kauczor, Joanna; Norman, Patrick; Christiansen, Ove; Coriani, Sonia

    2013-12-01

    We present a reduced-space algorithm for solving the complex (damped) linear response equations required to compute the complex linear response function for the hierarchy of methods: coupled cluster singles, coupled cluster singles and iterative approximate doubles, and coupled cluster singles and doubles. The solver is the keystone element for the development of damped coupled cluster response methods for linear and nonlinear effects in resonant frequency regions.

  9. Linear response to leadership, effective temperature and decision making in flocks

    NASA Astrophysics Data System (ADS)

    Pearce, Daniel; Giomi, Luca

    The Vicsek model is the prototypical system for studying collective behavior of interacting self propelled particles (SPPs). It has formed the basis for models explaining the collective behavior of many active systems including flocks of birds and swarms of insects. To the standard Vicsek model we introduce a small angular torque to a subset of the particles and observe how this effects the direction of polarisation of the entire swarm. This is analogous to a few informed birds trying to lead the rest of a large flock by initiating a turn. We find a linear response to this perturbation and fluctuations that are in agreement with fluctuation dissipation theorem. This allows the identification of an effective temperature for the Vicsek model that follows a power law with the noise amplitude. The linear response can also be extended to the process of decision-making, wherein flocks must decide between the behaviors of two competing subgroups of individuals.

  10. Differences in muscle strength after ACL reconstruction do not influence cardiorespiratory responses to isometabolic exercise

    PubMed Central

    Andrade, Marília S.; Lira, Claudio A. B.; Vancini, Rodrigo L.; Nakamoto, Fernanda P.; Cohen, Moisés; Silva, Antonio C.

    2014-01-01

    Objectives To investigate whether the muscle strength decrease that follows anterior cruciate ligament (ACL) reconstruction would lead to different cardiorespiratory adjustments during dynamic exercise. Method Eighteen active male subjects were submitted to isokinetic evaluation of knee flexor and extensor muscles four months after ACL surgery. Thigh circumference was also measured and an incremental unilateral cardiopulmonary exercise test was performed separately for both involved and uninvolved lower limbs in order to compare heart rate, oxygen consumption, minute ventilation, and ventilatory pattern (breath rate, tidal volume, inspiratory time, expiratory time, tidal volume/inspiratory time) at three different workloads (moderate, anaerobic threshold, and maximal). Results There was a significant difference between isokinetic extensor peak torque measured in the involved (116.5±29.1 Nm) and uninvolved (220.8±40.4 Nm) limbs, p=0.000. Isokinetic flexor peak torque was also lower in the involved limb than in the uninvolved limb (107.8±15.4 and 132.5±26.3 Nm, p=0.004, respectively). Lower values were also found in involved thigh circumference as compared with uninvolved limb (46.9±4.3 and 48.5±3.9 cm, p=0.005, respectively). No differences were found between the lower limbs in any of the variables of the incremental cardiopulmonary tests at all exercise intensities. Conclusions Our findings indicate that, four months after ACL surgery, there is a significant deficit in isokinetic strength in the involved limb, but these differences in muscle strength requirement do not produce differences in the cardiorespiratory adjustments to exercise. Based on the hypotheses from the literature which explain the differences in the physiological responses to exercise for different muscle masses, we can deduce that, after 4 months of a rehabilitation program after an ACL reconstruction, individuals probably do not present differences in muscle oxidative and peripheral

  11. The effects of progressive dehydration on strength and power: is there a dose response?

    PubMed

    Hayes, Lawrence D; Morse, Christopher I

    2010-03-01

    This study examined the effect of exercise- and heat-induced dehydration on strength, jump capacity and neuromuscular function. Twelve recreationally active males completed six resistance exercise bouts (baseline and after each 5 exposure sessions) in an increasing state of hypohydration obtained by repeated heat exposure and exercise sessions (5 periods of 20 min jogging at up to approximately 80% age predicted heart rate maximum at 48.5 +/- 0.48 degrees C, relative humidity 50 +/- 4%). Relative to starting values, body mass decreased 1.0 +/- 0.5, 1.9 +/- 0.7, 2.6 +/- 0.8, 3.3 +/- 0.9 and 3.9 +/- 1.0% after exposure 1, 2, 3, 4 and 5, respectively. However, plasma volume remained constant. No significant differences existed amongst trials in vertical jump height, electromyography data or isokinetic leg extension at a rate of 120 degrees s(-1). Isometric leg extensions were significantly reduced (P < 0.05) after the first (1% body mass loss) and subsequent exposures in comparison to baseline. Isokinetic leg extensions at a rate of 30 degrees s(-1) were significantly reduced after the third (2.6% body mass loss) and subsequent exposures compared with baseline. No dose response was identified in any of the tested variables yet a threshold was observed in isometric and isokinetic strength at 30 degrees s(-1). In conclusion, dehydration caused by jogging in the heat had no effect on vertical jumping or isokinetic leg extensions at a rate of 120 degrees s(-1). Alternatively, exercise-induced dehydration was detrimental to isometric and isokinetic leg extensions at a rate of 30 degrees s(-1), suggesting the force-velocity relationship in hypohydration merits further research. PMID:19908058

  12. Challenges within the linear response approximation when studying enzyme catalysis and effects of mutations.

    PubMed

    Sharir-Ivry, Avital; Varatharaj, Rajapandian; Shurki, Avital

    2015-01-13

    Various aspects of the linear response approximation (LRA) approach were examined when calculating reaction barriers within an enzyme and its different mutants. Scaling the electrostatic interactions is shown to slightly affect the absolute values of the barriers but not the overall trend when comparing wild-type and mutants. Convergence of the overall energetics was shown to depend on the sampling. Finally, the contribution of particular residues was shown to be significant, despite its small value. PMID:26574227

  13. New computational method for non-LTE, the linear response matrix

    SciTech Connect

    Fournier, K. B.; Graziani, F. R.; Harte, J. A.; Libby, S. B.; More, R. M.; Rathkopf, J.; Zimmerman, G. B.

    1998-10-01

    We investigate non-local thermodynamic equilibrium atomic kinetics using nonequilibrium thermodynamics and linear response theory. This approach gives a rigorous general framework for exploiting results from non-LTE kinetic calculations and offers a practical data-tabulation scheme suitable for use in plasma simulation codes. We describe how this method has been implemented to supply a fast and accurate non-LTE option in Lasnex.

  14. Function projective synchronization in partially linear drive-response chaotic systems

    NASA Astrophysics Data System (ADS)

    Zhang, Rong; Xu, Zhen-Yuan

    2010-12-01

    This paper gives the definition of function projective synchronization with less conservative demand for a scaling function, and investigates the function projective synchronization in partially linear drive-response chaotic systems. Based on the Lyapunov stability theory, it has been shown that the function projective synchronization with desired scaling function can be realized by simple control law. Moreover it does not need scaling function to be differentiable, bounded and non-vanished. The numerical simulations are provided to verify the theoretical result.

  15. Body height affects the strength of immune response in young men, but not young women.

    PubMed

    Krams, Indrikis A; Skrinda, Ilona; Kecko, Sanita; Moore, Fhionna R; Krama, Tatjana; Kaasik, Ants; Meija, Laila; Lietuvietis, Vilnis; Rantala, Markus J

    2014-01-01

    Body height and other body attributes of humans may be associated with a diverse range of social outcomes such as attractiveness to potential mates. Despite evidence that each parameter plays a role in mate choice, we have little understanding of the relative role of each, and relationships between indices of physical appearance and general health. In this study we tested relationships between immune function and body height of young men and women. In men, we report a non-linear relationship between antibody response to a hepatitis-B vaccine and body height, with a positive relationship up to a height of 185 cm, but an inverse relationship in taller men. We did not find any significant relationship between body height and immune function in women. Our results demonstrate the potential of vaccination research to reveal costly traits that govern evolution of mate choice in humans and the importance of trade-offs among these traits. PMID:25164474

  16. Thermodynamics of the mesoscopic thermoelectric heat engine beyond the linear-response regime

    NASA Astrophysics Data System (ADS)

    Yamamoto, Kaoru; Hatano, Naomichi

    2015-10-01

    Mesoscopic thermoelectric heat engine is much anticipated as a device that allows us to utilize with high efficiency wasted heat inaccessible by conventional heat engines. However, the derivation of the heat current in this engine seems to be either not general or described too briefly, even inappropriately in some cases. In this paper, we give a clear-cut derivation of the heat current of the engine with suitable assumptions beyond the linear-response regime. It resolves the confusion in the definition of the heat current in the linear-response regime. After verifying that we can construct the same formalism as that of the cyclic engine, we find the following two interesting results within the Landauer-Büttiker formalism: the efficiency of the mesoscopic thermoelectric engine reaches the Carnot efficiency if and only if the transmission probability is finite at a specific energy and zero otherwise; the unitarity of the transmission probability guarantees the second law of thermodynamics, invalidating Benenti et al.'s argument in the linear-response regime that one could obtain a finite power with the Carnot efficiency under a broken time-reversal symmetry [Phys. Rev. Lett. 106, 230602 (2011), 10.1103/PhysRevLett.106.230602]. These results demonstrate how quantum mechanics constrains thermodynamics.

  17. Development of a linearized unsteady aerodynamic analysis for cascade gust response predictions

    NASA Technical Reports Server (NTRS)

    Verdon, Joseph M.; Hall, Kenneth C.

    1990-01-01

    A method for predicting the unsteady aerodynamic response of a cascade of airfoils to entropic, vortical, and acoustic gust excitations is being developed. Here, the unsteady flow is regarded as a small perturbation of a nonuniform isentropic and irrotational steady background flow. A splitting technique is used to decompose the linearized unsteady velocity into rotational and irrotational parts leading to equations for the complex amplitudes of the linearized unsteady entropy, rotational velocity, and velocity potential that are coupled only sequentially. The entropic and rotational velocity fluctuations are described by transport equations for which closed-form solutions in terms of the mean-flow drift and stream functions can be determined. The potential fluctuation is described by an inhomogeneous convected wave equation in which the source term depends on the rotational velocity field, and is determined using finite-difference procedures. The analytical and numerical techniques used to determine the linearized unsteady flow are outlined. Results are presented to indicate the status of the solution procedure and to demonstrate the impact of blade geometry and mean blade loading on the aerodynamic response of cascades to vortical gust excitations. The analysis described herein leads to very efficient predictions of cascade unsteady aerodynamic response phenomena making it useful for turbomachinery aeroelastic and aeroacoustic design applications.

  18. Thermodynamics of the mesoscopic thermoelectric heat engine beyond the linear-response regime.

    PubMed

    Yamamoto, Kaoru; Hatano, Naomichi

    2015-10-01

    Mesoscopic thermoelectric heat engine is much anticipated as a device that allows us to utilize with high efficiency wasted heat inaccessible by conventional heat engines. However, the derivation of the heat current in this engine seems to be either not general or described too briefly, even inappropriately in some cases. In this paper, we give a clear-cut derivation of the heat current of the engine with suitable assumptions beyond the linear-response regime. It resolves the confusion in the definition of the heat current in the linear-response regime. After verifying that we can construct the same formalism as that of the cyclic engine, we find the following two interesting results within the Landauer-Büttiker formalism: the efficiency of the mesoscopic thermoelectric engine reaches the Carnot efficiency if and only if the transmission probability is finite at a specific energy and zero otherwise; the unitarity of the transmission probability guarantees the second law of thermodynamics, invalidating Benenti et al.'s argument in the linear-response regime that one could obtain a finite power with the Carnot efficiency under a broken time-reversal symmetry [Phys. Rev. Lett. 106, 230602 (2011)]. These results demonstrate how quantum mechanics constrains thermodynamics. PMID:26565226

  19. Study on The Response Improvement of A Linear Actuator Using Temperature-Sensitive Magnetic Material

    NASA Astrophysics Data System (ADS)

    Hirata, Katsuhiro; Kanzaki, Yasunori; Ota, Tomohiro; Yamaguchi, Tadashi; Kawase, Yoshihiro

    We have been studying a linear actuator for the thermostatic switch using temperature-sensitive magnetic material (TSMM). In this paper, the effect of the geometry of TSMM on response time is investigated by computing the dynamic characteristics of the actuator employing the 3-D finite element method coupled with the equations of magnetic field, heat transfer and motion. As a result, it is found that the response of the actuator is greatly improved. The validity of the computation is clarified though the comparison with the measurement of a prototype.

  20. Microsecond linear optical response in the unusual nematic phase of achiral bimesogens

    NASA Astrophysics Data System (ADS)

    Panov, V. P.; Balachandran, R.; Nagaraj, M.; Vij, J. K.; Tamba, M. G.; Kohlmeier, A.; Mehl, G. H.

    2011-12-01

    Some hydrocarbon linked mesogenic dimers are known to exhibit an additional nematic phase (Nx) below a conventional uniaxial nematic (Nu) phase. Although composed of non-chiral molecules, the Nx phase is found to exhibit linear (polar) switching under applied electric field. This switching has remarkably low response time of the order of a few microseconds. Two chiral domains with opposite handedness and consequently opposite responses are found in planar cells. Uniformly lying helix, electroclinic, and flexoelectric effects are given as possible causes for this intriguing phenomenon.

  1. Soft and wet actuator developed with responsible high-strength gels

    NASA Astrophysics Data System (ADS)

    Harada, S.; Hidema, R.; Furukawa, H.

    2012-04-01

    Novel high-strength gels, named double network gels (DN gels), show a smart response to altering external electric field. It was reported that a plate shape of the DN gel bends toward a positive electrode direction when a static (DC) electric field is applied. Based on this previous result, it has been tried to develop a novel soft and wet actuator, which will be used as an automatically bulging button for cellar phones, or similar small devices. First, a bending experiment of a hung plate-shape DN gel was done, and its electric field response was confirmed. Second, the response of a lying plate-shape DN gels was confirmed in order to check the bulging phenomena. The edge of three plate-shape gels that was arranged radially on a plane surface was lifted 2mm by applying DC 8V. This system is a first step to make a gels button. However the critical problem is that electrolysis occurs simultaneously under electric field. Then, the water sweep out from gels, and gels is shrinking; They cause the separation between aluminum foil working as electrode and gels. That is why, a flexible electrode should be made by gels completely attached to the gels. As a third step, a push button is tried to make by a shape memory gels (SMG). The Young's modulus of the SMG is dramatically changed by temperature. This change in the modulus is applied to control the input-acceptable state and input-not-acceptable states of the button. A novel push button is proposed as a trial, and its user-friendliness is checked by changing the size of the button. The button is deformed by pushing and is back to original shape due to the property of shape memory. We believe the mechanism of this button will be applied to develop new devices especially for visually impaired persons.

  2. Linear sea-level response of Antarctic tributaries to strong projected ocean warming underneath the Filchner-Ronne ice shelf

    NASA Astrophysics Data System (ADS)

    Mengel, Matthias; Feldmann, Johannes; Levermann, Anders

    2015-04-01

    Antarctica is the biggest potential contributor to future sea-level rise. Whether its ice discharge will become unstable and decouple from the anthropogenic forcing or increase linearly with the warming of the surrounding ocean is of fundamental importance for future projections. Under continued greenhouse-gas emissions, ocean models indicate the possibility of an abrupt intrusion of warm circumpolar deep water into the cavity below the Filchner-Ronne ice shelf within the next two centuries. The retrograde bed slope of the tributaries of this ice shelf suggests that an unstable ice-sheet retreat is possible in this region while the buttressing of the ice shelf and the narrow glacier troughs tend to inhibit such instability. So far, it is unclear whether the instability or the external forcing will dominate future ice losses for the highly buttressed tributaries. Here we show in regional and continental-scale ice-sheet simulations, which are capable of resolving unstable grounding line retreat, that the ice instability does not dominate the sea-level response of the Filchner-Ronne tributaries but that the discharge follows the strength of the forcing quasi-linearly. Exploring the ice-sheet response to melt-pulses from ocean projections with abrupt warm-water intrusion, we find that ice loss reduces after the end of each pulse and the long-term sea-level contribution is approximately proportional to the total shelf-ice melt. Although the local instabilities might dominate the ice loss for weak oceanic warming, we find that the upper limit of ice discharge from the region is determined by the forcing and not by the marine ice sheet instability. Generally, fast anthropogenic warming may override instabilities in inert cryospheric systems regarding their contribution to future sea level rise.

  3. Linearization of dose-response curve of the radiochromic film dosimetry system

    SciTech Connect

    Devic, Slobodan; Tomic, Nada; Aldelaijan, Saad; DeBlois, Francois; Seuntjens, Jan; Chan, Maria F.; Lewis, Dave

    2012-08-15

    Purpose: Despite numerous advantages of radiochromic film dosimeter (high spatial resolution, near tissue equivalence, low energy dependence) to measure a relative dose distribution with film, one needs to first measure an absolute dose (following previously established reference dosimetry protocol) and then convert measured absolute dose values into relative doses. In this work, we present result of our efforts to obtain a functional form that would linearize the inherently nonlinear dose-response curve of the radiochromic film dosimetry system. Methods: Functional form [{zeta}= (-1){center_dot}netOD{sup (2/3)}/ln(netOD)] was derived from calibration curves of various previously established radiochromic film dosimetry systems. In order to test the invariance of the proposed functional form with respect to the film model used we tested it with three different GAFCHROMIC Trade-Mark-Sign film models (EBT, EBT2, and EBT3) irradiated to various doses and scanned on a same scanner. For one of the film models (EBT2), we tested the invariance of the functional form to the scanner model used by scanning irradiated film pieces with three different flatbed scanner models (Epson V700, 1680, and 10000XL). To test our hypothesis that the proposed functional argument linearizes the response of the radiochromic film dosimetry system, verification tests have been performed in clinical applications: percent depth dose measurements, IMRT quality assurance (QA), and brachytherapy QA. Results: Obtained R{sup 2} values indicate that the choice of the functional form of the new argument appropriately linearizes the dose response of the radiochromic film dosimetry system we used. The linear behavior was insensitive to both film model and flatbed scanner model used. Measured PDD values using the green channel response of the GAFCHROMIC Trade-Mark-Sign EBT3 film model are well within {+-}2% window of the local relative dose value when compared to the tabulated Cobalt-60 data. It was also

  4. Influence of Response Prepotency Strength, General Working Memory Resources, and Specific Working Memory Load on the Ability to Inhibit Predominant Responses: A Comparison of Young and Elderly Participants

    ERIC Educational Resources Information Center

    Grandjean, Julien; Collette, Fabienne

    2011-01-01

    One conception of inhibitory functioning suggests that the ability to successfully inhibit a predominant response depends mainly on the strength of that response, the general functioning of working memory processes, and the working memory demand of the task (Roberts, Hager, & Heron, 1994). The proposal that inhibition and functional working memory…

  5. One dimensional equivalent linear ground response analysis - A case study of collapsed Margalla Tower in Islamabad during 2005 Muzaffarabad Earthquake

    NASA Astrophysics Data System (ADS)

    Mahmood, Khalid; Rehman, Zia-ur-; Farooq, Khalid; Memon, Shazim Ali

    2016-07-01

    One dimensional equivalent linear ground response analysis was conducted in the Margalla Tower building in Islamabad, which collapsed during 2005 Muzaffarabad Earthquake. The analyses were conducted in DEEPSOIL software, without considering the effect of ground water table. The input subsoil data were selected from laboratory and field tests conducted for the site with bedrock at a depth of 21 m as per site condition. The field and laboratory testing data showed that the subsoil beneath the Tower site was silty clay to lean clay according to the unified soil classification system. Four different accelerograms with PGA values of 0.17 g, 0.15 g, 0.22 g and 0.21 g, compatible with the earthquake in the target area were applied at the bedrock. The surface response spectra showed that, except the Accelerogram-1 all other three were amplified near the fundamental period of the site. The analyses showed that different PGA values (0.26 g, 0.21 g, 0.36 g and 0.21 g) were produced at the surface which can be explained due to the difference in the Fourier amplitude of input accelerograms. Furthermore, the different input accelerograms produced a different shear strain and thus mobilized different shear strengths along the soil profile depth. Finally, the calculated response spectra of accelerograms were compared with the response spectra of Islamabad. The calculated spectral acceleration values were found to be higher than reported by the Building Code of Pakistan (0.16 g to 0.24 g).

  6. The Pole Term in Linear Response Theory: An Example From the Transverse Response of the Electron Gas

    PubMed Central

    Levine, Zachary H.; Cockayne, Eric

    2008-01-01

    In linear response theory, the dielectric response at zero frequency sometimes appears to violate the f-sum rule, which has apparent implications for causality. Here, we study the origin of this apparent discrepancy, focusing on Lindhard’s formula for the transverse response of the electron gas. At non-zero frequency, first-order poles contribute to the imaginary part of the dielectric function in the usual way. At zero frequency, second-order poles contribute in a way which forces a careful consideration of the notation of summation and integration to avoid an error. A compact formula for the contribution of the second-order poles is presented. The sense in which the f-sum rule is satisfied is discussed. PMID:27096129

  7. Spatiotemporal processing of linear acceleration: primary afferent and central vestibular neuron responses

    NASA Technical Reports Server (NTRS)

    Angelaki, D. E.; Dickman, J. D.

    2000-01-01

    Spatiotemporal convergence and two-dimensional (2-D) neural tuning have been proposed as a major neural mechanism in the signal processing of linear acceleration. To examine this hypothesis, we studied the firing properties of primary otolith afferents and central otolith neurons that respond exclusively to horizontal linear accelerations of the head (0.16-10 Hz) in alert rhesus monkeys. Unlike primary afferents, the majority of central otolith neurons exhibited 2-D spatial tuning to linear acceleration. As a result, central otolith dynamics vary as a function of movement direction. During movement along the maximum sensitivity direction, the dynamics of all central otolith neurons differed significantly from those observed for the primary afferent population. Specifically at low frequencies (linear velocity, in contrast to primary afferents that peaked in phase with linear acceleration. At least three different groups of central response dynamics were described according to the properties observed for motion along the maximum sensitivity direction. "High-pass" neurons exhibited increasing gains and phase values as a function of frequency. "Flat" neurons were characterized by relatively flat gains and constant phase lags (approximately 20-55 degrees ). A few neurons ("low-pass") were characterized by decreasing gain and phase as a function of frequency. The response dynamics of central otolith neurons suggest that the approximately 90 degrees phase lags observed at low frequencies are not the result of a neural integration but rather the effect of nonminimum phase behavior, which could arise at least partly through spatiotemporal convergence. Neither afferent nor central otolith neurons discriminated between gravitational and inertial components of linear acceleration. Thus response sensitivity was indistinguishable during 0.5-Hz pitch oscillations and fore-aft movements

  8. Optical response of silver clusters and their hollow shells from linear-response TDDFT

    NASA Astrophysics Data System (ADS)

    Koval, Peter; Marchesin, Federico; Foerster, Dietrich; Sánchez-Portal, Daniel

    2016-06-01

    We present a study of the optical response of compact and hollow icosahedral clusters containing up to 868 silver atoms by means of time-dependent density functional theory. We have studied the dependence on size and morphology of both the sharp plasmonic resonance at 3–4 eV (originated mainly from sp-electrons), and the less studied broader feature appearing in the 6–7 eV range (interband transitions). An analysis of the effect of structural relaxations, as well as the choice of exchange correlation functional (local density versus generalised gradient approximations) both in the ground state and optical response calculations is also presented. We have further analysed the role of the different atom layers (surface versus inner layers) and the different orbital symmetries on the absorption cross-section for energies up to 8 eV. We have also studied the dependence on the number of atom layers in hollow structures. Shells formed by a single layer of atoms show a pronounced red shift of the main plasmon resonances that, however, rapidly converge to those of the compact structures as the number of layers is increased. The methods used to obtain these results are also carefully discussed. Our methodology is based on the use of localised basis (atomic orbitals, and atom-centered and dominant-product functions), which bring several computational advantages related to their relatively small size and the sparsity of the resulting matrices. Furthermore, the use of basis sets of atomic orbitals also allows the possibility of extending some of the standard population analysis tools (e.g. Mulliken population analysis) to the realm of optical excitations. Some examples of these analyses are described in the present work.

  9. Optical response of silver clusters and their hollow shells from linear-response TDDFT.

    PubMed

    Koval, Peter; Marchesin, Federico; Foerster, Dietrich; Sánchez-Portal, Daniel

    2016-06-01

    We present a study of the optical response of compact and hollow icosahedral clusters containing up to 868 silver atoms by means of time-dependent density functional theory. We have studied the dependence on size and morphology of both the sharp plasmonic resonance at 3-4 eV (originated mainly from sp-electrons), and the less studied broader feature appearing in the 6-7 eV range (interband transitions). An analysis of the effect of structural relaxations, as well as the choice of exchange correlation functional (local density versus generalised gradient approximations) both in the ground state and optical response calculations is also presented. We have further analysed the role of the different atom layers (surface versus inner layers) and the different orbital symmetries on the absorption cross-section for energies up to 8 eV. We have also studied the dependence on the number of atom layers in hollow structures. Shells formed by a single layer of atoms show a pronounced red shift of the main plasmon resonances that, however, rapidly converge to those of the compact structures as the number of layers is increased. The methods used to obtain these results are also carefully discussed. Our methodology is based on the use of localised basis (atomic orbitals, and atom-centered and dominant-product functions), which bring several computational advantages related to their relatively small size and the sparsity of the resulting matrices. Furthermore, the use of basis sets of atomic orbitals also allows the possibility of extending some of the standard population analysis tools (e.g. Mulliken population analysis) to the realm of optical excitations. Some examples of these analyses are described in the present work. PMID:27147701

  10. Cancer risk assessment: Optimizing human health through linear dose-response models.

    PubMed

    Calabrese, Edward J; Shamoun, Dima Yazji; Hanekamp, Jaap C

    2015-07-01

    This paper proposes that generic cancer risk assessments be based on the integration of the Linear Non-Threshold (LNT) and hormetic dose-responses since optimal hormetic beneficial responses are estimated to occur at the dose associated with a 10(-4) risk level based on the use of a LNT model as applied to animal cancer studies. The adoption of the 10(-4) risk estimate provides a theoretical and practical integration of two competing risk assessment models whose predictions cannot be validated in human population studies or with standard chronic animal bioassay data. This model-integration reveals both substantial protection of the population from cancer effects (i.e. functional utility of the LNT model) while offering the possibility of significant reductions in cancer incidence should the hormetic dose-response model predictions be correct. The dose yielding the 10(-4) cancer risk therefore yields the optimized toxicologically based "regulatory sweet spot". PMID:25916915

  11. New differential equations governing the response cross-correlations of linear systems subjected to coloured loads

    NASA Astrophysics Data System (ADS)

    Falsone, G.; Settineri, D.

    2011-06-01

    A procedure for evaluating the response cross-correlation of a linear structural system subjected to the action of stationary random multi-correlated processes is presented in this work. It is based on the definition of the fourth-order differential equation governing the modal response cross-correlation and of the corresponding solution. This is expressed in terms of the corresponding fundamental matrix, whose expression is related to the fundamental matrices of the differential equations governing the modal responses. The properties of this matrix allows to define a particular unconditionally stable numerical integration approach, which is composed of two independent step-by-step procedures, a progressive one and a regressive one. The applications have shown a level of accuracy comparable to that corresponding to the numerical solution of the double convolution integral, but the presented approach is characterised by a reduced computational effort.

  12. Transient response of multidegree-of-freedom linear systems to forcing functions with inequality constraints

    NASA Technical Reports Server (NTRS)

    Michalopoulos, C. D.

    1974-01-01

    Optimal control theory is applied to analyze the transient response of discrete linear systems to forcing functions with unknown time dependence but having known bounds. Particular attention is given to forcing functions which include: (1) maximum displacement of any given mass element, (2) maximum relative displacement of any two adjacent masses, and (3) maximum acceleration of a given mass. Linear mechanical systems with an arbitrary number of degrees of freedom and only one forcing function acting are considered. In the general case, the desired forcing function is found to be a function that switches from the upper-to-lower bound and vice-versa at certain moments of time. A general procedure for finding such switching times is set forth.

  13. Identification of Linear and Nonlinear Aerodynamic Impulse Responses Using Digital Filter Techniques

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.

    1997-01-01

    This paper discusses the mathematical existence and the numerically-correct identification of linear and nonlinear aerodynamic impulse response functions. Differences between continuous-time and discrete-time system theories, which permit the identification and efficient use of these functions, will be detailed. Important input/output definitions and the concept of linear and nonlinear systems with memory will also be discussed. It will be shown that indicial (step or steady) responses (such as Wagner's function), forced harmonic responses (such as Tbeodorsen's function or those from doublet lattice theory), and responses to random inputs (such as gusts) can all be obtained from an aerodynamic impulse response function. This paper establishes the aerodynamic impulse response function as the most fundamental, and, therefore, the most computationally efficient, aerodynamic function that can be extracted from any given discrete-time, aerodynamic system. The results presented in this paper help to unify the understanding of classical two-dimensional continuous-time theories with modem three-dimensional, discrete-time theories. First, the method is applied to the nonlinear viscous Burger's equation as an example. Next the method is applied to a three-dimensional aeroelastic model using the CAP-TSD (Computational Aeroelasticity Program - Transonic Small Disturbance) code and then to a two-dimensional model using the CFL3D Navier-Stokes code. Comparisons of accuracy and computational cost savings are presented. Because of its mathematical generality, an important attribute of this methodology is that it is applicable to a wide range of nonlinear, discrete-time problems.

  14. Identification of Linear and Nonlinear Aerodynamic Impulse Responses Using Digital Filter Techniques

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.

    1997-01-01

    This paper discusses the mathematical existence and the numerically-correct identification of linear and nonlinear aerodynamic impulse response functions. Differences between continuous-time and discrete-time system theories, which permit the identification and efficient use of these functions, will be detailed. Important input/output definitions and the concept of linear and nonlinear systems with memory will also be discussed. It will be shown that indicial (step or steady) responses (such as Wagner's function), forced harmonic responses (such as Theodorsen's function or those from doublet lattice theory), and responses to random inputs (such as gusts) can all be obtained from an aerodynamic impulse response function. This paper establishes the aerodynamic impulse response function as the most fundamental, and, therefore, the most computationally efficient, aerodynamic function that can be extracted from any given discrete-time, aerodynamic system. The results presented in this paper help to unify the understanding of classical two-dimensional continuous-time theories with modern three-dimensional, discrete-time theories. First, the method is applied to the nonlinear viscous Burger's equation as an example. Next the method is applied to a three-dimensional aeroelastic model using the CAP-TSD (Computational Aeroelasticity Program - Transonic Small Disturbance) code and then to a two-dimensional model using the CFL3D Navier-Stokes code. Comparisons of accuracy and computational cost savings are presented. Because of its mathematical generality, an important attribute of this methodology is that it is applicable to a wide range of nonlinear, discrete-time problems.

  15. Vestibular short latency responses to pulsed linear acceleration in unanesthetized animals

    NASA Technical Reports Server (NTRS)

    Jones, T. A.

    1992-01-01

    Linear acceleration transients were used to elicit vestibular compound action potentials in non-invasively prepared, unanesthetized animals for the first time (chicks, Gallus domesticus, n = 33). Responses were composed of a series of up to 8 dominant peaks occurring within 8 msec of the stimulus. Response amplitudes for 1.0 g stimulus ranged from 1 to 10 microV. A late, slow, triphasic, anesthesia-labile component was identified as a dominant response feature in unanesthetized animals. Amplitudes increased and latencies decreased as stimulus intensity was increased (MANOVA P less than 0.05). Linear regression slope ranges were: amplitudes = 1.0-5.0 microV/g; latencies = -300 to -1100 microseconds/g. Thresholds for single polarity stimuli (0.035 +/- 0.022 g, n = 11) were significantly lower than those of alternating polarity (0.074 +/- 0.028 g, n = 18, P less than 0.001). Bilateral labyrinthectomy eliminated responses whereas bilateral extirpation of cochleae did not significantly change response thresholds. Intense acoustic masking (100/104 dB SL) produced no effect in 2 animals, but did produce small to moderate effects on response amplitudes in 7 others. Changes were attributed to effects on vestibular end organs. Results of unilateral labyrinth blockade (tetrodotoxin) suggest that P1 and N1 preferentially reflect ipsilateral eighth nerve compound action potentials whereas components beyond approximately 2 msec reflect activity from vestibular neurons that depend on both labyrinths. The results demonstrate that short latency vestibular compound action potentials can be measured in unanesthetized, non-invasively prepared animals.

  16. Effect of microstructure on the fracture response of advanced high strength steels

    NASA Astrophysics Data System (ADS)

    Taylor, Mark David

    The effect of constituent hardness on formability performance for higher-strength dual phase (DP) steels was evaluated. A commercially-produced DP steel with 1080 MPa ultimate tensile strength (UTS) was processed to create eight additional constituent hardness conditions by tempering and cold-rolling, processes that primarily affected constituent hardness properties. Using nanoindentation, ferrite and martensite hardness values for the nine conditions of the DP steel (as-received, four as-tempered, four temper cold-rolled) provided a range of hardness values to evaluate formability performance. Formability performance for the nine steel conditions was evaluated using tensile and hole expansion testing. A decrease in martensite/ferrite hardness ratio corresponded to an increase in hole expansion ratio (HER), and an increase in yield strength (YS). A lower hardness ratio (increased similarity of ferrite and martensite hardness) was interpreted to increase strain-sharing between ferrite and martensite, which suppressed plastic strain localization to higher stresses for the case of YS, and to higher formability limits for the case of HER. A lower hardness ratio corresponded to a decrease in work-hardening, and was interpreted to be caused by the suppression of strain localization in ferrite. Multiple studies from literature correlated HER to tensile properties, and the nine steel conditions produced consistent trends with the data reported in each study, confirming the experimental HER and tensile properties obtained in the current study are consistent with literature. The microstructural response to plastic deformation was evaluated using two DP steels with equivalent UTS and different hardness ratios. Nanoindentation analyses on tensile specimens deformed to the UTS revealed a greater increase in ferrite hardness for the higher hardness ratio steel, interpreted to be caused by the greater amount of work hardening. EBSD crystallographic orientation maps for the two DP

  17. Responsiveness of the Strengths and Difficulties Questionnaire (SDQ) in a Sample of High-Risk Youth in Residential Treatment

    ERIC Educational Resources Information Center

    Mason, W. Alex; Chmelka, Mary B.; Thompson, Ronald W.

    2012-01-01

    Background: Quality assessment of children's functioning is critical for both research and service delivery. The Strengths and Difficulties Questionnaire (SDQ) is a brief, publicly-available instrument that provides such assessment. Although the SDQ has strong psychometric properties, less is known about its responsiveness or sensitivity to…

  18. Local and linear chemical reactivity response functions at finite temperature in density functional theory.

    PubMed

    Franco-Pérez, Marco; Ayers, Paul W; Gázquez, José L; Vela, Alberto

    2015-12-28

    We explore the local and nonlocal response functions of the grand canonical potential density functional at nonzero temperature. In analogy to the zero-temperature treatment, local (e.g., the average electron density and the local softness) and nonlocal (e.g., the softness kernel) intrinsic response functions are defined as partial derivatives of the grand canonical potential with respect to its thermodynamic variables (i.e., the chemical potential of the electron reservoir and the external potential generated by the atomic nuclei). To define the local and nonlocal response functions of the electron density (e.g., the Fukui function, the linear density response function, and the dual descriptor), we differentiate with respect to the average electron number and the external potential. The well-known mathematical relationships between the intrinsic response functions and the electron-density responses are generalized to nonzero temperature, and we prove that in the zero-temperature limit, our results recover well-known identities from the density functional theory of chemical reactivity. Specific working equations and numerical results are provided for the 3-state ensemble model. PMID:26723661

  19. Local and linear chemical reactivity response functions at finite temperature in density functional theory

    SciTech Connect

    Franco-Pérez, Marco E-mail: ayers@mcmaster.ca E-mail: avela@cinvestav.mx; Ayers, Paul W. E-mail: ayers@mcmaster.ca E-mail: avela@cinvestav.mx; Gázquez, José L. E-mail: ayers@mcmaster.ca E-mail: avela@cinvestav.mx; Vela, Alberto E-mail: ayers@mcmaster.ca E-mail: avela@cinvestav.mx

    2015-12-28

    We explore the local and nonlocal response functions of the grand canonical potential density functional at nonzero temperature. In analogy to the zero-temperature treatment, local (e.g., the average electron density and the local softness) and nonlocal (e.g., the softness kernel) intrinsic response functions are defined as partial derivatives of the grand canonical potential with respect to its thermodynamic variables (i.e., the chemical potential of the electron reservoir and the external potential generated by the atomic nuclei). To define the local and nonlocal response functions of the electron density (e.g., the Fukui function, the linear density response function, and the dual descriptor), we differentiate with respect to the average electron number and the external potential. The well-known mathematical relationships between the intrinsic response functions and the electron-density responses are generalized to nonzero temperature, and we prove that in the zero-temperature limit, our results recover well-known identities from the density functional theory of chemical reactivity. Specific working equations and numerical results are provided for the 3-state ensemble model.

  20. Extrinsic contribution and non-linear response in lead-free KNN-modified piezoceramics

    NASA Astrophysics Data System (ADS)

    Ochoa, D. A.; García, J. E.; Pérez, R.; Gomis, V.; Albareda, A.; Rubio-Marcos, F.; Fernández, J. F.

    2009-01-01

    Finding lead-free ceramics with good piezoelectric properties is nowadays one of the most important challenges in materials science. The (K, Na, Li)(Nb, Ta, Sb)O3 system is one of the most promising candidates as a lead-free ceramic for transducer applications and is currently the object of important research work. In this paper, (K0.44Na0.52Li0.04)(Nb0.86Ta0.10Sb0.04)O3 was prepared by a conventional ceramic processing route. For this composition, orthorhombic-to-tetragonal phase transition was observed at temperatures very close to room temperature. As a consequence, good room temperature electromechanical properties were observed, displaying good thermal stability. We show that the most important contribution to dielectric, piezoelectric and elastic response comes from extrinsic effects, as was observed in other perovskite based materials. Nonlinearities in electromechanical properties induced by high electric field or mechanical stress were studied. Non-linear dielectric response was found to be less important than for soft PZT ceramics and was analysed within the Rayleigh framework. The results reveal that the non-linear response at room temperature in this material is mainly due to the irreversible wall domain movement.

  1. Skew-normal/independent linear mixed models for censored responses with applications to HIV viral loads

    PubMed Central

    Bandyopadhyay, Dipankar; Lachos, Victor H.; Castro, Luis M.; Dey, Dipak K.

    2012-01-01

    Often in biomedical studies, the routine use of linear mixed-effects models (based on Gaussian assumptions) can be questionable when the longitudinal responses are skewed in nature. Skew-normal/elliptical models are widely used in those situations. Often, those skewed responses might also be subjected to some upper and lower quantification limits (viz. longitudinal viral load measures in HIV studies), beyond which they are not measurable. In this paper, we develop a Bayesian analysis of censored linear mixed models replacing the Gaussian assumptions with skew-normal/independent (SNI) distributions. The SNI is an attractive class of asymmetric heavy-tailed distributions that includes the skew-normal, the skew-t, skew-slash and the skew-contaminated normal distributions as special cases. The proposed model provides flexibility in capturing the effects of skewness and heavy tail for responses which are either left- or right-censored. For our analysis, we adopt a Bayesian framework and develop a MCMC algorithm to carry out the posterior analyses. The marginal likelihood is tractable, and utilized to compute not only some Bayesian model selection measures but also case-deletion influence diagnostics based on the Kullback-Leibler divergence. The newly developed procedures are illustrated with a simulation study as well as a HIV case study involving analysis of longitudinal viral loads. PMID:22685005

  2. Thermodynamic bounds and general properties of optimal efficiency and power in linear responses.

    PubMed

    Jiang, Jian-Hua

    2014-10-01

    We study the optimal exergy efficiency and power for thermodynamic systems with an Onsager-type "current-force" relationship describing the linear response to external influences. We derive, in analytic forms, the maximum efficiency and optimal efficiency for maximum power for a thermodynamic machine described by a N×N symmetric Onsager matrix with arbitrary integer N. The figure of merit is expressed in terms of the largest eigenvalue of the "coupling matrix" which is solely determined by the Onsager matrix. Some simple but general relationships between the power and efficiency at the conditions for (i) maximum efficiency and (ii) optimal efficiency for maximum power are obtained. We show how the second law of thermodynamics bounds the optimal efficiency and the Onsager matrix and relate those bounds together. The maximum power theorem (Jacobi's Law) is generalized to all thermodynamic machines with a symmetric Onsager matrix in the linear-response regime. We also discuss systems with an asymmetric Onsager matrix (such as systems under magnetic field) for a particular situation and we show that the reversible limit of efficiency can be reached at finite output power. Cooperative effects are found to improve the figure of merit significantly in systems with multiply cross-correlated responses. Application to example systems demonstrates that the theory is helpful in guiding the search for high performance materials and structures in energy researches. PMID:25375457

  3. Invariance of evoked-potential echo-responses to target strength and distance in an echolocating false killer whale.

    PubMed

    Supin, Alexander Ya; Nachtigall, Paul E; Au, Whitlow W L; Breese, Marlee

    2005-06-01

    Brain auditory evoked potentials (AEPs) were recorded in a false killer whale Pseudorca crassidens trained to accept suction-cup EEG electrodes and to detect targets by echolocation. AEP collection was triggered by echolocation pulses transmitted by the animal. The target strength varied from -22 to -40 dB; the distance varied from 1.5 to 6 m. All the records contained two AEP sets: the first one of a constant latency (transmission-related AEP) and a second one with a delay proportional to the distance (echo-related AEP). The amplitude of echo-related AEPs was almost independent of both target strength and distance, though combined variation of these two parameters resulted in echo intensity variation within a range of 42 dB. The amplitude of transmission-related AEPs was independent of distance but dependent on target strength: the less the target strength, the higher the amplitude. Recording of transmitted pulses has not shown their intensity dependence on target strength. It is supposed that the constancy of echo-related AEP results from variation of hearing sensitivity depending on the target strength and release of echo-related responses from masking by transmitted pulses depending on the distance. PMID:16018494

  4. Invariance of evoked-potential echo-responses to target strength and distance in an echolocating false killer whale

    NASA Astrophysics Data System (ADS)

    Supin, Alexander Ya.; Nachtigall, Paul E.; Au, Whitlow W. L.; Breese, Marlee

    2005-06-01

    Brain auditory evoked potentials (AEPs) were recorded in a false killer whale Pseudorca crassidens trained to accept suction-cup EEG electrodes and to detect targets by echolocation. AEP collection was triggered by echolocation pulses transmitted by the animal. The target strength varied from -22 to -40 dB the distance varied from 1.5 to 6 m. All the records contained two AEP sets: the first one of a constant latency (transmission-related AEP) and a second one with a delay proportional to the distance (echo-related AEP). The amplitude of echo-related AEPs was almost independent of both target strength and distance, though combined variation of these two parameters resulted in echo intensity variation within a range of 42 dB. The amplitude of transmission-related AEPs was independent of distance but dependent on target strength: the less the target strength, the higher the amplitude. Recording of transmitted pulses has not shown their intensity dependence on target strength. It is supposed that the constancy of echo-related AEP results from variation of hearing sensitivity depending on the target strength and release of echo-related responses from masking by transmitted pulses depending on the distance. .

  5. Comparisons of linear and nonlinear plasma response models for non-axisymmetric perturbationsa)

    NASA Astrophysics Data System (ADS)

    Turnbull, A. D.; Ferraro, N. M.; Izzo, V. A.; Lazarus, E. A.; Park, J.-K.; Cooper, W. A.; Hirshman, S. P.; Lao, L. L.; Lanctot, M. J.; Lazerson, S.; Liu, Y. Q.; Reiman, A.; Turco, F.

    2013-05-01

    With the installation of non-axisymmetric coil systems on major tokamaks for the purpose of studying the prospects of ELM-free operation, understanding the plasma response to the applied fields is a crucial issue. Application of different response models, using standard tools, to DIII-D discharges with applied non-axisymmetric fields from internal coils, is shown to yield qualitatively different results. The plasma response can be treated as an initial value problem, following the system dynamically from an initial unperturbed state, or from a nearby perturbed equilibrium approach, and using both linear and nonlinear models [A. D. Turnbull, Nucl. Fusion 52, 054016 (2012)]. Criteria are discussed under which each of the approaches can yield a valid response. In the DIII-D cases studied, these criteria show a breakdown in the linear theory despite the small 10-3 relative magnitude of the applied magnetic field perturbations in this case. For nonlinear dynamical evolution simulations to reach a saturated nonlinear steady state, appropriate damping mechanisms need to be provided for each normal mode comprising the response. Other issues arise in the technical construction of perturbed flux surfaces from a displacement and from the presence of near nullspace normal modes. For the nearby equilibrium approach, in the absence of a full 3D equilibrium reconstruction with a controlled comparison, constraints relating the 2D system profiles to the final profiles in the 3D system also need to be imposed to assure accessibility. The magnetic helicity profile has been proposed as an appropriate input to a 3D equilibrium calculation and tests of this show the anticipated qualitative behavior.

  6. Long-term prediction test procedure for most ICs, based on linear response theory

    NASA Technical Reports Server (NTRS)

    Litovchenko, V.; Ivakhnenko, I.

    1991-01-01

    Experimentally, thermal annealing is known to be a factor which enables a number of different integrated circuits (IC's) to recover their operating characteristics after suffering radiation damage in the space radiation environment; thus, decreasing and limiting long term cumulative total-dose effects. This annealing is also known to be accelerated at elevated temperatures both during and after irradiation. Linear response theory (LRT) was applied, and a linear response function (LRF) to predict the radiation/annealing response of sensitive parameters of IC's for long term (several months or years) exposure to the space radiation environment were constructed. Compressing the annealing process from several years in orbit to just a few hours or days in the laboratory is achieved by subjecting the IC to elevated temperatures or by increasing the typical spaceflight dose rate by several orders of magnitude for simultaneous radiation/annealing only. The accomplishments are as follows: (1) the test procedure to make predictions of the radiation response was developed; (2) the calculation of the shift in the threshold potential due to the charge distribution in the oxide was written; (3) electron tunneling processes from the bulk Si to the oxide region in an MOS IC were estimated; (4) in order to connect the experimental annealing data to the theoretical model, constants of the model of the basic annealing process were established; (5) experimental data obtained at elevated temperatures were analyzed; (6) time compression and reliability of predictions for the long term region were shown; (7) a method to compress test time and to make predictions of response for the nonlinear region was proposed; and (8) nonlinearity of the LRF with respect to log(t) was calculated theoretically from a model.

  7. Reduced-Order Models Based on Linear and Nonlinear Aerodynamic Impulse Responses

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.

    1999-01-01

    This paper discusses a method for the identification and application of reduced-order models based on linear and nonlinear aerodynamic impulse responses. The Volterra theory of nonlinear systems and an appropriate kernel identification technique are described. Insight into the nature of kernels is provided by applying the method to the nonlinear Riccati equation in a non-aerodynamic application. The method is then applied to a nonlinear aerodynamic model of RAE 2822 supercritical airfoil undergoing plunge motions using the CFL3D Navier-Stokes flow solver with the Spalart-Allmaras turbulence model. Results demonstrate the computational efficiency of the technique.

  8. Reduced Order Models Based on Linear and Nonlinear Aerodynamic Impulse Responses

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.

    1999-01-01

    This paper discusses a method for the identification and application of reduced-order models based on linear and nonlinear aerodynamic impulse responses. The Volterra theory of nonlinear systems and an appropriate kernel identification technique are described. Insight into the nature of kernels is provided by applying the method to the nonlinear Riccati equation in a non-aerodynamic application. The method is then applied to a nonlinear aerodynamic model of an RAE 2822 supercritical airfoil undergoing plunge motions using the CFL3D Navier-Stokes flow solver with the Spalart-Allmaras turbulence model. Results demonstrate the computational efficiency of the technique.

  9. Stray magnetic-field response of linear birefringent optical current sensors

    NASA Astrophysics Data System (ADS)

    MacDougall, Trevor W.; Hutchinson, Ted F.

    1995-07-01

    It is well known that the line integral, describing Faraday rotation in an optical medium, reduces to zero at low frequencies for a closed path that does not encircle a current source. If the closed optical path possesses linear birefringence in addition to Faraday rotation, the cumulative effects on the state of polarization result in a response to externally located current-carrying conductors. This effect can induce a measurable error of the order of 0.3% during certain steady-state operating conditions.

  10. Linear and nonlinear electrodynamic responses of bulk CaC6 in the microwave regime

    NASA Astrophysics Data System (ADS)

    Andreone, A.; Cifariello, G.; Di Gennaro, E.; Lamura, G.; Emery, N.; Hérold, C.; Marêché, J. F.; Lagrange, P.

    2007-08-01

    The linear and nonlinear responses to a microwave electromagnetic field of two c-axis oriented polycrystalline samples of the recently discovered superconductor CaC6 (TC≈11.5K ) is studied in the superconducting state down to 2K. The surface resistance RS and the third order intermodulation distortion, arising from a two-tone excitation, have been measured as a function of temperature and microwave circulating power. Experiments are carried out using a dielectrically loaded copper cavity operating at 7GHz in a "hot finger" configuration. The results confirm recent experimental findings that CaC6 behaves as a weakly coupled, fully gapped, superconductor.

  11. Linear and nonlinear response to parameter variations in a mesoscale model

    NASA Astrophysics Data System (ADS)

    Hacker, J.; Snyder, C.

    2009-04-01

    It is widely recognized that ensemble prediction system (EPS) skill can improve when considering model error in the system design. Typical approaches include varying physical parameterization schemes or entire modeling systems within an EPS, and including stochastic terms in the dynamical equations. But perhaps the simplest approach to accounting for uncertainty in a model is to perturb inherently uncertain parameters within sub-grid parameterization schemes. Although it almost certainly cannot introduce all the modes of variability produced by other methods, its simplicity alone suggests that its effect on prediction skill and variability deserves quantitative scrutiny. In this work we seek to understand how perturbations to uncertain parameters manifest in a mesoscale model, and evaluate the potential for use in EPSs or data assimilation systems that can exploit ensemble covariances and linear or nonlinear responses. A set of four parameters are varied, corresponding to one each in cumulus, cloud microphysics, boundary-layer turbulence, and radiation schemes within the Weather Research and Forecast (WRF) mesoscale numerical weather prediction model. Parameters are drawn only once from distributions intended to capture the uncertainty estimated by experts and reported in the literature. Each set of parameters is drawn with a Latin Hypercube Sampling technique that ensures the parameter sets are independent and fill the four-dimensional space spanned by the parameters. The parameter sets are then fixed and an ensemble of 10 members uses them for approximately 30 ensemble forecasts that are also subject to initial-condition, lateral boundary-condition and land-surface uncertainty. We show that the parameters and state variables have clear linear relationship in certain regions and at certain times; elsewhere there may be either little dependence of the state on the parameter, or a nonlinear dependence. Linear response and ensemble sensitivity are quantified with

  12. Scaling regimes and linear/nonlinear responses of last millennium climate to volcanic and solar forcings

    NASA Astrophysics Data System (ADS)

    Lovejoy, Shaun; Varotsos, Costas

    2016-02-01

    At scales much longer than the deterministic predictability limits (about 10 days), the statistics of the atmosphere undergoes a drastic transition, the high-frequency weather acts as a random forcing on the lower-frequency macroweather. In addition, up to decadal and centennial scales the equivalent radiative forcings of solar, volcanic and anthropogenic perturbations are small compared to the mean incoming solar flux. This justifies the common practice of reducing forcings to radiative equivalents (which are assumed to combine linearly), as well as the development of linear stochastic models, including for forecasting at monthly to decadal scales. In order to clarify the validity of the linearity assumption and determine its scale range, we use last millennium simulations, with both the simplified Zebiak-Cane (ZC) model and the NASA GISS E2-R fully coupled GCM. We systematically compare the statistical properties of solar-only, volcanic-only and combined solar and volcanic forcings over the range of timescales from 1 to 1000 years. We also compare the statistics to multiproxy temperature reconstructions. The main findings are (a) that the variability in the ZC and GCM models is too weak at centennial and longer scales; (b) for longer than ≈ 50 years, the solar and volcanic forcings combine subadditively (nonlinearly) compounding the weakness of the response; and (c) the models display another nonlinear effect at shorter timescales: their sensitivities are much higher for weak forcing than for strong forcing (their intermittencies are different) and we quantify this with statistical scaling exponents.

  13. The neuronal response at extended timescales: a linearized spiking input–output relation

    PubMed Central

    Soudry, Daniel; Meir, Ron

    2014-01-01

    Many biological systems are modulated by unknown slow processes. This can severely hinder analysis – especially in excitable neurons, which are highly non-linear and stochastic systems. We show the analysis simplifies considerably if the input matches the sparse “spiky” nature of the output. In this case, a linearized spiking Input–Output (I/O) relation can be derived semi-analytically, relating input spike trains to output spikes based on known biophysical properties. Using this I/O relation we obtain closed-form expressions for all second order statistics (input – internal state – output correlations and spectra), construct optimal linear estimators for the neuronal response and internal state and perform parameter identification. These results are guaranteed to hold, for a general stochastic biophysical neuron model, with only a few assumptions (mainly, timescale separation). We numerically test the resulting expressions for various models, and show that they hold well, even in cases where our assumptions fail to hold. In a companion paper we demonstrate how this approach enables us to fit a biophysical neuron model so it reproduces experimentally observed temporal firing statistics on days-long experiments. PMID:24765073

  14. Linearized Unsteady Aerodynamic Analysis of the Acoustic Response to Wake/Blade-Row Interaction

    NASA Technical Reports Server (NTRS)

    Verdon, Joseph M.; Huff, Dennis L. (Technical Monitor)

    2001-01-01

    The three-dimensional, linearized Euler analysis, LINFLUX, is being developed to provide a comprehensive and efficient unsteady aerodynamic scheme for predicting the aeroacoustic and aeroelastic responses of axial-flow turbomachinery blading. LINFLUX couples a near-field, implicit, wave-split, finite-volume solution to far-field acoustic eigensolutions, to predict the aerodynamic responses of a blade row to prescribed structural and aerodynamic excitations. It is applied herein to predict the acoustic responses of a fan exit guide vane (FEGV) to rotor wake excitations. The intent is to demonstrate and assess the LINFLUX analysis via application to realistic wake/blade-row interactions. Numerical results are given for the unsteady pressure responses of the FEGV, including the modal pressure responses at inlet and exit. In addition, predictions for the modal and total acoustic power levels at the FEGV exit are compared with measurements. The present results indicate that the LINFLUX analysis should be useful in the aeroacoustic design process, and for understanding the three-dimensional flow physics relevant to blade-row noise generation and propagation.

  15. Scaling the Non-linear Impact Response of Flat and Curved Composite Panels

    NASA Technical Reports Server (NTRS)

    Ambur, Damodar R.; Chunchu, Prasad B.; Rose, Cheryl A.; Feraboli, Paolo; Jackson, Wade C.

    2005-01-01

    The application of scaling laws to thin flat and curved composite panels exhibiting nonlinear response when subjected to low-velocity transverse impact is investigated. Previous research has shown that the elastic impact response of structural configurations exhibiting geometrically linear response can be effectively scaled. In the present paper, a preliminary experimental study is presented to assess the applicability of the scaling laws to structural configurations exhibiting geometrically nonlinear deformations. The effect of damage on the scalability of the structural response characteristics, and the effect of scale on damage development are also investigated. Damage is evaluated using conventional methods including C-scan, specimen de-plying and visual inspection of the impacted panels. Coefficient of restitution and normalized contact duration are also used to assess the extent of damage. The results confirm the validity of the scaling parameters for elastic impacts. However, for the panels considered in the study, the extent and manifestation of damage do not scale according to the scaling laws. Furthermore, the results indicate that even though the damage does not scale, the overall panel response characteristics, as indicated by contact force profiles, do scale for some levels of damage.

  16. Optimizing work output for finite-sized heat reservoirs: Beyond linear response.

    PubMed

    Wang, Yan

    2016-01-01

    We uncover an optimization principle for the finite-time heat-work conversion process performed between two finite-sized heat reservoirs in the nonlinear response regime that is characterized by rather generic flux-force relations. We solve the problem of maximizing work output in a given time interval by means of the variational method. Moreover, in the limiting case that the cold reservoir is infinite, we find the corresponding optimized process can be determined by a single quantity, which plays the role similar to that of the Hamiltonian in classical mechanics. Some theoretical implications are discussed consequently, under the generalized tight-coupling condition which applies to both linear and nonlinear response cases. Our results can hopefully help design and control realistic thermodynamical processes. PMID:26871037

  17. Optimizing work output for finite-sized heat reservoirs: Beyond linear response

    NASA Astrophysics Data System (ADS)

    Wang, Yan

    2016-01-01

    We uncover an optimization principle for the finite-time heat-work conversion process performed between two finite-sized heat reservoirs in the nonlinear response regime that is characterized by rather generic flux-force relations. We solve the problem of maximizing work output in a given time interval by means of the variational method. Moreover, in the limiting case that the cold reservoir is infinite, we find the corresponding optimized process can be determined by a single quantity, which plays the role similar to that of the Hamiltonian in classical mechanics. Some theoretical implications are discussed consequently, under the generalized tight-coupling condition which applies to both linear and nonlinear response cases. Our results can hopefully help design and control realistic thermodynamical processes.

  18. Linear-response dynamics from the time-dependent Gutzwiller approximation

    NASA Astrophysics Data System (ADS)

    Bünemann, J.; Capone, M.; Lorenzana, J.; Seibold, G.

    2013-05-01

    Within a Lagrangian formalism, we derive the time-dependent Gutzwiller approximation for general multi-band Hubbard models. Our approach explicitly incorporates the coupling between time-dependent variational parameters and a time-dependent density matrix from which we obtain dynamical correlation functions in the linear-response regime. Our results are illustrated for the one-band model where we show that the interacting system can be mapped to an effective problem of fermionic quasiparticles coupled to ‘doublon’ (double occupancy) bosonic fluctuations. The latter have an energy on the scale of the on-site Hubbard repulsion U in the dilute limit but become soft at the Brinkman-Rice transition, which is shown to be related to an emerging conservation law of doublon charge and the associated gauge invariance. Coupling with the boson mode produces a structure in the charge response and we find that a similar structure appears in dynamical mean-field theory.

  19. Linear response approach to collective electronic excitations of solids and surfaces

    NASA Astrophysics Data System (ADS)

    Yuan, Zhe; Gao, Shiwu

    2009-03-01

    We have developed a parallel computer program for the study of dynamic response of periodic systems. It computes the linear response of an interacting many-electron system from its ground-state electronic structures, which are obtained from ab initio band structure calculations in the plane-wave and pseudopotential scheme. As test examples, we applied this program to calculate the linear response of bulk aluminum and a beryllium monolayer. The excitation spectra show prominent plasmon resonances, which compare well with the available data and previous calculations. For surfaces or thin films, we found that removing periodicity perpendicular to the surface gives a more reliable description of the low-energy excitation spectra, especially in the long-wavelength limit. Program summaryProgram title: Dresponse Catalogue identifier: AECK_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECK_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 49 098 No. of bytes in distributed program, including test data, etc.: 11 836 088 Distribution format: tar.gz Programming language: Fortran 90/MPI Computer: Any architecture with a Fortran 90 compiler Operating system: Any Has the code been vectorized or parallelized?: Yes RAM: 50 MB-2 GB per processor depending on system size Classification: 7.3 External routines: BLAS ( http://www.netlib.org/blas/), Lapack ( http://www.netlib.org/lapack/), MPI ( http://www-unix.mcs.anl.gov/mpi/), abinit (for ground-state calculations, http://www.abinit.org/) Nature of problem: The dynamic response of bulk and surface systems. It is usually dominated by collective electronic excitations (plasmons) at low-energy range. Solution method: The ground-state wavefunctions are obtained from ab initio density-functional calculation in the planewave and

  20. The emotional responses of browsing Facebook: Happiness, envy, and the role of tie strength

    PubMed Central

    Lin, Ruoyun; Utz, Sonja

    2015-01-01

    On Facebook, users are exposed to posts from both strong and weak ties. Even though several studies have examined the emotional consequences of using Facebook, less attention has been paid to the role of tie strength. This paper aims to explore the emotional outcomes of reading a post on Facebook and examine the role of tie strength in predicting happiness and envy. Two studies – one correlational, based on a sample of 207 American participants and the other experimental, based on a sample of 194 German participants – were conducted in 2014. In Study 2, envy was further distinguished into benign and malicious envy. Based on a multi-method approach, the results showed that positive emotions are more prevalent than negative emotions while browsing Facebook. Moreover, tie strength is positively associated with the feeling of happiness and benign envy, whereas malicious envy is independent of tie strength after reading a (positive) post on Facebook. PMID:26877584

  1. Aging process, cognitive decline and Alzheimer`s disease: can strength training modulate these responses?

    PubMed

    Portugal, Eduardo Matta Mello; Vasconcelos, Poliane Gomes Torres; Souza, Renata; Lattari, Eduardo; Monteiro-Junior, Renato Sobral; Machado, Sergio; Deslandes, Andrea Camaz

    2015-01-01

    Some evidence shows that aerobic training can attenuate the aging effects on the brain structures and functions. However, the strength exercise effects are poorly discussed. Thus, in the present study, the effects of strength training on the brain in elderly people and Alzheimer`s disease (AD) patients were revised. Furthermore, it a biological explanation relating to strength training effects on the brain is proposed. Brain atrophy can be related to neurotransmission dysfunction, like oxidative stress, that generates mitochondrial damage and reduced brain metabolism. Another mechanism is related to amyloid deposition and amyloid tangles, that can be related to reductions on insulin-like growth factor I concentrations. The brain-derived neurotrophic factor also presents reduction during aging process and AD. These neuronal dysfunctions are also related to cerebral blood flow decline that influence brain metabolism. All of these alterations contribute to cognitive impairment and AD. After a long period of strength training, the oxidative stress can be reduced, the brain-derived neurotrophic factor and insulin-like growth factor I serum concentrations enhance, and the cognitive performance improves. Considering these results, we can infer that strength training can be related to increased neurogenesis, neuroplasticity and, consequently, counteracts aging effects on the brain. The effect of strength training as an additional treatment of AD needs further investigation. PMID:26556087

  2. Linear information processing in the retina: a study of horizontal cell responses.

    PubMed Central

    Tranchina, D; Gordon, J; Shapley, R; Toyoda, J

    1981-01-01

    A basic question about visual perception is whether the retina produces a faithful or a distorted neural representation of the visual image. It is now well known that in some retinal pathways there are significant nonlinear transductions which distort the neural image. The next natural question is, What are the locations of the nonlinear stages within the retinal network? We report here on an investigation of linearity and nonlinearity of responses of horizontal cells in the turtle retina as an assay of the degree of nonlinearity in the outer plexiform layer of the retina. The visual stimuli were sinusoidal gratings; these patterns were modulated by contrast reversal with a sinusoidal time course. The conclusion from our experiments is that the turtle's horizontal cell responses show evidence only of linear spatial summation even at moderately high contrasts on moderately high background levels. Our work thus indicates that there is no significant distortion of the visual image by the photoreceptors or by the neural summation of photoreceptor signals by horizontal cells under normal physiological conditions. These results are consistent with the view that the major nonlinearities of the retina are proximal to the outer plexiform layer. PMID:6947242

  3. Linear response to leadership, effective temperature, and decision making in flocks.

    PubMed

    Pearce, Daniel J G; Giomi, Luca

    2016-08-01

    Large collections of autonomously moving agents, such as animals or micro-organisms, are able to flock coherently in space even in the absence of a central control mechanism. While the direction of the flock resulting from this critical behavior is random, this can be controlled by a small subset of informed individuals acting as leaders of the group. In this article we use the Vicsek model to investigate how flocks respond to leadership and make decisions. Using a combination of numerical simulations and continuous modeling we demonstrate that flocks display a linear response to leadership that can be cast in the framework of the fluctuation-dissipation theorem, identifying an effective temperature reflecting how promptly the flock reacts to the initiative of the leaders. The linear response to leadership also holds in the presence of two groups of informed individuals with competing interests, indicating that the flock's behavioral decision is determined by both the number of leaders and their degree of influence. PMID:27627365

  4. Damping of Bloch oscillations: Variational solutions of the Boltzmann equation beyond linear response

    NASA Astrophysics Data System (ADS)

    Mandt, Stephan

    2014-11-01

    Variational solutions of the Boltzmann equation usually rely on the concept of linear response. We extend the variational approach for tight-binding models at high entropies to a regime far beyond linear response. We analyze both weakly interacting fermions and incoherent bosons on a lattice. We consider a case where the particles are driven by a constant force, leading to the well-known Bloch oscillations, and we consider interactions that are weak enough not to overdamp these oscillations. This regime is computationally demanding and relevant for ultracold atoms in optical lattices. We derive a simple theory in terms of coupled dynamic equations for the particle density, energy density, current, and heat current, allowing for analytic solutions. As an application, we identify damping coefficients for Bloch oscillations in the Hubbard model at weak interactions and compute them for a one-dimensional toy model. We also approximately solve the long-time dynamics of a weakly interacting, strongly Bloch-oscillating cloud of fermionic particles in a tilted lattice, leading to a subdiffusive scaling exponent.

  5. Lead-lag relationships between stock and market risk within linear response theory

    NASA Astrophysics Data System (ADS)

    Borysov, Stanislav; Balatsky, Alexander

    2015-03-01

    We study historical correlations and lead-lag relationships between individual stock risks (standard deviation of daily stock returns) and market risk (standard deviation of daily returns of a market-representative portfolio) in the US stock market. We consider the cross-correlation functions averaged over stocks, using historical stock prices from the Standard & Poor's 500 index for 1994-2013. The observed historical dynamics suggests that the dependence between the risks was almost linear during the US stock market downturn of 2002 and after the US housing bubble in 2007, remaining at that level until 2013. Moreover, the averaged cross-correlation function often had an asymmetric shape with respect to zero lag in the periods of high correlation. We develop the analysis by the application of the linear response formalism to study underlying causal relations. The calculated response functions suggest the presence of characteristic regimes near financial crashes, when individual stock risks affect market risk and vice versa. This work was supported by VR 621-2012-2983.

  6. Linear response theory for the density matrix renormalization group: Efficient algorithms for strongly correlated excited states

    NASA Astrophysics Data System (ADS)

    Nakatani, Naoki; Wouters, Sebastian; Van Neck, Dimitri; Chan, Garnet Kin-Lic

    2014-01-01

    Linear response theory for the density matrix renormalization group (DMRG-LRT) was first presented in terms of the DMRG renormalization projectors [J. J. Dorando, J. Hachmann, and G. K.-L. Chan, J. Chem. Phys. 130, 184111 (2009)]. Later, with an understanding of the manifold structure of the matrix product state (MPS) ansatz, which lies at the basis of the DMRG algorithm, a way was found to construct the linear response space for general choices of the MPS gauge in terms of the tangent space vectors [J. Haegeman, J. I. Cirac, T. J. Osborne, I. Pižorn, H. Verschelde, and F. Verstraete, Phys. Rev. Lett. 107, 070601 (2011)]. These two developments led to the formulation of the Tamm-Dancoff and random phase approximations (TDA and RPA) for MPS. This work describes how these LRTs may be efficiently implemented through minor modifications of the DMRG sweep algorithm, at a computational cost which scales the same as the ground-state DMRG algorithm. In fact, the mixed canonical MPS form implicit to the DMRG sweep is essential for efficient implementation of the RPA, due to the structure of the second-order tangent space. We present ab initio DMRG-TDA results for excited states of polyenes, the water molecule, and a [2Fe-2S] iron-sulfur cluster.

  7. The Linear Response Function of an Idealized Atmosphere. Part I: Construction Using Green's Functions and Applications

    NASA Astrophysics Data System (ADS)

    Hassanzadeh, Pedram; Kuang, Zhiming

    2016-09-01

    A linear response function (LRF) determines the mean-response of a nonlinear climate system to weak imposed forcings, and an eddy flux matrix (EFM) determines the eddy momentum and heat flux responses to mean-flow changes. Neither LRF nor EFM can be calculated from first principles due the lack of a complete theory for turbulent eddies. Here the LRF and EFM for an idealized dry atmosphere are computed by applying numerous localized weak forcings, one at a time, to a GCM with Held-Suarez physics and calculating the mean-responses. The LRF and EFM for zonally-averaged responses are then constructed using these forcings and responses through matrix inversion. Tests demonstrate that LRF and EFM are fairly accurate. Spectral analysis of the LRF shows that the most excitable dynamical mode, the neutral vector, strongly resembles the model's Annular Mode. The framework described here can be employed to compute the LRF/EFM for zonally-asymmetric responses and more complex GCMs. The potential applications of the LRF/EFM constructed here are i) forcing a specified mean-flow for hypothesis-testing, ii) isolating/quantifying the eddy-feedbacks in complex eddy-mean flow interaction problems, and iii) evaluating/improving more generally-applicable methods currently used to construct LRFs or diagnose eddy-feedbacks in comprehensive GCMs or observations. As an example for iii, in Part 2, the LRF is also computed using the fluctuation-dissipation theorem (FDT), and the previously-calculated LRF is exploited to investigate why FDT performs poorly in some cases. It is shown that dimension-reduction using leading EOFs, which is commonly used to construct LRFs from the FDT, can significantly degrade the accuracy due to the non-normality of the operator.

  8. A Fresh Look at Linear Ordinary Differential Equations with Constant Coefficients. Revisiting the Impulsive Response Method Using Factorization

    ERIC Educational Resources Information Center

    Camporesi, Roberto

    2016-01-01

    We present an approach to the impulsive response method for solving linear constant-coefficient ordinary differential equations of any order based on the factorization of the differential operator. The approach is elementary, we only assume a basic knowledge of calculus and linear algebra. In particular, we avoid the use of distribution theory, as…

  9. Linear summation in the barn owl's brainstem underlies responses to interaural time differences.

    PubMed

    Kuokkanen, Paula T; Ashida, Go; Carr, Catherine E; Wagner, Hermann; Kempter, Richard

    2013-07-01

    The neurophonic potential is a synchronized frequency-following extracellular field potential that can be recorded in the nucleus laminaris (NL) in the brainstem of the barn owl. Putative generators of the neurophonic are the afferent axons from the nucleus magnocellularis, synapses onto NL neurons, and spikes of NL neurons. The outputs of NL, i.e., action potentials of NL neurons, are only weakly represented in the neurophonic. Instead, the inputs to NL, i.e., afferent axons and their synaptic potentials, are the predominant origin of the neurophonic (Kuokkanen PT, Wagner H, Ashida G, Carr CE, Kempter R. J Neurophysiol 104: 2274-2290, 2010). Thus in NL the monaural inputs from the two brain sides converge and create a binaural neurophonic. If these monaural inputs contribute independently to the extracellular field, the response to binaural stimulation can be predicted from the sum of the responses to ipsi- and contralateral stimulation. We found that a linear summation model explains the dependence of the responses on interaural time difference as measured experimentally with binaural stimulation. The fit between model predictions and data was excellent, even without taking into account the nonlinear responses of NL coincidence detector neurons, although their firing rate and synchrony strongly depend on the interaural time difference. These results are consistent with the view that the afferent axons and their synaptic potentials in NL are the primary origin of the neurophonic. PMID:23554438

  10. Linear summation in the barn owl's brainstem underlies responses to interaural time differences

    PubMed Central

    Kuokkanen, Paula T.; Ashida, Go; Carr, Catherine E.; Wagner, Hermann

    2013-01-01

    The neurophonic potential is a synchronized frequency-following extracellular field potential that can be recorded in the nucleus laminaris (NL) in the brainstem of the barn owl. Putative generators of the neurophonic are the afferent axons from the nucleus magnocellularis, synapses onto NL neurons, and spikes of NL neurons. The outputs of NL, i.e., action potentials of NL neurons, are only weakly represented in the neurophonic. Instead, the inputs to NL, i.e., afferent axons and their synaptic potentials, are the predominant origin of the neurophonic (Kuokkanen PT, Wagner H, Ashida G, Carr CE, Kempter R. J Neurophysiol 104: 2274–2290, 2010). Thus in NL the monaural inputs from the two brain sides converge and create a binaural neurophonic. If these monaural inputs contribute independently to the extracellular field, the response to binaural stimulation can be predicted from the sum of the responses to ipsi- and contralateral stimulation. We found that a linear summation model explains the dependence of the responses on interaural time difference as measured experimentally with binaural stimulation. The fit between model predictions and data was excellent, even without taking into account the nonlinear responses of NL coincidence detector neurons, although their firing rate and synchrony strongly depend on the interaural time difference. These results are consistent with the view that the afferent axons and their synaptic potentials in NL are the primary origin of the neurophonic. PMID:23554438

  11. Fully relativistic description of spin-orbit torques by means of linear response theory

    NASA Astrophysics Data System (ADS)

    Wimmer, S.; Chadova, K.; Seemann, M.; Ködderitzsch, D.; Ebert, H.

    2016-08-01

    Symmetry and magnitude of spin-orbit torques (SOT), i.e., current-induced torques on the magnetization of systems lacking inversion symmetry, are investigated in a fully relativistic linear response framework based on the Kubo formalism. By applying all space-time symmetry operations contained in the magnetic point group of a solid to the relevant response coefficient, the torkance expressed as torque-current correlation function, restrictions to the shape of the direct and inverse response tensors are obtained. These are shown to apply to the corresponding thermal analogs as well, namely the direct and inverse thermal SOT in response to a temperature gradient or heat current. Using an implementation of the Kubo-Bastin formula for the torkance into a first-principles multiple-scattering Green function framework and accounting for disorder effects via the so-called coherent potential approximation, all contributions to the SOT in pure systems, dilute as well as concentrated alloys can be treated on equal footing. This way, material specific values for all torkance tensor elements in the fcc (111) trilayer alloy system Pt| FexCo1 -x|Cu are obtained over a wide concentration range and discussed in comparison to results for electrical and spin conductivity, as well as to previous work—in particular concerning symmetry with respect to magnetization reversal and the nature of the various contributions.

  12. Influence of applied magnetic field strength and frequency response of pick-up coil on the magnetic barkhausen noise profile

    NASA Astrophysics Data System (ADS)

    Vashista, M.; Moorthy, V.

    2013-11-01

    The influence of applied magnetic field strength and frequency response of the pick-up coil on the shape of Magnetic Barkhausen Noise (MBN) profile have been studied. The low frequency MBN measurements have been carried out using 5 different MBN pick-up coils at two different ranges of applied magnetic field strengths on quenched and tempered (QT) and case-carburised and tempered (CT) 18CrNiMo7 steel bar samples. The MBN pick-up coils have been designed to obtain different frequency response such that the peak frequency response varies from ˜4 kHz to ˜32 kHz and the amplitude of low frequency signals decreases gradually. At lower applied magnetic field strength of ±14,000 A/m, all the pick-up coils produced a single peak MBN profile for both QT and CT sample. However, at higher applied magnetic field strength of ±22,000 A/m, the MBN profile showed two peaks for both QT and CT samples for pick-up coils with peak frequency response up to ˜17 kHz. Also, there is systematic reduction in peak 2 for QT sample and asymmetric reduction in the heights of peak 1 and peak 2 for CT sample with increase in peak frequency response of the pick-up coils. The decreasing sensitivity of pick-up coils with increasing peak frequency response to MBN signal generation is indicated by the gradual reduction in width of MBN profile and height of peak 2 in the QT sample. The drastic reduction in peak 1 as compared to peak 2 in the CT sample shows the effect of decreasing low frequency response of the pick-up coils on lowering skin-depth of MBN signal detection. This study clearly suggests that it is essential to optimise both maximum applied magnetic field strength and frequency response of the MBN pick-up coil for maximising the shape of the MBN profile for appropriate correlation with the magnetisation process and hence the material properties.

  13. THE RESPONSE OF DRUG EXPENDITURE TO NON-LINEAR CONTRACT DESIGN: EVIDENCE FROM MEDICARE PART D*

    PubMed Central

    Einav, Liran; Finkelstein, Amy; Schrimpf, Paul

    2016-01-01

    We study the demand response to non-linear price schedules using data on insurance contracts and prescription drug purchases in Medicare Part D. We exploit the kink in individuals’ budget set created by the famous “donut hole,” where insurance becomes discontinuously much less generous on the margin, to provide descriptive evidence of the drug purchase response to a price increase. We then specify and estimate a simple dynamic model of drug use that allows us to quantify the spending response along the entire non-linear budget set. We use the model for counterfactual analysis of the increase in spending from “filling” the donut hole, as will be required by 2020 under the Affordable Care Act. In our baseline model, which considers spending decisions within a single year, we estimate that “filling” the donut hole will increase annual drug spending by about $150, or about 8 percent. About one-quarter of this spending increase reflects “anticipatory” behavior, coming from beneficiaries whose spending prior to the policy change would leave them short of reaching the donut hole. We also present descriptive evidence of cross-year substitution of spending by individuals who reach the kink, which motivates a simple extension to our baseline model that allows – in a highly stylized way – for individuals to engage in such cross year substitution. Our estimates from this extension suggest that a large share of the $150 drug spending increase could be attributed to cross-year substitution, and the net increase could be as little as $45 per year. PMID:26769984

  14. Effects of processing induced defects on laminate response - Interlaminar tensile strength

    NASA Technical Reports Server (NTRS)

    Gurdal, Zafer; Tomasino, Alfred P.; Biggers, S. B.

    1991-01-01

    Four different layup methods were used in the present study of the interlaminar tensile strength of AS4/3501-6 graphite-reinforced epoxy as a function of defects from manufacturing-induced porosity. The methods were: (1) baseline hand layup, (2) solvent wipe of prepreg for resin removal, (3) moisture-introduction between plies, and (4) a low-pressure cure cycle. Pore characterization was conducted according to ASTM D-2734. A significant reduction is noted in the out-of-plane tensile strength as a function of increasing void content; the porosity data were used in an empirical model to predict out-of-plane strength as a function of porosity.

  15. Near-LTE linear response calculations with a collisional-radiative model for He-like Al ions. Revision 1

    SciTech Connect

    More, R.; Kato, T.

    1998-04-06

    We investigate non-equilibrium atomic kinetics using a collisional- radiative model modified to include line absorption. Steady-state emission is calculated for He-like aluminum immersed in a specified radiation field having fixed deviations from a Planck spectrum. The calculated net emission is presented as a NLTE response matrix. In agreement with a rigorous general rule of non-equilibrium thermodynamics, the linear response is symmetric. We compute the response matrix for 1% and {+-} 50% changes in the photon temperature and find linear response over a surprisingly large range.

  16. Underestimating the frequency, strength and cost of antipredator responses with data from GPS collars: an example with wolves and elk

    PubMed Central

    Creel, Scott; Winnie, John A; Christianson, David

    2013-01-01

    Field studies that rely on fixes from GPS-collared predators to identify encounters with prey will often underestimate the frequency and strength of antipredator responses. These underestimation biases have several mechanistic causes. (1) Step bias: The distance between successive GPS fixes can be large, and encounters that occur during these intervals go undetected. This bias will generally be strongest for cursorial hunters that can rapidly cover large distances (e.g., wolves and African wild dogs) and when the interval between GPS fixes is long relative to the duration of a hunt. Step bias is amplified as the path travelled between successive GPS fixes deviates from a straight line. (2) Scatter bias: Only a small fraction of the predators in a population typically carry GPS collars, and prey encounters with uncollared predators go undetected unless a collared group-mate is present. This bias will generally be stronger for fission–fusion hunters (e.g., spotted hyenas, wolves, and lions) than for highly cohesive hunters (e.g., African wild dogs), particularly when their group sizes are large. Step bias and scatter bias both cause underestimation of the frequency of antipredator responses. (3) Strength bias: Observations of prey in the absence of GPS fix from a collared predator will generally include a mixture of cases in which predators were truly absent and cases in which predators were present but not detected, which causes underestimation of the strength of antipredator responses. We quantified these biases with data from wolves and African wild dogs and found that fixes from GPS collars at 3-h intervals underestimated the frequency and strength of antipredator responses by a factor >10. We reexamined the results of a recent study of the nonconsumptive effects of wolves on elk in light of these results and confirmed that predation risk has strong effects on elk dynamics by reducing the pregnancy rate. PMID:24455148

  17. Underestimating the frequency, strength and cost of antipredator responses with data from GPS collars: an example with wolves and elk.

    PubMed

    Creel, Scott; Winnie, John A; Christianson, David

    2013-12-01

    Field studies that rely on fixes from GPS-collared predators to identify encounters with prey will often underestimate the frequency and strength of antipredator responses. These underestimation biases have several mechanistic causes. (1) Step bias: The distance between successive GPS fixes can be large, and encounters that occur during these intervals go undetected. This bias will generally be strongest for cursorial hunters that can rapidly cover large distances (e.g., wolves and African wild dogs) and when the interval between GPS fixes is long relative to the duration of a hunt. Step bias is amplified as the path travelled between successive GPS fixes deviates from a straight line. (2) Scatter bias: Only a small fraction of the predators in a population typically carry GPS collars, and prey encounters with uncollared predators go undetected unless a collared group-mate is present. This bias will generally be stronger for fission-fusion hunters (e.g., spotted hyenas, wolves, and lions) than for highly cohesive hunters (e.g., African wild dogs), particularly when their group sizes are large. Step bias and scatter bias both cause underestimation of the frequency of antipredator responses. (3) Strength bias: Observations of prey in the absence of GPS fix from a collared predator will generally include a mixture of cases in which predators were truly absent and cases in which predators were present but not detected, which causes underestimation of the strength of antipredator responses. We quantified these biases with data from wolves and African wild dogs and found that fixes from GPS collars at 3-h intervals underestimated the frequency and strength of antipredator responses by a factor >10. We reexamined the results of a recent study of the nonconsumptive effects of wolves on elk in light of these results and confirmed that predation risk has strong effects on elk dynamics by reducing the pregnancy rate. PMID:24455148

  18. Indoor calibration of Sky Quality Meters: Linearity, spectral responsivity and uncertainty analysis

    NASA Astrophysics Data System (ADS)

    Pravettoni, M.; Strepparava, D.; Cereghetti, N.; Klett, S.; Andretta, M.; Steiger, M.

    2016-09-01

    The indoor calibration of brightness sensors requires extremely low values of irradiance in the most accurate and reproducible way. In this work the testing equipment of an ISO 17025 accredited laboratory for electrical testing, qualification and type approval of solar photovoltaic modules was modified in order to test the linearity of the instruments from few mW/cm2 down to fractions of nW/cm2, corresponding to levels of simulated brightness from 6 to 19 mag/arcsec2. Sixteen Sky Quality Meter (SQM) produced by Unihedron, a Canadian manufacturer, were tested, also assessing the impact of the ageing of their protective glasses on the calibration coefficients and the drift of the instruments. The instruments are in operation on measurement points and observatories at different sites and altitudes in Southern Switzerland, within the framework of OASI, the Environmental Observatory of Southern Switzerland. The authors present the results of the calibration campaign: linearity; brightness calibration, with and without protective glasses; transmittance measurement of the glasses; and spectral responsivity of the devices. A detailed uncertainty analysis is also provided, according to the ISO 17025 standard.

  19. Linear and Nonlinear Optical Response in Silver Nanoclusters: Insight from a Computational Investigation.

    PubMed

    Day, Paul N; Pachter, Ruth; Nguyen, Kiet A; Bigioni, Terry P

    2016-02-01

    We report a density functional theory (DFT) and time-dependent DFT (TDDFT) investigation of the thiolated silver nanoclusters [Ag44(SR)30](4-), Ag14(SR)12(PR'3)8, Ag31(SG)19, Ag32(SG)19, and Ag15(SG)11, which were synthesized and for which one-photon absorption (OPA) characterization is available. Our computational investigation based on careful examination of the exchange-correlation functional used in DFT geometry optimization and for the linear optical properties predictions by TDDFT, demonstrated good agreement with the measured linear absorption spectra, however dependent on the applied functional. Following the benchmarking, we evaluated the two-photon absorption (TPA) response using TDDFT, noting that accurate prediction of OPA is important for suppositions on the spectral range for TPA enhancement because of the sensitivity to the excitation energies. Although the TPA cross-section results are complicated by resonance effects and quantifying TPA cross sections for these systems is difficult, our results indicate that the nanoclusters Ag15 and Ag31/32 are likely to have large TPA cross sections. The spherical symmetry of the Ag44 and Ag14 nanoclusters leads to applicability of superatom theory, while it is not as useful for the more oblate geometries of the Ag15 and Ag31/32 systems. PMID:26730764

  20. The design of a linear phase superconducting filter with quasi-elliptic response

    NASA Astrophysics Data System (ADS)

    Zuo, Tao; Yan, Shaolin; Zhao, Xinjie; Yue, Hongwei; Xie, Qinglian; Fang, Lan

    2008-06-01

    This paper presents the design of a linear phase superconducting filter with quasi-elliptic response. The coupling structure of the filter contains two trisections and one quadruplet. The two trisections are applied to generate two independent transmission zeros for high selectivity and are realized by meandered open-loop microstrip resonators; the quadruplet is applied for phase equalization and realized by four novel L-shaped microstrip resonators. The filter is designed at 1950 MHz with a bandwidth of 20 MHz. It is fabricated on a LaAlO3 wafer with double-coated Tl2Ba2CaCu2O8 films. The filter shows good selectivity together with flat group delay over 80% of the passband both in the simulation and measurements.

  1. Relaxation method and TCLE method of linear response in terms of thermo-field dynamics

    NASA Astrophysics Data System (ADS)

    Saeki, Mizuhiko

    2008-03-01

    The general formulae of the dynamic susceptibility are derived using the relaxation method and the TCLE method for the linear response by introducing the renormalized hat-operator in terms of thermo-field dynamics (TFD). In the former method, the Kubo formula is calculated for systems with no external driving fields, while in the latter method the admittance is directly calculated from time-convolutionless equations with external driving terms. The relation between the two methods is analytically investigated, and also the fluctuation-dissipation theorem is examined for the two methods in terms of TFD. The TCLE method is applied to an interacting spin system, and a formula of the transverse magnetic susceptibility is derived for such a system. The transverse magnetic susceptibility of an interacting spin system with S = 1 / 2 spins is obtained up to the first order in powers of the spin-spin interaction.

  2. Derivation of spin-orbit couplings in collinear linear-response TDDFT: A rigorous formulation

    SciTech Connect

    Franco de Carvalho, Felipe; Curchod, Basile F. E.; Tavernelli, Ivano; Penfold, Thomas J.

    2014-04-14

    Using an approach based upon a set of auxiliary many-electron wavefunctions we present a rigorous derivation of spin-orbit coupling (SOC) within the framework of linear-response time-dependent density functional theory (LR-TDDFT). Our method is based on a perturbative correction of the non-relativistic collinear TDDFT equations using a Breit-Pauli spin-orbit Hamiltonian. The derivation, which is performed within both the Casida and Sternheimer formulations of LR-TDDFT, is valid for any basis set. The requirement of spin noncollinearity for the treatment of spin-flip transitions is also discussed and a possible alternative solution for the description of these transitions in the collinear case is also proposed. Our results are validated by computing the SOC matrix elements between singlet and triplet states of two molecules, formaldehyde and acetone. In both cases, we find excellent agreement with benchmark calculations performed with a high level correlated wavefunction method.

  3. Acoustically determined linear piezoelectric response of lithium niobate up to 1100 V

    NASA Astrophysics Data System (ADS)

    Patel, N.; Branch, D. W.; Schamiloglu, E.; Cular, S.

    2014-04-01

    We present a method to measure high voltages using the piezoelectric crystal lithium niobate without using voltage dividers. A 36° Y-X cut lithium niobate crystal was coupled to two acoustic transducers, where direct current voltages were applied from 128-1100 V. The time-of-flight through the crystal was determined to be linearly dependent on the applied voltage. A model was developed to predict the time-delay in response to the applied voltage. The results show a sensitivity of 17 fs/V with a measurement error of 1 fs/V was achievable using this method. The sensitivity of this method can be increased by measuring the acoustic wave after multiple passes through the crystal. This method has many advantages over traditional techniques such as: favorable scalability for larger voltages, ease of use, cost effectiveness, and compactness.

  4. Asymptotic rates of response from forest tree breeding strategies using best linear unbiased prediction.

    PubMed

    Kerr, R J

    1998-03-01

    Genetic gain equations are developed for selection on multiple traits using either multi- or univariate best linear unbiased predictors (BLUP) and for selection under controlled and open pollination and polymix mating schemes. The equations assume an infinite population and account for the effects of selection. A comparison with simulated populations under the same mating schemes show that the gain equations predict selection response well, with the predictions having some upward bias. The gain equations are used to compare across mating schemes, to compare univariate to multivariate analyses, and to measure the reduction in the rate of genetic gain due to selection disequilibrium. Results show controlled pollination schemes can offer as much as a 56% advantage in genetic gain relative to open pollination. The reduction in the rate of genetic gain due to selection disequilibrium is approximately 27% under controlled pollination for the breeding goals studied. The results show a limited benefit in using multivariate analyses for predicting breeding values. PMID:24710888

  5. Acoustically determined linear piezoelectric response of lithium niobate up to 1100 V

    SciTech Connect

    Patel, N.; Branch, D. W.; Cular, S.; Schamiloglu, E.

    2014-04-21

    We present a method to measure high voltages using the piezoelectric crystal lithium niobate without using voltage dividers. A 36° Y-X cut lithium niobate crystal was coupled to two acoustic transducers, where direct current voltages were applied from 128–1100 V. The time-of-flight through the crystal was determined to be linearly dependent on the applied voltage. A model was developed to predict the time-delay in response to the applied voltage. The results show a sensitivity of 17 fs/V with a measurement error of 1 fs/V was achievable using this method. The sensitivity of this method can be increased by measuring the acoustic wave after multiple passes through the crystal. This method has many advantages over traditional techniques such as: favorable scalability for larger voltages, ease of use, cost effectiveness, and compactness.

  6. Response of discrete linear systems to forcing functions with inequality constraints.

    NASA Technical Reports Server (NTRS)

    Michalopoulos, C. D.; Riley, T. A.

    1972-01-01

    An analysis is made of the maximum response of discrete, linear mechanical systems to arbitrary forcing functions which lie within specified bounds. Primary attention is focused on the complete determination of the forcing function which will engender maximum displacement to any particular mass element of a multi-degree-of-freedom system. In general, the desired forcing function is found to be a bang-bang type function, i.e., a function which switches from the maximum to the minimum bound and vice-versa at certain instants of time. Examples of two-degree-of-freedom systems, with and without damping, are presented in detail. Conclusions are drawn concerning the effect of damping on the switching times and the general procedure for finding these times is discussed.

  7. Seismic Response Of Masonry Plane Walls: A Numerical Study On Spandrel Strength

    SciTech Connect

    Betti, Michele; Galano, Luciano; Vignoli, Andrea

    2008-07-08

    The paper reports the results of a numerical investigation on masonry walls subjected to in-plane seismic loads. This research aims to verify the formulae of shear and flexural strength of masonry spandrels which are given in the recent Italian Standards. Seismic pushover analyses have been carried out using finite element models of unreinforced walls and strengthened walls introducing reinforced concrete (RC) beams at the floor levels. Two typologies of walls have been considered distinguished for the height to length ratio h/l of the spandrels: a) short beams (h/l = 1.33) and b) slender beams (h/l = 0.5). Results obtained for the unreinforced and the strengthened walls are compared with equations for shear and flexural strength provided in Standards [1]. The numerical analyses show that the reliability of these equations is at least questionable especially for the prediction of the flexural strength. In the cases in which the axial force has not been determined by the structural analysis, Standards seems to overestimate the flexural strength of short spandrels both for the unreinforced and the strengthened wall.

  8. Divergent selection for fiber length and bundle strength and correlated responses in cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton breeders must develop cultivars to meet the demand for longer, stronger, and more uniform fibers. In the current study, two cycles of divergent selection for fiber upper-half mean length (UHML) and bundle strength (Str) were conducted within five diverse parental combinations selected based o...

  9. Seismic Response Of Masonry Plane Walls: A Numerical Study On Spandrel Strength

    NASA Astrophysics Data System (ADS)

    Betti, Michele; Galano, Luciano; Vignoli, Andrea

    2008-07-01

    The paper reports the results of a numerical investigation on masonry walls subjected to in-plane seismic loads. This research aims to verify the formulae of shear and flexural strength of masonry spandrels which are given in the recent Italian Standards [1]. Seismic pushover analyses have been carried out using finite element models of unreinforced walls and strengthened walls introducing reinforced concrete (RC) beams at the floor levels. Two typologies of walls have been considered distinguished for the height to length ratio h/l of the spandrels: a) short beams (h/l = 1.33) and b) slender beams (h/l = 0.5). Results obtained for the unreinforced and the strengthened walls are compared with equations for shear and flexural strength provided in Standards [1]. The numerical analyses show that the reliability of these equations is at least questionable especially for the prediction of the flexural strength. In the cases in which the axial force has not been determined by the structural analysis, Standards [1] seems to overestimate the flexural strength of short spandrels both for the unreinforced and the strengthened wall.

  10. Patterns of Response: A Case Study of Elementary Students with Spatial Strengths

    ERIC Educational Resources Information Center

    Mann, Rebecca L.

    2014-01-01

    Gifted students with spatial strengths have areas of remarkable talent but are often overlooked, underidentified, and underserved in American schools. Their preference for learning through imagistic reasoning conflicts with traditional verbal instructional techniques typically used in schools. To better serve these students who have the potential…

  11. Synthesis of pH- and ionic strength-responsive microgels and their interactions with lysozyme.

    PubMed

    Zhang, Bao; Sun, Binghua; Li, Xiaoxiao; Yu, Yun; Tian, Yaoqi; Xu, Xueming; Jin, Zhengyu

    2015-08-01

    Microgels composed of carboxymethyl cellulose (CMC) polymers via chemical crosslinking with sodium trimetaphosphate were synthesized and characterized using thermogravimetric analysis (TGA), swelling, and rheological analysis. The effects of pH, ionic strength, and crosslinking density on lysozyme loading in microgels were also studied. The microgel particle size ranged primarily from 10 to 20 μm. TGA revealed that the crosslinking increased the thermal stability of CMC. The swelling degree increased as pH increased from 3 to 5, and remained almost constant from pH 5 to 8. However, the swelling degree decreased with increasing ionic strength. The rheological analysis was in good agreement with the results of swelling degree. The protein uptake decreased with increasing ionic strength and crosslinking density. The pH 6 was the optimal pH for lysozyme absorption at ionic strength 0.05 M. The lysozyme-microgel complex was identified by confocal laser scanning microscopy, and the lysozyme distribution in the microgel was observed to be rather homogeneous. PMID:26001494

  12. Circumventing chronological uncertainty in attempts to detect and understand non-linear ecosystem responses in shallow lake paleorecords

    NASA Astrophysics Data System (ADS)

    Reid, M. A.

    2015-12-01

    Shallow lakes can undergo rapid changes in key biotic components. These phenomena, which include loss of submerged macrophytes, fish kills and algal blooms, can occur at sub-seasonal timescales and are often reported to be non-linear, threshold responses to a gradual intensification of an external driver and reflective of a change in state. Although such threshold responses are widely reported, a recent meta-analysis found that most such changes cannot be unequivocally confirmed as true threshold responses. This is because clear records of system stability in the face of a gradual increase in external driver intensity followed by rapid system change are lacking, as are records of post threshold stability in the new state following release of external driver pressure. That threshold responses were not confirmed often reflects insufficient time series of before or after data to establish driver variability and ecosystem stability. In this context, paleo studies provide a means to clearly identify non-linear, threshold responses in shallow lake ecosystems. The challenge of detecting evidence of non-linear responses in shallow lake ecosystems is often seen as a chronological one. Highly resolved and accurate sediment chronologies coupled with historical records of external driver intensity do provide a means to detect non-linear, threshold responses, but such chronologies are rare in shallow lakes. Fortunately, the 'tight chronology-historical record of external driver' approach is not the only, or even the most direct, way to detect non-linear ecosystem responses in paleo records. An alternative, more direct approach is ecosystem response and external driver intensity to be preserved in the same sedimentary record. Theoretically, it is arguable whether any chronological control is needed at all to determine if a non-linear response has occurred, for the key is not how quickly an ecosystem response may occur or if it is linear with respect to time, it is whether it is

  13. Equivalent linear response spectrum methodology for the seismic response of a simple structural system with a uni-directional support (tension only or compression only)

    SciTech Connect

    Gurdal, R.J.; Maxham, W.D.

    1996-12-01

    Typically, structures with significant non-linear supports are analyzed using either time-history algorithms or response spectrum enveloping techniques, with multiple stiffness values to represent the non-linear supports. However, there are problems associated with these methods: (1) time-history analyses require considerable computer time, and, more importantly, the generated response files can become too large; (2) linear response spectrum analyses, when used to envelop the non-linear solution, are excessively conservative. This paper presents an equivalent linear response spectrum methodology to analyze structural systems with a uni-directional support. The structure is free to move in one direction, and restricted with a support stiffness in the diametrically opposed direction. The mathematical formulas for this application are developed and presented. The results using this methodology are compared with actual results from corresponding time-history non-linear structural analyses. These comparisons, performed for the one-mass structural system, show that the equivalent linear response spectrum method closely approximates the time-history results.

  14. Steady-state linear optical properties and Kerr nonlinear optical response of a four-level quantum dot with phonon-assisted transition

    NASA Astrophysics Data System (ADS)

    Yan-Chao, She; Ting-Ting, Luo; Wei-Xi, Zhang; Mao-Wu, Ran; Deng-Long, Wang

    2016-01-01

    The linear optical properties and Kerr nonlinear optical response in a four-level loop configuration GaAs/AlGaAs semiconductor quantum dot are analytically studied with the phonon-assisted transition (PAT). It is shown that the changes among a single electromagnetically induced transparency (EIT) window, a double EIT window and the amplification of the probe field in the absorption curves can be controlled by varying the strength of PAT κ. Meanwhile, double switching from the anomalous dispersion regime to the normal dispersion regime can likely be achieved by increasing the Rabi energy of the external optical control field. Furthermore, we demonstrate that the group velocity of the probe field can be practically regulated by varying the PAT and the intensity of the optical control field. In the nonlinear case, it is shown that the large SPM and XPM can be achieved as linear absorption vanishes simultaneously, and the PAT can suppress both third-order self-Kerr and the cross-Kerr nonlinear effect of the QD. Our study is much more practical than its atomic counterpart due to its flexible design and the controllable interference strength, and may provide some new possibilities for technological applications. Project supported by the National Natural Science Foundation of China (Grant No. 61367003), the Scientific Research Fund of Hunan Provincial Education Department, China (Grant No. 12A140), and the Scientific Research Fund of Guizhou Provincial Education Department, China (Grant Nos. KY[2015]384 and KY[2015]446).

  15. Bayesian Method for Support Union Recovery in Multivariate Multi-Response Linear Regression

    NASA Astrophysics Data System (ADS)

    Chen, Wan-Ping

    Sparse modeling has become a particularly important and quickly developing topic in many applications of statistics, machine learning, and signal processing. The main objective of sparse modeling is discovering a small number of predictive patterns that would improve our understanding of the data. This paper extends the idea of sparse modeling to the variable selection problem in high dimensional linear regression, where there are multiple response vectors, and they share the same or similar subsets of predictor variables to be selected from a large set of candidate variables. In the literature, this problem is called multi-task learning, support union recovery or simultaneous sparse coding in different contexts. We present a Bayesian method for solving this problem by introducing two nested sets of binary indicator variables. In the first set of indicator variables, each indicator is associated with a predictor variable or a regressor, indicating whether this variable is active for any of the response vectors. In the second set of indicator variables, each indicator is associated with both a predicator variable and a response vector, indicating whether this variable is active for the particular response vector. The problem of variable selection is solved by sampling from the posterior distributions of the two sets of indicator variables. We develop a Gibbs sampling algorithm for posterior sampling and use the generated samples to identify active support both in shared and individual level. Theoretical and simulation justification are performed in the paper. The proposed algorithm is also demonstrated on the real image data sets. To learn the patterns of the object in images, we treat images as the different tasks. Through combining images with the object in the same category, we cannot only learn the shared patterns efficiently but also get individual sketch of each image.

  16. On spurious detection of linear response and misuse of the fluctuation-dissipation theorem in finite time series

    NASA Astrophysics Data System (ADS)

    Gottwald, Georg A.; Wormell, J. P.; Wouters, Jeroen

    2016-09-01

    Using a sensitive statistical test we determine whether or not one can detect the breakdown of linear response given observations of deterministic dynamical systems. A goodness-of-fit statistics is developed for a linear statistical model of the observations, based on results for central limit theorems for deterministic dynamical systems, and used to detect linear response breakdown. We apply the method to discrete maps which do not obey linear response and show that the successful detection of breakdown depends on the length of the time series, the magnitude of the perturbation and on the choice of the observable. We find that in order to reliably reject the assumption of linear response for typical observables sufficiently large data sets are needed. Even for simple systems such as the logistic map, one needs of the order of 106 observations to reliably detect the breakdown with a confidence level of 95 %; if less observations are available one may be falsely led to conclude that linear response theory is valid. The amount of data required is larger the smaller the applied perturbation. For judiciously chosen observables the necessary amount of data can be drastically reduced, but requires detailed a priori knowledge about the invariant measure which is typically not available for complex dynamical systems. Furthermore we explore the use of the fluctuation-dissipation theorem (FDT) in cases with limited data length or coarse-graining of observations. The FDT, if applied naively to a system without linear response, is shown to be very sensitive to the details of the sampling method, resulting in erroneous predictions of the response.

  17. Assessment of the setup dependence of detector response functions for mega-voltage linear accelerators

    SciTech Connect

    Fox, Christopher; Simon, Tom; Simon, Bill; Dempsey, James F.; Kahler, Darren; Palta, Jatinder R.; Liu Chihray; Yan Guanghua

    2010-02-15

    Purpose: Accurate modeling of beam profiles is important for precise treatment planning dosimetry. Calculated beam profiles need to precisely replicate profiles measured during machine commissioning. Finite detector size introduces perturbations into the measured profiles, which, in turn, impact the resulting modeled profiles. The authors investigate a method for extracting the unperturbed beam profiles from those measured during linear accelerator commissioning. Methods: In-plane and cross-plane data were collected for an Elekta Synergy linac at 6 MV using ionization chambers of volume 0.01, 0.04, 0.13, and 0.65 cm{sup 3} and a diode of surface area 0.64 mm{sup 2}. The detectors were orientated with the stem perpendicular to the beam and pointing away from the gantry. Profiles were measured for a 10x10 cm{sup 2} field at depths ranging from 0.8 to 25.0 cm and SSDs from 90 to 110 cm. Shaping parameters of a Gaussian response function were obtained relative to the Edge detector. The Gaussian function was deconvolved from the measured ionization chamber data. The Edge detector profile was taken as an approximation to the true profile, to which deconvolved data were compared. Data were also collected with CC13 and Edge detectors for additional fields and energies on an Elekta Synergy, Varian Trilogy, and Siemens Oncor linear accelerator and response functions obtained. Response functions were compared as a function of depth, SSD, and detector scan direction. Variations in the shaping parameter were introduced and the effect on the resulting deconvolution profiles assessed. Results: Up to 10% setup dependence in the Gaussian shaping parameter occurred, for each detector for a particular plane. This translated to less than a {+-}0.7 mm variation in the 80%-20% penumbral width. For large volume ionization chambers such as the FC65 Farmer type, where the cavity length to diameter ratio is far from 1, the scan direction produced up to a 40% difference in the shaping

  18. Contributions of DNA repair and damage response pathways to the non-linear genotoxic responses of alkylating agents.

    PubMed

    Klapacz, Joanna; Pottenger, Lynn H; Engelward, Bevin P; Heinen, Christopher D; Johnson, George E; Clewell, Rebecca A; Carmichael, Paul L; Adeleye, Yeyejide; Andersen, Melvin E

    2016-01-01

    From a risk assessment perspective, DNA-reactive agents are conventionally assumed to have genotoxic risks at all exposure levels, thus applying a linear extrapolation for low-dose responses. New approaches discussed here, including more diverse and sensitive methods for assessing DNA damage and DNA repair, strongly support the existence of measurable regions where genotoxic responses with increasing doses are insignificant relative to control. Model monofunctional alkylating agents have in vitro and in vivo datasets amenable to determination of points of departure (PoDs) for genotoxic effects. A session at the 2013 Society of Toxicology meeting provided an opportunity to survey the progress in understanding the biological basis of empirically-observed PoDs for DNA alkylating agents. Together with the literature published since, this review discusses cellular pathways activated by endogenous and exogenous alkylation DNA damage. Cells have evolved conserved processes that monitor and counteract a spontaneous steady-state level of DNA damage. The ubiquitous network of DNA repair pathways serves as the first line of defense for clearing of the DNA damage and preventing mutation. Other biological pathways discussed here that are activated by genotoxic stress include post-translational activation of cell cycle networks and transcriptional networks for apoptosis/cell death. The interactions of various DNA repair and DNA damage response pathways provide biological bases for the observed PoD behaviors seen with genotoxic compounds. Thus, after formation of DNA adducts, the activation of cellular pathways can lead to the avoidance of a mutagenic outcome. The understanding of the cellular mechanisms acting within the low-dose region will serve to better characterize risks from exposures to DNA-reactive agents at environmentally-relevant concentrations. PMID:27036068

  19. A mechanism responsible for reducing compression strength of through-the-thickness reinforced composite material

    NASA Technical Reports Server (NTRS)

    Farley, Gary L.

    1992-01-01

    A study was conducted to identify one of the mechanisms that contributes to the reduced compression strength of composite materials with through-the-thickness (TTT) reinforcements. In this study a series of thick (0/90) laminates with stitched and integrally woven TTT reinforcements were fabricated and statically tested. In both the stitching and weaving process a surface loop of TTT reinforcement yarn is created between successive TTT penetrations. It was shown that the surface loop of the TTT reinforcement 'kinked' the in-plane fibers in such a manner that they were made ineffective in carrying compressive load. The improvement in strength by removal of the surface loop and 'kinked' in-plane fibers was between 7 and 35 percent.

  20. A pseudorandom pink noise for the computer-based measurements of linear responses

    NASA Astrophysics Data System (ADS)

    Kinugawa, Tohru; Sakurai, Katsumi; Mitsui, Takahisa

    1998-07-01

    We propose a nonbinary pseudorandom sequence for the measurement of linear responses. Compared with a maximal length shift register sequence (m sequence), this sequence is more suitable for digital processing based on computers; with the use of discrete Fourier transforms, the response functions are reproduced without approximations from digitally sampled data because the input power spectrum is pink, i.e., completely flat in a given frequency range and 0 otherwise. In practice, the new sequence is simply the sum of harmonics with arbitrary phases and is produced readily with digital wave form generators. For reducing the peak power of this sequence, the amplitude distribution is better to be bimodal rather than Gaussian. For demonstrating its feasibility with common digital hardware, the magnetic resonance of Rb atoms in a sub-MHz region was measured successfully. With the use of the fast Fourier transform algorithm, our software task was only 0.4% of that for the cross-correlational calculation based on an m sequence.

  1. Glucocorticoid Receptor (NR3C1) Variants Associate with the Muscle Strength and Size Response to Resistance Training

    PubMed Central

    Ash, Garrett I.; Kostek, Matthew A.; Lee, Harold; Angelopoulos, Theodore J.; Gordon, Paul M.; Moyna, Niall M.; Visich, Paul S.; Zoeller, Robert F.; Price, Thomas B.; Devaney, Joseph M.; Gordish-Dressman, Heather; Thompson, Paul D.; Hoffman, Eric P.; Pescatello, Linda S.

    2016-01-01

    Glucocorticoid receptor (NR3C1) polymorphisms associate with obesity, muscle strength, and cortisol sensitivity. We examined associations among four NR3C1 polymorphisms and the muscle response to resistance training (RT). European-American adults (n = 602, 23.8±0.4yr) completed a 12 week unilateral arm RT program. Maximum voluntary contraction (MVC) assessed isometric strength (kg) and MRI assessed biceps size (cm2) pre- and post-resistance training. Subjects were genotyped for NR3C1 -2722G>A, -1887G>A, -1017T>C, and +363A>G. Men carrying the -2722G allele gained less relative MVC (17.3±1.2vs33.5±6.1%) (p = 0.010) than AA homozygotes; men with -1887GG gained greater relative MVC than A allele carriers (19.6±1.4vs13.2±2.3%) (p = 0.016). Women carrying the -1017T allele gained greater relative size (18.7±0.5vs16.1±0.9%) (p = 0.016) than CC homozygotes. We found sex-specific NR3C1 associations with the muscle strength and size response to RT. Future studies should investigate whether these associations are partially explained by cortisol’s actions in muscle tissue as they interact with sex differences in cortisol production. PMID:26821164

  2. Glucocorticoid Receptor (NR3C1) Variants Associate with the Muscle Strength and Size Response to Resistance Training.

    PubMed

    Ash, Garrett I; Kostek, Matthew A; Lee, Harold; Angelopoulos, Theodore J; Clarkson, Priscilla M; Gordon, Paul M; Moyna, Niall M; Visich, Paul S; Zoeller, Robert F; Price, Thomas B; Devaney, Joseph M; Gordish-Dressman, Heather; Thompson, Paul D; Hoffman, Eric P; Pescatello, Linda S

    2016-01-01

    Glucocorticoid receptor (NR3C1) polymorphisms associate with obesity, muscle strength, and cortisol sensitivity. We examined associations among four NR3C1 polymorphisms and the muscle response to resistance training (RT). European-American adults (n = 602, 23.8±0.4yr) completed a 12 week unilateral arm RT program. Maximum voluntary contraction (MVC) assessed isometric strength (kg) and MRI assessed biceps size (cm2) pre- and post-resistance training. Subjects were genotyped for NR3C1 -2722G>A, -1887G>A, -1017T>C, and +363A>G. Men carrying the -2722G allele gained less relative MVC (17.3±1.2vs33.5±6.1%) (p = 0.010) than AA homozygotes; men with -1887GG gained greater relative MVC than A allele carriers (19.6±1.4vs13.2±2.3%) (p = 0.016). Women carrying the -1017T allele gained greater relative size (18.7±0.5vs16.1±0.9%) (p = 0.016) than CC homozygotes. We found sex-specific NR3C1 associations with the muscle strength and size response to RT. Future studies should investigate whether these associations are partially explained by cortisol's actions in muscle tissue as they interact with sex differences in cortisol production. PMID:26821164

  3. Influence of Cutting Time on Brush Response: Implications for Herbivory in Linear (Transportation) Corridors

    NASA Astrophysics Data System (ADS)

    Rea, Roy V.; Child, Kenneth N.; Spata, David P.; MacDonald, Douglas

    2007-08-01

    An experiment was conducted to determine the influence the time of brush-cutting can have on plant regrowth and attractiveness to herbivores that browse in linear corridors. The influence of cutting time on leaf flush and senescence, shoot morphometry, and biomass was measured for 3 consecutive years after initial brush-cutting. Results indicate that morphological and phenological attributes of three woody deciduous plants were influenced by the timing of brush-cutting for up to 3 years after initial cutting. Brush-cutting generally stimulated plants to produce larger than normal shoots and delay leaf senescence. The degree to which plants were affected, however, varied with the timing of initial cutting and the species in question. Generally, plants cut later in the year resprouted more vigorously and were taller in the third year after cutting but produced less overall biomass than when cut earlier. In the years following brush-cutting, plants cut earlier flushed leaves earlier in the spring but delayed leaf senescence in the fall when compared to uncut controls. Results of these trials suggest that brush-cutting time influences plant response and several plant attributes known to influence plant attractiveness to moose and other herbivores. We therefore recommend that roadside and railside vegetation management plans consider the influence of cutting time on plant regrowth. Such considerations can ensure that brush is cut to reduce the attractiveness of plant regrowth in these linear corridors, reduce the utilization of such brush by herbivores, and, as such, mitigate collision risk between motorists and herbivores such as moose.

  4. Influence of cutting time on brush response: implications for herbivory in linear (transportation) corridors.

    PubMed

    Rea, Roy V; Child, Kenneth N; Spata, David P; MacDonald, Douglas

    2007-08-01

    An experiment was conducted to determine the influence the time of brush-cutting can have on plant regrowth and attractiveness to herbivores that browse in linear corridors. The influence of cutting time on leaf flush and senescence, shoot morphometry, and biomass was measured for 3 consecutive years after initial brush-cutting. Results indicate that morphological and phenological attributes of three woody deciduous plants were influenced by the timing of brush-cutting for up to 3 years after initial cutting. Brush-cutting generally stimulated plants to produce larger than normal shoots and delay leaf senescence. The degree to which plants were affected, however, varied with the timing of initial cutting and the species in question. Generally, plants cut later in the year resprouted more vigorously and were taller in the third year after cutting but produced less overall biomass than when cut earlier. In the years following brush-cutting, plants cut earlier flushed leaves earlier in the spring but delayed leaf senescence in the fall when compared to uncut controls. Results of these trials suggest that brush-cutting time influences plant response and several plant attributes known to influence plant attractiveness to moose and other herbivores. We therefore recommend that roadside and railside vegetation management plans consider the influence of cutting time on plant regrowth. Such considerations can ensure that brush is cut to reduce the attractiveness of plant regrowth in these linear corridors, reduce the utilization of such brush by herbivores, and, as such, mitigate collision risk between motorists and herbivores such as moose. PMID:17557175

  5. Familiarity and recollection produce distinct eye movement, pupil and medial temporal lobe responses when memory strength is matched.

    PubMed

    Kafkas, Alexandros; Montaldi, Daniela

    2012-11-01

    Two experiments explored eye measures (fixations and pupil response patterns) and brain responses (BOLD) accompanying the recognition of visual object stimuli based on familiarity and recollection. In both experiments, the use of a modified remember/know procedure led to high confidence and matched accuracy levels characterising strong familiarity (F3) and recollection (R) responses. In Experiment 1, visual scanning behaviour at retrieval distinguished familiarity-based from recollection-based recognition. Recollection, relative to strength-matched familiarity, involved significantly larger pupil dilations and more dispersed fixation patterns. In Experiment 2, the hippocampus was selectively activated for recollected stimuli, while no evidence of activation was observed in the hippocampus for strong familiarity of matched accuracy. Recollection also activated the parahippocampal cortex (PHC), while the adjacent perirhinal cortex (PRC) was actively engaged in response to strong familiarity (than to recollection). Activity in prefrontal and parietal areas differentiated familiarity and recollection in both the extent and the magnitude of activity they exhibited, while the dorsomedial thalamus showed selective familiarity-related activity, and the ventrolateral and anterior thalamus selective recollection-related activity. These findings are consistent with the view that the hippocampus and PRC play contrasting roles in supporting recollection and familiarity and that these differences are not a result of differences in memory strength. Overall, the combined pupil dilation, eye movement and fMRI data suggest the operation of recognition mechanisms drawing differentially on familiarity and recollection, whose neural bases are distinct within the MTL. PMID:22902538

  6. Energy Loss of a High Charge Bunched Electron Beam in Plasma: Nonlinear Plasma Response and Linear Scaling

    NASA Astrophysics Data System (ADS)

    Rosenzweig, J. B.; Barov, N.; Thompson, M. C.; Yoder, R.

    2002-12-01

    There has been much experimental and theoretical interest in blowout regime of plasma wakefield acceleration (PWFA), which features ultra-high accelerating fields, linear transverse focusing forces, and nonlinear plasma motion. Using an exact analysis, we examine here a fundamental limit of nonlinear PWFA excitation, by an infinitesimally short, relativistic electron beam. The beam energy loss in this case is shown to be linear in charge even for nonlinear plasma response, where a normalized, unitless charge exceeds unity, and relativistic plasma effects become important or dominant. The physical bases for this persistence of linear response are pointed out. As a byproduct of our analysis, we re-examine the issue of field divergence as the point-charge limit is approached, suggesting an important modification of commonly held views of evading unphysical energy loss. Deviations from linear behavior are investigated using simulations with finite length beams. The peak accelerating field in the plasma wave excited behind a finite-length beam is also examined, with the artifact of wave spiking adding to the apparent persistence of linear scaling of the peak field amplitude well into the nonlinear regime. On the other hand, at large enough normalized charge, linear scaling of fields collapses, with serious consequences for plasma wave excitation efficiency. The dramatic implications of these results for observing the collapse of linear scaling in planned experiments are discussed.

  7. Impact of Short and Moderate Rest Intervals on the Acute Immunometabolic Response to Exhaustive Strength Exercise: Part I.

    PubMed

    Rossi, Fabrício E; Gerosa-Neto, Jose; Zanchi, Nelo E; Cholewa, Jason M; Lira, Fabio S

    2016-06-01

    Rossi, FE, Gerosa-Neto, J, Zanchi, NE, Cholewa, JM, and Lira, FS. Impact of short and moderate rest intervals on the acute immunometabolic response to exhaustive strength exercise. J Strength Cond Res 30(6): 1563-1569, 2016-The purpose of this study was to verify the influence of the short and moderate intervals of recovery in response to an acute bout of exhaustive strength exercise on performance, inflammatory, and metabolic responses in healthy adults. Eight healthy subjects (age = 24.6 ± 4.1 years) performed 2 randomized sequences: short = 70% of 1 repetition maximum (1RM) with 30 seconds of rest between sets; moderate = 70% of 1RM with 90 seconds of rest between sets. All sequences of exercises were performed over 4 sets until movement failure in the squat and bench press exercises, respectively. The total number of repetitions performed was recorded for each set of each exercise for all sequences. The percentages of fat mass and fat-free mass were estimated by dual-energy x-ray absorptiometry. Glucose, tumor necrosis factor-α, interleukin (IL)-6, IL-10, and nonester fatty acid were assessed, at baseline, immediately after exercise, after 15 and 30 minutes. When compared with the maximum number of repetitions and the total weight lifted, there was a statistically significant decrease after both intervals. The only statistically significant decreases over time occurred at the post-15 minutes assessment of the IL-6 and glucose when a moderate interval of recovery was performed. When comparing the alterations between the pools (the mean of the cluster of all periods in each variable), there was a statistically significant increase on the IL-6 and IL-10 when a moderate interval of recovery was performed again, however, not considering a statistical difference on the IL-10. Thus, we concluded that different interval of recovery in response to exhaustive strength exercise decreases performance but in only moderate intervals, it is associated with inflammatory and

  8. Computation of linear and nonlinear site response for near field ground motion

    NASA Astrophysics Data System (ADS)

    Bonilla, Luis Fabian

    The near-surface geological site conditions in the upper tens of meters are one of the dominant factors in controlling the amplitude and variation of strong ground motion during large earthquakes. The understanding of these site effects comes primarily from surface recordings. For instance, different methods to estimate site response and their variability are studied using aftershock data for the 17 January 1994 M6.7 Northridge, California earthquake. A second approach corresponds to borehole measurements. We use the Garner Valley Downhole Array (GVDA), which consists of a set of seven downhole strong-motion instruments ranging from 0 to 500 meters depth, to study site response effects. The GVDA velocity structure is first studied, then the H/ V is evaluated, and finally some considerations of 2D and 3D basin effects are also shown. These previous studies considered small to moderate earthquakes, where strain levels are small enough, so that linear wave propagation is assumed. However, for strong motions produced during large earthquakes, the soils behave nonlinearly. In this study we present evidence that nonlinearity can be directly observed in acceleration time histories such as Wildlife Refuge, 1987 Superstition Hills, CA; Kushiro Port station, 1993 Kushiro-Oki, Japan; among others. To understand the nature of nonlinear soil dynamics, we developed a model that includes anelastic dissipation of energy due to hysteresis. The hysteresis is described by the generalized Masing rules. This new hysteresis formulation, based on the classical Masing rules, has a functional representation, and depends only on one parameter that can be related to damping ratio tests. The coupling with pore pressure generation shows the degradation of the shear modulus and the yield stress during the cyclic response of the material. The simulations show amplitude reduction as well as the shift of the fundamental frequency to lower frequencies as observed on vertical arrays. The synthetic

  9. Linear ground-water flow, flood-wave response program for programmable calculators

    USGS Publications Warehouse

    Kernodle, John Michael

    1978-01-01

    Two programs are documented which solve a discretized analytical equation derived to determine head changes at a point in a one-dimensional ground-water flow system. The programs, written for programmable calculators, are in widely divergent but commonly encountered languages and serve to illustrate the adaptability of the linear model to use in situations where access to true computers is not possible or economical. The analytical method assumes a semi-infinite aquifer which is uniform in thickness and hydrologic characteristics, bounded on one side by an impermeable barrier and on the other parallel side by a fully penetrating stream in complete hydraulic connection with the aquifer. Ground-water heads may be calculated for points along a line which is perpendicular to the impermeable barrie and the fully penetrating stream. Head changes at the observation point are dependent on (1) the distance between that point and the impermeable barrier, (2) the distance between the line of stress (the stream) and the impermeable barrier, (3) aquifer diffusivity, (4) time, and (5) head changes along the line of stress. The primary application of the programs is to determine aquifer diffusivity by the flood-wave response technique. (Woodard-USGS)

  10. Calculation of excitation energies from the CC2 linear response theory using Cholesky decomposition

    SciTech Connect

    Baudin, Pablo; Marín, José Sánchez; Cuesta, Inmaculada García; Sánchez de Merás, Alfredo M. J.

    2014-03-14

    A new implementation of the approximate coupled cluster singles and doubles CC2 linear response model is reported. It employs a Cholesky decomposition of the two-electron integrals that significantly reduces the computational cost and the storage requirements of the method compared to standard implementations. Our algorithm also exploits a partitioning form of the CC2 equations which reduces the dimension of the problem and avoids the storage of doubles amplitudes. We present calculation of excitation energies of benzene using a hierarchy of basis sets and compare the results with conventional CC2 calculations. The reduction of the scaling is evaluated as well as the effect of the Cholesky decomposition parameter on the quality of the results. The new algorithm is used to perform an extrapolation to complete basis set investigation on the spectroscopically interesting benzylallene conformers. A set of calculations on medium-sized molecules is carried out to check the dependence of the accuracy of the results on the decomposition thresholds. Moreover, CC2 singlet excitation energies of the free base porphin are also presented.

  11. Path-following analysis of the dynamical response of a piecewise-linear capsule system

    NASA Astrophysics Data System (ADS)

    Páez Chávez, Joseph; Liu, Yang; Pavlovskaia, Ekaterina; Wiercigroch, Marian

    2016-08-01

    The dynamical response of a piecewise-linear capsule system is studied by means of path-following techniques in this paper. As the capsule model belongs to the class of piecewise-smooth dynamical systems involving impact and friction, a special care is taken in order to divide the trajectory of the system into a smooth vector field in each disjoint subregion. Specifically we study a two-sided drifting system focusing on directional control and energy consumption. We aim to address two practical problems which are maximizing the rate of progression and directional control of the system by following a typical period-1 trajectory. The one-parameter analysis shows that two types of bifurcations, grazing bifurcation and boundary-intersection crossing bifurcation are found, and the maximal rate of progression is achieved when the capsule performs the oscillations without sticking phases. In our two-parameter study, the control parameters for which the rate of progression is maximal are identified using fixed value of power consumption, and the curves which divide the motion of the capsule between forward and backward progression are obtained.

  12. A Bayesian approach for inducing sparsity in generalized linear models with multi-category response

    PubMed Central

    2015-01-01

    Background The dimension and complexity of high-throughput gene expression data create many challenges for downstream analysis. Several approaches exist to reduce the number of variables with respect to small sample sizes. In this study, we utilized the Generalized Double Pareto (GDP) prior to induce sparsity in a Bayesian Generalized Linear Model (GLM) setting. The approach was evaluated using a publicly available microarray dataset containing 99 samples corresponding to four different prostate cancer subtypes. Results A hierarchical Sparse Bayesian GLM using GDP prior (SBGG) was developed to take into account the progressive nature of the response variable. We obtained an average overall classification accuracy between 82.5% and 94%, which was higher than Support Vector Machine, Random Forest or a Sparse Bayesian GLM using double exponential priors. Additionally, SBGG outperforms the other 3 methods in correctly identifying pre-metastatic stages of cancer progression, which can prove extremely valuable for therapeutic and diagnostic purposes. Importantly, using Geneset Cohesion Analysis Tool, we found that the top 100 genes produced by SBGG had an average functional cohesion p-value of 2.0E-4 compared to 0.007 to 0.131 produced by the other methods. Conclusions Using GDP in a Bayesian GLM model applied to cancer progression data results in better subclass prediction. In particular, the method identifies pre-metastatic stages of prostate cancer with substantially better accuracy and produces more functionally relevant gene sets. PMID:26423345

  13. Diffusion versus linear ballistic accumulation: different models for response time with different conclusions about psychological mechanisms?

    PubMed

    Heathcote, Andrew; Hayes, Brett

    2012-06-01

    Two similar classes of evidence-accumulation model have dominated theorizing about rapid binary choice: diffusion models and racing accumulator pairs. Donkin, Brown, Heathcote, and Wagenmakers (2011) examined mimicry between the Ratcliff diffusion (RD; Ratcliff & Smith, 2004) and the linear ballistic accumulator (LBA; Brown & Heathcote, 2008), the 2 least similar models from each class that provide a comprehensive account of a set benchmark phenomena in rapid binary choice. Where conditions differed only in the rate of evidence accumulation (the most common case in past research), simulations showed the models supported equivalent psychological inferences. In contrast, differences in 2 other parameters of key psychological interest, response caution (the amount of information required for a decision), and nondecision time, traded-off when fitting 1 model to data simulated from the other, implying the potential for divergent inferences about latent cognitive processes. However, Donkin, Brown, Heathcote, and Wagenmakers did not find such inconsistencies between fits of the RD and LBA models in a survey of data sets from paradigms using a range of experimental manipulations. We examined a further data set, collected by Dutilh, Vandekerckhove, Tuerlinckx, and Wagenmakers (2009), which used a manipulation not surveyed by Donkin, Brown, Heathcote, and Wagenmakers's practice. Dutilh et al.'s RD model fits indicated that practice had large effects on all three types of parameters. We show that in this case the LBA provides a different and simpler account of practice effects. Implications for evidence accumulation modelling are discussed. PMID:22686161

  14. Resonators coupled to voltage-biased Josephson junctions: From linear response to strongly driven nonlinear oscillations

    NASA Astrophysics Data System (ADS)

    Meister, S.; Mecklenburg, M.; Gramich, V.; Stockburger, J. T.; Ankerhold, J.; Kubala, B.

    2015-11-01

    Motivated by recent experiments in which a voltage-biased Josephson junction is placed in series with a resonator, the classical dynamics of the circuit is studied in various domains of parameter space. This problem can be mapped onto the dissipative motion of a single degree of freedom in a nonlinear time-dependent potential, where in contrast to conventional settings the nonlinearity appears in the driving while the static potential is purely harmonic. For long times the system approaches steady states which are analyzed in the underdamped regime over the full range of driving parameters including the fundamental resonance as well as higher harmonics and subharmonics. Observables such as the dc-Josephson current and the radiated microwave power give direct information about the underlying dynamics covering phenomena such as bifurcations, irregular motion, and up- and down-conversion. Due to their tunability, present and future setups provide versatile platforms to explore the changeover from linear response to strongly nonlinear behavior in driven dissipative systems under well defined conditions.

  15. Musculoskeletal stiffness changes linearly in response to increasing load during walking gait.

    PubMed

    Caron, Robert R; Lewis, Cara L; Saltzman, Elliot; Wagenaar, Robert C; Holt, Kenneth G

    2015-04-13

    Development of biologically inspired exoskeletons to assist soldiers in carrying load is a rapidly expanding field. Understanding how the body modulates stiffness in response to changing loads may inform the development of these exoskeletons and is the purpose of the present study. Seventeen subjects walked on a treadmill at a constant preferred walking velocity while nine different backpack loading conditions ranging from 12.5% to 40% bodyweight (BW) were introduced in an ascending and then descending order. Kinematic data were collected using Optotrak, a 3D motion analysis system, and used to estimate the position of the center of mass (COM). Two different estimates of stiffness were computed for the stance phase of gait. Both measures of stiffness were positively and linearly related to load magnitudes, with the slopes of the relationships being larger for the descending than the ascending conditions. These results indicate that changes in mechanical stiffness brought about in the musculoskeletal system vary systematically during increases in load to ensure that critical kinematic variables measured in a previous publication remain invariant (Caron et al., 2013). Changes in stiffness and other kinematics measured at the 40% BW condition suggest a boundary in which gait stiffness control limit is reached and a new gait pattern is required. Since soldiers are now carrying up to 96% of body weight, the need for research with even heavier loads is warranted. These findings have implications on the development of exoskeletons to assist in carrying loads. PMID:25678200

  16. Non-linear magnetohydrodynamic modeling of plasma response to resonant magnetic perturbations

    NASA Astrophysics Data System (ADS)

    Orain, F.; Bécoulet, M.; Dif-Pradalier, G.; Huijsmans, G.; Pamela, S.; Nardon, E.; Passeron, C.; Latu, G.; Grandgirard, V.; Fil, A.; Ratnani, A.; Chapman, I.; Kirk, A.; Thornton, A.; Hoelzl, M.; Cahyna, P.

    2013-10-01

    The interaction of static Resonant Magnetic Perturbations (RMPs) with the plasma flows is modeled in toroidal geometry, using the non-linear resistive MHD code JOREK, which includes the X-point and the scrape-off-layer. Two-fluid diamagnetic effects, the neoclassical poloidal friction and a source of toroidal rotation are introduced in the model to describe realistic plasma flows. RMP penetration is studied taking self-consistently into account the effects of these flows and the radial electric field evolution. JET-like, MAST, and ITER parameters are used in modeling. For JET-like parameters, three regimes of plasma response are found depending on the plasma resistivity and the diamagnetic rotation: at high resistivity and slow rotation, the islands generated by the RMPs at the edge resonant surfaces rotate in the ion diamagnetic direction and their size oscillates. At faster rotation, the generated islands are static and are more screened by the plasma. An intermediate regime with static islands which slightly oscillate is found at lower resistivity. In ITER simulations, the RMPs generate static islands, which forms an ergodic layer at the very edge (ψ ≥0.96) characterized by lobe structures near the X-point and results in a small strike point splitting on the divertor targets. In MAST Double Null Divertor geometry, lobes are also found near the X-point and the 3D-deformation of the density and temperature profiles is observed.

  17. Global hybrids from the semiclassical atom theory satisfying the local density linear response.

    PubMed

    Fabiano, Eduardo; Constantin, Lucian A; Cortona, Pietro; Della Sala, Fabio

    2015-01-13

    We propose global hybrid approximations of the exchange-correlation (XC) energy functional which reproduce well the modified fourth-order gradient expansion of the exchange energy in the semiclassical limit of many-electron neutral atoms and recover the full local density approximation (LDA) linear response. These XC functionals represent the hybrid versions of the APBE functional [Phys. Rev. Lett. 2011, 106, 186406] yet employing an additional correlation functional which uses the localization concept of the correlation energy density to improve the compatibility with the Hartree-Fock exchange as well as the coupling-constant-resolved XC potential energy. Broad energetic and structural testing, including thermochemistry and geometry, transition metal complexes, noncovalent interactions, gold clusters and small gold-molecule interfaces, as well as an analysis of the hybrid parameters, show that our construction is quite robust. In particular, our testing shows that the resulting hybrid, including 20% of Hartree-Fock exchange and named hAPBE, performs remarkably well for a broad palette of systems and properties, being generally better than popular hybrids (PBE0 and B3LYP). Semiempirical dispersion corrections are also provided. PMID:26574210

  18. Non-linear magnetohydrodynamic modeling of plasma response to resonant magnetic perturbations

    SciTech Connect

    Orain, F.; Bécoulet, M.; Dif-Pradalier, G.; Nardon, E.; Passeron, C.; Latu, G.; Grandgirard, V.; Fil, A.; Ratnani, A.; Huijsmans, G.; Pamela, S.; Chapman, I.; Kirk, A.; Thornton, A.; Cahyna, P.

    2013-10-15

    The interaction of static Resonant Magnetic Perturbations (RMPs) with the plasma flows is modeled in toroidal geometry, using the non-linear resistive MHD code JOREK, which includes the X-point and the scrape-off-layer. Two-fluid diamagnetic effects, the neoclassical poloidal friction and a source of toroidal rotation are introduced in the model to describe realistic plasma flows. RMP penetration is studied taking self-consistently into account the effects of these flows and the radial electric field evolution. JET-like, MAST, and ITER parameters are used in modeling. For JET-like parameters, three regimes of plasma response are found depending on the plasma resistivity and the diamagnetic rotation: at high resistivity and slow rotation, the islands generated by the RMPs at the edge resonant surfaces rotate in the ion diamagnetic direction and their size oscillates. At faster rotation, the generated islands are static and are more screened by the plasma. An intermediate regime with static islands which slightly oscillate is found at lower resistivity. In ITER simulations, the RMPs generate static islands, which forms an ergodic layer at the very edge (ψ≥0.96) characterized by lobe structures near the X-point and results in a small strike point splitting on the divertor targets. In MAST Double Null Divertor geometry, lobes are also found near the X-point and the 3D-deformation of the density and temperature profiles is observed.

  19. Effects of Combined Loads on the Nonlinear Response and Residual Strength of Damaged Stiffened Shells

    NASA Technical Reports Server (NTRS)

    Starnes, James H., Jr.; Rose, Cheryl A.; Rankin, Charles C.

    1996-01-01

    The results of an analytical study of the nonlinear response of stiffened fuselage shells with long cracks are presented. The shells are modeled with a hierarchical modeling strategy and analyzed with a nonlinear shell analysis code that maintains the shell in a nonlinear equilibrium state while the crack is grown. The analysis accurately accounts for global and local structural response phenomena. Results are presented for various combinations of internal pressure and mechanical loads, and the effects of crack orientation on the shell response are described. The effects of combined loading conditions and the effects of varying structural parameters on the stress-intensity factors associated with a crack are presented.

  20. Numerical conversion of transient to harmonic response functions for linear viscoelastic materials.

    PubMed

    Buschmann, M D

    1997-02-01

    Viscoelastic material behavior is often characterized using one of the three measurements: creep, stress-relaxation or dynamic sinusoidal tests. A two-stage numerical method was developed to allow representation of data from creep and stress-relaxation tests on the Fourier axis in the Laplace domain. The method assumes linear behavior and is theoretically applicable to any transient test which attains an equilibrium state. The first stage numerically resolves the Laplace integral to convert temporal stress and strain data, from creep or stress-relaxation, to the stiffness function, G(s), evaluated on the positive real axis in the Laplace domain. This numerical integration alone allows the direct comparison of data from transient experiments which attain a final equilibrium state, such as creep and stress relaxation, and allows such data to be fitted to models expressed in the Laplace domain. The second stage of this numerical procedure maps the stiffness function, G(s), from the positive real axis to the positive imaginary axis to reveal the harmonic response function, or dynamic stiffness, G(j omega). The mapping for each angular frequency, s, is accomplished by fitting a polynomial to a subset of G(s) centered around a particular value of s, substituting js for s and thereby evaluating G(j omega). This two-stage transformation circumvents previous numerical difficulties associated with obtaining Fourier transforms of the stress and strain time domain signals. The accuracy of these transforms is verified using model functions from poroelasticity, corresponding to uniaxial confined compression of an isotropic material and uniaxial unconfined compression of a transversely isotropic material. The addition of noise to the model data does not significantly deteriorate the transformed results and data points need not be equally spaced in time. To exemplify its potential utility, this two-stage transform is applied to experimental stress relaxation data to obtain the

  1. Near-LTE linear response calculations with a collisional-radiative model for He-like Al ions

    SciTech Connect

    More, R.M.; Kato, T.

    1998-01-06

    We investigate the non-equilibrium atomic kinetics using a collisional-radiative (CR) model modified to include line absorption. Steady-state emission is calculated for He-like aluminum ions immersed in a specified radiation field having fixed deviations from a Planck spectrum. The net emission is interpreted in terms of NLTE population changes. The calculation provides an NLTE response matrix, and in agreement with a general relation of non-equilibrium thermodynamics, the response matrix is symmetric. We compute the response matrix for 1% and 50% changes in the photon temperature and find linear response over a surprisingly large range.

  2. Evolution of Channels Draining Mount St. Helens: Linking Non-Linear and Rapid, Threshold Responses

    NASA Astrophysics Data System (ADS)

    Simon, A.

    2010-12-01

    The catastrophic eruption of Mount St. Helens buried the valley of the North Fork Toutle River (NFT) to a depth of up to 140 m. Initial integration of a new drainage network took place episodically by the “filling and spilling” (from precipitation and seepage) of depressions formed during emplacement of the debris avalanche deposit. Channel incision to depths of 20-30 m occurred in the debris avalanche and extensive pyroclastic flow deposits, and headward migration of the channel network followed, with complete integration taking place within 2.5 years. Downstream reaches were converted from gravel-cobble streams with step-pool sequences to smoothed, infilled channels dominated by sand-sized materials. Subsequent channel evolution was dominated by channel widening with the ratio of changes in channel width to changes in channel depth ranging from about 60 to 100. Widening resulted in significant adjustment of hydraulic variables that control sediment-transport rates. For a given discharge over time, flow depths were reduced, relative roughness increased and flow velocity and boundary shear stress decreased non-linearly. These changes, in combination with coarsening of the channel bed with time resulted in systematically reduced rates of degradation (in upstream reaches), aggradation (in downstream reaches) and sediment-transport rates through much of the 1990s. Vertical adjustments were, therefore, easy to characterize with non-linear decay functions with bed-elevation attenuating with time. An empirical model of bed-level response was then created by plotting the total dimensionless change in elevation against river kilometer for both initial and secondary vertical adjustments. High magnitude events generated from the generated from upper part of the mountain, however, can cause rapid (threshold) morphologic changes. For example, a rain-on-snow event in November 2006 caused up to 9 m of incision along a 6.5 km reach of Loowit Creek and the upper NFT. The event

  3. Functions Represented as Linear Sequential Data: Relationships between Presentation and Student Responses

    ERIC Educational Resources Information Center

    Ayalon, Michal; Watson, Anne; Lerman, Steve

    2015-01-01

    This study investigates students' ways of attending to linear sequential data in two tasks, and conjectures possible relationships between those ways and elements of the task design. Drawing on the substantial literature about such situations, we focus for this paper on linear rate of change, and on covariation and correspondence approaches to…

  4. Frequency Response of Synthetic Vocal Fold Models with Linear and Nonlinear Material Properties

    ERIC Educational Resources Information Center

    Shaw, Stephanie M.; Thomson, Scott L.; Dromey, Christopher; Smith, Simeon

    2012-01-01

    Purpose: The purpose of this study was to create synthetic vocal fold models with nonlinear stress-strain properties and to investigate the effect of linear versus nonlinear material properties on fundamental frequency (F[subscript 0]) during anterior-posterior stretching. Method: Three materially linear and 3 materially nonlinear models were…

  5. The role of retardation in the structure and linear response of finite nuclei

    SciTech Connect

    Crecca, M.A.

    1989-01-01

    Conventional random phase approximation (RPA) and Tamm-Dancoff approximation (TDA) calculations of nuclear structure and the linear response employ interactions between nucleons that are instantaneous. However, N-N interactions derived from the exchange of mesons between nucleons must depend on the space-time separation of the nucleons since the mesons travel at finite speeds. Furthermore, a quantum field theory that contains interacting meson and nucleon degrees of freedom employ the Feynman propagator, i{Delta}{sub F}(x - x{prime}), to connect the nucleon-meson vertices of Feynman diagrams. This raises the question of whether calculations done with space-time dependent interactions differ significantly from the conventional calculations that employ instantaneous forces, and what are the qualitative features of the difference. The inquiry into this question begins by generalizing the traditional RPA and TDA equations into the domain of retarded (space-time dependant) interactions. This entails establishing an integral equation (the Bethe-Salpeter equation) for the polarization propagator with the appropriate RPA or TDA kernel such that the integral equation reduces to the usual RPA or TDA matrix equation for the polarization propagator as the interaction becomes instantaneous. After establishing this generalization of the RPA and TDA, a TDA calculation is performed for an interaction arising from the exchange of a scalar meson. The results are compared with those obtained from the conventional instantaneous reduction of the scalar meson exchange interaction, the Yukawa potential. Upon comparing these results one finds that in general the nuclear structure obtained from scalar meson exchange differ little less than 10%.

  6. Subsarcolemmal lipid droplet responses to a combined endurance and strength exercise intervention

    PubMed Central

    Li, Yuchuan; Lee, Sindre; Langleite, Torgrim; Norheim, Frode; Pourteymour, Shirin; Jensen, Jørgen; Stadheim, Hans K.; Storås, Tryggve H.; Davanger, Svend; Gulseth, Hanne L.; Birkeland, Kåre I.; Drevon, Christian A.; Holen, Torgeir

    2014-01-01

    Abstract Muscle lipid stores and insulin sensitivity have a recognized association although the mechanism remains unclear. We investigated how a 12‐week supervised combined endurance and strength exercise intervention influenced muscle lipid stores in sedentary overweight dysglycemic subjects and normal weight control subjects (n = 18). Muscle lipid stores were measured by magnetic resonance spectroscopy (MRS), electron microscopy (EM) point counting, and direct EM lipid droplet measurements of subsarcolemmal (SS) and intramyofibrillar (IMF) regions, and indirectly, by deep sequencing and real‐time PCR of mRNA of lipid droplet‐associated proteins. Insulin sensitivity and VO2max increased significantly in both groups after 12 weeks of training. Muscle lipid stores were reduced according to MRS at baseline before and after the intervention, whereas EM point counting showed no change in LD stores post exercise, indicating a reduction in muscle adipocytes. Large‐scale EM quantification of LD parameters of the subsarcolemmal LD population demonstrated reductions in LD density and LD diameters. Lipid droplet volume in the subsarcolemmal LD population was reduced by ~80%, in both groups, while IMF LD volume was unchanged. Interestingly, the lipid droplet diameter (n = 10 958) distribution was skewed, with a lack of small diameter lipid droplets (smaller than ~200 nm), both in the SS and IMF regions. Our results show that the SS LD lipid store was sensitive to training, whereas the dominant IMF LD lipid store was not. Thus, net muscle lipid stores can be an insufficient measure for the effects of training. PMID:25413318

  7. A linear discrete dynamic system model for temporal gene interaction and regulatory network influence in response to bioethanol conversion inhibitor HMF for ethanologenic yeast

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A linear discrete dynamic system model is constructed to represent the temporal interactions among significantly expressed genes in response to bioethanol conversion inhibitor 5-hydroxymethylfurfural for ethanologenic yeast Saccharomyces cerevisiae. This study identifies the most significant linear...

  8. Direct Estimation of Correlation as a Measure of Association Strength Using Multidimensional Item Response Models

    ERIC Educational Resources Information Center

    Wang, Wen-Chung

    2004-01-01

    The Pearson correlation is used to depict effect sizes in the context of item response theory. Amultidimensional Rasch model is used to directly estimate the correlation between latent traits. Monte Carlo simulations were conducted to investigate whether the population correlation could be accurately estimated and whether the bootstrap method…

  9. Thermal Density Functional Theory: Time-Dependent Linear Response and Approximate Functionals from the Fluctuation-Dissipation Theorem

    NASA Astrophysics Data System (ADS)

    Pribram-Jones, Aurora; Grabowski, Paul E.; Burke, Kieron

    2016-06-01

    The van Leeuwen proof of linear-response time-dependent density functional theory (TDDFT) is generalized to thermal ensembles. This allows generalization to finite temperatures of the Gross-Kohn relation, the exchange-correlation kernel of TDDFT, and fluctuation dissipation theorem for DFT. This produces a natural method for generating new thermal exchange-correlation approximations.

  10. Control of the mechanical strength of a bipyridine-based polymeric gel from linear nanofibre to helix with a chiral dopant.

    PubMed

    Choi, Heekyoung; Ahn, Junho; Kim, Sungmin; Kim, Hyungjun; Jung, Jong Hwa

    2016-06-18

    A mixture of building blocks 1 and 2 having hydrazine moieties and aldehyde moieties, respectively, formed a gel by a hydrazone reaction in the absence and presence of cyclohexane diamines as chiral dopants and Fe(2+). In particular, the mechanical strength of the helical gel prepared from 1 and 2 in the presence of a chiral dopant and Fe(2+) was ca. 10-fold stronger as compared to that of the gel prepared from the building blocks 1 and 2 without a chiral dopant and Fe(2+). The improved mechanical strength was attributed to the formation of a helix. The results indicate that the mechanical strength of gels obtained by hydrazone reaction could be controlled by a chiral dopant and Fe(2+). PMID:27226044

  11. A single charge in the actin binding domain of fascin can independently tune the linear and non-linear response of an actin bundle network.

    PubMed

    Maier, M; Müller, K W; Heussinger, C; Köhler, S; Wall, W A; Bausch, A R; Lieleg, O

    2015-05-01

    Actin binding proteins (ABPs) not only set the structure of actin filament assemblies but also mediate the frequency-dependent viscoelastic moduli of cross-linked and bundled actin networks. Point mutations in the actin binding domain of those ABPs can tune the association and dissociation dynamics of the actin/ABP bond and thus modulate the network mechanics both in the linear and non-linear response regime. We here demonstrate how the exchange of a single charged amino acid in the actin binding domain of the ABP fascin triggers such a modulation of the network rheology. Whereas the overall structure of the bundle networks is conserved, the transition point from strain-hardening to strain-weakening sensitively depends on the cross-linker off-rate and the applied shear rate. Our experimental results are consistent both with numerical simulations of a cross-linked bundle network and a theoretical description of the bundle network mechanics which is based on non-affine bending deformations and force-dependent cross-link dynamics. PMID:26004635

  12. Acute Hormonal and Force Responses to Combined Strength and Endurance Loadings in Men and Women: The “Order Effect”

    PubMed Central

    S. Taipale, Ritva; Häkkinen, Keijo

    2013-01-01

    Purpose To examine acute responses and recovery of serum hormones and muscle force following combined strength (S) and endurance (E) loading sessions in which the order of exercises is reversed (ES vs. SE). Methods This cross-over study design included recreationally endurance trained men and women (age 21–45 years, n = 12 men n = 10 women) who performed both loadings. Maximal bilateral isometric strength (MVC), isometric rate of force development (RFD) and serum concentrations of testosterone (T), cortisol (C), growth hormone (GH), insulin-like growth factor 1 (IGF-1), binding protein 3 (IGFBP3) and sex hormone binding globulin (SHBG) were measured during and after both loadings. Results Both of the present combined (ES and SE) loadings led to a greater acute decrease in MVC in men than in women, while RFD was slightly affected only in men. Recovery of MVC and RFD to baseline was complete at 24 h regardless of the order of exercises. In men, neuromuscular fatigue was accompanied by increased C concentrations observed post SE. This was followed by decreased concentrations of T at 24 h and 48 h that were significantly lower than those observed following ES. GH response in men also differed significantly post loadings. In women, only a significant difference in T between ES and SE loadings was observed at post. Conclusion These observed differences in hormonal responses despite similarities in neuromuscular fatigue in men indicate the presence of an order effect as the body was not fully recovered at 48 h following SE. These findings may be applicable in training prescription in order to optimize specific training adaptations. PMID:23408956

  13. The response of a linear monostable system and its application in parameters estimation for PSK signals

    NASA Astrophysics Data System (ADS)

    Duan, Chaowei; Zhan, Yafeng

    2016-03-01

    The output characteristics of a linear monostable system driven with a periodic signal and an additive white Gaussian noise are studied in this paper. Theoretical analysis shows that the output signal-to-noise ratio (SNR) decreases monotonously with the increasing noise intensity but the output SNR-gain is stable. Inspired by this high SNR-gain phenomenon, this paper applies the linear monostable system in the parameters estimation algorithm for phase shift keying (PSK) signals and improves the estimation performance.

  14. Comparison of Nonlinear Random Response Using Equivalent Linearization and Numerical Simulation

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.; Muravyov, Alexander A.

    2000-01-01

    A recently developed finite-element-based equivalent linearization approach for the analysis of random vibrations of geometrically nonlinear multiple degree-of-freedom structures is validated. The validation is based on comparisons with results from a finite element based numerical simulation analysis using a numerical integration technique in physical coordinates. In particular, results for the case of a clamped-clamped beam are considered for an extensive load range to establish the limits of validity of the equivalent linearization approach.

  15. The relationship between early ego strength and adolescent responses to the threat of nuclear war

    SciTech Connect

    Andrekus, N.J.

    1989-01-01

    Ego resiliency and ego control, measured when subjects were 3 or 4 years old, were related to expectation of war, concern for the future, and activism in response to the threat of nuclear war, measured when subjects were 18 years old. Data from 92 participants in a longitudinal study of ego and cognitive development conducted by Jeanne and Jack Block at the University of California, Berkeley were used to test hypotheses. Assessments with the California Child Q-set, composited across multiple independent observers, provide measures of ego resiliency and ego control. Adolescent interviews regarding the perception of likelihood of nuclear war, how this affects their future, and their antinuclear and general political activism were scaled and rated. Early ego resiliency and ego under control were hypothesized to account for the variance in adolescent nuclear responses and activism. The only significant longitudinal relationships were in the female sample, where ego under control was found to be a significant predictor of both general political activism (p<.01) and ideas of the future being affected by the nuclear threat (p<.05). Among males, the relationship between early ego resiliency and adolescent antinuclear activism approached significance (p<.10). Adolescent personality was significantly related to several measures of nuclear response. In girls, adolescent ego under control related to perception of likelihood of nuclear war (p<.05) and antinuclear activism (p<.05), and the interaction of ego resiliency and ego under control predicted general political activism (p<.0005). In boys, adolescent ego resiliency correlated with antinuclear activism (p<.05). These findings were discussed in terms of antecedent parenting styles, and conceptual links were drawn between children's ego resiliency and security of attachment, perspective taking, and moral development.

  16. Step-response of a torsional device with multiple discontinuous non-linearities: Formulation of a vibratory experiment

    NASA Astrophysics Data System (ADS)

    Krak, Michael D.; Dreyer, Jason T.; Singh, Rajendra

    2016-03-01

    A vehicle clutch damper is intentionally designed to contain multiple discontinuous non-linearities, such as multi-staged springs, clearances, pre-loads, and multi-staged friction elements. The main purpose of this practical torsional device is to transmit a wide range of torque while isolating torsional vibration between an engine and transmission. Improved understanding of the dynamic behavior of the device could be facilitated by laboratory measurement, and thus a refined vibratory experiment is proposed. The experiment is conceptually described as a single degree of freedom non-linear torsional system that is excited by an external step torque. The single torsional inertia (consisting of a shaft and torsion arm) is coupled to ground through parallel production clutch dampers, which are characterized by quasi-static measurements provided by the manufacturer. Other experimental objectives address physical dimensions, system actuation, flexural modes, instrumentation, and signal processing issues. Typical measurements show that the step response of the device is characterized by three distinct non-linear regimes (double-sided impact, single-sided impact, and no-impact). Each regime is directly related to the non-linear features of the device and can be described by peak angular acceleration values. Predictions of a simplified single degree of freedom non-linear model verify that the experiment performs well and as designed. Accordingly, the benchmark measurements could be utilized to validate non-linear models and simulation codes, as well as characterize dynamic parameters of the device including its dissipative properties.

  17. Velocity, safety, or both? How do balance and strength of goal conflicts affect drivers' behaviour, feelings and physiological responses?

    PubMed

    Schmidt-Daffy, Martin; Brandenburg, Stefan; Beliavski, Alina

    2013-06-01

    Motivational models of driving behaviour agree that choice of speed is modulated by drivers' goals. Whilst it is accepted that some goals favour fast driving and others favour safe driving, little is known about the interplay of these conflicting goals. In the present study, two aspects of this interplay are investigated: the balance of conflict and the strength of conflict. Thirty-two participants completed several simulated driving runs in which fast driving was rewarded with a monetary gain if the end of the track was reached. However, unpredictably, some runs ended with the appearance of a deer. In these runs, fast driving was punished with a monetary loss. The ratio between the magnitudes of gains and losses varied in order to manipulate the balance of conflict. The absolute magnitudes of both gains and losses altered the strength of conflict. Participants drove slower, reported an increase in anxiety-related feelings, and showed indications of physiological arousal if there was more money at stake. In contrast, only marginal effects of varying the ratio between gains and losses were observed. Results confirm that the strength of a safety-velocity conflict is an important determinant of drivers' behaviour, feelings, and physiological responses. The lack of evidence for the balance of conflict playing a role suggests that in each condition, participants subjectively weighted the loss higher than the gain (loss aversion). It is concluded that the interplay of the subjective values that drivers attribute to objective incentives for fast and safe driving is a promising field for future research. Incorporating this knowledge into motivational theories of driving behaviour might improve their contribution to the design of adequate road safety measures. PMID:23523895

  18. Linear Response Calculation using Canonical-basis TDHFB with a schematic pairing functional

    SciTech Connect

    Ebata, S.; Nakatsukasa, T.; Inakura, T.; Hashimoto, Y.; Yabana, K.

    2010-08-12

    We derive the Canonical-basis Time-Dependent Hartree-Fock-Bogoliubov (CbTDHFB) equations using time-dependent variational principle with a special pairing energy functional. We obtain the isoscalar quadrupole strength functions for Neon isotopes with small-amplitude CbTDHFB calculation in the three-dimensional coordinate-space representation.

  19. Seismic response of structures: from non-stationary to non-linear effects

    NASA Astrophysics Data System (ADS)

    Carlo Ponzo, Felice; Ditommaso, Rocco; Mucciarelli, Marco; Smith, Tobias

    2013-04-01

    The need for an effective seismic protection of buildings, and all the problems related to their management and maintenance over time, have led to a growing interest associated to develop of new integrated techniques for structural health monitoring and for damage detection and location during both ambient vibration and seismic events. It is well known that the occurrence of damage on any kind of structure is able to modify its dynamic characteristics. Indeed, the main parameters affected by the changes in stiffness characteristics are: periods of vibration, mode shapes and all the related equivalent viscous damping factors. With the aim to evaluate structural dynamic characteristics, their variation over time and after earthquakes, several Non Destructive Evaluation (NDE) methods have been proposed in the last years. Most of these are based on simplified relationship that provide the maximum inter-story drift evaluated combining structural variations in terms of: peak ground acceleration and/or structural eigenfrequencies and/or equivalent viscous damping factors related the main modes of the monitored structure. The NDE methods can be classified into four different levels. The progress of the level increases the quality and the number of the information. The most popular are certainly Level I methods being simple in implementation and economic in management. These kinds of methods are mainly based on the fast variation (less than 1 minute) of the structural fundamental frequency and the related variation of the equivalent viscous damping factor. Generally, it is possible to distinguish two types of variations: the long term variations, which may also be linked to external factors (temperature change, water content in the foundation soils, etc.) and short period variations (for example, due to seismic events), where apparent frequencies variations could occurred due to non-stationary phenomena (particular combination of input and structural response). In these

  20. Multiple linear regression to estimate time-frequency electrophysiological responses in single trials

    PubMed Central

    Hu, L.; Zhang, Z.G.; Mouraux, A.; Iannetti, G.D.

    2015-01-01

    Transient sensory, motor or cognitive event elicit not only phase-locked event-related potentials (ERPs) in the ongoing electroencephalogram (EEG), but also induce non-phase-locked modulations of ongoing EEG oscillations. These modulations can be detected when single-trial waveforms are analysed in the time-frequency domain, and consist in stimulus-induced decreases (event-related desynchronization, ERD) or increases (event-related synchronization, ERS) of synchrony in the activity of the underlying neuronal populations. ERD and ERS reflect changes in the parameters that control oscillations in neuronal networks and, depending on the frequency at which they occur, represent neuronal mechanisms involved in cortical activation, inhibition and binding. ERD and ERS are commonly estimated by averaging the time-frequency decomposition of single trials. However, their trial-to-trial variability that can reflect physiologically-important information is lost by across-trial averaging. Here, we aim to (1) develop novel approaches to explore single-trial parameters (including latency, frequency and magnitude) of ERP/ERD/ERS; (2) disclose the relationship between estimated single-trial parameters and other experimental factors (e.g., perceived intensity). We found that (1) stimulus-elicited ERP/ERD/ERS can be correctly separated using principal component analysis (PCA) decomposition with Varimax rotation on the single-trial time-frequency distributions; (2) time-frequency multiple linear regression with dispersion term (TF-MLRd) enhances the signal-to-noise ratio of ERP/ERD/ERS in single trials, and provides an unbiased estimation of their latency, frequency, and magnitude at single-trial level; (3) these estimates can be meaningfully correlated with each other and with other experimental factors at single-trial level (e.g., perceived stimulus intensity and ERP magnitude). The methods described in this article allow exploring fully non-phase-locked stimulus-induced cortical

  1. Multiple linear regression to estimate time-frequency electrophysiological responses in single trials.

    PubMed

    Hu, L; Zhang, Z G; Mouraux, A; Iannetti, G D

    2015-05-01

    Transient sensory, motor or cognitive event elicit not only phase-locked event-related potentials (ERPs) in the ongoing electroencephalogram (EEG), but also induce non-phase-locked modulations of ongoing EEG oscillations. These modulations can be detected when single-trial waveforms are analysed in the time-frequency domain, and consist in stimulus-induced decreases (event-related desynchronization, ERD) or increases (event-related synchronization, ERS) of synchrony in the activity of the underlying neuronal populations. ERD and ERS reflect changes in the parameters that control oscillations in neuronal networks and, depending on the frequency at which they occur, represent neuronal mechanisms involved in cortical activation, inhibition and binding. ERD and ERS are commonly estimated by averaging the time-frequency decomposition of single trials. However, their trial-to-trial variability that can reflect physiologically-important information is lost by across-trial averaging. Here, we aim to (1) develop novel approaches to explore single-trial parameters (including latency, frequency and magnitude) of ERP/ERD/ERS; (2) disclose the relationship between estimated single-trial parameters and other experimental factors (e.g., perceived intensity). We found that (1) stimulus-elicited ERP/ERD/ERS can be correctly separated using principal component analysis (PCA) decomposition with Varimax rotation on the single-trial time-frequency distributions; (2) time-frequency multiple linear regression with dispersion term (TF-MLRd) enhances the signal-to-noise ratio of ERP/ERD/ERS in single trials, and provides an unbiased estimation of their latency, frequency, and magnitude at single-trial level; (3) these estimates can be meaningfully correlated with each other and with other experimental factors at single-trial level (e.g., perceived stimulus intensity and ERP magnitude). The methods described in this article allow exploring fully non-phase-locked stimulus-induced cortical

  2. Laboratory evidence of strength recovery of a healed fault: implications for a mechanism responsible for creating wide fault zones

    NASA Astrophysics Data System (ADS)

    Masuda, Koji

    2015-12-01

    Fault zones consist of a high-strain fault core and a surrounding damage zone of highly fractured rock. The close, reciprocal relationship between fault zones and earthquake rupture evolution demands better understanding of the processes that create and modify damage zones. This study modeled the evolution of a damage zone in the laboratory by monitoring seismic signals (acoustic emissions) in a specimen of ultramylonite stressed to failure. The result provided evidence supporting the strength recovery of parts of the healed surface. A new fault initiated in an area of heterogeneous structure a short distance from the preexisting fault plane. Repeated cycles of fracture and healing may be one mechanism responsible for wide fault zones with multiple fault cores and damage zones.

  3. Modeling the Non-Linear Response of Fiber-Reinforced Laminates Using a Combined Damage/Plasticity Model

    NASA Technical Reports Server (NTRS)

    Schuecker, Clara; Davila, Carlos G.; Pettermann, Heinz E.

    2008-01-01

    The present work is concerned with modeling the non-linear response of fiber reinforced polymer laminates. Recent experimental data suggests that the non-linearity is not only caused by matrix cracking but also by matrix plasticity due to shear stresses. To capture the effects of those two mechanisms, a model combining a plasticity formulation with continuum damage has been developed to simulate the non-linear response of laminates under plane stress states. The model is used to compare the predicted behavior of various laminate lay-ups to experimental data from the literature by looking at the degradation of axial modulus and Poisson s ratio of the laminates. The influence of residual curing stresses and in-situ effect on the predicted response is also investigated. It is shown that predictions of the combined damage/plasticity model, in general, correlate well with the experimental data. The test data shows that there are two different mechanisms that can have opposite effects on the degradation of the laminate Poisson s ratio which is captured correctly by the damage/plasticity model. Residual curing stresses are found to have a minor influence on the predicted response for the cases considered here. Some open questions remain regarding the prediction of damage onset.

  4. Linearized blade row compression component model. Stability and frequency response analysis of a J85-3 compressor

    NASA Technical Reports Server (NTRS)

    Tesch, W. A.; Moszee, R. H.; Steenken, W. G.

    1976-01-01

    NASA developed stability and frequency response analysis techniques were applied to a dynamic blade row compression component stability model to provide a more economic approach to surge line and frequency response determination than that provided by time-dependent methods. This blade row model was linearized and the Jacobian matrix was formed. The clean-inlet-flow stability characteristics of the compressors of two J85-13 engines were predicted by applying the alternate Routh-Hurwitz stability criterion to the Jacobian matrix. The predicted surge line agreed with the clean-inlet-flow surge line predicted by the time-dependent method to a high degree except for one engine at 94% corrected speed. No satisfactory explanation of this discrepancy was found. The frequency response of the linearized system was determined by evaluating its Laplace transfer function. The results of the linearized-frequency-response analysis agree with the time-dependent results when the time-dependent inlet total-pressure and exit-flow function amplitude boundary conditions are less than 1 percent and 3 percent, respectively. The stability analysis technique was extended to a two-sector parallel compressor model with and without interstage crossflow and predictions were carried out for total-pressure distortion extents of 180 deg, 90 deg, 60 deg, and 30 deg.

  5. Effects of resistivity and rotation on the linear plasma response to non-axisymmetric magnetic perturbations on DIII-D

    NASA Astrophysics Data System (ADS)

    Haskey, S. R.; Lanctot, M. J.; Liu, Y. Q.; Paz-Soldan, C.; King, J. D.; Blackwell, B. D.; Schmitz, O.

    2015-02-01

    Parameter scans show the strong dependence of the plasma response on the poloidal structure of the applied field highlighting the importance of being able to control this parameter using non-axisymmetric coil sets. An extensive examination of the linear single fluid plasma response to n = 3 magnetic perturbations in L-mode DIII-D lower single null plasmas is presented. The effects of plasma resistivity, toroidal rotation and applied field structure are calculated using the linear single fluid MHD code, MARS-F (Liu et al 2000 Phys. Plasmas 7 3681). Measures which separate the response into a pitch-resonant and resonant field amplification (RFA) component are used to demonstrate the extent to which resonant screening and RFA occurs. The ability to control the ratio of pitch-resonant fields to RFA by varying the phasing between upper and lower resonant magnetic perturbations coils sets is shown. The predicted magnetic probe outputs and displacement at the x-point are also calculated for comparison with experiments. Additionally, modelling of the linear plasma response using experimental toroidal rotation profiles and Spitzer like resistivity profiles are compared with results which provide experimental evidence of a direct link between the decay of the resonant screening response and the formation of a 3D boundary (Schmitz et al 2014 Nucl. Fusion 54 012001). Good agreement is found during the initial application of the MP, however, later in the shot a sudden drop in the poloidal magnetic probe output occurs which is not captured in the linear single fluid modelling.

  6. Multiple responses analysis and modeling of Fenton process for treatment of high strength landfill leachate.

    PubMed

    Mohajeri, Soraya; Aziz, Hamidi Abdul; Zahed, Mohammed Ali; Mohajeri, Leila; Bashir, Mohammed J K; Aziz, Shuokr Qarani; Adlan, Mohd Nordin; Isa, Mohamed Hasnain

    2011-01-01

    Landfill leachate is one of the most recalcitrant wastes for biotreatment and can be considered a potential source of contamination to surface and groundwater ecosystems. In the present study, Fenton oxidation was employed for degradation of stabilized landfill leachate. Response surface methodology was applied to analyze, model and optimize the process parameters, i.e. pH and reaction time as well as the initial concentrations of hydrogen peroxide and ferrous ion. Analysis of variance showed that good coefficients of determination were obtained (R2 > 0.99), thus ensuring satisfactory agreement of the second-order regression model with the experimental data. The results indicated that, pH and its quadratic effects were the main factors influencing Fenton oxidation. Furthermore, antagonistic effects between pH and other variables were observed. The optimum H2O2 concentration, Fe(II) concentration, pH and reaction time were 0.033 mol/L, 0.011 mol/L, 3 and 145 min, respectively, with 58.3% COD, 79.0% color and 82.1% iron removals. PMID:22335108

  7. Higher-order sinusoidal input describing functions for the analysis of non-linear systems with harmonic responses

    NASA Astrophysics Data System (ADS)

    Nuij, P. W. J. M.; Bosgra, O. H.; Steinbuch, M.

    2006-11-01

    For high-precision motion systems, modelling and control design specifically oriented at friction effects is instrumental. The sinusoidal input describing function theory represents an approximative mathematical framework for analysing non-linear system behaviour. This theory, however, limits the description of the non-linear system behaviour to a quasi-linear amplitude-dependent relation between sinusoidal excitation and sinusoidal response. In this paper, an extension to higher-order describing functions is realised by introducing the concept of the harmonics generator. The resulting higher-order sinusoidal input describing functions (HOSIDFs) relate the magnitude and phase of the higher harmonics of the periodic response of the system to the magnitude and phase of a sinusoidal excitation. Based on this extension two techniques to measure HOSIDFs are presented. The first technique is FFT based. The second technique is based on IQ (in-phase/quadrature-phase) demodulation. In a simulation, the measurement techniques have been tested by comparing the simulation results to analytically derived results from a known (backlash) non-linearity. In a subsequent practical case study both techniques are used to measure the changes in dynamic behaviour as a function of drive level due to friction in an electric motor. Both methods prove successful for measuring HOSIDFs.

  8. Linear and nonlinear interpretation of the direct strike lightning response of the NASA F106B thunderstorm research aircraft

    NASA Technical Reports Server (NTRS)

    Rudolph, T. H.; Perala, R. A.

    1983-01-01

    The objective of the work reported here is to develop a methodology by which electromagnetic measurements of inflight lightning strike data can be understood and extended to other aircraft. A linear and time invariant approach based on a combination of Fourier transform and three dimensional finite difference techniques is demonstrated. This approach can obtain the lightning channel current in the absence of the aircraft for given channel characteristic impedance and resistive loading. The model is applied to several measurements from the NASA F106B lightning research program. A non-linear three dimensional finite difference code has also been developed to study the response of the F106B to a lightning leader attachment. This model includes three species air chemistry and fluid continuity equations and can incorporate an experimentally based streamer formulation. Calculated responses are presented for various attachment locations and leader parameters. The results are compared qualitatively with measured inflight data.

  9. Vestibular responses to linear acceleration are absent in otoconia-deficient C57BL/6JEi-het mice

    NASA Technical Reports Server (NTRS)

    Jones, S. M.; Erway, L. C.; Bergstrom, R. A.; Schimenti, J. C.; Jones, T. A.

    1999-01-01

    Vestibular evoked potentials (VsEPs) were measured in normal mice and in mice homozygous for the head tilt mutation (het/het, abbr. het). The het mice lack otoconia, the inertial mass critical for natural stimulation of inner ear gravity receptors. Our findings demonstrate that vestibular neural responses to pulsed linear acceleration are absent in het mice. The results: (1) confirm that adequate sensory stimuli fail to activate gravity receptors in the het model; and (2) serve as definitive evidence that far-field vestibular responses to pulsed linear acceleration depend critically on otolith end organs. The C57BL/6JEi-het mouse may be an excellent model of gravity receptor sensory deprivation.

  10. Comparison of Damage Models for Predicting the Non-Linear Response of Laminates Under Matrix Dominated Loading Conditions

    NASA Technical Reports Server (NTRS)

    Schuecker, Clara; Davila, Carlos G.; Rose, Cheryl A.

    2010-01-01

    Five models for matrix damage in fiber reinforced laminates are evaluated for matrix-dominated loading conditions under plane stress and are compared both qualitatively and quantitatively. The emphasis of this study is on a comparison of the response of embedded plies subjected to a homogeneous stress state. Three of the models are specifically designed for modeling the non-linear response due to distributed matrix cracking under homogeneous loading, and also account for non-linear (shear) behavior prior to the onset of cracking. The remaining two models are localized damage models intended for predicting local failure at stress concentrations. The modeling approaches of distributed vs. localized cracking as well as the different formulations of damage initiation and damage progression are compared and discussed.

  11. Photoletter to the editor: Response of linear porokeratosis to photodynamic therapy in an 11-year-old girl.

    PubMed

    Garrido-Colmenero, Cristina; Ruiz-Villaverde, Ricardo; Martínez-García, Eliseo; Aneiros-Fernández, José; Tercedor-Sánchez, Jesús

    2015-12-31

    Porokeratoses are a group of different entities that belong to the skin keratinization disorders. From the histological point of view the main and common characteristic of these disorders is the presence of compact parakeratotic columns known as cornoid lamellae. All varieties should be carefully treated and followed-up because of the risk of developing malignant epithelial tumors. We report the successful response to photodynamic therapy (PDT) in a pediatric patient diagnosed with linear porokeratosis. PMID:26848323

  12. Numerical tailoring of linear response from plasmonic nano-resonators grown on a layer of polystyrene spheres

    SciTech Connect

    Benedetti, A. Belardini, A.; Veroli, A.; Centini, M.; Sibilia, C.

    2014-10-28

    We developed a geometrical method to reproduce the morphology of hybrid structures composed by self-ordered dielectric nanospheres covered by anisotropic plasmonic structures. Numerical analysis allowed to investigate the optical response of the considered system, and to identify the relevant parameters to achieve efficient and versatile light manipulation. In particular, we show that the overall structure, acting as a hybrid plasmonic-photonics meta-surface, can be engineered in order to maximize its linear and circular dichroic behavior at optical frequencies.

  13. Precision Interval Estimation of the Response Surface by Means of an Integrated Algorithm of Neural Network and Linear Regression

    NASA Technical Reports Server (NTRS)

    Lo, Ching F.

    1999-01-01

    The integration of Radial Basis Function Networks and Back Propagation Neural Networks with the Multiple Linear Regression has been accomplished to map nonlinear response surfaces over a wide range of independent variables in the process of the Modem Design of Experiments. The integrated method is capable to estimate the precision intervals including confidence and predicted intervals. The power of the innovative method has been demonstrated by applying to a set of wind tunnel test data in construction of response surface and estimation of precision interval.

  14. A new method for predicting response in complex linear systems. II. [under random or deterministic steady state excitation

    NASA Technical Reports Server (NTRS)

    Bogdanoff, J. L.; Kayser, K.; Krieger, W.

    1977-01-01

    The paper describes convergence and response studies in the low frequency range of complex systems, particularly with low values of damping of different distributions, and reports on the modification of the relaxation procedure required under these conditions. A new method is presented for response estimation in complex lumped parameter linear systems under random or deterministic steady state excitation. The essence of the method is the use of relaxation procedures with a suitable error function to find the estimated response; natural frequencies and normal modes are not computed. For a 45 degree of freedom system, and two relaxation procedures, convergence studies and frequency response estimates were performed. The low frequency studies are considered in the framework of earlier studies (Kayser and Bogdanoff, 1975) involving the mid to high frequency range.

  15. Effects of concurrent strength and endurance training on genes related to myostatin signaling pathway and muscle fiber responses.

    PubMed

    de Souza, Eduardo O; Tricoli, Valmor; Aoki, Marcelo S; Roschel, Hamilton; Brum, Patrícia C; Bacurau, Aline V N; Silva-Batista, Carla; Wilson, Jacob M; Neves, Manoel; Soares, Antonio G; Ugrinowitsch, Carlos

    2014-11-01

    Concurrent training (CT) seems to impair training-induced muscle hypertrophy. This study compared the effects of CT, strength training (ST) and interval training (IT) on the muscle fiber cross-sectional area (CSA) response, and on the expression of selected genes involved in the myostatin (MSTN) signaling mRNA levels. Thirty-seven physically active men were randomly divided into 4 groups: CT (n = 11), ST (n = 11), IT (n = 8), and control group (C) (n = 7) and underwent an 8-week training period. Vastus lateralis biopsy muscle samples were obtained at baseline and 48 hours after the last training session. Muscle fiber CSA, selected genes expression, and maximum dynamic ST (1 repetition maximum) were evaluated before and after training. Type IIa and type I muscle fiber CSA increased from pre- to posttest only in the ST group (17.08 and 17.9%, respectively). The SMAD-7 gene expression significantly increased at the posttest in the ST (53.9%) and CT groups (39.3%). The MSTN and its regulatory genes ActIIb, FLST-3, FOXO-3a, and GASP-1 mRNA levels remained unchanged across time and groups. One repetition maximum increased from pre- to posttest in both the ST and CT groups (ST = 18.5%; CT = 17.6%). Our findings are suggestive that MSTN and their regulatory genes at transcript level cannot differentiate muscle fiber CSA responses between CT and ST regimens in humans. PMID:24832980

  16. Application of linear response theory to experimental data of simultaneous radiation and annealing response of a CMOS device. Quarterly report No. 3, 8 June-8 September 1988

    SciTech Connect

    Litovchenko, V.

    1988-01-01

    Results from the application of linear response theory are compared to experimental data from simultaneous radiation and annealing response of a CMOS device. In particular, a method is applied which was developed earlier to determine the characteristic time, t(0), as well as the parameters A and C in the 1n(t) dependence of the linear response function R(t) = -C + A1n(1-t/t(0)). The method is based on a study of the linear response for t being much less than t(0), when R(t) can be expanded in a power series of t: R(t) = R(0) + R'(0)t + 1/2R''(0)t-squared + 1/3R'''(0)t-cubed + ..., where R'(0) and R''(0) are, respectively, the first and second derivatives of R with respect to t. To find the linear response, R(t-t') is substituted in the form of this power series equation into a general equation for the shift of the threshold potential. To test the method, irradiation experiments were conducted on RCA 10(6) rad-hard CMOS IC's. A dose rate of approximately 130 rads/min was used. An IC was irradiated with Co-60 gamma rays for several hours, taking measurements of the threshold potential for one n-channel and one p-channel transistor every ten minutes. For the p-channel transistor, t(0) was found to be approximately 110 min and for the n-channel, t(0) was approximately 70 min. For the p-channel, the theoretical curve deviates from the experimental points only after 70 min; for the n-channel, the deviation takes place after 45 min. Additional findings are discussed and the application of the method to pure annealing is described.

  17. Impact of Short and Moderate Rest Intervals on the Acute Immunometabolic Response to Exhaustive Strength Exercise: Part II.

    PubMed

    Gerosa-Neto, Jose; Rossi, Fabrício E; Campos, Eduardo Z; Antunes, Barbara M M; Cholewa, Jason M; Lira, Fabio S

    2016-06-01

    Gerosa-Neto, J, Rossi, FE, Campos, EZ, Antunes, BMM, Cholewa, JM, and Lira, FS. Impact of short and moderate rest intervals on the acute immunometabolic response to exhaustive strength exercise: Part II. J Strength Cond Res 30(6): 1570-1576, 2016-The purpose of this study was to investigate the influence of short and moderate recovery intervals during heavy strength exercise on performance, inflammatory, and metabolic responses in recreational weightlifters. Eight healthy subjects (age = 24.6 ± 4.1 years) performed 2 randomized sequences with different rest intervals: short = 90% of 1RM and 30 seconds rest allowed between sets; moderate = 90% of 1RM and 90 seconds rest allowed between sets. All sequences of exercises were performed over 4 sets until movement failure in the squat and bench press exercises, respectively. Glucose, TNF-α, IL-6, IL-10, IL-10/TNF-α ratio, and nonester fatty acid concentrations were assessed at the baseline, immediately postexercise, post-15 and post-30 minutes. We observed a statistically significant decrease after 30 seconds on maximum number of repetitions (p = 0.003) and total weight lifted (p = 0.006) after the bench press, and there was a marginal decrease in the squat (p = 0.055). The glucose concentrations showed a significant increase post-15 minutes in the 30-second condition (pre-exercise = 86.1 ± 9.1, immediately = 85.3 ± 8.2, post-15 = 97.0 ± 9.0, post-30 = 87.1 ± 5.3 mg/dl; p = 0.015); on the other hand, IL-10 increased post-30 minutes in the 90-second condition (pre-exercise = 18.2 ± 12.7, immediately = 16.4 ± 10.7, post-15 = 16.8 ± 12.2, post-30 = 35.0 ± 13.1 pg/ml; p < 0.001). In addition, the 90-second condition showed anti-inflammatory effects (as indicated by IL-10/TNF-α ratio: pre-exercise = 1.08 ± 1.32, immediately = 1.23 ± 1.20, post-15 = 1.15 ± 1.14, post-30 = 2.48 ± 2.07; p = 0.020) compared with the 30-second condition (pre-exercise = 1.30 ± 2.04, immediately = 0.99 ± 1.27, post-15 = 1.23 ± 1

  18. No Evidence for a Low Linear Energy Transfer Adaptive Response in Irradiated RKO Cells

    SciTech Connect

    Sowa, Marianne B.; Goetz, Wilfried; Baulch, Janet E.; Lewis, Adam J.; Morgan, William F.

    2011-01-06

    It has become increasingly evident from reports in the literature that there are many confounding factors that are capable of modulating radiation induced non-targeted responses such as the bystander effect and the adaptive response. In this paper we examine recent data that suggest that the observation of non-targeted responses may not be universally observable for differing radiation qualities. We have conducted a study of the adaptive response following low LET exposures for human colon carcinoma cells and failed to observe adaption for the endpoints of clonogenic survival or micronucleus formation.

  19. The Search for Non-Linear Exposure-Response Relationships at Ambient Levels in Environmental Epidemiology

    PubMed Central

    Lippmann, Morton

    2005-01-01

    Environmental exposures to ambient air particulate matter (PM), ozone (O3), environmental tobacco smoke (ETS), and to dioxin and related compounds are of considerable public health concern, and risk assessments for them have generally been based on linear, non-threshold models derived from epidemiological study data. While the epidemiological databases for PM, O3, and ETS have been sufficient to show that adverse health effects are occurring, the relative risks have been quite low, and it has not been possible, to date, to identify thresholds or non-linear relationships for them. For dioxin and related compounds, the evidence for excess cancer risks has been inadequate to establish causality, and there is suggestive evidence that hormesis may have occurred. PMID:19330159

  20. Bound on thermoelectric power in a magnetic field within linear response

    NASA Astrophysics Data System (ADS)

    Brandner, Kay; Seifert, Udo

    2015-01-01

    For thermoelectric power generation in a multiterminal geometry, strong numerical evidence for a universal bound as a function of the magnetic-field induced asymmetry of the nondiagonal Onsager coefficients is presented. This bound implies, inter alia, that the power vanishes at least linearly when the maximal efficiency is approached. In particular, this result rules out that Carnot efficiency can be reached at finite power, which an analysis based on the second law only would, in principle, allow.

  1. Effect of stride length on overarm throwing delivery: A linear momentum response.

    PubMed

    Ramsey, Dan K; Crotin, Ryan L; White, Scott

    2014-12-01

    Changing stride length during overhand throwing delivery is thought to alter total body and throwing arm linear momentums, thereby altering the proportion of throwing arm momentum relative to the total body. Using a randomized cross-over design, nineteen pitchers (15 collegiate and 4 high school) were assigned to pitch two simulated 80-pitch games at ±25% of their desired stride length. An 8-camera motion capture system (240Hz) integrated with two force plates (960Hz) and radar gun tracked each throw. Segmental linear momentums in each plane of motion were summed yielding throwing arm and total body momentums, from which compensation ratio's (relative contribution between the two) were derived. Pairwise comparisons at hallmark events and phases identified significantly different linear momentum profiles, in particular, anteriorly directed total body, throwing arm, and momentum compensation ratios (P⩽.05) as a result of manipulating stride length. Pitchers with shorter strides generated lower forward (anterior) momentum before stride foot contact, whereas greater upward and lateral momentum (toward third base) were evident during the acceleration phase. The evidence suggests insufficient total body momentum in the intended throwing direction may potentially influence performance (velocity and accuracy) and perhaps precipitate throwing arm injuries. PMID:25457417

  2. A dose-response curve for biodosimetry from a 6 MV electron linear accelerator.

    PubMed

    Lemos-Pinto, M M P; Cadena, M; Santos, N; Fernandes, T S; Borges, E; Amaral, A

    2015-10-01

    Biological dosimetry (biodosimetry) is based on the investigation of radiation-induced biological effects (biomarkers), mainly dicentric chromosomes, in order to correlate them with radiation dose. To interpret the dicentric score in terms of absorbed dose, a calibration curve is needed. Each curve should be constructed with respect to basic physical parameters, such as the type of ionizing radiation characterized by low or high linear energy transfer (LET) and dose rate. This study was designed to obtain dose calibration curves by scoring of dicentric chromosomes in peripheral blood lymphocytes irradiated in vitro with a 6 MV electron linear accelerator (Mevatron M, Siemens, USA). Two software programs, CABAS (Chromosomal Aberration Calculation Software) and Dose Estimate, were used to generate the curve. The two software programs are discussed; the results obtained were compared with each other and with other published low LET radiation curves. Both software programs resulted in identical linear and quadratic terms for the curve presented here, which was in good agreement with published curves for similar radiation quality and dose rates. PMID:26445334

  3. Is Linear Displacement Information Or Angular Displacement Information Used During The Adaptation of Pointing Responses To An Optically Shifted Image?

    NASA Technical Reports Server (NTRS)

    Bautista, Abigail B.

    1994-01-01

    Twenty-four observers looked through a pair of 20 diopter wedge prisms and pointed to an image of a target which was displaced vertically from eye level by 6 cm at a distance of 30 cm. Observers pointed 40 times, using only their right hand, and received error-corrective feedback upon termination of each pointing response (terminal visual feedback). At three testing distances, 20, 30, and 40 cm, ten pre-exposure and ten post-exposure pointing responses were recorded for each hand as observers reached to a mirror-viewed target located at eye level. The difference between pre- and post-exposure pointing response (adaptive shift) was compared for both Exposed and Unexposed hands across all three testing distances. The data were assessed according to the results predicted by two alternative models for processing spatial-information: one using angular displacement information and another using linear displacement information. The angular model of spatial mapping best predicted the observer's pointing response for the Exposed hand. Although the angular adaptive shift did not change significantly as a function of distance (F(2,44) = 1.12, n.s.), the linear adaptive shift increased significantly over the three testing distances 02 44) = 4.90 p less than 0.01).

  4. Spatially variable water table recharge and the hillslope hydrologic response: Analytical solutions to the linearized hillslope Boussinesq equation

    NASA Astrophysics Data System (ADS)

    Dralle, David N.; Boisramé, Gabrielle F. S.; Thompson, Sally E.

    2014-11-01

    The linearized hillslope Boussinesq equation, introduced by Brutsaert (1994), describes the dynamics of saturated, subsurface flow from hillslopes with shallow, unconfined aquifers. In this paper, we use a new analytical technique to solve the linearized hillslope Boussinesq equation to predict water table dynamics and hillslope discharge to channels. The new solutions extend previous analytical treatments of the linearized hillslope Boussinesq equation to account for the impact of spatiotemporal heterogeneity in water table recharge. The results indicate that the spatial character of recharge may significantly alter both steady state subsurface storage characteristics and the transient hillslope hydrologic response, depending strongly on similarity measures of controls on the subsurface flow dynamics. Additionally, we derive new analytical solutions for the linearized hillslope-storage Boussinesq equation and explore the interaction effects of recharge structure and hillslope morphology on water storage and base flow recession characteristics. A theoretical recession analysis, for example, demonstrates that decreasing the relative amount of downslope recharge has a similar effect as increasing hillslope convergence. In general, the theory suggests that recharge heterogeneity can serve to diminish or enhance the hydrologic impacts of hillslope morphology.

  5. Non-linear analysis of body responses to functional electrical stimulation on hemiplegic subjects.

    PubMed

    Yu, W W; Acharya, U R; Lim, T C; Low, H W

    2009-08-01

    Functional electrical stimulation (FES) is a method of applying low-level electrical currents to restore or improve body functions lost through nervous system impairment. FES is applied to peripheral nerves that control specific muscles or muscle groups. Application of advanced signal computing techniques to the medical field has helped to achieve practical solutions to the health care problems accurately. The physiological signals are essentially non-stationary and may contain indicators of current disease, or even warnings about impending diseases. These indicators may be present at all times or may occur at random on the timescale. However, to study and pinpoint these subtle changes in the voluminous data collected over several hours is tedious. These signals, e.g. walking-related accelerometer signals, are not simply linear and involve non-linear contributions. Hence, non-linear signal-processing methods may be useful to extract the hidden complexities of the signal and to aid physicians in their diagnosis. In this work, a young female subject with major neuromuscular dysfunction of the left lower limb, which resulted in an asymmetric hemiplegic gait, participated in a series of FES-assisted walking experiments. Two three-axis accelerometers were attached to her left and right ankles and their corresponding signals were recorded during FES-assisted walking. The accelerometer signals were studied in three directions using the Hurst exponent H, the fractal dimension (FD), the phase space plot, and recurrence plots (RPs). The results showed that the H and FD values increase with increasing FES, indicating more synchronized variability due to FES for the left leg (paralysed leg). However, the variation in the normal right leg is more chaotic on FES. PMID:19743632

  6. Non-linear response of coupled soil-pile-structure system under sinusoidal excitations with various frequencies

    NASA Astrophysics Data System (ADS)

    Hussien, Mahmoud N.; Tobita, Tetsuo; Iai, Susumu

    The non-linear response of coupled soil-pile-structure systems to seismic loading is parametrically studied in the frequency domain using two-dimensional (2D) finite elements (FE). The soil-pile interaction in three dimensions (3D) is idealized in the 2D type using soil-pile interaction springs with non-linear hysteretic load displacement relationships. The system under investigation comprises of a single degree of freedom structure supported by an end-bearing single pile founded in a homogenous sand layer over rigid rock. Comparisons with established results from the literature suggest that the adopted FE model reasonably captures the essential features of the seismic response of the coupled soil-pile-structure system. Numerical results demonstrate the strong influence on the effective natural period of the foundation properties. The effect of non-linear soil behavior and soil profile as well as the frequency content of excitation on both kinematic and inertial interactions is illustrated. The relative contributions of kinematic and inertial interaction to the development of dynamic pile bending are clarified.

  7. Perception of tilt (somatogravic illusion) in response to sustained linear acceleration during space flight

    NASA Technical Reports Server (NTRS)

    Clement, G.; Moore, S. T.; Raphan, T.; Cohen, B.

    2001-01-01

    During the 1998 Neurolab mission (STS-90), four astronauts were exposed to interaural and head vertical (dorsoventral) linear accelerations of 0.5 g and 1 g during constant velocity rotation on a centrifuge, both on Earth and during orbital space flight. Subjects were oriented either left-ear-out or right-ear-out (Gy centrifugation), or lay supine along the centrifuge arm with their head off-axis (Gz centrifugation). Pre-flight centrifugation, producing linear accelerations of 0.5 g and 1 g along the Gy (interaural) axis, induced illusions of roll-tilt of 20 degrees and 34 degrees for gravito-inertial acceleration (GIA) vector tilts of 27 degrees and 45 degrees , respectively. Pre-flight 0.5 g and 1 g Gz (head dorsoventral) centrifugation generated perceptions of backward pitch of 5 degrees and 15 degrees , respectively. In the absence of gravity during space flight, the same centrifugation generated a GIA that was equivalent to the centripetal acceleration and aligned with the Gy or Gz axes. Perception of tilt was underestimated relative to this new GIA orientation during early in-flight Gy centrifugation, but was close to the GIA after 16 days in orbit, when subjects reported that they felt as if they were 'lying on side'. During the course of the mission, inflight roll-tilt perception during Gy centrifugation increased from 45 degrees to 83 degrees at 1 g and from 42 degrees to 48 degrees at 0.5 g. Subjects felt 'upside-down' during in-flight Gz centrifugation from the first in-flight test session, which reflected the new GIA orientation along the head dorsoventral axis. The different levels of in-flight tilt perception during 0.5 g and 1 g Gy centrifugation suggests that other non-vestibular inputs, including an internal estimate of the body vertical and somatic sensation, were utilized in generating tilt perception. Interpretation of data by a weighted sum of body vertical and somatic vectors, with an estimate of the GIA from the otoliths, suggests that

  8. A semiclassical hybrid approach to linear response functions for infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Grossmann, Frank

    2016-04-01

    Based on the integral representation of the semiclassical propagator of Herman and Kluk (HK), and in the limit of high temperatures, we formulate a hybrid expression for the correlation function of infrared spectroscopy. This is achieved by performing a partial linearization inside the integral over the difference of phase space variables that occurs after a twofold application of the HK propagator. A numerical case study for a coupled anharmonic oscillator shows that already for a total number of only two degrees of freedom, one of which is treated in the simplified manner, a substantial reduction of the numerical effort is achieved.

  9. A study of thermal response of concrete towers employing linear regression

    NASA Astrophysics Data System (ADS)

    Norouzi, Mehdi; Zarbaf, Seyed Ehsan Haji Agha Mohammad; Dalvi, Aditi; Hunt, Victor; Helmicki, Arthur

    2016-04-01

    It has been shown that the variations of structural properties due to changing environmental conditions such as temperature can be as significant as those caused by structural damage and even liveload. Therefore, tracking changes that are correlated with environmental variations is a necessary step in order to detect and assess structural damage in addition to the normal structural response to traffic. In this paper, daily measurement data that is collected from the concrete towers of the Ironton-Russell Bridge will be presented and correlation of the collected measurement data and temperature will be overviewed. Variation of the daily thermal response of tower concrete walls will be compared with the daily thermal responses of the steel box within the tower and finally, thermal coefficient for compensating the thermal induced responses will be estimated.

  10. Non-linearity dynamics in ecosystem response to climate change: Case studies and policy implications

    USGS Publications Warehouse

    Burkett, V.R.; Wilcox, D.A.; Stottlemyer, R.; Barrow, W.; Fagre, D.; Baron, J.; Nielsen, J.L.; Allen, C.D.; Peterson, D.L.; Ruggerone, G.; Doyle, T.

    2005-01-01

    Many biological, hydrological, and geological processes are interactively linked in ecosystems. These ecological phenomena normally vary within bounded ranges, but rapid, nonlinear changes to markedly different conditions can be triggered by even small differences if threshold values are exceeded. Intrinsic and extrinsic ecological thresholds can lead to effects that cascade among systems, precluding accurate modeling and prediction of system response to climate change. Ten case studies from North America illustrate how changes in climate cna lead to rapid, threshold-type responses within ecological communities; the case studies also highlight the role of human activities that alter the rate or direction of system response to climate change. Understanding and anticipating nonlinear dynamics are important aspects of adaptation planning since responses of biological resources to changes in the physical climate system are not necessarily proportional and sometimes, as in the case of complex ecological systems, inherently nonlinear.

  11. Freezing of the Nb5 + ion dynamics in AgNbO3 studied by linear and nonlinear dielectric response

    NASA Astrophysics Data System (ADS)

    Miga, S.; Kania, A.; Dec, J.

    2011-04-01

    Linear and nonlinear dielectric measurements of AgNbO3 ceramics and single crystals were carried out for the M phases (77-673 K). The linear dielectric response is dominated by the contribution of the submillimetre relaxational mode related to the Nb5 + ion dynamics (M2-M3). On the other hand, nonlinear dielectric χ3' susceptibility revealed anomalies at three characteristic temperatures: 90, 325 and 448 K. Two later ones are connected with changes of the Nb5 + ion dynamics. At Tf = 448 K a partial freezing of the Nb5 + ion displacement to the anti-polar, antiferroelectric array takes place. At 325 K further freezing of Nb and Ag displacements to the polar weak relaxor ferroelectric or dipolar glass transition occurs. This polar state coexists with the ground antiferroelectric one.

  12. Periodic and chaotic responses of an sdf system with piecewise linear stiffness subjected to combined harmonic and flow induced excitations

    NASA Astrophysics Data System (ADS)

    Narayanan, S.; Sekar, P.

    1995-07-01

    The response of a single-degree-of-freedom (sdf) vibrating system with unsymmetrical piecewise linear stiffness subjected to combined harmonic and flow induced excitations is investigated. Motion limiting stops, different tension and compression behavior, etc., may introduce an unsymmetrical piecewise linear stiffness characteristic. A multi-harmonic balance cum Newton-Raphson procedure in conjunction with an FFT algorithm is adopted to determine the stable and unstable periodic solutions. The stability of the periodic solutions is investigated by using Floquet theory. Digital simulation results reveal periodic, quasi-periodic and chaotic motions of the system in a range of flow velocities. Mode locked oscillations with period 5 motions are found to occur in certain range of flow velocities. Bifurcation diagrams and Lyapunov exponents are also presented.

  13. Linear and nonlinear auditory response properties of interneurons in a high-order avian vocal motor nucleus during wakefulness

    PubMed Central

    Raksin, Jonathan N.; Glaze, Christopher M.; Smith, Sarah

    2012-01-01

    Motor-related forebrain areas in higher vertebrates also show responses to passively presented sensory stimuli. However, sensory tuning properties in these areas, especially during wakefulness, and their relation to perception, are poorly understood. In the avian song system, HVC (proper name) is a vocal-motor structure with auditory responses well defined under anesthesia but poorly characterized during wakefulness. We used a large set of stimuli including the bird's own song (BOS) and many conspecific songs (CON) to characterize auditory tuning properties in putative interneurons (HVCIN) during wakefulness. Our findings suggest that HVC contains a diversity of responses that vary in overall excitability to auditory stimuli, as well as bias in spike rate increases to BOS over CON. We used statistical tests to classify cells in order to further probe auditory responses, yielding one-third of neurons that were either unresponsive or suppressed and two-thirds with excitatory responses to one or more stimuli. A subset of excitatory neurons were tuned exclusively to BOS and showed very low linearity as measured by spectrotemporal receptive field analysis (STRF). The remaining excitatory neurons responded well to CON stimuli, although many cells still expressed a bias toward BOS. These findings suggest the concurrent presence of a nonlinear and a linear component to responses in HVC, even within the same neuron. These characteristics are consistent with perceptual deficits in distinguishing BOS from CON stimuli following lesions of HVC and other song nuclei and suggest mirror neuronlike qualities in which “self” (here BOS) is used as a referent to judge “other” (here CON). PMID:22205651

  14. Short-Term Unilateral Resistance Training Results in Cross Education of Strength Without Changes in Muscle Size, Activation, or Endocrine Response.

    PubMed

    Beyer, Kyle S; Fukuda, David H; Boone, Carleigh H; Wells, Adam J; Townsend, Jeremy R; Jajtner, Adam R; Gonzalez, Adam M; Fragala, Maren S; Hoffman, Jay R; Stout, Jeffrey R

    2016-05-01

    Beyer, KS, Fukuda, DH, Boone, CH, Wells, AJ, Townsend, JR, Jajtner, AR, Gonzalez, AM, Fragala, MS, Hoffman, JR, and Stout, JR. Short-term unilateral resistance training results in cross education of strength without changes in muscle size, activation, or endocrine response. J Strength Cond Res 30(5): 1213-1223, 2016-The purpose of this study was to assess the cross education of strength and changes in the underlying mechanisms (muscle size, activation, and hormonal response) after a 4-week unilateral resistance training (URT) program. A group of 9 untrained men completed a 4-week URT program on the dominant leg (DOM), whereas cross education was measured in the nondominant leg (NON); and were compared with a control group (n = 8, CON). Unilateral isometric force (PKF), leg press (LP) and leg extension (LE) strength, muscle size (by ultrasonography) and activation (by electromyography) of the rectus femoris and vastus lateralis, and the hormonal response (testosterone, growth hormone, insulin, and insulin-like growth factor-1) were tested pretraining and posttraining. Group × time interactions were present for PKF, LP, LE, and muscle size in DOM and for LP in NON. In all interactions, the URT group improved significantly better than CON. There was a significant acute hormonal response to URT, but no chronic adaptation after the 4-week training program. Four weeks of URT resulted in an increase in strength and size of the trained musculature, and cross education of strength in the untrained musculature, which may occur without detectable changes in muscle size, activation, or the acute hormonal response. PMID:26466136

  15. Do responses to different anthropogenic forcings add linearly in climate models?

    NASA Astrophysics Data System (ADS)

    Marvel, Kate; Schmidt, Gavin A.; Shindell, Drew; Bonfils, Céline; LeGrande, Allegra N.; Nazarenko, Larissa; Tsigaridis, Kostas

    2015-10-01

    Many detection and attribution and pattern scaling studies assume that the global climate response to multiple forcings is additive: that the response over the historical period is statistically indistinguishable from the sum of the responses to individual forcings. Here, we use the NASA Goddard Institute for Space Studies (GISS) and National Center for Atmospheric Research Community Climate System Model (CCSM4) simulations from the CMIP5 archive to test this assumption for multi-year trends in global-average, annual-average temperature and precipitation at multiple timescales. We find that responses in models forced by pre-computed aerosol and ozone concentrations are generally additive across forcings. However, we demonstrate that there are significant nonlinearities in precipitation responses to different forcings in a configuration of the GISS model that interactively computes these concentrations from precursor emissions. We attribute these to differences in ozone forcing arising from interactions between forcing agents. Our results suggest that attribution to specific forcings may be complicated in a model with fully interactive chemistry and may provide motivation for other modeling groups to conduct further single-forcing experiments.

  16. A Step Response Based Mixed-Signal BIST Approach for Continuous-time Linear Circuits

    NASA Technical Reports Server (NTRS)

    Walker, Alvernon; Lala, P. K.

    2001-01-01

    A new Mixed-Signal Built-in self-test approach that is based upon the step response of a reconfigurable (or multifunction) analog block is presented in this paper. The technique requires the overlapping step response of the Circuit Under Test (CUT) for two circuit configurations. Each configuration can be realized by changing the topology of the CUT or by sampling two CUT nodes with differing step responses. The technique can effectively detect both soft and hard faults and does not require an analog-to-digital converter (ADC) and/or digital-to-analog converter(DAC). It also does not require any precision voltage sources or comparators. This approach does not require any additional analog circuits to realize the test signal generator and sample circuits. The paper is concluded with the application of the proposed approach to a circuit found in the work of Epstein et al and two ITC 97 analog benchmark circuits.

  17. Characterization of Photon-Counting Detector Responsivity for Non-Linear Two-Photon Absorption Process

    NASA Technical Reports Server (NTRS)

    Sburlan, S. E.; Farr, W. H.

    2011-01-01

    Sub-band absorption at 1550 nm has been demonstrated and characterized on silicon Geiger mode detectors which normally would be expected to have no response at this wavelength. We compare responsivity measurements to singlephoton absorption for wavelengths slightly above the bandgap wavelength of silicon (approx. 1100 microns). One application for this low efficiency sub-band absorption is in deep space optical communication systems where it is desirable to track a 1030 nm uplink beacon on the same flight terminal detector array that monitors a 1550 nm downlink signal for pointingcontrol. The currently observed absorption at 1550 nm provides 60-70 dB of isolation compared to the response at 1064 nm, which is desirable to avoid saturation of the detector by scattered light from the downlink laser.

  18. Direct Atomic-Orbital-Based Relativistic Two-Component Linear Response Method for Calculating Excited-State Fine Structures.

    PubMed

    Egidi, Franco; Goings, Joshua J; Frisch, Michael J; Li, Xiaosong

    2016-08-01

    In this work, we present a linear-response formalism of the complex two-component Hartree-Fock Hamiltonian that includes relativistic effects within the Douglas-Kroll-Hess and the Exact-Two-Component frameworks. The method includes both scalar and spin relativistic effects in the variational description of electronic ground and excited states, although it neglects the picture-change and explicit spin-orbit contributions arising from the two-electron interaction. An efficient direct formalism of solving the complex two-component response function is also presented in this work. The presence of spin-orbit couplings in the Hamiltonian and the two-component nature of the wave function and Fock operator allows the computation of excited-state zero-field splittings of systems for which relativistic effects are dominated by the one-electron term. Calculated results are compared to experimental reference values to assess the quality of the underlying approximations. The results show that the relativistic two-component linear response methods are able to capture the excited-state zero-field splittings with good agreement with experiments for the systems considered here, with all approximations exhibiting a similar performance. However, the error increases for heavy elements and for states of high orbital angular momentum, suggesting the importance of the two-electron relativistic effect in such situations. PMID:27387787

  19. Linear-scaling implementation of molecular response theory in self-consistent field electronic-structure theory.

    PubMed

    Coriani, Sonia; Høst, Stinne; Jansík, Branislav; Thøgersen, Lea; Olsen, Jeppe; Jørgensen, Poul; Reine, Simen; Pawłowski, Filip; Helgaker, Trygve; Sałek, Paweł

    2007-04-21

    A linear-scaling implementation of Hartree-Fock and Kohn-Sham self-consistent field theories for the calculation of frequency-dependent molecular response properties and excitation energies is presented, based on a nonredundant exponential parametrization of the one-electron density matrix in the atomic-orbital basis, avoiding the use of canonical orbitals. The response equations are solved iteratively, by an atomic-orbital subspace method equivalent to that of molecular-orbital theory. Important features of the subspace method are the use of paired trial vectors (to preserve the algebraic structure of the response equations), a nondiagonal preconditioner (for rapid convergence), and the generation of good initial guesses (for robust solution). As a result, the performance of the iterative method is the same as in canonical molecular-orbital theory, with five to ten iterations needed for convergence. As in traditional direct Hartree-Fock and Kohn-Sham theories, the calculations are dominated by the construction of the effective Fock/Kohn-Sham matrix, once in each iteration. Linear complexity is achieved by using sparse-matrix algebra, as illustrated in calculations of excitation energies and frequency-dependent polarizabilities of polyalanine peptides containing up to 1400 atoms. PMID:17461615

  20. Excitation energies with linear response density matrix functional theory along the dissociation coordinate of an electron-pair bond in N-electron systems

    NASA Astrophysics Data System (ADS)

    van Meer, R.; Gritsenko, O. V.; Baerends, E. J.

    2014-01-01

    Time dependent density matrix functional theory in its adiabatic linear response formulation delivers exact excitation energies ωα and oscillator strengths fα for two-electron systems if extended to the so-called phase including natural orbital (PINO) theory. The Löwdin-Shull expression for the energy of two-electron systems in terms of the natural orbitals and their phases affords in this case an exact phase-including natural orbital functional (PILS), which is non-primitive (contains other than just J and K integrals). In this paper, the extension of the PILS functional to N-electron systems is investigated. With the example of an elementary primitive NO functional (BBC1) it is shown that current density matrix functional theory ground state functionals, which were designed to produce decent approximations to the total energy, fail to deliver a qualitatively correct structure of the (inverse) response function, due to essential deficiencies in the reconstruction of the two-body reduced density matrix (2RDM). We now deduce essential features of an N-electron functional from a wavefunction Ansatz: The extension of the two-electron Löwdin-Shull wavefunction to the N-electron case informs about the phase information. In this paper, applications of this extended Löwdin-Shull (ELS) functional are considered for the simplest case, ELS(1): one (dissociating) two-electron bond in the field of occupied (including core) orbitals. ELS(1) produces high quality ωα(R) curves along the bond dissociation coordinate R for the molecules LiH, Li2, and BH with the two outer valence electrons correlated. All of these results indicate that response properties are much more sensitive to deficiencies in the reconstruction of the 2RDM than the ground state energy, since derivatives of the functional with respect to both the NOs and the occupation numbers need to be accurate.

  1. Excitation energies with linear response density matrix functional theory along the dissociation coordinate of an electron-pair bond in N-electron systems

    SciTech Connect

    Meer, R. van; Gritsenko, O. V.; Baerends, E. J.

    2014-01-14

    Time dependent density matrix functional theory in its adiabatic linear response formulation delivers exact excitation energies ω{sub α} and oscillator strengths f{sub α} for two-electron systems if extended to the so-called phase including natural orbital (PINO) theory. The Löwdin-Shull expression for the energy of two-electron systems in terms of the natural orbitals and their phases affords in this case an exact phase-including natural orbital functional (PILS), which is non-primitive (contains other than just J and K integrals). In this paper, the extension of the PILS functional to N-electron systems is investigated. With the example of an elementary primitive NO functional (BBC1) it is shown that current density matrix functional theory ground state functionals, which were designed to produce decent approximations to the total energy, fail to deliver a qualitatively correct structure of the (inverse) response function, due to essential deficiencies in the reconstruction of the two-body reduced density matrix (2RDM). We now deduce essential features of an N-electron functional from a wavefunction Ansatz: The extension of the two-electron Löwdin-Shull wavefunction to the N-electron case informs about the phase information. In this paper, applications of this extended Löwdin-Shull (ELS) functional are considered for the simplest case, ELS(1): one (dissociating) two-electron bond in the field of occupied (including core) orbitals. ELS(1) produces high quality ω{sub α}(R) curves along the bond dissociation coordinate R for the molecules LiH, Li{sub 2}, and BH with the two outer valence electrons correlated. All of these results indicate that response properties are much more sensitive to deficiencies in the reconstruction of the 2RDM than the ground state energy, since derivatives of the functional with respect to both the NOs and the occupation numbers need to be accurate.

  2. Excitation energies with linear response density matrix functional theory along the dissociation coordinate of an electron-pair bond in N-electron systems.

    PubMed

    van Meer, R; Gritsenko, O V; Baerends, E J

    2014-01-14

    Time dependent density matrix functional theory in its adiabatic linear response formulation delivers exact excitation energies ωα and oscillator strengths fα for two-electron systems if extended to the so-called phase including natural orbital (PINO) theory. The Löwdin-Shull expression for the energy of two-electron systems in terms of the natural orbitals and their phases affords in this case an exact phase-including natural orbital functional (PILS), which is non-primitive (contains other than just J and K integrals). In this paper, the extension of the PILS functional to N-electron systems is investigated. With the example of an elementary primitive NO functional (BBC1) it is shown that current density matrix functional theory ground state functionals, which were designed to produce decent approximations to the total energy, fail to deliver a qualitatively correct structure of the (inverse) response function, due to essential deficiencies in the reconstruction of the two-body reduced density matrix (2RDM). We now deduce essential features of an N-electron functional from a wavefunction Ansatz: The extension of the two-electron Löwdin-Shull wavefunction to the N-electron case informs about the phase information. In this paper, applications of this extended Löwdin-Shull (ELS) functional are considered for the simplest case, ELS(1): one (dissociating) two-electron bond in the field of occupied (including core) orbitals. ELS(1) produces high quality ωα(R) curves along the bond dissociation coordinate R for the molecules LiH, Li2, and BH with the two outer valence electrons correlated. All of these results indicate that response properties are much more sensitive to deficiencies in the reconstruction of the 2RDM than the ground state energy, since derivatives of the functional with respect to both the NOs and the occupation numbers need to be accurate. PMID:24437859

  3. Numerically accurate linear response-properties in the configuration-interaction singles (CIS) approximation.

    PubMed

    Kottmann, Jakob S; Höfener, Sebastian; Bischoff, Florian A

    2015-12-21

    In the present work, we report an efficient implementation of configuration interaction singles (CIS) excitation energies and oscillator strengths using the multi-resolution analysis (MRA) framework to address the basis-set convergence of excited state computations. In MRA (ground-state) orbitals, excited states are constructed adaptively guaranteeing an overall precision. Thus not only valence but also, in particular, low-lying Rydberg states can be computed with consistent quality at the basis set limit a priori, or without special treatments, which is demonstrated using a small test set of organic molecules, basis sets, and states. We find that the new implementation of MRA-CIS excitation energy calculations is competitive with conventional LCAO calculations when the basis-set limit of medium-sized molecules is sought, which requires large, diffuse basis sets. This becomes particularly important if accurate calculations of molecular electronic absorption spectra with respect to basis-set incompleteness are required, in which both valence as well as Rydberg excitations can contribute to the molecule's UV/VIS fingerprint. PMID:25913482

  4. Response analysis of a laminar premixed M-flame to flow perturbations using a linearized compressible Navier-Stokes solver

    NASA Astrophysics Data System (ADS)

    Blanchard, M.; Schuller, T.; Sipp, D.; Schmid, P. J.

    2015-04-01

    The response of a laminar premixed methane-air flame subjected to flow perturbations around a steady state is examined experimentally and using a linearized compressible Navier-Stokes solver with a one-step chemistry mechanism to describe combustion. The unperturbed flame takes an M-shape stabilized both by a central bluff body and by the external rim of a cylindrical nozzle. This base flow is computed by a nonlinear direct simulation of the steady reacting flow, and the flame topology is shown to qualitatively correspond to experiments conducted under comparable conditions. The flame is then subjected to acoustic disturbances produced at different locations in the numerical domain, and its response is examined using the linearized solver. This linear numerical model then allows the componentwise investigation of the effects of flow disturbances on unsteady combustion and the feedback from the flame on the unsteady flow field. It is shown that a wrinkled reaction layer produces hydrodynamic disturbances in the fresh reactant flow field that superimpose on the acoustic field. This phenomenon, observed in several experiments, is fully interpreted here. The additional perturbations convected by the mean flow stem from the feedback of the perturbed flame sheet dynamics onto the flow field by a mechanism similar to that of a perturbed vortex sheet. The different regimes where this mechanism prevails are investigated by examining the phase and group velocities of flow disturbances along an axis oriented along the main direction of the flow in the fresh reactant flow field. It is shown that this mechanism dominates the low-frequency response of the wrinkled shape taken by the flame and, in particular, that it fully determines the dynamics of the flame tip from where the bulk of noise is radiated.

  5. Response analysis of a laminar premixed M-flame to flow perturbations using a linearized compressible Navier-Stokes solver

    SciTech Connect

    Blanchard, M.; Schuller, T.; Sipp, D.; Schmid, P. J.

    2015-04-15

    The response of a laminar premixed methane-air flame subjected to flow perturbations around a steady state is examined experimentally and using a linearized compressible Navier-Stokes solver with a one-step chemistry mechanism to describe combustion. The unperturbed flame takes an M-shape stabilized both by a central bluff body and by the external rim of a cylindrical nozzle. This base flow is computed by a nonlinear direct simulation of the steady reacting flow, and the flame topology is shown to qualitatively correspond to experiments conducted under comparable conditions. The flame is then subjected to acoustic disturbances produced at different locations in the numerical domain, and its response is examined using the linearized solver. This linear numerical model then allows the componentwise investigation of the effects of flow disturbances on unsteady combustion and the feedback from the flame on the unsteady flow field. It is shown that a wrinkled reaction layer produces hydrodynamic disturbances in the fresh reactant flow field that superimpose on the acoustic field. This phenomenon, observed in several experiments, is fully interpreted here. The additional perturbations convected by the mean flow stem from the feedback of the perturbed flame sheet dynamics onto the flow field by a mechanism similar to that of a perturbed vortex sheet. The different regimes where this mechanism prevails are investigated by examining the phase and group velocities of flow disturbances along an axis oriented along the main direction of the flow in the fresh reactant flow field. It is shown that this mechanism dominates the low-frequency response of the wrinkled shape taken by the flame and, in particular, that it fully determines the dynamics of the flame tip from where the bulk of noise is radiated.

  6. A Linear Dose-Response Relationship between Fasting Plasma Glucose and Colorectal Cancer Risk: Systematic Review and Meta-analysis

    PubMed Central

    Shi, Jianguo; Xiong, Lijuan; Li, Jiaoyuan; Cao, Heng; Jiang, Wen; Liu, Bo; Chen, Xueqin; Liu, Cheng; Liu, Ke; Wang, Guobin; Cai, Kailin

    2015-01-01

    For many years, the question of whether hyperglycaemia, a manifestation of prediabetes, diabetes mellitus and metabolic syndrome, is a risk factor for colorectal cancer has been intensely studied. In fact, even after the conclusion of several prospective studies, the topic is still controversial. We conducted a systematic review and meta-analysis to investigate the dose-response relationship between blood glucose concentration and the incidence of colorectal cancer. A linear (P = 0.303 for non-linearity) dose-response relationship was observed between fasting plasma glucose (FPG) and colorectal cancer risk without significant heterogeneity. The relative risk (RR) for colorectal cancer per 20 mg/dL increase in FPG was 1.015 (95% CI: 1.012–1.019, P = 0.000). In subgroup analyses, the pooled RRs for colon cancer (CC) and rectal cancer (RC) studies were 1.035 (95% CI 1.008–1.062, P = 0.011) and 1.031 (95% CI: 0.189–5.628, P = 0.972), respectively; in the analysis comparing men and women, the pooled RRs were 1.016 (95% CI: 1.012–1.020, P = 0.000) and 1.011 (95% CI: 0.995–1.027, P = 0.164), respectively. Sensitivity analyses using two methods showed similar results. In conclusion, there is a significant linear dose-response relationship between FPG and the incidence risk of colorectal cancer. For people with diabetes or prediabetes, controlling blood glucose might be useful to prevent colorectal cancer. PMID:26620869

  7. LINEAR STRUCTURAL MODELS FOR RESPONSE AND LATENCY PERFORMANCE IN ARITHMETIC. PSYCHOLOGY SERIES, TECHNICAL REPORT NO. 100.

    ERIC Educational Resources Information Center

    SUPPES, PATRICK; AND OTHERS

    A LEARNING MODEL TO IDENTIFY FACTORS CONTRIBUTING TO THE DIFFICULTY OF A PROBLEM ITEM WAS SUPPORTED EMPIRICALLY, AND INDICATED THAT THE NUMBER OF STEPS REQUIRED TO SOLVE A PROBLEM WAS THE MOST IMPORTANT VARIABLE IN PREDICTING BOTH ERROR PROBABILITY AND RESPONSE LATENCY. THE MODEL, IN ORDER TO ESTABLISH DIFFERENTIAL PREDICTIONS OF DIFFICULTY IN…

  8. Linear Response Coupled Cluster Singles and Doubles Approach with Modified Spectral Resolution of the Similarity Transformed Hamiltonian

    SciTech Connect

    Kowalski, Karol; Hammond, Jeffrey R.; De Jong, Wibe A.

    2007-10-28

    This paper discusses practical scheme of correcting the linear response coupled cluster with singles and doubles (LR-CCSD) equations by shifting their poles, corresponding to the equation-of-motion CCSD (EOMCCSD) excitation energies, through adding the no-iterative corrections due to triples to the EOMCCSD excitation energies. A simple criterion is derived for the excited states to be corrected in the spectral resolution of similarity transformed Hamiltonian on the CCSD level. Benchmark calculations were performed to compare the accuracies of static and dynamic polarizabilities obtained in the way with the CC3 and CCSDT counterparts.

  9. Quenched Stresses And Linear Elastic Response Of Random Packings Of Frictionless Particles Near Jamming

    NASA Astrophysics Data System (ADS)

    Karimi, Kamran

    We study stress correlations and elastic response in large-scale computer simulations of particle packings near jamming. We show that there are characteristic lengths in both the stresses and elastic response that diverge in similar ways as the confining pressure approaches zero from above. For the case of the stress field, we show that the power spectrum of the hydrostatic pressure and shear stress agrees with a field-theoretic framework proposed by Henkes and Chakraborty [15] at short to intermediate wavelengths (where the power is flat in Fourier space), but contains significant excess power at wavelengths larger than about 50 to 100 particle diameters, with the specific crossover point going to larger wavelength at decreasing pressure, consistent with a divergence at p = 0. These stress correlations were missed in previous studies by other groups due to limited system size. For the case of the elastic response, we probe the system in three ways: i) point forcing, ii) constrained homogeneous deformation where the system is driven with no-slip boundary conditions, and iii) free periodic homogeneous deformation. For the point force, we see distinct characteristic lengths for longitudinal and transverse modes each of which diverges in a different way with decreasing pressure with xiT ˜ p--1/4 and xiL ˜ p--0.4 respectively. For the constrained homogeneous deformation we see a scaling of the local shear modulus with the size of the probing region consistent with xi ˜ p--1/2 similar to the xiL ˜ p --0.4 observed in the longitudinal component of the point response and in perfect agreement with the rigidity length discussed in recently proposed scenarios for jamming. Finally, we show that the transverse and longitudinal contributions to the strain field in response to unconstrained deformation (either volumetric or shear) have markedly different behavior. The transverse contribution is surprisingly invariant with respect to p with localized shear transformations

  10. The strength of the reflex response to sinusoidal stretch of monkey jaw closing muscles during voluntary contraction.

    PubMed

    Goodwin, G M; Hoffman, D; Luschei, E S

    1978-06-01

    compensation' that could not be attributed to spindle afferents. 7. After the lesions the responses to movements of 100 micrometer showed neither negative values for the phase nor marked peaks in the stiffness magnitude at low frequencies; these features therefore take origin in the action of the stretch reflex. The stiffness that was measured after the lesions may be attributed to the non-reflex components resisting stretch, particularly to the properties of the contracting muscles. Thus, the phase of the force response was markedly advanced at all frequencies and the stiffness seen for 100 micrometer was similar to that for 500 micrometer. Stiffness increased with increasing mean force, as before surgery. 8. Vector subtraction of the stiffness seen at each frequency after interrupting the stretch reflex from that seen before doing so gave a quantitative estimate of the strength of the stretch reflex. The reflex activity calculated in this way showed attenuation and progressive phase lag as the frequency increased above 10 Hz... PMID:97378

  11. Linear response of a vortex column - singular eigenfunctions and growth mechanisms

    NASA Astrophysics Data System (ADS)

    Roy, Anubhab; S, Abhishek; Dixit, Harish N.; Subramanian, Ganesh

    2011-11-01

    A vortex column supports oscillations known as Kelvin modes, eigenmodes that are irrotational outside the vortex core. In order to understand the interaction of a vortex with an external vortical disturbance field, we use an extended modal description that incorporates a singular continuous spectrum with eigenmodes that are vortical outside the core. The continuous spectrum eigenfunctions are explicitly evaluated for a Rankine vortex; the description is extended to smooth vorticity profiles based on an analogy with stratified shear flows. Next, in the framework of an initial value problem, we analyze the inviscid resonant interaction between a vortex column and suitably localized initial conditions. It is shown that while a Rankine vortex allows for an unbounded secular growth in response an infinitely localized initial condition, smooth vorticity profiles, with a non-zero critical layer vorticity gradient, exhibit a saturation resulting from a perturbation-vorticity-induced screening mechanism. The effects of an upstream tilt on this novel saturation response are investigated.

  12. Controlling the nonlinear optical properties of plasmonic nanoparticles with the phase of their linear response.

    PubMed

    Butet, Jérémy; Raziman, T V; Yang, Kuang-Yu; Bernasconi, Gabriel D; Martin, Olivier J F

    2016-07-25

    We numerically investigate the second harmonic generation from different plasmonic systems and evidence the key role played in their nonlinear response by the phase at the fundamental wavelength. In the case of a single plasmonic nanorod, the interference between the second harmonic dipolar and quadrupolar emission modes depends on their relative phase, which is deeply related to the excitation wavelength. The knowledge obtained in this simple case is then used to describe and understand the nonlinear response from a more complex structure, namely a gold nanodolmen. The complex phase evolution associated with a Fano resonance arising at the fundamental wavelength enables dramatically modifying the second harmonic emission patterns from plasmonic metamolecules within minute wavelength shifts. These results emphasize the importance of the phase in the nonlinear optical processes arising in plasmonic nanostructures, in addition to the increase in conversion yield associated with the excitation of localized surface plasmon resonances. PMID:27464164

  13. Analysis of the linear response function relating AL to VB{sub s} for individual substorms

    SciTech Connect

    Blanchard, G.T.; McPherron, R.L.

    1995-10-01

    Time series of the AL index and rectified solar wind electric field are used to study solar wind coupling to auroral ionospheric currents during individual substorms. Calculation of the individual filters is accompanied by representing them as the product of two simple filters: a low-pass filter that accounts for the response of the ionospheric electric field to the reconnection electric field, and a filter composed of delta function. The delta functions each have the effect of delaying and scaling the response of AL relative to VB{sub s} without distorting the waveform of VB{sub s}. Nearly all significant correlation between AL and VB{sub s} can be accounted for when the second filter contains only two components. This result suggests that the westward electrojet indexed by AL is controlled by two distinct processes, both proportional to VB{sub s}. For an ensemble of 117 isolated substorms the average prediction efficiency of a filter with two delays is 71%. If one were able to determine the exact values of the two delays and the two gain factors prior to an event, then one would be able to estimate the instantaneous magnetospheric response function. The authors examined season, universal time, and prior activity as possible factors controlling the magnitude of the parameters but found no apparent relationships. Until such relations are found the average parameters provide the best estimate but account for only 47% of the variance in the AL index. 20 refs., 10 figs.

  14. Scaling regimes and linear and nonlinear responses of last millennium climate models to volcanic and solar forcings

    NASA Astrophysics Data System (ADS)

    Lovejoy, S.; Varotsos, C. A.

    2015-09-01

    At scales much longer than the deterministic predictability limits (about 10 days), the statistics of the atmosphere undergo a drastic transition, the high frequency weather acts as a random forcing on the lower frequency macroweather. In addition, up to decadal and centennial scales the equivalent radiative forcings of solar, volcanic and anthropogenic perturbations are small compared to the mean incoming solar flux. This justifies the common practice of reducing forcings to radiative equivalents (which are assumed to combine linearly), as well as the development of linear stochastic models, including for forecasting at monthly to decadal scales. In order to clarify the validity of the linearity assumption and determine its range of validity, we use last Millennium simulations, both with the simplified Zebiac-Cane (ZC) model and the NASA GISS E2-R fully coupled GCM. We systematically compare the statistical properties of solar only, volcanic only and combined solar and volcanic forcings over the range of time scales from one to 1000 years. We also compare the statistics to multiproxy temperature reconstructions. The main findings are: (a) that the variability of the ZC and GCM models are too weak at centennial and longer scales, (b) for longer than ≈ 50 years, the solar and volcanic forcings combine subadditively (nonlinearly) compounding the weakness of the response, (c) the models display another nonlinear effect at shorter scales: their sensitivities are much higher for weak forcing than for strong forcing (their intermittencies are different) and we quantify this with statistical scaling exponents.

  15. Impact of observed North Atlantic multidecadal variations to European summer climate: a linear baroclinic response to surface heating

    NASA Astrophysics Data System (ADS)

    Ghosh, Rohit; Müller, Wolfgang A.; Baehr, Johanna; Bader, Jürgen

    2016-07-01

    The observed prominent multidecadal variations in the central to eastern (C-E) European summer temperature are closely related to the Atlantic multidecadal variability (AMV). Using the Twentieth Century Reanalysis project version 2 data for the period of 1930-2012, we present a mechanism by which the multidecadal variations in the C-E European summer temperature are associated to a linear baroclinic atmospheric response to the AMV-related surface heat flux. Our results suggest that over the north-western Atlantic, the positive heat flux anomaly triggers a surface baroclinic pressure response to diabatic heating with a negative surface pressure anomaly to the east of the heat source. Further downstream, this response induces an east-west wave-like pressure anomaly. The east-west wave-like response in the sea level pressure structure, to which we refer as North-Atlantic-European East West (NEW) mode, is independent of the summer North Atlantic Oscillation and is the principal mode of variations during summer over the Euro-Atlantic region at multidecadal time scales. The NEW mode causes warming of the C-E European region by creating an atmospheric blocking-like situation. Our findings also suggest that this NEW mode is responsible for the multidecadal variations in precipitation over the British Isles and north-western Europe.

  16. Genomic stability in response to high versus low linear energy transfer radiation in Arabidopsis thaliana.

    PubMed

    Huefner, Neil D; Yoshiyama, Kaoru; Friesner, Joanna D; Conklin, Phillip A; Britt, Anne B

    2014-01-01

    Low linear energy transfer (LET) gamma rays and high LET HZE (high atomic weight, high energy) particles act as powerful mutagens in both plants and animals. DNA damage generated by HZE particles is more densely clustered than that generated by gamma rays. To understand the genetic requirements for resistance to high versus low LET radiation, a series of Arabidopsis thaliana mutants were exposed to either 1GeV Fe nuclei or gamma radiation. A comparison of effects on the germination and subsequent growth of seedlings led us to conclude that the relative biological effectiveness (RBE) of the two types of radiation (HZE versus gamma) are roughly 3:1. Similarly, in wild-type lines, loss of somatic heterozygosity was induced at an RBE of about a 2:1 (HZE versus gamma). Checkpoint and repair defects, as expected, enhanced sensitivity to both agents. The "replication fork" checkpoint, governed by ATR, played a slightly more important role in resistance to HZE-induced mutagenesis than in resistance to gamma induced mutagenesis. PMID:24904606

  17. Genomic stability in response to high versus low linear energy transfer radiation in Arabidopsis thaliana

    PubMed Central

    Huefner, Neil D.; Yoshiyama, Kaoru; Friesner, Joanna D.; Conklin, Phillip A.; Britt, Anne B.

    2014-01-01

    Low linear energy transfer (LET) gamma rays and high LET HZE (high atomic weight, high energy) particles act as powerful mutagens in both plants and animals. DNA damage generated by HZE particles is more densely clustered than that generated by gamma rays. To understand the genetic requirements for resistance to high versus low LET radiation, a series of Arabidopsis thaliana mutants were exposed to either 1GeV Fe nuclei or gamma radiation. A comparison of effects on the germination and subsequent growth of seedlings led us to conclude that the relative biological effectiveness (RBE) of the two types of radiation (HZE versus gamma) are roughly 3:1. Similarly, in wild-type lines, loss of somatic heterozygosity was induced at an RBE of about a 2:1 (HZE versus gamma). Checkpoint and repair defects, as expected, enhanced sensitivity to both agents. The “replication fork” checkpoint, governed by ATR, played a slightly more important role in resistance to HZE-induced mutagenesis than in resistance to gamma induced mutagenesis. PMID:24904606

  18. Response analysis of a class of quasi-linear systems with fractional derivative excited by Poisson white noise.

    PubMed

    Yang, Yongge; Xu, Wei; Yang, Guidong; Jia, Wantao

    2016-08-01

    The Poisson white noise, as a typical non-Gaussian excitation, has attracted much attention recently. However, little work was referred to the study of stochastic systems with fractional derivative under Poisson white noise excitation. This paper investigates the stationary response of a class of quasi-linear systems with fractional derivative excited by Poisson white noise. The equivalent stochastic system of the original stochastic system is obtained. Then, approximate stationary solutions are obtained with the help of the perturbation method. Finally, two typical examples are discussed in detail to demonstrate the effectiveness of the proposed method. The analysis also shows that the fractional order and the fractional coefficient significantly affect the responses of the stochastic systems with fractional derivative. PMID:27586619

  19. Natural vibration response based damage detection for an operating wind turbine via Random Coefficient Linear Parameter Varying AR modelling

    NASA Astrophysics Data System (ADS)

    Avendaño-Valencia, L. D.; Fassois, S. D.

    2015-07-01

    The problem of damage detection in an operating wind turbine under normal operating conditions is addressed. This is characterized by difficulties associated with the lack of measurable excitation(s), the vibration response non-stationary nature, and its dependence on various types of uncertainties. To overcome these difficulties a stochastic approach based on Random Coefficient (RC) Linear Parameter Varying (LPV) AutoRegressive (AR) models is postulated. These models may effectively represent the non-stationary random vibration response under healthy conditions and subsequently used for damage detection through hypothesis testing. The performance of the method for damage and fault detection in an operating wind turbine is subsequently assessed via Monte Carlo simulations using the FAST simulation package.

  20. Linear response to perturbation of nonexponential renewal process: A generalized master equation approach

    NASA Astrophysics Data System (ADS)

    Sokolov, I. M.

    2006-06-01

    The work by Barbi, Bologna, and Grigolini [Phys. Rev. Lett. 95, 220601 (2005)] discusses a response to alternating external field of a non-Markovian two-state system, where the waiting time between the two attempted changes of state follows a power law. It introduced a new instrument for description of such situations based on a stochastic master equation with reset. In the present Brief Report we provide an alternative description of the situation within the framework of a generalized master equation. The results of our analytical approach are corroborated by direct numerical simulations of the system.

  1. Hemispheric asymmetry non-linear analysis of EEG during emotional responses from idiopathic Parkinson's disease patients.

    PubMed

    Yuvaraj, R; Murugappan, M

    2016-06-01

    Recent studies show right hemisphere has a unique contribution to emotion processing. The present study investigated EEG using non-linear measures during emotional processing in PD patients with respect to motor symptom asymmetry (i.e., most affected body side). We recorded 14-channel wireless EEGs from 20 PD patients and 10 healthy age-matched controls (HC) by eliciting emotions such as happiness, sadness, fear, anger, surprise and disgust. PD patients were divided into two groups, based on most affected body side and unilateral motor symptom severity: left side-affected (LPD, n = 10) or right side-affected PD patients (RPD, n = 10). Nonlinear analysis of these emotional EEGs were performed by using approximate entropy, correlation dimension, detrended fluctuation analysis, fractal dimension, higher order spectra, hurst exponent (HE), largest Lyapunov exponent and sample entropy. The extracted features were ranked using analysis of variance based on F value. The ranked features were then fed into classifiers namely fuzzy K-nearest neighbor and support vector machine to obtain optimal performance using minimum number of features. From the experimental results, we found that (a) classification performance across all frequency bands performed well in recognizing emotional states of LPD, RPD, and HC; (b) the emotion-specific features were mainly related to higher frequency bands; and (c) predominantly LPD patients (inferred right-hemisphere pathology) were more impaired in emotion processing compared to RPD, as showed by a poorer classification performance. The results suggest that asymmetric neuronal degeneration in PD patients may contribute to the impairment of emotional communication. PMID:27275378

  2. Swelling and Shrinking Properties of Thermo-Responsive Polymeric Ionic Liquid Hydrogels with Embedded Linear pNIPAAM

    PubMed Central

    Gallagher, Simon; Florea, Larisa; Fraser, Kevin J.; Diamond, Dermot

    2014-01-01

    In this study, varying concentrations of linear pNIPAAM have been incorporated for the first time into a thermo-responsive polymeric ionic liquid (PIL) hydrogel, namely tributyl-hexyl phosphonium 3-sulfopropylacrylate (P-SPA), to produce semi-interpenetrating polymer networks. The thermal properties of the resulting hydrogels have been investigated along with their thermo-induced shrinking and reswelling capabilities. The semi-interpenetrating networks (IPN) hydrogels were found to have improved shrinking and reswelling properties compared with their PIL counterpart. At elevated temperatures (50–80 °C), it was found that the semi-IPN with the highest concentration of hydrophobic pNIPAAM exhibited the highest shrinking percentage of ~40% compared to the conventional P-SPA, (27%). This trend was also found to occur for the reswelling measurements, with semi-IPN hydrogels producing the highest reswelling percentage of ~67%, with respect to its contracted state. This was attributed to an increase in water affinity due to the presence of hydrophilic pNIPAAM. Moreover, the presence of linear pNIPAAM in the polymer matrix leads to improved shrinking and reswelling response compared to the equivalent PIL. PMID:24681582

  3. Dynamic linear response of atoms in plasmas and photo-absorption cross-section in the dipole approximation

    NASA Astrophysics Data System (ADS)

    Caizergues, C.; Blenski, T.; Piron, R.

    2016-03-01

    We report results on the self-consistent linear response theory of quantum average-atoms in plasmas. The approach is based on the two first orders of the cluster expansion of the plasma susceptibility. A change of variable is applied, which allows us to handle the diverging free-free transitions contribution in the self-consistent induced electron density and potential. The method is first tested on the case of rare gas isolated neutral atoms. A test of the Ehrenfest-type sum rule is then performed in a case of an actual average-atom in a plasma. At frequencies much higher than the plasma frequency, the sum rule seems to be fulfilled within the accuracy of the numerical methods. Close to the plasma frequency, the method seems not to account for the cold-plasma dielectric function renormalization in the sum rule, which was correctly reproduced in the case of the Thomas-Fermi-Bloch self-consistent linear response. This suggests the need for a better accounting for the outgoing waves in the asymptotic boundary conditions.

  4. Swelling and shrinking properties of thermo-responsive polymeric ionic liquid hydrogels with embedded linear pNIPAAM.

    PubMed

    Gallagher, Simon; Florea, Larisa; Fraser, Kevin J; Diamond, Dermot

    2014-01-01

    In this study, varying concentrations of linear pNIPAAM have been incorporated for the first time into a thermo-responsive polymeric ionic liquid (PIL) hydrogel, namely tributyl-hexyl phosphonium 3-sulfopropylacrylate (P-SPA), to produce semi-interpenetrating polymer networks. The thermal properties of the resulting hydrogels have been investigated along with their thermo-induced shrinking and reswelling capabilities. The semi-interpenetrating networks (IPN) hydrogels were found to have improved shrinking and reswelling properties compared with their PIL counterpart. At elevated temperatures (50-80 °C), it was found that the semi-IPN with the highest concentration of hydrophobic pNIPAAM exhibited the highest shrinking percentage of ~40% compared to the conventional P-SPA, (27%). This trend was also found to occur for the reswelling measurements, with semi-IPN hydrogels producing the highest reswelling percentage of ~67%, with respect to its contracted state. This was attributed to an increase in water affinity due to the presence of hydrophilic pNIPAAM. Moreover, the presence of linear pNIPAAM in the polymer matrix leads to improved shrinking and reswelling response compared to the equivalent PIL. PMID:24681582

  5. Identification of linear and threshold responses in streams along a gradient of urbanization in Anchorage, Alaska

    USGS Publications Warehouse

    Ourso, R.T.; Frenzel, S.A.

    2003-01-01

    We examined biotic and physiochemical responses in urbanized Anchorage, Alaska, to the percent of impervious area within stream basins, as determined by high-resolution IKONOS satellite imagery and aerial photography. Eighteen of the 86 variables examined, including riparian and instream habitat, macroinvertebrate communities, and water/sediment chemistry, were significantly correlated with percent impervious area. Variables related to channel condition, instream substrate, water chemistry, and residential and transportation right-of-way land uses were identified by principal components analysis as significant factors separating site groups. Detrended canonical correspondence analysis indicated that the macroinvertebrate communities responded to an urbanization gradient closely paralleling the percent of impervious area within the subbasin. A sliding regression analysis of variables significantly correlated with percent impervious area revealed 8 variables exhibiting threshold responses that correspond to a mean of 4.4-5.8% impervious area, much lower than mean values reported in other, similar investigations. As contributing factors to a subbasin's impervious area, storm drains and roads appeared to be important elements influencing the degradation of water quality with respect to the biota.

  6. Glycemic Response and Fermentation of Crystalline Short Linear α-Glucans from Debranched Waxy Maize Starch.

    PubMed

    Brewer, Lauren R; Weber, Casey; Haub, Mark; Cai, Liming; Shi, Yong-Cheng

    2015-11-01

    The glycemic index (GI) is used to rank foods based on postprandial blood glucose response. GI test requires that 50 g of available carbohydrate be used. Available carbohydrate is often calculated as total carbohydrate minus dietary fiber; yet, AOAC fiber methods do not always include resistant starch (RS). The objective of this study was to examine GI response and fermentation properties of crystalline short-chain α-glucan (CSCA), which has high RS content, but no total dietary fiber (TDF) content as measured by AOAC method 991.43. Using the standard GI method, 10 adults were fed 50 g of waxy maize starch and CSCA, consumed alone and in mixed formulation. Breath hydrogen was also determined over 6 h. Fifty grams of CSCA was not entirely available in vivo, and breath hydrogen testing indicated that CSCA was as likely to ferment. Products high in RS, but with no TDF, would yield reduced GI values, and this calls for the need of a method to define available carbohydrate. PMID:26447350

  7. Linear response of light deformed nuclei investigated by self-consistent quasiparticle random-phase approximation

    SciTech Connect

    Losa, C.; Doessing, T.; Pastore, A.; Vigezzi, E.; Broglia, R. A.

    2010-06-15

    We present a calculation of the properties of vibrational states in deformed, axially-symmetric even-even nuclei, within the framework of a fully self-consistent quasiparticle random phase approximation (QRPA). The same Skyrme energy density and density-dependent pairing functionals are used to calculate the mean field and the residual interaction in the particle-hole and particle-particle channels. We have tested our software in the case of spherical nuclei against fully self-consistent calculations published in the literature, finding excellent agreement. We investigate the consequences of neglecting the spin-orbit and Coulomb residual interactions in QRPA. Furthermore we discuss the improvement obtained in the QRPA result associated with the removal of spurious modes. Isoscalar and isovector responses in the deformed {sup 24-26}Mg, {sup 34}Mg isotopes are presented and compared to experimental findings.

  8. Meta-Analysis for Linear and Nonlinear Dose-Response Relations: Examples, an Evaluation of Approximations, and Software

    PubMed Central

    Orsini, Nicola; Li, Ruifeng; Wolk, Alicja; Khudyakov, Polyna; Spiegelman, Donna

    2012-01-01

    Two methods for point and interval estimation of relative risk for log-linear exposure-response relations in meta-analyses of published ordinal categorical exposure-response data have been proposed. The authors compared the results of a meta-analysis of published data using each of the 2 methods with the results that would be obtained if the primary data were available and investigated the circumstances under which the approximations required for valid use of each meta-analytic method break down. They then extended the methods to handle nonlinear exposure-response relations. In the present article, methods are illustrated using studies of the relation between alcohol consumption and colorectal and lung cancer risks from the ongoing Pooling Project of Prospective Studies of Diet and Cancer. In these examples, the differences between the results of a meta-analysis of summarized published data and the pooled analysis of the individual original data were small. However, incorrectly assuming no correlation between relative risk estimates for exposure categories from the same study gave biased confidence intervals for the trend and biased P values for the tests for nonlinearity and between-study heterogeneity when there was strong confounding by other model covariates. The authors illustrate the use of 2 publicly available user-friendly programs (Stata and SAS) to implement meta-analysis for dose-response data. PMID:22135359

  9. Meta-analysis for linear and nonlinear dose-response relations: examples, an evaluation of approximations, and software.

    PubMed

    Orsini, Nicola; Li, Ruifeng; Wolk, Alicja; Khudyakov, Polyna; Spiegelman, Donna

    2012-01-01

    Two methods for point and interval estimation of relative risk for log-linear exposure-response relations in meta-analyses of published ordinal categorical exposure-response data have been proposed. The authors compared the results of a meta-analysis of published data using each of the 2 methods with the results that would be obtained if the primary data were available and investigated the circumstances under which the approximations required for valid use of each meta-analytic method break down. They then extended the methods to handle nonlinear exposure-response relations. In the present article, methods are illustrated using studies of the relation between alcohol consumption and colorectal and lung cancer risks from the ongoing Pooling Project of Prospective Studies of Diet and Cancer. In these examples, the differences between the results of a meta-analysis of summarized published data and the pooled analysis of the individual original data were small. However, incorrectly assuming no correlation between relative risk estimates for exposure categories from the same study gave biased confidence intervals for the trend and biased P values for the tests for nonlinearity and between-study heterogeneity when there was strong confounding by other model covariates. The authors illustrate the use of 2 publicly available user-friendly programs (Stata and SAS) to implement meta-analysis for dose-response data. PMID:22135359

  10. Towards obtaining spatiotemporally precise responses to continuous sensory stimuli in humans: a general linear modeling approach to EEG.

    PubMed

    Gonçalves, Nuno R; Whelan, Robert; Foxe, John J; Lalor, Edmund C

    2014-08-15

    Noninvasive investigation of human sensory processing with high temporal resolution typically involves repeatedly presenting discrete stimuli and extracting an average event-related response from scalp recorded neuroelectric or neuromagnetic signals. While this approach is and has been extremely useful, it suffers from two drawbacks: a lack of naturalness in terms of the stimulus and a lack of precision in terms of the cortical response generators. Here we show that a linear modeling approach that exploits functional specialization in sensory systems can be used to rapidly obtain spatiotemporally precise responses to complex sensory stimuli using electroencephalography (EEG). We demonstrate the method by example through the controlled modulation of the contrast and coherent motion of visual stimuli. Regressing the data against these modulation signals produces spatially focal, highly temporally resolved response measures that are suggestive of specific activation of visual areas V1 and V6, respectively, based on their onset latency, their topographic distribution and the estimated location of their sources. We discuss our approach by comparing it with fMRI/MRI informed source analysis methods and, in doing so, we provide novel information on the timing of coherent motion processing in human V6. Generalizing such an approach has the potential to facilitate the rapid, inexpensive spatiotemporal localization of higher perceptual functions in behaving humans. PMID:24736185

  11. Sensitivity analysis of the non-linear dynamic viscoplastic response of 2-d structures with respect to material parameters

    NASA Technical Reports Server (NTRS)

    Kulkarni, Makarand; Noor, Ahmed K.

    1995-01-01

    A computational procedure is presented for evaluating the sensitivity coefficients of the viscoplastic response of structures subjected to dynamic loading. A state of plane stress is assumed to exist in the structure, a velocity strain-Cauchy stress formulation is used, and the geometric non-linearities arising from large strains are incorporated. The Jaumann rate is used as a frame indifferent stress rate. The material model is chosen to be isothermal viscoplasticity, and an associated flow rule is used with a von Mises effective stress. The equations of motion emanating from a finite element semi-discretization are integrated using an explicit central difference scheme with an implicit stress update. The sensitivity coefficients are evaluated using a direct differentiation approach. Since the domain of integration is the current configuration, the sensitivity coefficients of the spatial derivatives of the shape functions must be included. Numerical results are presented for a thin plate with a central cutout subjected to an in-plane compressive loading. The sensitivity coefficients are generated by evaluating the derivatives of the response quantities with respect to Young's modulus, and two of the material parameters characterizing the viscoplastic response. Time histories of the response and sensitivity coefficients, and spatial distributions at selected times are presented.

  12. Changes in muscle strength and pain in response to surgical repair of posterior abdominal wall disruption followed by rehabilitation

    PubMed Central

    Hemingway, A; Herrington, L; Blower, A

    2003-01-01

    Background: Posterior abdominal wall deficiency (PAWD) is a tear in the external oblique aponeurosis or the conjoint tendon causing a posterior wall defect at the medial end of the inguinal canal. It is often known as sportsman's hernia and is believed to be caused by repetitive stress. Objective: To assess lower limb and abdominal muscle strength of patients with PAWD before intervention compared with matched controls; to evaluate any changes following surgical repair and rehabilitation. Methods: Sixteen subjects were assessed using a questionnaire, isokinetic testing of the lower limb strength, and pressure biofeedback testing of the abdominals. After surgery and a six week rehabilitation programme, the subjects were re-evaluated. A control group were assessed using the same procedure. Results: Quadriceps and hamstrings strength was not affected by this condition. A deficit hip muscle strength was found on the affected limb before surgery, which was significant for the hip flexors (p = 0.05). Before surgery, 87% of the patients compared with 20% of the controls failed the abdominal obliques test. Both the injured and non-injured sides had improved significantly in strength after surgery and rehabilitation. The strength of the abdominal obliques showed the most significant improvement over the course of the rehabilitation programme. Conclusions: Lower limb muscle strength may have been reduced as the result of disuse atrophy or pain inhibition. Abdominal oblique strength was deficient in the injured patients and this compromises rotational control of the pelvis. More sensitive investigations (such as electromyography) are needed to assess the link between abdominal oblique function and groin injury. PMID:12547744

  13. Acute Endocrine and Force Responses and Long-Term Adaptations to Same-Session Combined Strength and Endurance Training in Women.

    PubMed

    Eklund, Daniela; Schumann, Moritz; Kraemer, William J; Izquierdo, Mikel; Taipale, Ritva S; Häkkinen, Keijo

    2016-01-01

    This study examined acute hormone and force responses and strength and endurance performance and muscle hypertrophy before and after 24 weeks of same-session combined strength and endurance training in previously untrained women. Subjects were assigned 1 of 2 training orders: endurance preceding strength (E + S, n = 15) or vice versa (S + E, n = 14). Acute force and hormone responses to a combined loading (continuous cycling and a leg press protocol in the assigned order) were measured. Additionally, leg press 1 repetition maximum (1RM), maximal workload during cycling (Wmax), and muscle cross-sectional area (CSA) were assessed. Loading-induced decreases in force were significant (p < 0.01-0.001) before (E + S = 20 ± 11%, S + E = 18 ± 5%) and after (E + S = 24 ± 6%, S + E = 22 ± 8%) training. Recovery was completed within 24 hours in both groups. The acute growth hormone (GH) response was significantly (p < 0.001) higher after S + E than E + S at both weeks 0 and 24. Testosterone was significantly (p < 0.001) elevated only after the S + E loading at week 24 but was not significantly different from E + S. Both groups significantly (p < 0.001) improved 1RM (E + S = 13 ± 12%, S + E = 16 ± 10%), Wmax (E + S = 21 ± 10%, S + E = 16 ± 12%), and CSA (E + S = 15 ± 10%, S + E = 11 ± 8%). This study showed that the acute GH response to combined endurance and strength loadings was significantly larger in S + E compared with E + S both before and after 24 weeks of same-session combined training. Strength and endurance performance and CSA increased to similar extents in both groups during 24 weeks despite differences in the kinetics of GH. Previously untrained women can improve performance and increase muscle CSA using either exercise order. PMID:26020708

  14. An investigation into linearity with cumulative emissions of the climate and carbon cycle response in HadCM3LC

    NASA Astrophysics Data System (ADS)

    Liddicoat, S. K.; Booth, B. B. B.; Joshi, M. M.

    2016-06-01

    We investigate the extent to which global mean temperature, precipitation, and the carbon cycle are constrained by cumulative carbon emissions throughout four experiments with a fully coupled climate–carbon cycle model. The paired experiments adopt contrasting, idealised approaches to climate change mitigation at different action points this century, with total emissions rising to more than two trillion tonnes of carbon (TtC). For each pair, the contrasting mitigation approaches—capping emissions early versus reducing them to zero a few decades later—cause their cumulative emissions trajectories to diverge initially, then converge, cross, and diverge again. We find that global mean temperature is linear with cumulative emissions across all experiments, although differences of up to 1.5 K exist regionally when the trajectories of total carbon emitted during the course of the two scenarios coincide, for both pairs of experiments. Interestingly, although the oceanic precipitation response scales with cumulative emissions, the global precipitation response does not, due to a decrease in precipitation over land above emissions of around one TtC. Most carbon fluxes are less well constrained by cumulative emissions as they reach two trillion tonnes. The opposing mitigation approaches have different consequences for the Amazon rainforest, which affects the linearity with which the carbon cycle responds to cumulative emissions. The average Transient Climate Response to cumulative carbon Emissions (TCRE) is 1.95 K TtC‑1, at the upper end of the Intergovernmental Panel on Climate Change’s range of 0.8–2.5 K TtC‑1.

  15. Response of semicircular canal dependent units in vestibular nuclei to rotation of a linear acceleration vector without angular acceleration

    PubMed Central

    Benson, A. J.; Guedry, F. E.; Jones, G. Melvill

    1970-01-01

    1. Recent experiments have shown that rotation of a linear acceleration vector round the head can generate involuntary ocular nystagmus in the absence of angular acceleration. The present experiments examine the suggestion that adequate stimulation of the semicircular canals may contribute to this response. 2. Decerebrate cats were located in a stereotaxic device on a platform, slung from four parallel cables, which could be driven smoothly round a circular orbit without inducing significant angular movement of the platform. This Parallel Swing Rotation (PSR) generated a centripetal acceleration of 4·4 m/sec2 which rotated round the head at 0·52 rev/sec. 3. The discharge frequency of specifically lateral canal-dependent neural units in the vestibular nuclei of cats was recorded during PSR to right and left, and in the absence of motion. The dynamic responses to purely angular motion were also examined on a servo-driven turntable. 4. Without exception all proven canal-dependent cells examined (twenty-nine cells in nine cats) were more active during PSR in the direction of endolymph circulation assessed to be excitatory to the unit, than during PSR in the opposite direction. 5. The observed changes in discharge frequency are assessed to have been of a magnitude appropriate for the generation of the involuntary oculomotor response induced by the same stimulus in the intact animal. 6. The findings suggest that a linear acceleration vector which rotates in the plane of the lateral semicircular canals can be an adequate stimulus to ampullary receptors, though an explanation which invokes the modulation of canal cells by a signal dependent upon the sequential activation of macular receptors cannot be positively excluded. PMID:5501270

  16. Origins of Total-Dose Response Variability in Linear Bipolar Microcircuits

    SciTech Connect

    BARNABY,H.J.; CIRBA,C.R.; SCHRIMPF,R.D.; FLEETWOOD,D.M.; PEASE,R.L.; SHANEYFELT,MARTY R.; TURFLINGER,T.; KRIEG,J.F.; MAHER,M.C.

    2000-11-15

    LM1ll voltage comparators exhibit a wide range of total-dose-induced degradation. Simulations show this variability may be a natural consequence of the low base doping of the substrate PNP (SPNP) input transistors. Low base doping increases the SPNP's collector to base breakdown voltage, current gain, and sensitivity to small fluctuations in the radiation-induced oxide defect densities. The build-up of oxide trapped charge (N{sub ot}) and interface traps (N{sub it}) is shown to be a function of pre-irradiation bakes. Experimental data indicate that, despite its structural similarities to the LM111, irradiated input transistors of the LM124 operational amplifier do not exhibit the same sensitivity to variations in pre-irradiation thermal cycles. Further disparities in LM111 and LM124 responses may result from a difference in the oxide defect build-up in the two part types. Variations in processing, packaging, and circuit effects are suggested as potential explanations.

  17. The assessment of in-flight dynamic range and response linearity of optical payloads onboard GF-1 satellite

    NASA Astrophysics Data System (ADS)

    Gao, Caixia; Ma, Lingling; Liu, Yaokai; Wang, Ning; Qian, Yonggang; Tang, Lingli; Li, Chuanrong

    2014-11-01

    Dynamic range and response linearity are two key parameters for impacting the quality of remote sensing image and subsequently the quantitative applications. Due to the space radiation and the degrading of electronic devices, the inflight dynamic range and response linearity of remote sensing payload are subject to change, and is essential to be assessed. Therefore, in this paper, with the aid of the permanent artificial target located in the AOE Baotou site in China, the two parameters for pan-chromatic camera (Pan) and the multi-spectral camera (Band 1-4) onboard GF-1 satellite are assessed with an extrapolation method using the in situ measurements and corresponding images acquired on November 4, 2013. The results show that the low point of the dynamic range for Pan band, Band 1, Band2, Band3 and Band4 is -24.08 W•sr-1m-2μm-1, -52.22 W•sr-1m-2μm-1, -35.20 W•sr-1m-2μm-1, -31.92 W•sr-1m-2μm-1, -24.07 W•sr-1m-2μm- 1 respectively; while the corresponding high point is 271.77 W•sr-1m-2μm-1, 401.58 W•sr-1m-2μm-1, 287.46 W•sr-1m- 2μm-1, 237.33W•sr-1m-2μm-1, 307.49W•sr-1m-2μm-1, respectively; meanwhile, it is demonstrated that all the sensors have a response linearity error of lower than 1%. Moreover, an analysis for this assessment is performed in terms of the uncertainties for surface reflectance measurement (1%), aerosol optical depth (10%), column water vapor (10%), MODTRAN model (1%) and solar irradiance (1%) using a simulation method with the aid of MODTRAN 4.0 model, and a total uncertainty of 2.12% is acquired.

  18. Linear response and Berry curvature in two-dimensional topological phases

    NASA Astrophysics Data System (ADS)

    Bradlyn, Barry J.

    cannot contribute to low-temperature thermoelectric transport other than the ordinary Hall conductivity; the other thermoelectric effects (if they occur) are thus purely edge effects. The stress response to time-dependent strains is given by the Hall viscosity, which is robust against perturbations and related to the spin current. Finally, we address the issue of calculating the topological central charge from bulk wavefunctions for a topological phase. Using the form of the topological terms in the induced action, we show that we can calculate the various coefficients of these terms as Berry curvatures associated to certain metric and electromagnetic vector potential perturbations. We carry out this computation explicitly for quantum Hall trial wavefunctions that can be represented as conformal blocks in a chiral conformal field theory (CFT). These calculations make use of the gauge and gravitational anomalies in the underlying chiral CFT.

  19. Dose-Volume Response Relationship for Brain Metastases Treated with Frameless Single-Fraction Linear Accelerator-Based Stereotactic Radiosurgery

    PubMed Central

    Pan, Jianmin; Yusuf, Mehran B; Dragun, Anthony; Dunlap, Neal; Guan, Timothy; Boling, Warren; Rai, Shesh; Woo, Shiao

    2016-01-01

    Background: Our aim was to identify a dose-volume response relationship for brain metastases treated with frameless stereotactic radiosurgery (SRS). Methods: We reviewed patients who underwent frameless single-fraction linear accelerator SRS for brain metastases between 2007 and 2013 from an institutional database. Proportional hazards modeling was used to identify predictors of outcome. A ratio of maximum lesion dose per mm-diameter (Gy/mm) was constructed to establish a dose-volume relationship. Results: There were 316 metastases evaluated in 121 patients (2 - 33 mm in the largest diameter). The median peripheral dose was 18.0 Gy (range: 10.0 – 24.0 Gy). Local control was 84.8% for all lesions and was affected by location, peripheral dose, maximum dose, and lesion size (p values < 0.050). A dose-volume response relationship was constructed using the maximum dose and lesion size. A unit increase in Gy/mm was associated with decreased local failure (p = 0.005). Local control of 80%, 85%, and 90% corresponded to maximum doses per millimeter of 1.67 Gy/mm, 2.86 Gy/mm, and 4.4 Gy/mm, respectively. Toxicity was uncommon and only 1.0% of lesions developed radionecrosis requiring surgery. Conclusions: For brain metastases less than 3 cm, a dose-volume response relationship exists between maximum radiosurgical dose and lesion size, which is predictive of local control. PMID:27284495

  20. Wheat Drought-Responsive Grain Proteome Analysis by Linear and Nonlinear 2-DE and MALDI-TOF Mass Spectrometry

    PubMed Central

    Jiang, Shan-Shan; Liang, Xiao-Na; Li, Xin; Wang, Shun-Li; Lv, Dong-Wen; Ma, Chao-Ying; Li, Xiao-Hui; Ma, Wu-Jun; Yan, Yue-Ming

    2012-01-01

    A comparative proteomic analysis of drought-responsive proteins during grain development of two wheat varieties Kauz (strong resistance to drought stress) and Janz (sensitive to drought stress) was performed by using linear and nonlinear 2-DE and MALDI-TOF mass spectrometry technologies. Results revealed that the nonlinear 2-DE had much higher resolution than the linear 2-DE. A total of 153 differentially expressed protein spots were detected by both 2-DE maps, of which 122 protein spots were identified by MALDI-TOF and MALDI-TOF/TOF mass spectrometry. The identified differential proteins were mainly involved in carbohydrate metabolism (26%), detoxification and defense (23%), and storage proteins (17%). Some key proteins demonstrated significantly different expression patterns between the two varieties. In particular, catalase isozyme 1, WD40 repeat protein, LEA and alpha-amylase inhibitors displayed an upregulated expression pattern in Kauz, whereas they were downregulated or unchanged in Janz. Small and large subunit ADP glucose pyrophosphorylase, ascorbate peroxidase and G beta-like protein were all downregulated under drought stress in Janz, but had no expression changes in Kauz. Sucrose synthase and triticin precursor showed an upregulated expression pattern under water deficits in both varieties, but their upregulation levels were much higher in Kauz than in Janz. These differentially expressed proteins could be related to the biochemical pathways for stronger drought resistance of Kauz. PMID:23443111

  1. Effect of geometric elastic non-linearities on the impact response of flexible multi-body systems

    NASA Astrophysics Data System (ADS)

    Bakr, E. M.; Shabana, A. A.

    1987-02-01

    The intermittent motion behavior of large scale geometrically non-linear flexible multi-body systems due to impact loading is investigated. Impacts and the associated impulsive forces are incorporated into the dynamic formulation by using a generalized momentum balance. The solution of the momentum equation provides the jump discontinuities in the system velocities and reaction forces. Flexible components in the system are discretized by using the finite element method. Because of the large rotations of the system components, a set of reference co-ordinates are employed to describe the motion of a selected body reference. The rigid body modes of the finite element shape functions are eliminated by using a set of reference conditions and accordingly a unique displacement field is defined. In order to account for the inertia and elastic non-linearities which are, respectively, the results of the large rotations and finite deformations, the system inertia and stiffness characteristics have to be iteratively updated. Two numerical examples of different nature are presented. The first example is a high speed slider crank mechanism with a flexible connecting rod. In the second example, however, the dynamic response of a flexible multi-body aircraft during the touch down impact is predicted.

  2. Mean field linear response within the elimination of the small component formalism to evaluate relativistic effects on magnetic properties

    NASA Astrophysics Data System (ADS)

    Roura, P. G.; Melo, J. I.; Ruiz de Azúa, M. C.; Giribet, C. G.

    2006-08-01

    The linear response within the elimination of the small component formalism is aimed at obtaining the leading order relativistic corrections to magnetic molecular properties in the context of the elimination of the small component approximation. In the present work we extend the method in order to include two-body effects in the form of a mean field one-body operator. To this end we consider the four-component Dirac-Hartree-Fock operator as the starting point in the evaluation of the second order relativistic expression of magnetic properties. The approach thus obtained is the fully consistent leading order approximation of the random phase approximation four-component formalism. The mean field effect on the relativistic corrections to both the diamagnetic and paramagnetic terms of magnetic properties taking into account both the Coulomb and Breit two-body interactions is considered.

  3. Electrostatic Solvation Free Energy of Amino Acid Side Chain Analogs: Implications for the Validity of Electrostatic Linear Response in Water

    SciTech Connect

    Lin, Bin; Pettitt, Bernard M.

    2011-04-15

    Electrostatic free energies of solvation for 15 neutral amino acid side chain analogs are computed. We compare three methods of varying computational complexity and accuracy for three force fields: free energy simulations, Poisson-Boltzmann (PB), and linear response approximation (LRA) using AMBER, CHARMM, and OPLSAA force fields. We find that deviations from simulation start at low charges for solutes. The approximate PB and LRA produce an overestimation of electrostatic solvation free energies for most of molecules studied here. These deviations are remarkably systematic. The variations among force fields are almost as large as the variations found among methods. Our study confirms that success of the approximate methods for electrostatic solvation free energies comes from their ability to evaluate free energy differences accurately.

  4. Linear response of mutans streptococci to increasing frequency of xylitol chewing gum use: a randomized controlled trial [ISRCTN43479664

    PubMed Central

    Ly, Kiet A; Milgrom, Peter; Roberts, Marilyn C; Yamaguchi, David K; Rothen, Marilynn; Mueller, Greg

    2006-01-01

    Background Xylitol is a naturally occurring sugar substitute that has been shown to reduce the level of mutans streptococci in plaque and saliva and to reduce tooth decay. It has been suggested that the degree of reduction is dependent on both the amount and the frequency of xylitol consumption. For xylitol to be successfully and cost-effectively used in public health prevention strategies dosing and frequency guidelines should be established. This study determined the reduction in mutans streptococci levels in plaque and unstimulated saliva to increasing frequency of xylitol gum use at a fixed total daily dose of 10.32 g over five weeks. Methods Participants (n = 132) were randomized to either active groups (10.32 g xylitol/day) or a placebo control (9.828 g sorbitol and 0.7 g maltitol/day). All groups chewed 12 pieces of gum per day. The control group chewed 4 times/day and active groups chewed xylitol gum at a frequency of 2 times/day, 3 times/day, or 4 times/day. The 12 gum pieces were evenly divided into the frequency assigned to each group. Plaque and unstimulated saliva samples were taken at baseline and five-weeks and were cultured on modified Mitis Salivarius agar for mutans streptococci enumeration. Results There were no significant differences in mutans streptococci level among the groups at baseline. At five-weeks, mutans streptococci levels in plaque and unstimulated saliva showed a linear reduction with increasing frequency of xylitol chewing gum use at the constant daily dose. Although the difference observed for the group that chewed xylitol 2 times/day was consistent with the linear model, the difference was not significant. Conclusion There was a linear reduction in mutans streptococci levels in plaque and saliva with increasing frequency of xylitol gum use at a constant daily dose. Reduction at a consumption frequency of 2 times per day was small and consistent with the linear-response line but was not statistically significant. PMID:16556326

  5. Enhanced Strength via crack friction and Pressure

    NASA Astrophysics Data System (ADS)

    Wiegand, Donald; Ellis, Kevin; Leppard, Claire

    2011-03-01

    The effect of pressure on the mechanical response of particulate polymer composites is being studied. Between about 0.1 and 7 MPa for one composite the results indicate that slow crack growth is the dominant failure mode. With continuously creasing strain at low pressures the stress initially increases to a maximum, the compressive strength, then decreases indicating work softening and them becomes approximately constant at a plateau value. Both the compressive strength and the plateau stress increases linearly with pressure but the plateau stress increases with a steeper slope such that at higher pressures work softening is not observed. The results are analyzed in terms of shear cracks with friction between the crack surfaces. The model predicts a threshold stress for crack growth which increases linearly with pressure and further predicts that the compressive strength increases linearly with pressure as observed and with the same slope as the threshold stress. These results clearly indicate that the pressure dependence of the compressive strength is due to the pressure dependence of the threshold stress for crack growth. The changes in the plateau region can also be attributed to frictional effects. Supported by AWE Aldermaston.

  6. Linearized formulation for fluid-structure interaction: Application to the linear dynamic response of a pressurized elastic structure containing a fluid with a free surface

    NASA Astrophysics Data System (ADS)

    Schotté, J.-S.; Ohayon, R.

    2013-05-01

    To control the linear vibrations of structures partially filled with liquids is of prime importance in various industries such as aerospace, naval, civil and nuclear engineering. It is proposed here to investigate a linearized formulation adapted to a rational computation of the vibrations of such coupled systems. Its particularity is to be fully Lagrangian since it considers the fluid displacement field with respect to a static equilibrium configuration as the natural variable describing the fluid motion, as classically done in structural dynamics. As the coupled system considered here is weakly damped in the low frequency domain (low modal density), the analysis of the vibrations of the associated undamped conservative system constitutes the main objective of this paper. One originality of the present formulation is to take into account the effect of the pressurization of the tank on the dynamics of the system, particularly in the case of a compressible liquid. We propose here a new way of deriving the linearized equations of the coupled problem involving a deformable structure and an inner inviscid liquid with a free surface. A review of the classical case considering a heavy incompressible liquid is followed by an application to the new case involving a light compressible liquid. A solution procedure in the frequency domain is proposed and a numerical discretization using the finite element method is discussed. In order to reduce the computational costs, an appropriate reduced order matrix model using modal synthesis approach is also presented.

  7. Linear Versus Non-Linear Dose-Response Relationship Between Prenatal Alcohol Exposure and Meconium Concentration of Nine Different Fatty Acid Ethyl Esters.

    PubMed

    Yang, J Y; Kwak, H S; Han, J Y; Choi, J S; Ahn, H K; Oh, Y J; Velázquez-Armenta, E Y; Nava-Ocampo, A A

    2015-01-01

    Presence of individual fatty acid ethyl esters (FAEEs) in meconium is considered to be a reliable biomarker of prenatal alcohol exposure, and their concentration has been found to be linearly associated with poor postnatal development, supporting the widely extended idea that ethanol is a non-threshold teratogen. However, a growing number of epidemiological studies have consistently found a lack of adverse short- and long-term fetal outcomes at low exposure levels. We therefore aimed to investigate the relationship between the concentration of individual FAEEs and prenatal alcohol exposure in meconium samples collected within the first 6 to 12?h after birth from 182 babies born to abstainer mothers and from 54 babies born to women who self-reported either light or moderate alcohol ingestion in the second or third trimester of pregnancy. In most cases, the individual FAEE concentrations were negligible and not significantly different (P >0.05) between exposed and control babies. The concentrations appeared to increase linearly with the dose only in the few babies born to mothers who reported >3 drinks/week. These results provide evidence that the correlation between prenatal alcohol exposure and individual FAEE concentrations in meconium is non-linear shape, with a threshold probably at 3 drinks/week. PMID:26691866

  8. Differential Effects of Hypnosis, Biofeedback Training, and Trophotropic Responses on Anxiety, Ego Strength, and Locus of Control.

    ERIC Educational Resources Information Center

    Hurley, John D.

    1980-01-01

    College students were randomly assigned to one of four groups: hypnotic treatment, biofeedback treatment, trophotropic treatment, and control. Results indicated hypnosis was more effective in lowering anxiety levels. With regard to increasing ego strength, both the hypnotic and biofeedback training groups proved to be significant. Presented at the…

  9. Linear Discriminant Analysis Achieves High Classification Accuracy for the BOLD fMRI Response to Naturalistic Movie Stimuli.

    PubMed

    Mandelkow, Hendrik; de Zwart, Jacco A; Duyn, Jeff H

    2016-01-01

    Naturalistic stimuli like movies evoke complex perceptual processes, which are of great interest in the study of human cognition by functional MRI (fMRI). However, conventional fMRI analysis based on statistical parametric mapping (SPM) and the general linear model (GLM) is hampered by a lack of accurate parametric models of the BOLD response to complex stimuli. In this situation, statistical machine-learning methods, a.k.a. multivariate pattern analysis (MVPA), have received growing attention for their ability to generate stimulus response models in a data-driven fashion. However, machine-learning methods typically require large amounts of training data as well as computational resources. In the past, this has largely limited their application to fMRI experiments involving small sets of stimulus categories and small regions of interest in the brain. By contrast, the present study compares several classification algorithms known as Nearest Neighbor (NN), Gaussian Naïve Bayes (GNB), and (regularized) Linear Discriminant Analysis (LDA) in terms of their classification accuracy in discriminating the global fMRI response patterns evoked by a large number of naturalistic visual stimuli presented as a movie. Results show that LDA regularized by principal component analysis (PCA) achieved high classification accuracies, above 90% on average for single fMRI volumes acquired 2 s apart during a 300 s movie (chance level 0.7% = 2 s/300 s). The largest source of classification errors were autocorrelations in the BOLD signal compounded by the similarity of consecutive stimuli. All classifiers performed best when given input features from a large region of interest comprising around 25% of the voxels that responded significantly to the visual stimulus. Consistent with this, the most informative principal components represented widespread distributions of co-activated brain regions that were similar between subjects and may represent functional networks. In light of these

  10. Linear Discriminant Analysis Achieves High Classification Accuracy for the BOLD fMRI Response to Naturalistic Movie Stimuli

    PubMed Central

    Mandelkow, Hendrik; de Zwart, Jacco A.; Duyn, Jeff H.

    2016-01-01

    Naturalistic stimuli like movies evoke complex perceptual processes, which are of great interest in the study of human cognition by functional MRI (fMRI). However, conventional fMRI analysis based on statistical parametric mapping (SPM) and the general linear model (GLM) is hampered by a lack of accurate parametric models of the BOLD response to complex stimuli. In this situation, statistical machine-learning methods, a.k.a. multivariate pattern analysis (MVPA), have received growing attention for their ability to generate stimulus response models in a data-driven fashion. However, machine-learning methods typically require large amounts of training data as well as computational resources. In the past, this has largely limited their application to fMRI experiments involving small sets of stimulus categories and small regions of interest in the brain. By contrast, the present study compares several classification algorithms known as Nearest Neighbor (NN), Gaussian Naïve Bayes (GNB), and (regularized) Linear Discriminant Analysis (LDA) in terms of their classification accuracy in discriminating the global fMRI response patterns evoked by a large number of naturalistic visual stimuli presented as a movie. Results show that LDA regularized by principal component analysis (PCA) achieved high classification accuracies, above 90% on average for single fMRI volumes acquired 2 s apart during a 300 s movie (chance level 0.7% = 2 s/300 s). The largest source of classification errors were autocorrelations in the BOLD signal compounded by the similarity of consecutive stimuli. All classifiers performed best when given input features from a large region of interest comprising around 25% of the voxels that responded significantly to the visual stimulus. Consistent with this, the most informative principal components represented widespread distributions of co-activated brain regions that were similar between subjects and may represent functional networks. In light of these

  11. Responses to rotating linear acceleration vectors considered in relation to a model of the otolith organs. [human oculomotor response to transverse acceleration stress

    NASA Technical Reports Server (NTRS)

    Benson, A. J.; Barnes, G. R.

    1973-01-01

    Human subjects were exposed to a linear acceleration vector that rotated in the transverse plane of the skull without angular counterrotation. Lateral eye movements showed a sinusoidal change in slow phase velocity and an asymmetry or bias in the same direction as vector rotation. A model is developed that attributes the oculomotor response to otolithic mechanisms. It is suggested that the bias component is the manifestation of torsion of the statoconial plaque relative to the base of the utricular macula and that the sinusoidal component represents the translational oscillation of the statoconia. The model subsumes a hypothetical neural mechanism which allows x- and y-axis accelerations to be resolved. Derivation of equations of motion for the statoconial plaque in torsion and translation, which take into account forces acting in shear and normal to the macula, yield estimates of bias and sinusoidal components that are in qualitative agreement with the diverse experimental findings.

  12. Study of the Performance of an All-Optical Half-Adder Based on Three-Core Non-Linear Directional Fiber Coupler Under Delayed and Instantaneous Non-Linear Kerr Responses

    NASA Astrophysics Data System (ADS)

    Menezes, J. W. M.; Fraga, W. B.; Lima, F. T.; Guimarães, G. F.; Ferreira, A. C.; Lyra, M. L.; Sombra, A. S. B.

    2011-06-01

    Recently, much attention has been given to the influence of the relaxation process of the non-linear response, because the usual assumption of instantaneous non-linear response fails for ultra-short pulses, and additional contributions coming from non-linear dispersion and delayed non-linearity have to be taken into account. This article presents a numerical analysis of the symmetric planar and asymmetric planar three-core non-linear directional fiber couplers operating with a soliton pulse, where effects of both delayed and instantaneous non-linear Kerr responses are analyzed for implementation of an all-optical half-adder. To implement this all-optical half-adder, eight configurations were analyzed for the non-linear directional fiber coupler, with two symmetric and six asymmetric configurations. The half-adder is the key building block for many digital processing functions, such as shift register, binary counter, and serial parallel data converters. The optical coupler is an important component for applications in optical-fiber telecommunication systems and all integrated optical circuit because of its very high switching speeds. In this numerical simulation, the symmetric/asymmetric planar presents a structure with three cores in a parallel equidistant arrangement, three logical inputs, and two output energy. To prove the effectiveness of the theoretical model for generation of the all-optical half-adder, the best phase to be applied to the control pulse was sought, and a study was done of the extinction ratio level as a function of the Δ > parameter, the normalized time duration, and the Sum and Carry outputs of the (symmetric planar/asymmetric planar) non-linear directional fiber coupler. In this article, the interest is in transmission characteristics, extinction ratio level, normalized time duration, and pulse evolution along the non-linear directional fiber coupler. To compare the performance of the all-optical half-adders, the figure of merit of the

  13. Non-linear responsivity characterisation of a CMOS Active Pixel Sensor for high resolution imaging of the Jovian system

    NASA Astrophysics Data System (ADS)

    Soman, M.; Stefanov, K.; Weatherill, D.; Holland, A.; Gow, J.; Leese, M.

    2015-02-01

    The Jovian system is the subject of study for the Jupiter Icy Moon Explorer (JUICE), an ESA mission which is planned to launch in 2022. The scientific payload is designed for both characterisation of the magnetosphere and radiation environment local to the spacecraft, as well as remote characterisation of Jupiter and its satellites. A key instrument on JUICE is the high resolution and wide angle camera, JANUS, whose main science goals include detailed characterisation and study phases of three of the Galilean satellites, Ganymede, Callisto and Europa, as well as studies of other moons, the ring system, and irregular satellites. The CIS115 is a CMOS Active Pixel Sensor from e2v technologies selected for the JANUS camera. It is fabricated using 0.18 μ m CMOS imaging sensor process, with an imaging area of 2000 × 1504 pixels, each 7 μ m square. A 4T pixel architecture allows for efficient correlated double sampling, improving the readout noise to better than 8 electrons rms, whilst the sensor is operated in a rolling shutter mode, sampling at up to 10 Mpixel/s at each of the four parallel outputs.A primary parameter to characterise for an imaging device is the relationship that converts the sensor's voltage output back to the corresponding number of electrons that were detected in a pixel, known as the Charge to Voltage Factor (CVF). In modern CMOS sensors with small feature sizes, the CVF is known to be non-linear with signal level, therefore a signal-dependent measurement of the CIS115's CVF has been undertaken and is presented here. The CVF is well modelled as a quadratic function leading to a measurement of the maximum charge handling capacity of the CIS115 to be 3.4 × 104 electrons. If the CIS115's response is assumed linear, its CVF is 21.1 electrons per mV (1/47.5 μ V per electron).

  14. Non-linear relationships between aflatoxin B₁ levels and the biological response of monkey kidney vero cells.

    PubMed

    Rasooly, Reuven; Hernlem, Bradley; He, Xiaohua; Friedman, Mendel

    2013-08-01

    Aflatoxin-producing fungi contaminate food and feed during pre-harvest, storage and processing periods. Once consumed, aflatoxins (AFs) accumulate in tissues, causing illnesses in animals and humans. Most human exposure to AF seems to be a result of consumption of contaminated plant and animal products. The policy of blending and dilution of grain containing higher levels of aflatoxins with uncontaminated grains for use in animal feed implicitly assumes that the deleterious effects of low levels of the toxins are linearly correlated to concentration. This assumption may not be justified, since it involves extrapolation of these nontoxic levels in feed, which are not of further concern. To develop a better understanding of the significance of low dose effects, in the present study, we developed quantitative methods for the detection of biologically active aflatoxin B₁ (AFB1) in Vero cells by two independent assays: the green fluorescent protein (GFP) assay, as a measure of protein synthesis by the cells, and the microculture tetrazolium (MTT) assay, as a measure of cell viability. The results demonstrate a non-linear dose-response relationship at the cellular level. AFB1 at low concentrations has an opposite biological effect to higher doses that inhibit protein synthesis. Additional studies showed that heat does not affect the stability of AFB1 in milk and that the Vero cell model can be used to determine the presence of bioactive AFB1 in spiked beef, lamb and turkey meat. The implication of the results for the cumulative effects of low amounts of AFB1 in numerous foods is discussed. PMID:23949006

  15. Preliminary investigation fo the non-linear response of image intensifiers used for gamma-ray imaging

    NASA Astrophysics Data System (ADS)

    Fastje, David; Barber, H. Bradford; Bora, Vaibhav; Lemieux, Daniel; Miller, Brian; Grim, Gary P.

    2013-09-01

    Image intensifiers combined with columnar scintillators have found application in x-ray and gamma-ray, biomedical imaging and other fields. In scintillator imaging, hundreds or thousands of optical photons can illuminate the faceplate of the image intensifier in a small area, essentially simultaneously. This is a situation not found in the typical design application for an image intensifier, night vision or low-light-level imaging. Microchannel plates (MCPs) are known to exhibit gain saturation that could result in non-linear signal response in scintillator imaging, limiting quantitative measurement capabilities. A calibrated LED photon source was developed that can provide a known average number of photons per unit area in a small spot size, similar to that seen due to a gamma-ray interaction in a BazookaSPECT imager. A BazookaSPECT imager is composed of a columnar scintillator and an image intensifier, with output light optically imaged onto a CCD camera. The calibrated source was used to investigate gain-saturation effects for two Proxivision, GmbH image intensifiers, a single-stage BV 2583 EZ and a two stage BV 2583 QZ-V 100N in a BazookaSPECT imaging configuration. No gain saturation was found for the single-stage image intensifier up to more than 100 optical photons per microchannel, but significant gain-saturation non-linearities were measured in the two-stage image intensifier at high gains for >12 optical photons per microchannel. Implications for scintillator imaging using such systems are discussed.

  16. Non-Linear Relationships between Aflatoxin B1 Levels and the Biological Response of Monkey Kidney Vero Cells

    PubMed Central

    Rasooly, Reuven; Hernlem, Bradley; He, Xiaohua; Friedman, Mendel

    2013-01-01

    Aflatoxin-producing fungi contaminate food and feed during pre-harvest, storage and processing periods. Once consumed, aflatoxins (AFs) accumulate in tissues, causing illnesses in animals and humans. Most human exposure to AF seems to be a result of consumption of contaminated plant and animal products. The policy of blending and dilution of grain containing higher levels of aflatoxins with uncontaminated grains for use in animal feed implicitly assumes that the deleterious effects of low levels of the toxins are linearly correlated to concentration. This assumption may not be justified, since it involves extrapolation of these nontoxic levels in feed, which are not of further concern. To develop a better understanding of the significance of low dose effects, in the present study, we developed quantitative methods for the detection of biologically active aflatoxin B1 (AFB1) in Vero cells by two independent assays: the green fluorescent protein (GFP) assay, as a measure of protein synthesis by the cells, and the microculture tetrazolium (MTT) assay, as a measure of cell viability. The results demonstrate a non-linear dose-response relationship at the cellular level. AFB1 at low concentrations has an opposite biological effect to higher doses that inhibit protein synthesis. Additional studies showed that heat does not affect the stability of AFB1 in milk and that the Vero cell model can be used to determine the presence of bioactive AFB1 in spiked beef, lamb and turkey meat. The implication of the results for the cumulative effects of low amounts of AFB1 in numerous foods is discussed. PMID:23949006

  17. Transient Earth system responses to cumulative carbon dioxide emissions: linearities, uncertainties, and probabilities in an observation-constrained model ensemble

    NASA Astrophysics Data System (ADS)

    Steinacher, M.; Joos, F.

    2016-02-01

    Information on the relationship between cumulative fossil CO2 emissions and multiple climate targets is essential to design emission mitigation and climate adaptation strategies. In this study, the transient response of a climate or environmental variable per trillion tonnes of CO2 emissions, termed TRE, is quantified for a set of impact-relevant climate variables and from a large set of multi-forcing scenarios extended to year 2300 towards stabilization. An ˜ 1000-member ensemble of the Bern3D-LPJ carbon-climate model is applied and model outcomes are constrained by 26 physical and biogeochemical observational data sets in a Bayesian, Monte Carlo-type framework. Uncertainties in TRE estimates include both scenario uncertainty and model response uncertainty. Cumulative fossil emissions of 1000 Gt C result in a global mean surface air temperature change of 1.9 °C (68 % confidence interval (c.i.): 1.3 to 2.7 °C), a decrease in surface ocean pH of 0.19 (0.18 to 0.22), and a steric sea level rise of 20 cm (13 to 27 cm until 2300). Linearity between cumulative emissions and transient response is high for pH and reasonably high for surface air and sea surface temperatures, but less pronounced for changes in Atlantic meridional overturning, Southern Ocean and tropical surface water saturation with respect to biogenic structures of calcium carbonate, and carbon stocks in soils. The constrained model ensemble is also applied to determine the response to a pulse-like emission and in idealized CO2-only simulations. The transient climate response is constrained, primarily by long-term ocean heat observations, to 1.7 °C (68 % c.i.: 1.3 to 2.2 °C) and the equilibrium climate sensitivity to 2.9 °C (2.0 to 4.2 °C). This is consistent with results by CMIP5 models but inconsistent with recent studies that relied on short-term air temperature data affected by natural climate variability.

  18. Strength function under the absorbing boundary condition

    NASA Astrophysics Data System (ADS)

    Iwasaki, M.; Otani, R.; Ito, M.

    2014-12-01

    The strength function of the linear response by the external field is calculated in the formalism of the absorbing boundary condition (ABC). The dipole excitation of a schematic two-body system is treated in the present study. The extended completeness relation, which is assumed on the analogy of the formulation in the complex scaling method (CSM), is applied to the calculation of the strength function. The calculation of the strength function is successful in the present formalism and hence, the extended completeness relation seems to work well in the ABC formalism. The contributions from the resonance and the non-resonant continuum is also analyzed according to the decomposition of the energy levels in the extended completeness relation.

  19. The structure, bond strength and apatite-inducing ability of micro-arc oxidized tantalum and their response to annealing

    NASA Astrophysics Data System (ADS)

    Wang, Cuicui; Wang, Feng; Han, Yong

    2016-01-01

    In this study, the tantalum oxide coatings were formed on pure tantalum (Ta) by micro-arc oxidation (MAO) in electrolytic solutions of calcium acetate and β-glycerophosphate disodium, and the effect of the applied voltage on the microstructure and bond strength of the MAO coatings was systematically investigated. The effect of annealing treatment on the microstructure, bond strength and apatite-inducing ability of the MAO coatings formed at 350 and 450 V was also studied. The study revealed that during the preparation of tantalum oxide coatings on Ta substrate by MAO, the applied voltage considerably affected the phase components, morphologies and bond strength of the coatings, but had little effect on surface chemical species. After annealing treatment, newly formed CaTa4O11 phase mainly contributed to the much more stronger apatite-inducing ability of the annealed tantalum oxide coatings than those that were not annealed. The better apatite-inducing ability of the MAO coatings formed at 450 V compared to those formed at 350 V was attributed to the less amorphous phase and more crystalline phase as well as more Ca and P contained in the MAO coatings with increasing the applied voltage.

  20. Analysis of responsive characteristics of ionic-strength-sensitive hydrogel with consideration of effect of equilibrium constant by a chemo-electro-mechanical model.

    PubMed

    Li, Hua; Lai, Fukun; Luo, Rongmo

    2009-11-17

    A multiphysics model is presented in this paper for analysis of the influence of various equilibrium constants on the smart hydrogel responsive to the ionic strength of environmental solution, and termed the multieffect-coupling ionic-strength stimulus (MECis) model. The model is characterized by a set of partial differential governing equations by consideration of the mass and momentum conservations of the system and coupled chemical, electrical, and mechanical multienergy domains. The Nernst-Planck equations are derived by the mass conservation of the ionic species in both the interstitial fluid of the hydrogel and the surrounding solution. The binding reaction between the fixed charge groups of the hydrogel and the mobile ions in the solution is described by the fixed charge equation, which is based on the Langmuir monolayer theory. As an important effect for the binding reaction, the equilibrium constant is incorporated into the fixed charge equation. The kinetics of the hydrogel swelling/deswelling is illustrated by the mechanical equation, based on the law of momentum conservation for the solid polymeric networks matrix within the hydrogel. The MECis model is examined by comparison of the numerical simulations and experiments from open literature. The analysis of the influence of different equilibrium constants on the responsive characteristics of the ionic-strength-sensitive hydrogel is carried out with detailed discussion. PMID:19678621

  1. Identification of combined action types in experiments with two toxicants: a response surface linear model with a cross term.

    PubMed

    Panov, Vladimir G; Varaksin, Anatoly N

    2016-02-01

    Within the framework of the response surface linear model with a cross term, i.e. a model of the type Y(x1, x2) = b0 + b1x1 + b2x2 + b12x1x2 (hyperbolic paraboloid), a complete solution of identification of combined action types of two toxicants x1 and x2 is presented. It is shown that the type of combined effect in this model is determined by two factors: the direction in which the toxicants act (unidirectional or oppositely directed), and the position of the saddle point S of a hyperbolic paraboloid. For unidirectional actions of toxicants, already-known ways to identify the type of combined effect (including a shape of the isobole: concave-up or concave-down) provided identical and unambiguous answers regarding the type of combined effect (antagonism or synergism). For oppositely directed actions of toxicants, the shape of the isobole (concave-up or concave-down) did not allow us to determine the type of combined action type unambiguously. We show that in both cases (unidirectional or oppositely directed actions of toxicants) the signs of the model coefficients b1, b2 and b12, in conjunction with the coordinates of the saddle point S help unambiguously identify the type of combined action by comparing the observed effect with the zero interaction response surface. An atlas of all possibly combined action types for two toxicants for the hyperbolic paraboloid model was created. Applications of the developed formalism to experimental data are provided. PMID:26894918

  2. Linear superposition of retinal action potentials to predict electrical flicker responses from the eye of the wolf spider, Lycosa baltimoriana (Keyserling).

    PubMed

    DE VOE, R D

    1962-09-01

    Retinal action potentials were elicited from light-adapted posterior median ocelli of the wolf spider Lycosa baltimoriana (Keyserling) by rectangular shaped photic stimuli representing 8 per cent increments or decrements of the background illumination. Responses to trains of recurrent incremental or decremental flashes were successfully predicted by graphical linear superposition of a single flash response, which was repeatedly drawn and added to itself at intervals equal to the period of the intermittent stimulus. Incremental stimuli inverted to form decremental stimuli elicited responses which were also inverted. Responses to single incremental flashes were successfully predicted by linear superposition of the response to one incremental step stimulus, which was inverted and added to itself at an interval equal to the duration of the flash. PMID:13884591

  3. Insulin signaling in skeletal muscle of HIV-infected patients in response to endurance and strength training

    PubMed Central

    Broholm, Christa; Mathur, Neha; Hvid, Thine; Grøndahl, Thomas Sahl; Frøsig, Christian; Pedersen, Bente Klarlund; Lindegaard, Birgitte

    2013-01-01

    Human immunodeficiency virus (HIV)-infected patients with lipodystrophy have decreased insulin-stimulated glucose uptake. Both endurance and resistance training improve insulin-stimulated glucose uptake in skeletal muscle of HIV-infected patients, but the mechanisms are unknown. This study aims to identify the molecular pathways involved in the beneficial effects of training on insulin-stimulated glucose uptake in skeletal muscle of HIV-infected patients. Eighteen sedentary male HIV-infected patients underwent a 16 week supervised training intervention, either resistance or strength training. Euglycemic–hyperinsulinemic clamps with muscle biopsies were performed before and after the training interventions. Fifteen age- and body mass index (BMI)-matched HIV-negative men served as a sedentary baseline group. Phosphorylation and total protein expression of insulin signaling molecules as well as glycogen synthase (GS) activity were analyzed in skeletal muscle biopsies in relation to insulin stimulation before and after training. HIV-infected patients had reduced basal and insulin-stimulated GS activity (%fractional velocity, [FV]) as well as impaired insulin-stimulated Aktthr308 phosphorylation. Despite improving insulin-stimulated glucose uptake, neither endurance nor strength training changed the phosphorylation status of insulin signaling proteins or affected GS activity. However; endurance training markedly increased the total Akt protein expression, and both training modalities increased hexokinase II (HKII) protein. HIV-infected patients with lipodystrophy have decreased insulin-stimulated glucose uptake in skeletal muscle and defects in insulin-stimulated phosphorylation of Aktthr308. Endurance and strength training increase insulin-stimulated glucose uptake in these patients, and the muscular training adaptation is associated with improved capacity for phosphorylation of glucose by HKII, rather than changes in markers of insulin signaling to glucose uptake or

  4. Number-conserving linear-response study of low-velocity ion stopping in a collisional magnetized classical plasma

    SciTech Connect

    Nersisyan, Hrachya B.; Deutsch, Claude; Das, Amal K.

    2011-03-15

    The results of a theoretical investigation of the low-velocity stopping power of ions in a magnetized collisional and classical plasma are reported. The stopping power for an ion is calculated through the linear-response (LR) theory. The collisions, which lead to a damping of the excitations in the plasma, are taken into account through a number-conserving relaxation time approximation in the LR function. In order to highlight the effects of collisions and magnetic field, we present a comparison of our analytical and numerical results obtained for nonzero damping or magnetic field with those for vanishing damping or magnetic field. It is shown that the collisions remove the anomalous friction obtained previously [Nersisyan et al., Phys. Rev. E 61, 7022 (2000)] for the collisionless magnetized plasmas at low ion velocities. One of the major objectives of this paper is to compare and to contrast our theoretical results with those obtained through a diffusion coefficient formulation based on the Dufty-Berkovsky relation evaluated for a magnetized one-component plasma modeled with target ions and electrons.

  5. Strength Testing.

    ERIC Educational Resources Information Center

    Londeree, Ben R.

    1981-01-01

    Postural deviations resulting from strength and flexibility imbalances include swayback, scoliosis, and rounded shoulders. Screening tests are one method for identifying strength problems. Tests for the evaluation of postural problems are described, and exercises are presented for the strengthening of muscles. (JN)

  6. Familiarity and Recollection Produce Distinct Eye Movement, Pupil and Medial Temporal Lobe Responses when Memory Strength Is Matched

    ERIC Educational Resources Information Center

    Kafkas, Alexandros; Montaldi, Daniela

    2012-01-01

    Two experiments explored eye measures (fixations and pupil response patterns) and brain responses (BOLD) accompanying the recognition of visual object stimuli based on familiarity and recollection. In both experiments, the use of a modified remember/know procedure led to high confidence and matched accuracy levels characterising strong familiarity…

  7. Europium- and lithium-doped yttrium oxide nanocrystals that provide a linear emissive response with X-ray radiation exposure†

    PubMed Central

    Stanton, Ian N.; Belley, Matthew D.; Nguyen, Giao; Rodrigues, Anna; Li, Yifan; Kirsch, David G.; Yoshizumi, Terry T.

    2015-01-01

    Eu- and Li-doped yttrium oxide nanocrystals [Y2−xO3; Eux, Liy], in which Eu and Li dopant ion concentrations were systematically varied, were developed and characterized (TEM, XRD, Raman spectroscopic, UV-excited lifetime, and ICP-AES data) in order to define the most emissive compositions under specific X-ray excitation conditions. These optimized [Y2−xO3; Eux, Liy] compositions display scintillation responses that: (i) correlate linearly with incident radiation exposure at X-ray energies spanning from 40–220 kVp, and (ii) manifest no evidence of scintillation intensity saturation at the highest evaluated radiation exposures [up to 4 Roentgen per second]. For the most emissive nanoscale scintillator composition, [Y1.9O3; Eu0.1, Li0.16], excitation energies of 40, 120, and 220 kVp were chosen to probe the dependence of the integrated emission intensity upon X-ray exposure-rate in energy regimes having different mass-attenuation coefficients and where either the photoelectric or the Compton effect governs the scintillation mechanism. These experiments demonstrate for the first time for that for comparable radiation exposures, when the scintillation mechanism is governed by the photoelectric effect and a comparably larger mass-attenuation coefficient (120 kVp excitation), greater integrated emission intensities are recorded relative to excitation energies where the Compton effect regulates scintillation (220 kVp) in nanoscale [Y2−xO3; Eux] crystals. Nanoscale [Y1.9O3; Eu0.1, Li0.16] (70 ± 20 nm) was further exploited as a detector material in a prototype fiber-optic radiation sensor. The scintillation intensity from the [Y1.9O3; Eu0.1, Li0.16]-modified, 400 μm sized optical fiber tip, recorded using a CCD-photodetector and integrated over the 605–617 nm wavelength domain, was correlated with radiation exposure using a Precision XRAD 225Cx small-animal image guided radiation therapy (IGRT) system. For both 80 and 225 kVp energies, this radio transparent

  8. Europium- and lithium-doped yttrium oxide nanocrystals that provide a linear emissive response with X-ray radiation exposure.

    PubMed

    Stanton, Ian N; Belley, Matthew D; Nguyen, Giao; Rodrigues, Anna; Li, Yifan; Kirsch, David G; Yoshizumi, Terry T; Therien, Michael J

    2014-05-21

    Eu- and Li-doped yttrium oxide nanocrystals [Y2-xO3; Eux, Liy], in which Eu and Li dopant ion concentrations were systematically varied, were developed and characterized (TEM, XRD, Raman spectroscopic, UV-excited lifetime, and ICP-AES data) in order to define the most emissive compositions under specific X-ray excitation conditions. These optimized [Y2-xO3; Eux, Liy] compositions display scintillation responses that: (i) correlate linearly with incident radiation exposure at X-ray energies spanning from 40-220 kVp, and (ii) manifest no evidence of scintillation intensity saturation at the highest evaluated radiation exposures [up to 4 Roentgen per second]. For the most emissive nanoscale scintillator composition, [Y1.9O3; Eu0.1, Li0.16], excitation energies of 40, 120, and 220 kVp were chosen to probe the dependence of the integrated emission intensity upon X-ray exposure-rate in energy regimes having different mass-attenuation coefficients and where either the photoelectric or the Compton effect governs the scintillation mechanism. These experiments demonstrate for the first time for that for comparable radiation exposures, when the scintillation mechanism is governed by the photoelectric effect and a comparably larger mass-attenuation coefficient (120 kVp excitation), greater integrated emission intensities are recorded relative to excitation energies where the Compton effect regulates scintillation (220 kVp) in nanoscale [Y2-xO3; Eux] crystals. Nanoscale [Y1.9O3; Eu0.1, Li0.16] (70 ± 20 nm) was further exploited as a detector material in a prototype fiber-optic radiation sensor. The scintillation intensity from the [Y1.9O3; Eu0.1, Li0.16]-modified, 400 μm sized optical fiber tip, recorded using a CCD-photodetector and integrated over the 605-617 nm wavelength domain, was correlated with radiation exposure using a Precision XRAD 225Cx small-animal image guided radiation therapy (IGRT) system. For both 80 and 225 kVp energies, this radiotransparent device

  9. School density affects the strength of collective avoidance responses in wild-caught Atlantic herring Clupea harengus: a simulated predator encounter experiment.

    PubMed

    Rieucau, G; De Robertis, A; Boswell, K M; Handegard, N O

    2014-11-01

    An experimental study in a semi-controlled environment was conducted to examine whether school density in wild-caught Atlantic herring Clupea harengus affects the strength of their collective escape behaviours. Using acoustics, the anti-predator diving responses of C. harengus in two schools that differed in density were quantified by exposing them to a simulated threat. Due to logistical restrictions, the first fish was tested in a low-density school condition (four trials; packing density = 1.5 fish m(-3); c. 6000 fish) followed by fish in a high-density school condition (five trials; packing density = 16 fish m(-3); c. 60 000 fish). The C. harengus in a high-density school exhibited stronger collective diving avoidance responses to the simulated predators than fish in the lower-density school. The findings suggest that the density (and thus the internal organization) of a fish school affects the strength of collective anti-predatory responses, and the extent to which information about predation risk is transferred through the C. harengus school. Therefore, the results challenge the common notion that information transfer within animal groups may not depend on group size and density. PMID:25243659

  10. Smart Macroporous IPN Hydrogels Responsive to pH, Temperature, and Ionic Strength: Synthesis, Characterization, and Evaluation of Controlled Release of Drugs.

    PubMed

    Dragan, Ecaterina Stela; Cocarta, Ana Irina

    2016-05-18

    Fast responsive macroporous interpenetrating polymer network (IPN) hydrogels were fabricated in this work by a sequential strategy, as follows: the first network, consisting of poly(N,N-dimethylaminoethyl methacrylate) (PDMAEM) cross-linked with N,N'-methylenebisacrylamide (BAAm), was prepared at -18 °C, the second network consisting of poly(acrylamide) (PAAm) cross-linked with BAAm, being also generated by cryogelation technique. Both single network cryogels (SNC) and IPN cryogels were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, and water uptake. The presence of weak polycation PDMAEM endows the SNCs and the IPNs cryogels with sensitivity at numerous external stimuli such as pH, temperature, ionic strength, electric field, among which the first three were investigated in this work. It was found that the initial concentration of monomers in both networks was the key factor in tailoring the properties of IPN cryogels such as swelling kinetics, equilibrium water content (EWC), phase transition temperature and the response at ionic strength. The pore size increased after the formation of the second network, the swelling kinetics in pure water being comparable with that of the SNC, phase transition temperature being situated in the range 35-36 °C for IPN cryogels. The water uptake at equilibrium (WUeq) abruptly increased at pH < 3.0 in the case of SNCs, whereas the response of IPN cryogels at the decrease of pH from 6.0 to 1.0 was strongly dependent on the gel structure, the values of WUeq being lower at a higher concentration of DMAEM in the first network, the monomer concentration in the second network being about 10 wt %. The pH response was very much diminished when the monomer concentration was high in both networks (15 wt % in the first network, and 21 wt % in the second network). The increase of the ionic strength from 0 up to 0.3 M NaCl led to the decrease of the WUeq, for all cryogels, the level of dehydration

  11. Aging enhances serum cytokine response but not task-induced grip strength declines in a rat model of work-related musculoskeletal disorders

    PubMed Central

    2011-01-01

    Background We previously reported early tissue injury, increased serum and tissue inflammatory cytokines and decreased grip in young rats performing a moderate demand repetitive task. The tissue cytokine response was transient, the serum response and decreased grip were still evident by 8 weeks. Thus, here, we examined their levels at 12 weeks in young rats. Since aging is known to enhance serum cytokine levels, we also examined aged rats. Methods Aged and young rats, 14 mo and 2.5 mo of age at onset, respectfully, were trained 15 min/day for 4 weeks, and then performed a high repetition, low force (HRLF) reaching and grasping task for 2 hours/day, for 12 weeks. Serum was assayed for 6 cytokines: IL-1alpha, IL-6, IFN-gamma, TNF-alpha, MIP2, IL-10. Grip strength was assayed, since we have previously shown an inverse correlation between grip strength and serum inflammatory cytokines. Results were compared to naïve (grip), and normal, food-restricted and trained-only controls. Results Serum cytokines were higher overall in aged than young rats, with increases in IL-1alpha, IFN-gamma and IL-6 in aged Trained and 12-week HRLF rats, compared to young Trained and HRLF rats (p < 0.05 and p < 0.001, respectively, each). IL-6 was also increased in aged 12-week HRLF versus aged normal controls (p < 0.05). Serum IFN-gamma and MIP2 levels were also increased in young 6-week HRLF rats, but no cytokines were above baseline levels in young 12-week HRLF rats. Grip strength declined in both young and aged 12-week HRLF rats, compared to naïve and normal controls (p < 0.05 each), but these declines correlated only with IL-6 levels in aged rats (r = -0.39). Conclusion Aging enhanced a serum cytokine response in general, a response that was even greater with repetitive task performance. Grip strength was adversely affected by task performance in both age groups, but was apparently influenced by factors other than serum cytokine levels in young rats. PMID:21447183

  12. Strength and Mechanical Response of NaCl Using In-Situ Transmission Electron Microscopy Compression and Nanoindentation.

    PubMed

    Lin, Kai-Peng; Fang, Te-Hua; Kang, Sho-Hui

    2016-03-01

    Strength and mechanical properties of single crystal sodium chloride (NaCl) are characterized. Critical deformation variations of NaCl pillared structures and films are estimated using in-situ transmission electron microscope (TEM) compression tests and nanoindentation experiments. Young's modulus and contact stiffness of NaCl pillars with diameters of 300 to 500 nm were 10.4-23.9 GPa, and 159-230 N/m, respectively. The nanohardness and Vickers hardness of the NaCl (001) film were 282-596 and 196-260 MPa, respectively. The results could provide useful information for understanding the mechanical properties, contact and local deformation of NaCl pillars and films. PMID:27455676

  13. Responsiveness, Sensitivity, and Minimally Detectable Difference of the Graded and Redefined Assessment of Strength, Sensibility, and Prehension, Version 1.0.

    PubMed

    Kalsi-Ryan, Sukhvinder; Beaton, Dorcas; Ahn, Henry; Askes, Heather; Drew, Brian; Curt, Armin; Popovic, Milos R; Wang, Justin; Verrier, Mary C; Fehlings, Michael G

    2016-02-01

    As spinal cord injury (SCI) trials begin to involve subjects with acute cervical SCI, establishing the property of an upper limb outcome measure to detect change over time is critical for its usefulness in clinical trials. The objectives of this study were to define responsiveness, sensitivity, and minimally detectable difference (MDD) of the Graded Redefined Assessment of Strength, Sensibility, and Prehension (GRASSP). An observational, longitudinal study was conducted. International Standards of Neurological Classification of SCI (ISNCSCI), GRASSP, Capabilities of Upper Extremity Questionnaire (CUE-Q), and Spinal Cord Independence Measure (SCIM) were administered 0-10 days, 1, 3, 6, and 12 months post-injury. Standardized Response Means (SRM) for GRASSP and ISNCSCI measures were calculated. Longitudinal construct validity was calculated using Pearson correlation coefficients. Smallest real difference for all subtests was calculated to define the MDD values for all GRASSP subtests. Longitudinal construct validity demonstrated GRASSP and all external measures to be responsive to neurological change for 1 year post-injury. SRM values for the GRASSP subtests ranged from 0.25 to 0.85 units greater than that for ISNCSCI strength and sensation, SCIM-SS, and CUE-Q. MDD values for GRASSP subtests ranged from 2-5 points. GRASSP demonstrates good responsiveness and excellent sensitivity that is superior to ISNCSCI and SCIM III. MDD values are useful in the evaluation of interventions in both clinical and research settings. The responsiveness and sensitivity of GRASSP make it a valuable condition-specific measure in tetraplegia, where changes in upper limb neurological and functional outcomes are essential for evaluating the efficacy of interventions. PMID:26560017

  14. Characterization of the Earwig, Doru lineare, as a Predator of Larvae of the Fall Armyworm, Spodoptera frugiperda: A Functional Response Study

    PubMed Central

    Sueldo, Mabel Romero; Bruzzone, Octavio A.; Virla, Eduardo G.

    2010-01-01

    Spodoptera frugiperda Smith (Lepidoptera: Noctuidae) is considered as the most important pest of maize in almost all tropical America. In Argentina, the earwig Doru lineare Eschscholtz (Dermaptera: Forficulidae) has been observed preying on S. frugiperda egg masses in corn crops, but no data about its potential role as a biocontrol agent of this pest have been provided. The predation efficiency of D. lineare on newly emerged S. frugiperda larva was evaluated through a laboratory functional response study. D. lineare showed type II functional response to S. frugiperda larval density, and disc equation estimations of searching efficiency and handling time were (a) = 0.374 and (t) = 182.9 s, respectively. Earwig satiation occurred at 39.4 S. frugiperda larvae. PMID:20575739

  15. Responses and toxin bioaccumulation in duckweed (Lemna minor) under microcystin-LR, linear alkybenzene sulfonate and their joint stress.

    PubMed

    Wang, Zhi; Xiao, Bangding; Song, Lirong; Wang, Chunbo; Zhang, Junqian

    2012-08-30

    Microcystin-LR (MCLR) and linear alkylbenzene sulfonate (LAS) are commonly found in eutrophic lakes due to toxic cyanobacterial blooms and exogenous organic compounds pollution. However, the ecotoxicological risk of their combination in the aquatic environment is unknown. This study investigated the effects of MCLR, LAS and their mixture on duckweed (Lemna minor) growth and physiological responses. MCLR accumulation in duckweed, with or without LAS, was also examined. Growth of duckweed and chlorophyll-a contents were significantly reduced after 8d exposure to high concentrations of MCLR (≥ 3 μg/ml), LAS (≥ 20 μg/ml) and their mixture (≥ 3+10 μg/ml). After 2d of exposure, superoxide dismutase activity and glutathione content in duckweed increased with increasing concentrations of MCLR, LAS and their mixture, with a significant difference observable after 8d of exposure. When MCLR and LAS concentrations were lower (≤ 0.1+1 μg/ml), the interaction of them is synergistic, but when the concentrations were higher, the synergy was weak. MC accumulation was much higher at 2d than at 8d when duckweed was exposed to lower concentrations of MCLR (≤ 3 μg/ml) or MCLR-LAS (≤ 3+10 μg/ml). Furthermore, LAS significantly enhanced the accumulation of MCLR in duckweed, even with LAS concentrations as low as 0.3 μg/ml (environmental concentration), indicating that greater negative ecological risks and higher MCLR phytoremediation potentials of duckweed might occur in MCLR-LAS-concomitant water. PMID:22763229

  16. Linear and nonlinear characteristics of the runoff response to regional climate factors in the Qira River basin, Xinjiang, Northwest China

    PubMed Central

    Xue, Jie

    2015-01-01

    The inland river watersheds of arid Northwest China represent an example of how, in recent times, climatic warming has increased the complexity of Earth’s hydrological processes. In the present study, the linear and nonlinear characteristics of the runoff response to temperature and precipitation were investigated in the Qira River basin, located on the northern slope of the Kunlun Mountains. The results showed that average temperature on annual and seasonal scales has displayed a significantly increasing trend, but this has not been reflected in accumulated precipitation and runoff. Using path analysis, a positive link between precipitation and runoff was found both annually and in the summer season. Conversely, it was found that the impact of temperature on runoff has been negative since the 1960s, attributable to higher evaporation and infiltration in the Qira River basin. Over the past 50 years, abrupt changes in annual temperature, precipitation and runoff occurred in 1997, 1987 and 1995, respectively. Combined with analysis using the correlation dimension method, it was found that the temperature, precipitation and runoff, both annually and seasonally, possessed chaotic dynamic characteristics, implying that complex hydro-climatic processes must be introduced into other variables within models to describe the dynamics. In addition, as determined via rescaled range analysis, a consistent annual and seasonal decreasing trend in runoff under increasing temperature and precipitation conditions in the future should be taken into account. This work may provide a theoretical perspective that can be applied to the proper use and management of oasis water resources in the lower reaches of river basins like that of the Qira River. PMID:26244113

  17. Nested generalized linear mixed model with ordinal response: Simulation and application on poverty data in Java Island

    NASA Astrophysics Data System (ADS)

    Widyaningsih, Yekti; Saefuddin, Asep; Notodiputro, Khairil A.; Wigena, Aji H.

    2012-05-01

    The objective of this research is to build a nested generalized linear mixed model using an ordinal response variable with some covariates. There are three main jobs in this paper, i.e. parameters estimation procedure, simulation, and implementation of the model for the real data. At the part of parameters estimation procedure, concepts of threshold, nested random effect, and computational algorithm are described. The simulations data are built for 3 conditions to know the effect of different parameter values of random effect distributions. The last job is the implementation of the model for the data about poverty in 9 districts of Java Island. The districts are Kuningan, Karawang, and Majalengka chose randomly in West Java; Temanggung, Boyolali, and Cilacap from Central Java; and Blitar, Ngawi, and Jember from East Java. The covariates in this model are province, number of bad nutrition cases, number of farmer families, and number of health personnel. In this modeling, all covariates are grouped as ordinal scale. Unit observation in this research is sub-district (kecamatan) nested in district, and districts (kabupaten) are nested in province. For the result of simulation, ARB (Absolute Relative Bias) and RRMSE (Relative Root of mean square errors) scale is used. They show that prov parameters have the highest bias, but more stable RRMSE in all conditions. The simulation design needs to be improved by adding other condition, such as higher correlation between covariates. Furthermore, as the result of the model implementation for the data, only number of farmer family and number of medical personnel have significant contributions to the level of poverty in Central Java and East Java province, and only district 2 (Karawang) of province 1 (West Java) has different random effect from the others. The source of the data is PODES (Potensi Desa) 2008 from BPS (Badan Pusat Statistik).

  18. Non-linear response of the Golo River system, Corsica, France, to Late Quaternary climatic and sea level variations

    NASA Astrophysics Data System (ADS)

    Forzoni, Andrea; Storms, J. E. A.; Reimann, Tony; Moreau, Julien; Jouet, Gwenael

    2015-08-01

    Disentangling the impact of climatic and sea level variations on fluvio-deltaic stratigraphy is still an outstanding question in sedimentary geology and geomorphology. We used the Golo River system, Corsica, France, as a natural laboratory to investigate the impact of Late Quaternary climate and sea level oscillations on sediment flux from a catchment and on fluvio-deltaic stratigraphy. We applied a numerical model, PaCMod, which calculates catchment sediment production and transport and compared modeling output to the sedimentary record of the Golo alluvial-coastal plain, whose chronology was reinterpreted using new optical stimulated luminescence (OSL) ages on feldspars. Our modeling, OSL ages, and geomorphological results indicate that the two main phases of braidplain development in the Golo alluvial-coastal plain occurred during the cold-dry phases of MIS5 and during the late MIS4-early MIS3, as a consequence of high catchment erosion rates and low water discharge. Incision and sediment reworking occurred during sea level low stand periods (MIS4 and late MIS3-MIS2). High sediment flux pulses from the catchment outlet were generated during the Lateglacial and early Holocene, as a result of the release of sediments previously stored within the catchment and enhanced snowmelt. Our results suggest a non-linear response of the Golo River system to climatic and eustatic changes, caused by sediment storage within the catchment and geomorphological thresholds. This indicates that a direct comparison between palaeo-climate and stratigraphy is not possible without considering catchment sediment storage and sediment transport delays out of the catchment.

  19. Kernel-Smoothing Estimation of Item Characteristic Functions for Continuous Personality Items: An Empirical Comparison with the Linear and the Continuous-Response Models

    ERIC Educational Resources Information Center

    Ferrando, Pere J.

    2004-01-01

    This study used kernel-smoothing procedures to estimate the item characteristic functions (ICFs) of a set of continuous personality items. The nonparametric ICFs were compared with the ICFs estimated (a) by the linear model and (b) by Samejima's continuous-response model. The study was based on a conditioned approach and used an error-in-variables…

  20. Non-Linear Responses to Precipitation and Shrub Encroachment in Semi-Arid Grassland: Isotopes and CO2 Fluxes Reveal Soil Microsite Alteration as Explanation 1875

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Responses of net ecosystem production (NEP) to growing season rainfall amount is non-linear over a gradient of woody-plant encroachment in semi-arid riparian grassland. NEP is positively correlated with growing season precipitation amount in the grassland, but is negatively correlated with precipita...

  1. High dynamic range measurement of spectral responsivity and linearity of a radiation thermometer using a super-continuum laser and LEDs

    SciTech Connect

    Yoo, Y. S.; Lee, D. H.; Park, C. W.; Park, S. N.

    2013-09-11

    To realize the temperature scale above the freezing point of silver according to the definition of ITS-90, the dynamic range of the spectral responsivity is one of the most important factors which limit its uncertainty. When the residual spectral response at both side bands of a spectral band is not negligible, a significant uncertainty can be caused by a low dynamic range of the spectral responsivity measurement. In general, incandescent lamps are used to measure the spectral responsivity and the linearity. The dynamic range of the spectral responsivity measurement is often limited by a trade-off with the desired spectral resolution, which is less than 6 decades. Nonlinearity is another limiting fact of uncertainties of the temperature scale. Tungsten lamps have disadvantage in the nonlinearity measurements in terms of adjustability of radiance level and spectral selectivity. We report spectral responsivity measurements of which the measurable dynamic range is enhanced 50 times after replacing a QTH lamp with a super continuum laser. We also present a spectrally selected linearity measurement over a wide dynamic range using high-brightness light emitting diode arrays to observe a slight saturation of linearity.

  2. High dynamic range measurement of spectral responsivity and linearity of a radiation thermometer using a super-continuum laser and LEDs

    NASA Astrophysics Data System (ADS)

    Yoo, Y. S.; Lee, D. H.; Park, C. W.; Park, S. N.

    2013-09-01

    To realize the temperature scale above the freezing point of silver according to the definition of ITS-90, the dynamic range of the spectral responsivity is one of the most important factors which limit its uncertainty. When the residual spectral response at both side bands of a spectral band is not negligible, a significant uncertainty can be caused by a low dynamic range of the spectral responsivity measurement. In general, incandescent lamps are used to measure the spectral responsivity and the linearity. The dynamic range of the spectral responsivity measurement is often limited by a trade-off with the desired spectral resolution, which is less than 6 decades. Nonlinearity is another limiting fact of uncertainties of the temperature scale. Tungsten lamps have disadvantage in the nonlinearity measurements in terms of adjustability of radiance level and spectral selectivity. We report spectral responsivity measurements of which the measurable dynamic range is enhanced 50 times after replacing a QTH lamp with a super continuum laser. We also present a spectrally selected linearity measurement over a wide dynamic range using high-brightness light emitting diode arrays to observe a slight saturation of linearity.

  3. A study of microstructure, quasi-static response, fatigue, deformation and fracture behavior of high strength alloy steels

    NASA Astrophysics Data System (ADS)

    Kannan, Manigandan

    The history of steel dates back to the 17th century and has been instrumental in the betterment of every aspect of our lives ever since, from the pin that holds the paper together to the Automobile that takes us to our destination steel touches everyone every day. Path breaking improvements in manufacturing techniques, access to advanced machinery and understanding of factors like heat treatment, corrosion resistance have aided in the advancement in the properties of steel in the last few years. In this dissertation document, the results of a study aimed at the influence of alloy chemistry, processing and influence of the quasi static and fatigue behavior of seven alloy steels is discussed. The microstructure of the as-received steel was examined and characterized for the nature and morphology of the grains and the presence of other intrinsic features in the microstructure. The tensile, cyclic fatigue and bending fatigue tests were done on a fully automated closed-loop servo-hydraulic test machine at room temperature. The failed samples of high strength steels were examined in a scanning electron microscope for understanding the fracture behavior, especially the nature of loading be it quasi static, cyclic fatigue or bending fatigue . The quasi static and cyclic fatigue fracture behavior of the steels examined coupled with various factors contributing to failure are briefly discussed in light of the conjoint and mutually interactive influences of intrinsic microstructural effects, nature of loading, and stress (load)-deformation-microstructural interactions.

  4. Europium- and lithium-doped yttrium oxide nanocrystals that provide a linear emissive response with X-ray radiation exposure

    NASA Astrophysics Data System (ADS)

    Stanton, Ian N.; Belley, Matthew D.; Nguyen, Giao; Rodrigues, Anna; Li, Yifan; Kirsch, David G.; Yoshizumi, Terry T.; Therien, Michael J.

    2014-04-01

    Eu- and Li-doped yttrium oxide nanocrystals [Y2-xO3 Eux, Liy], in which Eu and Li dopant ion concentrations were systematically varied, were developed and characterized (TEM, XRD, Raman spectroscopic, UV-excited lifetime, and ICP-AES data) in order to define the most emissive compositions under specific X-ray excitation conditions. These optimized [Y2-xO3 Eux, Liy] compositions display scintillation responses that: (i) correlate linearly with incident radiation exposure at X-ray energies spanning from 40-220 kVp, and (ii) manifest no evidence of scintillation intensity saturation at the highest evaluated radiation exposures [up to 4 Roentgen per second]. For the most emissive nanoscale scintillator composition, [Y1.9O3; Eu0.1, Li0.16], excitation energies of 40, 120, and 220 kVp were chosen to probe the dependence of the integrated emission intensity upon X-ray exposure-rate in energy regimes having different mass-attenuation coefficients and where either the photoelectric or the Compton effect governs the scintillation mechanism. These experiments demonstrate for the first time for that for comparable radiation exposures, when the scintillation mechanism is governed by the photoelectric effect and a comparably larger mass-attenuation coefficient (120 kVp excitation), greater integrated emission intensities are recorded relative to excitation energies where the Compton effect regulates scintillation (220 kVp) in nanoscale [Y2-xO3 Eux] crystals. Nanoscale [Y1.9O3; Eu0.1, Li0.16] (70 +/- 20 nm) was further exploited as a detector material in a prototype fiber-optic radiation sensor. The scintillation intensity from the [Y1.9O3; Eu0.1, Li0.16]-modified, 400 μm sized optical fiber tip, recorded using a CCD-photodetector and integrated over the 605-617 nm wavelength domain, was correlated with radiation exposure using a Precision XRAD 225Cx small-animal image guided radiation therapy (IGRT) system. For both 80 and 225 kVp energies, this radiotransparent device recorded

  5. Ethylene signaling pathway is not linear, however its lateral part is responsible for sensing and signaling of sulfur status in plants

    PubMed Central

    Moniuszko, Grzegorz

    2015-01-01

    A secondary, non-linear, lateral part of ethylene signaling pathway has been anticipated and speculated before. Recently, it has been found that part of the proteomic response of Eruca sativa to silver nitrate (which is an inhibitor of ethylene signaling) is related to sulfur metabolism. Using public Arabidopsis thaliana microarray data, I show that silver nitrate mimics the signal of sulfur starvation at the transcriptome level. This, combined with data mined from literature, indicates that ethylene receptors are localized at the beginning of the response to sulfur deficiency in plants. This means that the non-linear, lateral part of ethylene signaling pathway exists and is responsible for transduction of the signal of sulfur deficit. Here, I present a model of such a pathway and anticipate it to be the starting point for more detailed analysis of the lateral part of ethylene signaling pathway and the exact mechanism of sulfur status sensing in plants. PMID:26340594

  6. Dynamical DMRG study of non-linear optical response in one-dimensional dimerized Hubbard model with nearest neighbor Coulomb interaction and alternating on-site potential

    NASA Astrophysics Data System (ADS)

    Sota, Shigetoshi; Tohyama, Takami; Brazovskii, Serguei

    2012-02-01

    The optical response of organic compounds has been attracting much attention. The one of the reasons is the huge non-linear and ultrafast optical response [K. Yamamoto et. al., J. Phys. Soc. Jpn. 77, 074709(2008)]. In order to investigate such optical properties, we carry out dynamical DMRG calculations to obtain optical responses in the 1/4-filled one-dimensional Hubbard model including the nearest neighbor Coulomb interaction and the alternating electron hopping. The charge gap [S. Nishimoto, M. Takahashi, and Y. Ohta, J. Phys. Soc. Jpn. 69, 1594(2000)] and the bound state [H. Benthien and E. Jeckelmann, Eur. Phys. J. B 44, 287(2005)] in this model have been discussed based on DMRG calculations. In the present study, we introduce an alternating on-site potential giving the polarization in the system into the dimerized Hubbard model, which breaks the reflection symmetry of the system. In this talk, we discuss the obtained linear and the 2nd order non-linear optical susceptibility in order to make a prediction for non-linear optical experiments in the future.

  7. Hedgehog Signaling Strength Is Orchestrated by the mir-310 Cluster of MicroRNAs in Response to Diet

    PubMed Central

    Çiçek, Ibrahim Ömer; Karaca, Samir; Brankatschk, Marko; Eaton, Suzanne; Urlaub, Henning; Shcherbata, Halyna R.

    2016-01-01

    Since the discovery of microRNAs (miRNAs) only two decades ago, they have emerged as an essential component of the gene regulatory machinery. miRNAs have seemingly paradoxical features: a single miRNA is able to simultaneously target hundreds of genes, while its presence is mostly dispensable for animal viability under normal conditions. It is known that miRNAs act as stress response factors; however, it remains challenging to determine their relevant targets and the conditions under which they function. To address this challenge, we propose a new workflow for miRNA function analysis, by which we found that the evolutionarily young miRNA family, the mir-310s (mir-310/mir-311/mir-312/mir-313), are important regulators of Drosophila metabolic status. mir-310s-deficient animals have an abnormal diet-dependent expression profile for numerous diet-sensitive components, accumulate fats, and show various physiological defects. We found that the mir-310s simultaneously repress the production of several regulatory factors (Rab23, DHR96, and Ttk) of the evolutionarily conserved Hedgehog (Hh) pathway to sharpen dietary response. As the mir-310s expression is highly dynamic and nutrition sensitive, this signal relay model helps to explain the molecular mechanism governing quick and robust Hh signaling responses to nutritional changes. Additionally, we discovered a new component of the Hh signaling pathway in Drosophila, Rab23, which cell autonomously regulates Hh ligand trafficking in the germline stem cell niche. How organisms adjust to dietary fluctuations to sustain healthy homeostasis is an intriguing research topic. These data are the first to report that miRNAs can act as executives that transduce nutritional signals to an essential signaling pathway. This suggests miRNAs as plausible therapeutic agents that can be used in combination with low calorie and cholesterol diets to manage quick and precise tissue-specific responses to nutritional changes. PMID:26801178

  8. Relationship between ADP-induced platelet-fibrin clot strength and anti-platelet responsiveness in ticagrelor treated ACS patients

    PubMed Central

    Li, Dan-Dan; Wang, Xu-Yun; Xi, Shao-Zhi; Liu, Jia; Qin, Liu-An; Jing, Jing; Yin, Tong; Chen, Yun-Dai

    2016-01-01

    Background Ticagrelor provides enhanced antiplatelet efficacy but increased risk of bleeding and dyspnea. This study aimed to display the relationship between ADP-induced platelet-fibrin clot strength (MAADP) and clinical outcomes in acute coronary syndrome (ACS) patients treated by ticagrelor. Methods Consecutive Chinese-Han patients with ACS who received maintenance dose of ticagrelor on top of aspirin were recruited. After 5-day ticagrelor maintenance treatment, MAADP measured by thrombelastography (TEG) were recorded for the evaluation of ticagrelor anti-platelet reactivity. Pre-specified cutoffs of MAADP > 47 mm for high on-treatment platelet reactivity (HTPR) and MAADP < 31 mm for low on-treatment platelet reactivity (LTPR) were applied for evaluation. The occurrences of primary ischemic cardiovascular events (including a composite of cardiac death, non-fatal myocardial infarction and stroke), the Thrombolysis in Myocardial Infarction (TIMI) defined bleeding events, and ticagrelor related dyspnea were recorded after a follow-up of three months. Results Overall, 176 ACS patients (Male: 79.55%, Age: 59.91 ± 10.54 years) under ticagrelor maintenance treatment were recruited. The value of MAADP ranged from 4.80% to 72.90% (21.27% ± 12.07% on average), with the distribution higher skewed towards the lower values. Using the pre-specific cutoffs for HTPR and LTPR, seven patients (3.98%) were identified as HTPR and 144 patients (81.82%) as LTPR. After a follow-up of three months in 172 patients, major cardiovascular events occurred in no patient, but TIMI bleeding events in 81 (47.09%) with major bleedings in three patients. All patients with major bleedings were classified as LTPR. Ticagrelor related dyspnea occurred in 31 (18.02%) patients, with 30 (21.28%) classified as LTPR and no one as HTPR (P = 0.02). Conclusions In ticagrelor treated ACS patients, MAADP measured by TEG might be valuable for the prediction of major bleeding and ticagrelor related dyspnea

  9. Acute response of peripheral CCr5 chemoreceptor and NK cells in individuals submitted to a single session of low-intensity strength exercise with blood flow restriction.

    PubMed

    Dorneles, Gilson Pires; Colato, Alana Schraiber; Galvão, Simone Lunelli; Ramis, Thiago Rozales; Ribeiro, Jerri Luiz; Romão, Pedro Roosevelt; Peres, Alessandra

    2016-07-01

    The purpose of this study was to compare the peripheral expression of natural killers and CCR5 in a session of low-intensity strength training with vascular occlusion and in high-intensity training. Young males were randomized into session groups of a high-intensity strength training (HI) and a session group of low-intensity strength training with vascular occlusion (LI-BFR). The exercise session consisted in knee extension and bicep curl in 80% 1RM (HI) and 30% 1RM (LI-BFR) with equalized volumes. Blood collection was made before, immediately after and 24 h after each training session. Immunophenotyping was carried out through CD195+ (CCR5) e CD3-CD16+CD56+ (NK) in peripheral blood and analysed by flow cytometry and presented in frequency (%). Peripheral frequency of NK cells showed no significant difference in LI-BFR group in time effect, while a gradual reduction of NK cells was identified in HI group in before-24 h postexercise and after-24 h postexercise comparison. However, significant differences have been found in relative change of NK cells immediately after exercise between sessions. In addition, HI and LI-BFR groups showed a significant reduction in the cells expressed CCR5 during 24 h postsession compared to the postsession, but CCR5 also differed when comparing before-24 h after session in the HI group. No differences were observed amongst the groups. LIO induced CCR5 response similar to the HI session, while the NK cells remained in similar frequency during the studied moments in LI-BFR, but not in HI group, suggesting that local hypoxia created by the blood flow restriction was able to prevent a change in the frequency of peripheral cells and a possible immunosuppression. PMID:25643617

  10. Allelic variation in two distinct Pseudomonas syringae flagellin epitopes modulates the strength of plant immune responses but not bacterial motility

    PubMed Central

    Clarke, Christopher R.; Chinchilla, Delphine; Hind, Sarah R.; Taguchi, Fumiko; Miki, Ryuji; Ichinose, Yuki; Martin, Gregory B.; Leman, Scotland; Felix, Georg; Vinatzer, Boris A.

    2013-01-01

    Summary The bacterial flagellin (FliC) epitopes flg22 and flgII-28 are microbe-associated molecular patterns (MAMPs). While flg22 is recognized by many plant species via the pattern recognition receptor FLS2, neither the flgII-28 receptor nor the extent of flgII-28 recognition by different plant families is known.Here we tested the significance of flgII-28 as a MAMP and the importance of allelic diversity in flg22 and flgII-28 in plant–pathogen interactions using purified peptides and a Pseudomonas syringae ΔfliC mutant complemented with different fliC alleles.Plant genotype and allelic diversity in flg22 and flgII-28 were found to significantly affect the plant immune response but not bacterial motility. Recognition of flgII-28 is restricted to a number of Solanaceous species. While the flgII-28 peptide does not trigger any immune response in Arabidopsis, mutations in both flg22 and flgII-28 have FLS2-dependent effects on virulence. However, expression of a tomato allele of FLS2 does not confer to Nicotiana benthamiana the ability to detect flgII-28 and tomato plants silenced for FLS2 are not altered in flgII-28 recognition.Therefore, MAMP diversification is an effective pathogen virulence strategy and flgII-28 appears to be perceived by a yet unidentified receptor in the Solanaceae although it has an FLS2-dependent virulence effect in Arabidopsis. PMID:23865782

  11. Achieving a Linear Dose Rate Response in Pulse-Mode Silicon Photodiode Scintillation Detectors Over a Wide Range of Excitations

    NASA Astrophysics Data System (ADS)

    Carroll, Lewis

    2014-02-01

    We are developing a new dose calibrator for nuclear pharmacies that can measure radioactivity in a vial or syringe without handling it directly or removing it from its transport shield “pig”. The calibrator's detector comprises twin opposing scintillating crystals coupled to Si photodiodes and current-amplifying trans-resistance amplifiers. Such a scheme is inherently linear with respect to dose rate over a wide range of radiation intensities, but accuracy at low activity levels may be impaired, beyond the effects of meager photon statistics, by baseline fluctuation and drift inevitably present in high-gain, current-mode photodiode amplifiers. The work described here is motivated by our desire to enhance accuracy at low excitations while maintaining linearity at high excitations. Thus, we are also evaluating a novel “pulse-mode” analog signal processing scheme that employs a linear threshold discriminator to virtually eliminate baseline fluctuation and drift. We will show the results of a side-by-side comparison of current-mode versus pulse-mode signal processing schemes, including perturbing factors affecting linearity and accuracy at very low and very high excitations. Bench testing over a wide range of excitations is done using a Poisson random pulse generator plus an LED light source to simulate excitations up to ˜106 detected counts per second without the need to handle and store large amounts of radioactive material.

  12. Physiological and Psychophysical Responses to Listening to Music during Warm-Up and Circuit-Type Resistance Exercise in Strength Trained Men

    PubMed Central

    Arazi, Hamid; Asadi, Abbas; Purabed, Morteza

    2015-01-01

    The purpose of this study was to assess the effects of listening to music during warm-up and resistance exercise on physiological (heart rate and blood pressure) and psychophysical (rating of perceived exertion) responses in trained athletes. Twelve strength trained male participants performed warm-up and resistance exercise without music (WU+RE without M), warm-up and resistance exercise with music (WU+RE with M), WU with M and RE without M, and WU without M and RE with M, with 48 hours space between sessions. After completing each session, the rating of perceived exertion (RPE) was measured. Also, heart rate (HR), systolic (SBP) and diastolic blood pressure (DBP), mean arterial pressure (MAP), and rate pressure product (RPP) were assessed before, after, and 15, 30, 45, and 60 min after exercise. Results indicated that RPE was higher for WU+RE without M condition in comparison with other conditions. All conditions showed increases in cardiovascular variables after exercise. The responses of HR, SBP, and RPP were higher for WU+RE without M condition. Thus, using music during warm-up and resistance exercise is a legal method for decreasing RPE and cardiovascular responses due to resistance exercise. PMID:26464896

  13. Performance of low-cost few-mode fiber Bragg grating sensor systems: polarization sensitivity and linearity of temperature and strain response.

    PubMed

    Ganziy, D; Rose, B; Bang, O

    2016-08-10

    We evaluate whether 850 nm fiber Bragg grating (FBG) sensor systems can use low-cost 1550 nm telecom fibers; in other words, how detrimental the influence of higher-order modes is to the polarization stability and linearity of the strain and temperature response. We do this by comparing polarization sensitivity of a few-mode 850 nm FBG sensor to a strictly single-mode 850 nm FBG sensor system using 850 nm single-mode fibers. We also compare the performance of the FBGs in strain and temperature tests. Our results show that the polarization stability and the linearity of the response degrade due to the presence of the higher-order modes. We demonstrate that, by using simple coiling of the 1550 nm fiber, one can regain the performance of the few-mode system and make it usable for high precision measurements. PMID:27534455

  14. Association of heart rate variability and inflammatory response in patients with cardiovascular diseases: current strengths and limitations

    PubMed Central

    Papaioannou, Vasilios; Pneumatikos, Ioannis; Maglaveras, Nikos

    2013-01-01

    Many experimental and clinical studies have confirmed a continuous cross-talk between both sympathetic and parasympathetic branches of autonomic nervous system and inflammatory response, in different clinical scenarios. In cardiovascular diseases, inflammation has been proven to play a pivotal role in disease progression, pathogenesis and resolution. A few clinical studies have assessed the possible inter-relation between neuro-autonomic output, estimated with heart rate variability analysis, which is the variability of R-R in the electrocardiogram, and different inflammatory biomarkers, in patients suffering from stable or unstable coronary artery disease (CAD) and heart failure. Moreover, different indices derived from heart rate signals' processing, have been proven to correlate strongly with severity of heart disease and predict final outcome. In this review article we will summarize major findings from different investigators, evaluating neuro-immunological interactions through heart rate variability analysis, in different groups of cardiovascular patients. We suggest that markers originating from variability analysis of heart rate signals seem to be related to inflammatory biomarkers. However, a lot of open questions remain to be addressed, regarding the existence of a true association between heart rate variability and autonomic nervous system output or its adoption for risk stratification and therapeutic monitoring at the bedside. Finally, potential therapeutic implications will be discussed, leading to autonomic balance restoration in relation with inflammatory control. PMID:23847549

  15. Comment on "Scaling regimes and linear/nonlinear responses of last millennium climate to volcanic and solar forcing" by S. Lovejoy and C. Varotsos (2016)

    NASA Astrophysics Data System (ADS)

    Rypdal, Kristoffer; Rypdal, Martin

    2016-07-01

    Lovejoy and Varotsos (2016) (L&V) analyse the temperature response to solar, volcanic, and solar plus volcanic forcing in the Zebiak-Cane (ZC) model, and to solar and solar plus volcanic forcing in the Goddard Institute for Space Studies (GISS) E2-R model. By using a simple wavelet filtering technique they conclude that the responses in the ZC model combine subadditively on timescales from 50 to 1000 years. Nonlinear response on shorter timescales is claimed by analysis of intermittencies in the forcing and the temperature signal for both models. The analysis of additivity in the ZC model suffers from a confusing presentation of results based on an invalid approximation, and from ignoring the effect of internal variability. We present tests without this approximation which are not able to detect nonlinearity in the response, even without accounting for internal variability. We also demonstrate that internal variability will appear as subadditivity if it is not accounted for. L&V's analysis of intermittencies is based on a mathematical result stating that the intermittencies of forcing and response are the same if the response is linear. We argue that there are at least three different factors that may invalidate the application of this result for these data. It is valid only for a power-law response function; it assumes power-law scaling of structure functions of forcing as well as temperature signal; and the internal variability, which is strong at least on the short timescales, will exert an influence on temperature intermittence which is independent of the forcing. We demonstrate by a synthetic example that the differences in intermittencies observed by L&V easily can be accounted for by these effects under the assumption of a linear response. Our conclusion is that the analysis performed by L&V does not present valid evidence for a detectable nonlinear response in the global temperature in these climate models.

  16. Specific absorption rate calculations of magnetite, using a modified linear response model for applications in magnetic hyperthermia

    SciTech Connect

    Hernández S, A. E-mail: meduardo2001@hotmail.com; Cano, M. E. E-mail: meduardo2001@hotmail.com; Torres-Arenas, J.

    2014-11-07

    Currently the absorption of electromagnetic radiation by magnetic nanoparticles is studied for biomedical applications of cancer thermotherapy. Several experiments are conduced following the framework of the Rosensweig model, in order to estimate their specific absorption rate. Nevertheless, this linear approximation involves strong simplifications which constrain their accuracy and validity range. The main aim of this work is to incorporate the deviation of the sphericity assumption in particles shapes, to improve the determination of their specific absorption rate. The correction to the effective particles volume is computed as a measure of the apparent amount of magnetic material, interacting with the external AC magnetic field. Preliminary results using the physical properties of Fe3O4 nanoparticles, exhibit an important correction in their estimated specific absorption rate, as a function of the apparent mean particles radius. Indeed, we have observed using a small deviation (6% of the apparent radius), up to 40% of the predicted specific absorption rate by the Rosensweig linear approximation.

  17. Impact of turbulence on the prediction of linear aeroacoustic interactions: Acoustic response of a turbulent shear layer

    NASA Astrophysics Data System (ADS)

    Gikadi, Jannis; Föller, Stephan; Sattelmayer, Thomas

    2014-12-01

    A powerful model to predict aeroacoustic interactions in the linear regime is the perturbed compressible linearized Navier-Stokes equations. Thus far, the frequently employed derivation suggests that the effect of turbulence and its associated Reynolds stresses is neglected and a quasi-laminar model is employed. In this paper, dynamic perturbation equations are derived incorporating the effect of turbulence and its interaction with perturbation quantities. This is done by employing a triple decomposition of the instantaneous variables. The procedure results in a closure problem for the Reynolds stresses for which a linear eddy-viscosity model is proposed. The resulting perturbation equations are applied to a grazing flow in a T-joint for which strong shear layer instabilities at certain frequencies are experimentally observed. Passive scattering properties of the grazing flow are validated against the experiments performed by Karlsson and Åbom and perturbation equations being quasi-laminar. We find that prediction models must include the effect of Reynolds stresses to capture the aeroacoustic interaction effects correctly. Neglecting its effect naturally results in the over prediction of vortex growth at the frequencies of shear layer instability and therewith in an over prediction of aeroacoustic interactions.

  18. The analysis of the impact response of a thin plate via fractional derivative standard linear solid model

    NASA Astrophysics Data System (ADS)

    Rossikhin, Yury A.; Shitikova, Marina V.

    2011-04-01

    The impact of a rigid body upon an infinite isotropic plate is investigated for the case when the viscoelastic features of the plate represent themselves only in the place of contact and are governed by the standard linear solid model with fractional derivatives. Thus, the problem concerns the shock interaction of the dropping mass and the target, wherein instead of the Hertz contact law the generalized fractional derivative standard linear solid law is employed as a law of interaction. The part of the plate beyond the contact domain is assumed to be elastic, and its behaviour is described by the equations of motion which take rotary inertia and shear deformations into account. It is assumed that transient waves generate in the plate at the moment of impact, the influence of which on the contact domain is considered using the theory of discontinuities. To determine the desired values behind the transverse shear wave front, one-term ray expansions are used, as well as the equations of motion of the falling mass and the contact region. As a result, we are led to a set of two linear differential equations, the solution of which is found analytically by the Laplace transform and by the Euler substitution method. This allows the contact force to be determined as a function of time.

  19. THE SHAPE OF THE TUMOR DOSE RESPONSE CURVES AT LOW PAH EXPOSURES: TESTING THE DEFAULT ASSUMPTION OF LINEARITY

    EPA Science Inventory

    We have previously characterized the administered dose tumor-response, stable DNA adduct-lung tumor response, and K-ras mutation profiles in tumors from strain A/J mice exposed i.p. to 6 PAHs including B[a]P . In summary, we demonstrated that: 1. The relationships between admini...

  20. CT assessment of tumour response to treatment: comparison of linear, cross-sectional and volumetric measures of tumour size.

    PubMed

    Sohaib, S A; Turner, B; Hanson, J A; Farquharson, M; Oliver, R T; Reznek, R H

    2000-11-01

    Changes in cross-sectional area are currently used to assess tumour response to treatment. The aims of this study were to validate a helical CT technique for volume determination using a series of phantoms and to compare tumour responses indicated by one-, two- and three-dimensional measures of tumour size change in patients treated for germ cell cancer or lymphoma. All studies were performed on an IGE HiSpeed Advantage helical CT scanner with an Advantage Windows workstation. Phantom volumes were calculated using volume reconstruction software and compared with reference volumes determined by water displacement. 20 lymph node masses were studied on serial CT scans in 16 patients treated with chemotherapy for germ cell cancer or lymphoma. For each lesion the maximum diameter, maximum cross-sectional area and volume were determined before and after treatment. Tumour response was assessed using the standard World Health Organisation criteria (i.e. changes in cross-sectional area) and the newly proposed unidimensional response evaluation criteria in solid tumour (RECIST). The CT volume measurement error was 1.0-5.1% for regularly shaped phantoms larger than 35 cm3. In the assessment of treatment response there was 90% agreement between one-dimensional (1D) and two-dimensional (2D) measurements and 100% agreement between 2D and three-dimensional (3D) measurements. CT volume measurements are accurate and reproducible, particularly for larger structures. Assessment of tumour response using 1D, 2D and 3D measures had limited influence on the classification of treatment response. However, the impact of CT assessment of tumour response using 1D, 2D and 3D measurements on clinical decisions and patient outcome remains to be determined. PMID:11144795

  1. Implementation of the CCSD-PCM linear response function for frequency dependent properties in solution: Application to polarizability and specific rotation

    NASA Astrophysics Data System (ADS)

    Caricato, Marco

    2013-09-01

    This work reports the first implementation of the frequency dependent linear response (LR) function for the coupled cluster singles and doubles method (CCSD) combined with the polarizable continuum model of solvation for the calculation of frequency dependent properties in solution. In particular, values of static and dynamic polarizability as well as specific rotation are presented for various test molecules. Model calculations of polarizability show that a common approximation used in the definition of the LR function with solvation models recovers over 70% of the full response while maintaining a computational cost comparable to gas phase LR-CCSD. Calculations of specific rotation for three compounds for which gas phase methods predict the wrong sign of the rotation show that accounting for the electronic response of the solvent may be essential to assign the correct absolute configuration of chiral molecules.

  2. Greater Expectations: Using Hierarchical Linear Modeling to Examine Expectancy for Treatment Outcome as a Predictor of Treatment Response

    PubMed Central

    Price, Matthew; Anderson, Page; Henrich, Christopher C.; Rothbaum, Barbara Olasov

    2013-01-01

    A client’s expectation that therapy will be beneficial has long been considered an important factor contributing to therapeutic outcomes, but recent empirical work examining this hypothesis has primarily yielded null findings. The present study examined the contribution of expectancies for treatment outcome to actual treatment outcome from the start of therapy through 12-month follow-up in a clinical sample of individuals (n=72) treated for fear of flying with either in vivo exposure or virtual reality exposure therapy. Using a piecewise hierarchical linear model, outcome expectancy predicted treatment gains made during therapy but not during follow-up. Compared to lower levels, higher expectations for treatment outcome yielded stronger rates of symptom reduction from the beginning to the end of treatment on 2 standardized self-report questionnaires on fear of flying. The analytic approach of the current study is one potential reason that findings contrast with prior literature. The advantages of using hierarchical linear modeling to assess interindividual differences in longitudinal data are discussed. PMID:19027436

  3. Conditioned Reinforcement and Response Strength

    ERIC Educational Resources Information Center

    Shahan, Timothy A.

    2010-01-01

    Stimuli associated with primary reinforcers appear themselves to acquire the capacity to strengthen behavior. This paper reviews research on the strengthening effects of conditioned reinforcers within the context of contemporary quantitative choice theories and behavioral momentum theory. Based partially on the finding that variations in…

  4. Non-linear interaction of elastic waves in rocks

    NASA Astrophysics Data System (ADS)

    Kuvshinov, B. N.; Smit, T. J. H.; Campman, X. H.

    2013-09-01

    We study theoretically the interaction of elastic waves caused by non-linearities of rock elastic moduli, and assess the possibility to use this phenomenon in hydrocarbon exploration and in the analysis of rock samples. In our calculations we use the five-constant model by Gol'dberg. It is shown that the interaction of plane waves in isotropic solids is completely described by five coupling coefficients, which have the same order of magnitude. By considering scattering of compressional waves generated by controlled sources at the Earth surface from a non-linear layer at the subsurface, we conclude that non-linear signals from deep formations are unlikely to be measured with the current level of technology. Our analysis of field tests where non-linear signals were measured, suggests that these signals are generated either in the shallow subsurface or in the vicinity of sources. Non-linear wave interaction might be observable in lab tests with focused ultrasonic beams. In this case, the non-linear response is generated in the secondary parametric array formed by linear beams scattered from inclusions. Although the strength of this response is controlled by non-linearity of the surrounding medium rather than by non-linearity of inclusions, its measurement can help to obtain better images of rock samples.

  5. Linear Accelerators

    NASA Astrophysics Data System (ADS)

    Sidorin, Anatoly

    2010-01-01

    In linear accelerators the particles are accelerated by either electrostatic fields or oscillating Radio Frequency (RF) fields. Accordingly the linear accelerators are divided in three large groups: electrostatic, induction and RF accelerators. Overview of the different types of accelerators is given. Stability of longitudinal and transverse motion in the RF linear accelerators is briefly discussed. The methods of beam focusing in linacs are described.

  6. Linear Accelerators

    SciTech Connect

    Sidorin, Anatoly

    2010-01-05

    In linear accelerators the particles are accelerated by either electrostatic fields or oscillating Radio Frequency (RF) fields. Accordingly the linear accelerators are divided in three large groups: electrostatic, induction and RF accelerators. Overview of the different types of accelerators is given. Stability of longitudinal and transverse motion in the RF linear accelerators is briefly discussed. The methods of beam focusing in linacs are described.

  7. Linearity of β-cell response across the metabolic spectrum and to pharmacology: insights from a graded glucose infusion-based investigation series.

    PubMed

    Shankar, Sudha S; Shankar, R Ravi; Mixson, Lori A; Miller, Deborah L; Chung, Christopher; Cilissen, Caroline; Beals, Chan R; Stoch, S Aubrey; Steinberg, Helmut O; Kelley, David E

    2016-06-01

    The graded glucose infusion (GGI) examines insulin secretory response patterns to continuously escalating glycemia. The current study series sought to more fully appraise its performance characteristics. Key questions addressed were comparison of the GGI to the hyperglycemic clamp (HGC), comparison of insulin secretory response patterns across three volunteer populations known to differ in β-cell function (healthy nonobese, obese nondiabetic, and type 2 diabetic), and characterization of effects of known insulin secretagogues in the context of a GGI. Insulin secretory response was measured as changes in insulin, C-peptide, insulin secretion rates (ISR), and ratio of ISR to prevailing glucose (ISR/G). The GGI correlated well with the HGC (r = 0.72 for ISR/G, P < 0.01). The insulin secretory response in type 2 diabetes (T2DM) was significantly blunted (P < 0.001), whereas it was significantly increased in obese nondiabetics compared with healthy nonobese (P < 0.001). Finally, robust (P < 0.001 over placebo) pharmacological effects were observed in T2DM and healthy nonobese volunteers. Collectively, the findings of this investigational series bolster confidence that the GGI has solid attributes for assessing insulin secretory response to glucose across populations and pharmacology. Notably, the coupling of insulin secretory response to glycemic changes was distinctly and uniformly linear across populations and in the context of insulin secretagogues. (Clinical Trial Registration Nos. NCT00782418, NCT01055340, NCT01373450). PMID:27072496

  8. A computational and experimental study of the linear and nonlinear response of a star polymer melt with a moderate number of unentangled arms

    NASA Astrophysics Data System (ADS)

    Fitzgerald, Barry W.; Lentzakis, Helen; Sakellariou, Georgios; Vlassopoulos, Dimitris; Briels, Wim J.

    2014-09-01

    We present from simulations and experiments results on the linear and nonlinear rheology of a moderate functionality, low molecular weight unentangled polystyrene (PS) star melt. The PS samples were anionically synthesized and close to monodisperse while their moderate functionality ensures that they do not display a pronounced core effect. We employ a highly coarse-grained model known as Responsive Particle Dynamics where each star polymer is approximated as a point particle. The eliminated degrees of freedom are used in the definition of an appropriate free energy as well as describing the transient pair-wise potential between particles that accounts for the viscoelastic response. First we reproduce very satisfactorily the experimental moduli using simulation. We then consider the nonlinear response of the same polymer melts by implementing a start-up shear protocol for a wide range of shear rates. As in experiments, we observe the development of a stress overshoot with increasing shear rate followed by a steady-state shear stress. We also recover the shear-thinning nature of the melt, although we slightly overestimate the extent of shear-thinning with simulations. In addition, we study relaxations upon the removal of shear where we find encouraging agreement between experiments and simulations, a finding that corroborates our agreement for the linear rheology.

  9. Non-linear ecosystem response to long-term changes in precipitation and nitrogen availability in a desert grassland

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our objective was to assess ecosystem responses to long-term changes in precipitation and nitrogen availability in the Northern Chihuahuan Desert (NM, USA), using rainfall manipulations (80% reduced PPT, ambient, 80% increased) and fertilization additions (with and without ammonium nitrate) for five...

  10. Comparison of real-time and linear-response time-dependent density functional theories for molecular chromophores ranging from sparse to high densities of states

    SciTech Connect

    Tussupbayev, Samat; Govind, Niranjan; Lopata, Kenneth A.; Cramer, Christopher J.

    2015-03-10

    We assess the performance of real-time time-dependent density functional theory (RT-TDDFT) for the calculation of absorption spectra of 12 organic dye molecules relevant to photovoltaics and dye sensitized solar cells with 8 exchange-correlation functionals (3 traditional, 3 global hybrids, and 2 range-separated hybrids). We compare the calculations with traditional linear-response (LR) TDDFT. In addition, we demonstrate the efficacy of the RT-TDDFT approach to calculate wide absorption spectra of two large chromophores relevant to photovoltaics and molecular switches.

  11. Rats' performance on variable-interval schedules with a linear feedback loop between response rate and reinforcement rate.

    PubMed Central

    Reed, Phil; Hildebrandt, Tom; DeJongh, Julie; Soh, Mariane

    2003-01-01

    Three experiments investigated whether rats are sensitive to the molar properties of a variable-interval (VI) schedule with a positive relation between response rate and reinforcement rate (i.e., a VI+ schedule). In Experiment 1, rats responded faster on a variable ratio (VR) schedule than on a VI+ schedule with an equivalent feedback function. Reinforced interresponse times (IRTs) were shorter on the VR as compared to the VI+ schedule. In Experiments 2 and 3, there was no systematic difference in response rates maintained by a VI+ schedule and a VI schedule yoked in terms of reinforcement rate. This was found both when the yoking procedure was between-subject (Experiment 2) and within-subject (Experiment 3). Mean reinforced IRTs were similar on both the VI+ and yoked VI schedules, but these values were more variable on the VI+ schedule. These results provided no evidence that rats are sensitive to the feedback function relating response rate to reinforcement rate on a VI+ schedule. PMID:12822684

  12. Anisotropic lattice response induced by a linearly-polarized femtosecond optical pulse excitation in interfacial phase change memory material

    PubMed Central

    Makino, Kotaro; Saito, Yuta; Fons, Paul; Kolobov, Alexander V.; Nakano, Takashi; Tominaga, Junji; Hase, Muneaki

    2016-01-01

    Optical excitation of matter with linearly-polarized femtosecond pulses creates a transient non-equilibrium lattice displacement along a certain direction. Here, the pump and probe pulse polarization dependence of the photo-induced ultrafast lattice dynamics in (GeTe)2/(Sb2Te3)4 interfacial phase change memory material is investigated under obliquely incident conditions. Drastic pump polarization dependence of the coherent phonon amplitude is observed when the probe polarization angle is parallel to the c–axis of the sample, while the pump polarization dependence is negligible when the probe polarization angle is perpendicular to the c–axis. The enhancement of phonon oscillation amplitude due to pump polarization rotation for a specific probe polarization angle is only found in the early time stage (≤2 ps). These results indicate that the origin of the pump and probe polarization dependence is dominantly attributable to the anisotropically-formed photo-excited carriers which cause the directional lattice dynamics. PMID:26805401

  13. Response of Silicon-Based Linear Energy Transfer Spectrometers: Implication for Radiation Risk Assessment in Space Flights

    NASA Technical Reports Server (NTRS)

    Badhwar, G. D.; O'Neill, P. M.

    2001-01-01

    There is considerable interest in developing silicon-based telescopes because of their compactness and low power requirements. Three such telescopes have been flown on board the Space Shuttle to measure the linear energy transfer spectra of trapped, galactic cosmic ray, and solar energetic particles. Dosimeters based on single silicon detectors have also been flown on the Mir orbital station. A comparison of the absorbed dose and radiation quality factors calculated from these telescopes with that estimated from measurements made with a tissue equivalent proportional counter show differences which need to be fully understood if these telescopes are to be used for astronaut radiation risk assessments. Instrument performance is complicated by a variety of factors. A Monte Carlo-based technique was developed to model the behavior of both single element detectors in a proton beam, and the performance of a two-element, wide-angle telescope, in the trapped belt proton field inside the Space Shuttle. The technique is based on: (1) radiation transport intranuclear-evaporation model that takes into account the charge and angular distribution of target fragments, (2) Landau-Vavilov distribution of energy deposition allowing for electron escape, (3) true detector geometry of the telescope, (4) coincidence and discriminator settings, (5) spacecraft shielding geometry, and (6) the external space radiation environment, including albedo protons. The value of such detailed modeling and its implications in astronaut risk assessment is addressed. c2001 Elsevier Science B.V. All rights reserved.

  14. Anisotropic lattice response induced by a linearly-polarized femtosecond optical pulse excitation in interfacial phase change memory material.

    PubMed

    Makino, Kotaro; Saito, Yuta; Fons, Paul; Kolobov, Alexander V; Nakano, Takashi; Tominaga, Junji; Hase, Muneaki

    2016-01-01

    Optical excitation of matter with linearly-polarized femtosecond pulses creates a transient non-equilibrium lattice displacement along a certain direction. Here, the pump and probe pulse polarization dependence of the photo-induced ultrafast lattice dynamics in (GeTe)2/(Sb2Te3)4 interfacial phase change memory material is investigated under obliquely incident conditions. Drastic pump polarization dependence of the coherent phonon amplitude is observed when the probe polarization angle is parallel to the c-axis of the sample, while the pump polarization dependence is negligible when the probe polarization angle is perpendicular to the c-axis. The enhancement of phonon oscillation amplitude due to pump polarization rotation for a specific probe polarization angle is only found in the early time stage (≤2 ps). These results indicate that the origin of the pump and probe polarization dependence is dominantly attributable to the anisotropically-formed photo-excited carriers which cause the directional lattice dynamics. PMID:26805401

  15. Response of silicon-based linear energy transfer spectrometers: implication for radiation risk assessment in space flights.

    PubMed

    Badhwar, G D; O'Neill, P M

    2001-07-11

    There is considerable interest in developing silicon-based telescopes because of their compactness and low power requirements. Three such telescopes have been flown on board the Space Shuttle to measure the linear energy transfer spectra of trapped, galactic cosmic ray, and solar energetic particles. Dosimeters based on single silicon detectors have also been flown on the Mir orbital station. A comparison of the absorbed dose and radiation quality factors calculated from these telescopes with that estimated from measurements made with a tissue equivalent proportional counter show differences which need to be fully understood if these telescopes are to be used for astronaut radiation risk assessments. Instrument performance is complicated by a variety of factors. A Monte Carlo-based technique was developed to model the behavior of both single element detectors in a proton beam, and the performance of a two-element, wide-angle telescope, in the trapped belt proton field inside the Space Shuttle. The technique is based on: (1) radiation transport intranuclear-evaporation model that takes into account the charge and angular distribution of target fragments, (2) Landau-Vavilov distribution of energy deposition allowing for electron escape, (3) true detector geometry of the telescope, (4) coincidence and discriminator settings, (5) spacecraft shielding geometry, and (6) the external space radiation environment, including albedo protons. The value of such detailed modeling and its implications in astronaut risk assessment is addressed. PMID:11858255

  16. Anisotropic lattice response induced by a linearly-polarized femtosecond optical pulse excitation in interfacial phase change memory material

    NASA Astrophysics Data System (ADS)

    Makino, Kotaro; Saito, Yuta; Fons, Paul; Kolobov, Alexander V.; Nakano, Takashi; Tominaga, Junji; Hase, Muneaki

    2016-01-01

    Optical excitation of matter with linearly-polarized femtosecond pulses creates a transient non-equilibrium lattice displacement along a certain direction. Here, the pump and probe pulse polarization dependence of the photo-induced ultrafast lattice dynamics in (GeTe)2/(Sb2Te3)4 interfacial phase change memory material is investigated under obliquely incident conditions. Drastic pump polarization dependence of the coherent phonon amplitude is observed when the probe polarization angle is parallel to the c-axis of the sample, while the pump polarization dependence is negligible when the probe polarization angle is perpendicular to the c-axis. The enhancement of phonon oscillation amplitude due to pump polarization rotation for a specific probe polarization angle is only found in the early time stage (≤2 ps). These results indicate that the origin of the pump and probe polarization dependence is dominantly attributable to the anisotropically-formed photo-excited carriers which cause the directional lattice dynamics.

  17. Response of silicon-based linear energy transfer spectrometers: implication for radiation risk assessment in space flights

    NASA Astrophysics Data System (ADS)

    Badhwar, G. D.; O'Neill, P. M.

    2001-07-01

    There is considerable interest in developing silicon-based telescopes because of their compactness and low power requirements. Three such telescopes have been flown on board the Space Shuttle to measure the linear energy transfer spectra of trapped, galactic cosmic ray, and solar energetic particles. Dosimeters based on single silicon detectors have also been flown on the Mir orbital station. A comparison of the absorbed dose and radiation quality factors calculated from these telescopes with that estimated from measurements made with a tissue equivalent proportional counter show differences which need to be fully understood if these telescopes are to be used for astronaut radiation risk assessments. Instrument performance is complicated by a variety of factors. A Monte Carlo-based technique was developed to model the behavior of both single element detectors in a proton beam, and the performance of a two-element, wide-angle telescope, in the trapped belt proton field inside the Space Shuttle. The technique is based on: (1) radiation transport intranuclear-evaporation model that takes into account the charge and angular distribution of target fragments, (2) Landau-Vavilov distribution of energy deposition allowing for electron escape, (3) true detector geometry of the telescope, (4) coincidence and discriminator settings, (5) spacecraft shielding geometry, and (6) the external space radiation environment, including albedo protons. The value of such detailed modeling and its implications in astronaut risk assessment is addressed.

  18. Ozone Exposure Response for U.S. Soybean Cultivars: Linear Reductions in Photosynthetic Potential, Biomass, and Yield1[W][OA

    PubMed Central

    Betzelberger, Amy M.; Yendrek, Craig R.; Sun, Jindong; Leisner, Courtney P.; Nelson, Randall L.; Ort, Donald R.; Ainsworth, Elizabeth A.

    2012-01-01

    Current background ozone (O3) concentrations over the northern hemisphere’s midlatitudes are high enough to damage crops and are projected to increase. Soybean (Glycine max) is particularly sensitive to O3; therefore, establishing an O3 exposure threshold for damage is critical to understanding the current and future impact of this pollutant. This study aims to determine the exposure response of soybean to elevated tropospheric O3 by measuring the agronomic, biochemical, and physiological responses of seven soybean genotypes to nine O3 concentrations (38–120 nL L−1) within a fully open-air agricultural field location across 2 years. All genotypes responded similarly, with season-long exposure to O3 causing a linear increase in antioxidant capacity while reducing leaf area, light absorption, specific leaf mass, primary metabolites, seed yield, and harvest index. Across two seasons with different temperature and rainfall patterns, there was a robust linear yield decrease of 37 to 39 kg ha−1 per nL L−1 cumulative O3 exposure over 40 nL L−1. The existence of immediate effects of O3 on photosynthesis, stomatal conductance, and photosynthetic transcript abundance before and after the initiation and termination of O3 fumigation were concurrently assessed, and there was no evidence to support an instantaneous photosynthetic response. The ability of the soybean canopy to intercept radiation, the efficiency of photosynthesis, and the harvest index were all negatively impacted by O3, suggesting that there are multiple targets for improving soybean responses to this damaging air pollutant. PMID:23037504

  19. Three-dimensional organization of otolith-ocular reflexes in rhesus monkeys. I. Linear acceleration responses during off-vertical axis rotation

    NASA Technical Reports Server (NTRS)

    Angelaki, D. E.; Hess, B. J.

    1996-01-01

    1. The dynamic properties of otolith-ocular reflexes elicited by sinusoidal linear acceleration along the three cardinal head axes were studied during off-vertical axis rotations in rhesus monkeys. As the head rotates in space at constant velocity about an off-vertical axis, otolith-ocular reflexes are elicited in response to the sinusoidally varying linear acceleration (gravity) components along the interaural, nasooccipital, or vertical head axis. Because the frequency of these sinusoidal stimuli is proportional to the velocity of rotation, rotation at low and moderately fast speeds allows the study of the mid-and low-frequency dynamics of these otolith-ocular reflexes. 2. Animals were rotated in complete darkness in the yaw, pitch, and roll planes at velocities ranging between 7.4 and 184 degrees/s. Accordingly, otolith-ocular reflexes (manifested as sinusoidal modulations in eye position and/or slow-phase eye velocity) were quantitatively studied for stimulus frequencies ranging between 0.02 and 0.51 Hz. During yaw and roll rotation, torsional, vertical, and horizontal slow-phase eye velocity was sinusoidally modulated as a function of head position. The amplitudes of these responses were symmetric for rotations in opposite directions. In contrast, mainly vertical slow-phase eye velocity was modulated during pitch rotation. This modulation was asymmetric for rotations in opposite direction. 3. Each of these response components in a given rotation plane could be associated with an otolith-ocular response vector whose sensitivity, temporal phase, and spatial orientation were estimated on the basis of the amplitude and phase of sinusoidal modulations during both directions of rotation. Based on this analysis, which was performed either for slow-phase eye velocity alone or for total eye excursion (including both slow and fast eye movements), two distinct response patterns were observed: 1) response vectors with pronounced dynamics and spatial/temporal properties

  20. Accurate electronic and chemical properties of 3d transition metal oxides using a calculated linear response U and a DFT + U(V) method

    NASA Astrophysics Data System (ADS)

    Xu, Zhongnan; Joshi, Yogesh V.; Raman, Sumathy; Kitchin, John R.

    2015-04-01

    We validate the usage of the calculated, linear response Hubbard U for evaluating accurate electronic and chemical properties of bulk 3d transition metal oxides. We find calculated values of U lead to improved band gaps. For the evaluation of accurate reaction energies, we first identify and eliminate contributions to the reaction energies of bulk systems due only to changes in U and construct a thermodynamic cycle that references the total energies of unique U systems to a common point using a DFT + U(V ) method, which we recast from a recently introduced DFT + U(R) method for molecular systems. We then introduce a semi-empirical method based on weighted DFT/DFT + U cohesive energies to calculate bulk oxidation energies of transition metal oxides using density functional theory and linear response calculated U values. We validate this method by calculating 14 reactions energies involving V, Cr, Mn, Fe, and Co oxides. We find up to an 85% reduction of the mean average error (MAE) compared to energies calculated with the Perdew-Burke-Ernzerhof functional. When our method is compared with DFT + U with empirically derived U values and the HSE06 hybrid functional, we find up to 65% and 39% reductions in the MAE, respectively.

  1. Accurate electronic and chemical properties of 3d transition metal oxides using a calculated linear response U and a DFT + U(V) method

    SciTech Connect

    Xu, Zhongnan; Kitchin, John R.; Joshi, Yogesh V.; Raman, Sumathy

    2015-04-14

    We validate the usage of the calculated, linear response Hubbard U for evaluating accurate electronic and chemical properties of bulk 3d transition metal oxides. We find calculated values of U lead to improved band gaps. For the evaluation of accurate reaction energies, we first identify and eliminate contributions to the reaction energies of bulk systems due only to changes in U and construct a thermodynamic cycle that references the total energies of unique U systems to a common point using a DFT + U(V ) method, which we recast from a recently introduced DFT + U(R) method for molecular systems. We then introduce a semi-empirical method based on weighted DFT/DFT + U cohesive energies to calculate bulk oxidation energies of transition metal oxides using density functional theory and linear response calculated U values. We validate this method by calculating 14 reactions energies involving V, Cr, Mn, Fe, and Co oxides. We find up to an 85% reduction of the mean average error (MAE) compared to energies calculated with the Perdew-Burke-Ernzerhof functional. When our method is compared with DFT + U with empirically derived U values and the HSE06 hybrid functional, we find up to 65% and 39% reductions in the MAE, respectively.

  2. Temperature and non-linear response of cantilever-type mechanical oscillators used in atomic force microscopes with interferometric detection

    SciTech Connect

    Fläschner, G.; Ruschmeier, K.; Schwarz, A. Wiesendanger, R.; Bakhtiari, M. R.; Thorwart, M.

    2015-03-23

    The sensitivity of atomic force microscopes is fundamentally limited by the cantilever temperature, which can be, in principle, determined by measuring its thermal spectrum and applying the equipartition theorem. However, the mechanical response can be affected by the light field inside the cavity of a Fabry-Perot interferometer due to light absorption, radiation pressure, photothermal forces, and laser noise. By evaluating the optomechanical Hamiltonian, we are able to explain the peculiar distance dependence of the mechanical quality factor as well as the appearance of thermal spectra with symmetrical Lorentzian as well as asymmetrical Fano line shapes. Our results can be applied to any type of mechanical oscillator in an interferometer-based detection system.

  3. Pygmy dipole strength in Zr90

    NASA Astrophysics Data System (ADS)

    Schwengner, R.; Rusev, G.; Tsoneva, N.; Benouaret, N.; Beyer, R.; Erhard, M.; Grosse, E.; Junghans, A. R.; Klug, J.; Kosev, K.; Lenske, H.; Nair, C.; Schilling, K. D.; Wagner, A.

    2008-12-01

    The dipole response of the N=50 nucleus Zr90 was studied in photon-scattering experiments at the electron linear accelerator ELBE with bremsstrahlung produced at kinetic electron energies of 7.9, 9.0, and 13.2 MeV. We identified 189 levels up to an excitation energy of 12.9 MeV. Statistical methods were applied to estimate intensities of inelastic transitions and to correct the intensities of the ground-state transitions for their branching ratios. In this way we derived the photoabsorption cross section up to the neutron-separation energy. This cross section matches well the photoabsorption cross section obtained from (γ, n) data and thus provides information about the extension of the dipole-strength distribution toward energies below the neutron-separation energy. An enhancement of E1 strength has been found in the range of 6 to 11 MeV. Calculations within the framework of the quasiparticle-phonon model ascribe this strength to a vibration of the excessive neutrons against the N=Z neutron-proton core, giving rise to a pygmy dipole resonance.

  4. Linear Collisions

    ERIC Educational Resources Information Center

    Walkiewicz, T. A.; Newby, N. D., Jr.

    1972-01-01

    A discussion of linear collisions between two or three objects is related to a junior-level course in analytical mechanics. The theoretical discussion uses a geometrical approach that treats elastic and inelastic collisions from a unified point of view. Experiments with a linear air track are described. (Author/TS)

  5. Unusual Magnetic-Pressure Response of an S = 1 Antiferromagnetic Linear-Chain near the D / J ~ 1 Critical Point

    NASA Astrophysics Data System (ADS)

    Peprah, M. K.; Quintero, P. A.; Xia, J. S.; Pérez, J. M.; Meisel, M. W.; Garcia, A.; Brown, S. E.; Manson, J. L.

    An S = 1 chain, [Ni(HF2)(3-Clpy)4]BF4 (py = pyridine), has been identified to have nearest-neighbor antiferromagnetic interaction J /kB = 4 . 86 K and single-ion anisotropy D /kB = 4 . 3 K, while avoiding long-range order to 25 mK. With D / J = 0 . 88 , this system is close to the D / J ~ 1 gapless quantum critical point between the Haldane and Large- D phases. The magnetization was studied at 50 mK <= T <= 1 K and with B <= 10 T. Using a magnetometer equipped with a pressure cell, the low-field (0.1 T), high temperature (T >= 2 K) magnetic susceptibility was studied to 1.47 GPa. These data suggest the response at ambient pressure2 changes between 0.24 GPa and 0.35 GPa. These studies are being extended by 1H NMR experiments capable of varying the pressure and of spanning from 300 K to below 100 mK. Supported by the NSF via DMR-1202033 (MWM), DMR-1410343 (SEB), DMR-1306158 (JLM), DMR-1461019 (UF Physics REU support for JMP), and DMR-1157490 (NHMFL), and by the State of Florida.

  6. Linear Classification Functions.

    ERIC Educational Resources Information Center

    Huberty, Carl J.; Smith, Jerry D.

    Linear classification functions (LCFs) arise in a predictive discriminant analysis for the purpose of classifying experimental units into criterion groups. The relative contribution of the response variables to classification accuracy may be based on LCF-variable correlations for each group. It is proved that, if the raw response measures are…

  7. Self-consistent parametrization of DFT + U framework using linear response approach: Application to evaluation of redox potentials of battery cathodes

    NASA Astrophysics Data System (ADS)

    Shishkin, Maxim; Sato, Hirofumi

    2016-02-01

    The accuracy of DFT +U calculations, applied to the study of electronic structure and energetics of strongly correlated materials, heavily depends on U parameters, chosen for adequate treatment of d and f states. Computational evaluation of U parameters, which does not require fitting to experimental measurements or results of computationally expensive schemes, is highly desirable for the study of novel materials and even more so for materials not yet synthesized to date. Within this work, we show that the linear response method could provide U parameters which can yield redox potentials of battery cathode materials in much better agreement with experiment than conventional density functional theory (DFT). In our approach, we evaluate U values self-consistently, ensuring agreement between U calculated using linear response with the value used for DFT +U calculations. We find that such self-consistency is necessary for determination of adequate values of U . We also studied the impact of using various PAW (projector augmented wave) potentials for transition-metal ions, that differ by the number of electrons treated as valence. We find that redox potentials are reasonably well reproduced for all cases, although a slightly higher degree of accuracy corresponds to PAW potentials with semicore electrons treated as valence. Importantly, we find that converged values of U are substantially different for various PAW potentials of transition-metal ions of the same material. Overall, we find that self-consistent DFT +U /linear response calculations provide quite accurate values of redox potentials for materials with purely ionic bonding (e.g., LiFePO4, LiCoPO4, LiCoO2, LiMnPO4, NaFePO4), whereas for materials with covalent p d hybridization (e.g., LiNiO2) or conducting materials (e.g., LiTiS2) the agreement with experimental redox voltage is lower. This emphasizes the need for application of more advanced techniques (e.g., DFT +U +V method) for accurate study of partially

  8. Quantization of general linear electrodynamics

    SciTech Connect

    Rivera, Sergio; Schuller, Frederic P.

    2011-03-15

    General linear electrodynamics allow for an arbitrary linear constitutive relation between the field strength 2-form and induction 2-form density if crucial hyperbolicity and energy conditions are satisfied, which render the theory predictive and physically interpretable. Taking into account the higher-order polynomial dispersion relation and associated causal structure of general linear electrodynamics, we carefully develop its Hamiltonian formulation from first principles. Canonical quantization of the resulting constrained system then results in a quantum vacuum which is sensitive to the constitutive tensor of the classical theory. As an application we calculate the Casimir effect in a birefringent linear optical medium.

  9. Non-Linearity of the Rainfall-Runoff Response Across South-Eastern Australia During the Millennium Drought

    NASA Astrophysics Data System (ADS)

    Post, D. A.; Potter, N. J.; Petheram, C.; Dawes, W.

    2012-12-01

    South-eastern Australia experienced a major drought lasting from 1997 to 2009 (the so-called 'Millennium drought'). Average annual rainfall during this drought was 512 mm, some 12 percent below the long-term average of 582 mm. Based on simple rules-of-thumb, one would expect a rainfall decline of this magnitude to produce a runoff decline of 20 to 30 percent. However, the decline in runoff during the Millennium drought was, in some places, much greater than this. There were a number of factors contributing to this. Firstly was the nature of the rainfall decline, which saw large decreases in autumn and winter rainfall, the seasons which produce most of the runoff across the region. There was also a lack of wet years and, more importantly, very wet months, with 180 consecutive months without a monthly rainfall in the top 10th percentile. Finally, temperatures during this drought were higher than during similar droughts in the past. These conditions led to a reduction in groundwater recharge, which resulted in groundwater levels falling many metres below the surface in some catchments. This led to streams which were previously 'gaining streams' becoming 'losing streams'. In this presentation, we will present rainfall, runoff and groundwater data from a number of catchments in south-eastern Australia, showing that following a large drop in groundwater levels, runoff coefficients decreased dramatically, while cease-to-flow days showed a similarly large increase. We will also present results from a modelling experiment showing that these changes in hydrologic functioning are more likely to occur in low relief catchments, and that farm dams may act to prolong the declines in runoff due to their ability to act as a store for surface water, thereby delaying the catchment response to rainfall. Finally, we discuss how lumped conceptual rainfall-runoff models may be modified in order to capture these observed shifts in the hydrologic functioning of catchments.nnual time series

  10. Steady-state response attenuation of a linear oscillator-nonlinear absorber system by using an adjustable-length pendulum in series: Numerical and experimental results

    NASA Astrophysics Data System (ADS)

    Eason, R. P.; Sun, C.; Dick, A. J.; Nagarajaiah, S.

    2015-05-01

    Response attenuation of a linear primary structure (PS)-nonlinear tuned mass damper (NTMD) dynamic system with and without an adaptive-length pendulum tuned mass damper (ALPTMD) in a series configuration is studied by using numerical and experimental methods. In the PS-NTMD system, coexisting high and low amplitude solutions are observed in the experiment, validating previous numerical efforts. In order to eliminate the potentially dangerous high amplitude solutions, a series ALPTMD with a mass multiple orders of magnitude smaller than the PS is added to the NTMD. The ALPTMD is used in order to represent the steady-state behavior of a smart tuned mass damper (STMD). In the experiment, the length of the pendulum is adjusted such that its natural frequency matches the dominant frequency of the harmonic ground motions. In the present study, the proposed ALPTMD can be locked so that it is unable to oscillate and influence the dynamics of the system in order to obtain the benefits provided by the NTMD. The experimental data show good qualitative agreement with numerical predictions computed with parameter continuation and time integration methods. Activation of the ALPTMD can successfully prevent the transition of the response from the low amplitude solution to the high amplitude solution or return the response from the high amplitude solution to the low amplitude solution, thereby protecting the PS.

  11. Early neutralizing IgG response to Chikungunya virus in infected patients targets a dominant linear epitope on the E2 glycoprotein

    PubMed Central

    Kam, Yiu-Wing; Lum, Fok-Moon; Teo, Teck-Hui; Lee, Wendy W L; Simarmata, Diane; Harjanto, Sumitro; Chua, Chong-Long; Chan, Yoke-Fun; Wee, Jin-Kiat; Chow, Angela; Lin, Raymond T P; Leo, Yee-Sin; Le Grand, Roger; Sam, I-Ching; Tong, Joo-Chuan; Roques, Pierre; Wiesmüller, Karl-Heinz; Rénia, Laurent; Rötzschke, Olaf; Ng, Lisa F P

    2012-01-01

    Chikungunya virus (CHIKV) and related arboviruses have been responsible for large epidemic outbreaks with serious economic and social impact. The immune mechanisms, which control viral multiplication and dissemination, are not yet known. Here, we studied the antibody response against the CHIKV surface antigens in infected patients. With plasma samples obtained during the early convalescent phase, we showed that the naturally-acquired IgG response is dominated by IgG3 antibodies specific mostly for a single linear epitope ‘E2EP3’. E2EP3 is located at the N-terminus of the E2 glycoprotein and prominently exposed on the viral envelope. E2EP3-specific antibodies are neutralizing and their removal from the plasma reduced the CHIKV-specific antibody titer by up to 80%. Screening of E2EP3 across different patient cohorts and in non-human primates demonstrated the value of this epitope as a good serology detection marker for CHIKV infection already at an early stage. Mice vaccinated by E2EP3 peptides were protected against CHIKV with reduced viremia and joint inflammation, providing a pre-clinical basis for the design of effective vaccine against arthralgia-inducing CHIKV and other alphaviruses. PMID:22389221

  12. Responsiveness and Release Characteristic of Semi-IPN Hydrogels Consisting of Nano-Sized Clay Crosslinked Poly(Dimethylaminoethyl Methacrylate) and Linear Carboxymethyl Chitosan.

    PubMed

    Chen, Yi; Peng, Chang; Lu, Yanbing; Liu, Wenyong; Xu, Weijian

    2015-01-01

    PH and temperature double responsive semi-IPN hydrogels consisting of poly(dimethylaminoethyl methacrylate) (PDMAEMA) network crosslinked by nano-sized inorganic clay and linear carboxymethyl chitosan (CMCS) were synthesized by in situ, free radical polymerization in aqueous solution. The effect of the mass and carboxymethyl substitution of CMCS on the responsiveness, swelling/deswelling and drug release characteristic of gels were investigated. Comparing to the gels without CMCS, the resulting gels (named as C-NC gels) showed similar LCST and temperature response behavior. However, with the increase of added CMCS, the swelling ratio of gels decreased considerably around the isoelectric point (IEP) of CMCS, while increased in both strong acidic and alkaline condition. The deswelling rate was improved significantly when the content of CMCS is high. In drug load and release test by using theophylline as target, the C-NC gels exhibited an excellent load ability and controlled-release in simulated human intestinal and stomachic condition. Additionally, all properties of gels were affected by the DS of added CMCS due to the different ratio and interaction of negative and positive ions in gels. PMID:26328322

  13. Linear Response Theory for Shear Modulus C66 and Raman Quadrupole Susceptibility: Evidence for Nematic Orbital Fluctuations in Fe-based Superconductors

    NASA Astrophysics Data System (ADS)

    Kontani, Hiroshi; Yamakawa, Youichi

    2014-07-01

    The emergence of the nematic order and fluctuations has been discussed as a central issue in Fe-based superconductors. To clarify the origin of the nematicity, we focus on the shear modulus C66 and the Raman quadrupole susceptibility χx2-y2Raman. Because of the Aslamazov-Larkin vertex correction, the nematic-type orbital fluctuations are induced, and they enhance both 1/C66 and χx2-y2Raman strongly. However, χx2-y2Raman remains finite even at the structure transition temperature TS, because of the absence of the band Jahn-Teller effect and the Pauli (intraband) contribution, as proved in terms of the linear response theory. The present study clarifies that the origin of the nematicity in Fe-based superconductors is the nematic orbital order and fluctuations.

  14. Linear response theory for shear modulus C66 and Raman quadrupole susceptibility: evidence for nematic orbital fluctuations in Fe-based superconductors.

    PubMed

    Kontani, Hiroshi; Yamakawa, Youichi

    2014-07-25

    The emergence of the nematic order and fluctuations has been discussed as a central issue in Fe-based superconductors. To clarify the origin of the nematicity, we focus on the shear modulus C(66) and the Raman quadrupole susceptibility χ(x)(2)-y(2))(Raman). Because of the Aslamazov-Larkin vertex correction, the nematic-type orbital fluctuations are induced, and they enhance both 1/C(66) and χ(x(2)-y(2))(Raman) strongly. However, χ(x)(2)-y(2))(Raman) remains finite even at the structure transition temperature T(S), because of the absence of the band Jahn-Teller effect and the Pauli (intraband) contribution, as proved in terms of the linear response theory. The present study clarifies that the origin of the nematicity in Fe-based superconductors is the nematic orbital order and fluctuations. PMID:25105647

  15. On the separation of internal and boundary damage in slender bars using longitudinal vibration frequencies and equivalent linearization of damaged bolted joint response

    NASA Astrophysics Data System (ADS)

    Argatov, Ivan; Butcher, Eric A.

    2011-06-01

    The problem of detecting localized large-scale internal damage in structures with imperfect bolted joints is considered. The proposed damage detection strategy utilizes the structural damping and an equivalent linearization of the bolted lap joint response to separate the combined boundary damage from localized large-scale internal damage. The frequencies are found approximately using asymptotic analysis and a perturbation technique. The proposed approach is illustrated on an example of longitudinal vibrations in a slender elastic bar with both ends clamped by bolted lap joints with different levels of damage. It is found that while the proposed method allows for the estimation of internal damage severity once the crack location is known, it gives multiple possible crack locations so that other methods (e.g., mode shapes) are required to obtain a unique crack location.

  16. Strength and Function Response to Clinical Interventions of Older Women Categorized by Weakness and Low Lean Mass Using Classifications From the Foundation for the National Institute of Health Sarcopenia Project

    PubMed Central

    Fragala, Maren S.; Dam, Thuy-Tien L.; Barber, Vanessa; Judge, James O.; Studenski, Stephanie A.; Cawthon, Peggy M.; McLean, Robert R.; Harris, Tamara B.; Ferrucci, Luigi; Guralnik, Jack M.; Kiel, Douglas P.; Kritchevsky, Stephen B.; Shardell, Michelle D.; Vassileva, Maria T.

    2015-01-01

    Background. The Foundation for the National Institutes of Health Sarcopenia Project developed data-driven cut-points for clinically meaningful weakness and low lean body mass. This analysis describes strength and function response to interventions based on these classifications. Methods. In data from four intervention studies, 378 postmenopausal women with baseline and 6-month data were evaluated for change in grip strength, appendicular lean mass corrected for body mass index, leg strength and power, and short physical performance battery (SPPB). Clinical interventions included hormones, exercise, and nutritional supplementation. Differences in outcomes were evaluated between (i) those with and without weakness and (ii) those with weakness and low lean mass or with one but not the other. We stratified analyses by slowness (walking speed ≤ 0.8 m/s) and by treatment assignment. Results. The women (72±7 years; body mass index of 26±5kg/m2) were weak (33%), had low lean mass (14%), or both (6%). Those with weakness increased grip strength, lost less leg power, and gained SPPB score (p < .05) compared with nonweak participants. Stratified analyses were similar for grip strength and SPPB. With lean mass in the analysis, individuals with weakness had larger gains in grip strength and SPPB scores regardless of low lean mass (p < .01). Conclusions. Older women with clinically meaningful muscle weakness increased grip strength and SPPB, regardless of the presence of low lean mass following treatment with interventions for frailty. Thus, results suggest that muscle weakness, as defined by the Foundation for the National Institutes of Health Sarcopenia Project, appears to be a treatable symptom. PMID:25135999

  17. The Linear Response Function of an Idealized Atmosphere. Part II: Implications for the Practical Use of the Fluctuation–Dissipation Theorem and the Role of Operator's Nonnormality

    NASA Astrophysics Data System (ADS)

    Hassanzadeh, Pedram; Kuang, Zhiming

    2016-09-01

    A linear response function (LRF) relates the mean-response of a nonlinear system to weak external forcings and vice versa. Even for simple models of the general circulation, such as the dry dynamical core, the LRF cannot be calculated from first principles due to the lack of a complete theory for eddy-mean flow feedbacks. According to the Fluctuation-Dissipation Theorem (FDT), the LRF can be calculated using only the covariance and lag-covariance matrices of the unforced system. However, efforts in calculating the LRFs for GCMs using FDT have produced mixed results, and the reason(s) behind the poor performance of the FDT remains unclear. In Part 1 of this study, the LRF of an idealized GCM, the dry dynamical core with Held-Suarez physics, is accurately calculated using Green's functions. In this paper (Part 2), the LRF of the same model is computed using FDT, which is found to perform poorly for some of the test cases. The accurate LRF of Part 1 is used with a linear stochastic equation to show that dimension-reduction by projecting the data onto leading EOFs, which is commonly used for FDT, can alone be a significant source of error. Simplified equations and examples of 2 x 2 matrices are then used to demonstrate that this error arises because of the non-normality of the operator. These results suggest that errors caused by dimension-reduction are a major, if not the main, contributor to the poor performance of the LRF calculated using FDT, and that further investigations of dimension-reduction strategies with a focus on non-normality are needed.

  18. Using ADV backscatter strength for measuring suspended cohesive sediment concentration

    NASA Astrophysics Data System (ADS)

    Ha, H. K.; Hsu, W.-Y.; Maa, J. P.-Y.; Shao, Y. Y.; Holland, C. W.

    2009-05-01

    Laboratory experiments were conducted at two institutes to reveal the relationship between acoustic backscatter strength and suspended sediment concentration (SSC). In total, three acoustic Doppler velocimeters (ADVs) with different frequencies (5, 10 and 16 MHz) were tested. Two different commercial clays and one natural sediment from Clay Bank site in the York River were checked for acoustic responses. The SSCs of selected sediments were artificially changed between a selected low and a high value in tap or de-ion water. Each ADV showed quite different backscatter responses depending on the sediment type and SSC. Not all devices had a good linear relationship between backscatter strength and SSC. Within a limited range of SSC, however, the backscatter strength can be well correlated with the SSC. Compared with optical backscattering sensor (OBS), the fluctuation of ADV backscatter signals was too noisy to be directly converted to the instantaneous changes of SSC due to high amplification ratio and small sampling volume. For the more accurate signal conversion for finding the fluctuation of SSC, the ensemble average should be applied to increase the signal-to-noise ratio. There are unexpected responses for the averaged backscatter wave strength: (1) high signals from small particles but low signals from large particles; and (2) two linear segments in calibration slope. These phenomena would be most likely caused by the different gain setting built in ADVs. The different acoustic responses to flocculation might also contribute somewhat if flocs are tightly packed. This study suggests that an ADV could be a useful instrument to estimate suspended cohesive sediment concentration and its fluctuation if the above concerns are clarified.

  19. LINEAR ACCELERATOR

    DOEpatents

    Christofilos, N.C.; Polk, I.J.

    1959-02-17

    Improvements in linear particle accelerators are described. A drift tube system for a linear ion accelerator reduces gap capacity between adjacent drift tube ends. This is accomplished by reducing the ratio of the diameter of the drift tube to the diameter of the resonant cavity. Concentration of magnetic field intensity at the longitudinal midpoint of the external sunface of each drift tube is reduced by increasing the external drift tube diameter at the longitudinal center region.

  20. Gaussian discriminating strength

    NASA Astrophysics Data System (ADS)

    Rigovacca, L.; Farace, A.; De Pasquale, A.; Giovannetti, V.

    2015-10-01

    We present a quantifier of nonclassical correlations for bipartite, multimode Gaussian states. It is derived from the Discriminating Strength measure, introduced for finite dimensional systems in Farace et al., [New J. Phys. 16, 073010 (2014), 10.1088/1367-2630/16/7/073010]. As the latter the new measure exploits the quantum Chernoff bound to gauge the susceptibility of the composite system with respect to local perturbations induced by unitary gates extracted from a suitable set of allowed transformations (the latter being identified by posing some general requirements). Closed expressions are provided for the case of two-mode Gaussian states obtained by squeezing or by linearly mixing via a beam splitter a factorized two-mode thermal state. For these density matrices, we study how nonclassical correlations are related with the entanglement present in the system and with its total photon number.

  1. Linear models: permutation methods

    USGS Publications Warehouse

    Cade, B.S.

    2005-01-01

    Permutation tests (see Permutation Based Inference) for the linear model have applications in behavioral studies when traditional parametric assumptions about the error term in a linear model are not tenable. Improved validity of Type I error rates can be achieved with properly constructed permutation tests. Perhaps more importantly, increased statistical power, improved robustness to effects of outliers, and detection of alternative distributional differences can be achieved by coupling permutation inference with alternative linear model estimators. For example, it is well-known that estimates of the mean in linear model are extremely sensitive to even a single outlying value of the dependent variable compared to estimates of the median [7, 19]. Traditionally, linear modeling focused on estimating changes in the center of distributions (means or medians). However, quantile regression allows distributional changes to be estimated in all or any selected part of a distribution or responses, providing a more complete statistical picture that has relevance to many biological questions [6]...

  2. Analysis of Escherichia coli colonization factor antigen I linear B-cell epitopes, as determined by primate responses, following protein sequence verification.

    PubMed

    Cassels, F J; Deal, C D; Reid, R H; Jarboe, D L; Nauss, J L; Carter, J M; Boedeker, E C

    1992-06-01

    Colonization factor antigen I (CFA/I)-bearing strains of enterotoxigenic Escherichia coli (ETEC) are responsible for a significant percentage of ETEC diarrheal disease worldwide whether the disease presents as infant diarrhea with high mortality or as traveler's diarrhea. CFA/I pili (fimbriae) are virulence determinants that consist of repeating protein subunits (pilin), are found in several ETEC serogroups, and promote attachment to human intestinal mucosa. While CFA/I pili are highly immunogenic, the antigenic determinants of CFA/I have not been defined. We wished to identify the linear B-cell epitopes within the CFA/I molecule as determined by primate response to the immunizing protein. To do this, we (i) resolved the discrepancies in the literature on the complete amino acid sequence of CFA/I by N-terminal and internal protein sequencing of purified and selected proteolytic fragments of CFA/I, (ii) utilized this sequence to synthesize 140 overlapping octapeptides covalently attached to polyethylene pins which represented the entire CFA/I protein, (iii) immunized three rhesus monkeys with multiple intramuscular injections of purified CFA/I subunit in Freund's adjuvant, and (iv) tested serum from each monkey for its ability to recognize the octapeptides in a capture enzyme-linked immunosorbent assay. Eight linear B-cell epitopes were identified; the region containing an epitope at amino acids 11 to 21 was strongly recognized by all three individual rhesus monkeys, while the amino acid stretches 22 to 29, 66 to 74, 93 to 101, and 124 to 136 each contained an epitope that was recognized by two of the three rhesus monkeys. The three other regions containing epitopes were recognized by one of the three individuals. The monkey antiserum to pilus subunits recognized native intact pili by immunogold labeling of CFA/I pili present on whole H10407 cells. Therefore, immunization with pilus subunits induces antibody that clearly recognizes both synthetic linear epitopes and

  3. Analysis of Escherichia coli colonization factor antigen I linear B-cell epitopes, as determined by primate responses, following protein sequence verification.

    PubMed Central

    Cassels, F J; Deal, C D; Reid, R H; Jarboe, D L; Nauss, J L; Carter, J M; Boedeker, E C

    1992-01-01

    Colonization factor antigen I (CFA/I)-bearing strains of enterotoxigenic Escherichia coli (ETEC) are responsible for a significant percentage of ETEC diarrheal disease worldwide whether the disease presents as infant diarrhea with high mortality or as traveler's diarrhea. CFA/I pili (fimbriae) are virulence determinants that consist of repeating protein subunits (pilin), are found in several ETEC serogroups, and promote attachment to human intestinal mucosa. While CFA/I pili are highly immunogenic, the antigenic determinants of CFA/I have not been defined. We wished to identify the linear B-cell epitopes within the CFA/I molecule as determined by primate response to the immunizing protein. To do this, we (i) resolved the discrepancies in the literature on the complete amino acid sequence of CFA/I by N-terminal and internal protein sequencing of purified and selected proteolytic fragments of CFA/I, (ii) utilized this sequence to synthesize 140 overlapping octapeptides covalently attached to polyethylene pins which represented the entire CFA/I protein, (iii) immunized three rhesus monkeys with multiple intramuscular injections of purified CFA/I subunit in Freund's adjuvant, and (iv) tested serum from each monkey for its ability to recognize the octapeptides in a capture enzyme-linked immunosorbent assay. Eight linear B-cell epitopes were identified; the region containing an epitope at amino acids 11 to 21 was strongly recognized by all three individual rhesus monkeys, while the amino acid stretches 22 to 29, 66 to 74, 93 to 101, and 124 to 136 each contained an epitope that was recognized by two of the three rhesus monkeys. The three other regions containing epitopes were recognized by one of the three individuals. The monkey antiserum to pilus subunits recognized native intact pili by immunogold labeling of CFA/I pili present on whole H10407 cells. Therefore, immunization with pilus subunits induces antibody that clearly recognizes both synthetic linear epitopes and

  4. Insula Demonstrates a Non-Linear Response to Varying Demand for Cognitive Control and Weaker Resting Connectivity With the Executive Control Network in Smokers.

    PubMed

    Fedota, John R; Matous, Allison L; Salmeron, Betty Jo; Gu, Hong; Ross, Thomas J; Stein, Elliot A

    2016-09-01

    Deficits in cognitive control processes are a primary characteristic of nicotine addiction. However, while network-based connectivity measures of dysfunction have frequently been observed, empirical evidence of task-based dysfunction in these processes has been inconsistent. Here, in a sample of smokers (n=35) and non-smokers (n=21), a previously validated parametric flanker task is employed to characterize addiction-related alterations in responses to varying (ie, high, intermediate, and low) demands for cognitive control. This approach yields a demand-response curve that aims to characterize potential non-linear responses to increased demand for control, including insensitivities or lags in fully activating the cognitive control network. We further used task-based differences in activation between groups as seeds for resting-state analysis of network dysfunction in an effort to more closely link prior inconsistencies in task-related activation with evidence of impaired network connectivity in smokers. For both smokers and non-smokers, neuroimaging results showed similar increases in activation in brain areas associated with cognitive control. However, reduced activation in right insula was seen only in smokers and only when processing intermediate demand for cognitive control. Further, in smokers, this task-modulated right insula showed weaker functional connectivity with the superior frontal gyrus, a component of the task-positive executive control network. These results demonstrate that the neural instantiation of salience attribution in smokers is both more effortful to fully activate and has more difficulty communicating with the exogenous, task-positive, executive control network. Together, these findings further articulate the cognitive control dysfunction associated with smoking and illustrate a specific brain circuit potentially responsible. PMID:27112116

  5. An advanced real-time digital signal processing system for linear systems emulation, with special emphasis on network and acoustic response characterization

    NASA Astrophysics Data System (ADS)

    Gaydecki, Patrick; Fernandes, Bosco

    2003-11-01

    A fast digital signal processing (DSP) system is described that can perform real-time emulation of a wide variety of linear audio-bandwidth systems and networks, such as reverberant spaces, musical instrument bodies and very high order filter networks. The hardware design is based upon a Motorola DSP56309 operating at 110 million multiplication-accumulations per second and a dual-channel 24 bit codec with a maximum sampling frequency of 192 kHz. High level software has been developed to express complex vector frequency responses as both infinite impulse response (IIR) and finite impulse response (FIR) coefficients, in a form suitable for real-time convolution by the firmware installed in the DSP system memory. An algorithm has also been devised to express IIR filters as equivalent FIR structures, thereby obviating the potential instabilities associated with recursive equations and negating the traditional deficiencies of FIR filters respecting equivalent analogue designs. The speed and dynamic range of the system is such that, when sampling at 48 kHz, the frequency response can be specified to a spectral precision of 22 Hz when sampling at 10 kHz, this resolution increases to 0.9 Hz. Moreover, it is also possible to control the phase of any frequency band with a theoretical precision of 10-5 degrees in all cases. The system has been applied in the study of analogue filter networks, real-time Hilbert transformation, phase-shift systems and musical instrument body emulation, where it is providing valuable new insights into the understanding of psychoacoustic mechanisms.

  6. The linear and nonlinear response of infinite periodic systems to static and/or dynamic electric fields. Implementation in CRYSTAL code

    SciTech Connect

    Kirtman, Bernard; Springborg, Michael; Rérat, Michel; Ferrero, Mauro; Lacivita, Valentina; Dovesi, Roberto; Orlando, Roberto

    2015-01-22

    An implementation of the vector potential approach (VPA) for treating the response of infinite periodic systems to static and dynamic electric fields has been initiated within the CRYSTAL code. The VPA method is based on the solution of a time-dependent Hartree-Fock or Kohn-Sham equation for the crystal orbitals wherein the usual scalar potential, that describes interaction with the field, is replaced by the vector potential. This equation may be solved either by perturbation theory or by finite field methods. With some modification all the computational procedures of molecular ab initio quantum chemistry can be adapted for periodic systems. Accessible properties include the linear and nonlinear responses of both the nuclei and the electrons. The programming of static field pure electronic (hyper)polarizabilities has been successfully tested. Dynamic electronic (hyper)polarizabilities, as well as infrared and Raman intensities, are in progress while the addition of finite fields for calculation of vibrational (hyper)polarizabilities, through nuclear relaxation procedures, will begin shortly.

  7. Less is more for cancer chemoprevention: evidence of a non-linear dose response for the protective effects of resveratrol in humans and mice

    PubMed Central

    Scott, Edwina; Cai, Hong; Kholghi, Abeer; Andreadi, Catherine; Rufini, Alessandro; Karmokar, Ankur; Britton, Robert G.; Horner-Glister, Emma; Greaves, Peter; Jawad, Dhafer; James, Mark; Howells, Lynne; Ognibene, Ted; Malfatti, Mike; Goldring, Christopher; Kitteringham, Neil; Walsh, Joanne; Viskaduraki, Maria; West, Kevin; Miller, Andrew; Hemingway, David; Steward, William P.; Gescher, Andreas J.

    2016-01-01

    Resveratrol is widely promoted as a potential cancer chemopreventive agent, but a lack of information on the optimal dose prohibits rationally designed trials assessing efficacy. To challenge the assumption that ‘more is better’ we compared the pharmacokinetics and activity of a dietary dose with an intake 200-times higher. The dose response relationship and metabolite profile of [14C]-resveratrol in colorectal tissue of patients helped define clinically achievable concentrations. In ApcMin mice receiving a high-fat diet the low dose supressed intestinal adenoma development more potently than the higher dose. Efficacy correlated with increased AMP-activated protein kinase (AMPK) activation and the senescence marker p21. Non-linear dose responses were observed for AMPK and mTOR signalling in adenoma cells, culminating in autophagy and senescence. In human tissues low dietary exposures caused enhanced AMPK phosphorylation, autophagy and expression of the cytoprotective enzyme NQO1. These findings warrant revision of developmental strategies for diet-derived agents for cancer chemoprevention. PMID:26223300

  8. Linear summation of outputs in a balanced network model of motor cortex

    PubMed Central

    Capaday, Charles; van Vreeswijk, Carl

    2015-01-01

    Given the non-linearities of the neural circuitry's elements, we would expect cortical circuits to respond non-linearly when activated. Surprisingly, when two points in the motor cortex are activated simultaneously, the EMG responses are the linear sum of the responses evoked by each of the points activated separately. Additionally, the corticospinal transfer function is close to linear, implying that the synaptic interactions in motor cortex must be effectively linear. To account for this, here we develop a model of motor cortex composed of multiple interconnected points, each comprised of reciprocally connected excitatory and inhibitory neurons. We show how non-linearities in neuronal transfer functions are eschewed by strong synaptic interactions within each point. Consequently, the simultaneous activation of multiple points results in a linear summation of their respective outputs. We also consider the effects of reduction of inhibition at a cortical point when one or more surrounding points are active. The network response in this condition is linear over an approximately two- to three-fold decrease of inhibitory feedback strength. This result supports the idea that focal disinhibition allows linear coupling of motor cortical points to generate movement related muscle activation patterns; albeit with a limitation on gain control. The model also explains why neural activity does not spread as far out as the axonal connectivity allows, whilst also explaining why distant cortical points can be, nonetheless, functionally coupled by focal disinhibition. Finally, we discuss the advantages that linear interactions at the cortical level afford to motor command synthesis. PMID:26097452

  9. Multiresolution quantum chemistry in multiwavelet bases: excited states from time-dependent Hartree–Fock and density functional theory via linear response

    SciTech Connect

    Yanai, Takeshi; Fann, George I.; Beylkin, Gregory; Harrison, Robert J.

    2015-02-25

    Using the fully numerical method for time-dependent Hartree–Fock and density functional theory (TD-HF/DFT) with the Tamm–Dancoff (TD) approximation we use a multiresolution analysis (MRA) approach to present our findings. From a reformulation with effective use of the density matrix operator, we obtain a general form of the HF/DFT linear response equation in the first quantization formalism. It can be readily rewritten as an integral equation with the bound-state Helmholtz (BSH) kernel for the Green's function. The MRA implementation of the resultant equation permits excited state calculations without virtual orbitals. Moreover, the integral equation is efficiently and adaptively solved using a numerical multiresolution solver with multiwavelet bases. Our implementation of the TD-HF/DFT methods is applied for calculating the excitation energies of H2, Be, N2, H2O, and C2H4 molecules. The numerical errors of the calculated excitation energies converge in proportion to the residuals of the equation in the molecular orbitals and response functions. The energies of the excited states at a variety of length scales ranging from short-range valence excitations to long-range Rydberg-type ones are consistently accurate. It is shown that the multiresolution calculations yield the correct exponential asymptotic tails for the response functions, whereas those computed with Gaussian basis functions are too diffuse or decay too rapidly. Finally, we introduce a simple asymptotic correction to the local spin-density approximation (LSDA) so that in the TDDFT calculations, the excited states are correctly bound.

  10. Multiresolution quantum chemistry in multiwavelet bases: excited states from time-dependent Hartree–Fock and density functional theory via linear response

    DOE PAGESBeta

    Yanai, Takeshi; Fann, George I.; Beylkin, Gregory; Harrison, Robert J.

    2015-02-25

    Using the fully numerical method for time-dependent Hartree–Fock and density functional theory (TD-HF/DFT) with the Tamm–Dancoff (TD) approximation we use a multiresolution analysis (MRA) approach to present our findings. From a reformulation with effective use of the density matrix operator, we obtain a general form of the HF/DFT linear response equation in the first quantization formalism. It can be readily rewritten as an integral equation with the bound-state Helmholtz (BSH) kernel for the Green's function. The MRA implementation of the resultant equation permits excited state calculations without virtual orbitals. Moreover, the integral equation is efficiently and adaptively solved using amore » numerical multiresolution solver with multiwavelet bases. Our implementation of the TD-HF/DFT methods is applied for calculating the excitation energies of H2, Be, N2, H2O, and C2H4 molecules. The numerical errors of the calculated excitation energies converge in proportion to the residuals of the equation in the molecular orbitals and response functions. The energies of the excited states at a variety of length scales ranging from short-range valence excitations to long-range Rydberg-type ones are consistently accurate. It is shown that the multiresolution calculations yield the correct exponential asymptotic tails for the response functions, whereas those computed with Gaussian basis functions are too diffuse or decay too rapidly. Finally, we introduce a simple asymptotic correction to the local spin-density approximation (LSDA) so that in the TDDFT calculations, the excited states are correctly bound.« less

  11. E1 strength in Pb208 within the shell model

    NASA Astrophysics Data System (ADS)

    Schwengner, R.; Massarczyk, R.; Brown, B. A.; Beyer, R.; Dönau, F.; Erhard, M.; Grosse, E.; Junghans, A. R.; Kosev, K.; Nair, C.; Rusev, G.; Schilling, K. D.; Wagner, A.

    2010-05-01

    The dipole response of the doubly magic nuclide Pb208 was studied in photon-scattering experiments at the electron linear accelerator ELBE with bremsstrahlung produced at kinetic electron energies of 9.0 and 15.0 MeV. The present (γ,γ') data combined with (γ,n) data from the literature are compared with results of shell-model calculations and calculations using a quasiparticle random-phase approximation. The shell-model calculations including (2p-2h) excitations describe the experimental E1 strength well and reproduce the spreading of the giant dipole resonance by applying a small smearing width only.

  12. Non-parametric linear regression of discrete Fourier transform convoluted chromatographic peak responses under non-ideal conditions of internal standard method.

    PubMed

    Korany, Mohamed A; Maher, Hadir M; Galal, Shereen M; Fahmy, Ossama T; Ragab, Marwa A A

    2010-11-15

    This manuscript discusses the application of chemometrics to the handling of HPLC response data using the internal standard method (ISM). This was performed on a model mixture containing terbutaline sulphate, guaiphenesin, bromhexine HCl, sodium benzoate and propylparaben as an internal standard. Derivative treatment of chromatographic response data of analyte and internal standard was followed by convolution of the resulting derivative curves using 8-points sin x(i) polynomials (discrete Fourier functions). The response of each analyte signal, its corresponding derivative and convoluted derivative data were divided by that of the internal standard to obtain the corresponding ratio data. This was found beneficial in eliminating different types of interferences. It was successfully applied to handle some of the most common chromatographic problems and non-ideal conditions, namely: overlapping chromatographic peaks and very low analyte concentrations. For example, a significant change in the correlation coefficient of sodium benzoate, in case of overlapping peaks, went from 0.9975 to 0.9998 on applying normal conventional peak area and first derivative under Fourier functions methods, respectively. Also a significant improvement in the precision and accuracy for the determination of synthetic mixtures and dosage forms in non-ideal cases was achieved. For example, in the case of overlapping peaks guaiphenesin mean recovery% and RSD% went from 91.57, 9.83 to 100.04, 0.78 on applying normal conventional peak area and first derivative under Fourier functions methods, respectively. This work also compares the application of Theil's method, a non-parametric regression method, in handling the response ratio data, with the least squares parametric regression method, which is considered the de facto standard method used for regression. Theil's method was found to be superior to the method of least squares as it assumes that errors could occur in both x- and y-directions and

  13. Evidence of a Non-Linear Dose-Response Relationship between Training Load and Stress Markers in Elite Female Futsal Players

    PubMed Central

    Milanez, Vinicius F.; Ramos, Solange P.; Okuno, Nilo M.; Boullosa, Daniel A.; Nakamura, Fabio Y.

    2014-01-01

    The aim of this study was: to describe typical training load (TL) carried out by a professional female futsal team for a period of 5 weeks; and to verify the relationship between TL, stress symptoms, salivary secretory immunoglobulin A (SIgA) levels, and symptoms of upper respiratory infections (URI). Over 45 sessions, the TL of the athletes was monitored daily by means of session-RPE method during the in-season period prior to the main national competition. Stress symptoms were measured weekly by means of the “Daily Analysis of Life Demands in Athletes Questionnaire” (DALDA), SIgA levels, and by symptoms of URI by the “Wisconsin Upper Respiratory Symptom Survey-21” (WURSS). There was a significant increase in TL, monotony, and training strain in week 3, with a concomitant and significant reduction in percentage variation (Δ%) of SIgA concentration and secretion rate (p < 0.05). Additionally, a second order regression model showed a high goodness of fit (R2 = 0.64 - 0.89) between TL and strain with SIgA concentration, secretion rate, and “worse than normal” responses of stress symptoms from the questionnaire. In conclusion, a link between TL and SIgA levels, and stress symptoms in female futsal players was evident in a non linear fashion. There appears to be an optimal range of values of daily TL between ~343 and ~419 AU and strain between ~2639 and 3060 AU, because at levels below and above these values there was an increase in stress symptoms and above ~435 and ~3160 AU to TL and strain there were a decrease in SIgA levels. In contrast, symptoms of URI failed to demonstrate relationship with the variables studied. Key Points There is a dose-response relationship between SIgA levels and stress symptoms with TL. For the athletes of the present study, values of ~436 AU and ~3161 AU to TL and strain training would be desirable because higher values would decrease responses of SIgA levels. An optimal range of values of TL between ~336 and ~412 AU to TL

  14. Novel linear DNA vaccines induce protective immune responses against lethal infection with influenza virus type A/H5N1

    PubMed Central

    Kendirgi, Frédéric; Yun, Nadezda E.; Linde, Nathaniel S.; Zacks, Michele A.; Smith, Jeanon N.; Smith, Jennifer K.; McMicken, Harilyn; Chen, Yin; Paessler, Slobodan

    2008-01-01

    Vaccine development for possible influenza pandemics has been challenging. Conventional vaccines such as inactivated and live attenuated virus preparations are limited in terms of production speed and capacity. DNA vaccination has emerged as a potential alternative to conventional vaccines against influenza pandemics. In this study, we use a novel, cell-free DNA manufacturing process (synDNA™) to produce prototype linear DNA vaccines against the influenza virus type A/H5N1. This synDNA™ process does not require bacterial fermentation, so it avoids the use of antibiotic resistance genes and other nucleic acid sequences unrelated to the antigen gene expression in the actual therapeutic DNA construct. The efficacy of various vaccines expressing the hemagglutinin and neuraminidase proteins (H5N1 synDNA™), hemagglutinin alone (H5 synDNA™) or neuraminidase alone (N1 synDNA™) was evaluated in mice. Two of the constructs (H5 synDNA™ and H5N1 synDNA™) induced a robust protective immune response with up to 93% of treated mice surviving a lethal challenge of a virulent influenza A/Vietnam/1203/04 H5N1 isolate. In combination with a potent biological activity and simplified production footprint, these characteristics make DNA vaccines prepared with our synDNA™ process highly suitable as alternatives to other vaccine preparations. PMID:18443425

  15. Unified explanation for linear and nonlinear optical responses in β -carotene: A sub- 20-fs degenerate four-wave mixing spectroscopic study

    NASA Astrophysics Data System (ADS)

    Sugisaki, Mitsuru; Yanagi, Kazuhiro; Cogdell, Richard J.; Hashimoto, Hideki

    2007-04-01

    The four-wave mixing signal of β -carotene measured under the resonant excitation is reported. A clear coherent oscillation with a period of a few tens of femtoseconds was observed. We have estimated the line broadening function required to simulate this oscillation behavior. The parameters, including the solvation effect, which are essential for calculating the optical signals have also been determined. The validity of our simulation has been evaluated by comparing the theoretically calculated linear and nonlinear optical signals with the experimental results. It was found that in addition to the CC and CC stretching modes the methyl in-plane rocking mode significantly contributes to the optical responses of β -carotene. Calculations based on the Brownian oscillator model were performed under the impulsive excitation limit, and we find that the memory of the vibronic coherence generated in the S2 state is lost via relaxation processes, which include the S1 state. Comparison between the simulation and experiment revealed that the two-photon absorption process plays an important role in the very early optical process taking place in β -carotene. The vibronic decoherent time of the system is estimated to be 1ps , which is about five times longer than the population lifetime of the S2 state determined in the previous studies. The possible relationship between the lifetime of the vibronic coherence and the efficient energy transfer in light-harvesting antenna complexes is discussed.

  16. Novel linear DNA vaccines induce protective immune responses against lethal infection with influenza virus type A/H5N1.

    PubMed

    Kendirgi, Frédéric; Yun, Nadezda E; Linde, Nathaniel S; Zacks, Michele A; Smith, Jeanon N; Smith, Jennifer K; McMicken, Harilyn; Chen, Yin; Paessler, Slobodan

    2008-01-01

    Vaccine development for possible influenza pandemics has been challenging. Conventional vaccines such as inactivated and live attenuated virus preparations are limited in terms of production speed and capacity. DNA vaccination has emerged as a potential alternative to conventional vaccines against influenza pandemics. In this study, we use a novel, cell-free DNA manufacturing process (synDNA) to produce prototype linear DNA vaccines against the influenza virus type A/H5N1. This synDNA process does not require bacterial fermentation, so it avoids the use of antibiotic resistance genes and other nucleic acid sequences unrelated to the antigen gene expression in the actual therapeutic DNA construct. The efficacy of various vaccines expressing the hemagglutinin and neuraminidase proteins (H5N1 synDNA), hemagglutinin alone (H5 synDNA) or neuraminidase alone (N1 synDNA) was evaluated in mice. Two of the constructs (H5 synDNA and H5N1 synDNA) induced a robust protective immune response with up to 93% of treated mice surviving a lethal challenge of a virulent influenza A/Vietnam/1203/04 H5N1 isolate. In combination with a potent biological activity and simplified production footprint, these characteristics make DNA vaccines prepared with our synDNA process highly suitable as alternatives to other vaccine preparations. PMID:18443425

  17. Optimizing minimum free-energy crossing points in solution: Linear-response free energy/spin-flip density functional theory approach

    SciTech Connect

    Minezawa, Noriyuki

    2014-10-28

    Examining photochemical processes in solution requires understanding the solvent effects on the potential energy profiles near conical intersections (CIs). For that purpose, the CI point in solution is determined as the crossing between nonequilibrium free energy surfaces. In this work, the nonequilibrium free energy is described using the combined method of linear-response free energy and collinear spin-flip time-dependent density functional theory. The proposed approach reveals the solvent effects on the CI geometries of stilbene in an acetonitrile solution and those of thymine in water. Polar acetonitrile decreases the energy difference between the twisted minimum and twisted-pyramidalized CI of stilbene. For thymine in water, the hydrogen bond formation stabilizes significantly the CI puckered at the carbonyl carbon atom. The result is consistent with the recent simulation showing that the reaction path via this geometry is open in water. Therefore, the present method is a promising way of identifying the free-energy crossing points that play an essential role in photochemistry of solvated molecules.

  18. Linearized aerodynamic and control law models of the X-29A airplane and comparison with flight data

    NASA Technical Reports Server (NTRS)

    Bosworth, John T.

    1992-01-01

    Flight control system design and analysis for aircraft rely on mathematical models of the vehicle dynamics. In addition to a six degree of freedom nonlinear simulation, the X-29A flight controls group developed a set of programs that calculate linear perturbation models throughout the X-29A flight envelope. The models include the aerodynamics as well as flight control system dynamics and were used for stability, controllability, and handling qualities analysis. These linear models were compared to flight test results to help provide a safe flight envelope expansion. A description is given of the linear models at three flight conditions and two flight control system modes. The models are presented with a level of detail that would allow the reader to reproduce the linear results if desired. Comparison between the response of the linear model and flight measured responses are presented to demonstrate the strengths and weaknesses of the linear models' ability to predict flight dynamics.

  19. Seismic response analysis of a tuff cliff by an effective stress non-linear 2D model approach: an example in Sorrento Peninsula, Italy

    NASA Astrophysics Data System (ADS)

    di Fiore, V.; Angelino, A.; Buonocunto, F. P.; Rapolla, A.; Tarallo, D.

    2009-04-01

    We present a model to describe the behavior of a tuff cliff under the dynamic stress considering a law reference input motion. The studied area is located in the Sorrento Peninsula, a major Quaternary morpho-structural unit of the western flank of Southern Apennines. The peninsula forms a narrow and elevated mountain range (up to 1444 m) that separates two major embayments of the eastern Tyrrhenian margin and is characterized by a carbonate bedrock capped by pyroclastic deposits (i.e. "Campania Ignimbrite"), originated from the Campi Flegrei volcanic district. The occurrence of steep slopes and the high relief energy of the area, along with the marine erosion at the base of the coastal cliff creates favorable conditions for the occurrence of a generalized instability of the slopes that is manifested by tuff rock falls as prevailing landslide phenomena. These events are highly dangerous because of the sudden detachments of conspicuous volumes of rocks with high speed, especially when the rock fall initiates in the upper part of the slopes. Prediction of such landslides is difficult if not accompanied by accurate hydrogeologic and geotechnical monitoring and assessment. The geometry of our model is represented by a tuff cliff of 48 m height, covered by a 8 m thick volcaniclastic layer. At the base of the tuff cliff marine sand deposits occur. The geotechnical parameters used for the analysis were selected from the literature. We have used an effective stress non-linear 2D model to determine the dynamic stress field of our model. The effective stress non-linear algorithm uses the Direct Integration Method to compute the motion and excess pore-water pressures arising from inertial forces at user-defined time steps. The seismic response analysis was performed using the field shear stress generated by synthetic 1-30 Hz band-limited accelerogram. The finite elements mesh considered for the test problem was established by 395 element and 401 nodal point. Our results show a

  20. LINEAR ACCELERATOR

    DOEpatents

    Colgate, S.A.

    1958-05-27

    An improvement is presented in linear accelerators for charged particles with respect to the stable focusing of the particle beam. The improvement consists of providing a radial electric field transverse to