Science.gov

Sample records for linhagens celulares mrc-5

  1. ROS-dependent HMGA2 upregulation mediates Cd-induced proliferation in MRC-5 cells.

    PubMed

    Xie, Huaying; Wang, Jiayue; Jiang, Liping; Geng, Chengyan; Li, Qiujuan; Mei, Dan; Zhao, Lian; Cao, Jun

    2016-08-01

    Cadmium (Cd) is a heavy metal widely found in a number of environmental matrices, and the exposure to Cd is increasing nowadays. In this study, the role of high mobility group A2 (HMGA2) in Cd-induced proliferation was investigated in MRC-5 cells. Exposure to Cd (2μM) for 48h significantly enhanced the growth of MRC-5 cells, increased reactive oxygen species (ROS) production, and induced both mRNA and protein expression of HMGA2. Evidence for Cd-induced reduction of the number of G0/G1 phase cells and an increase in the number of cells in S phase and G2/M phase was sought by flow cytometric analysis. Western blot analysis showed that cyclin D1, cyclin B1, and cyclin E were upregulated in Cd-treated cells. Further study revealed that N-acetyl cysteine (NAC) markedly prevented Cd-induced proliferation of MRC-5 cells, ROS generation, and the increasing protein level of HMGA2. Silencing of HMGA2 gene by siRNA blocked Cd-induced cyclin D1, cyclin B1, and cyclin E expression and reduction of the number of G0/G1 phase cells. Combining, our data showed that Cd-induced ROS formation provoked HMGA2 upregulation, caused cell cycle changes, and led to cell proliferation. This suggests that HMGA2 might be an important biomarker in Cd-induced cell proliferation. PMID:27071802

  2. High Genetic Stability of Dengue Virus Propagated in MRC-5 Cells as Compared to the Virus Propagated in Vero Cells

    PubMed Central

    Butler, Michael; Wu, Suh-Chin

    2008-01-01

    This work investigated the replication kinetics of the four dengue virus serotypes (DEN-1 to DEN-4), including dengue virus type 4 (DEN-4) recovered from an infectious cDNA clone, in Vero cells and in MRC-5 cells grown on Cytodex 1 microcarriers. DEN-1 strain Hawaii, DEN-2 strain NGC, DEN-3 strain H-87, and DEN-4 strain H-241 , and DEN-4 strain 814669 derived from cloned DNA, were used to infect Vero cells and MRC-5 cells grown in serum-free or serum-containing microcarrier cultures. Serum-free and serum-containing cultures were found to yield comparable titers of these viruses. The cloned DNA-derived DEN-4 started genetically more homogeneous was used to investigate the genetic stability of the virus propagated in Vero cells and MRC-5 cells. Sequence analysis revealed that the DEN-4 propagated in MRC-5 cells maintained a high genetic stability, compared to the virus propagated in Vero cells. Amino acid substitutions of Gly104Cys and Phe108Ile were detected at 70%, 60%, respectively, in the envelope (E) protein of DEN-4 propagated in Vero cells, whereas a single mutation of Glu345Lys was detected at 50% in E of the virus propagated in MRC-5 cells. Sequencing of multiple clones of three separate DNA fragments spanning 40% of the genome also indicated that DEN-4 propagated in Vero cells contained a higher number of mutations than the virus growing in MRC-5 cells. Although Vero cells yielded a peak virus titer approximately 1 to 17 folds higher than MRC-5 cells, cloned DEN-4 from MRC-5 cells maintained a greater stability than the virus from Vero cells. Serum-free microcarrier cultures of MRC-5 cells offer a potentially valuable system for the large-scale production of live-attenuated DEN vaccines. PMID:18350148

  3. Thymic Stromal Lymphopoietin Promotes Fibrosis and Activates Mitogen-Activated Protein Kinases in MRC-5 Cells

    PubMed Central

    Li, Li; Tang, Su; Tang, Xiaodong

    2016-01-01

    Background Acute lung injury (ALI) is a life-threatening hypoxemic respiratory disorder with high incidence and mortality. ALI usually manifests as widespread inflammation and lung fibrosis with the accumulation of pro-inflammatory and pro-fibrotic factors and collagen. Thymic stromal lymphopoietin (TSLP) has a significant role in regulation of inflammation but little is known about its roles in lung fibrosis or ALI. This study aimed to define the role and possible regulatory mechanism of TSLP in lung fibrosis. Material/Methods We cultured human lung fibroblast MRC-5 cells and overexpressed or inhibited TSLP by the vector or small interfering RNA transfection. Then, the pro-fibrotic factors skeletal muscle actin alpha (α-SMA) and collagen I, and the 4 mitogen-activated protein kinases (MAPKs) – MAPK7, p38, extracellular signal-regulated kinase 1 (ERK1), and c-Jun N-terminal kinase 1 (JNK1) – were detected by Western blot. Results Results showed that TSLP promoted the production of α-SMA and collagen I (P<0.001), suggesting that it can accelerate MRC-5 cell fibrosis. It also activated the expression of MAPK7, p-p38, p-ERK1, and p-JNK1, but the total MAPK7, p-38, ERK1, and JNK1 protein levels were mostly unchanged, indicating the activated MAPK pathways that might contribute to the promotion of cell fibrosis. Conclusions This study shows the pro-fibrotic role of TSLP in MRC-5 cells, suggesting TSLP is a potential therapeutic target for treating lung fibrosis in ALI. It possibly functions via activating MAPKs. These findings add to our understanding of the mechanism of fibrosis. PMID:27385084

  4. Cadmium-induced oxidative cellular damage in human fetal lung fibroblasts (MRC-5 cells).

    PubMed Central

    Yang, C F; Shen, H M; Shen, Y; Zhuang, Z X; Ong, C N

    1997-01-01

    Epidemiological evidence suggests that cadmium (Cd) exposure causes pulmonary damage such as emphysema and lung cancer. However, relatively little is known about the mechanisms involved in Cd pulmonary toxicity. In the present study, the effects of Cd exposure on human fetal lung fibroblasts (MRC-5 cells) were evaluated by determination of lipid peroxidation, intra-cellular production of reactive oxygen species (ROS), and changes of mitochondrial membrane potential. A time- and dose-dependent increase of both lactate dehydrogenase leakage and malondialdehyde formation was observed in Cd-treated cells. A close correlation between these two events suggests that lipid peroxidation may be one of the main pathways causing its cytotoxicity. It was also noted that Cd-induced cell injury and lipid peroxidation were inhibited by catalase and superoxide dismutase, two antioxidant enzymes. By using the fluorescent probe 2',7'-dichlorofluorescin diacetate, a significant increase of ROS production in Cd-treated MRC-5 cells was detected. The inhibition of dichlorofluorescein fluorescence by catalase, not superoxide dismutase, suggests that hydrogen peroxide is the main ROS involved. Moreover, the significant dose-dependent changes of mitochondrial membrane potential in Cd-treated MRC-5 cells, demonstrated by increased fluorescence of rhodamine 123 examined using a laser-scanning confocal microscope, also indicate the involvement of mitochondrial damage in Cd cytotoxicity. These findings provide in vitro evidence that Cd causes oxidative cellular damage in human fetal lung fibroblasts, which may be closely associated with the pulmonary toxicity of Cd. Images Figure 1. A Figure 1. B Figure 2. A Figure 2. B Figure 3. A Figure 3. B Figure 4. A Figure 4. B Figure 5. Figure 6. Figure 7. A Figure 7. B PMID:9294717

  5. Thymic Stromal Lymphopoietin Promotes Fibrosis and Activates Mitogen-Activated Protein Kinases in MRC-5 Cells.

    PubMed

    Li, Li; Tang, Su; Tang, Xiaodong

    2016-01-01

    BACKGROUND Acute lung injury (ALI) is a life-threatening hypoxemic respiratory disorder with high incidence and mortality. ALI usually manifests as widespread inflammation and lung fibrosis with the accumulation of pro-inflammatory and pro-fibrotic factors and collagen. Thymic stromal lymphopoietin (TSLP) has a significant role in regulation of inflammation but little is known about its roles in lung fibrosis or ALI. This study aimed to define the role and possible regulatory mechanism of TSLP in lung fibrosis. MATERIAL AND METHODS We cultured human lung fibroblast MRC-5 cells and overexpressed or inhibited TSLP by the vector or small interfering RNA transfection. Then, the pro-fibrotic factors skeletal muscle actin alpha (α-SMA) and collagen I, and the 4 mitogen-activated protein kinases (MAPKs) - MAPK7, p38, extracellular signal-regulated kinase 1 (ERK1), and c-Jun N-terminal kinase 1 (JNK1) - were detected by Western blot. RESULTS Results showed that TSLP promoted the production of α-SMA and collagen I (P<0.001), suggesting that it can accelerate MRC-5 cell fibrosis. It also activated the expression of MAPK7, p-p38, p-ERK1, and p-JNK1, but the total MAPK7, p-38, ERK1, and JNK1 protein levels were mostly unchanged, indicating the activated MAPK pathways that might contribute to the promotion of cell fibrosis. CONCLUSIONS This study shows the pro-fibrotic role of TSLP in MRC-5 cells, suggesting TSLP is a potential therapeutic target for treating lung fibrosis in ALI. It possibly functions via activating MAPKs. These findings add to our understanding of the mechanism of fibrosis. PMID:27385084

  6. Adhesion of MRC-5 and A549 cells on poly(dimethylsiloxane) surface modified by proteins.

    PubMed

    Zuchowska, Agnieszka; Kwiatkowski, Piotr; Jastrzebska, Elzbieta; Chudy, Michal; Dybko, Artur; Brzozka, Zbigniew

    2016-02-01

    PDMS is a very popular material used for fabrication of Lab-on-a-Chip systems for biological applications. Although PDMS has numerous advantages, it is a highly hydrophobic material, which inhibits adhesion and proliferation of the cells. PDMS surface modifications are used to enrich growth of the cells. However, due to the fact that each cell type has specific adhesion, it is necessary to optimize the parameters of these modifications. In this paper, we present an investigation of normal (MRC-5) and carcinoma (A549) human lung cell adhesion and proliferation on modified PDMS surfaces. We have chosen these cell types because often they are used as models for basic cancer research. To the best of our knowledge, this is the first presentation of this type of investigation. The combination of a gas-phase processing (oxygen plasma or ultraviolet irradiation) and wet chemical methods based on proteins' adsorption was used in our experiments. Different proteins such as poly-l-lysine, fibronectin, laminin, gelatin, and collagen were incubated with the activated PDMS samples. To compare with other works, here, we also examined how ratio of prepolymer to curing agent (5:1, 10:1, and 20:1) influences PDMS hydrophilicity during further modifications. The highest adhesion of the tested cells was observed for the usage of collagen, regardless of PDMS ratio. However, the MRC-5 cell line demonstrated better adhesion than A549 cells. This is probably due to the difference in their morphology and type (normal/cancer). PMID:26311334

  7. Silica Nanoparticles Induce Oxidative Stress and Autophagy but Not Apoptosis in the MRC-5 Cell Line

    PubMed Central

    Petrache Voicu, Sorina Nicoleta; Dinu, Diana; Sima, Cornelia; Hermenean, Anca; Ardelean, Aurel; Codrici, Elena; Stan, Miruna Silvia; Zărnescu, Otilia; Dinischiotu, Anca

    2015-01-01

    This study evaluated the in vitro effects of 62.5 µg/mL silica nanoparticles (SiO2 NPs) on MRC-5 human lung fibroblast cells for 24, 48 and 72 h. The nanoparticles’ morphology, composition, and structure were investigated using high resolution transmission electron microscopy, selected area electron diffraction and X-ray diffraction. Our study showed a decreased cell viability and the induction of cellular oxidative stress as evidenced by an increased level of reactive oxygen species (ROS), carbonyl groups, and advanced oxidation protein products after 24, 48, and 72 h, as well as a decreased concentration of glutathione (GSH) and protein sulfhydryl groups. The protein expression of Hsp27, Hsp60, and Hsp90 decreased at all time intervals, while the level of protein Hsp70 remained unchanged during the exposure. Similarly, the expression of p53, MDM2 and Bcl-2 was significantly decreased for all time intervals, while the expression of Bax, a marker for apoptosis, was insignificantly downregulated. These results correlated with the increase of pro-caspase 3 expression. The role of autophagy in cellular response to SiO2 NPs was demonstrated by a fluorescence-labeled method and by an increased level of LC3-II/LC3-I ratio. Taken together, our data suggested that SiO2 NPs induced ROS-mediated autophagy in MRC-5 cells as a possible mechanism of cell survival. PMID:26690408

  8. Role of protein kinase C-η in cigarette smoke extract-induced apoptosis in MRC-5-cells.

    PubMed

    Son, E S; Kyung, S Y; Lee, S P; Jeong, S H; Shin, J Y; Ohba, M; Yeo, E J; Park, J W

    2015-09-01

    Cigarette smoke (CS) is a major risk factor for emphysema, which causes cell death in structural cells of the lung by mechanisms that are still not completely understood. We demonstrated previously that CS extract (CSE) induces caspase activation in MRC-5 human lung fibroblasts, activated protein kinase C-η (PKC-η), and translocated PKC-η from the cytosol to the membrane. The objective of this study was to investigate the involvement of PKC-η activation in a CSE-induced extrinsic apoptotic pathway. We determined that CSE increases expression of caspase 3 and 8 cleavage in MRC-5 cells and overexpression of PKC-η significantly increased expression of caspase 3 and 8 cleavage compared with control LacZ-infected cells. In contrast, dominant negative (dn) PKC-η inhibited apoptosis in MRC-5 cells exposed to CSE and decreased expression of caspase 3 and 8 compared with control cells. Exposure to 10% CSE for >8 h significantly increased lactate dehydrogenase release in PKC-η-infected cells compared with LacZ-infected cells. Additionally, PKC-η-infected cells had an increased number of Hoechst 33342 stained nuclei compared with LacZ-infected cells, while dn PKC-η-infected cells exhibited fewer morphological changes than LacZ-infected cells under phase-contrast microscopy. In conclusion, PKC-η activation plays a pro-apoptotic role in CSE-induced extrinsic apoptotic pathway in MRC-5 cells. These results suggest that modulation of PKC-η may be a useful tool for regulating the extrinsic apoptosis of MRC-5 cells by CSE and may have therapeutic potential in the treatment of CS-induced lung injury. PMID:25504686

  9. Extracellular Caspase-8 Dependent Apoptosis on HeLa Cancer Cells and MRC-5 Normal Cells by ICD-85 (Venom Derived Peptides)

    PubMed Central

    Zare-Mirakabadi, Abbas; Sarzaeem, Ali

    2012-01-01

    Background Our previous studies revealed an inhibitory effect of ICD-85 (venom derived peptides) on MDA-MB231 and HL-60 cell lines, through induction of apoptosis. The purpose of this study was to investigate apoptosis-induced mechanism on HeLa and MRC-5 cells by ICD-85 through activation of caspase-8. Methods Cell viability, cytosolic enzyme Lactate Dehydrogenase (LDH) and cell morphology were assessed under unexposed and ICD-85 exposed conditions.Caspase-8 activity was assayed by caspase-8 colorimetric assay Kit. Results The results show that Inhibitory Concentration 50% (IC50) value of ICD-85 for HeLa cells at 24 h was estimated and found to be 25.32±2.15 µg/mL. Furthermore, treatment of HeLa cells with ICD-85 at concentrations of 1.6×10 and 2.6×10 µg/mL did not significantly increase LDH release. Morphological changes in HeLa cells on treatment with ICD-85 compared with untreated HeLa cells consistent with an apoptotic mechanism of cell death, such as cell shrinkage which finally results in the generation of apoptotic bodies. However, when MRC-5 cells were exposed to ICD-85, no significant changes in cell morphology and LDH were observed at concentrations below 2.6×10µg/ml. Also, the apoptosis-induction mechanism by ICD-85 on HeLa cells was found through activation of caspase-8 and the activity of caspase-8 in HeLa cells was 1.5 folds more than its activity on MRC-5 cells. Conclusion Therefore, the apoptosis-induced mechanisms by ICD-85 are through activation of caspase-8 and concerning the least cytotoxic effect on MRC-5 cells, ICD-85 may be used as anticancer compound to inhibit growth of cancer cells. PMID:25352970

  10. Assessing the survival of MRC5 and a549 cell lines upon exposure to pyruvic Acid, sodium citrate and sodium bicarbonate - biomed 2013.

    PubMed

    Farah, Ibrahim O; Lewis, Veshell L; Ayensu, Wellington K; Cameron, Joseph A

    2013-01-01

    Lung cancer is among the most prevalent and deadly cancers in United States. In general, cancer cells are known to exhibit higher rates of glycolysis in comparison to normal cells. In attempting to exploit this unique cancer-dependent ATP generation phenomenon, it was our hypothesis that upon exposure to organic inhibitors of glycolysis, cancer cells would not survive normally and that their growth and viability would be vastly decreased; essential glycolytic ATP production will be exhausted to the point of collapsing energy utilization. Furthermore, we hypothesize that no negative effect would be seen with exposures to organic inhibitors for normal lung cells. The human lung fibroblast MRC-5 and the human A549 alveolar epithelial cell lines were used as in vitro models of normal lung and lung cancers respectively. Using standard methods, both cell lines were maintained and exposed to pyruvic acid, sodium citrate and sodium bicarbonate reagents at concentration levels ranging from 31.3-2,000 µg/ml in 96 well plates in quadruplets and experiments repeated at least three times using MTT, and cell counting (T4 Cellometer) assays as well as phase-contrast photo-imaging for parallel morphological displays of any changes in the course of their vitality and metabolic activities. Our results indicate that exposure of both cell lines to these organics resulted in concentration dependent cell destruction/cell survival depending on the cell line exposed. Pyruvic acid, sodium citrate and sodium bicarbonate showed statistically significant (p<0.05) differential negative effects on the A549 cell line in comparison to its unexposed control as well as to their effects on the MRC-5 cell line, presenting a potential promise for their use as cancer biotherapeutics. PMID:23686189

  11. The influence of non-DNA-targeted effects on carbon ion–induced low-dose hyper-radiosensitivity in MRC-5 cells

    PubMed Central

    Ye, Fei; Ning, Jing; Liu, Xinguo; Jin, Xiaodong; Wang, Tieshan; Li, Qiang

    2016-01-01

    Low-dose hyper-radiosensitivity (LDHRS) is a hot topic in normal tissue radiation protection. However, the primary causes for LDHRS still remain unclear. In this study, the impact of non-DNA-targeted effects (NTEs) on high-LET radiation–induced LDHRS was investigated. Human normal lung fibroblast MRC-5 cells were irradiated with high-LET carbon ions, and low-dose biological effects (in terms of various bio-endpoints, including colony formation, DNA damage and micronuclei formation) were detected under conditions with and without gap junctional intercellular communication (GJIC) inhibition. LDHRS was observed when the radiation dose was <0.2 Gy for all bio-endpoints under investigation, but vanished when the GJIC was suppressed. Based on the probability of cells being hit and micro-dose per cell calculation, we deduced that the LDHRS phenomenon came from the combined action of direct hits and NTEs. We concluded that GJIC definitely plays an important role in cytotoxic substance spreading in high-LET carbon ion–induced LDHRS. PMID:26559335

  12. Lack of effects on key cellular parameters of MRC-5 human lung fibroblasts exposed to 370 mT static magnetic field.

    PubMed

    Romeo, Stefania; Sannino, Anna; Scarfì, Maria Rosaria; Massa, Rita; d'Angelo, Raffaele; Zeni, Olga

    2016-01-01

    The last decades have seen increased interest toward possible adverse effects arising from exposure to intense static magnetic fields. This concern is mainly due to the wider and wider applications of such fields in industry and clinical practice; among them, Magnetic Resonance Imaging (MRI) facilities are the main sources of exposure to static magnetic fields for both general public (patients) and workers. In recent investigations, exposures to static magnetic fields have been demonstrated to elicit, in different cell models, both permanent and transient modifications in cellular endpoints critical for the carcinogenesis process. The World Health Organization has therefore recommended in vitro investigations as important research need, to be carried out under strictly controlled exposure conditions. Here we report on the absence of effects on cell viability, reactive oxygen species levels and DNA integrity in MRC-5 human foetal lung fibroblasts exposed to 370 mT magnetic induction level, under different exposure regimens. Exposures have been performed by using an experimental apparatus designed and realized for operating with the static magnetic field generated by permanent magnets, and confined in a magnetic circuit, to allow cell cultures exposure in absence of confounding factors like heating or electric field components. PMID:26762783

  13. Lack of effects on key cellular parameters of MRC-5 human lung fibroblasts exposed to 370 mT static magnetic field

    PubMed Central

    Romeo, Stefania; Sannino, Anna; Scarfì, Maria Rosaria; Massa, Rita; d’Angelo, Raffaele; Zeni, Olga

    2016-01-01

    The last decades have seen increased interest toward possible adverse effects arising from exposure to intense static magnetic fields. This concern is mainly due to the wider and wider applications of such fields in industry and clinical practice; among them, Magnetic Resonance Imaging (MRI) facilities are the main sources of exposure to static magnetic fields for both general public (patients) and workers. In recent investigations, exposures to static magnetic fields have been demonstrated to elicit, in different cell models, both permanent and transient modifications in cellular endpoints critical for the carcinogenesis process. The World Health Organization has therefore recommended in vitro investigations as important research need, to be carried out under strictly controlled exposure conditions. Here we report on the absence of effects on cell viability, reactive oxygen species levels and DNA integrity in MRC-5 human foetal lung fibroblasts exposed to 370 mT magnetic induction level, under different exposure regimens. Exposures have been performed by using an experimental apparatus designed and realized for operating with the static magnetic field generated by permanent magnets, and confined in a magnetic circuit, to allow cell cultures exposure in absence of confounding factors like heating or electric field components. PMID:26762783

  14. Oxidized LDL induces an oxidative stress and activates the tumor suppressor p53 in MRC5 human fibroblasts.

    PubMed

    Mazière, C; Meignotte, A; Dantin, F; Conte, M A; Mazière, J C

    2000-09-24

    It is now well established that oxidized LDL (OxLDL) is involved in the progression of the atheromatous plaque via several mechanisms, including its cytotoxicity toward the arterial wall. Our study demonstrates that a 4-h incubation of cultured human fibroblasts with 25-75 microg/ml OxLDL induced a dose-dependent increase in the intracellular levels of reactive oxygen species (ROS) and lipid peroxidation end products (TBARS). This effect was markedly prevented by the antioxidant vitamin E. The lipid extract of OxLDL partially reproduced the action of the LDL particle itself. Concomitantly, OxLDL enhanced the DNA binding activity of p53 measured by electrophoretic mobility shift assay, and the intracellular protein level of p53 determined by immunoblot analysis. Cycloheximide prevented the OxLDL-induced augmentation in both p53 binding activity and intracellular level. Again, the lipid extract of OxLDL reproduced the effect of OxLDL on p53 binding activity, whereas vitamin E prevented it. These results indicate that OxLDL initiates an intracellular oxidative stress by means of its lipid peroxidation products, leading to the activation of the tumour suppressor p53 by enhancement of p53 protein synthesis. This effect might be related to the cytotoxic effect of OxLDL since the activation of p53 is known to lead to cell cycle arrest, necrosis or apoptosis. PMID:11027537

  15. Rapid detection of herpes simplex virus with fluorescein-labeled Helix pomatia lectin.

    PubMed Central

    Slifkin, M; Cumbie, R

    1989-01-01

    The use of fluorescein-conjugated Helix pomatia lectin was shown to be as effective as fluorescein-conjugated monoclonal antibody reagents for the detection and differentiation of herpes simplex virus type 1 and type 2 (HSV-1 and HSV-2) in MRC-5 cell culture. Cells infected with HSV-1 generally displayed a pattern of nongranular or diffuse fluorescence, while cells infected with HSV-2 were identified by the production of fluorescent grains and flecks. This unique nonimmunological reagent, when used in combination with low-speed centrifugation, provides a remarkably specific, sensitive, rapid, and cost-effective means to detect HSV-infected MRC-5 or BHK-21 cells as early as 20 h postinoculation. In contrast to the immunofluorescence method, the serotypes of HSV can be differentiated with only one fluorescein-H. pomatia reagent in MRC-5 cell cultures. Images PMID:2545739

  16. Data on cell viability of human lung fibroblasts treated with polyphenols-rich extract from Plinia trunciflora (O. Berg) Kausel)

    PubMed Central

    Calloni, Caroline; Silva Santos, Luciana Fernandes; Martínez, Luana Soares; Salvador, Mirian

    2016-01-01

    Jaboticaba (Plinia trunciflora (O. Berg) Kausel) is a Brazilian native berry, which presents high levels of polyphenols. Here we provide data related to the effects of the polyphenols-rich extract from jaboticaba on the cell viability, mitochondrial complex I (nicotinamide adenine dinucleotide/CoQ oxidoreductase) activity and ATP biosynthesis of human lung fibroblast cells (MRC-5) treated with amiodarone. The data presented in this article demonstrate that the polyphenols-rich extract from jaboticaba was able to reduce cell death as well as the decrease in complex I activity and ATP biosynthesis caused by amiodarone in MRC-5 cells. PMID:26870757

  17. Data on cell viability of human lung fibroblasts treated with polyphenols-rich extract from Plinia trunciflora (O. Berg) Kausel).

    PubMed

    Calloni, Caroline; Silva Santos, Luciana Fernandes; Martínez, Luana Soares; Salvador, Mirian

    2016-03-01

    Jaboticaba (Plinia trunciflora (O. Berg) Kausel) is a Brazilian native berry, which presents high levels of polyphenols. Here we provide data related to the effects of the polyphenols-rich extract from jaboticaba on the cell viability, mitochondrial complex I (nicotinamide adenine dinucleotide/CoQ oxidoreductase) activity and ATP biosynthesis of human lung fibroblast cells (MRC-5) treated with amiodarone. The data presented in this article demonstrate that the polyphenols-rich extract from jaboticaba was able to reduce cell death as well as the decrease in complex I activity and ATP biosynthesis caused by amiodarone in MRC-5 cells. PMID:26870757

  18. Biocompatibility test of polyhydroxybutyrate on human cell line.

    PubMed

    Raouf, A A; Samsudin, A R; Al-Joudi, F S; Shamsuria, O

    2004-05-01

    The human fibroblast MRC-5 cells incubated with PHB granules (TM) added at a final concentration of 4 mg/ml showed a time-course pattern of survival. The percentages of dead cells obtained were at the rate of 3.8% after 7 days, respectively. When the MRC-5 cells grown in different material, using the test concentration of 4 mg/ml PCM, they were found to show a similar time-course increasing pattern of death as that obtained with PHB. However, the death was noted in the cells incubated for 7 days, the death rates obtained was 40.54% respectively. PMID:15468838

  19. Tumorigenicity Evaluation of Umbilical Cord Blood-derived Mesenchymal Stem Cells

    PubMed Central

    Park, Sang-Jin; Kim, Hyun-Jung; Kim, Woojin; Kim, Ok-Sun; Lee, Sunyeong; Han, Su-Yeon; Jeong, Eun Ju; Park, Hyun-shin; Kim, Hea-Won; Moon, Kyoung-Sik

    2016-01-01

    Mesenchymal stem cells (MSCs) have been identified in multiple types of tissue and exhibit characteristic self-renewal and multi-lineage differentiation abilities. However, the possibility of oncogenic transformation after transplantation is concerning. In this study, we investigated the tumorigenic potential of umbilical cord blood-derived MSCs (hUCB-MSCs) relative to MRC-5 and HeLa cells (negative and positive controls, respectively) both in vitro and in vivo. To evaluate tumorigenicity in vitro, anchorage-independent growth was assessed using the soft agar colony formation assay. hUCB-MSCs and MRC-5 cells formed few colonies, while HeLa cells formed a greater number of larger colonies, indicating that hUCB-MSCs and MRC-5 cells do not have anchorage-independent proliferation potential. To detect tumorigenicity in vivo, hUCB-MSCs were implanted as a single subcutaneous injection into BALB/c-nu mice. No tumor formation was observed in mice transplanted with hUCB-MSCs or MRC-5 cells based on macroand microscopic examinations; however, all mice transplanted with HeLa cells developed tumors that stained positive for a human gene according to immunohistochemical analysis. In conclusion, hUCB-MSCs do not exhibit tumorigenic potential based on in vitro and in vivo assays under our experimental conditions, providing further evidence of their safety for clinical applications. PMID:27437093

  20. A role for p53 in selenium-induced senescence

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The tumor suppressor p53 and the ataxia-telangiectasia mutated (ATM) kinase play important roles in the senescence response to oncogene activation and DNA damage. We have previously shown that selenium-containing compounds can activate an ATM-dependent senescence response in MRC-5 normal fibroblasts...

  1. Dengue Type 4 Live-Attenuated Vaccine Viruses Passaged in Vero Cells Affect Genetic Stability and Dengue-Induced Hemorrhaging in Mice

    PubMed Central

    Lee, Hsiang-Chi; Yen, Yu-Ting; Chen, Wen-Yu; Wu-Hsieh, Betty A.; Wu, Suh-Chin

    2011-01-01

    Most live-attenuated tetravalent dengue virus vaccines in current clinical trials are produced from Vero cells. In a previous study we demonstrated that an infectious cDNA clone-derived dengue type 4 (DEN-4) virus retains higher genetic stability in MRC-5 cells than in Vero cells. For this study we investigated two DEN-4 viruses: the infectious cDNA clone-derived DEN-4 2A and its derived 3′ NCR 30-nucleotide deletion mutant DEN-4 2AΔ30, a vaccine candidate. Mutations in the C-prM-E, NS2B-NS3, and NS4B-NS5 regions of the DEN genome were sequenced and compared following cell passages in Vero and MRC-5 cells. Our results indicate stronger genetic stability in both viruses following MRC-5 cell passages, leading to significantly lower RNA polymerase error rates when the DEN-4 virus is used for genome replication. Although no significant increases in virus titers were observed following cell passages, DEN-4 2A and DEN-4 2AΔ30 virus titers following Vero cell passages were 17-fold to 25-fold higher than titers following MRC-5 cell passages. Neurovirulence for DEN-4 2A and DEN-4 2AΔ30 viruses increased significantly following passages in Vero cells compared to passages in MRC-5 cells. In addition, more severe DEN-induced hemorrhaging in mice was noted following DEN-4 2A and DEN-4 2AΔ30 passages in Vero cells compared to passages in MRC-5 cells. Target mutagenesis performed on the DEN-4 2A infectious clone indicated that single point mutation of E-Q438H, E-V463L, NS2B-Q78H, and NS2B-A113T imperatively increased mouse hemorrhaging severity. The relationship between amino acid mutations acquired during Vero cell passage and enhanced DEN-induced hemorrhages in mice may be important for understanding DHF pathogenesis, as well as for the development of live-attenuated dengue vaccines. Taken together, the genetic stability, virus yield, and DEN-induced hemorrhaging all require further investigation in the context of live-attenuated DEN vaccine development. PMID:22053180

  2. In vitro evaluation of cytotoxic and mutagenic activity of avarol.

    PubMed

    Pejin, Boris; Iodice, Carmine; Kojic, Vesna; Jakimov, Dimitar; Lazovic, Milica; Tommonaro, Giuseppina

    2016-06-01

    The cytotoxicity of avarol, a main secondary metabolite of the Mediterranean sponge Dysidea avara, was in vitro screened by MTT assay against four human tumour cell lines. The colon HT-29 tumour cells practically showed to be the only sensitive ones towards this organic compound. No toxicity was found against the fetal lung fibroblast MRC-5 cells at the concentrations tested. In comparison with doxorubicin, used as a positive control, avarol actually exhibited at least 588-fold less toxicity towards normal MRC-5 cells. Finally, comet assay indicated that DNA fragmentation was almost fivefold higher upon the treatment with doxorubicin, compared to avarol. The obtained results have actually confirmed that avarol scaffold may contribute to development of new cytostatics inspired by nature. PMID:26181496

  3. Gastroprotective mechanisms of action of semisynthetic carnosic acid derivatives in human cells.

    PubMed

    Theoduloz, Cristina; Pertino, Mariano Walter; Schmeda-Hirschmann, Guillermo

    2013-01-01

    Carnosic acid (CA) and its semisynthetic derivatives display relevant gastroprotective effects on HCl/ethanol induced gastric lesions in mice. However, little is known on the mechanisms of action of the new compounds. The aim of the present work was to assess the gastroprotective action mechanisms of CA and its derivatives using human cell culture models. A human gastric adenocarcinoma cell line (AGS) and lung fibroblasts (MRC-5) were used to reveal the possible mechanisms involved. The ability of the compounds to protect cells against sodium taurocholate (NaT)-induced damage, and to increase the cellular reduced glutathione (GSH) and prostaglandin E2 (PGE2) content was determined using AGS cells. Stimulation of cell proliferation was studied employing MRC-5 fibroblasts. Carnosic acid and its derivatives 10-18 raised GSH levels in AGS cells. While CA did not increase the PGE2 content in AGS cells, all derivatives significantly stimulated PGE2 synthesis, the best effect being found for the 12-O-indolebutyrylmethylcarnosate 13. A significant increase in MRC-5 fibroblast proliferation was observed for the derivatives 7 and 16-18. The antioxidant effect of the compounds was assessed by the inhibition of lipid peroxidation in human erythrocyte membranes, scavenging of superoxide anion and DPPH discoloration assay. The new CA derivatives showed gastroprotective effects by different mechanisms, including protection against cell damage induced by NaT, increase in GSH content, stimulation of PGE2 synthesis and cell proliferation. PMID:24399049

  4. Antioxidant and Antigenotoxic Activities of the Brazilian Pine Araucaria angustifolia (Bert.) O. Kuntze

    PubMed Central

    Souza, Márcia O.; Branco, Cátia S.; Sene, Juliane; DallAgnol, Rafaela; Agostini, Fabiana; Moura, Sidnei; Salvador, Mirian

    2014-01-01

    Polyphenols are natural products with recognized potential in drug discovery and development. We aimed to evaluate the polyphenolic profile of Araucaria angustifolia bracts, and their ability to scavenge reactive species. The antioxidant and antigenotoxic effects of A. angustifolia polyphenols in MRC5 human lung fibroblast cells were also explored. The total polyphenol extract of A. angustifolia was determined by the Folin–Ciocalteu reagent and the chemical composition was confirmed by HPLC. Reactive oxygen species’ scavenging ability was investigated by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) method and superoxide dismutase- and catalase-like activities. The protective effect of the extract in MRC5 cells was carried out by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide method and the determination of oxidative lipids, protein, and DNA (alkaline and enzymatic comet assay) damage. Total phenolic content of the A. angustifolia extract was 1586 ± 14.53 mg gallic acid equivalents/100 g of bracts. Catechin, epicatechin, quercetin, and apigenin were the major polyphenols. The extract was able to scavenge DPPH radicals and exhibited potent superoxide dismutase and catalase-like activities. Moreover, A. angustifolia extract significantly protected MRC5 cells against H2O2-induced mortality and oxidative damage to lipids, proteins, and DNA. Therefore, A. angustifolia has potential as a source of bioactive chemical compounds. PMID:26784661

  5. Characterization of Rift Valley Fever Virus MP-12 Strain Encoding NSs of Punta Toro Virus or Sandfly Fever Sicilian Virus

    PubMed Central

    Lihoradova, Olga A.; Indran, Sabarish V.; Kalveram, Birte; Lokugamage, Nandadeva; Head, Jennifer A.; Gong, Bin; Tigabu, Bersabeh; Juelich, Terry L.; Freiberg, Alexander N.; Ikegami, Tetsuro

    2013-01-01

    Rift Valley fever virus (RVFV; genus Phlebovirus, family Bunyaviridae) is a mosquito-borne zoonotic pathogen which can cause hemorrhagic fever, neurological disorders or blindness in humans, and a high rate of abortion in ruminants. MP-12 strain, a live-attenuated candidate vaccine, is attenuated in the M- and L-segments, but the S-segment retains the virulent phenotype. MP-12 was manufactured as an Investigational New Drug vaccine by using MRC-5 cells and encodes a functional NSs gene, the major virulence factor of RVFV which 1) induces a shutoff of the host transcription, 2) inhibits interferon (IFN)-β promoter activation, and 3) promotes the degradation of dsRNA-dependent protein kinase (PKR). MP-12 lacks a marker for differentiation of infected from vaccinated animals (DIVA). Although MP-12 lacking NSs works for DIVA, it does not replicate efficiently in type-I IFN-competent MRC-5 cells, while the use of type-I IFN-incompetent cells may negatively affect its genetic stability. To generate modified MP-12 vaccine candidates encoding a DIVA marker, while still replicating efficiently in MRC-5 cells, we generated recombinant MP-12 encoding Punta Toro virus Adames strain NSs (rMP12-PTNSs) or Sandfly fever Sicilian virus NSs (rMP12-SFSNSs) in place of MP-12 NSs. We have demonstrated that those recombinant MP-12 viruses inhibit IFN-β mRNA synthesis, yet do not promote the degradation of PKR. The rMP12-PTNSs, but not rMP12-SFSNSs, replicated more efficiently than recombinant MP-12 lacking NSs in MRC-5 cells. Mice vaccinated with rMP12-PTNSs or rMP12-SFSNSs induced neutralizing antibodies at a level equivalent to those vaccinated with MP-12, and were efficiently protected from wild-type RVFV challenge. The rMP12-PTNSs and rMP12-SFSNSs did not induce antibodies cross-reactive to anti-RVFV NSs antibody and are therefore applicable to DIVA. Thus, rMP12-PTNSs is highly efficacious, replicates efficiently in MRC-5 cells, and encodes a DIVA marker, all of which are

  6. Platinum(II) phenanthroimidazole G-quadruplex ligand induces selective telomere shortening in A549 cancer cells.

    PubMed

    Mancini, Johanna; Rousseau, Philippe; Castor, Katherine J; Sleiman, Hanadi F; Autexier, Chantal

    2016-02-01

    Telomere maintenance, achieved by the binding of protective shelterin capping proteins to telomeres and by either telomerase or a recombination-based alternative lengthening of telomere (ALT) mechanism, is critical for cell proliferation and survival. Extensive telomere shortening or loss of telomere integrity activates DNA damage checkpoints, leading to cell senescence or death. Although telomerase upregulation is an attractive target for anti-cancer therapy, the lag associated with telomere shortening and the potential activation of ALT pose a challenge. An alternative approach is to modify telomere interactions with binding proteins (telomere uncapping). G-quadruplex ligands stabilize structures generated from single-stranded G-rich 3'-telomere end (G-quadruplex) folding, which in principle, cannot be elongated by telomerase, thus leading to telomere shortening. Ligands can also mediate rapid anti-proliferative effects by telomere uncapping. We previously reported that the G-quadruplex ligand, phenylphenanthroimidazole ethylenediamine platinum(II) (PIP), inhibits telomerase activity in vitro[47]. In the current study, a long-term seeding assay showed that PIP significantly inhibited the seeding capacity of A549 lung cancer cells and to a lesser extent primary MRC5 fibroblast cells. Importantly, treatment with PIP caused a significant dose- and time-dependent decrease in average telomere length of A549 but not MRC5 cells. Moreover, cell cycle analysis revealed a significant increase in G1 arrest upon treatment of A549 cells, but not MRC5 cells. Both apoptosis and cellular senescence may contribute to the anti-proliferative effects of PIP. Our studies validate the development of novel and specific therapeutic ligands targeting telomeric G-quadruplex structures in cancer cells. PMID:26724375

  7. Three-dimensional mammalian cell growth on nonwoven polyester fabric disks.

    PubMed

    Petti, S A; Lages, A C; Sussman, M V

    1994-01-01

    Small disks of nonwoven polyester fabric (NWPF), similar to Fibra-Cel carriers, were surface treated with strong acid and used as a high surface area support matrix for in vitro culture of anchorage dependent MRC-5 cells. The disks can be autoclaved, and require inocula concentrations of only 2-5% of the final cell densities, which have reached 10(8) cells/mL of disk bed volume. Scanning electron microscopy photographs shown herein reveal that cells grow in a multilayered fashion between the randomly arrayed fibers of the nonwoven fabric, emulating in vivo growth. PMID:7522468

  8. Hydroperoxy-cycloartane triterpenoids from the leaves of Markhamia lutea, a plant ingested by wild chimpanzees.

    PubMed

    Lacroix, Damien; Prado, Soizic; Deville, Alexandre; Krief, Sabrina; Dumontet, Vincent; Kasenene, John; Mouray, Elisabeth; Bories, Christian; Bodo, Bernard

    2009-07-01

    In the framework of the phytochemical investigation of plant species eaten by wild chimpanzees in their natural environment in Uganda, leaf samples of Markhamia lutea were selected and collected. The crude ethyl acetate extract of M. lutea leaves exhibited significant in vitro anti-parasitic activity and low cytotoxicity against MRC5 and KB cells. Fractionation of this extract led to six cycloartane triterpenoids, musambins A-C and their 3-O-xyloside derivatives musambiosides A-C. The structures were elucidated on the basis of spectral studies including mass spectroscopy and extensive 2D NMR. Most of the compounds exhibited mild anti-leishmanial and anti-trypanosomal activities. PMID:19679323

  9. Synthesis, characterization and biological activity of three square-planar complexes of Ni(II) with ethyl (2E)-2-[2-(diphenylphosphino)benzylidene]hydrazinecarboxylate and monodentate pseudohalides.

    PubMed

    Milenković, Milica; Bacchi, Alessia; Cantoni, Giulia; Vilipić, Jovana; Sladić, Dušan; Vujčić, Miroslava; Gligorijević, Nevenka; Jovanović, Katarina; Radulović, Siniša; Anđelković, Katarina

    2013-10-01

    Three square-planar complexes of nickel(II) with the tridentate condensation derivative of 2-(diphenylphosphino)benzaldehyde and ethyl carbazate, and monodentate pseudohalides, have been synthesized. Their crystal structures have been determined. All the complexes showed a significant antifungal activity, while only the azido complex displayed antibacterial activity. All the complexes were cytotoxic to a panel of six tumor cell lines, the azido complex showing a similar activity as cisplatin to leukemia cell line K562 and lower toxicity to normal MRC-5 cells than that anticancer agent. The complexes interfered with cell cycle of tumor cells and induced plasmid DNA cleavage. PMID:23973823

  10. Spoxazomicins A-C, novel antitrypanosomal alkaloids produced by an endophytic actinomycete, Streptosporangium oxazolinicum K07-0460(T).

    PubMed

    Inahashi, Yuki; Iwatsuki, Masato; Ishiyama, Aki; Namatame, Miyuki; Nishihara-Tsukashima, Aki; Matsumoto, Atsuko; Hirose, Tomoyasu; Sunazuka, Toshiaki; Yamada, Haruki; Otoguro, Kazuhiko; Takahashi, Yōko; Omura, Satoshi; Shiomi, Kazuro

    2011-04-01

    Three novel antitrypanosomal alkaloids, named spoxazomicins A-C, were isolated by silica gel column chromatography and HPLC from the culture broth of a new endophytic actinomycete species, Streptosporangium oxazolinicum K07-0460(T). The structures of the spoxazomicins were elucidated by NMR and X-ray crystal analyses and shown to be new types of pyochelin family antibiotic. Spoxazomicin A showed potent and selective antitrypanosomal activity with an IC₅₀ value of 0.11 μg ml⁻¹ in vitro without cytotoxicity against MRC-5 cells (IC₅₀=27.8 μg ml⁻¹). PMID:21386848

  11. Horner-Wadsworth-Emmons approach to piperlongumine analogues with potent anti-cancer activity.

    PubMed

    Han, Li-Chen; Stanley, Paul A; Wood, Paul J; Sharma, Pallavi; Kuruppu, Anchala I; Bradshaw, Tracey D; Moses, John E

    2016-08-21

    Natural products with anti-cancer activity play a vital role in lead and target discovery. We report here the synthesis and biological evaluation of the plant-derived alkaloid, piperlongumine and analogues. Using a Horner-Wadsworth-Emmons coupling approach, a selection of piperlongumine-like compounds were prepared in good overall yield from a novel phosphonoacetamide reagent. A number of the compounds displayed potent anti-cancer activity against colorectal (HCT 116) and ovarian (IGROV-1) carcinoma cell lines, via a mechanism of action which may involve ROS generation. Contrary to previous reports, no selective action in cancer cell (MRC-5) was observed for piperlongumine analogues. PMID:27443386

  12. Assessment of packed bed bioreactor systems in the production of viral vaccines

    PubMed Central

    2014-01-01

    Vaccination is believed to be the most effective method for the prevention of infectious diseases. Thus it is imperative to develop cost effective and scalable process for the production of vaccines so as to make them affordable for mass use. In this study, performance of a novel disposable iCELLis fixed bed bioreactor system was investigated for the production of some viral vaccines like Rabies, Hepatitis-A and Chikungunya vaccines in comparison to conventional systems like the commercially available packed bed system and roller bottle system. Vero and MRC-5 cell substrates were evaluated for growth parameters in all the three systems maintaining similar seeding density, multiplicity of infection (MOI) and media components. It was observed that Vero cells showed similar growth in all the three bioreactors whereas MRC-5 cells showed better growth in iCELLis Nano system and roller bottle system. Subsequently, the virus infection and antigen production studies also revealed that for Hepatitis-A and Chikungunya iCELLis Nano bioreactor system was better to the commercial packed bed bioreactor and roller bottle systems. Although for rabies antigen production commercially available packed bed bioreactor system was found to be better. This study shows that different bioreactor platforms may be employed for viral vaccine production and iCELLis Nano is one of such new convenient and a stable platform for production of human viral vaccines. PMID:24949260

  13. Novel Zinc(II) Complexes [Zn(atc-Et)2] and [Zn(atc-Ph)2]: In Vitro and in Vivo Antiproliferative Studies

    PubMed Central

    Lopes, Erica de O.; de Oliveira, Carolina G.; da Silva, Patricia B.; Eismann, Carlos E.; Suárez, Carlos A.; Menegário, Amauri A.; Leite, Clarice Q. F.; Deflon, Victor M.; Pavan, Fernando R.

    2016-01-01

    Cisplatin and its derivatives are the main metallodrugs used in cancer therapy. However, low selectivity, toxicity and drug resistance are associated with their use. The zinc(II) (ZnII) thiosemicarbazone complexes [Zn(atc-Et)2] (1) and [Zn(atc-Ph)2] (2) (atc-R: monovalent anion of 2-acetylpyridine N4-R-thiosemicarbazone) were synthesized and fully characterized in the solid state and in solution via elemental analysis, Fourier transform infrared (FTIR), ultraviolet-visible (UV-Vis) and proton nuclear magnetic resonance (1H NMR) spectroscopy, conductometry and single-crystal X-ray diffraction. The cytotoxicity of these complexes was evaluated in the HepG2, HeLa, MDA-MB-231, K-562, DU 145 and MRC-5 cancer cell lines. The strongest antiproliferative results were observed in MDA-MB-231 and HepG2 cells, in which these complexes displayed significant selective toxicity (3.1 and 3.6, respectively) compared with their effects on normal MRC-5 cells. In vivo studies were performed using an alternative model (Artemia salina L.) to assure the safety of these complexes, and the results were confirmed using a conventional model (BALB/c mice). Finally, tests of oral bioavailability showed maximum plasma concentrations of 3029.50 µg/L and 1191.95 µg/L for complexes 1 and 2, respectively. According to all obtained results, both compounds could be considered as prospective antiproliferative agents that warrant further research. PMID:27213368

  14. Sirtuin 1 (SIRT1) Deacetylase Activity and NAD⁺/NADH Ratio Are Imperative for Capsaicin-Mediated Programmed Cell Death.

    PubMed

    Lee, Yi-Hui; Chen, Huei-Yu; Su, Lilly J; Chueh, Pin Ju

    2015-08-26

    Capsaicin is considered a chemopreventive agent by virtue of its selective antigrowth activity, commonly associated with apoptosis, against cancer cells. However, noncancerous cells possess relatively higher tolerance to capsaicin, although the underlying mechanism for this difference remains unclear. Hence, this study aimed to elucidate the differential effects of capsaicin on cell lines from lung tissues by addressing the signal pathway leading to two types of cell death. In MRC-5 human fetal lung cells, capsaicin augmented silent mating type information regulation 1 (SIRT1) deacetylase activity and the intracellular NAD(+)/NADH ratio, decreasing acetylation of p53 and inducing autophagy. In contrast, capsaicin decreased the intracellular NAD(+)/NADH ratio, possibly through inhibition of tumor-associated NADH oxidase (tNOX), and diminished SIRT1 expression leading to enhanced p53 acetylation and apoptosis. Moreover, SIRT1 depletion by RNA interference attenuated capsaicin-induced apoptosis in A549 cancer cells and autophagy in MRC-5 cells, suggesting a vital role for SIRT1 in capsaicin-mediated cell death. Collectively, these data not only explain the differential cytotoxicity of capsaicin but shed light on the distinct cellular responses to capsaicin in cancerous and noncancerous cell lines. PMID:26255724

  15. Chemical Characterization and Cytotoxic Activity of Blueberry Extracts (cv. Misty) Cultivated in Brazil.

    PubMed

    Massarotto, Giovana; Barcellos, Thiago; Garcia, Charlene Silvestrin Celi; Brandalize, Ana Paula Carneiro; Moura, Sidnei; Schwambach, Joséli; Henriques, João Antonio Pêgas; Roesch-Ely, Mariana

    2016-08-01

    Vaccinium corymbosum (L.) varieties cultivation is relatively recent in Brazil, but its production has been intensified given its good adaptability to the Southern Brazil climate. Blueberries are a rich source of phenolic compounds and contain significant levels of anthocyanins, flavonols, chlorogenic acids, and procyanidins, which lead to different biological activities. Chemical identification of skin and whole hydroalcoholic blueberry extracts (ExtSB and ExtWB) revealed the presence of anthocyanins concentrated in the skin and others chemicals compounds as quercetin glycosides, proanthocyanins dimers, citric, and chlorogenic acid in the pulp. Selectivity for tumor cell lines (Hep-2, HeLa, HT-29) using ExtSB and ExtWB extracts was observed through MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay after 24 h of treatment when compared to nontumor cells (MRC-5). Morphological changes and late stages of apoptotic and necrosis process were seen in HT-29 cell line after ExtWB treatment, compared to nontumor cell line MRC-5. These results are in agreement with other studies that indicate the activity of compounds such as anthocyanins and other molecules found in Southern Highbush blueberry variety, attributed to promote beneficial effects on health that may respond as cytotoxic natural agent and contribute to cancer treatment. PMID:27411085

  16. MiR-21 is involved in radiation-induced bystander effects

    PubMed Central

    Xu, Shuai; Ding, Nan; Pei, Hailong; Hu, Wentao; Wei, Wenjun; Zhang, Xurui; Zhou, Guangming; Wang, Jufang

    2014-01-01

    Radiation-induced bystander effects are well-established phenomena, in which DNA damage responses are induced not only in the directly irradiated cells but also in the non-irradiated bystander cells through intercellular signal transmission. Recent studies hint that bystander effects are possibly mediated via small non-coding RNAs, especially microRNAs. Thus, more details about the roles of microRNA in bystander effects are urgently needed to be elucidated. Here we demonstrated that bystander effects were induced in human fetal lung MRC-5 fibroblasts through medium-mediated way by different types of radiation. We identified a set of differentially expressed microRNAs in the cell culture medium after irradiation, among which the up-regulation of miR-21 was further verified with qRT-PCR. In addition, we found significant upregulation of miR-21 in both directly irradiated cells and bystander cells, which was confirmed by the expression of miR-21 precursor and its target genes. Transfection of miR-21 mimics into non-irradiated MRC-5 cells caused bystander-like effects. Taken together, our data reveals that miR-21 is involved in radiation-induced bystander effects. Elucidation of such a miRNA-mediated bystander effect is of utmost importance in understanding the biological processes related to ionizing radiation and cell-to-cell communication. PMID:25483031

  17. Synthesis, antiproliferative and antifungal activities of 1,2,3-triazole-substituted carnosic Acid and carnosol derivatives.

    PubMed

    Pertino, Mariano Walter; Theoduloz, Cristina; Butassi, Estefania; Zacchino, Susana; Schmeda-Hirschmann, Guillermo

    2015-01-01

    Abietane diterpenes exhibit an array of interesting biological activities, which have generated significant interest among the pharmacological community. Starting from the abietane diterpenes carnosic acid and carnosol, twenty four new triazole derivatives were synthesized using click chemistry. The compounds differ in the length of the linker and the substituent on the triazole moiety. The compounds were assessed as antiproliferative and antifungal agents. The antiproliferative activity was determined on normal lung fibroblasts (MRC-5), gastric epithelial adenocarcinoma (AGS), lung cancer (SK-MES-1) and bladder carcinoma (J82) cells while the antifungal activity was assessed against Candida albicans ATCC 10231 and Cryptococcus neoformans ATCC 32264. The carnosic acid γ-lactone derivatives 1-3 were the most active antiproliferative compounds of the series, with IC50 values in the range of 43.4-46.9 μM and 39.2-48.9 μM for MRC-5 and AGS cells, respectively. Regarding antifungal activity, C. neoformans was the most sensitive fungus, with nine compounds inhibiting more than 50% of its fungal growth at concentrations ≤250 µg∙mL-1. Compound 22, possessing a p-Br-benzyl substituent on the triazole ring, showed the best activity (91% growth inhibition) at 250 µg∙mL-1 In turn, six compounds inhibited 50% C. albicans growth at concentrations lower than 250 µg∙mL-1. PMID:26007173

  18. Inactivation of Influenza A virus, Adenovirus, and Cytomegalovirus with PAXgene tissue fixative and formalin.

    PubMed

    Kap, Marcel; Arron, Georgina I; Loibner, M; Hausleitner, Anja; Siaulyte, Gintare; Zatloukal, Kurt; Murk, Jean-Luc; Riegman, Peter

    2013-08-01

    Formalin fixation is known to inactivate most viruses in a vaccine production context, but nothing is published about virus activity in tissues treated with alternative, non-crosslinking fixatives. We used a model assay based on cell culture to test formalin and PAXgene Tissue fixative for their virus-inactivating abilities. MDCK, A549, and MRC-5 cells were infected with Influenza A virus, Adenovirus, and Cytomegalovirus, respectively. When 75% of the cells showed a cytopathic effect (CPE), the cells were harvested and incubated for 15 min, or 1, 3, 6, or 24 hours, with PBS (positive control), 4% formalin, or PAXgene Tissue Fix. The cells were disrupted and the released virus was used to infect fresh MDCK, A549, and MRC-5 cells cultured on cover slips in 24-well plates. The viral cultures were monitored for CPE and by immunocytochemistry (ICC) to record viral replication and infectivity. Inactivation of Adenovirus by formalin occurred after 3 h, while Influenza A virus as well as Cytomegalovirus were inactivated by formalin after 15 min. All three virus strains were inactivated by PAXgene Tissue fixative after 15 min. We conclude that PAXgene Tissue fixative is at least as effective as formalin in inactivating infectivity of Influenza A virus, Adenovirus, and Cytomegalovirus. PMID:24845590

  19. Detection of 1,N(2)-propano-2'-deoxyguanosine adducts in genomic DNA by ultrahigh performance liquid chromatography-electrospray ionization-tandem mass spectrometry in combination with stable isotope dilution.

    PubMed

    Zhang, Ning; Song, Yuanyuan; Wu, Danni; Xu, Tian; Lu, Meiling; Zhang, Weibing; Wang, Hailin

    2016-06-10

    Crotonaldehyde (Cro) is one of widespread and genotoxic α,β-unsaturated aldehydes and can react with the exocyclic amino group of 2'-deoxyguanosine (dG) in genomic DNA to form 1,N(2)-propano-2'-deoxyguanosine (ProdG) adducts. In this study, two diastereomers of high purity were prepared, including non-isotope and stable isotope labeled ProdG adducts, and exploited stable isotope dilution-based calibration method. By taking advantage of synthesized ProdG standards, we developed a sensitive ultrahigh performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UHPLC-ESI-MS/MS) method for accurate quantification of two diastereomers of ProdG adducts. In addition to optimization of the UHPLC separation, ammonium bicarbonate (NH4HCO3) was used as additive in the mobile phase for enhancing the ionization efficiency to ProdG adducts and facilitating MS detection. The limits of detection (LODs, S/N=3) and the limits of quantification (LOQs, S/N=10) are estimated about 50 amol and 150 amol, respectively. By the use of the developed method, both diastereomers of ProdG adducts can be detected in untreated human MRC5 cells with a frequency of 2.4-3.5 adducts per 10(8) nucleotides. Crotonaldehyde treatment dramatically increases the levels of ProdG adducts in human MRC5 in a concentration-dependent manner. PMID:27179676

  20. Essential Oil Content of the Rhizome of Curcuma purpurascens Bl. (Temu Tis) and Its Antiproliferative Effect on Selected Human Carcinoma Cell Lines

    PubMed Central

    Hong, Sok-Lai; Lee, Guan-Serm; Ahmed Hamdi, Omer Abdalla; Awang, Khalijah; Aznam Nugroho, Nurfina

    2014-01-01

    Curcuma purpurascens Bl., belonging to the Zingiberaceae family, is known as temu tis in Yogyakarta, Indonesia. In this study, the hydrodistilled dried ground rhizome oil was investigated for its chemical content and antiproliferative activity against selected human carcinoma cell lines (MCF7, Ca Ski, A549, HT29, and HCT116) and a normal human lung fibroblast cell line (MRC5). Results from GC-MS and GC-FID analysis of the rhizome oil of temu tis showed turmerone as the major component, followed by germacrone, ar-turmerone, germacrene-B, and curlone. The rhizome oil of temu tis exhibited strong cytotoxicity against HT29 cells (IC50 value of 4.9 ± 0.4 μg/mL), weak cytotoxicity against A549, Ca Ski, and HCT116 cells (with IC50 values of 46.3 ± 0.7, 32.5 ± 1.1, and 35.0 ± 0.3 μg/mL, resp.), and no inhibitory effect against MCF7 cells. It exhibited mild cytotoxicity against a noncancerous human lung fibroblast cell line (MRC5), with an IC50 value of 25.2 ± 2.7 μg/mL. This is the first report on the chemical composition of this rhizome's oil and its selective antiproliferative effect on HT29. The obtained data provided a basis for further investigation of the mode of cell death. PMID:25177723

  1. Potential gastroprotective effect of novel cyperenoic acid/quinone derivatives in human cell cultures.

    PubMed

    Theoduloz, Cristina; Carrión, Ivanna Bravo; Pertino, Mariano Walter; Valenzuela, Daniela; Schmeda-Hirschmann, Guillermo

    2012-11-01

    The stem bark of Tabebuia species and the rhizomes of Jatropha isabelii are used in Paraguayan traditional medicine to treat gastric lesions and as anti-inflammatory agents. The sesquiterpene cyperenoic acid obtained from J. isabelii has been shown to display a gastroprotective effect in animal models of induced gastric ulcers while the quinone lapachol shows several biological effects associated with the use of the crude drug. The aim of this work was to prepare hybrid molecules presenting a terpene and a quinone moiety and to obtain an assessment of the gastroprotective activity of the new compounds using human cell cultures (MRC-5 fibroblasts and AGS epithelial gastric cells). Eight compounds, including the natural products and semisynthetic derivatives were assessed for proliferation of MRC-5 fibroblasts, protection against sodium taurocholate-induced damage, prostaglandin E2 content, and stimulation of cellular-reduced glutathione synthesis in AGS cells. The following antioxidant assays were performed: DPPH discoloration, scavenging of the superoxide anion, and inhibition of induced lipoperoxidation in erythrocyte membranes. 3-Hydroxy-β-lapachone (3) and cyperenoic acid (4) stimulated fibroblast proliferation. Lapachol (1), dihydroprenyl lapachol (2), 3-hydroxy-β-lapachone (3), and lapachoyl cyperenate (6) protected against sodium taurocholate-induced damage in AGS cells. Lapachol (1) and dihydroprenyl lapachoyl cyperenate (7) significantly stimulated prostaglandin E2 synthesis in AGS cells. Compounds 3, 4, and 7 raised reduced glutathione levels in AGS cells. The hybrid compounds presented activities different than those of the starting sesquiterpene or quinones. PMID:23047252

  2. Characterization of IM virus, which is frequently isolated from cerebrospinal fluid of patients with multiple sclerosis and other chronic diseases of the central nervous system.

    PubMed Central

    Melnick, J L; Wang, S S; Seidel, E; Muchinik, G; Zhang, L B; Lanford, R E

    1984-01-01

    A transmissible agent, the IM virus, antigenically related to the Japanese subacute myelo-optico-neuropathy virus, has been isolated from several human cerebrospinal fluids obtained from American patients with multiple sclerosis and other chronic diseases of the central nervous system. The isolates were propagated in human diploid fibroblast (MRC5) cells, and virus was released into the culture medium in the absence of overt cytolysis. Infection of MRC5 cells resulted in a subtle alteration in the normal growth pattern of the cells. In unstained cultures, the cell changes were so mild that it was necessary to carry out all virus assays under code to eliminate bias. Cells in late passages were more susceptible than vigorously growing cells in early passages. Analysis of the kinetics of replication revealed that newly synthesized progeny virus was first detected about 12 h postinfection, that maximal virus release occurred by 48 h postinfection, and that virus production was persistent throughout an 8-day period. Several inhibitors of DNA synthesis were effective in blocking viral replication, including cytosine arabinoside, iododeoxyuridine, and phosphonoacetic acid. A substantial decrease in infectivity was observed upon treatment of IM virus with ether, suggesting that a lipid-containing structure is essential for infectivity. Ultrafiltration studies approximated the size (diameter) of IM virus to be between 100 and 200 nm. Images PMID:6492261

  3. Novel Zinc(II) Complexes [Zn(atc-Et)₂] and [Zn(atc-Ph)₂]: In Vitro and in Vivo Antiproliferative Studies.

    PubMed

    Lopes, Erica de O; Oliveira, Carolina G de; Silva, Patricia B da; Eismann, Carlos E; Suárez, Carlos A; Menegário, Amauri A; Leite, Clarice Q F; Deflon, Victor M; Pavan, Fernando R

    2016-01-01

    Cisplatin and its derivatives are the main metallodrugs used in cancer therapy. However, low selectivity, toxicity and drug resistance are associated with their use. The zinc(II) (Zn(II)) thiosemicarbazone complexes [Zn(atc-Et)₂] (1) and [Zn(atc-Ph)₂] (2) (atc-R: monovalent anion of 2-acetylpyridine N4-R-thiosemicarbazone) were synthesized and fully characterized in the solid state and in solution via elemental analysis, Fourier transform infrared (FTIR), ultraviolet-visible (UV-Vis) and proton nuclear magnetic resonance (¹H NMR) spectroscopy, conductometry and single-crystal X-ray diffraction. The cytotoxicity of these complexes was evaluated in the HepG2, HeLa, MDA-MB-231, K-562, DU 145 and MRC-5 cancer cell lines. The strongest antiproliferative results were observed in MDA-MB-231 and HepG2 cells, in which these complexes displayed significant selective toxicity (3.1 and 3.6, respectively) compared with their effects on normal MRC-5 cells. In vivo studies were performed using an alternative model (Artemia salina L.) to assure the safety of these complexes, and the results were confirmed using a conventional model (BALB/c mice). Finally, tests of oral bioavailability showed maximum plasma concentrations of 3029.50 µg/L and 1191.95 µg/L for complexes 1 and 2, respectively. According to all obtained results, both compounds could be considered as prospective antiproliferative agents that warrant further research. PMID:27213368

  4. Callyaerins from the Marine Sponge Callyspongia aerizusa: Cyclic Peptides with Antitubercular Activity.

    PubMed

    Daletos, Georgios; Kalscheuer, Rainer; Koliwer-Brandl, Hendrik; Hartmann, Rudolf; de Voogd, Nicole J; Wray, Victor; Lin, Wenhan; Proksch, Peter

    2015-08-28

    Chemical investigation of the Indonesian sponge Callyspongia aerizusa afforded five new cyclic peptides, callyaerins I-M (1-5), along with the known callyaerins A-G (6-12). The structures of the new compounds were unambiguously elucidated on the basis of one- and two-dimensional NMR spectroscopy and mass spectrometry. In addition, the structures of callyaerins D (9), F (11), and G (12), previously available in only small amounts, have been reinvestigated and revised. All compounds were tested in vitro against Mycobacterium tuberculosis, as well as against THP-1 (human acute monocytic leukemia) and MRC-5 (human fetal lung fibroblast) cell lines, in order to assess their general cytotoxicity. Callyaerins A (6) and B (7) showed potent anti-TB activity with MIC₉₀ values of 2 and 5 μM, respectively. Callyaerin C (8) was found to be less active, with an MIC₉₀ value of 40 μM. Callyaerin A (6), which showed the strongest anti-TB activity, was not cytotoxic to THP-1 or MRC-5 cells (IC₅₀ > 10 μM), which highlights the potential of these compounds as promising anti-TB agents. PMID:26213786

  5. Connective tissue growth factor stimulates the proliferation, migration and differentiation of lung fibroblasts during paraquat-induced pulmonary fibrosis.

    PubMed

    Yang, Zhizhou; Sun, Zhaorui; Liu, Hongmei; Ren, Yi; Shao, Danbing; Zhang, Wei; Lin, Jinfeng; Wolfram, Joy; Wang, Feng; Nie, Shinan

    2015-07-01

    It is well established that paraquat (PQ) poisoning can cause severe lung injury during the early stages of exposure, finally leading to irreversible pulmonary fibrosis. Connective tissue growth factor (CTGF) is an essential growth factor that is involved in tissue repair and pulmonary fibrogenesis. In the present study, the role of CTGF was examined in a rat model of pulmonary fibrosis induced by PQ poisoning. Histological examination revealed interstitial edema and extensive cellular thickening of interalveolar septa at the early stages of poisoning. At 2 weeks after PQ administration, lung tissue sections exhibited a marked thickening of the alveolar walls with an accumulation of interstitial cells with a fibroblastic appearance. Masson's trichrome staining revealed a patchy distribution of collagen deposition, indicating pulmonary fibrogenesis. Western blot analysis and immunohistochemical staining of tissue samples demonstrated that CTGF expression was significantly upregulated in the PQ-treated group. Similarly, PQ treatment of MRC-5 human lung fibroblast cells caused an increase in CTGF in a dose-dependent manner. Furthermore, the addition of CTGF to MRC-5 cells triggered cellular proliferation and migration. In addition, CTGF induced the differentiation of fibroblasts to myofibroblasts, as was evident from increased expression of α-smooth muscle actin (α-SMA) and collagen. These findings demonstrate that PQ causes increased CTGF expression, which triggers proliferation, migration and differentiation of lung fibroblasts. Therefore, CTGF may be important in PQ-induced pulmonary fibrogenesis, rendering this growth factor a potential pharmacological target for reducing lung injury. PMID:25815693

  6. In vitro assessment of Macleaya cordata crude extract bioactivity and anticancer properties in normal and cancerous human lung cells.

    PubMed

    Liu, Min; Lin, Yu-ling; Chen, Xuan-Ren; Liao, Chi-Cheng; Poo, Wak-Kim

    2013-09-01

    The purpose of this study is to assess the bioactivity and anticancer properties of Macleaya cordata crude extract in vitro using normal fetal lung fibroblast MRC5 and adenocarcinomic epithelial cell A549 as model systems,. Treatment of extract induced cell detachment, rounding, and irregularity in shape, in both normal and adenocarcinomic human lung cells, in accompanied of significant reduction in cell proliferation. The data indicated that necrosis appeared to be involved in compromising cell growth in both types of lung cells since membrane permeability and cell granularity were elevated. Although apoptosis was evident, the responses were differential in normal and diseased lung cells. Viability of treated MRC5 cells was reduced in a dose-dependent manner, demonstrating that the normal lung cells are sensitive to the extract. Surprisingly, A549 viability was slightly elevated in response to extract exposure at low concentration, implying that cells survived were metabolically active; the viability was reduced accordingly to treatment at higher concentrations. The present findings demonstrate that the crude extract of M. cordata contains agents affecting the functioning of normal and diseased lung cells in vitro. The observed cytotoxic effects against adenocarcinomic lung cells validate the potential of using M. cordata as herbal intervention in combined with conventional chemotherapy for lung cancer treatment. PMID:23238228

  7. [Emodin inhibits the proliferation, transdifferentiation and collagen synthesis of pulmonary fibroblasts].

    PubMed

    Liu, Lijing; Yin, Huiming; He, Jianbin; Xie, Maofeng; Wang, Zaiyan; Xiao, Hua

    2016-07-01

    Objective To explore the effect of emodin on the proliferation, differentiation into myofibroblasts and collagen synthesis of pulmonary fibroblasts and the underlying mechanisms. Methods Human pulmonary fibroblasts MRC-5 were cultured in vitro, then the cells were inoculated with dimethyl sulfoxide (DMSO) added with 0, 10, 20, 40, 80 and 160 μmol/L emodin for 24, 48 and 72 hours. Inhibitory rate of cell proliferation was analyzed by MTT assay. Based on the results of cell proliferation experiment, MRC-5 cells were treated with DMSO (control group) and 40, 80 μmol/L emodin (in DMSO) for 48 hours. Fluorescence real-time quantitative PCR was then used to measure the mRNA expressions of α-smooth muscle actin (α-SMA), transforming growth factor-β1 (TGF-β1), a disintegrin-like and metalloproteinase with thrombospondin type 1 motif (ADAMTS-1), collagen type 1 (Col1) and collagen type 3 (Col3). The protein expressions of the above mentioned factors were also measured by Western blotting. Results In a concentration- and time-dependent manner, emodin inhibited MRC-5 cell proliferation. After 48 hours of co-culture, in comparison with control group, the mRNA and protein expression levels of α-SMA, TGF-β1, Col1 and Col3 significantly decreased, while the mRNA and protein expression levels of ADAMTS-1 significantly increased in 40 and 80 μmol/L emodin-treated groups. Moreover, in comparison with 40 μmol/L emodin-treated group, the mRNA and protein expressions of α-SMA, TGF-β1, Col1 and Col3 were significantly downregulated, but ADAMTS-1 mRNA and protein expressions were significantly upregulated in 80 μmol/L emodin-treated group. Conclusion Emodin can block pulmonary fibroblast proliferation and differentiation into myofibroblasts, and reduce the synthesis of Col1 and Col3 by inhibiting TGF-β1/ADAMTS-1 signaling pathway. PMID:27363273

  8. Antiviral Activity and Possible Mechanism of Action of Constituents Identified in Paeonia lactiflora Root toward Human Rhinoviruses

    PubMed Central

    Ngan, Luong Thi My; Jang, Myeong Jin; Kwon, Min Jung; Ahn, Young Joon

    2015-01-01

    Human rhinoviruses (HRVs) are responsible for more than half of all cases of the common cold and cost billions of USD annually in medical visits and missed school and work. An assessment was made of the antiviral activities and mechanisms of action of paeonol (PA) and 1,2,3,4,6-penta-O-galloyl-β-D-glucopyranose (PGG) from Paeonia lactiflora root toward HRV-2 and HRV-4 in MRC5 cells using a tetrazolium method and real-time quantitative reverse transcription polymerase chain reaction and enzyme-linked immunosorbent assay. Results were compared with those of a reference control ribavirin. Based on 50% inhibitory concentration values, PGG was 13.4 and 18.0 times more active toward HRV-2 (17.89 μM) and HRV-4 (17.33 μM) in MRC5 cells, respectively, than ribavirin. The constituents had relatively high selective index values (3.3–>8.5). The 100 μg/mL PA and 20 μg/mL PGG did not interact with the HRV-4 particles. These constituents inhibited HRV-4 infection only when they were added during the virus inoculation (0 h), the adsorption period of HRVs, but not after 1 h or later. Moreover, the RNA replication levels of HRVs were remarkably reduced in the MRC5 cultures treated with these constituents. These findings suggest that PGG and PA may block or reduce the entry of the viruses into the cells to protect the cells from the virus destruction and abate virus replication, which may play an important role in interfering with expressions of rhinovirus receptors (intercellular adhesion molecule-1 and low-density lipoprotein receptor), inflammatory cytokines (interleukin (IL)-6, IL-8, tumor necrosis factor, interferon beta, and IL-1β), and Toll-like receptor, which resulted in diminishing symptoms induced by HRV. Global efforts to reduce the level of synthetic drugs justify further studies on P. lactiflora root-derived materials as potential anti-HRV products or lead molecules for the prevention or treatment of HRV. PMID:25860871

  9. A novel isoflavonoid from Millettia puguensis.

    PubMed

    Kapingu, Modest C; Mbwambo, Zakaria H; Moshi, Mainen J; Magadula, Joseph J; Cos, Paul; Berghe, Dirk Vanden; Maes, Louis; Theunis, Mart; Apers, Sandra; Pieters, Luc; Vlietinck, Arnold

    2006-11-01

    From the roots of Millettia puguensis (Leguminosae), a novel isoflavonoid (5), 2'-methoxy-4',5'-methylenedioxy-7,8-[2-(1-methylethenyl)furo]isoflavone, and four known compounds, i. e., lupeol (1), (-)-maackiain (2), 6,7-dimethoxy-3',4'-methylenedioxyisoflavone (3) and 7,2'-dimethoxy-4',5'-methylenedioxyisoflavone (4) were isolated and identified by 1H-, 13C-NMR and mass spectroscopy. All compounds were evaluated for their antiprotozoal and cytotoxic activities, but only a moderate antileishmanial activity was observed for compound 3 (IC50 = 32 microM against Leishmania infantum), and a moderate cytotoxicity for compound 2 (IC50 = 43 microM on MRC-5 cells). PMID:17054049

  10. In vitro antiprotozoal activity of triterpenoid constituents of Kleinia odora growing in Saudi Arabia.

    PubMed

    Al Musayeib, Nawal M; Mothana, Ramzi A; Gamal, Ali A El; Al-Massarani, Shaza M; Maes, Louis

    2013-01-01

    Two lupane and four ursane triterpenes, namely epilupeol (1), lupeol acetate (2), ursolic acid (3), brein (4), 3β 11α-dihydroxy urs-12-ene (5) and ursolic acid lactone (6) were isolated from aerial parts of Kleinia odora and identified. Compounds 1 and 3-6 were isolated for the first time from K. odora. The triterpene constituents were investigated for antiprotozoal potential against erythrocytic schizonts of Plasmodium falciparum, intracellular amastigotes of Leishmania infantum and Trypanosoma cruzi and free trypomastigotes of T. brucei. Cytotoxicity was determined against MRC-5 fibroblasts to assess selectivity. The ursane triterpenes were found to be active against more than one type of the tested parasites, with the exception of compound 6. This is also the first report on the occurrence of ursane type triterpenes in the genus Kleinia and their antiprotozoal potential against P. falciparum, L. infantum, T. cruzi, and T. brucei. PMID:23912274

  11. Flexible polymeric ultrathin film for mesenchymal stem cell differentiation.

    PubMed

    Pensabene, Virginia; Taccola, Silvia; Ricotti, Leonardo; Ciofani, Gianni; Menciassi, Arianna; Perut, Francesca; Salerno, Manuela; Dario, Paolo; Baldini, Nicola

    2011-07-01

    Ultrathin films (also called nanofilms) are two-dimensional (2-D) polymeric structures with potential application in biology, biotechnology, cosmetics and tissue engineering. Since they can be handled in liquid form with micropipettes or tweezers they have been proposed as flexible systems for cell adhesion and proliferation. In particular, with the aim of designing a novel patch for bone or tendon repair and healing, in this work the biocompatibility, adhesion and proliferation activity of Saos-2, MRC-5 and human and rat mesenchymal stem cells on poly(lactic acid) nanofilms were evaluated. The nanofilms did not impair the growth and differentiation of osteoblasts and chondrocytes. Moreover, nanofilm adhesion to rabbit joints was evident under ex vivo conditions. PMID:21421086

  12. Cytotoxic Guanidine Alkaloids from a French Polynesian Monanchora n. sp. Sponge.

    PubMed

    El-Demerdash, Amr; Moriou, Céline; Martin, Marie-Thérèse; Rodrigues-Stien, Alice de Souza; Petek, Sylvain; Demoy-Schneider, Marina; Hall, Kathryn; Hooper, John N A; Debitus, Cécile; Al-Mourabit, Ali

    2016-08-26

    Four bicyclic and three pentacyclic guanidine alkaloids (1-7) were isolated from a French Polynesian Monanchora n. sp. sponge, along with the known alkaloids monalidine A (8), enantiomers 9-11 of known natural product crambescins, and the known crambescidins 12-15. Structures were assigned by spectroscopic data interpretation. The relative and absolute configurations of the alkaloids were established by analysis of (1)H NMR and NOESY spectra and by circular dichroism analysis. The new norcrambescidic acid (7) corresponds to interesting biosynthetic variation within the pentacyclic core. All compounds exhibited antiproliferative and cytotoxic efficacy against KB, HCT116, HL60, MRC5, and B16F10 cancer cells, with IC50 values ranging from 4 nM to 10 μM. PMID:27419263

  13. Preferential killing of human lung cancer cell lines with mitochondrial dysfunction by nonthermal dielectric barrier discharge plasma

    PubMed Central

    Panngom, K; Baik, K Y; Nam, M K; Han, J H; Rhim, H; Choi, E H

    2013-01-01

    The distinctive cellular and mitochondrial dysfunctions of two human lung cancer cell lines (H460 and HCC1588) from two human lung normal cell lines (MRC5 and L132) have been studied by dielectric barrier discharge (DBD) plasma treatment. This cytotoxicity is exposure time-dependent, which is strongly mediated by the large amount of H2O2 and NOx in culture media generated by DBD nonthermal plasma. It is found that the cell number of lung cancer cells has been reduced more than that of the lung normal cells. The mitochondrial vulnerability to reactive species in H460 may induce distinctively selective responses. Differential mitochondrial membrane potential decrease, mitochondrial enzymatic dysfunction, and mitochondrial morphological alteration are exhibited in two cell lines. These results suggest the nonthermal plasma treatment as an efficacious modality in lung cancer therapy. PMID:23703387

  14. In vitro inhibitory properties of ferrocene-substituted chalcones and aurones on bacterial and human cell cultures.

    PubMed

    Tiwari, Keshri Nath; Monserrat, Jean-Philippe; Hequet, Arnaud; Ganem-Elbaz, Carine; Cresteil, Thierry; Jaouen, Gérard; Vessières, Anne; Hillard, Elizabeth A; Jolivalt, Claude

    2012-06-01

    Two series of ten chalcones and ten aurones, where ferrocene replaces the C ring and with diverse substituents on the A ring were synthesized. The compounds were tested against two antibiotic-sensitive bacterial strains, E. coli ATCC 25922 and S. aureus ATCC 25923, and two antibiotic-resistant strains, S. aureus SA-1199B and S. epidermidis IPF896. The unsubstituted compound and those with methoxy substitution showed an inhibitory effect on all bacterial strains at minimum inhibitory concentrations ranging between 2 and 32 mg L(-1). For four of these compounds, the effect was bactericidal, as opposed to bacteriostatic. The corresponding organic aurones did not show growth inhibition, underscoring the role of the ferrocene group. The methoxy-substituted aurones and the unsubstituted aurone also showed low micromolar (IC(50)) activity against MRC-5 non-tumoral lung cells and MDA-MB-231 breast cancer cells, suggesting non-specific toxicity. PMID:22240736

  15. Increased generation of intracellular reactive oxygen species initiates selective cytotoxicity against the MCF-7 cell line resultant from redox active combination therapy using copper-thiosemicarbazone complexes.

    PubMed

    Akladios, Fady N; Andrew, Scott D; Parkinson, Christopher J

    2016-06-01

    The combination of cytotoxic copper-thiosemicarbazone complexes with phenoxazines results in an up to 50-fold enhancement in the cytotoxic potential of the thiosemicarbazone against the MCF-7 human breast adenocarcinoma cell line over the effect attributable to drug additivity-allowing minimization of the more toxic copper-thiosemicarbazone component of the therapy. The combination of a benzophenoxazine with all classes of copper complex examined in this study proved more effective than combinations of the copper complexes with related isoelectronic azines. The combination approach results in rapid elevation of intracellular reactive oxygen levels followed by apoptotic cell death. Normal fibroblasts representative of non-cancerous cells (MRC-5) did not display a similar elevation of reactive oxygen levels when exposed to similar drug levels. The minimization of the copper-thiosemicarbazone component of the therapy results in an enhanced safety profile against normal fibroblasts. PMID:26951232

  16. Preparation and toxicological evaluation of methyl pyranoanthocyanin.

    PubMed

    Zhu, Zhenzhou; Wu, Nao; Kuang, Minjie; Lamikanra, Olusola; Liu, Gang; Li, Shuyi; He, Jingren

    2015-09-01

    Anthocyanins are increasingly valued in the food industry for their functional properties and as food colorants. The broadness of their applications has, however, been limited by the lack of stability of these natural pigment extracts in a number of food systems. The potential application of pyranoanthocyanins, anthocyanin derivatives with better stability conferred by the added pyran ring, as a food ingredient was determined. Methylpyranoanthocyanin (MPA) was prepared from reaction of acetone and anthocyanin extracts from red grapes. Reaction products were sequentially purified with polyamide resin, TSK gel resin and semi-preparative HPLC to a purity level >98%. Cytoprotective influence tests of the purified MPA indicated its significant protective effect against H2O2 induced MRC-5 cell damage. Results of evaluations of possible acute toxicity effects on MPA-fed mice, including macro and microscopic assessments, support the conclusion of a non-toxic effect of MPA, and its potential safe use as a food additive. PMID:26028581

  17. Antimycobacterial, antimicrobial, and biocompatibility properties of para-aminosalicylic acid with zinc layered hydroxide and Zn/Al layered double hydroxide nanocomposites

    PubMed Central

    Saifullah, Bullo; El Zowalaty, Mohamed E; Arulselvan, Palanisamy; Fakurazi, Sharida; Webster, Thomas J; Geilich, Benjamin M; Hussein, Mohd Zobir

    2014-01-01

    The treatment of tuberculosis by chemotherapy is complicated due to multiple drug prescriptions, long treatment duration, and adverse side effects. We report here for the first time an in vitro therapeutic effect of nanocomposites based on para-aminosalicylic acid with zinc layered hydroxide (PAS-ZLH) and zinc-aluminum layered double hydroxides (PAS-Zn/Al LDH), against mycobacteria, Gram-positive bacteria, and Gram-negative bacteria. The nanocomposites demonstrated good antimycobacterial activity and were found to be effective in killing Gram-positive and Gram-negative bacteria. A biocompatibility study revealed good biocompatibility of the PAS-ZLH nanocomposites against normal human MRC-5 lung cells. The para-aminosalicylic acid loading was quantified with high-performance liquid chromatography analysis. In summary, the present preliminary in vitro studies are highly encouraging for further in vivo studies of PAS-ZLH and PAS-Zn/Al LDH nanocomposites to treat tuberculosis. PMID:25114509

  18. Human 2-D PAGE databases for proteome analysis in health and disease: http://biobase.dk/cgi-bin/celis.

    PubMed

    Celis, J E; Gromov, P; Ostergaard, M; Madsen, P; Honoré, B; Dejgaard, K; Olsen, E; Vorum, H; Kristensen, D B; Gromova, I; Haunsø, A; Van Damme, J; Puype, M; Vandekerckhove, J; Rasmussen, H H

    1996-12-01

    Human 2-D PAGE Databases established at the Danish Centre for Human Genome Research are now available on the World Wide Web (http://biobase.dk/cgi-bin/celis). The databanks, which offer a comprehensive approach to the analysis of the human proteome both in health and disease, contain data on known and unknown proteins recorded in various IEF and NEPHGE 2-D PAGE reference maps (non-cultured keratinocytes, non-cultured transitional cell carcinomas, MRC-5 fibroblasts and urine). One can display names and information on specific protein spots by clicking on the image of the gel representing the 2-D gel map in which one is interested. In addition, the database can be searched by protein name, keywords or organelle or cellular component. The entry files contain links to other databases such as Medline, Swiss-Prot, PIR, PDB, CySPID, OMIM, Methabolic pathways, etc. The on-line information is updated regularly. PMID:8977092

  19. Screening Novel SAHA Derivatives as Anti-lung Carcinoma Agents: Synthesis, Biological Evaluation, Docking Studies and Further Mechanism Research between Apoptosis and Autophagy.

    PubMed

    Huang, Weibin; Zhang, Song; Yang, Zhicheng; Feng, Binghong

    2015-01-01

    Four suberoylanilide hydroxamic acid (SAHA) derivatives (N34, N4I, N4B, N24) were designed and synthesized on the basis of our previous studies on N25. Assays for anti-proliferative activity and histone deacetylase (HDAC) activity were performed against human lung cancer (SPC-A-1, LTEP-a-2, NCI-H1650) and normal lung cells (MRC-5), which were compared with those of SAHA. Molecular docking was used to theoretically confirm the receptor-binding ability of N34. Ultimately, N34 was validated as the best HDAC inhibitor candidate. Furthermore, the effects of N34 on the levels of apoptosis- and autophagy-associated proteins caspase-3, caspase-9, Bcl-2 and Beclin-1 in SPC-A-1 cells were evaluated. N34 exerted more evident effects on human lung cancer than the other three SAHA derivatives did. PMID:26118711

  20. In vitro anti-microbial activity of the Cuban medicinal plants Simarouba glauca DC, Melaleuca leucadendron L and Artemisia absinthium L.

    PubMed

    Valdés, Aymé Fernández-Calienes; Martínez, Judith Mendiola; Lizama, Ramón Scull; Vermeersch, Marieke; Cos, Paul; Maes, Louis

    2008-09-01

    In the present study, an extensive in vitro antimicrobial profiling was performed for three medicinal plants grown in Cuba, namely Simarouba glauca, Melaleuca leucadendron and Artemisia absinthium. Ethanol extracts were tested for their antiprotozoal potential against Trypanosoma b. brucei, Trypanosoma cruzi, Leishmania infantum and Plasmodium falciparum. Antifungal activities were evaluated against Microsporum canis and Candida albicans whereas Escherichia coli and Staphylococcus aureus were used as test organisms for antibacterial activity. Cytotoxicity was assessed against human MRC-5 cells. Only M. leucadendron extract showed selective activity against microorganisms tested. Although S. glauca exhibited strong activity against all protozoa, it must be considered non-specific. The value of integrated evaluation of extracts with particular reference to selectivity is discussed. PMID:18949336

  1. Cytotoxic withanolide constituents of Physalis longifolia.

    PubMed

    Zhang, Huaping; Samadi, Abbas K; Gallagher, Robert J; Araya, Juan J; Tong, Xiaoqin; Day, Victor W; Cohen, Mark S; Kindscher, Kelly; Gollapudi, Rao; Timmermann, Barbara N

    2011-12-27

    Fourteen new withanolides, 1-14, named withalongolides A-N, respectively, were isolated from the aerial parts of Physalis longifolia together with eight known compounds (15-22). The structures of compounds 1-14 were elucidated through spectroscopic techniques and chemical methods. In addition, the structures of withanolides 1, 2, 3, and 6 were confirmed by X-ray crystallographic analysis. Using a MTS viability assay, eight withanolides (1, 2, 3, 7, 8, 15, 16, and 19) and four acetylated derivatives (1a, 1b, 2a, and 2b) showed potent cytotoxicity against human head and neck squamous cell carcinoma (JMAR and MDA-1986), melanoma (B16F10 and SKMEL-28), and normal fetal fibroblast (MRC-5) cells with IC₅₀ values in the range between 0.067 and 9.3 μM. PMID:22098611

  2. Novel capsaicin analogues as potential anticancer agents: synthesis, biological evaluation, and in silico approach.

    PubMed

    Damião, Mariana C F C B; Pasqualoto, Kerly F M; Ferreira, Adilson K; Teixeira, Sarah F; Azevedo, Ricardo A; Barbuto, José A M; Palace-Berl, Fanny; Franchi-Junior, Gilberto C; Nowill, Alexandre E; Tavares, Maurício T; Parise-Filho, Roberto

    2014-12-01

    A novel class of benzo[d][1,3]dioxol-5-ylmethyl alkyl/aryl amide and ester analogues of capsaicin were designed, synthesized, and evaluated for their cytotoxic activity against human and murine cancer cell lines (B16F10, SK-MEL-28, NCI-H1299, NCI-H460, SK-BR-3, and MDA-MB-231) and human lung fibroblasts (MRC-5). Three compounds (5f, 6c, and 6e) selectively inhibited the growth of aggressive cancer cells in the micromolar (µM) range. Furthermore, an exploratory data analysis pointed at the topological and electronic molecular properties as responsible for the discrimination process regarding the set of investigated compounds. The findings suggest that the applied designing strategy, besides providing more potent analogues, indicates the aryl amides and esters as well as the alkyl esters as interesting scaffolds to design and develop novel anticancer agents. PMID:25283529

  3. Anticancer photodynamic therapy based on the use of a microsystem

    NASA Astrophysics Data System (ADS)

    Jastrzebska, E.; Bulka, N.; Zukowski, K.; Chudy, M.; Brzozka, Z.; Dybko, A.

    2015-07-01

    The paper presents the evaluation of photodynamic therapy (PDT) procedures with an application of a microsystem. Two cell lines were used in the experiments, i.e. human lung carcinoma - A549 and normal human fetal lung fibroblast MRC5. Mono-, coculture and mixed cultures were performed in a microsystem at the same time. The microsystem consisted of a concentration gradient generator (CGG) which generates different concentrations of a photosensitizer, and a set of microchambers for cells. The microchambers were linked by microchannels of various length in order to allow cells migration and in this way cocultures were created. Transparent materials were used for the chip manufacture, i.e. glass and poly(dimethylsiloxane). A high power LED was used to test photodynamic therapy effectiveness in the microsystem.

  4. An outbreak of herpes rugbiorum managed by vaccination of players and sociosexual contacts.

    PubMed

    Skinner, G R; Davies, J; Ahmad, A; McLeish, P; Buchan, A

    1996-11-01

    An outbreak of herpes rugbiorum involved nine players including the scrum half and the full back. The infection was characterized by significant constitutional upset with decreased levels of general fitness and match performance for 1-4 months following the outbreak; one player had herpetic lesions on his right eyelid and corneum. Every infected player, 15 non-infected players and five sociosexual contacts received two vaccinations with intracellular subunit vaccine NFU. Ac. HSV-1 (S-MRC5). None of the players or contacts developed cutaneous herpetic recurrence during a follow-up period of 3 years; the player with ocular disease had one recurrence at 30 months following the original episode. These findings encourage consideration of prophylactic or post-exposure vaccination of participants in rugby or other contact sports with this or other appropriate herpes simplex vaccine. PMID:8945704

  5. Antimicrobial Assessment of Resins from Calophyllum Antillanum and Calophyllum Inophyllum.

    PubMed

    Cuesta-Rubio, Osmany; Oubada, Ahmad; Bello, Adonis; Maes, Louis; Cos, Paul; Monzote, Lianet

    2015-12-01

    The Calophyllum genus is well-known for its antimicrobial and cytotoxic activities, and therefore, we analyzed these biological activities for resins of Calophyllum antillanum and Calophyllum inophyllum growing in Cuba. C. antillanum resins showed a potent activity against Plasmodium falciparum (IC50  = 0.3 ± 0.1 µg/mL), while its cytotoxicity against MRC-5 cells was much lower (IC50  = 21.6 ± 1.1 µg/mL). In contrary, the resin of C. inophyllum showed an unspecific activity. The presence of apetalic acid, isoapetalic acid, calolongic acid, pinetoric acid I, pinetoric acid II, isocalolongic acid, pinetoric acid III, and isopinetoric acid III in C. antillanum resins was also confirmed. These results demonstrated for the first time the potential activity of C. antillanum resins against P. falciparum. PMID:26514875

  6. Biologically active vallesamine, strychnan, and rhazinilam alkaloids from Alstonia: Pneumatophorine, a nor-secovallesamine with unusual incorporation of a 3-ethylpyridine moiety.

    PubMed

    Lim, Jun-Lee; Sim, Kae-Shin; Yong, Kien-Thai; Loong, Bi-Juin; Ting, Kang-Nee; Lim, Siew-Huah; Low, Yun-Yee; Kam, Toh-Seok

    2015-09-01

    Four alkaloids comprising two vallesamine, one strychnan, and one pyranopyridine alkaloid, in addition to 32 other known alkaloids were isolated from two Malayan Alstonia species, Alstonia pneumatophora and Alstonia rostrata. The structures of these alkaloids were determined using NMR and MS analyses, and in one instance, confirmed by X-ray diffraction analysis. The nor-6,7-secovallesamine alkaloid, pneumatophorine, is notable for an unusual incorporation of a 3-ethylpyridine moiety in a monoterpenoid indole. The rhazinilam-type alkaloids (rhazinicine, nor-rhazinicine, rhazinal, and rhazinilam) showed strong cytotoxicity toward human KB, HCT-116, MDA-MB-231, and MRC-5 cells, while pneumatophorine, the uleine alkaloid undulifoline, and the strychnan alkaloids, N4-demethylalstogustine and echitamidine, induced concentration dependent relaxation in phenylephrine-precontracted rat aortic rings. PMID:26125941

  7. Cytotoxic Withanolide Constituents of Physalis longifolia

    PubMed Central

    Zhang, Huaping; Samadi, Abbas K.; Gallagher, Robert J.; Araya, Juan J.; Tong, Xiaoqin; Day, Victor W.; Cohen, Mark S.; Kindscher, Kelly; Gollapudi, Rao; Timmermann, Barbara N.

    2011-01-01

    Fourteen new withanolides 1-14, named withalongolides A-N, respectively, were isolated from the aerial parts of Physalis longifolia together with eight known compounds (15-22). The structures of compounds 1-14 were elucidated through spectroscopic techniques and chemical methods. In addition, the structures of withanolides 1, 2, 3, and 6 were confirmed by X-ray crystallographic analysis. Using a MTS viability assays, eight withanolides (1, 2, 3, 7, 8, 15, 16, and 19) and four acetylated derivatives (1a, 1b, 2a, and 2b) showed potent cytotoxicity against human head and neck squamous cell carcinoma (JMAR and MDA-1986), melanoma (B16F10 and SKMEL-28), and normal fetal fibroblast (MRC-5) cells with IC50 values in the range between 0.067 and 9.3 μM. PMID:22098611

  8. Antimicrobial prenylated benzoylphloroglucinol derivatives and xanthones from the leaves of Garcinia goudotiana.

    PubMed

    Mahamodo, Sania; Rivière, Céline; Neut, Christel; Abedini, Amin; Ranarivelo, Heritiana; Duhal, Nathalie; Roumy, Vincent; Hennebelle, Thierry; Sahpaz, Sevser; Lemoine, Amélie; Razafimahefa, Dorothée; Razanamahefa, Bakonirina; Bailleul, François; Andriamihaja, Bakolinirina

    2014-06-01

    Bioassay-guided fractionation using antimicrobial assay of the crude acetonic extract of Garcinia goudotiana leaves and of its five partitions led to the isolation of two new prenylated benzoylphloroglucinol derivatives, goudotianone 1 (1) and goudotianone 2 (2), in addition to two known compounds including one xanthone, 1,3,7-trihydroxy-2-isoprenylxanthone (3), and one triterpenoid, friedelin (4). Their structures were elucidated on the basis of different spectroscopic methods, including extensive 1D- and 2D-NMR spectroscopy and mass spectrometry. The crude acetonic extract, the methylene chloride and ethyl acetate partitions, and some tested compounds isolated from this species (1-3) demonstrated selective significant antimicrobial activities against Gram-positive bacteria, in particular Staphylococcus lugdunensis, Enterococcus faecalis and Mycobacterium smegmatis. The potential cytotoxic activities of these extracts and compounds were evaluated against human colon carcinoma HT29 and human fetal lung fibroblast MRC5 cells. PMID:24690454

  9. Cytotoxicity of the exhaust gas from a thermal reactor of MSWI baghouse ash.

    PubMed

    Huang, Wu-Jang; Shue, Meei-Fang

    2007-10-01

    Baghouse ash from municipal solid waste incineration (MSWI) plant was heated from 25 degrees C to 800 degrees C under nitrogen in a fixed-bed reactor. The exhaust gas was passed sequentially through water, acetone and cyclohexane. The cytotoxicity testing of the three adsorbates was done with the MRC-5 cell line and the percentage cell survival was determined by 3-(4,5-dimethylthiazol-2-yl)-5(3-carboxymethoxyphenol)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) analysis. The highest level of toxicity of the exhaust gas was observed at 500 degrees C. The total cytotoxicity of the three adsorbates at any treatment temperature was found to be a function of the sum of organic carbon (TOC), inorganic carbon (IC) and molecular chlorine (Cl(2)), of which, molecular chlorine was quantitatively the greatest. PMID:17585993

  10. Suppressor of Cytokine Signaling 3 Expression Induced by Varicella-Zoster Virus Infection Results in the Modulation of Virus Replication.

    PubMed

    Choi, E-J; Lee, C-H; Shin, O S

    2015-10-01

    Varicella-zoster virus (VZV) is an important viral pathogen that is responsible for causing varicella (chickenpox) and herpes zoster (shingles). VZV has been shown to suppress early anti-viral innate immune responses, but the exact mechanisms are not yet well understood. Here we demonstrate that host control of VZV is impaired by the expression of suppressor of cytokine signaling (SOCS)3. We used three different cell types to characterize VZV-induced anti-viral and inflammatory responses. Infection of human fibroblasts (MRC-5) and human macrophages (THP-1) with VZV triggered upregulation of anti-viral responsive gene expression (IFN-α, IFN-β) in the early phases of infection, followed by the waning of these IFNs in the late phases of infection. Conversely, VZV infection in keratinocytes (HaCaT) resulted in a persistent increase in type I IFN gene expression. Interestingly, increase in SOCS1 and 3 expressions coincided with a reduction in phosphorylation of the signal transducer and activator of transcription protein 3 (STAT3) in VZV-infected MRC-5 cells. Furthermore, VZV infection increased the production of pro-inflammatory cytokines, including interleukin (IL)-6, -8, and IFN-γ-inducible protein 10 (IP-10). Knockdown of SOCS3 inhibited viral replication and enhanced secretion levels of IL-6, whereas overexpression of SOCS3 did not affect viral replication efficiency and host response. In conclusion, our data suggest that VZV infection induces SOCS3 expression, resulting in modulation of type I IFN signaling and viral replication. PMID:26072679

  11. Enzymatic analysis of venom from Cuban scorpion Rhopalurus junceus

    PubMed Central

    Díaz-García, Alexis; Ruiz-Fuentes, Jenny Laura; Yglesias-Rivera, Arianna; Rodríguez-Sánchez, Hermis; Riquenes Garlobo, Yanelis; Fleitas Martinez, Osmel; Fraga Castro, José A

    2015-01-01

    Rhopalurus junceus scorpion venom has been identified as a natural extract with anticancer potential. Interestingly, this scorpion venom does not cause adverse symptoms in humans. However, there is scarce information about its composition and enzymatic activity. In this work, we determined the electrophoretic profile of the venom, the gelatinase and caseinolytic activity, and the phospholipase A2 (PLA2) and hemolytic activity. The effect of different venom doses (6.25, 12.5 and 25 mg/kg) on gastrocnemius muscle was also measured as CK and LDH activity in serum. The presence of hyaluronidase was determined by turbidimetric assay. The effect of different fractions obtained by gel filtration chromatography were evaluated at different concentrations (0.05, 0.1, 0.2, 0.4, 0.6mg/ml) against lung cancer cell A549 and lung normal cell MRC-5 using MTT assay. The electrophoretic profile demonstrated the presence of proteins bands around 67kDa, 43kDa, 18.4kDa and a majority band below 14.3kDa. The venom did not showed caseinolytic, gelatinase, PLA2 and hemolytic activity even at highest venom concentration used in the study. Scorpion venom only showed a significant toxic effect on gastrocnemius muscles identified by CK and LDH release after subcutaneous injection of 12.5 and 25mg/kg. Low molecular weight fractions (<4kDa) induced a significant cytotoxicity in A549 cells while high molecular weight proteins (45–60kDa) were responsible for hyaluronidase activity and toxic effect against MRC-5. Experiments indicate that Rhopalurus junceus scorpion venom has low enzymatic activity, which could contribute to the low toxic potential of this scorpion venom. PMID:26605039

  12. Low immunogenicity of allogeneic human umbilical cord blood-derived mesenchymal stem cells in vitro and in vivo

    SciTech Connect

    Lee, Miyoung; Jeong, Sang Young; Ha, Jueun; Kim, Miyeon; Jin, Hye Jin; Kwon, Soon-Jae; Chang, Jong Wook; Choi, Soo Jin; Oh, Wonil; Yang, Yoon Sun; Kim, Jae-Sung; Jeon, Hong Bae

    2014-04-18

    Highlights: • hUCB-MSCs maintained low immunogenicity even after immune challenge in vitro. • Humanized NSG mice were established using human UCB CD34+ cells. • Repeated intravenous hUCB-MSC injection into mice did not lead to immune responses and adverse events. • Allogeneic hUCB-MSCs maintained low immunogenicity in vitro and in vivo. - Abstract: Evaluation of the immunogenicity of human mesenchymal stem cells (MSCs) in an allogeneic setting during therapy has been hampered by lack of suitable models due to technical and ethical limitations. Here, we show that allogeneic human umbilical cord blood derived-MSCs (hUCB-MSCs) maintained low immunogenicity even after immune challenge in vitro. To confirm these properties in vivo, a humanized mouse model was established by injecting isolated hUCB-derived CD34+ cells intravenously into immunocompromised NOD/SCID IL2γnull (NSG) mice. After repeated intravenous injection of human peripheral blood mononuclear cells (hPBMCs) or MRC5 cells into these mice, immunological alterations including T cell proliferation and increased IFN-γ, TNF-α, and human IgG levels, were observed. In contrast, hUCB-MSC injection did not elicit these responses. While lymphocyte infiltration in the lung and small intestine and reduced survival rates were observed after hPBMC or MRC5 transplantation, no adverse events were observed following hUCB-MSC introduction. In conclusion, our data suggest that allogeneic hUCB-MSCs have low immunogenicity in vitro and in vivo, and are therefore “immunologically safe” for use in allogeneic clinical applications.

  13. In vitro antiplasmodial, antileishmanial and antitrypanosomal activities of selected medicinal plants used in the traditional Arabian Peninsular region

    PubMed Central

    2012-01-01

    Background Worldwide particularly in developing countries, a large proportion of the population is at risk for tropical parasitic diseases. Several medicinal plants are still used traditionally against protozoal infections in Yemen and Saudi Arabia. Thus the present study investigated the in vitro antiprotozoal activity of twenty-five plants collected from the Arabian Peninsula. Methods Plant materials were extracted with methanol and screened in vitro against erythrocytic schizonts of Plasmodium falciparum, intracellular amastigotes of Leishmania infantum and Trypanosoma cruzi and free trypomastigotes of T. brucei. Cytotoxic activity was determined against MRC-5 cells to assess selectivity. The criterion for activity was an IC50 < 10 μg/ml (<5 μg/ml for T. brucei) and selectivity index of >4. Results Antiplasmodial activity was found in the extracts of Chrozophora oblongifolia, Ficus ingens, Lavandula dentata and Plectranthus barbatus. Amastigotes of T. cruzi were affected by Grewia erythraea, L. dentata, Tagetes minuta and Vernonia leopoldii. Activity against T. brucei was obtained in G. erythraea, L. dentata, P. barbatus and T. minuta. No relevant activity was found against L. infantum. High levels of cytotoxicity (MRC-5 IC50 < 10 μg/ml) and hence non-specific activities were noted in Cupressus sempervirens, Kanahia laniflora and Kniphofia sumarae. Conclusion The results endorse that medicinal plants can be promising sources of natural products with antiprotozoal activity potential. The results support to some extent the traditional uses of some plants for the treatment of parasitic protozoal diseases. PMID:22520595

  14. Selenoprotein H suppresses cellular senescence through genome maintenance and redox regulation.

    PubMed

    Wu, Ryan T Y; Cao, Lei; Chen, Benjamin P C; Cheng, Wen-Hsing

    2014-12-01

    Oxidative stress and persistent DNA damage response contribute to cellular senescence, a degeneration process critically involving ataxia telangiectasia-mutated (ATM) and p53. Selenoprotein H (SelH), a nuclear selenoprotein, is proposed to carry redox and transactivation domains. To determine the role of SelH in genome maintenance, shRNA knockdown was employed in human normal and immortalized cell lines. SelH shRNA MRC-5 diploid fibroblasts under ambient O2 displayed a distinct profile of senescence including β-galactosidase expression, autofluorescence, growth inhibition, and ATM pathway activation. Such senescence phenotypes were alleviated in the presence of ATM kinase inhibitors, by p53 shRNA knockdown, or by maintaining the cells under 3% O2. During the course of 5-day recovery, the induction of phospho-ATM on Ser-1981 and γH2AX by H2O2 treatment (20 μm) subsided in scrambled shRNA but exacerbated in SelH shRNA MRC-5 cells. Results from clonogenic assays demonstrated hypersensitivity of SelH shRNA HeLa cells to paraquat and H2O2, but not to hydroxyurea, neocarzinostatin, or camptothecin. While SelH mRNA expression was induced by H2O2 treatment, SelH-GFP did not mobilize to sites of oxidative DNA damage. The glutathione level was lower in SelH shRNA than scrambled shRNA HeLa cells, and the H2O2-induced cell death was rescued in the presence of N-acetylcysteine, a glutathione precursor. Altogether, SelH protects against cellular senescence to oxidative stress through a genome maintenance pathway involving ATM and p53. PMID:25336634

  15. Phyllostachys edulis extract induces apoptosis signaling in osteosarcoma cells, associated with AMPK activation

    PubMed Central

    Chou, Chi-Wen; Cheng, Ya-Wen; Tsai, Chung-Hung

    2014-01-01

    Objective Bamboo is distributed worldwide, and its different parts are used as foods or as a traditional herb. Recently, antitumoral effects of bamboo extracts on several tumors have been increasingly reported; however, antitumoral activity of bamboo extracts on osteosarcoma remains unclear. In the present study, we investigated effects of an aqueous Phyllostachys edulis leaf extract (PEE) on osteosarcoma cells and the underlying mechanism of inhibition. Methods The growth of human osteosarcoma cell lines 143B and MG-63 and lung fibroblast MRC-5 cells was determined by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. Apoptosis was demonstrated using TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling) assay and flow cytometric analysis. Phosphorylation and protein levels were determined by immunoblotting. Results After treatment with PEE, viability of 143B and MG-63 cells was dose-dependently reduced to 36.3%±1.6% of control values, which were similar to AICAR (5-aminoimidazole-4-carboxamide 1-β-D-ribofuranoside) treatments. In parallel, ratios of apoptotic cells and cells in the sub-G1 phase were significantly increased. Further investigation showed that PEE treatments led to activation of caspase cascades and changes of apoptotic mediators Bcl2, Bax, and p53. Consistently, our results revealed that PEE activated adenosine monophosphate-activated protein kinase (AMPK) signaling, and the AMPK activation was associated with the induction of apoptotic signaling. Conclusion Our results indicated that PEE suppressed the growth of 143B and MG-63 cells but moderately affected MRC-5 cells. PEE-induced apoptosis may attribute to AMPK activation and the following activation of apoptotic signaling cascades. These findings revealed that PEE possesses antitumoral activity on human osteosarcoma cells by manipulating AMPK signaling, suggesting that PEE alone or combined with regular antitumor drugs may be beneficial as osteosarcoma

  16. Nimesulide Silver Metallodrugs, Containing the Mitochondriotropic, Triaryl Derivatives of Pnictogen; Anticancer Activity against Human Breast Cancer Cells.

    PubMed

    Banti, Christina N; Papatriantafyllopoulou, Constantina; Manoli, Maria; Tasiopoulos, Anastasios J; Hadjikakou, Sotiris K

    2016-09-01

    Novel silver(I) metallo-drugs of the nonsteroidal anti-inflammatory drug nimesulide (nim) and the mitochondriotropic triaryl derivatives of pnictogen ligands (tpE, E = P (tpp, tptp, or totp), As (tpAs), Sb (tpSb)) with the formulas {[Ag(nim) (tpp)2]DMF} (1), [Ag(nim) (tptp)2] (2), [Ag(nim) (totp)] (3), [Ag(nim) (tpAs)2] (4), and [Ag(nim) (tpSb)3] (5) ((tpp = triphenyphosphine, tptp = tri(p-tolyl)phosphine, totp = tri(o-tolyl)phosphine, tpAs = triphenylarsine, tpSb = triphenylantimony, and DMF = dimethylformamide) were synthesized and characterized by melting point, vibrational spectroscopy (mid-Fourier transform IR), (1)H NMR, UV-visible spectroscopic techniques, and X-ray crystallography. The in vitro cytotoxic activity of 1-5 against human breast adenocarcinoma cancer cell lines: MCF-7 (estrogen receptor (ER) positive) and MDA-MB-231 (ER negative) was determined. The genotoxicity on normal human fetal lung fibroblast cells (MRC-5) caused by 1-5 was evaluated by fluorescence microscopy. The absence of micronucleus in MRC-5 cells confirms the in vitro non toxicity behavior of the compounds. Because of the morphology of the cells, an apoptotic pathway was concluded for the cell death. The apoptotic pathway, especially though the mitochondrion damage, was confirmed by DNA fragmentation, cell cycle arrest, and permeabilization of the mitochondrial membrane tests. The molecular mechanism of action of 1-5 was further studied by (i) the binding affinity of 1-5 toward the calf thymus (CT) DNA, (ii) the inhibitory activity of 1-5 against lipoxygenase (an enzyme that oxidizes polyunsaturated fatty acids to leukotrienes or prostaglandins), and (iii) the catalytic activity of 1-5 on the oxidation of linoleic acid (an acid that partakes in membrane fluidity, membrane enzyme activities, etc.) to hyperoxolinoleic acid by oxygen. PMID:27513311

  17. Silicon-based quantum dots induce inflammation in human lung cells and disrupt extracellular matrix homeostasis.

    PubMed

    Stan, Miruna-Silvia; Sima, Cornelia; Cinteza, Ludmila Otilia; Dinischiotu, Anca

    2015-08-01

    Quantum dots (QDs) are nanocrystalline semiconductor materials that have been tested for biological applications such as cancer therapy, cellular imaging and drug delivery, despite the serious lack of information of their effects on mammalian cells. The present study aimed to evaluate the potential of Si/SiO2 QDs to induce an inflammatory response in MRC-5 human lung fibroblasts. Cells were exposed to different concentrations of Si/SiO2 QDs (25-200 μg·mL(-1)) for 24, 48, 72 and 96 h. The results obtained showed that uptake of QDs was dependent on biocorona formation and the stability of nanoparticles in various biological media (minimum essential medium without or with 10% fetal bovine serum). The cell membrane damage indicated by the increase in lactate dehydrogenase release after exposure to QDs was dose- and time-dependent. The level of lysosomes increased proportionally with the concentration of QDs, whereas an accumulation of autophagosomes was also observed. Cellular morphology was affected, as shown by the disruption of actin filaments. The enhanced release of nitric oxide and the increase in interleukin-6 and interleukin-8 protein expression suggested that nanoparticles triggered an inflammatory response in MRC-5 cells. QDs decreased the protein expression and enzymatic activity of matrix metalloproteinase (MMP)-2 and MMP-9 and also MMP-1 caseinase activity, whereas the protein levels of MMP-1 and tissue inhibitor of metalloproteinase-1 increased. The present study reveals for the first time that silicon-based QDs are able to generate inflammation in lung cells and cause an imbalance in extracellular matrix turnover through a differential regulation of MMPs and tissue inhibitor of metalloproteinase-1 protein expression. PMID:26032556

  18. Mycoplasma gallisepticum in vivo induced antigens expressed during infection in chickens.

    PubMed

    Ron, Merav; Gorelick-Ashkenazi, Anna; Levisohn, Sharon; Nir-Paz, Ran; Geary, Steven J; Tulman, Edan; Lysnyansky, Inna; Yogev, David

    2015-02-25

    Until now only a few genes encoding virulence factors have been characterized in the avian pathogen Mycoplasma gallisepticum. In order to identify candidate targets associated with infection we applied an immunoscreening technique-in vivo induced antigen technology (IVIAT)-to detect immunogens of M. gallisepticum strain Rlow expressed preferentially during in vivo infection. We identified 13 in vivo-induced (IVI) proteins that correspond to different functional categories including: previously reported putative virulence factors (GapA, PlpA, Hlp3, VlhA 1.07 and VlhA 4.01), transport (PotE, MGA_0241 and 0654), translation (L2, L23, ValS), chaperone (GroEL) and a protein with unknown function (MGA_0042). To validate the in vivo antigenic reactivity, 10 IVI proteins were tested by Western blot analysis using serum samples collected from chickens experimentally (with strain Rlow) and naturally (outbreaks, N=3) infected with M. gallisepticum. All IVI proteins tested were immunogenic. To corroborate these results, we tested expression of IVI genes in chickens experimentally infected with M. gallisepticum Rlow, and in MRC-5 human lung fibroblasts cell culture by using relative real time reverse-transcription PCR (RT-PCR). With the exception of MGA_0338, all six genes tested (MGA_1199, 0042, 0654, 0712, 0928 and 0241) were upregulated at least at one time point during experimental infection (2-4 week post-infection). In contrast, the expression of seven out of eight IVI genes (MGA_1199, 0152, 0338, 0042, 0654, 0712, 0928) were downregulated in MRC-5 cell culture at both 2 and 4h PI; MGA_0241 was upregulated 2h PI. Our data suggest that the identified IVI antigens may have important roles in the pathogenesis of M. gallisepticum infection in vivo. PMID:25575879

  19. Enzymatic analysis of venom from Cuban scorpion Rhopalurus junceus.

    PubMed

    Díaz-García, Alexis; Ruiz-Fuentes, Jenny Laura; Yglesias-Rivera, Arianna; Rodríguez-Sánchez, Hermis; Riquenes Garlobo, Yanelis; Fleitas Martinez, Osmel; Fraga Castro, José A

    2015-01-01

    Rhopalurus junceus scorpion venom has been identified as a natural extract with anticancer potential. Interestingly, this scorpion venom does not cause adverse symptoms in humans. However, there is scarce information about its composition and enzymatic activity. In this work, we determined the electrophoretic profile of the venom, the gelatinase and caseinolytic activity, and the phospholipase A2 (PLA2) and hemolytic activity. The effect of different venom doses (6.25, 12.5 and 25 mg/kg) on gastrocnemius muscle was also measured as CK and LDH activity in serum. The presence of hyaluronidase was determined by turbidimetric assay. The effect of different fractions obtained by gel filtration chromatography were evaluated at different concentrations (0.05, 0.1, 0.2, 0.4, 0.6mg/ml) against lung cancer cell A549 and lung normal cell MRC-5 using MTT assay. The electrophoretic profile demonstrated the presence of proteins bands around 67kDa, 43kDa, 18.4kDa and a majority band below 14.3kDa. The venom did not showed caseinolytic, gelatinase, PLA2 and hemolytic activity even at highest venom concentration used in the study. Scorpion venom only showed a significant toxic effect on gastrocnemius muscles identified by CK and LDH release after subcutaneous injection of 12.5 and 25mg/kg. Low molecular weight fractions (<4kDa) induced a significant cytotoxicity in A549 cells while high molecular weight proteins (45-60kDa) were responsible for hyaluronidase activity and toxic effect against MRC-5. Experiments indicate that Rhopalurus junceus scorpion venom has low enzymatic activity, which could contribute to the low toxic potential of this scorpion venom. PMID:26605039

  20. Synthesis, antiradical activity and in vitro cytotoxicity of novel organotin complexes based on 2,6-di-tert-butyl-4-mercaptophenol.

    PubMed

    Shpakovsky, D B; Banti, C N; Mukhatova, E M; Gracheva, Yu A; Osipova, V P; Berberova, N T; Albov, D V; Antonenko, T A; Aslanov, L A; Milaeva, E R; Hadjikakou, S K

    2014-05-14

    A series of organotin complexes with Sn-S bonds of formulae Me2Sn(SR)2 (1); Et2Sn(SR)2 (2); (n-Bu)2Sn(SR)2 (3); Ph2Sn(SR)2 (4); R2Sn(SR)2 (5); Me3SnSR (6); Ph3SnSR (7) (R = 3,5-di-tert-butyl-4-hydroxyphenyl) were synthesized and characterized by elemental analysis, (1)H, (13)C NMR, and IR. The crystal structures of compounds 1, 4, 5, and 7 were determined by X-ray diffraction analysis. The tetrahedral geometry around the Sn center in the monocrystals of 1, 4, 5, and 7 was confirmed by X-ray crystallography. The high radical scavenging activity of the complexes was confirmed spectrophotometrically in a DPPH-test. The binding affinity of 1-7 and the starting R2SnCl2 (8) towards tubulin through their interaction with SH groups of proteins was studied. It was found that the hindered organotin complexes could interact with the colchicine site of tubulin, which makes them promising antimitotic drugs. Compounds 1-8 were tested for their in vitro cytotoxicity against human breast (MCF-7) and human cervix (HeLa) adenocarcinoma cells. Complexes 1-8 were also tested against normal human fetal lung fibroblast cells (MRC-5). Complexes 2-4 and 8 exhibit significantly lower cytostatic activity against the normal MRC-5 cell line compared to the tumor cell lines MCF-7 and HeLa used. A high activity against both cell lines 250 nM (MCF-7) and 160 nM (HeLa) was determined for the triphenyltin complex 7 while the introduction of hindered phenol groups decreases the cytotoxicity of the complexes against normal cells. PMID:24658418

  1. Synthesis, Biological Evaluation, and Computer-Aided Drug Designing of New Derivatives of Hyperactive Suberoylanilide Hydroxamic Acid Histone Deacetylase Inhibitors.

    PubMed

    Zhang, Song; Huang, Weibin; Li, Xiaonan; Yang, Zhicheng; Feng, Binghong

    2015-10-01

    The synthesis and biological evaluation of a novel series of compounds based on suberoylanilide hydroxamic acid (SAHA) had been designed as potential histone deacetylase inhibitors (HDACis). Molecular docking studies indicated that our derivatives had better fitting in the binding sites of HDAC8 than SAHA. Compounds 1-5 were synthesized through the synthetic routes. In biological test, compounds also showed good inhibitory activity in HDAC enzyme assay and more potent growth inhibition in human glioma cell lines (MGR2, U251, and U373). A representative compound, N3F, exhibited better inhibitory effect (HDAC, IC50  = 0.1187 μm; U251, IC50  = 0.8949 μm) and lower toxicity for human normal cells (LO2, IC50  = 172.5 μm and MRC5, IC50  = 213.6 μm) compared with SAHA (HDAC, IC50  = 0.8717 μm; U251, IC50  = 8.938 μm; LO2, IC50  = 86.52 μm and MRC5, IC50  = 81.02 μm). In addition, N3F obviously increased Beclin-1 and Caspase-3 and 9 as well as inhibited Bcl-2 in U251 cells. All of our results indicated that these SAHA cap derivatives could serve as potential lead compounds for further optimization. In addition, N3F and N2E both displayed promising profile as antitumor candidates for the treatment of human glioma. PMID:25763653

  2. Up-regulation of Survivin during Immortalization of Human Myofibroblasts Is Linked to Repression of Tumor Suppressor p16INK4a Protein and Confers Resistance to Oxidative Stress*

    PubMed Central

    Kan, Chin-Yi; Petti, Carlotta; Bracken, Lauryn; Maritz, Michelle; Xu, Ning; O'Brien, Rosemary; Yang, Chen; Liu, Tao; Yuan, Jun; Lock, Richard B.; MacKenzie, Karen L.

    2013-01-01

    Survivin is an essential component of the chromosomal passenger complex and a member of the inhibitor of apoptosis family. It is expressed at high levels in a large variety of malignancies, where it has been implicated in drug resistance. It was also shown previously that survivin is up-regulated during telomerase-mediated immortalization, which occurs at a relatively early stage during carcinogenesis. This study shows that up-regulation of survivin during immortalization of human myofibroblasts is an indirect consequence of the repression of p16INK4a. Survivin and p16INK4a were functionally linked by assays that showed that either the up-regulation of survivin or repression of p16INK4a rendered telomerase-transduced MRC-5 myofibroblasts resistant to oxidative stress. Conversely, siRNA-mediated down-regulation of survivin activated caspases and enhanced the sensitivity of immortal MRC-5 cells to oxidative stress. The E2F1 transcription factor, which is negatively regulated by the pRB/p16INK4a tumor suppressor pathway, was implicated in the up-regulation of survivin. Using the ChIP assay, it was shown that E2F1 directly interacted with the survivin gene (BIRC5) promoter in cells that spontaneously silenced p16INK4a during telomerase-mediated immortalization. E2F1 binding to the BIRC5 was also enhanced in telomerase-transduced cells subjected to shRNA-mediated repression of p16INK4a. Together, these data show that repression of p16INK4a contributes to the up-regulation of survivin and thereby provides a survival advantage to cells exposed to oxidative stress during immortalization. The up-regulation of survivin during immortalization likely contributes to the vulnerability of immortal cells to transformation by oncogenes that alter intracellular redox state. PMID:23449974

  3. Noncanonical WNT-5B signaling induces inflammatory responses in human lung fibroblasts.

    PubMed

    van Dijk, Eline M; Menzen, Mark H; Spanjer, Anita I R; Middag, Laurens D C; Brandsma, Corry-Anke A; Gosens, Reinoud

    2016-06-01

    COPD is a progressive chronic lung disease characterized by pulmonary inflammation. Several recent studies indicate aberrant expression of WNT ligands and Frizzled receptors in the disease. For example, WNT-5A/B ligand expression was recently found to be increased in lung fibroblasts of COPD patients. However, possible effects of WNT-5A and WNT-5B on inflammation have not been investigated yet. In this study, we assessed the regulation of inflammatory cytokine release in response to WNT-5A/B signaling in human lung fibroblasts. Primary human fetal lung fibroblasts (MRC-5), and primary lung fibroblasts from COPD patients and non-COPD controls were treated with recombinant WNT-5A or WNT-5B to assess IL-6 and CXCL8 cytokine secretion and gene expression levels. Following WNT-5B, and to a lesser extent WNT-5A stimulation, fibroblasts showed increased IL-6 and CXCL8 cytokine secretion and mRNA expression. WNT-5B-mediated IL-6 and CXCL8 release was higher in fibroblasts from COPD patients than in non-COPD controls. In MRC-5 fibroblasts, WNT-5B-induced CXCL8 release was mediated primarily via the Frizzled-2 receptor and TAK1 signaling, whereas canonical β-catenin signaling was not involved. In further support of noncanonical signaling, we showed activation of JNK, p38, and p65 NF-κB by WNT-5B. Furthermore, inhibition of JNK and p38 prevented WNT-5B-induced IL-6 and CXCL8 secretion, whereas IKK inhibition prevented CXCL8 secretion only, indicating distinct pathways for WNT-5B-induced IL-6 and CXCL8 release. WNT-5B induces IL-6 and CXCL8 secretion in pulmonary fibroblasts. In summary, WNT-5B mediates this via Frizzled-2 and TAK1. As WNT-5 signaling is increased in COPD, this WNT-5-induced inflammatory response could represent a therapeutic target. PMID:27036869

  4. A Series of Beta-Carboline Derivatives Inhibit the Kinase Activity of PLKs

    PubMed Central

    Guo, Liang; Cao, Rihui; Li, Yongzhen; Li, Ni; Ma, Qin; Wu, Jialin; Wang, Yanchang; Si, Shuyi

    2012-01-01

    Polo-like kinases play an essential role in the ordered execution of mitotic events and 4 mammalian PLK family members have been identified. Accumulating evidence indicates that PLK1 is an attractive target for anticancer drugs. In this paper, a series of beta-carboline derivatives were synthesized and three compounds, DH281, DH285 and DH287, were identified as potent new PLK inhibitors. We employed various biochemical and cellular approaches to determine the effects of these compounds on the activity of PLK1 and other mitotic kinases and on cell cycle progression. We found that these three compounds could selectively inhibit the kinase activity of purified PLK1, PLK2 and PLK3 in vitro. They show strong antitumor activity against a number of cancer cell lines with relatively low micromolar IC50s, but are relatively less toxic to non-cancer cells (MRC5). Moreover, these compounds could induce obvious accumulation of HeLa cells in G2/M and S phases and trigger apoptosis. Although MRC5 cells show clear S-phase arrest after treatment with these compounds, the G2/M arrest and apoptosis are less insignificant, indicating the distinct sensitivity between normal and cancer cells. We also found that HeLa cells treated with these drugs exhibit monopolar spindles and increased Wee1 protein levels, the characteristics of cells treated with PLK1 inhibitors. Together, these results demonstrate that DH281, DH285 and DH287 beta-carboline compounds are new PLK inhibitors with potential for cancer treatment. PMID:23056340

  5. Cross-Presentation of Human Cytomegalovirus pp65 (UL83) to CD8+ T Cells Is Regulated by Virus-Induced, Soluble-Mediator-Dependent Maturation of Dendritic Cells

    PubMed Central

    Arrode, Géraldine; Boccaccio, Claire; Abastado, Jean-Pierre; Davrinche, Christian

    2002-01-01

    Cytotoxic CD8+ T lymphocytes (CTL) directed against the matrix protein pp65 are major effectors in controlling infection against human cytomegalovirus (HCMV), a persistent virus of the Betaherpesvirus family. We previously suggested that cross-presentation of pp65 by nonpermissive dendritic cells (DCs) could overcome viral strategies that interfere with activation of CTL (G. Arrode, C. Boccaccio, J. Lule, S. Allart, N. Moinard, J. Abastado, A. Alam, and C. Davrinche, J. Virol. 74:10018–10024, 2000). It is well established that mature DCs are very potent in initiating T-cell-mediated immunity. Consequently, the DC maturation process is a key step targeted by viruses in order to avoid an immune response. Here, we report that immature DCs maintained in coculture with infected human (MRC5) fibroblasts acquired pp65 from early-infected cells for cross-presentation to specific HLA-A2-restricted CTL. In contrast, coculture of DCs in the presence of late-infected cells decreased their capacity to stimulate CTL. Analyses of DC maturation after either coculture with infected MRC5 cells or incubation with infected-cell-conditioned medium revealed that acquisition of a mature phenotype was a prerequisite for efficient stimulation of CTL and that soluble factors secreted by infected cells were responsible for both up and down regulation of CD83 expression on DCs. We identified transforming growth factor β1 secreted by late HCMV-infected cells as one of these down regulating mediators. These findings suggest that HCMV has devised another means to compromise immune surveillance mechanisms. Together, our data indicate that recognition of HCMV-infected cells by DCs has to occur early after infection to avoid immune evasion and to allow generation of anti-HCMV CTL. PMID:11739680

  6. CRISPLD2 (LGL1) inhibits proinflammatory mediators in human fetal, adult, and COPD lung fibroblasts and epithelial cells.

    PubMed

    Zhang, Hui; Kho, Alvin T; Wu, Qing; Halayko, Andrew J; Limbert Rempel, Karen; Chase, Robert P; Sweezey, Neil B; Weiss, Scott T; Kaplan, Feige

    2016-09-01

    Chronic lung disease of prematurity/bronchopulmonary dysplasia (BPD) is the leading cause of perinatal morbidity in developed countries. Inflammation is a prominent finding. Currently available interventions have associated toxicities and limited efficacy. While BPD often resolves in childhood, survivors of preterm birth are at risk for acquired respiratory disease in early life and are more likely to develop chronic obstructive pulmonary disease (COPD) in adulthood. We previously cloned Crispld2 (Lgl1), a glucocorticoid-regulated mesenchymal secretory protein that modulates lung branching and alveogenesis through mesenchymal-epithelial interactions. Absence of Crispld2 is embryonic lethal. Heterozygous Crispld2+/- mice display features of BPD, including distal airspace enlargement, disruption of elastin, and neonatal lung inflammation. CRISPLD2 also plays a role in human fetal lung fibroblast cell expansion, migration, and mesenchymal-epithelial signaling. This study assessed the effects of endogenous and exogenous CRISPLD2 on expression of proinflammatory mediators in human fetal and adult (normal and COPD) lung fibroblasts and epithelial cells. CRISPLD2 expression was upregulated in a lipopolysaccharide (LPS)-induced human fetal lung fibroblast line (MRC5). LPS-induced upregulation of the proinflammatory cytokines IL-8 and CCL2 was exacerbated in MRC5-CRISPLD2(knockdown) cells. siRNA suppression of endogenous CRISPLD2 in adult lung fibroblasts (HLFs) led to augmented expression of IL-8, IL-6, CCL2. LPS-stimulated expression of proinflammatory mediators by human lung epithelial HAEo- cells was attenuated by purified secretory CRISPLD2. RNA sequencing results from HLF-CRISPLD2(knockdown) suggest roles for CRISPLD2 in extracellular matrix and in inflammation. Our data suggest that suppression of CRISPLD2 increases the risk of lung inflammation in early life and adulthood. PMID:27597766

  7. Selenoprotein H Suppresses Cellular Senescence through Genome Maintenance and Redox Regulation*

    PubMed Central

    Wu, Ryan T. Y.; Cao, Lei; Chen, Benjamin P. C.; Cheng, Wen-Hsing

    2014-01-01

    Oxidative stress and persistent DNA damage response contribute to cellular senescence, a degeneration process critically involving ataxia telangiectasia-mutated (ATM) and p53. Selenoprotein H (SelH), a nuclear selenoprotein, is proposed to carry redox and transactivation domains. To determine the role of SelH in genome maintenance, shRNA knockdown was employed in human normal and immortalized cell lines. SelH shRNA MRC-5 diploid fibroblasts under ambient O2 displayed a distinct profile of senescence including β-galactosidase expression, autofluorescence, growth inhibition, and ATM pathway activation. Such senescence phenotypes were alleviated in the presence of ATM kinase inhibitors, by p53 shRNA knockdown, or by maintaining the cells under 3% O2. During the course of 5-day recovery, the induction of phospho-ATM on Ser-1981 and γH2AX by H2O2 treatment (20 μm) subsided in scrambled shRNA but exacerbated in SelH shRNA MRC-5 cells. Results from clonogenic assays demonstrated hypersensitivity of SelH shRNA HeLa cells to paraquat and H2O2, but not to hydroxyurea, neocarzinostatin, or camptothecin. While SelH mRNA expression was induced by H2O2 treatment, SelH-GFP did not mobilize to sites of oxidative DNA damage. The glutathione level was lower in SelH shRNA than scrambled shRNA HeLa cells, and the H2O2-induced cell death was rescued in the presence of N-acetylcysteine, a glutathione precursor. Altogether, SelH protects against cellular senescence to oxidative stress through a genome maintenance pathway involving ATM and p53. PMID:25336634

  8. TGF-β-induced profibrotic signaling is regulated in part by the WNT receptor Frizzled-8.

    PubMed

    Spanjer, Anita I R; Baarsma, Hoeke A; Oostenbrink, Lisette M; Jansen, Sepp R; Kuipers, Christine C; Lindner, Michael; Postma, Dirkje S; Meurs, Herman; Heijink, Irene H; Gosens, Reinoud; Königshoff, Melanie

    2016-05-01

    TGF-β is important in lung injury and remodeling processes. TGF-β and Wingless/integrase-1 (WNT) signaling are interconnected; however, the WNT ligand-receptor complexes involved are unknown. Thus, we aimed to identify Frizzled (FZD) receptors that mediate TGF-β-induced profibrotic signaling. MRC-5 and primary human lung fibroblasts were stimulated with TGF-β1, WNT-5A, or WNT-5B in the presence and absence of specific pathway inhibitors. Specific small interfering RNA was used to knock down FZD8. In vivo studies using bleomycin-induced lung fibrosis were performed in wild-type and FZD8-deficient mice. TGF-β1 induced FZD8 specifically via Smad3-dependent signaling in MRC-5 and primary human lung fibroblasts. It is noteworthy that FZD8 knockdown reduced TGF-β1-induced collagen Iα1, fibronectin, versican, α-smooth muscle (sm)-actin, and connective tissue growth factor. Moreover, bleomycin-induced lung fibrosis was attenuated in FZD8-deficient mice in vivo Although inhibition of canonical WNT signaling did not affect TGF-β1-induced gene expression in vitro, noncanonical WNT-5B mimicked TGF-β1-induced fibroblast activation. FZD8 knockdown reduced both WNT-5B-induced gene expression of fibronectin and α-sm-actin, as well as WNT-5B-induced changes in cellular impedance. Collectively, our findings demonstrate a role for FZD8 in TGF-β-induced profibrotic signaling and imply that WNT-5B may be the ligand for FZD8 in these responses.-Spanjer, A. I. R., Baarsma, H. A., Oostenbrink, L. M., Jansen, S. R., Kuipers, C. C., Lindner, M., Postma, D. S., Meurs, H., Heijink, I. H., Gosens, R., Königshoff, M. TGF-β-induced profibrotic signaling is regulated in part by the WNT receptor Frizzled-8. PMID:26849959

  9. Cytotoxic effect of Alpinia scabra (Blume) Náves extracts on human breast and ovarian cancer cells

    PubMed Central

    2013-01-01

    Background Alpinia scabra, locally known as 'Lengkuas raya’, is an aromatic, perennial and rhizomatous herb from the family Zingiberaceae. It is a wild species which grows largely on mountains at moderate elevations in Peninsular Malaysia, but it can also survive in the lowlands like in the states of Terengganu and Northern Johor. The present study reports the cytotoxic potential of A. scabra extracts from different parts of the plant. Methods The experimental approach in the present study was based on a bioassay-guided fractionation. The crude methanol and fractionated extracts (hexane, chloroform and water) from different parts of A. scabra (leaves, rhizomes, roots and pseudo stems) were prepared prior to the cytotoxicity evaluation against human ovarian (SKOV-3) and hormone-dependent breast (MCF7) carcinoma cells. The identified cytotoxic extracts were then subjected to chemical investigations in order to identify the active ingredients. A normal human lung fibroblast cell line (MRC-5) was used to determine the specificity for cancerous cells. The cytotoxic extracts and fractions were also subjected to morphological assessment, DNA fragmentation analysis and DAPI nuclear staining. Results The leaf (hexane and chloroform) and rhizome (chloroform) extracts showed high inhibitory effect against the tested cells. Ten fractions (LC1-LC10) were yielded after purification of the leaf chloroform extract. Fraction LC4 which showed excellent cytotoxic activity was further purified and resulted in 17 sub-fractions (VLC1-VLC17). Sub-fraction VLC9 showed excellent cytotoxicity against MCF7 and SKOV-3 cells but not toxic against normal MRC-5 cells. Meanwhile, eighteen fractions (RC1-RC18) were obtained after purification of the rhizome chloroform extract, of which fraction RC5 showed cytotoxicity against SKOV-3 cells with high selectivity index. There were marked morphological changes when observed using phase-contrast inverted microscope, DAPI nuclear staining and also DNA

  10. Essential Oil of Cymbopogon nardus (L.) Rendle: A Strategy to Combat Fungal Infections Caused by Candida Species

    PubMed Central

    De Toledo, Luciani Gaspar; Ramos, Matheus Aparecido Dos Santos; Spósito, Larissa; Castilho, Elza Maria; Pavan, Fernando Rogério; Lopes, Érica De Oliveira; Zocolo, Guilherme Julião; Silva, Francisca Aliny Nunes; Soares, Tigressa Helena; dos Santos, André Gonzaga; Bauab, Taís Maria; De Almeida, Margarete Teresa Gottardo

    2016-01-01

    Background: The incidence of fungal infections, especially those caused by Candida yeasts, has increased over the last two decades. However, the indicated therapy for fungal control has limitations. Hence, medicinal plants have emerged as an alternative in the search for new antifungal agents as they present compounds, such as essential oils, with important biological effects. Published data demonstrate important pharmacological properties of the essential oil of Cymbopogon nardus (L.) Rendle; these include anti-tumor, anti-nociceptive, and antibacterial activities, and so an investigation of this compound against pathogenic fungi is interesting. Objective: The aim of this study was to evaluate the chemical composition and biological potential of essential oil (EO) obtained from the leaves of C. nardus focusing on its antifungal profile against Candida species. Methods: The EO was obtained by hydrodistillation and analyzed by gas chromatography-mass spectrometry (GC-MS). Testing of the antifungal potential against standard and clinical strains was performed by determining the minimal inhibitory concentration (MIC), time-kill, inhibition of Candida albicans hyphae growth, and inhibition of mature biofilms. Additionally, the cytotoxicity was investigated by the IC50 against HepG-2 (hepatic) and MRC-5 (fibroblast) cell lines. Results: According to the chemical analysis, the main compounds of the EO were the oxygen-containing monoterpenes: citronellal, geranial, geraniol, citronellol, and neral. The results showed important antifungal potential for all strains tested with MIC values ranging from 250 to 1000 μg/mL, except for two clinical isolates of C. tropicalis (MIC > 1000 μg/mL). The time-kill assay showed that the EO inhibited the growth of the yeast and inhibited hyphal formation of C. albicans strains at concentrations ranging from 15.8 to 1000 μg/mL. Inhibition of mature biofilms of strains of C. albicans, C. krusei and C. parapsilosis occurred at a

  11. Green synthesis of bacterial mediated anti-proliferative gold nanoparticles: inducing mitotic arrest (G2/M phase) and apoptosis (intrinsic pathway)

    NASA Astrophysics Data System (ADS)

    Ganesh Kumar, C.; Poornachandra, Y.; Chandrasekhar, Cheemalamarri

    2015-11-01

    The physiochemical and biological properties of microbial derived gold nanoparticles have potential applications in various biomedical domains as well as in cancer therapy. We have fabricated anti-proliferative bacterial mediated gold nanoparticles (b-Au NPs) using a culture supernatant of Streptomyces clavuligerus and later characterized them by UV-visible, TEM, DLS, XRD and FT-IR spectroscopic techniques. The capping agent responsible for the nanoparticle formation was characterized based on SDS-PAGE and MALDI-TOF-MS analyses. They were tested for anticancer activity in A549, HeLa and DU145 cell lines. The biocompatibility and non-toxic nature of the nanoparticles were tested on normal human lung cell line (MRC-5). The b-Au NPs induced the cell cycle arrest in G2/M phase and also inhibited the microtubule assembly in DU145 cells. Mechanistic studies, such as ROS, MMP, Cyt-c, GSH, caspases 9, 8 and 3 activation and the Annexin V-FITC staining, along with the above parameters tested provided sufficient evidence that the b-Au NPs induced apoptosis through the intrinsic pathway. The results supported the use of b-Au NPs for future therapeutic application in cancer therapy and other biomedical applications.The physiochemical and biological properties of microbial derived gold nanoparticles have potential applications in various biomedical domains as well as in cancer therapy. We have fabricated anti-proliferative bacterial mediated gold nanoparticles (b-Au NPs) using a culture supernatant of Streptomyces clavuligerus and later characterized them by UV-visible, TEM, DLS, XRD and FT-IR spectroscopic techniques. The capping agent responsible for the nanoparticle formation was characterized based on SDS-PAGE and MALDI-TOF-MS analyses. They were tested for anticancer activity in A549, HeLa and DU145 cell lines. The biocompatibility and non-toxic nature of the nanoparticles were tested on normal human lung cell line (MRC-5). The b-Au NPs induced the cell cycle arrest in G2

  12. Preguntas frecuentes SmokefreeTXT | Smokefree Español

    Cancer.gov

    Reciba gratuitamente estímulos para dejar de fumar, consejos y recomendaciones 24 horas al día, los 7 días de la semana en su celular con SmokefreeTXT en Español. Envíe LIBRE al 47848 para suscríbirse.

  13. Anticuerpos derivados de pacientes se dirigen a células tumorales

    Cancer.gov

    Artículo del blog Temas y relatos de un anticuerpo derivado de pacientes que destruye células tumorales en estirpes celulares de varios tipos de cáncer e hizo lento el crecimiento en modelos murinos de cáncer de cerebro y pulmón sin signo de efectos.

  14. Palabras clave SmokefreeTXT | Smokefree Español

    Cancer.gov

    Reciba gratuitamente estímulos para dejar de fumar, consejos y recomendaciones 24 horas al día, los 7 días de la semana en su celular con SmokefreeTXT en Español. Envíe LIBRE al 47848 para suscríbirse.

  15. Levels of synthesis of primate-specific nuclear proteins differ between growth-arrested and proliferating cells

    SciTech Connect

    Celis, J.E.; Madsen, P.; Nielsen, S.; Ratz, G.P.; Lauridsen, J.B.; Celis, A.

    1987-02-01

    A monoclonal antibody that reacts specifically with the proliferation-sensitive nuclear proteins, isoelectric focusing (IEF) 8Z31 (molecular weight (MW), 76,000 charge variants, HeLa protein catalogue number) has been characterized. As determined by indirect immunofluorescence, the antibody stains the nucleolus and nucleoplasm of interphase-cultured cells of primate origin, but does not react with cells of other species. Proteins having similar MWs and isoelectric points as the human or monkey (primates) proteins were not observed in cultured cells of the following species: aves, bat, dog, dolphin, goat, hamster, mink, mouse, pisces, potoroo, rabbit and rat. Quantitative two-dimensional (2D) gel electrophoretic analysis of (/sup 35/S)methionine-labelled proteins synthesized by normal (quiescent, proliferating) and SV40-transformed human MRC-5 fibroblasts revealed significant differences in the levels of synthesis of both IEF 8Z30 and 8Z31. In quiescent cells the main labelled product corresponded to IEF 8Z31 (ratio IEF 8Z31/8Z30, 2.3), while in the transformed cells the major product was IEF 8Z30 (ratio, 0.62). Normal proliferating fibroblasts exhibited similar levels of both proteins (ratio, 1.21). Combined levels of synthesis of both proteins were 1.50 and 1.20 times as high in the transformed cells as in the quiescent and proliferating cells, respectively. Modulation of the levels of synthesis of these proteins may play a role in cell proliferation.

  16. Self-Styled ZnO Nanostructures Promotes the Cancer Cell Damage and Supresses the Epithelial Phenotype of Glioblastoma

    NASA Astrophysics Data System (ADS)

    Wahab, Rizwan; Kaushik, Neha; Khan, Farheen; Kaushik, Nagendra Kumar; Choi, Eun Ha; Musarrat, Javed; Al-Khedhairy, Abdulaziz A.

    2016-01-01

    Extensive researches have been done on the applications of zinc oxide nanoparticles (ZnO-NPs) for the biological purposes. However, the role and toxicity mechanisms of ZnO nanostructures (ZnO-NSts) such as nanoplates (NPls), nanorods (NRs), nanosheets (NSs), nanoflowers (NFs) on cancer cells are not largely known. Present study was focused to investigate the possible mechanisms of apoptosis induced by self-designed ZnO-NSts, prepared at fix pH via solution process and exposed against human T98G gliomas including various cancers and non-malignant embryonic kidney HEK293, MRC5 fibroblast cells. NSts were used for the induction of cell death in malignant human T98G gliomas including various cancers and compared with the non-malignant cells. Notably, NRs were found to induce higher cytotoxicity, inhibitory effects on cancer and normal cells in a dose dependent manner. We also showed that NRs induced cancer cell death through oxidative stress and caspase-dependent pathways. Furthermore, quantitative and qualitative analysis of ZnO-NSts have also been confirmed by statistical analytical parameters such as precision, accuracy, linearity, limits of detection and limit of quantitation. These self-styled NSts could provide new perception in the research of targeted cancer nanotechnology and have potentiality to improve new therapeutic outcomes with poor diagnosis.

  17. Discovery of Inhibitors of Trypanosoma brucei by Phenotypic Screening of a Focused Protein Kinase Library

    PubMed Central

    Woodland, Andrew; Thompson, Stephen; Cleghorn, Laura A T; Norcross, Neil; De Rycker, Manu; Grimaldi, Raffaella; Hallyburton, Irene; Rao, Bhavya; Norval, Suzanne; Stojanovski, Laste; Brun, Reto; Kaiser, Marcel; Frearson, Julie A; Gray, David W; Wyatt, Paul G; Read, Kevin D; Gilbert, Ian H

    2015-01-01

    A screen of a focused kinase inhibitor library against Trypanosoma brucei rhodesiense led to the identification of seven series, totaling 121 compounds, which showed >50 % inhibition at 5 μm. Screening of these hits in a T. b. brucei proliferation assay highlighted three compounds with a 1H-imidazo[4,5-b]pyrazin-2(3H)-one scaffold that showed sub-micromolar activity and excellent selectivity against the MRC5 cell line. Subsequent rounds of optimisation led to the identification of compounds that exhibited good in vitro drug metabolism and pharmacokinetics (DMPK) properties, although in general this series suffered from poor solubility. A scaffold-hopping exercise led to the identification of a 1H-pyrazolo[3,4-b]pyridine scaffold, which retained potency. A number of examples were assessed in a T. b. brucei growth assay, which could differentiate static and cidal action. Compounds from the 1H-imidazo[4,5-b]pyrazin-2(3H)-one series were found to be either static or growth-slowing and not cidal. Compounds with the 1H-pyrazolo[3,4-b]pyridine scaffold were found to be cidal and showed an unusual biphasic nature in this assay, suggesting they act by at least two mechanisms. PMID:26381210

  18. Responses of Solid Tumor Cells in DMEM to Reactive Oxygen Species Generated by Non-Thermal Plasma and Chemically Induced ROS Systems

    PubMed Central

    Kaushik, Neha; Uddin, Nizam; Sim, Geon Bo; Hong, Young June; Baik, Ku Youn; Kim, Chung Hyeok; Lee, Su Jae; Kaushik, Nagendra Kumar; Choi, Eun Ha

    2015-01-01

    In this study, we assessed the role of different reactive oxygen species (ROS) generated by soft jet plasma and chemical-induced ROS systems with regard to cell death in T98G, A549, HEK293 and MRC5 cell lines. For a comparison with plasma, we generated superoxide anion (O2−), hydroxyl radical (HO·), and hydrogen peroxide (H2O2) with chemicals inside an in vitro cell culture. Our data revealed that plasma decreased the viability and intracellular ATP values of cells and increased the apoptotic population via a caspase activation mechanism. Plasma altered the mitochondrial membrane potential and eventually up-regulated the mRNA expression levels of BAX, BAK1 and H2AX gene but simultaneously down-regulated the levels of Bcl-2 in solid tumor cells. Moreover, a western blot analysis confirmed that plasma also altered phosphorylated ERK1/2/MAPK protein levels. At the same time, using ROS scavengers with plasma, we observed that scavengers of HO· (mannitol) and H2O2 (catalase and sodium pyruvate) attenuated the activity of plasma on cells to a large extent. In contrast, radicals generated by specific chemical systems enhanced cell death drastically in cancer as well as normal cell lines in a dose-dependent fashion but not specific with regard to the cell type as compared to plasma. PMID:25715710

  19. In Vitro Morphological Assessment of Apoptosis Induced by Antiproliferative Constituents from the Rhizomes of Curcuma zedoaria

    PubMed Central

    Syed Abdul Rahman, Syarifah Nur; Abdul Wahab, Norhanom; Abd Malek, Sri Nurestri

    2013-01-01

    Bioassay-guided isolation of the active hexane fractions of Curcuma zedoaria led to the identification of five pure compounds, namely, curzerenone (1), neocurdione (2), curdione (3), alismol (4), and zederone (5) and a mixture of sterols, namely, campesterol (6), stigmasterol (7), and β-sitosterol (8). Alismol has never been reported to be present in Curcuma zedoaria. All isolated compounds except (3) were evaluated for their cytotoxic activity against MCF-7, Ca Ski, and HCT-116 cancer cell lines and noncancer human fibroblast cell line (MRC-5) using neutral red cytotoxicity assay. Curzerenone and alismol significantly inhibited cell proliferation in human cancer cell lines MCF-7, Ca Ski, and HCT-116 in a dose-dependent manner. Cytological observations by an inverted phase contrast microscope and Hoechst 33342/PI dual-staining assay showed typical apoptotic morphology of cancer cells upon treatment with curzerenone and alismol. Both compounds induce apoptosis through the activation of caspase-3. It can thus be suggested that curzerenone and alismol are modulated by apoptosis via caspase-3 signalling pathway. The findings of the present study support the use of Curcuma zedoaria rhizomes in traditional medicine for the treatment of cancer-related diseases. Thus, two naturally occurring sesquiterpenoids, curzerenone and alismol, hold great promise for use in chemopreventive and chemotherapeutic strategies. PMID:23762112

  20. NaDC3 Induces Premature Cellular Senescence by Promoting Transport of Krebs Cycle Intermediates, Increasing NADH, and Exacerbating Oxidative Damage.

    PubMed

    Ma, Yuxiang; Bai, Xue-Yuan; Du, Xuan; Fu, Bo; Chen, Xiangmei

    2016-01-01

    High-affinity sodium-dependent dicarboxylate cotransporter 3 (NaDC3) is a key metabolism-regulating membrane protein responsible for transport of Krebs cycle intermediates. NaDC3 is upregulated as organs age, but knowledge regarding the underlying mechanisms by which NaDC3 modulates mammalian aging is limited. In this study, we showed that NaDC3 overexpression accelerated cellular senescence in young human diploid cells (MRC-5 and WI-38) and primary renal tubular cells, leading to cell cycle arrest in G1 phase and increased expression of senescent biomarkers, senescence-associated β-galactosidase and p16. Intracellular levels of reactive oxygen species, 8-hydroxy-2'-deoxyguanosine, malondialdehyde, and carbonyl were significantly enhanced, and activities of respiratory complexes I and III and ATP level were significantly decreased in NaDC3-infected cells. Stressful premature senescent phenotypes induced by NaDC3 were markedly ameliorated via treatment with the antioxidants Tiron and Tempol. High expression of NaDC3 caused a prominent increase in intracellular levels of Krebs cycle intermediates and NADH. Exogenous NADH and NAD(+) may aggravate and attenuate the aging phenotypes induced by NaDC3, respectively. These results suggest that NaDC3 can induce premature cellular senescence by promoting the transport of Krebs cycle intermediates, increasing generation of NADH and reactive oxygen species and leading to oxidative damage. Our results clarify the aging signaling pathway regulated by NaDC3. PMID:25384549

  1. Electric Cell-Substrate Impedance Sensing (ECIS) with Microelectrode Arrays for Investigation of Cancer Cell – Fibroblasts Interaction

    PubMed Central

    Tran, Trong Binh; Baek, Changyoon; Min, Junhong

    2016-01-01

    The tumor microenvironment, including stromal cells, surrounding blood vessels and extracellular matrix components, has been defined as a crucial factor that influences the proliferation, drug-resistance, invasion and metastasis of malignant epithelial cells. Among other factors, the communications and interaction between cancer cells and stromal cells have been reported to play pivotal roles in cancer promotion and progression. To investigate these relationships, an on-chip co-culture model was developed to study the cellular interaction between A549—human lung carcinoma cells and MRC-5—human lung epithelial cells in both normal proliferation and treatment conditions. In brief, a co-culture device consisting of 2 individual fluidic chambers in parallel, which were separated by a 100 μm fence was utilized for cell patterning. Microelectrodes arrays were installed within each chamber including electrodes at various distances away from the confrontation line for the electrochemical impedimetric sensing assessment of cell-to-cell influence. After the fence was removed and cell-to-cell contact occurred, by evaluating the impedance signal responses representing cell condition and behavior, both direct and indirect cell-to-cell interactions through conditioned media were investigated. The impact of specific distances that lead to different influences of fibroblast cells on cancer cells in the co-culture environment was also defined. PMID:27088611

  2. Multi-function microsystem for cells migration analysis and evaluation of photodynamic therapy procedure in coculture

    PubMed Central

    Jastrzebska (Jedrych), Elzbieta; Grabowska-Jadach, Ilona; Chudy, Michal; Dybko, Artur; Brzozka, Zbigniew

    2012-01-01

    Cell migration is an important physiological process, which is involved in cancer metastasis. Therefore, the investigation of cell migration may lead to the development of novel therapeutic approaches. In this study, we have successfully developed a microsystem for culture of two cell types (non-malignant and carcinoma) and for analysis of cell migration dependence on distance between them. Finally, we studied quantitatively the influence of photodynamic therapy (PDT) procedures on the viability of pairs of non-malignant (MRC5 or Balb/3T3) and carcinoma (A549) cells coculture. The proposed geometry of the microsystem allowed for separate introduction of two cell lines and analysis of cells migration dependence on distance between the cells. We found that a length of connecting microchannel has an influence on cell migration and viability of non-malignant cells after PDT procedure. Summarizing, the developed microsystem can constitute a new tool for carrying out experiments, which offers a few functions: cell migration analysis, carcinoma and non-malignant cells coculture, and evaluation of PDT procedure in the various steps of cell migration. PMID:24339849

  3. Gastroprotective effect of the Mapuche crude drug Araucaria araucana resin and its main constituents.

    PubMed

    Schmeda-Hirschmann, Guillermo; Astudillo, Luis; Rodríguez, Jaime; Theoduloz, Cristina; Yáñez, Tania

    2005-10-01

    The resin from the tree Araucaria araucana (Araucariaceae) has been used since pre-columbian times by the Mapuche amerindians to treat ulcers. The gastroprotective effect of the resin was assessed in the ethanol-HCl-induced gastric ulcer in mice showing a dose-dependent gastroprotective activity at 100, 200 and 300 mg/kg per os. The main three diterpene constituents of the resin, namely imbricatolic acid, 15-hydroxyimbricatolal and 15-acetoxyimbricatolic acid were isolated and evaluated for gastroprotective effect at doses of 50, 100 and 200 mg/kg. A dose-related gastroprotective effect with highly significant activity (P<0.01) was observed at doses up to 200 mg/kg. At 100 mg/kg, the highest gastroprotective activity was provided by 15-hydroxyimbricatolal and 15-acetoxyimbricatolic acid, all of them being as active as the reference drug lansoprazole at 20 mg/kg. The cytotoxicity of the main diterpenes as well as lansoprazole was studied towards human lung fibroblasts (MRC-5) and determined by the MTT reduction assay. A concentration-dependent cell viability inhibition was found with IC50 values ranging from 125 up to 290 microM. Our results support the traditional use of the Araucaria araucana resin by the Mapuche culture. PMID:15985351

  4. NKG2C+CD57+ Natural Killer Cell Expansion Parallels Cytomegalovirus-Specific CD8+ T Cell Evolution towards Senescence

    PubMed Central

    Heath, John; Newhook, Nicholas; Comeau, Emilie; Gallant, Maureen; Fudge, Neva

    2016-01-01

    Objective. Measuring NKG2C+CD57+ natural killer (NK) cell expansion to investigate NK responses against human cytomegalovirus (HCMV) and assessing relationships with adaptive immunity against HCMV. Methods. Expansion of NKG2C+CD57+ NK was measured in peripheral blood mononuclear cells (PBMC) from groups distinguished by HCMV and human immunodeficiency virus (HIV) infection status. Anti-HCMV antibody levels against HCMV-infected MRC-5 cell lysate were assessed by ELISA and HCMV-specific CD8+ T cell responses characterized by intracellular flow cytometry following PBMC stimulation with immunodominant HCMV peptides. Results. Median NK, antibody, and CD8+ T cell responses against HCMV were significantly greater in the HCMV/HIV coinfected group than the group infected with CMV alone. The fraction of CMV-specific CD8+ T cells expressing CD28 correlated inversely with NKG2C+CD57+ NK expansion in HIV infection. Conclusion. Our data reveal no significant direct relationships between NK and adaptive immunity against HCMV. However, stronger NK and adaptive immune responses against HCMV and an inverse correlation between NKG2C+CD57+ NK expansion and proliferative reserve of HCMV-specific CD8+ T cells, as signified by CD28 expression, indicate parallel evolution of NK and T cell responses against HCMV in HIV infection. Similar aspects of chronic HCMV infection may drive both NK and CD8+ T cell memory inflation. PMID:27314055

  5. Chain elongation analog of resveratrol as potent cancer chemoprevention agent.

    PubMed

    Kang, Yan-Fei; Qiao, Hai-Xia; Xin, Long-Zuo; Ge, Li-Ping

    2016-09-01

    Resveratrol is identified as a natural cancer chemoprevention agent. There has been a lot of interest in designing and developing resveratrol analogs with cancer chemoprevention activity superior to that of parent molecule and exploring their action mechanism in the past several decades. In this study, we have synthesized resveratrol analogs of compounds A-C via conjugated chain elongation based on isoprene unit retention strategy. Remarkably, cytotoxic activity analysis results indicated that compound B possesses the best proliferation inhibition activity for NCI-H460 cells in all the test compounds. Intriguingly, compound B displayed a higher cytotoxicity against human non-small cell lung cancer cells (NCI-H460) compared to normal human embryonic lung fibroblasts (MRC-5). Afterward, flow cytometry analysis showed that compound B would induce cell apoptosis. We further researched the action mechanism. When NCI-H460 cells were incubated by compound B for 6 or 9 h, respectively, the intracellular reactive oxygen species (ROS) level was enhanced obviously. With elevation of intracellular ROS level, flow cytometry measurement verified mitochondrial transmembrane potential collapse, which was accompanied by the up-regulation of Bax and down-regulation of Bcl-2. More interestingly, compound B increased the expression of caspase-9 and caspase-3, which induced cell apoptosis. Moreover, compound B arrested cell cycle in G0/G1 phase. These are all to provide useful information for designing resveratrol-based chemoprevention agent and understanding the action mechanism. PMID:27160168

  6. Endogenous lung surfactant inspired pH responsive nanovesicle aerosols: Pulmonary compatible and site-specific drug delivery in lung metastases

    NASA Astrophysics Data System (ADS)

    Joshi, Nitin; Shirsath, Nitesh; Singh, Ankur; Joshi, Kalpana S.; Banerjee, Rinti

    2014-11-01

    Concerns related to pulmonary toxicity and non-specificity of nanoparticles have limited their clinical applications for aerosol delivery of chemotherapeutics in lung cancer. We hypothesized that pulmonary surfactant mimetic nanoparticles that offer pH responsive release specifically in tumor may be a possible solution to overcome these issues. We therefore developed lung surfactant mimetic and pH responsive lipid nanovesicles for aerosol delivery of paclitaxel in metastatic lung cancer. 100-200 nm sized nanovesicles showed improved fusogenicity and cytosolic drug release, specifically with cancer cells, thereby resulting in improved cytotoxicity of paclitaxel in B16F10 murine melanoma cells and cytocompatibility with normal lung fibroblasts (MRC 5). The nanovesicles showed airway patency similar to that of endogenous pulmonary surfactant and did not elicit inflammatory response in alveolar macrophages. Their aerosol administration while significantly improving the biodistribution of paclitaxel in comparison to Taxol (i.v.), also showed significantly higher metastastes inhibition (~75%) in comparison to that of i.v. Taxol and i.v. Abraxane. No signs of interstitial pulmonary fiborisis, chronic inflammation and any other pulmonary toxicity were observed with nanovesicle formulation. Overall, these nanovesicles may be a potential platform to efficiently deliver hydrophobic drugs as aerosol in metastatic lung cancer and other lung diseases, without causing pulmonary toxicity.

  7. In vitro model to assess effect of antimicrobial agents on Encephalitozoon cuniculi.

    PubMed Central

    Beauvais, B; Sarfati, C; Challier, S; Derouin, F

    1994-01-01

    We have developed a new micromethod to study the effect of drugs on microsporidia, using MRC5 fibroblasts infected by 10(5) spores of Encephalitozoon cuniculi. After 3 days of incubation with various concentrations of drugs, parasitic foci were counted in stained cultures. The inhibition of microsporidial growth exceeding 90% with albendazole (0.005 microgram/ml), fumagillin (0.001 microgram/ml), 5-fluorouracil (3 micrograms/ml), and sparfloxacin (30 micrograms/ml) was observed. Chloroquine, pefloxacin, azithromycin, and rifabutin were partially effective, at high concentrations. Arprinocid, metronidazole, minocycline, doxycycline, itraconazole, and difluoromethylornithine were not evaluable, since concentrations that inhibited microsporidia were also toxic for fibroblasts. Pyrimethamine, piritrexim, sulfonamides, paromomycin, roxithromycin, atovaquone, and flucytosine were ineffective. Our results confirm that albendazole and fumagillin have marked activity against E. cuniculi and show the antimicrosporidial activity of 5-fluorouracil and sparfloxacin. These data may form the basis for treatment of Encephalitozoon hellem and Septata intestinalis infections and represent an attempt to identify drugs effective against Enterocytozoon bieneusi. Images PMID:7840584

  8. Similarities in Gene Expression Profiles during In Vitro Aging of Primary Human Embryonic Lung and Foreskin Fibroblasts

    PubMed Central

    Marthandan, Shiva; Priebe, Steffen; Baumgart, Mario; Groth, Marco; Cellerino, Alessandro; Guthke, Reinhard; Hemmerich, Peter; Diekmann, Stephan

    2015-01-01

    Replicative senescence is of fundamental importance for the process of cellular aging, since it is a property of most of our somatic cells. Here, we elucidated this process by comparing gene expression changes, measured by RNA-seq, in fibroblasts originating from two different tissues, embryonic lung (MRC-5) and foreskin (HFF), at five different time points during their transition into senescence. Although the expression patterns of both fibroblast cell lines can be clearly distinguished, the similar differential expression of an ensemble of genes was found to correlate well with their transition into senescence, with only a minority of genes being cell line specific. Clustering-based approaches further revealed common signatures between the cell lines. Investigation of the mRNA expression levels at various time points during the lifespan of either of the fibroblasts resulted in a number of monotonically up- and downregulated genes which clearly showed a novel strong link to aging and senescence related processes which might be functional. In terms of expression profiles of differentially expressed genes with age, common genes identified here have the potential to rule the transition into senescence of embryonic lung and foreskin fibroblasts irrespective of their different cellular origin. PMID:26339636

  9. Development of novel biocompatible hybrid nanocomposites based on polyurethane-silica prepared by sol gel process.

    PubMed

    Rashti, Ali; Yahyaei, Hossein; Firoozi, Saman; Ramezani, Sara; Rahiminejad, Ali; Karimi, Roya; Farzaneh, Khadijeh; Mohseni, Mohsen; Ghanbari, Hossein

    2016-12-01

    Due to high biocompatibility, polyurethane has found many applications, particularly in development of biomedical devices. A new nanocomposite based on thermoset polyurethane and silica nanoparticles was synthesized using sol-gel method. Sol-gel process was fulfilled in two acidic and basic conditions by using tetraethylorthosilicate (TEOS) and trimethoxyisocyanatesilane as precursors. The hybrid films characterized for mechanical and surface properties using tensile strength, contact angle, ATR-FTIR and scanning electron microscopy. Biocompatibility and cytotoxicity of the hybrids were assessed using standard MTT, LDH and TUNEL assays. The results revealed that incorporation of silica nanoparticles was significantly improved tensile strength and mechanical properties of the hybrids. Based on the contact angle results, silica nanoparticles increased hydrophilicity of the hybrids. Biocompatibility by using human lung epithelial cell line (MRC-5) demonstrated that the hybrids were significantly less cytotoxic compared to pristine polymer as tested by MTT and LDH assays. TUNEL assay revealed no signs of apoptosis in all tested samples. The results of this study demonstrated that incorporation of silica nanoparticles into polyurethane lead to the enhancement of biocompatibility, indicating that these hybrids could potentially be used in biomedical field in particular as a new coating for medical implants. PMID:27612823

  10. Phytochemical, antimicrobial and antiprotozoal evaluation of Garcinia mangostana pericarp and α-mangostin, its major xanthone derivative.

    PubMed

    Al-Massarani, Shaza M; El Gamal, Ali A; Al-Musayeib, Nawal M; Mothana, Ramzi A; Basudan, Omer A; Al-Rehaily, Adnan J; Farag, Mohamed; Assaf, Mahmoud H; El Tahir, Kamaleldin H; Maes, Louis

    2013-01-01

    Five xanthone derivatives and one flavanol were isolated from the dichloromethane extract of Garcinia mangostana. Dichloromethane, ethyl acetate extract and the major xanthone (α-mangostin) were evaluated in vitro against erythrocytic schizonts of Plasmodium falciparum, intracellular amastigotes of Leishmania infantum and Trypanosoma cruzi and free trypomastigotes of T. brucei. The major constituent α-mangostin was also checked for antimicrobial potential against Candida albicans, Escherichia coli, Pseudomonas aeruginosa, Bacillius subtilis, Staphylococcus aureus, Mycobacterium smegmatis, M. cheleneoi, M. xenopi and M. intracellulare. Activity against P. falciparum (IC₅₀ 2.7 μg/mL) and T. brucei (IC₅₀ 0.5 μg/mL) were observed for the dichloromethane extract, however, with only moderate selectivity was seen based on a parallel cytotoxicity evaluation on MRC-5 cells (IC₅₀ 9.4 μg/mL). The ethyl acetate extract was inactive (IC₅₀ > 30 µg/mL). The major constituent α-mangostin showed rather high cytotoxicity (IC₅₀ 7.5 µM) and a broad but non-selective antiprotozoal and antimicrobial activity profile. This in vitro study endorses that the antiprotozoal and antimicrobial potential of prenylated xanthones is non-conclusive in view of the low level of selectivity. PMID:24002136

  11. Similarities in Gene Expression Profiles during In Vitro Aging of Primary Human Embryonic Lung and Foreskin Fibroblasts.

    PubMed

    Marthandan, Shiva; Priebe, Steffen; Baumgart, Mario; Groth, Marco; Cellerino, Alessandro; Guthke, Reinhard; Hemmerich, Peter; Diekmann, Stephan

    2015-01-01

    Replicative senescence is of fundamental importance for the process of cellular aging, since it is a property of most of our somatic cells. Here, we elucidated this process by comparing gene expression changes, measured by RNA-seq, in fibroblasts originating from two different tissues, embryonic lung (MRC-5) and foreskin (HFF), at five different time points during their transition into senescence. Although the expression patterns of both fibroblast cell lines can be clearly distinguished, the similar differential expression of an ensemble of genes was found to correlate well with their transition into senescence, with only a minority of genes being cell line specific. Clustering-based approaches further revealed common signatures between the cell lines. Investigation of the mRNA expression levels at various time points during the lifespan of either of the fibroblasts resulted in a number of monotonically up- and downregulated genes which clearly showed a novel strong link to aging and senescence related processes which might be functional. In terms of expression profiles of differentially expressed genes with age, common genes identified here have the potential to rule the transition into senescence of embryonic lung and foreskin fibroblasts irrespective of their different cellular origin. PMID:26339636

  12. New quantitative approaches reveal the spatial preference of nuclear compartments in mammalian fibroblasts.

    PubMed

    Weston, David J; Russell, Richard A; Batty, Elizabeth; Jensen, Kirsten; Stephens, David A; Adams, Niall M; Freemont, Paul S

    2015-03-01

    The nuclei of higher eukaryotic cells display compartmentalization and certain nuclear compartments have been shown to follow a degree of spatial organization. To date, the study of nuclear organization has often involved simple quantitative procedures that struggle with both the irregularity of the nuclear boundary and the problem of handling replicate images. Such studies typically focus on inter-object distance, rather than spatial location within the nucleus. The concern of this paper is the spatial preference of nuclear compartments, for which we have developed statistical tools to quantitatively study and explore nuclear organization. These tools combine replicate images to generate 'aggregate maps' which represent the spatial preferences of nuclear compartments. We present two examples of different compartments in mammalian fibroblasts (WI-38 and MRC-5) that demonstrate new knowledge of spatial preference within the cell nucleus. Specifically, the spatial preference of RNA polymerase II is preserved across normal and immortalized cells, whereas PML nuclear bodies exhibit a change in spatial preference from avoiding the centre in normal cells to exhibiting a preference for the centre in immortalized cells. In addition, we show that SC35 splicing speckles are excluded from the nuclear boundary and localize throughout the nucleoplasm and in the interchromatin space in non-transformed WI-38 cells. This new methodology is thus able to reveal the effect of large-scale perturbation on spatial architecture and preferences that would not be obvious from single cell imaging. PMID:25631564

  13. Synthesis, structure and antifungal activity of thiophene-2,3-dicarboxaldehyde bis(thiosemicarbazone) and nickel(II), copper(II) and cadmium(II) complexes: unsymmetrical coordination mode of nickel complex.

    PubMed

    Alomar, Kusaï; Landreau, Anne; Allain, Magali; Bouet, Gilles; Larcher, Gérald

    2013-09-01

    The reaction of nickel(II), copper(II) chlorides and cadmium(II) chloride and bromide with thiophene-2,3-dicarboxaldehyde bis(thiosemicarbazone) (2,3BTSTCH2) leads to a series of new complexes: [Ni(2,3BTSTCH)]Cl, [Cu(2,3BTSTC)], [CdCl2(2,3BTSTCH2)] and [CdBr2(2,3BTSTCH2)]. The crystal structures of the ligand and of [Ni(2,3BTSTCH)]Cl complex have been determined. In this case, we remark an unusual non-symmetrical coordination mode for the two functional groups: one acting as a thione and the second as a deprotonated thiolate. All compounds have been tested for their antifungal activity against human pathogenic fungi: Candida albicans, Candida glabrata and Aspergillus fumigatus, the cadmium complexes exhibit the highest antifungal activity. Cytotoxicity was evaluated using two biological methods: human MRC5 cultured cells and brine shrimp Artemia salina bioassay. PMID:23792913

  14. Antimycobacterial drugs modulate immunopathogenic matrix metalloproteinases in a cellular model of pulmonary tuberculosis.

    PubMed

    Singh, Shivani; Kubler, Andre; Singh, Utpal K; Singh, Ajay; Gardiner, Harriet; Prasad, Rajniti; Elkington, Paul T; Friedland, Jon S

    2014-08-01

    Tuberculosis is characterized by extensive destruction and remodelling of the pulmonary extracellular matrix. Stromal cell-derived matrix metalloproteinases (MMPs) are implicated in this process and may be a target for adjunctive immunotherapy. We hypothesized that MMPs are elevated in bronchoalveolar lavage fluid of tuberculosis patients and that antimycobacterial agents may have a modulatory effect on MMP secretion. Concentrations of MMP-1, -2, -3, -7, -8, and -9 were elevated in the bronchoalveolar lavage fluid from tuberculosis patients compared to those in bronchoalveolar lavage fluid from patients with other pulmonary conditions. There was a positive correlation between MMP-3, MMP-7, and MMP-8 and a chest radiological score of cavitation and parenchymal damage. Respiratory epithelial cell-derived MMP-3 was suppressed by moxifloxacin, rifampicin, and azithromycin in a dose-dependent manner. Respiratory epithelial cell-derived MMP-1 was suppressed by moxifloxacin and azithromycin, whereas MMP-9 secretion was only decreased by moxifloxacin. In contrast, moxifloxacin and azithromycin both increased MMP-1 and -3 secretion from MRC-5 fibroblasts, demonstrating that the effects of these drugs are cell specific. Isoniazid did not affect MMP secretion. In conclusion, MMPs are elevated in bronchoalveolar lavage fluid from tuberculosis patients and correlate with parameters of tissue destruction. Antimycobacterial agents have a hitherto-undescribed immunomodulatory effect on MMP release by stromal cells. PMID:24890593

  15. Antioxidants, Phytochemicals, and Cytotoxicity Studies on Phaleria macrocarpa (Scheff.) Boerl Seeds

    PubMed Central

    Lay, Ma Ma; Karsani, Saiful Anuar; Banisalam, Behrooz; Mohajer, Sadegh; Abd Malek, Sri Nurestri

    2014-01-01

    In recent years, the utilization of certain medicinal plants as therapeutic agents has drastically increased. Phaleria macrocarpa (Scheff.) Boerl is frequently used in traditional medicine. The present investigation was undertaken with the purpose of developing pharmacopoeial standards for this species. Nutritional values such as ash, fiber, protein, fat, and carbohydrate contents were investigated, and phytochemical screenings with different reagents showed the presence of flavonoids, glycosides, saponin glycosides, phenolic compounds, steroids, tannins, and terpenoids. Our results also revealed that the water fraction had the highest antioxidant activity compared to the methanol extract and other fractions. The methanol and the fractionated extracts (hexane, chloroform, ethyl acetate, and water) of P. macrocarpa seeds were also investigated for their cytotoxic effects on selected human cancer cells lines (MCF-7, HT-29, MDA-MB231, Ca Ski, and SKOV-3) and a normal human fibroblast lung cell line (MRC-5). Information from this study can be applied for future pharmacological and therapeutic evaluations of the species, and may assist in the standardization for quality, purity, and sample identification. To the best of our knowledge, this is the first report on the phytochemical screening and cytotoxic effect of the crude and fractionated extracts of P. macrocarpa seeds on selected cells lines. PMID:24818141

  16. In vitro antiprotozoal and cytotoxic activity of ethnopharmacologically selected guinean plants.

    PubMed

    Traore, Mohammed Sahar; Diane, Sere; Diallo, Mamadou Saliou Telly; Balde, Elhadj Saïdou; Balde, Mamadou Aliou; Camara, Aïssata; Diallo, Abdoulaye; Keita, Abdoulaye; Cos, Paul; Maes, Louis; Pieters, Luc; Balde, Aliou Mamadou

    2014-10-01

    Based on an ethnobotanical survey, 41 Guinean plant species widely used in the traditional treatment of fever and/or malaria were collected. From these, 74 polar and apolar extracts were prepared and tested for their in vitro antiprotozoal activity along with their cytotoxicity on MRC-5 cells. A potent activity (IC50 < 5 µg/mL) was observed for Terminalia albida, Vismia guineensis, Spondias mombin, and Pavetta crassipes against Plasmodium falciparum; for Pavetta crassipes, Vismia guineensis, Guiera senegalensis, Spondias mombin, Terminalia macroptera, and Combretum glutinosum against Trypanosoma brucei brucei; for Bridelia ferruginea, G. senegalensis, V. guineensis, P. crassipes, and C. glutinosum against Trypanosoma cruzi. Only the extract of Tetracera alnifolia showed a good activity (IC50 8.1 µg/mL) against Leishmania infantum. The selectivity index of the active samples varied from 0.08 to > 100. These results may validate at least in part the traditional use of some of the plant species. PMID:25180493

  17. ACAM2000 clonal Vero cell culture vaccinia virus (New York City Board of Health strain)--a second-generation smallpox vaccine for biological defense.

    PubMed

    Monath, Thomas P; Caldwell, Joseph R; Mundt, Wolfgang; Fusco, Joan; Johnson, Casey S; Buller, Mark; Liu, Jian; Gardner, Bridget; Downing, Greg; Blum, Paul S; Kemp, Tracy; Nichols, Richard; Weltzin, Richard

    2004-10-01

    The threat of smallpox as a biological weapon has spurred efforts to create stockpiles of vaccine for emergency preparedness. In lieu of preparing vaccine in animal skin (the original method), we cloned vaccinia virus (New York City Board of Health strain, Dryvax by plaque purification and amplified the clone in cell culture. The overarching goal was to produce a modern vaccine that was equivalent to the currently licensed Dryvax in its preclinical and clinical properties, and could thus reliably protect humans against smallpox. A variety of clones were evaluated, and many were unacceptably virulent in animal models. One clonal virus (ACAM1000) was selected and produced at clinical grade in MRC-5 human diploid cells. ACAM1000 was comparable to Dryvax in immunogenicity and protective activity but was less neurovirulent for mice and nonhuman primates. To meet requirements for large quantities of vaccine after the events of September 11th 2001, the ACAM1000 master virus seed was used to prepare vaccine (designated ACAM2000) at large scale in Vero cells under serum-free conditions. The genomes of ACAM1000 and ACAM2000 had identical nucleotide sequences, and the vaccines had comparable biological phenotypes. ACAM1000 and ACAM2000 were evaluated in three Phase 1 clinical trials. The vaccines produced major cutaneous reactions and evoked neutralizing antibody and cell-mediated immune responses in the vast majority of subjects and had a reactogenicity profile similar to that of Dryvax. PMID:15491873

  18. Heat Shock Protein 27 Plays a Pivotal Role in Myofibroblast Differentiation and in the Development of Bleomycin-Induced Pulmonary Fibrosis

    PubMed Central

    Park, Ah-Mee; Kanai, Kyosuke; Itoh, Tatsuki; Sato, Takao; Tsukui, Tatsuya; Inagaki, Yutaka; Selman, Moises; Matsushima, Kouji; Yoshie, Osamu

    2016-01-01

    Heat shock protein 27 (HSP27) is a member of the small molecular weight HSP family. Upon treatment with transforming growth factor β1 (TGF-β1), we observed upregulation of HSP27 along with that of α-smooth muscle actin (α-SMA), a marker of myofibroblast differentiation, in cultured human and mouse lung fibroblasts. Furthermore, by using siRNA knockdown, we demonstrated that HSP27 was involved in cell survival and upregulation of fibronectin, osteopontin (OPN) and type 1 collagen, all functional markers of myofibroblast differentiation, in TGF-β1-treated MRC-5 cells. In lung tissues of bleomycin-treated mice, HSP27 was strongly upregulated and substantially co-localized with α-SMA, OPN and type I collagen but not with proSP-C (a marker of type II alveolar epithelial cells), E-cadherin (a marker of epithelial cells) or F4/80 (a marker of macrophages). A similar co-localization of HSP27 and α-SMA was observed in lung tissues of patients with idiopathic pulmonary fibrosis. Furthermore, airway delivery of HSP27 siRNA effectively suppressed bleomycin-induced pulmonary fibrosis in mice. Collectively, our findings indicate that HSP27 is critically involved in myofibroblast differentiation of lung fibroblasts and may be a promising therapeutic target for lung fibrotic diseases. PMID:26859835

  19. Cyclopeptide Alkaloids from Hymenocardia acida.

    PubMed

    Tuenter, Emmy; Exarchou, Vassiliki; Baldé, Aliou; Cos, Paul; Maes, Louis; Apers, Sandra; Pieters, Luc

    2016-07-22

    Four cyclopeptide alkaloids (1-4) were isolated from the root bark of Hymenocardia acida by means of semipreparative HPLC with DAD and ESIMS detection and conventional separation methods. Structure elucidation was performed by spectroscopic means. In addition to the known compound hymenocardine (1), three other alkaloids were isolated for the first time from a natural source. These included a hymenocardine derivative with a hydroxy group instead of a carbonyl group that was named hymenocardinol (2), as well as hymenocardine N-oxide (3) and a new cyclopeptide alkaloid containing an unusual histidine moiety named hymenocardine-H (4). The isolated cyclopeptide alkaloids were tested for their antiplasmodial activity and cytotoxicity. All four compounds showed moderate antiplasmodial activity, with IC50 values ranging from 12.2 to 27.9 μM, the most active one being hymenocardine N-oxide (3), with an IC50 value of 12.2 ± 6.6 μM. Compounds 2-4 were found not to be cytotoxic against MRC-5 cells (IC50 > 64.0 μM), but hymenocardine (1) showed some cytotoxicity, with an IC50 value of 51.1 ± 17.2 μM. PMID:27351950

  20. Exceedingly Higher co-loading of Curcumin and Paclitaxel onto Polymer-functionalized Reduced Graphene Oxide for Highly Potent Synergistic Anticancer Treatment.

    PubMed

    Muthoosamy, Kasturi; Abubakar, Ibrahim Babangida; Bai, Renu Geetha; Loh, Hwei-San; Manickam, Sivakumar

    2016-01-01

    Metastasis of lung carcinoma to breast and vice versa accounts for one of the vast majority of cancer deaths. Synergistic treatments are proven to be the effective method to inhibit malignant cell proliferation. It is highly advantageous to use the minimum amount of a potent toxic drug, such as paclitaxel (Ptx) in ng/ml together with a natural and safe anticancer drug, curcumin (Cur) to reduce the systemic toxicity. However, both Cur and Ptx suffer from poor bioavailability. Herein, a drug delivery cargo was engineered by functionalizing reduced graphene oxide (G) with an amphiphilic polymer, PF-127 (P) by hydrophobic assembly. The drugs were loaded via pi-pi interactions, resulting in a nano-sized GP-Cur-Ptx of 140 nm. A remarkably high Cur loading of 678 wt.% was achieved, the highest thus far compared to any other Cur nanoformulations. Based on cell proliferation assay, GP-Cur-Ptx is a synergistic treatment (CI < 1) and is highly potent towards lung, A549 (IC50 = 13.24 μg/ml) and breast, MDA-MB-231 (IC50 = 1.450 μg/ml) cancer cells. These positive findings are further confirmed by increased reactive oxygen species, mitochondrial membrane potential depletion and cell apoptosis. The same dose treated on normal MRC-5 cells shows that the system is biocompatible and cancerous cell-specific. PMID:27597657

  1. In Vitro Antiprotozoal Activity of Abietane Diterpenoids Isolated from Plectranthus barbatus Andr.

    PubMed Central

    Mothana, Ramzi A.; Al-Said, Mansour S.; Al-Musayeib, Nawal M.; El Gamal, Ali A.; Al-Massarani, Shaza M.; Al-Rehaily, Adnan J.; Abdulkader, Majed; Maes, Louis

    2014-01-01

    Chromatographic separation of the n-hexane extract of the aerial part of Plectranthus barbatus led to the isolation of five abietane-type diterpenes: dehydroabietane (1); 5,6-didehydro-7-hydroxy-taxodone (2); taxodione (3); 20-deoxocarnosol (4) and 6α,11,12,-trihydroxy-7β,20-epoxy-8,11,13-abietatriene (5). The structures were determined using spectroscopic methods including one- and two-dimensional NMR methods. Compounds (1)–(3) and (5) are isolated here for the first time from the genus Plectranthus. The isolated abietane-type diterpenes tested in vitro for their antiprotozoal activity against erythrocytic schizonts of Plasmodium falciparum, intracellular amastigotes of Leishmania infantum and Trypanosoma cruzi and free trypomastigotes of T. brucei. Cytotoxicity was determined against fibroblast cell line MRC-5. Compound (2) 5,6-didehydro-7-hydroxy-taxodone showed remarkable activity with acceptable selectivity against P. falciparum (IC50 9.2 μM, SI 10.4) and T. brucei (IC50 1.9 μM, SI 50.5). Compounds (3)–(5) exhibited non-specific antiprotozoal activity due to high cytotoxicity. Compound (1) dehydroabietane showed no antiprotozoal potential. PMID:24823881

  2. Evaluation of the In Vitro Antiplasmodial, Antileishmanial, and Antitrypanosomal Activity of Medicinal Plants Used in Saudi and Yemeni Traditional Medicine

    PubMed Central

    Mothana, Ramzi A.; Al-Musayeib, Nawal M.; Al-Ajmi, Mohamed F.; Cos, Paul; Maes, Louis

    2014-01-01

    The antiplasmodial, antileishmanial, and antitrypanosomal activity of twenty-five medicinal plants distributed in Saudi Arabia and Yemen was evaluated. The plants were extracted with methanol and screened in vitro against erythrocytic schizonts of Plasmodium falciparum, intracellular amastigotes of Leishmania infantum and Trypanosoma cruzi, and free trypomastigotes of T. brucei. To assess selectivity, cytotoxicity was determined on MRC-5 cells. Criteria for activity were an IC50 < 10 μg/mL and high selectivity (SI). Seven plants showed interesting antiprotozoal activity in one or more models. Extracts of Caralluma penicillata and Acalypha ciliata showed fairly good activity against P. falciparum with IC50 of 6.7 and 10.8 μg/mL and adequate selectivity (SI > 9.6 and >5.9). Interesting activity against L. infantum was obtained with Verbascum bottae (IC50 of 3.2 μg/mL, SI 10.2) and Solanum glabratum (IC50 8.1 μg/mL, SI 3.4). The extracts of C. penicillata, Leucas virgata, Loranthus regularis, and V. bottae exhibited moderate activity against T. brucei (IC50 8.5, 8.1, 8.3, and 2.3 μg/mL; SI > 7.6, 7.7, 4.3, and >14.1). These results partly support the traditional use of some of the selected medicinal plants and warrant further investigations into the putative active constituents. PMID:24963330

  3. Unstable Chromosome Aberrations Do Not Accumulate in Normal Human Fibroblast after Fractionated X-Irradiation

    PubMed Central

    Ojima, Mitsuaki; Ito, Maki; Suzuki, Keiji; Kai, Michiaki

    2015-01-01

    We determined the frequencies of dicentric chromosomes per cell in non-dividing confluent normal human fibroblasts (MRC-5) irradiated with a single 1 Gy dose or a fractionated 1 Gy dose (10X0.1 Gy, 5X0.2 Gy, and 2X0.5 Gy). The interval between fractions was between 1 min to 1440 min. After the completion of X-irradiation, the cells were incubated for 24 hours before re-plating at a low density. Then, demecolcine was administrated at 6 hours, and the first mitotic cells were collected for 42 hours. Our study demonstrated that frequencies of dicentric chromosomes in cells irradiated with a 1 Gy dose at different fractions were significantly reduced if the fraction interval was increased from 1 min to 5 min (p<0.05, χ2-test). Further increasing the fraction interval from 5 up to 1440 min did not significantly affect the frequency of dicentric chromosomes. Since misrejoining of two independent chromosome breaks introduced in close proximity gives rise to dicentric chromosome, our results indicated that such circumstances might be quite infrequent in cells exposed to fractionated X-irradiation with prolonged fraction intervals. Our findings should contribute to improve current estimation of cancer risk from chronic low-dose-rate exposure, or intermittent exposure of low-dose radiation by medical exposure. PMID:25723489

  4. Salvianolic Acid B Attenuates Experimental Pulmonary Fibrosis through Inhibition of the TGF-β Signaling Pathway

    PubMed Central

    Liu, Qingmei; Chu, Haiyan; Ma, Yanyun; Wu, Ting; Qian, Feng; Ren, Xian; Tu, Wenzhen; Zhou, Xiaodong; Jin, Li; Wu, Wenyu; Wang, Jiucun

    2016-01-01

    Pulmonary fibrosis is a progressive and fatal disorder. In our previous study, we found that the Yiqihuoxue formula (YQHX), a prescription of Traditional Chinese Medicine, had a curative effect on scleroderma, a typical fibrotic disease. The aim of this study was to determine the key ingredient mediating the therapeutic effects of YQHX and to examine its effect on pulmonary fibrosis, including its mechanism. Luciferase reporter assays showed that the most important anti-fibrotic component of the YQHX was Salviae miltiorrhiza (SM). Experiments performed using a bleomycin-instilled mouse model of pulmonary fibrosis showed that Salvianolic acid B (SAB), the major ingredient of SM, had strong anti-inflammatory and anti-fibrotic effects through its inhibition of inflammatory cell infiltration, alveolar structure disruption, and collagen deposition. Furthermore, SAB suppressed TGF-β-induced myofibroblastic differentiation of MRC-5 fibroblasts and TGF-β-mediated epithelial-to-mesenchymal transition of A549 cells by inhibiting both Smad-dependent signaling and the Smad-independent MAPK pathway. Taken together, our results suggest that SM is the key anti-fibrotic component of the YQHX and that SAB, the major ingredient of SM, alleviates experimental pulmonary fibrosis both in vivo and in vitro by inhibiting the TGF-β signaling pathway. Together, these results suggest that SAB potently inhibits pulmonary fibrosis. PMID:27278104

  5. Evaluation of nanoencapsulated verteporfin's cytotoxicity using a microfluidic system.

    PubMed

    Tokarska, Katarzyna; Bułka, Magdalena; Bazylińska, Urszula; Jastrzębska, Elżbieta; Chudy, Michał; Dybko, Artur; Wilk, Kazimiera A; Brzózka, Zbigniew

    2016-08-01

    A new-generation of nanoencapsulated photosensitizers could be a good solution to perform effective photodynamic therapy (PDT). In this paper, we present physicochemical characterization and cellular investigation of newly prepared long-sustained release oil-core polyelectrolyte nanocarriers loaded with verteporfin (nano VP) in relation to free VP. For this purpose, a macroscale multiwell plates and multifunctional microfluidic system (for three types of cell cultures: monoculture, coculture and mixed culture) were used. A physical analysis of nano VP showed its high stability, monodispersity with unimodal shape and highly positive charge, what made them good candidates for cancer treatment. Biological properties (cellular internalization and uptake as well as cytotoxicity) of nano and free VP were evaluated using both carcinoma (A549) and normal (MRC-5) human lung cells. It was investigated that verteporfin was accumulated in cancer cells preferentially. Low cytotoxicity of the tested photosensitizer was observed in both macro, and microscale. However, in experiments performed in the microsystem, nano VP allowed the reduction of cytotoxic effect, especially in relation to the normal cells. It could result from the specific environment of cell growth in the microsystem which can quite closely mimic the in vivo conditions. Our results suggest that the presented microsystem could be a very useful microtool for testing of new generation of photosensitizers in various configurations of cell cultures, which are difficult to perform in the macroscale. Moreover, the prepared nano VP could be successfully used for further research i.e. evaluation of PDT procedures. PMID:26997162

  6. Investigation of antitumor potential of Ni(II) complexes with tridentate PNO acylhydrazones of 2-(diphenylphosphino)benzaldehyde and monodentate pseudohalides.

    PubMed

    Čobeljić, Božidar; Milenković, Milica; Pevec, Andrej; Turel, Iztok; Vujčić, Miroslava; Janović, Barbara; Gligorijević, Nevenka; Sladić, Dušan; Radulović, Siniša; Jovanović, Katarina; Anđelković, Katarina

    2016-04-01

    Square-planar azido Ni(II) complex with condensation product of 2-(diphenylphosphino)benzaldehyde and Girard's T reagent was synthesized and its crystal structure was determined. Cytotoxic activity of the azido complex and previously synthesized isothiocyanato, cyanato and chlorido Ni(II) complexes with this ligand was examined on six tumor cell lines (HeLa, A549, K562, MDA-MB-453, MDA-MB-361 and LS-174) and two normal cell line (MRC-5 and BEAS-2B). All the investigated nickel(II) complexes were cytotoxic against all tumor cell lines. The newly synthesized azido complex showed selectivity to HeLa and A549 tumor cell lines compared to the normal cells (for A549 IC50 was similar to that of cisplatin). Azido complex interferes with cell cycle phase distribution of A549 and HeLa cells and possesses nuclease activity towards supercoiled DNA. The observed selectivity of the azido complex for some tumor cell lines can be connected with its strong DNA damaging activity. PMID:26612231

  7. PLGA nanoparticles loaded with the antileishmanial saponin β-aescin: factor influence study and in vitro efficacy evaluation.

    PubMed

    Van de Ven, H; Vermeersch, M; Matheeussen, A; Vandervoort, J; Weyenberg, W; Apers, S; Cos, P; Maes, L; Ludwig, A

    2011-11-25

    Colloidal carriers are known to improve the therapeutic index of the conventional drugs in the treatment of visceral leishmaniasis (VL) by decreasing their toxicity whilst maintaining or increasing therapeutic efficacy. This paper describes the development of poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles (NPs) for the antileishmanial saponin β-aescin. NPs were prepared by the W/O/W emulsification solvent evaporation technique and the influence of five preparation parameters on the NPs' size (Z(ave)), zeta potential and entrapment efficiency (EE%) was investigated using a 2(5-2) fractional factorial design. Cytotoxicity of aescin, aescin-loaded and blank PLGA NPs was evaluated in J774 macrophages and non-phagocytic MRC-5 cells, whereas antileishmanial activity was determined in the Leishmania infantum ex vivo model. The developed PLGA NPs were monodispersed with Z(ave)<500 nm and exhibited negative zeta potentials. The process variables 'surfactant primary emulsion', 'concentration aescin' and 'solvent evaporation rate' had a positive effect on EE%. Addition of Tween 80 to the inner aqueous phase rendered the primary emulsion more stable, which in its turn led to better saponin entrapment. The selectivity index (SI) towards the supporting host macrophages increased from 4 to 18 by treating the cells with aescin-loaded NPs instead of free β-aescin. In conclusion, the in vitro results confirmed our hypothesis. PMID:21864661

  8. Genetic effects of microwave exposure on mammalian cells in vitro. Volume 1. Annual report February 1980-June 1981

    SciTech Connect

    Meltz, M.L.; Walker, K.A.

    1984-06-01

    The effects of radiofrequency radiation (RFR) on the DNA repair process in MRC-5 normal human fibroblast cells grown in vitro have been investigated. The power levels chosen, 1 and 10 mW/sq cm, did not result in measurable temperature above the 37 C incubation temperature at either 350 MHz or 1.2 GHz (continuous or pulse-wave modes). DNA repair was induced by exposure of the cells to ultraviolet light (UV). Repair synthesis was measured by means of a repair replication protocol; i.e., a repair labeling incubation with 3H-thymidine and nonradioactive 5-bromodeoxyuridine (or 3H-BrUdR in early experiments), followed by DNA isolation and two sequential alkali cesium chloride-cesium sulfate density gradient centrifugations. In summary, 1.2-GHz continuous wave (CW) and 350 pulse-wave and continuous-wave RFR, at power levels of 1 and 10 mW/sq cm, did not appear to perturb UV light-induced DNA repair synthesis. A possible stimulation by 350-MHz CW radiation of repair label incorporation during the first hour after UV exposure, at 1 mW/sq cm (but not at 10 mW/sq cm), remains to be confirmed. No evidence exists of RFR induction, by itself, of DNA damage and repair at 1.2 GHz and 350-MHz (CW) at a power level of 10 mW/sq cm.

  9. Synthesis, characterization, and efficacy of antituberculosis isoniazid zinc aluminum-layered double hydroxide based nanocomposites

    PubMed Central

    Saifullah, Bullo; El Zowalaty, Mohamed Ezzat; Arulselvan, Palanisamy; Fakurazi, Sharida; Webster, Thomas J; Geilich, Benjamin Mahler; Hussein, Mohd Zobir

    2016-01-01

    The chemotherapy for tuberculosis (TB) is complicated by its long-term treatment, its frequent drug dosing, and the adverse effects of anti-TB drugs. In this study, we have developed two nanocomposites (A and B) by intercalating the anti-TB drug isoniazid (INH) into Zn/Al-layered double hydroxides. The average size of the nanocomposites was found to bê164 nm. The efficacy of the Zn/Al-layered double hydroxides intercalated INH against Mycobacterium tuberculosis was increased by approximately three times more than free INH. The nanocomposites were also found to be active against Gram-positive and -negative bacteria. Compared to the free INH, the nanodelivery formulation was determined to be three times more biocompatible with human normal lung fibroblast MRC-5 cells and 3T3 fibroblast cells at a very high concentration of 50 µg/mL for up to 72 hours. The in vitro release of INH from the Zn/Al-layered double hydroxides was found to be sustained in human body-simulated buffer solutions of pH 4.8 and 7.4. This research is a step forward in making the TB chemotherapy patient friendly. PMID:27486322

  10. In vitro model to assess effect of antimicrobial agents on Encephalitozoon cuniculi.

    PubMed

    Beauvais, B; Sarfati, C; Challier, S; Derouin, F

    1994-10-01

    We have developed a new micromethod to study the effect of drugs on microsporidia, using MRC5 fibroblasts infected by 10(5) spores of Encephalitozoon cuniculi. After 3 days of incubation with various concentrations of drugs, parasitic foci were counted in stained cultures. The inhibition of microsporidial growth exceeding 90% with albendazole (0.005 microgram/ml), fumagillin (0.001 microgram/ml), 5-fluorouracil (3 micrograms/ml), and sparfloxacin (30 micrograms/ml) was observed. Chloroquine, pefloxacin, azithromycin, and rifabutin were partially effective, at high concentrations. Arprinocid, metronidazole, minocycline, doxycycline, itraconazole, and difluoromethylornithine were not evaluable, since concentrations that inhibited microsporidia were also toxic for fibroblasts. Pyrimethamine, piritrexim, sulfonamides, paromomycin, roxithromycin, atovaquone, and flucytosine were ineffective. Our results confirm that albendazole and fumagillin have marked activity against E. cuniculi and show the antimicrosporidial activity of 5-fluorouracil and sparfloxacin. These data may form the basis for treatment of Encephalitozoon hellem and Septata intestinalis infections and represent an attempt to identify drugs effective against Enterocytozoon bieneusi. PMID:7840584

  11. Genotoxicity evaluation of dental restoration nanocomposite using comet assay and chromosome aberration test

    NASA Astrophysics Data System (ADS)

    Musa, Marahaini; Thirumulu Ponnuraj, Kannan; Mohamad, Dasmawati; Rahman, Ismail Ab

    2013-01-01

    Nanocomposite is used as a dental filling to restore the affected tooth, especially in dental caries. The dental nanocomposite (KelFil) for tooth restoration used in this study was produced by the School of Dental Sciences, Universiti Sains Malaysia, Malaysia and is incorporated with monodispersed, spherical nanosilica fillers. The aim of the study was to determine the genotoxic effect of KelFil using in vitro genotoxicity tests. The cytotoxicity and genotoxicity of KelFil was evaluated using MTT assay, comet assay and chromosome aberration tests with or without the addition of a metabolic activation system (S9 mix), using the human lung fibroblast cell line (MRC-5). Concurrent negative and positive controls were included. In the comet assay, no comet formation was found in the KelFil groups. There was a significant difference in tail moment between KelFil groups and positive control (p < 0.05). Similarly, no significant aberrations in chromosomes were noticed in KelFil groups. The mitotic indices of treatment groups and negative control were significantly different from positive controls. Hence, it can be concluded that the locally produced dental restoration nanocomposite (KelFil) is non-genotoxic under the present test conditions.

  12. Redox activity and in vitro bioactivity of the water-soluble fraction of urban particulate matter in relation to particle size and chemical composition.

    PubMed

    Velali, Ekaterini; Papachristou, Eleni; Pantazaki, Anastasia; Choli-Papadopoulou, Theodora; Planou, Styliani; Kouras, Athanasios; Manoli, Evangelia; Besis, Athanasios; Voutsa, Dimitra; Samara, Constantini

    2016-01-01

    Chemical and toxicological characterization of the water-soluble fraction of size-segregated urban particulate matter (PM) (<0.49, 0.49-0.97, 0.97-1.5, 1.5-3.0, 3.0-7.2 and >7.2 μm) was carried out at two urban sites, traffic and urban background, during the cold and the warm period. Chemical analysis of the water-soluble PM fraction included ionic species (NO3(-), SO4(2-), Cl(-), Na(+), NH4(+), K(+), Mg(2+), Ca(2+)), water-soluble organic carbon (WSOC), and trace elements (Al, As, Ba, Cd, Cr, Cu, Fe, Pb, Mn, Ni, Zn, Pt, Pd, Rh, Ru, Ir, Ca, and Mg). The dithiothreitol (DTT) assay was employed for the abiotic assessment of the oxidative PM activity. Cytotoxic responses were investigated in vitro by applying the mitochondrial dehydrogenase (MTT) and the lactate dehydrogenase (LDH) bioassays on human lung cells (MRC-5), while DNA damage was estimated by the single cell gel electrophoresis assay, known as Comet assay. The correlations between the observed bioactivity responses and the concentrations of water-soluble chemical PM constituents in the various size ranges were investigated. The results of the current study corroborate that short-term bioassays using lung human cells and abiotic assays, such as the DTT assay, could be relevant to complete the routine chemical analysis and to obtain a preliminary screening of the potential effects of PM-associated airborne pollutants on human health. PMID:26586634

  13. New quantitative approaches reveal the spatial preference of nuclear compartments in mammalian fibroblasts

    PubMed Central

    Weston, David J.; Russell, Richard A.; Batty, Elizabeth; Jensen, Kirsten; Stephens, David A.; Adams, Niall M.; Freemont, Paul S.

    2015-01-01

    The nuclei of higher eukaryotic cells display compartmentalization and certain nuclear compartments have been shown to follow a degree of spatial organization. To date, the study of nuclear organization has often involved simple quantitative procedures that struggle with both the irregularity of the nuclear boundary and the problem of handling replicate images. Such studies typically focus on inter-object distance, rather than spatial location within the nucleus. The concern of this paper is the spatial preference of nuclear compartments, for which we have developed statistical tools to quantitatively study and explore nuclear organization. These tools combine replicate images to generate ‘aggregate maps' which represent the spatial preferences of nuclear compartments. We present two examples of different compartments in mammalian fibroblasts (WI-38 and MRC-5) that demonstrate new knowledge of spatial preference within the cell nucleus. Specifically, the spatial preference of RNA polymerase II is preserved across normal and immortalized cells, whereas PML nuclear bodies exhibit a change in spatial preference from avoiding the centre in normal cells to exhibiting a preference for the centre in immortalized cells. In addition, we show that SC35 splicing speckles are excluded from the nuclear boundary and localize throughout the nucleoplasm and in the interchromatin space in non-transformed WI-38 cells. This new methodology is thus able to reveal the effect of large-scale perturbation on spatial architecture and preferences that would not be obvious from single cell imaging. PMID:25631564

  14. Exceedingly Higher co-loading of Curcumin and Paclitaxel onto Polymer-functionalized Reduced Graphene Oxide for Highly Potent Synergistic Anticancer Treatment

    PubMed Central

    Muthoosamy, Kasturi; Abubakar, Ibrahim Babangida; Bai, Renu Geetha; Loh, Hwei-San; Manickam, Sivakumar

    2016-01-01

    Metastasis of lung carcinoma to breast and vice versa accounts for one of the vast majority of cancer deaths. Synergistic treatments are proven to be the effective method to inhibit malignant cell proliferation. It is highly advantageous to use the minimum amount of a potent toxic drug, such as paclitaxel (Ptx) in ng/ml together with a natural and safe anticancer drug, curcumin (Cur) to reduce the systemic toxicity. However, both Cur and Ptx suffer from poor bioavailability. Herein, a drug delivery cargo was engineered by functionalizing reduced graphene oxide (G) with an amphiphilic polymer, PF-127 (P) by hydrophobic assembly. The drugs were loaded via pi-pi interactions, resulting in a nano-sized GP-Cur-Ptx of 140 nm. A remarkably high Cur loading of 678 wt.% was achieved, the highest thus far compared to any other Cur nanoformulations. Based on cell proliferation assay, GP-Cur-Ptx is a synergistic treatment (CI < 1) and is highly potent towards lung, A549 (IC50 = 13.24 μg/ml) and breast, MDA-MB-231 (IC50 = 1.450 μg/ml) cancer cells. These positive findings are further confirmed by increased reactive oxygen species, mitochondrial membrane potential depletion and cell apoptosis. The same dose treated on normal MRC-5 cells shows that the system is biocompatible and cancerous cell-specific. PMID:27597657

  15. Stearylamine-Containing Cationic Nanoemulsion as a Promising Carrier for Gene Delivery.

    PubMed

    Silva, André L; Marcelino, Henrique R; Verissimo, Lourena M; Araujo, Ivonete B; Agnez-Lima, Lucymara F; do Egito, Eryvaldo S T

    2016-02-01

    The drawbacks related to the use of viral vectors in gene therapy have been stimulated the research in non-viral strategies such as cationic nanoemulsions. The aim of this work was to develop a stearylamine-containing nanoemulsion for gene therapy purpose. The formulation was chosen from a Pseudo-Ternary Phase Diagram and had its long-term stability assessed by Dynamic Light Scattering and Phase Analysis Light Scattering during 180 days at 4 degrees C, 25 degrees C and 40 degrees C. Besides, studies of sterilization and scale up of the product were conducted. It was demonstrated that the proposed system was stable up to 180 days when stored at 4 degrees C and could be sterilized by a 0.22 microm filter pore without changes on its characteristics. The scale up was possible by adjusting the volume to the sonication time. Because the nanoemulsion presented a droplet size smaller than 200 nm and a zeta potential higher than 30 mV, this system was able to correctly complex the plasmid model PIRES2-EGFP, as confirmed by the agarosis gel electrophoresis assay. The nanoemulsion toxicity evaluated over lung fetus human cells (MRC-5) was dose-dependent. However, it does not appear to be a limiting factor for further experiments aiming gene transfection. As a conclusion, stearylamine-containing cationic nanoemulsions can be used for gene therapy, since it presents suitable characteristics, stability and possibility of sterilization. PMID:27433584

  16. In Vitro Synergistic Antioxidant Activity and Identification of Antioxidant Components from Astragalus membranaceus and Paeonia lactiflora

    PubMed Central

    Zhang, Xin; Li, Pengcheng; Zhang, Xing; Wu, Zhaoxi; Li, Dapeng

    2014-01-01

    Many traditionally used herbs demonstrate significantly better pharmacological effects when used in combination than when used alone. However, the mechanism underlying this synergism is still poorly understood. This study aimed to investigate the synergistic antioxidant activity of Astragalus membranaceus (AME) and Paeonia Lactiflora (PL), and identify the potential antioxidant components by 1,1-diphenyl-2-picrylhydrazine (DPPH) radical spiking test followed by a high performance liquid chromatography separation combined with diode array detection and tandem mass spectrometry analysis (DPPH-HPLC-DAD-MS/MS). Eight AME-PL combined extracts (E1–E8) were prepared based on bioactivity-guided fractionation. Among them, E1 exhibited the strongest synergistic effect in scavenging DPPH radicals and reducing ferric ions (P<0.05). Moreover, E1 presented strong cytoprotection against H2O2-induced oxidative damage in MRC-5 cells by suppressing the decrease of the superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and catalase (CAT) activities. A strong correlation between the increment of total phenolic/flavonoid and synergistic antioxidant activity, especially between the increment of total flavonoid and the increase in ferric reducing power was observed. Finally, seven antioxidant substances were identified in E1 as oxypaeoniflora, catechin, calycosin-7-O-β-D-glucopyranoside, fomononetin-7-O-β-D-glucopyranoside, 9,10-dimethoxy-pterocarpan-3-O-β-D-glucopyranoside, quercetin and 2′-dihydroxy-3′,4′-dimethyl-isoflavan-7-O-β-D-glucopyranoside. PMID:24816851

  17. Responses of Solid Tumor Cells in DMEM to Reactive Oxygen Species Generated by Non-Thermal Plasma and Chemically Induced ROS Systems

    NASA Astrophysics Data System (ADS)

    Kaushik, Neha; Uddin, Nizam; Sim, Geon Bo; Hong, Young June; Baik, Ku Youn; Kim, Chung Hyeok; Lee, Su Jae; Kaushik, Nagendra Kumar; Choi, Eun Ha

    2015-02-01

    In this study, we assessed the role of different reactive oxygen species (ROS) generated by soft jet plasma and chemical-induced ROS systems with regard to cell death in T98G, A549, HEK293 and MRC5 cell lines. For a comparison with plasma, we generated superoxide anion (O2-), hydroxyl radical (HO.), and hydrogen peroxide (H2O2) with chemicals inside an in vitro cell culture. Our data revealed that plasma decreased the viability and intracellular ATP values of cells and increased the apoptotic population via a caspase activation mechanism. Plasma altered the mitochondrial membrane potential and eventually up-regulated the mRNA expression levels of BAX, BAK1 and H2AX gene but simultaneously down-regulated the levels of Bcl-2 in solid tumor cells. Moreover, a western blot analysis confirmed that plasma also altered phosphorylated ERK1/2/MAPK protein levels. At the same time, using ROS scavengers with plasma, we observed that scavengers of HO. (mannitol) and H2O2 (catalase and sodium pyruvate) attenuated the activity of plasma on cells to a large extent. In contrast, radicals generated by specific chemical systems enhanced cell death drastically in cancer as well as normal cell lines in a dose-dependent fashion but not specific with regard to the cell type as compared to plasma.

  18. Antiproliferative constituents of the roots of Conyza canadensis.

    PubMed

    Csupor-Löffler, Boglárka; Hajdú, Zsuzsanna; Zupkó, István; Molnár, Judit; Forgo, Peter; Vasas, Andrea; Kele, Zoltán; Hohmann, Judit

    2011-07-01

    Bioassay-guided fractionation of the N-hexane and CHCl₃ phases of the methanol extract of the roots of Conyza canadensis (L.) Cronquist led to the isolation of two new dihydropyranones named conyzapyranone A (1) and B (2), and the known 4 Z,8 Z-matricaria- γ-lactone (3), 4 E,8 Z-matricaria- γ-lactone (4), 9,12,13-trihydroxy-10(E)-octadecenoic acid (5), epifriedelanol (6), friedeline (7), taraxerol (8), simiarenol (9), spinasterol (10), stigmasterol, β-sitosterol, and apigenin. The structures were determined by means of ESIMS and 1D and 2D NMR spectroscopy, including ¹H-¹H COSY, NOESY, HSQC, and HMBC experiments. The isolated compounds were evaluated for their antiproliferative activities and were demonstrated to exert considerable cell growth-inhibitory activity against human cervix adenocarcinoma (HeLa), skin carcinoma (A431), and breast adenocarcinoma (MCF-7) cells. Some of the active components, including 2, 4, and 10, proved to be substantially more potent against these cell lines than against noncancerous human foetal fibroblasts (MRC-5) and can therefore be considered selective antiproliferative natural products. PMID:21294076

  19. Self-Styled ZnO Nanostructures Promotes the Cancer Cell Damage and Supresses the Epithelial Phenotype of Glioblastoma

    PubMed Central

    Wahab, Rizwan; Kaushik, Neha; Khan, Farheen; Kaushik, Nagendra Kumar; Choi, Eun Ha; Musarrat, Javed; Al-Khedhairy, Abdulaziz A.

    2016-01-01

    Extensive researches have been done on the applications of zinc oxide nanoparticles (ZnO-NPs) for the biological purposes. However, the role and toxicity mechanisms of ZnO nanostructures (ZnO-NSts) such as nanoplates (NPls), nanorods (NRs), nanosheets (NSs), nanoflowers (NFs) on cancer cells are not largely known. Present study was focused to investigate the possible mechanisms of apoptosis induced by self-designed ZnO-NSts, prepared at fix pH via solution process and exposed against human T98G gliomas including various cancers and non-malignant embryonic kidney HEK293, MRC5 fibroblast cells. NSts were used for the induction of cell death in malignant human T98G gliomas including various cancers and compared with the non-malignant cells. Notably, NRs were found to induce higher cytotoxicity, inhibitory effects on cancer and normal cells in a dose dependent manner. We also showed that NRs induced cancer cell death through oxidative stress and caspase-dependent pathways. Furthermore, quantitative and qualitative analysis of ZnO-NSts have also been confirmed by statistical analytical parameters such as precision, accuracy, linearity, limits of detection and limit of quantitation. These self-styled NSts could provide new perception in the research of targeted cancer nanotechnology and have potentiality to improve new therapeutic outcomes with poor diagnosis. PMID:26818603

  20. Quantitative Measurement of Varicella-Zoster Virus Infection by Semiautomated Flow Cytometry▿

    PubMed Central

    Gates, Irina V.; Zhang, Yuhua; Shambaugh, Cindy; Bauman, Meredith A.; Tan, Charles; Bodmer, Jean-Luc

    2009-01-01

    Varicella-zoster virus (VZV; human herpesvirus 3) is the etiological cause of chickenpox and, upon reactivation from latency, zoster. Currently, vaccines are available to prevent both diseases effectively. A critical requirement for the manufacturing of safe and potent vaccines is the measurement of the biological activity to ensure proper dosing and efficacy, while minimizing potentially harmful secondary effects induced by immunization. In the case of live virus-containing vaccines, such as VZV-containing vaccines, biological activity is determined using an infectivity assay in a susceptible cellular host in vitro. Infectivity measurements generally rely on the enumeration of plaques by visual inspection of an infected cell monolayer. These plaque assays are generally very tedious and labor intensive and have modest throughput and high associated variability. In this study, we have developed a flow cytometry assay to measure the infectivity of the attenuated vaccine strain (vOka/Merck) of VZV in MRC-5 cells with improved throughput. The assay is performed in 96-well tissue culture microtiter plates and is based on the detection and quantification of infected cells expressing VZV glycoproteins on their surfaces. Multiple assay parameters have been investigated, including specificity, limit of detection, limit of quantification, range of linear response, signal-to-noise ratio, and precision. This novel assay appears to be in good concordance with the classical plaque assay results and therefore provides a viable, higher-throughput alternative to the plaque assay. PMID:19201967

  1. Fabrication of Fe3O4@mSiO2 Core-Shell Composite Nanoparticles for Drug Delivery Applications

    NASA Astrophysics Data System (ADS)

    Uribe Madrid, Sergio I.; Pal, Umapada; Kang, Young Soo; Kim, Junghoon; Kwon, Hyungjin; Kim, Jungho

    2015-05-01

    We report the synthesis of Fe3O4@mSiO2 nanostructures of different meso-silica (mSiO2) shell thickness, their biocompatibility and behaviors for loading and release of a model drug ibuprofen. The composite nanostructures have superparamagnetic magnetite cores of 208 nm average size and meso-silica shells of 15 to 40 nm thickness. A modified Stöber method was used to grow the meso-silica shells over the hydrothermally grown monodispersed magnetite particles. The composite nanoparticles show very promising drug holding and releasing behaviors, which depend on the thickness of meso-silica shell. The biocompatibility of the meso-silica-coated and uncoated magnetite nanoparticles was tested through cytotoxicity assay on breast cancer (MCF-7), ovarian cancer (SKOV3), normal human lung fibroblasts MRC-5, and IMR-90 cells. The high drug holding capacity and reasonable biocompatibility of the nanostructures make them ideal agents for targeted drug delivery applications in human body.

  2. Novel aminoalkylated azaphenothiazines as potential inhibitors of T98G, H460 and SNU80 cancer cell lines in vitro.

    PubMed

    Kushwaha, Khushbu; Kaushik, Nagendra Kumar; Kaushik, Neha; Chand, Mahesh; Kaushik, Reena; Choi, Eun Ha; Jain, Subhash C

    2016-05-01

    A set of twenty-one novel aminoalkylated azaphenothiazines is synthesized using a two-step methodology starting from azaphenothiazines. The key step was the selective monoalkylation at position 10 of azaphenothiazines. In all, twenty-five molecules, including intermediates, were investigated for their in vitro anticancer activity, of which fourteen azaphenothiazines (2b, 3a, 3c, 3d, 3e-h, 3j, 3n, 3o, 3p, 3s, and 3u) were found to decrease the metabolic viability and growth of the T98G, H460 and SNU80 cancer cells effectively in a dose-dependent manner. In silico, pharmacokinetic studies suggest that these molecules have good bioavailability, water solubility and other drug-like parameters. Compounds 3a, 3c and 3g were identified as the leading molecules for future investigation due to their (a) high activity against T98G brain, H460 lung and SNU80 thyroid cancer cells; (b) low cytotoxicity with regard to non-malignant HEK293 and MRC5 cells; (c) low toxic risk levels based on in vitro and in silico evaluations; (d) good theoretical oral bioavailability according to Lipinski 'rule of five' pharmacokinetic parameters; and (e) better drug-likeness and drug-score values. PMID:27017112

  3. Antiproliferative activity and induction of apoptotic by ethanolic extract of Alpinia galanga rhizhome in human breast carcinoma cell line

    PubMed Central

    2014-01-01

    Background We investigated the potential of galangal rhizomes to induce cytotoxic and apoptotic effects in the cultured human breast carcinoma cell line, (MCF-7) in compare with the non-malignant (MRC-5) cells. Methods Both cells were cultured in DMEM medium and treated with galangal rhizomes for three consecutive days. The percentage of apoptotic cells was determined by flow cytometry using Annexin-V fluorescein isothiocyanate. Results The results showed that the ethanolic extract of galangal rhizomes decreased cell viability in the malignant cells as a concentration- and time- dependent manner. The IC50 values against MCF-7 were determined at 400.0 ± 11.7 and 170.0 ± 5.9 μg/ml after 48 and 72 h respectively. The morphology of MCF-7 cells treated with the ethanolic extract confirmed the cell proliferation assay results. Alpinia galanga induced apoptosis in MCF-7 cells, as determined by flow cytometry. Conclusions We concluded that the extract of Alpinia galanga exerts pro-apoptotic effects in a breast cancer-derived cell line and could be considered as a potential chemotherapeutic agent in breast cancer. PMID:24935101

  4. Microcystis aeruginosa toxin: cell culture toxicity, hemolysis, and mutagenicity assays.

    PubMed Central

    Grabow, W O; Du Randt, W C; Prozesky, O W; Scott, W E

    1982-01-01

    Crude toxin was prepared by lyophilization and extraction of toxic Microcystis aeruginosa from four natural sources and a unicellular laboratory culture. The responses of cultures of liver (Mahlavu and PCL/PRF/5), lung (MRC-5), cervix (HeLa), ovary (CHO-K1), and kidney (BGM, MA-104, and Vero) cell lines to these preparations did not differ significantly from one another, indicating that toxicity was not specific for liver cells. The results of a trypan blue staining test showed that the toxin disrupted cell membrane permeability within a few minutes. Human, mouse, rat, sheep, and Muscovy duck erythrocytes were also lysed within a few minutes. Hemolysis was temperature dependent, and the reaction seemed to follow first-order kinetics. Escherichia coli, Streptococcus faecalis, and Tetrahymena pyriformis were not significantly affected by the toxin. The toxin yielded negative results in Ames/Salmonella mutagenicity assays. Microtiter cell culture, trypan blue, and hemolysis assays for Microcystis toxin are described. The effect of the toxin on mammalian cell cultures was characterized by extensive disintegration of cells and was distinguishable from the effects of E. coli enterotoxin, toxic chemicals, and pesticides. A possible reason for the acute lethal effect of Microcystis toxin, based on cytolytic activity, is discussed. Images PMID:6808921

  5. Synthesis and characterization of polyhedral oligomeric titanized silsesquioxane: A new biocompatible cage like molecule for biomedical application.

    PubMed

    Yahyaei, Hossein; Mohseni, Mohsen; Ghanbari, Hossein; Messori, Massimo

    2016-04-01

    Organic-inorganic hybrid materials have shown improved properties to be used as biocompatible coating in biomedical applications. Polyhedral oligomeric silsesquioxane (POSS) containing coatings are among hybrid materials showing promising properties for these applications. In this work an open cage POSS has been reacted with a titanium alkoxide to end cap the POSS molecule with titanium atom to obtain a so called polyhedral oligomeric metalized silsesquioxane (POMS). The synthesized POMS was characterized by FTIR, RAMAN and UV-visible spectroscopy as well as (29)Si NMR and matrix assisted laser desorption/ionization time-of-flight (MALDI-TOF) techniques. Appearance of peaks at 920 cm(-1) in FTIR and 491 cm(-1) and 1083 cm(-1) in Raman spectra confirmed Si-O-Ti linkage formation. It was also demonstrated that POMS was in a monomeric form. To evaluate the biocompatibility of hybrids films, pristine POSS and synthesized POMS were used in synthesis of a polycarbonate urethane polymer. Results revealed that POMS containing hybrid, not only had notable thermal and mechanical stability compared to POSS containing one, as demonstrated by DSC and DMTA analysis, they also showed controlled surface properties in such a manner that hydrophobicity and biocompatibility were both reachable to give rise to improved cell viability in presence of human umbilical vein endothelial cells (HUVEC) and MRC-5 cells. PMID:26838853

  6. Stereocontrolled synthesis of the four 16-hydroxymethyl-19-nortestosterone isomers and their antiproliferative activities.

    PubMed

    Schneider, Gyula; Kiss, Anita; Mernyák, Erzsébet; Benke, Zsanett; Wölfling, János; Frank, Éva; Bózsity, Noémi; Gyovai, András; Minorics, Renáta; Zupkó, István

    2016-01-01

    Novel 16-hydroxymethyl-19-nortestosterone diastereomers were prepared by Birch reduction from the corresponding 3-methoxy-16-hydroxymethylestra-1,3,5(10)-trien-17-ol isomers with known configurations. The synthesized compounds are 16α- and 16β-hydroxymethyl-substituted 19-nortestosterone and their 17α-epimers. To prepare 17α-19-nortestosterone, the Mitsunobu inversion reaction of 19-nortestosterone with different alkyl and aryl carboxylic acids was chosen. Deacylation of the new compounds by the Zemplén method yielded the required 17α-19-nortestosterone. The antiproliferative activities of the structurally related compounds were determined in vitro through microculture tetrazolium assays on a panel of human adherent cervical (HeLa, SiHa and C33A), breast (MCF-7, MDA-MB-231, MDA-MB-361 and T47D) and ovarian (A2780) cell lines. The 17α epimer of 19-nortestosterone demonstrated considerable activity, selectively for HeLa cells, with a calculated IC50 of 0.65 μM. The reference compound, cisplatin, displayed an order of magnitude higher IC50 (12.4 μM). The cancer selectivity of 17α-19-nortestosterone was tested by MTT assay performed with noncancerous human fibroblast cell line MRC-5. The results indicated that 17α-19-nortestosterone selectively disturbs the viability of HeLa cells without greatly affecting other cancer cell types and intact fibroblasts. PMID:26686898

  7. In vitro genotoxicity tests for polyhydroxybutyrate--a synthetic biomaterial.

    PubMed

    Ali, Abdulaziz Qaid; Kannan, Thirumulu Ponnuraj; Ahmad, Azlina; Samsudin, Ab Rani

    2008-02-01

    The aims of this study are to determine the mutagenicity of a locally produced polyhydroxybutyrate (PHB) using Salmonella mutagenicity test and to find out if PHB altered the expression of p53 and c-myc proto-oncogenes and bcl-xl and bcl-xs anti-apoptotic genes in the human fibroblast cell line, MRC-5. Different concentrations of PHB were incubated with special genotypic variants of Salmonella strains (TA1535, TA1537, TA1538, TA98 and TA100) carrying mutations in several genes both with and without metabolic activation (S9) and the test was assessed based on the number of revertant colonies. The average number of revertant colonies per plate treated with PHB was less than double as compared to that of negative control. For the gene expression analyses, fibroblast cell lines were treated with PHB at different concentrations and incubated for 1, 12, 24 and 48 h separately. The total RNA was isolated and analysed for the expression of p53, c-myc, bcl-xl and bcl-xs genes. The PHB did not show over or under expression of the genes studied. The above tests indicate that the locally produced PHB is non-genotoxic and does not alter the expression of the proto-oncogenes and anti-apoptotic genes considered in this study. PMID:17892925

  8. Pharmacological perspectives from Brazilian Salvia officinalis (Lamiaceae): antioxidant, and antitumor in mammalian cells.

    PubMed

    Garcia, Charlene S C; Menti, Caroline; Lambert, Ana Paula F; Barcellos, Thiago; Moura, Sidnei; Calloni, Caroline; Branco, Cátia S; Salvador, Mirian; Roesch-Ely, Mariana; Henriques, João A P

    2016-03-01

    Salvia officinalis (Lamiaceae) has been used in south of Brazil as a diary homemade, in food condiment and tea-beverage used for the treatment of several disorders. The objective of this study was to characterize chemical compounds in the hydroalcoholic (ExtHS) and aqueous (ExtAS) extract from Salvia officinalis (L.) by gas chromatography-mass spectrometry (GC-MS) and by high-resolution electrospray ionization mass spectrometry (ESI-QTOF MS/MS), evaluate in vitro ability to scavenge the free radical 2,2-diphenyl-1-picrylhydrazyl (DPPH•) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS•+), catalase (CAT-like) and superoxide dismutase (SOD-like) activity, moreover cytotoxic by MTT assay, alterations on cell morphology by giemsa and apoptotic-induced mechanism for annexin V/propidium iodide. Chemical identification sage extracts revealed the presence of acids and phenolic compounds. In vitro antioxidant analysis for both extracts indicated promising activities. The cytotoxic assays using tumor (Hep-2, HeLa, A-549, HT-29 and A-375) and in non-tumor (HEK-293 and MRC-5), showed selectivity for tumor cell lines. Immunocytochemistry presenting a majority of tumor cells at late stages of the apoptotic process and necrosis. Given the results presented here, Brazilian Salvia officinalis (L.) used as condiment and tea, may protect the body against some disease, in particularly those where oxidative stress is involved, like neurodegenerative disorders, inflammation and cancer. PMID:26839997

  9. Neurotrophic properties of the Lion's mane medicinal mushroom, Hericium erinaceus (Higher Basidiomycetes) from Malaysia.

    PubMed

    Lai, Puei-Lene; Naidu, Murali; Sabaratnam, Vikineswary; Wong, Kah-Hui; David, Rosie Pamela; Kuppusamy, Umah Rani; Abdullah, Noorlidah; Malek, Sri Nurestri A

    2013-01-01

    Neurotrophic factors are important in promoting the growth and differentiation of neurons. Nerve growth factor (NGF) is essential for the maintenance of the basal forebrain cholinergic system. Hericenones and erinacines isolated from the medicinal mushroom Hericium erinaceus can induce NGF synthesis in nerve cells. In this study, we evaluated the synergistic interaction between H. erinaceus aqueous extract and exogenous NGF on the neurite outgrowth stimulation of neuroblastoma-glioma cell NG108-15. The neuroprotective effect of the mushroom extract toward oxidative stress was also studied. Aqueous extract of H. erinaceus was shown to be non-cytotoxic to human lung fibroblast MRC-5 and NG108-15 cells. The combination of 10 ng/mL NGF with 1 μg/mL mushroom extract yielded the highest percentage increase of 60.6% neurite outgrowth. The extract contained neuroactive compounds that induced the secretion of extracellular NGF in NG108-15 cells, thereby promoting neurite outgrowth activity. However, the H. erinaceus extract failed to protect NG108-15 cells subjected to oxidative stress when applied in pre-treatment and co-treatment modes. In conclusion, the aqueous extract of H. erinaceus contained neuroactive compounds which induced NGF-synthesis and promoted neurite outgrowth in NG108-15 cells. The extract also enhanced the neurite outgrowth stimulation activity of NGF when applied in combination. The aqueous preparation of H. erinaceus had neurotrophic but not neuroprotective activities. PMID:24266378

  10. Diterpenylquinone hybrids: synthesis and assessment of gastroprotective mechanisms of action in human cells.

    PubMed

    Theoduloz, Cristina; Bravo, Ivanna; Pertino, Mariano Walter; Schmeda-Hirschmann, Guillermo

    2013-01-01

    A modern approach in the search for new bioactive molecules is the synthesis of novel chemical entities combining molecules of different biosynthetic origin presenting biological effects as single compounds. Gastroprotective compounds from South American medicinal plants, namely quinones and diterpenes, were used as building blocks to obtain hybrid diterpenylquinones. Starting from the labdane diterpene junicedric acid and two isomers, as well as from three quinones, including lapachol, 18 hybrid molecules were synthesized. Six of them are described for the first time. The potential gastroprotective mechanisms of action of the compounds were assessed in dose-response experiments using human gastric epithelial cells (AGS) and human lung fibroblasts (MRC-5). The following studies were carried out: stimulation of cell proliferation, cytoprotection against sodium taurocholate (NaT)-induced damage, synthesis of PGE2 and total reduced sulfhydryl (GSH) content. The antioxidant capacity of the compounds was determined on the inhibition of the lipoperoxidation in human erythrocyte membranes. Hybrid compounds presented activities different from those shown by the starting compounds, supporting the potential of this approach in the search for new bioactive molecules. The effects might be modulated by selective modification in the terpene or quinone moieties of the new molecules. Structure-activity relationships are discussed. PMID:24025455

  11. Interaction of Mycoplasma pneumoniae with human lung fibroblasts: characterization of the in vitro model.

    PubMed Central

    Gabridge, M G; Taylor-Robinson, D; Davies, H A; Dourmashkin, R R

    1979-01-01

    The interaction of pathogenic Mycoplasma pneumoniae and host cells was studied in cell cultures of MRC-5 human lung fibroblasts. A comparison of results obtained with fibroblasts in a monolayer format and with hamster tracheal explant cultures indicated that the former can bind significantly larger numbers of mycoplasmas. In addition, the attachment was 96% specific, that is, mediated through a neuraminidase-sensitive receptor on the host cell. Uptake of mycoplasmas was directly related to the number of mycoplasma cells present in the inoculum, and attachment was virtually complete within a 30-min period at 37 degrees C. High doses of M. pneumoniae induced a marked cytopathic effect, whereas doses of less than or equal to 10(6) colony-forming units per ml produced grossly observable cell damage that was moderate and variable. Transmission electron microscopy studies indicated that attachment of M. pneumoniae to the surface of lung fibroblasts occurred with the specialized terminal structure or binding site oriented closest to the epithelial cell surface. The filamentous mycoplasma cells were spatially arranged in several configurations and were not limited to a vertical orientation. The advantages and disadvantages of human lung fibroblast monolayer cultures, in reference to other in vitro models are discussed. A new mycoplasma agar medium (G-200 agar) with a defined tissue culture base and 10% horse serum is also described. Images PMID:113348

  12. In vitro cytotoxicity activity on several cancer cell lines of acridone alkaloids and N-phenylethyl-benzamide derivatives from Swinglea glutinosa (Bl.) Merr.

    PubMed

    Braga, P A C; Dos Santos, D A P; Da Silva, M F D G F; Vieira, P C; Fernandes, J B; Houghton, P J; Fang, R

    2007-01-01

    The methanol extract from the stems and fruits of Swinglea glutinosa (Rutaceae) afforded 11 known acridone alkaloids and three N-phenylethyl-benzamide derivatives, glycocitrine-IV, 1,3,5-trihydroxy-4-methoxy-10-methyl-2,8-bis(3-methylbut-2-enyl)acridin-9(10H)-one, 1,3,5- trihydroxy-2,8-bis(3-methylbut-2-enyl)-10-methyl-9-acridone, citbrasine, citrusinine-II, citrusinine-I, 5-dihydroxyacronycine, pyranofoline, 3,4-dihydro-3,5,8-trihydroxy-6-methoxy-2,2,7-trimethyl-2H-pyrano[2,3-a]acridin-12(7H)-one, 2,3-dihydro-4,9-dihydroxy-2-(2-hydroxy-propan-2-yl)-11-methoxy-10-methylfuro[3,2-b]acridin-5(10H)-one, bis-5-hydroxyacronycine, N-(2-{4-[(3,7-dimethylocta-2,6-dien-1-yl)oxy]phenyl}ethyl)benzamide, N-(2-{4-[(3,7-dimethyl-4-acethyl-octa-2,6-dien-1-yl)oxy]phenyl}ethyl)benzamide, and severine acetate. All compounds isolated were examined for their activity against three cancer cell lines: human lung carcinoma (COR-L23), human breast adenocarcinoma (MCF7), human melanoma (C32), and normal human fetal lung cell line, MRC-5. The acridones tested exhibited weak cytotoxicity but the amides showed moderate nonselective cytotoxic activity. PMID:17365689

  13. Exceedingly biocompatible and thin-layered reduced graphene oxide nanosheets using an eco-friendly mushroom extract strategy

    PubMed Central

    Muthoosamy, Kasturi; Bai, Renu Geetha; Abubakar, Ibrahim Babangida; Sudheer, Surya Mudavasseril; Lim, Hong Ngee; Loh, Hwei-San; Huang, Nay Ming; Chia, Chin Hua; Manickam, Sivakumar

    2015-01-01

    Purpose A simple, one-pot strategy was used to synthesize reduced graphene oxide (RGO) nanosheets by utilizing an easily available over-the-counter medicinal and edible mushroom, Ganoderma lucidum. Methods The mushroom was boiled in hot water to liberate the polysaccharides, the extract of which was then used directly for the reduction of graphene oxide. The abundance of polysaccharides present in the mushroom serves as a good reducing agent. The proposed strategy evades the use of harmful and expensive chemicals and avoids the typical tedious reaction methods. Results More importantly, the mushroom extract can be easily separated from the product without generating any residual byproducts and can be reused at least three times with good conversion efficiency (75%). It was readily dispersible in water without the need of ultrasonication or any surfactants; whereas 5 minutes of ultrasonication with various solvents produced RGO which was stable for the tested period of 1 year. Based on electrochemical measurements, the followed method did not jeopardize RGO’s electrical conductivity. Moreover, the obtained RGO was highly biocompatible to not only colon (HT-29) and brain (U87MG) cancer cells, but was also viable towards normal cells (MRC-5). Conclusion Besides being eco-friendly, this mushroom based approach is easily scalable and demonstrates remarkable RGO stability and biocompatibility, even without any form of functionalization. PMID:25759577

  14. Tomato waste: Carotenoids content, antioxidant and cell growth activities.

    PubMed

    Stajčić, Sladjana; Ćetković, Gordana; Čanadanović-Brunet, Jasna; Djilas, Sonja; Mandić, Anamarija; Četojević-Simin, Dragana

    2015-04-01

    The carotenoid content, antioxidant and cell growth activities of tomato waste extracts, obtained from five different tomato genotypes, was investigated. High performance liquid chromatography was used to identify and quantify the main carotenoids present in tomato waste extracts. The antioxidant activity of tomato waste extracts was tested using spectrophotometric methods, 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging activity and reducing power assay. The highest DPPH scavenging activity (IC50 = 0.057 mg/ml) was obtained for Bačka extract. The Knjaz extract showed the best reducing power (IC50 = 2.12 mg/ml). Cell growth effects were determined in HeLa, MCF7 and MRC-5 cell lines by sulforhodamine B test. Anti-proliferative effects were observed in all cell lines at higher concentrations (⩾ 0.125 mg/ml). The carotenoid contents exhibited a strong correlation with antioxidant and anti-proliferation activity. The results obtained indicated that tomato waste should be regarded as potential nutraceutic resource and may be used as a functional food ingredient. PMID:25442547

  15. Whole cell structural imaging at 20 nanometre resolutions using MeV ions

    NASA Astrophysics Data System (ADS)

    Watt, F.; Chen, X.; Chen, C.-B.; Udalagama, CNB; van Kan, J. A.; Bettiol, A. A.

    2013-07-01

    MeV proton and alpha (helium ion) particle beams can now be focused to 20 nm spot sizes, and ion/matter simulations using the DEEP computer code show that these resolutions are maintained through the top micrometre or so of organic material. In addition, the energy deposition profiles of the transmitted ions are laterally constrained to a few nanometers from the initial ion path. This paves the way for high resolution structural imaging of relatively thick biological material, e.g. biological cells. Examples are shown of high resolution structural imaging of whole biological cells (MRC5) using on-axis scanning transmission ion microscopy (STIM). Nanoparticles have the ability to cross the cell membrane, and may therefore prove useful as drug delivery probes. We show that the combination of on-axis STIM for imaging the cell interior, and off-axis STIM for imaging gold nanoparticles with enhanced contrast within the cell, represents a powerful set of ion beam techniques for tracking gold nanoparticles in biological cells. Whole cell imaging at high spatial resolutions represents a new area for nuclear microprobes.

  16. Heat Shock Protein 27 Plays a Pivotal Role in Myofibroblast Differentiation and in the Development of Bleomycin-Induced Pulmonary Fibrosis.

    PubMed

    Park, Ah-Mee; Kanai, Kyosuke; Itoh, Tatsuki; Sato, Takao; Tsukui, Tatsuya; Inagaki, Yutaka; Selman, Moises; Matsushima, Kouji; Yoshie, Osamu

    2016-01-01

    Heat shock protein 27 (HSP27) is a member of the small molecular weight HSP family. Upon treatment with transforming growth factor β1 (TGF-β1), we observed upregulation of HSP27 along with that of α-smooth muscle actin (α-SMA), a marker of myofibroblast differentiation, in cultured human and mouse lung fibroblasts. Furthermore, by using siRNA knockdown, we demonstrated that HSP27 was involved in cell survival and upregulation of fibronectin, osteopontin (OPN) and type 1 collagen, all functional markers of myofibroblast differentiation, in TGF-β1-treated MRC-5 cells. In lung tissues of bleomycin-treated mice, HSP27 was strongly upregulated and substantially co-localized with α-SMA, OPN and type I collagen but not with proSP-C (a marker of type II alveolar epithelial cells), E-cadherin (a marker of epithelial cells) or F4/80 (a marker of macrophages). A similar co-localization of HSP27 and α-SMA was observed in lung tissues of patients with idiopathic pulmonary fibrosis. Furthermore, airway delivery of HSP27 siRNA effectively suppressed bleomycin-induced pulmonary fibrosis in mice. Collectively, our findings indicate that HSP27 is critically involved in myofibroblast differentiation of lung fibroblasts and may be a promising therapeutic target for lung fibrotic diseases. PMID:26859835

  17. Phytochemical and cytotoxic investigations of Alpinia mutica rhizomes.

    PubMed

    Malek, Sri Nurestri Abdul; Phang, Chung Weng; Ibrahim, Halijah; Norhanom, Abdul Wahab; Sim, Kae Shin

    2011-01-01

    The methanol and fractionated extracts (hexane, ethyl acetate and water) of Alpinia mutica (Zingiberaceae) rhizomes were investigated for their cytotoxic effect against six human carcinoma cell lines, namely KB, MCF7, A549, Caski, HCT116, HT29 and non-human fibroblast cell line (MRC 5) using an in vitro cytotoxicity assay. The ethyl acetate extract possessed high inhibitory effect against KB, MCF7 and Caski cells (IC₅₀ values of 9.4, 19.7 and 19.8 µg/mL, respectively). Flavokawin B (1), 5,6-dehydrokawain (2), pinostrobin chalcone (3) and alpinetin (4), isolated from the active ethyl acetate extract were also evaluated for their cytotoxic activity. Of these, pinostrobin chalcone (3) and alpinetin (4) were isolated from this plant for the first time. Pinostrobin chalcone (3) displayed very remarkable cytotoxic activity against the tested human cancer cells, such as KB, MCF7 and Caski cells (IC₅₀ values of 6.2, 7.3 and 7.7 µg/mL, respectively). This is the first report of the cytotoxic activity of Alpinia mutica. PMID:21240148

  18. In vitro inhibition of beta-haematin formation, DNA interactions, antiplasmodial activity, and cytotoxicity of synthetic neocryptolepine derivatives.

    PubMed

    Van Miert, Sabine; Jonckers, Tim; Cimanga, Kanyanga; Maes, Louis; Maes, Bert; Lemière, Guy; Dommisse, Roger; Vlietinck, Arnold; Pieters, Luc

    2004-01-01

    Neocryptolepine, a minor alkaloid of Cryptolepis sanguinolenta, was investigated as a lead for new antiplasmodial agents, because of its lower cytotoxicity than cryptolepine, the major alkaloid. Synthetic 2- or 3-substituted neocryptolepine derivatives were evaluated for their biological activity. In addition to the antiplasmodial activity (Plasmodium falciparum chloroquine-sensitive and -resistant) also the cytotoxicity (MRC-5 cells) was determined. Several compounds such as 2-bromoneocryptolepine showing higher and more selective antiplasmodial activity than neocryptolepine were obtained. Several functional assays and in vitro tests were used to obtain additional information on the mechanism of action, i.e., the beta-haematin formation inhibitory assay (detoxification of haem) and the DNA-methylgreen displacement assay (interaction with DNA). It could be demonstrated that the 2- or 3-substituted neocryptolepine derivatives investigated here have about the same potency to inhibit the beta-haematin formation as chloroquine, indicating that inhibition of haemozoin formation makes at least an important contribution to their antiplasmodial activity, although their in vitro antiplasmodial activity is still less than chloroquine. PMID:15582513

  19. Tyrosol and hydroxytyrosol derivatives as antitrypanosomal and antileishmanial agents.

    PubMed

    Belmonte-Reche, Efres; Martínez-García, Marta; Peñalver, Pablo; Gómez-Pérez, Verónica; Lucas, Ricardo; Gamarro, Francisco; Pérez-Victoria, José María; Morales, Juan Carlos

    2016-08-25

    Trypanosomiasis and leishmaniasis keep being a real challenge for health and development of African countries. Existing treatments have considerable side effects and increase resistance of the parasites. We have measured antitrypanosomal and antileishmanial activity of natural phenols, tyrosol (TYR) and hydroxytyrosol (HT) and several of their esters and metabolites. We found significant IC50 values against Trypanosoma brucei for HT decanoate ester and HT dodecanoate ester (0.6 and 0.36 μM, respectively). This represents a large increase in activity with respect to HT (79 and 132 fold, respectively). Moreover, both compounds displayed a high selectivity index against MRC-5, a non-tumoral human cell line (118 and 106, respectively). Then, we synthesized a focused library of compounds to explore structure-activity. We found the ether and thiourea analogs of HT decanoate ester and HT dodecanoate ester also showed IC50 values against T. brucei in the low micromolar range. In conclusion, the di-ortho phenolic ring and medium size alkyl chain are essential for activity whereas the nature of the chemical bond among them seems less important. PMID:27155468

  20. Biodistribution and in vivo efficacy of genetically modified human mesenchymal stem cells systemically transplanted into a mouse bone fracture model.

    PubMed

    Kang, Jin Wook; Park, Ki Dae; Choi, Youngju; Baek, Dae Hyun; Cho, Wan-Seob; Choi, Mina; Park, Jae Hyun; Choi, Kyoung Suk; Kim, Hyung Soo; Yoo, Tae Moo

    2013-08-01

    Human mesenchymal stem cells (hMSCs) have generated a great deal of interest in clinical application due to their ability to undergo multi-lineage differentiation. Recently, ex vivo genetic modification of hMSCs was attempted to increase their differentiation potential. The present study was conducted to evaluate the biodistribution and in vivo efficacy of genetically modified hMSCs. To accomplish this, Runx2, which is a key transcription factor associated with osteoblast differentiation, was transduced into hMSCs using lentiviral vectors expressing green fluorescent protein (GFP) or luciferase. Here, we developed an experimental fracture in mice femur to investigate the effects of Runx2-transduced hMSCs on bone healing and migration into injury site. We conducted bio-luminescence imaging (BLI) using luciferase-tagged vector and quantitative real-time PCR using GFP probe to investigate the biodistribution of Runx2-transduced hMSCs in the fracture model. The biodistribution of hMSC cells in the fractured femur was observed at 14 days post-transplantation upon both BLI imaging and real-time PCR. Moreover, the fractured mice transplanted with Runx2-transduced hMSCs showed superior bone healing when compared to mock-transduced hMSC and MRC5 fibroblasts which were used as control. These data suggested that transplanted genetically modified hMSCs systemically migrate to the fractured femur, where they contribute to bone formation in vivo. PMID:23615814

  1. Targeted light-inactivation of the Ki-67 protein using theranostic liposomes leads to death of proliferating cells

    NASA Astrophysics Data System (ADS)

    Rahmanzadeh, Ramtin; Rai, Prakash; Gerdes, Johannes; Hasan, Tayyaba

    2010-02-01

    Nanomedicine is beginning to impact the treatment of several diseases and current research efforts include development of integrated nano-constructs (theranostics) which serve as probes for imaging and therapy in addition to delivering macromolecules intracellularly. In cancer, there is a vital unmet need for effective alternative treatments with high specificity and low systemic toxicity. This can be achieved by targeting key molecular markers associated with cancer cells with reduced effective drug doses. Here, we show an innovative proof-of-principle approach for efficient killing of proliferating ovarian cancer cells by inactivating a protein associated with cell proliferation namely, the nuclear Ki-67 protein (pKi-67), using nanotechnology-based photodynamic therapy (PDT). Antibodies against pKi-67 are widely used as prognostic tools for tumor diagnosis. In this work, anti pKi-67 antibodies were first conjugated to fluorescein isothiocyanate (FITC) and then encapsulated inside liposomes. After incubation of OVCAR-5 ovarian cancer cells with these liposomes, confocal microscopy confirmed the localization of the antibodies to the nucleoli of the cells. Irradiation with a 488 nm laser led to a significant loss of cell viability. The specificity of this approach for pKi-67 positive cells was demonstrated in confluent human lung fibroblasts (MRC-5) where only a small population of cells stain positive for pKi-67 and only minimal cell death was observed. Taken together, our findings suggest that pKi-67 targeted with nano-platform is an attractive therapeutic target in cancer therapy.

  2. Interactions among Lung Cancer Cells, Fibroblasts, and Macrophages in 3D Co-Cultures and the Impact on MMP-1 and VEGF Expression

    PubMed Central

    Liu, Xiao-qing; Kiefl, Rosemarie; Roskopf, Claudia; Tian, Fei; Huber, Rudolf M.

    2016-01-01

    In vitro cell-based models of lung cancer are frequently employed to study invasion and the mechanisms behind metastasis. However, these models often study only one cell type with two-dimensional (2D) monolayer cell cultures, which do not accurately reflect the complexity of inflammation in vivo. Here, a three-dimensional (3D) cell co-culture collagen gel model was employed, containing human lung adenocarcinoma cells (HCC), human lung fibroblast cells (MRC-5), and macrophages. Cell culture media and cell images were collected, and matrix metalloproteinase-1 (MMP-1) and vascular endothelial growth factor (VEGF) production was monitored under different cell culture conditions. We found that simulating hypoxia and/or serum starvation conditions induced elevated secretion of VEGF in the 3D co-culture model in vitro, but not MMP-1; the morphology of HCC in the 2D versus the 3D co-culture system was extremely different. MMP-1 and VEGF were secreted at higher levels in mixed cell groups rather than mono-culture groups. Therefore, incorporating lung cancer cells, fibroblasts, and macrophages may better reflect physiological metastasis mechanisms compared to mono-culture systems. Tumour stromal cells, macrophages, and fibroblast cells may promote invasion and metastasis, which also provides a new direction for the design of therapies targeted at destroying the stroma of tumor tissues. PMID:27232698

  3. Synthesis, characterization, and efficacy of antituberculosis isoniazid zinc aluminum-layered double hydroxide based nanocomposites.

    PubMed

    Saifullah, Bullo; El Zowalaty, Mohamed Ezzat; Arulselvan, Palanisamy; Fakurazi, Sharida; Webster, Thomas J; Geilich, Benjamin Mahler; Hussein, Mohd Zobir

    2016-01-01

    The chemotherapy for tuberculosis (TB) is complicated by its long-term treatment, its frequent drug dosing, and the adverse effects of anti-TB drugs. In this study, we have developed two nanocomposites (A and B) by intercalating the anti-TB drug isoniazid (INH) into Zn/Al-layered double hydroxides. The average size of the nanocomposites was found to bê164 nm. The efficacy of the Zn/Al-layered double hydroxides intercalated INH against Mycobacterium tuberculosis was increased by approximately three times more than free INH. The nanocomposites were also found to be active against Gram-positive and -negative bacteria. Compared to the free INH, the nanodelivery formulation was determined to be three times more biocompatible with human normal lung fibroblast MRC-5 cells and 3T3 fibroblast cells at a very high concentration of 50 µg/mL for up to 72 hours. The in vitro release of INH from the Zn/Al-layered double hydroxides was found to be sustained in human body-simulated buffer solutions of pH 4.8 and 7.4. This research is a step forward in making the TB chemotherapy patient friendly. PMID:27486322

  4. Endogenous lung surfactant inspired pH responsive nanovesicle aerosols: pulmonary compatible and site-specific drug delivery in lung metastases.

    PubMed

    Joshi, Nitin; Shirsath, Nitesh; Singh, Ankur; Joshi, Kalpana S; Banerjee, Rinti

    2014-01-01

    Concerns related to pulmonary toxicity and non-specificity of nanoparticles have limited their clinical applications for aerosol delivery of chemotherapeutics in lung cancer. We hypothesized that pulmonary surfactant mimetic nanoparticles that offer pH responsive release specifically in tumor may be a possible solution to overcome these issues. We therefore developed lung surfactant mimetic and pH responsive lipid nanovesicles for aerosol delivery of paclitaxel in metastatic lung cancer. 100-200 nm sized nanovesicles showed improved fusogenicity and cytosolic drug release, specifically with cancer cells, thereby resulting in improved cytotoxicity of paclitaxel in B16F10 murine melanoma cells and cytocompatibility with normal lung fibroblasts (MRC 5). The nanovesicles showed airway patency similar to that of endogenous pulmonary surfactant and did not elicit inflammatory response in alveolar macrophages. Their aerosol administration while significantly improving the biodistribution of paclitaxel in comparison to Taxol (i.v.), also showed significantly higher metastastes inhibition (~75%) in comparison to that of i.v. Taxol and i.v. Abraxane. No signs of interstitial pulmonary fiborisis, chronic inflammation and any other pulmonary toxicity were observed with nanovesicle formulation. Overall, these nanovesicles may be a potential platform to efficiently deliver hydrophobic drugs as aerosol in metastatic lung cancer and other lung diseases, without causing pulmonary toxicity. PMID:25403950

  5. Synthesis and investigation of the anticancer effects of estrone-16-oxime ethers in vitro.

    PubMed

    Berényi, Ágnes; Minorics, Renáta; Iványi, Zoltán; Ocsovszki, Imre; Ducza, Eszter; Thole, Hubert; Messinger, Josef; Wölfling, János; Mótyán, Gergő; Mernyák, Erzsébet; Frank, Éva; Schneider, Gyula; Zupkó, István

    2013-01-01

    An expanding body of evidence indicates the possible role of estrane derivatives as useful anticancer agents. The aim of this study was to describe the cytotoxic effects of 63 newly synthetized estrone-16-oxime ethers on human cancer cell lines (cervix carcinoma HeLa, breast carcinoma MCF7 and skin epidermoid carcinoma A431), studied by means of the MTT assay. Four of the most promising compounds were selected for participation in additional experiments in order to characterize the mechanism of action, including cell cycle analysis, morphological study and the 5-bromo-2'-deoxyuridine incorporation assay. The cancer selectivity was tested on a noncancerous fibroblast cell line (MRC-5). Since apoptosis and cell cycle disturbance were observed, caspase-3 activities were further assayed for the two most effective agents. These estrone-16-oxime analogs activated caspase-3 and changed the mRNA level expression of endogenous factors regulating the G1-S phase transition (retinoblastoma protein, CDK4 and p16). The repression of retinoblastoma protein was reinforced at a protein level too. These experimental data lead to the conclusion that estrone-16-oxime ethers may be regarded as potential starting structures for the design of novel anticancer agents. PMID:23127813

  6. Xanthohumol induces apoptosis and S phase cell cycle arrest in A549 non-small cell lung cancer cells

    PubMed Central

    Yong, Wai Kuan; Ho, Yen Fong; Malek, Sri Nurestri Abd

    2015-01-01

    Background: Xanthohumol, a major prenylated chalcone found in female hop plant, Humulus lupulus, was reported to have various chemopreventive and anti-cancer properties. However, its apoptotic effect on human alveolar adenocarcinoma cell line (A549) of non-small cell lung cancer (NSCLC) was unknown. Objective: This study aimed to investigate the effects of xanthohumol on apoptosis in A549 human NSCLC cells. Materials and Methods: A549 cell proliferation was determined by sulforhodamine B assay. Morphological changes of the cells were studied via phase contrast and fluorescent microscopy. Induction of apoptosis was assessed by Annexin-V fluorescein isothiocyanate/propidium iodide (Annexin V-FITC/PI) staining, DNA fragmentation (TUNEL) assay mitochondrial membrane potential assay, cell cycle analysis, and caspase activity studies. Results: Xanthohumol was found to decrease cell proliferation in A549 cells but had relatively low cytotoxicity on normal human lung fibroblast cell line (MRC-5). Typical cellular and nuclear apoptotic features were also observed in A549 cells treated with xanthohumol. Onset of apoptosis in A549 cells was further confirmed by externalization of phosphatidylserine, changes in mitochondrial membrane potential, and DNA fragmentation in the cells after treatment. Xanthohumol induced accumulation of cells in sub G1 and S phase based on cell cycle analysis and also increased the activities of caspase-3, -8, and -9. Conclusion: This work suggests that xanthohumol as an apoptosis inducer, may be a potent therapeutic compound for NSCLC. PMID:26664015

  7. Endogenous lung surfactant inspired pH responsive nanovesicle aerosols: Pulmonary compatible and site-specific drug delivery in lung metastases

    PubMed Central

    Joshi, Nitin; Shirsath, Nitesh; Singh, Ankur; Joshi, Kalpana S.; Banerjee, Rinti

    2014-01-01

    Concerns related to pulmonary toxicity and non-specificity of nanoparticles have limited their clinical applications for aerosol delivery of chemotherapeutics in lung cancer. We hypothesized that pulmonary surfactant mimetic nanoparticles that offer pH responsive release specifically in tumor may be a possible solution to overcome these issues. We therefore developed lung surfactant mimetic and pH responsive lipid nanovesicles for aerosol delivery of paclitaxel in metastatic lung cancer. 100–200 nm sized nanovesicles showed improved fusogenicity and cytosolic drug release, specifically with cancer cells, thereby resulting in improved cytotoxicity of paclitaxel in B16F10 murine melanoma cells and cytocompatibility with normal lung fibroblasts (MRC 5). The nanovesicles showed airway patency similar to that of endogenous pulmonary surfactant and did not elicit inflammatory response in alveolar macrophages. Their aerosol administration while significantly improving the biodistribution of paclitaxel in comparison to Taxol (i.v.), also showed significantly higher metastastes inhibition (~75%) in comparison to that of i.v. Taxol and i.v. Abraxane. No signs of interstitial pulmonary fiborisis, chronic inflammation and any other pulmonary toxicity were observed with nanovesicle formulation. Overall, these nanovesicles may be a potential platform to efficiently deliver hydrophobic drugs as aerosol in metastatic lung cancer and other lung diseases, without causing pulmonary toxicity. PMID:25403950

  8. Effect of Allium flavum L. and Allium melanantherum Panč. Extracts on Oxidative DNA Damage and Antioxidative Enzymes Superoxide Dismutase and Catalase.

    PubMed

    Mitić-Ćulafić, Dragana; Nikolić, Biljana; Simin, Nataša; Jasnić, Nebojša; Četojević-Simin, Dragana; Krstić, Maja; Knežević-Vukčević, Jelena

    2016-03-01

    Allium flavum L. and Allium melanantherum Panč. are wild growing plants used in traditional diet in Balkan region. While chemical composition and some biological activities of A. flavum have been reported, A. melanantherum, as an endemic in the Balkan Peninsula, has never been comprehensively examined. After chemical characterization of A. melanantherum, we examined the protective effect of methanol extracts of both species against t-butyl hydro-peroxide (t-BOOH)-induced DNA damage and mutagenesis. The bacterial reverse mutation assay was performed on Escherichia coli WP2 oxyR strain. DNA damage was monitored in human fetal lung fibroblasts (MRC-5) with alkaline comet assay. Obtained results indicated that extracts reduced t-BOOH-induced DNA damage up to 70 and 72 % for A. flavum and A. melanantherum extract, respectively, and showed no effect on t-BOOH-induced mutagenesis. Since the results indicated modulatory effect on cell-mediated antioxidative defense, the effect of extracts on total protein content, and superoxide dismutase (SOD) and catalase (CAT) amounts and activities were monitored. Both extracts increased total protein content, while the increase of enzyme amount and activity was obtained only with A. melanantherum extract and restricted to CAT. The activity of CuZnSOD family was not affected, while SOD1 and SOD2 amounts were significantly decreased, indicating potential involvement of extracellular CuZnSOD. Obtained results strongly support the traditional use of A. flavum and A. melanantherum in nutrition and recommend them for further study. PMID:26590605

  9. Synthesis of New 4-Aminoquinolines and Evaluation of Their In Vitro Activity against Chloroquine-Sensitive and Chloroquine-Resistant Plasmodium falciparum

    PubMed Central

    Rajapakse, Chandima S. K.; Lisai, Maryna; Deregnaucourt, Christiane; Sinou, Véronique; Latour, Christine; Roy, Dipankar; Schrével, Joseph; Sánchez-Delgado, Roberto A.

    2015-01-01

    The efficacy of chloroquine, once the drug of choice in the fight against Plasmodium falciparum, is now severely limited due to widespread resistance. Amodiaquine is one of the most potent antimalarial 4-aminoquinolines known and remains effective against chloroquine-resistant parasites, but toxicity issues linked to a quinone-imine metabolite limit its clinical use. In search of new compounds able to retain the antimalarial activity of amodiaquine while circumventing quinone-imine metabolite toxicity, we have synthesized five 4-aminoquinolines that feature rings lacking hydroxyl groups in the side chain of the molecules and are thus incapable of generating toxic quinone-imines. The new compounds displayed high in vitro potency (low nanomolar IC50), markedly superior to chloroquine and comparable to amodiaquine, against chloroquine-sensitive and chloroquine-resistant strains of P. falciparum, accompanied by low toxicity to L6 rat fibroblasts and MRC5 human lung cells, and metabolic stability comparable or higher than that of amodiaquine. Computational studies indicate a unique mode of binding of compound 4 to heme through the HOMO located on a biphenyl moeity, which may partly explain the high antiplasmodial activity observed for this compound. PMID:26473363

  10. Comparative study of biological activities and phytochemical composition of two rose hips and their preserves: Rosa canina L. and Rosa arvensis Huds.

    PubMed

    Nađpal, Jelena D; Lesjak, Marija M; Šibul, Filip S; Anačkov, Goran T; Četojević-Simin, Dragana D; Mimica-Dukić, Neda M; Beara, Ivana N

    2016-02-01

    The aim of this study was to compare phenolic profile, vitamin C content, antioxidant, anti-inflammatory and cytotoxic activity of rose hips and the preserves (purée and jam) of two Rosa species: renowned Rosa canina L. and unexplored Rosa arvensis Huds. The liquid chromatography-tandem mass spectrometry analysis of 45 phenolics resulted in quantification of 14 compounds, with quercitrin, gallic and protocatechuic acids as the most dominant. High antioxidant potential of R. canina and a moderate activity of R. arvensis extracts were determined through several assays. Purée of both species and methanol extract of air-dried R. canina hips showed some anti-inflammatory (cyclooxygenase-1 and 12-lipooxygense inhibition potency) activity. Purée of R. canina exerted cytotoxic activity only against the HeLa cell line among several others (HeLa, MCF7, HT-29 and MRC-5). The presented results support traditional use of rose hips and their fruit preserves as food with health and nutritional benefits. PMID:26304428

  11. The effect of grain size on the biocompatibility, cell-materials interface, and mechanical properties of microwave-sintered bioceramics.

    PubMed

    Veljović, Djordje; Colić, Miodrag; Kojić, Vesna; Bogdanović, Gordana; Kojić, Zvezdana; Banjac, Andrijana; Palcevskis, Eriks; Petrović, Rada; Janaćković, Djordje

    2012-11-01

    The effect of decreasing the grain size on the biocompatibility, cell-material interface, and mechanical properties of microwave-sintered monophase hydroxyapatite bioceramics was investigated in this study. A nanosized stoichiometric hydroxyapatite powder was isostatically pressed at high pressure and sintered in a microwave furnace in order to obtain fine grained dense bioceramics. The samples sintered at 1200°C, with a density near the theoretical one, were composed of micron-sized grains, while the grain size decreased to 130 nm on decreasing the sintering temperature to 900°C. This decrease in the grain size certainly led to increases in the fracture toughness by much as 54%. An in vitro investigation of biocompatibility with L929 and human MRC-5 fibroblast cells showed noncytotoxic effects for both types of bioceramics, while the relative cell proliferation rate, cell attachment and metabolic activity of the fibroblasts were improved with decreasing of grain size. An initial in vivo investigation of biocompatibility by the primary cutaneous irritation test showed that both materials exhibited no irritation properties. PMID:22733649

  12. Green synthesis of bacterial mediated anti-proliferative gold nanoparticles: inducing mitotic arrest (G2/M phase) and apoptosis (intrinsic pathway).

    PubMed

    Kumar, C Ganesh; Poornachandra, Y; Chandrasekhar, Cheemalamarri

    2015-11-28

    The physiochemical and biological properties of microbial derived gold nanoparticles have potential applications in various biomedical domains as well as in cancer therapy. We have fabricated anti-proliferative bacterial mediated gold nanoparticles (b-Au NPs) using a culture supernatant of Streptomyces clavuligerus and later characterized them by UV-visible, TEM, DLS, XRD and FT-IR spectroscopic techniques. The capping agent responsible for the nanoparticle formation was characterized based on SDS-PAGE and MALDI-TOF-MS analyses. They were tested for anticancer activity in A549, HeLa and DU145 cell lines. The biocompatibility and non-toxic nature of the nanoparticles were tested on normal human lung cell line (MRC-5). The b-Au NPs induced the cell cycle arrest in G2/M phase and also inhibited the microtubule assembly in DU145 cells. Mechanistic studies, such as ROS, MMP, Cyt-c, GSH, caspases 9, 8 and 3 activation and the Annexin V-FITC staining, along with the above parameters tested provided sufficient evidence that the b-Au NPs induced apoptosis through the intrinsic pathway. The results supported the use of b-Au NPs for future therapeutic application in cancer therapy and other biomedical applications. PMID:26503300

  13. Proteomic profile response of Paracoccidioides lutzii to the antifungal argentilactone

    PubMed Central

    Prado, Renata S.; Bailão, Alexandre M.; Silva, Lívia C.; de Oliveira, Cecília M. A.; Marques, Monique F.; Silva, Luciano P.; Silveira-Lacerda, Elisângela P.; Lima, Aliny P.; Soares, Célia M.; Pereira, Maristela

    2015-01-01

    The dimorphic fungi Paracoccidioides spp. are the etiological agents of paracoccidioidomycosis (PCM), a mycosis of high incidence in Brazil. The toxicity of drug treatment and the emergence of resistant organisms have led to research for new candidates for drugs. In this study, we demonstrate that the natural product argentilactone was not cytotoxic or genotoxic to MRC5 cells at the IC50 concentration to the fungus. We also verified the proteomic profile of Paracoccidioides lutzii after incubation with argentilactone using a label free quantitative proteome nanoUPLC-MSE. The results of this study indicated that the fungus has a global metabolic adaptation in the presence of argentilactone. Enzymes of important pathways, such as glycolysis, the Krebs cycle and the glyoxylate cycle, were repressed, which drove the metabolism to the methylcytrate cycle and beta-oxidation. Proteins involved in cell rescue, defense and stress response were induced. In this study, alternative metabolic pathways adopted by the fungi were elucidated, helping to elucidate the course of action of the compound studied. PMID:26150808

  14. GANRA-5 protects both cultured cells and mice from various radiation types by functioning as a free radical scavenger.

    PubMed

    Pei, H; Chen, W; Hu, W; Zhu, M; Liu, T; Wang, J; Zhou, G

    2014-06-01

    The radio-protective effects of the oxazolone derivative chemical compound 4-(4-methoxy-3-methoxyphenyl-methyl)-2-phenyl- 5(4H)-oxazolone (GANRA-5) against different types of radiation including X-rays, carbon ion beams, microwaves and ultraviolet light (UV) were studied. Cell proliferation/cytotoxicity assay and colony-forming assay were conducted to evaluate the toxicity of GANRA-5. To test its influence on the induction of double-stranded break (DSB) formation and genomic instability, γH2AX focus-forming assay as well as cytokinesis-block micronucleus assay was utilized. Our results indicate that GANRA-5 exhibits low toxicity, while providing high radio-protective effects for MRC-5 cells against different types of radiation. We also found that GANRA-5 acts as a free radical scavenger. Our animal studies provided evidence that GANRA-5 significantly increases the survival rate of mice after X-ray irradiation. Analyses of hemogram, visceral index and detection of superoxide dismutase (SOD) and malondialdehyde (MDA) in the viscera indicate both low toxicity of GANRA-5, combined with its ability to shield radiation risk. In conclusion, our results suggest that GANRA-5 has the potential to be used as a safe and efficient radio-protectant. PMID:24580122

  15. Salvianolic Acid B Attenuates Experimental Pulmonary Fibrosis through Inhibition of the TGF-β Signaling Pathway.

    PubMed

    Liu, Qingmei; Chu, Haiyan; Ma, Yanyun; Wu, Ting; Qian, Feng; Ren, Xian; Tu, Wenzhen; Zhou, Xiaodong; Jin, Li; Wu, Wenyu; Wang, Jiucun

    2016-01-01

    Pulmonary fibrosis is a progressive and fatal disorder. In our previous study, we found that the Yiqihuoxue formula (YQHX), a prescription of Traditional Chinese Medicine, had a curative effect on scleroderma, a typical fibrotic disease. The aim of this study was to determine the key ingredient mediating the therapeutic effects of YQHX and to examine its effect on pulmonary fibrosis, including its mechanism. Luciferase reporter assays showed that the most important anti-fibrotic component of the YQHX was Salviae miltiorrhiza (SM). Experiments performed using a bleomycin-instilled mouse model of pulmonary fibrosis showed that Salvianolic acid B (SAB), the major ingredient of SM, had strong anti-inflammatory and anti-fibrotic effects through its inhibition of inflammatory cell infiltration, alveolar structure disruption, and collagen deposition. Furthermore, SAB suppressed TGF-β-induced myofibroblastic differentiation of MRC-5 fibroblasts and TGF-β-mediated epithelial-to-mesenchymal transition of A549 cells by inhibiting both Smad-dependent signaling and the Smad-independent MAPK pathway. Taken together, our results suggest that SM is the key anti-fibrotic component of the YQHX and that SAB, the major ingredient of SM, alleviates experimental pulmonary fibrosis both in vivo and in vitro by inhibiting the TGF-β signaling pathway. Together, these results suggest that SAB potently inhibits pulmonary fibrosis. PMID:27278104

  16. Self-Styled ZnO Nanostructures Promotes the Cancer Cell Damage and Supresses the Epithelial Phenotype of Glioblastoma.

    PubMed

    Wahab, Rizwan; Kaushik, Neha; Khan, Farheen; Kaushik, Nagendra Kumar; Choi, Eun Ha; Musarrat, Javed; Al-Khedhairy, Abdulaziz A

    2016-01-01

    Extensive researches have been done on the applications of zinc oxide nanoparticles (ZnO-NPs) for the biological purposes. However, the role and toxicity mechanisms of ZnO nanostructures (ZnO-NSts) such as nanoplates (NPls), nanorods (NRs), nanosheets (NSs), nanoflowers (NFs) on cancer cells are not largely known. Present study was focused to investigate the possible mechanisms of apoptosis induced by self-designed ZnO-NSts, prepared at fix pH via solution process and exposed against human T98G gliomas including various cancers and non-malignant embryonic kidney HEK293, MRC5 fibroblast cells. NSts were used for the induction of cell death in malignant human T98G gliomas including various cancers and compared with the non-malignant cells. Notably, NRs were found to induce higher cytotoxicity, inhibitory effects on cancer and normal cells in a dose dependent manner. We also showed that NRs induced cancer cell death through oxidative stress and caspase-dependent pathways. Furthermore, quantitative and qualitative analysis of ZnO-NSts have also been confirmed by statistical analytical parameters such as precision, accuracy, linearity, limits of detection and limit of quantitation. These self-styled NSts could provide new perception in the research of targeted cancer nanotechnology and have potentiality to improve new therapeutic outcomes with poor diagnosis. PMID:26818603

  17. Age related changes in steroid receptors on cultured lung fibroblasts

    SciTech Connect

    Barile, F.A.; Bienkowski, R.S.

    1986-03-05

    The number of high affinity glucocorticoid receptors (Ro) on human fetal lung fibroblasts decreases as the cells age in vitro, and it has been suggested that these cell systems may be useful models of age-related changes in vivo. They examined the relation between change in Ro with in vitro aging and donor age. Confluent monolayers of lung fibroblasts at various population doubling levels (PDL), were incubated with (/sup 3/H)-dexamethasone ((/sup 3/H)Dex) either alone or with excess (.01 mM) Dex. Specific binding was calculated as the difference between radioactivity in cells incubated with and without unlabeled Dex; Scatchard plots were used to analyze the data. Ro, measured as fmol (/sup 3/H)Dex/10/sup 6/ cells, for two lines of human fetal cells (HFL-1 and MRC-5) decreased with increasing age in vitro. However, human newborn (CRL-1485) and adult (CCL-201) cells and fetal rabbit cells (FAB-290), showed increases in Ro with continuous passage. For each cell line, the affinity constant (K/sub d/) did not change significantly with passage. They conclude that the direction of changes in steroid receptor levels on cells aging in vitro is influenced by donor age and species. Caution should be used in applying results obtained from model systems to aging organisms.

  18. Biomarker-free dielectrophoretic sorting of differentiating myoblast multipotent progenitor cells and their membrane analysis by Raman spectroscopy.

    PubMed

    Muratore, Massimo; Srsen, Vlastimil; Waterfall, Martin; Downes, Andrew; Pethig, Ronald

    2012-09-01

    Myoblasts are muscle derived mesenchymal stem cell progenitors that have great potential for use in regenerative medicine, especially for cardiomyogenesis grafts and intracardiac cell transplantation. To utilise such cells for pre-clinical and clinical applications, and especially for personalized medicine, it is essential to generate a synchronised, homogenous, population of cells that display phenotypic and genotypic homogeneity within a population of cells. We demonstrate that the biomarker-free technique of dielectrophoresis (DEP) can be used to discriminate cells between stages of differentiation in the C2C12 myoblast multipotent mouse model. Terminally differentiated myotubes were separated from C2C12 myoblasts to better than 96% purity, a result validated by flow cytometry and Western blotting. To determine the extent to which cell membrane capacitance, rather than cell size, determined the DEP response of a cell, C2C12 myoblasts were co-cultured with GFP-expressing MRC-5 fibroblasts of comparable size distributions (mean diameter ∼10 μm). A DEP sorting efficiency greater than 98% was achieved for these two cell types, a result concluded to arise from the fibroblasts possessing a larger membrane capacitance than the myoblasts. It is currently assumed that differences in membrane capacitance primarily reflect differences in the extent of folding or surface features of the membrane. However, our finding by Raman spectroscopy that the fibroblast membranes contained a smaller proportion of saturated lipids than those of the myoblasts suggests that the membrane chemistry should also be taken into account. PMID:23940503

  19. Development of a Highly Biocompatible Antituberculosis Nanodelivery Formulation Based on Para-Aminosalicylic Acid—Zinc Layered Hydroxide Nanocomposites

    PubMed Central

    Arulselvan, Palanisamy; El Zowalaty, Mohamed Ezzat; Fakurazi, Sharida; Webster, Thomas J.; Geilich, Benjamin; Hussein, Mohd Zobir

    2014-01-01

    Tuberculosis is a lethal epidemic, difficult to control disease, claiming thousands of lives every year. We have developed a nanodelivery formulation based on para-aminosalicylic acid (PAS) and zinc layered hydroxide using zinc nitrate salt as a precursor. The developed formulation has a fourfold higher efficacy of PAS against mycobacterium tuberculosis with a minimum inhibitory concentration (MIC) found to be at 1.40 μg/mL compared to the free drug PAS with a MIC of 5.0 μg/mL. The newly developed formulation was also found active against Gram-positive bacteria, Gram-negative bacteria, and Candida albicans. The formulation was also found to be biocompatible with human normal lung cells MRC-5 and mouse fibroblast cells-3T3. The in vitro release of PAS from the formulation was found to be sustained in a human body simulated phosphate buffer saline (PBS) solution at pH values of 7.4 and 4.8. Most importantly the nanocomposite prepared using zinc nitrate salt was advantageous in terms of yield and free from toxic zinc oxide contamination and had higher biocompatibility compared to one prepared using a zinc oxide precursor. In summary, these promising in vitro results are highly encouraging for the continued investigation of para-aminosalicylic acid and zinc layered hydroxide nanocomposites in vivo and eventual preclinical studies. PMID:25050392

  20. Optimization of Self-Assembled Chitosan/Streptokinase Nanoparticles and Evaluation of Their Cytotoxicity and Thrombolytic Activity.

    PubMed

    Baharifar, Hadi; Tavoosidana, Gholamreza; Karimi, Roya; Bidgoli, Sepideh Arbabi; Ghanbari, Hossein; Faramarzi, Mohammad Ali; Amani, Amir

    2015-12-01

    In this study, the enzyme streptokinase (thrombolysis agent) and chitosan (Cs) nanoparticles were prepared by self-assembly. Using experimental design, chitosan concentration, solution pH and stirring time were studied as independent variables to identify their effects on size, polydispersity index (PDI) and loading efficiency of nanoparticles. Results showed that pH and concentration have a direct effect on size. Additionally, minimum PDI was observed at lowest values of concentration and highest values of stirring time. pH-5.6 was also necessary to obtain the smallest PDI and highest loading efficiency values. The model predicted that to obtain maximum loading efficiency and minimum size along with low PDI, optimum values are 0.5 mg/mL, 5.18 and 30 min for the Cs concentration, solution pH and stirring time, respectively. The corresponding mean ± SD values for experimentally prepared nanoparticles were 43 ± 10%, 526 ± 121 nm, 0.3 ± 0.2, respectively. MTT and euglobulin clot lysis assays on the optimized nanoparticles showed that chitosan/streptokinase nanoparticles have slightly toxic effect on human fetal lung fibroblast cells (Mrc-5), compared with chitosan and streptokinase alone as a control. Also, thrombolytic activity of encapsulated streptokinase in nanoparticles is decreased slightly in comparison with free streptokinase. However, the preparation keeps a good potency for use as a thrombolytic agent in vivo. PMID:26682458

  1. Pyrazine, 2-ethylpyridine, and 3-ethylpyridine are cigarette smoke components that alter the growth of normal and malignant human lung cells, and play a role in multidrug resistance development.

    PubMed

    Liu, Min; Poo, Wak-Kim; Lin, Yu-Ling

    2015-02-01

    Lung cancer is one of the few human diseases for which the primary etiological agent, cigarette smoke (CS), has been described; however, the precise role of individual cigarette smoke toxicant in tumor development and progression remains to be elusive. The purpose of this study was to assess in vitro the effects of previously identified cigarette smoke components, pyrazine, 2-ethylpyridine, and 3-ethylpyridine, on non-tumorigenic (MRC5) and adenocarcinomic (A549) human lung cell lines. Our data showed that the administration of three cigarette smoke components in combination perturbed the proliferation of both normal and adenocarcinomic cells. Study of malignant cells revealed that CS components were cytotoxic at high concentration (10(-6) M) and stimulatory in a dose-dependent manner at lower concentrations (10(-8) M to 10(-10) M). This adverse effect was enhanced when adenocarcinomic cells were maintained in hypoxia resembling intratumoral environment. Furthermore, exposure to pyrazine, 2-ethylpyridine, and 3-ethylpyridine induced oxidative stress in both normal and malignant cells. Finally, assessment of P-gp activity revealed that multidrug resistance was induced in CS component exposed adenocarcinomic lung cells and the induction was augmented in hypoxia. Taken together, pyrazine, 2-ethylpyridine, and 3-ethylpyridine adversely altered both normal and diseased lung cells in vitro and data collected from this study may help lung cancer patients to understand the importance of quitting smoking during lung cancer treatment. PMID:25449333

  2. Gypensapogenin H, a novel dammarane-type triterpene induces cell cycle arrest and apoptosis on prostate cancer cells.

    PubMed

    Zhang, Xiao-Shu; Zhao, Chen; Tang, Wei-zhuo; Wu, Xiao-jun; Zhao, Yu-Qing

    2015-12-01

    Gypensapogenin H (GH) is a novel dammarane-type triterpenes obtained from hydrolyzate of total saponins from Gynostemma pentaphyllum and its anti-tumor activity has been studied in previous work. In this study, we report the effects of this compound on human prostate cancer cells (DU145 and 22RV-1). It significantly inhibited proliferation, decreased survival, led to G1 cell cycle arrest and induced apoptosis in both cell lines, while having lesser effect on the growth of normal human gastric mucosa cells (GES-1), embryonic kidney cells (HEK293) and lung fibroblast cells (MRC5). Consistent with these phenotypes, we observed decreased expression of the cell cycle-related proteins cyclinD1, and CDK4, and increased expression of p21 in GH-treated cells. Besides, the anti-apoptotic Bcl-2 protein decreased in a dose-dependent manner, while Bax, cleaved caspase-3 and -9 increased upon GH treatment. Taken together, these results indicated GH exerted promising anticancer activity, and may represent a potential agent for the treatment of prostate cancer. PMID:26514740

  3. Cytotoxic components of Pereskia bleo (Kunth) DC. (Cactaceae) leaves.

    PubMed

    Malek, Sri Nurestri Abdul; Shin, Sim Kae; Wahab, Norhanom Abdul; Yaacob, Hashim

    2009-01-01

    Dihydroactinidiolide (1) and a mixture of sterols [campesterol (2), stigmasterol (3) and beta-sitosterol (4)], together with the previously isolated individual compounds beta-sitosterol (4), 2,4-di-tert-butylphenol (5), alpha-tocopherol (6), phytol (7) were isolated from the active ethyl acetate fraction of Pereskia bleo (Kunth) DC. (Cactaceae) leaves. Cytotoxic activities of the above mentioned compounds against five human carcinoma cell lines, namely the human nasopharyngeal epidermoid carcinoma cell line (KB), human cervical carcinoma cell line (CasKi), human colon carcinoma cell line (HCT 116), human hormone-dependent breast carcinoma cell line (MCF7) and human lung carcinoma cell line (A549); and non-cancer human fibroblast cell line (MRC-5) were investigated. Compound 5 possessed very remarkable cytotoxic activity against KB cells, with an IC(50 )value of 0.81microg/mL. This is the first report on the cytotoxic activities of the compounds isolated from Pereskia bleo. PMID:19471192

  4. Induction of Apoptosis of 2,4′,6-Trihydroxybenzophenone in HT-29 Colon Carcinoma Cell Line

    PubMed Central

    Lay, Ma Ma; Karsani, Saiful Anuar

    2014-01-01

    2,4′,6-Trihydroxy-4-methoxybenzophenone was isolated from the ethyl acetate fraction of Phaleria macrocarpa (Scheff.) Boerl. fruits. It was found to inhibit cell proliferation in HT-29 human colon carcinoma cell line but caused little damage to WRL-68 normal human liver and MRC-5 normal human fibroblast lung cell lines. The compound was found to sharply affect the viability of HT-29 cells in a dose- and time-dependent manner. HT-29 cells treated with the compound showed morphological changes under microscopic examination such as cell shrinkage, membrane blebbing, DNA fragmentation, and the occurrence of apoptotic nuclei. The percentage of early apoptotic, late apoptotic, and dead or necrotic cells was determined by flow cytometry using annexin V-FTIC/PI staining. In addition, flow cytometry showed that, when the HT-29 cells were treated with 115 µM of the compound, it resulted in G0/G1 phase arrest in a time-dependent manner. Western blot revealed an upregulation of PUMA, Bak, Bcl-2, and Mcl-1 proteins suggesting that the compound induced apoptosis in HT-29 cells by regulating these proteins. PMID:24579081

  5. Differential adhesiveness between blood and marrow leukemic cells having similar pattern of VLA adhesion molecule expression.

    PubMed

    Thomas, X; Anglaret, B; Bailly, M; Maritaz, O; Magaud, J P; Archimbaud, E

    1998-10-01

    Functional adhesion of blood and marrow leukemic cells from 14 acute myeloid leukemia patients presenting with hyperleukocytosis was evaluated by performing cytoadhesion assays on purified (extracellular matrix proteins) and non-purified supports (MRC5 fibroblastic cell line). Results, in 30-min chromium release assay, show a mean +/- S.D. adhesion to fibronectin, collagen, and laminin respectively of 30 +/- 17%, 20 +/- 13%, 25 +/- 17% for blood leukemic cells and 18 +/- 11%, 11 +/- 10%, 11 +/- 8% for marrow leukemic cells. These differences between blood and marrow cells were statistically significant (respectively P = 0.005, P = 0.01 and P = 0.002), while no difference was noted regarding adhesion to non-purified supports. The higher adhesion of blood blast cells to purified supports was observed regardless of CD34 expression. No significant difference was observed in the expression of cell surface VLA-molecules (CD29, CD49b, CD49d, CD49e, CD49f) between blood and marrow blast cells. The addition of GM-CSF or G-CSF induced increased adhesion of marrow blasts and decreased adhesion of blood blasts leading to a loss of the difference between blood and marrow cells. In a 60-min chromium release assay, marrow blasts adhered even more than blood leukemic cells to fibronectin. In contrast, marrow blasts from 'aleukemic' acute myeloid leukemia patients did not show any modification regarding their adhesion to extracellular matrix proteins when co-cultured with growth factors. PMID:9766756

  6. Nutraceutical properties of the methanolic extract of edible mushroom Cantharellus cibarius (Fries): primary mechanisms.

    PubMed

    Kozarski, Maja; Klaus, Anita; Vunduk, Jovana; Zizak, Zeljko; Niksic, Miomir; Jakovljevic, Dragica; Vrvic, Miroslav M; Van Griensven, Leo J L D

    2015-06-01

    The methanolic extract of the wild edible mushroom Cantharellus cibarius Fr. (chanterelle) was analyzed for in vitro antioxidative, cytotoxic, antihypertensive and antibacterial activities. Various primary and secondary metabolites were found. Phenols were the major antioxidant components found in the extract (49.8 mg g(-1)), followed by flavonoids, whose content was approximately 86% of the total phenol content. Antioxidant activity, measured by four different methods, was high for inhibition of lipid peroxidation (EC50 = 1.21 mg mL(-1)) and chelating ability (EC50 = 0.64 mg mL(-1)). The antioxidant activity of the C. cibarius methanol extract was achieved through chelating iron compared to hydrogen atom and/or electron transfer. The extract showed good selectivity in cytotoxicity on human cervix adenocarcinoma HeLa, breast carcinoma MDA-MB-453 and human myelogenous leukemia K562, compared to normal control human fetal lung fibroblasts MRC-5 and human lung bronchial epithelial cells BEAS-2B. The extract had inhibitory activity against angiotensin converting I enzyme (ACE) (IC50 = 0.063 mg mL(-1)). The extract revealed selective antimicrobial activity against Gram-positive bacteria with the highest potential against E. faecalis. The medicinal and health benefits, observed in wild C. cibarius mushroom, seem an additional reason for its traditional use as a popular delicacy food. PMID:25943486

  7. Fragment-based screening in tandem with phenotypic screening provides novel antiparasitic hits.

    PubMed

    Blaazer, Antoni R; Orrling, Kristina M; Shanmugham, Anitha; Jansen, Chimed; Maes, Louis; Edink, Ewald; Sterk, Geert Jan; Siderius, Marco; England, Paul; Bailey, David; de Esch, Iwan J P; Leurs, Rob

    2015-01-01

    Methods to discover biologically active small molecules include target-based and phenotypic screening approaches. One of the main difficulties in drug discovery is elucidating and exploiting the relationship between drug activity at the protein target and disease modification, a phenotypic endpoint. Fragment-based drug discovery is a target-based approach that typically involves the screening of a relatively small number of fragment-like (molecular weight <300) molecules that efficiently cover chemical space. Here, we report a fragment screening on TbrPDEB1, an essential cyclic nucleotide phosphodiesterase (PDE) from Trypanosoma brucei, and human PDE4D, an off-target, in a workflow in which fragment hits and a series of close analogs are subsequently screened for antiparasitic activity in a phenotypic panel. The phenotypic panel contained T. brucei, Trypanosoma cruzi, Leishmania infantum, and Plasmodium falciparum, the causative agents of human African trypanosomiasis (sleeping sickness), Chagas disease, leishmaniasis, and malaria, respectively, as well as MRC-5 human lung cells. This hybrid screening workflow has resulted in the discovery of various benzhydryl ethers with antiprotozoal activity and low toxicity, representing interesting starting points for further antiparasitic optimization. PMID:25231971

  8. Inhibition of Plasminogen Activator Inhibitor-1 Attenuates Transforming Growth Factor-β-Dependent Epithelial Mesenchymal Transition and Differentiation of Fibroblasts to Myofibroblasts

    PubMed Central

    Omori, Keitaro; Hattori, Noboru; Senoo, Tadashi; Takayama, Yusuke; Masuda, Takeshi; Nakashima, Taku; Iwamoto, Hiroshi; Fujitaka, Kazunori; Hamada, Hironobu; Kohno, Nobuoki

    2016-01-01

    Transforming growth factor-β (TGF-β) is central during the pathogenesis of pulmonary fibrosis, in which the plasminogen activator inhibitor-1 (PAI-1) also has an established role. TGF-β is also known to be the strongest inducer of PAI-1. To investigate the link between PAI-1 and TGF-β in fibrotic processes, we evaluated the effect of SK-216, a PAI-1-specific inhibitor, in TGF-β-dependent epithelial-mesenchymal transition (EMT) and fibroblast to myofibroblast differentiation. In human alveolar epithelial A549 cells, treatment with TGF-β induced EMT, whereas co-treatment with SK-216 attenuated the occurrence of EMT. The inhibition of TGF-β-induced EMT by SK-216 was also confirmed in the experiment using murine epithelial LA-4 cells. Blocking EMT by SK-216 inhibited TGF-β-induced endogenous production of PAI-1 and TGF-β in A549 cells as well. These effects of SK-216 were not likely mediated by suppressing either Smad or ERK pathways. Using human lung fibroblast MRC-5 cells, we demonstrated that SK-216 inhibited TGF-β-dependent differentiation of fibroblasts to myofibroblasts. We also observed this inhibition by SK-216 in human primary lung fibroblasts. Following these in vitro results, we tested oral administration of SK-216 into mice injected intratracheally with bleomycin. We found that SK-216 reduced the degree of bleomycin-induced pulmonary fibrosis in mice. Although the precise mechanisms underlying the link between TGF-β and PAI-1 regarding fibrotic process were not determined, PAI-1 seems to act as a potent downstream effector on the pro-fibrotic property of TGF-β. In addition, inhibition of PAI-1 activity by a PAI-1 inhibitor exerts an antifibrotic effect even in vivo. These data suggest that targeting PAI-1 as a downstream effector of TGF-β could be a promising therapeutic strategy for pulmonary fibrosis. PMID:26859294

  9. An echovirus 18-associated outbreak of aseptic meningitis in Taiwan: epidemiology and diagnostic and genetic aspects.

    PubMed

    Tsai, Huey-Pin; Huang, Sheng-Wen; Wu, Feng-Ling; Kuo, Pin-Hwa; Wang, Shih-Min; Liu, Ching-Chuan; Su, Ih-Jen; Wang, Jen-Ren

    2011-09-01

    In 2006, an outbreak of aseptic meningitis was noted in Taiwan. From January to October 2006, a total of 3283 specimens collected from patients with viral infection, including 173 cerebrospinal fluid (CSF) samples, were examined for virus isolation and identification. Overall, 339 enterovirus (EV)-positive cases were identified by virus culture: echovirus 18 (E18) formed the majority (27.4 %, 93 cases), followed by coxsackievirus B2 (13.8 %, 47 cases) and coxsackievirus A2 (10.8 %, 37 cases). The manifestations of the 93 E18 cases were aseptic meningitis (44.1 %), viral exanthema (23.6 %), acute tonsillitis (15.1 %), acute pharyngitis (14.0 %), acute gastritis (11.8 %), herpangina (7.5 %) and bronchopneumonia (5.3 %). Of 107 E18 isolates identified, 100, 62.5 and 19 % were obtained following culture in RD, MRC-5 and A549 cells, respectively. E18 was identified most frequently from throat swabs (67.2 %) and less frequently from stool samples (15.9 %) and CSF (16.8 %). The detection rate of E18 was 78.2 % from CSF, 50 % from stool samples and 22.9 % from throat swabs. Phylogenetic relationships among the E18 strains were examined. Analysis of the partial VP1 gene showed 3.7-23.8 % variation in sequence compared with sequences from GenBank and, notably, the amino acid change V152S was detected in a protruding loop within the VP1 protein. These results indicate that a genetic variant of E18 was circulating and caused an outbreak of aseptic meningitis in Taiwan in 2006. PMID:21546563

  10. Gastroprotective effect and cytotoxicity of natural and semisynthetic labdane diterpenes from Araucaria araucana resin.

    PubMed

    Schmeda-Hirschmann, Guillermo; Astudillo, Luis; Sepúlveda, Beatriz; Rodríguez, Jaime A; Theoduloz, Cristina; Yáñez, Tania; Palenzuela, José Antonio

    2005-01-01

    The resin of the tree Araucaria araucana (Araucariaceae) is used by the Mapuche Amerindians in southern Chile and Argentina to treat ulcers and has been shown to display a gastroprotective effect in animal models. A study was undertaken to isolate, identify and assess the gastroprotective effect of the resin constituents and its semisynthetic derivatives as well as to evaluate the cytotoxicity of the products in cell cultures. Eleven diterpenes (ten labdane and a pimarane) were isolated from a resin sample collected in Chile. The labdane derivatives 15-acetoxylabd-8(17)-en-19-ol as well as 15,19-diacetoxylabd-8(17)-en are reported for the first time as natural products. Six diterpenes previously described from other plant sources are reported for the first time for the A. araucana resin. The structure of all compounds was elucidated by spectroscopic means. Some 24 diterpenes isolated/prepared in amounts over 10 mg were evaluated for gastroprotective effects in the ethanol/HCl-induced ulcer model in mice at 100 mg/kg. The highest gastroprotective activities were provided by 15-hydroxyimbricatolal, 15-acetoxyimbricatolal, 15-acetoxylabd-8(17)-en-19-oic acid methyl ester and 15-acetoxy-19-labdanoic acid, all of them being as active as the reference drug lansoprazole at 20 mg/kg. The cytotoxicity of 30 diterpenes as well as lansoprazole was assessed towards human lung fibroblasts (MRC-5) and 26 compounds were evaluated on the human gastric epithelial cell line AGS by means of the neutral red uptake assay. A concentration-dependent cell viability inhibition was found with IC50 values ranging from 27 up to > 1000 microM. The relationship between the cytotoxicity data and lipophilicity of the products is also discussed. PMID:16163822

  11. Gastroprotective effect and cytotoxicity of labdeneamides with amino acids.

    PubMed

    Schmeda-Hirschmann, Guillermo; Rodríguez, Jaime A; Theoduloz, Cristina; Valderrama, Jaime A

    2011-03-01

    Semisynthetic aromatic amides from ARAUCARIA ARAUCANA diterpene acids have been shown to display a relevant gastroprotective effect with low cytotoxicity. The aim of this work was to assess the gastroprotective effect of amino acid amides from imbricatolic acid and its 8(9)-en isomer in the ethanol/HCl-induced gastric lesions model in mice as well as to determine the cytotoxicity of the obtained compounds on the following human cell lines: normal lung fibroblasts (MRC-5), gastric adenocarcinoma (AGS), and liver hepatocellular carcinoma (Hep G2). The diterpenes 15-acetoxyimbricatolic acid, its 8(9)-en isomer, 15-hydroxyimbricatolic acid, and the 8(9)-en derivative, bearing a COOH function at C-19, were used as starting compounds. New amides with C-protected amino acids were prepared. The study reports the effect of a single oral administration of either compound 50 min before the induction of gastric lesions by ethanol/HCl. Some 20 amino acid monoamides were obtained. Dose-response experiments on the glycyl derivatives showed that at a single oral dose of 100 mg/kg, the compounds presented an effect comparable to the reference drug lansoprazole at 20 mg/kg and at 50 mg/kg reduced gastric lesions by about 50%. All derivatives obtained in amounts > 30 mg were compared at a single oral dose of 50 mg/kg. The best gastroprotective effect was observed for the exomethylene derivatives bearing a valine residue at C-19 either with an acetoxy or free hydroxy group at C-15. The tryptophanyl derivative from the acetate belonging to the 8,9-en series presented selective cytotoxicity against hepatocytes. The glycyl amide of 15-acetoxyimbricatolic acid was the most cytotoxic and less selective compound with IC₅₀ values between 47 and 103 µM for the studied cell lines. This is the first report on the obtention of semisynthetic amino acid amides from labdane diterpenes. PMID:20862639

  12. Metastasized lung cancer suppression by Morinda citrifolia (Noni) leaf compared to Erlotinib via anti-inflammatory, endogenous antioxidant responses and apoptotic gene activation.

    PubMed

    Lim, Swee-Ling; Mustapha, Noordin M; Goh, Yong-Meng; Bakar, Nurul Ain Abu; Mohamed, Suhaila

    2016-05-01

    Metastasized lung and liver cancers cause over 2 million deaths annually, and are amongst the top killer cancers worldwide. Morinda citrifolia (Noni) leaves are traditionally consumed as vegetables in the tropics. The macro and micro effects of M. citrifolia (Noni) leaves on metastasized lung cancer development in vitro and in vivo were compared with the FDA-approved anti-cancer drug Erlotinib. The extract inhibited the proliferation and induced apoptosis in A549 cells (IC50 = 23.47 μg/mL) and mouse Lewis (LL2) lung carcinoma cells (IC50 = 5.50 μg/mL) in vitro, arrested cancer cell cycle at G0/G1 phases and significantly increased caspase-3/-8 without changing caspase-9 levels. The extract showed no toxicity on normal MRC5 lung cells. Non-small-cell lung cancer (NSCLC) A549-induced BALB/c mice were fed with 150 and 300 mg/kg M. citrifolia leaf extract and compared with Erlotinib (50 mg/kg body weight) for 21 days. It significantly increased the pro-apoptotic TRP53 genes, downregulated the pro-tumourigenesis genes (BIRC5, JAK2/STAT3/STAT5A) in the mice tumours, significantly increased the anti-inflammatory IL4, IL10 and NR3C1 expression in the metastasized lung and hepatic cancer tissues and enhanced the NFE2L2-dependent antioxidant responses against oxidative injuries. The extract elevated serum neutrophils and reduced the red blood cells, haemoglobin, corpuscular volume and cell haemoglobin concentration in the lung cancer-induced mammal. It suppressed inflammation and oedema, and upregulated the endogenous antioxidant responses and apoptotic genes to suppress the cancer. The 300 mg/kg extract was more effective than the 50 mg/kg Erlotinib for most of the parameters measured. PMID:27106908

  13. Dual Anti-Metastatic and Anti-Proliferative Activity Assessment of Two Probiotics on HeLa and HT-29 Cell Lines

    PubMed Central

    Nouri, Zahra; Karami, Fatemeh; Neyazi, Nadia; Modarressi, Mohammad Hossein; Karimi, Roya; Khorramizadeh, Mohammad Reza; Taheri, Behrooz; Motevaseli, Elahe

    2016-01-01

    Objective Lactobacilli are a group of probiotics with beneficial effects on prevention of cancer. However, there is scant data in relation with the impacts of probiotics in late-stage cancer progration, especially metastasis. The present original work was aimed to evaluate the anti-metastatic and anti-proliferative activity of lactobacillus rhamnosus supernatant (LRS) and lactobacillus crispatus supernatant (LCS) on the human cervical and colon adenocarcinoma cell lines (HeLa and HT-29, respectively). Materials and Methods In this experimental study, the anti-proliferative activities of LRS and LCS were determined through MTT assay. MRC-5 was used as a normal cell line. Expression analysis of CASP3, MMP2, MMP9, TIMP1 and TIMP2 genes was performed by quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR), following the cell synchronization. Results Supernatants of these two lactobacilli had cytotoxic effect on HeLa, however LRS treatment was only effective on HT-29 cell line. In addition, LRS had no side-effect on normal cells. It was shown that CASP3 gene expression has been reduced after treatment with supernatants of two studied lactobacilli. According to our study, LRS and LCS are efficacious in the prevention of metastasis potency in HeLa cells with decreased expression of MMP2, MMP9 and increased expression of their inhibitors. In the case of HT-29 cells, only LRS showed this effect. Conclusion Herein, we have demonstrated two probiotics which have anti-metastatic effects on malignant cells and they can be administrated to postpone late-stage of cancer disease. LRS and LCS are effective on HeLa cell lines while only the effect of LRS is significant on HT-29, through cytotoxic and anti-metastatic mechanisms. Further assessments are required to evaluate our results on the other cancer cell lines, in advance to use these probiotics in other extensive trial studies. PMID:27551673

  14. Enterovirus 71 inhibits cellular type I interferon signaling by downregulating JAK1 protein expression.

    PubMed

    Liu, Ying; Zhang, Zhe; Zhao, Xinghui; Yu, Rui; Zhang, Xiaopeng; Wu, Shipo; Liu, Ju; Chi, Xiangyang; Song, Xiaohong; Fu, Ling; Yu, Yingqun; Hou, Lihua; Chen, Wei

    2014-08-01

    Enterovirus 71 (EV71) infection can cause severe disease and lead to death in children. Recurring outbreaks of EV71 have been reported in several countries. Interferons (IFNs) have been used for decades to treat several types of viral infection, but have a limited ability to inhibit EV71 replication. Herein, we intend to investigate the mechanisms by which EV71 inhibits the cellular type I IFN response. In this study, MRC-5 (human embryonic lung fibroblast) or RD (human rhabdomyosarcoma) cells were infected with EV71, and then treated with or without IFN-α2b. Cells were harvested and analyzed by flow cytometry to determine the level of IFNAR1. Cell lysis were prepared to detect the levels of STAT1, STAT2, phosphorylated STAT1, phosphorylated STAT2, IFNAR1, JAK1, and TYK2 by Western blotting. The phosphorylation of STAT1 and STAT2 induced by IFN were inhibited without significant downregulation of IFNAR1 in EV71-infected cells. The EV71-induced suppression of STAT1 and STAT2 phosphorylation was not rescued by the protein tyrosine phosphatases inhibitor, and was independent of suppressor of cytokine signaling protein 1/3 levels. The phosphorylation of JAK1 and TYK2 were inhibited accompanied by EV71-induced downregulation of JAK1, which occurred at a post-transcriptional level and was proteasome independent. JAK1 expression did not decrease, and IFN-α-stimulated STAT1 and STAT2 phosphorylation were not blocked in HEK293T cells overexpressing the EV71 viral protein 2A or 3C. This study demonstrates that EV71 inhibits the cellular type I IFN antiviral pathway by downregulating JAK1, while the expression of IFNAR1 does not significantly alter in EV71-infected cells. Additionally, the EV71 viral proteins 2A and 3C do not act as antagonists of cellular type I IFN signaling. PMID:24905060

  15. Characterization of the replication timing program of 6 human model cell lines.

    PubMed

    Hadjadj, Djihad; Denecker, Thomas; Maric, Chrystelle; Fauchereau, Fabien; Baldacci, Giuseppe; Cadoret, Jean-Charles

    2016-09-01

    During the S-phase, the DNA replication process is finely orchestrated and regulated by two programs: the spatial program that determines where replication will start in the genome (Cadoret et al. (2008 Oct 14), Cayrou et al. (2011 Sep), Picard et al. (2014 May 1) [1], [2], [3]), and the temporal program that determines when during the S phase different parts of the genome are replicated and when origins are activated. The temporal program is so well conserved for each cell type from independent individuals [4] that it is possible to identify a cell type from an unknown sample just by determining its replication timing program. Moreover, replicative domains are strongly correlated with the partition of the genome into topological domains (determined by the Hi-C method, Lieberman-Aiden et al. (2009 Oct 9), Pope et al. (2014 Nov 20) [5], [6]). On the one hand, replicative areas are well defined and participate in shaping the spatial organization of the genome for a given cell type. On the other hand, studies on the timing program during cell differentiation showed a certain plasticity of this program according to the stage of cell differentiation Hiratani et al. (2008 Oct 7, 2010 Feb) [7], [8]. Domains where a replication timing change was observed went through a nuclear re-localization. Thus the temporal program of replication can be considered as an epigenetic mark Hiratani and Gilbert (2009 Feb 16) [9]. We present the genomic data of replication timing in 6 human model cell lines: U2OS (GSM2111308), RKO (GSM2111309), HEK 293T (GSM2111310), HeLa (GSM2111311), MRC5-SV (GSM2111312) and K562 (GSM2111313). A short comparative analysis was performed that allowed us to define regions common to the 6 cell lines. These replication timing data can be taken into account when performing studies that use these model cell lines. PMID:27508120

  16. Iodine catalyzed simple and efficient synthesis of antiproliferative 2-pyridones.

    PubMed

    Buduma, Komuraiah; Chinde, Srinivas; Arigari, Niranjana Kumar; Grover, Paramjit; Srinivas, K V N S; Kotesh Kumar, J

    2016-05-01

    A simple and efficient method for the selective synthesis of 2-pyrdones from 4H-pyrans using iodine as catalyst and ethanol as solvent was developed. The present method is equally effective for both aromatic and hetero aromatic ring containing 4H-pyrans. The compatibility with various functional groups, mild reaction conditions, high yields and application of inexpensive, readily and easily available iodine as catalyst and formation of 2-pyridones as major products are the advantages of the present procedure. In vitro antiproliferative activity of the final synthesized compounds was evaluated with four different human cancer cell lines (Lung adenocarcinoma-A549, Hepatocarcinoma-HepG2, Breast carcinoma-MCF-7 and Ovarian carcinoma-SKOV3) and normal human lung fibroblast cell line (MRC-5). Compounds 2b showed better inhibition against MCF-7, HepG2 and A549 cell lines (IC50 8.00 ± 0.11, 11.93 ± 0.01 and 15.85 ± 0.04 μM, respectively) as compared with doxorubicin and also 2e showed moderate inhibition against MCF-7, HepG2 (IC50 9.32 ± 0.21 and 20.22 ± 0.01 μM, respectively, cell lines, respectively) as compared with doxorubicin. As many clinically used antiproliferative agents induce apoptosis in cancer cells hence, the 2-pyridone analogues were also tested for their ability to induce apoptosis in MCF-7 cells using the caspases-3 and -9 assays. PMID:27036521

  17. Proteinase-producing halophilic lactic acid bacteria isolated from fish sauce fermentation and their ability to produce volatile compounds.

    PubMed

    Udomsil, Natteewan; Rodtong, Sureelak; Tanasupawat, Somboon; Yongsawatdigul, Jirawat

    2010-07-15

    Halophilic lactic acid bacteria were isolated from fish sauce mashes fermented at 1 to 12 months. Seven out of sixty-four isolates were selected according to their proteolytic activity and growth at 25% NaCl for characterization and investigation of volatile compound production. All selected isolates were Gram-positive cocci with pairs/tetrads and grew at 0-25% NaCl, pH 4.5-9.0. Results of 16S rRNA gene sequence analysis showed 99% homology to Tetragenococcus halophilus ATCC 33315. The restriction fragment length polymorphism (RFLP) patterns of all isolates were also similar to those of T. halophilus ATCC 33315. These isolates were, thus, identified as T. halophilus. All isolates hydrolyzed fish protein in the medium containing 25% NaCl. Intracellular aminopeptidase of 7 isolates exhibited the highest activity of 2.85-3.67 U/ml toward Ala-p-nitroanilide (Ala-pNA). T.halophilus strains MS33 and M11 showed the highest alanyl aminopeptidase activity (P<0.05), and produced histamine in mGYP broth containing 5 and 25% NaCl in the level of 6.62-22.55 and 13.14-20.39 mg/100ml, respectively. Predominant volatile compounds of fish broth containing 25% NaCl inoculated with T. halophilus MS33 and MRC5-5-2 were 1-propanol, 2-methylpropanal, and benzaldehyde, corresponding to major volatile compounds in fish sauce. T.halophilus appeared to play an important role in volatile compound formation during fish sauce fermentation. PMID:20541276

  18. Chemical Composition, Antimicrobial and Cytotoxic Activity of Heracleum verticillatum Pančić and H. ternatum Velen. (Apiaceae) Essential Oils.

    PubMed

    Ušjak, Ljuboš J; Petrović, Silvana D; Drobac, Milica M; Soković, Marina D; Stanojković, Tatjana P; Ćirić, Ana D; Grozdanić, Naða Ð; Niketić, Marjan S

    2016-04-01

    In this work, the chemical composition, antimicrobial and cytotoxic activity of Heracleum verticillatum Pančić and H. ternatum Velen. root, leaf, and fruit essential oils were investigated. The composition was analyzed by GC and GC/MS. Heracleum verticillatum and H. ternatum root oils were dominated by monoterpenes, mostly β-pinene (23.5% and 47.3%, respectively). Heracleum verticillatum leaf oil was characterized by monoterpenes, mainly limonene (20.3%), and sesquiterpenes, mostly (E)-caryophyllene (19.1%), while H. ternatum leaf oil by the high percentage of phenylpropanoids, with (Z)-isoelemicin (35.1%) being dominant constituent. Both fruit oils contained the majority of aliphatic esters, mostly octyl acetate (42.3% in H. verticillatum oil and 49.0% in H. ternatum oil). The antimicrobial activity of the oils was determined by microdilution method against eight bacterial and eight fungal strains. The strongest effect was exhibited by H. verticillatum root oil, particularly against Staphylococcus aureus, Salmonella typhimurium (MICs = 0.14 mg/ml, MBCs = 0.28 mg/ml), and Trichoderma viride (MIC = 0.05 mg/ml, MFC = 0.11 mg/ml). Cytotoxic effect was determined by MTT test against malignant HeLa, LS174, and A549 cells (IC50  = 5.9 - 146.0 μg/ml), and against normal MRC-5 cells (IC50  > 120.1 μg/ml). The best effect was exhibited by H. verticillatum root oil on A549 cells (IC50  = 5.9 μg/ml), and H. ternatum root oil against LS174 cells (IC50  = 6.7 μg/ml). PMID:26991469

  19. Radiofrequency (microwave) radiation exposure of mammalian cells during UV-induced DNA repair synthesis

    SciTech Connect

    Meltz, M.L.; Walker, K.A.; Erwin, D.N.

    1987-05-01

    The effect of continuous-wave (CW) and pulsed-wave (PW) radiofrequency radiation (RFR) in the microwave range on UV-induced DNA repair has been investigated in MRC-5 normal human diploid fibroblasts. RFR exposure at power densities of 1 (or 5) and 10 mW/cm2 gave a maximum specific absorption rate (SAR) (at 10 mW/cm2) of 0.39 +/- 0.15 W/kg for 350 MHz RFR, 4.5 +/- 3.0 W/kg for 850 MHz RFR, and 2.7 +/- 1.6 W/kg for 1.2 GHz RFR. RFR exposures for 1 to 3 h at 37 degrees C, in either continuous-wave or pulsed-wave modes, had no effect on the rate of repair replication label incorporated into preexisting UV-damaged DNA. RFR exposures (PW), with a constant medium temperature of 39 degrees C at 350 and 850 MHz during the repair period after UV damage, also had no effect. Assay for induction of repair synthesis by RFR exposure alone in non-UV irradiated cells was negative for the 350-, 850-, and 1200-MHz CW and PW RFR at 37 degrees C and the 350- and 850-MHz PW RFR at 39 degrees C. RFR does not induce DNA repair under these exposure conditions. In preliminary experiments--with the tissue culture medium maintained at 39 degrees C and RFR exposures (PW) at the frequencies of 350, 850, and 1200 MHz--no effect on incorporation of (/sup 3/H)thymidine into DNA undergoing semiconservative synthesis was observed.

  20. The G-quadruplex-stabilising agent RHPS4 induces telomeric dysfunction and enhances radiosensitivity in glioblastoma cells.

    PubMed

    Berardinelli, F; Siteni, S; Tanzarella, C; Stevens, M F; Sgura, A; Antoccia, A

    2015-01-01

    G-quadruplex (G4) interacting agents are a class of ligands that can bind to and stabilise secondary structures located in genomic G-rich regions such as telomeres. Stabilisation of G4 leads to telomere architecture disruption with a consequent detrimental effect on cell proliferation, which makes these agents good candidates for chemotherapeutic purposes. RHPS4 is one of the most effective and well-studied G4 ligands with a very high specificity for telomeric G4. In this work, we tested the in vitro efficacy of RHPS4 in astrocytoma cell lines, and we evaluated whether RHPS4 can act as a radiosensitising agent by destabilising telomeres. In the first part of the study, the response to RHPS4 was investigated in four human astrocytoma cell lines (U251MG, U87MG, T67 and T70) and in two normal primary fibroblast strains (AG01522 and MRC5). Cell growth reduction, histone H2AX phosphorylation and telomere-induced dysfunctional foci (TIF) formation were markedly higher in astrocytoma cells than in normal fibroblasts, despite the absence of telomere shortening. In the second part of the study, the combined effect of submicromolar concentrations of RHPS4 and X-rays was assessed in the U251MG glioblastoma radioresistant cell line. Long-term growth curves, cell cycle analysis and cell survival experiments, clearly showed the synergistic effect of the combined treatment. Interestingly the effect was greater in cells bearing a higher number of dysfunctional telomeres. DNA double-strand breaks rejoining after irradiation revealed delayed repair kinetics in cells pre-treated with the drug and a synergistic increase in chromosome-type exchanges and telomeric fusions. These findings provide the first evidence that exposure to RHPS4 radiosensitizes astrocytoma cells, suggesting the potential for future therapeutic applications. PMID:25467559

  1. Salicylate activates AMPK and synergizes with metformin to reduce the survival of prostate and lung cancer cells ex vivo through inhibition of de novo lipogenesis.

    PubMed

    O'Brien, Andrew J; Villani, Linda A; Broadfield, Lindsay A; Houde, Vanessa P; Galic, Sandra; Blandino, Giovanni; Kemp, Bruce E; Tsakiridis, Theodoros; Muti, Paola; Steinberg, Gregory R

    2015-07-15

    Aspirin, the pro-drug of salicylate, is associated with reduced incidence of death from cancers of the colon, lung and prostate and is commonly prescribed in combination with metformin in individuals with type 2 diabetes. Salicylate activates the AMP-activated protein kinase (AMPK) by binding at the A-769662 drug binding site on the AMPK β1-subunit, a mechanism that is distinct from metformin which disrupts the adenylate charge of the cell. A hallmark of many cancers is high rates of fatty acid synthesis and AMPK inhibits this pathway through phosphorylation of acetyl-CoA carboxylase (ACC). It is currently unknown whether targeting the AMPK-ACC-lipogenic pathway using salicylate and/or metformin may be effective for inhibiting cancer cell survival. Salicylate suppresses clonogenic survival of prostate and lung cancer cells at therapeutic concentrations achievable following the ingestion of aspirin (<1.0 mM); effects not observed in prostate (PNT1A) and lung (MRC-5) epithelial cell lines. Salicylate concentrations of 1 mM increased the phosphorylation of ACC and suppressed de novo lipogenesis and these effects were enhanced with the addition of clinical concentrations of metformin (100 μM) and eliminated in mouse embryonic fibroblasts (MEFs) deficient in AMPK β1. Supplementation of media with fatty acids and/or cholesterol reverses the suppressive effects of salicylate and metformin on cell survival indicating the inhibition of de novo lipogenesis is probably important. Pre-clinical studies evaluating the use of salicylate based drugs alone and in combination with metformin to inhibit de novo lipogenesis and the survival of prostate and lung cancers are warranted. PMID:25940306

  2. Discovery of indeno[1,2-b]quinoxaline derivatives as potential anticancer agents.

    PubMed

    Tseng, Chih-Hua; Chen, You-Ren; Tzeng, Cherng-Chyi; Liu, Wangta; Chou, Chon-Kit; Chiu, Chien-Chih; Chen, Yeh-Long

    2016-01-27

    We have synthesized certain indeno[1,2-b]quinoxaline derivatives for antiproliferative evaluation. Among them, 11-{[3-(dimethylamino)propoxy]imino}-N-[3-(dimethylamino) propyl]-11H-indeno[1,2-b]quinoxaline-6-carboxamide (10a) was active against the growth of MDA-MB231, PC-3, and Huh-7 with IC50 values of 0.87 (selectivity index, SI = 36.22), 0.82 (SI = 38.43), and 0.64 μM (SI = 49.23) respectively. Compound 10a was inactive against the growth of normal human fetal lung fibroblast cell line (MRC-5) with an IC50 value of 31.51 μM. Its analogs, 10b and 10c, were also active against the growth of MB231, PC-3, and Huh-7 with IC50 values of <1.0 μM in each case. Our results have also indicated compounds 10a-10c exhibited comparable inhibitory activities against topo I and topo II with the positive compound 2 at a concentration of 10 μM. Mechanism studies indicated that compound 10a induced cell cycle arrest at S phase via activation of caspase-3, -7 and an increase in the protein expression of Bad and Bax but a decrease in expression of Bcl-2 and PARP, which consequently cause cell death. In addition, compound 10a attenuated the levels of phosphorylated Src, Akt-1, and Akt-2 protein levels but did not affect the total protein expression of Akt. We have also implanted human hepatocellular carcinoma cells into the yolk sac of zebrafish larvae and incubated larvae with various concentrations of 10a. Our results of the zebrafish xenograft assay confirmed the anti-tumor effect of 10ain vivo. PMID:26686931

  3. Oxidative Stress Induces Persistent Telomeric DNA Damage Responsible for Nuclear Morphology Change in Mammalian Cells

    PubMed Central

    Coluzzi, Elisa; Colamartino, Monica; Cozzi, Renata; Leone, Stefano; Meneghini, Carlo; O’Callaghan, Nathan; Sgura, Antonella

    2014-01-01

    One main function of telomeres is to maintain chromosome and genome stability. The rate of telomere shortening can be accelerated significantly by chemical and physical environmental agents. Reactive oxygen species are a source of oxidative stress and can produce modified bases (mainly 8-oxoG) and single strand breaks anywhere in the genome. The high incidence of guanine residues in telomeric DNA sequences makes the telomere a preferred target for oxidative damage. Our aim in this work is to evaluate whether chromosome instability induced by oxidative stress is related specifically to telomeric damage. We treated human primary fibroblasts (MRC-5) in vitro with hydrogen peroxide (100 and 200 µM) for 1 hr and collected data at several time points. To evaluate the persistence of oxidative stress-induced DNA damage up to 24 hrs after treatment, we analysed telomeric and genomic oxidative damage by qPCR and a modified comet assay, respectively. The results demonstrate that the genomic damage is completely repaired, while the telomeric oxidative damage persists. The analysis of telomere length reveals a significant telomere shortening 48 hrs after treatment, leading us to hypothesise that residual telomere damage could be responsible for the telomere shortening observed. Considering the influence of telomere length modulation on genomic stability, we quantified abnormal nuclear morphologies (Nucleoplasmic Bridges, Nuclear Buds and Micronuclei) and observed an increase of chromosome instability in the same time frame as telomere shortening. At subsequent times (72 and 96 hrs), we observed a restoration of telomere length and a reduction of chromosome instability, leaving us to conjecture a correlation between telomere shortening/dysfunction and chromosome instability. We can conclude that oxidative base damage leads to abnormal nuclear morphologies and that telomere dysfunction is an important contributor to this effect. PMID:25354277

  4. Antituberculosis Activity of a Naturally Occurring Flavonoid, Isorhamnetin.

    PubMed

    Jnawali, Hum Nath; Jeon, Dasom; Jeong, Min-Cheol; Lee, Eunjung; Jin, Bongwhan; Ryoo, Sungweon; Yoo, Jungheon; Jung, In Duk; Lee, Seung Jun; Park, Yeong-Min; Kim, Yangmee

    2016-04-22

    Isorhamnetin (1) is a naturally occurring flavonoid having anticancer and anti-inflammatory properties. The present study demonstrated that 1 had antimycobacterial effects on Mycobacterium tuberculosis H37Rv, multi-drug- and extensively drug-resistant clinical isolates with minimum inhibitory concentrations of 158 and 316 μM, respectively. Mycobacteria mainly affect the lungs, causing an intense local inflammatory response that is critical to the pathogenesis of tuberculosis. We investigated the effects of 1 on interferon (IFN)-γ-stimulated human lung fibroblast MRC-5 cells. Isorhamnetin suppressed the release of tumor necrosis factor (TNF)-α and interleukin (IL)-12. A nontoxic dose of 1 reduced mRNA expression of TNF-α, IL-1β, IL-6, IL-12, and matrix metalloproteinase-1 in IFN-γ-stimulated cells. Isorhamnetin inhibited IFN-γ-mediated stimulation of extracellular signal-regulated kinase and p38 mitogen-activated protein kinase and showed high-affinity binding to these kinases (binding constants: 4.46 × 10(6) M(-1) and 7.6 × 10(6) M(-1), respectively). The 4'-hydroxy group and the 3'-methoxy group of the B-ring and the 5-hydroxy group of the A-ring of 1 play key roles in these binding interactions. A mouse in vivo study of lipopolysaccharide-induced lung inflammation revealed that a nontoxic dose of 1 reduced the levels of IL-1β, IL-6, IL-12, and INF-γ in lung tissue. These data provide the first evidence that 1 could be developed as a potent antituberculosis drug. PMID:26974691

  5. Microfluidic platform for photodynamic therapy cytotoxicity analysis of nanoencapsulated indocyanine-type photosensitizers.

    PubMed

    Jastrzębska, Elżbieta; Bazylińska, Urszula; Bułka, Magdalena; Tokarska, Katarzyna; Chudy, Michał; Dybko, Artur; Wilk, Kazimiera Anna; Brzózka, Zbigniew

    2016-01-01

    The application of nanotechnology is important to improve research and development of alternative anticancer therapies. In order to accelerate research related to cancer diagnosis and to improve the effectiveness of cancer treatment, various nanomaterials are being tested. The main objective of this work was basic research focused on examination of the mechanism and effectiveness of the introduction of nanoencapsulated photosensitizers to human carcinoma (A549) and normal cells (MRC-5). Newly encapsulated hydrophobic indocyanine-type photosensitizer (i.e., IR-780) was subjected to in vitro studies to determine its release characteristics on a molecular level. The photosensitizers were delivered to carcinoma and normal cells cultured under model conditions using multiwell plates and with the use of the specially designed hybrid (poly(dimethylsiloxane) (PDMS)/glass) microfluidic system. The specific geometry of our microsystem allows for the examination of intercellular interactions between cells cultured in the microchambers connected with microchannels of precisely defined length. Our microsystem allows investigating various therapeutic procedures (e.g., photodynamic therapy) on monoculture, coculture, and mixed culture, simultaneously, which is very difficult to perform using standard multiwell plates. In addition, we tested the cellular internalization of nanoparticles (differing in size, surface properties) in carcinoma and normal lung cells. We proved that cellular uptake of nanocapsules loaded with cyanine IR-780 in carcinoma cells was more significant than in normal cells. We demonstrated non cytotoxic effect of newly synthesized nanocapsules built with polyelectrolytes (PEs) of opposite surface charges: polyanion-polysodium-4-styrenesulphonate and polycation-poly(diallyldimethyl-ammonium) chloride loaded with cyanine IR-780 on human lung carcinoma and normal cell lines. However, the differences observed in the photocytotoxic effect between two types of

  6. Agonists with supraphysiological efficacy at the muscarinic M2 ACh receptor

    PubMed Central

    Schrage, R; Seemann, WK; Klöckner, J; Dallanoce, C; Racké, K; Kostenis, E; De Amici, M; Holzgrabe, U; Mohr, K

    2013-01-01

    Background and Purpose Artificial agonists may have higher efficacy for receptor activation than the physiological agonist. Until now, such ‘superagonism’ has rarely been reported for GPCRs. Iperoxo is an extremely potent muscarinic receptor agonist. We hypothesized that iperoxo is a ‘superagonist’. Experimental Approach Signalling of iperoxo and newly synthesized structural analogues was compared with that of ACh at label-free M2 muscarinic receptors applying whole cell dynamic mass redistribution, measurement of G-protein activation, evaluation of cell surface agonist binding and computation of operational efficacies. Key Results In CHO-hM2 cells, iperoxo significantly exceeds ACh in Gi/Gs signalling competence. In the orthosteric loss-of-function mutant M2-Y1043.33A, the maximum effect of iperoxo is hardly compromised in contrast to ACh. ‘Superagonism’ is preserved in the physiological cellular context of MRC-5 human lung fibroblasts. Structure–signalling relationships including iperoxo derivatives with either modified positively charged head group or altered tail suggest that ‘superagonism’ of iperoxo is mechanistically based on parallel activation of the receptor protein via two orthosteric interaction points. Conclusion and Implications Supraphysiological agonist efficacy at muscarinic M2 ACh receptors is demonstrated for the first time. In addition, a possible underlying molecular mechanism of GPCR ‘superagonism’ is provided. We suggest that iperoxo-like orthosteric GPCR activation is a new avenue towards a novel class of receptor activators. Linked Article This article is commented on by Langmead and Christopoulos, pp. 353–356 of this issue. To view this commentary visit http://dx.doi.org/10.1111/bph.12142 PMID:23062057

  7. In vitro and in vivo evaluation of Δ⁹-tetrahidrocannabinol/PLGA nanoparticles for cancer chemotherapy.

    PubMed

    Martín-Banderas, L; Muñoz-Rubio, I; Prados, J; Álvarez-Fuentes, J; Calderón-Montaño, J M; López-Lázaro, M; Arias, J L; Leiva, M C; Holgado, M A; Fernández-Arévalo, M

    2015-06-20

    Nanoplatforms can optimize the efficacy and safety of chemotherapy, and thus cancer therapy. However, new approaches are encouraged in developing new nanomedicines against malignant cells. In this work, a reproducible methodology is described to prepare Δ(9)-tetrahidrocannabinol (Δ(9)-THC)-loaded poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles against lung cancer. The nanoformulation is further improved by surface functionalization with the biodegradable polymers chitosan and poly(ethylene glycol) (PEG) in order to optimize the biological fate and antitumor effect. Mean nanoparticle size (≈ 290 nm) increased upon coating with PEG, CS, and PEG-CS up to ≈ 590 nm, ≈ 745 nm, and ≈ 790 nm, respectively. Surface electrical charge was controlled by the type of polymeric coating onto the PLGA particles. Drug entrapment efficiencies (≈ 95%) were not affected by any of the polymeric coatings. On the opposite, the characteristic sustained (biphasic) Δ(9)-THC release from the particles can be accelerated or slowed down when using PEG or chitosan, respectively. Blood compatibility studies demonstrated the adequate in vivo safety margin of all of the PLGA-based nanoformulations, while protein adsorption investigations postulated the protective role of PEGylation against opsonization and plasma clearance. Cell viability studies comparing the activity of the nanoformulations against human A-549 and murine LL2 lung adenocarcinoma cells, and human embryo lung fibroblastic MRC-5 cells revealed a statistically significant selective cytotoxic effect toward the lung cancer cell lines. In addition, cytotoxicity assays in A-549 cells demonstrated the more intense anticancer activity of Δ(9)-THC-loaded PEGylated PLGA nanoparticles. These promising results were confirmed by in vivo studies in LL2 lung tumor-bearing immunocompetent C57BL/6 mice. PMID:25899283

  8. Synergistic Antiproliferative Effects of a New Cucurbitacin B Derivative and Chemotherapy Drugs on Lung Cancer Cell Line A549.

    PubMed

    Marostica, Lucas Lourenço; Silva, Izabella Thaís; Kratz, Jadel Müller; Persich, Lara; Geller, Fabiana Cristina; Lang, Karen Luise; Caro, Miguel Soriano Balparda; Durán, Fernando Javier; Schenkel, Eloir Paulo; Simões, Cláudia Maria Oliveira

    2015-10-19

    Nonsmall cell lung cancer (NSCLC) represents an important cause of mortality worldwide due to its aggressiveness and growing resistance to currently available therapy. Cucurbitacins have emerged as novel potential anticancer agents showing strong antiproliferative effects and can be promising candidates for combined treatments with clinically used anticancer agents. This study investigates the synergistic antiproliferative effects of a new semisynthetic derivative of cucurbitacin B (DACE) with three chemotherapy drugs: cisplatin (CIS), irinotecan (IRI), and paclitaxel (PAC) on A549 cells. The most effective combinations were selected for studies of the mechanism of action. Using an in silico tool, DACE seems to act by a different mechanism of action when compared with that of different classes of drugs already used in clinical settings. DACE also showed potent synergic effects with drugs, and the most potent combinations induced G2/M cell cycle arrest by modulating survivin and p53 expression, disruption of F-actin cytoskeleton, and cell death by apoptosis. These treatments completely inhibited the clonogenic potential and did not reduce the proliferation of nontumoral lung cells (MRC-5). DACE also showed relevant antimigratory and anti-invasive effects, and combined treatments modulated cell migration signaling pathways evolved with metastasis progression. The effects of DACE associated with drugs was potentiated by the oxidant agent l-buthionine-sulfoximine (BSO), and attenuated by N-acetilcysteine (NAC), an antioxidant agent. The antiproliferative effects induced by combined treatments were attenuated by a pan-caspase inhibitor, indicating that the effects of these treatments are dependent on caspase activity. Our data highlight the therapeutic potential of DACE used in combination with known chemotherapy drugs and offer important insights for the development of more effective and selective therapies against lung cancer. PMID:26372186

  9. Applying the Fe(III) binding property of a chemical transferrin mimetic to Ti(IV) anticancer drug design.

    PubMed

    Parks, Timothy B; Cruz, Yahaira M; Tinoco, Arthur D

    2014-02-01

    As an endogenous serum protein binder of Ti(IV), transferrin (Tf) serves as an excellent vehicle to stabilize the hydrolysis prone metal ion and successfully transport it into cells. This transporting role is thought to be central to Ti(IV)'s anticancer function, but efforts to synthesize Ti(IV) compounds targeting transferrin have not produced a drug. Nonetheless, the Ti(IV) transferrin complex (Ti2Tf) greatly informs on a new Ti(IV)-based anticancer drug design strategy. Ti2Tf interferes with cellular uptake of Fe(III), which is particularly detrimental to cancer cells because of their higher requirement for iron. Ti(IV) compounds of chemical transferrin mimetic (cTfm) ligands were designed to facilitate Ti(IV) activity by attenuating Fe(III) intracellular levels. In having a higher affinity for Fe(III) than Ti(IV), these ligands feature the appropriate balance between stability and lability to effectively transport Ti(IV) into cancer cells, release Ti(IV) via displacement by Fe(III), and deplete the intracellular Fe(III) levels. The cTfm ligand N,N'-di(o-hydroxybenzyl)ethylenediamine-N,N'-diacetic acid (HBED) was selected to explore the feasibility of the design strategy. Kinetic studies on the Fe(III) displacement process revealed that Ti(IV) can be transported and released into cells by HBED on a physiologically relevant time scale. Cell viability studies using A549 cancerous and MRC5 normal human lung cells and testing the cytotoxicity of HBED and its Ti(IV), Fe(III), and Ga(III) compounds demonstrate the importance of Fe(III) depletion in the proposed drug design strategy and the specificity of the strategy for Ti(IV) activity. The readily derivatized cTfm ligands demonstrate great promise for improved Ti(IV) anticancer drugs. PMID:24422475

  10. Wound Healing Activity and Mechanisms of Action of an Antibacterial Protein from the Venom of the Eastern Diamondback Rattlesnake (Crotalus adamanteus)

    PubMed Central

    Samy, Ramar Perumal; Kandasamy, Matheswaran; Gopalakrishnakone, Ponnampalam; Stiles, Bradley G.; Rowan, Edward G.; Becker, David; Shanmugam, Muthu K.; Sethi, Gautam; Chow, Vincent T. K.

    2014-01-01

    Basic phospholipase A2 was identified from the venom of the eastern diamondback rattlesnake. The Crotalus adamanteus toxin-II (CaTx-II) induced bactericidal effects (7.8 µg/ml) on Staphylococcus aureus, while on Burkholderia pseudomallei (KHW), and Enterobacter aerogenes were killed at 15.6 µg/ml. CaTx-II caused pore formation and membrane damaging effects on the bacterial cell wall. CaTx-II was not cytotoxic on lung (MRC-5), skin fibroblast (HEPK) cells and in mice. CaTx-II-treated mice showed significant wound closure and complete healing by 16 days as compared to untreated controls (**P<0.01). Histological examination revealed enhanced collagen synthesis and neovascularization after treatment with CaTx-II versus 2% Fusidic Acid ointment (FAO) treated controls. Measurement of tissue cytokines revealed that interleukin-1 beta (IL-1β) expression in CaTx-II treated mice was significantly suppressed versus untreated controls. In contrast, cytokines involved in wound healing and cell migration i.e., monocyte chemotactic protein-1 (MCP-1), fibroblast growth factor-basic (FGF-b), chemokine (KC), granulocyte-macrophage colony-stimulating factor (GM-CSF) were significantly enhanced in CaTx-II treated mice, but not in the controls. CaTx-II also modulated nuclear factor-kappa B (NF-κB) activation during skin wound healing. The CaTx-II protein highlights distinct snake proteins as a potential source of novel antimicrobial agents with significant therapeutic application for bacterial skin infections. PMID:24551028

  11. Oleylamine as a beneficial agent for the synthesis of CoFe₂O₄ nanoparticles with potential biomedical uses.

    PubMed

    Georgiadou, Violetta; Kokotidou, Chrysoula; Le Droumaguet, Benjamin; Carbonnier, Benjamin; Choli-Papadopoulou, Theodora; Dendrinou-Samara, Catherine

    2014-05-01

    The multifunctional role of oleylamine (OAm) as a versatile and flexible reagent in synthesis as well as a desired surface ligand for the synthesis of CoFe2O4 nanoparticles (NPs) is described. CoFe2O4 NPs were prepared by a facile, reproducible and scalable solvothermal approach in the presence of pure OAm. By monitoring the volume of OAm, different shapes of NPs, spherical and truncated, were formed. The syntheses led to high yields of monodispersed and considerably small (9-11 nm) CoFe2O4 NPs with enhanced magnetization (M(s) = 84.7-87.5 emu g(-1)). The resulting hydrophobic CoFe2O4 NPs were easily transferred to an aqueous phase through the formation of reverse micelles between the hydrophobic chains of OAm and cetyltrimethylammonium bromide (CTAB) and transverse relaxivities (r2) were measured. The spherical NPs had a greater effect on water proton relaxivity (r2 = 553 mM(-1) s(-1)) at an applied magnetic field of 11.7 T. The NPs became fluorescent probes by exploiting the presence of the double bond of OAm in the middle of the molecule; a thiol-ene "click" reaction with the fluorophore bovine serum albumin (FITC-BSA) was achieved. The labeled/biofunctionalized CoFe2O4 NPs interacted with cancer (HeLa and A549) and non-cancer cell lines (MRC5 and dental MSCS) and cell viability was estimated. A clear difference of toxicity between the cancer and non-cancer cells was observed while low cytotoxicity in living cells was supported. Confocal laser microscopy showed that NPs entered the cell membranes and were firstly localized close to them provoking a membrane expansion and were further accumulated perinuclearly without entering the nuclei. PMID:24604256

  12. Silica induces NLRP3 inflammasome activation in human lung epithelial cells

    PubMed Central

    2013-01-01

    Background In myeloid cells the inflammasome plays a crucial role in innate immune defenses against pathogen- and danger-associated patterns such as crystalline silica. Respirable mineral particles impinge upon the lung epithelium causing irreversible damage, sustained inflammation and silicosis. In this study we investigated lung epithelial cells as a target for silica-induced inflammasome activation. Methods A human bronchial epithelial cell line (BEAS-2B) and primary normal human bronchial epithelial cells (NHBE) were exposed to toxic but nonlethal doses of crystalline silica over time to perform functional characterization of NLRP3, caspase-1, IL-1β, bFGF and HMGB1. Quantitative RT-PCR, caspase-1 enzyme activity assay, Western blot techniques, cytokine-specific ELISA and fibroblast (MRC-5 cells) proliferation assays were performed. Results We were able to show transcriptional and translational upregulation of the components of the NLRP3 intracellular platform, as well as activation of caspase-1. NLRP3 activation led to maturation of pro-IL-1β to secreted IL-1β, and a significant increase in the unconventional release of the alarmins bFGF and HMGB1. Moreover, release of bFGF and HMGB1 was shown to be dependent on particle uptake. Small interfering RNA experiments using siNLRP3 revealed the pivotal role of the inflammasome in diminished release of pro-inflammatory cytokines, danger molecules and growth factors, and fibroblast proliferation. Conclusion Our novel data indicate the presence and functional activation of the NLRP3 inflammasome by crystalline silica in human lung epithelial cells, which prolongs an inflammatory signal and affects fibroblast proliferation, mediating a cadre of lung diseases. PMID:23402370

  13. Tissue-specific induction of ADAMTS2 in monocytes and macrophages by glucocorticoids.

    PubMed

    Hofer, Thomas P J; Frankenberger, Marion; Mages, Jörg; Lang, Roland; Meyer, Peter; Hoffmann, Reinhard; Colige, Alain; Ziegler-Heitbrock, Löms

    2008-03-01

    The regulated expression of ADAMTS2 (a disintegrin and metalloproteinase with thrombospondin motifs), a secreted metalloproteinase involved in the processing of procollagen to collagen, was studied in peripheral blood mononuclear cells (PBMC). Stimulation with glucocorticoids (GC) resulted in a pronounced dose- and time-dependent increase of ADAMTS2 mRNA levels in PBMC. The increase of ADAMTS2 expression was specific for CD14++ monocytes (440-fold) and alveolar macrophages (200-fold), whereas CD3+ (T lymphocytes), phytohemagglutinin-activated CD3+ (T lymphocytes), and CD19+ (B lymphocytes) showed no significant changes in ADAMTS2 mRNA after GC treatment. Treatment of monocyte-derived macrophages (MDM) with GC also resulted in an increase of ADAMTS2 protein in the culture tissue media. Using the GC analog RU486, GC-mediated induction of ADAMTS2 mRNA was blocked, implicating that GC acts specifically via the GC-receptor. In agreement with findings in blood monocytes, cell lines of the monocytic lineage (MM6, THP-1) showed significant GC-induced significant increases in ADAMTS2 mRNA, while in epithelial cells (A549, Calu-3, Colo320, BT-20) and fibroblast (MRC-5, WI-38, and two NHDF-c cell types from adult cheek and upper arm), they showed no or little responsiveness to GC. As macrophages have important functions in immune defense and tissue homeostasis, these findings suggest that GC-mediated specific induction of ADAMTS2 in these cells may play a crucial role in the resolution of inflammation and wound repair. PMID:18084737

  14. In vitro anticancer effect of venom from Cuban scorpion Rhopalurus junceus against a panel of human cancer cell lines.

    PubMed

    Díaz-García, Alexis; Morier-Díaz, Luis; Frión-Herrera, Yahima; Rodríguez-Sánchez, Hermis; Caballero-Lorenzo, Yamira; Mendoza-Llanes, Dianeya; Riquenes-Garlobo, Yanelis; Fraga-Castro, José A

    2013-01-01

    In Cuba the endemic species of scorpion Rhopalurus junceus has been used in traditional medicine for cancer treatment. However, there is little scientific evidence about its potential in cancer therapy. The effect of a range of scorpion venom concentrations (0.1, 0.25, 0.5, 0.75 and 1mg/ml) against a panel of human tumor cell lines from epithelial (Hela, SiHa, Hep-2, NCI-H292, A549, MDA-MB-231, MDA-MB-468, HT-29), hematopoietic origins (U937, K562, Raji) and normal cells (MRC-5, MDCK, Vero) was determined by the MTT assay. Additionally, the effect of venom on tumor cell death was assayed by Fluorescence microscopy, RT-PCR and western blot. Only the epithelial cancer cells showed significant cell viability reduction, with medium cytotoxic concentration (IC50) ranging from 0.6-1mg/ml, in a concentration-dependent manner. There was no effect on either normal or hematopoietic tumor cells. Scorpion venom demonstrated to induce apoptosis in less sensitive tumor cells (Hela) as evidenced by chromatin condensation, over expression of p53 and bax mRNA, down expression of bcl-2 mRNA and increase of activated caspases 3, 8, 9. In most sensitive tumor cells (A549), scorpion venom induced necrosis evidenced by acridine orange/ethidium bromide fluorescent dyes and down-expression of apoptosis-related genes. We concluded the scorpion venom from R. junceus possessed a selective and differential toxicity against epithelial cancer cells. This is the first report related to biological effect of R. junceus venom against a panel of tumor cells lines. All these results make R. junceus venom as a promise natural product for cancer treatment. PMID:23946884

  15. In vitro anticancer effect of venom from Cuban scorpion Rhopalurus junceus against a panel of human cancer cell lines

    PubMed Central

    Díaz-García, Alexis; Morier-Díaz, Luis; Frión-Herrera, Yahima; Rodríguez-Sánchez, Hermis; Caballero-Lorenzo, Yamira; Mendoza-Llanes, Dianeya; Riquenes-Garlobo, Yanelis; Fraga-Castro, José A

    2013-01-01

    In Cuba the endemic species of scorpion Rhopalurus junceus has been used in traditional medicine for cancer treatment. However, there is little scientific evidence about its potential in cancer therapy. The effect of a range of scorpion venom concentrations (0.1, 0.25, 0.5, 0.75 and 1mg/ml) against a panel of human tumor cell lines from epithelial (Hela, SiHa, Hep-2, NCI-H292, A549, MDA-MB-231, MDA-MB-468, HT-29), hematopoietic origins (U937, K562, Raji) and normal cells (MRC-5, MDCK, Vero) was determined by the MTT assay. Additionally, the effect of venom on tumor cell death was assayed by Fluorescence microscopy, RT-PCR and western blot. Only the epithelial cancer cells showed significant cell viability reduction, with medium cytotoxic concentration (IC50) ranging from 0.6-1mg/ml, in a concentration-dependent manner. There was no effect on either normal or hematopoietic tumor cells. Scorpion venom demonstrated to induce apoptosis in less sensitive tumor cells (Hela) as evidenced by chromatin condensation, over expression of p53 and bax mRNA, down expression of bcl-2 mRNA and increase of activated caspases 3, 8, 9. In most sensitive tumor cells (A549), scorpion venom induced necrosis evidenced by acridine orange/ethidium bromide fluorescent dyes and down-expression of apoptosis-related genes. We concluded the scorpion venom from R. junceus possessed a selective and differential toxicity against epithelial cancer cells. This is the first report related to biological effect of R. junceus venom against a panel of tumor cells lines. All these results make R. junceus venom as a promise natural product for cancer treatment. PMID:23946884

  16. Potent antitumor efficacy of ST13 for colorectal cancer mediated by oncolytic adenovirus via mitochondrial apoptotic cell death.

    PubMed

    Yang, Min; Cao, Xin; Yu, Ming Can; Gu, Jin Fa; Shen, Zong Hou; Ding, Miao; Yu, De Bing; Zheng, Shu; Liu, Xin yuan

    2008-04-01

    ST13 is a cofactor of heat shock protein 70 (Hsp70). To date, all data since the discovery of ST13 in 1993 until more recent studies in 2007 have proved that ST13 is downregulated in tumors and it was proposed to be a tumor suppressor gene, but no work reported its antitumor effect and apoptotic mechanism. In the work described in this paper, ST13 was inserted into ZD55, an oncolytic adenovirus with the E1B 55-kDa gene deleted, to form ZD55-ST13, which exerts an excellent antitumor effect in vitro and in an animal model of colorectal carcinoma SW620 xenograft. ZD55-ST13 inhibited tumor cells 100-fold more than Ad-ST13 and ZD55-EGFP in vitro. However, ZD55-ST13 showed no damage of normal fibroblast MRC5 cells. In exploring the mechanism of ZD55-ST13 in tumor cell killing, we found that ZD55-ST13-infected SW620 cells formed apoptotic bodies and presented obvious apoptosis phenomena. ZD55-ST13 induced the upregulation of Hsp70, the downregulation of antiapoptotic gene Bcl-2, and the release of cytochrome c. Cytochrome c triggered apoptosis by activating caspase-9 and caspase-3, which cleave the enzyme poly(ADP-ribose) polymerase in ZD55-ST13-infected SW620 cells. In summary, overexpressed ST13 as mediated by oncolytic adenovirus could exert potent antitumor activity via the intrinsic apoptotic pathway and has the potential to become a novel therapeutic for colorectal cancer gene therapy. PMID:18355116

  17. A High-Sensitivity and Low-Power Theranostic Nanosystem for Cell SERS Imaging and Selectively Photothermal Therapy Using Anti-EGFR-Conjugated Reduced Graphene Oxide/Mesoporous Silica/AuNPs Nanosheets.

    PubMed

    Chen, Yu-Wei; Liu, Ting-Yu; Chen, Po-Jung; Chang, Po-Hsueh; Chen, San-Yuan

    2016-03-01

    A high-sensitivity and low-power theranostic nanosystem that combines with synergistic photothermal therapy and surface-enhanced Raman scattering (SERS) mapping is constructed by mesoporous silica self-assembly on the reduced graphene oxide (rGO) nanosheets with nanogap-aligned gold nanoparticles (AuNPs) encapsulated and arranged inside the nanochannels of the mesoporous silica layer. Rhodamine 6G (R6G) as a Raman reporter is then encapsulated into the nanochannels and anti-epidermal growth factor receptor (EGFR) is conjugated on the nanocomposite surface, defined as anti-EGFR-PEG-rGO@CPSS-Au-R6G, where PEG is polyethylene glycol and CPSS is carbon porous silica nanosheets. SERS spectra results show that rGO@CPSS-Au-R6G enhances 5 × 10(6) magnification of the Raman signals and thus can be applied in the noninvasive cell tracking. Furthermore, it displays high sensitivity (detection limits: 10(-8) m R6G solution) due to the "hot spots" effects by the arrangements of AuNPs in the nanochannels of mesoporous silica. The highly selective targeting of overexpressing EGFR lung cancer cells (A549) is observed in the anti-EGFR-PEG-rGO@CPSS-Au-R6G, in contrast to normal cells (MRC-5). High photothermal therapy efficiency with a low power density (0.5 W cm(-2) ) of near-infrared laser can be achieved because of the synergistic effect by conjugated AuNPs and rGO nanosheets. These results demonstrate that the anti-EGFR-PEG-rGO@CPSS-Au-R6G is an excellent new theranostic nanosystem with cell targeting, cell tracking, and photothermal therapy capabilities. PMID:26814978

  18. Minor withanolides of Physalis longifolia: structure and cytotoxicity.

    PubMed

    Zhang, Huaping; Motiwala, Hashim; Samadi, Abbas; Day, Victor; Aubé, Jeffrey; Cohen, Mark; Kindscher, Kelly; Gollapudi, Rao; Timmermann, Barbara

    2012-01-01

    In our recent publication on bioactive guided isolation of compounds from Physalis longifolia (Solanaceae) novel anti-proliferative agents withalongolides A (4) and B (5), and their highly cytotoxic analogues, withalongolide A 4,19,27-triacetate (4a) and withalongolide B 4,19-diacetate (5a) were elucidated. In this study, the two lead compounds (4, 5) were re-isolated in gram quantities for the purpose of further analogue preparation and in vivo testing that would continue to probe structure-activity relationships. During this process, two additional withanolides, named withalongolides O (1) and P (2), were elucidated. Their structures were determined by spectroscopic techniques with 1 being subsequently confirmed by X-ray crystallographic analysis. Utilizing a MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium] viability assay, withalongolide O (1) and its 4,7-diaceatate (1a), both containing the functionalities of Δ(2)-1-oxo- in A ring, a 5β,6β-epoxy in B ring, and a lactone ring in the nine-carbon side chain, exhibited potent cytotoxicity against human head and neck squamous cell carcinoma (JMAR and MDA-1986), melanoma (B16F10 and SKMEL-28), and normal fetal lung fibroblast (MRC-5) cells with IC(50) values in the range between 0.15 and 2.95 µM. In addition, the previously reported α orientation of 7-acetate group in acnistins C and D should be revised to the β orientation on the basis of NMR data comparison. PMID:23036966

  19. Minor Withanolides of Physalis longifolia: Structure and Cytotoxicity

    PubMed Central

    Zhang, Huaping; Motiwala, Hashim; Samadi, Abbas; Day, Victor; Aubé, Jeffrey; Cohen, Mark; Kindscher, Kelly; Gollapudi, Rao; Timmermann, Barbara

    2013-01-01

    In our recent publication on bioactive guided isolation of compounds from Physalis longifolia (Solanaceae) novel anti-proliferative agents withalongolides A (4) and B (5), and their highly cytotoxic analogues, withalongolide A 4,19,27-triacetate (4a) and withalongolide B 4,19-diacetate (5a) were elucidated. In this study, the two lead compounds (4, 5) were re-isolated in gram quantities for the purpose of further analogue preparation and in vivo testing that would continue to probe structure–activity relationships. During this process, two additional withanolides, named withalongolides O (1) and P (2), were elucidated. Their structures were determined by spectroscopic techniques with 1 being subsequently confirmed by X-ray crystallographic analysis. Utilizing a MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium] viability assay, withalongolide O (1) and its 4,7-diaceatate (1a), both containing the functionalities of Δ2-1-oxo- in A ring, a 5β,6β-epoxy in B ring, and a lactone ring in the nine-carbon side chain, exhibited potent cytotoxicity against human head and neck squamous cell carcinoma (JMAR and MDA-1986), melanoma (B16F10 and SKMEL-28), and normal fetal lung fibroblast (MRC-5) cells with IC50 values in the range between 0.15 and 2.95 μM. In addition, the previously reported α orientation of 7-acetate group in acnistins C and D should be revised to the β orientation on the basis of NMR data comparison. PMID:23036966

  20. Reciprocal Paracrine Interactions Between Normal Human Epithelial and Mesenchymal Cells Protect Cellular DNA from Radiation-Induced Damage

    SciTech Connect

    Nakazawa, Yuka; Saenko, Vladimir Rogounovitch, Tatiana; Suzuki, Keiji; Mitsutake, Norisato; Matsuse, Michiko; Yamashita, Shunichi

    2008-06-01

    Purpose: To explore whether interactions between normal epithelial and mesenchymal cells can modulate the extent of radiation-induced DNA damage in one or both types of cells. Methods and Materials: Human primary thyrocytes (PT), diploid fibroblasts BJ, MRC-5, and WI-38, normal human mammary epithelial cells (HMEC), and endothelial human umbilical cord vein endothelial cells (HUV-EC-C), cultured either individually or in co-cultures or after conditioned medium transfer, were irradiated with 0.25 to 5 Gy of {gamma}-rays and assayed for the extent of DNA damage. Results: The number of {gamma}-H2AX foci in co-cultures of PT and BJ fibroblasts was approximately 25% lower than in individual cultures at 1 Gy in both types of cells. Reciprocal conditioned medium transfer to individual cultures before irradiation resulted in approximately a 35% reduction of the number {gamma}-H2AX foci at 1 Gy in both types of cells, demonstrating the role of paracrine soluble factors. The DNA-protected state of cells was achieved within 15 min after conditioned medium transfer; it was reproducible and reciprocal in several lines of epithelial cells and fibroblasts, fibroblasts, and endothelial cells but not in epithelial and endothelial cells. Unlike normal cells, human epithelial cancer cells failed to establish DNA-protected states in fibroblasts and vice versa. Conclusions: The results imply the existence of a network of reciprocal interactions between normal epithelial and some types of mesenchymal cells mediated by soluble factors that act in a paracrine manner to protect DNA from genotoxic stress.

  1. Autophagosome Proteins LC3A, LC3B and LC3C Have Distinct Subcellular Distribution Kinetics and Expression in Cancer Cell Lines

    PubMed Central

    Koukourakis, Michael I.; Kalamida, Dimitra; Giatromanolaki, Alexandra; Zois, Christos E.; Sivridis, Efthimios; Pouliliou, Stamatia; Mitrakas, Achilleas; Gatter, Kevin C.; Harris, Adrian L.

    2015-01-01

    LC3s (MAP1-LC3A, B and C) are structural proteins of autophagosomal membranes, widely used as biomarkers of autophagy. Whether these three LC3 proteins have a similar biological role in autophagy remains obscure. We examine in parallel the subcellular expression patterns of the three LC3 proteins in a panel of human cancer cell lines, as well as in normal MRC5 fibroblasts and HUVEC, using confocal microscopy and western blot analysis of cell fractions. In the cytoplasm, there was a minimal co-localization between LC3A, B and C staining, suggesting that the relevant autophagosomes are formed by only one out of the three LC3 proteins. LC3A showed a perinuclear and nuclear localization, while LC3B was equally distributed throughout the cytoplasm and localized in the nucleolar regions. LC3C was located in the cytoplasm and strongly in the nuclei (excluding nucleoli), where it extensively co-localized with the LC3A and the Beclin-1 autophagy initiating protein. Beclin 1 is known to contain a nuclear trafficking signal. Blocking nuclear export function by Leptomycin B resulted in nuclear accumulation of all LC3 and Beclin-1 proteins, while Ivermectin that blocks nuclear import showed reduction of accumulation, but not in all cell lines. Since endogenous LC3 proteins are used as major markers of autophagy in clinical studies and cell lines, it is essential to check the specificity of the antibodies used, as the kinetics of these molecules are not identical and may have distinct biological roles. The distinct subcellular expression patterns of LC3s provide a basis for further studies. PMID:26378792

  2. Biodirected synthesis of Miconazole-conjugated bacterial silver nanoparticles and their application as antifungal agents and drug delivery vehicles.

    PubMed

    Kumar, C Ganesh; Poornachandra, Y

    2015-01-01

    The recent strategy to improve the efficacy of drugs is to combine them with metal nanoparticles for the control of microbial infections. Considering this fact, we developed a low cost and eco-friendly method for silver nanoparticles synthesis using the cell free supernatant of Delftia sp. strain KCM-006 and their application as antifungal agents and as a drug carrier. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) analysis revealed the formation of spherical and monodispersed silver nanoparticles with an average size of 9.8 nm. The synthesized nanoparticles were found to be photoluminescent, highly stable and crystalline in nature having a zeta potential of -31 mV. The silver nanoparticles exhibited very good antifungal activity against various pathogenic Candida strains. Furthermore, the efficacy of nanoparticles was increased by conjugating the antifungal drug Miconazole to silver nanoparticles which exhibited significant fungicidal activity, inhibition of ergosterol biosynthesis and biofilm inhibition by increasing ROS levels. In addition, the cell viability and immunocytochemistry analysis against different normal cell lines including Chinese hamster ovary cells (CHO), human lung cell line (MRC5) and human vascular endothelial cells (HUVEC) demonstrated that these nanoparticles were non-toxic up to a concentration of 20 μM. In conclusion, these results suggest that the synthesized nanoparticles find application as both antifungal agents and drug delivery vehicles. This is a first report on the preparation of silver nanoparticles using culture supernatant from Delftia sp. and also on the conjugation of Miconazole, an antifungal drug, to the bacterial silver nanoparticles. PMID:25460601

  3. DNA intercalating Ru(II) polypyridyl complexes as effective photosensitizers in photodynamic therapy.

    PubMed

    Mari, Cristina; Pierroz, Vanessa; Rubbiani, Riccardo; Patra, Malay; Hess, Jeannine; Spingler, Bernhard; Oehninger, Luciano; Schur, Julia; Ott, Ingo; Salassa, Luca; Ferrari, Stefano; Gasser, Gilles

    2014-10-27

    Six substitutionally inert [Ru(II) (bipy)2 dppz](2+) derivatives (bipy=2,2'-bipyridine, dppz=dipyrido[3,2-a:2',3'-c]phenazine) bearing different functional groups on the dppz ligand [NH2 (1), OMe (2), OAc (3), OH (4), CH2 OH (5), CH2 Cl (6)] were synthesized and studied as potential photosensitizers (PSs) in photodynamic therapy (PDT). As also confirmed by DFT calculations, all complexes showed promising (1) O2 production quantum yields, well comparable with PSs available on the market. They can also efficiently intercalate into the DNA double helix, which is of high interest in view of DNA targeting. The cellular localization and uptake quantification of 1-6 were assessed by confocal microscopy and high-resolution continuum source atomic absorption spectrometry. Compound 1, and especially 2, showed very good uptake in cervical cancer cells (HeLa) with preferential nuclear accumulation. None of the compounds studied was found to be cytotoxic in the dark on both HeLa cells and, interestingly, on noncancerous MRC-5 cells (IC50 >100 μM). However, 1 and 2 showed very promising behavior with an increment of about 150 and 42 times, respectively, in their cytotoxicities upon light illumination at 420 nm in addition to a very good human plasma stability. As anticipated, the preferential nuclear accumulation of 1 and 2 and their very high DNA binding affinity resulted in very efficient DNA photocleavage, suggesting a DNA-based mode of phototoxic action. PMID:25213439

  4. The human complement regulatory factor-H-like protein 1, which represents a truncated form of factor H, displays cell-attachment activity.

    PubMed Central

    Hellwage, J; Kühn, S; Zipfel, P F

    1997-01-01

    Complement factor H (FH) and factor-H-like protein 1 (FHL-1) are human plasma proteins with regulatory functions in the alternative pathway of complement activation. FH and FHL-1 are organized in repetitive elements termed short consensus repeats (SCRs) and the seven SCRs of FHL-1 are identical with the N-terminal domain of the 20 SCRs of FH. The fourth SCR of both proteins (SCR 4) includes the sequence Arg-Gly-Asp (RGD), a motif that is responsible for the major adhesive activity of matrix proteins like fibronectin. A synthetic hexapeptide with the sequence ERGDAV derived from the RGD domain of FH/FHL-1 interferes with cell attachment to a fibronectin matrix. Although the identical motif is present in both FH and FHL-1, only FHL-1 acts as a matrix for cell spreading and attachment, thus the two proteins differ in function. The adhesive activity of FHL-1 is localized to the RGD-containing SCR 4 by the use of recombinant fragments. All three analysed anchorage-dependent cell lines (CCl64, C32 and MRC-5) adhere to an FHL-1 matrix. The use of synthetic peptides in competition assays, on either FHL-1-derived or fibronectin matrices, shows that the cellular receptors binding to the FH/FHL-1-derived RGD motif are related to or identical with integrin receptors which interact with fibronectin. The identification of a functional adhesive domain in the FH/FHL-1 sequence demonstrates, at least for FHL-1, a role in cell attachment and adhesion. PMID:9291099

  5. EW-7197 inhibits hepatic, renal, and pulmonary fibrosis by blocking TGF-β/Smad and ROS signaling.

    PubMed

    Park, Sang-A; Kim, Min-Jin; Park, So-Yeon; Kim, Jung-Shin; Lee, Seon-Joo; Woo, Hyun Ae; Kim, Dae-Kee; Nam, Jeong-Seok; Sheen, Yhun Yhong

    2015-05-01

    Fibrosis is an inherent response to chronic damage upon immense apoptosis or necrosis. Transforming growth factor-beta1 (TGF-β1) signaling plays a key role in the fibrotic response to chronic liver injury. To develop anti-fibrotic therapeutics, we synthesized a novel small-molecule inhibitor of the TGF-β type I receptor kinase (ALK5), EW-7197, and evaluated its therapeutic potential in carbon tetrachloride (CCl4) mouse, bile duct ligation (BDL) rat, bleomycin (BLM) mouse, and unilateral ureteral obstruction (UUO) mouse models. Western blot, immunofluorescence, siRNA, and ChIP analysis were carried out to characterize EW-7197 as a TGF-β/Smad signaling inhibitor in LX-2, Hepa1c1c7, NRK52E, and MRC5 cells. In vivo anti-fibrotic activities of EW-7197 were examined by microarray, immunohistochemistry, western blotting, and a survival study in the animal models. EW-7197 decreased the expression of collagen, α-smooth muscle actin (α-SMA), fibronectin, 4-hydroxy-2, 3-nonenal, and integrins in the livers of CCl4 mice and BDL rats, in the lungs of BLM mice, and in the kidneys of UUO mice. Furthermore, EW-7197 extended the lifespan of CCl4 mice, BDL rats, and BLM mice. EW-7197 blocked the TGF-β1-stimulated production of reactive oxygen species (ROS), collagen, and α-SMA in LX-2 cells and hepatic stellate cells (HSCs) isolated from mice. Moreover, EW-7197 attenuated TGF-β- and ROS-induced HSCs activation to myofibroblasts as well as extracellular matrix accumulation. The mechanism of EW-7197 appeared to be blockade of both TGF-β1/Smad2/3 and ROS signaling to exert an anti-fibrotic activity. This study shows that EW-7197 has a strong potential as an anti-fibrosis therapeutic agent via inhibition of TGF-β-/Smad2/3 and ROS signaling. PMID:25487606

  6. Antibody-mediated response of NKG2Cbright NK cells against human cytomegalovirus.

    PubMed

    Costa-Garcia, Marcel; Vera, Andrea; Moraru, Manuela; Vilches, Carlos; López-Botet, Miguel; Muntasell, Aura

    2015-03-15

    Human CMV (HCMV) infection promotes a variable and persistent expansion of functionally mature NKG2C(bright) NK cells. We analyzed NKG2C(bright) NK cell responses triggered by Abs from HCMV(+) sera against HCMV-infected MRC5 fibroblasts. Specific Abs promoted the degranulation (i.e., CD107a expression) and the production of cytokines (TNF-α and IFN-γ) by a significant fraction of NK cells, exceeding the low natural cytotoxicity against HCMV-infected targets. NK cell-mediated Ab-dependent cell-mediated cytotoxicity was limited by viral Ag availability and HLA class I expression on infected cells early postinfection and increased at late stages, overcoming viral immunoevasion strategies. Moreover, the presence of specific IgG triggered the activation of NK cells against Ab-opsonized cell-free HCMV virions. As compared with NKG2A(+) NK cells, a significant proportion of NKG2C(bright) NK cells was FcεR γ-chain defective and highly responsive to Ab-driven activation, being particularly efficient in the production of antiviral cytokines, mainly TNF-α. Remarkably, the expansion of NKG2C(bright) NK cells in HCMV(+) subjects was related to the overall magnitude of TNF-α and IFN-γ cytokine secretion upon Ab-dependent and -independent activation. We show the power and sensitivity of the anti-HCMV response resulting from the cooperation between specific Abs and the NKG2C(bright) NK-cell subset. Furthermore, we disclose the proinflammatory potential of NKG2C(bright) NK cells, a variable that could influence the individual responses to other pathogens and tumors. PMID:25667418

  7. 1-(2,6-Dihydroxy-4-methoxyphenyl)-2-(4-hydroxyphenyl) Ethanone-Induced Cell Cycle Arrest in G1/G0 in HT-29 Cells Human Colon Adenocarcinoma Cells

    PubMed Central

    Lay, Ma Ma; Karsani, Saiful Anuar; Abd Malek, Sri Nurestri

    2014-01-01

    1-(2,6-Dihydroxy-4-methoxyphenyl)-2-(4-hydroxyphenyl) ethanone (DMHE) was isolated from the ethyl acetate fraction of Phaleria macrocarpa (Scheff.) Boerl fruits and the structure confirmed by GC-MS (gas chromatography-mass spectrometry) and NMR (nuclear magnetic resonance) analysis. This compound was tested on the HT-29 human colon adenocarcinoma cell line using MTT (method of transcriptional and translational) cell proliferation assay. The results of MTT assay showed that DMHE exhibited good cytotoxic effect on HT-29 cells in a dose- and time-dependent manner but no cytotoxic effect on the MRC-5 cell line after 72 h incubation. Morphological features of apoptotic cells upon treatment by DMHE, e.g., cell shrinkage and membrane blebbing, were examined by an inverted and phase microscope. Other features, such as chromatin condension and nuclear fragmentation were studied using acridine orange and propidium iodide staining under the fluorescence microscope. Future evidence of apoptosis/necrosis was provided by result fromannexin V-FITC/PI (fluorescein-isothiocyanate/propidium iodide) staining revealed the percentage of early apoptotic, late apoptotic, necrotic and live cells in a dose- and time-dependent manner using flow cytometry. Cell cycle analysis showed G0/G1 arrest in a time-dependent manner. A western blot analysis indicated that cell death might be associated with the up-regulation of the pro-apoptotic proteins Bax PUMA. However, the anit-apotptic proteins Bcl-2, Bcl-xL, and Mcl-1 were also found to increase in a time-dependent manner. The expression of the pro-apoptotic protein Bak was not observed. PMID:24451128

  8. Assessment of cholesterol-derived ionic copolymers as potential vectors for gene delivery.

    PubMed

    Sevimli, Sema; Sagnella, Sharon; Kavallaris, Maria; Bulmus, Volga; Davis, Thomas P

    2013-11-11

    A library of cholesterol-derived ionic copolymers were previously synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization as 'smart' gene delivery vehicles that hold diverse surface charges. Polyplex systems formed with anionic poly(methacrylic acid-co-cholesteryl methacrylate) (P(MAA-co-CMA)) and cationic poly(dimethylamino ethyl methacrylate-co-cholesteryl methacrylate) (Q-P(DMAEMA-co-CMA)) copolymer series were evaluated for their therapeutic efficiency. Cell viability assays, conducted on SHEP, HepG2, H460, and MRC5 cell lines, revealed that alterations in the copolymer composition (CMA mol %) affected the cytotoxicity profile. Increasing the number of cholesterol moieties in Q-P(DMAEMA-co-CMA) copolymers reduced the overall toxicity (in H460 and HepG2 cells) while P(MAA-co-CMA) series displayed no significant toxicity regardless of the CMA content. Agarose gel electrophoresis was employed to investigate the formation of stable polyplexes and determine their complete conjugation ratios. P(MAA-co-CMA) copolymer series were conjugated to DNA through a cationic linker, oligolysine, while Q-P(DMAEMA-co-CMA)-siRNA complexes were readily formed via electrostatic interactions at conjugation ratios beginning from 6:1:1 (oligolysine-P(MAA-co-CMA)-DNA) and 20:1 (Q-P(DMAEMA-co-CMA)-siRNA), respectively. The hydrodynamic diameter, ζ potential and complex stability of the polyplexes were evaluated in accordance to complexation ratios and copolymer composition by dynamic light scattering (DLS). The therapeutic efficiency of the conjugates was assessed in SHEP cells via transfection and imaging assays using RT-qPCR, Western blotting, flow cytometry, and confocal microscopy. DNA transfection studies revealed P(MAA-co-CMA)-oligolysine-DNA ternary complexes to be ineffective transfection vehicles that mostly adhere to the cell surface as opposed to internalizing and partaking in endosomal disrupting activity. The transfection efficiency of Q

  9. Antioxidant potential, cytotoxic activity and total phenolic content of Alpinia pahangensis rhizomes

    PubMed Central

    2013-01-01

    Background Alpinia pahangensis, a wild ginger distributed in the lowlands of Pahang, Malaysia, is used by the locals to treat flatulence. In this study, the antioxidant and cytotoxic activities of the crude aqueous methanol and fractionated extracts of Alpinia pahangensis against five different cancer and one normal cell lines were investigated. The total phenolic content of each extract and its fractions were also quantified. This is the first report on the antioxidant and cytotoxic activities of Alpinia pahangensis extract. Methods In the current study, the crude methanol and fractionated extract of the rhizomes of Alpinia pahangensis were investigated for their antioxidant activity using four different assays namely, the DPPH scavenging activity, superoxide anion scavenging, β-carotene bleaching and reducing power assays whilst their phenolic contents were measured by the Folin-Ciocalteu’s method. In vitro neutral red cytotoxicity assay was employed to evaluate the cytotoxic activity against five different cancer cell lines, colon cancer (HCT 116 and HT-29), cervical cancer (Ca Ski), breast cancer (MCF7) and lung cancer (A549) cell lines, and one normal cell line (MRC-5). The extract that showed high cytotoxic activity was further investigated for its chemical constituents by GC-MS (gas chromatography–mass spectrometry) analysis. Results The ethyl acetate fraction showed the strongest DPPH radical scavenging (0.35 ± 0.094 mg/ml) and SOD activities (51.77 ± 4.9%) whilst the methanol extract showed the highest reducing power and also the strongest antioxidant activity in the β-carotene bleaching assays in comparison to other fractions. The highest phenolic content was found in the ethyl acetate fraction, followed by the crude methanol extract, hexane and water fractions. The results showed a positive correlation between total phenolic content with DPPH radical scavenging capacities and SOD activities. The hexane fraction showed potent cytotoxic

  10. Synthesis and anti-DNA viral activities in vitro of certain 2,4-disubstituted-7-(2-deoxy-2-fluoro-beta-D-arabinofuranosyl)pyrrolo[2,3-d d pyrimidine nucleosides.

    PubMed

    Bhattacharya, B K; Ojwang, J O; Rando, R F; Huffman, J H; Revankar, G R

    1995-09-29

    Several novel 2,4-disubstituted-7-(2-deoxy-2-fluoro-beta-D- arabinofuranosyl)pyrrolo[2,3-d]pyrimidines have been synthesized and evaluated for their anti-human cytomegalovirus (HCMV), anti-hepatitis B virus (HBV), and anti-herpes simplex virus (HSV) activities in vitro. These nucleosides were prepared starting from 2-amino-4-chloro-7-(2-deoxy-2-fluoro- 3,5-di-O-benzoyl-beta-D-arabinofuranosyl)pyrrolo[2,3-d]pyrimidine (3), which in turn was synthesized by direct glycosylation of the sodium salt of 2-amino-4-chloropyrrolo[2,3-d]pyrimidine (1) with 2-deoxy-2-fluoro-3,5-di-O-benzoyl-alpha-D-arabinofuranosyl bromide (2). Displacement of the 4-chloro group of 3 with OH, NH2, NHOH, SH, and SeH nucleophiles furnished the corresponding nucleosides 6-8, 12, and 14, respectively. The 3'-deoxygenation of 2-amino-4-chloro-7- (2-deoxy-2-fluoro-beta-D-arabinofuranosyl)pyrrolo[2,3-d]pyrimidine (4) and subsequent amination gave 2,4-diamino-2',3'-dideoxy derivative 19. Catalytic hydrogenation of 3 followed by debenzoylation afforded 2-aminopyrrolo[2,3-d]pyrimidine nucleoside 23. Among the compounds evaluated for their ability to inhibit the growth of HCMV (strain AD169) in MRC-5 cells using a plaque reduction assay, only 7 was significantly active in vitro with a 50% inhibitory concentration (IC50) of 3.7 micrograms/mL (TI > 125), whereas the IC50 value of ganciclovir (DHPG) was 3.2 micrograms/mL. Strain D16 of HCMV was more resistant to 7 (IC50 11 micrograms/mL) than the AD169 strain. When 7 was tested in combination with DHPG, the resultant anti-HCMV activity was found to be moderately synergistic with no evidence of antagonism. Nucleoside 7 also reduced episomal HBV replication in human hepatoblastoma 2.2.15 cells with an IC50 of 0.7 micrograms/mL (TI > 143). Development of cells harboring HBV which had become resistant to the drug was not observed with 7. Compound 7 also exhibited significant activity against herpes simplex virus types 1 and 2 (IC50 of 4.1 and 6.3 micrograms

  11. In Vitro Activity of Copper(II) Complexes, Loaded or Unloaded into a Nanostructured Lipid System, against Mycobacterium tuberculosis

    PubMed Central

    da Silva, Patricia B.; de Souza, Paula C.; Calixto, Giovana Maria Fioramonti; Lopes, Erica de O.; Frem, Regina C. G.; Netto, Adelino V. G.; Mauro, Antonio E.; Pavan, Fernando R.; Chorilli, Marlus

    2016-01-01

    Tuberculosis (TB) is an infectious disease caused mainly by the bacillus Mycobacterium tuberculosis (Mtb), presenting 9.5 million new cases and 1.5 million deaths in 2014. The aim of this study was to evaluate a nanostructured lipid system (NLS) composed of 10% phase oil (cholesterol), 10% surfactant (soy phosphatidylcholine, sodium oleate), and Eumulgin® HRE 40 ([castor oil polyoxyl-40-hydrogenated] in a proportion of 3:6:8), and an 80% aqueous phase (phosphate buffer pH = 7.4) as a tactic to enhance the in vitro anti-Mtb activity of the copper(II) complexes [CuCl2(INH)2]·H2O (1), [Cu(NCS)2(INH)2]·5H2O (2) and [Cu(NCO)2(INH)2]·4H2O (3). The Cu(II) complex-loaded NLS displayed sizes ranging from 169.5 ± 0.7095 to 211.1 ± 0.8963 nm, polydispersity index (PDI) varying from 0.135 ± 0.0130 to 0.236 ± 0.00100, and zeta potential ranging from −0.00690 ± 0.0896 to −8.43 ± 1.63 mV. Rheological analysis showed that the formulations behave as non-Newtonian fluids of the pseudoplastic and viscoelastic type. Antimycobacterial activities of the free complexes and NLS-loaded complexes against Mtb H37Rv ATCC 27294 were evaluated by the REMA methodology, and the selectivity index (SI) was calculated using the cytotoxicity index (IC50) against Vero (ATCC® CCL-81), J774A.1 (ATCC® TIB-67), and MRC-5 (ATCC® CCL-171) cell lines. The data suggest that the incorporation of the complexes into NLS improved the inhibitory action against Mtb by 52-, 27-, and 4.7-fold and the SI values by 173-, 43-, and 7-fold for the compounds 1, 2 and 3, respectively. The incorporation of the complexes 1, 2 and 3 into the NLS also resulted in a significant decrease of toxicity towards an alternative model (Artemia salina L.). These findings suggest that the NLS may be considered as a platform for incorporation of metallic complexes aimed at the treatment of TB. PMID:27196901

  12. Heteropentanuclear Oxalato-Bridged nd-4f (n=4, 5) Metal Complexes with NO Ligand: Synthesis, Crystal Structures, Aqueous Stability and Antiproliferative Activity.

    PubMed

    Kuhn, Paul-Steffen; Cremer, Laura; Gavriluta, Anatolie; Jovanović, Katarina K; Filipović, Lana; Hummer, Alfred A; Büchel, Gabriel E; Dojčinović, Biljana P; Meier, Samuel M; Rompel, Annette; Radulović, Siniša; Tommasino, Jean Bernard; Luneau, Dominique; Arion, Vladimir B

    2015-09-21

    A series of heteropentanuclear oxalate-bridged Ru(NO)-Ln (4d-4f) metal complexes of the general formula (nBu4N)5[Ln{RuCl3(μ-ox)(NO)}4], where Ln=Y (2), Gd (3), Tb (4), Dy (5) and ox=oxalate anion, were obtained by treatment of (nBu4N)2[RuCl3(ox)(NO)] (1) with the respective lanthanide salt in 4:1 molar ratio. The compounds were characterized by elemental analysis, IR spectroscopy, electrospray ionization (ESI) mass spectrometry, while 1, 2, and 5 were in addition analyzed by X-ray crystallography, 1 by Ru K-edge XAS and 1 and 2 by (13)C NMR spectroscopy. X-ray diffraction showed that in 2 and 5 four complex anions [RuCl3(ox)(NO)](2-) are coordinated to Y(III) and Dy(III), respectively, with formation of [Ln{RuCl3(μ-ox)(NO)}4](5-) (Ln=Y, Dy). While Y(III) is eight-coordinate in 2, Dy(III) is nine-coordinate in 5, with an additional coordination of an EtOH molecule. The negative charge is counterbalanced by five nBu4N(+) ions present in the crystal structure. The stability of complexes 2 and 5 in aqueous medium was monitored by UV/Vis spectroscopy. The antiproliferative activity of ruthenium-lanthanide complexes 2-5 were assayed in two human cancer cell lines (HeLa and A549) and in a noncancerous cell line (MRC-5) and compared with those obtained for the previously reported Os(NO)-Ln (5d-4f) analogues (nBu4N)5[Ln{OsCl3(ox)(NO)}4] (Ln=Y (6), Gd (7), Tb (8), Dy (9)). Complexes 2-5 were found to be slightly more active than 1 in inhibiting the proliferation of HeLa and A549 cells, and significantly more cytotoxic than 5d-4f metal complexes 6-9 in terms of IC50 values. The highest antiproliferative activity with IC50 values of 20.0 and 22.4 μM was found for 4 in HeLa and A549 cell lines, respectively. These cytotoxicity results are in accord with the presented ICP-MS data, indicating five- to eightfold greater accumulation of ruthenium versus osmium in human A549 cancer cells. PMID:26260662

  13. Binding of hnRNP H and U2AF65 to Respective G-codes and a Poly-Uridine Tract Collaborate in the N50-5'ss Selection of the REST N Exon in H69 Cells

    PubMed Central

    Ortuño-Pineda, Carlos; Galindo-Rosales, José Manuel; Calderón-Salinas, José Victor; Villegas-Sepúlveda, Nicolás; Saucedo-Cárdenas, Odila; De Nova-Ocampo, Mónica; Valdés, Jesús

    2012-01-01

    The splicing of the N exon in the pre-mRNA coding for the RE1-silencing transcription factor (REST) results in a truncated protein that modifies the expression pattern of some of its target genes. A weak 3'ss, three alternative 5'ss (N4-, N50-, and N62-5'ss) and a variety of putative target sites for splicing regulatory proteins are found around the N exon; two GGGG codes (G2-G3) and a poly-Uridine tract (N-PU) are found in front of the N50-5'ss. In this work we analyzed some of the regulatory factors and elements involved in the preferred selection of the N50-5'ss (N50 activation) in the small cell lung cancer cell line H69. Wild type and mutant N exon/β-globin minigenes recapitulated N50 exon splicing in H69 cells, and showed that the N-PU and the G2-G3 elements are required for N50 exon splicing. Biochemical and knockdown experiments identified these elements as U2AF65 and hnRNP H targets, respectively, and that they are also required for N50 exon activation. Compared to normal MRC5 cells, and in keeping with N50 exon activation, U2AF65, hnRNP H and other splicing factors were highly expressed in H69 cells. CLIP experiments revealed that hnRNP H RNA-binding occurs first and is a prerequisite for U2AF65 RNA binding, and EMSA and CLIP experiments suggest that U2AF65-RNA recognition displaces hnRNP H and helps to recruit other splicing factors (at least U1 70K) to the N50-5'ss. Our results evidenced novel hnRNP H and U2AF65 functions: respectively, U2AF65-recruiting to a 5'ss in humans and the hnRNP H-displacing function from two juxtaposed GGGG codes. PMID:22792276

  14. Difference in Incidence of Spontaneous Mutations between Herpes Simplex Virus Types 1 and 2

    PubMed Central

    Sarisky, Robert T.; Nguyen, Tammy T.; Duffy, Karen E.; Wittrock, Robert J.; Leary, Jeffry J.

    2000-01-01

    Spontaneous mutations within the herpes simplex virus (HSV) genome are introduced by errors during DNA replication. Indicative of the inherent mutation rate of HSV DNA replication, heterogeneous HSV populations containing both acyclovir (ACV)-resistant and ACV-sensitive viruses occur naturally in both clinical isolates and laboratory stocks. Wild-type, laboratory-adapted HSV type 1 (HSV-1) strains KOS and Cl101 reportedly accumulate spontaneous ACV-resistant mutations at a frequency of approximately six to eight mutants per 104 plaque-forming viruses (U. B. Dasgupta and W. C. Summers, Proc. Natl. Acad. Sci. USA 75:2378–2381, 1978; J. D. Hall, D. M. Coen, B. L. Fisher, M. Weisslitz, S. Randall, R. E. Almy, P. T. Gelep, and P. A. Schaffer, Virology 132:26–37, 1984). Typically, these resistance mutations map to the thymidine kinase (TK) gene and render the virus TK deficient. To examine this process more closely, a plating efficiency assay was used to determine whether the frequencies of naturally occurring mutations in populations of the laboratory strains HSV-1 SC16, HSV-2 SB5, and HSV-2 333 grown in MRC-5 cells were similar when scored for resistance to penciclovir (PCV) and ACV. Our results indicate that (i) HSV mutants resistant to PCV and those resistant to ACV accumulate at approximately equal frequencies during replication in cell culture, (ii) the spontaneous mutation frequency for the HSV-1 strain SC16 is similar to that previously reported for HSV-1 laboratory strains KOS and Cl101, and (iii) spontaneous mutations in the laboratory HSV-2 strains examined were 9- to 16-fold more frequent than those in the HSV-1 strain SC16. These observations were confirmed and extended for a group of eight clinical isolates in which the HSV-2 mutation frequency was approximately 30 times higher than that for HSV-1 isolates. In conclusion, our results indicate that the frequencies of naturally occurring, or spontaneous, HSV mutants resistant to PCV and those resistant to

  15. Co-gasification of sewage sludge and woody biomass in a fixed-bed downdraft gasifier: toxicity assessment of solid residues.

    PubMed

    Rong, Le; Maneerung, Thawatchai; Ng, Jingwen Charmaine; Neoh, Koon Gee; Bay, Boon Huat; Tong, Yen Wah; Dai, Yanjun; Wang, Chi-Hwa

    2015-02-01

    As the demand for fossil fuels and biofuels increases, the volume of ash generated will correspondingly increase. Even though ash disposal is now strictly regulated in many countries, the increasing volume of ash puts pressure on landfill sites with regard to cost, capacity and maintenance. In addition, the probability of environmental pollution from leakage of bottom ash leachate also increases. The main aim of this research is to investigate the toxicity of bottom ash, which is an unavoidable solid residue arising from biomass gasification, on human cells in vitro. Two human cell lines i.e. HepG2 (liver cell) and MRC-5 (lung fibroblast) were used to study the toxicity of the bottom ash as the toxins in the bottom ash may enter blood circulation by drinking the contaminated water or eating the food grown in bottom ash-contaminated water/soil and the toxic compounds may be carried all over the human body including to important organs such as lung, liver, kidney, and heart. It was found that the bottom ash extract has a high basicity (pH = 9.8-12.2) and a high ionic strength, due to the presence of alkali and alkaline earth metals e.g. K, Na, Ca and Mg. Moreover, it also contains concentrations of heavy metals (e.g. Zn, Co, Cu, Fe, Mn, Ni and Mo) and non-toxic organic compounds. Although human beings require these trace elements, excessive levels can be damaging to the body. From the analyses of cell viability (using MTS assay) and morphology (using fluorescence microscope), the high toxicity of the gasification bottom ash extract could be related to effects of high ionic strength, heavy metals or a combination of these two effects. Therefore, our results suggest that the improper disposal of the bottom ash wastes arising from gasification can create potential risks to human health and, thus, it has become a matter of urgency to find alternative options for the disposal of bottom ash wastes. PMID:25532673

  16. Accumulation of p53 induced by the adenovirus E1A protein requires regions involved in the stimulation of DNA synthesis.

    PubMed Central

    Querido, E; Teodoro, J G; Branton, P E

    1997-01-01

    It has been known for some time that expression of the 243-residue (243R) human adenovirus type 5 (Ad5) early region 1A (E1A) protein causes an increase in the level of the cellular tumor suppressor p53 and induction of p53-dependent apoptosis. Deletion of a portion of conserved region 1 (CR1) had been shown to prevent apoptosis, suggesting that binding of p300 and/or the pRB retinoblastoma tumor suppressor and related proteins might be implicated. To examine the mechanism of the E1A-induced accumulation of p53, cells were infected with viruses expressing E1A-243R containing various deletions which have well-characterized effects on p300 and pRB binding. It was found that in human HeLa cells and rodent cells, complex formation with p300 but not pRB was required for the rise in p53 levels. However, in other human cell lines, including MRC-5 cells, E1A proteins which were able to form complexes with either p300 or pRB induced a significant increase in p53 levels. Only E1A mutants defective in binding both classes of proteins were unable to stimulate p53 accumulation. This same pattern was also apparent in p53-null mouse cells coinfected by Ad5 mutants and an adenovirus vector expressing either wild-type or mutant human p53 under a cytomegalovirus promoter, indicating that the difference in importance of pRB binding may relate to differences between rodent and human p53 expression. The increase in p53 levels correlated well with the induction of apoptosis and, as shown previously, with the stimulation of cellular DNA synthesis. Thus, it is possible that the accumulation of p53 is induced by the induction of unscheduled DNA synthesis by E1A proteins and that increased levels of p53 then activate cell death pathways. PMID:9094624

  17. A novel silver iodide metalo-drug: experimental and computational modelling assessment of its interaction with intracellular DNA, lipoxygenase and glutathione.

    PubMed

    Banti, C N; Kyros, L; Geromichalos, G D; Kourkoumelis, N; Kubicki, M; Hadjikakou, S K

    2014-04-22

    The new mixed ligand silver(I) complex of formula [AgI(TPP)2(MBZT)] (1) was obtained by reacting 2-mercapto-benzothiazole (MBZT) with triphenylphosphine (TPP). The complex was characterized by m.p., vibrational spectroscopy (FT-IR), (1)H NMR, UV-vis, ESI-MS spectroscopic techniques and its structure was confirmed by X-ray crystallography. Mixed ligand complexes of silver(I) iodide with thiones and phosphines are very rare in the literature and to the best of our knowledge compound 1 is the first of this kind exhibiting significant biological effects. Complex 1 was evaluated for its in vitro cytotoxic activity (cell viability) under irradiation with UV light and without irradiation against human cancer cell lines: MCF-7 (breast, ER positive), MDA-MB-231 (breast, ER negative), Caki-1 (renal), A549 (lung), OAW-42 (ovarian), HeLa (cervical) and additionally against the normal human lung cell line MRC-5 (normal human fetal lung fibroblast cells) and normal immortalized human mammary gland epithelial cell line (MTSV17) with SRB assay. The results showed that 1 mediates a strong cytotoxic response to the tested normal and cancer cell lines. It exhibits equal activity against MDA-MB-231 cells where estrogen receptors (ERs) are devoid with the one against MCF-7 where ERs are present. Molecular docking studies have shown that 1 is docked in the different pocket than that of the ERs modulators. The binding affinity of 1 towards the intracellular molecules DNA and lipoxygenase (LOX) was studied for the evaluation of the mechanism of its cytostasis. The binding constant (Kb) of 1 towards CT-DNA was calculated by UV-Vis and fluorescent spectra suggesting intercalation or electrostatic interactions of 1 into DNA. Docking studies on DNA-complex interactions confirm the binding of 1. Moreover, the influence of complex 1 on the catalytic peroxidation of linoleic acid to hydroperoxylinoleic acid by the enzyme lipoxygenase (LOX) was kinetically and theoretically studied. In addition

  18. Synthesis, characterization and biological evaluation of novel Ru(II)-arene complexes containing intercalating ligands.

    PubMed

    Nikolić, Stefan; Rangasamy, Loganathan; Gligorijević, Nevenka; Aranđelović, Sandra; Radulović, Siniša; Gasser, Gilles; Grgurić-Šipka, Sanja

    2016-07-01

    Three new ruthenium(II)-arene complexes, namely [(η(6)-p-cymene)Ru(Me2dppz)Cl]PF6 (1), [(η(6)-benzene)Ru(Me2dppz)Cl]PF6 (2) and [(η(6)-p-cymene)Ru(aip)Cl]PF6 (3) (Me2dppz=11,12-dimethyldipyrido[3,2-a:2',3'-c]phenazine; aip=2-(9-anthryl)-1H-imidazo[4,5-f] [1,10] phenanthroline) have been synthesized and characterized using different spectroscopic techniques including elemental analysis. The complexes were found to be well soluble and stable in DMSO. The biological activity of the three complexes was tested in three different human cancer cell lines (A549, MDA-MB-231 and HeLa) and in one human non-cancerous cell line (MRC-5). Complexes 1 and 3, carrying η(6)-p-cymene as the arene ligand, were shown to be toxic in all cell lines in the low micromolar/subnanomolar range, with complex 1 being the most cytotoxic complex of the series. Flow cytometry analysis revealed that complex 1 caused concentration- and time-dependent arrest of the cell cycle in G2-M and S phases in HeLa cells. This event is followed by the accumulation of the sub-G1 DNA content after 48h, in levels higher than cisplatin and in the absence of phosphatidylserine externalization. Fluorescent microscopy and acridine orange/ethidium bromide staining revealed that complex 1 induced both apoptotic and necrotic cell morphology characteristics. Drug-accumulation and DNA-binding studies performed by inductively coupled plasma mass spectrometry in HeLa cells showed that the total ruthenium uptake increased in a time- and concentration-dependent manner, and that complex 1 accumulated more efficiently than cisplatin at equimolar concentrations. The introduction of a Me2dppz ligand into the ruthenium(II)-p-cymene scaffold was found to allow the discovery of a strongly cytotoxic complex with significantly higher cellular uptake and DNA-binding properties than cisplatin. PMID:26818702

  19. The L, M, and S Segments of Rift Valley Fever Virus MP-12 Vaccine Independently Contribute to a Temperature-Sensitive Phenotype

    PubMed Central

    Nishiyama, Shoko; Lokugamage, Nandadeva

    2016-01-01

    ABSTRACT Rift Valley fever (RVF) is endemic to Africa, and the mosquito-borne disease is characterized by “abortion storms” in ruminants and by hemorrhagic fever, encephalitis, and blindness in humans. Rift Valley fever virus (RVFV; family Bunyaviridae, genus Phlebovirus) has a tripartite negative-stranded RNA genome (L, M, and S segments). A live-attenuated vaccine for RVF, the MP-12 vaccine, is conditionally licensed for veterinary use in the United States. MP-12 is fully attenuated by the combination of the partially attenuated L, M, and S segments. Temperature sensitivity (ts) limits viral replication at a restrictive temperature and may be involved with viral attenuation. In this study, we aimed to characterize the ts mutations for MP-12. The MP-12 vaccine showed restricted replication at 38°C and replication shutoff (100-fold or greater reduction in virus titer compared to that at 37°C) at 39°C in Vero and MRC-5 cells. Using rZH501 reassortants with either the MP-12 L, M, or S segment, we found that all three segments encode a temperature-sensitive phenotype. However, the ts phenotype of the S segment was weaker than that of the M or L segment. We identified Gn-Y259H, Gc-R1182G, L-V172A, and L-M1244I as major ts mutations for MP-12. The ts mutations in the L segment decreased viral RNA synthesis, while those in the M segment delayed progeny production from infected cells. We also found that a lack of NSs and/or 78kD/NSm protein expression minimally affected the ts phenotype. Our study revealed that MP-12 is a unique vaccine carrying ts mutations in the L, M, and S segments. IMPORTANCE Rift Valley fever (RVF) is a mosquito-borne viral disease endemic to Africa, characterized by high rates of abortion in ruminants and severe diseases in humans. Vaccination is important to prevent the spread of disease, and a live-attenuated MP-12 vaccine is currently the only vaccine with a conditional license in the United States. This study determined the temperature

  20. Phytochemical constituents, nutritional values, phenolics, flavonols, flavonoids, antioxidant and cytotoxicity studies on Phaleria macrocarpa (Scheff.) Boerl fruits

    PubMed Central

    2014-01-01

    Background The edible fruits of Phaleria macrocarpa (Scheff.) Boerl are widely used in traditional medicine in Indonesia. It is used to treat a variety of medical conditions such as - cancer, diabetes mellitus, allergies, liver and heart diseases, kidney failure, blood diseases, high blood pressure, stroke, various skin diseases, itching, aches, and flu. Therefore, it is of great interest to determine the biochemical and cytotoxic properties of the fruit extracts. Methods The methanol, hexane, chloroform, ethyl acetate, and water extracts of P. macrocarpa fruits were examined for phytochemicals, physicochemicals, flavonols, flavonoids and phenol content. Its nutritional value (A.O.A.C method), antioxidant properties (DPPH assay) and cytotoxicity (MTT cell proliferation assay) were also determined. Results A preliminary phyotochemical screening of the different crude extracts from the fruits of P. macrocarpa showed the presence secondary metabolites such as of flavonoids, phenols, saponin glycosides and tannins. The ethyl acetate and methanol extracts displayed high antioxidant acitivity (IC50 value of 8.15±0.02 ug/mL) in the DPPH assay comparable to that of the standard gallic acid (IC50 value of 10.8±0.02 ug/mL). Evaluation of cytotoxic activity showed that the crude methanol extract possessed excellent anti-proliferative activity against SKOV-3 (IC50 7.75±2.56 μg/mL) after 72 hours of treatment whilst the hexane and ethyl acetate extracts displayed good cytotoxic effect against both SKOV-3 and MDA-MB231 cell lines. The chloroform extract however, showed selective inhibitory activity in the breast cancer cell line MDA-MB231 (IC50 7.80±1.57 μg/mL) after 48 hours of treatment. There was no cytotoxic effect observed in the Ca Ski cell line and the two normal cell lines (MRC-5 and WRL-68). Conclusion The methanol extract and the ethyl acetate fraction of P. macrocarpa fruits exhibited good nutritional values, good antioxidant and cytotoxic activities, and merits

  1. ATM protein is indispensable to repair complex-type DNA double strand breaks induced by high LET heavy ion irradiation.

    NASA Astrophysics Data System (ADS)

    Sekine, Emiko; Yu, Dong; Fujimori, Akira; Anzai, Kazunori; Okayasu, Ryuichi

    ATM (ataxia telangiectasia-mutated) protein responsible for a rare genetic disease with hyperradiosensitivity, is the one of the earliest repair proteins sensing DNA double-strand breaks (DSB). ATM is known to phosphorylate DNA repair proteins such as MRN complex (Mre11, Rad50 and NBS1), 53BP1, Artemis, Brca1, gamma-H2AX, and MDC. We studied the interactions between ATM and DNA-PKcs, a crucial NHEJ repair protein, after cells exposure to high and low LET irradiation. Normal human (HFL III, MRC5VA) and AT homozygote (AT2KY, AT5BIVA, AT3BIVA) cells were irradiated with X-rays and high LET radiation (carbon ions: 290MeV/n initial energy at 70 keV/um, and iron ions: 500MeV/n initial energy at 200KeV/um), and several critical end points were examined. AT cells with high LET irradiation showed a significantly higher radiosensitivity when compared with normal cells. The behavior of DNA DSB repair was monitored by immuno-fluorescence techniques using DNA-PKcs (pThr2609, pSer2056) and ATM (pSer1981) antibodies. In normal cells, the phosphorylation of DNA-PKcs was clearly detected after high LET irradiation, though the peak of phosphorylation was delayed when compared to X-irradiation. In contrast, almost no DNA-PKcs phosphorylation foci were detected in AT cells irradiated with high LET radiation. A similar result was also observed in normal cells treated with 10 uM ATM kinase specific inhibitor (KU55933) one hour before irradiation. These data suggest that the phosphorylation of DNA-PKcs with low LET X-rays is mostly ATM-independent, and the phosphorylation of DNA-PKcs with high LET radiation seems to require ATM probably due to its complex nature of DSB induced. Our study indicates that high LET heavy ion irradiation which we can observe in the space environment would provide a useful tool to study the fundamental mechanism associated with DNA DSB repair.

  2. Green synthesis, characterization, and anticancer activity of hyaluronan/zinc oxide nanocomposite

    PubMed Central

    Namvar, Farideh; Azizi, Susan; Rahman, Heshu Sulaiman; Mohamad, Rosfarizan; Rasedee, Abdullah; Soltani, Mozhgan; Rahim, Raha Abdul

    2016-01-01

    The study describes an in situ green biosynthesis of zinc oxide nanocomposite using the seaweed Sargassum muticum water extract and hyaluronan biopolymer. The morphology and optical properties of the hyaluronan/zinc oxide (HA/ZnO) nanocomposite were determined by Fourier transform infrared spectroscopy, X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, and ultraviolet–vis analysis. Electron microscopy and X-ray diffraction analysis showed that the zinc oxide nanoparticles were polydispersed with a mean size of 10.2±1.5 nm. The nanoparticles were mostly hexagonal in crystalline form. The HA/ZnO nanocomposite showed the absorption properties in the ultraviolet zone that is ascribed to the band gap of zinc oxide nanocomposite. In the cytotoxicity study, cancer cells, pancreatic adenocarcinoma (PANC-1), ovarian adenocarcinoma (CaOV-3), colonic adenocarcinoma (COLO205), and acute promyelocytic leukemia (HL-60) cells were treated with HA/ZnO nanocomposite. At 72 hours of treatment, the half maximal inhibitory concentration (IC50) value via the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was 10.8±0.3 μg/mL, 15.4±1.2 μg/mL, 12.1±0.9 μg/mL, and 6.25±0.5 μg/mL for the PANC-1, CaOV-3, COLO-205, and HL-60 cells, respectively, showing that the composite is most toxic to the HL-60 cells. On the other hand, HA/ZnO nanocomposite treatment for 72 hours did not cause toxicity to the normal human lung fibroblast (MRC-5) cell line. Using fluorescent dyes and flow cytometry analysis, HA/ZnO nanocomposite caused G2/M cell cycle arrest and stimulated apoptosis-related increase in caspase-3 and -7 activities of the HL-60 cells. Thus, the study shows that the HA/ZnO nanocomposite produced through green synthesis has great potential to be developed into an efficacious therapeutic agent for cancers. PMID:27555781

  3. Anti-HMGCR autoantibodies in European patients with autoimmune necrotizing myopathies: inconstant exposure to statin.

    PubMed

    Allenbach, Yves; Drouot, Laurent; Rigolet, Aude; Charuel, Jean Luc; Jouen, Fabienne; Romero, Norma B; Maisonobe, Thierry; Dubourg, Odile; Behin, Anthony; Laforet, Pascal; Stojkovic, Tania; Eymard, Bruno; Costedoat-Chalumeau, Nathalie; Campana-Salort, Emmanuelle; Tournadre, Anne; Musset, Lucile; Bader-Meunier, Brigitte; Kone-Paut, Isabelle; Sibilia, Jean; Servais, Laurent; Fain, Olivier; Larroche, Claire; Diot, Elisabeth; Terrier, Benjamin; De Paz, Raphael; Dossier, Antoine; Menard, Dominique; Morati, Chafika; Roux, Marielle; Ferrer, Xavier; Martinet, Jeremie; Besnard, Sophie; Bellance, Remi; Cacoub, Patrice; Arnaud, Laurent; Grosbois, Bernard; Herson, Serge; Boyer, Olivier; Benveniste, Olivier

    2014-05-01

    Necrotizing autoimmune myopathy (NAM) is a group of acquired myopathies characterized by prominent myofiber necrosis with little or no muscle inflammation. Recently, researchers identified autoantibodies (aAb) against 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR) in patients with NAM, especially in statin-exposed patients. Here we report what is to our knowledge the first European cohort of patients with NAM.The serum of 206 patients with suspicion of NAM was tested for detection of anti-HMGCR aAb using an addressable laser bead immunoassay. Forty-five patients were found to be anti-HMGCR positive. Their mean age was 48.9 ± 21.9 years and the group was predominantly female (73.3%). Statin exposure was recorded in 44.4% of patients. Almost all patients had a muscular deficit (97.7%), frequently severe (Medical Research Council [MRC] 5 ≤3 in 75.5%). Subacute onset (<6 mo) was noted for most of them (64.4%). Nevertheless, 3 patients (6.6%) had a slowly progressive course over more than 10 years. Except for weight loss (20%), no extramuscular sign was observed. The mean CK level was high (6941 ± 8802 IU/L) and correlated with muscle strength evaluated by manual muscle testing (r = -0.37, p = 0.03). Similarly, anti-HMGCR aAb titers were correlated with muscular strength (r = -0.31; p = 0.03) and CK level (r = 0.45; p = 0.01). Mean duration of treatment was 34.1 ± 40.8 months, and by the end of the study no patient had been able to stop treatment.This study confirms the observation and description of anti-HMGCR aAb associated with NAM. The majority of patients were statin naive and needed prolonged treatments. Some patients had a dystrophic-like presentation. Anti-HMGR aAb titers correlated with CK levels and muscle strength, suggesting their pathogenic role. PMID:24797170

  4. AhR-dependent secretion of PDGF-BB by human classically activated macrophages exposed to DEP extracts stimulates lung fibroblast proliferation

    SciTech Connect

    Jaguin, Marie; Fardel, Olivier; Lecureur, Valérie

    2015-06-15

    Lung diseases are aggravated by exposure to diesel exhaust particles (DEPs) found in air pollution. Macrophages are thought to play a crucial role in lung immune response to these pollutants, even if the mechanisms involved remain incompletely characterized. In the present study, we demonstrated that classically and alternative human macrophages (MΦ) exhibited increased secretion of PDGF-B in response to DEP extract (DEPe). This occurred via aryl hydrocarbon receptor (AhR)-activation because DEPe-induced PDGF-B overexpression was abrogated after AhR expression knock-down by RNA interference, in both M1 and M2 polarizing MΦ. In addition, TCDD and benzo(a)pyrene, two potent AhR ligands, also significantly increased mRNA expression of PDGF-B in M1 MΦ, whereas some weak ligands of AhR did not. We next evaluated the impact of conditioned media (CM) from MΦ culture exposed to DEPe or of recombinant PDGF-B onto lung fibroblast proliferation. The tyrosine kinase inhibitor, AG-1295, prevents phosphorylations of PDGF-Rβ, AKT and ERK1/2 and the proliferation of MRC-5 fibroblasts induced by recombinant PDGF-B and by CM from M1 polarizing MΦ, strongly suggesting that the PDGF-BB secreted by DEPe-exposed MΦ is sufficient to activate the PDGF-Rβ pathway of human lung fibroblasts. In conclusion, we demonstrated that human MΦ, whatever their polarization status, secrete PDGF-B in response to DEPe and that PDGF-B is a target gene of AhR. Therefore, induction of PDGF-B by DEP may participate in the deleterious effects towards human health triggered by such environmental urban contaminants. - Highlights: • PDGF-B expression and secretion are increased by DEPe exposure in human M1 and M2 MΦ. • DEPe-induced PDGF-B expression is aryl-hydrocarbon-dependent. • DEPe-exposed M1 MΦ secrete sufficient PDGF-B to increase lung fibroblast proliferation.

  5. Synthesis, cytotoxicity, and antiplasmodial and antitrypanosomal activity of new neocryptolepine derivatives.

    PubMed

    Jonckers, Tim H M; van Miert, Sabine; Cimanga, Kanyanga; Bailly, Christian; Colson, Pierre; De Pauw-Gillet, Marie-Claire; van den Heuvel, Hilde; Claeys, Magda; Lemière, Filip; Esmans, Eddy L; Rozenski, Jef; Quirijnen, Ludo; Maes, Louis; Dommisse, Roger; Lemière, Guy L F; Vlietinck, Arnold; Pieters, Luc

    2002-08-01

    On the basis of the original lead neocryptolepine or 5-methyl-5H-indolo[2,3-b]quinoline, an alkaloid from Cryptolepis sanguinolenta, derivatives were prepared using a biradical cyclization methodology. Starting from easily accessible educts, this approach allowed the synthesis of hitherto unknown compounds with a varied substitution pattern. As a result of steric hindrance, preferential formation of the 3-substituted isomers over the 1-substituted isomers was observed when cyclizing N-(3-substituted-phenyl)-N'-[2-(2-trimethylsilylethynyl)phenyl]carbodiimides. All compounds were evaluated for their activity against chloroquine-sensitive as well as chloroquine-resistant Plasmodium falciparum strains, for their activity against Trypanosoma brucei and T. cruzi, and for their cytotoxicity on human MRC-5 cells. Mechanisms of action were investigated by testing heme complexation using ESI-MS, inhibition of beta-hematin formation, DNA interactions (DNA-methyl green assay and linear dichroism), and inhibition of human topoisomerase II. Neocryptolepine derivatives with a higher antiplasmodial activity and a lower cytotoxicity than the original lead have been obtained. This selective antiplasmodial activity was associated with inhibition of beta-hematin formation. 2-Bromoneocryptolepine was the most selective compound with an IC(50) value against chloroquine-resistant P. falciparum of 4.0 microM in the absence of cytotoxicity (IC(50) > 32 microM). Although cryptolepine, a known lead for antimalarials also originally isolated from Cryptolepis sanguinolenta, was more active (IC(50) = 2.0 microM), 2-bromoneocryptolepine showed a low affinity for DNA and no inhibition of human topoisomerase II, in contrast to cryptolepine. Although some neocryptolepine derivatives showed a higher antiplasmodial activity than 2-bromocryptolepine, these compounds also showed a higher affinity for DNA and/or a more pronounced cytotoxicity. Therefore, 2-bromoneocryptolepine is considered as the most

  6. Green synthesis, characterization, and anticancer activity of hyaluronan/zinc oxide nanocomposite.

    PubMed

    Namvar, Farideh; Azizi, Susan; Rahman, Heshu Sulaiman; Mohamad, Rosfarizan; Rasedee, Abdullah; Soltani, Mozhgan; Rahim, Raha Abdul

    2016-01-01

    The study describes an in situ green biosynthesis of zinc oxide nanocomposite using the seaweed Sargassum muticum water extract and hyaluronan biopolymer. The morphology and optical properties of the hyaluronan/zinc oxide (HA/ZnO) nanocomposite were determined by Fourier transform infrared spectroscopy, X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, and ultraviolet-vis analysis. Electron microscopy and X-ray diffraction analysis showed that the zinc oxide nanoparticles were polydispersed with a mean size of 10.2±1.5 nm. The nanoparticles were mostly hexagonal in crystalline form. The HA/ZnO nanocomposite showed the absorption properties in the ultraviolet zone that is ascribed to the band gap of zinc oxide nanocomposite. In the cytotoxicity study, cancer cells, pancreatic adenocarcinoma (PANC-1), ovarian adenocarcinoma (CaOV-3), colonic adenocarcinoma (COLO205), and acute promyelocytic leukemia (HL-60) cells were treated with HA/ZnO nanocomposite. At 72 hours of treatment, the half maximal inhibitory concentration (IC50) value via the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was 10.8±0.3 μg/mL, 15.4±1.2 μg/mL, 12.1±0.9 μg/mL, and 6.25±0.5 μg/mL for the PANC-1, CaOV-3, COLO-205, and HL-60 cells, respectively, showing that the composite is most toxic to the HL-60 cells. On the other hand, HA/ZnO nanocomposite treatment for 72 hours did not cause toxicity to the normal human lung fibroblast (MRC-5) cell line. Using fluorescent dyes and flow cytometry analysis, HA/ZnO nanocomposite caused G2/M cell cycle arrest and stimulated apoptosis-related increase in caspase-3 and -7 activities of the HL-60 cells. Thus, the study shows that the HA/ZnO nanocomposite produced through green synthesis has great potential to be developed into an efficacious therapeutic agent for cancers. PMID:27555781

  7. In Vitro Activity of Copper(II) Complexes, Loaded or Unloaded into a Nanostructured Lipid System, against Mycobacterium tuberculosis.

    PubMed

    Silva, Patricia B da; Souza, Paula C de; Calixto, Giovana Maria Fioramonti; Lopes, Erica de O; Frem, Regina C G; Netto, Adelino V G; Mauro, Antonio E; Pavan, Fernando R; Chorilli, Marlus

    2016-01-01

    Tuberculosis (TB) is an infectious disease caused mainly by the bacillus Mycobacterium tuberculosis (Mtb), presenting 9.5 million new cases and 1.5 million deaths in 2014. The aim of this study was to evaluate a nanostructured lipid system (NLS) composed of 10% phase oil (cholesterol), 10% surfactant (soy phosphatidylcholine, sodium oleate), and Eumulgin(®) HRE 40 ([castor oil polyoxyl-40-hydrogenated] in a proportion of 3:6:8), and an 80% aqueous phase (phosphate buffer pH = 7.4) as a tactic to enhance the in vitro anti-Mtb activity of the copper(II) complexes [CuCl₂(INH)₂]·H₂O (1), [Cu(NCS)₂(INH)₂]·5H₂O (2) and [Cu(NCO)₂(INH)₂]·4H₂O (3). The Cu(II) complex-loaded NLS displayed sizes ranging from 169.5 ± 0.7095 to 211.1 ± 0.8963 nm, polydispersity index (PDI) varying from 0.135 ± 0.0130 to 0.236 ± 0.00100, and zeta potential ranging from -0.00690 ± 0.0896 to -8.43 ± 1.63 mV. Rheological analysis showed that the formulations behave as non-Newtonian fluids of the pseudoplastic and viscoelastic type. Antimycobacterial activities of the free complexes and NLS-loaded complexes against Mtb H37Rv ATCC 27294 were evaluated by the REMA methodology, and the selectivity index (SI) was calculated using the cytotoxicity index (IC50) against Vero (ATCC(®) CCL-81), J774A.1 (ATCC(®) TIB-67), and MRC-5 (ATCC(®) CCL-171) cell lines. The data suggest that the incorporation of the complexes into NLS improved the inhibitory action against Mtb by 52-, 27-, and 4.7-fold and the SI values by 173-, 43-, and 7-fold for the compounds 1, 2 and 3, respectively. The incorporation of the complexes 1, 2 and 3 into the NLS also resulted in a significant decrease of toxicity towards an alternative model (Artemia salina L.). These findings suggest that the NLS may be considered as a platform for incorporation of metallic complexes aimed at the treatment of TB. PMID:27196901

  8. New antimony(III) halide complexes with dithiocarbamate ligands derived from thiuram degradation: The effect of the molecule's close contacts on in vitro cytotoxic activity.

    PubMed

    Urgut, O S; Ozturk, I I; Banti, C N; Kourkoumelis, N; Manoli, M; Tasiopoulos, A J; Hadjikakou, S K

    2016-01-01

    Antimony(III) halide complexes of the formulae {[SbBr(Me2DTC)2]n} (1), {[SbI(Me2DTC)2]n} (2) and {[(Me2DTC)2Sb(μ2-I)Sb(Me2DTC)2](+).I3(-)} (3) (Me2DTC = dimethyldithiocarbomate) were synthesized from SbX3, (X = Br or I) and tetramethylthiuram monosulfide (Me4tms) or tetramethylthiuram disulfide (Me4tds). The complexes were characterized by melting point (m.p.), elemental analysis (e.a.), Fourier-transform Infra-Red (FT-IR), Fourier-transform Raman (FT-Raman), Nuclear Magnetic Resonance ((1)H,(13)C-NMR) spectroscopy and Thermogravimetric-Differential Thermal Analysis (TG-DTA). Crystal structures of complexes 1-3 were determined with single crystal X-ray diffraction analysis. Complexes 1 and 2 are polymers with distorted square pyramidal (SP) geometry in each monomeric unit, whereas complex 3 is ionic, containing an iodonium linkage Sb-I(+)-Sb and an I3(-) counter anion; to the best of our knowledge, this is the first ionic antimony(III) iodide complex. The in vitro cytotoxic activity of 1-3 against human adenocarcinoma cells: breast (MCF-7) and cervix (HeLa) cells and non-cancerous cells: MRC-5 (normal human fetal lung fibroblast cells) was evaluated with trypan blue (TB) and sulforhodamine B (SRB) assays. Among antimony(III) compounds with sulfur containing ligand, those of dithiocarbamates exhibit significant cytotoxic activity. Hirshfeld surface volumes were analyzed to clarify the nature of the intermolecular interactions by the 2D fingerprint plot. Molecules with lower H-all atoms inter-molecular interactions exhibit the higher activity against MCF-7 cells. The in vivo genotoxicity of 1-3 was evaluated by the mean of Allium cepa test. Alterations in the mitotic index values due to the chromosomal aberrations were observed in the case of complexes 2 and 3. Since, no such alteration is caused by 1, it makes this compound candidate for further study as potential drug. PMID:26478326

  9. Anti-cancer effects of cerium oxide nanoparticles and its intracellular redox activity.

    PubMed

    Pešić, Milica; Podolski-Renić, Ana; Stojković, Sonja; Matović, Branko; Zmejkoski, Danica; Kojić, Vesna; Bogdanović, Gordana; Pavićević, Aleksandra; Mojović, Miloš; Savić, Aleksandar; Milenković, Ivana; Kalauzi, Aleksandar; Radotić, Ksenija

    2015-05-01

    Data on medical applications of cerium oxide nanoparticles CeO2 (CONP) are promising, yet information regarding their action in cells is incomplete and there are conflicting reports about in vitro toxicity. Herein, we have studied cytotoxic effect of CONP in several cancer and normal cell lines and their potential to change intracellular redox status. The IC50 was achieved only in two of eight tested cell lines, melanoma 518A2 and colorectal adenocarcinoma HT-29. Self-propagating room temperature method was applied to produce CONP with an average crystalline size of 4 nm. The results confirmed presence of Ce(3+) and O(2-) vacancies. The induction of cell death by CONP and the production of reactive oxygen species (ROS) were analyzed by flow-cytometry. Free radicals related antioxidant capacity of the cells was studied by the reduction of stable free radical TEMPONE using electron spin resonance spectroscopy. CONP showed low or moderate cytotoxicity in cancer cell lines: adenocarcinoma DLD1 and multi-drug resistant DLD1-TxR, non-small cell lung carcinoma NCI-H460 and multi-drug resistant NCI-H460/R, while normal cell lines (keratinocytes HaCaT, lung fetal fibroblasts MRC-5) were insensitive. The most sensitive were 518A2 melanoma and HT-29 colorectal adenocarcinoma cell lines, with the IC50 values being between 100 and 200 μM. Decreased rate of TEMPONE reduction and increased production of certain ROS species (peroxynitrite and hydrogen peroxide anion) indicates that free radical metabolism, thus redox status was changed, and antioxidant capacity damaged in the CONP treated 518A2 and HT-29 cells. In conclusion, changes in intracellular redox status induced by CONP are partly attributed to the prooxidant activity of the nanoparticles. Further, ROS induced cell damages might eventually lead to the cell death. However, low inhibitory potential of CONP in the other human cell lines tested indicates that CONP may be safe for human usage in industry and medicine. PMID

  10. Optic disc changes following trabeculectomy: longitudinal and localisation of change

    PubMed Central

    Kotecha, A.; Siriwardena, D.; Fitzke, F.; Hitchings, R.; Khaw, P.

    2001-01-01

    AIMS—To determine whether there were any changes in the optic disc at 2 years after trabeculectomy. To determine the factors that most influenced change and whether change was localised to any region of the optic disc.
METHODS—95 patients undergoing routine trabeculectomy as part of the ongoing Moorfields/MRC 5-fluorouracil trial were recruited into the study. Eyes were imaged preoperatively (4 (SD 3) weeks) with the Heidelberg retina tomograph (HRT, Heidelberg Engineering), and at 3 months (SD 2 weeks), 1 year (SD 1 month), and 2 years (SD 1 month) after surgery. Parameters investigated for change were rim area, rim volume, and maximum cup depth. The predefined segment analysis available on the HRT analysis software was used to determine segmental change.
RESULTS—The images of 70 patients were analysed. Intraocular pressure reduced from 22.25 (SD 3.76) mm Hg, at the time of preoperative imaging to 15.27 (SD 4.96) mm Hg at 3 months, 14.38 (SD 3.89) mm Hg at 1 year, and 13.80 (SD 3.54) mm Hg at 2 years after trabeculectomy. An increase in rim area and rim volume was present at all time points after surgery, but was only found to be statistically significant at 2 years after surgery. Maximum depth of cup reduced by month 3 and month 12, but showed a slight increase at 2 years after surgery, although this was still lower than the preoperative measure. Segmental analysis found a significant change in rim volume in the nasal, inferonasal, superonasal, and superotemporal regions at 2 years after surgery. No significant regional localisation for change was found at any other time point or in any other parameter investigated.
CONCLUSIONS—Reversal of disc cupping is present at 2 years after trabeculectomy. The factor most influencing change is reduction of intraocular pressure. Segmental analysis showed that change in rim volume was greatest in the nasal, inferonasal, superonasal and superotemporal regions at 2 years.

 PMID:11466255

  11. Heteropentanuclear Oxalato-Bridged nd–4f (n=4, 5) Metal Complexes with NO Ligand: Synthesis, Crystal Structures, Aqueous Stability and Antiproliferative Activity

    PubMed Central

    Kuhn, Paul-Steffen; Cremer, Laura; Gavriluta, Anatolie; Jovanović, Katarina K; Filipović, Lana; Hummer, Alfred A; Büchel, Gabriel E; Dojčinović, Biljana P; Meier, Samuel M; Rompel, Annette; Radulović, Siniša; Tommasino, Jean Bernard; Luneau, Dominique; Arion, Vladimir B

    2015-01-01

    A series of heteropentanuclear oxalate-bridged Ru(NO)-Ln (4d–4f) metal complexes of the general formula (nBu4N)5[Ln{RuCl3(μ-ox)(NO)}4], where Ln=Y (2), Gd (3), Tb (4), Dy (5) and ox=oxalate anion, were obtained by treatment of (nBu4N)2[RuCl3(ox)(NO)] (1) with the respective lanthanide salt in 4:1 molar ratio. The compounds were characterized by elemental analysis, IR spectroscopy, electrospray ionization (ESI) mass spectrometry, while 1, 2, and 5 were in addition analyzed by X-ray crystallography, 1 by Ru K-edge XAS and 1 and 2 by 13C NMR spectroscopy. X-ray diffraction showed that in 2 and 5 four complex anions [RuCl3(ox)(NO)]2− are coordinated to YIII and DyIII, respectively, with formation of [Ln{RuCl3(μ-ox)(NO)}4]5− (Ln=Y, Dy). While YIII is eight-coordinate in 2, DyIII is nine-coordinate in 5, with an additional coordination of an EtOH molecule. The negative charge is counterbalanced by five nBu4N+ ions present in the crystal structure. The stability of complexes 2 and 5 in aqueous medium was monitored by UV/Vis spectroscopy. The antiproliferative activity of ruthenium-lanthanide complexes 2–5 were assayed in two human cancer cell lines (HeLa and A549) and in a noncancerous cell line (MRC-5) and compared with those obtained for the previously reported Os(NO)-Ln (5d–4f) analogues (nBu4N)5[Ln{OsCl3(ox)(NO)}4] (Ln=Y (6), Gd (7), Tb (8), Dy (9)). Complexes 2–5 were found to be slightly more active than 1 in inhibiting the proliferation of HeLa and A549 cells, and significantly more cytotoxic than 5d–4f metal complexes 6–9 in terms of IC50 values. The highest antiproliferative activity with IC50 values of 20.0 and 22.4 μM was found for 4 in HeLa and A549 cell lines, respectively. These cytotoxicity results are in accord with the presented ICP-MS data, indicating five- to eightfold greater accumulation of ruthenium versus osmium in human A549 cancer cells. PMID:26260662

  12. Mobile phones and elderly people: a noisy communication.

    PubMed

    Stamato, Cláudia; Moraes, Anamaria de

    2012-01-01

    Knowing the users is capital for building user-friendly digital interfaces. One way to think about the users is considering their familiarity with this technology. This article presents the results of twelve interviews with elderly people residing in the so-called South Zone of Rio de Janeiro (Brazil) who have used mobile phones over at least one year. It is part of the Doctor's Thesis "Mobile phones for elderly people - usability for social integration" ("Celulares para idosos - usabilidade a serviço da integração social"), which is targeted at ascertaining if the current mobile phones are user-friendly for elderly people. Through the technique of Guided Interviews, we found usage time, criteria for choice of phones, reasons for changes, preferences, and manners of use. Preliminarily, we have noticed differences in the behavior of the participating users and performed a qualitative analysis according to groups of age and gender. PMID:22316743

  13. TECNOLOGÍAS DE INFORMACIÓN Y COMUNICACIÓN PARA LA PREVENCIÓN Y CONTROL DE LA INFECCIÓN POR EL VIH Y OTRAS ITS*

    PubMed Central

    Curioso, Walter H.; Blas, Magaly M.; Kurth, Ann E.; Klausner, Jeffrey D.

    2010-01-01

    Avances tecnológicos innovadores como Internet, computadoras personales de bolsillo, teléfonos celulares y otros equipos son un arsenal en crecimiento en el esfuerzo de impedir y controlar el VIH y otras infecciones de transmisión sexual (ITS). A pesar que existe una diversidad de tecnologías de información y comunicación en diferentes etapas de desarrollo para la prevención del VIH e ITS, la investigación en esta área se encuentra aún en crecimiento, y el impacto en la incidencia de enfermedad, las evaluaciones con diseños rigurosos y los estudios económicos todavía son muy limitados. Sin embargo, algunas de estas evidencias son prometedoras y poseen un gran potencial para su uso en nuestro medio. En este artículo hemos realizado una revisión sistemática de la literatura relacionada con el uso de la tecnología aplicada a la prevención y control del VIH e ITS. De ser usada apropiadamente, esta tecnología podría mejorar la vigilancia del VIH y otras ITS, diagnóstico, notificación de parejas, prevención, manejo clínico, y capacitación de profesionales de la salud. PMID:26339254

  14. Lead tolerance in plants: strategies for phytoremediation.

    PubMed

    Gupta, D K; Huang, H G; Corpas, F J

    2013-04-01

    Lead (Pb) is naturally occurring element whose distribution in the environment occurs because of its extensive use in paints, petrol, explosives, sludge, and industrial wastes. In plants, Pb uptake and translocation occurs, causing toxic effects resulting in decrease of biomass production. Commonly plants may prevent the toxic effect of heavy metals by induction of various celular mechanisms such as adsorption to the cell wall, compartmentation in vacuoles, enhancement of the active efflux, or induction of higher levels of metal chelates like a protein complex (metallothioneins and phytochelatins), organic (citrates), and inorganic (sulphides) complexes. Phyotochelains (PC) are synthesized from glutathione (GSH) and such synthesis is due to transpeptidation of γ-glutamyl cysteinyl dipeptides from GSH by the action of a constitutively present enzyme, PC synthase. Phytochelatin binds to Pb ions leading to sequestration of Pb ions in plants and thus serves as an important component of the detoxification mechanism in plants. At cellular level, Pb induces accumulation of reactive oxygen species (ROS), as a result of imbalanced ROS production and ROS scavenging processes by imposing oxidative stress. ROS include superoxide radical (O2(.-)), hydrogen peroxide (H2O2) and hydroxyl radical ((·)OH), which are necessary for the correct functioning of plants; however, in excess they caused damage to biomolecules, such as membrane lipids, proteins, and nucleic acids among others. To limit the detrimental impact of Pb, efficient strategies like phytoremediation are required. In this review, it will discuss recent advancement and potential application of plants for lead removal from the environment. PMID:23338995

  15. Labeling of lectin receptors during the cell cycle.

    PubMed

    Garrido, J

    1976-12-01

    Labeling of lectin receptors during the cell cycle. (Localizabión de receptores para lectinas durante el ciclo celular). Arch. Biol. Med. Exper. 10: 100-104, 1976. The topographic distribution of specific cell surface receptors for concanavalin A and wheat germ agglutinin was studied by ultrastructural labeling in the course of the cell cycle. C12TSV5 cells were synchronized by double thymidine block or mechanical selection (shakeoff). They were labeled by means of lectin-peroxidase techniques while in G1 S, G2 and M phases of the cycle. The results obtained were similar for both lectins employed. Interphase cells (G1 S, G2) present a stlihtly discontinous labeling pattern that is similar to the one observed on unsynchronized cells of the same line. Cells in mitosis, on the contrary, present a highly discontinous distribution of reaction product. This pattern disappears after the cells enters G1 and is not present on mitotic cells fixed in aldehyde prior to labeling. PMID:1030938

  16. Identification of duck plague virus by polymerase chain reaction

    USGS Publications Warehouse

    Hansen, W.R.; Brown, Sean E.; Nashold, S.W.; Knudson, D.L.

    1999-01-01

    indefinido y al gen para la proteina de la DNA polimerasa en otros virus herpes. Se encontraron tres o cuatro grupos de iniciadores especificos para el virus vacunal y para el 100% (7/7) de los a??slamientos de campo, pero no amplificaron el DNA del virus de hepatitis por cuerpos de inclusi??n de grullas. Se analiz?? la especificidad de un primer juego de iniciadores con moldes del genoma de otros virus herpes aviares, incluyendo el ?!guila dorada, ?!guila de cabeza blanca, lechuza de cuernos grandes, lechuza blanca, halc??n peregrino, palomas, aves psit?!cidas y pollos (virus de laringotraqueitis infecciosa), pero no se produjeron los productos finales. Por lo tanto, esta prueba de reacci??n en cadena por la polimerasa es altamente especifica para el DNA del virus. Dos grupos de iniciadores fueron capaces de detectar un fragmento de DNA de la cepa vacunal equivalente a cinco copias del genoma. Adem?!s, se determin?? que la proporci??n de la dosis infecciosa en cultivo celular y copias del genoma del virus vacunal de c??lulas de embri??n de pato infectadas era de 10 a 100 respectivamente, haciendo la prueba de la reacci??n en cadena por la polimerasa 20 veces m?!s sensible que el cultivo celular para detectar el virus. La velocidad, sensibilidad y especificidad de la prueba de la reacci??n en cadena por la polimerasa suministra una herramienta de investigaci??n y de diagn??stico altamente mejorada para el estudio de la epizootiolog?-a del virus.

  17. Contribuciones tecnicas para la medida de la contaminacion electromagnetica de microondas. Estudio en diversas poblaciones

    NASA Astrophysics Data System (ADS)

    Segura Garcia, Jaume

    La contaminacion ambiental por campos electromagneticos ha resultado ser en estos ultimos anos uno de los problemas mas acuciantes del panorama tecnologico y de salud publica. En el primero de los casos porque las inversiones realizadas son enormes y en el segundo porque cada vez es mayor el numero de articulos, "technical reports" e informes medicos que afirman la existencia de una cierta causalidad, aunque sea debil, entre los campos electromagneticos y ciertos cuadros sintomatologicos. En nuestro caso, hemos dedicado bastantes esfuerzos a investigar el llamado "sindrome de radiofrecuencia / microondas", denominado asi en la literatura cientifica por presentarse en operarios de estaciones de radar y en trabajadores de potentes emisoras de radio y television. En esta memoria presentamos un resumen del trabajo realizado durante los ultimos anos en la medida de la contaminacion electromagnetica ambiental asociado a las comunicaciones inalambricas. En ella se recogen los fundamentos fisicos y propiedades de las ondas electromagneticas, la tecnologia empleada en los sistemas de telefonia celular y los antecedentes relativos a la investigacion de la interaccion de las ondas electromagneticas con organismos vivos. Se desarrolla un procedimiento de medida que ha conducido a la elaboracion de los primeros "mapas de radiofrecuencia" similares, en el aspecto descriptivo, a los mapas de ruido desarrollados en el area de la contaminacion acustica. Por ultimo, se analiza la respuesta subjetiva de los residentes, personas que viven en el entorno de cobertura de las estaciones base de telefonia movil y que se ven sometidos a determinados niveles de radiacion electromagnetica, con el fin de situar este fenomeno al nivel que le corresponde en el ambito de la respuesta subjetiva ciudadana.

  18. Echocardiographic Parameters and Survival in Chagas Heart Disease with Severe Systolic Dysfunction

    PubMed Central

    Rassi, Daniela do Carmo; Vieira, Marcelo Luiz Campos; Arruda, Ana Lúcia Martins; Hotta, Viviane Tiemi; Furtado, Rogério Gomes; Rassi, Danilo Teixeira; Rassi, Salvador

    2014-01-01

    Background Echocardiography provides important information on the cardiac evaluation of patients with heart failure. The identification of echocardiographic parameters in severe Chagas heart disease would help implement treatment and assess prognosis. Objective To correlate echocardiographic parameters with the endpoint cardiovascular mortality in patients with ejection fraction < 35%. Methods Study with retrospective analysis of pre-specified echocardiographic parameters prospectively collected from 60 patients included in the Multicenter Randomized Trial of Cell Therapy in Patients with Heart Diseases (Estudo Multicêntrico Randomizado de Terapia Celular em Cardiopatias) - Chagas heart disease arm. The following parameters were collected: left ventricular systolic and diastolic diameters and volumes; ejection fraction; left atrial diameter; left atrial volume; indexed left atrial volume; systolic pulmonary artery pressure; integral of the aortic flow velocity; myocardial performance index; rate of increase of left ventricular pressure; isovolumic relaxation time; E, A, Em, Am and Sm wave velocities; E wave deceleration time; E/A and E/Em ratios; and mitral regurgitation. Results In the mean 24.18-month follow-up, 27 patients died. The mean ejection fraction was 26.6 ± 5.34%. In the multivariate analysis, the parameters ejection fraction (HR = 1.114; p = 0.3704), indexed left atrial volume (HR = 1.033; p < 0.0001) and E/Em ratio (HR = 0.95; p = 0.1261) were excluded. The indexed left atrial volume was an independent predictor in relation to the endpoint, and values > 70.71 mL/m2 were associated with a significant increase in mortality (log rank p < 0.0001). Conclusion The indexed left atrial volume was the only independent predictor of mortality in this population of Chagasic patients with severe systolic dysfunction. PMID:24553982

  19. Collective Behaviors in Spatially Extended Systems with Local Interactions and Synchronous Updating

    NASA Astrophysics Data System (ADS)

    ChatÉ, H.; Manneville, P.

    1992-01-01

    Assessing the extent to which dynamical systems with many degrees of freedom can be described within a thermodynamics formalism is a problem that currently attracts much attention. In this context, synchronously updated regular lattices of identical, chaotic elements with local interactions are promising models for which statistical mechanics may be hoped to provide some insights. This article presents a large class of cellular automata rules and coupled map lattices of the above type in space dimensions d = 2 to 6.Such simple models can be approached by a mean-field approximation which usually reduces the dynamics to that of a map governing the evolution of some extensive density. While this approximation is exact in the d = infty limit, where macroscopic variables must display the time-dependent behavior of the mean-field map, basic intuition from equilibrium statistical mechanics rules out any such behavior in a low-dimensional systems, since it would involve the collective motion of locally disordered elements.The models studied are chosen to be as close as possible to mean-field conditions, i.e., rather high space dimension, large connectivity, and equal-weight coupling between sites. While the mean-field evolution is never observed, a new type of non-trivial collective behavior is found, at odds with the predictions of equilibrium statistical mechanics. Both in the cellular automata models and in the coupled map lattices, macroscopic variables frequently display a non-transient, time-dependent, low-dimensional dynamics emerging out of local disorder. Striking examples are period 3 cycles in two-state cellular automata and a Hopf bifurcation for a d = 5 lattice of coupled logistic maps. An extensive account of the phenomenology is given, including a catalog of behaviors, classification tables for the celular automata rules, and bifurcation diagrams for the coupled map lattices.The observed underlying dynamics is accompanied by an intrinsic quasi-Gaussian noise

  20. Alterações Induzidas Pelo Exercício no Número, Função e Morfologia de Monócitos de Ratos

    PubMed Central

    GUERESCHI, MARCIA G.; PRESTES, JONATO; DONATTO, FELIPE F.; DIAS, RODRIGO; FROLLINI, ANELENA B.; FERREIRA, CLÍLTON KO.; CAVAGLIERI, CLAUDIA R.; PALANCH, ADRIANNE C.

    2008-01-01

    O propósito desse estudo foi verificar as alterações histofisiológicas em monócitos e macrófagos induzidas por curtos períodos de exercícios. Ratos Wistar (idade = 2 meses, peso corporal = 200g) foram divididos em sete grupos (n=6 cada): controle sedentário (C), grupos exercitados (natação) na intensidade leve por 5 (5L), 10 (10L) e 15 minutos (15L), e grupos exercitados em intensidade moderada por 5 (5M), 10 (10M) e 15 minutes (15M). Na intensidade moderada os animais carregaram uma carga de 5% do peso corporal dos mesmos em seus respectivos dorsos. Os monócitos sangüíneos foram avaliados quanto à quantidade e morfologia e os macrófagos peritoneais foram analisados quanto à quantidade e atividade fagocitária. Os dados foram analisados usando ANOVA e Tukey’s post hoc test (p ≤ 0,05). Os grupos de intensidade leve e 5M apresentaram aumento nos níveis dos monócitos quando comparados com o controle. Foi observado aumento na área celular dos monócitos para os grupos 5L, 10L, 5M e 10M; a área nuclear aumentou para os grupos 10L, 5M e 10M em comparação com o controle. Houve aumento nos macrófagos peritoneais para os grupos 15L, 10M, 15M e diminuição no grupo 5M. A capacidade fagocitária dos macrófagos aumentou nos grupos de intensidade leve e para o grupo 10M. O exercício realizado por curtos períodos modulou o número e função dos macrófagos, assim como o número e morfologia dos monócitos, sendo tais alterações dependentes da intensidade. A soma das respostas agudas observadas nesse estudo pode exercer um efeito protetor contra doenças, podendo ser utilizada para a melhora da saúde e qualidade de vida.

  1. [Not Available].

    PubMed

    Martínez de Victoria, Emilio

    2016-01-01

    El calcio (Ca) es el elemento mineral más abundante en nuestro organismo, ya que forma parte importante del esqueleto y los dientes. Supone alrededor del 2% del peso corporal. Las funciones del calcio son: a) funciones esqueléticas y b) funciones reguladoras. El hueso está formado por una matriz proteica que se mineraliza de forma mayoritaria con calcio (el más abundante), fosfato y magnesio; para ello es imprescindible un correcto aporte dietético de Ca, fósforo y vitamina D. El Ca iónico (Ca2+) es un componente celular imprescindible para mantener y/o realizar las diferentes funciones especializadas de prácticamente todas las células del organismo. Debido a sus importantes funciones, el Ca2+ debe estar estrechamente regulado, manteniéndose sus concentraciones plasmáticas dentro de unos rangos estrechos. Para ello existe una respuesta precisa frente a la hipocalcemia o la hipercalcemia, en la que intervienen la parathormona, el calcitriol, la calcitonina y la vitamina K. Las ingestas de Ca en la población española son bajas en un porcentaje significativo de la población, especialmente en adultos mayores, sobre todo en las mujeres. La principal fuente de Ca en la dieta son la leche y todos sus derivados. Las verduras de hoja verde, frutas y legumbres pueden tener importancia como fuentes de Ca en un patrón alimentario mediterráneo. La biodisponibilidad del Ca de la dieta depende de factores fisiológicos y dietéticos. Los fisiológicos incluyen la edad, situación fisiológica (gestación y lactación), el estatus de Ca y vitamina D y la enfermedad. Diversos estudios relacionan la ingesta de Ca en la dieta y distintas enfermedades, como osteoporosis, cáncer, enfermedades cardiovasculares y obesidad. PMID:27571860

  2. Concepciones Alternativas de "Fotosintesis" en estudiantes Universitarios del curso basico de Biologia y posibles correcciones con el Modelo Educativo MODEF

    NASA Astrophysics Data System (ADS)

    De Jesus Roman, Sandra

    Concepciones Alternativas de Fotosíntesis en estudiantes Universitariosdel curso básico de Biología y posibles correcciones con el Modelo Educativo MODEF El modelo educativo para la enseñanza de Fotosíntesis (MODEF) se implantó para trabajar el problema de las concepciones alternativas (CA) en un curso de Biología General. Se evaluaron los resultados en cuanto al logro del aprendizaje significativo. La pregunta central de la investigación fue: ¿Cómo aporta el modelo educativo en la didáctica y comprensión del tema de fotosíntesis? Se efectuó una investigación acción con una fase cuantitativa y una cualitativa. Para la fase cuantitativa se elaboró una prueba para determinar las concepciones alternativas, se validó y se sometió a los estudiantes que participaron en el estudio antes y después de ofrecer la unidad de metabolismo celular. Los participantes eran estudiantes de primer año de la Universidad de Puerto Rico en Bayamón (UPRB). Se llevó a cabo un análisis de consistencia interna de la prueba mediante el método Alfa de Cronbach. Se analizaron las contestaciones a cada pregunta mediante la prueba de Ji cuadrado de contingencia, se efectuó la prueba de t y el coeficiente r de Pearson. La fase cualitativa incluyó la observación participativa de la investigadora- profesora, las reflexiones de los estudiantes y la información de las entrevistas semi-estructuradas que se realizaron a tres estudiantes del curso. El análisis se llevó a cabo mediante el Modelo de Wolcott. Se trabajaron diez CA de las cuales siete fueron corregidas mediante el Modelo MODEF. Las actividades más importantes para el proceso de aprendizaje incluyeron el trabajo de investigación o búsqueda de información para hacer una presentación digital, la elaboración de tablas, los mapas de conceptos, el uso de visuales o videos y las analogías para explicar conceptos o procesos. En conclusión: se recomienda el uso del Modelo MODEF para la discusión del tema de