Science.gov

Sample records for linked conducting polymers

  1. Thermally conductive polymers

    NASA Technical Reports Server (NTRS)

    Byrd, N. R.; Jenkins, R. K.; Lister, J. L. (Inventor)

    1971-01-01

    A thermally conductive polymer is provided having physical and chemical properties suited to use as a medium for potting electrical components. The polymer is prepared from hydroquinone, phenol, and formaldehyde, by conventional procedures employed for the preparation of phenol-formaldehyde resins. While the proportions of the monomers can be varied, a preferred polymer is formed from the monomers in a 1:1:2.4 molar or ratio of hydroquinone:phenol:formaldehyde.

  2. Water soluble conductive polymers

    SciTech Connect

    Aldissi, M.

    1989-11-14

    This patent describes polymers which are soluble in water and are electrically conductive. The monomer repeat unit is a thiophene or pyrrole molecule having an alkyl group substituted for the hydrogen atom located in the beta position of the thiophene or pyrrole ring and having a surfactant molecule at the end of the alkyl chain. Polymers of this class having 8 or more carbon atoms in the alkyl chain exhibit liquid crystalline behavior, resulting in high electrical anisotropy. The monomer-to-monomer bonds are located between the carbon atoms which are adjacent to the sulfur or nitrogen atoms. The number of carbon atoms in the alkyl group may vary from 1 to 20 carbon atoms. The surfactant molecule consists of a sulfonate group, or a sulfate group, or a carboxylate group, and hydrogen or an alkali metal. Negative ions from a supporting electrolyte which may be used in the electrochemical synthesis of a polymer may be incorporated into the polymer during the synthesis and serve as a dopant to increase the conductivity.

  3. Conducting polymer ultracapacitor

    DOEpatents

    Shi, Steven Z.; Davey, John R.; Gottesfeld, Shimshon; Ren, Xiaoming

    2002-01-01

    A sealed ultracapacitor assembly is formed with first and second electrodes of first and second conducting polymers electrodeposited on porous carbon paper substrates, where the first and second electrodes each define first and second exterior surfaces and first and second opposing surfaces. First and second current collector plates are bonded to the first and second exterior surfaces, respectively. A porous membrane separates the first and second opposing surfaces, with a liquid electrolyte impregnating the insulating membrane. A gasket formed of a thermoplastic material surrounds the first and second electrodes and seals between the first and second current collector plates for containing the liquid electrolyte.

  4. Electrical conduction in polymer dielectrics

    NASA Technical Reports Server (NTRS)

    Cotts, D. B.

    1985-01-01

    The use of polymer dielectrics with moderate resistivities could reduce or eliminate problems associated with spacecraft charging. The processes responsible for conduction and the properties of electroactive polymers are reviewed, and correlations drawn between molecular structure and electrical conductivity. These structure-property relationships led to the development of several new electroactive polymer compositions and the identification of several systems that have the requisite thermal, mechanical, environmental and electrical properties for use in spacecraft.

  5. Highly Conductive Ionic-Liquid Gels Prepared with Orthogonal Double Networks of a Low-Molecular-Weight Gelator and Cross-Linked Polymer.

    PubMed

    Kataoka, Toshikazu; Ishioka, Yumi; Mizuhata, Minoru; Minami, Hideto; Maruyama, Tatsuo

    2015-10-21

    We prepared a heterogeneous double-network (DN) ionogel containing a low-molecular-weight gelator network and a polymer network that can exhibit high ionic conductivity and high mechanical strength. An imidazolium-based ionic liquid was first gelated by the molecular self-assembly of a low-molecular-weight gelator (benzenetricarboxamide derivative), and methyl methacrylate was polymerized with a cross-linker to form a cross-linked poly(methyl methacrylate) (PMMA) network within the ionogel. Microscopic observation and calorimetric measurement revealed that the fibrous network of the low-molecular-weight gelator was maintained in the DN ionogel. The PMMA network strengthened the ionogel of the low-molecular-weight gelator and allowed us to handle the ionogel using tweezers. The orthogonal DNs produced ionogels with a broad range of storage elastic moduli. DN ionogels with low PMMA concentrations exhibited high ionic conductivity that was comparable to that of a neat ionic liquid. The present study demonstrates that the ionic conductivities of the DN and single-network, low-molecular-weight gelator or polymer ionogels strongly depended on their storage elastic moduli. PMID:26426303

  6. Conductive polymer-based material

    DOEpatents

    McDonald, William F.; Koren, Amy B.; Dourado, Sunil K.; Dulebohn, Joel I.; Hanchar, Robert J.

    2007-04-17

    Disclosed are polymer-based coatings and materials comprising (i) a polymeric composition including a polymer having side chains along a backbone forming the polymer, at least two of the side chains being substituted with a heteroatom selected from oxygen, nitrogen, sulfur, and phosphorus and combinations thereof; and (ii) a plurality of metal species distributed within the polymer. At least a portion of the heteroatoms may form part of a chelation complex with some or all of the metal species. In many embodiments, the metal species are present in a sufficient concentration to provide a conductive material, e.g., as a conductive coating on a substrate. The conductive materials may be useful as the thin film conducting or semi-conducting layers in organic electronic devices such as organic electroluminescent devices and organic thin film transistors.

  7. Electrically conductive polymer concrete overlays

    NASA Astrophysics Data System (ADS)

    Fontana, J. J.; Webster, R. P.

    1984-08-01

    The use of cathodic protection to prevent the corrosion of reinforcing steel in concrete structures has been well established. Application of a durable, skid-resistant electrically conductive polymer concrete overlay would advance the use of cathodic protection for the highway industry. Laboratory studies indicate that electrically conductive polymer concrete overlays using conductive fillers, such as calcined coke breeze, in conjunction with polyester or vinyl ester resins have resistivities of 1 to 10 ohm-cm. Both multiple-layer and premixed mortar-type overlays were made. Shear bond strengths of the conductive overlays to concrete substrates vary from 600 to 1300 psi, with the premixed overlays having bond strengths 50 to 100% higher than the multiple-layer overlays.

  8. The Workshop on Conductive Polymers: Final Report

    DOE R&D Accomplishments Database

    1985-10-01

    Reports are made by groups on: polyacetylene, polyphenylene, polyaniline, and related systems; molecular, crystallographic, and defect structures in conducting polymers; heterocyclic polymers; synthesis of new and improved conducting polymers; future applications possibilities for conducting polymers; and challenges for improved understanding of properties. (DLC)

  9. The workshop on conductive polymers: Final report

    SciTech Connect

    Not Available

    1985-01-01

    Reports are made by groups on: polyacetylene, polyphenylene, polyaniline, and related systems; molecular, crystallographic, and defect structures in conducting polymers; heterocyclic polymers; synthesis of new and improved conducting polymers; future applications possibilities for conducting polymers; and challenges for improved understanding of properties. (DLC)

  10. Water-soluble conductive polymers

    DOEpatents

    Aldissi, M.

    1988-02-12

    Polymers which are soluble in water and are electrically conductive. The monomer repeat unit is a thiophene or pyrrole molecule having an alkyl group substituted for the hydrogen atom located in the beta position of the thiophene or pyrrole ring and having a surfactant molecule at the end of the alkyl chain. Polymers of this class having 8 or more carbon atoms in the alkyl chain exhibit liquid crystalline behavior, resulting in high electrical anisotropy. The monomer-to-monomer bonds are located between the carbon atoms which are adjacent to the sulfur or nitrogen atoms. The number of carbon atoms in the alkyl group may vary from 1 to 20 carbon atoms. The surfactant molecule consists of a sulfonate group, or a sulfate group, or a carboxylate group, and hydrogen or an alkali metal. Negative ions from a supporting electrolyte which may be used in the electrochemical synthesis of a polymer may be incorporated into the polymer during the synthesis and serve as a dopant to increase the conductivity.

  11. Water-soluble conductive polymers

    DOEpatents

    Aldissi, Mahmoud

    1989-01-01

    Polymers which are soluble in water and are electrically conductive. The monomer repeat unit is a thiophene or pyrrole molecule having an alkyl group substituted for the hydrogen atom located in the beta position of the thiophene or pyrrole ring and having a surfactant molecule at the end of the alkyl chain. Polymers of this class having 8 or more carbon atoms in the alkyl chain exhibit liquid crystalline behavior, resulting in high electrical anisotropy. The monomer-to-monomer bonds are located between the carbon atoms which are adjacent to the sulfur or nitrogen atoms. The number of carbon atoms in the alkyl group may vary from 1 to 20 carbon atoms. The surfactant molecule consists of a sulfonate group, or a sulfate group, or a carboxylate group, and hydrogen or an alkali metal. Negative ions from a supporting electrolyte which may be used in the electrochemical synthesis of a polymer may be incorporated into the polymer during the synthesis and serve as a dopant to increase the conductivity.

  12. Water-soluble conductive polymers

    DOEpatents

    Aldissi, Mahmoud

    1990-01-01

    Polymers which are soluble in water and are electrically conductive. The monomer repeat unit is a thiophene or pyrrole molecule having an alkyl group substituted for the hydrogen atom located in the beta position of the thiophene or pyrrole ring and having a surfactant molecule at the end of the alkyl chain. Polymers of this class having 8 or more carbon atoms in the alkyl chain exhibit liquid crystalline behavior, resulting in high electrical anisotropy. The monomer-to-monomer bonds are located between the carbon atoms which are adjacent to the sulfur or nitrogen atoms. The number of carbon atoms in the alkyl group may vary from 1 to 20 carbon atoms. The surfactant molecule consists of a sulfonate group, or a sulfate group, or a carboxylate group, and hydrogen or an alkali metal. Negative ions from a supporting electrolyte which may be used in the electrochemical synthesis of a polymer may be incorporated into the polymer during the synthesis and serve as a dopant to increase the conductivity.

  13. Water-soluble conductive polymers

    SciTech Connect

    Aldissi, M.

    1990-05-29

    This patent describes polymers which are soluble in water and are electrically conductive. The monomer repeat unit is a thiophene or pyrrole molecule having an alkyl group substituted for the hydrogen atom located in the beta position of the thiophene or pyrrole ring and having a surfactant molecule at the end of the alkyl chain. Polymers of this class having 8 or more carbon atoms in the alkyl chain exhibit liquid crystalline behavior, resulting in high electrical anisotropy. The monomer-to-monomer bonds are located between the carbon atoms which are adjacent to the sulfur or nitrogen atoms. The number of carbon atoms in the alkyl group may vary from 1 to 20 carbon atoms. The surfactant molecule consists of a sulfonate group, or a sulfate group, or a carboxylate group, and hydrogen or an alkali metal. Negative ions from a supporting electrolyte which may be used in the electrochemical synthesis of a polymer may be incorporated into the polymer during the synthesis and serve as a dopant to increase the conductivity.

  14. Electrically conductive polymer concrete coatings

    DOEpatents

    Fontana, J.J.; Elling, D.; Reams, W.

    1988-05-26

    A sprayable electrically conductive polymer concrete coating for vertical and overhead applications is described. The coating is permeable yet has low electrical resistivity (<10 ohm-cm), good bond strength to concrete substrates, and good weatherability. A preferred formulation contains about 60 wt% calcined coke breeze, 40 wt% vinyl ester resin with 3.5 wt% modified bentonite clay. Such formulations apply evenly and provide enough rigidity for vertical or overhead structures so there is no drip or sag. 4 tabs.

  15. Electrically conductive polymer concrete coatings

    DOEpatents

    Fontana, J.J.; Elling, D.; Reams, W.

    1990-03-13

    A sprayable electrically conductive polymer concrete coating for vertical d overhead applications is described. The coating is permeable yet has low electrical resistivity (<10 ohm-cm), good bond strength to concrete substrates, and good weatherability. A preferred formulation contains about 60 wt % calcined coke breeze, 40 wt % vinyl ester with 3.5 wt % modified bentonite clay. Such formulations apply evenly and provide enough rigidity for vertical or overhead structures so there is no drip or sag.

  16. Electrically conductive polymer concrete coatings

    DOEpatents

    Fontana, Jack J.; Elling, David; Reams, Walter

    1990-01-01

    A sprayable electrically conductive polymer concrete coating for vertical d overhead applications is described. The coating is permeable yet has low electrical resistivity (<10 ohm-cm), good bond strength to concrete substrates, and good weatherability. A preferred formulation contains about 60 wt % calcined coke breeze, 40 wt % vinyl ester with 3.5 wt % modified bentonite clay. Such formulations apply evenly and provide enough rigidity for vertical or overhead structures so there is no drip or sag.

  17. Highly cross-linked nanoporous polymers

    DOEpatents

    Steckle, Jr., Warren P.; Apen, Paul G.; Mitchell, Michael A.

    1997-01-01

    Condensation polymerization followed by a supercritical extraction step can be used to obtain highly cross-linked nanoporous polymers with high surface area, controlled pore sizes and rigid structural integrity. The invention polymers are useful for applications requiring separation membranes.

  18. Highly cross-linked nanoporous polymers

    DOEpatents

    Steckle, Jr., Warren P.; Apen, Paul G.; Mitchell, Michael A.

    1998-01-01

    Condensation polymerization followed by a supercritical extraction step can be used to obtain highly cross-linked nanoporous polymers with high surface area, controlled pore sizes and rigid structural integrity. The invention polymers are useful for applications requiring separation membranes.

  19. Comparing proton conductivity of polymer electrolytes by percent conducting volume

    SciTech Connect

    Kim, Yu Seung; Pivovar, Bryan

    2009-01-01

    Proton conductivity of sulfonated polymers plays a key role in polymer electrolyte membrane fuel cells. Mass based water uptake and ion exchange capacity of sulfonated polymers have been failed to correlating their proton conductivity. In this paper, we report a length scale parameter, percent conductivity volume, which is rather simply obtained from the chemical structure of polymer to compare proton conductivity of wholly aromatic sulfonated polymer perflurosulfonic acid. Morphology effect on proton conductivity at lower RH conditions is discussed using the percent conductivity volume parameter.

  20. Conducting polymer based electrochemical biosensors.

    PubMed

    Aydemir, Nihan; Malmström, Jenny; Travas-Sejdic, Jadranka

    2016-03-28

    Conducting polymer (CP)-based electrochemical biosensors have gained great attention as such biosensor platforms are easy and cost-effective to fabricate, and provide a direct electrical readout for the presence of biological analytes with high sensitivity and selectivity. CP materials themselves are both sensing elements and transducers of the biological recognition event at the same time, simplifying sensor designs. This review summarizes the advances in electrochemical biosensors based on CPs. Recognition probe immobilisation techniques, transduction mechanisms and detection of various target biomolecules have been discussed in detail. Efforts to miniaturize CP-based electrochemical biosensors and fabrication of sensor arrays are also briefly reviewed. PMID:26948182

  1. Electrically conducting polymers for aerospace applications

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B.; Gaier, James R.; Good, Brian S.; Sharp, G. R.; Meador, Michael A.

    1991-01-01

    Current research on electrically conducting polymers from 1974 to the present is reviewed focusing on the development of materials for aeronautic and space applications. Problems discussed include extended pi-systems, pyrolytic polymers, charge-transfer systems, conductive matrix resins for composite materials, and prospects for the use of conducting polymers in space photovoltaics.

  2. Electronically conductive polymer composites and microstructures

    SciTech Connect

    Van Dyke, L.S.

    1993-01-01

    Composites of electronically conductive polymers with insulating host materials are investigated. A template synthesis method was developed for the production of electronically conductive polymer microstructures. In template synthesis the pores of a porous host membrane act as templates for the polymerization of a conductive polymer. The template synthetic method can be used to form either solid microfibrils or hollow microtubules. The electrochemical properties of conductive polymers produced via the template synthesis method are superior to those of conventionally synthesized conductive polymers. Electronically conductive polymers are used to impart conductivity to non-conductive materials. Two different approaches are used. First, thin film composites of conductive polymers with fluoropolymers are made by the polymerization of conductive polymers onto fluoropolymer films. Modification of the fluoropolymer surface prior to conductive polymer polymerization is necessary to obtain good adhesion between the two materials. The difference in adhesion of the conductive polymer to the modified and unmodified fluoropolymer surfaces can be used to pattern the conductive polymer coating. Patterning of the conductive polymer coating can alternatively be done via UV laser ablation of the conductive polymer. The second method by which conductive polymers were used to impart conductivity to an insulating polymer was via the formation of a graft copolymer. In this approach, heterocyclic monomers grafted to an insulating polyphosphazene backbone were polymerized to yield semiconductive materials. Finally the measurement of electrolyte concentration in polypyrrole and the effects of hydroxide anion on the electrochemical and electrical properties of polypyrrole are described. It is shown that treatment of polypyrrole with hydroxide anion increases the potential window over which polypyrrole is a good electronic conductor.

  3. Ion-Conducting Organic/Inorganic Polymers

    NASA Technical Reports Server (NTRS)

    Kinder, James D.; Meador, Mary Ann B.

    2007-01-01

    Ion-conducting polymers that are hybrids of organic and inorganic moieties and that are suitable for forming into solid-electrolyte membranes have been invented in an effort to improve upon the polymeric materials that have been used previously for such membranes. Examples of the prior materials include perfluorosulfonic acid-based formulations, polybenzimidazoles, sulfonated polyetherketone, sulfonated naphthalenic polyimides, and polyethylene oxide (PEO)-based formulations. Relative to the prior materials, the polymers of the present invention offer greater dimensional stability, greater ease of formation into mechanically resilient films, and acceptably high ionic conductivities over wider temperature ranges. Devices in which films made of these ion-conducting organic/inorganic polymers could be used include fuel cells, lithium batteries, chemical sensors, electrochemical capacitors, electrochromic windows and display devices, and analog memory devices. The synthesis of a polymer of this type (see Figure 1) starts with a reaction between an epoxide-functionalized alkoxysilane and a diamine. The product of this reaction is polymerized by hydrolysis and condensation of the alkoxysilane group, producing a molecular network that contains both organic and inorganic (silica) links. The silica in the network contributes to the ionic conductivity and to the desired thermal and mechanical properties. Examples of other diamines that have been used in the reaction sequence of Figure 1 are shown in Figure 2. One can use any of these diamines or any combination of them in proportions chosen to impart desired properties to the finished product. Alternatively or in addition, one could similarly vary the functionality of the alkoxysilane to obtain desired properties. The variety of available alkoxysilanes and diamines thus affords flexibility to optimize the organic/inorganic polymer for a given application.

  4. Advances in inherently conducting polymers

    SciTech Connect

    Aldissi, M.

    1987-09-01

    The discovery of polyacetylene as the prototype material led to extensive research on its synythesis and characterization. The techniques that emerged as the most important and promising ones are those that dealt with molecular orientation and that resulted in conductivities almost as high as that of copper. The study of dozens of other materials followed. Interest in conducting polymers stems from their nonclassical optical and electronic properties as well as their potential technological applications. However, some of the factors currently limiting their use are the lack of long-term stability and the need to develop conventional low-cost techniques for easy processing. Therefore, research was extended toward solving these problems, and progress has been recently made in that direction. The synthesis of new materials such as stable and easily processable alkylthiophenes, water-soluble polymers, and multicomponent systems, including copolymers and composites, constitutes an important step forward in the area of synthetic metals. However, a full understanding of materials chemistry and properties requires more work in the years to come. Although, few small-scale applications have proven to be successful, long-term stability and applicability tests are needed before their commercial use becomes reality.

  5. Conducting Polymers for Neutron Detection

    SciTech Connect

    Kimblin, Clare; Miller, Kirk; Vogel, Bob; Quam, Bill; McHugh, Harry; Anthony, Glen; Mike, Grover

    2007-12-01

    Conjugated polymers have emerged as an attractive technology for large-area electronic applications. As organic semiconductors, they can be used to make large-area arrays of diodes or transistors using fabrication techniques developed for polymer coatings, such as spraying and screen-printing. We have demonstrated both neutron and alpha detection using diodes made from conjugated polymers and have done preliminary work to integrate a boron carbide layer into the conventional polymer device structure to capture thermal neutrons. The polymer devices appear to be insensitive to gamma rays, due to their small physical thickness and low atomic number.

  6. Mixed ionic and electronic conductivity in polymers

    SciTech Connect

    Shriver, D.F.

    1990-06-01

    The conductivity of iodine-containing polymers was investigated and conductivity along polyiodide chains is implicated by the concentration dependence of the conductivity data and spectroscopic measurements. On the theoretical side, entropy based models were developed to describe ion motion in polymers.

  7. Highly cross-linked nanoporous polymers

    DOEpatents

    Steckle, W.P. Jr.; Apen, P.G.; Mitchell, M.A.

    1998-01-20

    Condensation polymerization followed by a supercritical extraction step can be used to obtain highly cross-linked nanoporous polymers with high surface area, controlled pore sizes and rigid structural integrity. The invention polymers are useful for applications requiring separation membranes. 1 fig.

  8. Nanostructured polymer membranes for proton conduction

    DOEpatents

    Balsara, Nitash Pervez; Park, Moon Jeong

    2013-06-18

    Polymers having an improved ability to entrain water are characterized, in some embodiments, by unusual humidity-induced phase transitions. The described polymers (e.g., hydrophilically functionalized block copolymers) have a disordered state and one or more ordered states (e.g., a lamellar state, a gyroid state, etc.). In one aspect, the polymers are capable of undergoing a disorder-to-order transition while the polymer is exposed to an increasing temperature at a constant relative humidity. In some aspects the polymer includes a plurality of portions, wherein a first portion forms proton-conductive channels within the membrane and wherein the channels have a width of less than about 6 nm. The described polymers are capable of entraining and preserving water at high temperature and low humidity. Surprisingly, in some embodiments, the polymers are capable of entraining greater amounts of water with the increase of temperature. The polymers can be used in Polymer Electrolyte Membranes in fuel cells.

  9. Ionic conduction in polymer composite electrolytes

    NASA Astrophysics Data System (ADS)

    Dam, Tapabrata; Tripathy, Satya N.; Paluch, M.; Jena, S.; Pradhan, D. K.

    2016-05-01

    Conductivity and structural relaxation has been explored from modulus and dielectric loss formalisms respectively for a series of polymer composite electrolytes with zirconia as filler. The temperature dependence of conductivity followed Vogel-Tamman-Fulcher (VTF) behavior, which suggested a close correlation between conductivity and the segmental relaxation process in polymer electrolytes. Vogel temperature (T0) plays significant role in ion conduction process in these kind of materials.

  10. Biochemical synthesis of water soluble conducting polymers

    NASA Astrophysics Data System (ADS)

    Bruno, Ferdinando F.; Bernabei, Manuele

    2016-05-01

    An efficient biomimetic route for the synthesis of conducting polymers/copolymers complexed with lignin sulfonate and sodium (polystyrenesulfonate) (SPS) will be presented. This polyelectrolyte assisted PEG-hematin or horseradish peroxidase catalyzed polymerization of pyrrole (PYR), 3,4 ethyldioxithiophene (EDOT) and aniline has provided a route to synthesize water-soluble conducting polymers/copolymers under acidic conditions. The UV-vis, FTIR, conductivity and cyclic voltammetry studies for the polymers/copolymer complex indicated the presence of a thermally stable and electroactive polymers. Moreover, the use of water-soluble templates, used as well as dopants, provided a unique combination of properties such as high electronic conductivity, and processability. These polymers/copolymers are nowadays tested/evaluated for antirust features on airplanes and helicopters. However, other electronic applications, such as photovoltaics, for transparent conductive polyaniline, actuators, for polypyrrole, and antistatic films, for polyEDOT, will be proposed.

  11. Morphology in electrochemically grown conducting polymer films

    DOEpatents

    Rubinstein, Israel; Gottesfeld, Shimshon; Sabatani, Eyal

    1992-01-01

    A conducting polymer film with an improved space filling is formed on a metal electrode surface. A self-assembling monolayer is formed directly on the metal surface where the monolayer has a first functional group that binds to the metal surface and a second chemical group that forms a chemical bonding site for molecules forming the conducting polymer. The conducting polymer is then conventioonally deposited by electrochemical deposition. In one example, a conducting film of polyaniline is formed on a gold electrode surface with an intermediate monolayer of p-aminothiophenol.

  12. Morphology in electrochemically grown conducting polymer films

    DOEpatents

    Rubinstein, I.; Gottesfeld, S.; Sabatani, E.

    1992-04-28

    A conducting polymer film with an improved space filling is formed on a metal electrode surface. A self-assembling monolayer is formed directly on the metal surface where the monolayer has a first functional group that binds to the metal surface and a second chemical group that forms a chemical bonding site for molecules forming the conducting polymer. The conducting polymer is then conventionally deposited by electrochemical deposition. In one example, a conducting film of polyaniline is formed on a gold electrode surface with an intermediate monolayer of p-aminothiophenol. 2 figs.

  13. Dual function conducting polymer diodes

    DOEpatents

    Heeger, Alan J.; Yu, Gang

    1996-01-01

    Dual function diodes based on conjugated organic polymer active layers are disclosed. When positively biased the diodes function as light emitters. When negatively biased they are highly efficient photodiodes. Methods of preparation and use of these diodes in displays and input/output devices are also disclosed.

  14. Electronically conducting polymers with silver grains

    NASA Technical Reports Server (NTRS)

    Murphy, Oliver J. (Inventor); Hitchens, G. Duncan (Inventor); Hodko, Dolibor (Inventor)

    1999-01-01

    The present invention provides electronically conducting polymer films formed from photosensitive formulations of pyrrole and an electron acceptor that have been selectively exposed to UV light, laser light, or electron beams. The formulations may include photoinitiators, flexibilizers, solvents and the like. These solutions can be used in applications including printed circuit boards and through-hole plating and enable direct metallization processes on non-conducting substrates. After forming the conductive polymer patterns, a printed wiring board can be formed by sensitizing the polymer with palladium and electrolytically depositing copper.

  15. Application of conducting polymers to electroanalysis

    SciTech Connect

    Josowicz, M.A.

    1994-04-01

    Conducting polymers can be used as sensitive layers in chemical microsensors leading to new applications of theses devices. They offer the potential for developing material properties that are critical to the sensor sensitivity, selectivity and fabrication. The advantages and limitations of the use of thin polymer layers in electrochemical sensors are discussed.

  16. Thiazolothiazole-linked porous organic polymers

    DOE PAGESBeta

    Zhu, Xiang; Tian, Chengcheng; Jin, Tian; Wang, Jitong; Mahurin, Shannon Mark; Mei, Wenwen; Xiong, Yan; Hu, Jun; Feng, Xinliang; Liu, Honglai; et al

    2014-10-07

    In this study, thiazolothiazole-linked porous organic polymers have been synthesized from a facile catalyst-free condensation reaction between aldehydes and dithiooxamide under solvothermal conditions. The resultant porous frameworks exhibit a highly selective uptake of CO2 over N2 under ambient conditions.

  17. Thiazolothiazole-linked porous organic polymers

    SciTech Connect

    Zhu, Xiang; Tian, Chengcheng; Jin, Tian; Wang, Jitong; Mahurin, Shannon Mark; Mei, Wenwen; Xiong, Yan; Hu, Jun; Feng, Xinliang; Liu, Honglai; Dai, Sheng

    2014-10-07

    In this study, thiazolothiazole-linked porous organic polymers have been synthesized from a facile catalyst-free condensation reaction between aldehydes and dithiooxamide under solvothermal conditions. The resultant porous frameworks exhibit a highly selective uptake of CO2 over N2 under ambient conditions.

  18. Engineering thermal conductivity in polymer blends

    NASA Astrophysics Data System (ADS)

    Rashidi, Vahid; Coyle, Eleanor; Kieffer, John; Pipe, Kevin

    Weak inter-chain bonding in polymers is believed to be a bottleneck for both thermal conductivity and mechanical strength. Most polymers have low thermal conductivity (~0.1 W/mK), hindering their performance in applications for which thermal management is critical (e.g., electronics packaging). In this work, we use computational methods to study how hydrogen bonding between polymer chains as well as water content can be used to engineer thermal transport in bulk polymers. We examine how changes in the number of hydrogen bonds, chain elongation, density, and vibrational density of states correlate with changes in thermal conductivity for polymer blends composed of different relative constituent fractions. We also consider the effects of bond strength, tacticity, and polymer chain mass. For certain blend fractions, we observe large increases in thermal conductivity, and we analyze these increases in terms of modifications to chain chemistry (e.g., inter-chain bonding) and chain morphology (e.g., chain alignment and radius of gyration). We observe that increasing the number of hydrogen bonds in the system results in better packing as well as better chain alignment and elongation that contribute to enhanced thermal conductivity. The Air Force Office of Scientific Research, Grant No. FA9550-14-1-0010.

  19. Synthesis of novel metallocenes: Asymmetric hydrogenation catalysts to conductive polymers

    SciTech Connect

    Erickson, M.S.

    1992-01-01

    The goal of this research was to synthesize conductive polymers based on repeating ferrocene units. During the course of this study, the design of the conductive polymers evolved from the initial model based on [open quotes]stacked[open quotes] ferrocenes where ethano bridged cyclophentadienyl rings are linked by iron(II), to the latest ferrocene-diene model where ferrocene units were linked by double bonds. In the pursuit of these elusive monomers, attempts at their synthesis led down dead-end routes, even though new molecules were synthesized. Some of these dead-end routes, even though new molecules were synthesized. All the work reported in this dissertation had the eventual goal of synthesizing potential monomers for ferrocene conductive polymers. This dissertation is divided into three chapters. Chapter one describes the attempted synthesis of thiophene derivatives where a cyclopentadienyl ring is fused to the [c]-face. Although the target molecule was never synthesized, a convenient and safe new synthesis of 3,4-dibromo=2,5-dimethyl thiophene was developed along with the synthesis and full characterization of 3-bromo-4-trimethylsilyl-2,5-dimethylthiophene. Chapter two describes the design of asymmetric hydrogenation catalysts and the convenient synthesis of chiral titanocene derivatives. Chapter three summarizes the history of the attempts to prepare ferrocene containing conductive polymers and describes the synthesis of ferrocenophenes and diethano bridged bis(cyclophentadienyl) compounds for use as monomeric precursors to conductive polymers based on repeating ferrocene units.

  20. Electrically conductive and redox electroactive organic polymers

    SciTech Connect

    Reynolds, J.R.; Balanda, P.B.; Sotzing, G.A.

    1995-12-01

    We describe new fully conjugated bis(pyrrol-2-yl)arylene and bis(3,4-dioxyethylenethiophene)arylene monomers which electropolymerize at low potentials avoiding degradative side reactions to yield highly stable redox switchable polymers. We outline the properties of DOET polymers which exhibit low electronic band gaps allowing for the formation of conducting complexes with a high degree of optical transmission of visible light and show their electrochromic properties. Finally, we discuss the properties of polymers containing electron donor molecules as an integral part of the polymer backbone and as pendant substituents. These donor molecules have been chosen due to their propensity to form metallic, and in some instances superconducting, crystalline complexes and suggest these properties can be extended to highly processible organic polymers.

  1. Conducting polymer membranes as intelligent separation systems

    SciTech Connect

    Price, W.E.; Wallace, G.G.

    1994-12-31

    Conducting electroactive polymers such as polypyrroles, are emerging as excellent materials in which to base a generic technology for the development of intelligent material systems. They are easy to make and many different chemistries may be built in during synthesis by varying the polymer(s) used and the counterions incorporated. However, the unique feature about them is that they have dynamic chemical and physical properties which may be manipulated via changing the redox states after synthesis. This paper illustrates their potential using recent work on developing a new electro-membrane separation technology using free-standing polypyrrole films. These systems are shown to be capable of a high degree of permselectivity and controllable transport that may be turned on and off by application of potential to the conducting polymer membrane.

  2. On the high conductivity of nonconjugated polymers

    SciTech Connect

    Lachinov, A. N. Kornilov, V. M.; Zagurenko, T. G.; Zherebov, A. Yu.

    2006-04-15

    The mechanism of charge transfer in a metal-electroactive polymer-metal structure has been experimentally studied near the threshold of the uniaxial-pressure-induced transition into a high-conductivity state in the polymer. The dynamics of the I-V curve is investigated as a function of the applied pressure. The data obtained are analyzed in terms of the model of injection currents using the concepts of possible scanning of a quasi-Fermi level near an injection level. Our estimates suggest that a narrow band made of deep trap states located near the Fermi level forms in the polymer film in the pretransition pressure range. In the immediate vicinity of the transition range, a narrow band of coherent charge transfer appears from these states; this band can be responsible for the high metal-type conductivity of thin polymer films, which has been repeatedly observed by many researchers.

  3. Mixed ionic and electronic conductivity in polymers

    SciTech Connect

    Shriver, D.F.

    1991-06-01

    New polymer films were synthesized that are mixed ionic-electronic conductors. Preliminary ion transport measurements have been made on these materials in the reduced state where electronic conductivity is negligible. We also have made preliminary measurements of switching times for these materials. Theoretical studies have been performed ion pairing in insulating and electronically conducting films.

  4. Liquid crystal-templated conducting organic polymers

    DOEpatents

    Stupp, Samuel I.; Hulvat, James F.

    2004-01-20

    A method of preparing a conductive polymeric film, includes providing a liquid crystal phase comprising a plurality of hydrophobic cores, the phase on a substrate, introducing a hydrophobic component to the phase, the component a conductive polymer precursor, and applying an electric potential across the liquid crystal phase, the potential sufficient to polymerize the said precursor.

  5. Increasing the conductivity of crystalline polymer electrolytes.

    PubMed

    Christie, Alasdair M; Lilley, Scott J; Staunton, Edward; Andreev, Yuri G; Bruce, Peter G

    2005-01-01

    Polymer electrolytes consist of salts dissolved in polymers (for example, polyethylene oxide, PEO), and represent a unique class of solid coordination compounds. They have potential applications in a diverse range of all-solid-state devices, such as rechargeable lithium batteries, flexible electrochromic displays and smart windows. For 30 years, attention was focused on amorphous polymer electrolytes in the belief that crystalline polymer:salt complexes were insulators. This view has been overturned recently by demonstrating ionic conductivity in the crystalline complexes PEO6:LiXF6 (X = P, As, Sb); however, the conductivities were relatively low. Here we demonstrate an increase of 1.5 orders of magnitude in the conductivity of these materials by replacing a small proportion of the XF6- anions in the crystal structure with isovalent N(SO2CF3)2- ions. We suggest that the larger and more irregularly shaped anions disrupt the potential around the Li+ ions, thus enhancing the ionic conductivity in a manner somewhat analogous to the AgBr(1-x)I(x) ionic conductors. The demonstration that doping strategies can enhance the conductivity of crystalline polymer electrolytes represents a significant advance towards the technological exploitation of such materials. PMID:15635406

  6. Temperature dependence of conductivity measurement for conducting polymer

    NASA Astrophysics Data System (ADS)

    Gutierrez, Leandro; Duran, Jesus; Isah, Anne; Albers, Patrick; McDougall, Michael; Wang, Weining

    2014-03-01

    Conducting polymer-based solar cells are the newest generation solar cells. While research on this area has been progressing, the efficiency is still low because certain important parameters of the solar cell are still not well understood. It is of interest to study the temperature dependence of the solar cell parameters, such as conductivity of the polymer, open circuit voltage, and reverse saturation current to gain a better understanding on the solar cells. In this work, we report our temperature dependence of conductivity measurement using our in-house temperature-varying apparatus. In this project, we designed and built a temperature varying apparatus using a thermoelectric cooler module which gives enough temperature range as we need and costs much less than a cryostat. The set-up of the apparatus will be discussed. Temperature dependence of conductivity measurements for PEDOT:PSS films with different room-temperature conductivity will be compared and discussed. NJSGC-NASA Fellowship grant

  7. Conducting polymers: Synthesis and industrial applications

    SciTech Connect

    Gottesfeld, S.

    1995-05-01

    The Conducting Polymer project funded by the AIM Materials Program is developing new methods for the synthesis of electronically conducting polymers and is evaluating new industrial applications for these materials which will result in significant reductions in energy usage or industrial waste. The applications specifically addressed during FY 1994 are electrochemical capacitors and membranes for gas separation. As an active material in electrochemical capacitors, conducting polymers have the potential of storing large amounts of electrical energy in low cost materials. Such devices are needed in electronics for power failure back-up and peak power, in power supplies for filtering, and in electric vehicles for peak power and load leveling. As a gas electrically adapt the membrane for specific gas combinations. Potential energy savings in the US. for this application are estimated at 1 to 3 quads/yr.

  8. Conducting polymers: Synthesis and industrial applications

    SciTech Connect

    Gottesfeld, S.

    1997-04-01

    The Conducting Polymer project funded by the AIM Program has developed new methods for the synthesis of conducting polymers and evaluated new industrial applications for these materials which will result in significant reductions in energy usage or industrial waste. The applications specifically addressed during FY 1996 included two ongoing efforts on membranes for gas separation and on electrochemical capacitors and a third new application: electrochemical reactors (ECRs) based on polymeric electrolytes. As a gas separation membrane, conducting polymers offer high selectivity and the potential to chemically or electrically adapt the membrane for specific gas combinations. Potential energy savings in the US for this application are estimated at 1 to 3 quads/yr. As an active material in electrochemical capacitors, electronically conducting polymers have the potential of storing large amounts of electric energy in low cost materials. Potential energy savings estimated at 1 quad/yr would result from introduction of electrochemical capacitors as energy storage devices in power trains of electric and hybrid vehicles, once such vehicles reach 20% of the total transportation market in the US. In the chlor-alkali industry, electrochemical reactors based on polymer electrolyte membranes consume around 1 % of the total electric power in the US. A new activity, started in FY 1996, is devoted to energy efficient ECRs. In the case of the chlor-alkali industry, energy savings as high as 50% seem possible with the novel ECR technology demonstrated by the author in 1996.

  9. Designing conducting polymers using genetic algorithms

    NASA Astrophysics Data System (ADS)

    Giro, R.; Cyrillo, M.; Galvão, D. S.

    2002-11-01

    We have developed a new methodology to design conducting polymers with pre-specified properties. The methodology is based on the use of genetic algorithms (GAs) coupled to Negative Factor Counting technique. We present the results for a case study of polyanilines, one of the most important families of conducting polymers. The methodology proved to be able of generating automatic solutions for the problem of determining the optimum relative concentration for binary and ternary disordered polyaniline alloys exhibiting metallic properties. The methodology is completely general and can be used to design new classes of materials.

  10. Conductivity of carbon nanotube polymer composites

    SciTech Connect

    Wescott, J T; Kung, P; Maiti, A

    2006-11-20

    Dissipative Particle Dynamics (DPD) simulations were used to investigate methods of controlling the assembly of percolating networks of carbon nanotubes (CNTs) in thin films of block copolymer melts. For suitably chosen polymers the CNTs were found to spontaneously self-assemble into topologically interesting patterns. The mesoscale morphology was projected onto a finite-element grid and the electrical conductivity of the films computed. The conductivity displayed non-monotonic behavior as a function of relative polymer fractions in the melt. Results are compared and contrasted with CNT dispersion in small-molecule fluids and mixtures.

  11. Structural and Electrical Study of Conducting Polymers

    NASA Astrophysics Data System (ADS)

    Shaktawat, Vinodini; Dixit, Manasvi; Saxena, N. S.; Sharma, Kananbala

    2010-06-01

    Pure and oxalic acid doped conducting polymers (polyaniline and polypyrrole) were chemically synthesized using ammonium persulfate (APS) as an oxidant. These samples were characterized through Scanning Electron Microscopy (SEM), which provides information about the surface topography of polymers. I-V characteristics have been recorded at room temperature as well as in the temperature range from 313 K to 463 K. So obtained characteristic curves were found to be linear. Temperature dependence of conductivity suggests a semiconducting nature in polyaniline samples with increase in temperature, whereas oxalic acid doped polypyrrole sample suggests a transition from semiconducting to metallic nature with the increase of temperature.

  12. Conducting polymer for high power ultracapacitor

    DOEpatents

    Shi, Steven Z.; Gottesfeld, Shimshon

    2002-01-01

    In accordance with the purposes of the present invention, as embodied and broadly described herein, the present invention is directed to an electrode having a conducting polymer active material for use in an ultracapacitor. The conducting polymer active material is electropolymerized onto a carbon paper substrate from a mixed solution of a dimer of (3,3' bithiophene) (BT) and a monomer that is selected from the group of thiophenes derived in the 3-position, having an aryl group attached to thiophene in the 3-position or having aryl and alkly groups independently attached to thiophene in the 3 and 4 positions.

  13. Conducting polymers as corrosion resistant coatings

    SciTech Connect

    Wrobleski, D.A.; Benicewicz, B.C.

    1994-09-01

    Although the majority of top coatings used for corrosion protection are electrically insulating, previous workers have proposed using an electrically active barrier for corrosion control. The most effective corrosion resistant undercoatings in use today are based on chromium compounds. Coatings based on other materials will need to replace these coatings by the turn of the century because of environmental and health concerns. For this reason the authors have begun an investigation of the use of conducting polymers as corrosion resistant coatings as an alternative to metal-based coatings. Conducting polymers have long been considered to be unsuitable for commercial processing, hindering their use for practical applications. Research in the field of electrically conducting polymers has recently produced a number of polymers such as polyaniline and its derivatives which are readily soluble in common organic solvents. The authors coating system, consisting of a conducting polyaniline primer layer, topcoated with epoxy or polyurethane, has been evaluated for corrosion resistance on mild steel substrates. In this paper, the authors report the results of laboratory testing under acidic and saline conditions and the results of testing in the severe launch environment at the Beach Testing Facility at Kennedy Space Center. The launch environment consists of exposure to corrosive HCl exhaust fumes and the salt spray from the Atlantic Ocean.

  14. Ionic Conduction Mechanism of Polymer Gel Electrolytes

    NASA Astrophysics Data System (ADS)

    Saito, Yuria; Kataoka, Hiroshi

    2002-12-01

    Carrier migration mechanism of polymer gel electrolyte for lithium secondary batteries was investigated through the dynamic behavior of diffusion coefficient and conductivity. The gel prepared with PEO showed a homogeneous structure with any fraction of the electrolyte solution. The diffusion coefficient of the ionic species decreased with the increase in the polymer fraction in the gel. Cation migration is closely associated with the polymer, showing the reduced activation energy for diffusion with polymer in contrast to the increasing feature of the activation energy of the anion diffusion. The PVDF-gel electrolytes have a solid solubility limit due to the swelling saturation. The excess solution was then trapped in the cavities of the swollen polymer network. As a result, the diffusion showed two components. One is the fast migration of the carriers similar to that in the solution and the other is the relatively slow migration in the swollen region. The latter was influenced by the polymer due to the physical blocking and chemical interactive effects.

  15. Mechanically stiff, electrically conductive composites of polymers and carbon nanotubes

    DOEpatents

    Worsley, Marcus A.; Kucheyev, Sergei O.; Baumann, Theodore F.; Kuntz, Joshua D.; Satcher, Jr., Joe H.; Hamza, Alex V.

    2015-07-21

    Using SWNT-CA as scaffolds to fabricate stiff, highly conductive polymer (PDMS) composites. The SWNT-CA is immersing in a polymer resin to produce a SWNT-CA infiltrated with a polymer resin. The SWNT-CA infiltrated with a polymer resin is cured to produce the stiff and electrically conductive composite of carbon nanotube aerogel and polymer.

  16. Proton-Conducting Magnetic Coordination Polymers.

    PubMed

    Biswas, Soumava; Jena, Himanshu Sekhar; Sanda, Suresh; Konar, Sanjit

    2015-09-21

    Three isostructural lanthanide-based two- dimensional coordination polymers (CPs) {[Ln2(L)3(H2O)2]n⋅2n CH3OH)⋅2n H2O} (Ln=Gd(3+) (1), Tb(3+) (2), Dy(3+) (3); H2L=cyclobutane-1,1-dicarboxylic acid) were synthesized by using a low molecular weight dicarboxylate ligand and characterized. Single-crystal structure analysis showed that in complexes 1-3 lanthanide centers are connected by μ3-bridging cyclobutanedicarboxylate ligands along the c axis to form a rod-shaped infinite 1D coordination chain, which is further linked with nearby chains by μ4-connected cyclobutanedicarboxylate ligands to form 2D CPs in the bc plane. Viewing the packing of the complexes down the b axis reveals that the lattice methanol molecules are located in the interlayer space between the adjacent 2D layers and form H-bonds with lattice and coordinated water molecules to form 1D chains. Magnetic properties of complexes 1-3 were thoroughly investigated. Complex 1 exhibits dominant ferromagnetic interaction between two nearby gadolinium centers and also acts as a cryogenic magnetic refrigerant having a significant magnetic entropy change of -ΔSm=32.8 J kg(-1) K(-1) for ΔH=7 T at 4 K (calculated from isothermal magnetization data). Complex 3 shows slow relaxation of magnetization below 10 K. Impedance analysis revealed that the complexes show humidity-dependent proton conductivity (σ=1.5×10(-5) S cm(-1) for 1, σ=2.07×10(-4) S cm(-1) for 2, and σ=1.1×10(-3) S cm(-1) for 3) at elevated temperature (>75 °C). They retain the conductivity for up to 10 h at high temperature and high humidity. Furthermore, the proton conductivity results were correlated with the number of water molecules from the water-vapor adsorption measurements. Water-vapor adsorption studies showed hysteretic and two-step water vapor adsorption (182,000 μL g(-1) for 1, 184,000 μL g(-1) for 2, and 1,874,000 μL g(-1) for 3) in the experimental pressure range. Simulation of

  17. Structure and Conductivity of Semiconducting Polymer Hydrogels.

    PubMed

    Huber, Rachel C; Ferreira, Amy S; Aguirre, Jordan C; Kilbride, Daniel; Toso, Daniel B; Mayoral, Kenny; Zhou, Z Hong; Kopidakis, Nikos; Rubin, Yves; Schwartz, Benjamin J; Mason, Thomas G; Tolbert, Sarah H

    2016-07-01

    Poly(fluorene-alt-thiophene) (PFT) is a conjugated polyelectrolyte that self-assembles into rod-like micelles in water, with the conjugated polymer backbone running along the length of the micelle. At modest concentrations (∼10 mg/mL in aqueous solutions), PFT forms hydrogels, and this work focuses on understanding the structure and intermolecular interactions in those gel networks. The network structure can be directly visualized using cryo electron microscopy. Oscillatory rheology studies further tell us about connectivity within the gel network, and the data are consistent with a picture where polymer chains bridge between micelles to hold the network together. Addition of tetrahydrofuran (THF) to the gels breaks those connections, but once the THF is removed, the gel becomes stronger than it was before, presumably due to the creation of a more interconnected nanoscale architecture. Small polymer oligomers can also passivate the bridging polymer chains, breaking connections between micelles and dramatically weakening the hydrogel network. Fits to solution-phase small-angle X-ray scattering data using a Dammin bead model support the hypothesis of a bridging connection between PFT micelles, even in dilute aqueous solutions. Finally, time-resolved microwave conductivity measurements on dried samples show an increase in carrier mobility after THF annealing of the PFT gel, likely due to increased connectivity within the polymer network. PMID:27079171

  18. Effects of compatability on the conductivity of conducting polymer blends

    SciTech Connect

    Liu, Mingjun; Nowak, C.K.; Gregory, R.V.

    1995-12-01

    The electrical conductivity of chemically synthesized polyaniline (PANI) blends with nylon 6,6 and polystyrene was measured. The conductivities of the top and bottom of the films cast from blend solutions were found to differ. This effect was most pronounced at low percent loadings of PANI. The maximum difference in conductivity between two sides of the same film was found to be five orders of magnitude in the case of a 5% PANI blend with polystyrene. In this case the conductive polymer appears to be rich on one side of the film rather than more homogeneously dispersed on both sides. SEM provides evidence for the formation of a percolation cluster on one side of the film which is most notable in polystyrene blends. X-ray and FTIR indicated that greater interaction between PANI and nylon 6,6 than PANI and polystyrene. It is proposed that the magnitude of the variation in conductivity between the two sides of the film depends on the compatibility of the conducting and insulating host polymers.

  19. Optimizing end-group cross-linking polymer electrolytes for fuel cell applications

    SciTech Connect

    Kim, Yu Seung; Lee, Kwan Soo; Jeong, Myung - Hwan; Lee, Jae - Suk

    2009-01-01

    This paper demonstrates the optimization of proton conductivity and water uptake for cross-linkable polymer electrolytes through synthesis and characterization of end-group cross-linkable sulfonated poly(arylene ether) copolymers (ESF-BPs). The extent of reaction of cross-linking was controlled by reaction time resulting in a series of polymers with two, independent tunable parameters, degree of sulfonation (DS) and degree of cross-linking (DC). For the polymers presented, cross-linking improved proton conductivity while reducing water uptake, an uncommon trend in polymer electrolytes where water is critical for proton conduction. Other trends relating to changes are reported and the results yield insight into the role of DS and DC and how to optimize electrochemical properties and performance of polymer electrolytes through these tunable parameters. Select polymer electrolytes were tested in fuel cells where performance and durability with accelerated relative humidity cycling were compared with Nafion{reg_sign}.

  20. Actuator device utilizing a conductive polymer gel

    DOEpatents

    Chinn, Douglas A.; Irvin, David J.

    2004-02-03

    A valve actuator based on a conductive polymer gel is disclosed. A nonconductive housing is provided having two separate chambers separated by a porous frit. The conductive polymer is held in one chamber and an electrolyte solution, used as a source of charged ions, is held in the second chamber. The ends of the housing a sealed with a flexible elastomer. The polymer gel is further provide with electrodes with which to apply an electrical potential across the gel in order to initiate an oxidation reaction which in turn drives anions across the porous frit and into the polymer gel, swelling the volume of the gel and simultaneously contracting the volume of the electrolyte solution. Because the two end chambers are sealed the flexible elastomer expands or contracts with the chamber volume change. By manipulating the potential across the gel the motion of the elastomer can be controlled to act as a "gate" to open or close a fluid channel and thereby control flow through that channel.

  1. Moving beyond mass-based parameters for conductivity analysis of sulfonated polymers

    SciTech Connect

    Kim, Yu Seung; Pivovar, Bryan

    2009-01-01

    Proton conductivity of polymer electrolytes is critical for fuel cells and has therefore been studied in significant detail. The conductivity of sulfonated polymers has been linked to material characteristics in order to elucidate trends. Mass based measurements based on water uptake and ion exchange capacity are two of the most common material characteristics used to make comparisons between polymer electrolytes, but have significant limitations when correlated to proton conductivity. These limitations arise in part because different polymers can have significantly different densities and conduction happens over length scales more appropriately represented by volume measurements rather than mass. Herein, we establish and review volume related parameters that can be used to compare proton conductivity of different polymer electrolytes. Morphological effects on proton conductivity are also considered. Finally, the impact of these phenomena on designing next generation sulfonated polymers for polymer electrolyte membrane fuel cells is discussed.

  2. Ion conducting organic/inorganic hybrid polymers

    NASA Technical Reports Server (NTRS)

    Meador, Maryann B. (Inventor); Kinder, James D. (Inventor)

    2010-01-01

    This invention relates to a series of organic/inorganic hybrid polymers that are easy to fabricate into dimensionally stable films with good ion-conductivity over a wide range of temperatures for use in a variety of applications. The polymers are prepared by the reaction of amines, preferably diamines and mixtures thereof with monoamines with epoxy-functionalized alkoxysilanes. The products of the reaction are polymerized by hydrolysis of the alkoxysilane groups to produce an organic-containing silica network. Suitable functionality introduced into the amine and alkoxysilane groups produce solid polymeric membranes which conduct ions for use in fuel cells, high-performance solid state batteries, chemical sensors, electrochemical capacitors, electro-chromic windows or displays, analog memory devices and the like.

  3. Gas Sensors Based on Conducting Polymers

    PubMed Central

    Bai, Hua; Shi, Gaoquan

    2007-01-01

    The gas sensors fabricated by using conducting polymers such as polyaniline (PAni), polypyrrole (PPy) and poly (3,4-ethylenedioxythiophene) (PEDOT) as the active layers have been reviewed. This review discusses the sensing mechanism and configurations of the sensors. The factors that affect the performances of the gas sensors are also addressed. The disadvantages of the sensors and a brief prospect in this research field are discussed at the end of the review.

  4. Advanced Proton Conducting Polymer Electrolytes for Electrochemical Capacitors

    NASA Astrophysics Data System (ADS)

    Gao, Han

    Research on solid electrochemical energy storage devices aims to provide high performance, low cost, and safe operation solutions for emerging applications from flexible consumer electronics to microelectronics. Polymer electrolytes, minimizing device sealing and liquid electrolyte leakage, are key enablers for these next-generation technologies. In this thesis, a novel proton-conducing polymer electrolyte system has been developed using heteropolyacids (HPAs) and polyvinyl alcohol for electrochemical capacitors. A thorough understanding of proton conduction mechanisms of HPAs together with the interactions among HPAs, additives, and polymer framework has been developed. Structure and chemical bonding of the electrolytes have been studied extensively to identify and elucidate key attributes affecting the electrolyte properties. Numerical models describing the proton conduction mechanism have been applied to differentiate those attributes. The performance optimization of the polymer electrolytes through additives, polymer structural modifications, and synthesis of alternative HPAs has achieved several important milestones, including: (a) high proton mobility and proton density; (b) good ion accessibility at electrode/electrolyte interface; (c) wide electrochemical stability window; and (d) good environmental stability. Specifically, high proton mobility has been addressed by cross-linking the polymer framework to improve the water storage capability at normal-to-high humidity conditions (e.g. 50-80% RH) as well as by incorporating nano-fillers to enhance the water retention at normal humidity levels (e.g. 30-60% RH). High proton density has been reached by utilizing additional proton donors (i.e. acidic plasticizers) and by developing different HPAs. Good ion accessibility has been achieved through addition of plasticizers. Electrochemical stability window of the electrolyte system has also been investigated and expanded by utilizing HPAs with different heteroatoms

  5. The Organic Chemistry of Conducting Polymers

    SciTech Connect

    Tolbert, Laren Malcolm

    2014-12-01

    For the last several years, we have examined the fundamental principles of conduction in one-dimensional systems, i.e., molecular “wires”. It is, of course, widely recognized that such systems, as components of electronically conductive materials, function in a two- and three-dimensional milieu. Thus interchain hopping and grain-boundary resistivity are limiting conductivity factors in highly conductive materials, and overall conductivity is a function of through-chain and boundary hopping. We have given considerable attention to the basic principles underlying charge transport (the “rules of the game”) in two-dimensional systems by using model systems which allow direct observation of such processes, including the examination of tunneling and hopping as components of charge transfer. In related work, we have spent considerable effort on the chemistry of conjugated heteropolymers, most especially polythiophens, with the aim of using these most efficient of readily available electroactive polymers in photovoltaic devices.

  6. Bulk limited conduction in electroluminescent polymer devices

    NASA Astrophysics Data System (ADS)

    Campbell, A. J.; Weaver, M. S.; Lidzey, D. G.; Bradley, D. D. C.

    1998-12-01

    The current-voltage (J-V) characteristics of ITO/polymer film/Al or Au structures of poly(phenylene vinylene) (PPV) and a dialkoxy PPV copolymer have been recorded for a range of different film thickness d and temperatures T. At high applied bias all the characteristics can be fitted over a given range to a power law J=KVm, where m increases with decreasing T, log(K) is proportional to m, and K is proportional to d-α m, where α˜2 (ITO/polymer film/Al devices) and ˜1 (ITO/polymer film/Au devices). Different single carrier space charge limited conduction theories have been used to try and explain this behavior. The analytical theory in which the carrier density is decreased by an exponential trap distribution lying below effectively isoelectronic transport states is in good agreement, but cannot explain the thickness dependence of the ITO/polymer film/Au devices and can be criticized as being physically unreasonable. A numerical analysis in which the mobility has the field and temperature dependence found for hopping transport in disordered systems is also in good agreement, but can only fit a small range of J and cannot explain the magnitude of K, the temperature dependence of m or the abrupt change in slope in the J-V characteristics with increasing bias. Mixed models are equally good but cannot explain the deviations from experiment. We consider that further experimental studies of carrier mobilities and the nature of the traps present in such materials is required to distinguish between these models and resolve the nature of bulk limited conduction in conjugated polymers.

  7. Simulation of conductivity of polymer films on metal surface

    NASA Astrophysics Data System (ADS)

    Maksimova, O. G.; Maksimov, A. V.; Baidganov, A. R.

    2015-09-01

    In this paper, protective properties of polymer films are analyzed. The simulation is performed by means of the Monte-Carlo method on the basis of three-dimensional lattice model of polymer system with orientational interactions [1]. Initially, configuration of polymer system is calculated by the Metropolis algorithm taking into account the characteristics of the internal structure (constants of intermolecular interactions etc.), temperature regime and metal quality. Further, for the study of conductivity, the motion of charged particles within the proposed lattice model is investigated on the basis of the calculated configuration. The interaction energy of the oxygen atom with eight neighboring links of polymer chains and electric double layer on the metallic surface is accounted. The direction of movement of charged particles is calculated by the Monte-Carlo method according to the energy advantage of its position. This method allows to calculate the number of charged particles passing through the polymer film and reaching the metal sheet surface. The dependences of conductivity on temperature, film thickness, and distance between molecular layers are obtained. It is shown that there is an optimum density for the given film thickness at which it possesses protective properties. The adequacy of the developed mathematical models and calculated dependences are verified by comparison with laboratory data and production testing.

  8. Synthesis and characterization of soluble conducting polymers and conducting adhesives

    NASA Astrophysics Data System (ADS)

    Oztemiz, Serhan

    With the demanding nature of the technology today, scientists are looking for new materials in order to decrease the cost, increase the efficiency of the use of the materials, and decrease time-consuming steps in order to increase the speed of production. New materials are being studied to decrease the weight of cars, planes and space vehicles; surface properties are being modified to decrease the drag coefficient; new technologies are being introduced for speeding up applications in production and assembly lines. In this research we address the needs of different technological applications from a conductivity perspective. In the first part of the thesis, the synthesis of soluble conducting polymers in order to make them more processable for potential electronic and photovoltaic applications is presented. Soluble conducting polymers of 3-hexylthiophene, 3-octylthiophene, 3-decylthiophene and 3-dodecylthiophene were synthesized electrochemically and thus, doped during synthesis. It was found that the conductivities; molecular weights and degrees of polymerization of the polymers strongly depend on the side chain's length. The substitution of alkyl side chains decreases the reactivity of the growing chain, and with an increasing side-chain length, all of these properties show a decrease. The hexyl substituent, being the shortest of the four side chains, causes the least distortion in the background, has the highest conjugation, and has the highest shift in the UV spectrum when it polymerizes. As the length of the side chain increases, the shift in the UV spectrum decreases, too. Decrease in the pi-stacking, conjugation and delocalization decreases the conductivity. This gives the material an opportunity to be used in photovoltaic applications. In the second part of the thesis, a conducting adhesive formulation that eliminates the need for heat or other expensive and rather bothersome application methods to activate the adhesive is investigated. Using the quick

  9. Tactile sensors based on conductive polymers

    NASA Astrophysics Data System (ADS)

    Castellanos-Ramos, Julian; Navas-Gonzalez, Rafael; Macicior, Haritz; Ochoteco, Estibalitz; Vidal-Verdú, Fernando

    2009-05-01

    This paper presents results from a few tactile sensors we have designed and fabricated. These sensors are based on a common approach that consists of placing a sheet of piezoresistive material on the top of a set of electrodes. If a force is exerted against the surface of the so obtained sensor, the contact area between the electrodes and the piezoresistive material changes. Therefore, the resistance at the interface changes. This is exploited as transconduction principle to measure forces and build advanced tactile sensors. For this purpose, we use a thin film of conductive polymers as the piezoresistive material. Specifically, a conductive water-based ink of these polymers is deposited by spin coating on a flexible plastic sheet, giving as a result a smooth, homogeneous and conducting thin film on it. The main interest in this procedure is it is cheap and it allows the fabrication of flexible and low cost tactile sensors. In this work we present results from sensors made with two technologies. First, we have used a Printed Circuit Board technology to fabricate the set of electrodes and addressing tracks. Then we have placed the flexible plastic sheet with the conductive polymer film on them to obtain the sensor. The result is a simple, flexible tactile sensor. In addition to these sensors on PCB, we have proposed, designed and fabricated sensors with a screen printing technology. In this case, the set of electrodes and addressing tracks are made by printing an ink based on silver nanoparticles. There is a very interesting difference with the other sensors, that consists of the use of an elastomer as insulation material between conductive layers. Besides of its role as insulator, this elastomer allows the modification of the force versus resistance relationship. It also improves the dynamic response of the sensor because it implements a restoration force that helps the sensor to relax quicker when the force is taken off.

  10. Conducting polymer nanofibers: Synthesis, properties and applications

    NASA Astrophysics Data System (ADS)

    Huang, Jiaxing

    An interfacial polymerization method is described which enables the synthesis of polyaniline nanofibers with diameters tunable from 30 to 120 nm. This synthesis is template-free and readily scalable and can be applied to polyaniline derivatives and other conjugated polymers. Mechanistic studies reveal that nanofibers form naturally during the chemical oxidative polymerization of aniline in water without the need for any template, functional molecule or seed. In conventional polymerization, nanofibers are subject to secondary growth of amorphous particles which leads to irregularly shaped agglomerates. The key to producing pure nanofibers is to suppress secondary growth. This has been achieved with interfacial polymerization where the interface separates nanofiber formation from secondary growth and also by using rapidly mixed reactions where the initiator molecules are consumed before secondary growth begins. Polyaniline nanofibers dramatically enhance many applications of conventional polyaniline, such as in chemical sensors. Here, the small diameter, high surface area and water dispersibility of the nanofibers enable improved sensor performance and new sensing mechanisms. The nanofibers can also serve as a template to grow inorganic/polyaniline nanocomposites. Polyaniline nanofibers with 1--5 nm gold nanoparticles possess exciting applications such as in electronic non-volatile memory devices. Additionally, a novel flash welding technique for the nanofibers has been invented. A photographic camera flash sets off cross-linking reactions that can be used to make asymmetric polymer membranes, form patterned nanofiber films and create polymer based nanocomposites.

  11. Conducting polymer electrodes for auditory brainstem implants

    PubMed Central

    Guex, Amélie A.; Vachicouras, Nicolas; Hight, Ariel E.; Brown, M. Christian; Lee, Daniel J.; Lacour, Stéphanie P.

    2015-01-01

    The auditory brainstem implant (ABI) restores hearing in patients with damaged auditory nerves. One of the main ideas to improve the efficacy of ABIs is to increase spatial specificity of stimulation, in order to minimize extra-auditory side-effects and to maximize the tonotopy of stimulation. This study reports on the development of a microfabricated conformable electrode array with small (100 μm diameter) electrode sites. The latter are coated with a conducting polymer, PEDOT:PSS, to offer high charge injection properties and to safely stimulate the auditory system with small stimulation sites. We report on the design and fabrication of the polymer implant, and characterize the coatings in physiological conditions in vitro and under mechanical deformation. We characterize the coating electrochemically and during bending tests. We present a proof of principle experiment where the auditory system is efficiently activated by the flexible polymeric interface in a rat model. These results demonstrate the potential of using conducting polymer coatings on small electrode sites for electrochemically safe and efficient stimulation of the central auditory system. PMID:26207184

  12. Single conducting polymer nanowire based conductometric sensors

    NASA Astrophysics Data System (ADS)

    Bangar, Mangesh Ashok

    The detection of toxic chemicals, gases or biological agents at very low concentrations with high sensitivity and selectivity has been subject of immense interest. Sensors employing electrical signal readout as transduction mechanism offer easy, label-free detection of target analyte in real-time. Traditional thin film sensors inherently suffered through loss of sensitivity due to current shunting across the charge depleted/added region upon analyte binding to the sensor surface, due to their large cross sectional area. This limitation was overcome by use of nanostructure such as nanowire/tube as transducer where current shunting during sensing was almost eliminated. Due to their benign chemical/electrochemical fabrication route along with excellent electrical properties and biocompatibility, conducting polymers offer cost-effective alternative over other nanostructures. Biggest obstacle in using these nanostructures is lack of easy, scalable and cost-effective way of assembling these nanostructures on prefabricated micropatterns for device fabrication. In this dissertation, three different approaches have been taken to fabricate individual or array of single conducting polymer (and metal) nanowire based devices and using polymer by itself or after functionalization with appropriate recognition molecule they have been applied for gas and biochemical detection. In the first approach electrochemical fabrication of multisegmented nanowires with middle functional Ppy segment along with ferromagnetic nickel (Ni) and end gold segments for better electrical contact was studied. This multi-layered nanowires were used along with ferromagnetic contact electrode for controlled magnetic assembly of nanowires into devices and were used for ammonia gas sensing. The second approach uses conducting polymer, polypyrrole (Ppy) nanowires using simple electrophoretic alignment and maskless electrodeposition to anchor nanowire which were further functionalized with antibodies against

  13. Synthesis of novel electrically conducting polymers: Potential conducting Langmuir-Blodgett films and conducting polymers on defined surfaces

    NASA Technical Reports Server (NTRS)

    Zimmer, Hans

    1993-01-01

    Based on previous results involving thiophene derived electrically conducting polymers in which it was shown that thiophene, 3-substituted thiophenes, furans, and certain oligomers of these compounds showed electrical conductivity after polymerization. The conductivity was in the order of up to 500 S/cm. In addition, these polymers showed conductivity without being doped and most of all they were practically inert toward ambient conditions. They even could be used in aqueous media. With these findings as a guide, a number of 3-long-chain-substituted thiophenes and 1-substituted-3-long-chain substituted pyrrols were synthesized as monomers for potential polymeric electrically conducting Langmuir-Blodgett films.

  14. Electrochemical characterization of aminated acrylic conducting polymer

    NASA Astrophysics Data System (ADS)

    Rashid, Norma Mohammad; Heng, Lee Yook; Ling, Tan Ling

    2015-09-01

    New attempt has been made to synthesize aminated acrylic conducting polymer (AACP) using precursor of phenylvinylsulfoxide (PVS). The process was conducted via the integration of microemulsion and photopolymerization techniques. It has been utilized for covalent immobilization of amino groups by the adding of N-achryiloxisuccinimide (NAS). Thermal eliminating of benzene sulfenic acids from PVS has been done at 250 °C to form electroactive polyacetylene (PA) segment. Characterization of AACP has been conducted using fourier transform infrared (FTIR), scanning electron microscopy (SEM) and linear sweep cyclic voltammetry (CV). A range of 0.3-1.25μm particle size obtained from SEM characterization. A quasi-reversible system performed as shown in electrochemical study.

  15. Electrochemical characterization of aminated acrylic conducting polymer

    SciTech Connect

    Rashid, Norma Mohammad; Heng, Lee Yook; Ling, Tan Ling

    2015-09-25

    New attempt has been made to synthesize aminated acrylic conducting polymer (AACP) using precursor of phenylvinylsulfoxide (PVS). The process was conducted via the integration of microemulsion and photopolymerization techniques. It has been utilized for covalent immobilization of amino groups by the adding of N-achryiloxisuccinimide (NAS). Thermal eliminating of benzene sulfenic acids from PVS has been done at 250 °C to form electroactive polyacetylene (PA) segment. Characterization of AACP has been conducted using fourier transform infrared (FTIR), scanning electron microscopy (SEM) and linear sweep cyclic voltammetry (CV). A range of 0.3-1.25μm particle size obtained from SEM characterization. A quasi-reversible system performed as shown in electrochemical study.

  16. Conducting Polymers and Their Hybrids as Organic Thermoelectric Materials

    NASA Astrophysics Data System (ADS)

    Toshima, Naoki; Ichikawa, Shoko

    2015-01-01

    Conducting polymers have received much attention recently as organic thermoelectric materials, because of such advantages as plentiful resources, easy synthesis, easy processing, low cost, low thermal conductivity, and easy fabrication of flexible, light, and printable devices with large area. Many reports on organic thermoelectric materials have recently been published. We have studied conducting polymers as organic thermoelectric materials since 1999. During these investigations, we found that the thermal conductivity of conducting polymers did not increase even though electrical conductivity increased; this was a major advantage of conducting polymers as organic thermoelectric materials. We also observed that molecular alignment was one of the most important factors for improvement of the thermoelectric performance of conducting polymers. Stretching of conducting polymers or their precursors was one of the most common techniques used to achieve good molecular alignment. Recently, alignment of the clusters of conducting polymers by treatment with solvents has been proposed as a means of achieving high electrical conductivity. Hybridization of conducting polymers with inorganic nanoparticles has also been found to improve thermoelectric performance. Here we present a brief history and discuss recent progress of research on conducting polymers as organic thermoelectric materials, and describe the techniques used to improve thermoelectric performance by treatment of conducting polymers with solvents and hybridization of conducting polymers with Bi2Te3 and gold nanoparticles.

  17. Electropolymerized Conducting Polymers as Glucose Sensors

    NASA Astrophysics Data System (ADS)

    Sadik, Omowunmi A.; Brenda, Sharin; Joasil, Patrick; Lord, John

    1999-07-01

    Conducting polymers are of considerable interest. Their electrochemical synthesis requires only inexpensive starting materials and low-cost equipment. This paper presents a laboratory-based experiment for possible inclusion in the undergraduate instrumental analysis laboratory curriculum. The objectives are to perform cyclic voltammetry on electropolymerized conducting polymers, to observe the effects of various parameters on the voltammogram obtained, and to perform quantitative analysis of glucose. In a typical experiment, glucose oxidase enzyme (GOx) was immobilized at an electrode surface by the electropolymerization of pyrrole from an aqueous solution containing the enzyme. The chemical activity of the immobilized GOx was evaluated by indirectly monitoring glucose oxidation using the electropolymerized PPy-modified electrode. The amount of glucose present was then determined by observing the rate at which hydrogen peroxide was produced. The magnitude of the current was linearly proportional to the concentration of glucose over the range 1 x 10-3 to 5 x 10-5M. The limit of detection was estimated at 3 times the background noise, 8 x 10-5 M glucose. The Michaelis-Menten parameters, Km and Vmax, were calculated to be approximately 1.5 x 10-3 M and 10-9 m/s, respectively, comparable with values cited in literature. This experiment illustrates the fundamental electrochemical and biosensor concepts. It reinforces the underlying principles of dynamic electrochemistry and illustrates the potential of using conducting polymers for analytical applications. The simple low-cost procedure employed should be attractive for undergraduate research projects, particularly in departments with modest means.

  18. Conductive inks for metalization in integrated polymer microsystems

    DOEpatents

    Davidson, James Courtney; Krulevitch, Peter A.; Maghribi, Mariam N.; Benett, William J.; Hamilton, Julie K.; Tovar, Armando R.

    2006-02-28

    A system of metalization in an integrated polymer microsystem. A flexible polymer substrate is provided and conductive ink is applied to the substrate. In one embodiment the flexible polymer substrate is silicone. In another embodiment the flexible polymer substrate comprises poly(dimethylsiloxane).

  19. Enzyme linked immunoassay with stabilized polymer saccharide enzyme conjugates

    DOEpatents

    Callstrom, M.R.; Bednarski, M.D.; Gruber, P.R.

    1997-11-25

    An improvement in enzyme linked immunoassays is disclosed wherein the enzyme is in the form of a water soluble polymer saccharide conjugate which is stable in hostile environments. The conjugate comprises the enzyme which is linked to the polymer at multiple points through saccharide linker groups. 19 figs.

  20. Enzyme linked immunoassay with stabilized polymer saccharide enzyme conjugates

    DOEpatents

    Callstrom, Matthew R.; Bednarski, Mark D.; Gruber, Patrick R.

    1997-01-01

    An improvement in enzyme linked immunoassays is disclosed wherein the enzyme is in the form of a water soluble polymer saccharide conjugate which is stable in hostile environments. The conjugate comprises the enzyme which is linked to the polymer at multiple points through saccharide linker groups.

  1. Catalytic synthesis of metal crystals using conductive polymers

    DOEpatents

    Wang, Hsing-Lin; Li, Wenguang

    2008-01-15

    A method of forming metal nanoparticles using a polymer colloid that includes at least one conductive polymer and at least one polyelectrolyte. Metal ions are reduced in water by the conductive polymer to produce the nanoparticles, which may be then incorporated in the colloidal structure to form a colloid composite. The method can also be used to separate selected metal ions from aqueous solutions.

  2. Chemical synthesis of chiral conducting polymers

    DOEpatents

    Wang, Hsing-Lin; Li, Wenguang

    2009-01-13

    An process of forming a chiral conducting polymer, e.g., polyaniline, is provided including reacting a monomer, e.g., an aniline monomer, in the presence of a chiral dopant acid to produce a first reaction mixture by addition of a solution including a first portion of an oxidizing agent, the first portion of oxidizing agent characterized as insufficient to allow complete reaction of the monomer, and further reacting the first reaction mixture in the presence of the chiral dopant acid by addition of a solution including a second portion of the oxidizing agent, the second portion of oxidizing agent characterized as insufficient to allow complete reaction of the monomer, and repeating the reaction by addition of further portions of the oxidizing agent until the monomer reaction is complete to produce a chiral conducting polymer, e.g., polyaniline. A preferred process includes addition of a catalyst during the reaction, the catalyst selected from among the group consisting of phenylene diamine, aniline oligomers and amino-capped aniline oligomers and metal salts.The processes of the present invention further provide a resultant polyaniline product having a chirality level defined by a molar ellipticity of from about 40.times.10.sup.3 degree-cm.sup.2/decimole to about 700.times.10.sup.3 degree-cm.sup.2/decimole. The processes of the present invention further provide a resultant polyaniline product having a nanofiber structure with a diameter of from about 30 nanometers to about 120 nanometers and from about 1 micron to about 5 microns in length.

  3. Chemical synthesis of chiral conducting polymers

    DOEpatents

    Wang, Hsing-Lin; Li, Wenguang

    2006-07-11

    An process of forming a chiral conducting polymer, e.g., polyaniline, is provided including reacting a monomer, e.g., an aniline monomer, in the presence of a chiral dopant acid to produce a first reaction mixture by addition of a solution including a first portion of an oxidizing agent, the first portion of oxidizing agent characterized as insufficient to allow complete reaction of the monomer, and further reacting the first reaction mixture in the presence of the chiral dopant acid by addition of a solution including a second portion of the oxidizing agent, the second portion of oxidizing agent characterized as insufficient to allow complete reaction of the monomer, and repeating the reaction by addition of further portions of the oxidizing agent until the monomer reaction is complete to produce a chiral conducting polymer, e.g., polyaniline. A preferred process includes addition of a catalyst during the reaction, the catalyst selected from among the group consisting of phenylene diamine, aniline oligomers and amino-capped aniline oligomers and metal salts. The processes of the present invention further provide a resultant polyaniline product having a chirality level defined by a molar ellipticity of from about 40.times.103 degree-cm2/decimole to about 700.times.103 degree-cm2/decimole. The processes of the present invention further provide a resultant polyaniline product having a nanofiber structure with a diameter of from about 30 nanometers to about 120 nanometers and from about 1 micron to about 5 microns in length.

  4. Photomobile polymer materials: photoresponsive behavior of cross-linked liquid-crystalline polymers with mesomorphic diarylethenes.

    PubMed

    Mamiya, Jun-ichi; Kuriyama, Akito; Yokota, Naoki; Yamada, Munenori; Ikeda, Tomiki

    2015-02-16

    Cross-linked liquid-crystalline (LC) polymers with a mesomorphic diarylethene were prepared to demonstrate a versatile strategy for cross-linked photochromic LC polymers as photomobile materials. Upon exposure to UV light to cause photocyclization of the diarylethene chromophore, the cross-linked polymer films bend toward an actinic light source. By irradiation with visible light to cause a closed-ring to open-ring isomerization, the bent films revert to the initial flat state. Without visible-light irradiation, the bent films remain bent even at 120 °C, indicating high thermal stability of the cross-linked diarylethene LC polymers. PMID:25581255

  5. Nanostructured conducting polymers for energy applications: towards a sustainable platform

    NASA Astrophysics Data System (ADS)

    Ghosh, Srabanti; Maiyalagan, Thandavarayan; Basu, Rajendra N.

    2016-03-01

    Recently, there has been tremendous progress in the field of nanodimensional conducting polymers with the objective of tuning the intrinsic properties of the polymer and the potential to be efficient, biocompatible, inexpensive, and solution processable. Compared with bulk conducting polymers, conducting polymer nanostructures possess a high electrical conductivity, large surface area, short path length for ion transport and superior electrochemical activity which make them suitable for energy storage and conversion applications. The current status of polymer nanostructure fabrication and characterization is reviewed in detail. The present review includes syntheses, a deeper understanding of the principles underlying the electronic behavior of size and shape tunable polymer nanostructures, characterization tools and analysis of composites. Finally, a detailed discussion of their effectiveness and perspectives in energy storage and solar light harvesting is presented. In brief, a broad overview on the synthesis and possible applications of conducting polymer nanostructures in energy domains such as fuel cells, photocatalysis, supercapacitors and rechargeable batteries is described.

  6. Nanostructured conducting polymers for energy applications: towards a sustainable platform.

    PubMed

    Ghosh, Srabanti; Maiyalagan, Thandavarayan; Basu, Rajendra N

    2016-04-01

    Recently, there has been tremendous progress in the field of nanodimensional conducting polymers with the objective of tuning the intrinsic properties of the polymer and the potential to be efficient, biocompatible, inexpensive, and solution processable. Compared with bulk conducting polymers, conducting polymer nanostructures possess a high electrical conductivity, large surface area, short path length for ion transport and superior electrochemical activity which make them suitable for energy storage and conversion applications. The current status of polymer nanostructure fabrication and characterization is reviewed in detail. The present review includes syntheses, a deeper understanding of the principles underlying the electronic behavior of size and shape tunable polymer nanostructures, characterization tools and analysis of composites. Finally, a detailed discussion of their effectiveness and perspectives in energy storage and solar light harvesting is presented. In brief, a broad overview on the synthesis and possible applications of conducting polymer nanostructures in energy domains such as fuel cells, photocatalysis, supercapacitors and rechargeable batteries is described. PMID:26980404

  7. Conducting Polymer Nanostructures: Template Synthesis and Applications in Energy Storage

    PubMed Central

    Pan, Lijia; Qiu, Hao; Dou, Chunmeng; Li, Yun; Pu, Lin; Xu, Jianbin; Shi, Yi

    2010-01-01

    Conducting polymer nanostructures have received increasing attention in both fundamental research and various application fields in recent decades. Compared with bulk conducting polymers, conducting polymer nanostructures are expected to display improved performance in energy storage because of the unique properties arising from their nanoscaled size: high electrical conductivity, large surface area, short path lengths for the transport of ions, and high electrochemical activity. Template methods are emerging for a sort of facile, efficient, and highly controllable synthesis of conducting polymer nanostructures. This paper reviews template synthesis routes for conducting polymer nanostructures, including soft and hard template methods, as well as its mechanisms. The application of conducting polymer mesostructures in energy storage devices, such as supercapacitors and rechargeable batteries, are discussed. PMID:20717527

  8. Chemical anchoring of organic conducting polymers to semiconducting surfaces

    DOEpatents

    Frank, Arthur J.; Honda, Kenji

    1984-01-01

    According to the present invention, an improved method of coating electrodes with conductive polymer films and/or preselected catalysts is provided. The charge-conductive polymer is covalently or coordinatively attached to the electrode surface to strengthen the adhesion characteristics of the polymer to the electrode surface or to improve charge-conductive properties between the conductive polymer and the electrode surface. Covalent or coordinative attachment is achieved by a number of alternative methods including covalently or coordinatively attaching the desired monomer to the electrode by means of a suitable coupling reagent and, thereafter, electrochemically polymerizing the monomer in situ.

  9. Chemical anchoring of organic conducting polymers to semiconducting surfaces

    DOEpatents

    Frank, A.J.; Honda, K.

    1984-01-01

    According to the present invention, an improved method of coating electrodes with conductive polymer films and/or preselected catalysts is provided. The charge conductive polymer is covalently or coordinatively attached to the electrode surface to strengthen the adhesion characteristics of the polymer to the electrode surface or to improve charge conductive properties between the conductive polymer and the electrode surface. Covalent or coordinative attachment is achieved by a number of alternative methods including covalently or coordinatively attaching the desired monomer to the electrode by means of a suitable coupling reagent and, thereafter, electrochemically polymerizing the monomer in situ.

  10. Electrochemical Impedance Spectroscopy of Conductive Polymer Coatings

    NASA Technical Reports Server (NTRS)

    Calle, Luz Marina; MacDowell, Louis G.

    1996-01-01

    Electrochemical impedance spectroscopy (EIS) was used to investigate the corrosion protection performance of twenty nine proprietary conductive polymer coatings for cold rolled steel under immersion in 3.55 percent NaCl. Corrosion potential as well as Bode plots of the data were obtained for each coating after one hour immersion, All coatings, with the exception of one, have a corrosion potential that is higher in the positive direction than the corrosion potential of bare steel under the same conditions. Group A consisted of twenty one coatings with Bode plots indicative of the capacitive behavior characteristic of barrier coatings. An equivalent circuit consisting of a capacitor in series with a resistor simulated the experimental EIS data for these coatings very well. Group B consisted of eight coatings that exhibited EIS spectra showing an inflection point which indicates that two time constants are present. This may be caused by an electrochemical process taking place which could be indicitive of coating failing. These coatings have a lower impedance that those in Group A.

  11. Conduction and trapping in electroluminescent polymer devices

    NASA Astrophysics Data System (ADS)

    Campbell, Alasdair J.; Weaver, Michael S.; Lidzey, David G.; Bradley, Donal D. C.; Werner, Ekkehard; Bruetting, Wolfgang; Schwoerer, Markus

    1998-12-01

    The current-voltage characteristics of ITO/polymer film/Al or Au devices of poly(phenylene vinylene) (PPV) and a dialkoxy PPV copolymer can be fitted at high applied bias to a power law of the form J equals KVm where m increases with decreasing temperature, log(K) is proportional to m, and K is proportional to d-(alpha m) where d is the film thickness and (alpha) is a constant. (alpha) 2 and 1 for the Al and Au cathode devices respectively. Different single carrier space charge limited conduction (SCLC) theories, including either an exponential trap distribution or a hopping transport field and temperature dependent mobility, are used to try and explain this behavior. Both models are in good agreement with the general experimental results, but can also be criticized on a number of specific issues.Mixed SCLC models and the effect of dispersive transport are also explored. It is concluded that carrier mobility and trap measurements are required to distinguish between these models. To this end, initial trap measurements of ITO/PPV/Al devices using deep level transient spectroscopy (DLTS) are reported. Very deep positive carrier transport with emptying times > 4 minutes have been detected. The non-exponential DLTS transients have been successfully modeled on an isoelectronic trap level emptying to a Gaussian distribution of transport states, with a trap depth and density of 0.8eV and 4 by 1016 cm-3 respectively.

  12. Proton Conducting Polymer Electrolyte Based on Pva-Pan

    NASA Astrophysics Data System (ADS)

    Devi, S. Siva; Selvasekarapandian, S.; Rajeswari, N.; Genova, F. Kingslin Mary; Karthikeyan, S.; Raja, C. Sanjeevi

    2013-07-01

    Proton conducting polymer electrolytes based on blend polymer using Poly Vinyl Alcohol (PVA) and Poly Acrylo Nitrile (PAN) doped with ammonium nitrate have been prepared by solution casting method. The highest conductivity at room temperature (305K) has been found to be 1.8×10-3 S cm-1 for 15 mole % NH4NO3 doped PVA-PAN system. X ray Diffraction pattern of the doped and the undoped blend polymer electrolyte confirms the amorphous nature of blend polymer, when salt is added. The complex formation between the blend polymer and the salt has been confirmed by Fourier transform infrared spectroscopy.

  13. Anion-conducting polymer, composition, and membrane

    DOEpatents

    Pivovar, Bryan S.; Thorn, David L.

    2011-11-22

    Anion-conducing polymers and membranes with enhanced stability to aqueous alkali include a polymer backbone with attached sulfonium, phosphazenium, phosphazene, and guanidinium residues. Compositions also with enhanced stability to aqueous alkali include a support embedded with sulfonium, phosphazenium, and guanidinium salts.

  14. Anion-Conducting Polymer, Composition, and Membrane

    SciTech Connect

    Pivovar, Bryan S.; Thorn, David L.

    2008-10-21

    Anion-conducing polymers and membranes with enhanced stability to aqueous alkali include a polymer backbone with attached sulfonium, phosphazenium, phosphazene, and guanidinium residues. Compositions also with enhanced stability to aqueous alkali include a support embedded with sulfonium, phosphazenium, and guanidinium salts.

  15. Anion-conducting polymer, composition, and membrane

    DOEpatents

    Pivovar, Bryan S.; Thorn, David L.

    2010-12-07

    Anion-conducing polymers and membranes with enhanced stability to aqueous alkali include a polymer backbone with attached sulfonium, phosphazenium, phosphazene, and guanidinium residues. Compositions also with enhanced stability to aqueous alkali include a support embedded with sulfonium, phosphazenium, and guanidinium salts.

  16. Anion-conducting polymer, composition, and membrane

    DOEpatents

    Pivovar, Bryan S.; Thorn, David L.

    2009-09-01

    Anion-conducing polymers and membranes with enhanced stability to aqueous alkali include a polymer backbone with attached sulfonium, phosphazenium, phosphazene, and guanidinium residues. Compositions also with enhanced stability to aqueous alkali include a support embedded with sulfonium, phosphazenium, and guanidinium salts.

  17. EFFECTS OF TRITIUM GAS EXPOSURE ON ELECTRICALLY CONDUCTING POLYMERS

    SciTech Connect

    Kane, M.; Clark, E.; Lascola, R.

    2009-12-16

    main backbone chain, or by protonation of the imine groups [de Acevedo, 1999]. There are several types of radiation sensors commercially available, including ionization chambers, geiger counters, proportional counters, scintillators and solid state detectors. Each type has advantages, although many of these sensors require expensive electronics for signal amplification, are large and bulky, have limited battery life or require expensive materials for fabrication. A radiation sensor constructed of a polymeric material could be flexible, light, and the geometry designed to suit the application. Very simple and inexpensive electronics would be necessary to measure the change in conductivity with exposure to radiation and provide an alarm system when a set change of conductivity occurs in the sensor that corresponds to a predetermined radiation dose having been absorbed by the polymer. The advantages of using a polymeric sensor of this type rather than those currently in use are the flexibility of sensor geometry and relatively low cost. It is anticipated that these sensors can be made small enough for glovebox applications or have the ability to monitor the air tritium levels in places where a traditional monitor cannot be placed. There have been a few studies on the changes in conductivity of polyaniline specifically for radiation detection [de Acevedo, 1999; Lima Pacheco, 2003], but there have been no reports on the effects of tritium (beta radiation) on conducting polymers, such as polyaniline or polythiophene. The direct implementation of conducting polymers as radiation sensor materials has not yet been commercialized due to differing responses with total dose, dose rate, etc. Some have reported a large increase in the surface conductivity with radiation dose while others report a marked decrease in conductive properties; these differing observations may reflect the competing mechanisms of chain scission and cross-linking. However, it is clear that the radiation dose

  18. Conducting polymer supported bilayer lipid membrane reconstituted with alamethicin

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Salinas, Sergio; Baba Sundaresan, Vishnu

    2011-09-01

    Ionic electroactive polymers and bioderived materials have been independently demonstrated as actuators, sensors and energy harvesting devices. In an electroactive polymer, the applied electric field between the cathode and anode drives ion transport between the electrodes, impregnated electrolyte and the bulk of the polymer to generate force and displacement. Similarly, in a bioderived material an input stimulus (electrical, chemoelectrical or chemical) applied across the protein in a bilayer lipid membrane (BLM) displaces ions across the membrane barrier and enables sensing and actuation functions. This paper presents a novel architecture for a device that integrates the ionic function of an electroactive polymer and a bioderived material into a thin-film laminated device combining their unique advantages. A conducting polymer (PPy(DBS)) is used as the electroactive polymer and alamethicin-bound bilayer lipid membrane is used as the bioderived material in the thin-film laminated device. Owing to the configuration of the laminated device, the protein regulates the ionic concentration in the conducting polymer and regulates the electrochemical doping/undoping process in the polymer. By electrically connecting the conducting polymer across its thickness, this arrangement provides a mechanism external to the polymer besides electrical field that can control the electrical, mechanical and/or optical properties of the conducting polymer. This paper also presents the fabrication and characterization of the integrated ionic device and presents a template for the development of a novel category of electroactive ionic devices.

  19. Electrically Conductive Metal Nanowire Polymer Nanocomposites

    NASA Astrophysics Data System (ADS)

    Luo, Xiaoxiong

    This thesis investigates electrically conductive polymer nanocomposites formulated with metal nanowires for electrostatic discharge and electromagnetic interference shielding. Copper nanowires (CuNWs) of an average length of 1.98 mum and diameter of 25 +/- 4 nm were synthesized. The oxidation reaction of the CuNWs in air can be divided into two stages at weight of 111.2% on TGA curves. The isoconversional activation energies determined by Starink method were used to fit the different master plots. Johnson-Mehl-Avrami (JMA) equation gave the best fit. The surface atoms of the CuNWs are the sites for the random nucleation and the crystallite strain in the CuNWs is the driving force for the growth of nuclei mechanism during the oxidation process. To improve the anti-oxidation properties of the CuNWs, silver was coated onto the surface of the CuNWs in Ag-amine solution. The prepared silver coated CuNWs (AgCuNWs) with silver content of 66.52 wt. %, diameter of 28--33 nm exhibited improved anti-oxidation behavior. The electrical resistivity of the AgCuNW/low density polyethylene (LDPE) nanocomposites is lower than that of the CuNW/LDPE nanocomposites with the same volume percentage of fillers. The nanocomposites formulated with CuNWs and polyethylenes (PEs) were compared to study the different interaction between the CuNWs and the different types of PE matrices. The electrical conductivity of the different PE matrices filled with the same concentrations of CuNWs correlated well with the level of the CuNW dispersion. The intermolecular force and entanglement resulting from the different macromolecular structures such as molecular weight and branching played an important role in the dispersion, electrical properties and rheological behaviour of the CuNW/PE nanocomposites. Ferromagnetic polycrystalline nickel nanowires (NiNWs) were synthesized with uniform diameter of ca. 38 nm and an average length of 2.68 mum. The NiNW linear low density polyethylene (LLDPE

  20. Proton Conductive Nanosheets Formed by Alignment of Metallo-Supramolecular Polymers.

    PubMed

    Pandey, Rakesh K; Rana, Utpal; Chakraborty, Chanchal; Moriyama, Satoshi; Higuchi, Masayoshi

    2016-06-01

    Linear Fe(II)-based metallo-supramolecular polymer chains were precisely aligned by the simple replacement of the counteranion with an N,N'-bis(4-benzosulfonic acid)perylene-3,4,9,10-tetracarboxylbisimide (PSA) dianion, which linked the polymer chains strongly. A parallel alignment of the polymer chains promoted by the PSA dianions yielded nanosheets formation. The nanosheets' structure was analyzed with FESEM, HRTEM, UV-vis, and XRD in detail. The nanosheets showed more than 5 times higher proton conductivity than the original polymer due to the smooth ionic conduction through the aligned polymer chains. The complex impedance plot with two semicircles also suggested the presence of grain boundaries in the polymer nanosheets. PMID:27164027

  1. Applications of conducting polymers: robotic fins and other devices

    NASA Astrophysics Data System (ADS)

    Tangorra, James L.; Anquetil, Patrick A.; Weideman, Nathan S.; Fofonoff, Timothy; Hunter, Ian W.

    2007-04-01

    Conducting polymers are becoming viable engineering materials and are gradually being integrated into a wide range of devices. Parallel efforts conducted to characterize their electromechanical behavior, understand the factors that affect actuation performance, mechanically process films, and address the engineering obstacles that must be overcome to generate the forces and displacements required in real-world applications have made it possible to begin using conducting polymers in devices that cannot be made optimal using traditional actuators and materials. The use of conducting polymers has allowed us to take better advantage of biological architectures for robotic applications and has enabled us to pursue the development of novel sensors, motors, and medical diagnostic technologies. This paper uses the application of conducting polymer actuators to a biorobotic fin for unmanned undersea vehicles (UUVs) as a vehicle for discussing the efforts in our laboratory to develop conducting polymers into a suite of useful actuators and engineering components.

  2. Reducible, Dibromomaleimide-linked Polymers for Gene Delivery

    PubMed Central

    Tan, James-Kevin Y.; Choi, Jennifer L.; Wei, Hua; Schellinger, Joan G.; Pun, Suzie H.

    2014-01-01

    Polycations have been successfully used as gene transfer vehicles both in vitro and in vivo; however, their cytotoxicity has been associated with increasing molecular weight. Polymers that can be rapidly degraded after internalization are typically better tolerated by mammalian cells compared to their non-degradable counterparts. Here, we report the use of a dibromomaleimide-alkyne (DBM-alkyne) linking agent to reversibly bridge cationic polymer segments for gene delivery and to provide site-specific functionalization by azidealkyne cycloaddition chemistry. A panel of reducible and non-reducible, statistical copolymers of (2-dimethylamino) ethyl methacrylate (DMAEMA) and oligo(ethylene glycol) methyl ether methacrylate (OEGMA) were synthesized and evaluated. When complexed with plasmid DNA, the reducible and non-reducible polymers had comparable DNA condensation properties, sizes, and transfection efficiencies. When comparing cytotoxicity, the DBM-linked, reducible polymers were significantly less toxic than the non-reducible polymers. To demonstrate polymer functionalization by click chemistry, the DBM-linked polymers were tagged with an azidefluorophore and were used to monitor cellular uptake. Overall, this polymer system introduces the use of a reversible linker, DBM-alkyne, to the area of gene delivery and allows for facile, orthogonal, and site-specific functionalization of gene delivery vehicles. PMID:25485106

  3. Tetraarylborate polymer networks as single-ion conducting solid electrolytes

    SciTech Connect

    Van Humbeck, Jeffrey F.; Aubrey, Michael L.; Alsbaiee, Alaaeddin; Ameloot, Rob; Coates, Geoffrey W.; Dichtel, William R.; Long, Jeffrey R.

    2015-06-23

    A new family of solid polymer electrolytes based upon anionic tetrakis(phenyl)borate tetrahedral nodes and linear bis-alkyne linkers is reported. Sonogashira polymerizations using tetrakis(4-iodophenyl)borate, tetrakis(4-iodo-2,3,5,6-tetrafluorophenyl)borate and tetrakis(4-bromo-2,3,5,6-tetrafluorophenyl)borate delivered highly cross-linked polymer networks with both 1,4-diethynylbeznene and a tri(ethylene glycol) substituted derivative. Promising initial conductivity metrics have been observed, including high room temperature conductivities (up to 2.7 × 10-4 S cm-1), moderate activation energies (0.25–0.28 eV), and high lithium ion transport numbers (up to tLi+ = 0.93). Initial investigations into the effects of important materials parameters such as bulk morphology, porosity, fluorination, and other chemical modification, provide starting design parameters for further development of this new class of solid electrolytes.

  4. Tetraarylborate polymer networks as single-ion conducting solid electrolytes

    DOE PAGESBeta

    Van Humbeck, Jeffrey F.; Aubrey, Michael L.; Alsbaiee, Alaaeddin; Ameloot, Rob; Coates, Geoffrey W.; Dichtel, William R.; Long, Jeffrey R.

    2015-06-23

    A new family of solid polymer electrolytes based upon anionic tetrakis(phenyl)borate tetrahedral nodes and linear bis-alkyne linkers is reported. Sonogashira polymerizations using tetrakis(4-iodophenyl)borate, tetrakis(4-iodo-2,3,5,6-tetrafluorophenyl)borate and tetrakis(4-bromo-2,3,5,6-tetrafluorophenyl)borate delivered highly cross-linked polymer networks with both 1,4-diethynylbeznene and a tri(ethylene glycol) substituted derivative. Promising initial conductivity metrics have been observed, including high room temperature conductivities (up to 2.7 × 10-4 S cm-1), moderate activation energies (0.25–0.28 eV), and high lithium ion transport numbers (up to tLi+ = 0.93). Initial investigations into the effects of important materials parameters such as bulk morphology, porosity, fluorination, and other chemical modification, provide starting design parameters for furthermore » development of this new class of solid electrolytes.« less

  5. Synthesis and applications of electrically conducting polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Ku, Bon-Cheol

    This research focuses on the synthesis and applications of electrically conducting polymer nanocomposites through molecular self-assembly. Two different classes of polymers, polyaniline (PANI) and polyacetylenes have been synthesized by biomimetic catalysis and spontaneous polymerization method. For gas barrier materials, commercially available polymers, poly(allylamine hydrochloride) (PAH) and poly (acrylic acid) (PAA), have also been used and thermally cross-linked. The morphological, optical and electrical properties of amphiphilic polyacetylenes have been studied. Furthermore, barrier properties, permselectivity, pervaporation properties of polyacetylenes/aluminosilicate nanocomposites have been investigated. For processability and electrical properties of carbon nanotube and conducting polymers, substituted ionic polyacetylenes (SIPA) have been covalently incorporated onto single-walled carbon nanotubes (SWNT) using the "grafting-from" technique. In the first study, a nanocomposite film catalyst has been prepared by electrostatic layer-by-layer (ELBL) self-assembly of a polyelectrolyte and a biomimetic catalyst for synthesis of polyaniline. Poly(dimethyl diallylammonium chloride) (PDAC) and hematin have been used as polycation and counter anions, respectively. The absorption spectra by UV-vis-NIR spectroscopy showed that conductive form polyaniline was formed not only as a coating on the surface of the ELBL composites but was also formed in solution. Furthermore, it was found that the reaction rate was affected by pH and concentration of hematin in the multilayers. The feasibility of controlled desorption of hematin molecules from the LBL assembly was explored and demonstrated by changing the pH and hematin concentration. The polymerization rate of aniline in solution was enhanced with decreasing pH of the solutions due to increased desorption of hematin nanoparticles from the multilayers. These ELBL hematin assemblies demonstrated both a way to functionalize

  6. Low-Thermal-Conduction Links For Silicon Sensors

    NASA Technical Reports Server (NTRS)

    Mott, D. Brent

    1991-01-01

    Simple method of texturing surface of silicon reduces thermal conductivities of links in silicon x-ray calorimeters and infrared bolometers. Gives links high density of phonon scattering sites reducing conduction of heat. Links made shorter and more robust. Used in making x-ray calorimeters and infrared bolometers. Applicable to any microelectronic device in which high degree of thermal isolation needed.

  7. Conducting polymer/clay nanocomposites and their applications.

    PubMed

    Fang, Fei Fei; Choi, Hyoung Jin; Joo, Jinsoo

    2008-04-01

    This review aims at reporting on interesting and potential aspects of conducting polymer/clay nanocomposites with regard to their preparation, characteristics and engineering applications. Various conducting polymers such as polyaniline, polypyrrole and copolyaniline are introduced and three different preparation methods of synthesizing conducting polymer/clay nanocomposites are being emphasized. Morphological features, structure characteristics and thermal degradation behavior are explained based on SEM/TEM images, XRD pattern analyses and TGA/DSC graphs, respectively. Attentions are also being paid on conductive/magnetic performances as well as two potential applications in anti-corrosion coating and electrorheological (ER) fluids. PMID:18572558

  8. Improved morphology in electrochemically grown conducting polymer films

    SciTech Connect

    Rubinstein, I.; Gottesfeld, S.; Sabatani, E.

    1990-12-31

    A conducting polymer film with an improved space filling is formed on a metal electrode surface. A self-assembling monolayer is formed directly on the metal surface where the monolayer has a first functional group that binds to the metal surface and a second chemical group that forms a chemical bonding site for molecules forming the conducting polymer. The conducting polymer is then conventionally deposited by electrochemical deposition. In one example, a conducting film of polyaniline is formed on a gold electrode surface with an intermediate monolayer of p-aminothiophenol.

  9. Nuclear alkylated pyridine aldehyde polymers and conductive compositions thereof

    NASA Technical Reports Server (NTRS)

    Rembaum, A.; Singer, S. (Inventor)

    1970-01-01

    A thermally stable, relatively conductive polymer was disclosed. The polymer was synthesized by condensing in the presence of catalyst a 2, 4, or 6 nuclear alklylated 2, 3, or 4 pyridine aldehyde or quaternary derivatives thereof to form a polymer. The pyridine groups were liked by olefinic groups between 2-4, 2-6, 2-3, 3-4, 3-6 or 4-6 positions. Conductive compositions were prepared by dissolving the quaternary polymer and an organic charge transfer complexing agent such as TCNQ in a mutual solvent such as methanol.

  10. Conductive polymers: towards a smart biomaterial for tissue engineering.

    PubMed

    Balint, Richard; Cassidy, Nigel J; Cartmell, Sarah H

    2014-06-01

    Developing stimulus-responsive biomaterials with easy-to-tailor properties is a highly desired goal of the tissue engineering community. A novel type of electroactive biomaterial, the conductive polymer, promises to become one such material. Conductive polymers are already used in fuel cells, computer displays and microsurgical tools, and are now finding applications in the field of biomaterials. These versatile polymers can be synthesised alone, as hydrogels, combined into composites or electrospun into microfibres. They can be created to be biocompatible and biodegradable. Their physical properties can easily be optimized for a specific application through binding biologically important molecules into the polymer using one of the many available methods for their functionalization. Their conductive nature allows cells or tissue cultured upon them to be stimulated, the polymers' own physical properties to be influenced post-synthesis and the drugs bound in them released, through the application of an electrical signal. It is thus little wonder that these polymers are becoming very important materials for biosensors, neural implants, drug delivery devices and tissue engineering scaffolds. Focusing mainly on polypyrrole, polyaniline and poly(3,4-ethylenedioxythiophene), we review conductive polymers from the perspective of tissue engineering. The basic properties of conductive polymers, their chemical and electrochemical synthesis, the phenomena underlying their conductivity and the ways to tailor their properties (functionalization, composites, etc.) are discussed. PMID:24556448

  11. Raising the conductivity of crystalline polymer electrolytes by aliovalent doping.

    PubMed

    Zhang, Chuhong; Staunton, Edward; Andreev, Yuri G; Bruce, Peter G

    2005-12-28

    Polymer electrolytes, salts dissolved in solid polymers, hold the key to realizing all solid-state devices such as rechargeable lithium batteries, electrochromic displays, or SMART windows. For 25 years conductivity was believed to be confined to amorphous polymer electrolytes, all crystalline polymer electrolytes were thought to be insulators. However, recent results have demonstrated conductivity in crystalline polymer electrolytes, although the levels at room temperature are too low for application. Here we show, for the first time, that it is possible to raise significantly the level of ionic conductivity by aliovalent doping. The conductivity may be raised by 1.5 orders of magnitude if the SbF6- ion in the crystalline conductor poly(ethylene oxide)6:LiSbF6 is replaced by less than 5 mol % SiF6(2-), thus introducing additional, mobile, Li+ ions into the structure to maintain electroneutrality. PMID:16366585

  12. Conducting polymer as smart interfaces for cultured neurons

    NASA Astrophysics Data System (ADS)

    Ahluwalia, Arti; Mauricio, Ines; Mazzoldi, Alberto; Serra, Giorgio; Bianchi, Francesca

    2005-05-01

    This work is part of a research project aimed at realising conducting polymer matrices for interfacing with cultured neurons. The polymer matrix has a dual function, one as a medium for recording electrical activity; the other is chemical stimulation through the release of bioactive molecules. In this work we use poly-3-hexylthiophene as a conducting polymer matrix. To test the polymer"s ability to release molecules upon the application of a potential it was doped with glutamate (GA). GA is an important neurotransmitter, and its controlled release can be important in several medical and tissue engineering applications. Diffusional and controlled release of GA from the polymer were assessed. Biocompatibility of the samples was evaluated at each stage using neuroblastoma cell cultures.

  13. Conductive polymer coatings for anodes in aqueous electrowinning

    NASA Astrophysics Data System (ADS)

    Alfantazi, A. M.; Moskalyk, R. R.

    2003-07-01

    This article discusses the potential application of electrically conductive polymers as protective coatings for permanent lead anodes employed in aqueous electrowinning processes. Also presented are results from a preliminary study of the performance of two intrinsically conductive polymers (polyaniline and poly 3,4,5-trifluorophenylthiophene [TFPT]) under mild copper electrowinning conditions as conductive and protective coatings on anodic surfaces. The laboratory results indicated that using lead alloy anodes coated with TFPT merits continued research.

  14. Thermophysical Properties of Polymer Materials with High Thermal Conductivity

    NASA Astrophysics Data System (ADS)

    Lebedev, S. M.; Gefle, O. S.; Dneprovskii, S. N.; Amitov, E. T.

    2015-06-01

    Results of studies on the main thermophysical properties of new thermally conductive polymer materials are presented. It is shown that modification of polymer dielectrics by micron-sized fillers allows thermally conductive materials with thermal conductivity not less than 2 W/(m K) to be produced, which makes it possible to use such materials as cooling elements of various electrical engineering and semiconductor equipment and devices.

  15. Transmitter function of synapse-structure system using conducting polymer

    NASA Astrophysics Data System (ADS)

    Fujii, Masaharu; Machiya, Yuka; Ihori, Haruo

    2012-04-01

    Conducting polymers with neuron-like pattern has been polymerized by controlling polymerization conditions. These conducting polymers have been connected each other to prepare network. If the synapse function can be added to the network, artificial neural network is prepared by conducting polymer. In this paper, we consider the transmitter function using synapse-structure conducting polymer. It consists of three parts: primary circuit as presynaptic terminal, space as synaptic cleft and secondary circuit as postsynaptic structure. Dopant in conducting polymer works as neurotransmitter. Migration as well as diffusion is also considered for dopant ion to transit the space/cleft. When signals from the primary circuit came at the end of the primary circuit in electrolyte solution, the current in the secondary circuit increased because the released dopant ion transited the cleft and entered another conducting polymer. When two primary circuits was used, the current in the secondary circuit increased higher than one primary circuit. This means the synapse-structured conducting polymer system can be use as logical circuit.

  16. Flexible conductive polymer polarizer designed for a chemical tag

    NASA Astrophysics Data System (ADS)

    Washburn, C. M.; Jones, J. C.; Vigil, S. R.; Finnegan, P. S.; Boye, R. R.; Hunker, J. D.; Scrymgeour, D. A.; Dirk, S. M.; Hance, B. G.; Strong, J. M.; Massey, L. M.; Brumbach, M. T.

    2013-03-01

    Conductive polymers with high solids loading (> 40wt.%) are challenging to pattern to single micron feature sizes and require unique techniques or templates to mold the material. The development of a conductive polymer optical tag is discussed for identifying the presence of hydrofluoric acid (HF) and leverages free standing silicon fins as a template utilizing deep reactive ion etching (DRIE) techniques will be discussed. This work is aimed towards a future flexible conductive polymer tag to be transferred via adhesive or epoxy for a novel sensor surface. The advantage to this technique over wafer thinning is a higher throughput of device manufacture without damage to the silicon fins or polymer due to chemical-mechanical interactions or added protective layers. The gratings consist of a high spatial frequency (1.15 μm pitch) grating consisting of lines of conductive polymer and lines of silicon which are free standing. A novel running bond pattern aims to minimize the intrinsic stress and allows the conductive polymer to infiltrate without distorting the template. The polymer conductivity mechanism has been designed to break down under a chemical binding to fluorine; changing its conductivity upon exposure, and results in a change in the polarization response. The use of the polarization response makes the signal more robust to intensity fluctuations in the background or interrogation system. Additionally, the use of optical interrogation allows for standoff detection in instances where hazardous conditions may be present. Examples of material and device responses will be shown and directions for further investigation are discussed.

  17. The application of conducting polymers to a biorobotic fin propulsor

    NASA Astrophysics Data System (ADS)

    Tangorra, James; Anquetil, Patrick; Fofonoff, Timothy; Chen, Angela; DelZio, Mike; Hunter, Ian

    2007-06-01

    Conducting polymer actuators based on polypyrrole are being developed for use in biorobotic fins that are designed to create and control forces like the pectoral fin of the bluegill sunfish (Lepomis macrochirus). It is envisioned that trilayer bending actuators will be used within, and as, the fin's webbing to create a highly controllable, shape morphing, flexible fin surface, and that linear conducting polymer actuators will be used to actuate the bases of the fin's fin-rays, like an agonist-antagonist muscle pair, and control the fin's stiffness. For this application, trilayer bending actuators were used successfully to reproduce the cupping motion of the sunfish pectoral fin by controlling the curvature of the fin's surface and the motion of its dorsal and ventral edges. However, the speed of these large polymer films was slow, and must be increased if the fin's shape is to be modulated synchronously with the fin's flapping motion. Free standing linear conducting polymer films can generate large stresses and strains, but there are many engineering obstacles that must be resolved in order to create linear polymer actuators that generate simultaneously the forces, displacements and actuation rates required by the fin. We present two approaches that are being used to solve the engineering challenges involved in utilizing conducting polymer linear actuators: the manufacture of long, uniform ribbons of polymer and gold film, and the parallel actuation of multiple conducting polymer films.

  18. Research Trends of Soft Actuators based on Electroactive Polymers and Conducting Polymers

    NASA Astrophysics Data System (ADS)

    Kaneto, K.

    2016-04-01

    Artificial muscles (or soft actuators) based on electroactive polymers (EAPs) are attractive power sources to drive human-like robots in place of electrical motor, because they are quiet, powerful, light weight and compact. Among EAPs for soft actuators, conducting polymers are superior in strain, stress, deformation form and driving voltage compared with the other EAPs. In this paper, the research trends of EAPs and conducting polymers are reviewed by retrieval of the papers and patents. The research activity of EAP actuators showed the maximum around 2010 and somehow declining now days. The reasons for the reducing activity are found to be partly due to problems of conducting polymer actuators for the practical application. The unique characteristics of conducting polymer actuators are mentioned in terms of the basic mechanisms of actuation, creeping, training effect and shape retention under high tensile loads. The issues and limitation of conducting polymer soft actuators are discussed.

  19. Making Conductive Polymers By Arc Tracking

    NASA Technical Reports Server (NTRS)

    Daech, Alfred F.

    1992-01-01

    Experimental technique for fabrication of electrically conductive polymeric filaments based on arc tracking, in which electrical arc creates conductive carbon track in material that initially was insulator. Electrically conductive polymeric structures made by arc tracking aligned along wire on which formed. Alignment particularly suited to high conductivity and desirable in materials intended for testing as candidate superconductors.

  20. Predoped conductive polymers as battery electrode materials

    SciTech Connect

    Jow, T.R.; Shacklette, L.W.

    1989-02-14

    An improved battery is described. The anode consists of one or more conjugated backbone polymers and one or more electroactive materials selected from the group consisting of metals which alloy with alkali metals and alkali metal cation inserting material. The electrolyte consists of an organic solvent and an alkali-metal salt. There is also a cathode alkali-metal cations from the electrolyte being inserted into the anode as a metal alloy or as an inserted ion in the alkali metal cation inserting material during the charging of the battery; the improvement comprises an anode in which the conjugated backbone polymers contained in the anode have been predoped with one or more alkali metal cations to the reduced state prior to incorporation of the anode into the battery.

  1. Ionically conducting polymers: Principles and properties of solid electrolytes

    SciTech Connect

    Skotheim, T.; Okamoto, Y.

    1987-01-01

    The recent success in developing rechargeable lithium batteries incorporating polyether-based electrolytes has led to the anticipation of a wider use of polymer electrolytes in a host of different applications. The polymers with the best combinations of solvation power, conductivity and electrochemical stability are all based on either PEO or polymers incorporating a high density of EO units. PEO-based electrolytes still yield the highest conductivities at elevated temperatures (approx.100/sup 0/C) when it is completely amorphous. What has emerged during the last ten years of research on polymer electrolytes is the central importance of the amorphous state for high conductivity, where the ion mobility is governed by the mobility associated with a low glass transition temperature. The difference between polymer and liquid electrolytes is that in the former the solvating part does not migrate with the ions. There is, however, still some controversy concerning the nature of the ionic species, i.e. whether the salt is present in the form of associated ions. The intensive research of the last few years has led to a far better understanding of these polymer-ion complexes. Several different types of solvating polymers have been developed, in particular single ion conductors, which represent much of the future of ion conducting polymer research. 36 refs.

  2. Electropolymerized Conducting Polymer as Actuator and Sensor Device

    ERIC Educational Resources Information Center

    Cortes, Maria T.; Moreno, Juan C.

    2005-01-01

    A study demonstrates the potential application of conducting polymers to convert electrical energy into mechanical energy at low voltage or current. The performance of the device is explained using electrochemistry and solid-state chemistry.

  3. Interfacial ionic and electronic conductivity in polymers

    SciTech Connect

    Shriver, D.F.

    1989-06-01

    New phosphazen-based ((NP(OR){sub x}(OC{sub 2}H{sub 4}SO{sub 3}Na){sub 2-x}){sub n}) single ion conductors were synthesized based on a polyphosphazene backbone and short-chain polyether sidechains, some of which are terminated with tetraalkylammonium groups. These materials are good anion conductors at room temperature. Related cation conductors were also prepared and characterized. Effects of interionic attractive interactions on the diffusion of a tracer were investigated theoretically. The results are relevant to ion pairing and trapping in polymer electrolytes.

  4. Conducting Polymer Electrodes for Gel Electrophoresis

    PubMed Central

    Bengtsson, Katarina; Nilsson, Sara; Robinson, Nathaniel D.

    2014-01-01

    In nearly all cases, electrophoresis in gels is driven via the electrolysis of water at the electrodes, where the process consumes water and produces electrochemical by-products. We have previously demonstrated that π-conjugated polymers such as poly(3,4-ethylenedioxythiophene) (PEDOT) can be placed between traditional metal electrodes and an electrolyte to mitigate electrolysis in liquid (capillary electroosmosis/electrophoresis) systems. In this report, we extend our previous result to gel electrophoresis, and show that electrodes containing PEDOT can be used with a commercial polyacrylamide gel electrophoresis system with minimal impact to the resulting gel image or the ionic transport measured during a separation. PMID:24586761

  5. Sensors employing Functionalized Conducting Polymer Thin Film Transistors

    NASA Astrophysics Data System (ADS)

    Tanese, M. C.; Torsi, L.; Cioffi, N.; Sabbatini, L.; Zambonin, P. G.

    2003-12-01

    Functionalized conducting polymers are employed as active layers in sensors with a thin film transistor (TFT) device structure. Such devices can work as multi-parameter sensors with responses that are fast, repeatable and reversible at room temperature. In this work, a strategy is proposed to enhance the chemical selectivity of organic TFT sensors, by selecting active layers that are made of conducting polymers bearing chemically different substituents. A modulation of the devices sensitivity towards analytes such as alcohols and ketones is demonstrated.

  6. Characterisation of Proton Conducting Polymer Electrolyte Based on Pan

    NASA Astrophysics Data System (ADS)

    Nithya, S.; Selvasekarapandian, S.; Rajeswari, N.; Sikkanthar, S.; Karthikeyan, S.; Sanjeeviraja, C.

    2013-07-01

    The polymer electrolytes composed of polyacrylonitrile (PAN) with various concentration of ammonium nitrare (NH4NO3) salt have been prepared by solution casting method, using DMF as solvent. The increase in amorphous nature of the polymer electrolytes has been confirmed by Xray diffraction analysis. The complex formation between polymer and dissociated salt has been confirmed by Fourier transform infrared spectroscopy. From the Ac impedance spectroscopic analysis, the ionic conductivity of 20 mol% NH4NO3 doped polymer complex has been found to be 2.742 × 10-6 S cm-1 at room temperature. The conductivity has been increased when the temperature is increased. The activation energy of 20 mol% NH4NO3 doped polymer electrolyte was calculated using Arrhenius plot and it has been found to be 0.58 eV. The dielectric permitivitty (ɛ*) and electric modulus (m*) have been discussed.

  7. Li conductivity in siloxane-based polymer electrolytes

    NASA Astrophysics Data System (ADS)

    Stacy, Eric; Fan, Fei; Feng, Hongbo; Gainaru, Catalin; Mays, Jimmy; Sokolov, Alexei

    Polymer electrolytes containing lithium ions are ideal candidates for electrochemical devices and energy storage applications. Understanding their ionic transport mechanism is the key for rational designing of highly conductive polymer matrices. Complementing dielectric spectroscopy investigations by results from rheology and differential scanning calorimetry we focused on the interplay between dynamics of lithium ions and the polymer matrix based on polysiloxane backbone. Our results demonstrate that the conductivity and the degree of decoupling between ion dynamics and structural relaxation depend strongly not only on the ions concentration, but also on the polarity and size of the polymeric side-groups. Chemical Science Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States.

  8. Method of forming electronically conducting polymers on conducting and nonconducting substrates

    NASA Technical Reports Server (NTRS)

    Murphy, Oliver J. (Inventor); Hitchens, G. Duncan (Inventor); Hodko, Dalibor (Inventor); Clarke, Eric T. (Inventor); Miller, David L. (Inventor); Parker, Donald L. (Inventor)

    2001-01-01

    The present invention provides electronically conducting polymer films formed from photosensitive formulations of pyrrole and an electron acceptor that have been selectively exposed to UV light, laser light, or electron beams. The formulations may include photoinitiators, flexibilizers, solvents and the like. These solutions can be used in applications including printed circuit boards and through-hole plating and enable direct metallization processes on non-conducting substrates. After forming the conductive polymer patterns, a printed wiring board can be formed by sensitizing the polymer with palladium and electrolytically depositing copper.

  9. UV-induced surface electrical conductivity jump of polymer nanocomposites

    SciTech Connect

    Chen Guangxin; Miyauchi, Masahiro; Shimizu, Hiroshi

    2008-05-19

    A method of improving the electrical conductivity of polymer nanocomposites under UV irradiation was described. An anatase TiO{sub 2}-grafted carbon nanotube could function as a conductive filler and a photocatalyst when it compounds with a poly(L-lactide) to produce a composite. After UV irradiation, the decomposition of the polymer only occurred on the surface of a poly(L-lactide)/TiO{sub 2} grafted carbon nanotube composite and not on bulk, resulting in an electrical conductivity jump as high as six orders of magnitude.

  10. Mediating conducting polymer growth within hydrogels by controlling nucleation

    NASA Astrophysics Data System (ADS)

    Patton, A. J.; Green, R. A.; Poole-Warren, L. A.

    2015-01-01

    This study examines the efficacy of primary and secondary nucleation for electrochemical polymerisation of conductive polymers within poly(vinyl alcohol) methacrylate hydrogels. The two methods of nucleation investigated were a primary heterogeneous mechanism via introduction of conductive bulk metallic glass (Mg64Zn30Ca5Na1) particles and a secondary mechanism via introduction of "pre-polymerised" conducting polymer within the hydrogel (PEDOT:PSS). Evidence of nucleation was not seen in the bulk metallic glass loaded gels, however, the PEDOT:PSS loaded gels produced charge storage capacities over 15 mC/cm2 when sufficient polymer was loaded. These studies support the hypothesis that secondary nucleation is an efficient approach to producing stand-alone conducting hydrogels.

  11. Phase diagram of hopping conduction mechanisms in polymer nanofiber network

    SciTech Connect

    Li, Jeng-Ting; Lu, Yu-Cheng; Jiang, Shiau-Bin; Zhong, Yuan-Liang; Yeh, Jui-Ming

    2015-12-07

    Network formation by nanofiber crosslinking is usually in polymer materials as application in organic semiconductor devices. Electron hopping transport mechanisms depend on polymer morphology in network. Conducting polymers morphology in a random network structure is modeled by a quasi-one-dimensional system coupled of chains or fibers. We observe the varying hopping conduction mechanisms in the polyaniline nanofibers of the random network structure. The average diameter d of the nanofibers is varied from approximately 10 to 100 nm. The different dominant hopping mechanisms including Efros-Shklovskii variable-range hopping (VRH), Mott VRH, and nearest-neighbor hopping are dependent on temperature range and d in crossover changes. The result of this study is first presented in a phase diagram of hopping conduction mechanisms based on the theories of the random network model. The hopping conduction mechanism is unlike in normal semiconductor materials.

  12. Rapid synthesis of flexible conductive polymer nanocomposite films

    NASA Astrophysics Data System (ADS)

    Blattmann, C. O.; Sotiriou, G. A.; Pratsinis, S. E.

    2015-03-01

    Polymer nanocomposite films with nanoparticle-specific properties are sought out in novel functional materials and miniaturized devices for electronic and biomedical applications. Sensors, capacitors, actuators, displays, circuit boards, solar cells, electromagnetic shields and medical electrodes rely on flexible, electrically conductive layers or films. Scalable synthesis of such nanocomposite films, however, remains a challenge. Here, flame aerosol deposition of metallic nanosliver onto bare or polymer-coated glass substrates followed by polymer spin-coating on them leads to rapid synthesis of flexible, free-standing, electrically conductive nanocomposite films. Their electrical conductivity is determined during their preparation and depends on substrate composition and nanosilver deposition duration. Accordingly, thin (<500 nm) and flexible nanocomposite films are made having conductivity equivalent to metals (e.g. 5 × 104 S cm-1), even during repetitive bending.

  13. Rapid synthesis of flexible conductive polymer nanocomposite films.

    PubMed

    Blattmann, C O; Sotiriou, G A; Pratsinis, S E

    2015-03-27

    Polymer nanocomposite films with nanoparticle-specific properties are sought out in novel functional materials and miniaturized devices for electronic and biomedical applications. Sensors, capacitors, actuators, displays, circuit boards, solar cells, electromagnetic shields and medical electrodes rely on flexible, electrically conductive layers or films. Scalable synthesis of such nanocomposite films, however, remains a challenge. Here, flame aerosol deposition of metallic nanosliver onto bare or polymer-coated glass substrates followed by polymer spin-coating on them leads to rapid synthesis of flexible, free-standing, electrically conductive nanocomposite films. Their electrical conductivity is determined during their preparation and depends on substrate composition and nanosilver deposition duration. Accordingly, thin (<500 nm) and flexible nanocomposite films are made having conductivity equivalent to metals (e.g. 5  × 10(4) S cm(-1)), even during repetitive bending. PMID:25736387

  14. Polymer electrolyte membranes with exceptional conductivity anisotropy via holographic polymerization

    NASA Astrophysics Data System (ADS)

    Smith, Derrick M.; Cheng, Shan; Wang, Wenda; Bunning, Timothy J.; Li, Christopher Y.

    2014-12-01

    Polymer electrolyte membranes using an ionic liquid as electrolyte with an ionic conductivity anisotropy of ∼5000 have been fabricated using a holographic polymerization nanomanufacturing technique. The resultant structure is referred to as holographic polymer electrolyte membranes (hPEMs), which are comprised of alternating nanolayers of a room temperature ionic liquid and crosslinked polymer resin, confirmed under TEM imaging. These hPEMs also show no reduction in room temperature conductivity with respect to the loaded ionic liquid when characterized in the plane of ionic liquid nanolayers. At elevated temperatures with the optimal electrolyte volume loading, calculation shows that the free ion concentration is higher than the pure ionic liquid, suggesting that the photopolymer dual-functionalizes as a loadbearing scaffold and an ion-complexing agent, allowing for more ions to participate in charge transfer. These hPEMs provide a promising solution to decoupling mechanical enhancement and ion transport in polymer electrolyte membranes.

  15. Mixed-ionic and electronic conductivity in polymers

    SciTech Connect

    Ratner, M.A.; Shriver, D.F.

    1991-01-01

    The aim in this portion of the research is to prepare new electroactive films with high ion mobility, and to characterize the transport properties of these materials. The classic conducting polymers, polyacetylene, polythiophene, and polypyrrole have dense structures that prevent rapid redox switching because of the low diffusivity of ions. The objective is to modify the last two polymers with pendant polyethers, which should greatly improve ion transport.

  16. New Aptes Cross-linked Polymers from Poly(ethylene oxide)s and Cyanuric Chloride for Lithium Batteries

    NASA Technical Reports Server (NTRS)

    Tigelaar, Dean M.; Meador, Mary Ann B.; Kinder, James D.; Bennett, William R.

    2005-01-01

    A new series of polymer electrolytes for use as membranes for lithium batteries are described. Electrolytes were made by polymerization between cyanuric chloride and diamino-terminated poly(ethylene oxide)s, followed by cross-linking via a sol-gel process. Thermal analysis and lithium conductivity of freestanding polymer films were studied. The effects of several variables on conductivity were investigated, such as length of backbone PEO chain, length of branching PEO chain, extent of branching, extent of cross-linking, salt content, and salt counterion. Polymer films with the highest percentage of PEO were found to be the most conductive, with a maximum lithium conductivity of 3.9 x 10(exp -5) S/cm at 25 C. Addition of plasticizer to the dry polymers increased conductivity by an order of magnitude.

  17. Electrical characterization of proton conducting polymer electrolyte based on bio polymer with acid dopant

    NASA Astrophysics Data System (ADS)

    Kalaiselvimary, J.; Pradeepa, P.; Sowmya, G.; Edwinraj, S.; Prabhu, M. Ramesh

    2016-05-01

    This study describes the biodegradable acid doped films composed of chitosan and Perchloric acid with different ratios (2.5 wt %, 5 wt %, 7.5 wt %, 10 wt %) was prepared by the solution casting technique. The temperature dependence of the proton conductivity of complex electrolytes obeys the Arrhenius relationship. Proton conductivity of the prepared polymer electrolyte of the bio polymer with acid doped was measured to be approximately 5.90 × 10-4 Scm-1. The dielectric data were analyzed using Complex impedance Z*, Dielectric loss ɛ', Tangent loss for prepared polymer electrolyte membrane with the highest conductivity samples at various temperature.

  18. A Conducting Polymer Film Stronger Than Aluminum

    NASA Astrophysics Data System (ADS)

    Shi, Gaoquan; Jin, Shi; Xue, Gi; Li, Cun

    1995-02-01

    Polythiophene (Pth) was electrochemically deposited onto stainless steel substrate from freshly distilled boron fluoride-ethyl ether containing 10 millimoles of thiophene per liter. The free-standing Pth film obtained at an applied potential of 1.3 volts (versus Ag/AgCl) had a conductivity of 48.7 siemens per centimeter. Its tensile strength (1200 to 1300 kilograms per square centimeter) was greater than that of aluminium (1000 to 1100 kilograms per square centimeter). This Pth film behaves like a metal sheet and can be easily cut into various structures with a knife or a pair of scissors.

  19. Corrosion resistant coatings from conducting polymers

    SciTech Connect

    Wrobleski, D.A.; Benicewicz, B.C.; Thompson, K.G.; Bryan, C.J.

    1993-12-01

    Cr-based corrosion resistant undercoatings will have to be replaced because of environmental and health concerns. A coating system of a conducting polyaniline primer layer topcoated with epoxy or polyurethane, is being evaluated for corrosion resistance on mild steel in 0.1 M HCl or in a marine setting. Results of both laboratory and Beach Site testing indicate that this coating is very effective; even when the coatings are scratched to expose bare metal, the coated samples show very little signs of corrosion in the exposed area. 3 figs, 6 refs.

  20. Preparation of Conducting Polymers by Electrochemical Methods and Demonstration of a Polymer Battery

    ERIC Educational Resources Information Center

    Goto, Hiromasa; Yoneyama, Hiroyuki; Togashi, Fumihiro; Ohta, Reina; Tsujimoto, Akitsu; Kita, Eiji; Ohshima, Ken-ichi

    2008-01-01

    The electrochemical polymerization of aniline and pyrrole, and demonstrations of electrochromism and the polymer battery effect, are presented as demonstrations suitable for high school and introductory chemistry at the university level. These demonstrations promote student interest in the electrochemical preparation of conducting polymers, where…

  1. Hierarchically porous polymers from hyper-cross-linked block polymer precursors.

    PubMed

    Seo, Myungeun; Kim, Soobin; Oh, Jaehoon; Kim, Sun-Jung; Hillmyer, Marc A

    2015-01-21

    We report synthesis of hierarchically porous polymers (HPPs) consisting of micropores and well-defined 3D continuous mesopores by combination of hyper-cross-linking and block polymer self-assembly. Copolymerization of 4-vinylbenzyl chloride (VBzCl) with divinylbenzene (DVB) in the presence of polylactide (PLA) macro-chain-transfer agent produced a cross-linked block polymer precursor PLA-b-P(VBzCl-co-DVB) via reversible addition-fragmentation chain transfer polymerization. A nanoscopic bicontinuous morphology containing PLA and P(VBzCl-co-DVB) microdomains was obtained as a result of polymerization-induced microphase separation. While a basic treatment of the precursor selectively removed PLA to yield a reticulated mesoporous polymer, hyper-cross-linking of the precursor by FeCl3 generated micropores in the P(VBzCl-co-DVB) microdomain via Friedel-Crafts alkylation and simultaneously degraded PLA to produce the HPP containing micropores in the mesoporous framework. The mesopore size of the HPP could be precisely controlled from 6 to 15 nm by controlling the molar mass of PLA. We demonstrate acceleration in adsorption rate in the HPP compared to a hyper-cross-linked microporous polymer. PMID:25551291

  2. Ion-Conducting Polymer Films as Chemical Sensors

    SciTech Connect

    Hughes, R.C.; Patel, S.V.; Pfeifer, K.B.; Yelton, W.G.

    1999-05-03

    Solid Polymer Electrolytes (SPE) are widely used in batteries and fuel cells because of the high ionic conductivity that can be achieved at room temperature. The ions are usually Li or protons, although other ions can be shown to conduct in these polymer films. There has been very little work on using these films as chemical sensors. We have found that thin films of polymers like polyethyleneoxide (PEO) are very sensitive to low concentrations of volatile organic compounds (VOCS) like common solvents. We will present impedance spectroscopy of PEO films in the frequency range 0.01 Hz to 1 MHz for different concentrations of VOCS. We find that the measurement frequency is important for distinguishing ionic conductivity from the double layer capacitance and parasitic capacitances.

  3. Corrosion-protective coatings from electrically conducting polymers

    SciTech Connect

    Thompson, K.G.; Bryan, C.J.; Benicewicz, B.C.; Wrobleski, D.A.

    1991-12-31

    In a joint research effort involving the Kennedy Space Center and the Los Alamos National Laboratory, electrically conductive polymer coatings have been developed as corrosion-protective coatings for metal surfaces. At the Kennedy Space Center, the launch environment consists of marine, severe solar, and intermittent high acid/elevated temperature conditions. Electrically conductive polymer coatings have been developed which impart corrosion resistance to mild steel when exposed to saline and acidic environments. Such coatings also seem to promote corrosion resistance in areas of mild steel where scratches exist in the protective coating. Such coatings appear promising for many commercial applications.

  4. Corrosion-protective coatings from electrically conducting polymers

    NASA Technical Reports Server (NTRS)

    Thompson, Karen Gebert; Bryan, Coleman J.; Benicewicz, Brian C.; Wrobleski, Debra A.

    1991-01-01

    In a joint effort between NASA Kennedy and LANL, electrically conductive polymer coatings were developed as corrosion protective coatings for metal surfaces. At NASA Kennedy, the launch environment consist of marine, severe solar, and intermittent high acid and/or elevated temperature conditions. Electrically conductive polymer coatings were developed which impart corrosion resistance to mild steel when exposed to saline and acidic environments. Such coatings also seem to promote corrosion resistance in areas of mild steel where scratches exist in the protective coating. Such coatings appear promising for many commercial applications.

  5. Controlling PbS nanocrystal aggregation in conducting polymers.

    PubMed

    Warner, Jamie H; Watt, Andrew A R; Tilley, Richard D

    2005-10-01

    PbS nanocrystals were synthesized directly in the conducting polymer, poly(3-hexylthiophene-2,5-diyl). Transmission electron microscopy shows that the PbS nanocrystals are faceted and relatively uniform in size with a mean size of 10 nm. FFT analysis of the atomic lattice planes observed in TEM and selected area electron diffraction confirm that the nanocrystals have the PbS rock salt structure. The synthesis conditions are explored to show control over the aggregation of PbS nanocrystals in the thiophene conducting polymer. PMID:20818021

  6. Chemical sensors using peptide-functionalized conducting polymer nanojunction arrays

    NASA Astrophysics Data System (ADS)

    Aguilar, Alvaro Díaz; Forzani, Erica S.; Li, Xiulan; Tao, Nongjian; Nagahara, Larry A.; Amlani, Islamshah; Tsui, Raymond

    2005-11-01

    We demonstrate a heavy metal-ion sensor for drinking water analysis using a conducting polymer nanojunction array. Each nanojunction is formed by bridging a pair of nanoelectrodes separated with a small gap (<60nm) with electrodeposited peptide-modified polyanilines. The signal transduction mechanism of the sensor is based on the change in the nanojunction conductance as a result of polymer conformational changes induced by the metal-ion chelating peptide. The nanojunction sensor allows real-time detection of Cu2+ and Ni2+ at ppt range.

  7. Thin film conductive polymer for microactuator and micromuscle applications

    SciTech Connect

    Lee, A.P.; Hong, K.; Trevino, J.; Northrup, M.A.

    1994-04-14

    Conductive polymer/polyimide bimorphic microcantilevers have been actuated vertically (out-of-plane) upon the volumetric changes induced by electrochemical doping of the polymer. The microcantilevers that are 200-500 {mu}m in length and 50-100 {mu}m in width can be fully extended from a circularly-curled geometry, and thus generate more than 100 {mu}m displacement. Dynamically the microcantilevers have been driven as fast as 1.2 Hz and the polymer was stable for over a week stored in air and light. Residual stresses in the polymer film is estimated to be as high as 254 MPa, and actuation stresses are as high as 50 MPa.

  8. Proton Ion Conducting Polymer Electrolyte Pan: NH4PF6

    NASA Astrophysics Data System (ADS)

    Sikkanthar, S.; Karthikeyan, S.; Rajeswari, N.; Selvasekarapandian, S.; Sanjeeviraja, C.

    2013-07-01

    Polymer electrolytes are an important class of materials and have been used in high energy batteries, fuel cells, gas sensors, display devices etc. PAN based polymer electrolyte films doped with ammonium hexafluorophosphate (NH4PF6) has been prepared by the solution casting method. The prepared films have been investigated by different techniques such as XRD, FTIR and AC Impedance spectroscopy. XRD studies reveal the amorphous nature of the polymer blend-salt complexes. The FTIR analysis confirms the complex formation of the polymer with salt. From the AC Impedance spectroscopy, the maximum proton conductivity at room temperature has been found to be 3.98×10-4 S cm-1 for 20 mol% salt doped electrolyte.

  9. Bioreceptor-conducting polymer multilayer assemblies for biosensing

    NASA Astrophysics Data System (ADS)

    Samuelson, Lynne A.; Alva, Shridhara; Kumar, Jayant; Kaplan, David L.; Tripathy, Sukant K.

    1998-04-01

    This research focuses on the organized integration of biological receptors and polymers into thin film architectures for biosensing applications. Layer-by-layer electrostatic adsorption was used for the first time to form alternating protein-conducting polymer multilayers. The light-harvesting, phycobiliproteins and the enzyme, alkaline phosphatase were the bioreceptors investigated and sulfonated polystyrene, poly(diallyl dimethyl ammonium chloride) and a new enzymatically polymerized, water soluble, polyaniline were the polymer counterions used for deposition. Spectroscopic characterization was used to determine both multilayer formation and biosensing function of the final bioreceptor-polymer assemblies. These techniques have proven to be simple, chemically mild, and versatile and are expected to find application in the fabrication of ultrathin films for biosensors, opto- electronic devices and biomedical applications.

  10. Investigation of anisotropic thermal transport in cross-linked polymers

    NASA Astrophysics Data System (ADS)

    Simavilla, David Nieto

    Thermal transport in lightly cross-linked polyisoprene and polybutadine subjected to uniaxial elongation is investigated experimentally. We employ two experimental techniques to assess the effect that deformation has on this class of materials. The first technique, which is based on Forced Rayleigh Scattering (FRS), allows us to measure the two independent components of the thermal diffusivity tensor as a function of deformation. These measurements along with independent measurements of the tensile stress and birefringence are used to evaluate the stress-thermal and stress-optic rules. The stress-thermal rule is found to be valid for the entire range of elongations applied. In contrast, the stress-optic rule fails for moderate to large stretch ratios. This suggests that the degree of anisotropy in thermal conductivity depends on both orientation and tension in polymer chain segments. The second technique, which is based on infrared thermography (IRT), allows us to measure anisotropy in thermal conductivity and strain induced changes in heat capacity. We validate this method measurements of anisotropic thermal conductivity by comparing them with those obtained using FRS. We find excellent agreement between the two techniques. Uncertainty in the infrared thermography method measurements is estimated to be about 2-5 %. The accuracy of the method and its potential application to non-transparent materials makes it a good alternative to extend current research on anisotropic thermal transport in polymeric materials. A second IRT application allows us to investigate the dependence of heat capacity on deformation. We find that heat capacity increases with stretch ratio in polyisoprene specimens under uniaxial extension. The deviation from the equilibrium value of heat capacity is consistent with an independent set of experiments comparing anisotropy in thermal diffusivity and conductivity employing FRS and IRT techniques. We identify finite extensibility and strain

  11. Electrically Conductive Multiphase Polymer Blend Carbon-Based Composites

    NASA Astrophysics Data System (ADS)

    Brigandi, Paul James

    The use of multiphase polymer blends provides unique morphologies and properties to reduce the percolation concentration and increase conductivity of carbon-based polymer composites. These systems offer improved conductivity, temperature stability and selective distribution of the conductive filler through unique morphologies at significantly lower conductive filler concentration. In this work, the kinetic and thermodynamic effects on a series of multiphase conductive polymer composites were investigated. The polymer blend phase morphology, filler distribution, electrical conductivity, and rheological properties of CB-filled PP/PMMA/EAA conductive polymer composites were determined. Thermodynamic and kinetic parameters were found to influence the morphology development and final composite properties. The morphology and CB distribution were found to be kinetically driven when annealed for a short period of time following the shear-intensive mixing process, whereas the three-phase polymer blend morphology is driven by thermodynamics when given sufficient time under high temperature annealing conditions in the melt state. At short annealing times, the CB distribution was influenced by the compounding sequence where the CB was added after being premixed with one of the polymer phases or directly added to the three phase polymer melt, but again was thermodynamically driven at longer annealing times with the CB migrating to the EAA phase. The resistivity was found to decrease by a statistically significant amount to similar levels for all of the composite systems with increasing annealing time, providing evidence of gradual phase coalescence to a tri-continuous morphology and CB migration. The addition of CB via the PP and EAA masterbatch results in significantly faster percolation and lower resistivity compared to when added direct to the system during compounding after 30 minutes annealing by a statistically significant amount. Dynamic oscillatory shear rheology using

  12. Fabrication, Modelling and Application of Conductive Polymer Composites

    NASA Astrophysics Data System (ADS)

    Price, Aaron David

    Electroactive polymers (EAP) are an emerging branch of smart materials that possess the capability to change shape in the presence of an electric field. Opportunities for the advancement of knowledge were identified in the branch of EAP consisting of inherently electrically conductive polymers. This dissertation explores methods by which the unique properties of composite materials having conductive polymers as a constituent may be exploited. Chapter 3 describes the blending of polyaniline with conventional thermoplastics. Processing these polyblends into foams yielded a porous conductive material. The effect of blend composition and processing parameters on the resulting porous morphology and electrical conductivity was investigated. These findings represent the first systematic study of porous conductive polymer blends. In Chapter 4, multilayer electroactive polymer actuators consisting of polypyrrole films electropolymerized on a passive polymer membrane core were harnessed as actuators. The membrane is vital in the transport of ionic species and largely dictates the stiffness of the layered configuration. The impact of the mechanical properties of the membrane on the actuation response of polypyrrole-based trilayer bending actuators was investigated. Candidate materials with distinct morphologies were identified and their mechanical properties were evaluated. These results indicated that polyvinylidene difluoride membranes were superior to the other candidates. An electrochemical synthesis procedure was proposed, and the design of a novel polymerization vessel was reported. These facilities were utilized to prepare actuators under a variety of synthesis conditions to investigate the impact of conductive polymer morphology on the electromechanical response. Characterization techniques were implemented to quantitatively assess physical and electrochemical properties of the layered composite. Chapter 5 proposes a new unified multiphysics model that captures the

  13. Tunable Nanopatterning of Conductive Polymers via Electrohydrodynamic Lithography.

    PubMed

    Rickard, Jonathan James Stanley; Farrer, Ian; Goldberg Oppenheimer, Pola

    2016-03-22

    An increasing number of technologies require the fabrication of conductive structures on a broad range of scales and over large areas. Here, we introduce advanced yet simple electrohydrodynamic lithography (EHL) for patterning conductive polymers directly on a substrate with high fidelity. We illustrate the generality of this robust, low-cost method by structuring thin polypyrrole films via electric-field-induced instabilities, yielding well-defined conductive structures with feature sizes ranging from tens of micrometers to hundreds of nanometers. Exploitation of a conductive polymer induces free charge suppression of the field in the polymer film, paving the way for accessing scale sizes in the low submicron range. We show the feasibility of the polypyrrole-based structures for field-effect transistor devices. Controlled EHL pattering of conductive polymer structures at the micro and nano scale demonstrated in this study combined with the possibility of effectively tuning the dimensions of the tailor-made architectures might herald a route toward various submicron device applications in supercapacitors, photovoltaics, sensors, and electronic displays. PMID:26905779

  14. Tunable Nanopatterning of Conductive Polymers via Electrohydrodynamic Lithography

    PubMed Central

    2016-01-01

    An increasing number of technologies require the fabrication of conductive structures on a broad range of scales and over large areas. Here, we introduce advanced yet simple electrohydrodynamic lithography (EHL) for patterning conductive polymers directly on a substrate with high fidelity. We illustrate the generality of this robust, low-cost method by structuring thin polypyrrole films via electric-field-induced instabilities, yielding well-defined conductive structures with feature sizes ranging from tens of micrometers to hundreds of nanometers. Exploitation of a conductive polymer induces free charge suppression of the field in the polymer film, paving the way for accessing scale sizes in the low submicron range. We show the feasibility of the polypyrrole-based structures for field-effect transistor devices. Controlled EHL pattering of conductive polymer structures at the micro and nano scale demonstrated in this study combined with the possibility of effectively tuning the dimensions of the tailor-made architectures might herald a route toward various submicron device applications in supercapacitors, photovoltaics, sensors, and electronic displays. PMID:26905779

  15. Star/linear polymer topology transformation facilitated by mechanical linking of polymer chains.

    PubMed

    Aoki, Daisuke; Uchida, Satoshi; Takata, Toshikazu

    2015-06-01

    Topology transformation of a star polymer to a linear polymer is demonstrated for the first time. A three-armed star polymer possessing a mechanical linking of two polymer chains was synthesized by the living ring-opening polymerization of δ-valerolactone initiated by a pseudo[2]rotaxane having three hydroxy groups as the initiator sites on the wheel component and at both axle termini. The polymerization was followed by the propagation end-capping reaction with a bulky isocyanate not only to prevent the wheel component deslippage but also to introduce the urethane moiety at the axle terminal. The resulting rotaxane-linked star polymer with a fixed rotaxane linkage based on the ammonium/crown ether interaction was subjected to N-acetylation of the ammonium moiety, which liberated the components from the interaction to move the wheel component to the urethane terminal as the interaction site, eventually affording the linear polymer. The physical property change caused by the present topology transformation was confirmed by the hydrodynamic volume and viscosity. PMID:25892579

  16. Electrically conducting novel polymer films containing pi-stacks

    NASA Astrophysics Data System (ADS)

    Duan, Robert Gang

    1997-12-01

    The primary focus of this thesis is to expand our knowledge of ion radicals of π-dimers and π- stacks in solutions and apply these insights in the development and understanding of new electrically conducting polymers. Two types of the conducting polymers were investigated. The first is the conducting polymer composites embedded with π-stacks of ion radicals. Flexible and air stable n-typed conducting thin films were prepared from imide/poly(vinyl alcohol) aqueous solutions. Conducting thin films of terthiophene/poly(methyl methacrylate) were cast from hexafluoro-2-propanol. Effects of casting conditions on the morphology and conductivity of the films were investigated. These films were fully characterized by UV- vis, NIR, IR, XRD, SEM and ESR. In the second type of conducting polymer system, PAMAM dendrimers generation 1 through 5 were peripherally modified with cationically substituted naphthalene diimide anion radicals. NMR, UV, IR, CV and Elemental Analysis were used to characterize modified dendrimers. Reduction with sodium dithionite in solution showed anion radicals were aggregated into π-dimers and π- stacks. Formamide was used to cast conducting dendrimer films. ESCA, SEM and optical microscope were used to study the composition and the morphology of the films. XRD showed complete amorphous nature of these films. NIR revealed that the π-stack aggregation depend strongly on the casting temperature and the degree of reduction. Four- probe co-liner conductivity of the films is on the order of 10-2 to 10-1/ S/ cm-1. ESR and conductivity measurements also revealed the isotropic nature of the conductivity. Conductivity/humidity relationship was discovered by accidental breathing over the films. Using a home-made controlled humidity device and PACERTM hygrometer, the conductivity of the films can be varied quickly and reversibly within two orders of a magnitude. This phenomenon was probed with NIR, XRD and quartz crystal microbalance techniques. These

  17. Direct measurement of ion mobility in a conducting polymer.

    PubMed

    Stavrinidou, Eleni; Leleux, Pierre; Rajaona, Harizo; Khodagholy, Dion; Rivnay, Jonathan; Lindau, Manfred; Sanaur, Sébastien; Malliaras, George G

    2013-08-27

    Using planar junctions between the conducting polymer PEDOT:PSS and various electrolytes, it is possible to inject common ions and directly observe their transit through the film. The 1D geometry of the experiment allows a straightforward estimate of the ion drift mobilities. PMID:23784809

  18. Wearable Keyboard Using Conducting Polymer Electrodes on Textiles.

    PubMed

    Takamatsu, Seiichi; Lonjaret, Thomas; Ismailova, Esma; Masuda, Atsuji; Itoh, Toshihiro; Malliaras, George G

    2016-06-01

    A wearable keyboard is demonstrated in which conducting polymer electrodes on a knitted textile sense tactile input as changes in capacitance. The use of a knitted textile as a substrate endows stretchability and compatibility to large-area formats, paving the way for a new type of wearable human-machine interface. PMID:26618790

  19. Robust solid polymer electrolyte for conducting IPN actuators

    NASA Astrophysics Data System (ADS)

    Festin, Nicolas; Maziz, Ali; Plesse, Cédric; Teyssié, Dominique; Chevrot, Claude; Vidal, Frédéric

    2013-10-01

    Interpenetrating polymer networks (IPNs) based on nitrile butadiene rubber (NBR) as first component and poly(ethylene oxide) (PEO) as second component were synthesized and used as a solid polymer electrolyte film in the design of a mechanically robust conducting IPN actuator. IPN mechanical properties and morphologies were mainly investigated by dynamic mechanical analysis and transmission electron microscopy. For 1-ethyl-3-methylimidazolium bis-(trifluoromethylsulfonyl)-imide (EMITFSI) swollen IPNs, conductivity values are close to 1 × 10-3 S cm-1 at 25 ° C. Conducting IPN actuators have been synthesized by chemical polymerization of 3,4-ethylenedioxythiophene (EDOT) within the PEO/NBR IPN. A pseudo-trilayer configuration has been obtained with PEO/NBR IPN sandwiched between two interpenetrated PEDOT electrodes. The robust conducting IPN actuators showed a free strain of 2.4% and a blocking force of 30 mN for a low applied potential of ±2 V.

  20. Functionalised hybrid materials of conducting polymers with individual wool fibers.

    PubMed

    Kelly, Fern M; Johnston, James H; Borrmann, Thomas; Richardson, Michael J

    2008-04-01

    Composites of natural protein materials, such as merino wool, with the conducting polymers polypyrrole (PPy) and polyaniline (PAn) have been successfully synthesised. In doing so, hybrid materials have been produced in which the mechanical strength and flexibility of the fibers is retained whilst also incorporating the desired chemical and electrical properties of the polymer. Scanning electron microscopy shows PPy coatings to comprise individual polymer spheres, approximately 100 to 150 nm in diameter. The average size of the polymer spheres of PAn was observed to be approximately 50 to 100 nm in diameter. These spheres fuse together in a continuous sheet to coat the fibers in their entirety. The reduction of silver ions to silver metal nanoparticles onto the redox active polymer surface has also been successful and thus imparts anti-microbial properties to the hybrid materials. This gives rise to further applications requiring the inhibition of microbial growth. The chemical and physical characterisation of such products has been undertaken through scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), electrical conductivity, cyclic voltammetry, X-ray photoelectron spectroscopy (XPS) and the testing of their anti-microbial activity. PMID:18572600

  1. New secondary batteries utilizing electronically conductive polymer cathodes

    NASA Technical Reports Server (NTRS)

    Martin, Charles R.; White, Ralph E.

    1989-01-01

    The objectives of this project are to characterize the transport properties in electronically conductive polymers and to assess the utility of these films as cathodes in lithium/polymer secondary batteries. During this research period, progress has been made in a literature survey of the historical background, methods of preparation, the physical and chemical properties, and potential technological applications of polythiophene. Progress has also been made in the characterization of polypyrrole flat films and fibrillar films. Cyclic voltammetry and potential step chronocoulometry were used to gain information on peak currents and potentials switching reaction rates, charge capacity, and charge retention. Battery charge/discharge studies were also performed.

  2. Photocontrolled Cargo Release from Dual Cross-Linked Polymer Particles.

    PubMed

    Tan, Shereen; Cui, Jiwei; Fu, Qiang; Nam, Eunhyung; Ladewig, Katharina; Ren, Jing M; Wong, Edgar H H; Caruso, Frank; Blencowe, Anton; Qiao, Greg G

    2016-03-01

    Burst release of a payload from polymeric particles upon photoirradiation was engineered by altering the cross-linking density. This was achieved via a dual cross-linking concept whereby noncovalent cross-linking was provided by cyclodextrin host-guest interactions, and irreversible covalent cross-linking was mediated by continuous assembly of polymers (CAP). The dual cross-linked particles (DCPs) were efficiently infiltrated (∼80-93%) by the biomacromolecule dextran (molecular weight up to 500 kDa) to provide high loadings (70-75%). Upon short exposure (5 s) to UV light, the noncovalent cross-links were disrupted resulting in increased permeability and burst release of the cargo (50 mol % within 1 s) as visualized by time-lapse fluorescence microscopy. As sunlight contains UV light at low intensities, the particles can potentially be incorporated into systems used in agriculture, environmental control, and food packaging, whereby sunlight could control the release of nutrients and antimicrobial agents. PMID:26862769

  3. Electropolymerization on wireless electrodes towards conducting polymer microfibre networks

    NASA Astrophysics Data System (ADS)

    Koizumi, Yuki; Shida, Naoki; Ohira, Masato; Nishiyama, Hiroki; Tomita, Ikuyoshi; Inagi, Shinsuke

    2016-01-01

    Conducting polymers can be easily obtained by electrochemical oxidation of aromatic monomers on an electrode surface as a film state. To prepare conducting polymer fibres by electropolymerization, templates such as porous membranes are necessary in the conventional methods. Here we report the electropolymerization of 3,4-ethylenedioxythiophene and its derivatives by alternating current (AC)-bipolar electrolysis. Poly(3,4-ethylenedioxythiophene) (PEDOT) derivatives were found to propagate as a fibre form from the ends of Au wires used as bipolar electrodes (BPEs) parallel to an external electric field, without the use of templates. The effects of applied frequency and of the solvent on the morphology, growth rate and degree of branching of these PEDOT fibres were investigated. In addition, a chain-growth model for the formation of conductive material networks was also demonstrated.

  4. Conducting polymers at low temperatures and high magnetic fields

    SciTech Connect

    Clark, J.C.; Ihas, G.G.; Reghu, M.

    1995-11-01

    Advances in the synthesis of organic conducting polymer systems has increased the electrical conductivity of these systems by several orders of magnitude in the last decade. Several practical applications are envisioned for such systems, but a thorough understanding of the conduction mechanisms and identification of the charge carriers is lacking, making design and implementation for bulk synthesis difficult. In order to clarify our understanding of the electrical properties of these systems, the resistivity and magnetoresistivity of various polymers doped near the metal - insulator transition, such as polyaniline protonated by camphor sulfonic acid (PANi-CSA) and polypyrrole doped with PF{sub 6} (PPy-PF{sub 6}), have been studied down to 25 mK in magnetic fields up to 16 T.

  5. Electropolymerization on wireless electrodes towards conducting polymer microfibre networks

    PubMed Central

    Koizumi, Yuki; Shida, Naoki; Ohira, Masato; Nishiyama, Hiroki; Tomita, Ikuyoshi; Inagi, Shinsuke

    2016-01-01

    Conducting polymers can be easily obtained by electrochemical oxidation of aromatic monomers on an electrode surface as a film state. To prepare conducting polymer fibres by electropolymerization, templates such as porous membranes are necessary in the conventional methods. Here we report the electropolymerization of 3,4-ethylenedioxythiophene and its derivatives by alternating current (AC)-bipolar electrolysis. Poly(3,4-ethylenedioxythiophene) (PEDOT) derivatives were found to propagate as a fibre form from the ends of Au wires used as bipolar electrodes (BPEs) parallel to an external electric field, without the use of templates. The effects of applied frequency and of the solvent on the morphology, growth rate and degree of branching of these PEDOT fibres were investigated. In addition, a chain-growth model for the formation of conductive material networks was also demonstrated. PMID:26804140

  6. Electrically conductive, optically transparent polymer/carbon nanotube composites

    NASA Technical Reports Server (NTRS)

    Connell, John W. (Inventor); Smith, Jr., Joseph G. (Inventor); Harrison, Joycelyn S. (Inventor); Park, Cheol (Inventor); Watson, Kent A. (Inventor); Ounaies, Zoubeida (Inventor)

    2011-01-01

    The present invention is directed to the effective dispersion of carbon nanotubes (CNTs) into polymer matrices. The nanocomposites are prepared using polymer matrices and exhibit a unique combination of properties, most notably, high retention of optical transparency in the visible range (i.e., 400-800 nm), electrical conductivity, and high thermal stability. By appropriate selection of the matrix resin, additional properties such as vacuum ultraviolet radiation resistance, atomic oxygen resistance, high glass transition (T.sub.g) temperatures, and excellent toughness can be attained. The resulting nanocomposites can be used to fabricate or formulate a variety of articles such as coatings on a variety of substrates, films, foams, fibers, threads, adhesives and fiber coated prepreg. The properties of the nanocomposites can be adjusted by selection of the polymer matrix and CNT to fabricate articles that possess high optical transparency and antistatic behavior.

  7. Synthesis of polymer nanostructures with conductance switching properties

    DOEpatents

    Su, Kai; Nuraje, Nurxat; Zhang, Lingzhi; Matsui, Hiroshi; Yang, Nan Loh

    2015-03-03

    The present invention is directed to crystalline organic polymer nanoparticles comprising a conductive organic polymer; wherein the crystalline organic polymer nanoparticles have a size of from 10 nm to 200 nm and exhibits two current-voltage states: (1) a high resistance current-voltage state, and (2) a low resistance current-voltage state, wherein when a first positive threshold voltage (V.sub.th1) or higher positive voltage, or a second negative threshold voltage (V.sub.th2) or higher negative voltage is applied to the nanoparticle, the nanoparticle exhibits the low-resistance current-voltage state, and when a voltage less positive than the first positive threshold voltage or a voltage less negative than the second negative threshold voltage is applied to the nanoparticle, the nanoparticle exhibits the high-resistance current-voltage state. The present invention is also directed methods of manufacturing the nanoparticles using novel interfacial oxidative polymerization techniques.

  8. Mechanistic study of silver nanoparticle formation on conducting polymer surfaces.

    PubMed

    Mack, Nathan H; Bailey, James A; Doorn, Stephen K; Chen, Chien-An; Gau, Han-Mou; Xu, Ping; Williams, Darrick J; Akhadov, Elshan A; Wang, Hsing-Lin

    2011-04-19

    Conducting polymer (polyaniline) sheets are shown to be active substrates to promote the growth of nanostructured silver thin films with highly tunable morphologies. Using the spontaneous electroless deposition of silver, we show that a range of nanostructured metallic features can be controllably and reproducibly formed over large surface areas. The structural morphology of the resulting metal-polymer nanocomposite is demonstrated to be sensitive to experimental parameters such as ion concentration, temperature, and polymer processing and can range from densely packed oblate nanosheets to bulk crystalline metals. The deposition mechanisms are explained using a diffusion-limited aggregation (DLA) model to describe the semi-fractal-like growth of the metal nanostructures. We find these composite films to exhibit strong surface-enhanced Raman (SERS) activity, and the nanostructured features are optimized with respect to SERS activity using a self-assembled monolayer of mercapto-benzoic acid as a model Raman reporter. SERS enhancements are estimated to be on the order of 10(7). Through micro-Raman SERS mapping, these materials are shown to exhibit uniform SERS responses over macroscopic areas. These metal-polymer nanocomposites benefit from the underlying polymer's processability to yield SERS-active materials of almost limitless shape and size and show significant promise for future SERS-based sensing and detection schemes. PMID:21434643

  9. Stably Doped Conducting Polymer Nanoshells by Surface Initiated Polymerization.

    PubMed

    Li, Junwei; Yoon, Soon Joon; Hsieh, Bao-Yu; Tai, Wanyi; O'Donnell, Matthew; Gao, Xiaohu

    2015-12-01

    Despite broad applications ranging from electronics to biomedical sensing and imaging, a long-standing problem of conducting polymers is the poor resistance to dedoping, which directly affects their signature electrical and optical properties. This problem is particularly significant for biomedical uses because of fast leaching of dopant ions in physiological environments. Here, we describe a new approach to engineer multimodal core-shell nanoparticles with a stably doped conductive polymer shell in biological environments. It was achieved by making a densely packed polymer brush rather than changing its molecular structure. Polyaniline (PANI) was used as a model compound due to its concentrated near-infrared (NIR) absorption. It was grafted onto a magnetic nanoparticle via a polydopamine intermediate layer. Remarkably, at pH 7 its conductivity is ca. 2000× higher than conventional PANI nanoshells. Similarly, its NIR absorption is enhanced by 2 orders of magnitude, ideal for photothermal imaging and therapy. Another surprising finding is its nonfouling property, even outperforming polyethylene glycol. This platform technology is also expected to open exciting opportunities in engineering stable conductive materials for electronics, imaging, and sensing. PMID:26588215

  10. Carbon Nanotubes - Polymer Composites with Enhanced Conductivity using Functionalized Nanotubes

    NASA Astrophysics Data System (ADS)

    Ramasubramaniam, Rajagopal; Chen, Jian; Gupta, Rishi

    2003-03-01

    Individual carbon nanotubes show superior electrical, mechanical and thermal properties [1]. Composite materials using carbon nanotubes as fillers are predicted to show similar superior properties. However, realization of such composites has been plagued by poor dispersion of carbon nanotubes in solvents and in polymer matrices. We have developed a method to homogenously disperse carbon nanotubes in polymer matrices using functionalized nanotubes [2]. Thin films of functionalized single walled nanotubes (SWNT) - polystyrene composites and functionalized SWNT - polycarbonate composites were prepared using solution evaporation and spin coating. Both of the composites show several orders of magnitude increase in conductivity for less than 1 wt thresholds of the composites are less than 0.2 wt nanotubes. We attribute the enhanced conduction to the superior dispersion of the functionalized nanotubes in the polymer matrix and to the reduced nanotube waviness resulting from the rigid backbone of the conjugated polymer. References: [1]. R. H. Baughman, A. A. Zakhidov and W. A. de Heer, Science v297, p787 (2002); [2]. J. Chen, H. Liu, W. A. Weimer, M. D. Halls, D. H. Waldeck and G. C. Walker, J. Am. Chem. Soc. v124, p9034 (2002).

  11. Does filler surface chemistry impact filler dispersion, polymer dynamics and conductivity in nanofilled solid polymer electrolytes?

    NASA Astrophysics Data System (ADS)

    Ganapatibhotla, Lalitha; Maranas, Janna

    2012-02-01

    We study the impact of nanofiller surface chemistry on filler dispersion, polymer dynamics and ionic conductivity in acidic α-Al2O3 filled PEO+LiClO4 solid polymer electrolytes (SPEs).SPEs are the key to light-weight and high energy density rechargeable Li ion batteries but suffer from low room temperature ionic conductivity. Addition of ceramic nanofillers improves conductivity of SPEs and their surface chemistry influences extent of conductivity enhancement. The ionic conductivity of acidic α-Al2O3 filled SPE is enhanced for salt concentrations at and below eutectic, while neutral γ-Al2O3 filler enhances conductivity only at eutectic composition. Li ion motion is coupled to segmental mobility of polymer and we study how this is affected by addition of α-Al2O3 using quasi-elastic neutron scattering. Aggregation extent of nanoparticles in SPE matrix, a less explored factor in filled SPEs, can affect segmental mobility of polymer. This can vary with surface chemistry of particles and we quantify this using small angle neutron scattering. All measurements are performed as a function of Li concentration, nanoparticle loading and temperature.

  12. A practical multilayered conducting polymer actuator with scalable work output

    NASA Astrophysics Data System (ADS)

    Ikushima, Kimiya; John, Stephen; Yokoyama, Kazuo; Nagamitsu, Sachio

    2009-09-01

    Household assistance robots are expected to become more prominent in the future and will require inherently safe design. Conducting polymer-based artificial muscle actuators are one potential option for achieving this safety, as they are flexible, lightweight and can be driven using low input voltages, unlike electromagnetic motors; however, practical implementation also requires a scalable structure and stability in air. In this paper we propose and practically implement a multilayer conducting polymer actuator which could achieve these targets using polypyrrole film and ionic liquid-soaked separators. The practical work density of a nine-layer multilayer actuator was 1.4 kJ m-3 at 0.5 Hz, when the volumes of the electrolyte and counter electrodes were included, which approaches the performance of mammalian muscle. To achieve air stability, we analyzed the effect of air-stable ionic liquid gels on actuator displacement using finite element simulation and it was found that the majority of strain could be retained when the elastic modulus of the gel was kept below 3 kPa. As a result of this work, we have shown that multilayered conducting polymer actuators are a feasible idea for household robotics, as they provide a substantial practical work density in a compact structure and can be easily scaled as required.

  13. Microscopic mechanism of reinforcement and conductivity in polymer nanocomposite materials

    NASA Astrophysics Data System (ADS)

    Chang, Tae-Eun

    Modification of polymers by adding various nano-particles is an important method to obtain effective enhancement of materials properties. Within this class of materials, carbon nanotubes (CNT) are among the most studied materials for polymer reinforcement due to their extraordinary mechanical properties, superior thermal and electronic properties, and high aspect ratio. However, to unlock the potential of CNTs for applications, CNTs must be well dispersed in a polymer matrix and the microscopic mechanism of polymer reinforcement by CNTs must be understood. In this study, single-wall carbon nanotube (SWNT) composites with polypropylene (PP)-SWNT and polystyrene (PS)-SWNT were prepared and analyzed. Microscopic study of the mechanism of reinforcement and conductivity by SWNT included Raman spectroscopy, wide-angle X-ray diffraction (WAXD) and dielectric measurement. For PP-SWNT composites, tensile tests show a three times increase in the Young's modulus with addition of only 1 wt% SWNT, and much diminished increase of modulus with further increase in SWNT concentration. For PS-SWNT composites, well-dispersed SWNT/PS composite has been produced, using initial annealing of SWNT and optimum sonication conditions. The studies on the tangential mode in the Raman spectra and TEM indicated well-dispersed SWNTs in a PS matrix. We show that conductivity appears in composites already at very low concentrations, hinting at the formation of a 'percolative' network even below 0.5% of SWNT. The Raman studies for both composites show good transfer of the applied stress from the polymer matrices to SWNTs. However, no significant improvement of mechanical property is observed for PS-SWNT composites. The reason for only a slight increase of mechanical property remains unknown.

  14. Conductivity and properties of polysiloxane-polyether cluster-LiTFSI networks as hybrid polymer electrolytes

    NASA Astrophysics Data System (ADS)

    Boaretto, Nicola; Joost, Christine; Seyfried, Mona; Vezzù, Keti; Di Noto, Vito

    2016-09-01

    This report describes the synthesis and the properties of a series of polymer electrolytes, composed of a hybrid inorganic-organic matrix doped with LiTFSI. The matrix is based on ring-like oligo-siloxane clusters, bearing pendant, partially cross-linked, polyether chains. The dependency of the thermo-mechanic and of the transport properties on several structural parameters, such as polyether chains' length, cross-linkers' concentration, and salt concentration is studied. Altogether, the materials show good thermo-mechanical and electrochemical stabilities, with conductivities reaching, at best, 8·10-5 S cm-1 at 30 °C. In conclusion, the cell performances of one representative sample are shown. The scope of this report is to analyze the correlations between structure and properties in networked and hybrid polymer electrolytes. This could help the design of optimized polymer electrolytes for application in lithium metal batteries.

  15. Conductance and Geometry of Pyridine-Linked Single Molecule Junctions

    SciTech Connect

    Kamenetska, M.; Hybertsen, M.; Quek, S.Y.; Whalley, A.C.; Steigerwald, M.L.; Choi, H.J.; Louie, S.G.; Nuckolls, C.; Neaton, J.B.; Venkataraman, L.

    2010-05-19

    We have measured the conductance and characterized molecule-electrode binding geometries of four pyridine-terminated molecules by elongating and then compressing gold point contacts in a solution of molecules. We have found that all pyridine-terminated molecules exhibit bistable conductance signatures, signifying that the nature of the pyridine-gold bond allows two distinct conductance states that are accessed as the gold-molecule-gold junction is elongated. We have identified the low-conductance state as corresponding to a molecule fully stretched out between the gold electrodes, where the distance between contacts correlates with the length of the molecule; the high-conductance state is due to a molecule bound at an angle. For all molecules, we have found that the distribution of junction elongations in the low-conductance state is the same, while in the high-conductance state, the most likely elongation length increases linearly with molecule length. The results of first-principles conductance calculations for the four molecules in the low-conductance geometry agree well with the experimental results and show that the dominant conducting channel in the conjugated pyridine-linked molecules is through the {pi}* orbital.

  16. Electronically conductive polymer binder for lithium-ion battery electrode

    SciTech Connect

    Liu, Gao; Xun, Shidi; Battaglia, Vincent S; Zheng, Honghe

    2014-10-07

    A family of carboxylic acid group containing fluorene/fluorenon copolymers is disclosed as binders of silicon particles in the fabrication of negative electrodes for use with lithium ion batteries. These binders enable the use of silicon as an electrode material as they significantly improve the cycle-ability of silicon by preventing electrode degradation over time. In particular, these polymers, which become conductive on first charge, bind to the silicon particles of the electrode, are flexible so as to better accommodate the expansion and contraction of the electrode during charge/discharge, and being conductive promote the flow battery current.

  17. Better Proton-Conducting Polymers for Fuel-Cell Membranes

    NASA Technical Reports Server (NTRS)

    Narayan, Sri; Reddy, Prakash

    2012-01-01

    Polyoxyphenylene triazole sulfonic acid has been proposed as a basis for development of improved proton-conducting polymeric materials for solid-electrolyte membranes in hydrogen/air fuel cells. Heretofore, the proton-conducting membrane materials of choice have been exemplified by a family of perfluorosulfonic acid-based polymers (Nafion7 or equivalent). These materials are suitable for operation in the temperature of 75 to 85 C, but in order to reduce the sizes and/or increase the energy-conversion efficiencies of fuel-cell systems, it would be desirable to increase temperatures to as high as 120 C for transportation applications, and to as high as 180 C for stationary applications. However, at 120 C and at relative humidity values below 50 percent, the loss of water from perfluorosulfonic acid-based polymer membranes results in fuel-cell power densities too low to be of practical value. Therefore, membrane electrolyte materials that have usefully high proton conductivity in the temperature range of 180 C at low relative humidity and that do not rely on water for proton conduction at 180 C would be desirable. The proposed polyoxyphenylene triazole sulfonic acid-based materials have been conjectured to have these desirable properties. These materials would be free of volatile or mobile acid constituents. The generic molecular structure of these materials is intended to exploit the fact, demonstrated in previous research, that materials that contain ionizable acid and base groups covalently attached to thermally stable polymer backbones exhibit proton conduction even in the anhydrous state.

  18. Direct Assembly of Large Arrays of Oriented Conducting Polymer Nanowires

    SciTech Connect

    Liang, Liang; Liu, Jun; Windisch, Charles F.; Exarhos, Gregory J.; Lin, Yuehe

    2002-10-04

    Although oriented carbon nanotubes, oriented nanowires of metals, semiconductors and oxides have attracted wide attention, there have been few reports on oriented polymer nanostructures such as nanowires. In this paper we report the assembly of large arrays of oriented nanowires through controlled nucleation and growth during a stepwise electrochemical deposition process in which a large number of nuclei were first deposited on the substrate using a large current density. After the initial nucleation, the current density was reduced step by step to grow the oriented nanowires from the nucleation sites created in the first step. A very different morphology was also demonstrated by first depositing a monolayer of close-packed colloidal spheres using a similar step-wise deposition process. As a result, the polymer nanofibers grew from the spheres in a radial fashion and formed the continuous three-dimensional network of nanofibers in the film. The principles of control nucleation and growth in electrochemical deposition investigated in this paper should be applicable to other electrical conducting and electrochemical active materials, including metals and conducting oxides. We also hope the oriented electroactive polymer nanostructure will open the door for new applications, such as miniaturized biosensors.

  19. Multidimensional conducting polymer nanotubes for ultrasensitive chemical nerve agent sensing.

    PubMed

    Kwon, Oh Seok; Park, Seon Joo; Lee, Jun Seop; Park, Eunyu; Kim, Taejoon; Park, Hyun-Woo; You, Sun Ah; Yoon, Hyeonseok; Jang, Jyongsik

    2012-06-13

    Tailoring the morphology of materials in the nanometer regime is vital to realizing enhanced device performance. Here, we demonstrate flexible nerve agent sensors, based on hydroxylated poly(3,4-ethylenedioxythiophene) (PEDOT) nanotubes (HPNTs) with surface substructures such as nanonodules (NNs) and nanorods (NRs). The surface substructures can be grown on a nanofiber surface by controlling critical synthetic conditions during vapor deposition polymerization (VDP) on the polymer nanotemplate, leading to the formation of multidimensional conducting polymer nanostructures. Hydroxyl groups are found to interact with the nerve agents. Representatively, the sensing response of dimethyl methylphosphonate (DMMP) as a simulant for sarin is highly sensitive and reversible from the aligned nanotubes. The minimum detection limit is as low as 10 ppt. Additionally, the sensor had excellent mechanical bendability and durability. PMID:22545863

  20. Mechanically Strong, Polymer Cross-linked Aerogels (X-Aerogels)

    NASA Technical Reports Server (NTRS)

    Leventis, Nicholas

    2006-01-01

    Aerogels comprise a class of low-density, high porous solid objects consisting of dimensionally quasi-stable self-supported three-dimensional assemblies of nanoparticles. Aerogels are pursued because of properties above and beyond those of the individual nanoparticles, including low thermal conductivity, low dielectric constant and high acoustic impedance. Possible applications include thermal and vibration insulation, dielectrics for fast electronics, and hosting of functional guests for a wide variety of optical, chemical and electronic applications. Aerogels, however, are extremely fragile materials, hence they have found only limited application in some very specialized environments, for example as Cerenkov radiation detectors in certain types of nuclear reactors, aboard spacecraft as collectors of hypervelocity particles (refer to NASA's Stardust program) and as thermal insulators on planetary vehicles on Mars (refer to Sojourner Rover in 1997 and Spirit and Opportunity in 2004). Along these lines, the X-Aerogel is a new NASA-developed strong lightweight material that has resolved the fragility problem of traditional (native) aerogels. X-Aerogels are made by applying a conformal polymer coating on the surfaces of the skeletal nanoparticles of native aerogels (see Scanning Electron Micrographs). Since the relative amounts of the polymeric crosslinker and the backbone are comparable, X-Aerogels can be viewed either as aerogels modified by the templated accumulation of polymer on the skeletal nanoparticles, or as nanoporous polymers made by remplated casting of polymer on a nanostructured framework. The most striking feature of X-Aerogels is that for a nominal 3-fold increase in density (still a ultralighweight material), the mechanical strength can be up to 300 times higher than the strength of the underlying native aerogel. Thus, X-Aerogels combine a multiple of the specific compressive strength of steel, with the the thermal conductivity of styrofoam. X

  1. Conducting polymer actuators: From basic concepts to proprioceptive systems

    NASA Astrophysics Data System (ADS)

    Martinez Gil, Jose Gabriel

    Designers and engineers have been dreaming for decades of motors sensing, by themselves, working and surrounding conditions, as biological muscles do originating proprioception. Here bilayer full polymeric artificial muscles were checked up to very high cathodic potential limits (-2.5 V) in aqueous solution by cyclic voltammetry. The electrochemical driven exchange of ions from the conducting polymer film, and the concomitant Faradaic bending movement of the muscle, takes place in the full studied potential range. The presence of trapped counterion after deep reduction was corroborated by EDX determinations giving quite high electronic conductivity to the device. The large bending movement was used as a tool to quantify the amount of water exchanged per reaction unit (exchanged electron or ion). The potential evolutions of self-supported films of conducting polymers or conducting polymers (polypyrrole, polyaniline) coating different microfibers, during its oxidation/reduction senses working mechanical, thermal, chemical or electrical variables. The evolution of the muscle potential from electrochemical artificial muscles based on electroactive materials such as intrinsically conducting polymers and driven by constant currents senses, while working, any variation of the mechanical (trailed mass, obstacles, pressure, strain or stress), thermal or chemical conditions of work. One physically uniform artificial muscle includes one electrochemical motor and several sensors working simultaneously under the same driving reaction. Actuating (current and charge) and sensing (potential and energy) magnitudes are present, simultaneously, in the only two connecting wires and can be read by the computer at any time. From basic polymeric, mechanical and electrochemical principles a physicochemical equation describing artificial proprioception has been developed. It includes and describes, simultaneously, the evolution of the muscle potential during actuation as a function of the

  2. X-ray evaluation of the boundary between polymer electrolyte and platinum and carbon functionalization to conduct protons in polymer electrolyte fuel cells

    NASA Astrophysics Data System (ADS)

    Oka, Kazuki; Ogura, Yuta; Izumi, Yasuo

    2014-07-01

    In polymer electrolyte fuel cells (PEFCs), it is important to secure proximate diffusion paths of reactants and electrons. One approach is to optimize the boundary between polymer electrolyte and Pt nanoparticle surface. Based on synchrotron X-ray absorption fine structure to monitor directly the status of catalysts in PEFCs, it was found that Pt sites were reduced to Pt0 by alcohols contained in polymer electrolyte dispersion solution during the preparation of cathode of PEFC. As in membrane electrolyte assembly, only the Pt sites not covered by polymer electrolyte re-oxidized to Pt2+/4+. Thus, the interface between Pt and polymer electrolyte was evaluated. The other approach is to functionalize carbon surface with sulfonate/sulfate group to conduct protons. Similar level of proton conductivity was observed in current-voltage dependence compared to using polymer electrolyte, but polymer electrolyte was advantageous to lose less voltage for activation. Based on this comparison, optimum catalyst on cathode is proposed comprising surface sulfonate/sulfate group on carbon mixed with polymer electrolyte. Further optimization of cathode catalyst is proposed to functionalize carbon with sulfonate group linked to fluorocarbon branch.

  3. Intrinsic electrical conductivity of nanostructured metal-organic polymer chains

    PubMed Central

    Hermosa, Cristina; Vicente Álvarez, Jose; Azani, Mohammad-Reza; Gómez-García, Carlos J.; Fritz, Michelle; Soler, Jose M.; Gómez-Herrero, Julio; Gómez-Navarro, Cristina; Zamora, Félix

    2013-01-01

    One-dimensional conductive polymers are attractive materials because of their potential in flexible and transparent electronics. Despite years of research, on the macro- and nano-scale, structural disorder represents the major hurdle in achieving high conductivities. Here we report measurements of highly ordered metal-organic nanoribbons, whose intrinsic (defect-free) conductivity is found to be 104 S m−1, three orders of magnitude higher than that of our macroscopic crystals. This magnitude is preserved for distances as large as 300 nm. Above this length, the presence of structural defects (~ 0.5%) gives rise to an inter-fibre-mediated charge transport similar to that of macroscopic crystals. We provide the first direct experimental evidence of the gapless electronic structure predicted for these compounds. Our results postulate metal-organic molecular wires as good metallic interconnectors in nanodevices. PMID:23591876

  4. Shear induced electrical behaviour of conductive polymer composites

    NASA Astrophysics Data System (ADS)

    Starý, Zdeněk; Krückel, Johannes; Schubert, Dirk W.

    2013-04-01

    The time-dependent electrical resistance of polymethylmethacrylate containing carbon black was measured under oscillatory shear in the molten state. The electrical signal was oscillating exactly at the doubled frequency of the oscillatory shear deformation. Moreover, the experimental results gave a hint to the development of conductive structures in polymer melts under shear deformation. It was shown that the flow induced destruction of conductive paths dominates over the flow induced build-up in the beginning of the shear deformations. However, for longer times both competitive effects reach a dynamic equilibrium and only the thermally induced build-up of pathways influences the changes in the composite resistance during the shear. Furthermore, the oscillating electrical response depends clearly on the deformation amplitude applied. A simple physical model describing the behaviour of conductive pathways under shear deformation was derived and utilized for the description of the experimental data.

  5. Proton conducting, high modulus polymer electrolyte membranes by polymerization-induced microphase separation

    NASA Astrophysics Data System (ADS)

    Chopade, Sujay; Hillmyer, Marc; Lodge, Timothy

    Robust solid-state polymer electrolyte membranes (PEMs) are vital for designing next-generation lithium-ion batteries and high-temperature fuel cells. However, the performance of diblock polymer electrolytes is generally limited by poor mechanical stability and network defects in the conducting pathways. We present the in-situ preparation of robust cross-linked PEMs via polymerization-induced microphase separation, and incorporation of protic ionic liquid (IL) into one of the microphase separated domains. The facile design strategy involves a delicate balance between the controlled growth of polystyrene from a poly(ethylene oxide) macro-chain transfer agent (PEO-CTA) and simultaneous chemical cross-linking by divinylbenzene in the presence of IL. Small angle X-ray scattering and transmission electron microscopy confirmed the formation of a disordered structure with bicontinuous morphology and a characteristic domain size of order 20 nm. The long-range continuity of the PEO/protic IL conducting nanochannels and cross-linked polystyrene domains imparts high thermal and mechanical stability to the PEMs, with elastic modulus approaching 10 MPa and a high ionic conductivity of 15 mS/cm at 180 °C.

  6. Hierarchical nanostructured conducting polymer hydrogel with high electrochemical activity

    PubMed Central

    Pan, Lijia; Yu, Guihua; Zhai, Dongyuan; Lee, Hye Ryoung; Zhao, Wenting; Liu, Nian; Wang, Huiliang; Tee, Benjamin C.-K.; Shi, Yi; Cui, Yi; Bao, Zhenan

    2012-01-01

    Conducting polymer hydrogels represent a unique class of materials that synergizes the advantageous features of hydrogels and organic conductors and have been used in many applications such as bioelectronics and energy storage devices. They are often synthesized by polymerizing conductive polymer monomer within a nonconducting hydrogel matrix, resulting in deterioration of their electrical properties. Here, we report a scalable and versatile synthesis of multifunctional polyaniline (PAni) hydrogel with excellent electronic conductivity and electrochemical properties. With high surface area and three-dimensional porous nanostructures, the PAni hydrogels demonstrated potential as high-performance supercapacitor electrodes with high specific capacitance (∼480 F·g-1), unprecedented rate capability, and cycling stability (∼83% capacitance retention after 10,000 cycles). The PAni hydrogels can also function as the active component of glucose oxidase sensors with fast response time (∼0.3 s) and superior sensitivity (∼16.7 μA·mM-1). The scalable synthesis and excellent electrode performance of the PAni hydrogel make it an attractive candidate for bioelectronics and future-generation energy storage electrodes. PMID:22645374

  7. Correlation between dimensional crossover and thermoelectric performance in conducting polymer

    NASA Astrophysics Data System (ADS)

    Jo, Junhyeon; Oh, In-Seon; Jin, Mi-Jin; Yoo, Jung-Woo

    Conjugated polymers are emerging as attractive thermoelectric materials, resulting from low thermal conductivity, easy process and variable potentials for change. Recently, there are significant improvements of the Seebeck coefficient (S) and electric conductivity (σ) in the conjugated polymers by adding chemical additives to reform its ordinary disordered structure system. However, the relation between thermoelectricity and charge transport in the system is not well understood, which gives us a new challenge to improve thermoelectricity in the organic system. Here, we studied thermoelectric performance of dimethyl sulfoxide (DMSO) doped poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) with adding variable amounts of fluorosurfactant Zonyl. The charge transport in this disordered system was analyzed within variable range hopping (VRH), which showed the change of hopping dimensionality with further molecular dopants. The morphological change and its effect on charge transport and thermoelectric performance were further investigated through AFM, XPS, etc. As a result, we found the optimal condition for increasing both the Seebeck coefficient and electric conductivity, resulting in a significant improvement for the power factor (S2 σ) .

  8. Fabrication and characterization of solid-state, conducting polymer actuators

    SciTech Connect

    Xie, J.; Sansinena, J. M.; Gao, J.; Wang, H. L.

    2004-01-01

    We report here the fabrication and characterization of solid-state, conducting polymer actuators. The electrochemical activity of polyaniline (PANI) thin film coated with solid-state polyelectrolyte is very similar to the polyaniline thin film in an aqueous solution. The solid-state actuator is adhere to a lever arm of an force transducer and the force generation is measured in real time. The force generated by the actuator is found to be length dependent. However, the overall torques generated by the actuators with different lengths remains essentially the same. The effect of stimulation signals such as voltage, current, on the bending angle and displacement is also studied using square wave potential.

  9. Cellular adhesion, proliferation and viability on conducting polymer substrates.

    PubMed

    del Valle, Luis J; Estrany, Francesc; Armelin, Elaine; Oliver, Ramón; Alemán, Carlos

    2008-12-01

    This work reports a comprehensive study about cell adhesion and proliferation on the surface of different electroactive substrates formed by pi-conjugated polymers. Biological assays were performed considering four different cellular lines: two epithelial and two fibroblasts. On the other hand, the electroactivity of the three conducting systems was determined in physiological conditions. Results indicate that the three substrates behave as a cellular matrix, even though compatibility with cells is larger for PPy and the 3-layered system. Furthermore, the three polymeric systems are electro-compatible with the cellular monolayers. PMID:18683167

  10. Cross-linked Composite Gel Polymer Electrolyte using Mesoporous Methacrylate-Functionalized SiO2 Nanoparticles for Lithium-Ion Polymer Batteries

    PubMed Central

    Shin, Won-Kyung; Cho, Jinhyun; Kannan, Aravindaraj G.; Lee, Yoon-Sung; Kim, Dong-Won

    2016-01-01

    Liquid electrolytes composed of lithium salt in a mixture of organic solvents have been widely used for lithium-ion batteries. However, the high flammability of the organic solvents can lead to thermal runaway and explosions if the system is accidentally subjected to a short circuit or experiences local overheating. In this work, a cross-linked composite gel polymer electrolyte was prepared and applied to lithium-ion polymer cells as a safer and more reliable electrolyte. Mesoporous SiO2 nanoparticles containing reactive methacrylate groups as cross-linking sites were synthesized and dispersed into the fibrous polyacrylonitrile membrane. They directly reacted with gel electrolyte precursors containing tri(ethylene glycol) diacrylate, resulting in the formation of a cross-linked composite gel polymer electrolyte with high ionic conductivity and favorable interfacial characteristics. The mesoporous SiO2 particles also served as HF scavengers to reduce the HF content in the electrolyte at high temperature. As a result, the cycling performance of the lithium-ion polymer cells with cross-linked composite gel polymer electrolytes employing methacrylate-functionalized mesoporous SiO2 nanoparticles was remarkably improved at elevated temperatures. PMID:27189842

  11. Cross-linked Composite Gel Polymer Electrolyte using Mesoporous Methacrylate-Functionalized SiO2 Nanoparticles for Lithium-Ion Polymer Batteries.

    PubMed

    Shin, Won-Kyung; Cho, Jinhyun; Kannan, Aravindaraj G; Lee, Yoon-Sung; Kim, Dong-Won

    2016-01-01

    Liquid electrolytes composed of lithium salt in a mixture of organic solvents have been widely used for lithium-ion batteries. However, the high flammability of the organic solvents can lead to thermal runaway and explosions if the system is accidentally subjected to a short circuit or experiences local overheating. In this work, a cross-linked composite gel polymer electrolyte was prepared and applied to lithium-ion polymer cells as a safer and more reliable electrolyte. Mesoporous SiO2 nanoparticles containing reactive methacrylate groups as cross-linking sites were synthesized and dispersed into the fibrous polyacrylonitrile membrane. They directly reacted with gel electrolyte precursors containing tri(ethylene glycol) diacrylate, resulting in the formation of a cross-linked composite gel polymer electrolyte with high ionic conductivity and favorable interfacial characteristics. The mesoporous SiO2 particles also served as HF scavengers to reduce the HF content in the electrolyte at high temperature. As a result, the cycling performance of the lithium-ion polymer cells with cross-linked composite gel polymer electrolytes employing methacrylate-functionalized mesoporous SiO2 nanoparticles was remarkably improved at elevated temperatures. PMID:27189842

  12. Cross-linked Composite Gel Polymer Electrolyte using Mesoporous Methacrylate-Functionalized SiO2 Nanoparticles for Lithium-Ion Polymer Batteries

    NASA Astrophysics Data System (ADS)

    Shin, Won-Kyung; Cho, Jinhyun; Kannan, Aravindaraj G.; Lee, Yoon-Sung; Kim, Dong-Won

    2016-05-01

    Liquid electrolytes composed of lithium salt in a mixture of organic solvents have been widely used for lithium-ion batteries. However, the high flammability of the organic solvents can lead to thermal runaway and explosions if the system is accidentally subjected to a short circuit or experiences local overheating. In this work, a cross-linked composite gel polymer electrolyte was prepared and applied to lithium-ion polymer cells as a safer and more reliable electrolyte. Mesoporous SiO2 nanoparticles containing reactive methacrylate groups as cross-linking sites were synthesized and dispersed into the fibrous polyacrylonitrile membrane. They directly reacted with gel electrolyte precursors containing tri(ethylene glycol) diacrylate, resulting in the formation of a cross-linked composite gel polymer electrolyte with high ionic conductivity and favorable interfacial characteristics. The mesoporous SiO2 particles also served as HF scavengers to reduce the HF content in the electrolyte at high temperature. As a result, the cycling performance of the lithium-ion polymer cells with cross-linked composite gel polymer electrolytes employing methacrylate-functionalized mesoporous SiO2 nanoparticles was remarkably improved at elevated temperatures.

  13. Enhancement in ionic conductivity on solid polymer electrolytes containing large conducting species

    NASA Astrophysics Data System (ADS)

    Praveen, D.; Damle, Ramakrishna

    2016-05-01

    Solid Polymer Electrolytes (SPEs) lack better conducting properties at ambient temperatures. Various methods to enhance their ionic conductivity like irradiation with swift heavy ions, γ-rays, swift electrons and quenching at low temperature etc., have been explored in the literature. Among these, one of the oldest methods is incorporation of different conducting species into the polymer matrix and/or addition of nano-sized inert particles into SPEs. Various new salts like LiBr, Mg(ClO4)2, NH4I etc., have already been tried in the past with some success. Also various nanoparticles like Al2O3, TiO2 etc., have been tried in the past. In this article, we have investigated an SPE containing Rubidium as a conducting species. Rubidium has a larger ionic size compared to lithium and sodium ions which have been investigated in the recent past. In the present article, we have investigated the conductivity of large sized conducting species and shown the enhancement in the ionic conductivity by addition of nano-sized inert particles.

  14. Smart conducting polymer composites having zero temperature coefficient of resistance

    NASA Astrophysics Data System (ADS)

    Chu, Kunmo; Lee, Sung-Chul; Lee, Sangeui; Kim, Dongearn; Moon, Changyoul; Park, Sung-Hoon

    2014-12-01

    Zero temperature coefficient of resistance (TCR) is essential for the precise control of temperature in heating element and sensor applications. Many studies have focused on developing zero-TCR systems with inorganic compounds; however, very few have dealt with developing zero-TCR systems with polymeric materials. Composite systems with a polymer matrix and a conducting filler show either a negative (NTC) or a positive temperature coefficient (PTC) of resistance, depending on several factors, e.g., the polymer nature and the filler shape. In this study, we developed a hybrid conducting zero-TCR composite having self-heating properties for thermal stability and reliable temperature control. The bi-layer composites consisted of a carbon nanotube (CNT)-based layer having an NTC of resistance and a carbon black (CB)-based layer having a PTC of resistance which was in direct contact with electrodes to stabilize the electrical resistance change during electric Joule heating. The composite showed nearly constant resistance values with less than 2% deviation of the normalized resistance until 200 °C. The CB layer worked both as a buffer and as a distributor layer against the current flow from an applied voltage. This behavior, which was confirmed both experimentally and theoretically, has been rarely reported for polymer-based composite systems.Zero temperature coefficient of resistance (TCR) is essential for the precise control of temperature in heating element and sensor applications. Many studies have focused on developing zero-TCR systems with inorganic compounds; however, very few have dealt with developing zero-TCR systems with polymeric materials. Composite systems with a polymer matrix and a conducting filler show either a negative (NTC) or a positive temperature coefficient (PTC) of resistance, depending on several factors, e.g., the polymer nature and the filler shape. In this study, we developed a hybrid conducting zero-TCR composite having self

  15. Polymer Composition and Substrate Influences on the Adhesive Bonding of a Biomimetic, Cross-Linking Polymer

    PubMed Central

    Matos-Pérez, Cristina R.; White, James D.; Wilker, Jonathan J.

    2012-01-01

    Hierarchical biological materials such as bone, sea shells, and marine bioadhesives are providing inspiration for the assembly of synthetic molecules into complex structures. The adhesive system of marine mussels has been the focus of much attention in recent years. Several catechol-containing polymers are being developed to mimic the cross-linking of proteins containing 3,4-dihydroxyphenylalanine (DOPA) used by shellfish for sticking to rocks. Many of these biomimetic polymer systems have been shown to form surface coatings or hydrogels, however bulk adhesion is demonstrated less often. Developing adhesives requires addressing design issues including finding a good balance between cohesive and adhesive bonding interactions. Despite the growing number of mussel mimicking polymers, there has been little effort to generate structure-property relations and gain insights on what chemical traits give rise to the best glues. In this report, we examined the simplest of these biomimetic polymers, poly[(3,4-dihydroxystyrene)-co-styrene]. Pendant catechol groups (i.e., 3,4-dihydroxystyrene) were distributed throughout a polystyrene backbone. Several polymer derivatives were prepared, each with a different 3,4-dihyroxystyrene content. Bulk adhesion testing showed where the optimal middle ground of cohesive and adhesive bonding resides. Adhesive performance was benchmarked against commercial glues as well as the genuine material produced by live mussels. In the best case, bonding was similar to cyanoacrylate “Krazy” or “Super” glue. Performance was also examined using low (e.g., plastics) and high (e.g., metals, wood) energy surfaces. Adhesive bonding of poly[(3,4-dihydroxystyrene)-co-styrene] may be the strongest of reported mussel protein mimics. These insights should help us to design future biomimetic systems, thereby bringing us closer to development of bone cements, dental composites, and surgical glues. PMID:22582754

  16. Polymer composition and substrate influences on the adhesive bonding of a biomimetic, cross-linking polymer.

    PubMed

    Matos-Pérez, Cristina R; White, James D; Wilker, Jonathan J

    2012-06-01

    Hierarchical biological materials such as bone, sea shells, and marine bioadhesives are providing inspiration for the assembly of synthetic molecules into complex structures. The adhesive system of marine mussels has been the focus of much attention in recent years. Several catechol-containing polymers are being developed to mimic the cross-linking of proteins containing 3,4-dihydroxyphenylalanine (DOPA) used by shellfish for sticking to rocks. Many of these biomimetic polymer systems have been shown to form surface coatings or hydrogels; however, bulk adhesion is demonstrated less often. Developing adhesives requires addressing design issues including finding a good balance between cohesive and adhesive bonding interactions. Despite the growing number of mussel-mimicking polymers, there has been little effort to generate structure-property relations and gain insights on what chemical traits give rise to the best glues. In this report, we examine the simplest of these biomimetic polymers, poly[(3,4-dihydroxystyrene)-co-styrene]. Pendant catechol groups (i.e., 3,4-dihydroxystyrene) are distributed throughout a polystyrene backbone. Several polymer derivatives were prepared, each with a different 3,4-dihyroxystyrene content. Bulk adhesion testing showed where the optimal middle ground of cohesive and adhesive bonding resides. Adhesive performance was benchmarked against commercial glues as well as the genuine material produced by live mussels. In the best case, bonding was similar to that obtained with cyanoacrylate "Krazy Glue". Performance was also examined using low- (e.g., plastics) and high-energy (e.g., metals, wood) surfaces. The adhesive bonding of poly[(3,4-dihydroxystyrene)-co-styrene] may be the strongest of reported mussel protein mimics. These insights should help us to design future biomimetic systems, thereby bringing us closer to development of bone cements, dental composites, and surgical glues. PMID:22582754

  17. Nanostructured conducting polymers for stiffness controlled cell adhesion

    NASA Astrophysics Data System (ADS)

    Moyen, Eric; Hama, Adel; Ismailova, Esma; Assaud, Loic; Malliaras, George; Hanbücken, Margrit; Owens, Roisin M.

    2016-02-01

    We propose a facile and reproducible method, based on ultra thin porous alumina membranes, to produce cm2 ordered arrays of nano-pores and nano-pillars on any kind of substrates. In particular our method enables the fabrication of conducting polymers nano-structures, such as poly[3,4-ethylenedioxythiophene]:poly[styrene sulfonate] (PEDOT:PSS). Here, we demonstrate the potential interest of those templates with controlled cell adhesion studies. The triggering of the eventual fate of the cell (proliferation, death, differentiation or migration) is mediated through chemical cues from the adsorbed proteins and physical cues such as surface energy, stiffness and topography. Interestingly, as well as through material properties, stiffness modifications can be induced by nano-topography, the ability of nano-pillars to bend defining an effective stiffness. By controlling the diameter, length, depth and material of the nano-structures, one can possibly tune the effective stiffness of a (nano) structured substrate. First results indicate a possible change in the fate of living cells on such nano-patterned devices, whether they are made of conducting polymer (soft material) or silicon (hard material).

  18. Rechargeable aluminum batteries with conducting polymers as positive electrodes.

    SciTech Connect

    Hudak, Nicholas S.

    2013-12-01

    This report is a summary of research results from an Early Career LDRD project con-ducted from January 2012 to December 2013 at Sandia National Laboratories. Demonstrated here is the use of conducting polymers as active materials in the posi-tive electrodes of rechargeable aluminum-based batteries operating at room tempera-ture. The battery chemistry is based on chloroaluminate ionic liquid electrolytes, which allow reversible stripping and plating of aluminum metal at the negative elec-trode. Characterization of electrochemically synthesized polypyrrole films revealed doping of the polymers with chloroaluminate anions, which is a quasi-reversible reac-tion that facilitates battery cycling. Stable galvanostatic cycling of polypyrrole and polythiophene cells was demonstrated, with capacities at near-theoretical levels (30-100 mAh g-1) and coulombic efficiencies approaching 100%. The energy density of a sealed sandwich-type cell with polythiophene at the positive electrode was estimated as 44 Wh kg-1, which is competitive with state-of-the-art battery chemistries for grid-scale energy storage.

  19. Multiscale Modeling of Thermal Conductivity of Polymer/Carbon Nanocomposites

    NASA Technical Reports Server (NTRS)

    Clancy, Thomas C.; Frankland, Sarah-Jane V.; Hinkley, Jeffrey A.; Gates, Thomas S.

    2010-01-01

    Molecular dynamics simulation was used to estimate the interfacial thermal (Kapitza) resistance between nanoparticles and amorphous and crystalline polymer matrices. Bulk thermal conductivities of the nanocomposites were then estimated using an established effective medium approach. To study functionalization, oligomeric ethylene-vinyl alcohol copolymers were chemically bonded to a single wall carbon nanotube. The results, in a poly(ethylene-vinyl acetate) matrix, are similar to those obtained previously for grafted linear hydrocarbon chains. To study the effect of noncovalent functionalization, two types of polyethylene matrices. -- aligned (extended-chain crystalline) vs. amorphous (random coils) were modeled. Both matrices produced the same interfacial thermal resistance values. Finally, functionalization of edges and faces of plate-like graphite nanoparticles was found to be only modestly effective in reducing the interfacial thermal resistance and improving the composite thermal conductivity

  20. Electronically conductive polymer binder for lithium-ion battery electrode

    SciTech Connect

    Liu, Gao; Battaglia, Vincent S.; Park, Sang -Jae

    2015-10-06

    A family of carboxylic acid groups containing fluorene/fluorenon copolymers is disclosed as binders of silicon particles in the fabrication of negative electrodes for use with lithium ion batteries. Triethyleneoxide side chains provide improved adhesion to materials such as, graphite, silicon, silicon alloy, tin, tin alloy. These binders enable the use of silicon as an electrode material as they significantly improve the cycle-ability of silicon by preventing electrode degradation over time. In particular, these polymers, which become conductive on first charge, bind to the silicon particles of the electrode, are flexible so as to better accommodate the expansion and contraction of the electrode during charge/discharge, and being conductive promote the flow battery current.

  1. Electronically conductive polymer binder for lithium-ion battery electrode

    SciTech Connect

    Liu, Gao; Xun, Shidi; Battaglia, Vincent S.; Zheng, Honghe; Wu, Mingyan

    2015-07-07

    A family of carboxylic acid groups containing fluorene/fluorenon copolymers is disclosed as binders of silicon particles in the fabrication of negative electrodes for use with lithium ion batteries. Triethyleneoxide side chains provide improved adhesion to materials such as, graphite, silicon, silicon alloy, tin, tin alloy. These binders enable the use of silicon as an electrode material as they significantly improve the cycle-ability of silicon by preventing electrode degradation over time. In particular, these polymers, which become conductive on first charge, bind to the silicon particles of the electrode, are flexible so as to better accommodate the expansion and contraction of the electrode during charge/discharge, and being conductive promote the flow battery current.

  2. Formation of conductive polymers using nitrosyl ion as an oxidizing agent

    DOEpatents

    Choi, Kyoung-Shin; Jung, Yongju; Singh, Nikhilendra

    2016-06-07

    A method of forming a conductive polymer deposit on a substrate is disclosed. The method may include the steps of preparing a composition comprising monomers of the conductive polymer and a nitrosyl precursor, contacting the substrate with the composition so as to allow formation of nitrosyl ion on the exterior surface of the substrate, and allowing the monomer to polymerize into the conductive polymer, wherein the polymerization is initiated by the nitrosyl ion and the conductive polymer is deposited on the exterior surface of the substrate. The conductive polymer may be polypyrrole.

  3. A study on the stability of n-type conductive polymer

    NASA Astrophysics Data System (ADS)

    Onoda, M.

    2016-04-01

    Novel n-type conducting polymer, poly (p-methylpyridinium vinylene), PMePyV were synthesized by using the quaternization of poly (p-pyridyl vinylene), PPyV and several regiochemical consequences in this polymer were proposed. The electrical, optical, and electrochemical properties of n-type conductive polymer were observed. In addition, a possibility of a variety of functional applications of n-type conductive polymer was indicated.

  4. Conductive polymer combined silk fiber bundle for bioelectrical signal recording.

    PubMed

    Tsukada, Shingo; Nakashima, Hiroshi; Torimitsu, Keiichi

    2012-01-01

    Electrode materials for recording biomedical signals, such as electrocardiography (ECG), electroencephalography (EEG) and evoked potentials data, are expected to be soft, hydrophilic and electroconductive to minimize the stress imposed on living tissue, especially during long-term monitoring. We have developed and characterized string-shaped electrodes made from conductive polymer with silk fiber bundles (thread), which offer a new biocompatible stress free interface with living tissue in both wet and dry conditions.An electroconductive polyelectrolyte, poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS) was electrochemically combined with silk thread made from natural Bombyx mori. The polymer composite 280 µm thread exhibited a conductivity of 0.00117 S/cm (which corresponds to a DC resistance of 2.62 Mohm/cm). The addition of glycerol to the PEDOT-PSS silk thread improved the conductivity to 0.102 S/cm (20.6 kohm/cm). The wettability of PEDOT-PSS was controlled with glycerol, which improved its durability in water and washing cycles. The glycerol treated PEDOT-PSS silk thread showed a tensile strength of 1000 cN in both wet and dry states. Without using any electrolytes, pastes or solutions, the thread directly collects electrical signals from living tissue and transmits them through metal cables. ECG, EEG, and sensory evoked potential (SEP) signals were recorded from experimental animals by using this thread placed on the skin. PEDOT-PSS silk glycerol composite thread offers a new class of biocompatible electrodes in the field of biomedical and health promotion that does not induce stress in the subjects. PMID:22493670

  5. Conductive Polymer Combined Silk Fiber Bundle for Bioelectrical Signal Recording

    PubMed Central

    Tsukada, Shingo; Nakashima, Hiroshi; Torimitsu, Keiichi

    2012-01-01

    Electrode materials for recording biomedical signals, such as electrocardiography (ECG), electroencephalography (EEG) and evoked potentials data, are expected to be soft, hydrophilic and electroconductive to minimize the stress imposed on living tissue, especially during long-term monitoring. We have developed and characterized string-shaped electrodes made from conductive polymer with silk fiber bundles (thread), which offer a new biocompatible stress free interface with living tissue in both wet and dry conditions. An electroconductive polyelectrolyte, poly(3,4-ethylenedioxythiophene) -poly(styrenesulfonate) (PEDOT-PSS) was electrochemically combined with silk thread made from natural Bombyx mori. The polymer composite 280 µm thread exhibited a conductivity of 0.00117 S/cm (which corresponds to a DC resistance of 2.62 Mohm/cm). The addition of glycerol to the PEDOT-PSS silk thread improved the conductivity to 0.102 S/cm (20.6 kohm/cm). The wettability of PEDOT-PSS was controlled with glycerol, which improved its durability in water and washing cycles. The glycerol treated PEDOT-PSS silk thread showed a tensile strength of 1000 cN in both wet and dry states. Without using any electrolytes, pastes or solutions, the thread directly collects electrical signals from living tissue and transmits them through metal cables. ECG, EEG, and sensory evoked potential (SEP) signals were recorded from experimental animals by using this thread placed on the skin. PEDOT-PSS silk glycerol composite thread offers a new class of biocompatible electrodes in the field of biomedical and health promotion that does not induce stress in the subjects. PMID:22493670

  6. Conducting polymers on non-conducting substrates: Chemical coating processes and applications

    SciTech Connect

    Genies, E.M.

    1996-01-01

    The presentation will be as follows: {emdash}Historical background {emdash}Oxidizing polymerization mechanism of heterocycles and aromatic compounds: the cases of pyrrole and anilin {emdash}The processes: solute, gas phase and from conducting polymer solutions {emdash}The substrates: glass, polymers, inorganic materials, textiles, powders. {emdash}Properties of coatings: {emdash}Chemical properties: redox, acid-base {emdash}Properties resulting from the polymer doping counter-ion {emdash}Physical properties: : optical, magnetic, conducting, microwave absorption {emdash}Stability {emdash}Applications: optics, microelectronics, sensors, electrochrome glasses, electromagnetic and antistatic shielding, military applications, packaging for electronic components, biocompat- ibility, plasturgy. {emdash}Commercial applications throughout the world. How to obtain these materials {emdash}Conclusions The examples will be taken from the results of our laboratory, those of CEA-Direction des Technologies Avanc{acute e}es{emdash}Centre d{close_quote}Etudes et de Recherche sur les Mat{acute e}riaux{emdash}Centre d{close_quote}Etudes Nucl{acute e}aires de Grenoble (Mssrs R. Jolly and J. C. Thi{acute e}blemont), from the Milliken Research Corp. (Dr. H. H. Kuhn), from the Zipperlin Kessler company (Dr. B. Wessling), from the Americhem company and from I.B.M. (Dr. M. Angelopoulos). {copyright} {ital 1996 American Institute of Physics.}

  7. Anhydrous Proton Conducting Polymer Electrolyte Membranes via Polymerization-Induced Microphase Separation.

    PubMed

    Chopade, Sujay A; So, Soonyong; Hillmyer, Marc A; Lodge, Timothy P

    2016-03-01

    Solid-state polymer electrolyte membranes (PEMs) exhibiting high ionic conductivity coupled with mechanical robustness and high thermal stability are vital for the design of next-generation lithium-ion batteries and high-temperature fuel cells. We present the in situ preparation of nanostructured PEMs incorporating a protic ionic liquid (IL) into one of the domains of a microphase-separated block copolymer created via polymerization-induced microphase separation. This facile, one-pot synthetic strategy transforms a homogeneous liquid precursor consisting of a poly(ethylene oxide) (PEO) macro-chain-transfer agent, styrene and divinylbenzene monomers, and protic IL into a robust and transparent monolith. The resulting PEMs exhibit a bicontinuous morphology comprising PEO/protic IL conducting pathways and highly cross-linked polystyrene (PS) domains. The cross-linked PS mechanical scaffold imparts thermal and mechanical stability to the PEMs, with an elastic modulus approaching 10 MPa at 180 °C, without sacrificing the ionic conductivity of the system. Crucially, the long-range continuity of the PEO/protic IL conducting nanochannels results in an outstanding ionic conductivity of 14 mS/cm at 180 °C. We posit that proton conduction in the protic IL occurs via the vehicular mechanism and the PEMs exhibit an average proton transference number of 0.7. This approach is very promising for the development of high-temperature, robust PEMs with excellent proton conductivities. PMID:26927732

  8. Color combination of conductive polymers for black electrochromism.

    PubMed

    Shin, Haijin; Kim, Yuna; Bhuvana, Thiruvelu; Lee, Jiyea; Yang, Xu; Park, Cheolmin; Kim, Eunkyoung

    2012-01-01

    Conducting polymers that absorb three primary colors, red, green, and blue (RGB), were introduced with a yellow electrochromic polymer (Y) for the preparation of black electrochromic devices. Red poly(3-hexylthiophene) (P3HT) and blue poly(3,4-ethylenedioxythiophene) (PEDOT) were coated on one side of the electrode as a cathodically coloring electrochromic (EC) layer, while green poly(aniline-N-butylsulfonate) (PANBS) and yellow EC poly{[1,3-bis(9',9'-dihexylfluoren-20-yl)azulenyl]-alt-[2",7"-(9",9"-dihexylfluorenyl]} (PDHFA) were coated on the opposite electrode to complete a complementary EC device. The yellow PDHFA layer effectively compensated for absorption below 450 nm and above the 600 nm region, which was lacking in the RGB electrode. The resultant RGBY ECD provided a black color near the CIE black with L*, a*, and b* values of 32, -1.1, and 3.7, respectively, covering a broad absorption in the visible range in the colored state. The state of the black EC device was maintained, even after the electricity was turned off for 200 h, showing stable memory effect. PMID:22148317

  9. Amine-functionalized polypyrrole: Inherently cell adhesive conducting polymer.

    PubMed

    Lee, Jae Y; Schmidt, Christine E

    2015-06-01

    Electrically conducting polymers (CPs) have been recognized as novel biomaterials that can electrically communicate with biological systems. For their tissue engineering applications, CPs have been modified to promote cell adhesion for improved interactions between biomaterials and cells/tissues. Conventional approaches to improve cell adhesion involve the surface modification of CPs with biomolecules, such as physical adsorption of cell adhesive proteins and polycationic polymers, or their chemical immobilization; however, these approaches require additional multiple modification steps with expensive biomolecules. In this study, as a simple and effective alternative to such additional biomolecule treatment, we synthesized amine-functionalized polypyrrole (APPy) that inherently presents cell adhesion-supporting positive charges under physiological conditions. The synthesized APPy provides electrical activity in a moderate range and a hydrophilic surface compared to regular polypyrrole (PPy) homopolymers. Under both serum and serum-free conditions, APPy exhibited superior attachment of human dermal fibroblasts and Schwann cells compared to PPy homopolymer controls. Moreover, Schwann cell adhesion onto the APPy copolymer was at least similar to that on poly-l-lysine treated PPy controls. Our results indicate that amine-functionalized CP substrates will be useful to achieve good cell adhesion and potentially electrically stimulate various cells. In addition, amine functionality present on CPs can further serve as a novel and flexible platform to chemically tether various bioactive molecules, such as growth factors, antibodies, and chemical drugs. PMID:25294089

  10. Reciprocated suppression of polymer crystallization toward improved solid polymer electrolytes: Higher ion conductivity and tunable mechanical properties

    SciTech Connect

    Bi, Sheng; Sun, Che-Nan; Zawodzinski, Thomas A.; Ren, Fei; Keum, Jong Kahk; Ahn, Suk-Kyun; Li, Dawen; Chen, Jihua

    2015-08-06

    Solid polymer electrolytes based on lithium bis(trifluoromethanesulfonyl) imide and polymer matrix were extensively studied in the past due to their excellent potential in a broad range of energy related applications. Poly(vinylidene fluoride) (PVDF) and polyethylene oxide (PEO) are among the most examined polymer candidates as solid polymer electrolyte matrix. In this paper, we study the effect of reciprocated suppression of polymer crystallization in PVDF/PEO binary matrix on ion transport and mechanical properties of the resultant solid polymer electrolytes. With electron and X-ray diffractions as well as energy filtered transmission electron microscopy, we identify and examine the appropriate blending composition that is responsible for the diminishment of both PVDF and PEO crystallites. Laslty, a three-fold conductivity enhancement is achieved along with a highly tunable elastic modulus ranging from 20 to 200 MPa, which is expected to contribute toward future designs of solid polymer electrolytes with high room-temperature ion conductivities and mechanical flexibility.

  11. Conductive paper from lignocellulose wood microfibers coated with a nanocomposite of carbon nanotubes and conductive polymers

    NASA Astrophysics Data System (ADS)

    Agarwal, Mangilal; Xing, Qi; Shim, Bong Sup; Kotov, Nicholas; Varahramyan, Kody; Lvov, Yuri

    2009-05-01

    Composite nanocoating of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS) and aqueous dispersion of carbon nanotubes (CNT-PSS) on lignocellulose wood microfibers has been developed to make conductive microfibers and paper sheets. To construct the multilayers on wood microfibers, cationic poly(ethyleneimine) (PEI) has been used in alternate deposition with anionic conductive PEDOT-PSS and solubilized CNT-PSS. Using a Keithley microprobe measurement system, current-voltage measurements have been carried out on single composite microfibers after deposition of each layer to optimize the electrical properties of the coated microfibers. The conductivity of the resultant wood microfibers was in the range of 10-2-2 S cm-1 depending on the architecture of the coated layer. Further, the conductivity of the coated wood microfibers increased up to 20 S cm-1 by sandwiching multilayers of conductive co-polymer PEDOT-PSS with CNT-PSS through a polycation (PEI) interlayer. Moreover, paper hand sheets were manufactured from these coated wood microfibers with conductivity ranging from 1 to 20 S cm-1. A paper composite structure consisting of conductive/dielectric/conductive layers that acts as a capacitor has also been fabricated and is reported.

  12. Porous palladium coated conducting polymer nanoparticles for ultrasensitive hydrogen sensors.

    PubMed

    Lee, Jun Seop; Kim, Sung Gun; Cho, Sunghun; Jang, Jyongsik

    2015-12-28

    Hydrogen, a clean-burning fuel, is of key importance to various industrial applications, including fuel cells and in the aerospace and automotive industries. However, hydrogen gas is odorless, colorless, and highly flammable; thus appropriate safety protocol implementation and monitoring are essential. Highly sensitive hydrogen leak detection and surveillance sensor systems are needed; additionally, the ability to maintain uniformity through repetitive hydrogen sensing is becoming increasingly important. In this report, we detail the fabrication of porous palladium coated conducting polymer (3-carboxylate polypyrrole) nanoparticles (Pd@CPPys) to detect hydrogen gas. The Pd@CPPys are produced by means of facile alkyl functionalization and chemical reduction of a pristine 3-carboxylate polypyrrole nanoparticle-contained palladium precursor (PdCl(2)) solution. The resulting Pd@CPPy-based sensor electrode exhibits ultrahigh sensitivity (0.1 ppm) and stability toward hydrogen gas at room temperature due to the palladium sensing layer. PMID:26598964

  13. Conductive polymer-based microextraction methods: a review.

    PubMed

    Bagheri, Habib; Ayazi, Zahra; Naderi, Mehrnoush

    2013-03-12

    Conductive polymers (CPs) are classified as materials which exhibit highly reversible redox behavior and the unusual combined properties of metal and plastics. CPs, due to their multifunctionality, ease of synthesis and their stability, have attracted more attentions in different fields of research, including sample preparation. CPs along with several commercial hydrophilic sorbents, are alternative to the commercially available hydrophobic sorbents which despite their high specific surface areas, have poor interactions and retentions in the extraction of polar compounds. This review covers a general overview regarding the recent progress and new applications of CPs toward their synthesis and use in novel extraction and microextraction techniques including solid phase microextraction (SPME), electrochemically controlled solid-phase microextraction (EC-SPME) and other relevant techniques. Furthermore the contribution of nano-structured CPs in these methodologies is also reviewed. PMID:23452781

  14. Applications of conducting polymers and their issues in biomedical engineering

    PubMed Central

    Ravichandran, Rajeswari; Sundarrajan, Subramanian; Venugopal, Jayarama Reddy; Mukherjee, Shayanti; Ramakrishna, Seeram

    2010-01-01

    Conducting polymers (CPs) have attracted much interest as suitable matrices of biomolecules and have been used to enhance the stability, speed and sensitivity of various biomedical devices. Moreover, CPs are inexpensive, easy to synthesize and versatile because their properties can be readily modulated by (i) surface functionalization techniques and (ii) the use of a wide range of molecules that can be entrapped or used as dopants. This paper discusses the various surface modifications of the CP that can be employed in order to impart physico-chemical and biological guidance cues that promote cell adhesion/proliferation at the polymer–tissue interface. This ability of the CP to induce various cellular mechanisms widens its applications in medical fields and bioengineering. PMID:20610422

  15. Intrinsically Conductive Polymer Fibers from Thermoplastic trans-1,4-Polyisoprene.

    PubMed

    Han, Peng; Zhang, Xiaohong; Qiao, Jinliang

    2016-05-17

    Herein, we report a new strategy to prepare conductive polymer fibers to overcome the insurmountable weakness of current conductive polymer fibers. First, special thermoplastic polymers are processed into polymer fibers using a conventional melt-spinning process, and then the nonconductive polymer fibers are converted into intrinsically conductive polymer fibers. Using this new strategy, intrinsically conductive polymer fibers have been prepared by melt spinning low-cost thermoplastic trans-1,4-polyisoprene and doping with iodine, which can be as fine as 0.01 mm, and the resistivity can be as low as 10(-2) Ω m. Moreover, it has been found that drawing can improve the orientation of trans-1,4-polyisoprene crystals in the fibers and, thus, the conductivity of the conductive polymer fibers. Therefore, conductive fibers with excellent conductivities can be prepared by large drawing ratios before doping. Such conductive polymer fibers with low cost could be used in textile, clothing, packing, and other fields, which would benefit both industry and daily life. The newly developed method also allows one to produce conductive polymers of any shape besides fibers for antistatic or conductive applications. PMID:27135825

  16. PATTERN RECOGNITION STUDIES OF HALOGENATED ORGANIC COMPOUNDS USING CONDUCTING POLYMER SENSOR ARRAYS. (R825323)

    EPA Science Inventory

    Direct measurement of volatile and semivolatile halogenated organic compounds of environmental interest was carried out using arrays of conducting polymer sensors. Mathematical expressions of the sensor arrays using microscopic polymer network model is described. A classical, non...

  17. Strain sensing conductive polymer composites: Sensitivity and stability

    NASA Astrophysics Data System (ADS)

    Deng, Hua; Du, Rongni; Duan, Linyan; Fu, Qiang

    2016-03-01

    The effect of conductive network morphology and interfacial interaction on the strain sensing capability of conductive polymer composites (CPCs) is thought as crucial. Nevertheless, the stability in strain sensing behavior has barely been investigated. Herein, the resistivity-strain behavior in terms of stability and sensitivity of CPCs based on poly(styrene-butadiene-styrene) (SBS) containing multiwalled carbon nanotubes (MWCNTs) are studied. It is shown that the preparation method has an important influence on the resistivity-strain behavior of these CPCs. The sensitivity increases with decreasing filler content for both composites under linear uniaxial strain, showing higher strain sensitivity near the percolation threshold. A higher and wider range of sensitivities is obtained for melt mixed SBS/MWCNT. Meanwhile, resistivity downward drifting and shoulder peaks are shown for composites from melt mixing under dynamic strain. Interestingly, linear relationships and reversible resistivity in every cycle are observed for composites from solution mixing, showing good electromechanical consistency, stability and durability. From the TEM, rheology, SEM, SAXS, Raman microscopy and analytical modeling studies, the difference in morphology is thought to be responsible for such resistivity-strain behavior. As more disordered and less densely packed conductive networks in melt mixed CPCs are more easily destroyed under strain, evenly distributed and densely packed networks in solution mixed CPCs are more stable during cyclic stretching. Finally, different human motions have been detected using these CPCs, demonstrating the potential application of these CPCs as movement sensors.

  18. Understanding hopping transport and thermoelectric properties of conducting polymers

    NASA Astrophysics Data System (ADS)

    Ihnatsenka, S.; Crispin, X.; Zozoulenko, I. V.

    2015-07-01

    We calculate the conductivity σ and the Seebeck coefficient S for the phonon-assisted hopping transport in conducting polymers poly(3,4-ethylenedioxythiophene) or PEDOT, experimentally studied by Bubnova et al. [J. Am. Chem. Soc. 134, 16456 (2012)], 10.1021/ja305188r. We use the Monte Carlo technique as well as the semianalytical approach based on the transport energy concept. We demonstrate that both approaches show a good qualitative agreement for the concentration dependence of σ and S . At the same time, we find that the semianalytical approach is not in a position to describe the temperature dependence of the conductivity. We find that both Gaussian and exponential density of states (DOS) reproduce rather well the experimental data for the concentration dependence of σ and S giving similar fitting parameters of the theory. The obtained parameters correspond to a hopping model of localized quasiparticles extending over 2-3 monomer units with typical jumps over a distance of 3-4 units. The energetic disorder (broadening of the DOS) is estimated to be 0.1 eV. Using the Monte Carlo calculation we reproduce the activation behavior of the conductivity with the calculated activation energy close to the experimentally observed one. We find that for a low carrier concentration a number of free carriers contributing to the transport deviates strongly from the measured oxidation level. Possible reasons for this behavior are discussed. We also study the effect of the dimensionality on the charge transport by calculating the Seebeck coefficient and the conductivity for the cases of three-, two-, and one-dimensional motion.

  19. Decoupling Ionic Conductivity from Structural Relaxation: A Way to Solid Polymer Electrolytes?

    SciTech Connect

    Agapov, Alexander L; Sokolov, Alexei P

    2011-01-01

    Using broadband dielectric spectroscopy, we studied the temperature dependence of ionic conductivity and structural relaxation in a number of polymers. We demonstrate that temperature dependence of ionic conductivity can be decoupled from structural relaxation in a material specific way. We show that the strength of the decoupling correlates with the steepness of the temperature dependence of structural relaxation in the polymer, i.e., with its fragility. We ascribe the observed result to stronger frustration in chain packing characteristic for more fragile polymers. We speculate that employment of more fragile polymers might lead to design of polymers with higher ionic conductivity.

  20. Soft capacitor fibers using conductive polymers for electronic textiles

    NASA Astrophysics Data System (ADS)

    Gu, Jian Feng; Gorgutsa, Stephan; Skorobogatiy, Maksim

    2010-11-01

    A novel, highly flexible, conductive polymer-based fiber with high electric capacitance is reported. In its cross section the fiber features a periodic sequence of hundreds of conductive and isolating plastic layers positioned around metallic electrodes. The fiber is fabricated using the fiber drawing method, where a multi-material macroscopic preform is drawn into a sub-millimeter capacitor fiber in a single fabrication step. Several kilometers of fibers can be obtained from a single preform with fiber diameters ranging between 500 and 1000 µm. A typical measured capacitance of our fibers is 60-100 nF m-1 and it is independent of the fiber diameter. Analysis of the fiber frequency response shows that in its simplest interrogation mode the capacitor fiber has a transverse resistance of 5 kΩ m L-1, which is inversely proportional to the fiber length L and is independent of the fiber diameter. Softness of the fiber materials, the absence of liquid electrolyte in the fiber structure, ease of scalability to large production volumes and high capacitance of our fibers make them interesting for various smart textile applications ranging from distributed sensing to energy storage.

  1. Polyaniline: a conductive polymer coating for durable nanospray emitters

    PubMed

    Maziarz; Lorenz; White; Wood

    2000-07-01

    Despite the tremendous sensitivity and lower sample requirements for nanospray vs. conventional electrospray, metallized nanospray emitters have suffered from one of two problems: low mechanical stability (leading to emitter failure) or lengthy, tedious production methods. Here, we describe a simple alternative to metallized tips using polyaniline (PANI), a synthetic polymer well known for its high conductivity, anticorrosion properties, antistatic properties, and mechanical stability. A simple method for coating borosilicate emitters (1.2 mm o.d.) pulled to fine tapers (4 +/- 1 microm) with water-soluble and xylene-soluble dispersions of conductive polyaniline (which allows for electrical contact at the emitter outlet) is described. The polyaniline-coated emitters show high durability and are resistant to electrical discharge, likely because of the thick (yet optically transparent) coatings; a single emitter can be used over a period of days for multiple samples with no visible indication of the destruction of the polyaniline coating. The optical transparency of the coating also allows the user to visualize the sample plug loaded into the emitter. Examples of nanospray using coatings of the water-soluble and xylene-soluble polyaniline dispersions are given. A comparison of PANI-coated and gold-coated nanospray emitters to conventional electrospray ionization (ESI) show that PANI-coated emitters provide similar enhanced sensitivity that gold-coated emitters exhibit vs. conventional ESI. PMID:10883822

  2. Conducting polymer composite materials for smart microwave windows

    NASA Astrophysics Data System (ADS)

    Barnes, Alan; Lees, K.; Wright, Peter V.; Chambers, Barry

    1999-07-01

    Samples of poly(aniline)-silver-polymer electrolyte particulate composites have been characterized at microwave frequencies when small d.c. electric fields are applied across them in both coaxial line and waveguide measurement test sets. The experimental data shows that the initial conductivity of the materials is dependent on the concentration of sliver metal and suggest that changes in resistance due to chemical switching take place, at least in part, in the manufacture of the composites. When silver is used as the electrodes, the experimental data show that changes in the slope of the cyclic voltammograms coincide with large changes in microwave reflectivity or transmission consistent with increasing conductivity of the composites when fields are applied. The reverse change occurs when the fields are removed. Measurements have shown that the composites are able to switch between the two impedance stats in times of less than one second for well over a million cycles with no apparent depreciation in material properties. Large area films have also been prepared and studied using the 'free space' technique.

  3. Highly Conductive, Stretchable, and Transparent Solid Polymer Electrolyte Membrane

    NASA Astrophysics Data System (ADS)

    He, Ruixuan; Echeverri, Mauricio; Kyu, Thein

    2014-03-01

    With the guidance of ternary phase diagrams, completely amorphous polymer electrolyte membranes (PEM) were successfully prepared by melt processing for lithium-ion battery. The PEM under consideration consisted of poly (ethylene glycol diacrylate) (PEGDA), succinonitrile (SCN) and Lithium bis(trifluoro-methane)sulfonamide (LiTFSI). After UV-crosslinking, the PEM is transparent and light-weight. Addition of SCN plastic crystal affords not only dissociation of the lithium salt, but also plasticization to the crosslinked PEGDA network. Of particular importance is the achievement of room-temperature ionic conductivity of ~10-3 S/cm, which is comparable to that of commercial liquid electrolyte. Higher ionic conductivities were achieved at elevated temperatures or with use of a moderately higher molecular weight of PEGDA. In terms of electrochemical and chemical stability, the PEM exhibited oxidative stability up to 5 V against lithium reference electrode. Stable interface behavior between the PEM and lithium electrode is also seen with ageing time. In the tensile tests, samples containing low molecular weight PEGDA are stiffer, whereas the high molecular weight PEGDA is stretchable up to 80% elongation. Supported by NSF-DMR 1161070.

  4. Conductivity and Stability of Photopolymerized Polymer Electrolyte Network

    NASA Astrophysics Data System (ADS)

    Kyu, Thein; He, Ruixuan; Chen, Yu-Ming; Mao, Jialin; Zhu, Yu; Kyu'S Group, , Dr.; Zhu'S Group Collaboration, , Dr.

    2014-03-01

    A melt-processing window has been identified within the wide isotropic region of the phase diagram of ternary blends consisting of poly (ethylene glycol diacrylate) (PEGDA), tetraethylene glycol dimethyl ether (TEGDME) and lithium bis(trifluoromethane) sulfonamide (LiTFSI). Upon UV-crosslinking of PEGDA in the isotropic window, the polymer electrolyte membrane (PEM) network thus formed is completely transparent and remains in the single phase without undergoing polymerization-induced phase separation or polymerization-induced crystallization. These PEM networks are solid albeit flexible and light-weight with safety and space saving attributes. The ionic conductivity as determined by AC impedance spectroscopy exhibited very high room-temperature ionic conductivity on the order of ~10-3 S/cm in several compositions, viz., 10/45/45, 20/40/40 and 30/35/35 PEGDA/TEGDME/LiTFSI networks. Cyclic voltammetry measurement of these solid-state PEM networks revealed excellent electrochemical stability against lithium reference electrode. The above study has been extended to the anode (graphite) and cathode (LiFePO4) half-cell configurations with lithium as counter electrode. Charge/discharge cycling behavior of these half cells will be discussed. Supported by NSF-DMR 1161070 and University of Akron.

  5. Electron beam induced microstructural changes and electrical conductivity in Bakelite polymer RPC detector material: A positron lifetime study

    NASA Astrophysics Data System (ADS)

    Aneesh Kumar, K. V.; Ningaraju, S.; Munirathnamma, L. M.; Ravikumar, H. B.; Ranganathaiah, C.

    2015-06-01

    In order to explore the structural modification induced electrical conductivity, samples of Bakelite RPC polymer detector materials were exposed to 8 MeV of electron beam with the irradiation dose from 20 kGy to 100 kGy in steps of 20 kGy. The microstructural changes upon electron beam irradiation have been studied using Positron Annihilation Lifetime Spectroscopy (PALS) and Fourier Transform Infrared (FTIR) Spectroscopy. Positron lifetime parameters viz., o-Ps lifetime and its intensity show chain scission at lower doses (20 kGy, 40 kGy) followed by cross-linking beyond 40 kGydue to the radical reactions. The reduction in electrical conductivity of Bakelite material beyond 60 kGy is correlated to the conducting pathways and cross-links in the polymer matrix. The appropriate doses of electron beam irradiation of Bakelite material may reduce the leakage current and hence improves the performance of the detector.

  6. Synthesis of Conductive Nanofillers/Nanofibers and Electrical Properties of their Conductive Polymer Composites

    NASA Astrophysics Data System (ADS)

    Sarvi, Ali

    Thanks to their corrosion resistance, light weight, low cost, and ease of processing, electrically conducting polymer composites (CPCs) have received significant attention for the replacement of metals and inorganic materials for sensors, actuators, supercapacitors, and electromagnetic interference (EMI) shields. In this PhD thesis, high aspect ratio conductive nanofillers namely copper nanowires (CuNWs) and multiwall carbon nanotubes (MWCNTs) were coated with polyaniline (PANi) using solution mixing and in-situ polymerization method, respectively. Transmission electron microscopy (TEM) showed a smooth polyaniline nano-coating between 5--18 nm in thickness on the nanofillers' surface. The coating thickness and; consequently, electrical conductivity was controlled and tuned by polyaniline/aniline concentration in solution. Composites with tunable conductivity may be used as chemisensors, electronic pressure sensors and switches. Coated nanofillers demonstrated better dispersion in polystyrene (PS) and provided lower electrical percolation threshold. Dispersion of nanofillers in PS was investigated using rheological measurements and confirmed with electron micrographs and nano-scale images of CPCs. Polyaniline (PANi), when used as a coating layer, was able to attenuate electromagnetic (EM) waves via absorption and store electrical charges though pseudocapacitance mechanism. The dielectric measurements of MWCNT-PANi/PS composites showed one order of magnitude increase in real electrical permittivity compared to that of MWCNT/PS composites making them suitable for charge storage purposes. Incorporation of PANi also brought a new insight into conductive network formation mechanism in electrospun mats where the orientation of conductive high aspect ratio nanofillers is a major problem. Conductive nanofibers of poly(vinylidene fluoride) (PVDF) filled with coated multiwall carbon nanotubes (MWCNTs) were fabricated using electrospinning. These highly oriented PVDF

  7. Mixed ionic and electronic conductivity in polymers. Progress report, January 1, 1989--December 31, 1989

    SciTech Connect

    Shriver, D.F.

    1990-06-01

    The conductivity of iodine-containing polymers was investigated and conductivity along polyiodide chains is implicated by the concentration dependence of the conductivity data and spectroscopic measurements. On the theoretical side, entropy based models were developed to describe ion motion in polymers.

  8. Porous palladium coated conducting polymer nanoparticles for ultrasensitive hydrogen sensors

    NASA Astrophysics Data System (ADS)

    Lee, Jun Seop; Kim, Sung Gun; Cho, Sunghun; Jang, Jyongsik

    2015-12-01

    Hydrogen, a clean-burning fuel, is of key importance to various industrial applications, including fuel cells and in the aerospace and automotive industries. However, hydrogen gas is odorless, colorless, and highly flammable; thus appropriate safety protocol implementation and monitoring are essential. Highly sensitive hydrogen leak detection and surveillance sensor systems are needed; additionally, the ability to maintain uniformity through repetitive hydrogen sensing is becoming increasingly important. In this report, we detail the fabrication of porous palladium coated conducting polymer (3-carboxylate polypyrrole) nanoparticles (Pd@CPPys) to detect hydrogen gas. The Pd@CPPys are produced by means of facile alkyl functionalization and chemical reduction of a pristine 3-carboxylate polypyrrole nanoparticle-contained palladium precursor (PdCl2) solution. The resulting Pd@CPPy-based sensor electrode exhibits ultrahigh sensitivity (0.1 ppm) and stability toward hydrogen gas at room temperature due to the palladium sensing layer.Hydrogen, a clean-burning fuel, is of key importance to various industrial applications, including fuel cells and in the aerospace and automotive industries. However, hydrogen gas is odorless, colorless, and highly flammable; thus appropriate safety protocol implementation and monitoring are essential. Highly sensitive hydrogen leak detection and surveillance sensor systems are needed; additionally, the ability to maintain uniformity through repetitive hydrogen sensing is becoming increasingly important. In this report, we detail the fabrication of porous palladium coated conducting polymer (3-carboxylate polypyrrole) nanoparticles (Pd@CPPys) to detect hydrogen gas. The Pd@CPPys are produced by means of facile alkyl functionalization and chemical reduction of a pristine 3-carboxylate polypyrrole nanoparticle-contained palladium precursor (PdCl2) solution. The resulting Pd@CPPy-based sensor electrode exhibits ultrahigh sensitivity (0.1 ppm

  9. Method for synthesizing peptides with saccharide linked enzyme polymer conjugates

    DOEpatents

    Callstrom, M.R.; Bednarski, M.D.; Gruber, P.R.

    1997-06-17

    A method is disclosed for synthesizing peptides using water soluble enzyme polymer conjugates. The method comprises catalyzing the peptide synthesis with enzyme which has been covalently bonded to a polymer through at least three linkers which linkers have three or more hydroxyl groups. The enzyme is conjugated at lysines or arginines. 19 figs.

  10. Method for synthesizing peptides with saccharide linked enzyme polymer conjugates

    DOEpatents

    Callstrom, Matthew R.; Bednarski, Mark D.; Gruber, Patrick R.

    1997-01-01

    A method is disclosed for synthesizing peptides using water soluble enzyme polymer conjugates. The method comprises catalyzing the peptide synthesis with enzyme which has been covalently bonded to a polymer through at least three linkers which linkers have three or more hydroxyl groups. The enzyme is conjugated at lysines or arginines.

  11. Proton conduction in Mo(VI)-based metallo-supramolecular polymers.

    PubMed

    Pandey, Rakesh K; Hossain, Md Delwar; Chakraborty, Chanchal; Moriyama, Satoshi; Higuchi, Masayoshi

    2015-07-14

    High proton conduction (8.5 × 10(-2) mS cm(-1)) was observed in a Mo(vi)-based metallo-supramolecular polymer with carboxylic acids at 95%RH. The integration of OH groups into the polymer was analysed using FTIR spectroscopy and found to be crucial for the proton transport in the polymer. PMID:26051550

  12. Rational design and synthesis of semi-conducting polymers.

    SciTech Connect

    Wong, Bryan Matthew; Reeder, Craig; Cordaro, Joseph Gabriel

    2010-12-01

    A rational approach was used to design polymeric materials for thin-film electronics applications, whereby theoretical modeling was used to determine synthetic targets. Time-dependent density functional theory calculations were used as a tool to predict the electrical properties of conjugated polymer systems. From these results, polymers with desirable energy levels and band-gaps were designed and synthesized. Measurements of optoelectronic properties were performed on the synthesized polymers and the results were compared to those of the theoretical model. From this work, the efficacy of the model was evaluated and new target polymers were identified.

  13. The influence of carbon nanotubes in inkjet printing of conductive polymer suspensions

    NASA Astrophysics Data System (ADS)

    Denneulin, Aurore; Bras, Julien; Blayo, Anne; Khelifi, Bertine; Roussel-Dherbey, Francine; Neuman, Charles

    2009-09-01

    In this study, inkjet printing inks were formulated by combining the processability of the conductive polymer poly(3,4-ethylenedioxythiophene) (PEDOT) to the high conductivity of carbon nanotubes (CNTs). Conductive patterns were deposited on polymer films by piezoelectric inkjet printing. Several settings of printing were explored and analyzed by morphological observations and sheet resistance measurements. Performances of several CNTs were evaluated (single-walled, multi-walled and functionalized CNTs). Patterns can have sheet resistances from 10 537 to 225 Ω/sq between two families of CNTs. Functionalized CNTs with polyethylene glycol functions appeared to be the best candidates for printed electronics. This best combination allows us to obtain sheet resistances as low as 225 Ω/sq which is up to now one of the lowest resistances obtained by inkjet printing. This work also discusses the CNT network performances and emphasizes the degradation of electrical properties linked to the use of surfactants. This study represents an important step for the integration of CNTs in printed electronics applications and offers new opportunities to produce cost-effective electronics.

  14. Molecular self-assembly of conducting polymer by Conducting Probe Technique in Atomic Force Microscope

    NASA Astrophysics Data System (ADS)

    Yamamoto, Shin-ichi; Ogawa, Kazufumi

    2007-04-01

    A polypyrrole derivative monolayer was investigated for the application as a wire. First, a pyrrole derivative monolayer was prepared by chemically adsorbing (self-assembling) monolayer (CAM) of 6-pyrrolylhexyl-12,12,12-trichloro-12- siladodecanoate (PEN) on a glass substrate. Then, the monolayer was polymerized in the presence of pure water by electrooxidation. The surface characterization of the molecular interaction was investigated by measuring the properties of CAMs attached to the glass substrate in the lateral direction. We formed PEN having polypyrrolyl groups, using Pt-patterned electrodes on glass surfaces and measured the conductance under a small bias voltage, using a conductive cantilever of atomic force microscopy (AFM). The polypyrrole derivative monolayer thus synthesized was covalently bonded to the glass substrate and showed conductivity as high as 3.05..103 S/cm after electro-oxidized. The method of preparing a conductive polymer monolayer by the combining chemical adsorption and electro-oxidation leads to a lot molecular wire to perpendicular to the Pt electrodes, and it is one of the key technologies for molecular devices.

  15. Electrochemical DNA Hybridization Sensors Based on Conducting Polymers

    PubMed Central

    Rahman, Md. Mahbubur; Li, Xiao-Bo; Lopa, Nasrin Siraj; Ahn, Sang Jung; Lee, Jae-Joon

    2015-01-01

    Conducting polymers (CPs) are a group of polymeric materials that have attracted considerable attention because of their unique electronic, chemical, and biochemical properties. This is reflected in their use in a wide range of potential applications, including light-emitting diodes, anti-static coating, electrochromic materials, solar cells, chemical sensors, biosensors, and drug-release systems. Electrochemical DNA sensors based on CPs can be used in numerous areas related to human health. This review summarizes the recent progress made in the development and use of CP-based electrochemical DNA hybridization sensors. We discuss the distinct properties of CPs with respect to their use in the immobilization of probe DNA on electrode surfaces, and we describe the immobilization techniques used for developing DNA hybridization sensors together with the various transduction methods employed. In the concluding part of this review, we present some of the challenges faced in the use of CP-based DNA hybridization sensors, as well as a future perspective. PMID:25664436

  16. Conductivity study and fourier transform infrared (FTIR) characterization of methyl cellulose solid polymer electrolyte with sodium iodide conducting ion

    SciTech Connect

    Abiddin, Jamal Farghali Bin Zainal; Ahmad, Azizah Hanom

    2015-08-28

    Sodium ion (Na{sup +}) based solid polymer electrolyte (SPE) has been prepared using solution cast technique with distilled water as solvent and Methylcellulose (MC) as a polymer host. Methylcellulose polymer was chosen as the polymer host due to the abundance of lone pair electrons in the carbonyl and C-O-C constituents, which in turn provide multiple hopping sites for the Na{sup +} conducting ions. Variable compositions of sodium iodide (NaI) salt were prepared to investigate the optimum MC-NaI weight ratio. Results from Electrical Impedance Spectroscopy (EIS) technique show that pure methylcellulose has a low conductivity of 3.61 × 10{sup −11} S/cm.The conductivity increases as NaI content increases up to optimum NaIcomposition of 40 wt%, which yields an average conductivity of 2.70 × 10{sup −5} S/cm.

  17. Synthesis and characterization thin films of conductive polymer (PANI) for optoelectronic device application

    NASA Astrophysics Data System (ADS)

    Jarad, Amer N.; Ibrahim, Kamarulazizi; Ahmed, Nasser M.

    2016-07-01

    In this work we report preparation and investigation of structural and optical properties of polyaniline conducting polymer. By using sol-gel in spin coating technique to synthesize thin films of conducting polymer polyaniline (PANI). Conducting polymer polyaniline was synthesized by the chemical oxidative polymerization of aniline monomers. The thin films were characterized by technique: Hall effect, High Resolution X-ray diffraction (HR-XRD), Fourier transform infrared (FTIR) spectroscopy, Field emission scanning electron microscopy (FE-SEM), and UV-vis spectroscopy. Polyaniline conductive polymer exhibit amorphous nature as confirmed by HR-XRD. The presence of characteristic bonds of polyaniline was observed from FTIR spectroscopy technique. Electrical and optical properties revealed that (p-type) conductivity PANI with room temperature, the conductivity was 6.289×10-5 (Ω.cm)-1, with tow of absorption peak at 426,805 nm has been attributed due to quantized size of polyaniline conducting polymer.

  18. Dynamic force microscopy and x-ray photoemission spectroscopy studies of conducting polymer thin film on nanoscale structured Al surface

    NASA Astrophysics Data System (ADS)

    Kato, Hitoshi; Takemura, Susumu; Ishii, Atsuro; Takarai, Yoshiyuki; Watanabe, Yohei; Sugiyama, Takeharu; Hiramatsu, Tomoyasu; Nanba, Noriyuki; Nishikawa, Osamu; Taniguchi, Masahiro

    2007-09-01

    A nanoscale linked-crater structure was fabricated on an Al surface by chemical and electrochemical combination processes. The surface of an Al plate was treated with Semi Clean and was successively processed in anodization in H IISO 4. Dynamic force microscopy image (DFM) showed that a linked-crater structure was formed on the Al surface. At the next stage, the authors conducted the thin film growth of conducting polymer polythiophene on the Al surface by an electrochemical method. The electrochemical polymerization on the Al surface was performed in acetonitrile containing thiophene monomer and (Et) 4NBF 4 as a supporting electrolyte. After being electrochemically processed, the contour image of each crater was still recognized implying that the polymer nanofilm was grown on the nanoscale structured Al surface. The cross section analysis demonstrated that the nanofilm was grown along the linked-crater structure because the contour of each crater became thick. X-ray photoemission spectroscopy measurement also supported the polymer nanofilm growth because C 1s and S 2p lines were detected. Furthermore, copper phthalocyanine (CuPc) molecules are injected into the polymer nanofilm grown on the nanoscale structured Al surface by diffusing method in order to functionalize the nanoscale hybrid material.

  19. New Secondary Batteries Using Electronically Conductive Polymer Cathodes

    NASA Technical Reports Server (NTRS)

    Martin, Charles R.; White, Ralph E.

    1991-01-01

    A Li/Polypyrrole secondary battery was designed and built, and the effect of controlling the morphology of the polymer on enhancement of counterion diffusion in the polymer phase was explored. The experimental work was done at Colorado State University, while the mathematical modeling of the battery was done at Texas A and M University. Manuscripts and publications resulting from the project are listed.

  20. Potential of thermally conductive polymers for the cooling of mechatronic parts

    NASA Astrophysics Data System (ADS)

    Heinle, C.; Drummer, D.

    Adding thermally conductive fillers to polymers the thermal conductivity can be raised significantly. Thermal conductive polymers (TC-plastics) open up a vast range of options to set up novel concepts of polymer technological system solutions in the area of mechatronics. Heating experiment of cooling ribs show the potential in thermal management of mechatronic parts with TC-polymers in comparison with widely used reference materials copper and aluminum. The results demonstrate that especially for certain thermal boundary conditions comparable performance between these two material grades can be measured.

  1. Performance of conducting polymer electrodes for stimulating neuroprosthetics

    NASA Astrophysics Data System (ADS)

    Green, R. A.; Matteucci, P. B.; Hassarati, R. T.; Giraud, B.; Dodds, C. W. D.; Chen, S.; Byrnes-Preston, P. J.; Suaning, G. J.; Poole-Warren, L. A.; Lovell, N. H.

    2013-02-01

    Objective. Recent interest in the use of conducting polymers (CPs) for neural stimulation electrodes has been growing; however, concerns remain regarding the stability of coatings under stimulation conditions. These studies examine the factors of the CP and implant environment that affect coating stability. The CP poly(ethylene dioxythiophene) (PEDOT) is examined in comparison to platinum (Pt), to demonstrate the potential performance of these coatings in neuroprosthetic applications. Approach. PEDOT is coated on Pt microelectrode arrays and assessed in vitro for charge injection limit and long-term stability under stimulation in biologically relevant electrolytes. Physical and electrical stability of coatings following ethylene oxide (ETO) sterilization is established and efficacy of PEDOT as a visual prosthesis bioelectrode is assessed in the feline model. Main results. It was demonstrated that PEDOT reduced the potential excursion at a Pt electrode interface by 72% in biologically relevant solutions. The charge injection limit of PEDOT for material stability was found to be on average 30× larger than Pt when tested in physiological saline and 20× larger than Pt when tested in protein supplemented media. Additionally stability of the coating was confirmed electrically and morphologically following ETO processing. It was demonstrated that PEDOT-coated electrodes had lower potential excursions in vivo and electrically evoked potentials (EEPs) could be detected within the visual cortex. Significance. These studies demonstrate that PEDOT can be produced as a stable electrode coating which can be sterilized and perform effectively and safely in neuroprosthetic applications. Furthermore these findings address the necessity for characterizing in vitro properties of electrodes in biologically relevant milieu which mimic the in vivo environment more closely.

  2. Screen printable flexible conductive nanocomposite polymer with applications to wearable sensors

    NASA Astrophysics Data System (ADS)

    Chung, D.; Khosla, A.; Gray, B. L.

    2014-04-01

    We have developed a conductive nanocomposite polymer that possesses both good conductivity and flexibility, and screen printed it onto fabric to realize wearable flexible electrodes and electronic routing. The conductive polymer consists of dispersed silver nanoparticles (90~210nm) in a screen printable plastisol polymer. The conductive polymer is conductive for weight-percentages above approximately 61 wt-% of Ag nanoparticles, and has a resistivity of 2.12×10-6 ohm·m at 70 wt-% of Ag nanoparticles. To test the screen printed conductive polymer's flexibility and its effect on conductivity, we measured the resistivity of the Ag-doped composite polymer at different bending angles (-90˚ ~ 90˚) with a 10° step angle at different wt-% of silver particles, and compared the results. We also tested washability of the screen printed conductive polymer as applied to fabric for long-term use in wearable sensors systems. We also used the screen printed Ag composite polymer to realize an example wearable system. Flexible wearable dry electrocardiogram (ECG) electrodes were developed and ECG signal was measured via the electrodes. The sensing ECG electrodes (3mm diameter circle) were chloridized to form Ag/AgCl electrodes. We measured an ECG signal using a simple right-leg driven ECG circuit and observed normal ECG signals even without application of electrolyte gel.

  3. Conducting Polymer-Inorganic Nanoparticle (CPIN) Nanoarrays for Battery Applications - Final Technical Report

    SciTech Connect

    Buttry, Daniel A.

    2006-06-27

    Our objective was to develop new, self-assembling conducting polymer-inorganic nanoparticle nanoarrays (CPIN nanoarrays) comprised of nanoparticles of inorganic Li+ insertion compounds that are “wired” together with oligomeric chains of derivatives of polythiophene. Using these nanoarrays, we developed an understanding of the relationship between structure and electrochemical function for nanostructured materials. Such nanoarrays are expected to have extremely high specific energy and specific power for battery applications due to the unique structural characteristics that derive from the nanoarray. Under this award we developed several synthetic approaches to producing manganese dioxide nanoparticles (NPs). We also developed a layer-by-layer approach for immobilizing these NPs so they could be examined electrochemically. We also developed new synthetic procedures for encapsulating manganese dioxide nanoparticles within spheres of polyethylenedioxythiophene (PEDOT), a conducting polymer with excellent charge-discharge stability. These have a unique manganese dioxide core-PEDOT shell structure. We examined the structures of these systems using transmission electron microscopy, various scanning probe microscopies, and electrochemical measurements. Various technical reports have been submitted that describe the work, including conference presentations, publications and patent applications. These reports are available through http://www.osti.gov, the DOE Energy Link System.

  4. Conducting polymer nanostructures for photocatalysis under visible light

    NASA Astrophysics Data System (ADS)

    Ghosh, Srabanti; Kouamé, Natalie A.; Ramos, Laurence; Remita, Samy; Dazzi, Alexandre; Deniset-Besseau, Ariane; Beaunier, Patricia; Goubard, Fabrice; Aubert, Pierre-Henri; Remita, Hynd

    2015-05-01

    Visible-light-responsive photocatalysts can directly harvest energy from solar light, offering a desirable way to solve energy and environment issues. Here, we show that one-dimensional poly(diphenylbutadiyne) nanostructures synthesized by photopolymerization using a soft templating approach have high photocatalytic activity under visible light without the assistance of sacrificial reagents or precious metal co-catalysts. These polymer nanostructures are very stable even after repeated cycling. Transmission electron microscopy and nanoscale infrared characterizations reveal that the morphology and structure of the polymer nanostructures remain unchanged after many photocatalytic cycles. These stable and cheap polymer nanofibres are easy to process and can be reused without appreciable loss of activity. Our findings may help the development of semiconducting-based polymers for applications in self-cleaning surfaces, hydrogen generation and photovoltaics.

  5. Redox-active charge carriers of conducting polymers as a tuner of conductivity and its potential window.

    PubMed

    Park, Han-Saem; Ko, Seo-Jin; Park, Jeong-Seok; Kim, Jin Young; Song, Hyun-Kon

    2013-01-01

    Electric conductivity of conducting polymers has been steadily enhanced towards a level worthy of being called its alias, "synthetic metal". PEDOT:PSS (poly(3,4-ethylenedioxythiophene) doped with poly(styrene sulfonate)), as a representative conducting polymer, recently reached around 3,000 S cm(-1), the value to open the possibility to replace transparent conductive oxides. The leading strategy to drive the conductivity increase is solvent annealing in which aqueous solution of PEDOT:PSS is treated with an assistant solvent such as DMSO (dimethyl sulfoxide). In addition to the conductivity enhancement, we found that the potential range in which PEDOT:PSS is conductive is tuned wider into a negative potential direction by the DMSO-annealing. Also, the increase in a redox-active fraction of charge carriers is proposed to be responsible for the enhancement of conductivity in the solvent annealing process. PMID:23949091

  6. Redox-active charge carriers of conducting polymers as a tuner of conductivity and its potential window

    PubMed Central

    Park, Han-Saem; Ko, Seo-Jin; Park, Jeong-Seok; Kim, Jin Young; Song, Hyun-Kon

    2013-01-01

    Electric conductivity of conducting polymers has been steadily enhanced towards a level worthy of being called its alias, “synthetic metal”. PEDOT:PSS (poly(3,4-ethylenedioxythiophene) doped with poly(styrene sulfonate)), as a representative conducting polymer, recently reached around 3,000 S cm−1, the value to open the possibility to replace transparent conductive oxides. The leading strategy to drive the conductivity increase is solvent annealing in which aqueous solution of PEDOT:PSS is treated with an assistant solvent such as DMSO (dimethyl sulfoxide). In addition to the conductivity enhancement, we found that the potential range in which PEDOT:PSS is conductive is tuned wider into a negative potential direction by the DMSO-annealing. Also, the increase in a redox-active fraction of charge carriers is proposed to be responsible for the enhancement of conductivity in the solvent annealing process. PMID:23949091

  7. Cross-linking of Ordered Pluronic/Ionic Liquid Blends for Solid Polymer Electrolytes

    NASA Astrophysics Data System (ADS)

    Miranda, Daniel; Versek, Craig; Tuominen, Mark; Watkins, James; Russell, Thomas

    2012-02-01

    Ion gels were fabricated by cross-linking PPO-PEO-PPO triblock copolymers swollen in a room temperature ionic liquid (IL). The copolymers are modified by esterification to replace the terminal hydroxyl endgroups with methacrylate endgroups. This allows the copolymer/IL blends to be cross-linked by a UV cure, forming a gel. The strong interaction of the IL with the PEO block suppresses PEO crystallization which is necessary for good ion conduction. In addition, the interaction between the IL and PEO is strongly selective for PEO, strengthening microphase separation. Despite this, the low molecular weight copolymers remain disordered in the melt even when blended with the IL. However, high molecular weight copolymers are capable of microphase separating into highly ordered block copolymer morphologies. This difference allows the effect of microphase separation on ion transport to be studied. The effect of block copolymer composition is also studied, by varying the PEO fraction of the copolymer. The resultant gels show high ionic conductivity and solid-like behavior, indicating that these materials may be effective as solid polymer electrolytes.

  8. Degradability of an Acrylate-Linked, Fluorotelomer Polymer in Soil

    EPA Science Inventory

    Fluorotelomer polymers are used in a broad array of products in modern societies worldwide and, if they degrade at significant rates, potentially are a significant source of perfluorooctanoic acid (PFOA) and related compounds to the environment. To evaluate this possibility, we i...

  9. Conductive polymers derived from iron, ruthenium, and osmium metalloporphyrins: The shish-kebab approach

    PubMed Central

    Collman, James P.; McDevitt, John T.; Yee, Gordon T.; Leidner, Charles R.; McCullough, Laughlin G.; Little, William A.; Torrance, Jerry B.

    1986-01-01

    The synthesis and characterization of pyrazine-bridged polymers of iron(II/III), ruthenium(II/III), and osmium(II/III) octaethylporphyrin (dubbed “shish-kebab” polymers) are presented. Optical and dc conductivity measurements reveal that the ruthenium and osmium polymers, when partially oxidized, are highly conductive. Electrochemical and ESR results are presented that indicate the existence of an interesting metal-centered conduction pathway. Unlike most of the previously reported porphyrinic molecular metals in which the conduction electrons are macrocyclic-based, electron transport in these materials proceeds exclusively along the metal-pyrazine backbone. PMID:16593717

  10. Methods of enhancing conductivity of a polymer-ceramic composite electrolyte

    NASA Technical Reports Server (NTRS)

    Kumar, Binod (Inventor)

    2003-01-01

    Methods for enhancing conductivity of polymer-ceramic composite electrolytes are provided which include forming a polymer-ceramic composite electrolyte film by a melt casting technique and uniaxially stretching the film from about 5 to 15% in length. The polymer-ceramic composite electrolyte is also preferably annealed after stretching such that it has a room temperature conductivity of from 10.sup.-4 S cm.sup.-1 to 10.sup.-3 S cm.sup.-1. The polymer-ceramic composite electrolyte formed by the methods of the present invention may be used in lithium rechargeable batteries.