Science.gov

Sample records for linked fault tree

  1. Fault tree handbook

    SciTech Connect

    Haasl, D.F.; Roberts, N.H.; Vesely, W.E.; Goldberg, F.F.

    1981-01-01

    This handbook describes a methodology for reliability analysis of complex systems such as those which comprise the engineered safety features of nuclear power generating stations. After an initial overview of the available system analysis approaches, the handbook focuses on a description of the deductive method known as fault tree analysis. The following aspects of fault tree analysis are covered: basic concepts for fault tree analysis; basic elements of a fault tree; fault tree construction; probability, statistics, and Boolean algebra for the fault tree analyst; qualitative and quantitative fault tree evaluation techniques; and computer codes for fault tree evaluation. Also discussed are several example problems illustrating the basic concepts of fault tree construction and evaluation.

  2. The fault-tree compiler

    NASA Technical Reports Server (NTRS)

    Martensen, Anna L.; Butler, Ricky W.

    1987-01-01

    The Fault Tree Compiler Program is a new reliability tool used to predict the top event probability for a fault tree. Five different gate types are allowed in the fault tree: AND, OR, EXCLUSIVE OR, INVERT, and M OF N gates. The high level input language is easy to understand and use when describing the system tree. In addition, the use of the hierarchical fault tree capability can simplify the tree description and decrease program execution time. The current solution technique provides an answer precise (within the limits of double precision floating point arithmetic) to the five digits in the answer. The user may vary one failure rate or failure probability over a range of values and plot the results for sensitivity analyses. The solution technique is implemented in FORTRAN; the remaining program code is implemented in Pascal. The program is written to run on a Digital Corporation VAX with the VMS operation system.

  3. Fault Tree Analysis: A Bibliography

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Fault tree analysis is a top-down approach to the identification of process hazards. It is as one of the best methods for systematically identifying an graphically displaying the many ways some things can go wrong. This bibliography references 266 documents in the NASA STI Database that contain the major concepts. fault tree analysis, risk an probability theory, in the basic index or major subject terms. An abstract is included with most citations, followed by the applicable subject terms.

  4. Tutorial: Advanced fault tree applications using HARP

    NASA Technical Reports Server (NTRS)

    Dugan, Joanne Bechta; Bavuso, Salvatore J.; Boyd, Mark A.

    1993-01-01

    Reliability analysis of fault tolerant computer systems for critical applications is complicated by several factors. These modeling difficulties are discussed and dynamic fault tree modeling techniques for handling them are described and demonstrated. Several advanced fault tolerant computer systems are described, and fault tree models for their analysis are presented. HARP (Hybrid Automated Reliability Predictor) is a software package developed at Duke University and NASA Langley Research Center that is capable of solving the fault tree models presented.

  5. Reconfigurable tree architectures using subtree oriented fault tolerance

    NASA Technical Reports Server (NTRS)

    Lowrie, Matthew B.

    1987-01-01

    An approach to the design of reconfigurable tree architecture is presented in which spare processors are allocated at the leaves. The approach is unique in that spares are associated with subtrees and sharing of spares between these subtrees can occur. The Subtree Oriented Fault Tolerance (SOFT) approach is more reliable than previous approaches capable of tolerating link and switch failures for both single chip and multichip tree implementations while reducing redundancy in terms of both spare processors and links. VLSI layout is 0(n) for binary trees and is directly extensible to N-ary trees and fault tolerance through performance degradation.

  6. Reliability computation using fault tree analysis

    NASA Technical Reports Server (NTRS)

    Chelson, P. O.

    1971-01-01

    A method is presented for calculating event probabilities from an arbitrary fault tree. The method includes an analytical derivation of the system equation and is not a simulation program. The method can handle systems that incorporate standby redundancy and it uses conditional probabilities for computing fault trees where the same basic failure appears in more than one fault path.

  7. Fault trees and imperfect coverage

    NASA Technical Reports Server (NTRS)

    Dugan, Joanne B.

    1989-01-01

    A new algorithm is presented for solving the fault tree. The algorithm includes the dynamic behavior of the fault/error handling model but obviates the need for the Markov chain solution. As the state space is expanded in a breadth-first search (the same is done in the conversion to a Markov chain), the state's contribution to each future state is calculated exactly. A dynamic state truncation technique is also presented; it produces bounds on the unreliability of the system by considering only part of the state space. Since the model is solved as the state space is generated, the process can be stopped as soon as the desired accuracy is reached.

  8. Two Trees: Migrating Fault Trees to Decision Trees for Real Time Fault Detection on International Space Station

    NASA Technical Reports Server (NTRS)

    Lee, Charles; Alena, Richard L.; Robinson, Peter

    2004-01-01

    We started from ISS fault trees example to migrate to decision trees, presented a method to convert fault trees to decision trees. The method shows that the visualizations of root cause of fault are easier and the tree manipulating becomes more programmatic via available decision tree programs. The visualization of decision trees for the diagnostic shows a format of straight forward and easy understands. For ISS real time fault diagnostic, the status of the systems could be shown by mining the signals through the trees and see where it stops at. The other advantage to use decision trees is that the trees can learn the fault patterns and predict the future fault from the historic data. The learning is not only on the static data sets but also can be online, through accumulating the real time data sets, the decision trees can gain and store faults patterns in the trees and recognize them when they come.

  9. Fault tree models for fault tolerant hypercube multiprocessors

    NASA Technical Reports Server (NTRS)

    Boyd, Mark A.; Tuazon, Jezus O.

    1991-01-01

    Three candidate fault tolerant hypercube architectures are modeled, their reliability analyses are compared, and the resulting implications of these methods of incorporating fault tolerance into hypercube multiprocessors are discussed. In the course of performing the reliability analyses, the use of HARP and fault trees in modeling sequence dependent system behaviors is demonstrated.

  10. Practical application of fault tree analysis

    SciTech Connect

    Prugh, R.W.

    1980-01-01

    A detailed survey of standard and novel approaches to Fault Tree construction, based on recent developments at Du Pont, covers the effect-to-cause procedure for control systems as in process plants; the effect-to-cause procedure for processes; source-of-hazard analysis, as in pressure vessel rupture; use of the ''fire triangle'' in a Fault Tree; critical combinations of safeguard failures; action points for automatic or operator control of a process; situations involving hazardous reactant ratios; failure-initiating and failure-enabling events and intervention by the operator; ''daisy-chain'' hazards, e.g., in batch processes and ship accidents; combining batch and continuous operations in a Fault Tree; possible future structure-development procedures for fault-tree construction; and the use of quantitative results (calculated frequencies of Top-Event occurrence) to restructure the Fault Tree after improving the process to any acceptable risk level.

  11. Microcomputer applications of, and modifications to, the modular fault trees

    SciTech Connect

    Zimmerman, T.L.; Graves, N.L.; Payne, A.C. Jr.; Whitehead, D.W.

    1994-10-01

    The LaSalle Probabilistic Risk Assessment was the first major application of the modular logic fault trees after the IREP program. In the process of performing the analysis, many errors were discovered in the fault tree modules that led to difficulties in combining the modules to form the final system fault trees. These errors are corrected in the revised modules listed in this report. In addition, the application of the modules in terms of editing them and forming them into the system fault trees was inefficient. Originally, the editing had to be done line by line and no error checking was performed by the computer. This led to many typos and other logic errors in the construction of the modular fault tree files. Two programs were written to help alleviate this problem: (1) MODEDIT - This program allows an operator to retrieve a file for editing, edit the file for the plant specific application, perform some general error checking while the file is being modified, and store the file for later use, and (2) INDEX - This program checks that the modules that are supposed to form one fault tree all link up appropriately before the files are,loaded onto the mainframe computer. Lastly, the modules were not designed for relay type logic common in BWR designs but for solid state type logic. Some additional modules were defined for modeling relay logic, and an explanation and example of their use are included in this report.

  12. Reset tree-based optical fault detection.

    PubMed

    Lee, Dong-Geon; Choi, Dooho; Seo, Jungtaek; Kim, Howon

    2013-01-01

    In this paper, we present a new reset tree-based scheme to protect cryptographic hardware against optical fault injection attacks. As one of the most powerful invasive attacks on cryptographic hardware, optical fault attacks cause semiconductors to misbehave by injecting high-energy light into a decapped integrated circuit. The contaminated result from the affected chip is then used to reveal secret information, such as a key, from the cryptographic hardware. Since the advent of such attacks, various countermeasures have been proposed. Although most of these countermeasures are strong, there is still the possibility of attack. In this paper, we present a novel optical fault detection scheme that utilizes the buffers on a circuit's reset signal tree as a fault detection sensor. To evaluate our proposal, we model radiation-induced currents into circuit components and perform a SPICE simulation. The proposed scheme is expected to be used as a supplemental security tool. PMID:23698267

  13. Reset Tree-Based Optical Fault Detection

    PubMed Central

    Lee, Dong-Geon; Choi, Dooho; Seo, Jungtaek; Kim, Howon

    2013-01-01

    In this paper, we present a new reset tree-based scheme to protect cryptographic hardware against optical fault injection attacks. As one of the most powerful invasive attacks on cryptographic hardware, optical fault attacks cause semiconductors to misbehave by injecting high-energy light into a decapped integrated circuit. The contaminated result from the affected chip is then used to reveal secret information, such as a key, from the cryptographic hardware. Since the advent of such attacks, various countermeasures have been proposed. Although most of these countermeasures are strong, there is still the possibility of attack. In this paper, we present a novel optical fault detection scheme that utilizes the buffers on a circuit's reset signal tree as a fault detection sensor. To evaluate our proposal, we model radiation-induced currents into circuit components and perform a SPICE simulation. The proposed scheme is expected to be used as a supplemental security tool. PMID:23698267

  14. Automatic translation of digraph to fault-tree models

    NASA Technical Reports Server (NTRS)

    Iverson, David L.

    1992-01-01

    The author presents a technique for converting digraph models, including those models containing cycles, to a fault-tree format. A computer program which automatically performs this translation using an object-oriented representation of the models has been developed. The fault-trees resulting from translations can be used for fault-tree analysis and diagnosis. Programs to calculate fault-tree and digraph cut sets and perform diagnosis with fault-tree models have also been developed. The digraph to fault-tree translation system has been successfully tested on several digraphs of varying size and complexity. Details of some representative translation problems are presented. Most of the computation performed by the program is dedicated to finding minimal cut sets for digraph nodes in order to break cycles in the digraph. Fault-trees produced by the translator have been successfully used with NASA's Fault-Tree Diagnosis System (FTDS) to produce automated diagnostic systems.

  15. A dynamic fault tree model of a propulsion system

    NASA Technical Reports Server (NTRS)

    Xu, Hong; Dugan, Joanne Bechta; Meshkat, Leila

    2006-01-01

    We present a dynamic fault tree model of the benchmark propulsion system, and solve it using Galileo. Dynamic fault trees (DFT) extend traditional static fault trees with special gates to model spares and other sequence dependencies. Galileo solves DFT models using a judicious combination of automatically generated Markov and Binary Decision Diagram models. Galileo easily handles the complexities exhibited by the benchmark problem. In particular, Galileo is designed to model phased mission systems.

  16. Fault Tree in the Trenches, A Success Story

    NASA Technical Reports Server (NTRS)

    Long, R. Allen; Goodson, Amanda (Technical Monitor)

    2000-01-01

    Getting caught up in the explanation of Fault Tree Analysis (FTA) minutiae is easy. In fact, most FTA literature tends to address FTA concepts and methodology. Yet there seems to be few articles addressing actual design changes resulting from the successful application of fault tree analysis. This paper demonstrates how fault tree analysis was used to identify and solve a potentially catastrophic mechanical problem at a rocket motor manufacturer. While developing the fault tree given in this example, the analyst was told by several organizations that the piece of equipment in question had been evaluated by several committees and organizations, and that the analyst was wasting his time. The fault tree/cutset analysis resulted in a joint-redesign of the control system by the tool engineering group and the fault tree analyst, as well as bragging rights for the analyst. (That the fault tree found problems where other engineering reviews had failed was not lost on the other engineering groups.) Even more interesting was that this was the analyst's first fault tree which further demonstrates how effective fault tree analysis can be in guiding (i.e., forcing) the analyst to take a methodical approach in evaluating complex systems.

  17. Technology transfer by means of fault tree synthesis

    NASA Astrophysics Data System (ADS)

    Batzias, Dimitris F.

    2012-12-01

    Since Fault Tree Analysis (FTA) attempts to model and analyze failure processes of engineering, it forms a common technique for good industrial practice. On the contrary, fault tree synthesis (FTS) refers to the methodology of constructing complex trees either from dentritic modules built ad hoc or from fault tress already used and stored in a Knowledge Base. In both cases, technology transfer takes place in a quasi-inductive mode, from partial to holistic knowledge. In this work, an algorithmic procedure, including 9 activity steps and 3 decision nodes is developed for performing effectively this transfer when the fault under investigation occurs within one of the latter stages of an industrial procedure with several stages in series. The main parts of the algorithmic procedure are: (i) the construction of a local fault tree within the corresponding production stage, where the fault has been detected, (ii) the formation of an interface made of input faults that might occur upstream, (iii) the fuzzy (to count for uncertainty) multicriteria ranking of these faults according to their significance, and (iv) the synthesis of an extended fault tree based on the construction of part (i) and on the local fault tree of the first-ranked fault in part (iii). An implementation is presented, referring to 'uneven sealing of Al anodic film', thus proving the functionality of the developed methodology.

  18. Fault Tree, Event Tree, and Piping and Instrumentation Diagram (FEP) editors, Version 4. 0

    SciTech Connect

    McKay, M.K.; Skinner, N.L.; Wood, S.T. )

    1992-05-01

    The Fault Tree, Event Tree, and Piping Instrumentation Diagram (FEP) editors allow the user to graphically build and edit fault trees, event trees, and piping instrumentation diagrams (P IDs). The software is designed to enable the use of graphical-based editors found in the Integrated Reliability and Risk Assessment System (IRRAS). FEP is made up of three separate editors (Fault Tree, Event Tree, and Piping Instrumentation Diagram) and a utility module. This reference manual provides a screen-by-screen walkthrough of the entire FEP System.

  19. The Fault Tree Compiler (FTC): Program and mathematics

    NASA Technical Reports Server (NTRS)

    Butler, Ricky W.; Martensen, Anna L.

    1989-01-01

    The Fault Tree Compiler Program is a new reliability tool used to predict the top-event probability for a fault tree. Five different gate types are allowed in the fault tree: AND, OR, EXCLUSIVE OR, INVERT, AND m OF n gates. The high-level input language is easy to understand and use when describing the system tree. In addition, the use of the hierarchical fault tree capability can simplify the tree description and decrease program execution time. The current solution technique provides an answer precisely (within the limits of double precision floating point arithmetic) within a user specified number of digits accuracy. The user may vary one failure rate or failure probability over a range of values and plot the results for sensitivity analyses. The solution technique is implemented in FORTRAN; the remaining program code is implemented in Pascal. The program is written to run on a Digital Equipment Corporation (DEC) VAX computer with the VMS operation system.

  20. [The Application of the Fault Tree Analysis Method in Medical Equipment Maintenance].

    PubMed

    Liu, Hongbin

    2015-11-01

    In this paper, the traditional fault tree analysis method is presented, detailed instructions for its application characteristics in medical instrument maintenance is made. It is made significant changes when the traditional fault tree analysis method is introduced into the medical instrument maintenance: gave up the logic symbolic, logic analysis and calculation, gave up its complicated programs, and only keep its image and practical fault tree diagram, and the fault tree diagram there are also differences: the fault tree is no longer a logical tree but the thinking tree in troubleshooting, the definition of the fault tree's nodes is different, the composition of the fault tree's branches is also different. PMID:27066693

  1. Software For Fault-Tree Diagnosis Of A System

    NASA Technical Reports Server (NTRS)

    Iverson, Dave; Patterson-Hine, Ann; Liao, Jack

    1993-01-01

    Fault Tree Diagnosis System (FTDS) computer program is automated-diagnostic-system program identifying likely causes of specified failure on basis of information represented in system-reliability mathematical models known as fault trees. Is modified implementation of failure-cause-identification phase of Narayanan's and Viswanadham's methodology for acquisition of knowledge and reasoning in analyzing failures of systems. Knowledge base of if/then rules replaced with object-oriented fault-tree representation. Enhancement yields more-efficient identification of causes of failures and enables dynamic updating of knowledge base. Written in C language, C++, and Common LISP.

  2. Object-oriented fault tree evaluation program for quantitative analyses

    NASA Technical Reports Server (NTRS)

    Patterson-Hine, F. A.; Koen, B. V.

    1988-01-01

    Object-oriented programming can be combined with fault free techniques to give a significantly improved environment for evaluating the safety and reliability of large complex systems for space missions. Deep knowledge about system components and interactions, available from reliability studies and other sources, can be described using objects that make up a knowledge base. This knowledge base can be interrogated throughout the design process, during system testing, and during operation, and can be easily modified to reflect design changes in order to maintain a consistent information source. An object-oriented environment for reliability assessment has been developed on a Texas Instrument (TI) Explorer LISP workstation. The program, which directly evaluates system fault trees, utilizes the object-oriented extension to LISP called Flavors that is available on the Explorer. The object representation of a fault tree facilitates the storage and retrieval of information associated with each event in the tree, including tree structural information and intermediate results obtained during the tree reduction process. Reliability data associated with each basic event are stored in the fault tree objects. The object-oriented environment on the Explorer also includes a graphical tree editor which was modified to display and edit the fault trees.

  3. Fault Tree Reliability Analysis and Design-for-reliability

    Energy Science and Technology Software Center (ESTSC)

    1998-05-05

    WinR provides a fault tree analysis capability for performing systems reliability and design-for-reliability analyses. The package includes capabilities for sensitivity and uncertainity analysis, field failure data analysis, and optimization.

  4. Fault Tree Analysis Application for Safety and Reliability

    NASA Technical Reports Server (NTRS)

    Wallace, Dolores R.

    2003-01-01

    Many commercial software tools exist for fault tree analysis (FTA), an accepted method for mitigating risk in systems. The method embedded in the tools identifies a root as use in system components, but when software is identified as a root cause, it does not build trees into the software component. No commercial software tools have been built specifically for development and analysis of software fault trees. Research indicates that the methods of FTA could be applied to software, but the method is not practical without automated tool support. With appropriate automated tool support, software fault tree analysis (SFTA) may be a practical technique for identifying the underlying cause of software faults that may lead to critical system failures. We strive to demonstrate that existing commercial tools for FTA can be adapted for use with SFTA, and that applied to a safety-critical system, SFTA can be used to identify serious potential problems long before integrator and system testing.

  5. Interim reliability evaluation program, Browns Ferry fault trees

    SciTech Connect

    Stewart, M.E.

    1981-01-01

    An abbreviated fault tree method is used to evaluate and model Browns Ferry systems in the Interim Reliability Evaluation programs, simplifying the recording and displaying of events, yet maintaining the system of identifying faults. The level of investigation is not changed. The analytical thought process inherent in the conventional method is not compromised. But the abbreviated method takes less time, and the fault modes are much more visible.

  6. Object-Oriented Algorithm For Evaluation Of Fault Trees

    NASA Technical Reports Server (NTRS)

    Patterson-Hine, F. A.; Koen, B. V.

    1992-01-01

    Algorithm for direct evaluation of fault trees incorporates techniques of object-oriented programming. Reduces number of calls needed to solve trees with repeated events. Provides significantly improved software environment for such computations as quantitative analyses of safety and reliability of complicated systems of equipment (e.g., spacecraft or factories).

  7. Accident Fault Trees for Defense Waste Processing Facility

    SciTech Connect

    Sarrack, A.G.

    1999-06-22

    The purpose of this report is to document fault tree analyses which have been completed for the Defense Waste Processing Facility (DWPF) safety analysis. Logic models for equipment failures and human error combinations that could lead to flammable gas explosions in various process tanks, or failure of critical support systems were developed for internal initiating events and for earthquakes. These fault trees provide frequency estimates for support systems failures and accidents that could lead to radioactive and hazardous chemical releases both on-site and off-site. Top event frequency results from these fault trees will be used in further APET analyses to calculate accident risk associated with DWPF facility operations. This report lists and explains important underlying assumptions, provides references for failure data sources, and briefly describes the fault tree method used. Specific commitments from DWPF to provide new procedural/administrative controls or system design changes are listed in the ''Facility Commitments'' section. The purpose of the ''Assumptions'' section is to clarify the basis for fault tree modeling, and is not necessarily a list of items required to be protected by Technical Safety Requirements (TSRs).

  8. Object-oriented fault tree models applied to system diagnosis

    NASA Technical Reports Server (NTRS)

    Iverson, David L.; Patterson-Hine, F. A.

    1990-01-01

    When a diagnosis system is used in a dynamic environment, such as the distributed computer system planned for use on Space Station Freedom, it must execute quickly and its knowledge base must be easily updated. Representing system knowledge as object-oriented augmented fault trees provides both features. The diagnosis system described here is based on the failure cause identification process of the diagnostic system described by Narayanan and Viswanadham. Their system has been enhanced in this implementation by replacing the knowledge base of if-then rules with an object-oriented fault tree representation. This allows the system to perform its task much faster and facilitates dynamic updating of the knowledge base in a changing diagnosis environment. Accessing the information contained in the objects is more efficient than performing a lookup operation on an indexed rule base. Additionally, the object-oriented fault trees can be easily updated to represent current system status. This paper describes the fault tree representation, the diagnosis algorithm extensions, and an example application of this system. Comparisons are made between the object-oriented fault tree knowledge structure solution and one implementation of a rule-based solution. Plans for future work on this system are also discussed.

  9. A Fault Tree Approach to Needs Assessment -- An Overview.

    ERIC Educational Resources Information Center

    Stephens, Kent G.

    A "failsafe" technology is presented based on a new unified theory of needs assessment. Basically the paper discusses fault tree analysis as a technique for enhancing the probability of success in any system by analyzing the most likely modes of failure that could occur and then suggesting high priority avoidance strategies for those failure…

  10. A Fault Tree Approach to Analysis of Organizational Communication Systems.

    ERIC Educational Resources Information Center

    Witkin, Belle Ruth; Stephens, Kent G.

    Fault Tree Analysis (FTA) is a method of examing communication in an organization by focusing on: (1) the complex interrelationships in human systems, particularly in communication systems; (2) interactions across subsystems and system boundaries; and (3) the need to select and "prioritize" channels which will eliminate noise in the system and…

  11. An overview of the phase-modular fault tree approach to phased mission system analysis

    NASA Technical Reports Server (NTRS)

    Meshkat, L.; Xing, L.; Donohue, S. K.; Ou, Y.

    2003-01-01

    We look at how fault tree analysis (FTA), a primary means of performing reliability analysis of PMS, can meet this challenge in this paper by presenting an overview of the modular approach to solving fault trees that represent PMS.

  12. Fault Tree, Event Tree, and Piping and Instrumentation Diagram (FEP) editors, Version 4.0. Reference manual

    SciTech Connect

    McKay, M.K.; Skinner, N.L.; Wood, S.T.

    1992-05-01

    The Fault Tree, Event Tree, and Piping & Instrumentation Diagram (FEP) editors allow the user to graphically build and edit fault trees, event trees, and piping & instrumentation diagrams (P & IDs). The software is designed to enable the use of graphical-based editors found in the Integrated Reliability and Risk Assessment System (IRRAS). FEP is made up of three separate editors (Fault Tree, Event Tree, and Piping & Instrumentation Diagram) and a utility module. This reference manual provides a screen-by-screen walkthrough of the entire FEP System.

  13. A diagnosis system using object-oriented fault tree models

    NASA Technical Reports Server (NTRS)

    Iverson, David L.; Patterson-Hine, F. A.

    1990-01-01

    Spaceborne computing systems must provide reliable, continuous operation for extended periods. Due to weight, power, and volume constraints, these systems must manage resources very effectively. A fault diagnosis algorithm is described which enables fast and flexible diagnoses in the dynamic distributed computing environments planned for future space missions. The algorithm uses a knowledge base that is easily changed and updated to reflect current system status. Augmented fault trees represented in an object-oriented form provide deep system knowledge that is easy to access and revise as a system changes. Given such a fault tree, a set of failure events that have occurred, and a set of failure events that have not occurred, this diagnosis system uses forward and backward chaining to propagate causal and temporal information about other failure events in the system being diagnosed. Once the system has established temporal and causal constraints, it reasons backward from heuristically selected failure events to find a set of basic failure events which are a likely cause of the occurrence of the top failure event in the fault tree. The diagnosis system has been implemented in common LISP using Flavors.

  14. An empirical evaluation of Bayesian networks derived from fault trees

    NASA Astrophysics Data System (ADS)

    Strasser, Shane; Sheppard, John

    Fault Isolation Manuals (FIMs) are derived from a type of decision tree and play an important role in maintenance troubleshooting of large systems. However, there are some drawbacks to using decision trees for maintenance, such as requiring a static order of tests to reach a conclusion. One method to overcome these limitations is by converting FIMs to Bayesian networks. However, it has been shown that Bayesian networks derived from FIMs will not contain the entire set of fault and alarm relationships present in the system from which the FIM was developed. In this paper we analyze Bayesian networks that have been derived from FIMs and report on several measurements, such as accuracy, relative probability of target diagnoses, diagnosis rank, and KL-divergence. Based on our results, we found that even with incomplete information, the Bayesian networks derived from the FIMs were still able to perform reasonably well.

  15. Hydrologic Network Fault Trees Help Understand Patterns of Water Contamination

    NASA Astrophysics Data System (ADS)

    Teklitz, A.; Shuster, W.; Yeghiazarian, L.

    2014-12-01

    Surface waters are used for recreation, food supply, habitat, drinking water supply, and a variety of other ecological services that can be interrupted by water contamination. The stochastic nature of environmental systems makes the evaluation of reliability of these services necessary; however this is a major challenge due to system complexity and tool availability. We address this issue through adoption of fault-tree risk diagrams that have been used in Civil Engineering to conceptualize, analyze, and visualize complex and interconnected system behavior. A fault tree risk diagram is able to represent the connective geometry of the system, and to identify its possible failure modes. Environmental systems, like their engineered counterparts, are complex, interconnected, and have multiple system failure modes which include unsafe levels of contaminants in surface water. We have developed a Monte-Carlo procedure to obtain a fault tree risk diagram of the stream river network, and to perform system reliability evaluation. This study aims to allow for a more holistic watershed management by incorporating risk concepts with the geometric connectivity of a stream network. It aims to answer questions like "what are the areas in a watershed that increase the likelihood of overall water contamination?", "what is the spatial and temporal distribution of probability of exceeding contaminant standards in the entire watershed?", "which combination of individual sources will increase this probability?", and "which areas of the watershed would be most sensitive to implementation of management measures".

  16. Modular techniques for dynamic fault-tree analysis

    NASA Technical Reports Server (NTRS)

    Patterson-Hine, F. A.; Dugan, Joanne B.

    1992-01-01

    It is noted that current approaches used to assess the dependability of complex systems such as Space Station Freedom and the Air Traffic Control System are incapable of handling the size and complexity of these highly integrated designs. A novel technique for modeling such systems which is built upon current techniques in Markov theory and combinatorial analysis is described. It enables the development of a hierarchical representation of system behavior which is more flexible than either technique alone. A solution strategy which is based on an object-oriented approach to model representation and evaluation is discussed. The technique is virtually transparent to the user since the fault tree models can be built graphically and the objects defined automatically. The tree modularization procedure allows the two model types, Markov and combinatoric, to coexist and does not require that the entire fault tree be translated to a Markov chain for evaluation. This effectively reduces the size of the Markov chain required and enables solutions with less truncation, making analysis of longer mission times possible. Using the fault-tolerant parallel processor as an example, a model is built and solved for a specific mission scenario and the solution approach is illustrated in detail.

  17. FTC - THE FAULT-TREE COMPILER (VAX VMS VERSION)

    NASA Technical Reports Server (NTRS)

    Butler, R. W.

    1994-01-01

    FTC, the Fault-Tree Compiler program, is a tool used to calculate the top-event probability for a fault-tree. Five different gate types are allowed in the fault tree: AND, OR, EXCLUSIVE OR, INVERT, and M OF N. The high-level input language is easy to understand and use. In addition, the program supports a hierarchical fault tree definition feature which simplifies the tree-description process and reduces execution time. A rigorous error bound is derived for the solution technique. This bound enables the program to supply an answer precisely (within the limits of double precision floating point arithmetic) at a user-specified number of digits accuracy. The program also facilitates sensitivity analysis with respect to any specified parameter of the fault tree such as a component failure rate or a specific event probability by allowing the user to vary one failure rate or the failure probability over a range of values and plot the results. The mathematical approach chosen to solve a reliability problem may vary with the size and nature of the problem. Although different solution techniques are utilized on different programs, it is possible to have a common input language. The Systems Validation Methods group at NASA Langley Research Center has created a set of programs that form the basis for a reliability analysis workstation. The set of programs are: SURE reliability analysis program (COSMIC program LAR-13789, LAR-14921); the ASSIST specification interface program (LAR-14193, LAR-14923), PAWS/STEM reliability analysis programs (LAR-14165, LAR-14920); and the FTC fault tree tool (LAR-14586, LAR-14922). FTC is used to calculate the top-event probability for a fault tree. PAWS/STEM and SURE are programs which interpret the same SURE language, but utilize different solution methods. ASSIST is a preprocessor that generates SURE language from a more abstract definition. SURE, ASSIST, and PAWS/STEM are also offered as a bundle. Please see the abstract for COS-10039/COS

  18. FTC - THE FAULT-TREE COMPILER (SUN VERSION)

    NASA Technical Reports Server (NTRS)

    Butler, R. W.

    1994-01-01

    FTC, the Fault-Tree Compiler program, is a tool used to calculate the top-event probability for a fault-tree. Five different gate types are allowed in the fault tree: AND, OR, EXCLUSIVE OR, INVERT, and M OF N. The high-level input language is easy to understand and use. In addition, the program supports a hierarchical fault tree definition feature which simplifies the tree-description process and reduces execution time. A rigorous error bound is derived for the solution technique. This bound enables the program to supply an answer precisely (within the limits of double precision floating point arithmetic) at a user-specified number of digits accuracy. The program also facilitates sensitivity analysis with respect to any specified parameter of the fault tree such as a component failure rate or a specific event probability by allowing the user to vary one failure rate or the failure probability over a range of values and plot the results. The mathematical approach chosen to solve a reliability problem may vary with the size and nature of the problem. Although different solution techniques are utilized on different programs, it is possible to have a common input language. The Systems Validation Methods group at NASA Langley Research Center has created a set of programs that form the basis for a reliability analysis workstation. The set of programs are: SURE reliability analysis program (COSMIC program LAR-13789, LAR-14921); the ASSIST specification interface program (LAR-14193, LAR-14923), PAWS/STEM reliability analysis programs (LAR-14165, LAR-14920); and the FTC fault tree tool (LAR-14586, LAR-14922). FTC is used to calculate the top-event probability for a fault tree. PAWS/STEM and SURE are programs which interpret the same SURE language, but utilize different solution methods. ASSIST is a preprocessor that generates SURE language from a more abstract definition. SURE, ASSIST, and PAWS/STEM are also offered as a bundle. Please see the abstract for COS-10039/COS

  19. DG TO FT - AUTOMATIC TRANSLATION OF DIGRAPH TO FAULT TREE MODELS

    NASA Technical Reports Server (NTRS)

    Iverson, D. L.

    1994-01-01

    Fault tree and digraph models are frequently used for system failure analysis. Both types of models represent a failure space view of the system using AND and OR nodes in a directed graph structure. Each model has its advantages. While digraphs can be derived in a fairly straightforward manner from system schematics and knowledge about component failure modes and system design, fault tree structure allows for fast processing using efficient techniques developed for tree data structures. The similarities between digraphs and fault trees permits the information encoded in the digraph to be translated into a logically equivalent fault tree. The DG TO FT translation tool will automatically translate digraph models, including those with loops or cycles, into fault tree models that have the same minimum cut set solutions as the input digraph. This tool could be useful, for example, if some parts of a system have been modeled using digraphs and others using fault trees. The digraphs could be translated and incorporated into the fault trees, allowing them to be analyzed using a number of powerful fault tree processing codes, such as cut set and quantitative solution codes. A cut set for a given node is a group of failure events that will cause the failure of the node. A minimum cut set for a node is any cut set that, if any of the failures in the set were to be removed, the occurrence of the other failures in the set will not cause the failure of the event represented by the node. Cut sets calculations can be used to find dependencies, weak links, and vital system components whose failures would cause serious systems failure. The DG TO FT translation system reads in a digraph with each node listed as a separate object in the input file. The user specifies a terminal node for the digraph that will be used as the top node of the resulting fault tree. A fault tree basic event node representing the failure of that digraph node is created and becomes a child of the terminal

  20. DG TO FT - AUTOMATIC TRANSLATION OF DIGRAPH TO FAULT TREE MODELS

    NASA Technical Reports Server (NTRS)

    Iverson, D. L.

    1994-01-01

    Fault tree and digraph models are frequently used for system failure analysis. Both types of models represent a failure space view of the system using AND and OR nodes in a directed graph structure. Each model has its advantages. While digraphs can be derived in a fairly straightforward manner from system schematics and knowledge about component failure modes and system design, fault tree structure allows for fast processing using efficient techniques developed for tree data structures. The similarities between digraphs and fault trees permits the information encoded in the digraph to be translated into a logically equivalent fault tree. The DG TO FT translation tool will automatically translate digraph models, including those with loops or cycles, into fault tree models that have the same minimum cut set solutions as the input digraph. This tool could be useful, for example, if some parts of a system have been modeled using digraphs and others using fault trees. The digraphs could be translated and incorporated into the fault trees, allowing them to be analyzed using a number of powerful fault tree processing codes, such as cut set and quantitative solution codes. A cut set for a given node is a group of failure events that will cause the failure of the node. A minimum cut set for a node is any cut set that, if any of the failures in the set were to be removed, the occurrence of the other failures in the set will not cause the failure of the event represented by the node. Cut sets calculations can be used to find dependencies, weak links, and vital system components whose failures would cause serious systems failure. The DG TO FT translation system reads in a digraph with each node listed as a separate object in the input file. The user specifies a terminal node for the digraph that will be used as the top node of the resulting fault tree. A fault tree basic event node representing the failure of that digraph node is created and becomes a child of the terminal

  1. Waste Management Fault Tree Data Bank (WM): 1992 status report

    SciTech Connect

    Baughman, D.F.; Hang, P.; Townsend, C.S.

    1993-08-30

    The Risk Assessment Methodology Group (RAM) of the Nuclear Process Safety Research Section (NPSR) maintains a compilation of incidents that have occurred in the Waste Management facilities. The Waste Management Fault Tree Data Bank (WM) contains more than 35,000 entries ranging from minor equipment malfunctions to incidents with significant potential for injury or contamination of personnel. This report documents the status of the WM data bank including: availability, training, source of data, search options, and usage, to which these data have been applied. Periodic updates to this memorandum are planned as additional data or applications are acquired.

  2. Fault Tree Analysis: An Operations Research Tool for Identifying and Reducing Undesired Events in Training.

    ERIC Educational Resources Information Center

    Barker, Bruce O.; Petersen, Paul D.

    This paper explores the fault-tree analysis approach to isolating failure modes within a system. Fault tree investigates potentially undesirable events and then looks for failures in sequence that would lead to their occurring. Relationships among these events are symbolized by AND or OR logic gates, AND used when single events must coexist to…

  3. Fault tree synthesis for software design analysis of PLC based safety-critical systems

    SciTech Connect

    Koo, S. R.; Cho, C. H.; Seong, P. H.

    2006-07-01

    As a software verification and validation should be performed for the development of PLC based safety-critical systems, a software safety analysis is also considered in line with entire software life cycle. In this paper, we propose a technique of software safety analysis in the design phase. Among various software hazard analysis techniques, fault tree analysis is most widely used for the safety analysis of nuclear power plant systems. Fault tree analysis also has the most intuitive notation and makes both qualitative and quantitative analyses possible. To analyze the design phase more effectively, we propose a technique of fault tree synthesis, along with a universal fault tree template for the architecture modules of nuclear software. Consequently, we can analyze the safety of software on the basis of fault tree synthesis. (authors)

  4. Enterprise architecture availability analysis using fault trees and stakeholder interviews

    NASA Astrophysics Data System (ADS)

    Närman, Per; Franke, Ulrik; König, Johan; Buschle, Markus; Ekstedt, Mathias

    2014-01-01

    The availability of enterprise information systems is a key concern for many organisations. This article describes a method for availability analysis based on Fault Tree Analysis and constructs from the ArchiMate enterprise architecture (EA) language. To test the quality of the method, several case-studies within the banking and electrical utility industries were performed. Input data were collected through stakeholder interviews. The results from the case studies were compared with availability of log data to determine the accuracy of the method's predictions. In the five cases where accurate log data were available, the yearly downtime estimates were within eight hours from the actual downtimes. The cost of performing the analysis was low; no case study required more than 20 man-hours of work, making the method ideal for practitioners with an interest in obtaining rapid availability estimates of their enterprise information systems.

  5. Reliability analysis of the solar array based on Fault Tree Analysis

    NASA Astrophysics Data System (ADS)

    Jianing, Wu; Shaoze, Yan

    2011-07-01

    The solar array is an important device used in the spacecraft, which influences the quality of in-orbit operation of the spacecraft and even the launches. This paper analyzes the reliability of the mechanical system and certifies the most vital subsystem of the solar array. The fault tree analysis (FTA) model is established according to the operating process of the mechanical system based on DFH-3 satellite; the logical expression of the top event is obtained by Boolean algebra and the reliability of the solar array is calculated. The conclusion shows that the hinges are the most vital links between the solar arrays. By analyzing the structure importance(SI) of the hinge's FTA model, some fatal causes, including faults of the seal, insufficient torque of the locking spring, temperature in space, and friction force, can be identified. Damage is the initial stage of the fault, so limiting damage is significant to prevent faults. Furthermore, recommendations for improving reliability associated with damage limitation are discussed, which can be used for the redesigning of the solar array and the reliability growth planning.

  6. Mines Systems Safety Improvement Using an Integrated Event Tree and Fault Tree Analysis

    NASA Astrophysics Data System (ADS)

    Kumar, Ranjan; Ghosh, Achyuta Krishna

    2016-06-01

    Mines systems such as ventilation system, strata support system, flame proof safety equipment, are exposed to dynamic operational conditions such as stress, humidity, dust, temperature, etc., and safety improvement of such systems can be done preferably during planning and design stage. However, the existing safety analysis methods do not handle the accident initiation and progression of mine systems explicitly. To bridge this gap, this paper presents an integrated Event Tree (ET) and Fault Tree (FT) approach for safety analysis and improvement of mine systems design. This approach includes ET and FT modeling coupled with redundancy allocation technique. In this method, a concept of top hazard probability is introduced for identifying system failure probability and redundancy is allocated to the system either at component or system level. A case study on mine methane explosion safety with two initiating events is performed. The results demonstrate that the presented method can reveal the accident scenarios and improve the safety of complex mine systems simultaneously.

  7. Object-oriented programming applied to the evaluation of reliability fault trees

    SciTech Connect

    Patterson-Hine, F.A.

    1988-01-01

    Object-oriented programming techniques are used to implement an algorithm for the direct evaluation of fault trees. A simple bottom-up procedure evaluates independent branches. The identification of dependencies within a branch results in the application of a top-down recursive procedure. A unique approach to modularization enables dynamic modularization of the tree at each step in the reduction process. The algorithm reduces the number of recursive calls required to solve trees with repeated events and calculates intermediate results as well as the solution of the top event. The intermediate results can be reused if part of the tree is modified. The algorithm is implemented on a Texas Instruments Explorer LISP workstation which offers an environment that incorporates an object-oriented system called Flavors with Common LISP. Several example fault trees from the literature are evaluated with the object-oriented algorithm, and the results are compared with conventional reduction techniques. The program includes a graphical tree editor to display the fault tree objects. The graphical display of the tree enables a visual check of the input tree structure.

  8. Integrating Insults: Using Fault Tree Analysis to Guide Schizophrenia Research across Levels of Analysis

    PubMed Central

    MacDonald III, Angus W.; Zick, Jennifer L.; Chafee, Matthew V.; Netoff, Theoden I.

    2016-01-01

    The grand challenges of schizophrenia research are linking the causes of the disorder to its symptoms and finding ways to overcome those symptoms. We argue that the field will be unable to address these challenges within psychiatry’s standard neo-Kraepelinian (DSM) perspective. At the same time the current corrective, based in molecular genetics and cognitive neuroscience, is also likely to flounder due to its neglect for psychiatry’s syndromal structure. We suggest adopting a new approach long used in reliability engineering, which also serves as a synthesis of these approaches. This approach, known as fault tree analysis, can be combined with extant neuroscientific data collection and computational modeling efforts to uncover the causal structures underlying the cognitive and affective failures in people with schizophrenia as well as other complex psychiatric phenomena. By making explicit how causes combine from basic faults to downstream failures, this approach makes affordances for: (1) causes that are neither necessary nor sufficient in and of themselves; (2) within-diagnosis heterogeneity; and (3) between diagnosis co-morbidity. PMID:26779007

  9. Integrating Insults: Using Fault Tree Analysis to Guide Schizophrenia Research across Levels of Analysis.

    PubMed

    MacDonald Iii, Angus W; Zick, Jennifer L; Chafee, Matthew V; Netoff, Theoden I

    2015-01-01

    The grand challenges of schizophrenia research are linking the causes of the disorder to its symptoms and finding ways to overcome those symptoms. We argue that the field will be unable to address these challenges within psychiatry's standard neo-Kraepelinian (DSM) perspective. At the same time the current corrective, based in molecular genetics and cognitive neuroscience, is also likely to flounder due to its neglect for psychiatry's syndromal structure. We suggest adopting a new approach long used in reliability engineering, which also serves as a synthesis of these approaches. This approach, known as fault tree analysis, can be combined with extant neuroscientific data collection and computational modeling efforts to uncover the causal structures underlying the cognitive and affective failures in people with schizophrenia as well as other complex psychiatric phenomena. By making explicit how causes combine from basic faults to downstream failures, this approach makes affordances for: (1) causes that are neither necessary nor sufficient in and of themselves; (2) within-diagnosis heterogeneity; and (3) between diagnosis co-morbidity. PMID:26779007

  10. Fault tree analysis of the EBR-II reactor shutdown system

    SciTech Connect

    Kamal, S.A.; Hill, D.J.

    1992-01-01

    As part of the level I Probabilistic Risk Assessment of the Experimental Breeder Reactor II (EBR-II), detailed fault trees for the reactor shutdown system are developed. Fault tree analysis is performed for two classes of transient events that are of particular importance to EBR-II operation: loss-of-flow and transient-overpower. In all parts of EBR-II reactor shutdown system, redundancy has been utilized in order to reduce scram failure probability. Therefore, heavy emphasis is placed in the fault trees on the common cause failures (CCFs) among similar mechanical components of the control and safety rods and among similar electrical components in redundant detection channels and shutdown strings. Generic beta-factors that cover all types of similar components and reflect redundancy level are used to model the CCFs. Human errors are addressed in the fault trees in two major areas: errors that would prevent the automatic scram channels from detecting the abnormal events and errors that would prevent utilization of the manual scram capability. The fault tree analysis of the EBR-II shutdown system has provided not only a systematic process for calculating the probabilities of system failures but also useful insights into the system and how its elements interact during transient events that require shutdown.

  11. Fault tree analysis of the EBR-II reactor shutdown system

    SciTech Connect

    Kamal, S.A.; Hill, D.J.

    1992-12-01

    As part of the level I Probabilistic Risk Assessment of the Experimental Breeder Reactor II (EBR-II), detailed fault trees for the reactor shutdown system are developed. Fault tree analysis is performed for two classes of transient events that are of particular importance to EBR-II operation: loss-of-flow and transient-overpower. In all parts of EBR-II reactor shutdown system, redundancy has been utilized in order to reduce scram failure probability. Therefore, heavy emphasis is placed in the fault trees on the common cause failures (CCFs) among similar mechanical components of the control and safety rods and among similar electrical components in redundant detection channels and shutdown strings. Generic beta-factors that cover all types of similar components and reflect redundancy level are used to model the CCFs. Human errors are addressed in the fault trees in two major areas: errors that would prevent the automatic scram channels from detecting the abnormal events and errors that would prevent utilization of the manual scram capability. The fault tree analysis of the EBR-II shutdown system has provided not only a systematic process for calculating the probabilities of system failures but also useful insights into the system and how its elements interact during transient events that require shutdown.

  12. Superconducting power link for power transmission and fault current limitation

    NASA Astrophysics Data System (ADS)

    Paasi, J.; Herrmann, P. F.; Verhaege, T.; Lehtonen, J.; Bock, J.; Cowey, L.; Freyhardt, H. C.; Usoskin, A.; Moulaert, G.; Collet, M.

    2001-05-01

    Superconducting power links (SUPERPOLI) will offer the opportunity for low-loss power transmission of high nominal currents and fault current limitation simultaneously in a single device. This paper presents the status of European SUPERPOLI project where the long term goal is to build a GVA class, 20 kV, three-phased, 200 m long superconducting power link. As a step towards the GVA-class application, a one-phase demonstrator of 2 m length for 20 kV, 2-5 kA rms operation has been designed and is now under construction. The project includes the development of two alternative low-ac-loss conductor designs suitable for current limitation: a tubular Bi-2212 bulk conductor with moderate Jc and a tubular YBCO coated conductor with high Jc.

  13. Fault isolation through no-overhead link level CRC

    DOEpatents

    Chen, Dong; Coteus, Paul W.; Gara, Alan G.

    2007-04-24

    A fault isolation technique for checking the accuracy of data packets transmitted between nodes of a parallel processor. An independent crc is kept of all data sent from one processor to another, and received from one processor to another. At the end of each checkpoint, the crcs are compared. If they do not match, there was an error. The crcs may be cleared and restarted at each checkpoint. In the preferred embodiment, the basic functionality is to calculate a CRC of all packet data that has been successfully transmitted across a given link. This CRC is done on both ends of the link, thereby allowing an independent check on all data believed to have been correctly transmitted. Preferably, all links have this CRC coverage, and the CRC used in this link level check is different from that used in the packet transfer protocol. This independent check, if successfully passed, virtually eliminates the possibility that any data errors were missed during the previous transfer period.

  14. Structural system reliability calculation using a probabilistic fault tree analysis method

    NASA Technical Reports Server (NTRS)

    Torng, T. Y.; Wu, Y.-T.; Millwater, H. R.

    1992-01-01

    The development of a new probabilistic fault tree analysis (PFTA) method for calculating structural system reliability is summarized. The proposed PFTA procedure includes: developing a fault tree to represent the complex structural system, constructing an approximation function for each bottom event, determining a dominant sampling sequence for all bottom events, and calculating the system reliability using an adaptive importance sampling method. PFTA is suitable for complicated structural problems that require computer-intensive computer calculations. A computer program has been developed to implement the PFTA.

  15. Reliability database development for use with an object-oriented fault tree evaluation program

    NASA Technical Reports Server (NTRS)

    Heger, A. Sharif; Harringtton, Robert J.; Koen, Billy V.; Patterson-Hine, F. Ann

    1989-01-01

    A description is given of the development of a fault-tree analysis method using object-oriented programming. In addition, the authors discuss the programs that have been developed or are under development to connect a fault-tree analysis routine to a reliability database. To assess the performance of the routines, a relational database simulating one of the nuclear power industry databases has been constructed. For a realistic assessment of the results of this project, the use of one of existing nuclear power reliability databases is planned.

  16. Fault tree applications within the safety program of Idaho Nuclear Corporation

    NASA Technical Reports Server (NTRS)

    Vesely, W. E.

    1971-01-01

    Computerized fault tree analyses are used to obtain both qualitative and quantitative information about the safety and reliability of an electrical control system that shuts the reactor down when certain safety criteria are exceeded, in the design of a nuclear plant protection system, and in an investigation of a backup emergency system for reactor shutdown. The fault tree yields the modes by which the system failure or accident will occur, the most critical failure or accident causing areas, detailed failure probabilities, and the response of safety or reliability to design modifications and maintenance schemes.

  17. Direct evaluation of fault trees using object-oriented programming techniques

    NASA Technical Reports Server (NTRS)

    Patterson-Hine, F. A.; Koen, B. V.

    1989-01-01

    Object-oriented programming techniques are used in an algorithm for the direct evaluation of fault trees. The algorithm combines a simple bottom-up procedure for trees without repeated events with a top-down recursive procedure for trees with repeated events. The object-oriented approach results in a dynamic modularization of the tree at each step in the reduction process. The algorithm reduces the number of recursive calls required to solve trees with repeated events and calculates intermediate results as well as the solution of the top event. The intermediate results can be reused if part of the tree is modified. An example is presented in which the results of the algorithm implemented with conventional techniques are compared to those of the object-oriented approach.

  18. A Fault Tree Approach to Analysis of Behavioral Systems: An Overview.

    ERIC Educational Resources Information Center

    Stephens, Kent G.

    Developed at Brigham Young University, Fault Tree Analysis (FTA) is a technique for enhancing the probability of success in any system by analyzing the most likely modes of failure that could occur. It provides a logical, step-by-step description of possible failure events within a system and their interaction--the combinations of potential…

  19. Graphical fault tree analysis for fatal falls in the construction industry.

    PubMed

    Chi, Chia-Fen; Lin, Syuan-Zih; Dewi, Ratna Sari

    2014-11-01

    The current study applied a fault tree analysis to represent the causal relationships among events and causes that contributed to fatal falls in the construction industry. Four hundred and eleven work-related fatalities in the Taiwanese construction industry were analyzed in terms of age, gender, experience, falling site, falling height, company size, and the causes for each fatality. Given that most fatal accidents involve multiple events, the current study coded up to a maximum of three causes for each fall fatality. After the Boolean algebra and minimal cut set analyses, accident causes associated with each falling site can be presented as a fault tree to provide an overview of the basic causes, which could trigger fall fatalities in the construction industry. Graphical icons were designed for each falling site along with the associated accident causes to illustrate the fault tree in a graphical manner. A graphical fault tree can improve inter-disciplinary discussion of risk management and the communication of accident causation to first line supervisors. PMID:25124170

  20. Program listing for fault tree analysis of JPL technical report 32-1542

    NASA Technical Reports Server (NTRS)

    Chelson, P. O.

    1971-01-01

    The computer program listing for the MAIN program and those subroutines unique to the fault tree analysis are described. Some subroutines are used for analyzing the reliability block diagram. The program is written in FORTRAN 5 and is running on a UNIVAC 1108.

  1. Applying fault tree analysis to the prevention of wrong-site surgery.

    PubMed

    Abecassis, Zachary A; McElroy, Lisa M; Patel, Ronak M; Khorzad, Rebeca; Carroll, Charles; Mehrotra, Sanjay

    2015-01-01

    Wrong-site surgery (WSS) is a rare event that occurs to hundreds of patients each year. Despite national implementation of the Universal Protocol over the past decade, development of effective interventions remains a challenge. We performed a systematic review of the literature reporting root causes of WSS and used the results to perform a fault tree analysis to assess the reliability of the system in preventing WSS and identifying high-priority targets for interventions aimed at reducing WSS. Process components where a single error could result in WSS were labeled with OR gates; process aspects reinforced by verification were labeled with AND gates. The overall redundancy of the system was evaluated based on prevalence of AND gates and OR gates. In total, 37 studies described risk factors for WSS. The fault tree contains 35 faults, most of which fall into five main categories. Despite the Universal Protocol mandating patient verification, surgical site signing, and a brief time-out, a large proportion of the process relies on human transcription and verification. Fault tree analysis provides a standardized perspective of errors or faults within the system of surgical scheduling and site confirmation. It can be adapted by institutions or specialties to lead to more targeted interventions to increase redundancy and reliability within the preoperative process. PMID:25277361

  2. Irregular recurrence of large earthquakes along the san andreas fault: evidence from trees.

    PubMed

    Jacoby, G C; Sheppard, P R; Sieh, K E

    1988-07-01

    Old trees growing along the San Andreas fault near Wrightwood, California, record in their annual ring-width patterns the effects of a major earthquake in the fall or winter of 1812 to 1813. Paleoseismic data and historical information indicate that this event was the "San Juan Capistrano" earthquake of 8 December 1812, with a magnitude of 7.5. The discovery that at least 12 kilometers of the Mojave segment of the San Andreas fault ruptured in 1812, only 44 years before the great January 1857 rupture, demonstrates that intervals between large earthquakes on this part of the fault are highly variable. This variability increases the uncertainty of forecasting destructive earthquakes on the basis of past behavior and accentuates the need for a more fundamental knowledge of San Andreas fault dynamics. PMID:17841050

  3. San Onofre/Zion auxiliary feedwater system seismic fault tree modeling

    SciTech Connect

    Najafi, B.; Eide, S.

    1982-02-01

    As part of the study for the seismic evaluation of the San Onofre Unit 1 Auxiliary Feedwater System (AFWS), a fault tree model was developed capable of handling the effect of structural failure of the plant (in the event of an earthquake) on the availability of the AFWS. A compatible fault tree model was developed for the Zion Unit 1 AFWS in order to compare the results of the two systems. It was concluded that if a single failure of the San Onofre Unit 1 AFWS is to be prevented, some weight existing, locally operated locked open manual valves have to be used for isolation of a rupture in specific parts of the AFWS pipings.

  4. CUTSETS - MINIMAL CUT SET CALCULATION FOR DIGRAPH AND FAULT TREE RELIABILITY MODELS

    NASA Technical Reports Server (NTRS)

    Iverson, D. L.

    1994-01-01

    Fault tree and digraph models are frequently used for system failure analysis. Both type of models represent a failure space view of the system using AND and OR nodes in a directed graph structure. Fault trees must have a tree structure and do not allow cycles or loops in the graph. Digraphs allow any pattern of interconnection between loops in the graphs. A common operation performed on digraph and fault tree models is the calculation of minimal cut sets. A cut set is a set of basic failures that could cause a given target failure event to occur. A minimal cut set for a target event node in a fault tree or digraph is any cut set for the node with the property that if any one of the failures in the set is removed, the occurrence of the other failures in the set will not cause the target failure event. CUTSETS will identify all the minimal cut sets for a given node. The CUTSETS package contains programs that solve for minimal cut sets of fault trees and digraphs using object-oriented programming techniques. These cut set codes can be used to solve graph models for reliability analysis and identify potential single point failures in a modeled system. The fault tree minimal cut set code reads in a fault tree model input file with each node listed in a text format. In the input file the user specifies a top node of the fault tree and a maximum cut set size to be calculated. CUTSETS will find minimal sets of basic events which would cause the failure at the output of a given fault tree gate. The program can find all the minimal cut sets of a node, or minimal cut sets up to a specified size. The algorithm performs a recursive top down parse of the fault tree, starting at the specified top node, and combines the cut sets of each child node into sets of basic event failures that would cause the failure event at the output of that gate. Minimal cut set solutions can be found for all nodes in the fault tree or just for the top node. The digraph cut set code uses the same

  5. A fuzzy logic methodology for fault-tree analysis in critical safety systems

    SciTech Connect

    Erbay, A.; Ikonomopoulos, A. )

    1993-01-01

    A new approach for fault-tree analysis in critical safety systems employing fuzzy sets for information representation is presented in this paper. The methodology is based on the utilization of the extension principle for mapping crisp measurements to various degrees of membership in the fuzzy set of linguistic Truth. Criticality alarm systems are used in miscellaneous nuclear fuel processing, handling, and storage facilities to reduce the risk associated with fissile material operations. Fault-tree methodologies are graphic illustrations of tile failure logic associated with the development of a particular system failure (top event) from basic subcomponent failures (primary events). The term event denotes a dynamic change of state that occurs to system elements, which may include hardware, software, human, or environmental factors. A fault-tree represents a detailed, deductive, analysis that requires extensive system information. The knowledge incorporated in a fault tree can be articulated in logical rules of the form [open quotes]IF A is true THEN B is true.[close quotes] However, it is well known that this type of syllogism fails to give an answer when the satisfaction of the antecedent clause is only partial. Zadeh suggested a new type of fuzzy conditional inference. This type of syllogism (generalized modus ponens) reads as follows: Premise: A is partially true Implication: IF A is true THEN B is true Conclusion: B is partially-true. In generalized modus ponens, the antecedent is true only to some degree; hence, it is desired to compute the grade to which the consequent is satisfied. Fuzzy sets provide a natural environment for this type of computation because fuzzy variables (e.g., B) can take fuzzy values (e.g., partially-true).

  6. BioNames: linking taxonomy, texts, and trees

    PubMed Central

    2013-01-01

    BioNames is a web database of taxonomic names for animals, linked to the primary literature and, wherever possible, to phylogenetic trees. It aims to provide a taxonomic “dashboard” where at a glance we can see a summary of the taxonomic and phylogenetic information we have for a given taxon and hence provide a quick answer to the basic question “what is this taxon?” BioNames combines classifications from the Global Biodiversity Information Facility (GBIF) and GenBank, images from the Encyclopedia of Life (EOL), animal names from the Index of Organism Names (ION), and bibliographic data from multiple sources including the Biodiversity Heritage Library (BHL) and CrossRef. The user interface includes display of full text articles, interactive timelines of taxonomic publications, and zoomable phylogenies. It is available at http://bionames.org. PMID:24244913

  7. Fault tree analysis: NiH2 aerospace cells for LEO mission

    NASA Technical Reports Server (NTRS)

    Klein, Glenn C.; Rash, Donald E., Jr.

    1992-01-01

    The Fault Tree Analysis (FTA) is one of several reliability analyses or assessments applied to battery cells to be utilized in typical Electric Power Subsystems for spacecraft in low Earth orbit missions. FTA is generally the process of reviewing and analytically examining a system or equipment in such a way as to emphasize the lower level fault occurrences which directly or indirectly contribute to the major fault or top level event. This qualitative FTA addresses the potential of occurrence for five specific top level events: hydrogen leakage through either discrete leakage paths or through pressure vessel rupture; and four distinct modes of performance degradation - high charge voltage, suppressed discharge voltage, loss of capacity, and high pressure.

  8. Use of Fault Tree Analysis for Automotive Reliability and Safety Analysis

    SciTech Connect

    Lambert, H

    2003-09-24

    Fault tree analysis (FTA) evolved from the aerospace industry in the 1960's. A fault tree is deductive logic model that is generated with a top undesired event in mind. FTA answers the question, ''how can something occur?'' as opposed to failure modes and effects analysis (FMEA) that is inductive and answers the question, ''what if?'' FTA is used in risk, reliability and safety assessments. FTA is currently being used by several industries such as nuclear power and chemical processing. Typically the automotive industries uses failure modes and effects analysis (FMEA) such as design FMEAs and process FMEAs. The use of FTA has spread to the automotive industry. This paper discusses the use of FTA for automotive applications. With the addition automotive electronics for various applications in systems such as engine/power control, cruise control and braking/traction, FTA is well suited to address failure modes within these systems. FTA can determine the importance of these failure modes from various perspectives such as cost, reliability and safety. A fault tree analysis of a car starting system is presented as an example.

  9. LinkFinder: An expert system that constructs phylogenic trees

    NASA Technical Reports Server (NTRS)

    Inglehart, James; Nelson, Peter C.

    1991-01-01

    An expert system has been developed using the C Language Integrated Production System (CLIPS) that automates the process of constructing DNA sequence based phylogenies (trees or lineages) that indicate evolutionary relationships. LinkFinder takes as input homologous DNA sequences from distinct individual organisms. It measures variations between the sequences, selects appropriate proportionality constants, and estimates the time that has passed since each pair of organisms diverged from a common ancestor. It then designs and outputs a phylogenic map summarizing these results. LinkFinder can find genetic relationships between different species, and between individuals of the same species, including humans. It was designed to take advantage of the vast amount of sequence data being produced by the Genome Project, and should be of value to evolution theorists who wish to utilize this data, but who have no formal training in molecular genetics. Evolutionary theory holds that distinct organisms carrying a common gene inherited that gene from a common ancestor. Homologous genes vary from individual to individual and species to species, and the amount of variation is now believed to be directly proportional to the time that has passed since divergence from a common ancestor. The proportionality constant must be determined experimentally; it varies considerably with the types of organisms and DNA molecules under study. Given an appropriate constant, and the variation between two DNA sequences, a simple linear equation gives the divergence time.

  10. Understanding tree growth in response to moisture variability: Linking 32 years of satellite based soil moisture observations with tree rings

    NASA Astrophysics Data System (ADS)

    Albrecht, Franziska; Dorigo, Wouter; Gruber, Alexander; Wagner, Wolfgang; Kainz, Wolfgang

    2014-05-01

    Climate change induced drought variability impacts global forest ecosystems and forest carbon cycle dynamics. Physiological drought stress might even become an issue in regions generally not considered water-limited. The water balance at the soil surface is essential for forest growth. Soil moisture is a key driver linking precipitation and tree development. Tree ring based analyses are a potential approach to study the driving role of hydrological parameters for tree growth. However, at present two major research gaps are apparent: i) soil moisture records are hardly considered and ii) only a few studies are linking tree ring chronologies and satellite observations. Here we used tree ring chronologies obtained from the International Tree ring Data Bank (ITRDB) and remotely sensed soil moisture observations (ECV_SM) to analyze the moisture-tree growth relationship. The ECV_SM dataset, which is being distributed through ESA's Climate Change Initiative for soil moisture covers the period 1979 to 2010 at a spatial resolution of 0.25°. First analyses were performed for Mongolia, a country characterized by a continental arid climate. We extracted 13 tree ring chronologies suitable for our analysis from the ITRDB. Using monthly satellite based soil moisture observations we confirmed previous studies on the seasonality of soil moisture in Mongolia. Further, we investigated the relationship between tree growth (as reflected by tree ring width index) and remotely sensed soil moisture records by applying correlation analysis. In terms of correlation coefficient a strong response of tree growth to soil moisture conditions of current April to August was observed, confirming a strong linkage between tree growth and soil water storage. The highest correlation was found for current April (R=0.44), indicating that sufficient water supply is vital for trees at the beginning of the growing season. To verify these results, we related the chronologies to reanalysis precipitation and

  11. Fault Tree Based Diagnosis with Optimal Test Sequencing for Field Service Engineers

    NASA Technical Reports Server (NTRS)

    Iverson, David L.; George, Laurence L.; Patterson-Hine, F. A.; Lum, Henry, Jr. (Technical Monitor)

    1994-01-01

    When field service engineers go to customer sites to service equipment, they want to diagnose and repair failures quickly and cost effectively. Symptoms exhibited by failed equipment frequently suggest several possible causes which require different approaches to diagnosis. This can lead the engineer to follow several fruitless paths in the diagnostic process before they find the actual failure. To assist in this situation, we have developed the Fault Tree Diagnosis and Optimal Test Sequence (FTDOTS) software system that performs automated diagnosis and ranks diagnostic hypotheses based on failure probability and the time or cost required to isolate and repair each failure. FTDOTS first finds a set of possible failures that explain exhibited symptoms by using a fault tree reliability model as a diagnostic knowledge to rank the hypothesized failures based on how likely they are and how long it would take or how much it would cost to isolate and repair them. This ordering suggests an optimal sequence for the field service engineer to investigate the hypothesized failures in order to minimize the time or cost required to accomplish the repair task. Previously, field service personnel would arrive at the customer site and choose which components to investigate based on past experience and service manuals. Using FTDOTS running on a portable computer, they can now enter a set of symptoms and get a list of possible failures ordered in an optimal test sequence to help them in their decisions. If facilities are available, the field engineer can connect the portable computer to the malfunctioning device for automated data gathering. FTDOTS is currently being applied to field service of medical test equipment. The techniques are flexible enough to use for many different types of devices. If a fault tree model of the equipment and information about component failure probabilities and isolation times or costs are available, a diagnostic knowledge base for that device can be

  12. Off-fault tensile cracks: A link between geological fault observations, experiments and earthquake rupture models

    NASA Astrophysics Data System (ADS)

    Ngo, D.; Huang, Y.; Rosakis, A.; Griffith, W. A.; Pollard, D. D.

    2009-12-01

    Motivated by the occurrence of high-angle pseudotachylite injection veins along exhumed faults, we use optical experiments and high-speed photography to interpret the origins of tensile fractures that form during dynamic shear rupture in laboratory experiments. Sub-Rayleigh (slower than the Rayleigh wave speed) shear ruptures in Homalite-100 produce damage zones consisting of a periodic array of tensile cracks. These cracks nucleate and grow within cohesive zones behind the tips of shear ruptures that propagate dynamically along interfaces with frictional and cohesive strength. The tensile cracks are produced only along one side of the interface where transient, fault-parallel, tensile stress perturbations are associated with the growing shear rupture tip. We use an analytical, linear velocity weakening, rupture model to examine the local nature of the dynamic stress field in the vicinity of the tip of the main shear rupture which grows along a weak plane (fault) with sub-Rayleigh speed. It is this stress field which is responsible for driving the off-fault mode-I microcracks that grow during the experiments. We show that (1) the orientation of the cracks can be explained by this analytical model; and (2) the cracks can be used to simultaneously constrain the constitutive behavior of the shear rupture tip. In addition, we propose an extension of this model to explain damage structures observed along exhumed faults. Results of this study represent an important bridge between geological observations of structures preserved along exhumed faults, laboratory experiments and theoretical models of earthquake propagation, potentially leading to diagnostic criteria for interpreting velocity, directivity, and static pre-stress state associated with past earthquakes on exhumed faults.

  13. Failure mode analysis using state variables derived from fault trees with application

    SciTech Connect

    Bartholomew, R.J.

    1981-01-01

    Fault Tree Analysis (FTA) is used extensively to assess both the qualitative and quantitative reliability of engineered nuclear power systems employing many subsystems and components. FTA is very useful, but the method is limited by its inability to account for failure mode rate-of-change interdependencies (coupling) of statistically independent failure modes. The state variable approach (using FTA-derived failure modes as states) overcomes these difficulties and is applied to the determination of the lifetime distribution function for a heat pipe-thermoelectric nuclear power subsystem. Analyses are made using both Monte Carlo and deterministic methods and compared with a Markov model of the same subsystem.

  14. Fault tree safety analysis of a large Li/SOCl(sub)2 spacecraft battery

    NASA Technical Reports Server (NTRS)

    Uy, O. Manuel; Maurer, R. H.

    1987-01-01

    The results of the safety fault tree analysis on the eight module, 576 F cell Li/SOCl2 battery on the spacecraft and in the integration and test environment prior to launch on the ground are presented. The analysis showed that with the right combination of blocking diodes, electrical fuses, thermal fuses, thermal switches, cell balance, cell vents, and battery module vents the probability of a single cell or a 72 cell module exploding can be reduced to .000001, essentially the probability due to explosion for unexplained reasons.

  15. Fault tree analysis of nuclear power plant components and systems. (Latest citations from the INSPEC database). Published Search

    SciTech Connect

    1996-01-01

    The bibliography contains citations concerning assessment, reliability, failure analysis, and safety of nuclear power plant components and systems using fault tree analysis methods. Faults caused by components, human error, environmental considerations, and common mode failures are presented. Various systems and components are analyzed, including high pressure safety injection, auxiliary feedwater, control instrumentation, emergency core flooding and cooling, and steam generator tubing. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  16. Fault tree analysis of nuclear power plant components and systems. (Latest citations from the Inspec database). Published Search

    SciTech Connect

    1997-05-01

    The bibliography contains citations concerning assessment, reliability, failure analysis, and safety of nuclear power plant components and systems using fault tree analysis methods. Faults caused by components, human error, environmental considerations, and common mode failures are presented. Various systems and components are analyzed, including high pressure safety injection, auxiliary feedwater, control instrumentation, emergency core flooding and cooling, and steam generator tubing. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  17. Fault tree analysis of nuclear power plant components and systems. (Latest citations from the INSPEC database). Published Search

    SciTech Connect

    1995-01-01

    The bibliography contains citations concerning assessment, reliability, failure analysis, and safety of nuclear power plant components and systems using fault tree analysis methods. Faults caused by components, human error, environmental considerations, and common mode failures are presented. Various systems and components are analyzed, including high pressure safety injection, auxiliary feedwater, control instrumentation, emergency core flooding and cooling, and steam generator tubing. (Contains a minimum of 76 citations and includes a subject term index and title list.)

  18. Fault tree analysis of nuclear power plant components and systems. (Latest citations from the INSPEC database). Published Search

    SciTech Connect

    1994-01-01

    The bibliography contains citations concerning assessment, reliability, failure analysis, and safety of nuclear power plant components and systems using fault tree analysis methods. Faults caused by components, human error, environmental considerations, and common mode failures are presented. Various systems and components are analyzed, including high pressure safety injection, auxiliary feedwater, control instrumentation, emergency core flooding and cooling, and steam generator tubing. (Contains a minimum of 70 citations and includes a subject term index and title list.)

  19. Goal-Function Tree Modeling for Systems Engineering and Fault Management

    NASA Technical Reports Server (NTRS)

    Johnson, Stephen B.; Breckenridge, Jonathan T.

    2013-01-01

    This paper describes a new representation that enables rigorous definition and decomposition of both nominal and off-nominal system goals and functions: the Goal-Function Tree (GFT). GFTs extend the concept and process of functional decomposition, utilizing state variables as a key mechanism to ensure physical and logical consistency and completeness of the decomposition of goals (requirements) and functions, and enabling full and complete traceabilitiy to the design. The GFT also provides for means to define and represent off-nominal goals and functions that are activated when the system's nominal goals are not met. The physical accuracy of the GFT, and its ability to represent both nominal and off-nominal goals enable the GFT to be used for various analyses of the system, including assessments of the completeness and traceability of system goals and functions, the coverage of fault management failure detections, and definition of system failure scenarios.

  20. Risk assessment for enterprise resource planning (ERP) system implementations: a fault tree analysis approach

    NASA Astrophysics Data System (ADS)

    Zeng, Yajun; Skibniewski, Miroslaw J.

    2013-08-01

    Enterprise resource planning (ERP) system implementations are often characterised with large capital outlay, long implementation duration, and high risk of failure. In order to avoid ERP implementation failure and realise the benefits of the system, sound risk management is the key. This paper proposes a probabilistic risk assessment approach for ERP system implementation projects based on fault tree analysis, which models the relationship between ERP system components and specific risk factors. Unlike traditional risk management approaches that have been mostly focused on meeting project budget and schedule objectives, the proposed approach intends to address the risks that may cause ERP system usage failure. The approach can be used to identify the root causes of ERP system implementation usage failure and quantify the impact of critical component failures or critical risk events in the implementation process.

  1. Fault tree application to the study of systems interactions at Indian Point 3

    SciTech Connect

    Youngblood, R.; Hanan, N.; Fitzpatrick, R.; Xue, D.; Bozoki, G.; Fresco, A.; Papazoglou, I.; Mitra, S.; MacDonald, G.; Mazour, T.

    1986-01-01

    This report describes an application of fault tree methods to search for systems interactions at Indian Point 3. This project was carried out in support of the resolution of Unresolved Safety Issue A-17 on Systems Interaction. Here, the methods are introduced, the findings are presented, and comments on the methods are offered. Findings are presented in the following manner. Systems interactions which may qualitatively violate regulatory requirements (regardless of their probability) are discussed; additionally, a probabilistically ranked list of system interactions is provided. This study resulted in the discovery of a previously undetected active single failure causing loss of low pressure injection. After verifying this finding, the licensee took immediate corrective actions, including a design modification to the switching logic for one of the safety buses, as well as procedural changes.

  2. Fault tree analysis for exposure to refrigerants used for automotive air conditioning in the United States.

    PubMed

    Jetter, J J; Forte, R; Rubenstein, R

    2001-02-01

    A fault tree analysis was used to estimate the number of refrigerant exposures of automotive service technicians and vehicle occupants in the United States. Exposures of service technicians can occur when service equipment or automotive air-conditioning systems leak during servicing. The number of refrigerant exposures of service technicians was estimated to be 135,000 per year. Exposures of vehicle occupants can occur when refrigerant enters passenger compartments due to sudden leaks in air-conditioning systems, leaks following servicing, or leaks caused by collisions. The total number of exposures of vehicle occupants was estimated to be 3,600 per year. The largest number of exposures of vehicle occupants was estimated for leaks caused by collisions, and the second largest number of exposures was estimated for leaks following servicing. Estimates used in the fault tree analysis were based on a survey of automotive air-conditioning service shops, the best available data from the literature, and the engineering judgement of the authors and expert reviewers from the Society of Automotive Engineers Interior Climate Control Standards Committee. Exposure concentrations and durations were estimated and compared with toxicity data for refrigerants currently used in automotive air conditioners. Uncertainty was high for the estimated numbers of exposures, exposure concentrations, and exposure durations. Uncertainty could be reduced in the future by conducting more extensive surveys, measurements of refrigerant concentrations, and exposure monitoring. Nevertheless, the analysis indicated that the risk of exposure of service technicians and vehicle occupants is significant, and it is recommended that no refrigerant that is substantially more toxic than currently available substitutes be accepted for use in vehicle air-conditioning systems, absent a means of mitigating exposure. PMID:11332544

  3. Reliability analysis of a wastewater treatment plant using fault tree analysis and Monte Carlo simulation.

    PubMed

    Taheriyoun, Masoud; Moradinejad, Saber

    2015-01-01

    The reliability of a wastewater treatment plant is a critical issue when the effluent is reused or discharged to water resources. Main factors affecting the performance of the wastewater treatment plant are the variation of the influent, inherent variability in the treatment processes, deficiencies in design, mechanical equipment, and operational failures. Thus, meeting the established reuse/discharge criteria requires assessment of plant reliability. Among many techniques developed in system reliability analysis, fault tree analysis (FTA) is one of the popular and efficient methods. FTA is a top down, deductive failure analysis in which an undesired state of a system is analyzed. In this study, the problem of reliability was studied on Tehran West Town wastewater treatment plant. This plant is a conventional activated sludge process, and the effluent is reused in landscape irrigation. The fault tree diagram was established with the violation of allowable effluent BOD as the top event in the diagram, and the deficiencies of the system were identified based on the developed model. Some basic events are operator's mistake, physical damage, and design problems. The analytical method is minimal cut sets (based on numerical probability) and Monte Carlo simulation. Basic event probabilities were calculated according to available data and experts' opinions. The results showed that human factors, especially human error had a great effect on top event occurrence. The mechanical, climate, and sewer system factors were in subsequent tier. Literature shows applying FTA has been seldom used in the past wastewater treatment plant (WWTP) risk analysis studies. Thus, the developed FTA model in this study considerably improves the insight into causal failure analysis of a WWTP. It provides an efficient tool for WWTP operators and decision makers to achieve the standard limits in wastewater reuse and discharge to the environment. PMID:25487461

  4. FAULT TREE ANALYSIS FOR EXPOSURE TO REFRIGERANTS USED FOR AUTOMOTIVE AIR CONDITIONING IN THE U.S.

    EPA Science Inventory

    A fault tree analysis was used to estimate the number of refrigerant exposures of automotive service technicians and vehicle occupants in the United States. Exposures of service technicians can occur when service equipment or automotive air-conditioning systems leak during servic...

  5. Distributed intrusion monitoring system with fiber link backup and on-line fault diagnosis functions

    NASA Astrophysics Data System (ADS)

    Xu, Jiwei; Wu, Huijuan; Xiao, Shunkun

    2014-12-01

    A novel multi-channel distributed optical fiber intrusion monitoring system with smart fiber link backup and on-line fault diagnosis functions was proposed. A 1× N optical switch was intelligently controlled by a peripheral interface controller (PIC) to expand the fiber link from one channel to several ones to lower the cost of the long or ultra-long distance intrusion monitoring system and also to strengthen the intelligent monitoring link backup function. At the same time, a sliding window auto-correlation method was presented to identify and locate the broken or fault point of the cable. The experimental results showed that the proposed multi-channel system performed well especially whenever any a broken cable was detected. It could locate the broken or fault point by itself accurately and switch to its backup sensing link immediately to ensure the security system to operate stably without a minute idling. And it was successfully applied in a field test for security monitoring of the 220-km-length national borderline in China.

  6. Systems analysis programs for hands-on integrated reliability evaluations (SAPHIRE) Version 5.0. Fault tree, event tree, and piping & instrumentation diagram (FEP) editors reference manual: Volume 7

    SciTech Connect

    McKay, M.K.; Skinner, N.L.; Wood, S.T.

    1994-07-01

    The Systems Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE) refers to a set of several microcomputer programs that were developed to create and analyze probabilistic risk assessments (PRAs), primarily for nuclear power plants. The Fault Tree, Event Tree, and Piping and Instrumentation Diagram (FEP) editors allow the user to graphically build and edit fault trees, and event trees, and piping and instrumentation diagrams (P and IDs). The software is designed to enable the independent use of the graphical-based editors found in the Integrated Reliability and Risk Assessment System (IRRAS). FEP is comprised of three separate editors (Fault Tree, Event Tree, and Piping and Instrumentation Diagram) and a utility module. This reference manual provides a screen-by-screen guide of the entire FEP System.

  7. Fault tree analysis for data-loss in long-term monitoring networks.

    PubMed

    Dirksen, J; ten Veldhuis, J A E; Schilperoort, R P S

    2009-01-01

    Prevention of data-loss is an important aspect in the design as well as the operational phase of monitoring networks since data-loss can seriously limit intended information yield. In the literature limited attention has been paid to the origin of unreliable or doubtful data from monitoring networks. Better understanding of causes of data-loss points out effective solutions to increase data yield. This paper introduces FTA as a diagnostic tool to systematically deduce causes of data-loss in long-term monitoring networks in urban drainage systems. In order to illustrate the effectiveness of FTA, a fault tree is developed for a monitoring network and FTA is applied to analyze the data yield of a UV/VIS submersible spectrophotometer. Although some of the causes of data-loss cannot be recovered because the historical database of metadata has been updated infrequently, the example points out that FTA still is a powerful tool to analyze the causes of data-loss and provides useful information on effective data-loss prevention. PMID:19700829

  8. Comparison of methods for uncertainty analysis of nuclear-power-plant safety-system fault-tree models. [PWR; BWR

    SciTech Connect

    Martz, H F; Beckman, R J; Campbell, K; Whiteman, D E; Booker, J M

    1983-04-01

    A comparative evaluation is made of several methods for propagating uncertainties in actual coupled nuclear power plant safety system faults tree models. The methods considered are Monte Carlo simulation, the method of moments, a discrete distribution method, and a bootstrap method. The Monte Carlo method is found to be superior. The sensitivity of the system unavailability distribution to the choice of basic event unavailability distribution is also investigated. The system distribution is also investigated. The system distribution is especially sensitive to the choice of symmetric versus asymmetric basic event distributions. A quick-and dirty method for estimating percentiles of the system unavailability distribution is developed. The method identifies the appropriate basic event distribution percentiles that should be used in evaluating the Boolean system equivalent expression for a given fault tree model to arrive directly at the 5th, 10th, 50th, 90th, and 95th percentiles of the system unavailability distribution.

  9. An approach for automated fault diagnosis based on a fuzzy decision tree and boundary analysis of a reconstructed phase space.

    PubMed

    Aydin, Ilhan; Karakose, Mehmet; Akin, Erhan

    2014-03-01

    Although reconstructed phase space is one of the most powerful methods for analyzing a time series, it can fail in fault diagnosis of an induction motor when the appropriate pre-processing is not performed. Therefore, boundary analysis based a new feature extraction method in phase space is proposed for diagnosis of induction motor faults. The proposed approach requires the measurement of one phase current signal to construct the phase space representation. Each phase space is converted into an image, and the boundary of each image is extracted by a boundary detection algorithm. A fuzzy decision tree has been designed to detect broken rotor bars and broken connector faults. The results indicate that the proposed approach has a higher recognition rate than other methods on the same dataset. PMID:24296116

  10. Causation mechanism analysis for haze pollution related to vehicle emission in Guangzhou, China by employing the fault tree approach.

    PubMed

    Huang, Weiqing; Fan, Hongbo; Qiu, Yongfu; Cheng, Zhiyu; Xu, Pingru; Qian, Yu

    2016-05-01

    Recently, China has frequently experienced large-scale, severe and persistent haze pollution due to surging urbanization and industrialization and a rapid growth in the number of motor vehicles and energy consumption. The vehicle emission due to the consumption of a large number of fossil fuels is no doubt a critical factor of the haze pollution. This work is focused on the causation mechanism of haze pollution related to the vehicle emission for Guangzhou city by employing the Fault Tree Analysis (FTA) method for the first time. With the establishment of the fault tree system of "Haze weather-Vehicle exhausts explosive emission", all of the important risk factors are discussed and identified by using this deductive FTA method. The qualitative and quantitative assessments of the fault tree system are carried out based on the structure, probability and critical importance degree analysis of the risk factors. The study may provide a new simple and effective tool/strategy for the causation mechanism analysis and risk management of haze pollution in China. PMID:26923237

  11. Fuzzy fault tree assessment based on improved AHP for fire and explosion accidents for steel oil storage tanks.

    PubMed

    Shi, Lei; Shuai, Jian; Xu, Kui

    2014-08-15

    Fire and explosion accidents of steel oil storage tanks (FEASOST) occur occasionally during the petroleum and chemical industry production and storage processes and often have devastating impact on lives, the environment and property. To contribute towards the development of a quantitative approach for assessing the occurrence probability of FEASOST, a fault tree of FEASOST is constructed that identifies various potential causes. Traditional fault tree analysis (FTA) can achieve quantitative evaluation if the failure data of all of the basic events (BEs) are available, which is almost impossible due to the lack of detailed data, as well as other uncertainties. This paper makes an attempt to perform FTA of FEASOST by a hybrid application between an expert elicitation based improved analysis hierarchy process (AHP) and fuzzy set theory, and the occurrence possibility of FEASOST is estimated for an oil depot in China. A comparison between statistical data and calculated data using fuzzy fault tree analysis (FFTA) based on traditional and improved AHP is also made. Sensitivity and importance analysis has been performed to identify the most crucial BEs leading to FEASOST that will provide insights into how managers should focus effective mitigation. PMID:25010458

  12. A possible link between life and death of a xeric tree in desert.

    PubMed

    Xu, Gui-Qing; McDowell, Nate G; Li, Yan

    2016-05-01

    Understanding the interactions between drought and tree ontogeny or size remains an essential research priority because size-specific mortality patterns have large impacts on ecosystem structure and function, determine forest carbon storage capacity, and are sensitive to climatic change. Here we investigate a xerophytic tree species (Haloxylon ammodendron (C.A. Mey.)) with which the changes in biomass allocation with tree size may play an important role in size-specific mortality patterns. Size-related changes in biomass allocation, root distribution, plant water status, gas exchange, hydraulic architecture and non-structural carbohydrate reserves of this xerophytic tree species were investigated to assess their potential role in the observed U-shaped mortality pattern. We found that excessively negative water potentials (<-4.7MPa, beyond the P50leaf of -4.1MPa) during prolonged drought in young trees lead to hydraulic failure; while the imbalance of photoassimilate allocation between leaf and root system in larger trees, accompanied with declining C reserves (<2% dry matter across four tissues), might have led to carbon starvation. The drought-resistance strategy of this species is preferential biomass allocation to the roots to improve water capture. In young trees, the drought-resistance strategy is not well developed, and hydraulic failure appears to be the dominant driver of mortality during drought. With old trees, excess root growth at the expense of leaf area may lead to carbon starvation during prolonged drought. Our results suggest that the drought-resistance strategy of this xeric tree is closely linked to its life and death: well-developed drought-resistance strategy means life, while underdeveloped or overdeveloped drought-resistance strategy means death. PMID:26968083

  13. The Local Wind Pump for Marginal Societies in Indonesia: A Perspective of Fault Tree Analysis

    NASA Astrophysics Data System (ADS)

    Gunawan, Insan; Taufik, Ahmad

    2007-10-01

    There are many efforts to reduce a cost of investment of well established hybrid wind pump applied to rural areas. A recent study on a local wind pump (LWP) for marginal societies in Indonesia (traditional farmers, peasant and tribes) was one of the efforts reporting a new application area. The objectives of the study were defined to measure reliability value of the LWP due to fluctuated wind intensity, low wind speed, economic point of view regarding a prolong economic crisis occurring and an available local component of the LWP and to sustain economics productivity (agriculture product) of the society. In the study, a fault tree analysis (FTA) was deployed as one of three methods used for assessing the LWP. In this article, the FTA has been thoroughly discussed in order to improve a better performance of the LWP applied in dry land watering system of Mesuji district of Lampung province-Indonesia. In the early stage, all of local component of the LWP was classified in term of its function. There were four groups of the components. Moreover, all of the sub components of each group were subjected to failure modes of the FTA, namely (1) primary failure modes; (2) secondary failure modes and (3) common failure modes. In the data processing stage, an available software package, ITEM was deployed. It was observed that the component indicated obtaining relative a long life duration of operational life cycle in 1,666 hours. Moreover, to enhance high performance the LWP, maintenance schedule, critical sub component suffering from failure and an overhaul priority have been identified in term of quantity values. Throughout a year pilot project, it can be concluded that the LWP is a reliable product to the societies enhancing their economics productivities.

  14. Goal-Function Tree Modeling for Systems Engineering and Fault Management

    NASA Technical Reports Server (NTRS)

    Patterson, Jonathan D.; Johnson, Stephen B.

    2013-01-01

    The draft NASA Fault Management (FM) Handbook (2012) states that Fault Management (FM) is a "part of systems engineering", and that it "demands a system-level perspective" (NASAHDBK- 1002, 7). What, exactly, is the relationship between systems engineering and FM? To NASA, systems engineering (SE) is "the art and science of developing an operable system capable of meeting requirements within often opposed constraints" (NASA/SP-2007-6105, 3). Systems engineering starts with the elucidation and development of requirements, which set the goals that the system is to achieve. To achieve these goals, the systems engineer typically defines functions, and the functions in turn are the basis for design trades to determine the best means to perform the functions. System Health Management (SHM), by contrast, defines "the capabilities of a system that preserve the system's ability to function as intended" (Johnson et al., 2011, 3). Fault Management, in turn, is the operational subset of SHM, which detects current or future failures, and takes operational measures to prevent or respond to these failures. Failure, in turn, is the "unacceptable performance of intended function." (Johnson 2011, 605) Thus the relationship of SE to FM is that SE defines the functions and the design to perform those functions to meet system goals and requirements, while FM detects the inability to perform those functions and takes action. SHM and FM are in essence "the dark side" of SE. For every function to be performed (SE), there is the possibility that it is not successfully performed (SHM); FM defines the means to operationally detect and respond to this lack of success. We can also describe this in terms of goals: for every goal to be achieved, there is the possibility that it is not achieved; FM defines the means to operationally detect and respond to this inability to achieve the goal. This brief description of relationships between SE, SHM, and FM provide hints to a modeling approach to

  15. Molecular Infectious Disease Epidemiology: Survival Analysis and Algorithms Linking Phylogenies to Transmission Trees

    PubMed Central

    Kenah, Eben; Britton, Tom; Halloran, M. Elizabeth; Longini, Ira M.

    2016-01-01

    Recent work has attempted to use whole-genome sequence data from pathogens to reconstruct the transmission trees linking infectors and infectees in outbreaks. However, transmission trees from one outbreak do not generalize to future outbreaks. Reconstruction of transmission trees is most useful to public health if it leads to generalizable scientific insights about disease transmission. In a survival analysis framework, estimation of transmission parameters is based on sums or averages over the possible transmission trees. A phylogeny can increase the precision of these estimates by providing partial information about who infected whom. The leaves of the phylogeny represent sampled pathogens, which have known hosts. The interior nodes represent common ancestors of sampled pathogens, which have unknown hosts. Starting from assumptions about disease biology and epidemiologic study design, we prove that there is a one-to-one correspondence between the possible assignments of interior node hosts and the transmission trees simultaneously consistent with the phylogeny and the epidemiologic data on person, place, and time. We develop algorithms to enumerate these transmission trees and show these can be used to calculate likelihoods that incorporate both epidemiologic data and a phylogeny. A simulation study confirms that this leads to more efficient estimates of hazard ratios for infectiousness and baseline hazards of infectious contact, and we use these methods to analyze data from a foot-and-mouth disease virus outbreak in the United Kingdom in 2001. These results demonstrate the importance of data on individuals who escape infection, which is often overlooked. The combination of survival analysis and algorithms linking phylogenies to transmission trees is a rigorous but flexible statistical foundation for molecular infectious disease epidemiology. PMID:27070316

  16. Molecular Infectious Disease Epidemiology: Survival Analysis and Algorithms Linking Phylogenies to Transmission Trees.

    PubMed

    Kenah, Eben; Britton, Tom; Halloran, M Elizabeth; Longini, Ira M

    2016-04-01

    Recent work has attempted to use whole-genome sequence data from pathogens to reconstruct the transmission trees linking infectors and infectees in outbreaks. However, transmission trees from one outbreak do not generalize to future outbreaks. Reconstruction of transmission trees is most useful to public health if it leads to generalizable scientific insights about disease transmission. In a survival analysis framework, estimation of transmission parameters is based on sums or averages over the possible transmission trees. A phylogeny can increase the precision of these estimates by providing partial information about who infected whom. The leaves of the phylogeny represent sampled pathogens, which have known hosts. The interior nodes represent common ancestors of sampled pathogens, which have unknown hosts. Starting from assumptions about disease biology and epidemiologic study design, we prove that there is a one-to-one correspondence between the possible assignments of interior node hosts and the transmission trees simultaneously consistent with the phylogeny and the epidemiologic data on person, place, and time. We develop algorithms to enumerate these transmission trees and show these can be used to calculate likelihoods that incorporate both epidemiologic data and a phylogeny. A simulation study confirms that this leads to more efficient estimates of hazard ratios for infectiousness and baseline hazards of infectious contact, and we use these methods to analyze data from a foot-and-mouth disease virus outbreak in the United Kingdom in 2001. These results demonstrate the importance of data on individuals who escape infection, which is often overlooked. The combination of survival analysis and algorithms linking phylogenies to transmission trees is a rigorous but flexible statistical foundation for molecular infectious disease epidemiology. PMID:27070316

  17. Trees as indicators of past movements on the San Andreas Fault

    USGS Publications Warehouse

    Wallace, R.E.; Lamarch, V.C., Jr.

    1979-01-01

    Among the indirect effects are tilting, felling, or burial of trees in earthquake-triggered landslides. Long-term effects may include changes in growth rate due to local hydrologic and topographic changes as well as to biological effects such as the death of neighboring trees. Under favoralbe circumstances these can be dated by tree ring methods. 

  18. Enhancement of signal denoising and multiple fault signatures detecting in rotating machinery using dual-tree complex wavelet transform

    NASA Astrophysics Data System (ADS)

    Wang, Yanxue; He, Zhengjia; Zi, Yanyang

    2010-01-01

    In order to enhance the desired features related to some special type of machine fault, a technique based on the dual-tree complex wavelet transform (DTCWT) is proposed in this paper. It is demonstrated that DTCWT enjoys better shift invariance and reduced spectral aliasing than second-generation wavelet transform (SGWT) and empirical mode decomposition by means of numerical simulations. These advantages of the DTCWT arise from the relationship between the two dual-tree wavelet basis functions, instead of the matching of the used single wavelet basis function to the signal being analyzed. Since noise inevitably exists in the measured signals, an enhanced vibration signals denoising algorithm incorporating DTCWT with NeighCoeff shrinkage is also developed. Denoising results of vibration signals resulting from a crack gear indicate the proposed denoising method can effectively remove noise and retain the valuable information as much as possible compared to those DWT- and SGWT-based NeighCoeff shrinkage denoising methods. As is well known, excavation of comprehensive signatures embedded in the vibration signals is of practical importance to clearly clarify the roots of the fault, especially the combined faults. In the case of multiple features detection, diagnosis results of rolling element bearings with combined faults and an actual industrial equipment confirm that the proposed DTCWT-based method is a powerful and versatile tool and consistently outperforms SGWT and fast kurtogram, which are widely used recently. Moreover, it must be noted, the proposed method is completely suitable for on-line surveillance and diagnosis due to its good robustness and efficient algorithm.

  19. The formation and linking of mid-segment detachment faults at the slow-spreading Mid-Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    Schouten, H.; Smith, D. K.; Dick, H. J.; Escartin, J.

    2011-12-01

    The Mid-Atlantic Ridge axis at 16.5N has a remarkably high rate of teleseismic and hydrophone-recorded seismicity, and we have identified it as a region of active detachment faulting. Limited multibeam bathymetry data on the west side of the median valley show two parallel, linear ridges: 50-km-long West Ridge at 15 km west of the volcanic axis, and 10-km-long East Ridge at only 6 km from the axis. The ridges are interpreted to be the tops of rotated detachment fault scarps (breakaways), indicating significant fault rotation (> 25 degrees). A striated surface, characteristic of a core complex, is associated with West Ridge. This region stands out because it presents a dramatic demonstration of a new detachment fault forming nearer to the axis (East Ridge) and interrupting the overall development of what we interpret to be a longer, older and still active detachment fault that has its breakaway at the older West Ridge. We hypothesize that the section of the West Ridge detachment behind the East Ridge detachment was deactivated when East Ridge formed and furthermore, that the East Ridge detachment has linked into the West Ridge detachment to form a single detachment fault. This area represents an opportunity to address the initiation and cessation of mid-segment detachment faulting as well as how the faults link along the axis. Sampling of the detachment footwall will allow us to relate the subcrustal architecture of the segment to the local magmatic budget, and how this influences the initiation and geometry of the faulting. A broad, well-developed neovolcanic zone at the adjacent spreading axis suggests abundant volcanism. The greater depth of the local off-axis morphology, though, indicates that East Ridge may have formed in a relatively amagmatic corridor. Massifs at the western limit of the multibeam bathymetry data suggest asymmetric spreading through detachment faulting has dominated this region for at least the last several million years and perhaps much

  20. Fault2SHA- A European Working group to link faults and Probabilistic Seismic Hazard Assessment communities in Europe

    NASA Astrophysics Data System (ADS)

    Scotti, Oona; Peruzza, Laura

    2016-04-01

    The key questions we ask are: What is the best strategy to fill in the gap in knowledge and know-how in Europe when considering faults in seismic hazard assessments? Are field geologists providing the relevant information for seismic hazard assessment? Are seismic hazard analysts interpreting field data appropriately? Is the full range of uncertainties associated with the characterization of faults correctly understood and propagated in the computations? How can fault-modellers contribute to a better representation of the long-term behaviour of fault-networks in seismic hazard studies? Providing answers to these questions is fundamental, in order to reduce the consequences of future earthquakes and improve the reliability of seismic hazard assessments. An informal working group was thus created at a meeting in Paris in November 2014, partly financed by the Institute of Radioprotection and Nuclear Safety, with the aim to motivate exchanges between field geologists, fault modellers and seismic hazard practitioners. A variety of approaches were presented at the meeting and a clear gap emerged between some field geologists, that are not necessarily familiar with probabilistic seismic hazard assessment methods and needs and practitioners that do not necessarily propagate the "full" uncertainty associated with the characterization of faults. The group thus decided to meet again a year later in Chieti (Italy), to share concepts and ideas through a specific exercise on a test case study. Some solutions emerged but many problems of seismic source characterizations with people working in the field as well as with people tackling models of interacting faults remained. Now, in Wien, we want to open the group and launch a call for the European community at large to contribute to the discussion. The 2016 EGU session Fault2SHA is motivated by such an urgency to increase the number of round tables on this topic and debate on the peculiarities of using faults in seismic hazard

  1. Linking canopy leaf area and light environments with tree size distributions to explain Amazon forest demography.

    PubMed

    Stark, Scott C; Enquist, Brian J; Saleska, Scott R; Leitold, Veronika; Schietti, Juliana; Longo, Marcos; Alves, Luciana F; Camargo, Plinio B; Oliveira, Raimundo C

    2015-07-01

    Forest biophysical structure - the arrangement and frequency of leaves and stems - emerges from growth, mortality and space filling dynamics, and may also influence those dynamics by structuring light environments. To investigate this interaction, we developed models that could use LiDAR remote sensing to link leaf area profiles with tree size distributions, comparing models which did not (metabolic scaling theory) and did allow light to influence this link. We found that a light environment-to-structure link was necessary to accurately simulate tree size distributions and canopy structure in two contrasting Amazon forests. Partitioning leaf area profiles into size-class components, we found that demographic rates were related to variation in light absorption, with mortality increasing relative to growth in higher light, consistent with a light environment feedback to size distributions. Combining LiDAR with models linking forest structure and demography offers a high-throughput approach to advance theory and investigate climate-relevant tropical forest change. PMID:25963522

  2. A coupled Bayesian and fault tree methodology to assess future groundwater conditions in light of climate change

    NASA Astrophysics Data System (ADS)

    Huang, J. J.; Du, M.; McBean, E. A.; Wang, H.; Wang, J.

    2014-08-01

    Maintaining acceptable groundwater levels, particularly in arid areas, while protecting ecosystems, are key measures against desertification. Due to complicated hydrological processes and their inherent uncertainties, investigations of groundwater recharge conditions are challenging, particularly in arid areas under climate changing conditions. To assist planning to protect against desertification, a fault tree methodology, in conjunction with fuzzy logic and Bayesian data mining, are applied to Minqin Oasis, a highly vulnerable regime in northern China. A set of risk factors is employed within the fault tree framework, with fuzzy logic translating qualitative risk data into probabilities. Bayesian data mining is used to quantify the contribution of each risk factor to the final aggregated risk. The implications of both historical and future climate trends are employed for temperature, precipitation and potential evapotranspiration (PET) to assess water table changes under various future scenarios. The findings indicate that water table levels will continue to drop at the rate of 0.6 m yr-1 in the future when climatic effects alone are considered, if agricultural and industrial production capacity remain at 2004 levels.

  3. Fault tree analysis of nuclear power plant components and systems. (Latest citations from the INSPEC: Information services for the physics and engineering communities database). Published Search

    SciTech Connect

    Not Available

    1993-08-01

    The bibliography contains citations concerning assessment, reliability, failure analysis, and safety of nuclear power plant components and systems using fault tree analysis methods. Faults caused by components, human error, environmental considerations, and common mode failures are presented. Various systems and components are analyzed, including high pressure safety injection, auxiliary feedwater, control instrumentation, emergency core flooding and cooling, and steam generator tubing. (Contains a minimum of 66 citations and includes a subject term index and title list.)

  4. Fault tree analysis of nuclear power plant components and systems. (Latest citations from the INSPEC: Information Services for the Physics and Engineering Communities data base). Published Search

    SciTech Connect

    Not Available

    1992-09-01

    The bibliography contains citations concerning risk assessment, reliability analysis, failure analysis, and safety studies of nuclear power plant components and systems using fault tree analysis methods. Faults caused by components, human error, environmental considerations, and common mode failures are presented. Various systems and components are analyzed, including high pressure safety injection, auxiliary feedwater, instrumentation, emergency core flooding and cooling, and steam generator tubing. (Contains a minimum of 59 citations and includes a subject term index and title list.)

  5. Coseismic fault slip associated with the 1992 M(sub w) 6.1 Joshua Tree, California, earthquake: Implications for the Joshua Tree-Landers earthquake sequence

    NASA Technical Reports Server (NTRS)

    Bennett, Richard A.; Reilinger, Robert E.; Rodi, William; Li, Yingping; Toksoz, M. Nafi; Hudnut, Ken

    1995-01-01

    Coseismic surface deformation associated with the M(sub w) 6.1, April 23, 1992, Joshua Tree earthquake is well represented by estimates of geodetic monument displacements at 20 locations independently derived from Global Positioning System and trilateration measurements. The rms signal to noise ratio for these inferred displacements is 1.8 with near-fault displacement estimates exceeding 40 mm. In order to determine the long-wavelength distribution of slip over the plane of rupture, a Tikhonov regularization operator is applied to these estimates which minimizes stress variability subject to purely right-lateral slip and zero surface slip constraints. The resulting slip distribution yields a geodetic moment estimate of 1.7 x 10(exp 18) N m with corresponding maximum slip around 0.8 m and compares well with independent and complementary information including seismic moment and source time function estimates and main shock and aftershock locations. From empirical Green's functions analyses, a rupture duration of 5 s is obtained which implies a rupture radius of 6-8 km. Most of the inferred slip lies to the north of the hypocenter, consistent with northward rupture propagation. Stress drop estimates are in the range of 2-4 MPa. In addition, predicted Coulomb stress increases correlate remarkably well with the distribution of aftershock hypocenters; most of the aftershocks occur in areas for which the mainshock rupture produced stress increases larger than about 0.1 MPa. In contrast, predicted stress changes are near zero at the hypocenter of the M(sub w) 7.3, June 28, 1992, Landers earthquake which nucleated about 20 km beyond the northernmost edge of the Joshua Tree rupture. Based on aftershock migrations and the predicted static stress field, we speculate that redistribution of Joshua Tree-induced stress perturbations played a role in the spatio-temporal development of the earth sequence culminating in the Landers event.

  6. MRI links stem water content to stem diameter variations in transpiring trees.

    PubMed

    De Schepper, Veerle; van Dusschoten, Dagmar; Copini, Paul; Jahnke, Siegfried; Steppe, Kathy

    2012-04-01

    In trees, stem diameter variations are related to changes in stem water content, because internally stored water is depleted and replenished over a day. To confirm this relationship, non-invasive magnetic resonance imaging (MRI) was combined with point dendrometer measurements in three actively transpiring oak (Quercus robur L.) trees. Two of these oak trees were girdled to study the stem increment above the girdling zone. MRI images and micrographs of stem cross-sections revealed a close link between the water distribution and the anatomical features of the stem. Stem tissues with the highest amount of water were physiologically the most active ones, being the youngest differentiating xylem cells, the cambium and the youngest differentiating and conductive phloem cells. Daily changes in stem diameter corresponded well with the simultaneously MRI-measured amount of water, confirming their strong interdependence. MRI images also revealed that the amount of water in the elastic bark tissues, excluding cambium and the youngest phloem, contributed most to the daily stem diameter changes. After bark removal, an additional increase in stem diameter was measured above the girdle. This increase was attributed not only to the cambial production of new cells, but also to swelling of existing bark cells. In conclusion, the comparison of MRI and dendrometer measurements confirmed previous interpretations and applications of dendrometers and illustrates the additional and complementary information MRI can reveal regarding water relations in plants. PMID:22268159

  7. Trees

    ERIC Educational Resources Information Center

    Al-Khaja, Nawal

    2007-01-01

    This is a thematic lesson plan for young learners about palm trees and the importance of taking care of them. The two part lesson teaches listening, reading and speaking skills. The lesson includes parts of a tree; the modal auxiliary, can; dialogues and a role play activity.

  8. Fault tree analysis of failure cause of crushing plant and mixing bed hall at Khoy cement factory in Iran☆

    PubMed Central

    Nouri.Gharahasanlou, Ali; Mokhtarei, Ashkan; Khodayarei, Aliasqar; Ataei, Mohammad

    2014-01-01

    Evaluating and analyzing the risk in the mining industry is a new approach for improving the machinery performance. Reliability, safety, and maintenance management based on the risk analysis can enhance the overall availability and utilization of the mining technological systems. This study investigates the failure occurrence probability of the crushing and mixing bed hall department at Azarabadegan Khoy cement plant by using fault tree analysis (FTA) method. The results of the analysis in 200 h operating interval show that the probability of failure occurrence for crushing, conveyor systems, crushing and mixing bed hall department is 73, 64, and 95 percent respectively and the conveyor belt subsystem found as the most probable system for failure. Finally, maintenance as a method of control and prevent the occurrence of failure is proposed. PMID:26779433

  9. Fault tree analysis of fire and explosion accidents for dual fuel (diesel/natural gas) ship engine rooms

    NASA Astrophysics Data System (ADS)

    Guan, Yifeng; Zhao, Jie; Shi, Tengfei; Zhu, Peipei

    2016-07-01

    In recent years, China's increased interest in environmental protection has led to a promotion of energy-efficient dual fuel (diesel/natural gas) ships in Chinese inland rivers. A natural gas as ship fuel may pose dangers of fire and explosion if a gas leak occurs. If explosions or fires occur in the engine rooms of a ship, heavy damage and losses will be incurred. In this paper, a fault tree model is presented that considers both fires and explosions in a dual fuel ship; in this model, dual fuel engine rooms are the top events. All the basic events along with the minimum cut sets are obtained through the analysis. The primary factors that affect accidents involving fires and explosions are determined by calculating the degree of structure importance of the basic events. According to these results, corresponding measures are proposed to ensure and improve the safety and reliability of Chinese inland dual fuel ships.

  10. Where Does the Seattle Fault End? Structural Links and Kinematic Implications

    NASA Astrophysics Data System (ADS)

    Anderson, M. L.; Dragovich, J. D.; Blakely, R. J.; Wells, R.; Brocher, T. M.

    2008-12-01

    The Seattle fault is one of several east-trending compressional structures in the Puget Lowland (PL), seemingly at odds with the northeasterly oriented compression along the Juan de Fuca subduction zone. The existence of these faults is thought to be related to the northward movement of a strong Oregon forearc block. A weaker PL block accommodates north-south shortening between Siletzia and the slower-moving Canadian Coast Mountains to the north. The northward movement of the PL requires either the Cascade and Olympic Mountains to move northward and shorten at nearly the same rate as the PL, or the existence of strike-slip accommodation zones bounding the PL. We use results from three study areas along the Seattle fault to constrain its behavior: the westward terminus at the foot of the Olympic Mountains, its central reach near Bainbridge Island and its eastward terminus in the Cascade foothills near Fall City, WA. Geologic map data, trench observations across faults, Lidar topographic scarp observations, seismic reflection profiles and potential field anomalies are integrated to determine fault structure. These data indicate that the Seattle fault extends further east and west than previously thought. This suggests its connection to strike-slip fault zones bounding the east (Rattlesnake Mountain fault zone, right-lateral) and west (Saddle Mountain deformation zone, left-lateral) ends of the fault. Gravity and aeromagnetic anomalies along the Seattle fault are best modeled by a fairly simple, reverse fault (dipping south 35-50 degrees). The strike of the proposed PL-block bounding faults suggests a kinematic explanation for the existence, position and dip of the Seattle fault and other east-striking compressional structures in the region. An analog (clay) model illustrates the growth of both the Seattle uplift and the Kingston arch resulting from these proposed kinematic bounding conditions. The strike-slip faults form a crustal "funnel", narrowing to the north

  11. Linking Tree Growth Response to Measured Microclimate - A Field Based Approach

    NASA Astrophysics Data System (ADS)

    Martin, J. T.; Hoylman, Z. H.; Looker, N. T.; Jencso, K. G.; Hu, J.

    2015-12-01

    climate and annual ring formation, and suggest a rather immediate growth response to critical micro-meteorological conditions occurring at different times across the landscape by linking the timing and magnitude of tree growth responses to in situ measurements of environmental conditions.

  12. Seeing the forest and the trees: USGS scientist links local changes to global scale

    USGS Publications Warehouse

    Wilson, Jim; Allen, Craig

    2011-01-01

    The recent recipient of two major awards, Craig D. Allen, a research ecologist with the U.S. Geological Survey Fort Collins Science Center, has loved trees since childhood. He is now considered an expert of world renown on the twin phenomena of forest changes and tree mortality resulting from climate warming and drought, and in 2010 was twice recognized for his scientific contributions. In December 2010, Dr. Allen was named a 2010 Fellow of the American Association for the Advancement of Science “for outstanding leadership in the synthesis of global forest responses to climate change, built from worldwide collaboration and a deep understanding of the environmental history of the southwestern United States.” In March 2010, he was honored with the Meritorious Service Award from the U.S. Department of the Interior (DOI) in recognition of his outstanding vision, initiative, and scientific contributions to the USGS, DOI, and U.S. Department of Agriculture in establishing a model science program to support adaptive land management at the new Valles Caldera National Preserve in north-central New Mexico. Dr. Allen has authored more than 85 publications on landscape ecology and landscape change, from fire history and ecology to ecosystem responses to climate change. He has appeared on NOVA discussing fire ecology and on The Discovery Channel and Discovery Canada explaining the links between drought-induced tree mortality and climate warming, in addition to being interviewed and quoted in innumerable newspaper articles on both topics. But how did this unassuming scientist grow from nurturing maple saplings on 40 acres in Wisconsin to understanding forest system stress worldwide?

  13. Linking root traits to nutrient foraging in arbuscular mycorrhizal trees in a temperate forest.

    PubMed

    Eissenstat, David M; Kucharski, Joshua M; Zadworny, Marcin; Adams, Thomas S; Koide, Roger T

    2015-10-01

    The identification of plant functional traits that can be linked to ecosystem processes is of wide interest, especially for predicting vegetational responses to climate change. Root diameter of the finest absorptive roots may be one plant trait that has wide significance. Do species with relatively thick absorptive roots forage in nutrient-rich patches differently from species with relatively fine absorptive roots? We measured traits related to nutrient foraging (root morphology and architecture, root proliferation, and mycorrhizal colonization) across six coexisting arbuscular mycorrhizal (AM) temperate tree species with and without nutrient addition. Root traits such as root diameter and specific root length were highly correlated with root branching intensity, with thin-root species having higher branching intensity than thick-root species. In both fertilized and unfertilized soil, species with thin absorptive roots and high branching intensity showed much greater root length and mass proliferation but lower mycorrhizal colonization than species with thick absorptive roots. Across all species, fertilization led to increased root proliferation and reduced mycorrhizal colonization. These results suggest that thin-root species forage more by root proliferation, whereas thick-root species forage more by mycorrhizal fungi. In mineral nutrient-rich patches, AM trees seem to forage more by proliferating roots than by mycorrhizal fungi. PMID:25970701

  14. Tree-ring 14C links seismic swarm to CO2 spike at Yellowstone, USA

    USGS Publications Warehouse

    Evans, William C.; Bergfeld, D.; McGeehin, J.P.; King, J.C.; Heasler, H.

    2010-01-01

    Mechanisms to explain swarms of shallow seismicity and inflation-deflation cycles at Yellowstone caldera (western United States) commonly invoke episodic escape of magma-derived brines or gases from the ductile zone, but no correlative changes in the surface efflux of magmatic constituents have ever been documented. Our analysis of individual growth rings in a tree core from the Mud Volcano thermal area within the caldera links a sharp ~25% drop in 14C to a local seismic swarm in 1978. The implied fivefold increase in CO2 emissions clearly associates swarm seismicity with upflow of magma-derived fluid and shows that pulses of magmatic CO2 can rapidly traverse the 5-kmthick brittle zone, even through Yellowstone's enormous hydrothermal reservoir. The 1978 event predates annual deformation surveys, but recognized connections between subsequent seismic swarms and changes in deformation suggest that CO2 might drive both processes. ?? 2010 Geological Society of America.

  15. Goal-Function Tree Modeling for Systems Engineering and Fault Management

    NASA Technical Reports Server (NTRS)

    Johnson, Stephen B.; Breckenridge, Jonathan T.

    2013-01-01

    The draft NASA Fault Management (FM) Handbook (2012) states that Fault Management (FM) is a "part of systems engineering", and that it "demands a system-level perspective" (NASAHDBK- 1002, 7). What, exactly, is the relationship between systems engineering and FM? To NASA, systems engineering (SE) is "the art and science of developing an operable system capable of meeting requirements within often opposed constraints" (NASA/SP-2007-6105, 3). Systems engineering starts with the elucidation and development of requirements, which set the goals that the system is to achieve. To achieve these goals, the systems engineer typically defines functions, and the functions in turn are the basis for design trades to determine the best means to perform the functions. System Health Management (SHM), by contrast, defines "the capabilities of a system that preserve the system's ability to function as intended" (Johnson et al., 2011, 3). Fault Management, in turn, is the operational subset of SHM, which detects current or future failures, and takes operational measures to prevent or respond to these failures. Failure, in turn, is the "unacceptable performance of intended function." (Johnson 2011, 605) Thus the relationship of SE to FM is that SE defines the functions and the design to perform those functions to meet system goals and requirements, while FM detects the inability to perform those functions and takes action. SHM and FM are in essence "the dark side" of SE. For every function to be performed (SE), there is the possibility that it is not successfully performed (SHM); FM defines the means to operationally detect and respond to this lack of success. We can also describe this in terms of goals: for every goal to be achieved, there is the possibility that it is not achieved; FM defines the means to operationally detect and respond to this inability to achieve the goal. This brief description of relationships between SE, SHM, and FM provide hints to a modeling approach to

  16. Formation and Evolution of the San Cristobal Trough Transform Fault Linking the Southern Solomon Islands and Northern New Hebrides Trenches

    NASA Astrophysics Data System (ADS)

    Furlong, K. P.; Hayes, G. P.; Herman, M. W.; Benz, H.

    2014-12-01

    The San Cristobal Trough, which occupies the southern segment of the South Solomon Trench, hosts a dominantly left-lateral transform plate boundary (SCTF) linking the southern end of the Solomon Islands subduction zone (SISZ) to the northern end of the New Hebrides (Vanuatu) subduction zone (NHSZ). At its western end (SISZ), the Australia plate is torn as a result of the transition from subduction to transform motion. The southern side of the tear translates approximately 375 km along the SCTF before subducting beneath the Santa Cruz Islands at the NHSZ. Earthquakes occurring along this transform reflect the processes of plate tearing, fault zone evolution, and subsequent underthrusting and subduction of the Australia-plate-side of the transform. A knot of earthquake activity at the western end of the SCTF juxtaposes high-angle thrust faulting events with left-lateral strike slip events. These record the tearing of Australian lithosphere, as shown by a recent pair of large earthquakes in that region - a Mw 7.6 strike-slip event (12 April 2014) followed 22 hours later by a Mw 7.4 high-angle reverse faulting event (13 April 2014). Associated displacements reflect oblique tearing (northern-side down and west), allowing the Australia Plate to follow two disparate paths - subduction at the SISZ to the north and translation along the SCTF to the south. Moving eastward along the transform, the plate boundary shows three styles of earthquake activity. The main transform is dominated by shallow, E-W striking, left-lateral faulting and E-W striking thrust faults (with a north-dipping shallow fault plane) - these reflect partitioning of oblique motion along the transform between the Australia and Pacific plates. Outboard (+/- 100 km) of the plate boundary, a group of E-W striking shallow normal faulting events reflect upward bending driven by the convergent component of plate motions. Approaching the NHSZ, normal faulting earthquakes in the Australia Plate rotate clockwise

  17. Linking xylem water storage with anatomical parameters in five temperate tree species.

    PubMed

    Jupa, Radek; Plavcová, Lenka; Gloser, Vít; Jansen, Steven

    2016-06-01

    The release of water from storage compartments to the transpiration stream is an important functional mechanism that provides the buffering of sudden fluctuations in water potential. The ability of tissues to release water per change in water potential, referred to as hydraulic capacitance, is assumed to be associated with the anatomy of storage tissues. However, information about how specific anatomical parameters determine capacitance is limited. In this study, we measured sapwood capacitance (C) in terminal branches and roots of five temperate tree species (Fagus sylvatica L., Picea abies L., Quercus robur L., Robinia pseudoacacia L., Tilia cordata Mill.). Capacitance was calculated separately for water released mainly from capillary (CI; open vessels, tracheids, fibres, intercellular spaces and cracks) and elastic storage compartments (CII; living parenchyma cells), corresponding to two distinct phases of the moisture release curve. We found that C was generally higher in roots than branches, with CI being 3-11 times higher than CII Sapwood density and the ratio of dead to living xylem cells were most closely correlated with C In addition, the magnitude of CI was strongly correlated with fibre/tracheid lumen area, whereas CII was highly dependent on the thickness of axial parenchyma cell walls. Our results indicate that water released from capillary compartments predominates over water released from elastic storage in both branches and roots, suggesting the limited importance of parenchyma cells for water storage in juvenile xylem of temperate tree species. Contrary to intact organs, water released from open conduits in our small wood samples significantly increased CI at relatively high water potentials. Linking anatomical parameters with the hydraulic capacitance of a tissue contributes to a better understanding of water release mechanisms and their implications for plant hydraulics. PMID:27083523

  18. Combining task analysis and fault tree analysis for accident and incident analysis: a case study from Bulgaria.

    PubMed

    Doytchev, Doytchin E; Szwillus, Gerd

    2009-11-01

    Understanding the reasons for incident and accident occurrence is important for an organization's safety. Different methods have been developed to achieve this goal. To better understand the human behaviour in incident occurrence we propose an analysis concept that combines Fault Tree Analysis (FTA) and Task Analysis (TA). The former method identifies the root causes of an accident/incident, while the latter analyses the way people perform the tasks in their work environment and how they interact with machines or colleagues. These methods were complemented with the use of the Human Error Identification in System Tools (HEIST) methodology and the concept of Performance Shaping Factors (PSF) to deepen the insight into the error modes of an operator's behaviour. HEIST shows the external error modes that caused the human error and the factors that prompted the human to err. To show the validity of the approach, a case study at a Bulgarian Hydro power plant was carried out. An incident - the flooding of the plant's basement - was analysed by combining the afore-mentioned methods. The case study shows that Task Analysis in combination with other methods can be applied successfully to human error analysis, revealing details about erroneous actions in a realistic situation. PMID:19819365

  19. Tree ecophysiological traits related to tree drought mortality are linked to the aridity of the environment in eucalypts

    NASA Astrophysics Data System (ADS)

    Arndt, S. K.; Sanders, G.; Hirsch, M.

    2013-12-01

    Increases in tree drought mortality are observed in forest ecosystems in all continents but the actual mechanisms how trees succumb to drought are still controversial. Physiological traits and thresholds have often be proposed as possible tools to predict tree drought mortality but these traits and thresholds have only been studied in a few tree species in detail. We investigated the vulnerability to hydraulic cavitation in leaves (P50leaf), turgor loss point (TLP) and osmotic potential at full turgor (OPFT) in 16 different eucalypts species that occur in environments of differing aridity in south-eastern Australia (gradient from 300mm to 1500 mm of precipitation per year). The species were grown from seed, planted in an arboretum in Melbourne and measured under well-watered conditions as two-year old saplings. We observed strong correlations between all measured ecophysiological traits and the aridity of the environment of the origin of the species. P50leaf and TLP were more negative in the eucalypts from more arid environments and more positive in eucalypts from more mesic environments, indicating that eucalypts in arid environments lose turgor at lower water potentials and have a lower vulnerability to hydraulic cavitation in leaves. Eucalypts from arid environments also had a much more negative osmotic potential at full turgor than eucalypts from mesic environments and more rigid cell walls. The measured plants all grew in the same environmental conditions and were well watered at the time of measurement. The results therefore indicate a strong genetic control over these physiological traits in eucalypts - trees from more arid environments lose turgor and hydraulic conductivity at lower water potentials and achieve these lower water potentials by having more osmotically active substances, even if they are not drought stressed. This is the first time these strong correlations between physiological traits and aridity of the origin of the species have been

  20. Exploring the link between drought indicators and impacts through data visualization and regression trees

    NASA Astrophysics Data System (ADS)

    Bachmair, Sophie; Stahl, Kerstin; Blauhut, Veit; Kohn, Irene

    2014-05-01

    impact occurrence. The applied data visualization and regression tree approach proved to be a valuable methodology for exploring the link between indicators and impacts. Nevertheless, the results are influenced by the uncertainty of identifying and quantifying drought impacts and vulnerability factors at a suitable spatial and temporal scale. This calls for more research on methodological issues of drought impact and vulnerability assessment, as well as for further developing impact inventories and exploiting the link between drought indicators and impacts.

  1. A methodological combined framework for roadmapping biosensor research: a fault tree analysis approach within a strategic technology evaluation frame.

    PubMed

    Siontorou, Christina G; Batzias, Fragiskos A

    2014-03-01

    Biosensor technology began in the 1960s to revolutionize instrumentation and measurement. Despite the glucose sensor market success that revolutionized medical diagnostics, and artificial pancreas promise currently the approval stage, the industry is reluctant to capitalize on other relevant university-produced knowledge and innovation. On the other hand, the scientific literature is extensive and persisting, while the number of university-hosted biosensor groups is growing. Considering the limited marketability of biosensors compared to the available research output, the biosensor field has been used by the present authors as a suitable paradigm for developing a methodological combined framework for "roadmapping" university research output in this discipline. This framework adopts the basic principles of the Analytic Hierarchy Process (AHP), replacing the lower level of technology alternatives with internal barriers (drawbacks, limitations, disadvantages), modeled through fault tree analysis (FTA) relying on fuzzy reasoning to count for uncertainty. The proposed methodology is validated retrospectively using ion selective field effect transistor (ISFET) - based biosensors as a case example, and then implemented prospectively membrane biosensors, putting an emphasis on the manufacturability issues. The analysis performed the trajectory of membrane platforms differently than the available market roadmaps that, considering the vast industrial experience in tailoring and handling crystallic forms, suggest the technology path of biomimetic and synthetic materials. The results presented herein indicate that future trajectories lie along with nanotechnology, and especially nanofabrication and nano-bioinformatics, and focused, more on the science-path, that is, on controlling the natural process of self-assembly and the thermodynamics of bioelement-lipid interaction. This retained the nature-derived sensitivity of the biosensor platform, pointing out the differences

  2. Application of reliability-centered maintenance to boiling water reactor emergency core cooling systems fault-tree analysis

    SciTech Connect

    Choi, Y.A.; Feltus, M.A.

    1995-07-01

    Reliability-centered maintenance (RCM) methods are applied to boiling water reactor plant-specific emergency core cooling system probabilistic risk assessment (PRA) fault trees. The RCM is a technique that is system function-based, for improving a preventive maintenance (PM) program, which is applied on a component basis. Many PM programs are based on time-directed maintenance tasks, while RCM methods focus on component condition-directed maintenance tasks. Stroke time test data for motor-operated valves (MOVs) are used to address three aspects concerning RCM: (a) to determine if MOV stroke time testing was useful as a condition-directed PM task; (b) to determine and compare the plant-specific MOV failure data from a broad RCM philosophy time period compared with a PM period and, also, compared with generic industry MOV failure data; and (c) to determine the effects and impact of the plant-specific MOV failure data on core damage frequency (CDF) and system unavailabilities for these emergency systems. The MOV stroke time test data from four emergency core cooling systems [i.e., high-pressure coolant injection (HPCI), reactor core isolation cooling (RCIC), low-pressure core spray (LPCS), and residual heat removal/low-pressure coolant injection (RHR/LPCI)] were gathered from Philadelphia Electric Company`s Peach Bottom Atomic Power Station Units 2 and 3 between 1980 and 1992. The analyses showed that MOV stroke time testing was not a predictor for eminent failure and should be considered as a go/no-go test. The failure data from the broad RCM philosophy showed an improvement compared with the PM-period failure rates in the emergency core cooling system MOVs. Also, the plant-specific MOV failure rates for both maintenance philosophies were shown to be lower than the generic industry estimates.

  3. Strike fault links mountain building from top to deep: evidence from the deep seismic reflection profiles

    NASA Astrophysics Data System (ADS)

    Gao, R.; Wang, H.; Lu, Z.; Wang, C.; Klemperer, S. L.; Yin, A.

    2013-12-01

    The formation of mountains was influenced by large-scale strike-slip faults in Tibet. At the south and north borders of the Tibetan Plateau, the Karakorum and Kunlun strike-slip faults cut the Himalayas and the Kunlun Mountains crust respectively. Based on the detection results of deep seismic reflection profiles, we report the structures of these strike-slip faults and shear deformation depth. The Karakoram fault and Indus-Yarlung suture (IYS) zone are two important structures in southwest and south Tibet, associated with the collision between India and Eurasia. SinoProbe has acquired two deep seismic reflection profiles with 210 km length. The northwestern profile spans 120 km and crosses the southeast part of the Karakoram fault where dextrally sheared mylonite and mylonitized gneiss-granite are exposed along the fault. The southeastern profile spans 90km and crosses the ophiolite belt of the western IYS. Our preliminary images show: Moho reflections appear at ~ 24 s (TWT) beneath both lines. Flower-structures imaged at the Karakoram fault zone are suggestive of strike-slip structure. There are significant differences in lower-crustal structure between the two lines. Many north and south dipping reflections in the lower crust form v-shaped structures along the northwest line. On the southeastern line, there are many north-dipping but few south-dipping reflections in the lower crust. Kunlun seismic profile crosses the active left-slip Kunlun fault, which is ~1000-km long and was inferred to merge downward with a continental subduction zone. The fault was initiated at 15-8 Ma, moved at a rate of 5-16 mm/year, and has a total slip of 65-120 km. The results of our seismic-reflection study across northeastern Tibet show that the actively deforming middle Tibetan crust is dominated by discrete sub-horizontal simple-shear zones that terminate the subvertical, left-slip Kunlun fault above. The flat shear zones appear to act as roof and floor thrusts of large duplex

  4. Links to Literature--Huge Trees, Small Drawings: Ideas of Relative Sizes.

    ERIC Educational Resources Information Center

    Burton, Gail

    1996-01-01

    Discusses a unit integrating science, mathematics, and environmental education centered around "The Great Kapok Tree," by Lynne Cherry (1990). Ratios are used to make scale drawings of trees in a rain forest. Other activities include a terrarium and problem-solving activities based on eating habits of rain forest animals. (KMC)

  5. Global Trees: A Framework for Linked Data Structures on Distributed Memory Parallel Systems

    SciTech Connect

    Larkins, D. B.; Dinan, James S.; Krishnamoorthy, Sriram; Parthasarathy, Srinivasan; Rountev, Atanas; Sadayappan, Ponnuswamy

    2008-11-17

    This paper describes the Global Trees (GT) system that provides a multi-layered interface to a global address space view of distributed tree data structures, while providing scalable performance on distributed memory systems. The Global Trees system utilizes coarse-grained data movement to enhance locality and communication efficiency. We describe the design and implementation of GT, illustrate its use in the context of a gravitational simulation application, and provide experimental results that demonstrate the effectiveness of the approach. The key benefits of using this system include efficient sharedmemory style programming of distributed trees, tree-specific optimizations for data access and computation, and the ability to customize many aspects of GT to optimize application performance.

  6. Characterizing Recent Slip on the Kuikui Fault, a Link Between the Green Valley and Bartlett Springs Fault Zones, Wilson Valley, Northern California.

    NASA Astrophysics Data System (ADS)

    Lienkaemper, J. J.; DeLong, S. B.; McPherson, R. C.; Mielke, J.; Avdievitch, N.; Pickering, A.; Lloyd, C.

    2014-12-01

    The Green Valley and Bartlett Springs faults (GVF-BSF) together form the third largest branch of the dextral San Andreas transform fault system in northern California. Wilson Valley lies at the center of a tectonic pull-apart basin formed in the 2.5-km stepover between the Hunting Creek fault (northernmost section of the GVF) and the Highway-20 section of the BSF. A major regional drainage, Cache Creek flows through this depression and has been offset ~6 km right-laterally by the GVF-BSF during the Quaternary. We recently discovered the Kuikui fault, a dextral-oblique slip fault within the stepover, using high-resolution imagery from LiDAR acquired by USGS in 2011 along major northern California fault zones (ARRA11_USGS, DOI: 10.5069/G9H70CRD, http://dx.doi.org/10.5069/G9H70CRD). The Kuikui fault is ~2-3 km in length and forms steep, well-preserved scarps up to ~2.5 m high. It has only subtle expression of dextral slip, so its ratio of dip slip to strike slip is uncertain. Any evidence of large paleoearthquakes in the Wilson Valley stepover might indicate rupture of either the GVF or the BSF or both together, and timing information could be used to correlate events with other paleoseismic sites on the fault system. Additionally, fault creep has been documented on both the Highway 20 and Hunting Creek fault sections, so that any fault offset on the Kuikui fault might also include some aseismic slip. Because wilderness regulations required manual excavation, several participants from USGS, HSU, other colleagues and volunteers together dug an 8-m long by ≤1 m deep trench by hand to expose faulting in thin layers of alluvium deposited across the Kuikui fault. The youngest, and currently active soil layer is vertically offset by a minimum of 7 cm on a single fault strand. A much broader fault zone suggests larger movement has occurred. This exposure did not allow us to discriminate whether slip occurred as creep or by dynamic rupture. Future additional exposures may

  7. Application of fault tree approach for the causation mechanism of urban haze in Beijing--Considering the risk events related with exhausts of coal combustion.

    PubMed

    Huang, Weiqing; Fan, Hongbo; Qiu, Yongfu; Cheng, Zhiyu; Qian, Yu

    2016-02-15

    Haze weather has become a serious environmental pollution problem which occurs in many Chinese cities. One of the most critical factors for the formation of haze weather is the exhausts of coal combustion, thus it is meaningful to figure out the causation mechanism between urban haze and the exhausts of coal combustion. Based on above considerations, the fault tree analysis (FAT) approach was employed for the causation mechanism of urban haze in Beijing by considering the risk events related with the exhausts of coal combustion for the first time. Using this approach, firstly the fault tree of the urban haze causation system connecting with coal combustion exhausts was established; consequently the risk events were discussed and identified; then, the minimal cut sets were successfully determined using Boolean algebra; finally, the structure, probability and critical importance degree analysis of the risk events were completed for the qualitative and quantitative assessment. The study results proved that the FTA was an effective and simple tool for the causation mechanism analysis and risk management of urban haze in China. PMID:26493345

  8. Modeling carbon cycle responses to tree mortality: linking microbial and biogeochemical changes

    NASA Astrophysics Data System (ADS)

    Moore, D. J.; Trahan, N. A.; Dynes, E. L.; Zobitz, J. M.; Gallery, R.

    2013-12-01

    Amid a worldwide increase in tree mortality, mountain pine beetles (Dendroctonus ponderosae Hopkins) have killed billions of trees from Mexico to Alaska in the last 13 years. This mortality is predicted to influence important carbon, water and energy balance feedbacks on the Earth system. We studied changes in soil biogeochemical cycling and microbial community structure after tree mortality. We show, using a decade long chronosequence, that tree mortality causes no increase in total respiration from local to watershed scales, with corresponding changes in biogeochemical pools of nitrogen and phosphorus. We also found comparable declines in both gross primary productivity and respiration suggesting little change in net flux. We tested the mechanisms controlling these patterns using an ecosystem model; contrasting a simplified microbial subroutine with a 'dead soil' model. We coupled our modeling work with direct measurements of microbial biomass, enzyme kinetics and community structure. The transitory recovery of respiration 6-7 years after mortality was associated with increased microbial biomass, increased incorporation of leaf litter carbon into soil organic matter, and was followed by a secondary decline in respiration during years 8-10. Our findings are consistent with the mechanism of reduced input of new carbon causing a decline in microbial biomass rather than an increased output of older carbon.

  9. Tree Species Linked to Large Differences in Ecosystem Carbon Distribution in the Boreal Forest of Alaska

    NASA Astrophysics Data System (ADS)

    Melvin, A. M.; Mack, M. C.; Johnstone, J. F.; Schuur, E. A. G.; Genet, H.; McGuire, A. D.

    2014-12-01

    In the boreal forest of Alaska, increased fire severity associated with climate change is altering plant-soil-microbial feedbacks and ecosystem carbon (C) dynamics. The boreal landscape has historically been dominated by black spruce (Picea mariana), a tree species associated with slow C turnover and large soil organic matter (SOM) accumulation. Historically, low severity fires have led to black spruce regeneration post-fire, thereby maintaining slow C cycling rates and large SOM pools. In recent decades however, an increase in high severity fires has led to greater consumption of the soil organic layer (SOL) during fire and subsequent establishment of deciduous tree species in areas previously dominated by black spruce. This shift to a more deciduous dominated landscape has many implications for ecosystem structure and function, as well as feedbacks to global C cycling. To improve our understanding of how boreal tree species affect C cycling, we quantified above- and belowground C stocks and fluxes in adjacent, mid-successional stands of black spruce and Alaska paper birch (Betula neoalaskana) that established following a 1958 fire near Fairbanks, Alaska. Although total ecosystem C pools (aboveground live tree biomass + dead wood + SOL + top 10 cm of mineral soil) were similar for the two stand types, the distribution of C among pools was markedly different. In black spruce, 78% of measured C was found in soil pools, primarily in the SOL, where spruce contained twice the C stored in paper birch (4.8 ± 0.3 vs. 2.4 ± 0.1 kg C m-2). In contrast, aboveground biomass dominated ecosystem C pools in birch forest (6.0 ± 0.3 vs. 2.5 ± 0.2 kg C m-2 in birch and spruce, respectively). Our findings suggest that tree species exert a strong influence over plant-soil-microbial feedbacks and may have long-term effects on ecosystem C sequestration and storage that feedback to the climate system.

  10. Linking size-dependent growth and mortality with architectural traits across 145 co-occurring tropical tree species.

    PubMed

    Iida, Yoshiko; Poorter, Lourens; Sterck, Frank; Kassim, Abd Rahman; Potts, Matthew D; Kubo, Takuya; Kohyama, Takashi S

    2014-02-01

    Tree architecture, growth, and mortality change with increasing tree size and associated light conditions. To date, few studies have quantified how size-dependent changes in growth and mortality rates co-vary with architectural traits, and how such size-dependent changes differ across species and possible light capture strategies. We applied a hierarchical Bayesian model to quantify size-dependent changes in demographic rates and correlated demographic rates and architectural traits for 145 co-occurring Malaysian rain-forest tree species covering a wide range of tree sizes. Demographic rates were estimated using relative growth rate in stem diameter (RGR) and mortality rate as a function of stem diameter. Architectural traits examined were adult stature measured as the 95-percentile of the maximum stem diameter (upper diameter), wood density, and three tree architectural variables: tree height, foliage height, and crown width. Correlations between demographic rates and architectural traits were examined for stem diameters ranging from 1 to 47 cm. As a result, RGR and mortality varied significantly with increasing stem diameter across species. At smaller stem diameters, RGR was higher for tall trees with wide crowns, large upper diameter, and low wood density. Increased mortality was associated with low wood density at small diameters, and associated with small upper diameter and wide crowns over a wide range of stem diameters. Positive correlations between RGR and mortality were found over the whole range of stem diameters, but they were significant only at small stem diameters. Associations between architectural traits and demographic rates were strongest at small stem diameters. In the dark understory of tropical rain forests, the limiting amount of light is likely to make the interspecific difference in the effects of functional traits on demography more clear. Demographic performance is therefore tightly linked with architectural traits such as adult stature

  11. Ectomycorrhizal fungal diversity and saprotrophic fungal diversity are linked to different tree community attributes in a field-based tree experiment.

    PubMed

    Nguyen, Nhu H; Williams, Laura J; Vincent, John B; Stefanski, Artur; Cavender-Bares, Jeannine; Messier, Christian; Paquette, Alain; Gravel, Dominique; Reich, Peter B; Kennedy, Peter G

    2016-08-01

    Exploring the link between above- and belowground biodiversity has been a major theme of recent ecological research, due in large part to the increasingly well-recognized role that soil microorganisms play in driving plant community processes. In this study, we utilized a field-based tree experiment in Minnesota, USA, to assess the effect of changes in plant species richness and phylogenetic diversity on the richness and composition of both ectomycorrhizal and saprotrophic fungal communities. We found that ectomycorrhizal fungal species richness was significantly positively influenced by increasing plant phylogenetic diversity, while saprotrophic fungal species richness was significantly affected by plant leaf nitrogen content, specific root length and standing biomass. The increasing ectomycorrhizal fungal richness associated with increasing plant phylogenetic diversity was driven by the combined presence of ectomycorrhizal fungal specialists in plots with both gymnosperm and angiosperm hosts. Although the species composition of both the ectomycorrhizal and saprotrophic fungal communities changed significantly in response to changes in plant species composition, the effect was much greater for ectomycorrhizal fungi. In addition, ectomycorrhizal but not saprotrophic fungal species composition was significantly influenced by both plant phylum (angiosperm, gymnosperm, both) and origin (Europe, America, both). The phylum effect was caused by differences in ectomycorrhizal fungal community composition, while the origin effect was attributable to differences in community heterogeneity. Taken together, this study emphasizes that plant-associated effects on soil fungal communities are largely guild-specific and provides a mechanistic basis for the positive link between plant phylogenetic diversity and ectomycorrhizal fungal richness. PMID:27284759

  12. The two-domain tree of life is linked to a new root for the Archaea.

    PubMed

    Raymann, Kasie; Brochier-Armanet, Céline; Gribaldo, Simonetta

    2015-05-26

    One of the most fundamental questions in evolutionary biology is the origin of the lineage leading to eukaryotes. Recent phylogenomic analyses have indicated an emergence of eukaryotes from within the radiation of modern Archaea and specifically from a group comprising Thaumarchaeota/"Aigarchaeota" (candidate phylum)/Crenarchaeota/Korarchaeota (TACK). Despite their major implications, these studies were all based on the reconstruction of universal trees and left the exact placement of eukaryotes with respect to the TACK lineage unclear. Here we have applied an original two-step approach that involves the separate analysis of markers shared between Archaea and eukaryotes and between Archaea and Bacteria. This strategy allowed us to use a larger number of markers and greater taxonomic coverage, obtain high-quality alignments, and alleviate tree reconstruction artifacts potentially introduced when analyzing the three domains simultaneously. Our results robustly indicate a sister relationship of eukaryotes with the TACK superphylum that is strongly associated with a distinct root of the Archaea that lies within the Euryarchaeota, challenging the traditional topology of the archaeal tree. Therefore, if we are to embrace an archaeal origin for eukaryotes, our view of the evolution of the third domain of life will have to be profoundly reconsidered, as will many areas of investigation aimed at inferring ancestral characteristics of early life and Earth. PMID:25964353

  13. A missing-link in the tectonic configuration of the Almacık Block along the North Anatolian Fault Zone (NW Turkey): Active faulting in the Bolu plain based on seismic reflection studies

    NASA Astrophysics Data System (ADS)

    Seyitoğlu, Gürol; Ecevitoğlu, Berkan; Kaypak, Bülent; Esat, Korhan; Çağlayan, Ayşe; Gündoğdu, Oğuz; Güney, Yücel; Işık, Veysel; Pekkan, Emrah; Tün, Muammer; Avdan, Uğur

    2015-06-01

    The North Anatolian Fault Zone (NAFZ) starts to branch off in the western Bolu plain. The branches of the NAFZ in this location create the Almacık block which is surrounded by the latest surface ruptures of significant earthquakes that occurred between 1944 and 1999, but its northeastern part remains unruptured. The most recently formed rupture, that was a result of the 1999 November 12 Düzce earthquake, ended to the northwest of the Bakacak Fault. The connection between the Bakacak Fault and the main branch of the NAFZ via the Bolu plain has until now remained unknown. This paper establishes that the route of the missing link runs through the Dağkent, Kasaplar and Bürnük faults, a finding achieved with the help of seismic reflection studies. The paper also argues that the cross cutting nature of these newly determined faults and a stress analysis based on focal mechanism solutions of recent earthquakes demonstrate the termination of the suggested pull-apart nature of the Bolu plain.

  14. How to better link regional monsoon circulation to local hydroclimate for interpreting tree-ring chronologies in Southeast Asia

    NASA Astrophysics Data System (ADS)

    Hernandez, M.; Ummenhofer, C.; Anchukaitis, K. J.

    2013-12-01

    The Asian summer monsoon, consisting of 3 major subsystems, is characterized by a distinct seasonal precipitation onset that affects the regions of India, the Indochina peninsula, and East Asia. Current monsoon indices for Southeast Asia and the Indian subcontinent capture the large-scale circulation patterns and, in turn, the hydro-climate of the specified area affected by the Asian Monsoon System. However, their skill in representing regional circulation features and links to the local hydro-climate are less understood. Here, we assessed the variability within the Dynamical Indian Monsoon Index, the East Asian Western North Pacific Index, and the South Asian Monsoon Index and their links to regional climate features over Southeast Asia, from inter-annual to decadal timescales, using various observations and reanalysis products at monthly resolution and an extended 1300-yr pre-industrial control run with the Community Earth System Model (CESM). The monsoon indices in the model compared well with those in the reanalysis, with similar statistical properties. Furthermore, composites of precipitation, sea surface temperatures (SST), wind fields and moisture advection during years with an extreme monsoon index (i.e. top and bottom 10%) were explored for the three monsoon indices in the reanalyses and model, respectively. Composites demonstrate large-scale changes in Indo-Pacific SST, circulation, and moisture advection across Southeast Asia, consistent with effects on seasonal precipitation within the region as well as distinct Indian Ocean Dipole (IOD) and El Nino-Southern Oscillation (ENSO) signals. Anomalies in the monsoon indices are also linked to drought occurrence across the region, using the Monsoon Asia Drought Atlas (MADA), a network of hydroclimatically sensitive tree-ring chronologies. Our analysis further investigates the paleo-climate of Southeast Asia through the CESM run to identify periods of anomalous Indo-Pacific SST and their effects on circulation

  15. Locating hardware faults in a data communications network of a parallel computer

    DOEpatents

    Archer, Charles J.; Megerian, Mark G.; Ratterman, Joseph D.; Smith, Brian E.

    2010-01-12

    Hardware faults location in a data communications network of a parallel computer. Such a parallel computer includes a plurality of compute nodes and a data communications network that couples the compute nodes for data communications and organizes the compute node as a tree. Locating hardware faults includes identifying a next compute node as a parent node and a root of a parent test tree, identifying for each child compute node of the parent node a child test tree having the child compute node as root, running a same test suite on the parent test tree and each child test tree, and identifying the parent compute node as having a defective link connected from the parent compute node to a child compute node if the test suite fails on the parent test tree and succeeds on all the child test trees.

  16. Frost hardiness in walnut trees (Juglans regia L.): how to link physiology and modelling?

    PubMed

    Charrier, Guillaume; Poirier, Magalie; Bonhomme, Marc; Lacointe, André; Améglio, Thierry

    2013-11-01

    In the literature, frost hardiness (FH) studies in trees have often been restricted to one organ (buds, leaves, needles or twigs). To extend our knowledge and gain a unified view, FH differences between organs and tissues or throughout the life of the tree have to be characterized in relation to physiological changes. In this study, different organs and tissues of young potted and mature orchard walnut trees (Juglans regia L.) were compared for seasonal changes in FH during different years. FH was assessed using the electrolyte leakage method. Physiological parameters were concomitantly monitored focusing on two significant traits: water content (WC) and carbohydrate content (glucose + fructose + sucrose, GFS). No seasonal variation in FH was observed in the root system, but acclimation and deacclimation were observed aboveground. Among organs and tissues, cold sensitivity levels were different in deep winter, with buds most sensitive and bark most resistant, but acclimation/deacclimation dynamics followed similar patterns. Physiological variation was also similar among organs: FH increased when WC decreased and/or soluble carbohydrates increased. Based on these results, relations between soluble carbohydrate content, WC and FH were calculated independently or in interaction. The key results were that: (i) the relationship between FH and physiological parameters (GFS and WC), which had previously been shown for branches only, could be generalized to all aboveground organs; (ii) lower WC increased the cryoprotective effect of GFS, showing a synergic effect of the two factors; (iii) the best fit was a non-linear function of WC and GFS, yielding a predictive model with an root mean square error of 5.07 °C on an independent dataset and 2.59 °C for the most sensitive stages; and (iv) the same parameters used for all organs yielded a unified model of FH depending on physiology, although the variability of GFS or WC was wide. The model should be of value for predicting

  17. Some fundamental aspects of fault-tree and digraph-matrix relationships for a systems-interaction evaluation procedure

    SciTech Connect

    Alesso, H.P.

    1982-02-28

    Recent events, such as Three Mile Island-2, Brown's Ferry-3, and Crystal River-3, have demonstrated that complex accidents can occur as a result of dependent (common-cause/mode) failures. These events are now being called Systems Interactions. A procedure for the identification and evaluation of Systems Interactions is being developed by the NRC. Several national laboratories and utilities have contributed preliminary procedures. As a result, there are several important views of the Systems Interaction problem. This report reviews some fundamental mathematical background of both fault-oriented and success-oriented risk analyses in order to bring out the advantages and disadvantages of each. In addition, it outlines several fault-oriented/dependency analysis approaches and several success-oriented/digraph-matrix approaches. The objective is to obtain a broad perspective of present options for solving the Systems Interaction problem.

  18. Fault damage zones

    NASA Astrophysics Data System (ADS)

    Kim, Young-Seog; Peacock, David C. P.; Sanderson, David J.

    2004-03-01

    Damage zones show very similar geometries across a wide range of scales and fault types, including strike-slip, normal and thrust faults. We use a geometric classification of damage zones into tip-, wall-, and linking-damage zones, based on their location around faults. These classes can be sub-divided in terms of fault and fracture patterns within the damage zone. A variety of damage zone structures can occur at mode II tips of strike-slip faults, including wing cracks, horsetail fractures, antithetic faults, and synthetic branch faults. Wall damage zones result from the propagation of mode II and mode III fault tips through a rock, or from damage associated with the increase in slip on a fault. Wall damage zone structures include extension fractures, antithetic faults, synthetic faults, and rotated blocks with associated triangular openings. The damage formed at the mode III tips of strike-slip faults (e.g. observed in cliff sections) are classified as wall damage zones, because the damage zone structures are distributed along a fault trace in map view. Mixed-mode tips are likely to show characteristics of both mode II and mode III tips. Linking damage zones are developed at steps between two sub-parallel faults, and the structures developed depend on whether the step is extensional or contractional. Extension fractures and pull-aparts typically develop in extensional steps, whilst solution seams, antithetic faults and synthetic faults commonly develop in contractional steps. Rotated blocks, isolated lenses or strike-slip duplexes may occur in both extensional and contractional steps. Damage zone geometries and structures are strongly controlled by the location around a fault, the slip mode at a fault tip, and by the evolutionary stage of the fault. Although other factors control the nature of damage zones (e.g. lithology, rheology and stress system), the three-dimensional fault geometry and slip mode at each tip must be considered to gain an understanding of

  19. ReprOlive: a database with linked data for the olive tree (Olea europaea L.) reproductive transcriptome.

    PubMed

    Carmona, Rosario; Zafra, Adoración; Seoane, Pedro; Castro, Antonio J; Guerrero-Fernández, Darío; Castillo-Castillo, Trinidad; Medina-García, Ana; Cánovas, Francisco M; Aldana-Montes, José F; Navas-Delgado, Ismael; Alché, Juan de Dios; Claros, M Gonzalo

    2015-01-01

    Plant reproductive transcriptomes have been analyzed in different species due to the agronomical and biotechnological importance of plant reproduction. Here we presented an olive tree reproductive transcriptome database with samples from pollen and pistil at different developmental stages, and leaf and root as control vegetative tissues http://reprolive.eez.csic.es). It was developed from 2,077,309 raw reads to 1,549 Sanger sequences. Using a pre-defined workflow based on open-source tools, sequences were pre-processed, assembled, mapped, and annotated with expression data, descriptions, GO terms, InterPro signatures, EC numbers, KEGG pathways, ORFs, and SSRs. Tentative transcripts (TTs) were also annotated with the corresponding orthologs in Arabidopsis thaliana from TAIR and RefSeq databases to enable Linked Data integration. It results in a reproductive transcriptome comprising 72,846 contigs with average length of 686 bp, of which 63,965 (87.8%) included at least one functional annotation, and 55,356 (75.9%) had an ortholog. A minimum of 23,568 different TTs was identified and 5,835 of them contain a complete ORF. The representative reproductive transcriptome can be reduced to 28,972 TTs for further gene expression studies. Partial transcriptomes from pollen, pistil, and vegetative tissues as control were also constructed. ReprOlive provides free access and download capability to these results. Retrieval mechanisms for sequences and transcript annotations are provided. Graphical localization of annotated enzymes into KEGG pathways is also possible. Finally, ReprOlive has included a semantic conceptualisation by means of a Resource Description Framework (RDF) allowing a Linked Data search for extracting the most updated information related to enzymes, interactions, allergens, structures, and reactive oxygen species. PMID:26322066

  20. ReprOlive: a database with linked data for the olive tree (Olea europaea L.) reproductive transcriptome

    PubMed Central

    Carmona, Rosario; Zafra, Adoración; Seoane, Pedro; Castro, Antonio J.; Guerrero-Fernández, Darío; Castillo-Castillo, Trinidad; Medina-García, Ana; Cánovas, Francisco M.; Aldana-Montes, José F.; Navas-Delgado, Ismael; Alché, Juan de Dios; Claros, M. Gonzalo

    2015-01-01

    Plant reproductive transcriptomes have been analyzed in different species due to the agronomical and biotechnological importance of plant reproduction. Here we presented an olive tree reproductive transcriptome database with samples from pollen and pistil at different developmental stages, and leaf and root as control vegetative tissues http://reprolive.eez.csic.es). It was developed from 2,077,309 raw reads to 1,549 Sanger sequences. Using a pre-defined workflow based on open-source tools, sequences were pre-processed, assembled, mapped, and annotated with expression data, descriptions, GO terms, InterPro signatures, EC numbers, KEGG pathways, ORFs, and SSRs. Tentative transcripts (TTs) were also annotated with the corresponding orthologs in Arabidopsis thaliana from TAIR and RefSeq databases to enable Linked Data integration. It results in a reproductive transcriptome comprising 72,846 contigs with average length of 686 bp, of which 63,965 (87.8%) included at least one functional annotation, and 55,356 (75.9%) had an ortholog. A minimum of 23,568 different TTs was identified and 5,835 of them contain a complete ORF. The representative reproductive transcriptome can be reduced to 28,972 TTs for further gene expression studies. Partial transcriptomes from pollen, pistil, and vegetative tissues as control were also constructed. ReprOlive provides free access and download capability to these results. Retrieval mechanisms for sequences and transcript annotations are provided. Graphical localization of annotated enzymes into KEGG pathways is also possible. Finally, ReprOlive has included a semantic conceptualisation by means of a Resource Description Framework (RDF) allowing a Linked Data search for extracting the most updated information related to enzymes, interactions, allergens, structures, and reactive oxygen species. PMID:26322066

  1. Using fault tree analysis to identify causes of non-compliance: enhancing violation outcome data for the purposes of education and prevention.

    PubMed

    Emery, R J; Charlton, M A; Orders, A B; Hernandez, M

    2001-02-01

    An enhanced coding system for the characterization of notices of violation (NOV's) issued to radiation permit holders in the State of Texas was developed based on a series of fault tree analyses serving to identify a set of common causes. The coding system enhancement was retroactively applied to a representative sample (n = 185) of NOV's issued to specific licensees of radioactive materials in Texas during calendar year 1999. The results obtained were then compared to the currently available summary NOV information for the same year. In addition to identifying the most common NOV's, the enhanced coding system revealed that approximately 70% of the sampled NOV's were issued for non-compliance with a specific regulation as opposed to a permit condition. Furthermore, an underlying cause of 94% of the NOV's was the failure on the part of the licensee to execute a specific task. The findings suggest that opportunities exist to improve permit holder compliance through various means, including the creation of summaries which detail specific tasks to be completed, and revising training programs with more focus on the identification and scheduling of permit-related requirements. Broad application of these results is cautioned due to the bias associated with the restricted scope of the project. PMID:11197508

  2. Tools for developing a quality management program: proactive tools (process mapping, value stream mapping, fault tree analysis, and failure mode and effects analysis).

    PubMed

    Rath, Frank

    2008-01-01

    This article examines the concepts of quality management (QM) and quality assurance (QA), as well as the current state of QM and QA practices in radiotherapy. A systematic approach incorporating a series of industrial engineering-based tools is proposed, which can be applied in health care organizations proactively to improve process outcomes, reduce risk and/or improve patient safety, improve through-put, and reduce cost. This tool set includes process mapping and process flowcharting, failure modes and effects analysis (FMEA), value stream mapping, and fault tree analysis (FTA). Many health care organizations do not have experience in applying these tools and therefore do not understand how and when to use them. As a result there are many misconceptions about how to use these tools, and they are often incorrectly applied. This article describes these industrial engineering-based tools and also how to use them, when they should be used (and not used), and the intended purposes for their use. In addition the strengths and weaknesses of each of these tools are described, and examples are given to demonstrate the application of these tools in health care settings. PMID:18406925

  3. Tools for Developing a Quality Management Program: Proactive Tools (Process Mapping, Value Stream Mapping, Fault Tree Analysis, and Failure Mode and Effects Analysis)

    SciTech Connect

    Rath, Frank

    2008-05-01

    This article examines the concepts of quality management (QM) and quality assurance (QA), as well as the current state of QM and QA practices in radiotherapy. A systematic approach incorporating a series of industrial engineering-based tools is proposed, which can be applied in health care organizations proactively to improve process outcomes, reduce risk and/or improve patient safety, improve through-put, and reduce cost. This tool set includes process mapping and process flowcharting, failure modes and effects analysis (FMEA), value stream mapping, and fault tree analysis (FTA). Many health care organizations do not have experience in applying these tools and therefore do not understand how and when to use them. As a result there are many misconceptions about how to use these tools, and they are often incorrectly applied. This article describes these industrial engineering-based tools and also how to use them, when they should be used (and not used), and the intended purposes for their use. In addition the strengths and weaknesses of each of these tools are described, and examples are given to demonstrate the application of these tools in health care settings.

  4. Fault tolerance in space-based digital signal processing and switching systems: Protecting up-link processing resources, demultiplexer, demodulator, and decoder

    NASA Technical Reports Server (NTRS)

    Redinbo, Robert

    1994-01-01

    Fault tolerance features in the first three major subsystems appearing in the next generation of communications satellites are described. These satellites will contain extensive but efficient high-speed processing and switching capabilities to support the low signal strengths associated with very small aperture terminals. The terminals' numerous data channels are combined through frequency division multiplexing (FDM) on the up-links and are protected individually by forward error-correcting (FEC) binary convolutional codes. The front-end processing resources, demultiplexer, demodulators, and FEC decoders extract all data channels which are then switched individually, multiplexed, and remodulated before retransmission to earth terminals through narrow beam spot antennas. Algorithm based fault tolerance (ABFT) techniques, which relate real number parity values with data flows and operations, are used to protect the data processing operations. The additional checking features utilize resources that can be substituted for normal processing elements when resource reconfiguration is required to replace a failed unit.

  5. Methodology for Designing Fault-Protection Software

    NASA Technical Reports Server (NTRS)

    Barltrop, Kevin; Levison, Jeffrey; Kan, Edwin

    2006-01-01

    A document describes a methodology for designing fault-protection (FP) software for autonomous spacecraft. The methodology embodies and extends established engineering practices in the technical discipline of Fault Detection, Diagnosis, Mitigation, and Recovery; and has been successfully implemented in the Deep Impact Spacecraft, a NASA Discovery mission. Based on established concepts of Fault Monitors and Responses, this FP methodology extends the notion of Opinion, Symptom, Alarm (aka Fault), and Response with numerous new notions, sub-notions, software constructs, and logic and timing gates. For example, Monitor generates a RawOpinion, which graduates into Opinion, categorized into no-opinion, acceptable, or unacceptable opinion. RaiseSymptom, ForceSymptom, and ClearSymptom govern the establishment and then mapping to an Alarm (aka Fault). Local Response is distinguished from FP System Response. A 1-to-n and n-to- 1 mapping is established among Monitors, Symptoms, and Responses. Responses are categorized by device versus by function. Responses operate in tiers, where the early tiers attempt to resolve the Fault in a localized step-by-step fashion, relegating more system-level response to later tier(s). Recovery actions are gated by epoch recovery timing, enabling strategy, urgency, MaxRetry gate, hardware availability, hazardous versus ordinary fault, and many other priority gates. This methodology is systematic, logical, and uses multiple linked tables, parameter files, and recovery command sequences. The credibility of the FP design is proven via a fault-tree analysis "top-down" approach, and a functional fault-mode-effects-and-analysis via "bottoms-up" approach. Via this process, the mitigation and recovery strategy(s) per Fault Containment Region scope (width versus depth) the FP architecture.

  6. Links between long-term and short-term rheology of the lithosphere: insights from strike-slip fault modelling

    NASA Astrophysics Data System (ADS)

    Le Pourhiet, Laetitia

    2014-05-01

    The study of geodetic data across strike-slip fault zones is believed to play a key role in our understanding of the lithosphere mechanical behaviour. InSAR and GPS measurements permits to determine more and more accurately both large and rapid co-seismic displacements and the slower deformation associated with the inter-seismic and post-seismic phases of the earthquake cycle on continents. However, no modern geodetic observation spans a complete earthquake cycle for any single fault in the world. Understanding this time variability through modelling is therefore crucial to reconstruct a global pattern. It is non trivial to compare the effective parameters retrieved from the different simple models are used to extract effective parameters from the geodetic data. Using the popular visco-elastic relaxation model reaches two paradoxes: - the lower crust must be very strong in order to fit the data long after the earthquake and very weak to fit the data during the early post-seismic period. - the retrieved a mantle lithosphere viscosity is as weak as 10^17 - 10^20 Pa.s and differ significantly from those deduced from post glacial rebound models and long term geodynamic models requirements in order to generate self consistent plate tectonics. Rather than assuming that the rheology of the lithosphere changes with time scale, it would be preferable to go on quest for an Earth's lithosphere rheological model based on some simple physics, which would be equally valid at all time scale from inter-seismic to orogeny. 3D models of long term strain localisation in wrenching context show that localisation of strain across strike slip faults modifies locally the rheological architecture of the lithosphere and lead to some sort of structural weakening. That weakening occurs because as strain localises the "jelly sandwich" type lithosphere evolves self-consistently into a "banana split" type rheological structure. This strain localisation process is very efficient when the lower

  7. Field-based Digital Mapping of the November 3, 2002 Susitna Glacier Fault Rupture - Integrating remotely sensed data, GIS, and photo-linking technologies

    NASA Astrophysics Data System (ADS)

    Staft, L. A.; Craw, P. A.

    2003-12-01

    In July 2003, the U.S. Geological Survey and the Alaska Division of Geological & Geophysical Surveys (DGGS) conducted field studies on the Susitna Glacier Fault (SGF), which ruptured on November 2002 during the M 7.9 Denali fault earthquake. The DGGS assumed responsibility for Geographic Information System (GIS) and data management, integrating remotely sensed imagery, GPS data, GIS, and photo-linking software to aid in planning and documentation of fieldwork. Pre-field preparation included acquisition of over 150, 1:6,000-scale true-color aerial photographs taken shortly after the SGF rupture, 1:63,360-scale color-infrared (CIR) 1980 aerial photographs, and digital geographic information including a 15-minute Digital Elevation Model (DEM), 1:63,360-scale Digital Raster Graphics (DRG), and LandSat 7 satellite imagery. Using Orthomapper software, we orthorectified and mosaiced seven CIRs, creating a georeferenced, digital photo base of the study area. We used this base to reference the 1:6,000-scale aerial photography, to view locations of field sites downloaded from GPS, and to locate linked digital photographs that were taken in the field. Photos were linked using GPS-Photo Link software which "links" digital photographs to GPS data by correlating time stamps from the GPS track log or waypoint file to those of the digital photos, using the correlated point data to create a photo location ESRI shape file. When this file is opened in ArcMap or ArcView with the GPS-Photo Link utility enabled, a thumbnail image of the linked photo appears when the cursor is over the photo location. Viewing photographed features and scarp-profile locations in GIS allowed us to evaluate data coverage of the rupture daily. Using remotely sensed imagery in the field with GIS gave us the versatility to display data on a variety of bases, including topographic maps, air photos, and satellite imagery, during fieldwork. In the field, we downloaded, processed, and reviewed data as it was

  8. Locating hardware faults in a parallel computer

    DOEpatents

    Archer, Charles J.; Megerian, Mark G.; Ratterman, Joseph D.; Smith, Brian E.

    2010-04-13

    Locating hardware faults in a parallel computer, including defining within a tree network of the parallel computer two or more sets of non-overlapping test levels of compute nodes of the network that together include all the data communications links of the network, each non-overlapping test level comprising two or more adjacent tiers of the tree; defining test cells within each non-overlapping test level, each test cell comprising a subtree of the tree including a subtree root compute node and all descendant compute nodes of the subtree root compute node within a non-overlapping test level; performing, separately on each set of non-overlapping test levels, an uplink test on all test cells in a set of non-overlapping test levels; and performing, separately from the uplink tests and separately on each set of non-overlapping test levels, a downlink test on all test cells in a set of non-overlapping test levels.

  9. Differential Growth Responses to Water Balance of Coexisting Deciduous Tree Species Are Linked to Wood Density in a Bolivian Tropical Dry Forest

    PubMed Central

    Mendivelso, Hooz A.; Camarero, J. Julio; Royo Obregón, Oriol; Gutiérrez, Emilia; Toledo, Marisol

    2013-01-01

    A seasonal period of water deficit characterizes tropical dry forests (TDFs). There, sympatric tree species exhibit a diversity of growth rates, functional traits, and responses to drought, suggesting that each species may possess different strategies to grow under different conditions of water availability. The evaluation of the long-term growth responses to changes in the soil water balance should provide an understanding of how and when coexisting tree species respond to water deficit in TDFs. Furthermore, such differential growth responses may be linked to functional traits related to water storage and conductance. We used dendrochronology and climate data to retrospectively assess how the radial growth of seven coexisting deciduous tree species responded to the seasonal soil water balance in a Bolivian TDF. Linear mixed-effects models were used to quantify the relationships between basal area increment and seasonal water balance. We related these relationships with wood density and sapwood production to assess if they affect the growth responses to climate. The growth of all species responded positively to water balance during the wet season, but such responses differed among species as a function of their wood density. For instance, species with a strong growth response to water availability averaged a low wood density which may facilitate the storage of water in the stem. By contrast, species with very dense wood were those whose growth was less sensitive to water availability. Coexisting tree species thus show differential growth responses to changes in soil water balance during the wet season. Our findings also provide a link between wood density, a trait related to the ability of trees to store water in the stem, and wood formation in response to water availability. PMID:24116001

  10. Differential growth responses to water balance of coexisting deciduous tree species are linked to wood density in a Bolivian tropical dry forest.

    PubMed

    Mendivelso, Hooz A; Camarero, J Julio; Royo Obregón, Oriol; Gutiérrez, Emilia; Toledo, Marisol

    2013-01-01

    A seasonal period of water deficit characterizes tropical dry forests (TDFs). There, sympatric tree species exhibit a diversity of growth rates, functional traits, and responses to drought, suggesting that each species may possess different strategies to grow under different conditions of water availability. The evaluation of the long-term growth responses to changes in the soil water balance should provide an understanding of how and when coexisting tree species respond to water deficit in TDFs. Furthermore, such differential growth responses may be linked to functional traits related to water storage and conductance. We used dendrochronology and climate data to retrospectively assess how the radial growth of seven coexisting deciduous tree species responded to the seasonal soil water balance in a Bolivian TDF. Linear mixed-effects models were used to quantify the relationships between basal area increment and seasonal water balance. We related these relationships with wood density and sapwood production to assess if they affect the growth responses to climate. The growth of all species responded positively to water balance during the wet season, but such responses differed among species as a function of their wood density. For instance, species with a strong growth response to water availability averaged a low wood density which may facilitate the storage of water in the stem. By contrast, species with very dense wood were those whose growth was less sensitive to water availability. Coexisting tree species thus show differential growth responses to changes in soil water balance during the wet season. Our findings also provide a link between wood density, a trait related to the ability of trees to store water in the stem, and wood formation in response to water availability. PMID:24116001

  11. Fault slip distribution and fault roughness

    NASA Astrophysics Data System (ADS)

    Candela, Thibault; Renard, François; Schmittbuhl, Jean; Bouchon, Michel; Brodsky, Emily E.

    2011-11-01

    We present analysis of the spatial correlations of seismological slip maps and fault topography roughness, illuminating their identical self-affine exponent. Though the complexity of the coseismic spatial slip distribution can be intuitively associated with geometrical or stress heterogeneities along the fault surface, this has never been demonstrated. Based on new measurements of fault surface topography and on statistical analyses of kinematic inversions of slip maps, we propose a model, which quantitatively characterizes the link between slip distribution and fault surface roughness. Our approach can be divided into two complementary steps: (i) Using a numerical computation, we estimate the influence of fault roughness on the frictional strength (pre-stress). We model a fault as a rough interface where elastic asperities are squeezed. The Hurst exponent ?, characterizing the self-affinity of the frictional strength field, approaches ?, where ? is the roughness exponent of the fault surface in the direction of slip. (ii) Using a quasi-static model of fault propagation, which includes the effect of long-range elastic interactions and spatial correlations in the frictional strength, the spatial slip correlation is observed to scale as ?, where ? represents the Hurst exponent of the slip distribution. Under the assumption that the origin of the spatial fluctuations in frictional strength along faults is the elastic squeeze of fault asperities, we show that self-affine geometrical properties of fault surface roughness control slip correlations and that ?. Given that ? for a wide range of faults (various accumulated displacement, host rock and slip movement), we predict that ?. Even if our quasi-static fault model is more relevant for creeping faults, the spatial slip correlations observed are consistent with those of seismological slip maps. A consequence is that the self-affinity property of slip roughness may be explained by fault geometry without considering

  12. Linking Slope Sedimentation, Gradient, Morphology, and Active Faulting: An Integrated Example from the Palos Verdes Slope, Southern California Borderland

    NASA Astrophysics Data System (ADS)

    Maier, K. L.; Brothers, D. S.; Paull, C. K.; McGann, M.; Caress, D. W.; Conrad, J. E.

    2015-12-01

    Seafloor gradient variations associated with restraining and releasing bends along the active (1.6-1.9 mm/yr) right-lateral Palos Verdes Fault appear to control Holocene sediment thickness, depositional environment, and morphodynamic processes along a section of the continental slope offshore Los Angeles, California. Autonomous underwater mapping vehicle (AUV), remotely operated vehicle (ROV), and shipboard methods were used to acquire a dense grid of high-resolution chirp profiles (150 m line spacing; 11 cm vertical resolution), multibeam bathymetry (2 m grid), and targeted sediment core samples (<2 m length). Detailed interpretation of Holocene deposits in the chirp profiles combined with radiocarbon dating and laser particle-size analyses allow correlation of Holocene sediment thickness and seafloor gradient with sediment gravity flow deposits. Holocene down-slope flows appear to have been generated by mass wasting processes, primarily on the upper slope (~100-200 m water depth) where shipboard multibeam bathymetry reveals submarine landslide headwall scarps in a region that has been isolated from terrigenous sediment sources throughout the Holocene. Submarine landslides appear to have transformed into sandy and organic-rich turbidity currents that created up-slope migrating sediment waves, a low relief (<5 m) fault-bounded channel, and a series of depocenters. A down-slope gradient profile and a Holocene isopach down-slope profile show that the primary depocenter occurs within a small pull-apart basin associated with a decrease in seafloor gradient of ~1.5°. Holocene sediment-flow deposits vary in number, thickness, and character with subtle changes in seabed gradient (<0.5°) and depositional environment. These results help quantify morphodynamic sensitivity to seafloor gradients and have implications for down-slope flow dynamics, deep-water depositional architecture, Holocene sediment, nutrient, and contaminant transport, and turbidite paleoseismology along

  13. Tropical rain forest tree growth and atmospheric carbon dynamics linked to interannual temperature variation during 1984-2000.

    PubMed

    Clark, D A; Piper, S C; Keeling, C D; Clark, D B

    2003-05-13

    During 1984-2000, canopy tree growth in old-growth tropical rain forest at La Selva, Costa Rica, varied >2-fold among years. The trees' annual diameter increments in this 16-yr period were negatively correlated with annual means of daily minimum temperatures. The tree growth variations also negatively covaried with the net carbon exchange of the terrestrial tropics as a whole, as inferred from nearly pole-to-pole measurements of atmospheric carbon dioxide (CO(2)) interpreted by an inverse tracer-transport model. Strong reductions in tree growth and large inferred tropical releases of CO(2) to the atmosphere occurred during the record-hot 1997-1998 El Niño. These and other recent findings are consistent with decreased net primary production in tropical forests in the warmer years of the last two decades. As has been projected by recent process model studies, such a sensitivity of tropical forest productivity to on-going climate change would accelerate the rate of atmospheric CO(2) accumulation. PMID:12719545

  14. Using minimal spanning trees to compare the reliability of network topologies

    NASA Technical Reports Server (NTRS)

    Leister, Karen J.; White, Allan L.; Hayhurst, Kelly J.

    1990-01-01

    Graph theoretic methods are applied to compute the reliability for several types of networks of moderate size. The graph theory methods used are minimal spanning trees for networks with bi-directional links and the related concept of strongly connected directed graphs for networks with uni-directional links. A comparison is conducted of ring networks and braided networks. The case is covered where just the links fail and the case where both links and nodes fail. Two different failure modes for the links are considered. For one failure mode, the link no longer carries messages. For the other failure mode, the link delivers incorrect messages. There is a description and comparison of link-redundancy versus path-redundancy as methods to achieve reliability. All the computations are carried out by means of a fault tree program.

  15. Missing Rings in Pinus halepensis - The Missing Link to Relate the Tree-Ring Record to Extreme Climatic Events.

    PubMed

    Novak, Klemen; de Luis, Martin; Saz, Miguel A; Longares, Luis A; Serrano-Notivoli, Roberto; Raventós, Josep; Čufar, Katarina; Gričar, Jožica; Di Filippo, Alfredo; Piovesan, Gianluca; Rathgeber, Cyrille B K; Papadopoulos, Andreas; Smith, Kevin T

    2016-01-01

    Climate predictions for the Mediterranean Basin include increased temperatures, decreased precipitation, and increased frequency of extreme climatic events (ECE). These conditions are associated with decreased tree growth and increased vulnerability to pests and diseases. The anatomy of tree rings responds to these environmental conditions. Quantitatively, the width of a tree ring is largely determined by the rate and duration of cell division by the vascular cambium. In the Mediterranean climate, this division may occur throughout almost the entire year. Alternatively, cell division may cease during relatively cool and dry winters, only to resume in the same calendar year with milder temperatures and increased availability of water. Under particularly adverse conditions, no xylem may be produced in parts of the stem, resulting in a missing ring (MR). A dendrochronological network of Pinus halepensis was used to determine the relationship of MR to ECE. The network consisted of 113 sites, 1,509 trees, 2,593 cores, and 225,428 tree rings throughout the distribution range of the species. A total of 4,150 MR were identified. Binomial logistic regression analysis determined that MR frequency increased with increased cambial age. Spatial analysis indicated that the geographic areas of south-eastern Spain and northern Algeria contained the greatest frequency of MR. Dendroclimatic regression analysis indicated a non-linear relationship of MR to total monthly precipitation and mean temperature. MR are strongly associated with the combination of monthly mean temperature from previous October till current February and total precipitation from previous September till current May. They are likely to occur with total precipitation lower than 50 mm and temperatures higher than 5°C. This conclusion is global and can be applied to every site across the distribution area. Rather than simply being a complication for dendrochronology, MR formation is a fundamental response of trees

  16. Missing Rings in Pinus halepensis – The Missing Link to Relate the Tree-Ring Record to Extreme Climatic Events

    PubMed Central

    Novak, Klemen; de Luis, Martin; Saz, Miguel A.; Longares, Luis A.; Serrano-Notivoli, Roberto; Raventós, Josep; Čufar, Katarina; Gričar, Jožica; Di Filippo, Alfredo; Piovesan, Gianluca; Rathgeber, Cyrille B. K.; Papadopoulos, Andreas; Smith, Kevin T.

    2016-01-01

    Climate predictions for the Mediterranean Basin include increased temperatures, decreased precipitation, and increased frequency of extreme climatic events (ECE). These conditions are associated with decreased tree growth and increased vulnerability to pests and diseases. The anatomy of tree rings responds to these environmental conditions. Quantitatively, the width of a tree ring is largely determined by the rate and duration of cell division by the vascular cambium. In the Mediterranean climate, this division may occur throughout almost the entire year. Alternatively, cell division may cease during relatively cool and dry winters, only to resume in the same calendar year with milder temperatures and increased availability of water. Under particularly adverse conditions, no xylem may be produced in parts of the stem, resulting in a missing ring (MR). A dendrochronological network of Pinus halepensis was used to determine the relationship of MR to ECE. The network consisted of 113 sites, 1,509 trees, 2,593 cores, and 225,428 tree rings throughout the distribution range of the species. A total of 4,150 MR were identified. Binomial logistic regression analysis determined that MR frequency increased with increased cambial age. Spatial analysis indicated that the geographic areas of south-eastern Spain and northern Algeria contained the greatest frequency of MR. Dendroclimatic regression analysis indicated a non-linear relationship of MR to total monthly precipitation and mean temperature. MR are strongly associated with the combination of monthly mean temperature from previous October till current February and total precipitation from previous September till current May. They are likely to occur with total precipitation lower than 50 mm and temperatures higher than 5°C. This conclusion is global and can be applied to every site across the distribution area. Rather than simply being a complication for dendrochronology, MR formation is a fundamental response of trees

  17. A link between hurricane-induced tree sprouting, high stem density and short canopy in tropical dry forest.

    PubMed

    Van Bloem, Skip J; Murphy, Peter G; Lugo, Ariel E

    2007-03-01

    The physiognomy of Caribbean dry forest is shorter, denser and contains a greater proportion of multi-stemmed trees than other neotropical dry forests. Our previous research, conducted after Hurricane Georges in 1998, has shown that dry forest trees sprout near the base following hurricane disturbance, even if the trees have not incurred structural damage. However, for these hurricane-induced sprouts to contribute to the physiognomy of the forest, they must grow and survive. We followed sprout dynamics and stem mortality on 1,407 stems from 1998, after Hurricane Georges, until 2005. The number of surviving sprouts and the proportion of sprouting stems decreased during the 7-year period, but the sprouting rate was still 3-fold higher and the proportion of sprouting stems 5-fold higher than before the hurricane. Mortality of non-sprouting stems (15.4%) was about the same as for sprouting stems (13.9%) after 7 years. The mean length of the dominant sprout surpassed 1.6 m by 2005, with over 13% of the dominant sprouts reaching subcanopy height. Sprout growth and survival varied among species. These results demonstrate that, despite some thinning, hurricane-induced sprouts survive and grow and that the unique physiognomic characteristic of Caribbean dry forests is related to hurricane disturbance. PMID:17241989

  18. Faults Discovery By Using Mined Data

    NASA Technical Reports Server (NTRS)

    Lee, Charles

    2005-01-01

    Fault discovery in the complex systems consist of model based reasoning, fault tree analysis, rule based inference methods, and other approaches. Model based reasoning builds models for the systems either by mathematic formulations or by experiment model. Fault Tree Analysis shows the possible causes of a system malfunction by enumerating the suspect components and their respective failure modes that may have induced the problem. The rule based inference build the model based on the expert knowledge. Those models and methods have one thing in common; they have presumed some prior-conditions. Complex systems often use fault trees to analyze the faults. Fault diagnosis, when error occurs, is performed by engineers and analysts performing extensive examination of all data gathered during the mission. International Space Station (ISS) control center operates on the data feedback from the system and decisions are made based on threshold values by using fault trees. Since those decision-making tasks are safety critical and must be done promptly, the engineers who manually analyze the data are facing time challenge. To automate this process, this paper present an approach that uses decision trees to discover fault from data in real-time and capture the contents of fault trees as the initial state of the trees.

  19. High-resolution shear-wave seismics across the Carlsberg Fault zone south of Copenhagen - Implications for linking Mesozoic and late Pleistocene structures

    NASA Astrophysics Data System (ADS)

    Kammann, Janina; Hübscher, Christian; Boldreel, Lars Ole; Nielsen, Lars

    2016-07-01

    The Carlsberg Fault zone (CFZ) is a NNW-SSE striking structure close to the transition zone between the Danish Basin and the Baltic Shield. We examine the fault evolution by combining very-high-resolution onshore shear-wave seismic data, one conventional onshore seismic profile and marine reflection seismic profiles. The faulting geometry indicates a strong influence of Triassic subsidence and rifting in the Central European Basin System. Growth strata within the CFZ surrounding Höllviken Graben reveal syntectonic sedimentation in the Lower Triassic, indicating the opening to be a result of Triassic rifting. In the Upper Cretaceous growth faulting documents continued rifting. These findings contrast the Late Cretaceous to Paleogene inversion tectonics in neighboring structures, such as the Tornquist Zone. The high-resolution shear-wave seismic method was used to image faulting in Quaternary and Danian layers in the CFZ. The portable compact vibrator source ElViS III S8 was used to acquire a 1150 m long seismic section on the island Amager, south of Copenhagen. The shallow subsurface in the investigation area is dominated by Quaternary glacial till deposits in the upper 5-11 m and Danian limestone below. In the shear-wave profile, we imaged the uppermost 30 m of the western part of CFZ. The complex fault zone comprises normal block faults and one reverse block fault. The observed faults cut through the Danian as well as the Quaternary overburden. Hence, there are strong indicators for ongoing faulting, like mapped faulting in Quaternary sediments and ongoing subsidence of the eastern block of the CFZ as interpreted by other authors. The lack of earthquakes localized in the fault zone implies that either the frequency of occurring earthquakes is too small to be recorded in the observation time-span, or that the movement of the shallow sub-surface layers may be due to other sources than purely tectonic processes.

  20. High-resolution time series of vessel density in Kenyan mangrove trees reveal a link with climate.

    PubMed

    Verheyden, Anouk; De Ridder, Fjo; Schmitz, Nele; Beeckman, Hans; Koedam, Nico

    2005-08-01

    Tropical trees are often excluded from dendrochronological investigations because of a lack of distinct growth ring boundaries, causing a gap in paleoclimate reconstructions from tropical regions. The potential use of time series of vessel features (density, diameter, surface area and hydraulic conductivity) combined with spectral analysis as a proxy for environmental conditions in the mangrove Rhizophora mucronata was investigated. Intra-annual differences in the vessel features revealed a trade-off between hydraulic efficiency (large vessels) during the rainy season and hydraulic safety (small, more numerous vessels) during the dry season. In addition to the earlywood-latewood variations, a semiannual signal was discovered in the vessel density and diameters after Fourier transformation. The similarity in the Fourier spectra of the vessel features and the climate data, in particular mean relative humidity and precipitation, provides strong evidence for a climatic driving force for the intra-annual variability of the vessel features. The high-resolution approach used in this study, in combination with spectral analysis, may have great potential for the study of climate variability in tropical regions. PMID:15998396

  1. Computer hardware fault administration

    DOEpatents

    Archer, Charles J.; Megerian, Mark G.; Ratterman, Joseph D.; Smith, Brian E.

    2010-09-14

    Computer hardware fault administration carried out in a parallel computer, where the parallel computer includes a plurality of compute nodes. The compute nodes are coupled for data communications by at least two independent data communications networks, where each data communications network includes data communications links connected to the compute nodes. Typical embodiments carry out hardware fault administration by identifying a location of a defective link in the first data communications network of the parallel computer and routing communications data around the defective link through the second data communications network of the parallel computer.

  2. Linking Xylem Hydraulic Conductivity and Vulnerability to the Leaf Economics Spectrum—A Cross-Species Study of 39 Evergreen and Deciduous Broadleaved Subtropical Tree Species

    PubMed Central

    Kröber, Wenzel; Zhang, Shouren; Ehmig, Merten; Bruelheide, Helge

    2014-01-01

    While the fundamental trade-off in leaf traits related to carbon capture as described by the leaf economics spectrum is well-established among plant species, the relationship of the leaf economics spectrum to stem hydraulics is much less known. Since carbon capture and transpiration are coupled, a close connection between leaf traits and stem hydraulics should be expected. We thus asked whether xylem traits that describe drought tolerance and vulnerability to cavitation are linked to particular leaf traits. We assessed xylem vulnerability, using the pressure sleeve technique, and anatomical xylem characteristics in 39 subtropical tree species grown under common garden conditions in the BEF-China experiment and tested for correlations with traits related to the leaf economics spectrum as well as to stomatal control, including maximum stomatal conductance, vapor pressure deficit at maximum stomatal conductance and vapor pressure deficit at which stomatal conductance is down-regulated. Our results revealed that specific xylem hydraulic conductivity and cavitation resistance were closely linked to traits represented in the leaf economic spectrum, in particular to leaf nitrogen concentration, as well as to log leaf area and leaf carbon to nitrogen ratio but not to any parameter of stomatal conductance. The study highlights the potential use of well-known leaf traits from the leaf economics spectrum to predict plant species' drought resistance. PMID:25423316

  3. Real-time monitoring and fault locating using amplified spontaneous emission noise reflection for tree-structured Ethernet passive optical networks

    NASA Astrophysics Data System (ADS)

    Naim, Nani Fadzlina; Ab-Rahman, Mohammad Syuhaimi; Kamaruddin, Nur Hasiba; Bakar, Ahmad Ashrif A.

    2013-09-01

    Nowadays, optical networks are becoming dense while detecting faulty branches in the tree-structured networks has become problematic. Conventional methods are inconvenient as they require an engineer to visit the failure site to check the optical fiber using an optical time-domain reflectometer. An innovative monitoring technique for tree-structured network topology in Ethernet passive optical networks (EPONs) by using the erbium-doped fiber amplifier to amplify the traffic signal is demonstrated, and in the meantime, a residual amplified spontaneous emission spectrum is used as the input signal to monitor the optical cable from the central office. Fiber Bragg gratings with distinct center wavelengths are employed to reflect the monitoring signals. Faulty branches of the tree-structured EPONs can be identified using a simple and low-cost receiver. We will show that this technique is capable of providing monitoring range up to 32 optical network units using a power meter with a sensitivity of -65 dBm while maintaining the bit error rate of 10-13.

  4. Fault detection and fault tolerance in robotics

    NASA Technical Reports Server (NTRS)

    Visinsky, Monica; Walker, Ian D.; Cavallaro, Joseph R.

    1992-01-01

    Robots are used in inaccessible or hazardous environments in order to alleviate some of the time, cost and risk involved in preparing men to endure these conditions. In order to perform their expected tasks, the robots are often quite complex, thus increasing their potential for failures. If men must be sent into these environments to repair each component failure in the robot, the advantages of using the robot are quickly lost. Fault tolerant robots are needed which can effectively cope with failures and continue their tasks until repairs can be realistically scheduled. Before fault tolerant capabilities can be created, methods of detecting and pinpointing failures must be perfected. This paper develops a basic fault tree analysis of a robot in order to obtain a better understanding of where failures can occur and how they contribute to other failures in the robot. The resulting failure flow chart can also be used to analyze the resiliency of the robot in the presence of specific faults. By simulating robot failures and fault detection schemes, the problems involved in detecting failures for robots are explored in more depth.

  5. Impact of fault models on probabilistic seismic hazard assessment: the example of the West Corinth rift.

    NASA Astrophysics Data System (ADS)

    Chartier, Thomas; Scotti, Oona; Boiselet, Aurelien; Lyon-Caen, Hélène

    2016-04-01

    Including faults in probabilistic seismic hazard assessment tends to increase the degree of uncertainty in the results due to the intrinsically uncertain nature of the fault data. This is especially the case in the low to moderate seismicity regions of Europe, where slow slipping faults are difficult to characterize. In order to better understand the key parameters that control the uncertainty in the fault-related hazard computations, we propose to build an analytic tool that provides a clear link between the different components of the fault-related hazard computations and their impact on the results. This will allow identifying the important parameters that need to be better constrained in order to reduce the resulting uncertainty in hazard and also provide a more hazard-oriented strategy for collecting relevant fault parameters in the field. The tool will be illustrated through the example of the West Corinth rifts fault-models. Recent work performed in the gulf has shown the complexity of the normal faulting system that is accommodating the extensional deformation of the rift. A logic-tree approach is proposed to account for this complexity and the multiplicity of scientifically defendable interpretations. At the nodes of the logic tree, different options that could be considered at each step of the fault-related seismic hazard will be considered. The first nodes represent the uncertainty in the geometries of the faults and their slip rates, which can derive from different data and methodologies. The subsequent node explores, for a given geometry/slip rate of faults, different earthquake rupture scenarios that may occur in the complex network of faults. The idea is to allow the possibility of several faults segments to break together in a single rupture scenario. To build these multiple-fault-segment scenarios, two approaches are considered: one based on simple rules (i.e. minimum distance between faults) and a second one that relies on physically

  6. Linking the isotopic composition of monthly precipitation, cave drip water and tree ring cellulose - 15 years of monitoring and data-model comparison

    NASA Astrophysics Data System (ADS)

    Labuhn, Inga; Genty, Dominique; Daux, Valérie; Bourges, François; Hoffmann, Georg

    2013-04-01

    The isotopic composition of proxies used for palaeoclimate reconstruction, like tree ring cellulose or speleothem calcite, is controlled to a large extent by the isotopic composition of precipitation. In order to calibrate and interpret these proxies in terms of climate, it is necessary to study water isotopes in rainfall and their link with the proxies' source water. We present 10 to 15-year series of stable hydrogen and oxygen isotopes in monthly precipitation from three sites in the south of France, along with corresponding REMOiso model simulations, a monitoring of cave drip water from two of these sites (Villars cave in the south-west and Chauvet cave in the south-east), as well as measurements of oxygen isotopes in tree ring cellulose from oak trees growing in the same area. The isotopic composition of monthly precipitation at the three sites displays a typical annual cycle. At the south-west sites, under Atlantic influence, the interannual variability is much more pronounced during the winter months than during the summer, whereas the south-eastern Mediterranean site shows the same variability throughout the year. The model simulations are able to reproduce the annual cycle of monthly precipitation δ18O as well as the intra-seasonal variability. Compared to the data, however, the modelled average isotopic values and the seasonal amplitude are overestimated. Correlations between temperature and precipitation δ18O are generally weak at all our sites, on both the monthly and the annual scale, even when using temperature averages weighted by the amount of precipitation. Consequently, a proxy which is controlled by the δ18O of precipitation cannot be directly interpreted in terms of temperature in this region. The isotopic composition of cave drip water in both caves remains stable throughout the monitoring period. By calculating different weighted averages of precipitation δ18O for time periods ranging from months to years, we demonstrate that the cave drip

  7. Zipper Faults

    NASA Astrophysics Data System (ADS)

    Platt, J. P.; Passchier, C. W.

    2015-12-01

    Intersecting simultaneously active pairs of faults with different orientations and opposing slip sense ("conjugate faults") present geometrical and kinematic problems. Such faults rarely offset each other, even when they have displacements of many km. A simple solution to the problem is that the two faults merge, either zippering up or unzippering, depending on the relationship between the angle of intersection and the slip senses. A widely recognized example of this is the so-called blind front developed in some thrust belts, where a backthrust branches off a decollement surface at depth. The decollement progressively unzippers, so that its hanging wall becomes the hanging wall of the backthrust, and its footwall becomes the footwall of the active decollement. The opposite situation commonly arises in core complexes, where conjugate low-angle normal faults merge to form a single detachment; in this case the two faults zipper up. Analogous situations may arise for conjugate pairs of strike-slip faults. We present kinematic and geometrical analyses of the Garlock and San Andreas faults in California, the Najd fault system in Saudi Arabia, the North and East Anatolian faults, the Karakoram and Altyn Tagh faults in Tibet, and the Tonale and Guidicarie faults in the southern Alps, all of which appear to have undergone zippering over distances of several tens to hundreds of km. The zippering process may produce complex and significant patterns of strain and rotation in the surrounding rocks, particularly if the angle between the zippered faults is large. A zippering fault may be inactive during active movement on the intersecting faults, or it may have a slip rate that differs from either fault. Intersecting conjugate ductile shear zones behave in the same way on outcrop and micro-scales.

  8. Fossil tubeworms link coastal uplift of the northern Noto Peninsula to rupture of the Wajima-oki fault in AD 1729

    NASA Astrophysics Data System (ADS)

    Hamada, Masaaki; Hiramatsu, Yoshihiro; Oda, Mitsuhiro; Yamaguchi, Hiroyuki

    2016-02-01

    The active fault zone on the seafloor off the northern coast of the Noto Peninsula of central Japan is divided into four segments from west to east: Monzen-oki, Saruyama-oki, Wajima-oki, and Suzu-oki. To examine the latest event that occurred in these segments, we investigated the dates and elevations of fossilized intertidal tubeworms along the northern coast of the Noto Peninsula, located on the hanging-wall sides of the faults, using radioactive carbon dating and global positioning measurements. For each fossil, we calculated the difference between the past and present elevation, thereby estimating the elevation of the sea level at the date of the fossil, using a curve for sea level change. This calculation provided us with the elevation change at each site. The vertical changes estimated from the elevations and ages of the intertidal tubeworms revealed that the coastal emergence probably occurred between 1600 and 1800 AD. This area of coastal emergence lies adjacent to active faults within the Wajima-oki segment. A model for rectangular faults with three fault planes and a moment magnitude of 6.6 for the Wajima-oki segment reproduced the observed pattern of coastal emergence well. Only one damaging earthquake, that in 1729, is known to have occurred in this part of the northern Noto Peninsula between 1600 and 1800 AD, and there has not been one since 1800 AD. The slip distribution of the fault predicted by the model is consistent with the distribution of shaking-related damage documented in 1729. We conclude that rupture of the Wajima-oki segment caused the 1729 earthquake.

  9. Fault finder

    DOEpatents

    Bunch, Richard H.

    1986-01-01

    A fault finder for locating faults along a high voltage electrical transmission line. Real time monitoring of background noise and improved filtering of input signals is used to identify the occurrence of a fault. A fault is detected at both a master and remote unit spaced along the line. A master clock synchronizes operation of a similar clock at the remote unit. Both units include modulator and demodulator circuits for transmission of clock signals and data. All data is received at the master unit for processing to determine an accurate fault distance calculation.

  10. Fault diagnosis

    NASA Technical Reports Server (NTRS)

    Abbott, Kathy

    1990-01-01

    The objective of the research in this area of fault management is to develop and implement a decision aiding concept for diagnosing faults, especially faults which are difficult for pilots to identify, and to develop methods for presenting the diagnosis information to the flight crew in a timely and comprehensible manner. The requirements for the diagnosis concept were identified by interviewing pilots, analyzing actual incident and accident cases, and examining psychology literature on how humans perform diagnosis. The diagnosis decision aiding concept developed based on those requirements takes abnormal sensor readings as input, as identified by a fault monitor. Based on these abnormal sensor readings, the diagnosis concept identifies the cause or source of the fault and all components affected by the fault. This concept was implemented for diagnosis of aircraft propulsion and hydraulic subsystems in a computer program called Draphys (Diagnostic Reasoning About Physical Systems). Draphys is unique in two important ways. First, it uses models of both functional and physical relationships in the subsystems. Using both models enables the diagnostic reasoning to identify the fault propagation as the faulted system continues to operate, and to diagnose physical damage. Draphys also reasons about behavior of the faulted system over time, to eliminate possibilities as more information becomes available, and to update the system status as more components are affected by the fault. The crew interface research is examining display issues associated with presenting diagnosis information to the flight crew. One study examined issues for presenting system status information. One lesson learned from that study was that pilots found fault situations to be more complex if they involved multiple subsystems. Another was pilots could identify the faulted systems more quickly if the system status was presented in pictorial or text format. Another study is currently under way to

  11. An in situ approach to detect tree root ecology: linking ground-penetrating radar imaging to isotope-derived water acquisition zones

    PubMed Central

    Isaac, Marney E; Anglaaere, Luke C N

    2013-01-01

    Tree root distribution and activity are determinants of belowground competition. However, studying root response to environmental and management conditions remains logistically challenging. Methodologically, nondestructive in situ tree root ecology analysis has lagged. In this study, we tested a nondestructive approach to determine tree coarse root architecture and function of a perennial tree crop, Theobroma cacao L., at two edaphically contrasting sites (sandstone and phyllite–granite derived soils) in Ghana, West Africa. We detected coarse root vertical distribution using ground-penetrating radar and root activity via soil water acquisition using isotopic matching of δ18O plant and soil signatures. Coarse roots were detected to a depth of 50 cm, however, intraspecifc coarse root vertical distribution was modified by edaphic conditions. Soil δ18O isotopic signature declined with depth, providing conditions for plant–soil δ18O isotopic matching. This pattern held only under sandstone conditions where water acquisition zones were identifiably narrow in the 10–20 cm depth but broader under phyllite–granite conditions, presumably due to resource patchiness. Detected coarse root count by depth and measured fine root density were strongly correlated as were detected coarse root count and identified water acquisition zones, thus validating root detection capability of ground-penetrating radar, but exclusively on sandstone soils. This approach was able to characterize trends between intraspecific root architecture and edaphic-dependent resource availability, however, limited by site conditions. This study successfully demonstrates a new approach for in situ root studies that moves beyond invasive point sampling to nondestructive detection of root architecture and function. We discuss the transfer of such an approach to answer root ecology questions in various tree-based landscapes. PMID:23762519

  12. Fault mechanics

    SciTech Connect

    Segall, P. )

    1991-01-01

    Recent observational, experimental, and theoretical modeling studies of fault mechanics are discussed in a critical review of U.S. research from the period 1987-1990. Topics examined include interseismic strain accumulation, coseismic deformation, postseismic deformation, and the earthquake cycle; long-term deformation; fault friction and the instability mechanism; pore pressure and normal stress effects; instability models; strain measurements prior to earthquakes; stochastic modeling of earthquakes; and deep-focus earthquakes. Maps, graphs, and a comprehensive bibliography are provided. 220 refs.

  13. SIGPI. Fault Tree Cut Set System Performance

    SciTech Connect

    Patenaude, C.J.

    1992-01-14

    SIGPI computes the probabilistic performance of complex systems by combining cut set or other binary product data with probability information on each basic event. SIGPI is designed to work with either coherent systems, where the system fails when certain combinations of components fail, or noncoherent systems, where at least one cut set occurs only if at least one component of the system is operating properly. The program can handle conditionally independent components, dependent components, or a combination of component types and has been used to evaluate responses to environmental threats and seismic events. The three data types that can be input are cut set data in disjoint normal form, basic component probabilities for independent basic components, and mean and covariance data for statistically dependent basic components.

  14. SIGPI. Fault Tree Cut Set System Performance

    SciTech Connect

    Patenaude, C.J.

    1992-01-13

    SIGPI computes the probabilistic performance of complex systems by combining cut set or other binary product data with probability information on each basic event. SIGPI is designed to work with either coherent systems, where the system fails when certain combinations of components fail, or noncoherent systems, where at least one cut set occurs only if at least one component of the system is operating properly. The program can handle conditionally independent components, dependent components, or a combination of component types and has been used to evaluate responses to environmental threats and seismic events. The three data types that can be input are cut set data in disjoint normal form, basic component probabilities for independent basic components, and mean and covariance data for statistically dependent basic components.

  15. Fault Tree Cut Set System Performance.

    Energy Science and Technology Software Center (ESTSC)

    2000-02-21

    Version 00 SIGPI computes the probabilistic performance of complex systems by combining cut set or other binary product data with probability information on each basic event. SIGPI is designed to work with either coherent systems, where the system fails when certain combinations of components fail, or noncoherent systems, where at least one cut set occurs only if at least one component of the system is operating properly. The program can handle conditionally independent components, dependentmore » components, or a combination of component types and has been used to evaluate responses to environmental threats and seismic events. The three data types that can be input are cut set data in disjoint normal form, basic component probabilities for independent basic components, and mean and covariance data for statistically dependent basic components.« less

  16. Polyscale, polymodal fault geometries: evolution and predictive capability

    NASA Astrophysics Data System (ADS)

    Blenkinsop, T. G.; Carvell, J.; Clarke, G.; Tonelli, M.

    2012-12-01

    The Late Permian Rangal coal measures on the edge of the Nebo synclinorium in the Bowen basin, NE Queensland, Australia, are cut by normal faults. Mining operations allow 13 faults to be mapped in some detail to depths of 200m. These faults cut Tertiary intrusions and a reverse fault as well as the coal seams, and show no obvious signs of reactivation. The steeply dipping faults are clustered into groups of two to four, separated by hundreds of meters. The faults trend ENE and NE; both trends of faults dip in both directions, defining a quadrimodal geometry. The odd axis construction for these faults suggests that vertical shortening was accompanied by horizontal extension along both principal directions of 153° and 063°. The mapped extents of the faults are limited by erosion and the depth to which the faults have been drilled, but displacement profiles along the lengths of the faults show maxima within the fault planes. The displacement profiles suggest that the currently mapped faults have similar lengths to the total preserved lengths of the faults, and that they will continue into the unmined ground to a limited, but predictable extent. The fault planes have a complex geometry, with segments of individual faults showing a similar variability in orientation to the ensemble of fault planes: the fault planes themselves are polymodal. Displacement profiles show a good correlation with segment orientation. An odd axis construction based on fault segments, rather than individual faults, gives principal extension directions within 4° of the above results. The variable orientation of fault segments, the correlation of the displacement profiles with fault orientation, and the similarity between the segment and ensemble fault kinematics suggest that the faults have evolved by propagation and linking of smaller polymodal faults in the same bulk strain field.ross section of polymodal fault at Hail Creek coal mine

  17. Tree Tectonics

    NASA Astrophysics Data System (ADS)

    Vogt, Peter R.

    2004-09-01

    Nature often replicates her processes at different scales of space and time in differing media. Here a tree-trunk cross section I am preparing for a dendrochronological display at the Battle Creek Cypress Swamp Nature Sanctuary (Calvert County, Maryland) dried and cracked in a way that replicates practically all the planform features found along the Mid-Oceanic Ridge (see Figure 1). The left-lateral offset of saw marks, contrasting with the right-lateral ``rift'' offset, even illustrates the distinction between transcurrent (strike-slip) and transform faults, the latter only recognized as a geologic feature, by J. Tuzo Wilson, in 1965. However, wood cracking is but one of many examples of natural processes that replicate one or several elements of lithospheric plate tectonics. Many of these examples occur in everyday venues and thus make great teaching aids, ``teachable'' from primary school to university levels. Plate tectonics, the dominant process of Earth geology, also occurs in miniature on the surface of some lava lakes, and as ``ice plate tectonics'' on our frozen seas and lakes. Ice tectonics also happens at larger spatial and temporal scales on the Jovian moons Europa and perhaps Ganymede. Tabletop plate tectonics, in which a molten-paraffin ``asthenosphere'' is surfaced by a skin of congealing wax ``plates,'' first replicated Mid-Oceanic Ridge type seafloor spreading more than three decades ago. A seismologist (J. Brune, personal communication, 2004) discovered wax plate tectonics by casually and serendipitously pulling a stick across a container of molten wax his wife and daughters had used in making candles. Brune and his student D. Oldenburg followed up and mirabile dictu published the results in Science (178, 301-304).

  18. A Proposed Link Between Atmospheric Circulation and Stable Oxygen Isotope Values From Tree-Ring Cellulose, Fayetteville Green Lake, New York.

    NASA Astrophysics Data System (ADS)

    Kirby, M. E.; Anderson, W.; Mullins, H.; Burnett, A.

    2002-12-01

    Very few paleoclimate proxy records exist which highlight the relationship between atmospheric circulation patterns and stable oxygen isotopes of precipitation for the Northeastern United States. Here, we present the initial stable oxygen isotope results (n=55) from cellulose extracted from a 140-yr tree-ring record (Yellow-Poplar; Liriodendron tulipifera). Located within the drainage basin of Fayetteville Green Lake (Fayetteville, NY), this specimen was felled during a wind-storm on Labor Day 1998. A whole-diameter tree-slab was removed for tree-ring counts and cellulose extraction. Comparison of the tree-ring cellulose stable oxygen isotope values to spring average temperature and mean latitude of the spring season polar vortex (measured at the 500 hPa geopotential height between 85W and 60W longitude) reveal intriguing relationships. d18O cellulose values are correlated to both the latitude of the spring season vortex (r=0.61; alpha=0.1) and the spring season average temperature (r=0.47; alpha=0.1). The correlation between spring season latitude and the average spring season temperature is also statistically significant (r=0.74; alpha=0.1). From these data, we propose an atmospheric circulation-water stress hypothesis to explain the d18O cellulose values between 1943 and 1998 AD. A contracted (i.e., higher latitudes) spring season vortex produces warmer average spring season temperatures by reducing the frequency of excursions of cold air masses into the middle latitudes. As the temperature of the spring season increases, the rate of evapotranspiration similarly increases leading to the preferential removal of 16O from the tree leaf via increased water stress. As a result, the cellulose subsequently produced has higher average oxygen isotope values. Comparison of the cellulose d18O data to calcite d18O values obtained from nearby Fayetteville Green Lake (about 100m NE from the tree site) for overlapping intervals show intriguing similarities and dissimilarities

  19. Tree Scanning

    PubMed Central

    Templeton, Alan R.; Maxwell, Taylor; Posada, David; Stengård, Jari H.; Boerwinkle, Eric; Sing, Charles F.

    2005-01-01

    We use evolutionary trees of haplotypes to study phenotypic associations by exhaustively examining all possible biallelic partitions of the tree, a technique we call tree scanning. If the first scan detects significant associations, additional rounds of tree scanning are used to partition the tree into three or more allelic classes. Two worked examples are presented. The first is a reanalysis of associations between haplotypes at the Alcohol Dehydrogenase locus in Drosophila melanogaster that was previously analyzed using a nested clade analysis, a more complicated technique for using haplotype trees to detect phenotypic associations. Tree scanning and the nested clade analysis yield the same inferences when permutation testing is used with both approaches. The second example is an analysis of associations between variation in various lipid traits and genetic variation at the Apolipoprotein E (APOE) gene in three human populations. Tree scanning successfully identified phenotypic associations expected from previous analyses. Tree scanning for the most part detected more associations and provided a better biological interpretative framework than single SNP analyses. We also show how prior information can be incorporated into the tree scan by starting with the traditional three electrophoretic alleles at APOE. Tree scanning detected genetically determined phenotypic heterogeneity within all three electrophoretic allelic classes. Overall, tree scanning is a simple, powerful, and flexible method for using haplotype trees to detect phenotype/genotype associations at candidate loci. PMID:15371364

  20. Central Asia Active Fault Database

    NASA Astrophysics Data System (ADS)

    Mohadjer, Solmaz; Ehlers, Todd A.; Kakar, Najibullah

    2014-05-01

    The ongoing collision of the Indian subcontinent with Asia controls active tectonics and seismicity in Central Asia. This motion is accommodated by faults that have historically caused devastating earthquakes and continue to pose serious threats to the population at risk. Despite international and regional efforts to assess seismic hazards in Central Asia, little attention has been given to development of a comprehensive database for active faults in the region. To address this issue and to better understand the distribution and level of seismic hazard in Central Asia, we are developing a publically available database for active faults of Central Asia (including but not limited to Afghanistan, Tajikistan, Kyrgyzstan, northern Pakistan and western China) using ArcGIS. The database is designed to allow users to store, map and query important fault parameters such as fault location, displacement history, rate of movement, and other data relevant to seismic hazard studies including fault trench locations, geochronology constraints, and seismic studies. Data sources integrated into the database include previously published maps and scientific investigations as well as strain rate measurements and historic and recent seismicity. In addition, high resolution Quickbird, Spot, and Aster imagery are used for selected features to locate and measure offset of landforms associated with Quaternary faulting. These features are individually digitized and linked to attribute tables that provide a description for each feature. Preliminary observations include inconsistent and sometimes inaccurate information for faults documented in different studies. For example, the Darvaz-Karakul fault which roughly defines the western margin of the Pamir, has been mapped with differences in location of up to 12 kilometers. The sense of motion for this fault ranges from unknown to thrust and strike-slip in three different studies despite documented left-lateral displacements of Holocene and late

  1. Tree Colors: Color Schemes for Tree-Structured Data.

    PubMed

    Tennekes, Martijn; de Jonge, Edwin

    2014-12-01

    We present a method to map tree structures to colors from the Hue-Chroma-Luminance color model, which is known for its well balanced perceptual properties. The Tree Colors method can be tuned with several parameters, whose effect on the resulting color schemes is discussed in detail. We provide a free and open source implementation with sensible parameter defaults. Categorical data are very common in statistical graphics, and often these categories form a classification tree. We evaluate applying Tree Colors to tree structured data with a survey on a large group of users from a national statistical institute. Our user study suggests that Tree Colors are useful, not only for improving node-link diagrams, but also for unveiling tree structure in non-hierarchical visualizations. PMID:26356921

  2. Tree Lifecycle.

    ERIC Educational Resources Information Center

    Nature Study, 1998

    1998-01-01

    Presents a Project Learning Tree (PLT) activity that has students investigate and compare the lifecycle of a tree to other living things and the tree's role in the ecosystem. Includes background material as well as step-by-step instructions, variation and enrichment ideas, assessment opportunities, and student worksheets. (SJR)

  3. The Inference of Gene Trees with Species Trees

    PubMed Central

    Szöllősi, Gergely J.; Tannier, Eric; Daubin, Vincent; Boussau, Bastien

    2015-01-01

    This article reviews the various models that have been used to describe the relationships between gene trees and species trees. Molecular phylogeny has focused mainly on improving models for the reconstruction of gene trees based on sequence alignments. Yet, most phylogeneticists seek to reveal the history of species. Although the histories of genes and species are tightly linked, they are seldom identical, because genes duplicate, are lost or horizontally transferred, and because alleles can coexist in populations for periods that may span several speciation events. Building models describing the relationship between gene and species trees can thus improve the reconstruction of gene trees when a species tree is known, and vice versa. Several approaches have been proposed to solve the problem in one direction or the other, but in general neither gene trees nor species trees are known. Only a few studies have attempted to jointly infer gene trees and species trees. These models account for gene duplication and loss, transfer or incomplete lineage sorting. Some of them consider several types of events together, but none exists currently that considers the full repertoire of processes that generate gene trees along the species tree. Simulations as well as empirical studies on genomic data show that combining gene tree–species tree models with models of sequence evolution improves gene tree reconstruction. In turn, these better gene trees provide a more reliable basis for studying genome evolution or reconstructing ancestral chromosomes and ancestral gene sequences. We predict that gene tree–species tree methods that can deal with genomic data sets will be instrumental to advancing our understanding of genomic evolution. PMID:25070970

  4. The link between strength of lattice preferred orientation, second phase content and grain boundary migration: A case study from the Alpine Fault zone, New Zealand

    NASA Astrophysics Data System (ADS)

    Little, Timothy A.; Prior, David J.; Toy, Virginia G.; Lindroos, Zoe Reid

    2015-12-01

    We analyse the microstructure and quartz LPOs of 36 layers of varying composition from a several-meter thick sequence of amphibolite-facies metacherts and related mica-garnet-plagioclase-quartz bearing schists from the central Southern Alps in the mylonite zone related to the Alpine Fault. Quartz contents vary from ∼10 to 100% and all of the LPO fabric skeletons are similar, featuring an asymmetric single girdle of [c]-axes inclined ∼30° away from the ZY plane. LPO strength is typically low at quartz contents <70% (M Index of ∼0.05) whereas it may be very high for nearly pure quartz rocks (M Index of up to 4.0). We attribute this change to a sparseness of interphase boundaries in the more quartzose rocks, a reduction in grain-boundary pinning, and a corresponding efficiency of grain boundary migration during dynamic recrystallization. The transition corresponds to a Zener parameter of approximately 700. In layers poor in quartz and rich in mica, the quartz grain size was kept small, and phase-boundary density, high. This may have promoted grain-size sensitive creep and dislocation glide in mica. Dislocation creep in the interspersed quartz grains was correspondingly reduced, and weaker quartz LPOs were produced. In highly quartzose layers, quartz grain boundaries experienced little drag or pinning from impurity phases and were able to migrate quickly into higher strain-energy grains. Preferential consumption of poorly oriented grains strengthened quartz LPOs, geometrically softened the dislocation creep process in these quartzose layers, and contributed to grain coarsening. The lack of evidence for instabilities in the thinly layered (<1 mm, quartz-rich vs. mica-rich) mylonite implies that a combination of deformation mechanisms, grain-size sensitive flow and dislocation creep, in the layers were able to accommodate a nearly homogeneous deformation between the different composition layers.

  5. Photosynthetic capacities of mature tropical forest trees in Rwanda are linked to successional group identity rather than to leaf nutrient content

    NASA Astrophysics Data System (ADS)

    Dusenge, Mirindi Eric; Wallin, Göran; Gårdesten, Johanna; Adolfsson, Lisa; Niyonzima, Felix; Nsabimana, Donat; Uddling, Johan

    2014-05-01

    Tropical forests are crucial in the global carbon balance, yet information required to estimate how much carbon that enter these ecosystems through photosynthesis is very limited, in particular for Africa and for tropical montane forests. In order to increases the knowledge of natural variability of photosynthetic capacities in tropical tree species in tropical Africa, measurements of leaf traits and gas exchange were conducted on sun and shade leaves of ten tree species growing in two tropical forests in Rwanda in central Africa. Seven species were studied in Ruhande Arboretum, a forest plantation at mid altitude (1700 m), and six species in Nyungwe National Park, a cooler and higher altitude (at 2500 m) montane rainforest. Three species were common to both sites. At Nyungwe, three species each belonged to the successional groups pioneer and climax species. Climax species had considerably lower maximum rates of photosynthetic carboxylation (Vcmax) and electron transport (Jmax) than pioneer species. This difference was not related to leaf nutrient content, but rather seemed to be caused by differences in within-leaf N allocation between the two successional groups. With respect to N, leaves of climax species invested less N into photosynthetic enzymes (as judged by lower Vcmax and Jmax values) and more N into chlorophyll (as judged by higher SPAD values). Photosynthetic capacities, (i.e., Jmax and Vcmax), Jmax to Vcmax ratio and P content were significantly higher in Nyungwe than in Arboretum. Sun leaves had higher photosynthetic capacities and nutrient content than shade leaves. Across the entire dataset, variation in photosynthetic capacities among species was not related to leaf nutrient content, although significant relationships were found within individual species. This study contributes critical tropical data for global carbon models and suggests that, for montane rainforest trees of different functional types, successional group identity is a better

  6. Strike-slip linked core complexes: A new kinematic model of basement rock exhumation in a crustal-scale fault system

    NASA Astrophysics Data System (ADS)

    Meyer, Sven Erik; Passchier, Cees; Abu-Alam, Tamer; Stüwe, Kurt

    2014-05-01

    Metamorphic core complexes usually develop as extensional features during continental crustal thinning, such as the Basin and Range and the Aegean Terrane. The Najd fault system in Saudi Arabia is a 2000 km-long and 400 km-wide complex network of crustal-scale strike-slip shear zones in a Neoproterozoic collision zone. Locally, the anastomosing shear zones lead to exhumation of lower crustal segments and represent a new kinematic model for the development of core complexes. We report on two such structures: the Qazaz complex in Saudi Arabia and the Hafafit complex in Egypt. The 15 km-wide Qazaz complex is a triangular dome of gently dipping mylonitic foliations within the 140 km-long sinistral strike-slip Qazaz mylonite zone. The gneissic dome consists of high-grade rocks, surrounded by low-grade metasediments and metavolcanics. The main SE-trending strike-slip Qazaz shear zone splits southwards into two branches around the gneiss dome: the western branch is continuous with the shallow dipping mylonites of the dome core, without overprinting, and changes by more than 90 degrees from a NS-trending strike-slip zone to an EW-trending 40 degree south-dipping detachment that bounds the gneiss dome to the south. The eastern SE-trending sinistral strike-slip shear zone branch is slightly younger and transects the central dome fabrics. The gneiss dome appears to have formed along a jog in the strike-slip shear zone during 40 km of horizontal strike-slip motion, which caused local exhumation of lower crustal rocks by 25 km along the detachment. The eastern shear zone branch formed later during exhumation, transacted the gneiss dome and offset the two parts by another 70 km. The Hafafit core complex in Egypt is of similar shape and size to the Qazaz structure, but forms the northern termination of a sinistral strike-slip zone that is at least 100 km in length. This zone may continue into Saudi Arabia as the Ajjaj shear zone for another 100 km. The NW trending strike slip

  7. On the link between biomagnetic monitoring and leaf-deposited dust load of urban trees: relationships and spatial variability of different particle size fractions.

    PubMed

    Hofman, Jelle; Wuyts, Karen; Van Wittenberghe, Shari; Brackx, Melanka; Samson, Roeland

    2014-06-01

    Biomagnetic monitoring of urban tree leaves has proven to be a good estimator of ambient particulate matter. We evaluated its relevancy by determining leaf area normalised weight (mg m(-2)) and SIRM (A) of leaf-deposited particles within three different size fractions (>10 μm, 3-10 μm and 0.2-3 μm) and the SIRM of the leaf-encapsulated particles. Results showed that throughout the in-leaf season, the trees accumulated on average 747 mg m(-2) of dust on their leaves, of which 74 mg m(-2) was within the 0.2-10 μm (∼PM10) size range and 40 mg m(-2) within the 0.2-3 μm (∼PM3) size range. A significant correlation between the SIRM and weight of the surface-deposited particles confirms the potential of biomagnetic monitoring as a proxy for the amount of leaf-deposited particles. Spatial variation of both SIRM and weight throughout the street canyon suggests traffic and wind as key factors for respectively the source and distribution of urban particulates. PMID:24631974

  8. Reprint of On the link between biomagnetic monitoring and leaf-deposited dust load of urban trees: relationships and spatial variability of different particle size fractions.

    PubMed

    Hofman, Jelle; Wuyts, Karen; Van Wittenberghe, Shari; Brackx, Melanka; Samson, Roeland

    2014-09-01

    Biomagnetic monitoring of urban tree leaves has proven to be a good estimator of ambient particulate matter. We evaluated its relevancy by determining leaf area normalised weight (mg m(-2)) and SIRM (A) of leaf-deposited particles within three different size fractions (>10 μm, 3-10 μm and 0.2-3 μm) and the SIRM of the leaf-encapsulated particles. Results showed that throughout the in-leaf season, the trees accumulated on average 747 mg m(-2) of dust on their leaves, of which 74 mg m(-2) was within the 0.2-10 μm (∼PM10) size range and 40 mg m(-2) within the 0.2-3 μm (∼PM3) size range. A significant correlation between the SIRM and weight of the surface-deposited particles confirms the potential of biomagnetic monitoring as a proxy for the amount of leaf-deposited particles. Spatial variation of both SIRM and weight throughout the street canyon suggests traffic and wind as key factors for respectively the source and distribution of urban particulates. PMID:24890181

  9. Study on fault diagnose expert system for large astronomy telescope

    NASA Astrophysics Data System (ADS)

    Liu, Jia-jing; Luo, Ming-Cheng; Tang, Peng-yi; Wu, Wen-qing; Zhang, Guang-yu; Zhang, Hong-fei; Wang, Jian

    2014-08-01

    The development of astronomical techniques and telescopes currently entered a new vigorous period. The telescopes have trends of the giant, complex, diversity of equipment and wide span of control despite of optical, radio space telescopes. That means, for telescope observatory, the control system must have these specifications: flexibility, scalability, distributive, cross-platform and real-time, especially the fault locating and fault processing is more important when fault or exception arise. Through the analysis of the structure of large telescopes, fault diagnosis expert system of large telescope based on the fault tree and distributed log service is given.

  10. Quantifying Anderson's fault types

    USGS Publications Warehouse

    Simpson, R.W.

    1997-01-01

    Anderson [1905] explained three basic types of faulting (normal, strike-slip, and reverse) in terms of the shape of the causative stress tensor and its orientation relative to the Earth's surface. Quantitative parameters can be defined which contain information about both shape and orientation [Ce??le??rier, 1995], thereby offering a way to distinguish fault-type domains on plots of regional stress fields and to quantify, for example, the degree of normal-faulting tendencies within strike-slip domains. This paper offers a geometrically motivated generalization of Angelier's [1979, 1984, 1990] shape parameters ?? and ?? to new quantities named A?? and A??. In their simple forms, A?? varies from 0 to 1 for normal, 1 to 2 for strike-slip, and 2 to 3 for reverse faulting, and A?? ranges from 0?? to 60??, 60?? to 120??, and 120?? to 180??, respectively. After scaling, A?? and A?? agree to within 2% (or 1??), a difference of little practical significance, although A?? has smoother analytical properties. A formulation distinguishing horizontal axes as well as the vertical axis is also possible, yielding an A?? ranging from -3 to +3 and A?? from -180?? to +180??. The geometrically motivated derivation in three-dimensional stress space presented here may aid intuition and offers a natural link with traditional ways of plotting yield and failure criteria. Examples are given, based on models of Bird [1996] and Bird and Kong [1994], of the use of Anderson fault parameters A?? and A?? for visualizing tectonic regimes defined by regional stress fields. Copyright 1997 by the American Geophysical Union.

  11. Fault growth and interactions in a multiphase rift fault network: Horda Platform, Norwegian North Sea

    NASA Astrophysics Data System (ADS)

    Duffy, Oliver B.; Bell, Rebecca E.; Jackson, Christopher A.-L.; Gawthorpe, Rob L.; Whipp, Paul S.

    2015-11-01

    Physical models predict that multiphase rifts that experience a change in extension direction between stretching phases will typically develop non-colinear normal fault sets. Furthermore, multiphase rifts will display a greater frequency and range of styles of fault interactions than single-phase rifts. Although these physical models have yielded useful information on the evolution of fault networks in map view, the true 3D geometry of the faults and associated interactions are poorly understood. Here, we use an integrated 3D seismic reflection and borehole dataset to examine a range of fault interactions that occur in a natural multiphase fault network in the northern Horda Platform, northern North Sea. In particular we aim to: i) determine the range of styles of fault interaction that occur between non-colinear faults; ii) examine the typical geometries and throw patterns associated with each of these different styles; and iii) highlight the differences between single-phase and multiphase rift fault networks. Our study focuses on a ca. 350 km2 region around the >60 km long, N-S-striking Tusse Fault, a normal fault system that was active in the Permian-Triassic and again in the Late Jurassic-to-Early Cretaceous. The Tusse Fault is one of a series of large (>1500 m throw) N-S-striking faults forming part of the northern Horda Platform fault network, which includes numerous smaller (2-10 km long), lower throw (<100 m), predominantly NW-SE-striking faults that were only active during the Late Jurassic to Early Cretaceous. We examine how the 2nd-stage NW-SE-striking faults grew, interacted and linked with the N-S-striking Tusse Fault, documenting a range of interaction styles including mechanical and kinematic isolation, abutment, retardation and reactivated relays. Our results demonstrate that: i) isolated, and abutting interactions are the most common fault interaction styles in the northern Horda Platform; ii) pre-existing faults can act as sites of nucleation for

  12. Fault-Related Sanctuaries

    NASA Astrophysics Data System (ADS)

    Piccardi, L.

    2001-12-01

    Beyond the study of historical surface faulting events, this work investigates the possibility, in specific cases, of identifying pre-historical events whose memory survives in myths and legends. The myths of many famous sacred places of the ancient world contain relevant telluric references: "sacred" earthquakes, openings to the Underworld and/or chthonic dragons. Given the strong correspondence with local geological evidence, these myths may be considered as describing natural phenomena. It has been possible in this way to shed light on the geologic origin of famous myths (Piccardi, 1999, 2000 and 2001). Interdisciplinary researches reveal that the origin of several ancient sanctuaries may be linked in particular to peculiar geological phenomena observed on local active faults (like ground shaking and coseismic surface ruptures, gas and flames emissions, strong underground rumours). In many of these sanctuaries the sacred area is laid directly above the active fault. In a few cases, faulting has affected also the archaeological relics, right through the main temple (e.g. Delphi, Cnidus, Hierapolis of Phrygia). As such, the arrangement of the cult site and content of relative myths suggest that specific points along the trace of active faults have been noticed in the past and worshiped as special `sacred' places, most likely interpreted as Hades' Doors. The mythological stratification of most of these sanctuaries dates back to prehistory, and points to a common derivation from the cult of the Mother Goddess (the Lady of the Doors), which was largely widespread since at least 25000 BC. The cult itself was later reconverted into various different divinities, while the `sacred doors' of the Great Goddess and/or the dragons (offspring of Mother Earth and generally regarded as Keepers of the Doors) persisted in more recent mythologies. Piccardi L., 1999: The "Footprints" of the Archangel: Evidence of Early-Medieval Surface Faulting at Monte Sant'Angelo (Gargano, Italy

  13. Sequential Test Strategies for Multiple Fault Isolation

    NASA Technical Reports Server (NTRS)

    Shakeri, M.; Pattipati, Krishna R.; Raghavan, V.; Patterson-Hine, Ann; Kell, T.

    1997-01-01

    In this paper, we consider the problem of constructing near optimal test sequencing algorithms for diagnosing multiple faults in redundant (fault-tolerant) systems. The computational complexity of solving the optimal multiple-fault isolation problem is super-exponential, that is, it is much more difficult than the single-fault isolation problem, which, by itself, is NP-hard. By employing concepts from information theory and Lagrangian relaxation, we present several static and dynamic (on-line or interactive) test sequencing algorithms for the multiple fault isolation problem that provide a trade-off between the degree of suboptimality and computational complexity. Furthermore, we present novel diagnostic strategies that generate a static diagnostic directed graph (digraph), instead of a static diagnostic tree, for multiple fault diagnosis. Using this approach, the storage complexity of the overall diagnostic strategy reduces substantially. Computational results based on real-world systems indicate that the size of a static multiple fault strategy is strictly related to the structure of the system, and that the use of an on-line multiple fault strategy can diagnose faults in systems with as many as 10,000 failure sources.

  14. Fault interactions and growth in an outcrop-scale system

    NASA Astrophysics Data System (ADS)

    Nicol, Andy; Walsh, John; Childs, Conrad; Manzocchi, Tom; Schoepfer, Martin

    2015-04-01

    Fault geometries and strike-slip displacements in a moderately dipping (~50°) multi-layer sequence have been analysed to constrain the evolution of an outcrop-scale fault system in coastal New Zealand. Displacements and geometries of small faults (lengths 1-200 m and maximum displacements 0.007-3 m) were sampled from a horizontal shore platform up to 120 m wide and 1.5 km long with near 100% exposure. Displacement profiles have variable shapes that mainly reflect fault interactions, with individual faults being both hard- and soft-linked. Variable displacement profiles produce an average profile for all faults that is near-triangular, with displacement gradients (and displacement-length ratios) increasing by an order of magnitude from smallest to largest faults. Within fault zones these gradients are accompanied by secondary faults, which are typically of greatest density close to fault intersections, in relay zones and at fault tips. Horsetail and synthetic splays confined to the regions around fault tips are incompatible with gradual fault propagation for the duration of growth. Instead, fault displacements and tip geometries are consistent with growth initially dominated by fault propagation followed by displacement accumulation and approximately stationary fault tips. Retardation of propagation is thought to arise due to fault interactions and associated reduction of tip stresses, with the early change from propagation- to displacement-dominated growth stages produced by fault-system saturation (i.e., all faults are interacting). Initial rapid fault propagation succeeded by displacement-dominated growth accounts for different fault types over a range of scales suggesting that this fault growth model has wide application.

  15. Talking Trees

    ERIC Educational Resources Information Center

    Tolman, Marvin

    2005-01-01

    Students love outdoor activities and will love them even more when they build confidence in their tree identification and measurement skills. Through these activities, students will learn to identify the major characteristics of trees and discover how the pace--a nonstandard measuring unit--can be used to estimate not only distances but also the…

  16. Tree Amigos.

    ERIC Educational Resources Information Center

    Center for Environmental Study, Grand Rapids, MI.

    Tree Amigos is a special cross-cultural program that uses trees as a common bond to bring the people of the Americas together in unique partnerships to preserve and protect the shared global environment. It is a tangible program that embodies the philosophy that individuals, acting together, can make a difference. This resource book contains…

  17. Buds from the tree of life: linking compartmentalized prokaryotes and eukaryotes by a non-hyperthermophile common ancestor and implications for understanding Archaean microbial communities

    NASA Astrophysics Data System (ADS)

    Fuerst, John A.; Nisbet, Euan G.

    2004-07-01

    The origin of the first nucleated eukaryote and the nature of the last common ancestor of the three domains of life are major questions in the evolutionary biology of cellular life on Earth, the solutions to which may be linked. Planctomycetes are unusual compartmentalized bacteria that include a membrane-bounded nucleoid. The possibility that they constitute a very deep branch of the domain Bacteria suggests a model for the evolution of the three domains of life from a last common ancestor that was a mesophile or moderate thermophile with a compartmentalized eukaryote-like cell plan. Planctomycetes and some members of the domain Archaea may have retained cell compartmentalization present in an original eukaryote-like last common ancestor of the three domains of life. The implications of this model for possible habitats of the early evolution of domains of cellular life and for interpretation of geological evidence relating to those habitats and the early emergence of life are examined here.

  18. An update of Quaternary faults of central and eastern Oregon

    USGS Publications Warehouse

    Weldon, Ray J., II; Fletcher, D.K.; Weldon, E.M.; Scharer, K.M.; McCrory, P.A.

    2002-01-01

    This is the online version of a CD-ROM publication. We have updated the eastern portion of our previous active fault map of Oregon (Pezzopane, Nakata, and Weldon, 1992) as a contribution to the larger USGS effort to produce digital maps of active faults in the Pacific Northwest region. The 1992 fault map has seen wide distribution and has been reproduced in essentially all subsequent compilations of active faults of Oregon. The new map provides a substantial update of known active or suspected active faults east of the Cascades. Improvements in the new map include (1) many newly recognized active faults, (2) a linked ArcInfo map and reference database, (3) more precise locations for previously recognized faults on shaded relief quadrangles generated from USGS 30-m digital elevations models (DEM), (4) more uniform coverage resulting in more consistent grouping of the ages of active faults, and (5) a new category of 'possibly' active faults that share characteristics with known active faults, but have not been studied adequately to assess their activity. The distribution of active faults has not changed substantially from the original Pezzopane, Nakata and Weldon map. Most faults occur in the south-central Basin and Range tectonic province that is located in the backarc portion of the Cascadia subduction margin. These faults occur in zones consisting of numerous short faults with similar rates, ages, and styles of movement. Many active faults strongly correlate with the most active volcanic centers of Oregon, including Newberry Craters and Crater Lake.

  19. Perspective View, Garlock Fault

    NASA Technical Reports Server (NTRS)

    2000-01-01

    California's Garlock Fault, marking the northwestern boundary of the Mojave Desert, lies at the foot of the mountains, running from the lower right to the top center of this image, which was created with data from NASA's shuttle Radar Topography Mission (SRTM), flown in February 2000. The data will be used by geologists studying fault dynamics and landforms resulting from active tectonics. These mountains are the southern end of the Sierra Nevada and the prominent canyon emerging at the lower right is Lone Tree canyon. In the distance, the San Gabriel Mountains cut across from the leftside of the image. At their base lies the San Andreas Fault which meets the Garlock Fault near the left edge at Tejon Pass. The dark linear feature running from lower right to upper left is State Highway 14 leading from the town of Mojave in the distance to Inyokern and the Owens Valley in the north. The lighter parallel lines are dirt roads related to power lines and the Los Angeles Aqueduct which run along the base of the mountains.

    This type of display adds the important dimension of elevation to the study of land use and environmental processes as observed in satellite images. The perspective view was created by draping a Landsat satellite image over an SRTM elevation model. Topography is exaggerated 1.5 times vertically. The Landsat image was provided by the United States Geological Survey's Earth Resources Observations Systems (EROS) Data Center, Sioux Falls, South Dakota.

    Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on February 11,2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast

  20. The western limits of the Seattle and Tacoma faults and their interaction with faults of the Olympic Massif, Washington (Invited)

    NASA Astrophysics Data System (ADS)

    Lamb, A.; Blakely, R. J.; Liberty, L. M.; Pratt, T. L.; Sherrod, B. L.

    2013-12-01

    Recently acquired high-resolution seismic-reflection and magnetic data show that the Seattle fault of Washington State extends 24-km west of its previously mapped extent and thus comprises a >100-km-long active fault zone. These same data reveal largely concealed faults and folds that kinematically link the Seattle fault with active faults in the Olympic Massif. Linkage between the Seattle fault and the north-northeast-striking Saddle Mountain fault in the Olympic Massif may explain the synchroneity of M7 earthquakes occurring on both these faults approximately 1,100 years ago. The western limits of the 20-km-long east-striking Tacoma fault, a backthrust in the hanging wall of the Seattle fault zone, forms the southern margin of the Seattle uplift in contact with the Tacoma basin to the south. A ~20-km-long potential-field lineament extends from the western limits of the Tacoma fault northward to the Seattle fault and may reflect a structure linking these active faults. A geologic model based on magnetic, gravity, and seismic data shows that this potential-field lineament is likely caused by a low-angle, west-verging thrust fault, that we refer to as the Dewatto fault. We suggest that the Dewatto fault was initiated during exhumation of the Olympic Massif but, because of changes in principal strain direction, today largely accommodates north-directed, strike-slip motion along the west margin of the Seattle uplift. Thus, the Dewatto and Saddle Mountain faults and the western parts of the Seattle and Tacoma faults kinematically interact to accommodate north-directed horizontal displacement of the Seattle uplift relative to the Olympic Massif.

  1. Kinematically Coupled Strike-Slip and Normal Faults in the Lake Mead Strike-Slip Fault System, Southeast Nevada

    NASA Astrophysics Data System (ADS)

    Kattenhorn, S. A.; Marshall, S. T.; Cooke, M. L.

    2008-12-01

    The Lake Mead fault system consists of a ~95 km long, northeast-trending zone of strike-slip faults of Miocene age that accommodate a total left-lateral offset of 20-65 km. We use a combination of detailed field mapping and numerical modeling to show that a previously unnamed left-lateral strike-slip segment of the Lake Mead fault system and a dense cluster of dominantly west-dipping normal faults acted in concert to accommodate regional left-lateral offset. We suggest that the strike-slip fault that we refer to as the Pinto Ridge fault: (1) was kinematically related to other faults of the Lake Mead fault system; (2) was responsible for the creation of the normal fault cluster at Pinto Ridge; and (3) utilized these normal faults as linking structures between separate strike-slip fault segments to create a longer, through-going fault. Results from numerical models demonstrate that the observed location and curving strike patterns of the normal fault cluster is consistent with the faults having formed as secondary structures as the result of the perturbed stress field around the slipping Pinto Ridge fault. Comparison of mechanical efficiency of various normal fault geometries within extending terranes suggests that the observed west dip of normal faults reflects a west- dipping anisotropy at depth, such as a detachment. The apparent terminations of numerous strike-slip faults of the Lake Mead fault system into west-dipping normal faults suggest that a west-dipping detachment may be regionally coherent.

  2. Spatial analysis of hypocenter to fault relationships for determining fault process zone width in Japan.

    SciTech Connect

    Arnold, Bill Walter; Roberts, Barry L.; McKenna, Sean Andrew; Coburn, Timothy C. (Abilene Christian University, Abilene, TX)

    2004-09-01

    Preliminary investigation areas (PIA) for a potential repository of high-level radioactive waste must be evaluated by NUMO with regard to a number of qualifying factors. One of these factors is related to earthquakes and fault activity. This study develops a spatial statistical assessment method that can be applied to the active faults in Japan to perform such screening evaluations. This analysis uses the distribution of seismicity near faults to define the width of the associated process zone. This concept is based on previous observations of aftershock earthquakes clustered near active faults and on the assumption that such seismic activity is indicative of fracturing and associated impacts on bedrock integrity. Preliminary analyses of aggregate data for all of Japan confirmed that the frequency of earthquakes is higher near active faults. Data used in the analysis were obtained from NUMO and consist of three primary sources: (1) active fault attributes compiled in a spreadsheet, (2) earthquake hypocenter data, and (3) active fault locations. Examination of these data revealed several limitations with regard to the ability to associate fault attributes from the spreadsheet to locations of individual fault trace segments. In particular, there was no direct link between attributes of the active faults in the spreadsheet and the active fault locations in the GIS database. In addition, the hypocenter location resolution in the pre-1983 data was less accurate than for later data. These pre-1983 hypocenters were eliminated from further analysis.

  3. Node degree distribution in spanning trees

    NASA Astrophysics Data System (ADS)

    Pozrikidis, C.

    2016-03-01

    A method is presented for computing the number of spanning trees involving one link or a specified group of links, and excluding another link or a specified group of links, in a network described by a simple graph in terms of derivatives of the spanning-tree generating function defined with respect to the eigenvalues of the Kirchhoff (weighted Laplacian) matrix. The method is applied to deduce the node degree distribution in a complete or randomized set of spanning trees of an arbitrary network. An important feature of the proposed method is that the explicit construction of spanning trees is not required. It is shown that the node degree distribution in the spanning trees of the complete network is described by the binomial distribution. Numerical results are presented for the node degree distribution in square, triangular, and honeycomb lattices.

  4. Dissecting Oceanic Detachment Faults: Fault Zone Geometry, Deformation Mechanisms, and Nature of Fluid-Rock Interactions

    NASA Astrophysics Data System (ADS)

    Bonnemains, D.; Escartin, J.; Verlaguet, A.; Andreani, M.; Mevel, C.

    2015-12-01

    To understand the extreme strain localization at long-lived oceanic detachment faults rooting deeply below the axis, we present results of geological investigations at the 13°19'N detachment along the Mid-Atlantic Ridge, conducted during the ODEMAR cruise (Nov-Dec13, NO Pourquoi Pas?) with ROV Victor6000 (IFREMER). During this cruise we investigated and sampled the corrugated fault to understand its geometry, nature of deformation, and links to fluid flow. We identified and explored 7 fault outcrops on the flanks of microbathymetric striations subparallel to extension. These outcrops expose extensive fault planes, with the most prominent ones extending 40-90m laterally, and up to 10 m vertically. These fault surfaces systematically show subhorizontal striations subparallel to extension, and define slabs of fault-rock that are flat and also striated at sample scale. Visual observations show a complex detachment fault zone, with anastomosing fault planes at outcrop scale (1-10 m), with a highly heterogeneous distribution of deformation. We observe heterogeneity in fault-rock nature at outcrop scale. In situ samples from striated faults are primarily basalt breccias with prior green-schist facies alteration, and a few ultramafic fault-rocks that show a complex deformation history, with early schistose textures, brittlely reworked as clasts within the fault. The basalt breccias show variable silicification and associated sulfides, recording important fluid-rock interactions during exhumation. To understand the link between fluid and deformation during exhumation, we will present microstructural observation of deformation textures, composition, and distribution and origin of quartz and sulfides, as well as constraints on the temperature of silicifying fluids from fluid inclusions in quartz. These results allow us to characterize in detail the detachment fault zone geometry, and investigate the timing of silicification relative to deformation.

  5. Rupture interaction with fault jogs

    NASA Astrophysics Data System (ADS)

    Sibson, Richard H.

    Propagation of moderate to large earthquake ruptures within major transcurrent fault systems is affected by their large-scale brittle infrastructure, comprising echelon segmentation and curvature of principal slip surfaces (PSS) within typically ˜1 km wide main fault zones. These PSS irregularities are classified into dilational and antidilational fault jogs depending on the tendency for areal increase or reduction, respectively, across the jog structures. High precision microearthquake studies show that the jogs often extend throughout the seismogenic regime to depths of around 10 km. On geomorphic evidence, the larger jogs may persist for periods >105 years. While antidilational jogs form obstacles to both short- and long-term displacements, dilational jogs appear to act as kinetic barriers capable of perturbing or arresting earthquake ruptures, but allowing time-dependent slip transfer. In the case of antidilational jogs slip transfer is accommodated by widespread subsidiary faulting, but for dilational jogs it additionally involves extensional fracture opening localized in the echelon stepover. In fluid-saturated crust, the rapid opening of linking extensional fracture systems to allow passage of earthquake ruptures is opposed by induced suctions which scale with the width of the jog. Rupture arrest at dilational jogs may then be followed by delayed slip transfer as fluid pressures reequilibrate by diffusion. Aftershock distributions associated with the different fault jogs reflect these contrasts in their internal structure and mechanical response.

  6. Influence of fault trend, fault bends, and fault convergence on shallow structure, geomorphology, and hazards, Hosgri strike-slip fault, offshore central California

    NASA Astrophysics Data System (ADS)

    Johnson, S. Y.; Watt, J. T.; Hartwell, S. R.

    2012-12-01

    We mapped a ~94-km-long portion of the right-lateral Hosgri Fault Zone from Point Sal to Piedras Blancas in offshore central California using high-resolution seismic reflection profiles, marine magnetic data, and multibeam bathymetry. The database includes 121 seismic profiles across the fault zone and is perhaps the most comprehensive reported survey of the shallow structure of an active strike-slip fault. These data document the location, length, and near-surface continuity of multiple fault strands, highlight fault-zone heterogeneity, and demonstrate the importance of fault trend, fault bends, and fault convergences in the development of shallow structure and tectonic geomorphology. The Hosgri Fault Zone is continuous through the study area passing through a broad arc in which fault trend changes from about 338° to 328° from south to north. The southern ~40 km of the fault zone in this area is more extensional, resulting in accommodation space that is filled by deltaic sediments of the Santa Maria River. The central ~24 km of the fault zone is characterized by oblique convergence of the Hosgri Fault Zone with the more northwest-trending Los Osos and Shoreline Faults. Convergence between these faults has resulted in the formation of local restraining and releasing fault bends, transpressive uplifts, and transtensional basins of varying size and morphology. We present a hypothesis that links development of a paired fault bend to indenting and bulging of the Hosgri Fault by a strong crustal block translated to the northwest along the Shoreline Fault. Two diverging Hosgri Fault strands bounding a central uplifted block characterize the northern ~30 km of the Hosgri Fault in this area. The eastern Hosgri strand passes through releasing and restraining bends; the releasing bend is the primary control on development of an elongate, asymmetric, "Lazy Z" sedimentary basin. The western strand of the Hosgri Fault Zone passes through a significant restraining bend and

  7. Analysis of the effects of asymmetric faults in three-phase superconducting inductive fault current limiters

    NASA Astrophysics Data System (ADS)

    Ferreira, R.; Pina, J. M.; Vilhena, N.; Arsénio, P.; Pronto, A. G.; Martins, J.

    2014-05-01

    Inductive fault current limiters of magnetic shielding type can be described in terms of the excursion in the plane defined by flux linked with primary and line current, and this methodology has been previously applied to single-phase devices. Practical applications, however, require three-phase limiters, which, for the sake of compactness, may be built by three legged cores, instead of three single phase units. This has the advantage of using well established methods of power transformers industry, but the performance of the devices depends on the type of fault, e.g. phase to ground or phase to phase. For instance, in a three legged core, a phase to ground fault affects healthy phases, and these are the most frequent faults in distribution grids, where such systems are envisaged. The effects of asymmetric faults are analysed in this paper, by means of measured excursions in the linked flux-current plane.

  8. Flight elements: Fault detection and fault management

    NASA Technical Reports Server (NTRS)

    Lum, H.; Patterson-Hine, A.; Edge, J. T.; Lawler, D.

    1990-01-01

    Fault management for an intelligent computational system must be developed using a top down integrated engineering approach. An approach proposed includes integrating the overall environment involving sensors and their associated data; design knowledge capture; operations; fault detection, identification, and reconfiguration; testability; causal models including digraph matrix analysis; and overall performance impacts on the hardware and software architecture. Implementation of the concept to achieve a real time intelligent fault detection and management system will be accomplished via the implementation of several objectives, which are: Development of fault tolerant/FDIR requirement and specification from a systems level which will carry through from conceptual design through implementation and mission operations; Implementation of monitoring, diagnosis, and reconfiguration at all system levels providing fault isolation and system integration; Optimize system operations to manage degraded system performance through system integration; and Lower development and operations costs through the implementation of an intelligent real time fault detection and fault management system and an information management system.

  9. Greenhouse trees

    SciTech Connect

    Hanover, J.W.; Hart, J.W.

    1980-05-09

    Michigan State University has been conducting research on growth control of woody plants with emphasis on commercial plantations. The objective was to develop the optimum levels for the major factors that affect tree seedling growth and development so that high quality plants can be produced for a specific use. This article describes the accelerated-optimal-growth (AOG) concept, describes precautions to take in its application, and shows ways to maximize the potential of AOG for producing ornamental trees. Factors considered were container growing system; protective culture including light, temperature, mineral nutrients, water, carbon dioxide, growth regulators, mycorrhizae, growing media, competition, and pests; size of seedlings; and acclamation. 1 table. (DP)

  10. Audubon Tree Study Program.

    ERIC Educational Resources Information Center

    National Audubon Society, New York, NY.

    Included are an illustrated student reader, "The Story of Trees," a leaders' guide, and a large tree chart with 37 colored pictures. The student reader reviews several aspects of trees: a definition of a tree; where and how trees grow; flowers, pollination and seed production; how trees make their food; how to recognize trees; seasonal changes;…

  11. Visualizing phylogenetic trees using TreeView.

    PubMed

    Page, Roderic D M

    2002-08-01

    TreeView provides a simple way to view the phylogenetic trees produced by a range of programs, such as PAUP*, PHYLIP, TREE-PUZZLE, and ClustalX. While some phylogenetic programs (such as the Macintosh version of PAUP*) have excellent tree printing facilities, many programs do not have the ability to generate publication quality trees. TreeView addresses this need. The program can read and write a range of tree file formats, display trees in a variety of styles, print trees, and save the tree as a graphic file. Protocols in this unit cover both displaying and printing a tree. Support protocols describe how to download and install TreeView, and how to display bootstrap values in trees generated by ClustalX and PAUP*. PMID:18792942

  12. Intraplate rotational deformation induced by faults

    NASA Astrophysics Data System (ADS)

    Dembo, Neta; Hamiel, Yariv; Granot, Roi

    2015-11-01

    Vertical axis rotations provide important constraints on the tectonic history of plate boundaries. Geodetic measurements can be used to calculate interseismic rotations, whereas paleomagnetic remanence directions provide constraints on the long-term rotations accumulated over geological timescales. Here we present a new mechanical modeling approach that links between intraplate deformational patterns of these timescales. We construct mechanical models of active faults at their locked state to simulate the presumed to be elastic interseismic deformation rate observed by GPS measurements. We then apply a slip to the faults above the locking depth to simulate the long-term deformation of the crust from which we derive the accumulated rotations. We test this approach in northern Israel along the Dead Sea Fault and Carmel-Gilboa fault system. We use 12 years of interseismic GPS measurements to constrain a slip model of the major faults found in this region. Next, we compare the modeled rotations against long-term rotations determined based on new primary magnetic remanence directions from 29 sites with known age. The distributional pattern of site mean declinations is in general agreement with the vertical axis rotations predicted by the mechanical model, both showing anomalously high rotations near fault tips and bending points. Overall, the results from northern Israel validate the effectiveness of our approach and indicate that rotations induced by motion along faults may act in parallel (or alone) to rigid block rotations. Finally, the new suggested method unravels important insights on the evolution (timing, magnitude, and style) of deformation along major faults.

  13. Is the Lishan fault of Taiwan active?

    NASA Astrophysics Data System (ADS)

    Kuo-Chen, Hao; Wu, Francis; Chang, Wu-Lung; Chang, Chih-Yu; Cheng, Ching-Yu; Hirata, Naoshi

    2015-10-01

    The Lishan fault has been characterized alternately as a major discontinuity in stratigraphy, structures and metamorphism, a ductile shear zone, a tectonic suture or non-existent. In addition to being a geological boundary, it also marks transitions in subsurface structures. Thus, the seismicity to the west of the fault permeates through the upper and mid-crust while beneath the Central Range it is noticeably less and largely concentrated in the upper 12 km. A prominent west-dipping conductive zone extends upward to meet the Lishan fault. Also, the eastward increase of crust thickness from ~ 30 km in the Taiwan Strait quickens under the Lishan fault to form a root of over 50 km under the Central Range. In the past, the small magnitude seismicity along the Lishan fault has been noticed but is too diffuse for definitive association with the fault. Recent processing of aftershock records of the 1999 Mw 7.6 Chi-Chi earthquake using Central Weather Bureau data and, especially, data from three post-Chi-Chi deployments of seismic stations across central Taiwan yielded hypocenters that appear to link directly to the Lishan structure. The presence of a near 4-km-long vertical seismic zone directly under the surface trace of the Lishan fault indicates that it is an active structure from the surface down to about 35 km, and the variety of focal mechanisms indicates that the fault motion can be complex and depth-dependent.

  14. On the application of a machine learning technique to fault diagnosis of power distribution lines

    SciTech Connect

    Togami, Masato; Abe, Norihiro; Kitahashi, T.; Ogawa, Harunao

    1995-10-01

    This paper presents one method for fault diagnosis of power distribution lines by using a decision tree. The conventional method, using a decision tree, applies only to discrete attribute values. To apply it to fault diagnosis of power distribution lines, in practice it must be revised in order to treat attributes whose values range over certain widths. This is because the sensor value or attribute value varies owing to the resistance of the fault point or is influenced by noise. The proposed method is useful when the attribute value has such a property, and it takes into consideration the cost of acquiring the information and the probability of the occurrence of a fault.

  15. An example of complex fault geometries in a young, rapidly deforming transform fault system: The Maacama Fault in northern California

    NASA Astrophysics Data System (ADS)

    Schroeder, R. D.; Brady, R. J.

    2009-12-01

    The Maacama Fault Zone (MFZ) in northern California is a young transform system that developed behind the northward migrating Mendocino Triple Junction, and comprises a complex set of active, linked fault strands that form a series of pull-apart basins within the rapidly slipping (~13.9 mm/yr) right-lateral fault system. Surface fault traces within the MFZ are defined by geomorphic features, shallow resistivity profiles, and previously published surface creep and paleoseismic trenching studies. The surface traces of these faults outline classic pull-apart rhomohedrons, with all of the bounding faults inferred to be kinematically linked and currenty active. This activity is supported not only by paleoseismic and surface creep studies, which have tended to focus on the single main strand of the Maacama Fault, but also by the location of tabular seismogenic zones that project from the subsurface into several of the mapped surface fault traces. For each of the 3 mapped pull-apart basins, at least two of the interpreted bounding faults can be shown to be currently active, requiring near-synchronous activity on all of the kinematically linked faults. Historically, active displacement across the MFZ has been assigned to only one relatively well-studied main strand of the fault zone, which slips at ~6.5 mm/yr, resulting in an apparent slip deficit of ~7.4 mm/yr. However, the newly studied adjacent faults in this complex system could accommodate as much or more slip than the historically defined main fault trace, thus resulting in a possibly broader zone of seismic hazard, but less risk of major earthquakes on the main trace. Timing of pull-apart basin initiations is not well constrained, with data permitting either the interpretation that basins formed due to oblique subduction and are currently being reactivated by similar stresses, or that they are newly formed and rapidly evolving. Limited data even allows that the largest pull-apart system may be a reactivated pre

  16. Inference of fitness from genealogical trees

    NASA Astrophysics Data System (ADS)

    Vucelja, Marija; Dayarian, Adel; Shraiman, Boris

    2013-03-01

    Natural populations are fitness diverse and can have numerous genes under selection. The genealogical trees, that one obtains by sampling, often bear hallmarks of selection, such multiple mergers, asymmetric tree branches and long terminal branches (the trees are squished towards the root). These are qualitative differences compared to trees in the absence of selection. We propose a theoretical model that links the morphology of a tree with the fitness of the leaves. We obtain multipoint correlation functions of the fitness along the tree. In this way we are able extract some quantitative information about the strength of selection from data-reconstructed trees. The extensions of this approach can potentially be useful for inferring relative fitness of sequenced genomes of tumors and for predicting viral outbreaks.

  17. The SCEC 3D Community Fault Model (CFM-v5): An updated and expanded fault set of oblique crustal deformation and complex fault interaction for southern California

    NASA Astrophysics Data System (ADS)

    Nicholson, C.; Plesch, A.; Sorlien, C. C.; Shaw, J. H.; Hauksson, E.

    2014-12-01

    Southern California represents an ideal natural laboratory to investigate oblique deformation in 3D owing to its comprehensive datasets, complex tectonic history, evolving components of oblique slip, and continued crustal rotations about horizontal and vertical axes. As the SCEC Community Fault Model (CFM) aims to accurately reflect this 3D deformation, we present the results of an extensive update to the model by using primarily detailed fault trace, seismic reflection, relocated hypocenter and focal mechanism nodal plane data to generate improved, more realistic digital 3D fault surfaces. The results document a wide variety of oblique strain accommodation, including various aspects of strain partitioning and fault-related folding, sets of both high-angle and low-angle faults that mutually interact, significant non-planar, multi-stranded faults with variable dip along strike and with depth, and active mid-crustal detachments. In places, closely-spaced fault strands or fault systems can remain surprisingly subparallel to seismogenic depths, while in other areas, major strike-slip to oblique-slip faults can merge, such as the S-dipping Arroyo Parida-Mission Ridge and Santa Ynez faults with the N-dipping North Channel-Pitas Point-Red Mountain fault system, or diverge with depth. Examples of the latter include the steep-to-west-dipping Laguna Salada-Indiviso faults with the steep-to-east-dipping Sierra Cucapah faults, and the steep southern San Andreas fault with the adjacent NE-dipping Mecca Hills-Hidden Springs fault system. In addition, overprinting by steep predominantly strike-slip faulting can segment which parts of intersecting inherited low-angle faults are reactivated, or result in mutual cross-cutting relationships. The updated CFM 3D fault surfaces thus help characterize a more complex pattern of fault interactions at depth between various fault sets and linked fault systems, and a more complex fault geometry than typically inferred or expected from

  18. Sequential Testing Algorithms for Multiple Fault Diagnosis

    NASA Technical Reports Server (NTRS)

    Shakeri, Mojdeh; Raghavan, Vijaya; Pattipati, Krishna R.; Patterson-Hine, Ann

    1997-01-01

    In this paper, we consider the problem of constructing optimal and near-optimal test sequencing algorithms for multiple fault diagnosis. The computational complexity of solving the optimal multiple-fault isolation problem is super-exponential, that is, it is much more difficult than the single-fault isolation problem, which, by itself, is NP-hard. By employing concepts from information theory and AND/OR graph search, we present several test sequencing algorithms for the multiple fault isolation problem. These algorithms provide a trade-off between the degree of suboptimality and computational complexity. Furthermore, we present novel diagnostic strategies that generate a diagnostic directed graph (digraph), instead of a diagnostic tree, for multiple fault diagnosis. Using this approach, the storage complexity of the overall diagnostic strategy reduces substantially. The algorithms developed herein have been successfully applied to several real-world systems. Computational results indicate that the size of a multiple fault strategy is strictly related to the structure of the system.

  19. Technical Tree Climbing.

    ERIC Educational Resources Information Center

    Jenkins, Peter

    Tree climbing offers a safe, inexpensive adventure sport that can be performed almost anywhere. Using standard procedures practiced in tree surgery or rock climbing, almost any tree can be climbed. Tree climbing provides challenge and adventure as well as a vigorous upper-body workout. Tree Climbers International classifies trees using a system…

  20. Analysis of a hardware and software fault tolerant processor for critical applications

    NASA Technical Reports Server (NTRS)

    Dugan, Joanne B.

    1993-01-01

    Computer systems for critical applications must be designed to tolerate software faults as well as hardware faults. A unified approach to tolerating hardware and software faults is characterized by classifying faults in terms of duration (transient or permanent) rather than source (hardware or software). Errors arising from transient faults can be handled through masking or voting, but errors arising from permanent faults require system reconfiguration to bypass the failed component. Most errors which are caused by software faults can be considered transient, in that they are input-dependent. Software faults are triggered by a particular set of inputs. Quantitative dependability analysis of systems which exhibit a unified approach to fault tolerance can be performed by a hierarchical combination of fault tree and Markov models. A methodology for analyzing hardware and software fault tolerant systems is applied to the analysis of a hypothetical system, loosely based on the Fault Tolerant Parallel Processor. The models consider both transient and permanent faults, hardware and software faults, independent and related software faults, automatic recovery, and reconfiguration.

  1. Fault zone hydrogeology

    NASA Astrophysics Data System (ADS)

    Bense, V. F.; Gleeson, T.; Loveless, S. E.; Bour, O.; Scibek, J.

    2013-12-01

    Deformation along faults in the shallow crust (< 1 km) introduces permeability heterogeneity and anisotropy, which has an important impact on processes such as regional groundwater flow, hydrocarbon migration, and hydrothermal fluid circulation. Fault zones have the capacity to be hydraulic conduits connecting shallow and deep geological environments, but simultaneously the fault cores of many faults often form effective barriers to flow. The direct evaluation of the impact of faults to fluid flow patterns remains a challenge and requires a multidisciplinary research effort of structural geologists and hydrogeologists. However, we find that these disciplines often use different methods with little interaction between them. In this review, we document the current multi-disciplinary understanding of fault zone hydrogeology. We discuss surface- and subsurface observations from diverse rock types from unlithified and lithified clastic sediments through to carbonate, crystalline, and volcanic rocks. For each rock type, we evaluate geological deformation mechanisms, hydrogeologic observations and conceptual models of fault zone hydrogeology. Outcrop observations indicate that fault zones commonly have a permeability structure suggesting they should act as complex conduit-barrier systems in which along-fault flow is encouraged and across-fault flow is impeded. Hydrogeological observations of fault zones reported in the literature show a broad qualitative agreement with outcrop-based conceptual models of fault zone hydrogeology. Nevertheless, the specific impact of a particular fault permeability structure on fault zone hydrogeology can only be assessed when the hydrogeological context of the fault zone is considered and not from outcrop observations alone. To gain a more integrated, comprehensive understanding of fault zone hydrogeology, we foresee numerous synergistic opportunities and challenges for the discipline of structural geology and hydrogeology to co-evolve and

  2. Fault recovery characteristics of the fault tolerant multi-processor

    NASA Technical Reports Server (NTRS)

    Padilla, Peter A.

    1990-01-01

    The fault handling performance of the fault tolerant multiprocessor (FTMP) was investigated. Fault handling errors detected during fault injection experiments were characterized. In these fault injection experiments, the FTMP disabled a working unit instead of the faulted unit once every 500 faults, on the average. System design weaknesses allow active faults to exercise a part of the fault management software that handles byzantine or lying faults. It is pointed out that these weak areas in the FTMP's design increase the probability that, for any hardware fault, a good LRU (line replaceable unit) is mistakenly disabled by the fault management software. It is concluded that fault injection can help detect and analyze the behavior of a system in the ultra-reliable regime. Although fault injection testing cannot be exhaustive, it has been demonstrated that it provides a unique capability to unmask problems and to characterize the behavior of a fault-tolerant system.

  3. Vertical deformation of lacustrine shorelines along breached relay ramps, Catlow Valley fault, southeastern Oregon, USA

    NASA Astrophysics Data System (ADS)

    Hopkins, Michael C.; Dawers, Nancye H.

    2016-04-01

    Vertical deformation of pluvial lacustrine shorelines is attributed to slip along the Catlow Valley fault, a segmented Basin and Range style normal fault in southeastern Oregon, USA. The inner edges of shorelines are mapped along three breached relay ramps along the fault to examine the effect of fault linkage on the distribution of slip. Shoreline inner edges act as paleohorizontal datums so deviations in elevation from horizontal, outside of a 2 m error window, are taken to be indications of fault slip. The sites chosen represent a spectrum of linkage scenarios in that the throw on the linking fault compared to that on the main fault adjacent to the linking fault varies from site to site. Results show that the maturity of the linkage between segments (i.e. larger throw on the linking fault with respect to the main fault) does not control the spatial distribution of shoreline deformation. Patterns of shoreline deformation indicate that the outboard, linking, and/or smaller ramp faults have slipped since the shorelines formed. Observations indicate that displacement has not fully localized on the linking faults following complete linkage between segments.

  4. Identification of latent faults using a radon test

    NASA Astrophysics Data System (ADS)

    González-Díez, A.; Soto, J.; Gómez-Arozamena, J.; Bonachea, J.; Martínez-Díaz, J. J.; Cuesta, J. A.; Olague, I.; Remondo, J.; Fernández Maroto, G.; Díaz de Terán, J. R.

    2009-09-01

    This paper discusses the use of 222Rn concentrations in water of natural springs as a geomorphological method to identify latent faults in low-mid term activity areas. The identification of this type of active fault may be crucial in hazard analysis, structural geomorphology and in landscape evolution analysis. The test used to identify these faults is based on the measuring of 222Rn concentrations in water of springs linked to faults, and comparison with those obtained from springs which, although exactly the same lithological context, are not linked with faults (reference values). If the difference between the measured value and the reference value is positive then an anomaly is identified and that measurement indicates a spring linked to a latent fault. The test was applied and validated in springs linked to faults with a latent behaviour in Cantabria, Northern Spain. These faults have shown an intermittent movement over the last 50,000 years, and have contributed towards landslide processes playing a significant role in landscape evolution of the area.

  5. Fault model development for fault tolerant VLSI design

    NASA Astrophysics Data System (ADS)

    Hartmann, C. R.; Lala, P. K.; Ali, A. M.; Visweswaran, G. S.; Ganguly, S.

    1988-05-01

    Fault models provide systematic and precise representations of physical defects in microcircuits in a form suitable for simulation and test generation. The current difficulty in testing VLSI circuits can be attributed to the tremendous increase in design complexity and the inappropriateness of traditional stuck-at fault models. This report develops fault models for three different types of common defects that are not accurately represented by the stuck-at fault model. The faults examined in this report are: bridging faults, transistor stuck-open faults, and transient faults caused by alpha particle radiation. A generalized fault model could not be developed for the three fault types. However, microcircuit behavior and fault detection strategies are described for the bridging, transistor stuck-open, and transient (alpha particle strike) faults. The results of this study can be applied to the simulation and analysis of faults in fault tolerant VLSI circuits.

  6. The Tree Worker's Manual.

    ERIC Educational Resources Information Center

    Smithyman, S. J.

    This manual is designed to prepare students for entry-level positions as tree care professionals. Addressed in the individual chapters of the guide are the following topics: the tree service industry; clothing, eqiupment, and tools; tree workers; basic tree anatomy; techniques of pruning; procedures for climbing and working in the tree; aerial…

  7. FTAPE: A fault injection tool to measure fault tolerance

    NASA Technical Reports Server (NTRS)

    Tsai, Timothy K.; Iyer, Ravishankar K.

    1995-01-01

    The paper introduces FTAPE (Fault Tolerance And Performance Evaluator), a tool that can be used to compare fault-tolerant computers. The tool combines system-wide fault injection with a controllable workload. A workload generator is used to create high stress conditions for the machine. Faults are injected based on this workload activity in order to ensure a high level of fault propagation. The errors/fault ratio and performance degradation are presented as measures of fault tolerance.

  8. FTAPE: A fault injection tool to measure fault tolerance

    NASA Technical Reports Server (NTRS)

    Tsai, Timothy K.; Iyer, Ravishankar K.

    1994-01-01

    The paper introduces FTAPE (Fault Tolerance And Performance Evaluator), a tool that can be used to compare fault-tolerant computers. The tool combines system-wide fault injection with a controllable workload. A workload generator is used to create high stress conditions for the machine. Faults are injected based on this workload activity in order to ensure a high level of fault propagation. The errors/fault ratio and performance degradation are presented as measures of fault tolerance.

  9. FTAPE: A fault injection tool to measure fault tolerance

    NASA Astrophysics Data System (ADS)

    Tsai, Timothy K.; Iyer, Ravishankar K.

    1994-07-01

    The paper introduces FTAPE (Fault Tolerance And Performance Evaluator), a tool that can be used to compare fault-tolerant computers. The tool combines system-wide fault injection with a controllable workload. A workload generator is used to create high stress conditions for the machine. Faults are injected based on this workload activity in order to ensure a high level of fault propagation. The errors/fault ratio and performance degradation are presented as measures of fault tolerance.

  10. Understory plant communities and the functional distinction between savanna trees, forest trees, and pines.

    SciTech Connect

    Veldman, Joseph, W., Mattingly, Brett, W., Brudvig, Lars, A.

    2013-04-01

    Abstract. Although savanna trees and forest trees are thought to represent distinct functional groups with different effects on ecosystem processes, few empirical studies have examined these effects. In particular, it remains unclear if savanna and forest trees differ in their ability to coexist with understory plants, which comprise the majority of plant diversity in most savannas. We used structural equation modeling (SEM) and data from 157 sites across three locations in the southeastern United States to understand the effects of broadleaf savanna trees, broadleaf forest trees, and pine trees on savanna understory plant communities. After accounting for underlying gradients in fire frequency and soil moisture, abundances (i.e., basal area and stem density) of forest trees and pines, but not savanna trees, were negatively correlated with the cover and density (i.e., local-scale species richness) of C4 graminoid species, a defining savanna understory functional group that is linked to ecosystem flammability. In analyses of the full understory community, abundances of trees from all functional groups were negatively correlated with species density and cover. For both the C4 and full communities, fire frequency promoted understory plants directly, and indirectly by limiting forest tree abundance. There was little indirect influence of fire on the understory mediated through savanna trees and pines, which are more fire tolerant than forest trees. We conclude that tree functional identity is an important factor that influences overstory tree relationships with savanna understory plant communities. In particular, distinct relationships between trees and C4 graminoids have implications for grass-tree coexistence and vegetation-fire feedbacks that maintain savanna environments and their associated understory plant diversity.

  11. Understory plant communities and the functional distinction between savanna trees, forest trees, and pines.

    PubMed

    Veldman, Joseph W; Mattingly, W Brett; Brudvig, Lars A

    2013-02-01

    Although savanna trees and forest trees are thought to represent distinct functional groups with different effects on ecosystem processes, few empirical studies have examined these effects. In particular, it remains unclear if savanna and forest trees differ in their ability to coexist with understory plants, which comprise the majority of plant diversity in most savannas. We used structural equation modeling (SEM) and data from 157 sites across three locations in the southeastern United States to understand the effects of broadleaf savanna trees, broadleaf forest trees, and pine trees on savanna understory plant communities. After accounting for underlying gradients in fire frequency and soil moisture, abundances (i.e., basal area and stem density) of forest trees and pines, but not savanna trees, were negatively correlated with the cover and density (i.e., local-scale species richness) of C4 graminoid species, a defining savanna understory functional group that is linked to ecosystem flammability. In analyses of the full understory community, abundances of trees from all functional groups were negatively correlated with species density and cover. For both the C4 and full communities, fire frequency promoted understory plants directly, and indirectly by limiting forest tree abundance. There was little indirect influence of fire on the understory mediated through savanna trees and pines, which are morefire tolerant than forest trees. We conclude that tree functional identity is an important factor that influences overstory tree relationships with savanna understory plant communities. In particular, distinct relationships between trees and C4 graminoids have implications for grass-tree coexistence and vegetation-fire feedbacks that maintain savanna environments and their associated understory plant diversity. PMID:23691661

  12. Isolability of faults in sensor fault diagnosis

    NASA Astrophysics Data System (ADS)

    Sharifi, Reza; Langari, Reza

    2011-10-01

    A major concern with fault detection and isolation (FDI) methods is their robustness with respect to noise and modeling uncertainties. With this in mind, several approaches have been proposed to minimize the vulnerability of FDI methods to these uncertainties. But, apart from the algorithm used, there is a theoretical limit on the minimum effect of noise on detectability and isolability. This limit has been quantified in this paper for the problem of sensor fault diagnosis based on direct redundancies. In this study, first a geometric approach to sensor fault detection is proposed. The sensor fault is isolated based on the direction of residuals found from a residual generator. This residual generator can be constructed from an input-output or a Principal Component Analysis (PCA) based model. The simplicity of this technique, compared to the existing methods of sensor fault diagnosis, allows for more rational formulation of the isolability concepts in linear systems. Using this residual generator and the assumption of Gaussian noise, the effect of noise on isolability is studied, and the minimum magnitude of isolable fault in each sensor is found based on the distribution of noise in the measurement system. Finally, some numerical examples are presented to clarify this approach.

  13. WDM Multicast Tree Construction Algorithms and Their Comparative Evaluations

    NASA Astrophysics Data System (ADS)

    Makabe, Tsutomu; Mikoshi, Taiju; Takenaka, Toyofumi

    We propose novel tree construction algorithms for multicast communication in photonic networks. Since multicast communications consume many more link resources than unicast communications, effective algorithms for route selection and wavelength assignment are required. We propose a novel tree construction algorithm, called the Weighted Steiner Tree (WST) algorithm and a variation of the WST algorithm, called the Composite Weighted Steiner Tree (CWST) algorithm. Because these algorithms are based on the Steiner Tree algorithm, link resources among source and destination pairs tend to be commonly used and link utilization ratios are improved. Because of this, these algorithms can accept many more multicast requests than other multicast tree construction algorithms based on the Dijkstra algorithm. However, under certain delay constraints, the blocking characteristics of the proposed Weighted Steiner Tree algorithm deteriorate since some light paths between source and destinations use many hops and cannot satisfy the delay constraint. In order to adapt the approach to the delay-sensitive environments, we have devised the Composite Weighted Steiner Tree algorithm comprising the Weighted Steiner Tree algorithm and the Dijkstra algorithm for use in a delay constrained environment such as an IPTV application. In this paper, we also give the results of simulation experiments which demonstrate the superiority of the proposed Composite Weighted Steiner Tree algorithm compared with the Distributed Minimum Hop Tree (DMHT) algorithm, from the viewpoint of the light-tree request blocking.

  14. Measurement of tree canopy architecture

    NASA Technical Reports Server (NTRS)

    Martens, S. N.; Ustin, S. L.; Norman, J. M.

    1991-01-01

    The lack of accurate extensive geometric data on tree canopies has retarded development and validation of radiative transfer models. A stratified sampling method was devised to measure the three-dimensional geometry of 16 walnut trees which had received irrigation treatments of either 100 or 33 per cent of evapotranspirational (ET) demand for the previous two years. Graphic reconstructions of the three-dimensional geometry were verified by 58 independent measurements. The distributions of stem- and leaf-size classes, lengths, and angle classes were determined and used to calculate leaf area index (LAI), stem area, and biomass. Reduced irrigation trees have lower biomass of stems, leaves and fruit, lower LAI, steeper leaf angles and altered biomass allocation to large stems. These data can be used in ecological models that link canopy processes with remotely sensed measurements.

  15. Global tree network for computing structures enabling global processing operations

    DOEpatents

    Blumrich; Matthias A.; Chen, Dong; Coteus, Paul W.; Gara, Alan G.; Giampapa, Mark E.; Heidelberger, Philip; Hoenicke, Dirk; Steinmacher-Burow, Burkhard D.; Takken, Todd E.; Vranas, Pavlos M.

    2010-01-19

    A system and method for enabling high-speed, low-latency global tree network communications among processing nodes interconnected according to a tree network structure. The global tree network enables collective reduction operations to be performed during parallel algorithm operations executing in a computer structure having a plurality of the interconnected processing nodes. Router devices are included that interconnect the nodes of the tree via links to facilitate performance of low-latency global processing operations at nodes of the virtual tree and sub-tree structures. The global operations performed include one or more of: broadcast operations downstream from a root node to leaf nodes of a virtual tree, reduction operations upstream from leaf nodes to the root node in the virtual tree, and point-to-point message passing from any node to the root node. The global tree network is configurable to provide global barrier and interrupt functionality in asynchronous or synchronized manner, and, is physically and logically partitionable.

  16. Tree-based shortest-path routing algorithm

    NASA Astrophysics Data System (ADS)

    Long, Y. H.; Ho, T. K.; Rad, A. B.; Lam, S. P. S.

    1998-12-01

    A tree-based shortest path routing algorithm is introduced in this paper. With this algorithm, every network node can maintain a shortest path routing tree topology of the network with itself as the root. In this algorithm, every node constructs its own routing tree based upon its neighbors' routing trees. Initially, the routing tree at each node has the root only, the node itself. As information exchanges, every node's routing tree will evolve until a complete tree is obtained. This algorithm is a trade-off between distance vector algorithm and link state algorithm. Loops are automatically deleted, so there is no count-to- infinity effect. A simple routing tree information storage approach and a protocol data until format to transmit the tree information are given. Some special issues, such as adaptation to topology change, implementation of the algorithm on LAN, convergence and computation overhead etc., are also discussed in the paper.

  17. Deformation associated with faulting within geologic and interseismic timescales

    NASA Astrophysics Data System (ADS)

    Marshall, Scott T.

    2008-04-01

    This dissertation consists of several distinct studies that use numerical modeling to better constrain deformation due to faulting over disparate timescales. Field mapping reveals a segment of the Lake Mead fault system, the Pinto Ridge fault, and a cluster of west-dipping normal faults located near Pinto Ridge. I suggest that this strike-slip segment was kinematically related to the Bitter Spring Valley fault, created the normal fault cluster at Pinto Ridge, and utilized these normal faults as linking structures between fault segments. Modeling results demonstrate that the location and orientations of the normal faults are consistent with having formed in the perturbed stress field around the slipping Pinto Ridge fault. Calculations of mechanical efficiency suggest that a preferred dip of normal faults in the region may reflect a crustal anisotropy at depth, such as a detachment. I present a methodology for simulating interseismic deformation in complex regions. I derive an analytical model of interseismic deformation that is equivalent to the conventional model. Based on this model, I formulate a two-step numerical simulation of geologic and interseismic deformation. I apply this technique to the Los Angeles region and find that model results match well both geologic slip rate estimates and geodetic velocities. Model results suggest that the Puente Hills thrusts are currently slipping at rates that are compatible with geologic estimates and that localized contraction in the San Gabriel basin is dominantly due to deep slip on the Sierra Madre fault. To assess the control of fault geometry and mechanical interactions on fault slip in a natural system, I create models of the Ventura region, California, using both planar and non-planar faults. I find that incorporating geologically-constrained fault surfaces into numerical models results in a better match to available geologic slip rate data than models utilizing planar faults. Because slip rates at most locations

  18. Achieving Agreement in Three Rounds With Bounded-Byzantine Faults

    NASA Technical Reports Server (NTRS)

    Malekpour, Mahyar R.

    2015-01-01

    A three-round algorithm is presented that guarantees agreement in a system of K (nodes) greater than or equal to 3F (faults) +1 nodes provided each faulty node induces no more than F faults and each good node experiences no more than F faults, where, F is the maximum number of simultaneous faults in the network. The algorithm is based on the Oral Message algorithm of Lamport et al. and is scalable with respect to the number of nodes in the system and applies equally to the traditional node-fault model as well as the link-fault model. We also present a mechanical verification of the algorithm focusing on verifying the correctness of a bounded model of the algorithm as well as confirming claims of determinism.

  19. Three-dimensional fault drawing

    SciTech Connect

    Dongan, L. )

    1992-01-01

    In this paper, the author presents a structure interpretation based on three-dimensional fault drawing. It is required that fault closure must be based on geological theory, spacial plotting principle and restrictions in seismic exploration. Geological structure can be well ascertained by analysing the shapes and interrelation of the faults which have been drawn through reasonable fault point closure and fault point correlation. According to this method, the interrelation of fault points is determined by first closing corresponding fault points in intersecting sections, then reasonably correlating the relevant fault points. Fault point correlation is not achieved in base map, so its correctness can be improved greatly. Three-dimensional fault closure is achieved by iteratively revising. The closure grid should be densified gradually. The distribution of major fault system is determined prior to secondary faults. Fault interpretation by workstation also follows this procedure.

  20. Uncertainty and Characterization of the Baton Rouge Fault System in a Bayesian Framework

    NASA Astrophysics Data System (ADS)

    Elshall, A. S.; Tsai, F. T.; Hanor, J. S.

    2011-12-01

    Under a Bayesian framework, we developed an indicator-kriging-based method to characterize the Baton Rouge fault system in Louisiana. The fault system includes the Baton Rouge fault and the Denham Springs-Scotlandville fault. The hydrostratigraphy of the Baton Rouge fault is of particular importance from a resource standpoint since it acts as a conduit-barrier to a series of fresh water aquifers north of the fault and saltwater aquifers south of the fault. In characterizing the complex spatial variations of subsurface geology, uncertainty always exists and multiple possible stratigraphy fault models are usually resulted. By utilizing electrical resistivity, driller logs and geological information, we constructed and calibrated several hydrostratigraphic fault models using different data sets, variogram models, and geological conceptualizations. In this study, to select only the best fault model was not an effective use of resources since the best fault model did not significantly dominate over other possible fault models. To advance beyond the typical model selection approach, an epistemic framework is needed to integrate all information from different models. This study introduced a hierarchical Bayesian model averaging (HBMA) method as a framework for organizing different models to present the importance of the different assumptions that we considered in the fault characterization process. Most importantly, the HBMA integrated multiple models and avoided over-confidence in the best model. The HBMA provided an insight on the model selection and model averaging through a BMA tree. A BMA model at a vertex in the BMA tree presented an integrated model of all models and information considered under this vertex. The results provide valuable insights on the fault structure and leaky areas that have resulted in salinization in the fresh water aquifers adjacent to the northern area of the Baton Rouge fault, thus elucidating previous geological studies and transport

  1. Strike-slip fault propagation and linkage via work optimization with application to the San Jacinto fault, California

    NASA Astrophysics Data System (ADS)

    Madden, E. H.; McBeck, J.; Cooke, M. L.

    2013-12-01

    Over multiple earthquake cycles, strike-slip faults link to form through-going structures, as demonstrated by the continuous nature of the mature San Andreas fault system in California relative to the younger and more segmented San Jacinto fault system nearby. Despite its immaturity, the San Jacinto system accommodates between one third and one half of the slip along the boundary between the North American and Pacific plates. It therefore poses a significant seismic threat to southern California. Better understanding of how the San Jacinto system has evolved over geologic time and of current interactions between faults within the system is critical to assessing this seismic hazard accurately. Numerical models are well suited to simulating kilometer-scale processes, but models of fault system development are challenged by the multiple physical mechanisms involved. For example, laboratory experiments on brittle materials show that faults propagate and eventually join (hard-linkage) by both opening-mode and shear failure. In addition, faults interact prior to linkage through stress transfer (soft-linkage). The new algorithm GROW (GRowth by Optimization of Work) accounts for this complex array of behaviors by taking a global approach to fault propagation while adhering to the principals of linear elastic fracture mechanics. This makes GROW a powerful tool for studying fault interactions and fault system development over geologic time. In GROW, faults evolve to minimize the work (or energy) expended during deformation, thereby maximizing the mechanical efficiency of the entire system. Furthermore, the incorporation of both static and dynamic friction allows GROW models to capture fault slip and fault propagation in single earthquakes as well as over consecutive earthquake cycles. GROW models with idealized faults reveal that the initial fault spacing and the applied stress orientation control fault linkage propensity and linkage patterns. These models allow the gains in

  2. How Faults Shape the Earth.

    ERIC Educational Resources Information Center

    Bykerk-Kauffman, Ann

    1992-01-01

    Presents fault activity with an emphasis on earthquakes and changes in continent shapes. Identifies three types of fault movement: normal, reverse, and strike faults. Discusses the seismic gap theory, plate tectonics, and the principle of superposition. Vignettes portray fault movement, and the locations of the San Andreas fault and epicenters of…

  3. The implication of gouge mineralogy evolution on fault creep: an example from The North Anatolian Fault, Turkey

    NASA Astrophysics Data System (ADS)

    Kaduri, M.; Gratier, J. P.; Renard, F.; Cakir, Z.; Lasserre, C.

    2015-12-01

    Aseismic creep is found along several sections of major active faults at shallow depth, such as the North Anatolian Fault in Turkey, the San Andreas Fault in California (USA), the Longitudinal Valley Fault in Taiwan, the Haiyuan fault in China and the El Pilar Fault in Venezuela. Identifying the mechanisms controlling creep and their evolution with time and space represents a major challenge for predicting the mechanical evolution of active faults, the interplay between creep and earthquakes, and the link between short-term observations from geodesy and the geological setting. Hence, studying the evolution of initial rock into damaged rock, then into gouge, is one of the key question for understanding the origin of fault creep. In order to address this question we collected samples from a dozen well-preserved fault outcrops along creeping and locked sections of the North Anatolian Fault. We used various methods such as microscopic and geological observations, EPMA, XRD analysis, combined with image processing, to characterize their mineralogy and strain. We conclude that (1) there is a clear correlation between creep localization and gouge composition. The locked sections of the fault are mostly composed of massive limestone. The creeping sections comprises clay gouges with 40-80% low friction minerals such as smectite, saponite, kaolinite, that facilitates the creeping. (2) The fault gouge shows two main structures that evolve with displacement: anastomosing cleavage develop during the first stage of displacement; amplifying displacement leads to layering development oblique or sub-parallel to the fault. (3) We demonstrate that the fault gouge result from a progressive evolution of initial volcanic rocks including dissolution of soluble species that move at least partially toward the damage zones and alteration transformations by fluid flow that weaken the gouge and strengthen the damage zone.

  4. Geometric incompatibility in a fault system.

    PubMed Central

    Gabrielov, A; Keilis-Borok, V; Jackson, D D

    1996-01-01

    Interdependence between geometry of a fault system, its kinematics, and seismicity is investigated. Quantitative measure is introduced for inconsistency between a fixed configuration of faults and the slip rates on each fault. This measure, named geometric incompatibility (G), depicts summarily the instability near the fault junctions: their divergence or convergence ("unlocking" or "locking up") and accumulation of stress and deformations. Accordingly, the changes in G are connected with dynamics of seismicity. Apart from geometric incompatibility, we consider deviation K from well-known Saint Venant condition of kinematic compatibility. This deviation depicts summarily unaccounted stress and strain accumulation in the region and/or internal inconsistencies in a reconstruction of block- and fault system (its geometry and movements). The estimates of G and K provide a useful tool for bringing together the data on different types of movement in a fault system. An analog of Stokes formula is found that allows determination of the total values of G and K in a region from the data on its boundary. The phenomenon of geometric incompatibility implies that nucleation of strong earthquakes is to large extent controlled by processes near fault junctions. The junctions that have been locked up may act as transient asperities, and unlocked junctions may act as transient weakest links. Tentative estimates of K and G are made for each end of the Big Bend of the San Andreas fault system in Southern California. Recent strong earthquakes Landers (1992, M = 7.3) and Northridge (1994, M = 6.7) both reduced K but had opposite impact on G: Landers unlocked the area, whereas Northridge locked it up again. Images Fig. 1 Fig. 2 PMID:11607673

  5. Geometric incompatibility in a fault system.

    PubMed

    Gabrielov, A; Keilis-Borok, V; Jackson, D D

    1996-04-30

    Interdependence between geometry of a fault system, its kinematics, and seismicity is investigated. Quantitative measure is introduced for inconsistency between a fixed configuration of faults and the slip rates on each fault. This measure, named geometric incompatibility (G), depicts summarily the instability near the fault junctions: their divergence or convergence ("unlocking" or "locking up") and accumulation of stress and deformations. Accordingly, the changes in G are connected with dynamics of seismicity. Apart from geometric incompatibility, we consider deviation K from well-known Saint Venant condition of kinematic compatibility. This deviation depicts summarily unaccounted stress and strain accumulation in the region and/or internal inconsistencies in a reconstruction of block- and fault system (its geometry and movements). The estimates of G and K provide a useful tool for bringing together the data on different types of movement in a fault system. An analog of Stokes formula is found that allows determination of the total values of G and K in a region from the data on its boundary. The phenomenon of geometric incompatibility implies that nucleation of strong earthquakes is to large extent controlled by processes near fault junctions. The junctions that have been locked up may act as transient asperities, and unlocked junctions may act as transient weakest links. Tentative estimates of K and G are made for each end of the Big Bend of the San Andreas fault system in Southern California. Recent strong earthquakes Landers (1992, M = 7.3) and Northridge (1994, M = 6.7) both reduced K but had opposite impact on G: Landers unlocked the area, whereas Northridge locked it up again. PMID:11607673

  6. Stacking and twin faults in close-packed crystal structures: exact description of random faulting statistics for the full range of faulting probabilities.

    PubMed

    Estevez-Rams, E; Welzel, U; Pentón Madrigal, A; Mittemeijer, E J

    2008-09-01

    The classical model of independent random single deformation faults and twin faulting in face-centered-cubic and hexagonal close packing is revisited. The model is extended to account for the whole range of faulting probabilities. The faulting process resulting in the final stacking sequences is described by several equivalent computational models. The probability sequence tree is established. Random faulting is described as a finite-state automaton machine. An expression giving the percent of hexagonality from the faulting probabilities is derived. The average sizes of the cubic and hexagonal domains are given as a function of single deformation and twinning fault probabilities. An expression for the probability of finding a given sequence within the complete stacking arrangement is also derived. The probability P(0)(Delta) of finding two layers of the same type Delta layers apart is derived. It is shown that previous generalizations did not account for all terms in the final probability expressions. The different behaviors of the P(0)(Delta) functions are discussed. PMID:18708717

  7. The Needs of Trees

    ERIC Educational Resources Information Center

    Boyd, Amy E.; Cooper, Jim

    2004-01-01

    Tree rings can be used not only to look at plant growth, but also to make connections between plant growth and resource availability. In this lesson, students in 2nd-4th grades use role-play to become familiar with basic requirements of trees and how availability of those resources is related to tree ring sizes and tree growth. These concepts can…

  8. Normal faults, normal friction?

    NASA Astrophysics Data System (ADS)

    Collettini, Cristiano; Sibson, Richard H.

    2001-10-01

    Debate continues as to whether normal faults may be seismically active at very low dips (δ < 30°) in the upper continental crust. An updated compilation of dip estimates (n = 25) has been prepared from focal mechanisms of shallow, intracontinental, normal-slip earthquakes (M > 5.5; slip vector raking 90° ± 30° in the fault plane) where the rupture plane is unambiguously discriminated. The dip distribution for these moderate-to-large normal fault ruptures extends from 65° > δ > 30°, corresponding to a range, 25° < θr < 60°, for the reactivation angle between the fault and inferred vertical σ1. In a comparable data set previously obtained for reverse fault ruptures (n = 33), the active dip distribution is 10° < δ = θr < 60°. For vertical and horizontal σ1 trajectories within extensional and compressional tectonic regimes, respectively, dip-slip reactivation is thus restricted to faults oriented at θr ≤ 60° to inferred σ1. Apparent lockup at θr ≈ 60° in each dip distribution and a dominant 30° ± 5° peak in the reverse fault dip distribution, are both consistent with a friction coefficient μs ≈ 0.6, toward the bottom of Byerlee's experimental range, though localized fluid overpressuring may be needed for reactivation of less favorably oriented faults.

  9. A Conceptual Tree of Laser Propulsion

    SciTech Connect

    Pakhomov, Andrew V.; Sinko, John E.

    2008-04-28

    An original attempt to develop a conceptual tree for laser propulsion is offered. The tree provides a systematic view for practically all possible laser propulsion concepts and all inter-conceptual links, based on propellant phases and phase transfers. It also helps to see which fields of laser propulsion have been already thoroughly explored, where the next effort must be applied, and which paths should be taken with proper care or avoided entirely.

  10. Fault growth by linkage: observations and implications from analogue models

    NASA Astrophysics Data System (ADS)

    Mansfield, Chris; Cartwright, Joe

    2001-05-01

    Using time sequence analyses of extensional fault models we demonstrate the pivotal role played by fault segmentation in the accumulation of displacement and length during the growth of faults. Experiments are described in which incremental steps during the development of individual faults have been reconstructed from time-lapse photographs taken during model deformation. These records confirm the composite segment hierarchy of fault structure, a pattern that is frequently recognised in many natural arrays. They reveal the progressive enlargement of individual faults to be the product of a repetitive cycle of tip-line propagation, overlap and linkage between nearest neighbours. By contrasting the displacement patterns of successive increments during growth convincing evidence is also presented to suggest that individual segments of faults may remain kinematically independent once they are physically linked. This behaviour is shown to be responsible for the characteristic saw-tooth patterns often recognised in strike-parallel fault displacement profiles. Such patterns are believed to arise where relict segment boundaries remain preserved as asperities to slip, so that displacement is confined to discrete parts of a fault plane surface. Growth in this way also causes the maximum displacement (D) and surface length (L) of faults to continually change by different proportions. Incremental displacement records presented here corroborate field evidence which shows that linkage between fault segments during growth is responsible for a significant component of the spread of values often recorded in D versus L compilations. Finally, we speculate that linkage between fault segments also accounts for transient irregularities recorded in the frequency distribution of the fault length populations of each model.

  11. Late Quaternary slip on the Santa Cruz Island fault, California

    USGS Publications Warehouse

    Pinter, N.; Lueddecke, S.B.; Keller, E.A.; Simmons, K.R.

    1998-01-01

    The style, timing, and pattern of slip on the Santa Cruz Island fault were investigated by trenching the fault and by analysis of offset late Quaternary landforms. A trench excavated across the fault at Christi Beach, on the western coast of the island, exposed deformation of latest Pleistocene to Holocene sediments and pre-Quaternary rocks, recording repeated large-magnitude rupture events. The most recent earthquake at this site occurred ca. 5 ka. Coastal terraces preserved on western Santa Cruz Island have been dated using the uranium-series technique and by extrapolation using terrace elevations and the eustatic record. Offset of terraces and other landforms indicates that the Santa Cruz Island fault is predominantly left lateral, having a horizontal slip rate of not more than 1.1 mm/yr and probably about 0.8 mm/yr. The fault also has a smaller reverse component, slipping at a rate of between 0.1 and 0.2 mm/yr. Combined with measurements of slip per event, this information suggests a long-term average recurrence interval of at least 2.7 k.y. and probably 4-5 k.y., and average earthquake magnitudes of Mw 7.2-7.5. Sense of slip, recurrence interval, and earthquake magnitudes calculated here for the Santa Cruz Island fault are very similar to recent results for other faults along the southern margin of the western Transverse Range, including the Malibu Coast fault, the Santa Monica fault, the Hollywood fault, and the Raymond fault, supporting the contention that these faults constitute a continuous and linked fault system, which is characterized by large but relatively infrequent earthquakes.

  12. Solar system fault detection

    DOEpatents

    Farrington, R.B.; Pruett, J.C. Jr.

    1984-05-14

    A fault detecting apparatus and method are provided for use with an active solar system. The apparatus provides an indication as to whether one or more predetermined faults have occurred in the solar system. The apparatus includes a plurality of sensors, each sensor being used in determining whether a predetermined condition is present. The outputs of the sensors are combined in a pre-established manner in accordance with the kind of predetermined faults to be detected. Indicators communicate with the outputs generated by combining the sensor outputs to give the user of the solar system and the apparatus an indication as to whether a predetermined fault has occurred. Upon detection and indication of any predetermined fault, the user can take appropriate corrective action so that the overall reliability and efficiency of the active solar system are increased.

  13. Solar system fault detection

    DOEpatents

    Farrington, Robert B.; Pruett, Jr., James C.

    1986-01-01

    A fault detecting apparatus and method are provided for use with an active solar system. The apparatus provides an indication as to whether one or more predetermined faults have occurred in the solar system. The apparatus includes a plurality of sensors, each sensor being used in determining whether a predetermined condition is present. The outputs of the sensors are combined in a pre-established manner in accordance with the kind of predetermined faults to be detected. Indicators communicate with the outputs generated by combining the sensor outputs to give the user of the solar system and the apparatus an indication as to whether a predetermined fault has occurred. Upon detection and indication of any predetermined fault, the user can take appropriate corrective action so that the overall reliability and efficiency of the active solar system are increased.

  14. Control of fault geometry and permeability contrast on fault-related hydrothermal fluid flow

    NASA Astrophysics Data System (ADS)

    Andersen, Christine; Rüpke, Lars; Hasenclever, Jörg; Grevemeyer, Ingo; Petersen, Sven

    2015-04-01

    , the higher the mass flux and the lower the vent temperature. The common occurrence of fault-linked high-temperature vent fields strongly points at a not-yet-quantified self-adjusting permeability that depends on pore space-clogging reactions between hydrothermal and ambient cold fluids. Furthermore, the temperature drop associated with any high permeability zone in heterogeneous crust may well explain the sparse high-temperature vent fields along the MAR and why the heterogeneous crust of the Atlantic, with its strong permeability contrasts, is predominantly cooled by lower-temperature fluid flow.

  15. How clays weaken faults.

    NASA Astrophysics Data System (ADS)

    van der Pluijm, Ben A.; Schleicher, Anja M.; Warr, Laurence N.

    2010-05-01

    The weakness of upper crustal faults has been variably attributed to (i) low values of normal stress, (ii) elevated pore-fluid pressure, and (iii) low frictional strength. Direct observations on natural faults rocks provide new evidence for the role of frictional properties on fault strength, as illustrated by our recent work on samples from the San Andreas Fault Observatory at Depth (SAFOD) drillhole at Parkfield, California. Mudrock samples from fault zones at ~3066 m and ~3296 m measured depth show variably spaced and interconnected networks of displacement surfaces that consist of host rock particles that are abundantly coated by polished films with occasional striations. Transmission electron microscopy and X-ray diffraction study of the surfaces reveal the occurrence of neocrystallized thin-film clay coatings containing illite-smectite (I-S) and chlorite-smectite (C-S) phases. X-ray texture goniometry shows that the crystallographic fabric of these faults rocks is characteristically low, in spite of an abundance of clay phases. 40Ar/39Ar dating of the illitic mix-layered coatings demonstrate recent crystallization and reveal the initiation of an "older" fault strand (~8 Ma) at 3066 m measured depth, and a "younger" fault strand (~4 Ma) at 3296 m measured depth. Today, the younger strand is the site of active creep behavior, reflecting continued activation of these clay-weakened zones. We propose that the majority of slow fault creep is controlled by the high density of thin (< 100nm thick) nano-coatings on fracture surfaces, which become sufficiently smectite-rich and interconnected at low angles to allow slip with minimal breakage of stronger matrix clasts. Displacements are accommodated by localized frictional slip along coated particle surfaces and hydrated smectitic phases, in combination with intracrystalline deformation of the clay lattice, associated with extensive mineral dissolution, mass transfer and continued growth of expandable layers. The

  16. Insurance Applications of Active Fault Maps Showing Epistemic Uncertainty

    NASA Astrophysics Data System (ADS)

    Woo, G.

    2005-12-01

    Insurance loss modeling for earthquakes utilizes available maps of active faulting produced by geoscientists. All such maps are subject to uncertainty, arising from lack of knowledge of fault geometry and rupture history. Field work to undertake geological fault investigations drains human and monetary resources, and this inevitably limits the resolution of fault parameters. Some areas are more accessible than others; some may be of greater social or economic importance than others; some areas may be investigated more rapidly or diligently than others; or funding restrictions may have curtailed the extent of the fault mapping program. In contrast with the aleatory uncertainty associated with the inherent variability in the dynamics of earthquake fault rupture, uncertainty associated with lack of knowledge of fault geometry and rupture history is epistemic. The extent of this epistemic uncertainty may vary substantially from one regional or national fault map to another. However aware the local cartographer may be, this uncertainty is generally not conveyed in detail to the international map user. For example, an area may be left blank for a variety of reasons, ranging from lack of sufficient investigation of a fault to lack of convincing evidence of activity. Epistemic uncertainty in fault parameters is of concern in any probabilistic assessment of seismic hazard, not least in insurance earthquake risk applications. A logic-tree framework is appropriate for incorporating epistemic uncertainty. Some insurance contracts cover specific high-value properties or transport infrastructure, and therefore are extremely sensitive to the geometry of active faulting. Alternative Risk Transfer (ART) to the capital markets may also be considered. In order for such insurance or ART contracts to be properly priced, uncertainty should be taken into account. Accordingly, an estimate is needed for the likelihood of surface rupture capable of causing severe damage. Especially where a

  17. Robot Position Sensor Fault Tolerance

    NASA Technical Reports Server (NTRS)

    Aldridge, Hal A.

    1997-01-01

    Robot systems in critical applications, such as those in space and nuclear environments, must be able to operate during component failure to complete important tasks. One failure mode that has received little attention is the failure of joint position sensors. Current fault tolerant designs require the addition of directly redundant position sensors which can affect joint design. A new method is proposed that utilizes analytical redundancy to allow for continued operation during joint position sensor failure. Joint torque sensors are used with a virtual passive torque controller to make the robot joint stable without position feedback and improve position tracking performance in the presence of unknown link dynamics and end-effector loading. Two Cartesian accelerometer based methods are proposed to determine the position of the joint. The joint specific position determination method utilizes two triaxial accelerometers attached to the link driven by the joint with the failed position sensor. The joint specific method is not computationally complex and the position error is bounded. The system wide position determination method utilizes accelerometers distributed on different robot links and the end-effector to determine the position of sets of multiple joints. The system wide method requires fewer accelerometers than the joint specific method to make all joint position sensors fault tolerant but is more computationally complex and has lower convergence properties. Experiments were conducted on a laboratory manipulator. Both position determination methods were shown to track the actual position satisfactorily. A controller using the position determination methods and the virtual passive torque controller was able to servo the joints to a desired position during position sensor failure.

  18. Learning from examples - Generation and evaluation of decision trees for software resource analysis

    NASA Technical Reports Server (NTRS)

    Selby, Richard W.; Porter, Adam A.

    1988-01-01

    A general solution method for the automatic generation of decision (or classification) trees is investigated. The approach is to provide insights through in-depth empirical characterization and evaluation of decision trees for software resource data analysis. The trees identify classes of objects (software modules) that had high development effort. Sixteen software systems ranging from 3,000 to 112,000 source lines were selected for analysis from a NASA production environment. The collection and analysis of 74 attributes (or metrics), for over 4,700 objects, captured information about the development effort, faults, changes, design style, and implementation style. A total of 9,600 decision trees were automatically generated and evaluated. The trees correctly identified 79.3 percent of the software modules that had high development effort or faults, and the trees generated from the best parameter combinations correctly identified 88.4 percent of the modules on the average.

  19. The Kunlun Fault

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Kunlun fault is one of the gigantic strike-slip faults that bound the north side of Tibet. Left-lateral motion along the 1,500-kilometer (932-mile) length of the Kunlun has occurred uniformly for the last 40,000 years at a rate of 1.1 centimeter per year, creating a cumulative offset of more than 400 meters. In this image, two splays of the fault are clearly seen crossing from east to west. The northern fault juxtaposes sedimentary rocks of the mountains against alluvial fans. Its trace is also marked by lines of vegetation, which appear red in the image. The southern, younger fault cuts through the alluvium. A dark linear area in the center of the image is wet ground where groundwater has ponded against the fault. Measurements from the image of displacements of young streams that cross the fault show 15 to 75 meters (16 to 82 yards) of left-lateral offset. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) acquired the visible light and near infrared scene on July 20, 2000. Image courtesy NASA/GSFC/MITI/ERSDAC/JAROS, and the U.S./Japan ASTER Science Team

  20. Experimental fault characterization of a neural network

    NASA Technical Reports Server (NTRS)

    Tan, Chang-Huong

    1990-01-01

    The effects of a variety of faults on a neural network is quantified via simulation. The neural network consists of a single-layered clustering network and a three-layered classification network. The percentage of vectors mistagged by the clustering network, the percentage of vectors misclassified by the classification network, the time taken for the network to stabilize, and the output values are all measured. The results show that both transient and permanent faults have a significant impact on the performance of the measured network. The corresponding mistag and misclassification percentages are typically within 5 to 10 percent of each other. The average mistag percentage and the average misclassification percentage are both about 25 percent. After relearning, the percentage of misclassifications is reduced to 9 percent. In addition, transient faults are found to cause the network to be increasingly unstable as the duration of a transient is increased. The impact of link faults is relatively insignificant in comparison with node faults (1 versus 19 percent misclassified after relearning). There is a linear increase in the mistag and misclassification percentages with decreasing hardware redundancy. In addition, the mistag and misclassification percentages linearly decrease with increasing network size.

  1. Fault detection and isolation

    NASA Technical Reports Server (NTRS)

    Bernath, Greg

    1994-01-01

    In order for a current satellite-based navigation system (such as the Global Positioning System, GPS) to meet integrity requirements, there must be a way of detecting erroneous measurements, without help from outside the system. This process is called Fault Detection and Isolation (FDI). Fault detection requires at least one redundant measurement, and can be done with a parity space algorithm. The best way around the fault isolation problem is not necessarily isolating the bad measurement, but finding a new combination of measurements which excludes it.

  2. Measuring fault tolerance with the FTAPE fault injection tool

    NASA Technical Reports Server (NTRS)

    Tsai, Timothy K.; Iyer, Ravishankar K.

    1995-01-01

    This paper describes FTAPE (Fault Tolerance And Performance Evaluator), a tool that can be used to compare fault-tolerant computers. The major parts of the tool include a system-wide fault-injector, a workload generator, and a workload activity measurement tool. The workload creates high stress conditions on the machine. Using stress-based injection, the fault injector is able to utilize knowledge of the workload activity to ensure a high level of fault propagation. The errors/fault ratio, performance degradation, and number of system crashes are presented as measures of fault tolerance.

  3. Measuring fault tolerance with the FTAPE fault injection tool

    NASA Astrophysics Data System (ADS)

    Tsai, Timothy K.; Iyer, Ravishankar K.

    1995-05-01

    This paper describes FTAPE (Fault Tolerance And Performance Evaluator), a tool that can be used to compare fault-tolerant computers. The major parts of the tool include a system-wide fault-injector, a workload generator, and a workload activity measurement tool. The workload creates high stress conditions on the machine. Using stress-based injection, the fault injector is able to utilize knowledge of the workload activity to ensure a high level of fault propagation. The errors/fault ratio, performance degradation, and number of system crashes are presented as measures of fault tolerance.

  4. High-resolution gravity and seismic-refraction surveys of the Smoke Tree Wash area, Joshua Tree National Park, California

    USGS Publications Warehouse

    Langenheim, Victoria E.; Rymer, Michael J.; Catchings, Rufus D.; Goldman, Mark R.; Watt, Janet T.; Powell, Robert E.; Matti, Jonathan C.

    2016-01-01

    We describe high-resolution gravity and seismic refraction surveys acquired to determine the thickness of valley-fill deposits and to delineate geologic structures that might influence groundwater flow beneath the Smoke Tree Wash area in Joshua Tree National Park. These surveys identified a sedimentary basin that is fault-controlled. A profile across the Smoke Tree Wash fault zone reveals low gravity values and seismic velocities that coincide with a mapped strand of the Smoke Tree Wash fault. Modeling of the gravity data reveals a basin about 2–2.5 km long and 1 km wide that is roughly centered on this mapped strand, and bounded by inferred faults. According to the gravity model the deepest part of the basin is about 270 m, but this area coincides with low velocities that are not characteristic of typical basement complex rocks. Most likely, the density contrast assumed in the inversion is too high or the uncharacteristically low velocities represent highly fractured or weathered basement rocks, or both. A longer seismic profile extending onto basement outcrops would help differentiate which scenario is more accurate. The seismic velocities also determine the depth to water table along the profile to be about 40–60 m, consistent with water levels measured in water wells near the northern end of the profile.

  5. Categorizing Ideas about Trees: A Tree of Trees

    PubMed Central

    Fisler, Marie; Lecointre, Guillaume

    2013-01-01

    The aim of this study is to explore whether matrices and MP trees used to produce systematic categories of organisms could be useful to produce categories of ideas in history of science. We study the history of the use of trees in systematics to represent the diversity of life from 1766 to 1991. We apply to those ideas a method inspired from coding homologous parts of organisms. We discretize conceptual parts of ideas, writings and drawings about trees contained in 41 main writings; we detect shared parts among authors and code them into a 91-characters matrix and use a tree representation to show who shares what with whom. In other words, we propose a hierarchical representation of the shared ideas about trees among authors: this produces a “tree of trees.” Then, we categorize schools of tree-representations. Classical schools like “cladists” and “pheneticists” are recovered but others are not: “gradists” are separated into two blocks, one of them being called here “grade theoreticians.” We propose new interesting categories like the “buffonian school,” the “metaphoricians,” and those using “strictly genealogical classifications.” We consider that networks are not useful to represent shared ideas at the present step of the study. A cladogram is made for showing who is sharing what with whom, but also heterobathmy and homoplasy of characters. The present cladogram is not modelling processes of transmission of ideas about trees, and here it is mostly used to test for proximity of ideas of the same age and for categorization. PMID:23950877

  6. The Trees that surround us

    NASA Astrophysics Data System (ADS)

    Costa, M. E. G.; Rodrigues, M. A. S.

    2012-04-01

    In our school the activities linked with sciences are developed in a partnership with other school subjects. Interdisciplinary projects are always valued from beginning to end of a project. It is common for teachers of different areas to work together in a Science project. Research of English written articles is very important not only for the development of our students' scientific literacy but also as a way of widening knowledge and a view on different perspectives of life instead of being limited to research of any articles in Portuguese language. In this study we are going to collect data about the predominant tree species in the region, especially the invasive trees from the acacia species, the native tree species and the commercial species. We are going to study the reasons for the appearance of each species and draw a chart of soil occupation in the council. This chart will also allow the study of the distribution and use of land for each tree species. This research work is the first stage for a contribution to warn the town council of the dangers of the invasive species to the future economy of the council.

  7. Mean importance measures for groups of events in fault trees

    SciTech Connect

    Haskin, F.E.; Huang, Min; Sasser, M.K.; Stack, D.W.

    1993-10-12

    The method of moments is applied to precisely determine the mean values of three importance measures: risk reduction, partial derivative, and variance reduction. Variance reduction calculations, in particular, are significantly improved by eliminating the imprecision associated with Monte Carlo estimates. The three importance measures are extended to permit analyses of the relative importance of groups of basic and initiating events. The partial derivative importance measure is extended by assessing the contribution of a group of events to the gradient of the top event frequency. The group importance measures are quantified for the overall fuel damage equation and for 14 dominant accident sequences from an independent probabilistic safety assessment of the K Production Reactor. This application demonstrates both the utility and the versatility of the group importance measures.

  8. Waste Management facilities fault tree databank 1995 status report

    SciTech Connect

    Minnick, W.V.; Wellmaker, K.A.

    1995-08-16

    The Safety Information Management and Analysis Group (SIMA) of the Safety Engineering Department (SED) maintains compilations of incidents that have occurred in the Separations and Process Control, Waste Management, Fuel Fabrication, Tritium and SRTC facilities. This report records the status of the Waste Management (WM) Databank at the end of CY-1994. The WM Databank contains more than 35,000 entries ranging from minor equipment malfunctions to incidents with significant potential for injury or contamination of personnel. This report documents the status of the WM Databank including the availability, training, sources of data, search options, Quality Assurance, and usage to which these data have been applied. Periodic updates to this memorandum are planned as additional data or applications are acquired.

  9. Slip compensation at fault damage zones along earthquake surface ruptures

    NASA Astrophysics Data System (ADS)

    Choi, J.; Kim, Y.

    2013-12-01

    Surface ruptures associated with earthquake faulting commonly comprise a number of segments, and the discontinuities form tip and linking damage zones, which are deformed regions consisting of secondary features. Stress transferring or releasing, when seismic waves pass through the discontinuities, could produce different slip features depending on rupture propagation or termination. Thus, slip patterns at fault damage zones can be one of the key factors to understand fault kinematics, fault evolution and, hence, earthquake hazard. In some previous studies (e.g. Peacock and Sanderson, 1991; Kim and Sanderson, 2005), slip distribution along faults to understand the connectivity or maturity of segmented faults system have commonly been analyzed based on only the main slip components (dip-slip or strike-slip). Secondary slip components, however, are sometimes dominant at fault damage zones, such as linkage and tip zones. In this study, therefore, we examine slip changes between both main and secondary slip components along unilaterally propagated coseismic strike-slip ruptures. Horizontal and vertical components of slip and the slip compensation patterns at tip and linking damage zones are various from slip deficit (decrease in both slip components) through slip compensation (increase of vertical slip with horizontal slip decrease) to slip neutral. Front and back tip zones, which are classified depending on main propagation direction of earthquake ruptures, show different slip patterns; slip compensation is observed at the frontal tip whilst slip deficit occurs at the back tip zone. Average values of the two slip components and their compensative patterns at linking damage zones are closely related with the ratio of length to width (L/W) of linkage geometry; the horizontal slip is proportional to the ratio of L/W, whilst the vertical slip shows little dependence on the value L/W. When the L/W is greater than ~2, average values of two slip components are almost similar

  10. Pipeline synthetic aperture radar data compression utilizing systolic binary tree-searched architecture for vector quantization

    NASA Technical Reports Server (NTRS)

    Chang, Chi-Yung (Inventor); Fang, Wai-Chi (Inventor); Curlander, John C. (Inventor)

    1995-01-01

    A system for data compression utilizing systolic array architecture for Vector Quantization (VQ) is disclosed for both full-searched and tree-searched. For a tree-searched VQ, the special case of a Binary Tree-Search VQ (BTSVQ) is disclosed with identical Processing Elements (PE) in the array for both a Raw-Codebook VQ (RCVQ) and a Difference-Codebook VQ (DCVQ) algorithm. A fault tolerant system is disclosed which allows a PE that has developed a fault to be bypassed in the array and replaced by a spare at the end of the array, with codebook memory assignment shifted one PE past the faulty PE of the array.

  11. Complex Rift-Parallel, Strike-Slip Faulting in Iceland: Kinematic Analysis of the Gljúfurá Fault Zone

    NASA Astrophysics Data System (ADS)

    Nanfito, A.; Karson, J. A.

    2009-12-01

    strike of the fault zone and cut across the deformation fabrics. Although no features could be correlated across the fault zone to constrain the lateral displacement, empirical gouge thickness/displacement scaling relationships suggest at least several kilometers of slip. Previous studies interpreted the Gljúfurá Fault Zone was one of a family of parallel, strike-slip “bookshelf” faults associated with a transform fault zone linking two now-extinct rifts. Unlike the well-known rift-parallel, strike-slip faults of the South Iceland Seismic Zone and the Tjornes Fracture Zone, the Gljúfurá Fault Zone appears to be an isolated structure with substantially larger displacement that is discordant with surrounding basement lineaments. Major strike-slip faults of this kind can provide important clues in the reconstruction of ridge-hot spot interactions in Iceland.

  12. Conference explores mechanical involvement of fluids in faulting

    NASA Astrophysics Data System (ADS)

    Hickman, Stephen; Sibson, Richard; Bruhn, Ronald

    A growing body of evidence suggests that fluids are intimately linked to a variety of faulting processes. These include the long-term structural and compositional evolution of fault zones; fault creep; and the nucleation, propagation, arrest, and recurrence of earthquake ruptures. Besides the widely recognized physical role of fluid pressures in controlling the strength of crustal fault zones, it is also apparent that fluids can exert mechanical influence through a variety of chemical effects.To address these issues, a “Red-Book” Conference on the Mechanical Effects of Fluids in Faulting was sponsored by the U.S. Geological Survey under the auspices of the National Earthquake Hazards Reduction Program at Fish Camp, Calif., from June 6-10, 1993. The coconvenors were Steve Hickman, Rick Sibson, and Ron Bruhn.

  13. OpenStudio - Fault Modeling

    Energy Science and Technology Software Center (ESTSC)

    2014-09-19

    This software record documents the OpenStudio fault model development portion of the Fault Detection and Diagnostics LDRD project.The software provides a suite of OpenStudio measures (scripts) for modeling typical HVAC system faults in commercial buildings and also included supporting materials: example projects and OpenStudio measures for reporting fault costs and energy impacts.

  14. Normal-fault development in two-phase experimental models of shortening followed by extension and comparison to natural examples

    NASA Astrophysics Data System (ADS)

    Warrell, K. F.; Withjack, M. O.; Schlische, R. W.

    2014-12-01

    Field- and seismic-reflection-based studies have documented the influence of pre-existing thrust faults on normal-fault development during subsequent extension. Published experimental (analog) models of shortening followed by extension with dry sand as the modeling medium show limited extensional reactivation of moderate-angle thrust faults (dipping > 40º). These dry sand models provide insight into the influence of pre-existing thrusts on normal-fault development, but these models have not reactivated low-angle (< 35º) thrust faults as seen in nature. New experimental (analog) models, using wet clay over silicone polymer to simulate brittle upper crust over ductile lower crust, suggest that low-angle thrust faults from an older shortening phase can reactivate as normal faults. In two-phase models of shortening followed by extension, normal faults nucleate above pre-existing thrust faults and likely link with thrusts at depth to create listric faults, movement on which produces rollover folds. Faults grow and link more rapidly in two-phase than in single-phase (extension-only) models. Fewer faults with higher displacements form in two-phase models, likely because, for a given displacement magnitude, a low-angle normal fault accommodates more horizontal extension than a high-angle normal fault. The resulting rift basins are wider and shallower than those forming along high-angle normal faults. Features in these models are similar to natural examples. Seismic-reflection profiles from the outer Hebrides, offshore Scotland, show listric faults partially reactivating pre-existing thrust faults with a rollover fold in the hanging wall; in crystalline basement, the thrust is reactivated, and in overlying sedimentary strata, a new, high-angle normal fault forms. Profiles from the Chignecto subbasin of the Fundy basin, offshore Canada, show full reactivation of thrust faults as low-angle normal faults where crystalline basement rocks make up the footwall.

  15. Hayward Fault, California Interferogram

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This image of California's Hayward fault is an interferogram created using a pair of images taken by Synthetic Aperture Radar(SAR) combined to measure changes in the surface that may have occurred between the time the two images were taken.

    The images were collected by the European Space Agency's Remote Sensing satellites ERS-1 and ERS-2 in June 1992 and September 1997 over the central San Francisco Bay in California.

    The radar image data are shown as a gray-scale image, with the interferometric measurements that show the changes rendered in color. Only the urbanized area could be mapped with these data. The color changes from orange tones to blue tones across the Hayward fault (marked by a thin red line) show about 2-3centimeters (0.8-1.1 inches) of gradual displacement or movement of the southwest side of the fault. The block west of the fault moved horizontally toward the northwest during the 63 months between the acquisition of the two SAR images. This fault movement is called a seismic creep because the fault moved slowly without generating an earthquake.

    Scientists are using the SAR interferometry along with other data collected on the ground to monitor this fault motion in an attempt to estimate the probability of earthquake on the Hayward fault, which last had a major earthquake of magnitude 7 in 1868. This analysis indicates that the northern part of the Hayward fault is creeping all the way from the surface to a depth of 12 kilometers (7.5 miles). This suggests that the potential for a large earthquake on the northern Hayward fault might be less than previously thought. The blue area to the west (lower left) of the fault near the center of the image seemed to move upward relative to the yellow and orange areas nearby by about 2 centimeters (0.8 inches). The cause of this apparent motion is not yet confirmed, but the rise of groundwater levels during the time between the images may have caused the reversal of a small portion of the subsidence that

  16. Cable-fault locator

    NASA Technical Reports Server (NTRS)

    Cason, R. L.; Mcstay, J. J.; Heymann, A. P., Sr.

    1979-01-01

    Inexpensive system automatically indicates location of short-circuited section of power cable. Monitor does not require that cable be disconnected from its power source or that test signals be applied. Instead, ground-current sensors are installed in manholes or at other selected locations along cable run. When fault occurs, sensors transmit information about fault location to control center. Repair crew can be sent to location and cable can be returned to service with minimum of downtime.

  17. Fault rupture segmentation

    NASA Astrophysics Data System (ADS)

    Cleveland, Kenneth Michael

    A critical foundation to earthquake study and hazard assessment is the understanding of controls on fault rupture, including segmentation. Key challenges to understanding fault rupture segmentation include, but are not limited to: What determines if a fault segment will rupture in a single great event or multiple moderate events? How is slip along a fault partitioned between seismic and seismic components? How does the seismicity of a fault segment evolve over time? How representative are past events for assessing future seismic hazards? In order to address the difficult questions regarding fault rupture segmentation, new methods must be developed that utilize the information available. Much of the research presented in this study focuses on the development of new methods for attacking the challenges of understanding fault rupture segmentation. Not only do these methods exploit a broader band of information within the waveform than has traditionally been used, but they also lend themselves to the inclusion of even more seismic phases providing deeper understandings. Additionally, these methods are designed to be fast and efficient with large datasets, allowing them to utilize the enormous volume of data available. Key findings from this body of work include demonstration that focus on fundamental earthquake properties on regional scales can provide general understanding of fault rupture segmentation. We present a more modern, waveform-based method that locates events using cross-correlation of the Rayleigh waves. Additionally, cross-correlation values can also be used to calculate precise earthquake magnitudes. Finally, insight regarding earthquake rupture directivity can be easily and quickly exploited using cross-correlation of surface waves.

  18. Fault lubrication during earthquakes.

    PubMed

    Di Toro, G; Han, R; Hirose, T; De Paola, N; Nielsen, S; Mizoguchi, K; Ferri, F; Cocco, M; Shimamoto, T

    2011-03-24

    The determination of rock friction at seismic slip rates (about 1 m s(-1)) is of paramount importance in earthquake mechanics, as fault friction controls the stress drop, the mechanical work and the frictional heat generated during slip. Given the difficulty in determining friction by seismological methods, elucidating constraints are derived from experimental studies. Here we review a large set of published and unpublished experiments (∼300) performed in rotary shear apparatus at slip rates of 0.1-2.6 m s(-1). The experiments indicate a significant decrease in friction (of up to one order of magnitude), which we term fault lubrication, both for cohesive (silicate-built, quartz-built and carbonate-built) rocks and non-cohesive rocks (clay-rich, anhydrite, gypsum and dolomite gouges) typical of crustal seismogenic sources. The available mechanical work and the associated temperature rise in the slipping zone trigger a number of physicochemical processes (gelification, decarbonation and dehydration reactions, melting and so on) whose products are responsible for fault lubrication. The similarity between (1) experimental and natural fault products and (2) mechanical work measures resulting from these laboratory experiments and seismological estimates suggests that it is reasonable to extrapolate experimental data to conditions typical of earthquake nucleation depths (7-15 km). It seems that faults are lubricated during earthquakes, irrespective of the fault rock composition and of the specific weakening mechanism involved. PMID:21430777

  19. Evolution of tree nutrition.

    PubMed

    Raven, John A; Andrews, Mitchell

    2010-09-01

    Using a broad definition of trees, the evolutionary origins of trees in a nutritional context is considered using data from the fossil record and molecular phylogeny. Trees are first known from the Late Devonian about 380 million years ago, originated polyphyletically at the pteridophyte grade of organization; the earliest gymnosperms were trees, and trees are polyphyletic in the angiosperms. Nutrient transporters, assimilatory pathways, homoiohydry (cuticle, intercellular gas spaces, stomata, endohydric water transport systems including xylem and phloem-like tissue) and arbuscular mycorrhizas preceded the origin of trees. Nutritional innovations that began uniquely in trees were the seed habit and, certainly (but not necessarily uniquely) in trees, ectomycorrhizas, cyanobacterial, actinorhizal and rhizobial (Parasponia, some legumes) diazotrophic symbioses and cluster roots. PMID:20581011

  20. Tree Classification Software

    NASA Technical Reports Server (NTRS)

    Buntine, Wray

    1993-01-01

    This paper introduces the IND Tree Package to prospective users. IND does supervised learning using classification trees. This learning task is a basic tool used in the development of diagnosis, monitoring and expert systems. The IND Tree Package was developed as part of a NASA project to semi-automate the development of data analysis and modelling algorithms using artificial intelligence techniques. The IND Tree Package integrates features from CART and C4 with newer Bayesian and minimum encoding methods for growing classification trees and graphs. The IND Tree Package also provides an experimental control suite on top. The newer features give improved probability estimates often required in diagnostic and screening tasks. The package comes with a manual, Unix 'man' entries, and a guide to tree methods and research. The IND Tree Package is implemented in C under Unix and was beta-tested at university and commercial research laboratories in the United States.

  1. Chem-Is-Tree.

    ERIC Educational Resources Information Center

    Barry, Dana M.

    1997-01-01

    Provides details on the chemical composition of trees including a definition of wood. Also includes an activity on anthocyanins as well as a discussion of the resistance of wood to solvents and chemicals. Lists interesting products from trees. (DDR)

  2. Decision-Tree Program

    NASA Technical Reports Server (NTRS)

    Buntine, Wray

    1994-01-01

    IND computer program introduces Bayesian and Markov/maximum-likelihood (MML) methods and more-sophisticated methods of searching in growing trees. Produces more-accurate class-probability estimates important in applications like diagnosis. Provides range of features and styles with convenience for casual user, fine-tuning for advanced user or for those interested in research. Consists of four basic kinds of routines: data-manipulation, tree-generation, tree-testing, and tree-display. Written in C language.

  3. Winter Birch Trees

    ERIC Educational Resources Information Center

    Sweeney, Debra; Rounds, Judy

    2011-01-01

    Trees are great inspiration for artists. Many art teachers find themselves inspired and maybe somewhat obsessed with the natural beauty and elegance of the lofty tree, and how it changes through the seasons. One such tree that grows in several regions and always looks magnificent, regardless of the time of year, is the birch. In this article, the…

  4. Illumination Under Trees

    SciTech Connect

    Max, N

    2002-08-19

    This paper is a survey of the author's work on illumination and shadows under trees, including the effects of sky illumination, sun penumbras, scattering in a misty atmosphere below the trees, and multiple scattering and transmission between leaves. It also describes a hierarchical image-based rendering method for trees.

  5. Minnesota's Forest Trees. Revised.

    ERIC Educational Resources Information Center

    Miles, William R.; Fuller, Bruce L.

    This bulletin describes 46 of the more common trees found in Minnesota's forests and windbreaks. The bulletin contains two tree keys, a summer key and a winter key, to help the reader identify these trees. Besides the two keys, the bulletin includes an introduction, instructions for key use, illustrations of leaf characteristics and twig…

  6. The Wish Tree Project

    ERIC Educational Resources Information Center

    Brooks, Sarah DeWitt

    2010-01-01

    This article describes the author's experience in implementing a Wish Tree project in her school in an effort to bring the school community together with a positive art-making experience during a potentially stressful time. The concept of a wish tree is simple: plant a tree; provide tags and pencils for writing wishes; and encourage everyone to…

  7. Diary of a Tree.

    ERIC Educational Resources Information Center

    Srulowitz, Frances

    1992-01-01

    Describes an activity to develop students' skills of observation and recordkeeping by studying the growth of a tree's leaves during the spring. Children monitor the growth of 11 tress over a 2-month period, draw pictures of the tree at different stages of growth, and write diaries of the tree's growth. (MDH)

  8. The Design of a Fault-Tolerant COTS-Based Bus Architecture for Space Applications

    NASA Technical Reports Server (NTRS)

    Chau, Savio N.; Alkalai, Leon; Tai, Ann T.

    2000-01-01

    The high-performance, scalability and miniaturization requirements together with the power, mass and cost constraints mandate the use of commercial-off-the-shelf (COTS) components and standards in the X2000 avionics system architecture for deep-space missions. In this paper, we report our experiences and findings on the design of an IEEE 1394 compliant fault-tolerant COTS-based bus architecture. While the COTS standard IEEE 1394 adequately supports power management, high performance and scalability, its topological criteria impose restrictions on fault tolerance realization. To circumvent the difficulties, we derive a "stack-tree" topology that not only complies with the IEEE 1394 standard but also facilitates fault tolerance realization in a spaceborne system with limited dedicated resource redundancies. Moreover, by exploiting pertinent standard features of the 1394 interface which are not purposely designed for fault tolerance, we devise a comprehensive set of fault detection mechanisms to support the fault-tolerant bus architecture.

  9. Packaged Fault Model for Geometric Segmentation of Active Faults Into Earthquake Source Faults

    NASA Astrophysics Data System (ADS)

    Nakata, T.; Kumamoto, T.

    2004-12-01

    In Japan, the empirical formula proposed by Matsuda (1975) mainly based on the length of the historical surface fault ruptures and magnitude, is generally applied to estimate the size of future earthquakes from the extent of existing active faults for seismic hazard assessment. Therefore validity of the active fault length and defining individual segment boundaries where propagating ruptures terminate are essential and crucial to the reliability for the accurate assessments. It is, however, not likely for us to clearly identify the behavioral earthquake segments from observation of surface faulting during the historical period, because most of the active faults have longer recurrence intervals than 1000 years in Japan. Besides uncertainties of the datasets obtained mainly from fault trenching studies are quite large for fault grouping/segmentation. This is why new methods or criteria should be applied for active fault grouping/segmentation, and one of the candidates may be geometric criterion of active faults. Matsuda (1990) used _gfive kilometer_h as a critical distance for grouping and separation of neighboring active faults. On the other hand, Nakata and Goto (1998) proposed the geometric criteria such as (1) branching features of active fault traces and (2) characteristic pattern of vertical-slip distribution along the fault traces as tools to predict rupture length of future earthquakes. The branching during the fault rupture propagation is regarded as an effective energy dissipation process and could result in final rupture termination. With respect to the characteristic pattern of vertical-slip distribution, especially with strike-slip components, the up-thrown sides along the faults are, in general, located on the fault blocks in the direction of relative strike-slip. Applying these new geometric criteria to the high-resolution active fault distribution maps, the fault grouping/segmentation could be more practically conducted. We tested this model

  10. Fault Roughness Records Strength

    NASA Astrophysics Data System (ADS)

    Brodsky, E. E.; Candela, T.; Kirkpatrick, J. D.

    2014-12-01

    Fault roughness is commonly ~0.1-1% at the outcrop exposure scale. More mature faults are smoother than less mature ones, but the overall range of roughness is surprisingly limited which suggests dynamic control. In addition, the power spectra of many exposed fault surfaces follow a single power law over scales from millimeters to 10's of meters. This is another surprising observation as distinct structures such as slickenlines and mullions are clearly visible on the same surfaces at well-defined scales. We can reconcile both observations by suggesting that the roughness of fault surfaces is controlled by the maximum strain that can be supported elastically in the wallrock. If the fault surface topography requires more than 0.1-1% strain, it fails. Invoking wallrock strength explains two additional observations on the Corona Heights fault for which we have extensive roughness data. Firstly, the surface is isotropic below a scale of 30 microns and has grooves at larger scales. Samples from at least three other faults (Dixie Valley, Mount St. Helens and San Andreas) also are isotropic at scales below 10's of microns. If grooves can only persist when the walls of the grooves have a sufficiently low slope to maintain the shape, this scale of isotropy can be predicted based on the measured slip perpendicular roughness data. The observed 30 micron scale at Corona Heights is consistent with an elastic strain of 0.01 estimated from the observed slip perpendicular roughness with a Hurst exponent of 0.8. The second observation at Corona Heights is that slickenlines are not deflected around meter-scale mullions. Yielding of these mullions at centimeter to meter scale is predicted from the slip parallel roughness as measured here. The success of the strain criterion for Corona Heights supports it as the appropriate control on fault roughness. Micromechanically, the criterion implies that failure of the fault surface is a continual process during slip. Macroscopically, the

  11. Fault reactivation control on normal fault growth: an experimental study

    NASA Astrophysics Data System (ADS)

    Bellahsen, Nicolas; Daniel, Jean Marc

    2005-04-01

    Field studies frequently emphasize how fault reactivation is involved in the deformation of the upper crust. However, this phenomenon is generally neglected (except in inversion models) in analogue and numerical models performed to study fault network growth. Using sand/silicon analogue models, we show how pre-existing discontinuities can control the geometry and evolution of a younger fault network. The models show that the reactivation of pre-existing discontinuities and their orientation control: (i) the evolution of the main fault orientation distribution through time, (ii) the geometry of relay fault zones, (iii) the geometry of small scale faulting, and (iv) the geometry and location of fault-controlled basins and depocenters. These results are in good agreement with natural fault networks observed in both the Gulf of Suez and Lake Tanganyika. They demonstrate that heterogeneities such as pre-existing faults should be included in models designed to understand the behavior and the tectonic evolution of sedimentary basins.

  12. Geomorphology of intraplate postglacial faults in Sweden

    NASA Astrophysics Data System (ADS)

    Ask, M. V. S.; Abdujabbar, M.; Lund, B.; Smith, C.; Mikko, H.; Munier, R.

    2015-12-01

    Melting of the Weichselian ice sheet at ≈10 000 BP is inferred to have induced large to great intraplate earthquakes in northern Fennoscandia. Over a dozen large so-called postglacial faults (PGF) have been found, mainly using aerial photogrammetry, trenching, and recognition of numerous paleolandslides in the vicinity of the faults (e.g. Lagerbäck & Sundh 2008). Recent LiDAR-based mapping led to the extension of known PGFs, the discovery of new segments of existing PGFs, and a number of new suspected PGFs (Smith et al. 2014; Mikko et al. 2015). The PGFs in Fennoscandia occur within 14-25°E and 61-69°N; the majority are within Swedish territory. PGFs generally are prominent features, up to 155 km in length and 30 m maximum surface offset. The most intense microseismic activity in Sweden occurs near PGFs. The seismogenic zone of the longest known PGF (Pärvie fault zone, PFZ) extends to ≈40 km depth. From fault geometry and earthquake scaling relations, the paleomagnitude of PFZ is estimated to 8.0±0.3 (Lindblom et al. 2015). The new high-resolution LiDAR-derived elevation model of Sweden offers an unprecedented opportunity to constrain the surface geometry of the PGFs. The objective is to reach more detailed knowledge of the surface offset across their scarps. This distribution provides a one-dimensional view of the slip distribution during the inferred paleorupture. The second objective is to analyze the pattern of vertical displacement of the hanging wall, to obtain a two-dimensional view of the displaced area that is linked to the fault geometry at depth. The anticipated results will further constrain the paleomagnitude of PGFs and will be incorporated into future modeling efforts to investigate the nature of PGFs. ReferencesLagerbäck & Sundh 2008. Early Holocene faulting and paleoseismicity in northern Sweden. http://resource.sgu.se/produkter/c/c836-rapport.pdf Smith et al. 2014. Surficial geology indicates early Holocene faulting and seismicity

  13. The timing of fault motion in Death Valley from Illite Age Analysis of fault gouge

    NASA Astrophysics Data System (ADS)

    Lynch, E. A.; Haines, S. H.; Van der Pluijm, B.

    2014-12-01

    We constrained the timing of fluid circulation and associated fault motion in the Death Valley region of the US Basin and Range Province from Illite Age Analysis (IAA) of fault gouge at seven Low-Angle Normal Fault (LANF) exposures in the Black Mountains and Panamint Mountains, and in two nearby areas. 40Ar/39Ar ages of neoformed, illitic clay minerals in these fault zones range from 2.8 Ma to 18.6 Ma, preserving asynchronous fault motion across the region that corresponds to an evolving history of crustal block movements during Neogene extensional deformation. From north to south, along the western side of the Panamint Range, the Mosaic Canyon fault yields an authigenic illite age of 16.9±2.9 Ma, the Emigrant fault has ages of less than 10-12 Ma at Tucki Mountain and Wildrose Canyon, and an age of 3.6±0.17 Ma was obtained for the Panamint Front Range LANF at South Park Canyon. Across Death Valley, along the western side of the Black Mountains, Ar ages of clay minerals are 3.2±3.9 Ma, 12.2±0.13 Ma and 2.8±0.45 Ma for the Amargosa Detachment, the Gregory Peak Fault and the Mormon Point Turtleback detachment, respectively. Complementary analysis of the δH composition of neoformed clays shows a primarily meteoric source for the mineralizing fluids in these LANF zones. The ages fall into two geologic timespans, reflecting activity pulses in the Middle Miocene and in the Upper Pliocene. Activity on both of the range front LANFs does not appear to be localized on any single portion of these fault systems. Middle Miocene fault rock ages of neoformed clays were also obtained in the Ruby Mountains (10.5±1.2 Ma) to the north of the Death Valley region and to the south in the Whipple Mountains (14.3±0.19 Ma). The presence of similar, bracketed times of activity indicate that LANFs in the Death Valley region were tectonically linked, while isotopic signatures indicate that faulting pulses involved surface fluid penetration.

  14. Displacement–length scaling of brittle faults in ductile shear

    PubMed Central

    Grasemann, Bernhard; Exner, Ulrike; Tschegg, Cornelius

    2011-01-01

    Within a low-grade ductile shear zone, we investigated exceptionally well exposed brittle faults, which accumulated antithetic slip and rotated into the shearing direction. The foliation planes of the mylonitic host rock intersect the faults approximately at their centre and exhibit ductile reverse drag. Three types of brittle faults can be distinguished: (i) Faults developing on pre-existing K-feldspar/mica veins that are oblique to the shear direction. These faults have triclinic flanking structures. (ii) Wing cracks opening as mode I fractures at the tips of the triclinic flanking structures, perpendicular to the shear direction. These cracks are reactivated as faults with antithetic shear, extend from the parent K-feldspar/mica veins and form a complex linked flanking structure system. (iii) Joints forming perpendicular to the shearing direction are deformed to form monoclinic flanking structures. Triclinic and monoclinic flanking structures record elliptical displacement–distance profiles with steep displacement gradients at the fault tips by ductile flow in the host rocks, resulting in reverse drag of the foliation planes. These structures record one of the greatest maximum displacement/length ratios reported from natural fault structures. These exceptionally high ratios can be explained by localized antithetic displacement along brittle slip surfaces, which did not propagate during their rotation during surrounding ductile flow. PMID:26806996

  15. Distributed Contour Trees

    SciTech Connect

    Morozov, Dmitriy; Weber, Gunther H.

    2014-03-31

    Topological techniques provide robust tools for data analysis. They are used, for example, for feature extraction, for data de-noising, and for comparison of data sets. This chapter concerns contour trees, a topological descriptor that records the connectivity of the isosurfaces of scalar functions. These trees are fundamental to analysis and visualization of physical phenomena modeled by real-valued measurements. We study the parallel analysis of contour trees. After describing a particular representation of a contour tree, called local{global representation, we illustrate how di erent problems that rely on contour trees can be solved in parallel with minimal communication.

  16. IN THE FOOTSTEPS OF ROBERT MARSHALL: PROPOSED RESEARCH OF TREE LINE MIGRATION AND GROWTH IN THE CENTRAL BROOKS RANGE, ALASKA

    EPA Science Inventory

    The proposed research will quantify white spruce growth and document its latitudinal stability at the tree limit in the central Books Range over the life span of the living trees. he goal is to link tree growth and tree position to summer temperature and precipitation. istorical ...

  17. Reactivated strike slip faults: examples from north Cornwall, UK

    NASA Astrophysics Data System (ADS)

    Kim, Young-Seog; Andrews, Jim R.; Sanderson, David J.

    2001-10-01

    Several strike-slip faults at Crackington Haven, UK show evidence of right-lateral movement with tip cracks and dilatational jogs, which have been reactivated by left-lateral strike-slip movement. Evidence for reactivation includes two slickenside striae on a single fault surface, two groups of tip cracks with different orientations and very low displacement gradients or negative (left-lateral) displacements at fault tips. Evidence for the relative age of the two strike-slip movements is (1) the first formed tip cracks associated with right-lateral slip are deformed, whereas the tip cracks formed during left-lateral slip show no deformation; (2) some of the tip cracks associated with right-lateral movement show left-lateral reactivation; and (3) left-lateral displacement is commonly recorded at the tips of dominantly right-lateral faults. The orientation of the tip cracks to the main fault is 30-70° clockwise for right-lateral slip, and 20-40° counter-clockwise for left-lateral slip. The structure formed by this process of strike-slip reactivation is termed a "tree structure" because it is similar to a tree with branches. The angular difference between these two groups of tip cracks could be interpreted as due to different stress distribution (e.g., transtensional/transpressional, near-field or far-field stress), different fracture modes or fractures utilizing pre-existing planes of weakness. Most of the d- x profiles have similar patterns, which show low or negative displacement at the segment fault tips. Although the d- x profiles are complicated by fault segments and reactivation, they provide clear evidence for reactivation. Profiles that experienced two opposite slip movements show various shapes depending on the amount of displacement and the slip sequence. For a larger slip followed by a smaller slip with opposite sense, the profile would be expected to record very low or reverse displacement at fault tips due to late-stage tip propagation. Whereas for a

  18. Growth of a Pine Tree

    ERIC Educational Resources Information Center

    Rollinson, Susan Wells

    2012-01-01

    The growth of a pine tree is examined by preparing "tree cookies" (cross-sectional disks) between whorls of branches. The use of Christmas trees allows the tree cookies to be obtained with inexpensive, commonly available tools. Students use the tree cookies to investigate the annual growth of the tree and how it corresponds to the number of whorls…

  19. Validated Fault Tolerant Architectures for Space Station

    NASA Technical Reports Server (NTRS)

    Lala, Jaynarayan H.

    1990-01-01

    Viewgraphs on validated fault tolerant architectures for space station are presented. Topics covered include: fault tolerance approach; advanced information processing system (AIPS); and fault tolerant parallel processor (FTPP).

  20. San Francisco Bay Area Fault Observations Displayed in Google Earth

    NASA Astrophysics Data System (ADS)

    Lackey, H.; Hernandez, M.; Nayak, P.; Zapata, I.; Schumaker, D.

    2006-12-01

    According to the United States Geological Survey (USGS), the San Francisco Bay Area has a 62% probability of experiencing a major earthquake in the next 30 years. The Hayward fault and the San Andreas fault are the two main faults in the Bay Area that are capable of producing earthquakes of magnitude 6.7 or larger - a size that could profoundly affect many of the 7 million people who live in the Bay Area. The Hayward fault has a 27% probability of producing a major earthquake in next 30 years, and the San Andreas fault has a 21% probability. Our research group, which is part of the SF-ROCKS high school outreach program, studied the Hayward and San Andreas faults. The goal of our project was to observe these faults at various locations, measure the effects of creep, and to present the data in Google Earth, a freeware tool for the public to easily view and interact with these and other seismic-hazard data. We examined the Hayward and San Andreas faults (as mapped by USGS scientists) in Google Earth to identify various sites where we could possibly find evidence of fault creep. We next visited these sites in the field where we mapped the location using a hand- held Global Positioning System, identified and photographed fault evidence, and measured offset features with a ruler or tape measure. Fault evidence included en echelon shears in pavement, warped buildings, and offset features such as sidewalks. Fault creep offset measurements range from 1.5 19 cm. We also identified possible evidence of fault creep along the San Andreas fault in South San Francisco where it had not been previously described. In Google Earth, we plotted our field sites, linked photographs showing evidence of faulting, and included detailed captions to explain the photographs. We will design a webpage containing the data in a Keyhole Markup Language (KML) file format for display in Google Earth. Any interested person needs only to download the free version of Google Earth software and visit our

  1. Can diligent and extensive mapping of faults provide reliable estimates of the expected maximum earthquakes at these faults? No. (Invited)

    NASA Astrophysics Data System (ADS)

    Bird, P.

    2010-12-01

    The hope expressed in the title question above can be contradicted in 5 ways, listed below. To summarize, an earthquake rupture can be larger than anticipated either because the fault system has not been fully mapped, or because the rupture is not limited to the pre-existing fault network. 1. Geologic mapping of faults is always incomplete due to four limitations: (a) Map-scale limitation: Faults below a certain (scale-dependent) apparent offset are omitted; (b) Field-time limitation: The most obvious fault(s) get(s) the most attention; (c) Outcrop limitation: You can't map what you can't see; and (d) Lithologic-contrast limitation: Intra-formation faults can be tough to map, so they are often assumed to be minor and omitted. If mapping is incomplete, fault traces may be longer and/or better-connected than we realize. 2. Fault trace “lengths” are unreliable guides to maximum magnitude. Fault networks have multiply-branching, quasi-fractal shapes, so fault “length” may be meaningless. Naming conventions for main strands are unclear, and rarely reviewed. Gaps due to Quaternary alluvial cover may not reflect deeper seismogenic structure. Mapped kinks and other “segment boundary asperities” may be only shallow structures. Also, some recent earthquakes have jumped and linked “separate” faults (Landers, California 1992; Denali, Alaska, 2002) [Wesnousky, 2006; Black, 2008]. 3. Distributed faulting (“eventually occurring everywhere”) is predicted by several simple theories: (a) Viscoelastic stress redistribution in plate/microplate interiors concentrates deviatoric stress upward until they fail by faulting; (b) Unstable triple-junctions (e.g., between 3 strike-slip faults) in 2-D plate theory require new faults to form; and (c) Faults which appear to end (on a geologic map) imply distributed permanent deformation. This means that all fault networks evolve and that even a perfect fault map would be incomplete for future ruptures. 4. A recent attempt

  2. Growth cessation uncouples isotopic signals in leaves and tree rings of drought-exposed oak trees.

    PubMed

    Pflug, Ellen E; Siegwolf, R; Buchmann, N; Dobbertin, M; Kuster, T M; Günthardt-Goerg, M S; Arend, M

    2015-10-01

    An increase in temperature along with a decrease in summer precipitation in Central Europe will result in an increased frequency of drought events and gradually lead to a change in species composition in forest ecosystems. In the present study, young oaks (Quercus robur L. and Quercus petraea (Matt.) Liebl.) were transplanted into large mesocosms and exposed for 3 years to experimental warming and a drought treatment with yearly increasing intensities. Carbon and oxygen isotopic (δ(13)C and δ(18)O) patterns were analysed in leaf tissue and tree-ring cellulose and linked to leaf physiological measures and tree-ring growth. Warming had no effect on the isotopic patterns in leaves and tree rings, while drought increased δ(18)O and δ(13)C. Under severe drought, an unexpected isotopic pattern, with a decrease in δ(18)O, was observed in tree rings but not in leaves. This decrease in δ(18)O could not be explained by concurrent physiological analyses and is not supported by current physiological knowledge. Analysis of intra-annual tree-ring growth revealed a drought-induced growth cessation that interfered with the record of isotopic signals imprinted on recently formed leaf carbohydrates. This missing record indicates isotopic uncoupling of leaves and tree rings, which may have serious implications for the interpretation of tree-ring isotopes, particularly from trees that experienced growth-limiting stresses. PMID:26377873

  3. Cable fault locator research

    NASA Astrophysics Data System (ADS)

    Cole, C. A.; Honey, S. K.; Petro, J. P.; Phillips, A. C.

    1982-07-01

    Cable fault location and the construction of four field test units are discussed. Swept frequency sounding of mine cables with RF signals was the technique most thoroughly investigated. The swept frequency technique is supplemented with a form of moving target indication to provide a method for locating the position of a technician along a cable and relative to a suspected fault. Separate, more limited investigations involved high voltage time domain reflectometry and acoustical probing of mine cables. Particular areas of research included microprocessor-based control of the swept frequency system, a microprocessor based fast Fourier transform for spectral analysis, and RF synthesizers.

  4. Fault tolerant linear actuator

    DOEpatents

    Tesar, Delbert

    2004-09-14

    In varying embodiments, the fault tolerant linear actuator of the present invention is a new and improved linear actuator with fault tolerance and positional control that may incorporate velocity summing, force summing, or a combination of the two. In one embodiment, the invention offers a velocity summing arrangement with a differential gear between two prime movers driving a cage, which then drives a linear spindle screw transmission. Other embodiments feature two prime movers driving separate linear spindle screw transmissions, one internal and one external, in a totally concentric and compact integrated module.

  5. Ius Chasma Fault

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-415, 8 July 2003

    This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a 'text-book example' of an offset in layered rock caused by a fault. The offset is most easily seen near the upper right of the image. The martian crust is faulted, and the planet has probably experienced 'earthquakes' (or, marsquakes) in the past. This scene is located on the floor of Ius Chasma near 7.8oS, 80.6oW. Sunlight illuminates the scene from the upper left.

  6. DIFFERENTIAL FAULT SENSING CIRCUIT

    DOEpatents

    Roberts, J.H.

    1961-09-01

    A differential fault sensing circuit is designed for detecting arcing in high-voltage vacuum tubes arranged in parallel. A circuit is provided which senses differences in voltages appearing between corresponding elements likely to fault. Sensitivity of the circuit is adjusted to some level above which arcing will cause detectable differences in voltage. For particular corresponding elements, a group of pulse transformers are connected in parallel with diodes connected across the secondaries thereof so that only voltage excursions are transmitted to a thyratron which is biased to the sensitivity level mentioned.

  7. Fault terminations, Seminoe Mountains, Wyoming

    SciTech Connect

    Dominic, J.B.; McConnell, D.A. . Dept. of Geology)

    1992-01-01

    Two basement-involved faults terminate in folds in the Seminoe Mountains. Mesoscopic and macroscopic structures in sedimentary rocks provide clues to the interrelationship of faults and folds in this region, and on the linkage between faulting and folding in general. The Hurt Creek fault trends 320[degree] and has maximum separation of 1.5 km measured at the basement/cover contact. Separation on the fault decreases upsection to zero within the Jurassic Sundance Formation. Unfaulted rock units form an anticline around the fault tip. The complementary syncline is angular with planar limbs and a narrow hinge zone. The syncline axial trace intersects the fault in the footwall at the basement/cover cut-off. Map patterns are interpreted to show thickening of Mesozoic units adjacent to the syncline hinge. In contrast, extensional structures are common in the faulted anticline within the Permian Goose Egg and Triassic Chugwater Formations. A hanging wall splay fault loses separation into the Goose Egg formation which is thinned by 50% at the fault tip. Mesoscopic normal faults are oriented 320--340[degree] and have an average inclination of 75[degree] SW. Megaboudins of Chugwater are present in the footwall of the Hurt Creek fault, immediately adjacent to the fault trace. The Black Canyon fault transported Precambrian-Pennsylvanian rocks over Pennsylvanian Tensleep sandstone. This fault is layer-parallel at the top of the Tensleep and loses separation along strike into an unfaulted syncline in the Goose Egg Formation. Shortening in the pre-Permian units is accommodated by slip on the basement-involved Black Canyon fault. Equivalent shortening in Permian-Cretaceous units occurs on a system of thin-skinned'' thrust faults.

  8. Fault displacement hazard for strike-slip faults

    USGS Publications Warehouse

    Petersen, M.D.; Dawson, T.E.; Chen, R.; Cao, T.; Wills, C.J.; Schwartz, D.P.; Frankel, A.D.

    2011-01-01

    In this paper we present a methodology, data, and regression equations for calculating the fault rupture hazard at sites near steeply dipping, strike-slip faults. We collected and digitized on-fault and off-fault displacement data for 9 global strikeslip earthquakes ranging from moment magnitude M 6.5 to M 7.6 and supplemented these with displacements from 13 global earthquakes compiled byWesnousky (2008), who considers events up to M 7.9. Displacements on the primary fault fall off at the rupture ends and are often measured in meters, while displacements on secondary (offfault) or distributed faults may measure a few centimeters up to more than a meter and decay with distance from the rupture. Probability of earthquake rupture is less than 15% for cells 200 m??200 m and is less than 2% for 25 m??25 m cells at distances greater than 200mfrom the primary-fault rupture. Therefore, the hazard for off-fault ruptures is much lower than the hazard near the fault. Our data indicate that rupture displacements up to 35cm can be triggered on adjacent faults at distances out to 10kmor more from the primary-fault rupture. An example calculation shows that, for an active fault which has repeated large earthquakes every few hundred years, fault rupture hazard analysis should be an important consideration in the design of structures or lifelines that are located near the principal fault, within about 150 m of well-mapped active faults with a simple trace and within 300 m of faults with poorly defined or complex traces.

  9. Dipping San Andreas and Hayward faults revealed beneath San Francisco Bay, California

    USGS Publications Warehouse

    Parsons, T.; Hart, P.E.

    1999-01-01

    The San Francisco Bay area is crossed by several right-lateral strike-slip faults of the San Andreas fault zone. Fault-plane reflections reveal that two of these faults, the San Andreas and Hayward, dip toward each other below seismogenic depths at 60?? and 70??, respectively, and persist to the base of the crust. Previously, a horizontal detachment linking the two faults in the lower crust beneath San Francisco Bay was proposed. The only near-vertical-incidence reflection data available prior to the most recent experiment in 1997 were recorded parallel to the major fault structures. When the new reflection data recorded orthogonal to the faults are compared with the older data, the highest, amplitude reflections show clear variations in moveout with recording azimuth. In addition, reflection times consistently increase with distance from the faults. If the reflectors were horizontal, reflection moveout would be independent of azimuth, and reflection times would be independent of distance from the faults. The best-fit solution from three-dimensional traveltime modeling is a pair of high-angle dipping surfaces. The close correspondence of these dipping structures with the San Andreas and Hayward faults leads us to conclude that they are the faults beneath seismogenic depths. If the faults retain their observed dips, they would converge into a single zone in the upper mantle -45 km beneath the surface, although we can only observe them in the crust.

  10. Exploring tree species signature using waveform LiDAR data

    NASA Astrophysics Data System (ADS)

    Zhou, T.; Popescu, S. C.; Krause, K.

    2015-12-01

    Successful classification of tree species with waveform LiDAR data would be of considerable value to estimate the biomass stocks and changes in forests. Current approaches emphasize converting the full waveform data into discrete points to get larger amount of parameters and identify tree species using several discrete-points variables. However, ignores intensity values and waveform shapes which convey important structural characteristics. The overall goal of this study was to employ the intensity and waveform shape of individual tree as the waveform signature to detect tree species. The data was acquired by the National Ecological Observatory Network (NEON) within 250*250 m study area located in San Joaquin Experimental Range. Specific objectives were to: (1) segment individual trees using the smoothed canopy height model (CHM) derived from discrete LiDAR points; (2) link waveform LiDAR with above individual tree boundaries to derive sample signatures of three tree species and use these signatures to discriminate tree species in a large area; and (3) compare tree species detection results from discrete LiDAR data and waveform LiDAR data. An overall accuracy of the segmented individual tree of more than 80% was obtained. The preliminary results show that compared with the discrete LiDAR data, the waveform LiDAR signature has a higher potential for accurate tree species classification.

  11. Standardization guide for construction and use of MORT-type analytic trees. Revision 1

    SciTech Connect

    Buys, J.R.

    1992-02-01

    Since the introduction of MORT (Management Oversight and Risk Tree) technology as a tool for evaluating the success or failure of safety management systems, there has been a proliferation of analytic trees throughout US Department of Energy (DOE) and its contractor organizations. Standard ``fault tree`` symbols have generally been used in logic diagram or tree construction, but new or revised symbols have also been adopted by various analysts. Additionally, a variety of numbering systems have been used for event identification. The consequent lack of standardization has caused some difficulties in interpreting the trees and following their logic. This guide seeks to correct this problem by providing a standardized system for construction and use of analytic trees. Future publications of the DOE System Safety Development Center (SSDC) will adhere to this guide. It is recommended that other DOE organizations and contractors also adopt this system to achieve intra-DOE uniformity in analytic tree construction.

  12. Standardization guide for construction and use of MORT-type analytic trees

    SciTech Connect

    Buys, J.R.

    1992-02-01

    Since the introduction of MORT (Management Oversight and Risk Tree) technology as a tool for evaluating the success or failure of safety management systems, there has been a proliferation of analytic trees throughout US Department of Energy (DOE) and its contractor organizations. Standard fault tree'' symbols have generally been used in logic diagram or tree construction, but new or revised symbols have also been adopted by various analysts. Additionally, a variety of numbering systems have been used for event identification. The consequent lack of standardization has caused some difficulties in interpreting the trees and following their logic. This guide seeks to correct this problem by providing a standardized system for construction and use of analytic trees. Future publications of the DOE System Safety Development Center (SSDC) will adhere to this guide. It is recommended that other DOE organizations and contractors also adopt this system to achieve intra-DOE uniformity in analytic tree construction.

  13. Extensional fault cores in micritic carbonate - Case studies from the Gulf of Corinth, Greece

    NASA Astrophysics Data System (ADS)

    Bastesen, Eivind; Braathen, Alvar; Nøttveit, Henning; Gabrielsen, Roy H.; Skar, Tore

    2009-04-01

    The major Pisia and Doumena faults of the Corinth Rift, Greece, are both hosted by micritic carbonate rock. Their common fault elements are principal slip surfaces, layers of fault rocks, fault rock and host rock lenses, corrugations, and smaller shear and tension fractures. Along planar fault segments, a corrugated slip surface with an associated thin fault rock layer is formed. Well-developed down-dip corrugations indicate movement along the same surface over many fault increments. Bends/jogs in the faults are sites of complex structural relations, hosting frequent lenses, more porous fault rocks, and dense networks of fractures. Major jogs in the slip surfaces have both strike and dip-oriented undulating curvature that are associated with higher order fracture networks as well as frequent lenses. Fault core lens shapes of the Doumena fault show relationship of length vs. width of 3/2. Similarly, principal slip surfaces of the two faults show undulations with aspect ratios of amplitude vs. wavelength (1:19 and 1:14) in strike-direction, despite a prominent difference in down-dip geometry. The intrinsic deformation in fault cores of micritic carbonate supports a model in which fluids entered the core by damage zone fractures that are linked to the principal slip surface. Flow along the fault core was controlled by the fracture system of lenses, and thereby lens connectivity, but may have been hampered by flow-retarding fault rocks. The flow potential is especially well developed in fault bends and breached relays due to frequent lenses and well-developed fracture networks.

  14. Characteristics of On-fault and Off-fault displacement of various fault types based on numerical simulation

    NASA Astrophysics Data System (ADS)

    Inoue, N.; Kitada, N.; Takemura, K.

    2015-12-01

    There are two types of fault displacement related to the earthquake fault: on-fault displacement and off-fault displacement. Off-fault displacement should be evaluated in important facilities, such as Nuclear Installations. Probabilistic Fault Displacement Hazard Analysis (PFDHA) is developing on the basis of PSHA. PFDHA estimates on-fault and off-fault displacement. For estimation, PFDHA uses distance-displacement functions, which are constructed from field measurement data. However, observed displacement data are still sparse, especially off-fault displacement. In Nuclear Installations, estimation of off-fault displacement is more important than that of on-fault. We carried out numerical fault displacement simulations to assist in understanding distance-displacement relations of on-fault and off-fault according to fault types, normal, reverse and strike fault. We used Okada's dislocation method. The displacements were calculated based on the single fault model with several rakes of slip. On-fault displacements (along the fault profile) of each fault types show a similar trend. Off-fault displacements (cross profile to the fault) of vertical (reverse and normal) fault types show the rapid decreasing displacement on the foot wall side. In the presentation, we will show the displacement profile and also stress, strain and so on. The dislocation model can not express discontinuous displacements. In the future, we will apply various numerical simulations (Finite Element Method, Distinct Element Method) in order to evaluate off-fault displacements. We will also compare numerical simulation results with observed data.

  15. The property of fault zone and fault activity of Shionohira Fault, Fukushima, Japan

    NASA Astrophysics Data System (ADS)

    Seshimo, K.; Aoki, K.; Tanaka, Y.; Niwa, M.; Kametaka, M.; Sakai, T.; Tanaka, Y.

    2015-12-01

    The April 11, 2011 Fukushima-ken Hamadori Earthquake (hereafter the 4.11 earthquake) formed co-seismic surface ruptures trending in the NNW-SSE direction in Iwaki City, Fukushima Prefecture, which were newly named as the Shionohira Fault by Ishiyama et al. (2011). This earthquake was characterized by a westward dipping normal slip faulting, with a maximum displacement of about 2 m (e.g., Kurosawa et al., 2012). To the south of the area, the same trending lineaments were recognized to exist even though no surface ruptures occurred by the earthquake. In an attempt to elucidate the differences of active and non-active segments of the fault, this report discusses the results of observation of fault outcrops along the Shionohira Fault as well as the Coulomb stress calculations. Only a few outcrops have basement rocks of both the hanging-wall and foot-wall of the fault plane. Three of these outcrops (Kyodo-gawa, Shionohira and Betto) were selected for investigation. In addition, a fault outcrop (Nameishi-minami) located about 300 m south of the southern tip of the surface ruptures was investigated. The authors carried out observations of outcrops, polished slabs and thin sections, and performed X-ray diffraction (XRD) to fault materials. As a result, the fault zones originating from schists were investigated at Kyodo-gawa and Betto. A thick fault gouge was cut by a fault plane of the 4.11 earthquake in each outcrop. The fault materials originating from schists were fault bounded with (possibly Neogene) weakly deformed sandstone at Shionohira. A thin fault gouge was found along the fault plane of 4.11 earthquake. A small-scale fault zone with thin fault gouge was observed in Nameishi-minami. According to XRD analysis, smectite was detected in the gouges from Kyodo-gawa, Shionohira and Betto, while not in the gouge from Nameishi-minami.

  16. Towards Fault Resilient Global Arrays

    SciTech Connect

    Tipparaju, Vinod; Krishnan, Manoj Kumar; Palmer, Bruce J.; Petrini, Fabrizio; Nieplocha, Jaroslaw

    2007-09-03

    The focus of the current paper is adding fault resiliency to the Global Arrays. We extended the GA toolkit to provide a minimal level of capabilities to enable programmer to implement fault resiliency at the user level. Our fault-recovery approach is programmer assisted and based on frequent incremental checkpoints and rollback recovery. In addition, it relies of pool of spare nodes that are used to replace the failing node. We demonstrate usefulness of fault resilient Global Arrays in application context.

  17. Row fault detection system

    DOEpatents

    Archer, Charles Jens; Pinnow, Kurt Walter; Ratterman, Joseph D.; Smith, Brian Edward

    2012-02-07

    An apparatus, program product and method check for nodal faults in a row of nodes by causing each node in the row to concurrently communicate with its adjacent neighbor nodes in the row. The communications are analyzed to determine a presence of a faulty node or connection.

  18. Row fault detection system

    DOEpatents

    Archer, Charles Jens; Pinnow, Kurt Walter; Ratterman, Joseph D.; Smith, Brian Edward

    2010-02-23

    An apparatus and program product check for nodal faults in a row of nodes by causing each node in the row to concurrently communicate with its adjacent neighbor nodes in the row. The communications are analyzed to determine a presence of a faulty node or connection.

  19. Dynamic Fault Detection Chassis

    SciTech Connect

    Mize, Jeffery J

    2007-01-01

    Abstract The high frequency switching megawatt-class High Voltage Converter Modulator (HVCM) developed by Los Alamos National Laboratory for the Oak Ridge National Laboratory's Spallation Neutron Source (SNS) is now in operation. One of the major problems with the modulator systems is shoot-thru conditions that can occur in a IGBTs H-bridge topology resulting in large fault currents and device failure in a few microseconds. The Dynamic Fault Detection Chassis (DFDC) is a fault monitoring system; it monitors transformer flux saturation using a window comparator and dV/dt events on the cathode voltage caused by any abnormality such as capacitor breakdown, transformer primary turns shorts, or dielectric breakdown between the transformer primary and secondary. If faults are detected, the DFDC will inhibit the IGBT gate drives and shut the system down, significantly reducing the possibility of a shoot-thru condition or other equipment damaging events. In this paper, we will present system integration considerations, performance characteristics of the DFDC, and discuss its ability to significantly reduce costly down time for the entire facility.

  20. Row fault detection system

    SciTech Connect

    Archer, Charles Jens; Pinnow, Kurt Walter; Ratterman, Joseph D.; Smith, Brian Edward

    2008-10-14

    An apparatus, program product and method checks for nodal faults in a row of nodes by causing each node in the row to concurrently communicate with its adjacent neighbor nodes in the row. The communications are analyzed to determine a presence of a faulty node or connection.

  1. Evidence against Late Quaternary activity along the Northern Karakoram Fault

    NASA Astrophysics Data System (ADS)

    Robinson, A. C.; Owen, L. A.; Hedrick, K.; Blisniuk, K.; Sharp, W. D.; Chen, J.; Schoenbohm, L. M.; Imrecke, D. B.; Yuan, Z.; Li, W.

    2012-12-01

    surface exposure dating (Owen et al., 2012). As with the Tashkurgan glacial stage deposits, Dabudaer glacial stage deposits show no evidence of strike-slip displacement where they overlie the Karakoram and Achiehkopai faults. These results demonstrate that the northern Karakoram fault system where it crosses the southern Tashkurgan valley has been inactive for at least the past ~70 ka, and likely since at least 200 ka, although termination of slip may have occurred much earlier (e.g. ~3 Ma). Further, our results fail to support interpretations linking active extension along the Kongur Shan extensional system to the north to slip on this segment of the Karakoram fault.

  2. Urban Tree Canopy and Asthma, Wheeze, Rhinitis, and Allergic Sensitization to Tree Pollen in a New York City Birth Cohort

    PubMed Central

    Lovasi, Gina S.; O’Neil-Dunne, Jarlath P.M.; Lu, Jacqueline W.T.; Sheehan, Daniel; Perzanowski, Matthew S.; MacFaden, Sean W.; King, Kristen L.; Matte, Thomas; Miller, Rachel L.; Hoepner, Lori A.; Perera, Frederica P.

    2013-01-01

    Background: Urban landscape elements, particularly trees, have the potential to affect airflow, air quality, and production of aeroallergens. Several large-scale urban tree planting projects have sought to promote respiratory health, yet evidence linking tree cover to human health is limited. Objectives: We sought to investigate the association of tree canopy cover with subsequent development of childhood asthma, wheeze, rhinitis, and allergic sensitization. Methods: Birth cohort study data were linked to detailed geographic information systems data characterizing 2001 tree canopy coverage based on LiDAR (light detection and ranging) and multispectral imagery within 0.25 km of the prenatal address. A total of 549 Dominican or African-American children born in 1998–2006 had outcome data assessed by validated questionnaire or based on IgE antibody response to specific allergens, including a tree pollen mix. Results: Tree canopy coverage did not significantly predict outcomes at 5 years of age, but was positively associated with asthma and allergic sensitization at 7 years. Adjusted risk ratios (RRs) per standard deviation of tree canopy coverage were 1.17 for asthma (95% CI: 1.02, 1.33), 1.20 for any specific allergic sensitization (95% CI: 1.05, 1.37), and 1.43 for tree pollen allergic sensitization (95% CI: 1.19, 1.72). Conclusions: Results did not support the hypothesized protective association of urban tree canopy coverage with asthma or allergy-related outcomes. Tree canopy cover near the prenatal address was associated with higher prevalence of allergic sensitization to tree pollen. Information was not available on sensitization to specific tree species or individual pollen exposures, and results may not be generalizable to other populations or geographic areas. PMID:23322788

  3. Species integrity in trees.

    PubMed

    Ortiz-Barrientos, Daniel; Baack, Eric J

    2014-09-01

    From California sequoia, to Australian eucalyptus, to the outstanding diversity of Amazonian forests, trees are fundamental to many processes in ecology and evolution. Trees define the communities that they inhabit, are host to a multiplicity of other organisms and can determine the ecological dynamics of other plants and animals. Trees are also at the heart of major patterns of biodiversity such as the latitudinal gradient of species diversity and thus are important systems for studying the origin of new plant species. Although the role of trees in community assembly and ecological succession is partially understood, the origin of tree diversity remains largely opaque. For instance, the relative importance of differing habitats and phenologies as barriers to hybridization between closely related species is still largely uncharacterized in trees. Consequently, we know very little about the origin of trees species and their integrity. Similarly, studies on the interplay between speciation and tree community assembly are in their infancy and so are studies on how processes like forest maturation modifies the context in which reproductive isolation evolves. In this issue of Molecular Ecology, Lindtke et al. (2014) and Lagache et al. (2014) overcome some traditional difficulties in studying mating systems and sexual isolation in the iconic oaks and poplars, providing novel insights about the integrity of tree species and on how ecology leads to variation in selection on reproductive isolation over time and space. PMID:25155715

  4. Timing and rate of exhumation along the Litang fault system, implication for fault reorganization in Southeast Tibet

    NASA Astrophysics Data System (ADS)

    Zhang, Yuan-Ze; Replumaz, Anne; Wang, Guo-Can; Leloup, Philippe Hervé; Gautheron, Cécile; Bernet, Matthias; Beek, Peter; Paquette, Jean Louis; Wang, An; Zhang, Ke-Xin; Chevalier, Marie-Luce; Li, Hai-Bing

    2015-06-01

    The Litang fault system that crosses the Litang Plateau, a low relief surface at high elevation (~4200-4800 m above sea level) that is not affected by regional incision, provides the opportunity to study exhumation related to tectonics in the SE Tibetan Plateau independently of regional erosion. Combining apatite and zircon fission track with apatite (U-Th)/He thermochronologic data, we constrain the cooling history of the Litang fault system footwall along two transects. Apatite fission track ages range from 4 to 16 Ma, AHe ages from 2 to 6 Ma, and one zircon fission track age is ~99 Ma. These data imply a tectonic quiet period sustained since at least 100 Ma with a slow denudation rate of ~0.03 km/Ma, interrupted at 7 to 5 Ma by exhumation at a rate between 0.59 and 0.99 km/Ma. We relate that faster exhumation to the onset of motion along the left-lateral/normal Litang fault system. That onset is linked to a Lower Miocene important kinematic reorganization between the Xianshuihe and the Red River faults, with the eastward propagation of the Xianshuihe fault along the Xiaojiang fault system and the formation of the Zhongdian fault. Such strike-slip faults allow the sliding to the east of a wide continental block, with the Litang fault system accommodating differential motion between rigid blocks. The regional evolution appears to be guided by the strike-slip faults, with different phases of deformation, which appears more in agreement with an "hidden plate-tectonic" model rather than with a "lower channel flow" model.

  5. Earthquakes and fault creep on the northern San Andreas fault

    USGS Publications Warehouse

    Nason, R.

    1979-01-01

    At present there is an absence of both fault creep and small earthquakes on the northern San Andreas fault, which had a magnitude 8 earthquake with 5 m of slip in 1906. The fault has apparently been dormant after the 1906 earthquake. One possibility is that the fault is 'locked' in some way and only produces great earthquakes. An alternative possibility, presented here, is that the lack of current activity on the northern San Andreas fault is because of a lack of sufficient elastic strain after the 1906 earthquake. This is indicated by geodetic measurements at Fort Ross in 1874, 1906 (post-earthquake), and 1969, which show that the strain accumulation in 1969 (69 ?? 10-6 engineering strain) was only about one-third of the strain release (rebound) in the 1906 earthquake (200 ?? 10-6 engineering strain). The large difference in seismicity before and after 1906, with many strong local earthquakes from 1836 to 1906, but only a few strong earthquakes from 1906 to 1976, also indicates a difference of elastic strain. The geologic characteristics (serpentine, fault straightness) of most of the northern San Andreas fault are very similar to the characteristics of the fault south of Hollister, where fault creep is occurring. Thus, the current absence of fault creep on the northern fault segment is probably due to a lack of sufficient elastic strain at the present time. ?? 1979.

  6. An empirical comparison of software fault tolerance and fault elimination

    NASA Technical Reports Server (NTRS)

    Shimeall, Timothy J.; Leveson, Nancy G.

    1991-01-01

    Reliability is an important concern in the development of software for modern systems. Some researchers have hypothesized that particular fault-handling approaches or techniques are so effective that other approaches or techniques are superfluous. The authors have performed a study that compares two major approaches to the improvement of software, software fault elimination and software fault tolerance, by examination of the fault detection obtained by five techniques: run-time assertions, multi-version voting, functional testing augmented by structural testing, code reading by stepwise abstraction, and static data-flow analysis. This study has focused on characterizing the sets of faults detected by the techniques and on characterizing the relationships between these sets of faults. The results of the study show that none of the techniques studied is necessarily redundant to any combination of the others. Further results reveal strengths and weakness in the fault detection by the techniques studied and suggest directions for future research.

  7. Fault slip controlled by stress path and fluid pressurization rate

    NASA Astrophysics Data System (ADS)

    French, Melodie E.; Zhu, Wenlu; Banker, Jeremy

    2016-05-01

    The practice of injecting fluids into the crust is linked to regional increases in seismicity. Increasing fluid pressure along preexisting faults is believed to enhance seismicity rates by reducing the shear stress required for slip, but the processes that cause faults to slip under conditions of fluid pressurization are poorly constrained. We use experimental rock deformation to investigate the controls of fluid pressurization and pressurization rates on fault slip style. We show that pore fluid pressurization is less effective that mechanical changes in fault normal stress at initiating accelerated slip events. Fluid pressurization enhances the total slip, slip velocity, and shear stress drop of events initiated by mechanical changes in normal stress, and these parameters are correlated with pressurization rate, but not the magnitude of fluid pressure. This result is consistent with field-scale observations and indicates that processes active at the pore network scale affect induced seismicity.

  8. Dynamic 3D simulations of earthquakes on en echelon faults

    USGS Publications Warehouse

    Harris, R.A.; Day, S.M.

    1999-01-01

    One of the mysteries of earthquake mechanics is why earthquakes stop. This process determines the difference between small and devastating ruptures. One possibility is that fault geometry controls earthquake size. We test this hypothesis using a numerical algorithm that simulates spontaneous rupture propagation in a three-dimensional medium and apply our knowledge to two California fault zones. We find that the size difference between the 1934 and 1966 Parkfield, California, earthquakes may be the product of a stepover at the southern end of the 1934 earthquake and show how the 1992 Landers, California, earthquake followed physically reasonable expectations when it jumped across en echelon faults to become a large event. If there are no linking structures, such as transfer faults, then strike-slip earthquakes are unlikely to propagate through stepovers >5 km wide. Copyright 1999 by the American Geophysical Union.

  9. Fault connectivity, distributed shortening, and impacts on geologic- geodetic slip rate discrepancies in the central Mojave Desert, California

    NASA Astrophysics Data System (ADS)

    Selander, J.; Oskin, M. E.; Cooke, M. L.; Grette, K.

    2015-12-01

    Understanding off-fault deformation and distribution of displacement rates associated with disconnected strike-slip faults requires a three-dimensional view of fault geometries. We address problems associated with distributed faulting by studying the Mojave segment of the East California Shear Zone (ECSZ), a region dominated by northwest-directed dextral shear along disconnected northwest- southeast striking faults. We use a combination of cross-sectional interpretations, 3D Boundary Element Method (BEM) models, and slip-rate measurements to test new hypothesized fault connections. We find that reverse faulting acts as an important means of slip transfer between strike-slip faults, and show that the impacts of these structural connections on shortening, uplift, strike-slip rates, and off-fault deformation, help to reconcile the overall strain budget across this portion of the ECSZ. In detail, we focus on the Calico and Blackwater faults, which are hypothesized to together represent the longest linked fault system in the Mojave ECSZ, connected by a restraining step at 35°N. Across this restraining step the system displays a pronounced displacement gradient, where dextral offset decreases from ~11.5 to <2 km from south to north. Cross-section interpretations show that ~40% of this displacement is transferred from the Calico fault to the Harper Lake and Blackwater faults via a set of north-dipping thrust ramps. Late Quaternary dextral slip rates follow a similar pattern, where 1.4 +0.8/-0.4 mm/yr of slip along the Calico fault south of 35°N is distributed to the Harper Lake, Blackwater, and Tin Can Alley faults. BEM model results using revised fault geometries for the Mojave ECSZ show areas of uplift consistent with contractional structures, and fault slip-rates that more closely match geologic data. Overall, revised fault connections and addition of off-fault deformation greatly reduces the discrepancy between geodetic and geologic slip rates.

  10. Correlation of data on strain accumulation adjacent to the San Andreas Fault with available models

    NASA Technical Reports Server (NTRS)

    Turcotte, Donald L.

    1986-01-01

    Theoretical and numerical studies of deformation on strike slip faults were performed and the results applied to geodetic observations performed in the vicinity of the San Andreas Fault in California. The initial efforts were devoted to an extensive series of finite element calculations of the deformation associated with cyclic displacements on a strike-slip fault. Measurements of strain accumulation adjacent to the San Andreas Fault indicate that the zone of strain accumulation extends only a few tens of kilometers away from the fault. There is a concern about the tendency to make geodetic observations along the line to the source. This technique has serious problems for strike slip faults since the vector velocity is also along the fault. Use of a series of stations lying perpendicular to the fault whose positions are measured relative to a reference station are suggested to correct the problem. The complexity of faulting adjacent to the San Andreas Fault indicated that the homogeneous elastic and viscoelastic approach to deformation had serious limitations. These limitation led to the proposal of an approach that assumes a fault is composed of a distribution of asperities and barriers on all scales. Thus, an earthquake on a fault is treated as a failure of a fractal tree. Work continued on the development of a fractal based model for deformation in the western United States. In order to better understand the distribution of seismicity on the San Andreas Fault system a fractal analog was developed. The fractal concept also provides a means of testing whether clustering in time or space is a scale-invariant process.

  11. The imprint of climate within Northern Hemisphere trees

    NASA Astrophysics Data System (ADS)

    St. George, Scott; Ault, Toby R.

    2014-04-01

    Here we show how the seasonality and strength of climate signals recorded by tree-ring widths changes across the Northern Hemisphere, and outline major regional differences in the climate 'window' sensed by trees that both constrain and augment our ability to interpret these records as paleoclimatic proxies. After surveying nearly 2200 ring-width records, we find the spatial structure of tree-climate relations across the hemisphere matches behavior predicted several decades ago very closely, confirming the principles that guide dendroclimatology are robust despite the complexity of interactions between climate, ecology and tree biology. We also show that climate filtering conducted by individual trees creates major regional differences in information that may be recovered from the hemispheric network. This behavior can introduce geographic biases to dendroclimatic reconstructions, but it also may be useful to evaluate the success of reconstruction techniques that explicitly represent the physical processes linking climate to tree growth.

  12. Faults, fault rocks and fractures in basalts: a macro- to micro-analysis of fault rock evolution on the NE Atlantic Margin

    NASA Astrophysics Data System (ADS)

    Walker, R. J.; Holdsworth, R. E.; Imber, J.

    2009-12-01

    -permeability pathways (fault voids and their infills) through the FIBG during the latter event. We find that, in particular, faults in basalts are in many ways comparable to faults formed at shallow crustal depths in carbonate rocks and crystalline basement, most likely reflecting the similarities in their mechanical properties under near surface pressures and temperatures. The nature and style of the fault infills provides compelling evidence to suggest that subterranean voids associated with faults were persistent features within the FIBG, and if structurally linked to faults cutting the underlying basin fill sediments, could facilitate significant hydrocarbon migration from deep reservoirs.

  13. Relationship of the 1999 Hector Mine and 1992 Landers fault ruptures to offsets on neogene faults and distribution of late Cenozoic basins in the eastern California shear zone

    USGS Publications Warehouse

    Jachens, R.C.; Langenheim, V.E.; Matti, J.C.

    2002-01-01

    This report examines the Hector Mine and Landers earthquakes in the broader context of faults and fault-related basins of the eastern California shear zone (ECSZ). We compile new estimates of total strike-slip offset (horizontal separation) at nearly 30 fault sites based on offset magnetic anomaly pairs. We also present a map of the depth to pre-Cenozoic basement rock (thickness of basin-filling late Cenozoic deposits) for the region, based on an inversion of gravity and geologic data. Our estimates of total long-term strike-slip offsets on faults that slipped during the 1999 Hector Mine (3.4 km), and the 1992 Landers earthquakes (3.1 ? to 4.6 km) fall within the 3- to 5-km range of total strike-slip offset proposed for most faults of the western ECSZ. Faults having offsets as great as 20 km are present in the eastern part of the ECSZ. Although the Landers rupture followed sections of a number of faults that had been mapped as independent structures, the similarity in total strike-slip offset associated with these faults is compatible with one of the following hypotheses: (1) the Landers multistrand rupture is a typical event for this linked fault system or (2) this complex rupture path has acted as a coherent entity when viewed over some characteristic multiearthquake cycle. The second hypothesis implies that, for each cycle, slip associated with smaller earthquakes on individual fault segments integrates to a uniform slip over the length of the linked faults. With one exception, the region surrounding the Hector Mine and Landers ruptures is devoid of deep late Cenozoic basins. In particular, no deep basins are found immediately north of the Pinto Mountain fault, a place where a number of kinematic models for development of the ECSZ have predicted basins. In contrast, some basins exist near Barstow and along the eastern part of the ECSZ, where the model of Dokka et al. (1998) predicts basins.

  14. Fault diagnosis of analog circuits

    SciTech Connect

    Bandler, J.W.; Salama, A.E.

    1985-08-01

    In this paper, various fault location techniques in analog networks are described and compared. The emphasis is on the more recent developments in the subject. Four main approaches for fault location are addressed, examined, and illustrated using simple network examples. In particular, we consider the fault dictionary approach, the parameter identification approach, the fault verification approach, and the approximation approach. Theory and algorithms that are associated with these approaches are reviewed and problems of their practical application are identified. Associated with the fault dictionary approach we consider fault dictionary construction techniques, methods of optimum measurement selection, different fault isolation criteria, and efficient fault simulation techniques. Parameter identification techniques that either utilize linear or nonlinear systems of equations to identify all network elements are examined very thoroughly. Under fault verification techniques we discuss node-fault diagnosis, branch-fault diagnosis, subnetwork testability conditions as well as combinatorial techniques, the failure bound technique, and the network decomposition technique. For the approximation approach we consider probabilistic methods and optimization-based methods. The artificial intelligence technique and the different measures of testability are also considered. The main features of the techniques considered are summarized in a comparative table. An extensive, but not exhaustive, bibliography is provided.

  15. Trees Are Terrific!

    ERIC Educational Resources Information Center

    Braus, Judy, Ed.

    1992-01-01

    Ranger Rick's NatureScope is a creative education series dedicated to inspiring in children an understanding and appreciation of the natural world while developing the skills they will need to make responsible decisions about the environment. Contents are organized into the following sections: (1) "What Makes a Tree a Tree?," including information…

  16. The Flame Tree

    ERIC Educational Resources Information Center

    Lewis, Richard

    2004-01-01

    Lewis's own experiences living in Indonesia are fertile ground for telling "a ripping good story," one found in "The Flame Tree." He hopes people will enjoy the tale and appreciate the differences of an unfamiliar culture. The excerpt from "The Flame Tree" will reel readers in quickly.

  17. Trees for Mother Earth.

    ERIC Educational Resources Information Center

    Greer, Sandy

    1993-01-01

    Describes Trees for Mother Earth, a program in which secondary students raise funds to buy fruit trees to plant during visits to the Navajo Reservation. Benefits include developing feelings of self-worth among participants, promoting cultural exchange and understanding, and encouraging self-sufficiency among the Navajo. (LP)

  18. Tree Topology Estimation.

    PubMed

    Estrada, Rolando; Tomasi, Carlo; Schmidler, Scott C; Farsiu, Sina

    2015-08-01

    Tree-like structures are fundamental in nature, and it is often useful to reconstruct the topology of a tree - what connects to what - from a two-dimensional image of it. However, the projected branches often cross in the image: the tree projects to a planar graph, and the inverse problem of reconstructing the topology of the tree from that of the graph is ill-posed. We regularize this problem with a generative, parametric tree-growth model. Under this model, reconstruction is possible in linear time if one knows the direction of each edge in the graph - which edge endpoint is closer to the root of the tree - but becomes NP-hard if the directions are not known. For the latter case, we present a heuristic search algorithm to estimate the most likely topology of a rooted, three-dimensional tree from a single two-dimensional image. Experimental results on retinal vessel, plant root, and synthetic tree data sets show that our methodology is both accurate and efficient. PMID:26353004

  19. Structural Equation Model Trees

    ERIC Educational Resources Information Center

    Brandmaier, Andreas M.; von Oertzen, Timo; McArdle, John J.; Lindenberger, Ulman

    2013-01-01

    In the behavioral and social sciences, structural equation models (SEMs) have become widely accepted as a modeling tool for the relation between latent and observed variables. SEMs can be seen as a unification of several multivariate analysis techniques. SEM Trees combine the strengths of SEMs and the decision tree paradigm by building tree…

  20. CSI for Trees

    ERIC Educational Resources Information Center

    Rubino, Darrin L.; Hanson, Deborah

    2009-01-01

    The circles and patterns in a tree's stem tell a story, but that story can be a mystery. Interpreting the story of tree rings provides a way to heighten the natural curiosity of students and help them gain insight into the interaction of elements in the environment. It also represents a wonderful opportunity to incorporate the nature of science.…

  1. Tree nut oils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The major tree nuts include almonds, Brazil nuts, cashew nuts, hazelnuts, macadamia nuts, pecans, pine nuts, pistachio nuts, and walnuts. Tree nut oils are appreciated in food applications because of their flavors and are generally more expensive than other gourmet oils. Research during the last de...

  2. In the footsteps of Robert Marshall: Proposed research of white spruce growth and movement at the tree limit, central Brooks Range, Alaska

    SciTech Connect

    Droessler, T.D.

    1992-03-01

    The proposed research will quantify white spruce growth and document its latitudinal stability at the tree limit in the central Brooks Range over the life span of the living trees. The goal is to link tree growth and tree position to summer temperature and precipitation. Historical records from 1929 to 1938 from work by Robert Marshall have been used to identify tree limit sites and provide information to interpret the present location of the tree limit.

  3. Fault Scarp Offsets and Fault Population Analysis on Dione

    NASA Astrophysics Data System (ADS)

    Tarlow, S.; Collins, G. C.

    2010-12-01

    Cassini images of Dione show several fault zones cutting through the moon’s icy surface. We have measured the displacement and length of 271 faults, and estimated the strain occurring in 6 different fault zones. These measurements allow us to quantify the total amount of surface strain on Dione as well as constrain what processes might have caused these faults to form. Though we do not have detailed topography across fault scarps on Dione, we can use their projected size on the camera plane to estimate their heights, assuming a reasonable surface slope. Starting with high resolution images of Dione obtained by the Cassini ISS, we marked points at the top to the bottom of each fault scarp to measure the fault’s projected displacement and its orientation along strike. Line and sample information for the measurements were then processed through ISIS to derive latitude/longitude information and pixel dimensions. We then calculate the three dimensional orientation of a vector running from the bottom to the top of the fault scarp, assuming a 45 degree angle with respect to the surface, and project this vector onto the spacecraft camera plane. This projected vector gives us a correction factor to estimate the actual vertical displacement of the fault scarp. This process was repeated many times for each fault, to show variations of displacement along the length of the fault. To compare each fault to its neighbors and see how strain was accommodated across a population of faults, we divided the faults into fault zones, and created new coordinate systems oriented along the central axis of each fault zone. We could then quantify the amount of fault overlap and add the displacement of overlapping faults to estimate the amount of strain accommodated in each zone. Faults in the southern portion of Padua have a strain of 0.031(+/-) 0.0097, central Padua exhibits a strain of .032(+/-) 0.012, and faults in northern Padua have a strain of 0.025(+/-) 0.0080. The western faults of

  4. Fault intersections along the Hosgri Fault Zone, Central California

    NASA Astrophysics Data System (ADS)

    Watt, J. T.; Johnson, S. Y.; Langenheim, V. E.

    2011-12-01

    It is well-established that stresses concentrate at fault intersections or bends when subjected to tectonic loading, making focused studies of these areas particularly important for seismic hazard analysis. In addition, detailed fault models can be used to investigate how slip on one fault might transfer to another during an earthquake. We combine potential-field, high-resolution seismic-reflection, and multibeam bathymetry data with existing geologic and seismicity data to investigate the fault geometry and connectivity of the Hosgri, Los Osos, and Shoreline faults offshore of San Luis Obispo, California. The intersection of the Hosgri and Los Osos faults in Estero Bay is complex. The offshore extension of the Los Osos fault, as imaged with multibeam and high-resolution seismic data, is characterized by a west-northwest-trending zone (1-3 km wide) of near vertical faulting. Three distinct strands (northern, central, and southern) are visible on shallow seismic reflection profiles. The steep dip combined with dramatic changes in reflection character across mapped faults within this zone suggests horizontal offset of rock units and argues for predominantly strike-slip motion, however, the present orientation of the fault zone suggests oblique slip. As the Los Osos fault zone approaches the Hosgri fault, the northern and central strands become progressively more northwest-trending in line with the Hosgri fault. The northern strand runs subparallel to the Hosgri fault along the edge of a long-wavelength magnetic anomaly, intersecting the Hosgri fault southwest of Point Estero. Geophysical modeling suggests the northern strand dips 70° to the northeast, which is in agreement with earthquake focal mechanisms that parallel this strand. The central strand bends northward and intersects the Hosgri fault directly west of Morro Rock, corresponding to an area of compressional deformation visible in shallow seismic-reflection profiles. The southern strand of the Los Osos

  5. Slow lifelong growth predisposes Populus tremuloides trees to mortality.

    PubMed

    Ireland, Kathryn B; Moore, Margaret M; Fulé, Peter Z; Zegler, Thomas J; Keane, Robert E

    2014-07-01

    Widespread dieback of aspen forests, sometimes called sudden aspen decline, has been observed throughout much of western North America, with the highest mortality rates in the southwestern United States. Recent aspen mortality has been linked to drought stress and elevated temperatures characteristic of conditions expected under climate change, but the role of individual aspen tree growth patterns in contributing to recent tree mortality is less well known. We used tree-ring data to investigate the relationship between an individual aspen tree's lifetime growth patterns and mortality. Surviving aspen trees had consistently higher average growth rates for at least 100 years than dead trees. Contrary to observations from late successional species, slow initial growth rates were not associated with a longer lifespan in aspen. Aspen trees that died had slower lifetime growth and slower growth at various stages of their lives than those that survived. Differences in average diameter growth between live and dead trees were significant (α = 0.05) across all time periods tested. Our best logistical model of aspen mortality indicates that younger aspen trees with lower recent growth rates and higher frequencies of abrupt growth declines had an increased risk of mortality. Our findings highlight the need for species-specific mortality functions in forest succession models. Size-dependent mortality functions suitable for late successional species may not be appropriate for species with different life history strategies. For some early successional species, like aspen, slow growth at various stages of the tree's life is associated with increased mortality risk. PMID:24817158

  6. Effects of memory on the shapes of simple outbreak trees

    PubMed Central

    Plazzotta, Giacomo; Kwan, Christopher; Boyd, Michael; Colijn, Caroline

    2016-01-01

    Genomic tools, including phylogenetic trees derived from sequence data, are increasingly used to understand outbreaks of infectious diseases. One challenge is to link phylogenetic trees to patterns of transmission. Particularly in bacteria that cause chronic infections, this inference is affected by variable infectious periods and infectivity over time. It is known that non-exponential infectious periods can have substantial effects on pathogens’ transmission dynamics. Here we ask how this non-Markovian nature of an outbreak process affects the branching trees describing that process, with particular focus on tree shapes. We simulate Crump-Mode-Jagers branching processes and compare different patterns of infectivity over time. We find that memory (non-Markovian-ness) in the process can have a pronounced effect on the shapes of the outbreak’s branching pattern. However, memory also has a pronounced effect on the sizes of the trees, even when the duration of the simulation is fixed. When the sizes of the trees are constrained to a constant value, memory in our processes has little direct effect on tree shapes, but can bias inference of the birth rate from trees. We compare simulated branching trees to phylogenetic trees from an outbreak of tuberculosis in Canada, and discuss the relevance of memory to this dataset. PMID:26888437

  7. Effects of memory on the shapes of simple outbreak trees.

    PubMed

    Plazzotta, Giacomo; Kwan, Christopher; Boyd, Michael; Colijn, Caroline

    2016-01-01

    Genomic tools, including phylogenetic trees derived from sequence data, are increasingly used to understand outbreaks of infectious diseases. One challenge is to link phylogenetic trees to patterns of transmission. Particularly in bacteria that cause chronic infections, this inference is affected by variable infectious periods and infectivity over time. It is known that non-exponential infectious periods can have substantial effects on pathogens' transmission dynamics. Here we ask how this non-Markovian nature of an outbreak process affects the branching trees describing that process, with particular focus on tree shapes. We simulate Crump-Mode-Jagers branching processes and compare different patterns of infectivity over time. We find that memory (non-Markovian-ness) in the process can have a pronounced effect on the shapes of the outbreak's branching pattern. However, memory also has a pronounced effect on the sizes of the trees, even when the duration of the simulation is fixed. When the sizes of the trees are constrained to a constant value, memory in our processes has little direct effect on tree shapes, but can bias inference of the birth rate from trees. We compare simulated branching trees to phylogenetic trees from an outbreak of tuberculosis in Canada, and discuss the relevance of memory to this dataset. PMID:26888437

  8. Abnormal fault-recovery characteristics of the fault-tolerant multiprocessor uncovered using a new fault-injection methodology

    NASA Astrophysics Data System (ADS)

    Padilla, Peter A.

    1991-03-01

    An investigation was made in AIRLAB of the fault handling performance of the Fault Tolerant MultiProcessor (FTMP). Fault handling errors detected during fault injection experiments were characterized. In these fault injection experiments, the FTMP disabled a working unit instead of the faulted unit once in every 500 faults, on the average. System design weaknesses allow active faults to exercise a part of the fault management software that handles Byzantine or lying faults. Byzantine faults behave such that the faulted unit points to a working unit as the source of errors. The design's problems involve: (1) the design and interface between the simplex error detection hardware and the error processing software, (2) the functional capabilities of the FTMP system bus, and (3) the communication requirements of a multiprocessor architecture. These weak areas in the FTMP's design increase the probability that, for any hardware fault, a good line replacement unit (LRU) is mistakenly disabled by the fault management software.

  9. Abnormal fault-recovery characteristics of the fault-tolerant multiprocessor uncovered using a new fault-injection methodology

    NASA Technical Reports Server (NTRS)

    Padilla, Peter A.

    1991-01-01

    An investigation was made in AIRLAB of the fault handling performance of the Fault Tolerant MultiProcessor (FTMP). Fault handling errors detected during fault injection experiments were characterized. In these fault injection experiments, the FTMP disabled a working unit instead of the faulted unit once in every 500 faults, on the average. System design weaknesses allow active faults to exercise a part of the fault management software that handles Byzantine or lying faults. Byzantine faults behave such that the faulted unit points to a working unit as the source of errors. The design's problems involve: (1) the design and interface between the simplex error detection hardware and the error processing software, (2) the functional capabilities of the FTMP system bus, and (3) the communication requirements of a multiprocessor architecture. These weak areas in the FTMP's design increase the probability that, for any hardware fault, a good line replacement unit (LRU) is mistakenly disabled by the fault management software.

  10. Holocene faulting on the Mission fault, northwest Montana

    SciTech Connect

    Ostenaa, D.A.; Klinger, R.E.; Levish, D.R. )

    1993-04-01

    South of Flathead Lake, fault scarps on late Quaternary surfaces are nearly continuous for 45 km along the western flank of the Mission Range. On late Pleistocene alpine lateral moraines, scarp heights reach a maximum of 17 m. Scarp heights on post glacial Lake Missoula surfaces range from 2.6--7.2 m and maximum scarp angles range from 10[degree]--24[degree]. The stratigraphy exposed in seven trenches across the fault demonstrates that the post glacial Lake Missoula scarps resulted from at least two surface-faulting events. Larger scarp heights on late Pleistocene moraines suggests a possible third event. This yields an estimated recurrence of 4--8 kyr. Analyses of scarp profiles show that the age of the most surface faulting is middle Holocene, consistent with stratigraphic evidence found in the trenches. Rupture length and displacement imply earthquake magnitudes of 7 to 7.5. Previous studies have not identified geologic evidence of late Quaternary surface faulting in the Rocky Mountain Trench or on faults north of the Lewis and Clark line despite abundant historic seismicity in the Flathead Lake area. In addition to the Mission fault, reconnaissance studies have located late Quaternary fault scarps along portions of faults bordering Jocko and Thompson Valleys. These are the first documented late Pleistocene/Holocene faults north of the Lewis and Clark line in Montana and should greatly revise estimates of earthquake hazards in this region.

  11. From Family Trees to Decision Trees.

    ERIC Educational Resources Information Center

    Trobian, Helen R.

    This paper is a preliminary inquiry by a non-mathematician into graphic methods of sequential planning and ways in which hierarchical analysis and tree structures can be helpful in developing interest in the use of mathematical modeling in the search for creative solutions to real-life problems. Highlights include a discussion of hierarchical…

  12. Managing Fault Management Development

    NASA Technical Reports Server (NTRS)

    McDougal, John M.

    2010-01-01

    As the complexity of space missions grows, development of Fault Management (FM) capabilities is an increasingly common driver for significant cost overruns late in the development cycle. FM issues and the resulting cost overruns are rarely caused by a lack of technology, but rather by a lack of planning and emphasis by project management. A recent NASA FM Workshop brought together FM practitioners from a broad spectrum of institutions, mission types, and functional roles to identify the drivers underlying FM overruns and recommend solutions. They identified a number of areas in which increased program and project management focus can be used to control FM development cost growth. These include up-front planning for FM as a distinct engineering discipline; managing different, conflicting, and changing institutional goals and risk postures; ensuring the necessary resources for a disciplined, coordinated approach to end-to-end fault management engineering; and monitoring FM coordination across all mission systems.

  13. Dynamic faulting on a conjugate fault system detected by near-fault tilt measurements

    NASA Astrophysics Data System (ADS)

    Fukuyama, Eiichi

    2015-03-01

    There have been reports of conjugate faults that have ruptured during earthquakes. However, it is still unclear whether or not these conjugate faults ruptured coseismically during earthquakes. In this paper, we investigated near-fault ground tilt motions observed at the IWTH25 station during the 2008 Iwate-Miyagi Nairiku earthquake ( M w 6.9). Since near-fault tilt motion is very sensitive to the fault geometry on which the slip occurs during an earthquake, these data make it possible to distinguish between the main fault rupture and a rupture on the conjugate fault. We examined several fault models that have already been proposed and confirmed that only the models with a conjugated fault could explain the tilt data observed at IWTH25. The results support the existence of simultaneous conjugate faulting during the main rupture. This will contribute to the understanding of earthquake rupture dynamics because the conjugate rupture releases the same shear strain as that released on the main fault, and thus it has been considered quite difficult for both ruptures to accelerate simultaneously.

  14. A multiple fault-tolerant processor network architecture for pipeline computing

    SciTech Connect

    Tyszer, J. )

    1988-11-01

    Certain fault-tolerant multiprocessor networks that can emulate linear array interconnections are considered. The system is fault tolerant of (m - 1) node and link failures. One of the particularly attractive features of this network is that it allows for a linear array structure starting with any node even in spite of (m - 2) faults. The configuration algorithm is fully distributed, and is performed on the basis of test results obtained from nonfaulty processors only. A simple fault identification procedure is developed using the above routing algorithm.

  15. Surface ruptures on the transverse Xiaoyudong fault: A significant segment boundary breached during the 2008 Wenchuan earthquake, China

    NASA Astrophysics Data System (ADS)

    Liu-Zeng, Jing; Sun, Jing; Wang, Peng; Hudnut, Kenneth W.; Ji, Chen; Zhang, Zhihui; Xu, Qiang; Wen, Li

    2012-12-01

    The ~ 220 km-long rupture of the 2008 Mw 7.9 Wenchuan earthquake breached several km-scale geometric discontinuities along strike, including the previously un-mapped NW-trending Xiaoyudong fault, connecting between the two major, NE-trending rupture planes on the Beichuan and Pengguan Faults. In this paper, we present high-resolution mapping of the 8-km-long surface breaks and sinistral oblique thrusting coseismic slip on the Xiaoyudong fault. Scarp height is the largest at the NW end, reaching 3.5 m, and decreases southward in steps to less than 0.2 m, with an average slip gradient of 6 × 10- 3 at a few tens of meters length scale, but up to 50 × 10- 3 locally. Left-lateral offsets co-vary with the vertical component. The largest sinistral slip vector we observed is 2.2 m. Geological and geophysical evidence suggests that the Xiaoyudong fault is likely a ~ 30°SW-dipping lateral ramp that soles into the Pengguan fault, and at its northwestern end intersects with the Beichuan fault, where the latter has a step in the fault plane. Kinematically, the Xiaoyudong fault functions as a tear and conjugate fault and coincides with significant coseismic slip rake rotations on both the Beichuan and Pengguan Faults. Similar correlation of fault bends with sharp changes in faulting style occurs at other steps along the Wenchuan rupture. The Xiaoyudong fault may have played a positive role in linking coseismic slip partitioning between parallel reverse fault planes, facilitating the growth of a longer and more destructive rupture. This highlights the role of tear faults in bridging ruptures between segments, such that reverse-type ruptures can breach steps wider than anticipated from strike-slip fault examples. Transfer faults are common, and perhaps poorly documented features in reverse fault systems and their roles in ruptures may increase the maximum potential earthquake magnitude for fold-and-thrust belts.

  16. Shallow Hydrothermal Flow in a Strike-Slip Fault System, Mt Isa, Australia: A Proterozoic Analog for Modern Geothermal Systems Along Strike-Slip Faults

    NASA Astrophysics Data System (ADS)

    Sibson, R. H.; Ghisetti, F.; Begbie, M.

    2014-12-01

    Strong E-W shortening during the Isan Orogeny (1590-1500 Ma) led to crustal thickening and compressional inversion of former intracontinental rift basins. The resulting metamorphic/plutonic basement complex is disrupted by conjugate, mutually cross-cutting sets of brittle, late-orogenic strike-slip faults. Dextral strike-slip faults (separations < 25 km) strike NE-NNE, while conjugate sinistral faults strike SE-SSE, defining a wrench regime (σv = σ2) with horizontal maximum compression, σ1, trending c. 100°. The strike-slip faults are recessive except in dilational sites where upwelling hydrothermal fluids have silicified the cataclastic shear zones (CSZ) which protrude as blade-like ridges extending for kilometres across the semi-arid terrain. The mineralized fault segments include sinuous releasing bends where the fault trace is deflected <10° as well as more abrupt dilational stepovers with distributed extension fracturing linking en echelon fault segments. Other components of structural permeability include: (1) innumerable fault-parallel quartz-veins (cm to m thickness) within the CSZ; (2) irregular stringer veins; and (3) a regional set of predominantly extensional, subvertical planar quartz veins oriented 080-120° at moderate angles to the main faults. Broad contemporaneity is indicated by mutual cross-cutting relationships between all structural components. Measured strike separations along shear fractures are consistent with seismic slip increments which refreshed fracture permeability and promoted hydrothermal flow. Textures suggest the faults were exhumed from epithermal boiling environments (<1-2 km depth). Restoration of fault cohesive strength by hydrothermal cementation was critical in allowing continued vein formation by hydraulic extension fracturing. The distribution of hydrothermal quartz within the fault system provides a guide to structural localization of upflow zones in geothermal fields developed along strike-slip faults.

  17. The San Andreas Fault 'Supersite' (Invited)

    NASA Astrophysics Data System (ADS)

    Hudnut, K. W.

    2013-12-01

    struck in 1992 (Landers), 1994 (Northridge) and 1999 (Hector Mine) as well as the 2010 El Mayor - Cucapah (EM-C) earthquake (just south of the US-Mexico border). Of these four notable events, all produced extensive surface faulting except for the 1994 Northridge event, which was close to the Los Angeles urban area on a buried thrust fault. Northridge caused by far the most destruction, topping $20B (US) and resulting in 57 fatalities due to its location under an urban area. The Landers, Hector Mine and EM-C events occurred in desert areas away from major urban centers, and each proved to be a new and unique test-bed for making rapid progress in earthquake science and creative use of geodetic imagery. InSAR studies were linked to GPS deformation and mapping of surface ruptures and seismicity in a series of important papers about these earthquakes. The hazard in California remains extremely high, with tens of millions of people living in close proximity to the San Andreas Fault system as it runs past both San Francisco and Los Angeles. Dense in-situ networks of seismic and geodetic instruments are continually used for research and earthquake monitoring, as well as development of an earthquake early warning capability. Principles of peer review from funding agencies and open data availability will be observed for all data. For all of these reasons, the San Andreas Fault system is highly appropriate for consideration as a world-class permanent Supersite in the GEO framework.

  18. Phylogenetic trees in bioinformatics

    SciTech Connect

    Burr, Tom L

    2008-01-01

    Genetic data is often used to infer evolutionary relationships among a collection of viruses, bacteria, animal or plant species, or other operational taxonomic units (OTU). A phylogenetic tree depicts such relationships and provides a visual representation of the estimated branching order of the OTUs. Tree estimation is unique for several reasons, including: the types of data used to represent each OTU; the use ofprobabilistic nucleotide substitution models; the inference goals involving both tree topology and branch length, and the huge number of possible trees for a given sample of a very modest number of OTUs, which implies that fmding the best tree(s) to describe the genetic data for each OTU is computationally demanding. Bioinformatics is too large a field to review here. We focus on that aspect of bioinformatics that includes study of similarities in genetic data from multiple OTUs. Although research questions are diverse, a common underlying challenge is to estimate the evolutionary history of the OTUs. Therefore, this paper reviews the role of phylogenetic tree estimation in bioinformatics, available methods and software, and identifies areas for additional research and development.

  19. Lazy decision trees

    SciTech Connect

    Friedman, J.H.; Yun, Yeogirl; Kohavi, R.

    1996-12-31

    Lazy learning algorithms, exemplified by nearest-neighbor algorithms, do not induce a concise hypothesis from a given training set; the inductive process is delayed until a test instance is given. Algorithms for constructing decision trees, such as C4.5, ID3, and CART create a single {open_quotes}best{close_quotes} decision tree during the training phase, and this tree is then used to classify test instances. The tests at the nodes of the constructed tree are good on average, but there may be better tests for classifying a specific instance. We propose a lazy decision tree algorithm-LazyDT-that conceptually constructs the {open_quotes}best{close_quote} decision tree for each test instance. In practice, only a path needs to be constructed, and a caching scheme makes the algorithm fast. The algorithm is robust with respect to missing values without resorting to the complicated methods usually seen in induction of decision trees. Experiments on real and artificial problems are presented.

  20. Learning classification trees

    NASA Technical Reports Server (NTRS)

    Buntine, Wray

    1991-01-01

    Algorithms for learning classification trees have had successes in artificial intelligence and statistics over many years. How a tree learning algorithm can be derived from Bayesian decision theory is outlined. This introduces Bayesian techniques for splitting, smoothing, and tree averaging. The splitting rule turns out to be similar to Quinlan's information gain splitting rule, while smoothing and averaging replace pruning. Comparative experiments with reimplementations of a minimum encoding approach, Quinlan's C4 and Breiman et al. Cart show the full Bayesian algorithm is consistently as good, or more accurate than these other approaches though at a computational price.

  1. Evolutionary tree reconstruction

    NASA Technical Reports Server (NTRS)

    Cheeseman, Peter; Kanefsky, Bob

    1990-01-01

    It is described how Minimum Description Length (MDL) can be applied to the problem of DNA and protein evolutionary tree reconstruction. If there is a set of mutations that transform a common ancestor into a set of the known sequences, and this description is shorter than the information to encode the known sequences directly, then strong evidence for an evolutionary relationship has been found. A heuristic algorithm is described that searches for the simplest tree (smallest MDL) that finds close to optimal trees on the test data. Various ways of extending the MDL theory to more complex evolutionary relationships are discussed.

  2. The gravity apple tree

    NASA Astrophysics Data System (ADS)

    Espinosa Aldama, Mariana

    2015-04-01

    The gravity apple tree is a genealogical tree of the gravitation theories developed during the past century. The graphic representation is full of information such as guides in heuristic principles, names of main proponents, dates and references for original articles (See under Supplementary Data for the graphic representation). This visual presentation and its particular classification allows a quick synthetic view for a plurality of theories, many of them well validated in the Solar System domain. Its diachronic structure organizes information in a shape of a tree following similarities through a formal concept analysis. It can be used for educational purposes or as a tool for philosophical discussion.

  3. Improving spanning trees by upgrading nodes

    SciTech Connect

    Krumke, S.O.; Noltemeier, H.; Wirth, H.C.

    1997-01-16

    We study budget constrained optimal network upgrading problems. Such problems aim at finding optimal strategies for improving a network under some cost measure subject to certain budget constraints. A general problem in this setting is the following. We are given an edge weighted graph G = (V, E) where nodes represent processors and edges represent bidirectional communication links. The processor at a node v {element_of} V can be upgraded at a cost of c(v). Such an upgrade reduces the delay of each link emanating from v. The goal is to find a minimum cost set of nodes to be upgraded so that the resulting network has the best performance with respect to some measure. We consider the problem under two measures, namely, the weight of a minimum spanning tree and the bottleneck weight of a minimum bottleneck spanning tree. We present approximation and hardness results for the problem. Our results are tight to within constant factors. We also show that these approximation algorithms can be used to construct good approximation algorithms for the dual versions of the problems where there is a budget constraint on the upgrading cost and the objectives are minimum weight spanning tree and minimum bottleneck weight spanning tree respectively.

  4. Inferring patterns in mitochondrial DNA sequences through hypercube independent spanning trees.

    PubMed

    da Silva, Eduardo Sant' Ana; Pedrini, Helio

    2016-03-01

    Given a graph G, a set of spanning trees rooted at a vertex r of G is said vertex/edge independent if, for each vertex v of G, v≠r, the paths of r to v in any pair of trees are vertex/edge disjoint. Independent spanning trees (ISTs) provide a number of advantages in data broadcasting due to their fault tolerant properties. For this reason, some studies have addressed the issue by providing mechanisms for constructing independent spanning trees efficiently. In this work, we investigate how to construct independent spanning trees on hypercubes, which are generated based upon spanning binomial trees, and how to use them to predict mitochondrial DNA sequence parts through paths on the hypercube. The prediction works both for inferring mitochondrial DNA sequences comprised of six bases as well as infer anomalies that probably should not belong to the mitochondrial DNA standard. PMID:26802544

  5. Landscape response to normal fault growth and linkage in the Southern Apennines, Italy.

    NASA Astrophysics Data System (ADS)

    Roda-Boluda, Duna; Whittaker, Alex

    2016-04-01

    tectonic analyses shed light on this important issue. This method for reconstructing normal fault evolution could potentially be applied to any normal faults in which constraints on fault throw and footwall relief can be linked to the transient response of catchments to a tectonic perturbation.

  6. ERI investigation of fluid flow in the Nacimiento Fault, New Mexico

    NASA Astrophysics Data System (ADS)

    Halihan, T.; Crossey, L. J.; Karlstrom, K. E.; Cron, B. R.

    2011-12-01

    The Nacimiento Fault is a Laramide top-west reverse fault at the eastern edge of the Colorado Plateau. The fault is being reactivated as a normal fault related to extension in the Rio Grande rift as documented by offset travertine deposits. This study explores the link between faulting and fluid circulation along a southern extension of the Nacimiento fault in the San Ysidro area. This area contains a unique set of travertine-depositing mound springs that are aligned on the N-S fault in the core of the Tierra Amarilla anticline (TA). Helium and carbon isotopic data indicate deep fluid connections in the system. Stable isotope analysis of the waters suggests that these warm springs have a component perhaps related to flow from the distal Valles Caldera hydrothermal system with fluid transport along extensional faults. These springs are still depositing modern travertine, but some extinct mounds are estimated as old as 270 ka. Six electrical resistivity imaging (ERI) lines were laid out parallel and perpendicular to the trace of the fault to image the subsurface geometry and potential fluid pathways of the Nacimiento fault at three locations with depths of investigation of approximately 100 meters. Bulk resistivity estimates ranged from 0.3 to 8600 ohm-meters. Fault perpendicular lines confirm the fault to be steeply east dipping and hence a normal reactivation of the Laramide reverse fault. ERI and fluid chemistry data indicate upwelling of relatively fresh (more resistive) water along the fault zone itself and symmetrical 100-meter scale electrically conductive features on either side of the fault. These patterns are interpreted to represent groundwater convection in the Triassic Aqua Zarca sandstone aquifer. Fault-parallel lines indicate complex fault-parallel flow and spacing of vent sources at mound springs. The ERI data also provide estimates for the thickness and distribution of travertine deposits. Implications for aquifers in the northern New Mexico region

  7. Fluid involvement in normal faulting

    NASA Astrophysics Data System (ADS)

    Sibson, Richard H.

    2000-04-01

    Evidence of fluid interaction with normal faults comes from their varied role as flow barriers or conduits in hydrocarbon basins and as hosting structures for hydrothermal mineralisation, and from fault-rock assemblages in exhumed footwalls of steep active normal faults and metamorphic core complexes. These last suggest involvement of predominantly aqueous fluids over a broad depth range, with implications for fault shear resistance and the mechanics of normal fault reactivation. A general downwards progression in fault rock assemblages (high-level breccia-gouge (often clay-rich) → cataclasites → phyllonites → mylonite → mylonitic gneiss with the onset of greenschist phyllonites occurring near the base of the seismogenic crust) is inferred for normal fault zones developed in quartzo-feldspathic continental crust. Fluid inclusion studies in hydrothermal veining from some footwall assemblages suggest a transition from hydrostatic to suprahydrostatic fluid pressures over the depth range 3-5 km, with some evidence for near-lithostatic to hydrostatic pressure cycling towards the base of the seismogenic zone in the phyllonitic assemblages. Development of fault-fracture meshes through mixed-mode brittle failure in rock-masses with strong competence layering is promoted by low effective stress in the absence of thoroughgoing cohesionless faults that are favourably oriented for reactivation. Meshes may develop around normal faults in the near-surface under hydrostatic fluid pressures to depths determined by rock tensile strength, and at greater depths in overpressured portions of normal fault zones and at stress heterogeneities, especially dilational jogs. Overpressures localised within developing normal fault zones also determine the extent to which they may reutilise existing discontinuities (for example, low-angle thrust faults). Brittle failure mode plots demonstrate that reactivation of existing low-angle faults under vertical σ1 trajectories is only likely if

  8. Fault management for data systems

    NASA Technical Reports Server (NTRS)

    Boyd, Mark A.; Iverson, David L.; Patterson-Hine, F. Ann

    1993-01-01

    Issues related to automating the process of fault management (fault diagnosis and response) for data management systems are considered. Substantial benefits are to be gained by successful automation of this process, particularly for large, complex systems. The use of graph-based models to develop a computer assisted fault management system is advocated. The general problem is described and the motivation behind choosing graph-based models over other approaches for developing fault diagnosis computer programs is outlined. Some existing work in the area of graph-based fault diagnosis is reviewed, and a new fault management method which was developed from existing methods is offered. Our method is applied to an automatic telescope system intended as a prototype for future lunar telescope programs. Finally, an application of our method to general data management systems is described.

  9. UniTree Name Server internals

    SciTech Connect

    Mecozzi, D.; Minton, J.

    1996-01-01

    The UniTree Name Server (UNS) is one of several servers which make up the UniTree storage system. The Name Server is responsible for mapping names to capabilities Names are generally human readable ASCII strings of any length. Capabilities are unique 256-bit identifiers that point to files, directories, or symbolic links. The Name Server implements a UNIX style hierarchical directory structure to facilitate name-to-capability mapping. The principal task of the Name Server is to manage the directories which make up the UniTree directory structure. The principle clients of the Name Server are the FTP Daemon, NFS and a few UniTree utility routines. However, the Name Server is a generalized server and will accept messages from any client. The purpose of this paper is to describe the internal workings of the UniTree Name Server. In cases where it seems appropriate, the motivation for a particular choice of algorithm as description of the algorithm itself will be given.

  10. No-fault assurance: linking fast process CAD and EDA

    NASA Astrophysics Data System (ADS)

    Neureuther, Andrew R.; Gennari, Frank E.

    2002-12-01

    A prototype system is proposed for incorporating fast process models with EDA management of layout to identify and help arbitrate locations in a chip that are likely subject to less than ideal process effects. The approach uses pattern matching to find those locations in a layout that have the greatest impact from residual imperfections in manufacturing. For each process under study, the maximal lateral test pattern that maximizes the spillover from the surrounding pattern is first determined. The quantitative impact of the spillover for an actual layout is then assessed through comparing the degree of similarity of the actual pattern in a neighborhood about a critical point to the maximal lateral test pattern and scaling the impact accordingly. This fast-CAD pattern-matching approach is shown to be applicable for analysis of yield reduction due to combined effects of defects and alignment tolerances among mask levels as well as for identifying layout areas affected by reflective notching, CMP dishing and, with less accuracy, heating in laser assisted processing.

  11. Response to comment on "No late Quaternary strike-slip motion along the northern Karakoram fault"

    NASA Astrophysics Data System (ADS)

    Robinson, Alexander C.; Owen, Lewis A.; Chen, Jie; Schoenbohm, Lindsay M.; Hedrick, Kathryn A.; Blisniuk, Kimberly; Sharp, Warren D.; Imrecke, Daniel B.; Li, Wenqiao; Yuan, Zhaode; Caffee, Marc W.; Mertz-Kraus, Regina

    2016-06-01

    In their comment on "No late Quaternary strike-slip motion along the northern Karakoram fault", while Chevalier et al. (2016) do not dispute any of the results or interpretations regarding our observations along the main strand of the northern Karakoram fault, they make several arguments as to why they interpret the Kongur Shan Extensional System (KES) to be kinematically linked to the Karakoram fault. These arguments center around how an "active" fault is defined, how slip on segments of the KES may be compatible with dextral shear related to continuation of the Karakoram fault, and suggestions as to how the two fault systems might still be connected. While we appreciate that there are still uncertainties in the regional geology, we address these comments and show that their arguments are inconsistent with all available data, known geologic relationships, and basic kinematics.

  12. Nucleation, linkage and active propagation of a segmented Quaternary normal-dextral fault: the Loma del Viento fault (Campo de Dalías, Eastern Betic Cordillera, SE Spain)

    NASA Astrophysics Data System (ADS)

    Pedrera, Antonio; Marín-Lechado, Carlos; Stich, Daniel; Ruiz-Constán, Ana; Galindo-Zaldívar, Jesús; Rey-Moral, Carmen; de Lis Mancilla, Flor

    2012-02-01

    Active faults from the Campo de Dalías (SE Betic Cordillera) allow us to constrain the deformation styles involved in the development of segmented oblique-slip faults. This sector constitutes the widest outcrop of Plio-Quaternary sediments in the northern boundary of the Alboran Sea. It has emerged since the Late Pliocene, and therefore provides recent deformation markers that are not disturbed by erosive processes. The faults started to grow during the Pleistocene, reactivating previous hybrid joints, with a normal-dextral slip. We present a detailed map of the largest fault in the area, the Loma del Viento fault, comprising six onshore segments. Based on field work and aerial photography, the distributions of the contiguous joints have been mapped, and the joints reactivated as faults are identified. Some of these fault segments are hard-linked, and fault slip enhances toward the linkage sectors between them with associated sedimentary depocenters. An electrical tomography profile reveals the wedge geometry of a unit of Pleistocene conglomerates and red silts that were coevally deposited during the fault movement. Long-term slip rate in the central part of the fault is estimated at 0.07 ± 0.03 mm/y. In addition, a seismic crisis nucleated close to the Loma del Viento fault during November 2010 was recorded. Moment tensor analysis of the two mainshocks (Mw 3.5 and 4.2) provides a focal solution indicating a N120°E striking right-lateral strike-slip fault. The corrugated morphology of the Loma del Viento fault may have influenced its seismic behavior. Some of the fault segments are oblique to the general motion of the fault. These oblique segments would provide higher resistance against the general fault motion and could lock the fault, leading to accumulate elastic energy.

  13. A Self-Stabilizing Hybrid Fault-Tolerant Synchronization Protocol

    NASA Technical Reports Server (NTRS)

    Malekpour, Mahyar R.

    2015-01-01

    This paper presents a strategy for solving the Byzantine general problem for self-stabilizing a fully connected network from an arbitrary state and in the presence of any number of faults with various severities including any number of arbitrary (Byzantine) faulty nodes. The strategy consists of two parts: first, converting Byzantine faults into symmetric faults, and second, using a proven symmetric-fault tolerant algorithm to solve the general case of the problem. A protocol (algorithm) is also present that tolerates symmetric faults, provided that there are more good nodes than faulty ones. The solution applies to realizable systems, while allowing for differences in the network elements, provided that the number of arbitrary faults is not more than a third of the network size. The only constraint on the behavior of a node is that the interactions with other nodes are restricted to defined links and interfaces. The solution does not rely on assumptions about the initial state of the system and no central clock nor centrally generated signal, pulse, or message is used. Nodes are anonymous, i.e., they do not have unique identities. A mechanical verification of a proposed protocol is also present. A bounded model of the protocol is verified using the Symbolic Model Verifier (SMV). The model checking effort is focused on verifying correctness of the bounded model of the protocol as well as confirming claims of determinism and linear convergence with respect to the self-stabilization period.

  14. Community Links

    ERIC Educational Resources Information Center

    Nelson, Mary

    1975-01-01

    At Moraine Valley Community College (Illinois), a chain of events, programs, activities, and services has linked the college and community in such areas as fine arts, ethnic groups, public services, community action, community service, and community education. (Author/NHM)

  15. Introduction to Special Section: Mechanical Involvement of Fluids in Faulting

    NASA Astrophysics Data System (ADS)

    Hickman, Stephen; Sibson, Richard; Bruhn, Ronald

    1995-07-01

    A growing body of evidence suggests that fluids are intimately linked to a variety of faulting processes. These include the long term structural and compositional evolution of fault zones; fault creep; and the nucleation, propagation, arrest, and recurrence of earthquake ruptures. Besides the widely recognized physical role of fluid pressures in controlling the strength of crustal fault zones, it is also apparent that fluids can exert mechanical influence through a variety of chemical effects. The United States Geological Survey sponsored a Conference on the Mechanical Effects of Fluids in Faulting under the auspices of the National Earthquake Hazards Reduction Program at Fish Camp, California, from June 6 to 10, 1993. The purpose of the conference was to draw together and to evaluate the disparate evidence for the involvement of fluids in faulting; to establish communication on the importance of fluids in the mechanics of faulting between the different disciplines concerned with fault zone processes; and to help define future critical investigations, experiments, and observational procedures for evaluating the role of fluids in faulting. This conference drew together a diverse group of 45 scientists, with expertise in electrical and magnetic methods, geochemistry, hydrology, ore deposits, rock mechanics, seismology, and structural geology. Some of the outstanding questions addressed at this workshop included the following: 1. What are fluid pressures at different levels within seismically active fault zones? Do they remain hydrostatic throughout the full depth extent of the seismogenic regime, or are they generally superhydrostatic at depths in excess of a few kilometers? 2. Are fluid pressures at depth within fault zones constant through an earthquake cycle, or are they time-dependent? What is the spatial variability in fluid pressures? 3. What is the role of crustal fluids in the overall process of stress accumulation, release, and transfer during the earthquake

  16. Loops and trees

    NASA Astrophysics Data System (ADS)

    Caron-Huot, S.

    2011-05-01

    We investigate relations between loop and tree amplitudes in quantum field theory that involve putting on-shell some loop propagators. This generalizes the so-called Feynman tree theorem which is satisfied at 1-loop. Exploiting retarded boundary conditions, we give a generalization to ℓ-loop expressing the loops as integrals over the on-shell phase space of exactly ℓ particles. We argue that the corresponding integrand for ℓ > 2 does not involve the forward limit of any physical tree amplitude, except in planar gauge theories. In that case we explicitly construct the relevant physical amplitude. Beyond the planar limit, abandoning direct integral representations, we propose that loops continue to be determined implicitly by the forward limit of physical connected trees, and we formulate a precise conjecture along this line. Finally, we set up technology to compute forward amplitudes in supersymmetric theories, in which specific simplifications occur.

  17. Structural Equation Model Trees

    PubMed Central

    Brandmaier, Andreas M.; von Oertzen, Timo; McArdle, John J.; Lindenberger, Ulman

    2015-01-01

    In the behavioral and social sciences, structural equation models (SEMs) have become widely accepted as a modeling tool for the relation between latent and observed variables. SEMs can be seen as a unification of several multivariate analysis techniques. SEM Trees combine the strengths of SEMs and the decision tree paradigm by building tree structures that separate a data set recursively into subsets with significantly different parameter estimates in a SEM. SEM Trees provide means for finding covariates and covariate interactions that predict differences in structural parameters in observed as well as in latent space and facilitate theory-guided exploration of empirical data. We describe the methodology, discuss theoretical and practical implications, and demonstrate applications to a factor model and a linear growth curve model. PMID:22984789

  18. Tree Nut Allergies

    MedlinePlus

    ... tree nut used on the label. Read all product labels carefully before purchasing and consuming any item. Ingredients ... Getting Started Newly Diagnosed Emergency Care Plan Food Labels Mislabeled Products Tips for Managing Food Allergies Resources For... Most ...

  19. The tree BVOC index.

    PubMed

    Simpson, J R; McPherson, E G

    2011-01-01

    Urban trees can produce a number of benefits, among them improved air quality. Biogenic volatile organic compounds (BVOCs) emitted by some species are ozone precursors. Modifying future tree planting to favor lower-emitting species can reduce these emissions and aid air management districts in meeting federally mandated emissions reductions for these compounds. Changes in BVOC emissions are calculated as the result of transitioning to a lower-emitting species mix in future planting. A simplified method for calculating the emissions reduction and a Tree BVOC index based on the calculated reduction is described. An example illustrates the use of the index as a tool for implementation and monitoring of a tree program designed to reduce BVOC emissions as a control measure being developed as part of the State Implementation Plan (SIP) for the Sacramento Federal Nonattainment Area. PMID:21435760

  20. Generalized constructive tree weights

    SciTech Connect

    Rivasseau, Vincent E-mail: adrian.tanasa@ens-lyon.org; Tanasa, Adrian E-mail: adrian.tanasa@ens-lyon.org

    2014-04-15

    The Loop Vertex Expansion (LVE) is a quantum field theory (QFT) method which explicitly computes the Borel sum of Feynman perturbation series. This LVE relies in a crucial way on symmetric tree weights which define a measure on the set of spanning trees of any connected graph. In this paper we generalize this method by defining new tree weights. They depend on the choice of a partition of a set of vertices of the graph, and when the partition is non-trivial, they are no longer symmetric under permutation of vertices. Nevertheless we prove they have the required positivity property to lead to a convergent LVE; in fact we formulate this positivity property precisely for the first time. Our generalized tree weights are inspired by the Brydges-Battle-Federbush work on cluster expansions and could be particularly suited to the computation of connected functions in QFT. Several concrete examples are explicitly given.

  1. Tea tree oil.

    PubMed

    Larson, David; Jacob, Sharon E

    2012-01-01

    Tea tree oil is an increasingly popular ingredient in a variety of household and cosmetic products, including shampoos, massage oils, skin and nail creams, and laundry detergents. Known for its potential antiseptic properties, it has been shown to be active against a variety of bacteria, fungi, viruses, and mites. The oil is extracted from the leaves of the tea tree via steam distillation. This essential oil possesses a sharp camphoraceous odor followed by a menthol-like cooling sensation. Most commonly an ingredient in topical products, it is used at a concentration of 5% to 10%. Even at this concentration, it has been reported to induce contact sensitization and allergic contact dermatitis reactions. In 1999, tea tree oil was added to the North American Contact Dermatitis Group screening panel. The latest prevalence rates suggest that 1.4% of patients referred for patch testing had a positive reaction to tea tree oil. PMID:22653070

  2. Tree-bank grammars

    SciTech Connect

    Charniak, E.

    1996-12-31

    By a {open_quotes}tree-bank grammar{close_quotes} we mean a context-free grammar created by reading the production rules directly from hand-parsed sentences in a tree bank. Common wisdom has it that such grammars do not perform well, though we know of no published data on the issue. The primary purpose of this paper is to show that the common wisdom is wrong. In particular, we present results on a tree-bank grammar based on the Penn Wall Street Journal tree bank. To the best of our knowledge, this grammar outperforms all other non-word-based statistical parsers/grammars on this corpus. That is, it outperforms parsers that consider the input as a string of tags and ignore the actual words of the corpus.

  3. Leonardo's Tree Theory.

    ERIC Educational Resources Information Center

    Werner, Suzanne K.

    2003-01-01

    Describes a series of activities exploring Leonardo da Vinci's tree theory that are designed to strengthen 8th grade students' data collection and problem solving skills in physical science classes. (KHR)

  4. Link Analysis

    NASA Astrophysics Data System (ADS)

    Donoho, Steve

    Link analysis is a collection of techniques that operate on data that can be represented as nodes and links. This chapter surveys a variety of techniques including subgraph matching, finding cliques and K-plexes, maximizing spread of influence, visualization, finding hubs and authorities, and combining with traditional techniques (classification, clustering, etc). It also surveys applications including social network analysis, viral marketing, Internet search, fraud detection, and crime prevention.

  5. Experimental Fault Reactivation on Favourably and Unfavourably Oriented Faults

    NASA Astrophysics Data System (ADS)

    Mitchell, T. M.; Sibson, R. H.; Renner, J.; Toy, V. G.; di Toro, G.; Smith, S. A.

    2010-12-01

    In this study, we introduce work which aims assess the loading of faults to failure under different stress regimes in a triaxial deformation apparatus. We explore experimentally the reshear of an existing fault in various orientations for particular values of (σ1 - σ3) and σ3' for contrasting loading systems - load-strengthening (equivalent to a thrust fault) with σ1' increasing at constant σ3', versus load-weakening (equivalent to a normal fault) with reducing σ3' under constant σ1'. Experiments are conducted on sawcut granite samples with fault angles at a variety of orientations relative to σ1 , ranging from an optimal orientation for reactivation to lockup angles where new faults are formed in preference to reactivating the existing sawcut orientation. Prefailure and postfailure behaviour is compared in terms of damage zone development via monitoring variations in ultrasonic velocity and acoustic emission behaviour. For example, damage surrounding unfavourably oriented faults is significantly higher than that seen around favourably orientated faults due to greater maximum stresses attained prior to unstable slip, which is reflected by the increased acoustic emission activity leading up to failure. In addition, we also experimentally explore the reshear of natural pseudotachylytes (PSTs) from two different fault zones; the Gole Larghe Fault, Adamello, Italy in which the PSTs are in relatively isotropic Tonalite (at lab sample scale) and the Alpine Fault, New Zealand in which the PSTs are in highly anisotropic foliated shist. We test whether PSTs will reshear in both rock types under the right conditions, or whether new fractures in the wall rock will form in preference to reactivating the PST (PST shear strength is higher than that of the host rock). Are PSTs representative of one slip event?

  6. Fault welding by pseudotachylyte generation

    NASA Astrophysics Data System (ADS)

    Mitchell, T. M.; Toy, V. G.; Di Toro, G.; Renner, J.

    2014-12-01

    During earthquakes, frictional melts can localize on slip surfaces and dramatically weaken faults by melt lubrication. Once seismic slip is arrested, the melt cools and solidifies to form pseudotachylyte (PST), the presence of which is commonly used to infer earthquake slip on ancient exhumed faults. Little is known about the effect of solidified melt on the strength of faults directly preceding a subsequent earthquake. We performed triaxial deformation experiments on cores of tonalite (Gole Larghe fault zone, N. Italy) and mylonite (Alpine fault, New Zealand) in order to assess the strength of PST bearing faults in the lab. Three types of sample were prepared for each rock type; intact, sawcut and PST bearing, and were cored so that the sawcut, PST and foliation planes were orientated at 35° to the length of the core and direction of σ1, i.e., a favorable orientation for reactivation. This choice of samples allowed us to compare the strength of 'pre-earthquake' fault (sawcut) to a 'post-earthquake' fault with solidified frictional melt, and assess their strength relative to intact samples. Our results show that PST veins effectively weld fault surfaces together, allowing previously faulted rocks to regain cohesive strengths comparable to that of an intact rock. Shearing of the PST is not favored, but subsequent failure and slip is accommodated on new faults nucleating at other zones of weakness. Thus, the mechanism of coseismic weakening by melt lubrication does not necessarily facilitate long-term interseismic deformation localization, at least at the scale of these experiments. In natural fault zones, PSTs are often found distributed over multiple adjacent fault planes or other zones of weakness such as foliation planes. We also modeled the temperature distribution in and around a PST using an approximation for cooling of a thin, infinite sheet by conduction perpendicular to its margins at ambient temperatures commensurate with the depth of PST formation

  7. Fault-tolerant processing system

    NASA Technical Reports Server (NTRS)

    Palumbo, Daniel L. (Inventor)

    1996-01-01

    A fault-tolerant, fiber optic interconnect, or backplane, which serves as a via for data transfer between modules. Fault tolerance algorithms are embedded in the backplane by dividing the backplane into a read bus and a write bus and placing a redundancy management unit (RMU) between the read bus and the write bus so that all data transmitted by the write bus is subjected to the fault tolerance algorithms before the data is passed for distribution to the read bus. The RMU provides both backplane control and fault tolerance.

  8. Fault interaction near Hollister, California

    SciTech Connect

    Mavko, G.M.

    1982-09-10

    A numerical model is used to study fault stress slip near Hollister, California. The geometrically complex system of interacting faults, including the San Andreas, Calaveras, Sargent, and Busch faults, is approximated with a two-dimensional distribution of short planar fault segments in an elastic medium. The steady stress and slip rate are simulated by specifying frictional strength and stepping the remote stress ahead in time. The resulting computed fault stress is roughly proportional to the observed spatial density of small earthquakes, suggesting that the distinction between segments characterized by earthquakes and those with aseismic creep results, in part, from geometry. A nonsteady simulation is made by introducing, in addition, stress drops for individual moderate earthquakes. A close fit of observed creep with calculated slip on the Calaveras and San Andreas faults suggests that many changes in creep rate (averaged over several months) are caused by local moderate earthquakes. In particular, a 3-year creep lag preceding the August 6, 1979, Coyote Lake earthquake on the Calaveras fault seems to have been a direct result of the November 28, 1974, Thanksgiving Day earthquake on the Busch fault. Computed lags in slip rate preceding some other moderate earthquakes in the area are also due to earlier earthquakes. Although the response of the upper 1 km of the fault zone may cause some individual creep events and introduce delays in others, the long-term rate appears to reflect deep slip.

  9. Fault interaction near Hollister, California

    NASA Astrophysics Data System (ADS)

    Mavko, Gerald M.

    1982-09-01

    A numerical model is used to study fault stress and slip near Hollister, California. The geometrically complex system of interacting faults, including the San Andreas, Calaveras, Sargent, and Busch faults, is approximated with a two-dimensional distribution of short planar fault segments in an elastic medium. The steady stress and slip rate are simulated by specifying frictional strength and stepping the remote stress ahead in time. The resulting computed fault stress is roughly proportional to the observed spatial density of small earthquakes, suggesting that the distinction between segments characterized by earthquakes and those with aseismic creep results, in part, from geometry. A nosteady simulation is made by introducing, in addition, stress drops for individual moderate earthquakes. A close fit of observed creep with calculated slip on the Calaveras and San Andreas faults suggests that many changes in creep rate (averaged over several months) are caused by local moderate earthquakes. In particular, a 3-year creep lag preceding the August 6, 1979, Coyote Lake earthquake on the Calaveras fault seems to have been a direct result of the November 28, 1974, Thanksgiving Day earthquake on the Busch fault. Computed lags in slip rate preceding some other moderate earthquakes in the area are also due to earlier earthquakes. Although the response of the upper 1 km of the fault zone may cause some individual creep events and introduce delays in others, the long-term rate appears to reflect deep slip.

  10. Trees for reclamation

    SciTech Connect

    Not Available

    1980-01-01

    Land reclamation programs sponsored by several state forestry organizations are summarized in these presentations. The use of trees as a preferred specie for revegetation of surface mined lands is addressed. Modern methods of forestry can be used to make land economically and aesthetically acceptable. Tree planting techniques are presented and the role of Mycorrhizae is discussed. There are 30 papers included in this proceedings. States represented include: Alabama, Arkansas, Georgia, Illinois, Kansas, Kentucky, Maryland, Virginia, Iowa, Ohio, Pennsylvania, and West Virginia.

  11. Fault current limiter

    DOEpatents

    Darmann, Francis Anthony

    2013-10-08

    A fault current limiter (FCL) includes a series of high permeability posts for collectively define a core for the FCL. A DC coil, for the purposes of saturating a portion of the high permeability posts, surrounds the complete structure outside of an enclosure in the form of a vessel. The vessel contains a dielectric insulation medium. AC coils, for transporting AC current, are wound on insulating formers and electrically interconnected to each other in a manner such that the senses of the magnetic field produced by each AC coil in the corresponding high permeability core are opposing. There are insulation barriers between phases to improve dielectric withstand properties of the dielectric medium.

  12. Final Technical Report: PV Fault Detection Tool.

    SciTech Connect

    King, Bruce Hardison; Jones, Christian Birk

    2015-12-01

    The PV Fault Detection Tool project plans to demonstrate that the FDT can (a) detect catastrophic and degradation faults and (b) identify the type of fault. This will be accomplished by collecting fault signatures using different instruments and integrating this information to establish a logical controller for detecting, diagnosing and classifying each fault.

  13. 20 CFR 404.507 - Fault.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Officer § 404.507 Fault. Fault as used in without fault (see § 404.506 and 42 CFR 405.355) applies only to the individual. Although the Administration may have been at fault in making the overpayment, that... 20 Employees' Benefits 2 2014-04-01 2014-04-01 false Fault. 404.507 Section 404.507...

  14. 20 CFR 404.507 - Fault.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Officer § 404.507 Fault. Fault as used in without fault (see § 404.506 and 42 CFR 405.355) applies only to the individual. Although the Administration may have been at fault in making the overpayment, that... 20 Employees' Benefits 2 2012-04-01 2012-04-01 false Fault. 404.507 Section 404.507...

  15. 20 CFR 404.507 - Fault.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Officer § 404.507 Fault. Fault as used in without fault (see § 404.506 and 42 CFR 405.355) applies only to the individual. Although the Administration may have been at fault in making the overpayment, that... 20 Employees' Benefits 2 2013-04-01 2013-04-01 false Fault. 404.507 Section 404.507...

  16. 20 CFR 404.507 - Fault.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Officer § 404.507 Fault. Fault as used in without fault (see § 404.506 and 42 CFR 405.355) applies only to the individual. Although the Administration may have been at fault in making the overpayment, that... 20 Employees' Benefits 2 2011-04-01 2011-04-01 false Fault. 404.507 Section 404.507...

  17. Online motor fault detection and diagnosis using a hybrid FMM-CART model.

    PubMed

    Seera, Manjeevan; Lim, Chee Peng

    2014-04-01

    In this brief, a hybrid model combining the fuzzy min-max (FMM) neural network and the classification and regression tree (CART) for online motor detection and diagnosis tasks is described. The hybrid model, known as FMM-CART, exploits the advantages of both FMM and CART for undertaking data classification and rule extraction problems. To evaluate the applicability of the proposed FMM-CART model, an evaluation with a benchmark data set pertaining to electrical motor bearing faults is first conducted. The results obtained are equivalent to those reported in the literature. Then, a laboratory experiment for detecting and diagnosing eccentricity faults in an induction motor is performed. In addition to producing accurate results, useful rules in the form of a decision tree are extracted to provide explanation and justification for the predictions from FMM-CART. The experimental outcome positively shows the potential of FMM-CART in undertaking online motor fault detection and diagnosis tasks. PMID:24807956

  18. Fault tolerant massively parallel processing architecture

    SciTech Connect

    Balasubramanian, V.; Banerjee, P.

    1987-08-01

    This paper presents two massively parallel processing architectures suitable for solving a wide variety of algorithms of divide-and-conquer type for problems such as the discrete Fourier transform, production systems, design automation, and others. The first architecture, called the Chain-structured Butterfly ARchitecture (CBAR), consists of a two-dimensional array of N-L . (log/sub 2/(L)+1) processing elements (PE) organized as L levels of log/sub 2/(L)+1 stages, and which has the butterfly connection between PEs in consecutive stages with straight-through feedback between PEs in the last and first stages. This connection system has the desirable property of allowing thousands of PEs to be connected with O(N) connection cost, O(log/sub 2/(N/log/sub 2/N)) communication paths, and a small number (=4) of I/O ports per PE. However, this architecture is not fault tolerant. The authors, therefore, propose a second architecture, called the REconfigurable Chain-structured Butterfly ARchitecture (RECBAR), which is a modified version of the CBAR. The RECBAR possesses all the desirable features of the CBAR, with the number of I/O ports per PE increased to six, and uses O(log/sub 2/N)/N) overhead in PEs and approximately 50% overhead in links to achieve single-level fault tolerance. Reliability improvements of the RECBAR over the CBAR are studied. This paper also presents a distributed diagnostic and structuring algorithm for the RECBAR that enables the architecture to detect faults and structure itself accordingly within 2 . log/sub 2/(L)+1 time steps, thus making it a truly fault tolerant architecture.

  19. Relationship between normal faulting and volcanic activity in the Taranaki backarc basin, New Zealand

    NASA Astrophysics Data System (ADS)

    Giba, M.; Walsh, J. J.; Nicol, A.

    2009-04-01

    Volcanoes and normal faults are, by definition, both present within volcanic rifts. Despite this association the causal relationships between volcanism and normal faulting can be unclear and are poorly understood. One of the principal challenges for investigations of the links between faulting and volcanic activity, is the definition of the detailed temporal relationships between these two processes. The northern Taranaki Basin, which benefits from excellent seismic (2D and 3D) and drillhole coverage, provides the basis for a detailed study of volcanism and faulting over the last ca 15 Myr. Most of the basin is characterised by sedimentation rates which exceed fault displacement rates, a condition which permits displacement backstripping of these syn-sedimentary growth faults. The timing of a suite of mostly andesitic submarine volcanoes has been constrained by interdigitation of the volcanic cones with basinal sedimentary rocks. Eleven dated horizons within the ca 15 Myr and younger stratigraphy together with mapping provide a means of examining the temporal and spatial links between fault and volcanic activity within the basin. The northern Taranaki Basin has a multiphase deformation history, with extension during the Late Cretaceous to Mid Eocene (ca 80-45 Ma), followed by contraction in the Late Eocene to Early Miocene (ca 40-18 Ma) and then by Mid Miocene to recent back arc extension (ca 15-0 Ma). The youngest phase of extensional faulting initiated in the north and west of the basin and migrated to the southeast where present activity is focused. Volcanic activity also commenced in the north during the Mid Miocene and migrated towards the south and east. Volcanism and backarc extension are driven by subduction of the Pacific plate along the Hikurangi margin. The southward and eastward migration of both faulting and volcanic activity is attributed to the steepening and rotation of the subducting slab beneath the Taranaki Basin. Despite the common origin of

  20. Tree Topology Estimation

    PubMed Central

    Estrada, Rolando; Tomasi, Carlo; Schmidler, Scott C.; Farsiu, Sina

    2015-01-01

    Tree-like structures are fundamental in nature, and it is often useful to reconstruct the topology of a tree—what connects to what—from a two-dimensional image of it. However, the projected branches often cross in the image: the tree projects to a planar graph, and the inverse problem of reconstructing the topology of the tree from that of the graph is ill-posed. We regularize this problem with a generative, parametric tree-growth model. Under this model, reconstruction is possible in linear time if one knows the direction of each edge in the graph—which edge endpoint is closer to the root of the tree—but becomes NP-hard if the directions are not known. For the latter case, we present a heuristic search algorithm to estimate the most likely topology of a rooted, three-dimensional tree from a single two-dimensional image. Experimental results on retinal vessel, plant root, and synthetic tree datasets show that our methodology is both accurate and efficient. PMID:26353004

  1. Preserving Collective Performance Across Process Failure for a Fault Tolerant MPI

    SciTech Connect

    Hursey, Joshua J; Graham, Richard L

    2011-01-01

    Application developers are investigating Algorithm Based Fault Tolerance (ABFT) techniques to improve the efficiency of application recovery beyond what traditional techniques alone can provide. Applications will depend on libraries to sustain failure-free performance across process failure to continue to efficiently use High Performance Computing (HPC) systems even in the presence of process failure. Optimized Message Passing Interface (MPI) collective operations are a critical component of many scalable HPC applications. However, most of the collective algorithms are not able to handle process failure. Next generation MPI implementations must provide fault aware versions of such algorithms that can sustain performance across process failure. This paper discusses the design and implementation of fault aware collective algorithms for tree structured communication patterns. The three design approaches of rerouting, lookup avoiding and rebalancing are described, and analyzed for their performance impact relative to a similar fault unaware collective algorithm. The analysis shows that the rerouting approach causes up to a four times performance degradation while the rebalancing approach can bring the performance within 1% of the fault unaware performance. Additionally, this paper introduces the reader to a set of run-through stabilization semantics being developed by the MPI Forum's Fault Tolerance Working Group to support ABFT. This paper underscores the need for care to be taken when designing new fault aware collective algorithms for fault tolerant MPI implementations.

  2. Spatial and temporal variability in faulting along a Quaternary fault transect across the Northern Walker Lane, California-Nevada

    NASA Astrophysics Data System (ADS)

    Gold, R. D.; Briggs, R. W.; Crone, A. J.

    2013-12-01

    analysis of faulted, post-Lahontan fluvial terrace risers along the Honey Lake fault system suggests an average slip rate of 2.3 mm/yr since 15.8 ka, but the rate may have slowed to 1.3 mm/yr since the mid Holocene. The latter rate is consistent with geodetic block models. (4) A late Quaternary slip record for the Warm Springs Valley fault system suggests that, the fault had a slip rate of 2.5-3.8 mm/yr from ~50-15 ka, but since 15.8 ka, the rate has been <0.2 mm/yr. We speculate that the slip-rate variability may be linked to co-varying slip with the overlapping and adjacent Honey Lake fault, but additional late Quaternary slip-rate data are needed for the Honey Lake fault to test this hypothesis. In summary, the results along this transect led to identification of new, active Quaternary faults and revealed evidence for spatial and temporal slip-rate variability on parallel and overlapping strike-slip faults in the Northern Walker Lane. We propose that the recognition of new active structures and temporal variations in slip rates may help explain discrepancies between long-term geologic and modern geodetic slip rates across this region. We now need to determine whether a long-term slip rate or the recent record of the last few thousand years is most representative of a fault's near-term earthquake potential.

  3. Nanoscale porosity in SAFOD core samples (San Andreas Fault)

    NASA Astrophysics Data System (ADS)

    Janssen, Christoph; Wirth, Richard; Reinicke, Andreas; Rybacki, Erik; Naumann, Rudolf; Wenk, Hans-Rudolf; Dresen, Georg

    2011-01-01

    With transmission electron microscopy (TEM) we observed nanometer-sized pores in four ultracataclastic and fractured core samples recovered from different depths of the main bore hole of the San Andreas Fault Observatory at Depth (SAFOD). Cutting of foils with a focused ion beam technique (FIB) allowed identifying porosity down to the nm scale. Between 40 and 50% of all pores could be identified as in-situ pores without any damage related to sample preparation. The total porosity estimated from TEM micrographs (1-5%) is comparable to the connected fault rock porosity (2.8-6.7%) estimated by pressure-induced injection of mercury. Permeability estimates for cataclastic fault rocks are 10- 21-10- 19 m2 and 10- 17 m2 for the fractured fault rock. Porosity and permeability are independent of sample depth. TEM images reveal that the porosity is intimately linked to fault rock composition and associated with deformation. The TEM-estimated porosity of the samples increases with increasing clay content. The highest porosity was estimated in the vicinity of an active fault trace. The largest pores with an equivalent radius > 200 nm occur around large quartz and feldspar grains or grain-fragments while the smallest pores (equivalent radius < 50 nm) are typically observed in the extremely fine-grained matrix (grain size < 1 μm). Based on pore morphology we distinguish different pore types varying with fault rock fabric and alteration. The pores were probably filled with formation water and/or hydrothermal fluids at elevated pore fluid pressure, preventing pore collapse. The pore geometry derived from TEM observations and BET (Brunauer, Emmett and Teller) gas adsorption/desorption hysteresis curves indicates pore blocking effects in the fine-grained matrix. Observations of isolated pores in TEM micrographs and high pore body to pore throat ratios inferred from mercury injection suggest elevated pore fluid pressure in the low permeability cataclasites, reducing shear strength

  4. How Trees Can Save Energy.

    ERIC Educational Resources Information Center

    Fazio, James R., Ed.

    1991-01-01

    This document might easily have been called "How To Use Trees To Save Energy". It presents the energy saving advantages of landscaping the home and community with trees. The discussion includes: (1) landscaping advice to obtain the benefits of tree shade; (2) the heat island phenomenon in cities; (3) how and where to properly plant trees for…

  5. A link representation for gravity amplitudes

    NASA Astrophysics Data System (ADS)

    He, Song

    2013-10-01

    We derive a link representation for all tree amplitudes in supergravity, from a recent conjecture by Cachazo and Skinner. The new formula explicitly writes amplitudes as contour integrals over constrained link variables, with an integrand naturally expressed in terms of determinants, or equivalently tree diagrams. Important symmetries of the amplitude, such as supersymmetry, parity and (partial) permutation invariance, are kept manifest in the formulation. We also comment on rewriting the formula in a GL( k)-invariant manner, which may serve as a starting point for the generalization to possible Grassmannian contour integrals.

  6. Late Paleozoic strike-slip faults and related vein arrays of Cape Elizabeth, Maine

    NASA Astrophysics Data System (ADS)

    Swanson, Mark T.

    2006-03-01

    15 m. Continued displacement was accommodated along the P-shear linked en échelon faults through imbrication, contractional duplexing and adhesive wear on the outcrop-scale. Core zone processes on the micro-scale reflect cataclasis and frictional sliding during coseismic slip as well as cataclastic flow and pressure solution during post-seismic creep. The development of foliated-to-laminated cataclasite was accompanied by pore volume collapse, pressure solution and fluid expulsion that, in turn, triggered the development of the late fault-related quartz vein arrays.

  7. Fault-Controlled Fluid Migration during Early-Stage Continental Rifting in the Magadi Basin, Kenya

    NASA Astrophysics Data System (ADS)

    Muirhead, J.; Lee, H.; Fischer, T. P.; Kattenhorn, S. A.; Ebinger, C. J.; Kianji, G.; Maqway, M. D.; Thomas, N.; Onguso, B.

    2014-12-01

    The mechanisms controlling the migration of mantle-derived, CO­2-rich fluids in early-stage continental rifts are poorly constrained, yet have important implications for processes occurring during the initiation of continental breakup. Within the East African Rift specifically, the role of normal fault structures in transporting fluids, and the role these fluids play in driving deformation, is yet to be addressed. The 7 Ma Magadi Basin of the EAR exhibits active hydrothermal fluid flow amongst an excellently exposed array of normal faults, providing a unique opportunity to test the mechanics of fault-controlled fluid migration at an early-stage continental rift setting. We present a study utilizing both geochemical and structural data collected from active and fossilized fluid systems observed along faults in the Magadi Basin. The distribution and orientation of veins and systematic fracture sets around fault zones were recorded in the field, and fault throws were measured using a Trimble GPS. Larger faults were analyzed remotely using aerial imagery and the Aster GDEM v.2. Fault data were then compared with CO2 flux measured on soil and from gas-emitting fractures in and around fault zones using an accumulation chamber. Our data reveal that CO2-rich fluids travel along fault-parallel fractures within fault zones, and fault-oblique fracture sets in the accommodation zones between fault segments. Fluids rising through faults may additionally be diverted along lithologic boundaries in fault grabens, such as the contact between lavas and overlying sedimentary fill. The highest CO2 flux observed in the Magadi region occurs in the central axis of the rift, along faults with the highest observable throws (>150 m) as well as the 1998 earthquake rupture. This study illustrates a direct link between fluid flow and faulting during the earliest stages of continental rifting. High CO2 soil flux and active hydrothermal fluid flow is, therefore, a potential indicator of faults

  8. Fault zone architecture and fluid flow: Insights from field data and numerical modeling

    NASA Astrophysics Data System (ADS)

    Caine, Jonathan Saul; Forster, Craig B.

    orientation of permeability anisotropy in ways that are closely linked to the implicitly modeled deformation. Changes in fault zone architecture can cause major changes in permeability structure that, in turn, significantly impact the magnitude and patterns of fluid flux and solute transport both within and near the fault zone. Inferences derived from the model results are discussed in the context of the mechanical strength of an evolving fault zone, fault zone sealing mechanisms which control the conduit-barrier systematics of a fault zone as a flow system, and how these processes are related to fluid flow in natural fault zones.

  9. The Growth of Simple Mountain Ranges: 2. Geomorphic Evolution at Fault Linkage Sites

    NASA Astrophysics Data System (ADS)

    Dawers, N. H.; Densmore, A. L.; Davis, A. M.; Gupta, S.

    2002-12-01

    Large normal faults grow partly through linkage of fault segments and partly by fault tip propagation. The process by which fault segments interact and link is critical to understanding how topography is created along fault-bounded ranges. Structural studies and numerical models have shown that fault linkage is accompanied by localised increased displacement rate, which in turn drives rapid base level fall at the evolving range front. The changes in both along-strike fault structure and base level are most pronounced at and adjacent to sites of fault linkage. These areas, known as relay zones, thus preserve clues to both the tectonic history and the geomorphic evolution of large fault-bounded mountain ranges. We discuss the temporal and spatial constraints on the evolution of footwall-range topography, by comparing a number of active fault linkage sites, using field and DEM observations of the spatial pattern of footwall denudation. In particular, we focus on sites in Pleasant Valley, Nevada (Pearce and Tobin fault segments) and in the northeastern Basin and Range (the Beaverhead fault, Idaho, and the Star Valley fault, Wyoming). The study areas represent different stages in the structural and geomorphic evolution of relay zones, and allow us to propose a developmental model of large fault evolution and landscape response. Early in the growth of fault segments into an overlapping geometry, catchments may form within the evolving relay. However, increasing displacement rate associated with fault interaction and linkage makes these catchments prone to capture by streams that have incised headward from the range front. This scenario leads to locally increased footwall denudation in the vicinity of the capture site. Longitudinal profiles of streams differ with respect to position along relays and whether or not any particular stream has been able to capture early-formed drainages. The restricted space between interacting en echelon fault segments helps preserve close

  10. Genesis and growth of the NW trending normal fault array of the Levant Basin

    NASA Astrophysics Data System (ADS)

    Ghalayini, Ramadan; Homberg, Catherine; Daniel, Jean-Marc; Nader, Fadi

    2015-04-01

    The Levant basin, located in the Eastern Mediterranean region, presents a conspicuous normal fault array in the interpreted Oligo-Miocene units. How did the faults grow, evolve and interact with each other is important in order to increase our understanding on the growth of normal fault systems in general and the structural setting of the Levant Basin in particular. Found offshore Lebanon, and partly offshore SE Cyprus and Israel, these faults are layer bound and comprised only in the Oligo-Miocene units, bounded by the base Messinian horizon and Eocene unconformity horizon at their top and bottom respectively. They correlate well with the thickness of the Oligo-Miocene sediments which might explain their distribution. Quantitative and qualitative fault analysis techniques were applied to a 3D seismic reflection dataset. Deduced thickness variations at the Miocene interval (across the faults) and growth index calculations show that the motion of these faults is syn-sedimentary since the Early Miocene time. As observed in cross-section; most of the faults are throughgoing faults and do not show significant refraction or bifurcation. However, the displacement data show that the fault history is complex and imply that the Cenozoic package is characterized by a significant mechanical layering. The latter has influenced the fault development with preferential and double nucleation sites of fault segments which later linked by vertical tip propagation. An asymmetry in the upward and downward vertical restriction is also deduced and horizontal linkages also occurred. The various geometric observations and displacement distribution indicate a strong resemblance between the normal faults of the Levant Basin and the widely documented polygonal fault systems. As polygonal faults are characterized by polygonal planform geometry and the faults in the Levant Basin are linear, we attribute the difference in their planform geometry to a regional anisotropic NW-SE stress field

  11. Fault Management Design Strategies

    NASA Technical Reports Server (NTRS)

    Day, John C.; Johnson, Stephen B.

    2014-01-01

    Development of dependable systems relies on the ability of the system to determine and respond to off-nominal system behavior. Specification and development of these fault management capabilities must be done in a structured and principled manner to improve our understanding of these systems, and to make significant gains in dependability (safety, reliability and availability). Prior work has described a fundamental taxonomy and theory of System Health Management (SHM), and of its operational subset, Fault Management (FM). This conceptual foundation provides a basis to develop framework to design and implement FM design strategies that protect mission objectives and account for system design limitations. Selection of an SHM strategy has implications for the functions required to perform the strategy, and it places constraints on the set of possible design solutions. The framework developed in this paper provides a rigorous and principled approach to classifying SHM strategies, as well as methods for determination and implementation of SHM strategies. An illustrative example is used to describe the application of the framework and the resulting benefits to system and FM design and dependability.

  12. SFT: Scalable Fault Tolerance

    SciTech Connect

    Petrini, Fabrizio; Nieplocha, Jarek; Tipparaju, Vinod

    2006-04-15

    In this paper we will present a new technology that we are currently developing within the SFT: Scalable Fault Tolerance FastOS project which seeks to implement fault tolerance at the operating system level. Major design goals include dynamic reallocation of resources to allow continuing execution in the presence of hardware failures, very high scalability, high efficiency (low overhead), and transparency—requiring no changes to user applications. Our technology is based on a global coordination mechanism, that enforces transparent recovery lines in the system, and TICK, a lightweight, incremental checkpointing software architecture implemented as a Linux kernel module. TICK is completely user-transparent and does not require any changes to user code or system libraries; it is highly responsive: an interrupt, such as a timer interrupt, can trigger a checkpoint in as little as 2.5μs; and it supports incremental and full checkpoints with minimal overhead—less than 6% with full checkpointing to disk performed as frequently as once per minute.

  13. Colorado Regional Faults

    DOE Data Explorer

    Hussein, Khalid

    2012-02-01

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Originator: Colorado Geological Survey (CGS) Publication Date: 2012 Title: Regional Faults Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science, University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains the regional faults of Colorado Spatial Domain: Extent: Top: 4543192.100000 m Left: 144385.020000 m Right: 754585.020000 m Bottom: 4094592.100000 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS’1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System 1984 (WGS ’984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

  14. Dynamics of fault interaction - Parallel strike-slip faults

    NASA Astrophysics Data System (ADS)

    Harris, Ruth A.; Day, Steven M.

    1993-03-01

    We use a 2D finite difference computer program to study the effect of fault steps on dynamic ruptures. Our results indicate that a strike-slip earthquake is unlikely to jump a fault step wider than 5 km, in correlation with field observations of moderate to great-sized earthquakes. We also find that dynamically propagating ruptures can jump both compressional and dilational fault steps, although wider dilational fault steps can be jumped. Dilational steps tend to delay the rupture for a longer time than compressional steps do. This delay leads to a slower apparent rupture velocity in the vicinity of dilational steps. These 'dry' cases assumed hydrostatic or greater pore-pressures but did not include the effects of changing pore pressures. In an additional study, we simulated the dynamic effects of a fault rupture on 'undrained' pore fluids to test Sibson's (1985, 1986) suggestion that 'wet' dilational steps are a barrier to rupture propagation. Our numerical results validate Sibson's hypothesis.

  15. Fault deformation mechanisms and fault rocks in micritic limestones: Examples from Corinth rift normal faults

    NASA Astrophysics Data System (ADS)

    Bussolotto, M.; Benedicto, A.; Moen-Maurel, L.; Invernizzi, C.

    2015-08-01

    A multidisciplinary study investigates the influence of different parameters on fault rock architecture development along normal faults affecting non-porous carbonates of the Corinth rift southern margin. Here, some fault systems cut the same carbonate unit (Pindus), and the gradual and fast uplift since the initiation of the rift led to the exhumation of deep parts of the older faults. This exceptional context allows superficial active fault zones and old exhumed fault zones to be compared. Our approach includes field studies, micro-structural (optical microscope and cathodoluminescence), geochemical analyses (δ13C, δ18O, trace elements) and fluid inclusions microthermometry of calcite sin-kinematic cements. Our main results, in a depth-window ranging from 0 m to about 2500 m, are: i) all cements precipitated from meteoric fluids in a close or open circulation system depending on depth; ii) depth (in terms of P/T condition) determines the development of some structures and their sealing; iii) lithology (marly levels) influences the type of structures and its cohesive/non-cohesive nature; iv) early distributed rather than final total displacement along the main fault plane is the responsible for the fault zone architecture; v) petrophysical properties of each fault zone depend on the variable combination of these factors.

  16. Aging on Parisi's Tree

    NASA Astrophysics Data System (ADS)

    Bouchaud, J.-P.; Dean, D. S.

    1995-03-01

    We present a detailed study of simple “tree" models for off equilibrium dynamics and aging in glassy systems. The simplest tree describes the landscape of a random energy model, whereas multifurcating trees occur in the solution of the Sherrington-Kirkpatrick model. An important ingredient taken from these models is the exponential distribution of deep free-energies, which translate into a power-law distribution of the residence time within metastable “valleys". These power law distributions have infinite mean in the spin-glass phase and this leads to the aging phenomenon. To each level of the tree is associated an overlap and the exponent of the time distribution. We solve these models for a finite (but arbitrary) number of levels and show that a two-level tree accounts very well for many experimental observations (thermoremanent magnetization, a.c. susceptibility, second noise spectrum....). We introduce the idea that the deepest levels of the tree correspond to equilibrium dynamics whereas the upper levels correspond to aging. Temperature cycling experiments suggest that the borderline between the two is temperature dependent. The spin-glass transition corresponds to the temperature at which the uppermost level is put out of equilibrium but is subsequently followed by a sequence of (dynamical) phase transitions corresponding to non equilibrium dynamics within deeper and deeper levels. We tentatively try to relate this “tree" picture to the real space “droplet" model, and speculate on how the final description of spin-glasses might look like.

  17. A Model of Evolution of Fault Structure in Porous Sandstone Reflecting the Effect of Geometric Irregularities Associated with Early-Formed Segment Linkages

    NASA Astrophysics Data System (ADS)

    Schafer, K. W.; Johnson, B.

    2001-12-01

    We propose a model of the early evolution of the structure of strike-slip faults in porous sandstone based upon detailed maps of faults with small displacements (mm to decimeters) in the Hickory Sandstone in central Texas and the Navajo Sandstone near Moab, UT. We assume faults at a given site follow similar evolutionary paths and infer relative timing of formation of fault elements using cross cutting and high-angle abutment relationships. Faults consist of a network of hard-linked smaller segments. The number of fault segments varies along a fault and qualitatively become more numerous and preferentially clustered with increasing displacement. Lacunarity analyses and variograms of spatial density of fault segments quantitatively document the clustering of fault segments. Consistent with earlier work, we infer that faults evolve in the initial stage by linkage of an early-formed array of en echelon small faults that typically step opposite to the sense of shear. Linkage is by one of two geometrically and kinematically distinct linkage structures. With increasing fault displacement, new fault segments are preferentially added in close proximity to or within the early linkages. Accreted segments typically are arcuate and abut earlier segments at a high angle. Consequently, the spatial density of fault segments varies episodically along the fault. Early linkage structures represent geometric irregularities (roughness) along the evolving fault that we interpret to result in geometric stress concentrations that preferentially localize formation of new fault segments. This conceptual model does not demand the commonly assumed strain-hardening of the gouge of individual fault segments in order to explain the evolving complexity of fault structure with increasing displacement. The lack of an implied strain-hardening behavior is consistent with laboratory-scale fault development in porous sandstone.

  18. 20 CFR 404.507 - Fault.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Officer § 404.507 Fault. Fault as used in without fault (see § 404.506 and 42 CFR 405.355) applies only to..., educational, or linguistic limitations (including any lack of facility with the English language)...

  19. Chip level simulation of fault tolerant computers

    NASA Technical Reports Server (NTRS)

    Armstrong, J. R.

    1982-01-01

    Chip-level modeling techniques in the evaluation of fault tolerant systems were researched. A fault tolerant computer was modeled. An efficient approach to functional fault simulation was developed. Simulation software was also developed.

  20. Accelerometer having integral fault null

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr. (Inventor)

    1995-01-01

    An improved accelerometer is introduced. It comprises a transducer responsive to vibration in machinery which produces an electrical signal related to the magnitude and frequency of the vibration; and a decoding circuit responsive to the transducer signal which produces a first fault signal to produce a second fault signal in which ground shift effects are nullified.

  1. Experimental Fault Reactivation on Favourably and Unfavourably Oriented Faults

    NASA Astrophysics Data System (ADS)

    Mitchell, T. M.; Renner, J.; Sibson, R. H.

    2011-12-01

    In this study, we assess the loading of faults to failure under different stress regimes in a triaxial deformation apparatus, both in dry and saturated conditions. We explore experimentally the reshear of an existing fault in various orientations for particular values of (σ_1 - σ_3) and σ_3' for contrasting loading systems - load-strengthening (equivalent to a thrust fault) with σ1' increasing at constant σ_3', versus load-weakening (equivalent to a normal fault) with reducing σ_3' under constant σ_1'. Experiments are conducted on sawcut granite samples with fault angles at a variety of orientations relative to σ_1, ranging from an optimal orientation for reactivation to lockup angles where new faults are formed in preference to reactivating the existing sawcut orientation. Prefailure and postfailure behaviour is compared in terms of damage zone development via monitoring variations in ultrasonic velocity and acoustic emission behaviour. For example, damage surrounding unfavourably oriented faults is significantly higher than that seen around favourably orientated faults due to greater maximum stresses attained prior to unstable slip, which is reflected by the increased acoustic emission activity leading up to failure. In addition, we explore reshear conditions under an initial condition of (σ_1' = σ_3'), then inducing reshear on the existing fault first by increasing σ_1'(load-strengthening), then by decreasing σ_3' (load-weakening), again comparing relative damage zone development and acoustic emission levels. In saturated experiments, we explore the values of pore fluid pressure (P_f) needed for re-shear to occur in preference to the formation of a new fault. Typically a limiting factor in conventional triaxial experiments performed in compression is that P_f cannot exceed the confining pressure (σ_2 and σ_3). By employing a sample assembly that allows deformation while the loading piston is in extension, it enables us to achieve pore pressures in

  2. How do normal faults grow?

    NASA Astrophysics Data System (ADS)

    Jackson, Christopher; Bell, Rebecca; Rotevatn, Atle; Tvedt, Anette

    2016-04-01

    Normal faulting accommodates stretching of the Earth's crust, and it is arguably the most fundamental tectonic process leading to continent rupture and oceanic crust emplacement. Furthermore, the incremental and finite geometries associated with normal faulting dictate landscape evolution, sediment dispersal and hydrocarbon systems development in rifts. Displacement-length scaling relationships compiled from global datasets suggest normal faults grow via a sympathetic increase in these two parameters (the 'isolated fault model'). This model has dominated the structural geology literature for >20 years and underpins the structural and tectono-stratigraphic models developed for active rifts. However, relatively recent analysis of high-quality 3D seismic reflection data suggests faults may grow by rapid establishment of their near-final length prior to significant displacement accumulation (the 'coherent fault model'). The isolated and coherent fault models make very different predictions regarding the tectono-stratigraphic evolution of rift basin, thus assessing their applicability is important. To-date, however, very few studies have explicitly set out to critically test the coherent fault model thus, it may be argued, it has yet to be widely accepted in the structural geology community. Displacement backstripping is a simple graphical technique typically used to determine how faults lengthen and accumulate displacement; this technique should therefore allow us to test the competing fault models. However, in this talk we use several subsurface case studies to show that the most commonly used backstripping methods (the 'original' and 'modified' methods) are, however, of limited value, because application of one over the other requires an a priori assumption of the model most applicable to any given fault; we argue this is illogical given that the style of growth is exactly what the analysis is attempting to determine. We then revisit our case studies and demonstrate

  3. Differential Fault Analysis of Rabbit

    NASA Astrophysics Data System (ADS)

    Kircanski, Aleksandar; Youssef, Amr M.

    Rabbit is a high speed scalable stream cipher with 128-bit key and a 64-bit initialization vector. It has passed all three stages of the ECRYPT stream cipher project and is a member of eSTREAM software portfolio. In this paper, we present a practical fault analysis attack on Rabbit. The fault model in which we analyze the cipher is the one in which the attacker is assumed to be able to fault a random bit of the internal state of the cipher but cannot control the exact location of injected faults. Our attack requires around 128 - 256 faults, precomputed table of size 241.6 bytes and recovers the complete internal state of Rabbit in about 238 steps.

  4. Reinforcement Learning Trees

    PubMed Central

    Zhu, Ruoqing; Zeng, Donglin; Kosorok, Michael R.

    2015-01-01

    In this paper, we introduce a new type of tree-based method, reinforcement learning trees (RLT), which exhibits significantly improved performance over traditional methods such as random forests (Breiman, 2001) under high-dimensional settings. The innovations are three-fold. First, the new method implements reinforcement learning at each selection of a splitting variable during the tree construction processes. By splitting on the variable that brings the greatest future improvement in later splits, rather than choosing the one with largest marginal effect from the immediate split, the constructed tree utilizes the available samples in a more efficient way. Moreover, such an approach enables linear combination cuts at little extra computational cost. Second, we propose a variable muting procedure that progressively eliminates noise variables during the construction of each individual tree. The muting procedure also takes advantage of reinforcement learning and prevents noise variables from being considered in the search for splitting rules, so that towards terminal nodes, where the sample size is small, the splitting rules are still constructed from only strong variables. Last, we investigate asymptotic properties of the proposed method under basic assumptions and discuss rationale in general settings. PMID:26903687

  5. Adaptive fault diagnosis in rotating machines using indicators selection

    NASA Astrophysics Data System (ADS)

    Khelf, Ilyes; Laouar, Lakhdar; Bouchelaghem, Abdelaziz M.; Rémond, Didier; Saad, Salah

    2013-11-01

    Over the past two decades, condition monitoring and faults diagnosis in rotating machinery have been widely studied and reported. In the present paper an algorithm for fault diagnosis in industrial rotating machines facing new operating conditions emergence is developed on the basis of input indicators, extracted from vibrations spectrums. Indicators selection is used to improve diagnosis performances by the help of a hybrid approach using several selection criteria and different classifiers. To validate the performances of this algorithm, experimental tests were conducted on two industrial systems with various operating conditions. The results have proved the effectiveness of the developed algorithm compared to the "J48 decision tree" and also reveal the need to re-select the indicators for reliable monitoring of working conditions.

  6. Upper crustal fault reactivation and the potential of triggered earthquakes on the Atacama Fault System, N-Chile

    NASA Astrophysics Data System (ADS)

    Victor, Pia; Ewiak, Oktawian; Thomas, Ziegenhagen; Monika, Sobiesiak; Bernd, Schurr; Gabriel, Gonzalez; Onno, Oncken

    2016-04-01

    The Atacama Fault System (AFS) is an active trench-parallel fault system, located in the forearc of N-Chile directly above the subduction zone interface. Due to its well-exposed position in the hyper arid forearc of N-Chile it is the perfect target to investigate the interaction between the deformation cycle in the overriding forearc and the subduction zone seismic cycle of the underlying megathrust. Although the AFS and large parts of the upper crust are devoid of any noteworthy seismicity, at least three M=7 earthquakes in the past 10 ky have been documented in the paleoseismological record, demonstrating the potential of large events in the future. We apply a two-fold approach to explore fault activation and reactivation patterns through time and to investigate the triggering potential of upper crustal faults. 1) A new methodology using high-resolution topographic data allows us to investigate the number of past earthquakes for any given segment of the fault system as well as the amount of vertical displacement of the last increment. This provides us with a detailed dataset of past earthquake rupture of upper plate faults which is potentially linked to large subduction zone earthquakes. 2) The IPOC Creepmeter array (http://www.ipoc-network.org/index.php/observatory/creepmeter.html) provides us with high-resolution time series of fault displacement accumulation for 11 stations along the 4 most active branches of the AFS. This array monitors the displacement across the fault with 2 samples/min with a resolution of 1μm. Collocated seismometers record the seismicity at two of the creepmeters, whereas the regional seismicity is provided by the IPOC Seismological Networks. Continuous time series of the creepmeter stations since 2009 show that the shallow segments of the fault do not creep permanently. Instead the accumulation of permanent deformation occurs by triggered slip caused by local or remote earthquakes. The 2014 Mw=8.2 Pisagua Earthquake, located close to

  7. TSkim : A tool for skimming ROOT trees

    NASA Astrophysics Data System (ADS)

    Chamont, David

    2010-04-01

    Like many HEP researchers, the members of the Fermi collaboration have chosen to store their experiment data within ROOT trees. A frequent activity of such physicists is the tuning of selection criteria which define the events of interest, thus cutting and pruning the ROOT trees so to extract all the data linked to those specific physical events. It is rather straightforward to write a ROOT script to skim a single kind of data, for example the raw measurements of Fermi LAT detector. This proves to be trickier if one wants to process also some simulated or analysis data at the same time, because each kind of data is structured with its own rules for what concerns file names and sizes, tree names, identification of events, etc. TSkim has been designed to facilitate this task. Thanks to a user-defined configuration file which says where to find the run and event identifications in the different kind of trees, TSkim is able to collect all the tree elements which match a given ROOT cut. The tool will also help when loading the shared libraries which describe the experiment data, or when pruning the tree branches. Initially a pair of PERL and ROOT scripts, TSkim is today a fully compiled C++ application, enclosing our ROOT know-how and offering a panel of features going far beyond the original Fermi requirements. In this manuscript, we present TSkim concepts and key features, including a new kind of event list. Any collaboration using ROOT IO could profit from the use of this tool.

  8. The Lawanopo Fault, central Sulawesi, East Indonesia

    NASA Astrophysics Data System (ADS)

    Natawidjaja, Danny Hilman; Daryono, Mudrik R.

    2015-04-01

    The dominant tectonic-force factor in the Sulawesi Island is the westward Bangga-Sula microplate tectonic intrusion, driven by the 12 mm/year westward motion of the Pacific Plate relative to Eurasia. This tectonic intrusion are accommodated by a series of major left-lateral strike-slip fault zones including Sorong Fault, Sula-Sorong Fault, Matano Fault, Palukoro Fault, and Lawanopo Fault zones. The Lawanopo fault has been considered as an active left-lateral strike-slip fault. The natural exposures of the Lawanopo Fault are clear, marked by the breaks and liniemants of topography along the fault line, and also it serves as a tectonic boundary between the different rock assemblages. Inpections of IFSAR 5m-grid DEM and field checks show that the fault traces are visible by lineaments of topographical slope breaks, linear ridges and stream valleys, ridge neckings, and they are also associated with hydrothermal deposits and hot springs. These are characteristics of young fault, so their morphological expressions can be seen still. However, fault scarps and other morpho-tectonic features appear to have been diffused by erosions and young sediment depositions. No fresh fault scarps, stream deflections or offsets, or any influences of fault movements on recent landscapes are observed associated with fault traces. Hence, the faults do not show any evidence of recent activity. This is consistent with lack of seismicity on the fault.

  9. Linked Systems.

    ERIC Educational Resources Information Center

    Association of Research Libraries, Washington, DC.

    Three papers are compiled here for research library directors: (1) "Background: Open Systems Interconnection," in which David F. Bishop provides fundamental background information to explain the concept of the emerging technology of linked systems and open systems interconnection--i.e., an agreed upon standard set of conventions or rules that,…

  10. Segment linkage in Afar via magma intrusion: the birth of a transform fault?

    NASA Astrophysics Data System (ADS)

    Aronovitz, A. C.; Ebinger, C. J.; Campbell, E.; Keir, D. B.; Ayele, A.; Mitra, G.

    2007-12-01

    Both continental and oceanic rifts are segmented along their length, but the relation between transfer faults and transform faults linking segments remains unclear. How and when do transform faults initiate to link rift segments? Does magma intrusion achieve some of the strain transfer between segments? A temporary seismic array in the volcanically and seismically active Afar rift of Ethiopia provides insights into these two fundamental questions. We analyze the spatial and temporal patterns of earthquakes, and compare these to patterns in high-resolution satellite imagery and space geodetic data from the ongoing seismo-volcanic episode that began in 2005. We integrate these results to understand how stresses are transferred between ridge segments and how this possibly relates to the initiation of transform faults. Earthquake swarms from October 2005 to March 2006 form narrow bands coinciding with NW-SE striking fault zones linking the active Erta' Ale and Tat `Ale magmatic rift segments, and the Dabbahu and Alayta magmatic segments. Step over distances are ~15 km and ~20 km respectively. The time and spatial distribution of these seismic events as well as the correlation of events with magmatic centers suggests that earthquakes are triggered by magma intrusion. These patterns offer insight to magma accommodation along faults and between rift segments, suggesting magma intrusion facilitates transform fault initiation. We compare and contrast active structures during the 2005- 2006 episode with segment linkage patterns preserved in the rock record to understand transform evolution.

  11. Faulted Sedimentary Rocks

    NASA Technical Reports Server (NTRS)

    2004-01-01

    27 June 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows some of the layered, sedimentary rock outcrops that occur in a crater located at 8oN, 7oW, in western Arabia Terra. Dark layers and dark sand have enhanced the contrast of this scene. In the upper half of the image, one can see numerous lines that off-set the layers. These lines are faults along which the rocks have broken and moved. The regularity of layer thickness and erosional expression are taken as evidence that the crater in which these rocks occur might once have been a lake. The image covers an area about 1.9 km (1.2 mi) wide. Sunlight illuminates the scene from the lower left.

  12. Fault Tolerant State Machines

    NASA Technical Reports Server (NTRS)

    Burke, Gary R.; Taft, Stephanie

    2004-01-01

    State machines are commonly used to control sequential logic in FPGAs and ASKS. An errant state machine can cause considerable damage to the device it is controlling. For example in space applications, the FPGA might be controlling Pyros, which when fired at the wrong time will cause a mission failure. Even a well designed state machine can be subject to random errors us a result of SEUs from the radiation environment in space. There are various ways to encode the states of a state machine, and the type of encoding makes a large difference in the susceptibility of the state machine to radiation. In this paper we compare 4 methods of state machine encoding and find which method gives the best fault tolerance, as well as determining the resources needed for each method.

  13. Arc fault detection system

    DOEpatents

    Jha, K.N.

    1999-05-18

    An arc fault detection system for use on ungrounded or high-resistance-grounded power distribution systems is provided which can be retrofitted outside electrical switchboard circuits having limited space constraints. The system includes a differential current relay that senses a current differential between current flowing from secondary windings located in a current transformer coupled to a power supply side of a switchboard, and a total current induced in secondary windings coupled to a load side of the switchboard. When such a current differential is experienced, a current travels through a operating coil of the differential current relay, which in turn opens an upstream circuit breaker located between the switchboard and a power supply to remove the supply of power to the switchboard. 1 fig.

  14. Arc fault detection system

    DOEpatents

    Jha, Kamal N.

    1999-01-01

    An arc fault detection system for use on ungrounded or high-resistance-grounded power distribution systems is provided which can be retrofitted outside electrical switchboard circuits having limited space constraints. The system includes a differential current relay that senses a current differential between current flowing from secondary windings located in a current transformer coupled to a power supply side of a switchboard, and a total current induced in secondary windings coupled to a load side of the switchboard. When such a current differential is experienced, a current travels through a operating coil of the differential current relay, which in turn opens an upstream circuit breaker located between the switchboard and a power supply to remove the supply of power to the switchboard.

  15. Strike-slip faulting in the Inner California Borderlands, offshore Southern California.

    NASA Astrophysics Data System (ADS)

    Bormann, J. M.; Kent, G. M.; Driscoll, N. W.; Harding, A. J.; Sahakian, V. J.; Holmes, J. J.; Klotsko, S.; Kell, A. M.; Wesnousky, S. G.

    2015-12-01

    eastern margin of Avalon Knoll, where the fault is spatially coincident and potentially linked with the San Pedro Basin fault (SPBF). Kinematic linkage between the SDTF and the SPBF increases the potential rupture length for earthquakes on either fault and may allow events nucleating on the SDTF to propagate much closer to the LA Basin.

  16. Building Decision Trees for Characteristic Ellipsoid Method to Monitor Power System Transient Behaviors

    SciTech Connect

    Ma, Jian; Diao, Ruisheng; Makarov, Yuri V.; Etingov, Pavel V.; Zhou, Ning; Dagle, Jeffery E.

    2010-12-01

    The characteristic ellipsoid is a new method to monitor the dynamics of power systems. Decision trees (DTs) play an important role in applying the characteristic ellipsoid method to system operation and analysis. This paper presents the idea and initial results of building DTs for detecting transient dynamic events using the characteristic ellipsoid method. The objective is to determine fault types, fault locations and clearance time in the system using decision trees based on ellipsoids of system transient responses. The New England 10-machine 39-bus system is used for running dynamic simulations to generate a sufficiently large number of transient events in different system configurations. Comprehensive transient simulations considering three fault types, two fault clearance times and different fault locations were conducted in the study. Bus voltage magnitudes and monitored reactive and active power flows are recorded as the phasor measurements to calculate characteristic ellipsoids whose volume, eccentricity, center and projection of the longest axis are used as indices to build decision trees. The DT performances are tested and compared by considering different sets of PMU locations. The proposed method demonstrates that the characteristic ellipsoid method is a very efficient and promising tool to monitor power system dynamic behaviors.

  17. Tree nut allergens.

    PubMed

    Roux, Kenneth H; Teuber, Suzanne S; Sathe, Shridhar K

    2003-08-01

    Allergic reactions to tree nuts can be serious and life threatening. Considerable research has been conducted in recent years in an attempt to characterize those allergens that are most responsible for allergy sensitization and triggering. Both native and recombinant nut allergens have been identified and characterized and, for some, the IgE-reactive epitopes described. Some allergens, such as lipid transfer proteins, profilins, and members of the Bet v 1-related family, represent minor constituents in tree nuts. These allergens are frequently cross-reactive with other food and pollen homologues, and are considered panallergens. Others, such as legumins, vicilins, and 2S albumins, represent major seed storage protein constituents of the nuts. The allergenic tree nuts discussed in this review include those most commonly responsible for allergic reactions such as hazelnut, walnut, cashew, and almond as well as those less frequently associated with allergies including pecan, chestnut, Brazil nut, pine nut, macadamia nut, pistachio, coconut, Nangai nut, and acorn. PMID:12915766

  18. Predictive Classification Trees

    NASA Astrophysics Data System (ADS)

    Dlugosz, Stephan; Müller-Funk, Ulrich

    CART (Breiman et al., Classification and Regression Trees, Chapman and Hall, New York, 1984) and (exhaustive) CHAID (Kass, Appl Stat 29:119-127, 1980) figure prominently among the procedures actually used in data based management, etc. CART is a well-established procedure that produces binary trees. CHAID, in contrast, admits multiple splittings, a feature that allows to exploit the splitting variable more extensively. On the other hand, that procedure depends on premises that are questionable in practical applications. This can be put down to the fact that CHAID relies on simultaneous Chi-Square- resp. F-tests. The null-distribution of the second test statistic, for instance, relies on the normality assumption that is not plausible in a data mining context. Moreover, none of these procedures - as implemented in SPSS, for instance - take ordinal dependent variables into account. In the paper we suggest an alternative tree-algorithm that: Requires explanatory categorical variables

  19. Award ER25750: Coordinated Infrastructure for Fault Tolerance Systems Indiana University Final Report

    SciTech Connect

    Lumsdaine, Andrew

    2013-03-08

    The main purpose of the Coordinated Infrastructure for Fault Tolerance in Systems initiative has been to conduct research with a goal of providing end-to-end fault tolerance on a systemwide basis for applications and other system software. While fault tolerance has been an integral part of most high-performance computing (HPC) system software developed over the past decade, it has been treated mostly as a collection of isolated stovepipes. Visibility and response to faults has typically been limited to the particular hardware and software subsystems in which they are initially observed. Little fault information is shared across subsystems, allowing little flexibility or control on a system-wide basis, making it practically impossible to provide cohesive end-to-end fault tolerance in support of scientific applications. As an example, consider faults such as communication link failures that can be seen by a network library but are not directly visible to the job scheduler, or consider faults related to node failures that can be detected by system monitoring software but are not inherently visible to the resource manager. If information about such faults could be shared by the network libraries or monitoring software, then other system software, such as a resource manager or job scheduler, could ensure that failed nodes or failed network links were excluded from further job allocations and that further diagnosis could be performed. As a founding member and one of the lead developers of the Open MPI project, our efforts over the course of this project have been focused on making Open MPI more robust to failures by supporting various fault tolerance techniques, and using fault information exchange and coordination between MPI and the HPC system software stack from the application, numeric libraries, and programming language runtime to other common system components such as jobs schedulers, resource managers, and monitoring tools.

  20. Using certification trails to achieve software fault tolerance

    NASA Technical Reports Server (NTRS)

    Sullivan, Gregory F.; Masson, Gerald M.

    1993-01-01

    A conceptually novel and powerful technique to achieve fault tolerance in hardware and software systems is introduced. When used for software fault tolerance, this new technique uses time and software redundancy and can be outlined as follows. In the initial phase, a program is run to solve a problem and store the result. In addition, this program leaves behind a trail of data called a certification trail. In the second phase, another program is run which solves the original problem again. This program, however, has access to the certification trail left by the first program. Because of the availability of the certification trail, the second phase can be performed by a less complex program and can execute more quickly. In the final phase, the two results are accepted as correct; otherwise an error is indicated. An essential aspect of this approach is that the second program must always generate either an error indication or a correct output even when the certification trail it receives from the first program is incorrect. The certification trail approach to fault tolerance was formalized and it was illustrated by applying it to the fundamental problem of finding a minimum spanning tree. Cases in which the second phase can be run concorrectly with the first and act as a monitor are discussed. The certification trail approach was compared to other approaches to fault tolerance. Because of space limitations we have omitted examples of our technique applied to the Huffman tree, and convex hull problems. These can be found in the full version of this paper.

  1. Elevation-layered dendroclimatic signal in eastern Mediterranean tree rings

    NASA Astrophysics Data System (ADS)

    Touchan, Ramzi; Shishov, Vladimir V.; Tychkov, Ivan I.; Sivrikaya, Fatih; Attieh, Jihad; Ketmen, Muzaffer; Stephan, Jean; Mitsopoulos, Ioannis; Christou, Andreas; Meko, David M.

    2016-04-01

    Networks of tree-ring data are commonly applied in statistical reconstruction of spatial fields of climate variables. The importance of elevation to the climatic interpretation of tree-ring networks is addressed using 281 station precipitation records, and a network of 79 tree-ring chronologies from different species and a range of elevations in the eastern Mediterranean. Cluster analysis of chronologies identifies 6 tree-ring groups, delineated principally by site elevation. Correlation analysis suggests several of the clusters are linked to homogenous elevational moisture regimes. Results imply that climate stations close to the elevations of the tree-ring sites are essential for assessing the seasonal climatic signal in tree-ring chronologies from this region. A broader implication is that the elevations of stations contributing to gridded climate networks should be considered in the design and interpretation of field reconstructions of climate from tree rings. Finally, results suggest elevation-stratified tree-ring networks as a strategy for seasonal climate reconstruction.

  2. The gene tree delusion.

    PubMed

    Springer, Mark S; Gatesy, John

    2016-01-01

    Higher-level relationships among placental mammals are mostly resolved, but several polytomies remain contentious. Song et al. (2012) claimed to have resolved three of these using shortcut coalescence methods (MP-EST, STAR) and further concluded that these methods, which assume no within-locus recombination, are required to unravel deep-level phylogenetic problems that have stymied concatenation. Here, we reanalyze Song et al.'s (2012) data and leverage these re-analyses to explore key issues in systematics including the recombination ratchet, gene tree stoichiometry, the proportion of gene tree incongruence that results from deep coalescence versus other factors, and simulations that compare the performance of coalescence and concatenation methods in species tree estimation. Song et al. (2012) reported an average locus length of 3.1 kb for the 447 protein-coding genes in their phylogenomic dataset, but the true mean length of these loci (start codon to stop codon) is 139.6 kb. Empirical estimates of recombination breakpoints in primates, coupled with consideration of the recombination ratchet, suggest that individual coalescence genes (c-genes) approach ∼12 bp or less for Song et al.'s (2012) dataset, three to four orders of magnitude shorter than the c-genes reported by these authors. This result has general implications for the application of coalescence methods in species tree estimation. We contend that it is illogical to apply coalescence methods to complete protein-coding sequences. Such analyses amalgamate c-genes with different evolutionary histories (i.e., exons separated by >100,000 bp), distort true gene tree stoichiometry that is required for accurate species tree inference, and contradict the central rationale for applying coalescence methods to difficult phylogenetic problems. In addition, Song et al.'s (2012) dataset of 447 genes includes 21 loci with switched taxonomic names, eight duplicated loci, 26 loci with non-homologous sequences that are

  3. Improving Multiple Fault Diagnosability using Possible Conflicts

    NASA Technical Reports Server (NTRS)

    Daigle, Matthew J.; Bregon, Anibal; Biswas, Gautam; Koutsoukos, Xenofon; Pulido, Belarmino

    2012-01-01

    Multiple fault diagnosis is a difficult problem for dynamic systems. Due to fault masking, compensation, and relative time of fault occurrence, multiple faults can manifest in many different ways as observable fault signature sequences. This decreases diagnosability of multiple faults, and therefore leads to a loss in effectiveness of the fault isolation step. We develop a qualitative, event-based, multiple fault isolation framework, and derive several notions of multiple fault diagnosability. We show that using Possible Conflicts, a model decomposition technique that decouples faults from residuals, we can significantly improve the diagnosability of multiple faults compared to an approach using a single global model. We demonstrate these concepts and provide results using a multi-tank system as a case study.

  4. Comparison of Cenozoic Faulting at the Savannah River Site to Fault Characteristics of the Atlantic Coast Fault Province: Implications for Fault Capability

    SciTech Connect

    Cumbest, R.J.

    2000-11-14

    This study compares the faulting observed on the Savannah River Site and vicinity with the faults of the Atlantic Coastal Fault Province and concludes that both sets of faults exhibit the same general characteristics and are closely associated. Based on the strength of this association it is concluded that the faults observed on the Savannah River Site and vicinity are in fact part of the Atlantic Coastal Fault Province. Inclusion in this group means that the historical precedent established by decades of previous studies on the seismic hazard potential for the Atlantic Coastal Fault Province is relevant to faulting at the Savannah River Site. That is, since these faults are genetically related the conclusion of ''not capable'' reached in past evaluations applies.In addition, this study establishes a set of criteria by which individual faults may be evaluated in order to assess their inclusion in the Atlantic Coast Fault Province and the related association of the ''not capable'' conclusion.

  5. Regional fault pattern study - Sonam/Ajapa area offshore Western Niger Delta

    SciTech Connect

    Kanu, K.A.; Glass, J.E.; Okoro, P.C.

    1995-08-01

    A total of 900 km{sup 2} of high quality 3-D data was used to interpret structural trends: an inner trend containing the Mefa, Meji and Ajapa oil fields and a younger outer trend containing the large Sonam condensate field. Each trend is bounded by a large, regional down-to-the-coast fault system on the northeast and its associated counter-regional fault to the southwest. Hydrocarbon accumulations are contained within rollover anticlines adjacent to the main seaward-dipping fault trends. However, our data shows that structural geometries within each trend are highly three-dimensional. Anticlinal end closure is achieved by changes in fault detachment level and displacement which generally occur near major fault junctions. Thus, significant accumulations are associated with first-order high-relief accommodation zones. In the absence of such first-order closure, we cannot rely upon the systems of relatively small faults that occur on seaward dipping flanks and in areas of crestal collapse. Detailed 3-D mapping, supported by drilling results, shows that such faults do not link strongly together, thereby allowing leakage of hydrocarbons mound fault tips and up relay ramps between faults.

  6. Subaru FATS (fault tracking system)

    NASA Astrophysics Data System (ADS)

    Winegar, Tom W.; Noumaru, Junichi

    2000-07-01

    The Subaru Telescope requires a fault tracking system to record the problems and questions that staff experience during their work, and the solutions provided by technical experts to these problems and questions. The system records each fault and routes it to a pre-selected 'solution-provider' for each type of fault. The solution provider analyzes the fault and writes a solution that is routed back to the fault reporter and recorded in a 'knowledge-base' for future reference. The specifications of our fault tracking system were unique. (1) Dual language capacity -- Our staff speak both English and Japanese. Our contractors speak Japanese. (2) Heterogeneous computers -- Our computer workstations are a mixture of SPARCstations, Macintosh and Windows computers. (3) Integration with prime contractors -- Mitsubishi and Fujitsu are primary contractors in the construction of the telescope. In many cases, our 'experts' are our contractors. (4) Operator scheduling -- Our operators spend 50% of their work-month operating the telescope, the other 50% is spent working day shift at the base facility in Hilo, or day shift at the summit. We plan for 8 operators, with a frequent rotation. We need to keep all operators informed on the current status of all faults, no matter the operator's location.

  7. ANNs pinpoint underground distribution faults

    SciTech Connect

    Glinkowski, M.T.; Wang, N.C.

    1995-10-01

    Many offline fault location techniques in power distribution circuits involve patrolling along the lines or cables. In overhead distribution lines, most of the failures can be located quickly by visual inspection without the aid of special equipment. However, locating a fault in underground cable systems is more difficult. It involves additional equipment (e.g., thumpers, radars, etc.) to transform the invisibility of the cable into other forms of signals, such as acoustic sound and electromagnetic pulses. Trained operators must carry the equipment above the ground, follow the path of the signal, and draw lines on their maps in order to locate the fault. Sometimes, even smelling the burnt cable faults is a way of detecting the problem. These techniques are time consuming, not always reliable, and, as in the case of high-voltage dc thumpers, can cause additional damage to the healthy parts of the cable circuit. Online fault location in power networks that involve interconnected lines (cables) and multiterminal sources continues receiving great attention, with limited success in techniques that would provide simple and practical solutions. This article features a new online fault location technique that: uses the pattern recognition feature of artificial neural networks (ANNs); utilizes new capabilities of modern protective relaying hardware. The output of the neural network can be graphically displayed as a simple three-dimensional (3-D) chart that can provide an operator with an instantaneous indication of the location of the fault.

  8. The Dynamics of Fault Zones

    NASA Astrophysics Data System (ADS)

    Mooney, W. D.; Beroza, G.; Kind, R.

    2006-05-01

    Geophysical studies of the Earth's crust, including fault zones, have developed over the past 80 years. Among the first methods to be employed, seismic refraction and reflection profiles were recorded in the North American Gulf Coast to detect salt domes which were known to trap hydrocarbons. Seismic methods continue to be the most important geophysical technique in use today due to the methods' relatively high accuracy, high resolution, and great depth of penetration. However, in the past decade, a much expanded repertoire of seismic and non-seismic techniques have been brought to bear on studies of the Earth's crust and uppermost mantle. Important insights have also been obtained using seismic tomography, measurements of seismic anisotropy, fault zone guided waves, borehole surveys, and geo-electrical, magnetic, and gravity methods. In this presentation, we briefly review recent geophysical progress in the study of the structure and internal properties of faults zones, from their surface exposures to their lower limit. We focus on the structure of faults within continental crystalline and competent sedimentary rock rather than within the overlying, poorly consolidated sedimentary rocks. A significant body of literature exists for oceanic fracture zones, however, due to space limitations we restrict this review to faults within and at the margins of the continents. We also address some unanswered questions, including: 1) Does fault-zone complexity, as observed at the surface, extend to great depth, or do active faults become thin simple planes at depth? and 2) How is crustal deformation accommodated within the lithospheric mantle?

  9. Automatic test pattern generation for logic circuits using the Boolean tree

    SciTech Connect

    Jeong Taegwon.

    1991-01-01

    The goal of this study was to develop an algorithm that can generate test patterns for combinational circuits and sequential logic circuits automatically. The new proposed algorithm generates a test pattern by using a special tree called a modified Boolean tree. In this algorithm, the construction of a modified Boolean tree is the most time-consuming step. Following the construction of a modified Boolean tree, a test pattern can be found by simply assigning a logic value 1 for even primary inputs and a logic value 0 for odd primary inputs of the constructed modified Boolean tree. The algorithm is applied to several benchmark circuits. The results showed the following: (1) for combinational circuits, the algorithm can generate test patterns 10-15% faster than the FAN algorithm, which is known as one of the most efficient algorithms to-date; (2) for sequential circuits, the algorithm shows more fault coverage than the nine valued algorithm.

  10. Paradoxical pseudotachylyte - Fault melt outside the seismogenic zone

    NASA Astrophysics Data System (ADS)

    White, Joseph Clancy

    2012-05-01

    Fault generated melt, pseudotachylyte, is an established indicator of palaeoseismic faulting. The existing consensus that frictionally induced melting occurs within the classic seismogenic zone contrast the contention over how pseudotachylyte forms within the ductile regime. Central to this issue is whether all pseudotachylyte originates as pressure-dependent frictional melt along slip surfaces, or if pressure-independent processes have roles in its formation. Propagation of high-velocity slip into deeper crustal levels provides a satisfactory explanation for pseudotachylyte at depth, but does not of itself rationalize earthquake nucleation outside the classic seismogenic zone. Pseudotachylyte from the Minas Fault Zone, Nova Scotia, Canada is used to demonstrate the formation and preservation of fault-related melt under lower crustal conditions. Microstructures retain evidence of intense dislocation glide with minimal climb, and ductile disaggregation of the host; the latter are consistent with intracrystalline deformation in the Peierls stress-controlled glide regime. It remains unclear whether the crystal plasticity serves only as a precursory stage to rupture and high-velocity slip or is itself responsible for both instability and the thermal transient. There are similarities between accelerating plastic slip leading to rupture and aseismic creep bursts (tremor) that emphasize the mechanistic complexity of deep faulting, and the need to extend consideration beyond that of a simple brittle-ductile response. The occurrence of tremor bursts fall within the depth range of "paradoxical" pseudotachylyte and provides a circumstantial link between active tectonics and the geologic record that merits examination.

  11. Spectral Element Simulations of Rupture Dynamics along kinked faults

    NASA Astrophysics Data System (ADS)

    Vilotte, J.; Festa, G.; Madariaga, R.

    2005-12-01

    Numerical simulation of earthquake source dynamics provides key elements for ground-motion prediction and insights into the physics of dynamic rupture propagation. Faulting is controlled by non-linear frictional interactions and damage within the fault zone. Important features of the earthquakes dynamics, such as rupture velocity, arrest phase and high-frequency radiation are believed to be strongly influenced by the geometry of the faults (kinks, jogs and forks). Data analysis as well as kinematic inversions have pointed out potential links between super-shear and geometry, as in the case of the Denali and Izmit earthquakes. Finally, recent laboratory experiments of sub- and super-shear rupture propagation along kink interfaces have shed new lights on these phenomena. We present here spectral element simulations of the dynamic rupture propagation along kinked and curved fault interfaces, a problem that has been experimentally investigated by Rousseau and Rosakis (2003). Depending on the state of the initial stress, we numerically analyze the mechanics of the dynamical fault branching for sub- and super-shear rupture propagation. Special interest is devoted to source directivity effects and high frequency generation related to the branching process. Implications for strong motion analysis will be discussed. This work was supported by the SPICE - Research and Training project

  12. Fault Injection Campaign for a Fault Tolerant Duplex Framework

    NASA Technical Reports Server (NTRS)

    Sacco, Gian Franco; Ferraro, Robert D.; von llmen, Paul; Rennels, Dave A.

    2007-01-01

    Fault tolerance is an efficient approach adopted to avoid or reduce the damage of a system failure. In this work we present the results of a fault injection campaign we conducted on the Duplex Framework (DF). The DF is a software developed by the UCLA group [1, 2] that uses a fault tolerant approach and allows to run two replicas of the same process on two different nodes of a commercial off-the-shelf (COTS) computer cluster. A third process running on a different node, constantly monitors the results computed by the two replicas, and eventually restarts the two replica processes if an inconsistency in their computation is detected. This approach is very cost efficient and can be adopted to control processes on spacecrafts where the fault rate produced by cosmic rays is not very high.

  13. Initial Seismic Characterization of a Fault Controlled Hydrothermal Area

    NASA Astrophysics Data System (ADS)

    Bradford, J.; Lyle, M.; Clement, B.; Liberty, L.; Myers, R.; Paul, C.

    2002-12-01

    As part of an interdisciplinary project that aims to study the link between the physical characteristics of hydrothermal systems and the biota that occupy those systems, we have begun a detailed geophysical characterization of the Borax Lake hydrothermal area located near the center of Alvord Valley in the basin and range province of southeast Oregon. Basement rock is comprised of Miocene volcanic deposits overlain by up to 700 m of unconsolidated alluvium. Previous workers, based on gravity data and surface mapping, suggest that the Borax Lake hydrothermal area lies directly over a north/south trending fault. We are conducting seismic investigations on both a basin scale, to place the hydrothermal system in a larger geologic context, and a local high resolution scale for detailed imaging of fault architecture and hydrothermal flow paths. In this initial investigation, our primary objectives are to verify that a fault zone is present beneath the Borax Lake hot springs and to conduct tests to constrain acquisition parameters for detailed 3D seismic investigation. Initial seismic source tests indicate that the area is well suited to high resolution seismic investigation with clear reflections as deep as 300 ms and frequency content up to 500 Hz. Walk-away gathers show that the fluid distribution near the hot springs is complex with sharp gradients in the piezometric surface. To test the fault zone interpretation, and begin to build a large scale image of basin geometry, we acquired a 3.5 km seismic reflection profile perpendicular to the suspected fault zone. The profile consists of 30-fold CMP data acquired using a trailer mounted, 400 lb accelerated weight drop. Reflections are evident to depths of at least 500 m. Additionally, we acquired parallel magnetic profiles to constrain interpretation of the seismic data. Evidence for faulting is clear with the seismic image showing a complex normal fault zone bounded to the west by a structural high. Refraction analysis

  14. Finding faults with the data

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    Rudolph Giuliani and Hillary Rodham Clinton are crisscrossing upstate New York looking for votes in the U.S. Senate race. Also cutting back and forth across upstate New York are hundreds of faults of a kind characterized by very sporadic seismic activity according to Robert Jacobi, professor of geology at the University of Buffalo (UB), who conducted research with fellow UB geology professor John Fountain."We have proof that upstate New York is crisscrossed by faults," Jacobi said. "In the past, the Appalachian Plateau—which stretches from Albany to Buffalo—was considered a pretty boring place structurally without many faults or folds of any significance."

  15. Method of locating ground faults

    NASA Astrophysics Data System (ADS)

    Patterson, Richard L.; Rose, Allen H.; Cull, Ronald C.

    1994-11-01

    The present invention discloses a method of detecting and locating current imbalances such as ground faults in multiwire systems using the Faraday effect. As an example, for 2-wire or 3-wire (1 ground wire) electrical systems, light is transmitted along an optical path which is exposed to magnetic fields produced by currents flowing in the hot and neutral wires. The rotations produced by these two magnetic fields cancel each other, therefore light on the optical path does not read the effect of either. However, when a ground fault occurs, the optical path is exposed to a net Faraday effect rotation due to the current imbalance thereby exposing the ground fault.

  16. Method of locating ground faults

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L. (Inventor); Rose, Allen H. (Inventor); Cull, Ronald C. (Inventor)

    1994-01-01

    The present invention discloses a method of detecting and locating current imbalances such as ground faults in multiwire systems using the Faraday effect. As an example, for 2-wire or 3-wire (1 ground wire) electrical systems, light is transmitted along an optical path which is exposed to magnetic fields produced by currents flowing in the hot and neutral wires. The rotations produced by these two magnetic fields cancel each other, therefore light on the optical path does not read the effect of either. However, when a ground fault occurs, the optical path is exposed to a net Faraday effect rotation due to the current imbalance thereby exposing the ground fault.

  17. Granular packings and fault zones

    PubMed

    Astrom; Herrmann; Timonen

    2000-01-24

    The failure of a two-dimensional packing of elastic grains is analyzed using a numerical model. The packing fails through formation of shear bands or faults. During failure there is a separation of the system into two grain-packing states. In a shear band, local "rotating bearings" are spontaneously formed. The bearing state is favored in a shear band because it has a low stiffness against shearing. The "seismic activity" distribution in the packing has the same characteristics as that of the earthquake distribution in tectonic faults. The directions of the principal stresses in a bearing are reminiscent of those found at the San Andreas Fault. PMID:11017335

  18. Tree-Ties.

    ERIC Educational Resources Information Center

    Gresczyk, Rick

    Created to help students understand how plants were used for food, for medicine, and for arts and crafts among the Ojibwe (Chippewa) Indians, the game Tree-Ties combines earth and social sciences within a specific culture. The game requires mutual respect, understanding, and agreement to succeed. Sounding like the word "treaties", the title is a…

  19. Christmas Tree Category Manual.

    ERIC Educational Resources Information Center

    Bowman, James S.; Turmel, Jon P.

    This manual provides information needed to meet the standards for pesticide applicator certification. Pests and diseases of christmas tree plantations are identified and discussed. Section one deals with weeds and woody plants and the application, formulation and effects of herbicides in controlling them. Section two discusses specific diseases…

  20. Tree theorem for inflation

    SciTech Connect

    Weinberg, Steven

    2008-09-15

    It is shown that the generating function for tree graphs in the ''in-in'' formalism may be calculated by solving the classical equations of motion subject to certain constraints. This theorem is illustrated by application to the evolution of a single inflaton field in a Robertson-Walker background.

  1. A Universal Phylogenetic Tree.

    ERIC Educational Resources Information Center

    Offner, Susan

    2001-01-01

    Presents a universal phylogenetic tree suitable for use in high school and college-level biology classrooms. Illustrates the antiquity of life and that all life is related, even if it dates back 3.5 billion years. Reflects important evolutionary relationships and provides an exciting way to learn about the history of life. (SAH)

  2. MPI File Tree Walk

    Energy Science and Technology Software Center (ESTSC)

    2007-04-30

    MPI-FTW is a scalable MPI based software application that navigates a directory tree by dynamically allocating processes to navigate sub-directories found. Upon completion, MPI-FTW provides statistics on the number of directories found, files found, and time to complete. Inaddition, commands can be executed at each directory level.

  3. Starting Trees from Cuttings.

    ERIC Educational Resources Information Center

    Kramer, David C.

    1983-01-01

    Describes a procedure for starting tree cuttings from woody plants, explaining "lag time," recommending materials, and giving step-by-step instructions for rooting and planting. Points out species which are likely candidates for cuttings and provides tips for teachers for developing a unit. (JM)

  4. The Medicine Tree.

    ERIC Educational Resources Information Center

    Brokenleg, Martin

    2000-01-01

    Demographic changes in population continue to bring children of different cultural backgrounds to classrooms. This article provides suggestions teachers and counselors can use to bridge cultures. Using the parable of a medicine tree, it explains how no society can endure without caring for its young. (Author/JDM)

  5. Phylogenics & Tree-Thinking

    ERIC Educational Resources Information Center

    Baum, David A.; Offner, Susan

    2008-01-01

    Phylogenetic trees, which are depictions of the inferred evolutionary relationships among a set of species, now permeate almost all branches of biology and are appearing in increasing numbers in biology textbooks. While few state standards explicitly require knowledge of phylogenetics, most require some knowledge of evolutionary biology, and many…

  6. Trees at the Center.

    ERIC Educational Resources Information Center

    Flannery, Maura

    1998-01-01

    Recommends introducing students to biology using a topical focus that can offer intriguing perspectives on the discipline. Describes a biology course that uses trees as a topical focus. Presents a list of literary resources and reviews student interactions. Contains 50 references. (DDR)

  7. Arbutus unedo, Strawberry Tree

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Encylopedia of Fruit and Nuts is designed as a research reference source on temperate and tropical fruit and nut crops. Strawberry tree or madrone is native to the Mediterranean region of southern Europe (Arbutus unedo L., Ericaceae) with a relict population in Ireland, as well as in North Ameri...

  8. The Sacred Tree.

    ERIC Educational Resources Information Center

    Lethbridge Univ. (Alberta).

    Designed as a text for high school students and adults, this illustrated book presents ethical concepts and teachings of Native societies throughout North America concerning the nature and possibilities of human existence. The final component of a course in self-discovery and development, the book begins with the legend of the "Sacred Tree"…

  9. Digging Deeper with Trees.

    ERIC Educational Resources Information Center

    Growing Ideas, 2001

    2001-01-01

    Describes hands-on science areas that focus on trees. A project on leaf pigmentation involves putting crushed leaves in a test tube with solvent acetone to dissolve pigment. In another project, students learn taxonomy by sorting and classifying leaves based on observable characteristics. Includes a language arts connection. (PVD)

  10. Hug a Tree!

    ERIC Educational Resources Information Center

    Rockwell, Robert E.; And Others

    1983-01-01

    Methods for teaching pupils to use their senses to explore colors, shapes, textures, and sounds of the great outdoors are described. Ideas include: (1) having children hug their own special tree; (2) looking for geometric shapes in nature; (3) taking nocturnal nature walks; (4) building a track for racing insects; and (5) collecting objects with…

  11. Fault-free performance validation of fault-tolerant multiprocessors

    NASA Technical Reports Server (NTRS)

    Czeck, Edward W.; Feather, Frank E.; Grizzaffi, Ann Marie; Segall, Zary Z.; Siewiorek, Daniel P.

    1987-01-01

    A validation methodology for testing the performance of fault-tolerant computer systems was developed and applied to the Fault-Tolerant Multiprocessor (FTMP) at NASA-Langley's AIRLAB facility. This methodology was claimed to be general enough to apply to any ultrareliable computer system. The goal of this research was to extend the validation methodology and to demonstrate the robustness of the validation methodology by its more extensive application to NASA's Fault-Tolerant Multiprocessor System (FTMP) and to the Software Implemented Fault-Tolerance (SIFT) Computer System. Furthermore, the performance of these two multiprocessors was compared by conducting similar experiments. An analysis of the results shows high level language instruction execution times for both SIFT and FTMP were consistent and predictable, with SIFT having greater throughput. At the operating system level, FTMP consumes 60% of the throughput for its real-time dispatcher and 5% on fault-handling tasks. In contrast, SIFT consumes 16% of its throughput for the dispatcher, but consumes 66% in fault-handling software overhead.

  12. Salt movements and faulting of the overburden - can numerical modeling predict the fault patterns above salt structures?

    NASA Astrophysics Data System (ADS)

    Clausen, O. R.; Egholm, D. L.; Wesenberg, R.

    2012-04-01

    Salt deformation has been the topic of numerous studies through the 20th century and up until present because of the close relation between commercial hydrocarbons and salt structure provinces of the world (Hudec & Jackson, 2007). The fault distribution in sediments above salt structures influences among other things the productivity due to the segmentation of the reservoir (Stewart 2006). 3D seismic data above salt structures can map such fault patterns in great detail and studies have shown that a variety of fault patterns exists. Yet, most patterns fall between two end members: concentric and radiating fault patterns. Here we use a modified version of the numerical spring-slider model introduced by Malthe-Sørenssen et al.(1998a) for simulating the emergence of small scale faults and fractures above a rising salt structure. The three-dimensional spring-slider model enables us to control the rheology of the deforming overburden, the mechanical coupling between the overburden and the underlying salt, as well as the kinematics of the moving salt structure. In this presentation, we demonstrate how the horizontal component on the salt motion influences the fracture patterns within the overburden. The modeling shows that purely vertical movement of the salt introduces a mesh of concentric normal faults in the overburden, and that the frequency of radiating faults increases with the amount of lateral movements across the salt-overburden interface. The two end-member fault patterns (concentric vs. radiating) can thus be linked to two different styles of salt movement: i) the vertical rising of a salt indenter and ii) the inflation of a 'salt-balloon' beneath the deformed strata. The results are in accordance with published analogue and theoretical models, as well as natural systems, and the model may - when used appropriately - provide new insight into how the internal dynamics of the salt in a structure controls the generation of fault patterns above the structure. The

  13. Study of Stand-Alone Microgrid under Condition of Faults on Distribution Line

    NASA Astrophysics Data System (ADS)

    Malla, S. G.; Bhende, C. N.

    2014-10-01

    The behavior of stand-alone microgrid is analyzed under the condition of faults on distribution feeders. During fault since battery is not able to maintain dc-link voltage within limit, the resistive dump load control is presented to do so. An inverter control is proposed to maintain balanced voltages at PCC under the unbalanced load condition and to reduce voltage unbalance factor (VUF) at load points. The proposed inverter control also has facility to protect itself from high fault current. Existing maximum power point tracker (MPPT) algorithm is modified to limit the speed of generator during fault. Extensive simulation results using MATLAB/SIMULINK established that the performance of the controllers is quite satisfactory under different fault conditions as well as unbalanced load conditions.

  14. Normal faults geometry and morphometry on Mars

    NASA Astrophysics Data System (ADS)

    Vaz, D. A.; Spagnuolo, M. G.; Silvestro, S.

    2014-04-01

    In this report, we show how normal faults scarps geometry and degradation history can be accessed using high resolution imagery and topography. We show how the initial geometry of the faults can be inferred from faulted craters and we demonstrate how a comparative morphometric analysis of faults scarps can be used to study erosion rates through time on Mars.

  15. 20 CFR 410.561b - Fault.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false Fault. 410.561b Section 410.561b Employees' Benefits SOCIAL SECURITY ADMINISTRATION FEDERAL COAL MINE HEALTH AND SAFETY ACT OF 1969, TITLE IV-BLACK LUNG BENEFITS (1969- ) Payment of Benefits § 410.561b Fault. Fault as used in without fault (see §...

  16. 22 CFR 17.3 - Fault.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 22 Foreign Relations 1 2014-04-01 2014-04-01 false Fault. 17.3 Section 17.3 Foreign Relations...) § 17.3 Fault. A recipient of an overpayment is without fault if he or she performed no act of... agency may have been at fault in initiating an overpayment will not necessarily relieve the...

  17. 22 CFR 17.3 - Fault.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 22 Foreign Relations 1 2011-04-01 2011-04-01 false Fault. 17.3 Section 17.3 Foreign Relations...) § 17.3 Fault. A recipient of an overpayment is without fault if he or she performed no act of... agency may have been at fault in initiating an overpayment will not necessarily relieve the...

  18. 22 CFR 17.3 - Fault.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 22 Foreign Relations 1 2012-04-01 2012-04-01 false Fault. 17.3 Section 17.3 Foreign Relations...) § 17.3 Fault. A recipient of an overpayment is without fault if he or she performed no act of... agency may have been at fault in initiating an overpayment will not necessarily relieve the...

  19. 22 CFR 17.3 - Fault.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Fault. 17.3 Section 17.3 Foreign Relations...) § 17.3 Fault. A recipient of an overpayment is without fault if he or she performed no act of... agency may have been at fault in initiating an overpayment will not necessarily relieve the...

  20. 22 CFR 17.3 - Fault.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 22 Foreign Relations 1 2013-04-01 2013-04-01 false Fault. 17.3 Section 17.3 Foreign Relations...) § 17.3 Fault. A recipient of an overpayment is without fault if he or she performed no act of... agency may have been at fault in initiating an overpayment will not necessarily relieve the...

  1. 20 CFR 410.561b - Fault.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 2 2011-04-01 2011-04-01 false Fault. 410.561b Section 410.561b Employees' Benefits SOCIAL SECURITY ADMINISTRATION FEDERAL COAL MINE HEALTH AND SAFETY ACT OF 1969, TITLE IV-BLACK LUNG BENEFITS (1969- ) Payment of Benefits § 410.561b Fault. Fault as used in without fault (see §...

  2. Lone Tree prospect area, Railroad Valley, Nevada

    SciTech Connect

    Montgomery, S.L.

    1997-02-01

    Continued exploration in the Basin and Range of Nevada has resulted in a number of small field discoveries that confirm widespread oil generation and suggest potential in local prospect settings. One such setting, the Lone Tree prospect area, lies approximately 6.5 mi (10.4 km) southwest of Grant Canyon field in Railroad Valley. Discovered in 1983, this field had produced nearly 20 million bbl of oil by June 1996, mostly from two wells. Oil is entrapped in a slide block of fractured Paleozoic strata juxtaposed against Mississippian source rocks along a detachment fault of probable early Tertiary age. Subsequent exploration has focused on attempts to identify such blocks elsewhere in east-central Nevada, particularly in Railroad and Pine Valleys. Well, gravity, and two-dimensional seismic data suggested the existence of such a block in the Lone Tree area. These data were used as a basis for a three-dimensional seismic survey. Information from this survey identified a prospect at the structural culmination of the interpreted block. The resulting well, the 13-14 Timber Mountain, was commercially unsuccessful but yielded important new data, suggesting a need to revise existing stratigraphy and structural history. In addition, a second prospect, located farther updip, was indicated.

  3. A fault-tolerant clock

    NASA Technical Reports Server (NTRS)

    Daley, W. P.; Mckenna, J. F., Jr.

    1973-01-01

    Computers must operate correctly even though one or more of components have failed. Electronic clock has been designed to be insensitive to occurrence of faults; it is substantial advance over any known clock.

  4. Spontaneous rupture on irregular faults

    NASA Astrophysics Data System (ADS)

    Liu, C.

    2014-12-01

    It is now know (e.g. Robinson et al., 2006) that when ruptures propagate around bends, the rupture velocity decrease. In the extreme case, a large bend in the fault can stop the rupture. We develop a 2-D finite difference method to simulate spontaneous dynamic rupture on irregular faults. This method is based on a second order leap-frog finite difference scheme on a uniform mesh of triangles. A relaxation method is used to generate an irregular fault geometry-conforming mesh from the uniform mesh. Through this numerical coordinate mapping, the elastic wave equations are transformed and solved in a curvilinear coordinate system. Extensive numerical experiments using the linear slip-weakening law will be shown to demonstrate the effect of fault geometry on rupture properties. A long term goal is to simulate the strong ground motion near the vicinity of bends, jogs, etc.

  5. Cell boundary fault detection system

    DOEpatents

    Archer, Charles Jens; Pinnow, Kurt Walter; Ratterman, Joseph D.; Smith, Brian Edward

    2009-05-05

    A method determines a nodal fault along the boundary, or face, of a computing cell. Nodes on adjacent cell boundaries communicate with each other, and the communications are analyzed to determine if a node or connection is faulty.

  6. Weakening inside incipient thrust fault

    NASA Astrophysics Data System (ADS)

    Lacroix, B.; Tesei, T.; Collettini, C.; Oliot, E.

    2013-12-01

    In fold-and-thrust belts, shortening is mainly accommodated by thrust faults that nucleate along décollement levels. Geological and geophysical evidence suggests that these faults might be weak because of a combination of processes such as pressure-solution, phyllosilicates reorientation and delamination, and fluid pressurization. In this study we aim to decipher the processes and the kinetics responsible for weakening of tectonic décollements. We studied the Millaris thrust (Southern Pyrenees): a fault representative of a décollement in its incipient stage. This fault accommodated a total shortening of about 30 meters and is constituted by a 10m thick, intensively foliated phyllonite developed inside a homogeneous marly unit. Detailed chemical and mineralogical analyses have been carried out to characterize the mineralogical change, the chemical transfers and volume change in the fault zone compared to non-deformed parent sediments. We also carried out microstructural analysis on natural and experimentally deformed rocks. Illite and chlorite are the main hydrous minerals. Inside fault zone, illite minerals are oriented along the schistosity whereas chlorite coats the shear surfaces. Mass balance calculations demonstrated a volume loss of up to 50% for calcite inside fault zone (and therefore a relative increase of phyllosilicates contents) because of calcite pressure solution mechanisms. We performed friction experiments in a biaxial deformation apparatus using intact rocks sheared in the in-situ geometry from the Millaris fault and its host sediments. We imposed a range of normal stresses (10 to 50 MPa), sliding velocity steps (3-100 μm/s) and slide-hold slide sequences (3 to 1000 s hold) under saturated conditions. Mechanical results demonstrate that both fault rocks and parent sediments are weaker than average geological materials (friction μ<<0.6) and have velocity-strengthening behavior because of the presence of phyllosilicate horizons. Fault rocks are

  7. Seismic fault zone trapped noise

    NASA Astrophysics Data System (ADS)

    Hillers, G.; Campillo, M.; Ben-Zion, Y.; Roux, P.

    2014-07-01

    Systematic velocity contrasts across and within fault zones can lead to head and trapped waves that provide direct information on structural units that are important for many aspects of earthquake and fault mechanics. Here we construct trapped waves from the scattered seismic wavefield recorded by a fault zone array. The frequency-dependent interaction between the ambient wavefield and the fault zone environment is studied using properties of the noise correlation field. A critical frequency fc ≈ 0.5 Hz defines a threshold above which the in-fault scattered wavefield has increased isotropy and coherency compared to the ambient noise. The increased randomization of in-fault propagation directions produces a wavefield that is trapped in a waveguide/cavity-like structure associated with the low-velocity damage zone. Dense spatial sampling allows the resolution of a near-field focal spot, which emerges from the superposition of a collapsing, time reversed wavefront. The shape of the focal spot depends on local medium properties, and a focal spot-based fault normal distribution of wave speeds indicates a ˜50% velocity reduction consistent with estimates from a far-field travel time inversion. The arrival time pattern of a synthetic correlation field can be tuned to match properties of an observed pattern, providing a noise-based imaging tool that can complement analyses of trapped ballistic waves. The results can have wide applicability for investigating the internal properties of fault damage zones, because mechanisms controlling the emergence of trapped noise have less limitations compared to trapped ballistic waves.

  8. Hardware Fault Simulator for Microprocessors

    NASA Technical Reports Server (NTRS)

    Hess, L. M.; Timoc, C. C.

    1983-01-01

    Breadboarded circuit is faster and more thorough than software simulator. Elementary fault simulator for AND gate uses three gates and shaft register to simulate stuck-at-one or stuck-at-zero conditions at inputs and output. Experimental results showed hardware fault simulator for microprocessor gave faster results than software simulator, by two orders of magnitude, with one test being applied every 4 microseconds.

  9. Fault-tolerant rotary actuator

    DOEpatents

    Tesar, Delbert

    2006-10-17

    A fault-tolerant actuator module, in a single containment shell, containing two actuator subsystems that are either asymmetrically or symmetrically laid out is provided. Fault tolerance in the actuators of the present invention is achieved by the employment of dual sets of equal resources. Dual resources are integrated into single modules, with each having the external appearance and functionality of a single set of resources.

  10. A fault-tolerant one-way quantum computer

    SciTech Connect

    Raussendorf, R. . E-mail: rraussendorf@perimeterinstitute.ca; Harrington, J.; Goyal, K.

    2006-09-15

    We describe a fault-tolerant one-way quantum computer on cluster states in three dimensions. The presented scheme uses methods of topological error correction resulting from a link between cluster states and surface codes. The error threshold is 1.4% for local depolarizing error and 0.11% for each source in an error model with preparation-, gate-, storage-, and measurement errors.

  11. Heat or humidity, which triggers tree phenology?

    NASA Astrophysics Data System (ADS)

    Laube, Julia; Sparks, Tim H.; Estrella, Nicole; Menzel, Annette

    2014-05-01

    An overwhelming number of studies confirm that temperature is the main driver for phenological events such as leafing, flowering or fruit ripening, which was first discovered by Réaumur in 1735. Since then, several additional factors which influence onset dates have been identified, such as length of the chilling period, photoperiod, temperature of the previous autumn, nutrient availability, precipitation, sunshine and genetics (local adaptations). Those are supposed to capture some of the remaining, unexplained variance. But our ability to predict onset dates remains imprecise, and our understanding of how plants sense temperature is vague. From a climate chamber experiment on cuttings of 9 tree species we present evidence that air humidity is an important, but previously overlooked, factor influencing the spring phenology of trees. The date of median leaf unfolding was 7 days earlier at 90% relative humidity compared to 40% relative humidity. A second experiment with cuttings shows that water uptake by above-ground tissue might be involved in the phenological development of trees. A third climate chamber experiment suggests that winter dormancy and chilling might be linked to dehydration processes. Analysis of climate data from several meteorological stations across Germany proves that the increase in air humidity after winter is a reliable signal of spring, i.e. less variable or susceptible to reversal compared to temperature. Finally, an analysis of long-term phenology data reveals that absolute air humidity can even be used as a reliable predictor of leafing dates. Current experimental work tries to elucidate the involved foliar uptake processes by using deuterium oxide marked water and Raman spectroscopy. We propose a new framework, wherein plants' chilling requirements and frost tolerance might be attributed to desiccation processes, while spring development is linked to re-humidification of plant tissue. The influence of air humidity on the spring

  12. Building Your Own Abseil Tree.

    ERIC Educational Resources Information Center

    Barnett, Des

    2002-01-01

    The foot and mouth crisis forced many British outdoor education providers to develop new options. The construction of an abseiling tree is described, which requires a living, healthy, straight tree with a trunk thick enough to remain stable under load and with few branches in the lower 15-20 meters. An abseil tree code of practice is presented.…

  13. The Re-Think Tree.

    ERIC Educational Resources Information Center

    Gear, Jim

    1993-01-01

    The Re-Think Tree is a simple framework to help individuals assess and improve their behaviors related to environmental issues. The branches of the tree in order of priority are refuse, reduce, re-use, and recycle. Roots of the tree include such things as public opinion, education, and watchdog groups. (KS)

  14. Our Air: Unfit for Trees.

    ERIC Educational Resources Information Center

    Dochinger, Leon S.

    To help urban, suburban, and rural tree owners know about air pollution's effects on trees and their tolerance and intolerance to pollutants, the USDA Forest Service has prepared this booklet. It answers the following questions about atmospheric pollution: Where does it come from? What can it do to trees? and What can we do about it? In addition,…

  15. The Tree Worker's Manual. [Revised.

    ERIC Educational Resources Information Center

    Lilly, S. J.

    This manual acquaints readers with the general operations of the tree care industry. The manual covers subjects important to a tree worker and serves as a training aid for workers at the entry level as tree care professionals. Each chapter begins with a set of objectives and may include figures, tables, and photographs. Ten chapters are included:…

  16. The Hopi Fruit Tree Book.

    ERIC Educational Resources Information Center

    Nyhuis, Jane

    Referring as often as possible to traditional Hopi practices and to materials readily available on the reservation, the illustrated booklet provides information on the care and maintenance of young fruit trees. An introduction to fruit trees explains the special characteristics of new trees, e.g., grafting, planting pits, and watering. The…

  17. Building up rhetorical structure trees

    SciTech Connect

    Marcu, D.

    1996-12-31

    I use the distinction between the nuclei and the satellites that pertain to discourse relations to introduce a compositionality criterion for discourse trees. I provide a first-order formalization of rhetorical structure trees and, on its basis, I derive an algorithm that constructs all the valid rhetorical trees that can be associated with a given discourse.

  18. New Life From Dead Trees

    ERIC Educational Resources Information Center

    DeGraaf, Richard M.

    1978-01-01

    There are numerous bird species that will nest only in dead or dying trees. Current forestry practices include clearing forests of these snags, or dead trees. This practice is driving many species out of the forests. An illustrated example of bird succession in and on a tree is given. (MA)

  19. Parameterization of tree-ring growth in Siberia

    NASA Astrophysics Data System (ADS)

    Tychkov, Ivan; Popkova, Margarita; Shishov, Vladimir; Vaganov, Eugene

    2016-04-01

    No doubt, climate-tree growth relationship is an one of the useful and interesting subject of studying in dendrochronology. It provides an information of tree growth dependency on climatic environment, but also, gives information about growth conditions and whole tree-ring growth process for long-term periods. New parameterization approach of the Vaganov-Shashkin process-based model (VS-model) is developed to described critical process linking climate variables with tree-ring formation. The approach (co-called VS-Oscilloscope) is presented as a computer software with graphical interface. As most process-based tree-ring models, VS-model's initial purpose is to describe variability of tree-ring radial growth due to variability of climatic factors, but also to determinate principal factors limiting tree-ring growth. The principal factors affecting on the growth rate of cambial cells in the VS-model are temperature, day light and soil moisture. Detailed testing of VS-Oscilloscope was done for semi-arid area of southern Siberia (Khakassian region). Significant correlations between initial tree-ring chronologies and simulated tree-ring growth curves were obtained. Direct natural observations confirm obtained simulation results including unique growth characteristic for semi-arid habitats. New results concerning formation of wide and narrow rings under different climate conditions are considered. By itself the new parameterization approach (VS-oscilloscope) is an useful instrument for better understanding of various processes in tree-ring formation. The work was supported by the Russian Science Foundation (RSF # 14-14-00219).

  20. Software Fault Tolerance: A Tutorial

    NASA Technical Reports Server (NTRS)

    Torres-Pomales, Wilfredo

    2000-01-01

    Because of our present inability to produce error-free software, software fault tolerance is and will continue to be an important consideration in software systems. The root cause of software design errors is the complexity of the systems. Compounding the problems in building correct software is the difficulty in assessing the correctness of software for highly complex systems. After a brief overview of the software development processes, we note how hard-to-detect design faults are likely to be introduced during development and how software faults tend to be state-dependent and activated by particular input sequences. Although component reliability is an important quality measure for system level analysis, software reliability is hard to characterize and the use of post-verification reliability estimates remains a controversial issue. For some applications software safety is more important than reliability, and fault tolerance techniques used in those applications are aimed at preventing catastrophes. Single version software fault tolerance techniques discussed include system structuring and closure, atomic actions, inline fault detection, exception handling, and others. Multiversion techniques are based on the assumption that software built differently should fail differently and thus, if one of the redundant versions fails, it is expected that at least one of the other versions will provide an acceptable output. Recovery blocks, N-version programming, and other multiversion techniques are reviewed.