Sample records for linking species physiology

  1. Mechanistic species distribution modelling as a link between physiology and conservation.

    PubMed

    Evans, Tyler G; Diamond, Sarah E; Kelly, Morgan W

    2015-01-01

    Climate change conservation planning relies heavily on correlative species distribution models that estimate future areas of occupancy based on environmental conditions encountered in present-day ranges. The approach benefits from rapid assessment of vulnerability over a large number of organisms, but can have poor predictive power when transposed to novel environments and reveals little in the way of causal mechanisms that define changes in species distribution or abundance. Having conservation planning rely largely on this single approach also increases the risk of policy failure. Mechanistic models that are parameterized with physiological information are expected to be more robust when extrapolating distributions to future environmental conditions and can identify physiological processes that set range boundaries. Implementation of mechanistic species distribution models requires knowledge of how environmental change influences physiological performance, and because this information is currently restricted to a comparatively small number of well-studied organisms, use of mechanistic modelling in the context of climate change conservation is limited. In this review, we propose that the need to develop mechanistic models that incorporate physiological data presents an opportunity for physiologists to contribute more directly to climate change conservation and advance the field of conservation physiology. We begin by describing the prevalence of species distribution modelling in climate change conservation, highlighting the benefits and drawbacks of both mechanistic and correlative approaches. Next, we emphasize the need to expand mechanistic models and discuss potential metrics of physiological performance suitable for integration into mechanistic models. We conclude by summarizing other factors, such as the need to consider demography, limiting broader application of mechanistic models in climate change conservation. Ideally, modellers, physiologists and

  2. Remote sensing of fire severity: linking post-fire reflectance data with physiological responses in two western conifer species

    NASA Astrophysics Data System (ADS)

    Sparks, A. M.; Smith, A. M.; Kolden, C.; Apostol, K. G.; Boschetti, L.

    2014-12-01

    Fire is a common disturbance in forested ecosystems in the western U.S. and can be responsible for long-term impacts on vegetation and soil. An improved understanding of how ecosystems recover after fire is necessary so that land managers can plan for and mitigate the effects of these disturbances. Although several studies have attempted to link fire intensity with severity, direct links between spectral indices of severity and key physiological changes in vegetation are not well understood. We conducted an assessment of how two western conifer species respond to four fire radiative energy treatments, with spectra acquired pre- and up to a month post-burn. After transforming the spectral data into Landsat 8 equivalent reflectance, burn severity indices commonly used in the remote sensing community were compared to concurrent physiological measurements including gas exchange and photosynthetic rate. Preliminary results indicate significant relationships between several fire severity indices and physiological responses measured in the conifer seedlings.

  3. Impact of UV-B exposure on amphibian embryos: linking species physiology and oviposition behaviour

    PubMed Central

    Palen, Wendy J; Williamson, Craig E; Clauser, Aaron A; Schindler, Daniel E

    2005-01-01

    Increasing ultraviolet-B radiation (UV-B) has recently captured the attention of ecologists as a key environmental stressor. Certain species may be particularly vulnerable as a result of either high natural exposure to UV-B or limited physiological capacity to withstand it. UV-B sensitivity has been examined at the cellular and individual level for a wide variety of taxa, but estimates of exposure to UV-B in natural systems are lacking and predictions of large-scale impacts are therefore limited. Here, we combine data on the physiological sensitivity to UV-B and patterns of field exposure across sites for embryos of several well-studied US Pacific Northwest amphibian species. We find substantial differences among species' physiological abilities to withstand UV-B and in the level of UV-B exposure of embryos in the field. More specifically, we find that species with the highest physiological sensitivity to UV-B are those with the lowest field exposures as a function of the location of embryos and the UV-B attenuation properties of water at each site. These results also suggest that conclusions made about species' vulnerability to UV-B in the absence of information on field exposures may often be misleading. PMID:16024386

  4. Physiological and Growth Characteristics of Shewanella Species

    DTIC Science & Technology

    2016-05-01

    AFCEC-CX-TY-TR-2016-0016 PHYSIOLOGICAL AND GROWTH CHARACTERISTICS OF SHEWANELLA SPECIES Karen Farrington, D. Matthew Eby, Susan Sizemore...Technical Report 01 March 2012 - 01 March 2014 Physiological and growth characteristics of Shewanella species FA4819-11-C-0003 Karen Farrington (1...unconventional operating temperatures. Secondly, the unusual growth characteristics of another Shewanella sp., Shewanella japonica, were investigated

  5. The role thermal physiology plays in species invasion

    PubMed Central

    Kelley, Amanda L.

    2014-01-01

    The characterization of physiological phenotypes that may play a part in the establishment of non-native species can broaden our understanding about the ecology of species invasion. Here, an assessment was carried out by comparing the responses of invasive and native species to thermal stress. The goal was to identify physiological patterns that facilitate invasion success and to investigate whether these traits are widespread among invasive ectotherms. Four hypotheses were generated and tested using a review of the literature to determine whether they could be supported across taxonomically diverse invasive organisms. The four hypotheses are as follows: (i) broad geographical temperature tolerances (thermal width) confer a higher upper thermal tolerance threshold for invasive rather than native species; (ii) the upper thermal extreme experienced in nature is more highly correlated with upper thermal tolerance threshold for invasive vs. native animals; (iii) protein chaperone expression—a cellular mechanism that underlies an organism's thermal tolerance threshold—is greater in invasive organisms than in native ones; and (iv) acclimation to higher temperatures can promote a greater range of thermal tolerance for invasive compared with native species. Each hypothesis was supported by a meta-analysis of the invasive/thermal physiology literature, providing further evidence that physiology plays a substantial role in the establishment of invasive ectotherms. PMID:27293666

  6. Physiological Differentiation within a Single-Species Biofilm Fueled by Serpentinization

    PubMed Central

    Brazelton, William J.; Mehta, Mausmi P.; Kelley, Deborah S.; Baross, John A.

    2011-01-01

    ABSTRACT Carbonate chimneys at the Lost City hydrothermal field are coated in biofilms dominated by a single phylotype of archaea known as Lost City Methanosarcinales. In this study, we have detected surprising physiological complexity in single-species biofilms, which is typically indicative of multispecies biofilm communities. Multiple cell morphologies were visible within the biofilms by transmission electron microscopy, and some cells contained intracellular membranes that may facilitate methane oxidation. Both methane production and oxidation were detected at 70 to 80°C and pH 9 to 10 in samples containing the single-species biofilms. Both processes were stimulated by the presence of hydrogen (H2), indicating that methane production and oxidation are part of a syntrophic interaction. Metagenomic data included a sequence encoding AMP-forming acetyl coenzyme A synthetase, indicating that acetate may play a role in the methane-cycling syntrophy. A wide range of nitrogen fixation genes were also identified, many of which were likely acquired via lateral gene transfer (LGT). Our results indicate that cells within these single-species biofilms may have differentiated into multiple physiological roles to form multicellular communities linked by metabolic interactions and LGT. Communities similar to these Lost City biofilms are likely to have existed early in the evolution of life, and we discuss how the multicellular characteristics of ancient hydrogen-fueled biofilm communities could have stimulated ecological diversification, as well as unity of biochemistry, during the earliest stages of cellular evolution. PMID:21791580

  7. Physiological differentiation within a single-species biofilm fueled by serpentinization.

    PubMed

    Brazelton, William J; Mehta, Mausmi P; Kelley, Deborah S; Baross, John A

    2011-01-01

    Carbonate chimneys at the Lost City hydrothermal field are coated in biofilms dominated by a single phylotype of archaea known as Lost City Methanosarcinales. In this study, we have detected surprising physiological complexity in single-species biofilms, which is typically indicative of multispecies biofilm communities. Multiple cell morphologies were visible within the biofilms by transmission electron microscopy, and some cells contained intracellular membranes that may facilitate methane oxidation. Both methane production and oxidation were detected at 70 to 80°C and pH 9 to 10 in samples containing the single-species biofilms. Both processes were stimulated by the presence of hydrogen (H(2)), indicating that methane production and oxidation are part of a syntrophic interaction. Metagenomic data included a sequence encoding AMP-forming acetyl coenzyme A synthetase, indicating that acetate may play a role in the methane-cycling syntrophy. A wide range of nitrogen fixation genes were also identified, many of which were likely acquired via lateral gene transfer (LGT). Our results indicate that cells within these single-species biofilms may have differentiated into multiple physiological roles to form multicellular communities linked by metabolic interactions and LGT. Communities similar to these Lost City biofilms are likely to have existed early in the evolution of life, and we discuss how the multicellular characteristics of ancient hydrogen-fueled biofilm communities could have stimulated ecological diversification, as well as unity of biochemistry, during the earliest stages of cellular evolution. Our previous work at the Lost City hydrothermal field has shown that its carbonate chimneys host microbial biofilms dominated by a single uncultivated "species" of archaea. In this paper, we integrate evidence from these previous studies with new data on the metabolic activity and cellular morphology of these archaeal biofilms. We conclude that the archaeal biofilm

  8. Linking hard and soft traits: Physiology, morphology and anatomy interact to determine habitat affinities to soil water availability in herbaceous dicots.

    PubMed

    Belluau, Michaël; Shipley, Bill

    2018-01-01

    Species' habitat affinities along environmental gradients should be determined by a combination of physiological (hard) and morpho-anatomical (soft) traits. Using a gradient of soil water availability, we address three questions: How well can we predict habitat affinities from hard traits, from soft traits, and from a combination of the two? How well can we predict species' physiological responses to drought (hard traits) from their soft traits? Can we model a causal sequence as soft traits → hard traits → species distributions? We chose 25 species of herbaceous dicots whose affinities for soil moisture have already been linked to 5 physiological traits (stomatal conductance and net photosynthesis measured at soil field capacity, water use efficiency, stomatal conductance and soil water potential measured when leaves begin to wilt). Under controlled conditions in soils at field capacity, we measured five soft traits (leaf dry matter content, specific leaf area, leaf nitrogen content, stomatal area, specific root length). Soft traits alone were poor predictors (R2 = 0.129) while hard traits explained 48% of species habitat affinities. Moreover, hard traits were significantly related to combinations of soft traits. From a priori biological knowledge and hypothesized ecological links we built a path model showing a sequential pattern soft traits → hard traits → species distributions and accounting for 59.6% (p = 0.782) of habitat wetness. Both direct and indirect causal relationships existed between soft traits, hard traits and species' habitat preferences. The poor predictive abilities of soft traits alone were due to the existence of antagonistic and synergistic direct and indirect effects of soft traits on habitat preferences mediated by the hard traits. To obtain a more realistic model applicable to a population level, it has to be tested in an experiment including species competition for water supply.

  9. Ocean warming and acidification: Unifying physiological principles linking organism response to ecosystem change?

    NASA Astrophysics Data System (ADS)

    Pörtner, H. O.; Bock, C.; Lannig, G.; Lucassen, M.; Mark, F. C.; Stark, A.; Walther, K.; Wittmann, A.

    2011-12-01

    The effects of ocean warming and acidification on individual species of marine ectothermic animals may be based on some common denominators, i.e. physiological responses that can be assumed to reflect unifying principles, common to all marine animal phyla. Identification of these principles requires studies, which reach beyond the species-specific response, and consider multiple stressors, for example temperature, CO2 or extreme hypoxia. Analyses of response and acclimation include functional traits of physiological performance on various levels of biological organisation, from changes in the transcriptome to patterns of acid-base regulation and whole animal thermal tolerance. Conclusions are substantiated by comparisons of species and phyla from temperate, Arctic and Antarctic ecosystems and also benefit from the interpretation of paleo-patterns based on the use of a unifying physiological concept, suitable to integrate relevant environmental factors into a more comprehensive picture. Studying the differential specialization of animals on climate regimes and their sensitivity to climate leads to improved understanding of ongoing and past ecosystem change and should then support more reliable projections of future scenarios. For example, accumulating CO2 causes disturbances in acid-base status. Resilience to ocean acidification may be reflected in the capacity to compensate for these disturbances or their secondary effects. Ion and pH regulation comprise thermally sensitive active and passive transfer processes across membranes. Specific responses of ion transporter genes and their products to temperature and CO2 were found in fish, crustaceans and bivalves. However, compensation may cause unfavourable shifts in energy budget and beyond that hamper cellular and mitochondrial metabolism, which are directly linked to the animal's aerobic performance window. In crabs, oysters and, possibly, fishes, a narrowing of the thermal window is caused by moderate increases in

  10. Link-N: The missing link towards intervertebral disc repair is species-specific

    PubMed Central

    Bach, Frances C.; Laagland, Lisanne T.; Grant, Michael P.; Creemers, Laura B.; Ito, Keita; Meij, Björn P.; Mwale, Fackson

    2017-01-01

    Introduction Degeneration of the intervertebral disc (IVD) is a frequent cause for back pain in humans and dogs. Link-N stabilizes proteoglycan aggregates in cartilaginous tissues and exerts growth factor-like effects. The human variant of Link-N facilitates IVD regeneration in several species in vitro by inducing Smad1 signaling, but it is not clear whether this is species specific. Dogs with IVD disease could possibly benefit from Link-N treatment, but Link-N has not been tested on canine IVD cells. If Link-N appears to be effective in canines, this would facilitate translation of Link-N into the clinic using the dog as an in vivo large animal model for human IVD degeneration. Materials and methods This study’s objective was to determine the effect of the human and canine variant of Link-N and short (s) Link-N on canine chondrocyte-like cells (CLCs) and compare this to those on already studied species, i.e. human and bovine CLCs. Extracellular matrix (ECM) production was determined by measuring glycosaminoglycan (GAG) content and histological evaluation. Additionally, the micro-aggregates’ DNA content was measured. Phosphorylated (p) Smad1 and -2 levels were determined using ELISA. Results Human (s)Link-N induced GAG deposition in human and bovine CLCs, as expected. In contrast, canine (s)Link-N did not affect ECM production in human CLCs, while it mainly induced collagen type I and II deposition in bovine CLCs. In canine CLCs, both canine and human (s)Link-N induced negligible GAG deposition. Surprisingly, human and canine (s)Link-N did not induce Smad signaling in human and bovine CLCs. Human and canine (s)Link-N only mildly increased pSmad1 and Smad2 levels in canine CLCs. Conclusions Human and canine (s)Link-N exerted species-specific effects on CLCs from early degenerated IVDs. Both variants, however, lacked the potency as canine IVD regeneration agent. While these studies demonstrate the challenges of translational studies in large animal models, (s)Link

  11. Link-N: The missing link towards intervertebral disc repair is species-specific.

    PubMed

    Bach, Frances C; Laagland, Lisanne T; Grant, Michael P; Creemers, Laura B; Ito, Keita; Meij, Björn P; Mwale, Fackson; Tryfonidou, Marianna A

    2017-01-01

    Degeneration of the intervertebral disc (IVD) is a frequent cause for back pain in humans and dogs. Link-N stabilizes proteoglycan aggregates in cartilaginous tissues and exerts growth factor-like effects. The human variant of Link-N facilitates IVD regeneration in several species in vitro by inducing Smad1 signaling, but it is not clear whether this is species specific. Dogs with IVD disease could possibly benefit from Link-N treatment, but Link-N has not been tested on canine IVD cells. If Link-N appears to be effective in canines, this would facilitate translation of Link-N into the clinic using the dog as an in vivo large animal model for human IVD degeneration. This study's objective was to determine the effect of the human and canine variant of Link-N and short (s) Link-N on canine chondrocyte-like cells (CLCs) and compare this to those on already studied species, i.e. human and bovine CLCs. Extracellular matrix (ECM) production was determined by measuring glycosaminoglycan (GAG) content and histological evaluation. Additionally, the micro-aggregates' DNA content was measured. Phosphorylated (p) Smad1 and -2 levels were determined using ELISA. Human (s)Link-N induced GAG deposition in human and bovine CLCs, as expected. In contrast, canine (s)Link-N did not affect ECM production in human CLCs, while it mainly induced collagen type I and II deposition in bovine CLCs. In canine CLCs, both canine and human (s)Link-N induced negligible GAG deposition. Surprisingly, human and canine (s)Link-N did not induce Smad signaling in human and bovine CLCs. Human and canine (s)Link-N only mildly increased pSmad1 and Smad2 levels in canine CLCs. Human and canine (s)Link-N exerted species-specific effects on CLCs from early degenerated IVDs. Both variants, however, lacked the potency as canine IVD regeneration agent. While these studies demonstrate the challenges of translational studies in large animal models, (s)Link-N still holds a regenerative potential for humans.

  12. Integrating physiological threshold experiments with climate modeling to project mangrove species' range expansion.

    PubMed

    Cavanaugh, Kyle C; Parker, John D; Cook-Patton, Susan C; Feller, Ilka C; Williams, A Park; Kellner, James R

    2015-05-01

    Predictions of climate-related shifts in species ranges have largely been based on correlative models. Due to limitations of these models, there is a need for more integration of experimental approaches when studying impacts of climate change on species distributions. Here, we used controlled experiments to identify physiological thresholds that control poleward range limits of three species of mangroves found in North America. We found that all three species exhibited a threshold response to extreme cold, but freeze tolerance thresholds varied among species. From these experiments, we developed a climate metric, freeze degree days (FDD), which incorporates both the intensity and the frequency of freezes. When included in distribution models, FDD accurately predicted mangrove presence/absence. Using 28 years of satellite imagery, we linked FDD to observed changes in mangrove abundance in Florida, further exemplifying the importance of extreme cold. We then used downscaled climate projections of FDD to project that these range limits will move northward by 2.2-3.2 km yr(-1) over the next 50 years. © 2014 John Wiley & Sons Ltd.

  13. The AquaDEB project (phase I): Analysing the physiological flexibility of aquatic species and connecting physiological diversity to ecological and evolutionary processes by using Dynamic Energy Budgets

    NASA Astrophysics Data System (ADS)

    Alunno-Bruscia, Marianne; van der Veer, Henk W.; Kooijman, Sebastiaan A. L. M.

    2009-08-01

    The European Research Project AquaDEB (2007-2011, http://www.ifremer.fr/aquadeb/) is joining skills and expertise of some French and Dutch research institutes and universities to analyse the physiological flexibility of aquatic organisms and to link it to ecological and evolutionary processes within a common theoretical framework for quantitative bioenergetics [Kooijman, S.A.L.M., 2000. Dynamic energy and mass budgets in biological systems. Cambridge University Press, Cambridge]. The main scientific objectives in AquaDEB are i) to study and compare the sensitivity of aquatic species (mainly molluscs and fish) to environmental variability of natural or human origin, and ii) to evaluate the related consequences at different biological levels (individual, population, ecosystem) and temporal scales (life cycle, population dynamics, evolution). At mid-term life, the AquaDEB collaboration has already yielded interesting results by quantifying bio-energetic processes of various aquatic species (e.g. molluscs, fish, crustaceans, algae) with a single mathematical framework. It has also allowed to federate scientists with different backgrounds, e.g. mathematics, microbiology, ecology, chemistry, and working in different fields, e.g. aquaculture, fisheries, ecology, agronomy, ecotoxicology, climate change. For the two coming years, the focus of the AquaDEB collaboration will be in priority: (i) to compare energetic and physiological strategies among species through the DEB parameter values and to identify the factors responsible for any differences in bioenergetics and physiology; and to compare dynamic (DEB) versus static (SEB) energy models to study the physiological performance of aquatic species; (ii) to consider different scenarios of environmental disruption (excess of nutrients, diffuse or massive pollution, exploitation by man, climate change) to forecast effects on growth, reproduction and survival of key species; (iii) to scale up the models for a few species from

  14. The physiological diversity and similarity of ten Quercus species

    Treesearch

    Shi-Jean S. Sung; M.N. Angelov; R.R. Doong; W.R. Harms; Paul P. Kormanik; C.C. Black

    1994-01-01

    Based on anatomical, photosynthetic, and biochemical data, the range of physiological differences and similarities was defined for ten Quercus species. There were no correlations between species' site adaptability, leaf anatomy and photosynthetic rate (A). It is concluded from these data that each oak species must be treated individually when incorporated into...

  15. Principles for integrating reactive species into in vivo biological processes: Examples from exercise physiology.

    PubMed

    Margaritelis, Nikos V; Cobley, James N; Paschalis, Vassilis; Veskoukis, Aristidis S; Theodorou, Anastasios A; Kyparos, Antonios; Nikolaidis, Michalis G

    2016-04-01

    The equivocal role of reactive species and redox signaling in exercise responses and adaptations is an example clearly showing the inadequacy of current redox biology research to shed light on fundamental biological processes in vivo. Part of the answer probably relies on the extreme complexity of the in vivo redox biology and the limitations of the currently applied methodological and experimental tools. We propose six fundamental principles that should be considered in future studies to mechanistically link reactive species production to exercise responses or adaptations: 1) identify and quantify the reactive species, 2) determine the potential signaling properties of the reactive species, 3) detect the sources of reactive species, 4) locate the domain modified and verify the (ir)reversibility of post-translational modifications, 5) establish causality between redox and physiological measurements, 6) use selective and targeted antioxidants. Fulfilling these principles requires an idealized human experimental setting, which is certainly a utopia. Thus, researchers should choose to satisfy those principles, which, based on scientific evidence, are most critical for their specific research question. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. A global database of sap flow measurements (SAPFLUXNET) to link plant and ecosystem physiology

    NASA Astrophysics Data System (ADS)

    Poyatos, Rafael; Granda, Víctor; Flo, Víctor; Molowny-Horas, Roberto; Mencuccini, Maurizio; Oren, Ram; Katul, Gabriel; Mahecha, Miguel; Steppe, Kathy; Martínez-Vilalta, Jordi

    2017-04-01

    Regional and global networks of ecosystem CO2 and water flux monitoring have dramatically increased our understanding of ecosystem functioning in the last 20 years. More recently, analyses of ecosystem-level fluxes have successfully incorporated data streams at coarser (remote sensing) and finer (plant traits) organisational scales. However, there are few data sources that capture the diel to seasonal dynamics of whole-plant physiology and that can provide a link between organism- and ecosystem-level function. Sap flow measured in plant stems reveals the temporal patterns in plant water transport, as mediated by stomatal regulation and hydraulic architecture. The widespread use of thermometric methods of sap flow measurement since the 1990s has resulted in numerous data sets for hundreds of species and sites worldwide, but these data have remained fragmentary and generally unavailable for syntheses of regional to global scope. We are compiling the first global database of sub-daily sap flow measurements in individual plants (SAPFLUXNET), aimed at unravelling the environmental and biotic drivers of plant transpiration regulation globally. I will present the SAPFLUXNET data infrastructure and workflow, which is built upon flexible, open-source computing tools within the R environment (dedicated R packages and classes, interactive documents and apps with Rmarkdown and Shiny). Data collection started in mid-2016, we have already incorporated > 50 datasets representing > 40 species and > 350 individual plants, globally distributed, and the number of contributed data sets is increasing rapidly. I will provide a general overview of the distribution of available data sets according to climate, measurement method, species, functional groups and plant size attributes. In parallel to the sap flow data compilation, we have also collated published results from calibrations of sap flow methods, to provide a first quantification on the variability associated with different sap

  17. Linking Wildfire and Climate as Drivers of Plant Species and Community-level Change

    NASA Astrophysics Data System (ADS)

    Newingham, B. A.; Hudak, A. T.; Bright, B. C.

    2015-12-01

    Plant species distributions and community shifts after fire are affected by burn severity, elevation, aspect, and climate. However, little empirical data exists on long-term (decadal) recovery after fire across these interacting factors, limiting understanding of fire regime characteristics and climate in post-fire community trajectories. We examined plant species and community responses a decade after fire across five fires in ponderosa pine, dry mixed coniferous, and moist mixed coniferous forests across the western USA. Using field data, we determined changes in plant communities one and ten years post-fire across gradients of burn severity, elevation, and aspect. Existing published work has shown that plant species distributions can be accurately predicted from physiologically relevant climate variables using non-parametric Random Forests models; such models have also been linked to projected climate profiles in 2030, 2060, and 2090 generated from three commonly used general circulation models (GCMs). We explore the possibility that fire and climate are coupled drivers affecting plant species distributions. Climate change may not manifest as a slow shift in plant species distributions, but as sudden, localized events tied to changing fire and other disturbance regimes.

  18. Soil type and species diversity influence selection on physiology in Panicum virgatum

    USDA-ARS?s Scientific Manuscript database

    Species diversity influences the productivity and stability of plant communities, but its effect on the evolution of species within those communities is poorly understood. In this study, we tested whether species diversity and soil type influence selection on physiology in switchgrass (Panicum virga...

  19. No evidence for parasitism-linked changes in immune function or oxidative physiology over the annual cycle of an avian species.

    PubMed

    Pap, Péter L; Sesarman, Alina; Vágási, Csongor I; Buehler, Deborah M; Pătraş, Laura; Versteegh, Maaike A; Banciu, Manuela

    2014-01-01

    Temporally changing environmental conditions occur in most parts of the world and can exert strong pressure on the immune defense of organisms. Seasonality may result in changes in physiological traits over the year, and such changes may be essential for the optimization of defense against infections. Evidence from field and laboratory studies suggest the existence of links between environmental conditions, such as infection risk, and the ability of animals to mount an immune response or to overcome infections; however, the importance of parasites in mediating seasonal change in immune defense is still debated. In this study, we test the hypothesis that seasonal change in immune function and connected physiological traits is related to parasite infection. We sampled captive house sparrows (Passer domesticus) once every 2 mo over 14 mo and compared the annual variation in 12 measures of condition, immune function, antioxidant status, and oxidative damage among birds naturally infested with coccidians or medicated against these parasites. We found significant variation in 10 of 12 traits over the year. However, we found little support for parasite-mediated change in immune function and oxidative status in captive house sparrows. Of the 12 measures, only one was slightly affected by parasite treatment. In support of the absence of any effect of coccidians on the annual profile of the condition and physiological traits, we found no consistent relationships between the intensity of infestation and these response variables over the year. Our results show that chronic coccidian infections have limited effect on the seasonal changing of physiological traits and that the patterns of these measures are probably more affected by acute infection and/or virulent parasite strains.

  20. Contrasting physiological responses of six eucalyptus species to water deficit.

    PubMed

    Merchant, Andrew; Callister, Andrew; Arndt, Stefan; Tausz, Michael; Adams, Mark

    2007-12-01

    The genus Eucalyptus occupies a broad ecological range, forming the dominant canopy in many Australian ecosystems. Many Eucalyptus species are renowned for tolerance to aridity, yet inter-specific variation in physiological traits, particularly water relations parameters, contributing to this tolerance is weakly characterized only in a limited taxonomic range. The study tests the hypothesis that differences in the distribution of Eucalyptus species is related to cellular water relations. Six eucalypt species originating from (1) contrasting environments for aridity and (2) diverse taxonomic groups were grown in pots and subjected to the effects of water deficit over a 10-week period. Water potential, relative water content and osmotic parameters were analysed by using pressure-volume curves and related to gas exchange, photosynthesis and biomass. The six eucalypt species differed in response to water deficit. Most significantly, species from high rainfall environments (E. obliqua, E. rubida) and the phreatophyte (E. camaldulensis) had lower osmotic potential under water deficit via accumulation of cellular osmotica (osmotic adjustment). In contrast, species from low rainfall environments (E. cladocalyx, E. polyanthemos and E. tricarpa) had lower osmotic potential through a combination of both constitutive solutes and osmotic adjustment, combined with reductions in leaf water content. It is demonstrated that osmotic adjustment is a common response to water deficit in six eucalypt species. In addition, significant inter-specific variation in osmotic potential correlates with species distribution in environments where water is scarce. This provides a physiological explanation for aridity tolerance and emphasizes the need to identify osmolytes that accumulate under stress in the genus Eucalyptus.

  1. Transcription termination factor Rho: a hub linking diverse physiological processes in bacteria.

    PubMed

    Grylak-Mielnicka, Aleksandra; Bidnenko, Vladimir; Bardowski, Jacek; Bidnenko, Elena

    2016-03-01

    Factor-dependent termination of transcription in bacteria relies on the activity of a specific RNA helicase, the termination factor Rho. Rho is nearly ubiquitous in bacteria, but the extent to which its physiological functions are conserved throughout the different phyla remains unknown. Most of our current knowledge concerning the mechanism of Rho's activity and its physiological roles comes from the model micro-organism Escherichia coli, where Rho is essential and involved in the control of several important biological processes. However, the rather comprehensive knowledge about the general mechanisms of action and activities of Rho based on the E. coli paradigm cannot be directly extrapolated to other bacteria. Recent studies performed in different species favour the view that Rho-dependent termination plays a significant role even in bacteria where Rho is not essential. Here, we summarize the current state of the ever-increasing knowledge about the various aspects of the physiological functions of Rho, such as limitation of deleterious foreign DNA expression, control of gene expression, suppression of pervasive transcription, prevention of R-loops and maintenance of chromosome integrity, focusing on similarities and differences of the activities of Rho in various bacterial species.

  2. Biological causal links on physiological and evolutionary time scales.

    PubMed

    Karmon, Amit; Pilpel, Yitzhak

    2016-04-26

    Correlation does not imply causation. If two variables, say A and B, are correlated, it could be because A causes B, or that B causes A, or because a third factor affects them both. We suggest that in many cases in biology, the causal link might be bi-directional: A causes B through a fast-acting physiological process, while B causes A through a slowly accumulating evolutionary process. Furthermore, many trained biologists tend to consistently focus at first on the fast-acting direction, and overlook the slower process in the opposite direction. We analyse several examples from modern biology that demonstrate this bias (codon usage optimality and gene expression, gene duplication and genetic dispensability, stem cell division and cancer risk, and the microbiome and host metabolism) and also discuss an example from linguistics. These examples demonstrate mutual effects between the fast physiological processes and the slow evolutionary ones. We believe that building awareness of inference biases among biologists who tend to prefer one causal direction over another could improve scientific reasoning.

  3. Physiological and molecular characterization of Si uptake in wild rice species.

    PubMed

    Mitani-Ueno, Namiki; Ogai, Hisao; Yamaji, Naoki; Ma, Jian Feng

    2014-07-01

    Cultivated rice (Oryza sativa) accumulates high concentration of silicon (Si), which is required for its high and sustainable production. High Si accumulation in cultivated rice is achieved by a high expression of both influx (Lsi1) and efflux (Lsi2) Si transporters in roots. Herein, we physiologically investigated Si uptake, isolated and functionally characterized Si transporters in six wild rice species with different genome types. Si uptake by the roots was lower in Oryza rufipogon, Oryza barthii (AA genome), Oryza australiensis (EE genome) and Oryza punctata (BB genome), but similar in Oryza glumaepatula and Oryza meridionalis (AA genome) compared with the cultivated rice (cv. Nipponbare). However, all wild rice species and the cultivated rice showed similar concentration of Si in the shoots when grown in a field. All species with AA genome showed the same amino acid sequence of both Lsi1 and Lsi2 as O. sativa, whereas species with EE and BB genome showed several nucleotide differences in both Lsi1 and Lsi2. However, proteins encoded by these genes also showed transport activity for Si in Xenopus oocyte. The mRNA expression of Lsi1 in all wild rice species was lower than that in the cultivated rice, whereas the expression of Lsi2 was lower in O. rufipogon and O. barthii but similar in other species. Similar cellular localization of Lsi1 and Lsi2 was observed in all wild rice as the cultivated rice. These results indicate that superior Si uptake, the important trait for rice growth, is basically conserved in wild and cultivated rice species. © 2013 Scandinavian Plant Physiology Society.

  4. Seed birth to death: dual functions of reactive oxygen species in seed physiology.

    PubMed

    Jeevan Kumar, S P; Rajendra Prasad, S; Banerjee, Rintu; Thammineni, Chakradhar

    2015-09-01

    Reactive oxygen species (ROS) are considered to be detrimental to seed viability. However, recent studies have demonstrated that ROS have key roles in seed germination particularly in the release of seed dormancy and embryogenesis, as well as in protection from pathogens. This review considers the functions of ROS in seed physiology. ROS are present in all cells and at all phases of the seed life cycle. ROS accumulation is important in breaking seed dormancy, and stimulating seed germination and protection from pathogens. However, excessive ROS accumulation can be detrimental. Therefore, knowledge of the mechanisms by which ROS influence seed physiology will provide insights that may not only allow the development of seed quality markers but also help us understand how dormancy can be broken in several recalcitrant species. Reactive oxygen species have a dual role in seed physiology. Understanding the relative importance of beneficial and detrimental effects of ROS provides great scope for the improvement and maintenance of seed vigour and quality, factors that may ultimately increase crop yields. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Major Crop Species Show Differential Balance between Root Morphological and Physiological Responses to Variable Phosphorus Supply

    PubMed Central

    Lyu, Yang; Tang, Hongliang; Li, Haigang; Zhang, Fusuo; Rengel, Zed; Whalley, William R.; Shen, Jianbo

    2016-01-01

    The relationship between root morphological and physiological responses to variable P supply in different plant species is poorly understood. We compared root morphological and physiological responses to P supply in seven crop species (Zea mays, Triticum aestivum, Brassica napus, Lupinus albus, Glycine max, Vicia faba, Cicer arietinum) treated with or without 100 mg P kg-1 in two soils (acidic and calcareous). Phosphorus deficiency decreased root length more in fibrous root species (Zea mays, Triticum aestivum, Brassica napus) than legumes. Zea mays and Triticum aestivum had higher root/shoot biomass ratio and Brassica napus had higher specific root length compared to legumes, whereas legumes (except soybean) had higher carboxylate exudation than fibrous root species. Lupinus albus exhibited the highest P-acquisition efficiency due to high exudation of carboxylates and acid phosphatases. Lupinus albus and Cicer arietinum depended mostly on root exudation (i.e., physiological response) to enhance P acquisition, whereas Zea mays, Triticum aestivum and Brassica napus had higher root morphology dependence, with Glycine max and Vicia faba in between. Principal component analysis using six morphological and six physiological responses identified root size and diameter as the most important morphological traits, whereas important physiological responses included carboxylate exudation, and P-acquisition and P-utilization efficiency followed by rhizosphere soil pH and acid phosphatase activity. In conclusion, plant species can be grouped on the basis of their response to soil P being primarily via root architectural or exudation plasticity, suggesting a potential benefit of crop-specific root-trait-based management to cope with variable soil P supply in sustainable grain production. PMID:28066491

  6. Functional diversity supports the physiological tolerance hypothesis for plant species richness along climatic gradients

    USGS Publications Warehouse

    Spasojevic, Marko J.; Grace, James B.; Harrison, Susan; Damschen, Ellen Ingman

    2013-01-01

    1. The physiological tolerance hypothesis proposes that plant species richness is highest in warm and/or wet climates because a wider range of functional strategies can persist under such conditions. Functional diversity metrics, combined with statistical modeling, offer new ways to test whether diversity-environment relationships are consistent with this hypothesis. 2. In a classic study by R. H. Whittaker (1960), herb species richness declined from mesic (cool, moist, northerly) slopes to xeric (hot, dry, southerly) slopes. Building on this dataset, we measured four plant functional traits (plant height, specific leaf area, leaf water content and foliar C:N) and used them to calculate three functional diversity metrics (functional richness, evenness, and dispersion). We then used a structural equation model to ask if ‘functional diversity’ (modeled as the joint responses of richness, evenness, and dispersion) could explain the observed relationship of topographic climate gradients to species richness. We then repeated our model examining the functional diversity of each of the four traits individually. 3. Consistent with the physiological tolerance hypothesis, we found that functional diversity was higher in more favorable climatic conditions (mesic slopes), and that multivariate functional diversity mediated the relationship of the topographic climate gradient to plant species richness. We found similar patterns for models focusing on individual trait functional diversity of leaf water content and foliar C:N. 4. Synthesis. Our results provide trait-based support for the physiological tolerance hypothesis, suggesting that benign climates support more species because they allow for a wider range of functional strategies.

  7. Determining the Effect of Natural Selection on Linked Neutral Divergence across Species.

    PubMed

    Phung, Tanya N; Huber, Christian D; Lohmueller, Kirk E

    2016-08-01

    A major goal in evolutionary biology is to understand how natural selection has shaped patterns of genetic variation across genomes. Studies in a variety of species have shown that neutral genetic diversity (intra-species differences) has been reduced at sites linked to those under direct selection. However, the effect of linked selection on neutral sequence divergence (inter-species differences) remains ambiguous. While empirical studies have reported correlations between divergence and recombination, which is interpreted as evidence for natural selection reducing linked neutral divergence, theory argues otherwise, especially for species that have diverged long ago. Here we address these outstanding issues by examining whether natural selection can affect divergence between both closely and distantly related species. We show that neutral divergence between closely related species (e.g. human-primate) is negatively correlated with functional content and positively correlated with human recombination rate. We also find that neutral divergence between distantly related species (e.g. human-rodent) is negatively correlated with functional content and positively correlated with estimates of background selection from primates. These patterns persist after accounting for the confounding factors of hypermutable CpG sites, GC content, and biased gene conversion. Coalescent models indicate that even when the contribution of ancestral polymorphism to divergence is small, background selection in the ancestral population can still explain a large proportion of the variance in divergence across the genome, generating the observed correlations. Our findings reveal that, contrary to previous intuition, natural selection can indirectly affect linked neutral divergence between both closely and distantly related species. Though we cannot formally exclude the possibility that the direct effects of purifying selection drive some of these patterns, such a scenario would be possible only

  8. Determining the Effect of Natural Selection on Linked Neutral Divergence across Species

    PubMed Central

    Phung, Tanya N.; Lohmueller, Kirk E.

    2016-01-01

    A major goal in evolutionary biology is to understand how natural selection has shaped patterns of genetic variation across genomes. Studies in a variety of species have shown that neutral genetic diversity (intra-species differences) has been reduced at sites linked to those under direct selection. However, the effect of linked selection on neutral sequence divergence (inter-species differences) remains ambiguous. While empirical studies have reported correlations between divergence and recombination, which is interpreted as evidence for natural selection reducing linked neutral divergence, theory argues otherwise, especially for species that have diverged long ago. Here we address these outstanding issues by examining whether natural selection can affect divergence between both closely and distantly related species. We show that neutral divergence between closely related species (e.g. human-primate) is negatively correlated with functional content and positively correlated with human recombination rate. We also find that neutral divergence between distantly related species (e.g. human-rodent) is negatively correlated with functional content and positively correlated with estimates of background selection from primates. These patterns persist after accounting for the confounding factors of hypermutable CpG sites, GC content, and biased gene conversion. Coalescent models indicate that even when the contribution of ancestral polymorphism to divergence is small, background selection in the ancestral population can still explain a large proportion of the variance in divergence across the genome, generating the observed correlations. Our findings reveal that, contrary to previous intuition, natural selection can indirectly affect linked neutral divergence between both closely and distantly related species. Though we cannot formally exclude the possibility that the direct effects of purifying selection drive some of these patterns, such a scenario would be possible only

  9. A multi-species synthesis of physiological mechanisms in drought-induced tree mortality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, Henry D.; Zeppel, Melanie J. B.; Anderegg, William R. L.

    Widespread tree mortality associated with drought has been observed on all forested continents, and global change is expected to exacerbate vegetation vulnerability. Forest mortality has implications for future biosphere-atmosphere interactions of carbon, water, and energy balance, and is poorly represented in dynamic vegetation models. Reducing uncertainty requires improved mortality projections founded on robust physiological processes. However, the proposed mechanisms of drought-induced mortality, including hydraulic failure and carbon starvation, are unresolved. A growing number of empirical studies have investigated these mechanisms, but data have not been consistently analyzed across species and biomes using a standardized physiological framework. Here we show thatmore » xylem hydraulic failure was ubiquitous across multiple tree taxa at drought-induced mortality. All species assessed had 60% or greater loss of xylem hydraulic conductivity, consistent with proposed theoretical and modelled survival thresholds. We found diverse responses in non-structural carbohydrates at mortality, indicating that evidence supporting carbon starvation was not universal. Reduced non-structural carbohydrates were more common for gymnosperms than angiosperms, associated with xylem hydraulic vulnerability, and may have a role in hydraulic deterioration. The consistent Our finding that across species of hydraulic failure at drought-induced mortality was persistent across species indicates that substantial improvement in vegetation modelling can be achieved using thresholds in hydraulic function.« less

  10. Small Fish Species as Powerful Model Systems to Study Vertebrate Physiology in Space

    NASA Astrophysics Data System (ADS)

    Muller, M.; Aceto, J.; Dalcq, J.; Alestrom, P.; Nourizadeh-Lillabadi, R.; Goerlich, R.; Schiller, V.; Winkler, C.; Renn, J.; Eberius, M.; Slenzka, K.

    2008-06-01

    Small fish models, mainly zebrafish (Danio rerio) and medaka (Oryzias latipes), have been used for many years as powerful model systems for vertebrate developmental biology. Moreover, these species are increasingly recognized as valuable systems to study vertebrate physiology, pathology, pharmacology and toxicology, including in particular bone physiology. The biology of small fishes presents many advantages, such as transparency of the embryos, external and rapid development, small size and easy reproduction. Further characteristics are particularly useful for space research or for large scale screening approaches. Finally, many technologies for easily characterizing bones are available. Our objective is to investigate the changes induced by microgravity in small fish. By combining whole genome analysis (microarray, DNA methylation, chromatin modification) with live imaging of selected genes in transgenic animals, a comprehensive and integrated characterization of physiological changes in space could be gained, especially concerning bone physiology.

  11. Physiological minimum temperatures for root growth in seven common European broad-leaved tree species.

    PubMed

    Schenker, Gabriela; Lenz, Armando; Körner, Christian; Hoch, Günter

    2014-03-01

    Temperature is the most important factor driving the cold edge distribution limit of temperate trees. Here, we identified the minimum temperatures for root growth in seven broad-leaved tree species, compared them with the species' natural elevational limits and identified morphological changes in roots produced near their physiological cold limit. Seedlings were exposed to a vertical soil-temperature gradient from 20 to 2 °C along the rooting zone for 18 weeks. In all species, the bulk of roots was produced at temperatures above 5 °C. However, the absolute minimum temperatures for root growth differed among species between 2.3 and 4.2 °C, with those species that reach their natural distribution limits at higher elevations also tending to have lower thermal limits for root tissue formation. In all investigated species, the roots produced at temperatures close to the thermal limit were pale, thick, unbranched and of reduced mechanical strength. Across species, the specific root length (m g(-1) root) was reduced by, on average, 60% at temperatures below 7 °C. A significant correlation of minimum temperatures for root growth with the natural high elevation limits of the investigated species indicates species-specific thermal requirements for basic physiological processes. Although these limits are not necessarily directly causative for the upper distribution limit of a species, they seem to belong to a syndrome of adaptive processes for life at low temperatures. The anatomical changes at the cold limit likely hint at the mechanisms impeding meristematic activity at low temperatures.

  12. Determining environmental causes of biological effects: the need for a mechanistic physiological dimension in conservation biology.

    PubMed

    Seebacher, Frank; Franklin, Craig E

    2012-06-19

    The emerging field of Conservation Physiology links environmental change and ecological success by the application of physiological theory, approaches and tools to elucidate and address conservation problems. Human activity has changed the natural environment to a point where the viability of many ecosystems is now under threat. There are already many descriptions of how changes in biological patterns are correlated with environmental changes. The next important step is to determine the causative relationship between environmental variability and biological systems. Physiology provides the mechanistic link between environmental change and ecological patterns. Physiological research, therefore, should be integrated into conservation to predict the biological consequences of human activity, and to identify those species or populations that are most vulnerable.

  13. The role of thermal physiology in recent declines of birds in a biodiversity hotspot.

    PubMed

    Milne, Robyn; Cunningham, Susan J; Lee, Alan T K; Smit, Ben

    2015-01-01

    We investigated whether observed avian range contractions and population declines in the Fynbos biome of South Africa were mechanistically linked to recent climate warming. We aimed to determine whether there were correlations between preferred temperature envelope, or changes in temperature within species' ranges, and recent changes in range and population size, for 12 Fynbos-resident bird species, including six that are endemic to the biome. We then measured the physiological responses of each species at air temperatures ranging from 24 to 42°C to determine whether physiological thermal thresholds could provide a mechanistic explanation for observed population trends. Our data show that Fynbos-endemic species occupying the coolest regions experienced the greatest recent reductions in range and population size (>30% range reduction between 1991 and the present). In addition, species experiencing the largest increases in air temperature within their ranges showed the greatest declines. However, evidence for a physiological mechanistic link between warming and population declines was equivocal, with only the larger species showing low thermal thresholds for their body mass, compared with other birds globally. In addition, some species appear more vulnerable than others to air temperatures in their ranges above physiological thermal thresholds. Of these, the high-altitude specialist Cape rockjumper (Chaetops frenatus) seems most at risk from climate warming. This species showed: (i) the lowest threshold for increasing evaporative water loss at high temperatures; and (ii) population declines specifically in those regions of its range recording significant warming trends. Our findings suggest that caution must be taken when attributing causality explicitly to thermal stress, even when population trends are clearly correlated with rates of warming. Studies explicitly investigating the mechanisms underlying such correlations will be key to appropriate conservation

  14. The role of thermal physiology in recent declines of birds in a biodiversity hotspot

    PubMed Central

    Milne, Robyn; Cunningham, Susan J; Lee, Alan T K

    2015-01-01

    Abstract We investigated whether observed avian range contractions and population declines in the Fynbos biome of South Africa were mechanistically linked to recent climate warming. We aimed to determine whether there were correlations between preferred temperature envelope, or changes in temperature within species' ranges, and recent changes in range and population size, for 12 Fynbos-resident bird species, including six that are endemic to the biome. We then measured the physiological responses of each species at air temperatures ranging from 24 to 42°C to determine whether physiological thermal thresholds could provide a mechanistic explanation for observed population trends. Our data show that Fynbos-endemic species occupying the coolest regions experienced the greatest recent reductions in range and population size (>30% range reduction between 1991 and the present). In addition, species experiencing the largest increases in air temperature within their ranges showed the greatest declines. However, evidence for a physiological mechanistic link between warming and population declines was equivocal, with only the larger species showing low thermal thresholds for their body mass, compared with other birds globally. In addition, some species appear more vulnerable than others to air temperatures in their ranges above physiological thermal thresholds. Of these, the high-altitude specialist Cape rockjumper (Chaetops frenatus) seems most at risk from climate warming. This species showed: (i) the lowest threshold for increasing evaporative water loss at high temperatures; and (ii) population declines specifically in those regions of its range recording significant warming trends. Our findings suggest that caution must be taken when attributing causality explicitly to thermal stress, even when population trends are clearly correlated with rates of warming. Studies explicitly investigating the mechanisms underlying such correlations will be key to appropriate

  15. A multi-species synthesis of physiological mechanisms in drought-induced tree mortality

    USGS Publications Warehouse

    Adams, Henry D.; Zeppel, Melanie; Anderegg, William R.L.; Hartmann, Henrik; Landhäusser, Simon M.; Tissue, David T.; Huxman, Travis E.; Hudson, Patrick J.; Franz, Trenton E.; Allen, Craig D.; Anderegg, Leander D. L.; Barron-Gafford, Greg A.; Beerling, David; Breshears, David D.; Brodribb, Timothy J.; Bugmann, Harald; Cobb, Richard C.; Collins, Adam D.; Dickman, L. Turin; Duan, Honglang; Ewers, Brent E.; Galiano, Lucia; Galvez, David A.; Garcia-Forner, Núria; Gaylord, Monica L.; Germino, Matthew J.; Gessler, Arthur; Hacke, Uwe G.; Hakamada, Rodrigo; Hector, Andy; Jenkins, Michael W.; Kane, Jeffrey M.; Kolb, Thomas E.; Law, Darin J.; Lewis, James D.; Limousin, Jean-Marc; Love, David; Macalady, Alison K.; Martinez-Vilalta, Jordi; Mencuccini, Maurizio; Mitchell, Patrick J.; Muss, Jordan D.; O'Brien, Michael J.; O'Grady, Anthony P.; Pangle, Robert E.; Pinkard, Elizabeth A.; Piper, Frida I.; Plaut, Jennifer; Pockman, William T.; Quirk, Joe; Reinhardt, Keith; Ripullone, Francesco; Ryan, Michael G.; Sala, Anna; Sevanto, Sanna; Sperry, John S.; Vargas, Rodrigo; Vennetier, Michel; Way, Danielle A.; Wu, Chonggang; Yepez, Enrico A.; McDowell, Nate G.

    2017-01-01

    Widespread tree mortality associated with drought has been observed on all forested continents and global change is expected to exacerbate vegetation vulnerability. Forest mortality has implications for future biosphere–atmosphere interactions of carbon, water and energy balance, and is poorly represented in dynamic vegetation models. Reducing uncertainty requires improved mortality projections founded on robust physiological processes. However, the proposed mechanisms of drought-induced mortality, including hydraulic failure and carbon starvation, are unresolved. A growing number of empirical studies have investigated these mechanisms, but data have not been consistently analysed across species and biomes using a standardized physiological framework. Here, we show that xylem hydraulic failure was ubiquitous across multiple tree taxa at drought-induced mortality. All species assessed had 60% or higher loss of xylem hydraulic conductivity, consistent with proposed theoretical and modelled survival thresholds. We found diverse responses in non-structural carbohydrate reserves at mortality, indicating that evidence supporting carbon starvation was not universal. Reduced non-structural carbohydrates were more common for gymnosperms than angiosperms, associated with xylem hydraulic vulnerability, and may have a role in reducing hydraulic function. Our finding that hydraulic failure at drought-induced mortality was persistent across species indicates that substantial improvement in vegetation modelling can be achieved using thresholds in hydraulic function.

  16. A multi-species synthesis of physiological mechanisms in drought-induced tree mortality.

    PubMed

    Adams, Henry D; Zeppel, Melanie J B; Anderegg, William R L; Hartmann, Henrik; Landhäusser, Simon M; Tissue, David T; Huxman, Travis E; Hudson, Patrick J; Franz, Trenton E; Allen, Craig D; Anderegg, Leander D L; Barron-Gafford, Greg A; Beerling, David J; Breshears, David D; Brodribb, Timothy J; Bugmann, Harald; Cobb, Richard C; Collins, Adam D; Dickman, L Turin; Duan, Honglang; Ewers, Brent E; Galiano, Lucía; Galvez, David A; Garcia-Forner, Núria; Gaylord, Monica L; Germino, Matthew J; Gessler, Arthur; Hacke, Uwe G; Hakamada, Rodrigo; Hector, Andy; Jenkins, Michael W; Kane, Jeffrey M; Kolb, Thomas E; Law, Darin J; Lewis, James D; Limousin, Jean-Marc; Love, David M; Macalady, Alison K; Martínez-Vilalta, Jordi; Mencuccini, Maurizio; Mitchell, Patrick J; Muss, Jordan D; O'Brien, Michael J; O'Grady, Anthony P; Pangle, Robert E; Pinkard, Elizabeth A; Piper, Frida I; Plaut, Jennifer A; Pockman, William T; Quirk, Joe; Reinhardt, Keith; Ripullone, Francesco; Ryan, Michael G; Sala, Anna; Sevanto, Sanna; Sperry, John S; Vargas, Rodrigo; Vennetier, Michel; Way, Danielle A; Xu, Chonggang; Yepez, Enrico A; McDowell, Nate G

    2017-09-01

    Widespread tree mortality associated with drought has been observed on all forested continents and global change is expected to exacerbate vegetation vulnerability. Forest mortality has implications for future biosphere-atmosphere interactions of carbon, water and energy balance, and is poorly represented in dynamic vegetation models. Reducing uncertainty requires improved mortality projections founded on robust physiological processes. However, the proposed mechanisms of drought-induced mortality, including hydraulic failure and carbon starvation, are unresolved. A growing number of empirical studies have investigated these mechanisms, but data have not been consistently analysed across species and biomes using a standardized physiological framework. Here, we show that xylem hydraulic failure was ubiquitous across multiple tree taxa at drought-induced mortality. All species assessed had 60% or higher loss of xylem hydraulic conductivity, consistent with proposed theoretical and modelled survival thresholds. We found diverse responses in non-structural carbohydrate reserves at mortality, indicating that evidence supporting carbon starvation was not universal. Reduced non-structural carbohydrates were more common for gymnosperms than angiosperms, associated with xylem hydraulic vulnerability, and may have a role in reducing hydraulic function. Our finding that hydraulic failure at drought-induced mortality was persistent across species indicates that substantial improvement in vegetation modelling can be achieved using thresholds in hydraulic function.

  17. Linking Insects with Crustacea: Physiology of the Pancrustacea: An Introduction to the Symposium.

    PubMed

    Tamone, Sherry L; Harrison, Jon F

    2015-11-01

    Insects and crustaceans represent critical, dominant animal groups (by biomass and species number) in terrestrial and aquatic systems, respectively. Insects (hexapods) and crustaceans are historically grouped under separate taxonomic classes within the Phylum Arthropoda, and the research communities studying hexapods and crustaceans are quite distinct. More recently, the hexapods have been shown to be evolutionarily derived from basal crustaceans, and the clade Pancrustacea recognizes this relationship. This recent evolutionary perspective, and the fact that the Society for Integrative and Comparative Biology has strong communities in both invertebrate biology and insect physiology, provides the motivation for this symposium. Speakers in this symposium were selected because of their expertise in a particular field of insect or crustacean physiology, and paired in such a way as to provide a comparative view of the state of the current research in their respective fields. Presenters discussed what aspects of the physiological system are clearly conserved across insects and crustaceans and how cross-talk between researchers utilizing insects and crustaceans can fertilize understanding of such conserved systems. Speakers were also asked to identify strategies that would enable improved understanding of the evolution of physiological systems of the terrestrial insects from the aquatic crustaceans. The following collection of articles describes multiple recent advances in our understanding of Pancrustacean physiology. © The Author 2015. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  18. Chronic exposure to soil salinity in terrestrial species: Does plasticity and underlying physiology differ among specialized ground-dwelling spiders?

    PubMed

    Renault, D; Puzin, C; Foucreau, N; Bouchereau, A; Pétillon, J

    2016-07-01

    In salt marshes, the alternation of low and high tides entails rapid shifts of submersion and aerial exposure for terrestrial communities. In these intertidal environments, terrestrial species have to deal with an osmotic loss in body water content and an increase in sodium chloride concentration when salt load increases. In salt marshes, spiders represent an abundant arthropod group, whose physiological ecology in response to variations of soil salinity must be further investigated. In this study, we compared the effect of salinity on the survival and physiology of three species of Lycosidae; two salt marsh species (Arctosa fulvolineata and Pardosa purbeckensis) and one forest species (P. saltans). Spiders were individually exposed at three salinity conditions (0‰, 35‰ and 70‰) and survival, changes in body water content, hemolymph ions (Na(+), Ca(2+), Mg(2+), K(+); ICP-MS technique) and metabolites (mainly amino acids, polyols, sugars; LC and GC techniques) were assessed. The survival of the forest species P. saltans was very quickly hampered at moderate and high salinities. In this spider, variations of hemolymph ions and metabolites revealed a quick loss of physiological homeostasis and a rapid salt-induced dehydration of the specimens. Conversely, high survival durations were measured in the two salt-marsh spiders, and more particularly in A. fulvolineata. In both P. purbeckensis and A. fulvolineata, the proportion of Na(+), Ca(2+), Mg(2+), K(+) remained constant at the three experimental conditions. Accumulation of hemolymph Na(+) and amino acids (mainly glutamine and proline) demonstrated stronger osmoregulatory capacities in these salt-marsh resident spiders. To conclude, even if phylogenetically close (belonging to the same, monophyletic, family), we found different physiological capacities to cope with salt load among the three tested spider species. Nevertheless, physiological responses to salinity were highly consistent with the realized

  19. Linking reproduction and survival can improve model estimates of vital rates derived from limited time-series counts of pinnipeds and other species.

    PubMed

    Battaile, Brian C; Trites, Andrew W

    2013-01-01

    We propose a method to model the physiological link between somatic survival and reproductive output that reduces the number of parameters that need to be estimated by models designed to determine combinations of birth and death rates that produce historic counts of animal populations. We applied our Reproduction and Somatic Survival Linked (RSSL) method to the population counts of three species of North Pacific pinnipeds (harbor seals, Phoca vitulina richardii (Gray, 1864); northern fur seals, Callorhinus ursinus (L., 1758); and Steller sea lions, Eumetopias jubatus (Schreber, 1776))--and found our model outperformed traditional models when fitting vital rates to common types of limited datasets, such as those from counts of pups and adults. However, our model did not perform as well when these basic counts of animals were augmented with additional observations of ratios of juveniles to total non-pups. In this case, the failure of the ratios to improve model performance may indicate that the relationship between survival and reproduction is redefined or disassociated as populations change over time or that the ratio of juveniles to total non-pups is not a meaningful index of vital rates. Overall, our RSSL models show advantages to linking survival and reproduction within models to estimate the vital rates of pinnipeds and other species that have limited time-series of counts.

  20. Microglial Fc Receptors Mediate Physiological Changes Resulting From Antibody Cross-Linking of Myelin Oligodendrocyte Glycoprotein

    PubMed Central

    Marta, Cecilia B.; Bansal, Rashmi; Pfeiffer, Steven E.

    2009-01-01

    Antibodies to myelin oligodendrocyte glycoprotein (MOG) have been implicated in Multiple Sclerosis demyelination through activation of complement and/or macrophage-effector processes. We presented a novel mechanism, whereby MOG on oligodendrocytes, when cross-linked with anti-MOG and secondary antibody resulted in its repartitioning into lipid rafts, and changes in protein phosphorylation and morphology. Here, we show that similar events occur when anti-MOG is cross-linked with Fc receptors (FcRs) present on microglia but not with complement. These results indicate that FcRs are endogenous antigen/antibody cross-linkers in vitro, suggesting that FcRs could be physiologically relevant in vivo and possible targets for therapy in Multiple Sclerosis. PMID:18406472

  1. Oxidative stress and mitochondrial dysfunction-linked neurodegenerative disorders.

    PubMed

    Islam, Md Torequl

    2017-01-01

    Reactive species play an important role in physiological functions. Overproduction of reactive species, notably reactive oxygen (ROS) and nitrogen (RNS) species along with the failure of balance by the body's antioxidant enzyme systems results in destruction of cellular structures, lipids, proteins, and genetic materials such as DNA and RNA. Moreover, the effects of reactive species on mitochondria and their metabolic processes eventually cause a rise in ROS/RNS levels, leading to oxidation of mitochondrial proteins, lipids, and DNA. Oxidative stress has been considered to be linked to the etiology of many diseases, including neurodegenerative diseases (NDDs) such as Alzheimer diseases, Amyotrophic lateral sclerosis, Friedreich's ataxia, Huntington's disease, Multiple sclerosis, and Parkinson's diseases. In addition, oxidative stress causing protein misfold may turn to other NDDs include Creutzfeldt-Jakob disease, Bovine Spongiform Encephalopathy, Kuru, Gerstmann-Straussler-Scheinker syndrome, and Fatal Familial Insomnia. An overview of the oxidative stress and mitochondrial dysfunction-linked NDDs has been summarized in this review.

  2. Physiological links of circadian clock and biological clock of aging.

    PubMed

    Liu, Fang; Chang, Hung-Chun

    2017-07-01

    Circadian rhythms orchestrate biochemical and physiological processes in living organisms to respond the day/night cycle. In mammals, nearly all cells hold self-sustained circadian clocks meanwhile couple the intrinsic rhythms to systemic changes in a hierarchical manner. The suprachiasmatic nucleus (SCN) of the hypothalamus functions as the master pacemaker to initiate daily synchronization according to the photoperiod, in turn determines the phase of peripheral cellular clocks through a variety of signaling relays, including endocrine rhythms and metabolic cycles. With aging, circadian desynchrony occurs at the expense of peripheral metabolic pathologies and central neurodegenerative disorders with sleep symptoms, and genetic ablation of circadian genes in model organisms resembled the aging-related features. Notably, a number of studies have linked longevity nutrient sensing pathways in modulating circadian clocks. Therapeutic strategies that bridge the nutrient sensing pathways and circadian clock might be rational designs to defy aging.

  3. Comparative physiological and proteomic responses to drought stress in two poplar species originating from different altitudes.

    PubMed

    Yang, Fan; Wang, Yong; Miao, Ling-Feng

    2010-08-01

    Cuttings of Populus kangdingensis C. Wang et Tung and Populus cathayana Rehder were examined during a single growing season in a greenhouse for comparative analysis of their physiological and proteomic responses to drought stress. The said species originate from high and low altitudes, respectively, of the eastern Himalaya. Results revealed that the adaptive responses to drought stress vary between the two poplar species. As a consequence of drought stress, the stem height increment and leaf number increment are more significantly inhibited in P. cathayana compared with P. kangdingensis. On the other hand, in response to drought stress, more significant cellular damages such as reduction in leaf relative water content and CO(2) assimilation rate, increments in the contents of malondialdehyde and hydrogen peroxide and downregulation or degradation of proteins related to photosynthesis occur in P. cathayana compared with P. kangdingensis. On the other hand, P. kangdingensis can cope better with the negative impact on the entire regulatory network. This includes more efficient increases in content of solute sugar, soluble protein and free proline and activities of antioxidant enzymes, as well as specific expressions of certain proteins related to protein processing, redox homeostasis and sugar metabolism. Morphological consequences as well as physiological and proteomic responses to drought stress between species revealed that P. kangdingensis originating from a high altitude manifest stronger drought adaptation than did P. cathayana originating from a low altitude. Functions of various proteins identified by proteomic experiment are related with physiological phenomena. Physiological and proteomic responses to drought stress in poplar may work cooperatively to establish a new cellular homeostasis, allowing poplar to develop a certain level of drought tolerance.

  4. Physiological traits and antioxidant metabolism of leaves of tropical woody species challenged with cement dust.

    PubMed

    Siqueira-Silva, Advanio Inácio; Pereira, Eduardo Gusmão; Lemos-Filho, José Pires de; Modolo, Luzia Valentina; Paiva, Elder Antonio Sousa

    2017-10-01

    Tropical woody species occurring in limestone outcrops are frequently exposed to particulate material from cement factories. The effects of 60-day cement dust exposure on physiological traits and enzymatic antioxidant system of young plant leaves of Guazuma ulmifolia Lam., Myracrodruon urundeuva Allemão and Trichilia hirta L. were investigated. Cement dust (2.5 or 5mgcm -2 ) was applied to the leaf surface or soil or both (leaf plus soil) and plants were maintained at greenhouse. Cement dust barely affected the mineral nutrient levels, except for iron whose content was decreased in leaves/leaflets of all species studied. The incident light was partly blocked in cement dust-treated leaves, regardless of the plant species, causing a decrease in the photosynthetic pigments in M. urundeuva. The chlorophyll b content, however, increased in G. ulmifolia and T. hirta leaves upon cement dust treatment. The potential quantum yield of photosystem II in challenged leaves of G. ulmifolia was 3.8% lower than that of control plants, while such trait remained unaffected in the leaves of the other species. No changes in leaf stomatal conductance and antioxidant enzymes activities were observed, except for M. urundeuva, which experienced a 31% increment in the superoxide dismutase activity upon 5mgcm -2 cement dust (leaf plus soil treatment), when compared with control plants. Overall, the mild changes caused by cement dust in the in physiological and biochemical traits of the species studied indicate that such species might be eligible for further studies of revegetation in fields impacted by cement factories. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Use of automated monitoring to assess behavioral toxicology in fish: Linking behavior and physiology

    USGS Publications Warehouse

    Brewer, S.K.; DeLonay, A.J.; Beauvais, S.L.; Little, E.E.; Jones, S.B.

    1999-01-01

    We measured locomotory behaviors (distance traveled, speed, tortuosity of path, and rate of change in direction) with computer-assisted analysis in 30 day posthatch rainbow trout (Oncorhynchus mykiss) exposed to pesticides. We also examined cholinesterase inhibition as a potential endpoint linking physiology and behavior. Sublethal exposure to chemicals often causes changes in swimming behavior, reflecting alterations in sensory and motor systems. Swimming behavior also integrates functions of the nervous system. Rarely are the connections between physiology and behavior made. Although behavior is often suggested as a sensitive, early indicator of toxicity, behavioral toxicology has not been used to its full potential because conventional methods of behavioral assessment have relied on manual techniques, which are often time-consuming and difficult to quantify. This has severely limited the application and utility of behavioral procedures. Swimming behavior is particularly amenable to computerized assessment and automated monitoring. Locomotory responses are sensitive to toxicants and can be easily measured. We briefly discuss the use of behavior in toxicology and automated techniques used in behavioral toxicology. We also describe the system we used to determine locomotory behaviors of fish, and present data demonstrating the system's effectiveness in measuring alterations in response to chemical challenges. Lastly, we correlate behavioral and physiological endpoints.

  6. Early caregiving and physiological stress responses.

    PubMed

    Luecken, Linda J; Lemery, Kathryn S

    2004-05-01

    Inadequate early caregiving has been associated with risks of stress-related psychological and physical illness over the life span. Dysregulated physiological stress responses may represent a mechanism linking early caregiving to health outcomes. This paper reviews evidence linking early caregiving to physiological responses that can increase vulnerability to stress-related illness. A number of high-risk family characteristics, including high conflict, divorce, abuse, and parental psychopathology, are considered in the development of stress vulnerability. Three theoretical pathways linking caregiving to physiological stress responses are outlined: genetic, psychosocial, and cognitive-affective. Exciting preliminary evidence suggests that early caregiving can impact long-term physiological stress responses. Directions for future research in this area are suggested.

  7. Physiological Responses in a Variable Environment: Relationships between Metabolism, Hsp and Thermotolerance in an Intertidal-Subtidal Species

    PubMed Central

    Wang, Qing-lin; Dong, Shuang-lin

    2011-01-01

    Physiological responses to temperature reflect the evolutionary adaptations of organisms to their thermal environment and the capability of animals to tolerate thermal stress. Contrary to conventional metabolism theory, increasing environmental temperatures have been shown to reduce metabolic rate in rocky–eulittoral-fringe species inhabiting highly variable environments, possibly as a strategy for energy conservation. To study the physiological adaptations of an intertidal-subtidal species to the extreme and unpredictable heat stress of the intertidal zone, oxygen consumption rate and heat shock protein expression were quantified in the sea cucumber Apostichopus japonicus. Using simulate natural temperatures, the relationship between temperature, physiological performance (oxygen consumption and heat shock proteins) and thermotolerance were assessed. Depression of oxygen consumption rate and upregulation of heat shock protein genes (hsps) occurred in sequence when ambient temperature was increased from 24 to 30°C. Large-scale mortality of the sea cucumber occurred when temperatures rose beyond 30°C, suggesting that the upregulation of heat shock proteins and mortality are closely related to the depression of aerobic metabolism, a phenomenon that is in line with the concept of oxygen- and capacity-limited thermal tolerance (OCLTT). The physiologically-related thermotolerance of this sea cucumber should be an adaptation to its local environment. PMID:22022615

  8. Interspecies physiological variation as a tool for cross-species assessments of global warming-induced endangerment: validation of an intrinsic determinant of macroecological and phylogeographic structure.

    PubMed

    Bernardo, Joseph; Ossola, Ryan J; Spotila, James; Crandall, Keith A

    2007-12-22

    Global warming is now recognized as the dominant threat to biodiversity because even protected populations and habitats are susceptible. Nonetheless, current criteria for evaluating species' relative endangerment remain purely ecological, and the accepted conservation strategies of habitat preservation and population management assume that species can mount ecological responses if afforded protection. The insidious threat from climate change is that it will attenuate or preclude ecological responses by species that are physiologically constrained; yet, quantitative, objective criteria for assessing relative susceptibility of diverse taxa to warming-induced stress are wanting. We explored the utility of using interspecies physiological variation for this purpose by relating species' physiological phenotypes to landscape patterns of ecological and genetic exchange. Using a salamander model system in which ecological, genetic and physiological diversity are well characterized, we found strong quantitative relationships of basal metabolic rates (BMRs) to both macroecological and phylogeographic patterns, with decreasing BMR leading to dispersal limitation (small contemporary ranges with marked phylogeographic structure). Measures of intrinsic physiological tolerance, which vary systematically with macroecological and phylogeographic patterns, afford objective criteria for assessing endangerment across a wide range of species and should be incorporated into conservation assessment criteria that currently rely exclusively upon ecological predictors.

  9. Physiology at near-critical temperatures, but not critical limits, varies between two lizard species that partition the thermal environment.

    PubMed

    Telemeco, Rory S; Gangloff, Eric J; Cordero, Gerardo A; Polich, Rebecca L; Bronikowski, Anne M; Janzen, Fredric J

    2017-10-01

    The mechanisms that mediate the interaction between the thermal environment and species ranges are generally uncertain. Thermal environments may directly restrict species when environments exceed tolerance limits (i.e. the fundamental niche). However, thermal environments might also differentially affect relative performance among species prior to fundamental tolerances being met (i.e. the realized niche). We examined stress physiology (plasma glucose and corticosterone), mitochondrial performance and the muscle metabolome of congeneric lizards that naturally partition the thermal niche, Elgaria multicarinata (southern alligator lizards; SALs) and Elgaria coerulea (northern alligator lizards; NALs), in response to a thermal challenge to quantify variation in physiological performance and tolerance. Both NAL and SAL displayed physiological stress in response to high temperature, but neither showed signs of irreversible damage. NAL displayed a higher baseline mitochondrial respiration rate than SAL. Moreover, NAL substantially adjusted their physiology in response to thermal challenge, whereas SAL did not. For example, the metabolite profile of NAL shifted with changes in key energetic molecules, whereas these were unaffected in SAL. Our results indicate that near-critical high temperatures should incur greater energetic cost in NAL than SAL via an elevated metabolic rate and changes to the metabolome. Thus, SAL displace NAL in warm environments that are within NAL's fundamental thermal niche, but relatively costly. Our results suggest that subcritical thermal events can contribute to biogeographic patterns via physiological differences that alter the relative costs of living in warm or cool environments. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.

  10. Conservation physiology of marine fishes: state of the art and prospects for policy.

    PubMed

    McKenzie, David J; Axelsson, Michael; Chabot, Denis; Claireaux, Guy; Cooke, Steven J; Corner, Richard A; De Boeck, Gudrun; Domenici, Paolo; Guerreiro, Pedro M; Hamer, Bojan; Jørgensen, Christian; Killen, Shaun S; Lefevre, Sjannie; Marras, Stefano; Michaelidis, Basile; Nilsson, Göran E; Peck, Myron A; Perez-Ruzafa, Angel; Rijnsdorp, Adriaan D; Shiels, Holly A; Steffensen, John F; Svendsen, Jon C; Svendsen, Morten B S; Teal, Lorna R; van der Meer, Jaap; Wang, Tobias; Wilson, Jonathan M; Wilson, Rod W; Metcalfe, Julian D

    2016-01-01

    The state of the art of research on the environmental physiology of marine fishes is reviewed from the perspective of how it can contribute to conservation of biodiversity and fishery resources. A major constraint to application of physiological knowledge for conservation of marine fishes is the limited knowledge base; international collaboration is needed to study the environmental physiology of a wider range of species. Multifactorial field and laboratory studies on biomarkers hold promise to relate ecophysiology directly to habitat quality and population status. The 'Fry paradigm' could have broad applications for conservation physiology research if it provides a universal mechanism to link physiological function with ecological performance and population dynamics of fishes, through effects of abiotic conditions on aerobic metabolic scope. The available data indicate, however, that the paradigm is not universal, so further research is required on a wide diversity of species. Fish physiologists should interact closely with researchers developing ecological models, in order to investigate how integrating physiological information improves confidence in projecting effects of global change; for example, with mechanistic models that define habitat suitability based upon potential for aerobic scope or outputs of a dynamic energy budget. One major challenge to upscaling from physiology of individuals to the level of species and communities is incorporating intraspecific variation, which could be a crucial component of species' resilience to global change. Understanding what fishes do in the wild is also a challenge, but techniques of biotelemetry and biologging are providing novel information towards effective conservation. Overall, fish physiologists must strive to render research outputs more applicable to management and decision-making. There are various potential avenues for information flow, in the shorter term directly through biomarker studies and in the longer

  11. A link between eumelanism and calcium physiology in the barn owl

    NASA Astrophysics Data System (ADS)

    Roulin, Alexandre; Dauwe, Tom; Blust, Ronny; Eens, Marcel; Beaud, Michel

    2006-09-01

    In many animals, melanin-based coloration is strongly heritable and is largely insensitive to the environment and body condition. According to the handicap principle, such a trait may not reveal individual quality because the production of different melanin-based colorations often entails similar costs. However, a recent study showed that the production of eumelanin pigments requires relatively large amounts of calcium, potentially implying that melanin-based coloration is associated with physiological processes requiring calcium. If this is the case, eumelanism may be traded-off against other metabolic processes that require the same elements. We used a correlative approach to examine, for the first time, this proposition in the barn owl, a species in which individuals vary in the amount, size, and blackness of eumelanic spots. For this purpose, we measured calcium concentration in the left humerus of 85 dead owls. Results showed that the humeri of heavily spotted individuals had a higher concentration of calcium. This suggests either that plumage spottiness signals the ability to absorb calcium from the diet for both eumelanin production and storage in bones, or that lightly spotted individuals use more calcium for metabolic processes at the expense of calcium storage in bones. Our study supports the idea that eumelanin-based coloration is associated with a number of physiological processes requiring calcium.

  12. Are leaf physiological traits related to leaf water isotopic enrichment in restinga woody species?

    PubMed

    Rosado, Bruno H P; De Mattos, Eduardo A; Sternberg, Leonel Da S L

    2013-09-01

    During plant-transpiration, water molecules having the lighter stable isotopes of oxygen and hydrogen evaporate and diffuse at a faster rate through the stomata than molecules having the heavier isotopes, which cause isotopic enrichment of leaf water. Although previous models have assumed that leaf water is well-mixed and isotopically uniform, non-uniform stomatal closure, promoting different enrichments between cells, and different pools of water within leaves, due to morpho-physiological traits, might lead to inaccuracies in isotopic models predicting leaf water enrichment. We evaluate the role of leaf morpho-physiological traits on leaf water isotopic enrichment in woody species occurring in a coastal vegetation of Brazil known as restinga. Hydrogen and oxygen stable isotope values of soil, plant stem and leaf water and leaf traits were measured in six species from restinga vegetation during a drought and a wet period. Leaf water isotopic enrichment relative to stem water was more homogeneous among species during the drought in contrast to the wet period suggesting convergent responses to deal to temporal heterogeneity in water availability. Average leaf water isotopic enrichment relative to stem water during the drought period was highly correlated with relative apoplastic water content. We discuss this observation in the context of current models of leaf water isotopic enrichment as a function of the Péclet effect. We suggest that future studies should include relative apoplastic water content in isotopic models.

  13. Physiological Plasticity to Water Flow Habitat in the Damselfish, Acanthochromis polyacanthus: Linking Phenotype to Performance

    PubMed Central

    Binning, Sandra A.; Ros, Albert F. H.; Nusbaumer, David; Roche, Dominique G.

    2015-01-01

    The relationships among animal form, function and performance are complex, and vary across environments. Therefore, it can be difficult to identify morphological and/or physiological traits responsible for enhancing performance in a given habitat. In fishes, differences in swimming performance across water flow gradients are related to morphological variation among and within species. However, physiological traits related to performance have been less well studied. We experimentally reared juvenile damselfish, Acanthochromis polyacanthus, under different water flow regimes to test 1) whether aspects of swimming physiology and morphology show plastic responses to water flow, 2) whether trait divergence correlates with swimming performance and 3) whether flow environment relates to performance differences observed in wild fish. We found that maximum metabolic rate, aerobic scope and blood haematocrit were higher in wave-reared fish compared to fish reared in low water flow. However, pectoral fin shape, which tends to correlate with sustained swimming performance, did not differ between rearing treatments or collection sites. Maximum metabolic rate was the best overall predictor of individual swimming performance; fin shape and fish total length were 3.3 and 3.7 times less likely than maximum metabolic rate to explain differences in critical swimming speed. Performance differences induced in fish reared in different flow environments were less pronounced than in wild fish but similar in direction. Our results suggest that exposure to water motion induces plastic physiological changes which enhance swimming performance in A. polyacanthus. Thus, functional relationships between fish morphology and performance across flow habitats should also consider differences in physiology. PMID:25807560

  14. The Emergence of Physiology and Form: Natural Selection Revisited

    PubMed Central

    Torday, John S.

    2016-01-01

    Natural Selection describes how species have evolved differentially, but it is descriptive, non-mechanistic. What mechanisms does Nature use to accomplish this feat? One known way in which ancient natural forces affect development, phylogeny and physiology is through gravitational effects that have evolved as mechanotransduction, seen in the lung, kidney and bone, linking as molecular homologies to skin and brain. Tracing the ontogenetic and phylogenetic changes that have facilitated mechanotransduction identifies specific homologous cell-types and functional molecular markers for lung homeostasis that reveal how and why complex physiologic traits have evolved from the unicellular to the multicellular state. Such data are reinforced by their reverse-evolutionary patterns in chronic degenerative diseases. The physiologic responses of model organisms like Dictyostelium and yeast to gravity provide deep comparative molecular phenotypic homologies, revealing mammalian Target of Rapamycin (mTOR) as the final common pathway for vertical integration of vertebrate physiologic evolution; mTOR integrates calcium/lipid epistatic balance as both the proximate and ultimate positive selection pressure for vertebrate physiologic evolution. The commonality of all vertebrate structure-function relationships can be reduced to calcium/lipid homeostatic regulation as the fractal unit of vertebrate physiology, demonstrating the primacy of the unicellular state as the fundament of physiologic evolution. PMID:27534726

  15. Linking the salt transcriptome with physiological responses of a salt-resistant Populus species as a strategy to identify genes important for stress acclimation.

    PubMed

    Brinker, Monika; Brosché, Mikael; Vinocur, Basia; Abo-Ogiala, Atef; Fayyaz, Payam; Janz, Dennis; Ottow, Eric A; Cullmann, Andreas D; Saborowski, Joachim; Kangasjärvi, Jaakko; Altman, Arie; Polle, Andrea

    2010-12-01

    To investigate early salt acclimation mechanisms in a salt-tolerant poplar species (Populus euphratica), the kinetics of molecular, metabolic, and physiological changes during a 24-h salt exposure were measured. Three distinct phases of salt stress were identified by analyses of the osmotic pressure and the shoot water potential: dehydration, salt accumulation, and osmotic restoration associated with ionic stress. The duration and intensity of these phases differed between leaves and roots. Transcriptome analysis using P. euphratica-specific microarrays revealed clusters of coexpressed genes in these phases, with only 3% overlapping salt-responsive genes in leaves and roots. Acclimation of cellular metabolism to high salt concentrations involved remodeling of amino acid and protein biosynthesis and increased expression of molecular chaperones (dehydrins, osmotin). Leaves suffered initially from dehydration, which resulted in changes in transcript levels of mitochondrial and photosynthetic genes, indicating adjustment of energy metabolism. Initially, decreases in stress-related genes were found, whereas increases occurred only when leaves had restored the osmotic balance by salt accumulation. Comparative in silico analysis of the poplar stress regulon with Arabidopsis (Arabidopsis thaliana) orthologs was used as a strategy to reduce the number of candidate genes for functional analysis. Analysis of Arabidopsis knockout lines identified a lipocalin-like gene (AtTIL) and a gene encoding a protein with previously unknown functions (AtSIS) to play roles in salt tolerance. In conclusion, by dissecting the stress transcriptome of tolerant species, novel genes important for salt endurance can be identified.

  16. Physiological effects of toxic substances on wildlife species

    USGS Publications Warehouse

    Haseltine, S.D.; Kacmar, Peter; Legath, J.

    1983-01-01

    Study of the physiological effects of contaminants on wildlife species has expanded as more sophisticated medical techniques are adapted to wildlife and as the mode of action of new classes of pesticides increase the number of organ systems which may be sublethally or lethally impacted. This paper summarizes some of the latest data published on toxicant affects on organ systems of warm-blooded vertebrates. Reporting on effects with enzyme systems concentrates on cholinesterase in blood and plasma after sublethal and lethal exposure to organophosphate end carbamate pesticides, but also covers, recent work with Na+, k+-ATPases, AST, AAT, and AL.AD. A discussion of recent work on hormones, biogenlc amines, and other compounds which indicate alteration of specific organ systems, is followed by examples of histopathological lesions associated both pathognomically and non-specifically with widely-used and/or severely toxic contaminants. All these specific effects and lesions are then discussed in terms of their potential for use diagnostically in field problems and their practical and possible impact on wildlife populations.

  17. Dunbar's number: group size and brain physiology in humans reexamined.

    PubMed

    de Ruiter, Jan; Weston, Gavin; Lyon, Stephen M

    2011-01-01

    Popular academic ideas linking physiological adaptations to social behaviors are spreading disconcertingly into wider societal contexts. In this article, we note our skepticism with one particularly popular—in our view, problematic—supposed causal correlation between neocortex size and social group size. The resulting Dunbar's Number, as it has come to be called, has been statistically tested against observed group size in different primate species. Although there may be reason to doubt the Dunbar's Number hypothesis among nonhuman primate species, we restrict ourselves here to the application of such an explanatory hypothesis to human, culture-manipulating populations. Human information process management, we argue, cannot be understood as a simple product of brain physiology. Cross-cultural comparison of not only group size but also relationship-reckoning systems like kinship terminologies suggests that although neocortices are undoubtedly crucial to human behavior, they cannot be given such primacy in explaining complex group composition, formation, or management.

  18. Children's patterns of emotional reactivity to conflict as explanatory mechanisms in links between interpartner aggression and child physiological functioning.

    PubMed

    Davies, Patrick T; Sturge-Apple, Melissa L; Cicchetti, Dante; Manning, Liviah G; Zale, Emily

    2009-11-01

    This paper examined children's fearful, sad, and angry reactivity to interparental conflict as mediators of associations between their exposure to interparental aggression and physiological functioning. Participants included 200 toddlers and their mothers. Assessments of interparental aggression and children's emotional reactivity were derived from maternal surveys and a semi-structured interview. Cortisol levels and cardiac indices of sympathetic nervous system (SNS) and parasympathetic nervous system (PNS) activity were used to assess toddler physiological functioning. Results indicated that toddler exposure to interparental aggression was associated with greater cortisol levels and PNS activity and diminished SNS activity. Toddler angry emotional reactivity mediated associations between interparental aggression and cortisol and PNS functioning. Fearful emotional reactivity was a mediator of the link between interparental aggression and SNS functioning. The results are interpreted within conceptualizations of how exposure and reactivity to family risk organize individual differences in physiological functioning.

  19. Conservation physiology of animal migration

    PubMed Central

    Lennox, Robert J.; Chapman, Jacqueline M.; Souliere, Christopher M.; Tudorache, Christian; Wikelski, Martin; Metcalfe, Julian D.; Cooke, Steven J.

    2016-01-01

    Migration is a widespread phenomenon among many taxa. This complex behaviour enables animals to exploit many temporally productive and spatially discrete habitats to accrue various fitness benefits (e.g. growth, reproduction, predator avoidance). Human activities and global environmental change represent potential threats to migrating animals (from individuals to species), and research is underway to understand mechanisms that control migration and how migration responds to modern challenges. Focusing on behavioural and physiological aspects of migration can help to provide better understanding, management and conservation of migratory populations. Here, we highlight different physiological, behavioural and biomechanical aspects of animal migration that will help us to understand how migratory animals interact with current and future anthropogenic threats. We are in the early stages of a changing planet, and our understanding of how physiology is linked to the persistence of migratory animals is still developing; therefore, we regard the following questions as being central to the conservation physiology of animal migrations. Will climate change influence the energetic costs of migration? Will shifting temperatures change the annual clocks of migrating animals? Will anthropogenic influences have an effect on orientation during migration? Will increased anthropogenic alteration of migration stopover sites/migration corridors affect the stress physiology of migrating animals? Can physiological knowledge be used to identify strategies for facilitating the movement of animals? Our synthesis reveals that given the inherent challenges of migration, additional stressors derived from altered environments (e.g. climate change, physical habitat alteration, light pollution) or interaction with human infrastructure (e.g. wind or hydrokinetic turbines, dams) or activities (e.g. fisheries) could lead to long-term changes to migratory phenotypes. However, uncertainty remains

  20. Conservation physiology of animal migration.

    PubMed

    Lennox, Robert J; Chapman, Jacqueline M; Souliere, Christopher M; Tudorache, Christian; Wikelski, Martin; Metcalfe, Julian D; Cooke, Steven J

    2016-01-01

    Migration is a widespread phenomenon among many taxa. This complex behaviour enables animals to exploit many temporally productive and spatially discrete habitats to accrue various fitness benefits (e.g. growth, reproduction, predator avoidance). Human activities and global environmental change represent potential threats to migrating animals (from individuals to species), and research is underway to understand mechanisms that control migration and how migration responds to modern challenges. Focusing on behavioural and physiological aspects of migration can help to provide better understanding, management and conservation of migratory populations. Here, we highlight different physiological, behavioural and biomechanical aspects of animal migration that will help us to understand how migratory animals interact with current and future anthropogenic threats. We are in the early stages of a changing planet, and our understanding of how physiology is linked to the persistence of migratory animals is still developing; therefore, we regard the following questions as being central to the conservation physiology of animal migrations. Will climate change influence the energetic costs of migration? Will shifting temperatures change the annual clocks of migrating animals? Will anthropogenic influences have an effect on orientation during migration? Will increased anthropogenic alteration of migration stopover sites/migration corridors affect the stress physiology of migrating animals? Can physiological knowledge be used to identify strategies for facilitating the movement of animals? Our synthesis reveals that given the inherent challenges of migration, additional stressors derived from altered environments (e.g. climate change, physical habitat alteration, light pollution) or interaction with human infrastructure (e.g. wind or hydrokinetic turbines, dams) or activities (e.g. fisheries) could lead to long-term changes to migratory phenotypes. However, uncertainty remains

  1. Exploratory behavior is linked to stress physiology and social network centrality in free-living house finches (Haemorhous mexicanus).

    PubMed

    Moyers, Sahnzi C; Adelman, James S; Farine, Damien R; Moore, Ignacio T; Hawley, Dana M

    2018-06-01

    Animal personality has been linked to individual variation in both stress physiology and social behaviors, but few studies have simultaneously examined covariation between personality traits, stress hormone levels, and behaviors in free-living animals. We investigated relationships between exploratory behavior (one aspect of animal personality), stress physiology, and social and foraging behaviors in wild house finches (Haemorhous mexicanus). We conducted novel environment assays after collecting samples of baseline and stress-induced plasma corticosterone concentrations from a subset of house finches. We then fitted individuals with Passive Integrated Transponder tags and monitored feeder use and social interactions at radio-frequency identification equipped bird feeders. First, we found that individuals with higher baseline corticosterone concentrations exhibit more exploratory behaviors in a novel environment. Second, more exploratory individuals interacted with more unique conspecifics in the wild, though this result was stronger for female than for male house finches. Third, individuals that were quick to begin exploring interacted more frequently with conspecifics than slow-exploring individuals. Finally, exploratory behaviors were unrelated to foraging behaviors, including the amount of time spent on bird feeders, a behavior previously shown to be predictive of acquiring a bacterial disease that causes annual epidemics in house finches. Overall, our results indicate that individual differences in exploratory behavior are linked to variation in both stress physiology and social network traits in free-living house finches. Such covariation has important implications for house finch ecology, as both traits can contribute to fitness in the wild. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Speaking under pressure: Low linguistic complexity is linked to high physiological and emotional stress reactivity

    PubMed Central

    Saslow, Laura R.; McCoy, Shannon; van der Löwe, Ilmo; Cosley, Brandon; Vartan, Arbi; Oveis, Christopher; Keltner, Dacher; Moskowitz, Judith T.; Epel, Elissa S.

    2014-01-01

    What can a speech reveal about someone's state? We tested the idea that greater stress reactivity would relate to lower linguistic cognitive complexity while speaking. In Study 1, we tested whether heart rate and emotional stress reactivity to a stressful discussion would relate to lower linguistic complexity. In Studies 2 and 3 we tested whether a greater cortisol response to a standardized stressful task including a speech (Trier Social Stress Test) would be linked to speaking with less linguistic complexity during the task. We found evidence that measures of stress responsivity (emotional and physiological) and chronic stress are tied to variability in the cognitive complexity of speech. Taken together, these results provide evidence that our individual experiences of stress or ‘stress signatures’—how our body and mind react to stress both in the moment and over the longer term—are linked to how complexly we speak under stress. PMID:24354732

  3. Speaking under pressure: low linguistic complexity is linked to high physiological and emotional stress reactivity.

    PubMed

    Saslow, Laura R; McCoy, Shannon; van der Löwe, Ilmo; Cosley, Brandon; Vartan, Arbi; Oveis, Christopher; Keltner, Dacher; Moskowitz, Judith T; Epel, Elissa S

    2014-03-01

    What can a speech reveal about someone's state? We tested the idea that greater stress reactivity would relate to lower linguistic cognitive complexity while speaking. In Study 1, we tested whether heart rate and emotional stress reactivity to a stressful discussion would relate to lower linguistic complexity. In Studies 2 and 3, we tested whether a greater cortisol response to a standardized stressful task including a speech (Trier Social Stress Test) would be linked to speaking with less linguistic complexity during the task. We found evidence that measures of stress responsivity (emotional and physiological) and chronic stress are tied to variability in the cognitive complexity of speech. Taken together, these results provide evidence that our individual experiences of stress or "stress signatures"-how our body and mind react to stress both in the moment and over the longer term-are linked to how complex our speech under stress. Copyright © 2013 Society for Psychophysiological Research.

  4. Species and population variation to salinity stress in Panicum hemitomon, Spartina patens, and Spartina alterniflora: Morphological and physiological constraints

    USGS Publications Warehouse

    Hester, M.W.; Mendelssohn, I.A.; McKee, K.L.

    2001-01-01

    Panicum hemitomon, Spartina patens, and Spartina alterniflora are wide-spread dominant grasses of fresh, brackish, and salt marsh plant communities, respectively. Our previous research identified significant intraspecific variation in salt tolerance and morphology among populations within each species. In this study our objectives were to determine shorter-term physiological/biochemical responses to salinity stress and identify potential indicators of salt tolerance, with the ultimate goal of discerning similarities and differences in the mechanisms of salinity stress resistance. We subjected a subset of six populations within each species, ranging from high to low salt tolerance, to sublethal salinity levels (4, 20, and 30 ppt, respectively, for species) and monitored physiological and growth responses after 1 week (early harvest) and 5 weeks (late harvest). In all three species sublethal salinity levels generally resulted in significantly reduced net CO2 assimilation, leaf expansion, midday leaf xylem pressure, water use efficiency, and live and total biomass; and significantly increased leaf Na+/K+ ratio, leaf proline, leaf glycine betaine, leaf sucrose, root-to-shoot ratio, and dead:total aboveground biomass ratio. All three species displayed significant population (intraspecific) variation in net CO2 assimilation, leaf expansion, water use efficiency, midday leaf xylem pressure, leaf proline, leaf glycine betaine (except Panicum, where it could not be accurately determined), leaf Na+/K+ ratio, leaf sucrose, total plant biomass, dead:total aboveground biomass ratio, and root-to-shoot ratio. General indicators of salt tolerance (regardless of species) included high net CO2 assimilation rates and water use efficiencies, and low ratios of root-to-shoot and dead:total aboveground biomass. Factor analysis and a-priori linear contrasts revealed some unique differences between species in terms of the relative importance of morphology and physiology in explaining

  5. Ecological and physiological thermal niches to understand distribution of Chagas disease vectors in Latin America.

    PubMed

    DE LA Vega, G J; Schilman, P E

    2018-03-01

    In order to assess how triatomines (Hemiptera, Reduviidae), Chagas disease vectors, are distributed through Latin America, we analysed the relationship between the ecological niche and the limits of the physiological thermal niche in seven species of triatomines. We combined two methodological approaches: species distribution models, and physiological tolerances. First, we modelled the ecological niche and identified the most important abiotic factor for their distribution. Then, thermal tolerance limits were analysed by measuring maximum and minimum critical temperatures, upper lethal temperature, and 'chill-coma recovery time'. Finally, we used phylogenetic independent contrasts to analyse the link between limiting factors and the thermal tolerance range for the assessment of ecological hypotheses that provide a different outlook for the geo-epidemiology of Chagas disease. In triatomines, thermo-tolerance range increases with increasing latitude mainly due to better cold tolerances, suggesting an effect of thermal selection. In turn, physiological analyses show that species reaching southernmost areas have a higher thermo-tolerance than those with tropical distributions, denoting that thermo-tolerance is limiting the southern distribution. Understanding the latitudinal range along its physiological limits of disease vectors may prove useful to test ecological hypotheses and improve strategies and efficiency of vector control at the local and regional levels. © 2017 The Royal Entomological Society.

  6. Physiological Responses to Prolonged Drought Differ Among Three Oak (Quercus) Species

    NASA Astrophysics Data System (ADS)

    Cooper, C. E.; Moore, G. W.; Vogel, J. G.; Muir, J. P.

    2015-12-01

    The physiological response of plants to water stress provides insights into which species may survive in exceptional drought conditions. This study conducted on a remnant post oak savanna site in College Station, Texas, examined how drought affected the physiology of three native oak species. In June 2014, after a period of equal watering, we subjected three year old Quercus shumardii (Shumard oak; SO), Q. virginiana (live oak; LO), and Q. macrocarpa (bur oak; BO) saplings to one of two watering treatments: 1) watered, receiving the equivalent of theaverage precipitation rate and 2) droughted, receiving a 100% reduction in precipitation. We measured predawn (ΨPD) and midday (ΨMD) leaf water potential; midday gas exchange (MGE) parameters including photosynthesis (Al), transpiration (T), stomatal conductance (gsw); and leaf soluble (SS) and non-soluble sugar (NSS) concentrations monthly between June and October 2014. Drought stress responses were evident after only one month of induced drought. Droughted saplings showed reduced ΨPD, ΨMD, and MGE (P ≤ 0.05) in comparison to watered saplings of the same species. LO saplings exhibited greater MGE (P ≤ 0.05) while maintaining similar LWP to their respective watered and droughted BO and SO counterparts. Droughted LO exhibited MGE rates similar to those of watered BO and SO (P ≤ 0.05), while watered LO adjusted its MGE rates to changes in water availability better than BO and LO during short-term drought. Compared to water saplings, droughted saplings had greater leaf SS (P = 0.08) and lower NSS concentrations (P = 0.10), possibly due to the conversion of NSS to SS and other simple compounds and reduced consumption of SS for growth by the droughted saplings. Although SO and BO exhibited similar photosynthesis rates, leaf total sugar (SS+NSS) concentration was greater in SO (P ≤ 0.05). By displaying the greatest average photosynthesis rate (P ≤ 0.05), LO should have accumulated the greatest amount of carbon

  7. Physiological and pathophysiological reactive oxygen species as probed by EPR spectroscopy: the underutilized research window on muscle ageing.

    PubMed

    A Abdel-Rahman, Engy; Mahmoud, Ali M; Khalifa, Abdulrahman M; Ali, Sameh S

    2016-08-15

    Reactive oxygen and nitrogen species (ROS and RNS) play crucial roles in triggering, mediating and regulating physiological and pathophysiological signal transduction pathways within the cell. Within the cell, ROS efflux is firmly controlled both spatially and temporally, making the study of ROS dynamics a challenging task. Different approaches have been developed for ROS assessment; however, many of these assays are not capable of direct identification or determination of subcellular localization of different ROS. Here we highlight electron paramagnetic resonance (EPR) spectroscopy as a powerful technique that is uniquely capable of addressing questions on ROS dynamics in different biological specimens and cellular compartments. Due to their critical importance in muscle functions and dysfunction, we discuss in some detail spin trapping of various ROS and focus on EPR detection of nitric oxide before highlighting how EPR can be utilized to probe biophysical characteristics of the environment surrounding a given stable radical. Despite the demonstrated ability of EPR spectroscopy to provide unique information on the identity, quantity, dynamics and environment of radical species, its applications in the field of muscle physiology, fatiguing and ageing are disproportionately infrequent. While reviewing the limited examples of successful EPR applications in muscle biology we conclude that the field would greatly benefit from more studies exploring ROS sources and kinetics by spin trapping, protein dynamics by site-directed spin labelling, and membrane dynamics and global redox changes by spin probing EPR approaches. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  8. The Effect of Seasonal Ambient Temperatures on Fire-Stimulated Germination of Species with Physiological Dormancy: A Case Study Using Boronia (Rutaceae)

    PubMed Central

    Auld, Tony D.; Keith, David A.; Hui, Francis K. C.; Ooi, Mark K. J.

    2016-01-01

    Dormancy and germination requirements determine the timing and magnitude of seedling emergence, with important consequences for seedling survival and growth. Physiological dormancy is the most widespread form of dormancy in flowering plants, yet the seed ecology of species with this dormancy type is poorly understood in fire-prone vegetation. The role of seasonal temperatures as germination cues in these habitats is often overlooked due to a focus on direct fire cues such as heat shock and smoke, and little is known about the combined effects of multiple fire-related cues and environmental cues as these are seldom assessed in combination. We aimed to improve understanding of the germination requirements of species with physiological dormancy in fire-prone floras by investigating germination responses across members of the Rutaceae from south eastern Australia. We used a fully factorial experimental design to quantify the individual and combined effects of heat shock, smoke and seasonal ambient temperatures on germination of freshly dispersed seeds of seven species of Boronia, a large and difficult-to-germinate genus. Germination syndromes were highly variable but correlated with broad patterns in seed morphology and phylogenetic relationships between species. Seasonal temperatures influenced the rate and/or magnitude of germination responses in six species, and interacted with fire cues in complex ways. The combined effects of heat shock and smoke ranged from neutral to additive, synergistic, unitive or negative and varied with species, seasonal temperatures and duration of incubation. These responses could not be reliably predicted from the effect of the application of single cues. Based on these findings, fire season and fire intensity are predicted to affect both the magnitude and timing of seedling emergence in wild populations of species with physiological dormancy, with important implications for current fire management practices and for population

  9. The Effect of Seasonal Ambient Temperatures on Fire-Stimulated Germination of Species with Physiological Dormancy: A Case Study Using Boronia (Rutaceae).

    PubMed

    Mackenzie, Berin D E; Auld, Tony D; Keith, David A; Hui, Francis K C; Ooi, Mark K J

    2016-01-01

    Dormancy and germination requirements determine the timing and magnitude of seedling emergence, with important consequences for seedling survival and growth. Physiological dormancy is the most widespread form of dormancy in flowering plants, yet the seed ecology of species with this dormancy type is poorly understood in fire-prone vegetation. The role of seasonal temperatures as germination cues in these habitats is often overlooked due to a focus on direct fire cues such as heat shock and smoke, and little is known about the combined effects of multiple fire-related cues and environmental cues as these are seldom assessed in combination. We aimed to improve understanding of the germination requirements of species with physiological dormancy in fire-prone floras by investigating germination responses across members of the Rutaceae from south eastern Australia. We used a fully factorial experimental design to quantify the individual and combined effects of heat shock, smoke and seasonal ambient temperatures on germination of freshly dispersed seeds of seven species of Boronia, a large and difficult-to-germinate genus. Germination syndromes were highly variable but correlated with broad patterns in seed morphology and phylogenetic relationships between species. Seasonal temperatures influenced the rate and/or magnitude of germination responses in six species, and interacted with fire cues in complex ways. The combined effects of heat shock and smoke ranged from neutral to additive, synergistic, unitive or negative and varied with species, seasonal temperatures and duration of incubation. These responses could not be reliably predicted from the effect of the application of single cues. Based on these findings, fire season and fire intensity are predicted to affect both the magnitude and timing of seedling emergence in wild populations of species with physiological dormancy, with important implications for current fire management practices and for population

  10. Species-Specific Morphological and Physiological Responses of Four Korean Native Trees Species under Elevated CO2 Concentration using Open Top Chamber

    NASA Astrophysics Data System (ADS)

    Song, W.; Byeon, S.; Lee, H.; Lee, M.; Lim, H.; Kim, H. S.

    2017-12-01

    For the last three years, studies on the morphological and physiological characteristics were carried out for four tree species (Pinus densiflora, Quercus acutissima, Sorbus alnifolia and Fraxinus rhynchophylla) which are representative native species of Korea. We used a control site and three open top chambers (con, chamber 1, 2, and 3) which were exposed to ambient and two elevated CO2 concentration ([CO2]); the concentration were the ambient (400ppm) for control and chamber 1 and 1.4 times (560ppm) and 1.8 times (720 ppm) of the atmosphere for chamber 2 and 3, respectively. Leaf mass per area (LMA), stomatal size, density and area were examined to investigate the morphological changes of the trees. Among four species, F. rhynchophylla increased their LMA with increase of CO2 concentration. In addition, F. rhynchophylla showed the decrease of stomatal density significantly (p-value=0.02), while there was no difference in stoma size. These findings resulted in 25.5% and 38.7% decrease of stomata area per unit leaf area calculated by multiplying the size and density of the stomata. On the other hand, all 4 tree species were significantly increased in height and diameter growth with the elevated CO2. However, in the case of Q. acutissima, the increase in height growth was prominent. For physiological characteristics, the maximum photosynthetic rate was faster in the chambers exposed to high [CO2] than that in the control. However the rate of carboxylation and the electron transfer rate showed no particular tendency. The measurement of hydraulic conductivity (Ks, kg/m/s/Mpa) for Crataegus pinnatifida, increased as the [CO2] in the atmosphere increased, and the 50% Loss Conductance (Mpa) tended to increase slightly with the [CO2]. The correlation analysis between hydraulic conductivity and vulnerability to cavitation showed a strong negative correlation (P <0.05), which was unlike the general tendency.

  11. Eco-Physiological Responses of Dominant Species to Watering in a Natural Grassland Community on the Semi-Arid Loess Plateau of China

    PubMed Central

    Niu, Furong; Duan, Dongping; Chen, Ji; Xiong, Peifeng; Zhang, He; Wang, Zhi; Xu, Bingcheng

    2016-01-01

    Altered precipitation regimes significantly affect ecosystem structure and function in arid and semi-arid regions. In order to investigate effects of precipitation changes on natural grassland community in the semi-arid Loess Plateau, the current research examined eco-physiological characteristics of two co-dominant species (i.e., Bothriochloa ischaemum and Lespedeza davurica) and community composition following two watering instances (i.e., precipitation pulses, July and August, 2011, respectively) in a natural grassland community. Results showed that the photosynthetic rate, transpiration rate, stomatal conductance and intercellular CO2 concentration rapidly increased on the first to third day following watering in both species, and both months. Under watering treatments, the maximum net photosynthetic rates appeared on the second to third day after watering, which increased 30–80% in B. ischaemum and 40–50% in L. davurica compared with non-watering treatments, respectively. Leaf water use efficiency kept stable or initially decreased in both species under watering treatments. Watering in July produced more promoting effects on grass photosynthesis than in August, particularly in B. ischaemum. Community above-ground biomass at the end of the growing season increased after watering, although no significant changes in species diversity were observed. Our results indicated that timing and magnitude of watering could significantly affect plant eco-physiological processes, and there were species-specific responses in B. ischaemum and L. davurica. Pulsed watering increased community productivity, while did not significantly alter community composition after one growing season. The outcomes of this study highlight eco-physiological traits in dominant species may playing important roles in reshaping community composition under altered precipitation regimes. PMID:27242864

  12. Plant Survival and Mortality during Drought Can be Mediated by Co-occurring Species' Physiological and Morphological Traits: Results from a Model

    NASA Astrophysics Data System (ADS)

    Tai, X.; Mackay, D. S.

    2015-12-01

    Interactions among co-occurring species are mediated by plant physiology, morphology and environment. Without proper mechanisms to account for these factors, it remains difficult to predict plant mortality/survival under changing climate. A plant ecophysiological model, TREES, was extended to incorporate co-occurring species' belowground interaction for water. We used it to examine the interaction between two commonly co-occurring species during drought experiment, pine (Pinus edulis) and juniper (Juniperus monosperma), with contrasting physiological traits (vulnerability to cavitation and leaf water potential regulation). TREES was parameterized and validated using field-measured plant physiological traits. The root architecture (depth, profile, and root area to leaf area ratio) of juniper was adjusted to see how root morphology could affect the survival/mortality of its neighboring pine under both ambient and drought conditions. Drought suppressed plant water and carbon uptake, as well increased the average percentage loss of conductivity (PLC). Pine had 59% reduction in water uptake, 48% reduction in carbon uptake, and 38% increase in PLC, while juniper had 56% reduction in water uptake, 50% reduction in carbon and 29% increase in PLC, suggesting different vulnerability to drought as mediated by plant physiological traits. Variations in juniper root architecture further mediated drought stress on pine, from negative to positive. Different juniper root architecture caused variations in response of pine over drought (water uptake reduction ranged 0% ~63%, carbon uptake reduction ranged 0% ~ 70%, and PLC increase ranged 2% ~ 91%). Deeper or more uniformly distributed roots of juniper could effectively mitigate stress experienced by pine. In addition, the total water and carbon uptake tended to increase as the ratio of root area to leaf area increased while PLC showed non-monotonic response, suggesting the potential trade-off between maximizing resource uptake and

  13. Comparative physiology and relative swimming performance of three redhorse (Moxostoma spp.) species: associations with fishway passage success.

    PubMed

    Hatry, Charles; Thiem, Jason D; Binder, Thomas R; Hatin, Daniel; Dumont, Pierre; Stamplecoskie, Keith M; Molina, Juan M; Smokorowski, Karen E; Cooke, Steven J

    2014-01-01

    Our understanding of biological criteria to inform fish passage design is limited, partially due to the lack of understanding of biological motivators, cues, and constraints, as well as a lack of biological performance evaluations of structures once they are built. The Vianney-Legendre vertical slot fishway on the Richelieu River, Quebec, Canada, passes large numbers of migrating redhorse (Moxostoma spp.) upriver to spawning grounds each year. We evaluated the physiological capacity and relative swimming ability of three redhorse species (Moxostoma anisurum, Moxostoma carinatum, Moxostoma macrolepidotum; silver, river, and shorthead redhorse, respectively) to determine how these biotic factors relate to variation in fishway passage success and duration. Shorthead redhorse had higher maximum metabolic rates and were faster swimmers than silver and river redhorse at their species-specific peak migration temperatures. Blood lactate and glucose concentrations recovered more quickly for river redhorse than for silver and shorthead redhorse, and river redhorse placed second in terms of metabolic recovery and swim speed. Interestingly, fish sampled from the top of the fishway had nearly identical lactate, glucose, and pH values compared to control fish. Using passive integrated transponders in 2010 and 2012, we observed that passage success and duration were highly variable among redhorse species and were not consistent among years, suggesting that other factors such as water temperature and river flows may modulate passage success. Clearly, additional research is needed to understand how organismal performance, environmental conditions, and other factors (including abundance of conspecifics and other comigrants) interact with fishway features to dictate which fish will be successful and to inform research of future fishways. Our research suggests that there may be an opportunity for a rapid assessment approach where fish chased to exhaustion to determine maximal values

  14. Climate change, species distribution models, and physiological performance metrics: predicting when biogeographic models are likely to fail.

    PubMed

    Woodin, Sarah A; Hilbish, Thomas J; Helmuth, Brian; Jones, Sierra J; Wethey, David S

    2013-09-01

    Modeling the biogeographic consequences of climate change requires confidence in model predictions under novel conditions. However, models often fail when extended to new locales, and such instances have been used as evidence of a change in physiological tolerance, that is, a fundamental niche shift. We explore an alternative explanation and propose a method for predicting the likelihood of failure based on physiological performance curves and environmental variance in the original and new environments. We define the transient event margin (TEM) as the gap between energetic performance failure, defined as CTmax, and the upper lethal limit, defined as LTmax. If TEM is large relative to environmental fluctuations, models will likely fail in new locales. If TEM is small relative to environmental fluctuations, models are likely to be robust for new locales, even when mechanism is unknown. Using temperature, we predict when biogeographic models are likely to fail and illustrate this with a case study. We suggest that failure is predictable from an understanding of how climate drives nonlethal physiological responses, but for many species such data have not been collected. Successful biogeographic forecasting thus depends on understanding when the mechanisms limiting distribution of a species will differ among geographic regions, or at different times, resulting in realized niche shifts. TEM allows prediction of the likelihood of such model failure.

  15. Physiological mechanisms underlying animal social behaviour.

    PubMed

    Seebacher, Frank; Krause, Jens

    2017-08-19

    Many species of animal live in groups, and the group represents the organizational level within which ecological and evolutionary processes occur. Understanding these processes, therefore, relies on knowledge of the mechanisms that permit or constrain group formation. We suggest that physiological capacities and differences in physiology between individuals modify fission-fusion dynamics. Differences between individuals in locomotor capacity and metabolism may lead to fission of groups and sorting of individuals into groups with similar physiological phenotypes. Environmental impacts such as hypoxia can influence maximum group sizes and structure in fish schools by altering access to oxygenated water. The nutritional environment determines group cohesion, and the increase in information collected by the group means that individuals should rely more on social information and form more cohesive groups in uncertain environments. Changing environmental contexts require rapid responses by individuals to maintain group coordination, which are mediated by neuroendocrine signalling systems such as nonapeptides and steroid hormones. Brain processing capacity may constrain social complexity by limiting information processing. Failure to evaluate socially relevant information correctly limits social interactions, which is seen, for example, in autism. Hence, functioning of a group relies to a large extent on the perception and appropriate processing of signals from conspecifics. Many if not all physiological systems are mechanistically linked, and therefore have synergistic effects on social behaviour. A challenge for the future lies in understanding these interactive effects, which will improve understanding of group dynamics, particularly in changing environments.This article is part of the themed issue 'Physiological determinants of social behaviour in animals'. © 2017 The Author(s).

  16. Physiological mechanisms underlying animal social behaviour

    PubMed Central

    2017-01-01

    Many species of animal live in groups, and the group represents the organizational level within which ecological and evolutionary processes occur. Understanding these processes, therefore, relies on knowledge of the mechanisms that permit or constrain group formation. We suggest that physiological capacities and differences in physiology between individuals modify fission–fusion dynamics. Differences between individuals in locomotor capacity and metabolism may lead to fission of groups and sorting of individuals into groups with similar physiological phenotypes. Environmental impacts such as hypoxia can influence maximum group sizes and structure in fish schools by altering access to oxygenated water. The nutritional environment determines group cohesion, and the increase in information collected by the group means that individuals should rely more on social information and form more cohesive groups in uncertain environments. Changing environmental contexts require rapid responses by individuals to maintain group coordination, which are mediated by neuroendocrine signalling systems such as nonapeptides and steroid hormones. Brain processing capacity may constrain social complexity by limiting information processing. Failure to evaluate socially relevant information correctly limits social interactions, which is seen, for example, in autism. Hence, functioning of a group relies to a large extent on the perception and appropriate processing of signals from conspecifics. Many if not all physiological systems are mechanistically linked, and therefore have synergistic effects on social behaviour. A challenge for the future lies in understanding these interactive effects, which will improve understanding of group dynamics, particularly in changing environments. This article is part of the themed issue ‘Physiological determinants of social behaviour in animals’. PMID:28673909

  17. Adolescent Conflict Appraisals Moderate the Link Between Marital Conflict and Physiological Stress Reactivity.

    PubMed

    Lucas-Thompson, Rachel G; Lunkenheimer, Erika S; Granger, Douglas A

    2017-03-01

    The goal of this study was to advance understanding of how adolescent conflict appraisals contribute uniquely, and in combination with interparental conflict behavior, to individual differences in adolescent physiological reactivity. Saliva samples were collected from 153 adolescents (52% female; ages 10-17 years) before and after the Trier Social Stress Test. Saliva was assayed for cortisol and alpha-amylase. Results revealed interactive effects between marital conflict and conflict appraisals. For youth who appraised parental conflict negatively (particularly as threatening), negative marital conflict predicted dampened reactivity; for youth who appraised parental conflict less negatively, negative marital conflict predicted heightened reactivity. These findings support the notion that the family context and youth appraisals of family relationships are linked with individual differences in biological sensitivity to context. © 2016 The Authors. Journal of Research on Adolescence © 2016 Society for Research on Adolescence.

  18. Children’s Patterns of Emotional Reactivity to Conflict as Explanatory Mechanisms in Links Between Interpartner Aggression and Child Physiological Functioning

    PubMed Central

    Davies, Patrick T.; Sturge-Apple, Melissa L.; Cicchetti, Dante; Manning, Liviah G.; Zale, Emily

    2009-01-01

    Background This paper examined children’s fearful, sad, and angry reactivity to interparental conflict as mediators of associations between their exposure to interparental aggression and physiological functioning. Methods Participants included 200 toddlers and their mothers. Assessments of interparental aggression and children’s emotional reactivity were derived from maternal surveys and a semi-structured interview. Cortisol levels and cardiac indices of sympathetic nervous system (SNS) and parasympathetic nervous system (PNS) activity were used to assess toddler physiological functioning. Results Results indicated that toddler exposure to interparental aggression was associated with greater cortisol levels and PNS activity and diminished SNS activity. Toddler angry emotional reactivity mediated associations between interparental aggression and cortisol and PNS functioning. Fearful emotional reactivity was a mediator of the link between interparental aggression and SNS functioning. Conclusions The results are interpreted within conceptualizations of how exposure and reactivity to family risk organizing individual differences in physiological functioning. PMID:19744183

  19. Physiological responses to hypersalinity correspond to nursery ground usage in two inshore shark species (Mustelus antarcticus and Galeorhinus galeus).

    PubMed

    Tunnah, Louise; MacKellar, Sara R C; Barnett, David A; MacCormack, Tyson J; Stehfest, Kilian M; Morash, Andrea J; Semmens, Jayson M; Currie, Suzanne

    2016-07-01

    Shark nurseries are susceptible to environmental fluctuations in salinity because of their shallow, coastal nature; however, the physiological impacts on resident elasmobranchs are largely unknown. Gummy sharks (Mustelus antarcticus) and school sharks (Galeorhinus galeus) use the same Tasmanian estuary as a nursery ground; however, each species has distinct distribution patterns that are coincident with changes in local environmental conditions, such as increases in salinity. We hypothesized that these differences were directly related to differential physiological tolerances to high salinity. To test this hypothesis, we exposed wild, juvenile school and gummy sharks to an environmentally relevant hypersaline (120% SW) event for 48 h. Metabolic rate decreased 20-35% in both species, and gill Na(+)/K(+)-ATPase activity was maintained in gummy sharks but decreased 37% in school sharks. We measured plasma ions (Na(+), K(+), Cl(-)) and osmolytes [urea and trimethylamine oxide (TMAO)], and observed a 33% increase in plasma Na(+) in gummy sharks with hyperosmotic exposure, while school sharks displayed a typical ureosmotic increase in plasma urea (∼20%). With elevated salinity, gill TMAO concentration increased by 42% in school sharks and by 30% in gummy sharks. Indicators of cellular stress (heat shock proteins HSP70, 90 and 110, and ubiquitin) significantly increased in gill and white muscle in both a species- and a tissue-specific manner. Overall, gummy sharks exhibited greater osmotic perturbation and ionic dysregulation and a larger cellular stress response compared with school sharks. Our findings provide physiological correlates to the observed distribution and movement of these shark species in their critical nursery grounds. © 2016. Published by The Company of Biologists Ltd.

  20. Avian reproductive physiology

    USGS Publications Warehouse

    Gee, G.F.; Gibbons, Edward F.; Durrant, Barbara S.; Demarest, Jack

    1995-01-01

    Knowledge of the many physiological factors associated with egg production , fertility, incubation, and brooding in nondomestic birds is limited. Science knows even less about reproduction in most of the 238 endangered or threatened birds. This discussion uses studies of nondomestic and, when necessary, domestic birds to describe physiological control of reproduction. Studies of the few nondomestic avian species show large variation in physiological control of reproduction. Aviculturists, in order to successfully propagate an endangered bird, must understand the bird's reproductive peculiarities. First, investigators can do studies with carefully chosen surrogate species, but eventually they need to confirm the results in the target endangered bird. Studies of reproduction in nondomestic birds increased in the last decade. Still, scientists need to do more comparative studies to understand the mechanisms that control reproduction in birds. New technologies are making it possible to study reproductive physiology of nondomestic species in less limiting ways. These technologies include telemetry to collect information without inducing stress on captives (Howey et al., 1987; Klugman, 1987), new tests for most of the humoral factors associated with reproduction, and the skill to collect small samples and manipulate birds without disrupting the physiological mechanisms (Bercovitz et al., 1985). Managers are using knowledge from these studies to improve propagation in zoological parks, private and public propagation facilities, and research institutions. Researchers need to study the control of ovulation, egg formation, and oviposition in the species of nondomestic birds that lay very few eggs in a season, hold eggs in the oviduct for longer intervals, or differ in other ways from the more thoroughly studied domestic birds. Other techniques that would enhance propagation for nondomestlc birds include tissue culture of cloned embryonic cells, cryopreservation of embryos

  1. Soil microbial communities buffer physiological responses to drought stress in three hardwood species.

    PubMed

    Kannenberg, Steven A; Phillips, Richard P

    2017-03-01

    Trees possess myriad adaptations for coping with drought stress, but the extent to which their drought responses are influenced by interactions with soil microbes is poorly understood. To explore the role of microbes in mediating tree responses to drought stress, we exposed saplings of three species (Acer saccharum, Liriodendron tulipifera, and Quercus alba) to a four week experimental drought in mesocosms. Half of the pots were inoculated with a live soil slurry (i.e., a microbial inoculum derived from soils beneath the canopies of mature A. saccharum, L. tulipifera or Q. alba stands), while the other half of the pots received a sterile soil slurry. Soil microbes ameliorated drought stress in L. tulipifera by minimizing reductions in leaf water potential and by reducing photosynthetic declines. In A. saccharum, soil microbes reduced drought stress by lessening declines in leaf water potential, though these changes did not buffer the trees from declining photosynthetic rates. In Q. alba, soil microbes had no effects on leaf physiological parameters during drought stress. In all species, microbes had no significant effects on dynamic C allocation during drought stress, suggesting that microbial effects on plant physiology were unrelated to source-sink dynamics. Collectively, our results suggest that soil microbes have the potential to alter key parameters that are used to diagnose drought sensitivity (i.e., isohydry or anisohydry). To the extent that our results reflect dynamics occurring in forests, a revised perspective on plant hydraulic strategies that considers root-microbe interactions may lead to improved predictions of forest vulnerability to drought.

  2. Drought stress limits the geographic ranges of two tree species via different physiological mechanisms.

    PubMed

    Anderegg, Leander D L; HilleRisLambers, Janneke

    2016-03-01

    Range shifts are among the most ubiquitous ecological responses to anthropogenic climate change and have large consequences for ecosystems. Unfortunately, the ecophysiological forces that constrain range boundaries are poorly understood, making it difficult to mechanistically project range shifts. To explore the physiological mechanisms by which drought stress controls dry range boundaries in trees, we quantified elevational variation in drought tolerance and in drought avoidance-related functional traits of a widespread gymnosperm (ponderosa pine - Pinus ponderosa) and angiosperm (trembling aspen - Populus tremuloides) tree species in the southwestern USA. Specifically, we quantified tree-to-tree variation in growth, water stress (predawn and midday xylem tension), drought avoidance traits (branch conductivity, leaf/needle size, tree height, leaf area-to-sapwood area ratio), and drought tolerance traits (xylem resistance to embolism, hydraulic safety margin, wood density) at the range margins and range center of each species. Although water stress increased and growth declined strongly at lower range margins of both species, ponderosa pine and aspen showed contrasting patterns of clinal trait variation. Trembling aspen increased its drought tolerance at its dry range edge by growing stronger but more carbon dense branch and leaf tissues, implying an increased cost of growth at its range boundary. By contrast, ponderosa pine showed little elevational variation in drought-related traits but avoided drought stress at low elevations by limiting transpiration through stomatal closure, such that its dry range boundary is associated with limited carbon assimilation even in average climatic conditions. Thus, the same climatic factor (drought) may drive range boundaries through different physiological mechanisms - a result that has important implications for process-based modeling approaches to tree biogeography. Further, we show that comparing intraspecific patterns of

  3. Genomic signatures of selection at linked sites: unifying the disparity among species

    PubMed Central

    Cutter, Asher D.; Payseur, Bret A.

    2014-01-01

    Population genetics theory supplies powerful predictions about how natural selection interacts with genetic linkage to sculpt the genomic landscape of nucleotide polymorphism. Both the spread of beneficial mutations and removal of deleterious mutations act to depress polymorphism levels, especially in low-recombination regions. However, empiricists have documented extreme disparities among species. Here we characterize the dominant features that could drive variation in linked selection among species, including roles for selective sweeps being ‘hard’ or ‘soft’, and concealing by demography and genomic confounds. We advocate targeted studies of close relatives to unify our understanding of how selection and linkage interact to shape genome evolution. PMID:23478346

  4. Linking Associations of Rare Low-Abundance Species to Their Environments by Association Networks

    DOE PAGES

    Karpinets, Tatiana V.; Gopalakrishnan, Vancheswaran; Wargo, Jennifer; ...

    2018-03-07

    Studies of microbial communities by targeted sequencing of rRNA genes lead to recovering numerous rare low-abundance taxa with unknown biological roles. We propose to study associations of such rare organisms with their environments by a computational framework based on transformation of the data into qualitative variables. Namely, we analyze the sparse table of putative species or OTUs (operational taxonomic units) and samples generated in such studies, also known as an OTU table, by collecting statistics on co-occurrences of the species and on shared species richness across samples. Based on the statistics we built two association networks, of the rare putativemore » species and of the samples respectively, using a known computational technique, Association networks (Anets) developed for analysis of qualitative data. Clusters of samples and clusters of OTUs are then integrated and combined with metadata of the study to produce a map of associated putative species in their environments. We tested and validated the framework on two types of microbiomes, of human body sites and that of the Populus tree root systems. We show that in both studies the associations of OTUs can separate samples according to environmental or physiological characteristics of the studied systems.« less

  5. Linking Associations of Rare Low-Abundance Species to Their Environments by Association Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karpinets, Tatiana V.; Gopalakrishnan, Vancheswaran; Wargo, Jennifer

    Studies of microbial communities by targeted sequencing of rRNA genes lead to recovering numerous rare low-abundance taxa with unknown biological roles. We propose to study associations of such rare organisms with their environments by a computational framework based on transformation of the data into qualitative variables. Namely, we analyze the sparse table of putative species or OTUs (operational taxonomic units) and samples generated in such studies, also known as an OTU table, by collecting statistics on co-occurrences of the species and on shared species richness across samples. Based on the statistics we built two association networks, of the rare putativemore » species and of the samples respectively, using a known computational technique, Association networks (Anets) developed for analysis of qualitative data. Clusters of samples and clusters of OTUs are then integrated and combined with metadata of the study to produce a map of associated putative species in their environments. We tested and validated the framework on two types of microbiomes, of human body sites and that of the Populus tree root systems. We show that in both studies the associations of OTUs can separate samples according to environmental or physiological characteristics of the studied systems.« less

  6. Physiological Regulation of Stomatal Conductance in Boreal Forest Species: Do Species Differ and Does it Matter?

    NASA Astrophysics Data System (ADS)

    Berry, J. A.; Wolf, A.; Vygodskaya, N. N.

    2004-12-01

    Measurements of energy and water balance over Boreal forest ecosystems have generally shown very large ratios of sensible heat flux to latent heat flux (Bowen ratio) - especially on fine summer days. This strong control on evaporation at the plant scale can restrict precipitation and effect hydrometeorlogy at the regional scale. The large Bowen ratio is, in part, explained by the low maximum stomatal conductance of Boreal forest tree species and is probably related to their very low photosynthetic capacity. However, mid-day conductance can be much lower than expected on this basis and reflects the additional effect of a dynamic feedback system between stomatal conductance and the properties of the atmospheric boundary layer. Low stomatal conductance leads to a large sensible heat flux which, in turn, leads to a deeper, warmer and dryer atmospheric boundary layer and to a greater evaporative demand on the plant, causing the stomata close still more. Predicting the response of this non-linear system presents a major challenge. Physiological studies conducted in the Canadian Boreal forest show very large differences in the tendency of species to experience mid day stomatal closure. Jack pine was found to be quite susceptible while black spruce the most resistant to mid day stomatal closure. These species had very similar photosynthetic capacity (Vmax) and Ball-Berry stomatal sensitivity coefficients. Jack pine was, however, more sensitive to inhibition of photosynthesis by elevated temperatures and, as a consequence, stomata closed as temperature and the vapor pressure deficit increased during mid day. In contrast, black spruce was much less effected. These differences could have profound implications for simulating regional scale hydrometeorology over large areas dominated by monospecific stands in the NEESPI domain.

  7. Physiological correlates of symbiont migration during bleaching of two octocoral species.

    PubMed

    Netherton, Sarah E; Scheer, Daniele M; Morrison, Patrick R; Parrin, Austin P; Blackstone, Neil W

    2014-05-01

    Perturbed colonies of Phenganax parrini and Sarcothelia sp. exhibit migration of symbionts of Symbiodinium spp. into the stolons. Densitometry and visual inspection indicated that polyps bleached while stolons did not. When migration was triggered by temperature, light and confinement, colonies of Sarcothelia sp. decreased rates of oxygen formation in the light (due to the effects of perturbation on photosynthesis and respiration) and increased rates of oxygen uptake in the dark (due to the effects of perturbation on respiration alone). Colonies of P. parrini, by contrast, showed no significant changes in either aspect of oxygen metabolism. When migration was triggered by light and confinement, colonies of Sarcothelia sp. showed decreased rates of oxygen formation in the light and increased rates of oxygen uptake in the dark, while colonies of P. parrini maintained the former and increased the latter. During symbiont migration into their stolons, colonies of both species showed dramatic increases in reactive oxygen species (ROS), as visualized with a fluorescent probe, with stolons of Sarcothelia sp. exhibiting a nearly immediate increase of ROS. Differences in symbiont type may explain the greater sensitivity of colonies of Sarcothelia sp. Using fluorescent probes, direct measurements of migrating symbionts in the stolons of Sarcothelia sp. showed higher levels of reactive nitrogen species and lower levels of ROS than the surrounding host tissue. As measured by native fluorescence, levels of NAD(P)H in the stolons were unaffected by perturbation. Symbiont migration thus correlates with dramatic physiological changes and may serve as a marker for coral condition.

  8. Linking an ecosystem model and a landscape model to study forest species response to climate warming

    Treesearch

    Hong S. He; David J. Mladenoff; Thomas R. Crow

    1999-01-01

    No single model can address forest change from single tree to regional scales. We discuss a framework linking an ecosystem process model {LINKAGES) with a spatial landscape model (LANDIS) to examine forest species responses to climate warming for a large, heterogeneous landscape in northern Wisconsin, USA. Individual species response at the ecosystem scale was...

  9. Evidence for Mito-Nuclear and Sex-Linked Reproductive Barriers between the Hybrid Italian Sparrow and Its Parent Species

    PubMed Central

    Sætre, Glenn-Peter; Bailey, Richard I.

    2014-01-01

    Studies of reproductive isolation between homoploid hybrid species and their parent species have rarely been carried out. Here we investigate reproductive barriers between a recently recognized hybrid bird species, the Italian sparrow Passer italiae and its parent species, the house sparrow P. domesticus and Spanish sparrow P. hispaniolensis. Reproductive barriers can be difficult to study in hybrid species due to lack of geographical contact between taxa. However, the Italian sparrow lives parapatrically with the house sparrow and both sympatrically and parapatrically with the Spanish sparrow. Through whole-transcriptome sequencing of six individuals of each of the two parent species we identified a set of putatively parent species-diagnostic single nucleotide polymorphism (SNP) markers. After filtering for coverage, genotyping success (>97%) and multiple SNPs per gene, we retained 86 species-informative, genic, nuclear and mitochondrial SNP markers from 84 genes for analysis of 612 male individuals. We show that a disproportionately large number of sex-linked genes, as well as the mitochondria and nuclear genes with mitochondrial function, exhibit sharp clines at the boundaries between the hybrid and the parent species, suggesting a role for mito-nuclear and sex-linked incompatibilities in forming reproductive barriers. We suggest that genomic conflict via interactions between mitochondria and sex-linked genes with mitochondrial function (“mother's curse”) at one boundary and centromeric drive at the other may best explain our findings. Hybrid speciation in the Italian sparrow may therefore be influenced by mechanisms similar to those involved in non-hybrid speciation, but with the formation of two geographically separated species boundaries instead of one. Spanish sparrow alleles at some loci have spread north to form reproductive barriers with house sparrows, while house sparrow alleles at different loci, including some on the same chromosome, have spread

  10. Thermal biology of two sympatric gerbil species: The physiological basis of temporal partitioning.

    PubMed

    Ding, Bo-Yang; Chi, Qing-Sheng; Liu, Wei; Shi, Yao-Long; Wang, De-Hua

    2018-05-01

    Sympatric species can coexist through ecological resource partitioning as for example for habitat, food or time. However, a detailed understanding of the basic thermal physiology, crucial for temporal partitioning, is currently lacking, especially for the desert rodents. Here, we compare the physiological performance with regard to thermal energetics and morphological traits of two sympatric gerbils from the Gobi desert of Inner Mongolia, China. The diurnally active Meriones unguiculatus and the nocturnally active M. meridianus. The diurnal M. unguiculatus had more brown adipose tissue (BAT) mass and capacity for non-shivering thermogenesis (NST), a higher resting metabolic rate (RMR) at low ambient temperatures (T a ) and a higher upper critical temperature of the thermal neutral zone (TNZ) than the nocturnal M. meridianus. The overall thermal conductance and lower critical temperatures of M. unguiculatus were also higher than that of M. meridianus, permitting the former to maintain a stable body temperature (T b ) when exposed to high T a . Laboratory-bred M. meridianus also showed higher daily water intake. We found no differences in body mass, and total evaporative water loss (TEWL) between the two species captured from the natural environment. These results suggest that the diurnal M. unguiculatus have a higher tolerance of high T a s, whereas M. meridianus can save more energy at low T a s. Therefore, from the view point of energy conservation, our results suggest that the nocturnal ecophenotype in M. meridianus is constrained by a lower ability for heat resistance, but this is not the case for the diurnal M. unguiculatus. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Physiological characteristics of tropical rain forest tree species: a basis for the development of silvicultural technology.

    PubMed

    Sasaki, Satohiko

    2008-01-01

    The physiological characteristics of the dominant tree species in the tropical rain forest mainly belonging to dipterocarps as well as the environmental conditions especially for the light in the forest were studied to establish the silvicultural system for the forest regeneration in the tropical South Asia. The flowering patterns of the dipterocarp trees are usually irregular and unpredictable, which make difficult to collect sufficient seeds for raising the seedlings. The field survey revealed the diverged features of the so-called gregarious or simultaneous flowering of various species of this group. Appropriate conditions and methods for the storage of the seeds were established according to the detailed analyses of the morphological and physiological characteristics of the seeds such as the low temperature tolerance and the moisture contents. The intensity and spectra of the light in the forest primarily determine the growth and the morphological development of the seedlings under the canopy. Based on the measurements of the diffused light at the sites in the tropical forest in the varying sunlight, the parameters such as "the steady state of the diffuse light" and "the turning point" were defined, which were useful to evaluate the light conditions in the forest. To improve the survival of the transplanted seedlings, a planting method of "the bare-root seedlings", the seedlings easy to be handled by removal of all leaves, soil and pots, was developed. Its marked efficiency was proved with various dipterocarps and other tropical trees by the field trial in the practical scale. Tolerance of the various species to the extreme environmental conditions such as fires, acid soils and drought were examined by the experiments and the field survey, which revealed marked adaptability of Shorea roxburghii as a potential species for regeneration of the tropical forests.

  12. Physiological characteristics of tropical rain forest tree species: A basis for the development of silvicultural technology

    PubMed Central

    SASAKI, Satohiko

    2008-01-01

    The physiological characteristics of the dominant tree species in the tropical rain forest mainly belonging to dipterocarps as well as the environmental conditions especially for the light in the forest were studied to establish the silvicultural system for the forest regeneration in the tropical South Asia. The flowering patterns of the dipterocarp trees are usually irregular and unpredictable, which make difficult to collect sufficient seeds for raising the seedlings. The field survey revealed the diverged features of the so-called gregarious or simultaneous flowering of various species of this group. Appropriate conditions and methods for the storage of the seeds were established according to the detailed analyses of the morphological and physiological characteristics of the seeds such as the low temperature tolerance and the moisture contents. The intensity and spectra of the light in the forest primarily determine the growth and the morphological development of the seedlings under the canopy. Based on the measurements of the diffused light at the sites in the tropical forest in the varying sunlight, the parameters such as “the steady state of the diffuse light” and “the turning point” were defined, which were useful to evaluate the light conditions in the forest. To improve the survival of the transplanted seedlings, a planting method of “the bare-root seedlings”, the seedlings easy to be handled by removal of all leaves, soil and pots, was developed. Its marked efficiency was proved with various dipterocarps and other tropical trees by the field trial in the practical scale. Tolerance of the various species to the extreme environmental conditions such as fires, acid soils and drought were examined by the experiments and the field survey, which revealed marked adaptability of Shorea roxburghii as a potential species for regeneration of the tropical forests. PMID:18941286

  13. Physiological typing of Pseudallescheria and Scedosporium strains using Taxa Profile, a semi-automated, 384-well microtitre system.

    PubMed

    Horré, R; Schaal, K P; Marklein, G; de Hoog, G S; Reiffert, S-M

    2011-10-01

    During the last few decades, Pseudallescheria and Scedosporium infections in humans are noted with increasing frequency. Multi-drug resistance commonly occurring in this species complex interferes with adequate therapy. Rapid and correct identification of clinical isolates is of paramount significance for optimal treatment in the early stages of infection, while strain typing is necessary for epidemiological purposes. In view of the development of physiological diagnostic parameters, 570 physiological reactions were evaluated using the Taxa Profile Micronaut system, a semi-automatic, computer-assisted, 384-well microtitre platform. Thirty two strains of the Pseudallescheria and Scedosporium complex were analysed after molecular verification of correct species attribution. Of the compounds tested, 254 proved to be polymorphic. Cluster analysis was performed with the Micronaut profile software, which is linked to the ntsypc® program. The systemic opportunist S. prolificans was unambiguously separated from the remaining species. Within the P. boydii/P. apiosperma complex differentiation was noted at the level of individual strains, but no unambiguous parameters for species recognition were revealed. © 2011 Blackwell Verlag GmbH.

  14. Integrating physiological threshold experiments with climate modeling to project mangrove range limits

    NASA Astrophysics Data System (ADS)

    Cavanaugh, K. C.; Kellner, J.; Cook-Patton, S.; Williams, P.; Feller, I. C.; Parker, J.

    2014-12-01

    Due to limitations of purely correlative species distribution models, there is a need for more integration of experimental approaches when studying impacts of climate change on species distributions. Here we used controlled experiments to identify physiological thresholds that control poleward range limits of three species of mangroves found in North America. We found that all three species exhibited a threshold response to extreme cold, but freeze tolerance thresholds varied among species. From these experiments we developed a climate metric, freeze degree days (FDD), which incorporates both the intensity and frequency of freezes. When included in distribution models, FDD was a better predictor of mangrove presence/absence than other temperature-based metrics. Using 27 years of satellite imagery, we linked FDD to past changes in mangrove abundance in Florida, further supporting the relevance of FDD. We then used downscaled climate projections of FDD to project poleward migration of these range limits over the next 50 years.

  15. Recent insights into physiological responses to nutrients by the cylindrospermopsin producing cyanobacterium, Cylindrospermopsis raciborskii

    NASA Astrophysics Data System (ADS)

    Burford, Michele A.; Willis, Anusuya; Chuang, Ann; Man, Xiao; Orr, Phil

    2017-11-01

    The harmful cyanobacterium Cylindrospermopsis raciborskii is a widespread species increasingly being recorded in freshwater systems around the world. Studies have demonstrated some key attributes of this species which may explain its global dominance. It has a high level of flexibility with respect to light and nutrients, being capable of growth under low and variable light conditions. However, it is the strategy with respect to nutrient utilization that has received more attention. Unlike many bloom forming species, the dominance of this species is not simply linked to higher nutrient loads. In fact it appears that it is more competitive when phosphorus and nitrogen availability is low and/or variable. An important component of this flexibility appears to be the result of within-population strain variability in responses to nutrients, as well as key physiological adaptations. Strain variability also appears to have an effect on the population-level cell quota of toxins, specifically cylindrospermopsins (CYNs). Field studies in Australia showed that populations had the highest proportion of toxic strains when dissolved inorganic phosphorus was added, resulting in stoichiometrically balanced nitrogen and phosphorus within the cells. These strategies are part of an arsenal of responses to environmental conditions, making it a challenging species to manage. However, our ability to improve bloom prediction will rely on a more detailed understanding of the complex physiology and ecology of this species.

  16. Linking river management to species conservation using dynamic landscape scale models

    USGS Publications Warehouse

    Freeman, Mary C.; Buell, Gary R.; Hay, Lauren E.; Hughes, W. Brian; Jacobson, Robert B.; Jones, John W.; Jones, S.A.; LaFontaine, Jacob H.; Odom, Kenneth R.; Peterson, James T.; Riley, Jeffrey W.; Schindler, J. Stephen; Shea, C.; Weaver, J.D.

    2013-01-01

    Efforts to conserve stream and river biota could benefit from tools that allow managers to evaluate landscape-scale changes in species distributions in response to water management decisions. We present a framework and methods for integrating hydrology, geographic context and metapopulation processes to simulate effects of changes in streamflow on fish occupancy dynamics across a landscape of interconnected stream segments. We illustrate this approach using a 482 km2 catchment in the southeastern US supporting 50 or more stream fish species. A spatially distributed, deterministic and physically based hydrologic model is used to simulate daily streamflow for sub-basins composing the catchment. We use geographic data to characterize stream segments with respect to channel size, confinement, position and connectedness within the stream network. Simulated streamflow dynamics are then applied to model fish metapopulation dynamics in stream segments, using hypothesized effects of streamflow magnitude and variability on population processes, conditioned by channel characteristics. The resulting time series simulate spatially explicit, annual changes in species occurrences or assemblage metrics (e.g. species richness) across the catchment as outcomes of management scenarios. Sensitivity analyses using alternative, plausible links between streamflow components and metapopulation processes, or allowing for alternative modes of fish dispersal, demonstrate large effects of ecological uncertainty on model outcomes and highlight needed research and monitoring. Nonetheless, with uncertainties explicitly acknowledged, dynamic, landscape-scale simulations may prove useful for quantitatively comparing river management alternatives with respect to species conservation.

  17. Linking the Salt Transcriptome with Physiological Responses of a Salt-Resistant Populus Species as a Strategy to Identify Genes Important for Stress Acclimation1[W][OA

    PubMed Central

    Brinker, Monika; Brosché, Mikael; Vinocur, Basia; Abo-Ogiala, Atef; Fayyaz, Payam; Janz, Dennis; Ottow, Eric A.; Cullmann, Andreas D.; Saborowski, Joachim; Kangasjärvi, Jaakko; Altman, Arie; Polle, Andrea

    2010-01-01

    To investigate early salt acclimation mechanisms in a salt-tolerant poplar species (Populus euphratica), the kinetics of molecular, metabolic, and physiological changes during a 24-h salt exposure were measured. Three distinct phases of salt stress were identified by analyses of the osmotic pressure and the shoot water potential: dehydration, salt accumulation, and osmotic restoration associated with ionic stress. The duration and intensity of these phases differed between leaves and roots. Transcriptome analysis using P. euphratica-specific microarrays revealed clusters of coexpressed genes in these phases, with only 3% overlapping salt-responsive genes in leaves and roots. Acclimation of cellular metabolism to high salt concentrations involved remodeling of amino acid and protein biosynthesis and increased expression of molecular chaperones (dehydrins, osmotin). Leaves suffered initially from dehydration, which resulted in changes in transcript levels of mitochondrial and photosynthetic genes, indicating adjustment of energy metabolism. Initially, decreases in stress-related genes were found, whereas increases occurred only when leaves had restored the osmotic balance by salt accumulation. Comparative in silico analysis of the poplar stress regulon with Arabidopsis (Arabidopsis thaliana) orthologs was used as a strategy to reduce the number of candidate genes for functional analysis. Analysis of Arabidopsis knockout lines identified a lipocalin-like gene (AtTIL) and a gene encoding a protein with previously unknown functions (AtSIS) to play roles in salt tolerance. In conclusion, by dissecting the stress transcriptome of tolerant species, novel genes important for salt endurance can be identified. PMID:20959419

  18. Physiology in conservation translocations.

    PubMed

    Tarszisz, Esther; Dickman, Christopher R; Munn, Adam J

    2014-01-01

    Conservation translocations aim to restore species to their indigenous ranges, protect populations from threats and/or reinstate ecosystem functions. They are particularly important for the conservation and management of rare and threatened species. Despite tremendous efforts and advancement in recent years, animal conservation translocations generally have variable success, and the reasons for this are often uncertain. We suggest that when little is known about the physiology and wellbeing of individuals either before or after release, it will be difficult to determine their likelihood of survival, and this could limit advancements in the science of translocations for conservation. In this regard, we argue that physiology offers novel approaches that could substantially improve translocations and associated practices. As a discipline, it is apparent that physiology may be undervalued, perhaps because of the invasive nature of some physiological measurement techniques (e.g. sampling body fluids, surgical implantation). We examined 232 publications that dealt with translocations of terrestrial vertebrates and aquatic mammals and, defining 'success' as high or low, determined how many of these studies explicitly incorporated physiological aspects into their protocols and monitoring. From this review, it is apparent that physiological evaluation before and after animal releases could progress and improve translocation/reintroduction successes. We propose a suite of physiological measures, in addition to animal health indices, for assisting conservation translocations over the short term and also for longer term post-release monitoring. Perhaps most importantly, we argue that the incorporation of physiological assessments of animals at all stages of translocation can have important welfare implications by helping to reduce the total number of animals used. Physiological indicators can also help to refine conservation translocation methods. These approaches fall under a

  19. Linking macroecology and community ecology: refining predictions of species distributions using biotic interaction networks.

    PubMed

    Staniczenko, Phillip P A; Sivasubramaniam, Prabu; Suttle, K Blake; Pearson, Richard G

    2017-06-01

    Macroecological models for predicting species distributions usually only include abiotic environmental conditions as explanatory variables, despite knowledge from community ecology that all species are linked to other species through biotic interactions. This disconnect is largely due to the different spatial scales considered by the two sub-disciplines: macroecologists study patterns at large extents and coarse resolutions, while community ecologists focus on small extents and fine resolutions. A general framework for including biotic interactions in macroecological models would help bridge this divide, as it would allow for rigorous testing of the role that biotic interactions play in determining species ranges. Here, we present an approach that combines species distribution models with Bayesian networks, which enables the direct and indirect effects of biotic interactions to be modelled as propagating conditional dependencies among species' presences. We show that including biotic interactions in distribution models for species from a California grassland community results in better range predictions across the western USA. This new approach will be important for improving estimates of species distributions and their dynamics under environmental change. © 2017 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd.

  20. The physiology of invasive plants in low-resource environments

    PubMed Central

    Funk, Jennifer L.

    2013-01-01

    While invasive plant species primarily occur in disturbed, high-resource environments, many species have invaded ecosystems characterized by low nutrient, water, and light availability. Species adapted to low-resource systems often display traits associated with resource conservation, such as slow growth, high tissue longevity, and resource-use efficiency. This contrasts with our general understanding of invasive species physiology derived primarily from studies in high-resource environments. These studies suggest that invasive species succeed through high resource acquisition. This review examines physiological and morphological traits of native and invasive species in low-resource environments. Existing data support the idea that species invading low-resource environments possess traits associated with resource acquisition, resource conservation or both. Disturbance and climate change are affecting resource availability in many ecosystems, and understanding physiological differences between native and invasive species may suggest ways to restore invaded ecosystems. PMID:27293610

  1. Linking species abundance distributions in numerical abundance and biomass through simple assumptions about community structure.

    PubMed

    Henderson, Peter A; Magurran, Anne E

    2010-05-22

    Species abundance distributions (SADs) are widely used as a tool for summarizing ecological communities but may have different shapes, depending on the currency used to measure species importance. We develop a simple plotting method that links SADs in the alternative currencies of numerical abundance and biomass and is underpinned by testable predictions about how organisms occupy physical space. When log numerical abundance is plotted against log biomass, the species lie within an approximately triangular region. Simple energetic and sampling constraints explain the triangular form. The dispersion of species within this triangle is the key to understanding why SADs of numerical abundance and biomass can differ. Given regular or random species dispersion, we can predict the shape of the SAD for both currencies under a variety of sampling regimes. We argue that this dispersion pattern will lie between regular and random for the following reasons. First, regular dispersion patterns will result if communities are comprised groups of organisms that use different components of the physical space (e.g. open water, the sea bed surface or rock crevices in a marine fish assemblage), and if the abundance of species in each of these spatial guilds is linked to the way individuals of varying size use the habitat. Second, temporal variation in abundance and sampling error will tend to randomize this regular pattern. Data from two intensively studied marine ecosystems offer empirical support for these predictions. Our approach also has application in environmental monitoring and the recognition of anthropogenic disturbance, which may change the shape of the triangular region by, for example, the loss of large body size top predators that occur at low abundance.

  2. Linking species abundance distributions in numerical abundance and biomass through simple assumptions about community structure

    PubMed Central

    Henderson, Peter A.; Magurran, Anne E.

    2010-01-01

    Species abundance distributions (SADs) are widely used as a tool for summarizing ecological communities but may have different shapes, depending on the currency used to measure species importance. We develop a simple plotting method that links SADs in the alternative currencies of numerical abundance and biomass and is underpinned by testable predictions about how organisms occupy physical space. When log numerical abundance is plotted against log biomass, the species lie within an approximately triangular region. Simple energetic and sampling constraints explain the triangular form. The dispersion of species within this triangle is the key to understanding why SADs of numerical abundance and biomass can differ. Given regular or random species dispersion, we can predict the shape of the SAD for both currencies under a variety of sampling regimes. We argue that this dispersion pattern will lie between regular and random for the following reasons. First, regular dispersion patterns will result if communities are comprised groups of organisms that use different components of the physical space (e.g. open water, the sea bed surface or rock crevices in a marine fish assemblage), and if the abundance of species in each of these spatial guilds is linked to the way individuals of varying size use the habitat. Second, temporal variation in abundance and sampling error will tend to randomize this regular pattern. Data from two intensively studied marine ecosystems offer empirical support for these predictions. Our approach also has application in environmental monitoring and the recognition of anthropogenic disturbance, which may change the shape of the triangular region by, for example, the loss of large body size top predators that occur at low abundance. PMID:20071388

  3. Cross-linking of serine racemase dimer by reactive oxygen species and reactive nitrogen species.

    PubMed

    Wang, Wei; Barger, Steven W

    2012-06-01

    Serine racemase (SR) is the only identified enzyme in mammals responsible for isomerization of L-serine to D-serine, a coagonist at N-methyl-D-aspartate (NMDA) receptors in the forebrain. Our previous data showed that an apparent SR dimer resistant to sodium dodecyl sulfate and β-mercaptoethanol was elevated in microglial cells after proinflammatory activation. Because the activation of microglia is typically associated with an oxidative burst, oxidative cross-linking between SR subunits was speculated. In this study, an siRNA technique was employed to confirm the identity of this SR dimer band. The oxidative species potentially responsible for the cross-linking was investigated with recombinant SR protein. The data indicate that nitric oxide, peroxynitrite, and hydroxyl radical were the likely candidates, whereas superoxide and hydrogen peroxide per se failed to contribute. Furthermore, the mechanism of formation of SR dimer by peroxynitrite oxidation was studied by mass spectrometry. A disulfide bond between Cys₆ and Cys₁₁₃ was identified in 3-morpholinosydnonimine hydrochloride (SIN-1)-treated SR monomer and dimer. Activity assays indicated that SIN-1 treatment decreased SR activity, confirming our previous conclusion that noncovalent dimer is the most active form of SR. These findings suggest a compensatory feedback in which the consequences of neuroinflammation might dampen D-serine production to limit excitotoxic stimulation of NMDA receptors. Copyright © 2012 Wiley Periodicals, Inc.

  4. Physiology in conservation translocations

    PubMed Central

    Tarszisz, Esther; Dickman, Christopher R.; Munn, Adam J.

    2014-01-01

    Conservation translocations aim to restore species to their indigenous ranges, protect populations from threats and/or reinstate ecosystem functions. They are particularly important for the conservation and management of rare and threatened species. Despite tremendous efforts and advancement in recent years, animal conservation translocations generally have variable success, and the reasons for this are often uncertain. We suggest that when little is known about the physiology and wellbeing of individuals either before or after release, it will be difficult to determine their likelihood of survival, and this could limit advancements in the science of translocations for conservation. In this regard, we argue that physiology offers novel approaches that could substantially improve translocations and associated practices. As a discipline, it is apparent that physiology may be undervalued, perhaps because of the invasive nature of some physiological measurement techniques (e.g. sampling body fluids, surgical implantation). We examined 232 publications that dealt with translocations of terrestrial vertebrates and aquatic mammals and, defining ‘success’ as high or low, determined how many of these studies explicitly incorporated physiological aspects into their protocols and monitoring. From this review, it is apparent that physiological evaluation before and after animal releases could progress and improve translocation/reintroduction successes. We propose a suite of physiological measures, in addition to animal health indices, for assisting conservation translocations over the short term and also for longer term post-release monitoring. Perhaps most importantly, we argue that the incorporation of physiological assessments of animals at all stages of translocation can have important welfare implications by helping to reduce the total number of animals used. Physiological indicators can also help to refine conservation translocation methods. These approaches fall

  5. Bridging different perspectives of the physiological and mathematical disciplines.

    PubMed

    Batzel, Jerry Joseph; Hinghofer-Szalkay, Helmut; Kappel, Franz; Schneditz, Daniel; Kenner, Thomas; Goswami, Nandu

    2012-12-01

    The goal of this report is to discuss educational approaches for bridging the different perspectives of the physiological and mathematical disciplines. These approaches can enhance the learning experience for physiology, medical, and mathematics students and simultaneously act to stimulate mathematical/physiological/clinical interdisciplinary research. While physiology education incorporates mathematics, via equations and formulas, it does not typically provide a foundation for interdisciplinary research linking mathematics and physiology. Here, we provide insights and ideas derived from interdisciplinary seminars involving mathematicians and physiologists that have been conducted over the last decade. The approaches described here can be used as templates for giving physiology and medical students insights into how sophisticated tools from mathematics can be applied and how the disciplines of mathematics and physiology can be integrated in research, thereby fostering a foundation for interdisciplinary collaboration. These templates are equally applicable to linking mathematical methods with other life and health sciences in the educational process.

  6. Physiological plasticity of metabolic rates in the invasive honey bee and an endemic Australian bee species.

    PubMed

    Tomlinson, Sean; Dixon, Kingsley W; Didham, Raphael K; Bradshaw, S Don

    2015-12-01

    Seasonal variation in metabolic rate and evaporative water loss as a function of ambient temperature were compared in two species of bees. The endemic blue-banded bee, Amegilla chlorocyanea, is a solitary species that is an important pollinator in the south-west Australian biodiversity hotspot. Responses were compared with the European honeybee, Apis mellifera, naturalised in Western Australia almost 200 years ago. Metabolic rate increased exponentially with temperature to a peak in both species, and then declined rapidly, with unique scaling exponents and peaks for all species-by-season comparisons. Early in the austral summer, Apis was less thermally tolerant than Amegilla, but the positions reversed later in the foraging season. There were also significant exponential increases in evaporative water loss with increasing temperature, and both season and species contributed to significantly different responses. Apis maintained relatively consistent thermal performance of metabolic rate between seasons, but at the expense of increased rates of evaporative water loss later in summer. In contrast, Amegilla had dramatically increased metabolic requirements later in summer, but maintained consistent thermal performance of evaporative water loss. Although both species acclimated to higher thermal tolerance, the physiological strategies underpinning the acclimation differed. These findings may have important implications for understanding the responses of these and other pollinators to changing environments and for their conservation management.

  7. International differences in the links between obesity and physiological dysregulation: the United States, England, and Taiwan.

    PubMed

    Vasunilashorn, Sarinnapha; Kim, Jung Ki; Crimmins, Eileen M

    2013-01-01

    Excess weight has generally been associated with adverse health outcomes; however, the link between overweight and health outcomes may vary with socioeconomic, cultural, and epidemiological conditions. We examine associations of weight with indicators of biological risk in three nationally representative populations: the US National Health and Nutrition Examination Survey, the English Longitudinal Study of Ageing, and the Social Environment and Biomarkers of Aging Study in Taiwan. Indicators of biological risk were compared for obese (defined using body mass index (BMI) and waist circumference) and normal weight individuals aged 54+. Generally, obesity in England was associated with elevated risk for more markers examined; obese Americans also had elevated risks except that they did not have elevated blood pressure (BP). Including waist circumference in our consideration of BMI indicated different links between obesity and waist size across countries; we found higher physiological dysregulation among those with high waist but normal BMI compared to those with normal waist and normal BMI. Americans had the highest levels of biological risk in all weight/waist groups. Cross-country variation in biological risk associated with obesity may reflect differences in health behaviors, lifestyle, medication use, and culture.

  8. International Differences in the Links between Obesity and Physiological Dysregulation: The United States, England, and Taiwan

    PubMed Central

    Vasunilashorn, Sarinnapha; Kim, Jung Ki; Crimmins, Eileen M.

    2013-01-01

    Excess weight has generally been associated with adverse health outcomes; however, the link between overweight and health outcomes may vary with socioeconomic, cultural, and epidemiological conditions. We examine associations of weight with indicators of biological risk in three nationally representative populations: the US National Health and Nutrition Examination Survey, the English Longitudinal Study of Ageing, and the Social Environment and Biomarkers of Aging Study in Taiwan. Indicators of biological risk were compared for obese (defined using body mass index (BMI) and waist circumference) and normal weight individuals aged 54+. Generally, obesity in England was associated with elevated risk for more markers examined; obese Americans also had elevated risks except that they did not have elevated blood pressure (BP). Including waist circumference in our consideration of BMI indicated different links between obesity and waist size across countries; we found higher physiological dysregulation among those with high waist but normal BMI compared to those with normal waist and normal BMI. Americans had the highest levels of biological risk in all weight/waist groups. Cross-country variation in biological risk associated with obesity may reflect differences in health behaviors, lifestyle, medication use, and culture. PMID:23781331

  9. A comparative analysis of transcriptomic, biochemical and physiological responses to elevated ozone identifies species-specific mechanisms of resilience in legume crops

    USDA-ARS?s Scientific Manuscript database

    Current concentrations of tropospheric ozone (O3) pollution negatively impact plant metabolism, which can result in decreased crop yields. Interspecific variation in the physiological response of plants to elevated [O3] exists; however, the underlying cellular responses explaining species-specific d...

  10. An enzyme-linked immunosorbent assay-based system for determining the physiological level of poly(ADP-ribose) in cultured cells.

    PubMed

    Ida, Chieri; Yamashita, Sachiko; Tsukada, Masaki; Sato, Teruaki; Eguchi, Takayuki; Tanaka, Masakazu; Ogata, Shin; Fujii, Takahiro; Nishi, Yoshisuke; Ikegami, Susumu; Moss, Joel; Miwa, Masanao

    2016-02-01

    PolyADP-ribosylation is mediated by poly(ADP-ribose) (PAR) polymerases (PARPs) and may be involved in various cellular events, including chromosomal stability, DNA repair, transcription, cell death, and differentiation. The physiological level of PAR is difficult to determine in intact cells because of the rapid synthesis of PAR by PARPs and the breakdown of PAR by PAR-degrading enzymes, including poly(ADP-ribose) glycohydrolase (PARG) and ADP-ribosylhydrolase 3. Artifactual synthesis and/or degradation of PAR likely occurs during lysis of cells in culture. We developed a sensitive enzyme-linked immunosorbent assay (ELISA) to measure the physiological levels of PAR in cultured cells. We immediately inactivated enzymes that catalyze the synthesis and degradation of PAR. We validated that trichloroacetic acid is suitable for inactivating PARPs, PARG, and other enzymes involved in metabolizing PAR in cultured cells during cell lysis. The PAR level in cells harvested with the standard radioimmunoprecipitation assay buffer was increased by 450-fold compared with trichloroacetic acid for lysis, presumably because of activation of PARPs by DNA damage that occurred during cell lysis. This ELISA can be used to analyze the biological functions of polyADP-ribosylation under various physiological conditions in cultured cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Physiological and biochemical responses of two keystone polychaete species: Diopatra neapolitana and Hediste diversicolor to Multi-walled carbon nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Marchi, Lucia

    Multi-walled carbon nanotubes (MWCNTs) are one of the most important carbon Nanomaterials (NMs). The production and use of these carbon NMs is increasing rapidly and, therefore, the need to assess their presence in the environment and associated risks has become increasingly important. However, limited literature is available regarding the impacts induced in aquatic organisms by this pollutant, namely in invertebrate species. Diopatra neapolitana and Hediste diversicolor are keystone polychaete species inhabiting estuaries and shallow water bodies intertidal mudflats, frequently used to evaluate the impact of environmental disturbances in these systems. To our knowledge, no information is available on physiological andmore » biochemical alterations on these two species due to MWCNTs exposure. Thus, the present study aimed to assess the toxic effects of different MWCNTs concentrations (0.01; 0.10 and 1.00 mg/L) in both species physiological (regenerative capacity and respiration rate) and biochemical (energy reserves, metabolic activities, oxidative stress related biomarkers and neurotoxicity markers) performance, after 28 days of exposure. The results obtained revealed that exposure to MWCNTs induced negative effects on the regenerative capacity of D. neapolitana. Additionally, higher MWCNTs concentrations induced increased respiration rates in D. neapolitana. MWCNTs altered energy-related responses, with higher values of electron transport system activity, glycogen and protein concentrations in both polychaetes exposed to this contaminant. Furthermore, when exposed to MWCNTs both species showed oxidative stress with higher lipid peroxidation, lower ratio between reduced and oxidized glutathione, and higher activity of antioxidant (catalase and superoxide dismutase) and biotransformation (glutathione-S-transferases) enzymes in exposed organisms. - Highlights: • MWCNTs induced negative effects on the regenerative capacity of Diopatra neapolitana. • Diopatra

  12. Genetic, molecular and physiological basis of variation in Drosophila gut immunocompetence.

    PubMed

    Bou Sleiman, Maroun S; Osman, Dani; Massouras, Andreas; Hoffmann, Ary A; Lemaitre, Bruno; Deplancke, Bart

    2015-07-27

    Gut immunocompetence involves immune, stress and regenerative processes. To investigate the determinants underlying inter-individual variation in gut immunocompetence, we perform enteric infection of 140 Drosophila lines with the entomopathogenic bacterium Pseudomonas entomophila and observe extensive variation in survival. Using genome-wide association analysis, we identify several novel immune modulators. Transcriptional profiling further shows that the intestinal molecular state differs between resistant and susceptible lines, already before infection, with one transcriptional module involving genes linked to reactive oxygen species (ROS) metabolism contributing to this difference. This genetic and molecular variation is physiologically manifested in lower ROS activity, lower susceptibility to ROS-inducing agent, faster pathogen clearance and higher stem cell activity in resistant versus susceptible lines. This study provides novel insights into the determinants underlying population-level variability in gut immunocompetence, revealing how relatively minor, but systematic genetic and transcriptional variation can mediate overt physiological differences that determine enteric infection susceptibility.

  13. Coordination of physiological and structural traits in Amazon forest trees

    NASA Astrophysics Data System (ADS)

    Patiño, S.; Fyllas, N. M.; Baker, T. R.; Paiva, R.; Quesada, C. A.; Santos, A. J. B.; Schwarz, M.; Ter Steege, H.; Phillips, O. L.; Lloyd, J.

    2012-02-01

    Many plant traits covary in a non-random manner reflecting interdependencies associated with "ecological strategy" dimensions. To understand how plants integrate their structural and physiological investments, data on leaf and leaflet size and the ratio of leaf area to sapwood area (ΦLS) obtained for 1020 individual trees (encompassing 661 species) located in 52 tropical forest plots across the Amazon Basin were incorporated into an analysis utilising existing data on species maximum height (Hmax), seed size, leaf mass per unit area (MA), foliar nutrients and δ13C, and branch xylem density (ρx). Utilising a common principal components approach allowing eigenvalues to vary between two soil fertility dependent species groups, five taxonomically controlled trait dimensions were identified. The first involves primarily cations, foliar carbon and MA and is associated with differences in foliar construction costs. The second relates to some components of the classic "leaf economic spectrum", but with increased individual leaf areas and a higher ΦLS newly identified components for tropical tree species. The third relates primarily to increasing Hmax and hence variations in light acquisition strategy involving greater MA, reductions in ΦLS and less negative δ13C. Although these first three dimensions were more important for species from high fertility sites the final two dimensions were more important for low fertility species and were associated with variations linked to reproductive and shade tolerance strategies. Environmental conditions influenced structural traits with ρx of individual species decreasing with increased soil fertility and higher temperatures. This soil fertility response appears to be synchronised with increases in foliar nutrient concentrations and reductions in foliar [C]. Leaf and leaflet area and ΦLS were less responsive to the environment than ρx. Thus, although genetically determined foliar traits such as those associated with leaf

  14. Seed dormancy in alpine species

    PubMed Central

    Schwienbacher, Erich; Navarro-Cano, Jose Antonio; Neuner, Gilbert; Erschbamer, Brigitta

    2011-01-01

    In alpine species the classification of the various mechanisms underlying seed dormancy has been rather questionable and controversial. Thus, we investigated 28 alpine species to evaluate the prevailing types of dormancy. Embryo type and water impermeability of seed coats gave an indication of the potential seed dormancy class. To ascertain the actual dormancy class and level, we performed germination experiments comparing the behavior of seeds without storage, after cold-dry storage, after cold-wet storage, and scarification. We also tested the light requirement for germination in some species. Germination behavior was characterized using the final germination percentage and the mean germination time. Considering the effects of the pretreatments, a refined classification of the prevailing dormancy types was constructed based on the results of our pretreatments. Only two out of the 28 species that we evaluated had predominantly non-dormant seeds. Physiological dormancy was prevalent in 20 species, with deep physiological dormancy being the most abundant, followed by non-deep and intermediate physiological dormancy. Seeds of four species with underdeveloped embryos were assigned to the morphophysiologial dormancy class. An impermeable seed coat was identified in two species, with no additional physiological germination block. We defined these species as having physical dormancy. Light promoted the germination of seeds without storage in all but one species with physiological dormancy. In species with physical dormancy, light responses were of minor importance. We discuss our new classification in the context of former germination studies and draw implications for the timing of germination in the field. PMID:24415831

  15. The conservation physiology toolbox: status and opportunities

    PubMed Central

    Love, Oliver P; Hultine, Kevin R

    2018-01-01

    Abstract For over a century, physiological tools and techniques have been allowing researchers to characterize how organisms respond to changes in their natural environment and how they interact with human activities or infrastructure. Over time, many of these techniques have become part of the conservation physiology toolbox, which is used to monitor, predict, conserve, and restore plant and animal populations under threat. Here, we provide a summary of the tools that currently comprise the conservation physiology toolbox. By assessing patterns in articles that have been published in ‘Conservation Physiology’ over the past 5 years that focus on introducing, refining and validating tools, we provide an overview of where researchers are placing emphasis in terms of taxa and physiological sub-disciplines. Although there is certainly diversity across the toolbox, metrics of stress physiology (particularly glucocorticoids) and studies focusing on mammals have garnered the greatest attention, with both comprising the majority of publications (>45%). We also summarize the types of validations that are actively being completed, including those related to logistics (sample collection, storage and processing), interpretation of variation in physiological traits and relevance for conservation science. Finally, we provide recommendations for future tool refinement, with suggestions for: (i) improving our understanding of the applicability of glucocorticoid physiology; (ii) linking multiple physiological and non-physiological tools; (iii) establishing a framework for plant conservation physiology; (iv) assessing links between environmental disturbance, physiology and fitness; (v) appreciating opportunities for validations in under-represented taxa; and (vi) emphasizing tool validation as a core component of research programmes. Overall, we are confident that conservation physiology will continue to increase its applicability to more taxa, develop more non

  16. Are parasite richness and abundance linked to prey species richness and individual feeding preferences in fish hosts?

    PubMed

    Cirtwill, Alyssa R; Stouffer, Daniel B; Poulin, Robert; Lagrue, Clément

    2016-01-01

    Variations in levels of parasitism among individuals in a population of hosts underpin the importance of parasites as an evolutionary or ecological force. Factors influencing parasite richness (number of parasite species) and load (abundance and biomass) at the individual host level ultimately form the basis of parasite infection patterns. In fish, diet range (number of prey taxa consumed) and prey selectivity (proportion of a particular prey taxon in the diet) have been shown to influence parasite infection levels. However, fish diet is most often characterized at the species or fish population level, thus ignoring variation among conspecific individuals and its potential effects on infection patterns among individuals. Here, we examined parasite infections and stomach contents of New Zealand freshwater fish at the individual level. We tested for potential links between the richness, abundance and biomass of helminth parasites and the diet range and prey selectivity of individual fish hosts. There was no obvious link between individual fish host diet and helminth infection levels. Our results were consistent across multiple fish host and parasite species and contrast with those of earlier studies in which fish diet and parasite infection were linked, hinting at a true disconnect between host diet and measures of parasite infections in our study systems. This absence of relationship between host diet and infection levels may be due to the relatively low richness of freshwater helminth parasites in New Zealand and high host-parasite specificity.

  17. Teaching Acid/Base Physiology in the Laboratory

    ERIC Educational Resources Information Center

    Friis, Ulla G.; Plovsing, Ronni; Hansen, Klaus; Laursen, Bent G.; Wallstedt, Birgitta

    2010-01-01

    Acid/base homeostasis is one of the most difficult subdisciplines of physiology for medical students to master. A different approach, where theory and practice are linked, might help students develop a deeper understanding of acid/base homeostasis. We therefore set out to develop a laboratory exercise in acid/base physiology that would provide…

  18. Divergent Egg Physiologies in Two Closely Related Grasshopper Species: Taeniopoda eques versus Romalea microptera (Orthoptera: Romaleidae)

    PubMed Central

    STAUFFER, TIMOTHY W.; HATLE, JOHN D.; WHITMAN, DOUGLAS W.

    2013-01-01

    We compared egg survivorship and egg development time at different soil moistures for two closely related grasshopper species from divergent habitats: marsh-inhabiting Romalea microptera (Beauvois) versus desert-inhabiting Taeniopoda eques (Burmeister). These two species can interbreed and produce viable offspring. In nature, both species have a similar 8–9 mo subterranean egg stage, but their soil environments differ dramatically in water content. We predicted that the eggs of the two species would exhibit differential survivorship and development times under different moisture levels. Our laboratory results show that the eggs of both species survived a wide range of soil moistures (≈ 0.5 to 90%), maintained for 3 mo. However, the eggs of the marsh grasshopper, R. microptera, better tolerated the highest soil moistures (95 and 100%), whereas the eggs of the desert species, T. eques, better tolerated the lowest soil moistures (0.0 and 0.1%). Sixty-five percent of marsh-inhabiting R. microptera eggs, but no desert T. eques eggs, survived 3 mo submersion under water. In contrast, 49% of desert T. eques eggs, but only 3.5% of R. microptera eggs, survived after being laid into oven-dried sand and then maintained with no additional water until hatch. In the laboratory at 26°C, the two species differed significantly in the mean length of the oviposition-to-hatch interval: 176 d for R. microptera versus 237 d for T. eques. These divergent traits presumably benefit these insects in their divergent habitats. Our results suggest the evolution of physiological divergence that is consistent with adaptations to local environments. PMID:22182625

  19. Small RNA-Sequencing Links Physiological Changes and RdDM Process to Vegetative-to-Floral Transition in Apple.

    PubMed

    Guo, Xinwei; Ma, Zeyang; Zhang, Zhonghui; Cheng, Lailiang; Zhang, Xiuren; Li, Tianhong

    2017-01-01

    Transition from vegetative to floral buds is a critical physiological change during flower induction that determines fruit productivity. Small non-coding RNAs (sRNAs) including microRNAs (miRNAs) and small interfering RNAs (siRNAs) are pivotal regulators of plant growth and development. Although the key role of sRNAs in flowering regulation has been well-described in Arabidopsis and some other annual plants, their relevance to vegetative-to-floral transition (hereafter, referred to floral transition) in perennial woody trees remains under defined. Here, we performed Illumina sequencing of sRNA libraries prepared from vegetative and floral bud during flower induction of the apple trees. A large number of sRNAs exemplified by 33 previously annotated miRNAs and six novel members display significant differential expression (DE) patterns. Notably, most of these DE-miRNAs in floral transition displayed opposite expression changes in reported phase transition in apple trees. Bioinformatics analysis suggests most of the DE-miRNAs targeted transcripts involved in SQUAMOSA PROMOTER BINDING PROTEIN-LIKE ( SPL ) gene regulation, stress responses, and auxin and gibberellin (GA) pathways, with further suggestion that there is an inherent link between physiological stress response and metabolism reprogramming during floral transition. We also observed significant changes in 24 nucleotide (nt) sRNAs that are hallmarks for RNA-dependent DNA methylation (RdDM) pathway, suggestive of the correlation between epigenetic modifications and the floral transition. The study not only provides new insight into our understanding of fundamental mechanism of poorly studied floral transition in apple and other woody plants, but also presents important sRNA resource for future in-depth research in the apple flowering physiology.

  20. Small RNA-Sequencing Links Physiological Changes and RdDM Process to Vegetative-to-Floral Transition in Apple

    PubMed Central

    Guo, Xinwei; Ma, Zeyang; Zhang, Zhonghui; Cheng, Lailiang; Zhang, Xiuren; Li, Tianhong

    2017-01-01

    Transition from vegetative to floral buds is a critical physiological change during flower induction that determines fruit productivity. Small non-coding RNAs (sRNAs) including microRNAs (miRNAs) and small interfering RNAs (siRNAs) are pivotal regulators of plant growth and development. Although the key role of sRNAs in flowering regulation has been well-described in Arabidopsis and some other annual plants, their relevance to vegetative-to-floral transition (hereafter, referred to floral transition) in perennial woody trees remains under defined. Here, we performed Illumina sequencing of sRNA libraries prepared from vegetative and floral bud during flower induction of the apple trees. A large number of sRNAs exemplified by 33 previously annotated miRNAs and six novel members display significant differential expression (DE) patterns. Notably, most of these DE-miRNAs in floral transition displayed opposite expression changes in reported phase transition in apple trees. Bioinformatics analysis suggests most of the DE-miRNAs targeted transcripts involved in SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) gene regulation, stress responses, and auxin and gibberellin (GA) pathways, with further suggestion that there is an inherent link between physiological stress response and metabolism reprogramming during floral transition. We also observed significant changes in 24 nucleotide (nt) sRNAs that are hallmarks for RNA-dependent DNA methylation (RdDM) pathway, suggestive of the correlation between epigenetic modifications and the floral transition. The study not only provides new insight into our understanding of fundamental mechanism of poorly studied floral transition in apple and other woody plants, but also presents important sRNA resource for future in-depth research in the apple flowering physiology. PMID:28611800

  1. Physiological Stress in Koala Populations near the Arid Edge of Their Distribution

    PubMed Central

    Davies, Nicole Ashley; Gramotnev, Galina; McAlpine, Clive; Seabrook, Leonie; Baxter, Greg; Lunney, Daniel; Rhodes, Jonathan R.; Bradley, Adrian

    2013-01-01

    Recent research has shown that the ecology of stress has hitherto been neglected, but it is in fact an important influence on the distribution and numbers of wild vertebrates. Environmental changes have the potential to cause physiological stress that can affect population dynamics. Detailed information on the influence of environmental variables on glucocorticoid levels (a measure of stress) at the trailing edge of a species’ distribution can highlight stressors that potentially threaten species and thereby help explain how environmental challenges, such as climate change, will affect the survival of these populations. Rainfall determines leaf moisture and/or nutritional content, which in turn impacts on cortisol concentrations. We show that higher faecal cortisol metabolite (FCM) levels in koala populations at the trailing arid edge of their range in southwestern Queensland are associated with lower rainfall levels (especially rainfall from the previous two months), indicating an increase in physiological stress when moisture levels are low. These results show that koalas at the semi-arid, inland edge of their geographic range, will fail to cope with increasing aridity from climate change. The results demonstrate the importance of integrating physiological assessments into ecological studies to identify stressors that have the potential to compromise the long-term survival of threatened species. This finding points to the need for research to link these stressors to demographic decline to ensure a more comprehensive understanding of species’ responses to climate change. PMID:24265749

  2. AAH Cage Out-Link and In-Link Antenna Characterization

    NASA Technical Reports Server (NTRS)

    Jeutter, Dean C.

    1998-01-01

    This final report encapsulates the accomplishments of the third year of work on an Advanced Biotelemetry System (ABTS). Overall MU/ABTS project objectives are to provide a biotelemetry system that can collect data from and send commands to an implanted biotransceiver. This system will provide for studies of rodent development in space. The system must be capable of operating in a metal animal cage environment. An important goal is the development of a small, "smart", micropower, -channel data output and single channel command implantable biotransceiver with eight input capabilities with the flexibility for easy customization for a variety of physiologic investigations. The NASA Ames/Marquette University Joint Research work has been devoted to the system design of such a new state of the art biotelemetry system, having multiple physiologic inputs, and bi-directional data transfer capabilities. This work has provided a successful prototype system that connects, by two-way radio links, an addressable biotelemetry system that provides communication between an animal biotelemeter prototype and a personal computer. The operational features of the prototype system are listed below: Two-Way PCM Communication with Implanted Biotelemeter Microcontroller Based Biotelemeter Out-Link: Wideband FSK (60 kbaud) In-Link: OOK (2.4 kbaud) Septum Antenna Arrays (In/Out-Links) Personal Computer Data Interface The important requirement of this third year's work, to demonstrate two-way communication with transmit and receive antennas inside the metal animal cage, has been successfully accomplished. The advances discussed in this report demonstrate that the AAH cage antenna system can provide Out-link and In-link capability for the ABTS bi-directional telemetry system, and can serve as a benchmark for project status.

  3. Assessing Morphological and Physiological Properties of Forest Species Using High Throughput Plant Phenotyping and Imaging Techniques

    NASA Astrophysics Data System (ADS)

    Mazis, A.; Hiller, J.; Morgan, P.; Awada, T.; Stoerger, V.

    2017-12-01

    High throughput plant phenotyping is increasingly being used to assess morphological and biophysical traits of economically important crops in agriculture. In this study, the potential application of this technique in natural resources management, through the characterization of woody plants regeneration, establishment, growth, and responses to water and nutrient manipulations was assessed. Two woody species were selected for this study, Quercus prinoides and Quercus bicolor. Seeds were collected from trees growing at the edge of their natural distribution in Nebraska and Missouri, USA. Seeds were germinated in the greenhouse and transferred to the Nebraska Innovation Campus Lemnatec3D High Throughput facility at the University of Nebraska-Lincoln. Seedlings subjected to water and N manipulations, were imaged twice or three times a week using four cameras (Visible, Fluorescence, Infrared and Hyperspectral), throughout the growing season. Traditional leaf to plant levels ecophysiological measurements were concurrently acquired to assess the relationship between these two techniques. These include gas exchange (LI 6400 and LI 6800, LICOR Inc., Lincoln NE), chlorophyll content, optical characteristics (Ocean Optics USB200), water and osmotic potentials, leaf area and weight and carbon isotope ratio. In the presentation, we highlight results on the potential use of high throughput plant phenotyping techniques to assess the morphology and physiology of woody species including responses to water availability and nutrient manipulation, and its broader application under field conditions and natural resources management. Also, we explore the different capabilities imaging provides us for modeling the plant physiological and morphological growth and how it can complement the current techniques

  4. Arbuscular Mycorrhizal Fungus Species Dependency Governs Better Plant Physiological Characteristics and Leaf Quality of Mulberry (Morus alba L.) Seedlings

    PubMed Central

    Shi, Song-Mei; Chen, Ke; Gao, Yuan; Liu, Bei; Yang, Xiao-Hong; Huang, Xian-Zhi; Liu, Gui-Xi; Zhu, Li-Quan; He, Xin-Hua

    2016-01-01

    Understanding the synergic interactions between arbuscular mycorrhizal fungi (AMF) and its host mulberry (Morus alba L.), an important perennial multipurpose plant, has theoretical and practical significance in mulberry plantation, silkworm cultivation, and relevant textile industry. In a greenhouse study, we compared functional distinctions of three genetically different AMF species (Acaulospora scrobiculata, Funneliformis mosseae, and Rhizophagus intraradices) on physiological and growth characteristics as well as leaf quality of 6-month-old mulberry seedlings. Results showed that mulberry was AMF-species dependent, and AMF colonization significantly increased shoot height and taproot length, stem base and taproot diameter, leaf and fibrous root numbers, and shoot and root biomass production. Meanwhile, leaf chlorophyll a or b and carotenoid concentrations, net photosynthetic rate, transpiration rate and stomatal conductance were generally significantly greater, while intercellular CO2 concentration was significantly lower in AMF-inoculated seedlings than in non-AMF-inoculated counterparts. These trends were also generally true for leaf moisture, total nitrogen, all essential amino acids, histidine, proline, soluble protein, sugar, and fatty acid as they were significantly increased under mycorrhization. Among these three tested AMFs, significantly greater effects of AMF on above-mentioned mulberry physiological and growth characteristics ranked as F. mosseae > A. scrobiculata > R. intraradices, whilst on mulberry leaf quality (e.g., nutraceutical values) for better silkworm growth as F. mosseae ≈A. scrobiculata > R. intraradices. In conclusion, our results showed that greater mulberry biomass production, and nutritional quality varied with AMF species or was AMF-species dependent. Such improvements were mainly attributed to AMF-induced positive alterations of mulberry leaf photosynthetic pigments, net photosynthetic rate, transpiration rate, and N

  5. Arbuscular Mycorrhizal Fungus Species Dependency Governs Better Plant Physiological Characteristics and Leaf Quality of Mulberry (Morus alba L.) Seedlings.

    PubMed

    Shi, Song-Mei; Chen, Ke; Gao, Yuan; Liu, Bei; Yang, Xiao-Hong; Huang, Xian-Zhi; Liu, Gui-Xi; Zhu, Li-Quan; He, Xin-Hua

    2016-01-01

    Understanding the synergic interactions between arbuscular mycorrhizal fungi (AMF) and its host mulberry (Morus alba L.), an important perennial multipurpose plant, has theoretical and practical significance in mulberry plantation, silkworm cultivation, and relevant textile industry. In a greenhouse study, we compared functional distinctions of three genetically different AMF species (Acaulospora scrobiculata, Funneliformis mosseae, and Rhizophagus intraradices) on physiological and growth characteristics as well as leaf quality of 6-month-old mulberry seedlings. Results showed that mulberry was AMF-species dependent, and AMF colonization significantly increased shoot height and taproot length, stem base and taproot diameter, leaf and fibrous root numbers, and shoot and root biomass production. Meanwhile, leaf chlorophyll a or b and carotenoid concentrations, net photosynthetic rate, transpiration rate and stomatal conductance were generally significantly greater, while intercellular CO2 concentration was significantly lower in AMF-inoculated seedlings than in non-AMF-inoculated counterparts. These trends were also generally true for leaf moisture, total nitrogen, all essential amino acids, histidine, proline, soluble protein, sugar, and fatty acid as they were significantly increased under mycorrhization. Among these three tested AMFs, significantly greater effects of AMF on above-mentioned mulberry physiological and growth characteristics ranked as F. mosseae > A. scrobiculata > R. intraradices, whilst on mulberry leaf quality (e.g., nutraceutical values) for better silkworm growth as F. mosseae ≈A. scrobiculata > R. intraradices. In conclusion, our results showed that greater mulberry biomass production, and nutritional quality varied with AMF species or was AMF-species dependent. Such improvements were mainly attributed to AMF-induced positive alterations of mulberry leaf photosynthetic pigments, net photosynthetic rate, transpiration rate, and N

  6. Genetics and the physiological ecology of conifers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitton, J.B.

    1995-07-01

    Natural selection acts on the diversity of genotypes, adapting populations to their specific environments and driving evolution in response to changes in climate. Genetically based differences in physiology and demography adapt species to alternate environments and produce, along with historical accidents, the present distribution of species. The sorting of conifer species by elevation is so marked that conifers help to define plant communities arranged in elevational bands in the Rocky Mountains. For these reasons, a genetic perspective is necessary to appreciate the evolution of ecophysiological patterns in the coniferous forests of the Rocky Mountains. The fascinating natural history and themore » economic importance of western conifers have stimulated numerous studies of their ecology, ecological genetics, and geographic variation. These studies yield some generalizations, and present some puzzling contradictions. This chapter focuses on the genetic variability associated with the physiological differences among genotypes in Rocky Mountain conifers. Variation among genotypes in survival, growth, and resistance to herbivores is used to illustrate genetically based differences in physiology, and to suggest the mechanistic studies needed to understand the relationships between genetic and physiological variation.« less

  7. Could beaked whales get the bends? Effect of diving behaviour and physiology on modelled gas exchange for three species: Ziphius cavirostris, Mesoplodon densirostris and Hyperoodon ampullatus.

    PubMed

    Hooker, Sascha K; Baird, Robin W; Fahlman, Andreas

    2009-07-31

    A mathematical model, based on current knowledge of gas exchange and physiology of marine mammals, was used to predict blood and tissue tension N2 (P(N2)) using field data from three beaked whale species: northern bottlenose whales, Cuvier's beaked whales, and Blainville's beaked whales. The objective was to determine if physiology (body mass, diving lung volume, dive response) or dive behaviour (dive depth and duration, changes in ascent rate, diel behaviour) would lead to differences in P(N2) levels and thereby decompression sickness (DCS) risk between species. Diving lung volume and extent of the dive response had a large effect on end-dive P(N2). The dive profile had a larger influence on end-dive P(N2) than body mass differences between species. Despite diel changes in dive behaviour, P(N2) levels showed no consistent trend. Model output suggested that all three species live with tissue P(N2) levels that would cause a significant proportion of DCS cases in terrestrial mammals. Cuvier's beaked whale diving behaviour appears to put them at higher risk than the other species, which may explain their prevalence in strandings after the use of mid-frequency sonar.

  8. Linking Xylem Hydraulic Conductivity and Vulnerability to the Leaf Economics Spectrum—A Cross-Species Study of 39 Evergreen and Deciduous Broadleaved Subtropical Tree Species

    PubMed Central

    Kröber, Wenzel; Zhang, Shouren; Ehmig, Merten; Bruelheide, Helge

    2014-01-01

    While the fundamental trade-off in leaf traits related to carbon capture as described by the leaf economics spectrum is well-established among plant species, the relationship of the leaf economics spectrum to stem hydraulics is much less known. Since carbon capture and transpiration are coupled, a close connection between leaf traits and stem hydraulics should be expected. We thus asked whether xylem traits that describe drought tolerance and vulnerability to cavitation are linked to particular leaf traits. We assessed xylem vulnerability, using the pressure sleeve technique, and anatomical xylem characteristics in 39 subtropical tree species grown under common garden conditions in the BEF-China experiment and tested for correlations with traits related to the leaf economics spectrum as well as to stomatal control, including maximum stomatal conductance, vapor pressure deficit at maximum stomatal conductance and vapor pressure deficit at which stomatal conductance is down-regulated. Our results revealed that specific xylem hydraulic conductivity and cavitation resistance were closely linked to traits represented in the leaf economic spectrum, in particular to leaf nitrogen concentration, as well as to log leaf area and leaf carbon to nitrogen ratio but not to any parameter of stomatal conductance. The study highlights the potential use of well-known leaf traits from the leaf economics spectrum to predict plant species' drought resistance. PMID:25423316

  9. Linking xylem hydraulic conductivity and vulnerability to the leaf economics spectrum--a cross-species study of 39 evergreen and deciduous broadleaved subtropical tree species.

    PubMed

    Kröber, Wenzel; Zhang, Shouren; Ehmig, Merten; Bruelheide, Helge

    2014-01-01

    While the fundamental trade-off in leaf traits related to carbon capture as described by the leaf economics spectrum is well-established among plant species, the relationship of the leaf economics spectrum to stem hydraulics is much less known. Since carbon capture and transpiration are coupled, a close connection between leaf traits and stem hydraulics should be expected. We thus asked whether xylem traits that describe drought tolerance and vulnerability to cavitation are linked to particular leaf traits. We assessed xylem vulnerability, using the pressure sleeve technique, and anatomical xylem characteristics in 39 subtropical tree species grown under common garden conditions in the BEF-China experiment and tested for correlations with traits related to the leaf economics spectrum as well as to stomatal control, including maximum stomatal conductance, vapor pressure deficit at maximum stomatal conductance and vapor pressure deficit at which stomatal conductance is down-regulated. Our results revealed that specific xylem hydraulic conductivity and cavitation resistance were closely linked to traits represented in the leaf economic spectrum, in particular to leaf nitrogen concentration, as well as to log leaf area and leaf carbon to nitrogen ratio but not to any parameter of stomatal conductance. The study highlights the potential use of well-known leaf traits from the leaf economics spectrum to predict plant species' drought resistance.

  10. Differential roles of NADPH oxidases in vascular physiology and pathophysiology

    PubMed Central

    Amanso, Angelica M.; Griendling, Kathy K.

    2012-01-01

    Reactive oxygen species (ROS) are produced by all vascular cells and regulate the major physiological functions of the vasculature. Production and removal of ROS are tightly controlled and occur in discrete subcellular locations, allowing for specific, compartmentalized signaling. Among the many sources of ROS in the vessel wall, NADPH oxidases are implicated in physiological functions such as control of vasomotor tone, regulation of extracellular matrix and phenotypic modulation of vascular smooth muscle cells. They are involved in the response to injury, whether as an oxygen sensor during hypoxia, as a regulator of protein processing, as an angiogenic stimulus, or as a mechanism of wound healing. These enzymes have also been linked to processes leading to disease development, including migration, proliferation, hypertrophy, apoptosis and autophagy. As a result, NADPH oxidases participate in atherogenesis, systemic and pulmonary hypertension and diabetic vascular disease. The role of ROS in each of these processes and diseases is complex, and a more full understanding of the sources, targets, cell-specific responses and counterbalancing mechanisms is critical for the rational development of future therapeutics. PMID:22202108

  11. Physiology, behavior, and conservation.

    PubMed

    Cooke, Steven J; Blumstein, Daniel T; Buchholz, Richard; Caro, Tim; Fernández-Juricic, Esteban; Franklin, Craig E; Metcalfe, Julian; O'Connor, Constance M; St Clair, Colleen Cassady; Sutherland, William J; Wikelski, Martin

    2014-01-01

    Many animal populations are in decline as a result of human activity. Conservation practitioners are attempting to prevent further declines and loss of biodiversity as well as to facilitate recovery of endangered species, and they often rely on interdisciplinary approaches to generate conservation solutions. Two recent interfaces in conservation science involve animal behavior (i.e., conservation behavior) and physiology (i.e., conservation physiology). To date, these interfaces have been considered separate entities, but from both pragmatic and biological perspectives, there is merit in better integrating behavior and physiology to address applied conservation problems and to inform resource management. Although there are some institutional, conceptual, methodological, and communication-oriented challenges to integrating behavior and physiology to inform conservation actions, most of these barriers can be overcome. Through outlining several successful examples that integrate these disciplines, we conclude that physiology and behavior can together generate meaningful data to support animal conservation and management actions. Tangentially, applied conservation and management problems can, in turn, also help advance and reinvigorate the fundamental disciplines of animal physiology and behavior by providing advanced natural experiments that challenge traditional frameworks.

  12. Improving intercropping: a synthesis of research in agronomy, plant physiology and ecology.

    PubMed

    Brooker, Rob W; Bennett, Alison E; Cong, Wen-Feng; Daniell, Tim J; George, Timothy S; Hallett, Paul D; Hawes, Cathy; Iannetta, Pietro P M; Jones, Hamlyn G; Karley, Alison J; Li, Long; McKenzie, Blair M; Pakeman, Robin J; Paterson, Eric; Schöb, Christian; Shen, Jianbo; Squire, Geoff; Watson, Christine A; Zhang, Chaochun; Zhang, Fusuo; Zhang, Junling; White, Philip J

    2015-04-01

    Intercropping is a farming practice involving two or more crop species, or genotypes, growing together and coexisting for a time. On the fringes of modern intensive agriculture, intercropping is important in many subsistence or low-input/resource-limited agricultural systems. By allowing genuine yield gains without increased inputs, or greater stability of yield with decreased inputs, intercropping could be one route to delivering ‘sustainable intensification’. We discuss how recent knowledge from agronomy, plant physiology and ecology can be combined with the aim of improving intercropping systems. Recent advances in agronomy and plant physiology include better understanding of the mechanisms of interactions between crop genotypes and species – for example, enhanced resource availability through niche complementarity. Ecological advances include better understanding of the context-dependency of interactions, the mechanisms behind disease and pest avoidance, the links between above- and below-ground systems, and the role of microtopographic variation in coexistence. This improved understanding can guide approaches for improving intercropping systems, including breeding crops for intercropping. Although such advances can help to improve intercropping systems, we suggest that other topics also need addressing. These include better assessment of the wider benefits of intercropping in terms of multiple ecosystem services, collaboration with agricultural engineering, and more effective interdisciplinary research.

  13. Physiological Aging: Links Among Adipose Tissue Dysfunction, Diabetes, and Frailty

    PubMed Central

    Stout, Michael B.; Justice, Jamie N.; Nicklas, Barbara J.; Kirkland, James L.

    2016-01-01

    Advancing age is associated with progressive declines in physiological function that lead to overt chronic disease, frailty, and eventual mortality. Importantly, age-related physiological changes occur in cellularity, insulin-responsiveness, secretory profiles, and inflammatory status of adipose tissue, leading to adipose tissue dysfunction. Although the mechanisms underlying adipose tissue dysfunction are multifactorial, the consequences result in secretion of proinflammatory cytokines and chemokines, immune cell infiltration, an accumulation of senescent cells, and an increase in senescence-associated secretory phenotype (SASP). These processes synergistically promote chronic sterile inflammation, insulin resistance, and lipid redistribution away from subcutaneous adipose tissue. Without intervention, these effects contribute to age-related systemic metabolic dysfunction, physical limitations, and frailty. Thus adipose tissue dysfunction may be a fundamental contributor to the elevated risk of chronic disease, disability, and adverse health outcomes with advancing age. PMID:27927801

  14. The use of haemoglobin concentrations to assess physiological condition in birds: a review

    PubMed Central

    2015-01-01

    Abstract Total blood haemoglobin concentration is increasingly being used to assess physiological condition in wild birds, although it has not been explicitly recognized how reliably this parameter reflects different components of individual quality. Thus, I reviewed over 120 published studies linking variation in haemoglobin concentrations to different measures of condition and other phenotypic or ecological traits. In most of the studied avian species, haemoglobin concentrations were positively correlated with other commonly used indices of condition, such as body mass and fat loads, as well as with quality of the diet. Also, chick haemoglobin concentrations reliably reflected the intensity of nest infestation by parasitic arthropods, and haemoglobin was suggested to reflect parasitism by haematophagous ectoparasites much more precisely than haematocrit. There was also some evidence for the negative effect of helminths on haemoglobin levels in adult birds. Finally, haemoglobin concentrations were found to correlate with such fitness-related traits as timing of arrival at breeding grounds, timing of breeding, egg size, developmental stability and habitat quality, although these relationships were not always consistent between species. In consequence, I recommend the total blood haemoglobin concentration as a relatively robust indicator of physiological condition in birds, although this parameter is also strongly affected by age, season and the process of moult. Thus, researchers are advised to control fully for these confounding effects while using haemoglobin concentrations as a proxy of physiological condition in both experimental and field studies on birds. PMID:27293692

  15. Common species link global ecosystems to climate change: dynamical evidence in the planktonic fossil record.

    PubMed

    Hannisdal, Bjarte; Haaga, Kristian Agasøster; Reitan, Trond; Diego, David; Liow, Lee Hsiang

    2017-07-12

    Common species shape the world around us, and changes in their commonness signify large-scale shifts in ecosystem structure and function. However, our understanding of long-term ecosystem response to environmental forcing in the deep past is centred on species richness, neglecting the disproportional impact of common species. Here, we use common and widespread species of planktonic foraminifera in deep-sea sediments to track changes in observed global occupancy (proportion of sampled sites at which a species is present and observed) through the turbulent climatic history of the last 65 Myr. Our approach is sensitive to relative changes in global abundance of the species set and robust to factors that bias richness estimators. Using three independent methods for detecting causality, we show that the observed global occupancy of planktonic foraminifera has been dynamically coupled to past oceanographic changes captured in deep-ocean temperature reconstructions. The causal inference does not imply a direct mechanism, but is consistent with an indirect, time-delayed causal linkage. Given the strong quantitative evidence that a dynamical coupling exists, we hypothesize that mixotrophy (symbiont hosting) may be an ecological factor linking the global abundance of planktonic foraminifera to long-term climate changes via the relative extent of oligotrophic oceans. © 2017 The Authors.

  16. Fisheries conservation on the high seas: linking conservation physiology and fisheries ecology for the management of large pelagic fishes

    PubMed Central

    Horodysky, Andrij Z.; Cooke, Steven J.; Graves, John E.; Brill, Richard W.

    2016-01-01

    Populations of tunas, billfishes and pelagic sharks are fished at or over capacity in many regions of the world. They are captured by directed commercial and recreational fisheries (the latter of which often promote catch and release) or as incidental catch or bycatch in commercial fisheries. Population assessments of pelagic fishes typically incorporate catch-per-unit-effort time-series data from commercial and recreational fisheries; however, there have been notable changes in target species, areas fished and depth-specific gear deployments over the years that may have affected catchability. Some regional fisheries management organizations take into account the effects of time- and area-specific changes in the behaviours of fish and fishers, as well as fishing gear, to standardize catch-per-unit-effort indices and refine population estimates. However, estimates of changes in stock size over time may be very sensitive to underlying assumptions of the effects of oceanographic conditions and prey distribution on the horizontal and vertical movement patterns and distribution of pelagic fishes. Effective management and successful conservation of pelagic fishes requires a mechanistic understanding of their physiological and behavioural responses to environmental variability, potential for interaction with commercial and recreational fishing gear, and the capture process. The interdisciplinary field of conservation physiology can provide insights into pelagic fish demography and ecology (including environmental relationships and interspecific interactions) by uniting the complementary expertise and skills of fish physiologists and fisheries scientists. The iterative testing by one discipline of hypotheses generated by the other can span the fundamental–applied science continuum, leading to the development of robust insights supporting informed management. The resulting species-specific understanding of physiological abilities and tolerances can help to improve stock

  17. Integrative Physiology: At the Crossroads of Nutrition, Microbiota, Animal Physiology, and Human Health.

    PubMed

    Leulier, François; MacNeil, Lesley T; Lee, Won-Jae; Rawls, John F; Cani, Patrice D; Schwarzer, Martin; Zhao, Liping; Simpson, Stephen J

    2017-03-07

    Nutrition is paramount in shaping all aspects of animal biology. In addition, the influence of the intestinal microbiota on physiology is now widely recognized. Given that diet also shapes the intestinal microbiota, this raises the question of how the nutritional environment and microbial assemblages together influence animal physiology. This research field constitutes a new frontier in the field of organismal biology that needs to be addressed. Here we review recent studies using animal models and humans and propose an integrative framework within which to define the study of the diet-physiology-microbiota systems and ultimately link it to human health. Nutritional Geometry sits centrally in the proposed framework and offers means to define diet compositions that are optimal for individuals and populations. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Does physiological response to disease incur cost to reproductive ecology in a sexually dichromatic amphibian species?

    PubMed

    Kindermann, Christina; Narayan, Edward J; Hero, Jean-Marc

    2017-01-01

    It is well known that the disease chytridiomycosis, caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd) has contributed to amphibian declines worldwide. The impact of Bd varies, with some species being more susceptible to infection than others. Recent evidence has shown that Bd can have sub-lethal effects, whereby increases in stress hormones have been associated with infection. Could this increased stress response, which is a physiological adaptation that provides an increased resilience against Bd infection, potentially be a trade-off with important life-history traits such as reproduction? We studied this question in adult male frogs of a non-declining species (Litoria wilcoxii). Frogs were sampled for (1) seasonal hormone (testosterone and corticosterone), color and disease profiles, (2) the relationship between disease infection status and hormone levels or dorsal color, (3) subclinical effects of Bd by investigating disease load and hormone level, and (4) reproductive and stress hormone relationships independent of disease. Testosterone levels and color score varied seasonally (throughout the spring/summer months) while corticosterone levels remained stable. Frogs with high Bd prevalence had significantly higher corticosterone levels and lower testosterone levels compared to uninfected frogs, and no differences in color were observed. There was a significant positive correlation between disease load and corticosterone levels, and a significant negative relationship between disease load and testosterone. Our field data provides novel evidence that increased physiological stress response associated with Bd infection in wild frogs, could suppress reproduction by down-regulating gonadal hormones in amphibians, however the impacts on reproductive output is yet to be established. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. The Power of Physiology in Changing Landscapes: Considerations for the Continued Integration of Conservation and Physiology.

    PubMed

    Madliger, Christine L; Love, Oliver P

    2015-10-01

    The growing field of conservation physiology applies a diversity of physiological traits (e.g., immunological, metabolic, endocrine, and nutritional traits) to understand and predict organismal, population, and ecosystem responses to environmental change and stressors. Although the discipline of conservation physiology is gaining momentum, there is still a pressing need to better translate knowledge from physiology into real-world tools. The goal of this symposium, ‘‘Physiology in Changing Landscapes: An Integrative Perspective for Conservation Biology’’, was to highlight that many current investigations in ecological, evolutionary, and comparative physiology are necessary for understanding the applicability of physiological measures for conservation goals, particularly in the context of monitoring and predicting the health, condition, persistence, and distribution of populations in the face of environmental change. Here, we outline five major investigations common to environmental and ecological physiology that can contribute directly to the progression of the field of conservation physiology: (1) combining multiple measures of physiology and behavior; (2) employing studies of dose–responses and gradients; (3) combining a within-individual and population-level approach; (4) taking into account the context-dependency of physiological traits; and (5) linking physiological variables with fitness metrics. Overall, integrative physiologists have detailed knowledge of the physiological systems that they study; however, communicating theoretical and empirical knowledge to conservation biologists and practitioners in an approachable and applicable way is paramount to the practical development of physiological tools that will have a tangible impact for conservation.

  20. Fanconi anemia links reactive oxygen species to insulin resistance and obesity.

    PubMed

    Li, Jie; Sipple, Jared; Maynard, Suzette; Mehta, Parinda A; Rose, Susan R; Davies, Stella M; Pang, Qishen

    2012-10-15

    Insulin resistance is a hallmark of obesity and type 2 diabetes. Reactive oxygen species (ROS) have been proposed to play a causal role in insulin resistance. However, evidence linking ROS to insulin resistance in disease settings has been scant. Since both oxidative stress and diabetes have been observed in patients with the Fanconi anemia (FA), we sought to investigate the link between ROS and insulin resistance in this unique disease model. Mice deficient for the Fanconi anemia complementation group A (Fanca) or Fanconi anemia complementation group C (Fancc) gene seem to be diabetes-prone, as manifested by significant hyperglycemia and hyperinsulinemia, and rapid weight gain when fed with a high-fat diet. These phenotypic features of insulin resistance are characterized by two critical events in insulin signaling: a reduction in tyrosine phosphorylation of the insulin receptor (IR) and an increase in inhibitory serine phosphorylation of the IR substrate-1 in the liver, muscle, and fat tissues from the insulin-challenged FA mice. High levels of ROS, spontaneously accumulated or generated by tumor necrosis factor alpha in these insulin-sensitive tissues of FA mice, were shown to underlie the FA insulin resistance. Treatment of FA mice with the natural anti-oxidant Quercetin restores IR signaling and ameliorates the diabetes- and obesity-prone phenotypes. Finally, pairwise screen identifies protein-tyrosine phosphatase (PTP)-α and stress kinase double-stranded RNA-dependent protein kinase (PKR) that mediate the ROS effect on FA insulin resistance. These findings establish a pathogenic and mechanistic link between ROS and insulin resistance in a unique human disease setting. ROS accumulation contributes to the insulin resistance in FA deficiency by targeting both PTP-α and PKR.

  1. Physiological Aging: Links Among Adipose Tissue Dysfunction, Diabetes, and Frailty.

    PubMed

    Stout, Michael B; Justice, Jamie N; Nicklas, Barbara J; Kirkland, James L

    2017-01-01

    Advancing age is associated with progressive declines in physiological function that lead to overt chronic disease, frailty, and eventual mortality. Importantly, age-related physiological changes occur in cellularity, insulin-responsiveness, secretory profiles, and inflammatory status of adipose tissue, leading to adipose tissue dysfunction. Although the mechanisms underlying adipose tissue dysfunction are multifactorial, the consequences result in secretion of proinflammatory cytokines and chemokines, immune cell infiltration, an accumulation of senescent cells, and an increase in senescence-associated secretory phenotype (SASP). These processes synergistically promote chronic sterile inflammation, insulin resistance, and lipid redistribution away from subcutaneous adipose tissue. Without intervention, these effects contribute to age-related systemic metabolic dysfunction, physical limitations, and frailty. Thus adipose tissue dysfunction may be a fundamental contributor to the elevated risk of chronic disease, disability, and adverse health outcomes with advancing age. ©2017 Int. Union Physiol. Sci./Am. Physiol. Soc.

  2. AAH Cage Out-Link and In-Link Antenna Characterization

    NASA Technical Reports Server (NTRS)

    Jeutter, Dean C.

    1998-01-01

    This final report encapsulates the accomplishments of the third year of work on an Advanced Biotelemetry System (ABTS). Overall MU/ABTS project objectives are to provide a biotelemetry system that can collect data from and send commands to an implanted biotransceiver. This system will provide for studies of rodent development in space. The system must be capable of operating in a metal animal cage environment. An important goal is the development of a small, "smart", micropower, implantable biotransceiver with eight-channel data output and single channel command input capabilities with the flexibility for easy customization for a variety of physiologic investigations. The NASA Ames/Marquette University Joint Research work has been devoted to the system design of such a new state of the art biotelemetry system, having multiple physiologic inputs, and bi-directional data transfer capabilities. This work has provided a successful prototype system that connects, by two-way radio links, an addressable biotelemetry system that provides communication between an animal biotelemeter prototype and a personal computer. The operational features of the prototype system are: (1) two-way PCM communication with implanted biotelemeter; (2) microcontroller based biotelemeter; (3) out-link: wideband FSK (60 kBaud); (4) in-link: OOK (2.4 kbaud); (5) septum antenna arrays (In/Out-Links); and (6) personal computer data interface. The important requirement of this third year's work, to demonstrate two-way communication with transmit and receive antennas inside the metal animal cage, has been successfully accomplished. The advances discussed in this report demonstrate that the AAH cage antenna system can provide Out-link and In-link capability for the ABTS bi-directional telemetry system, and can serve as a benchmark for project status. Additions and enhancements to the most recent (April 1997) prototype cage and antenna have been implemented. The implementation, testing, and

  3. Linking secondary metabolites to gene clusters through genome sequencing of six diverse Aspergillus species

    DOE PAGES

    Kjerbolling, Inge; Vesth, Tammi C.; Frisvad, Jens C.; ...

    2018-01-09

    The fungal genus of Aspergillus is highly interesting, containing everything from industrial cell factories over model organisms to human pathogens. In particular, this group has a prolific production of bioactive secondary metabolites (SMs). In this work, four diverse Aspergillus species (A. campestris, A. novofumigatus, A. ochraceoroseus and A. steynii) has been whole genome PacBio sequenced to provide genetic references in three Aspergillus sections. Additionally, A. taichungensis and A. candidus were sequenced for SM elucidation. Thirteen Aspergillus genomes were analysed with comparative genomics to determine phylogeny and genetic diversity, showing that each new genome contains 15–27% genes not found in othermore » sequenced Aspergilli. In particular, the new species A. novofumigatus was compared to the pathogenic species A. fumigatus. This suggests that A. novofumigatus can produce most of the same allergens, virulence and pathogenicity factors as A. fumigatus suggesting that A. novofumigatus could be as pathogenic as A. fumigatus. Furthermore, SMs were linked to gene clusters based on biological and chemical knowledge and analysis, genome sequences and predictive algorithms.« less

  4. Linking secondary metabolites to gene clusters through genome sequencing of six diverse Aspergillus species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kjerbolling, Inge; Vesth, Tammi C.; Frisvad, Jens C.

    The fungal genus of Aspergillus is highly interesting, containing everything from industrial cell factories over model organisms to human pathogens. In particular, this group has a prolific production of bioactive secondary metabolites (SMs). In this work, four diverse Aspergillus species (A. campestris, A. novofumigatus, A. ochraceoroseus and A. steynii) has been whole genome PacBio sequenced to provide genetic references in three Aspergillus sections. Additionally, A. taichungensis and A. candidus were sequenced for SM elucidation. Thirteen Aspergillus genomes were analysed with comparative genomics to determine phylogeny and genetic diversity, showing that each new genome contains 15–27% genes not found in othermore » sequenced Aspergilli. In particular, the new species A. novofumigatus was compared to the pathogenic species A. fumigatus. This suggests that A. novofumigatus can produce most of the same allergens, virulence and pathogenicity factors as A. fumigatus suggesting that A. novofumigatus could be as pathogenic as A. fumigatus. Furthermore, SMs were linked to gene clusters based on biological and chemical knowledge and analysis, genome sequences and predictive algorithms.« less

  5. Medium term water deficit elicits distinct transcriptome responses in Eucalyptus species of contrasting environmental origin.

    PubMed

    Spokevicius, Antanas V; Tibbits, Josquin; Rigault, Philippe; Nolin, Marc-Alexandre; Müller, Caroline; Merchant, Andrew

    2017-04-07

    Climatic and edaphic conditions over geological timescales have generated enormous diversity of adaptive traits and high speciation within the genus Eucalyptus (L. Hér.). Eucalypt species occur from high rainfall to semi-arid zones and from the tropics to latitudes as high as 43°S. Despite several morphological and metabolomic characterizations, little is known regarding gene expression differences that underpin differences in tolerance to environmental change. Using species of contrasting taxonomy, morphology and physiology (E. globulus and E. cladocalyx), this study combines physiological characterizations with 'second-generation' sequencing to identify key genes involved in eucalypt responses to medium-term water limitation. One hundred twenty Million high-quality HiSeq reads were created from 14 tissue samples in plants that had been successfully subjected to a water deficit treatment or a well-watered control. Alignment to the E. grandis genome saw 23,623 genes of which 468 exhibited differential expression (FDR < 0.01) in one or both ecotypes in response to the treatment. Further analysis identified 80 genes that demonstrated a significant species-specific response of which 74 were linked to the 'dry' species E. cladocalyx where 23 of these genes were uncharacterised. The majority (approximately 80%) of these differentially expressed genes, were expressed in stem tissue. Key genes that differentiated species responses were linked to photoprotection/redox balance, phytohormone/signalling, primary photosynthesis/cellular metabolism and secondary metabolism based on plant metabolic pathway network analysis. These results highlight a more definitive response to water deficit by a 'dry' climate eucalypt, particularly in stem tissue, identifying key pathways and associated genes that are responsible for the differences between 'wet' and 'dry' climate eucalypts. This knowledge provides the opportunity to further investigate and understand the mechanisms and

  6. Computational physiology and the Physiome Project.

    PubMed

    Crampin, Edmund J; Halstead, Matthew; Hunter, Peter; Nielsen, Poul; Noble, Denis; Smith, Nicolas; Tawhai, Merryn

    2004-01-01

    Bioengineering analyses of physiological systems use the computational solution of physical conservation laws on anatomically detailed geometric models to understand the physiological function of intact organs in terms of the properties and behaviour of the cells and tissues within the organ. By linking behaviour in a quantitative, mathematically defined sense across multiple scales of biological organization--from proteins to cells, tissues, organs and organ systems--these methods have the potential to link patient-specific knowledge at the two ends of these spatial scales. A genetic profile linked to cardiac ion channel mutations, for example, can be interpreted in relation to body surface ECG measurements via a mathematical model of the heart and torso, which includes the spatial distribution of cardiac ion channels throughout the myocardium and the individual kinetics for each of the approximately 50 types of ion channel, exchanger or pump known to be present in the heart. Similarly, linking molecular defects such as mutations of chloride ion channels in lung epithelial cells to the integrated function of the intact lung requires models that include the detailed anatomy of the lungs, the physics of air flow, blood flow and gas exchange, together with the large deformation mechanics of breathing. Organizing this large body of knowledge into a coherent framework for modelling requires the development of ontologies, markup languages for encoding models, and web-accessible distributed databases. In this article we review the state of the field at all the relevant levels, and the tools that are being developed to tackle such complexity. Integrative physiology is central to the interpretation of genomic and proteomic data, and is becoming a highly quantitative, computer-intensive discipline.

  7. Physiological and pathophysiological reactive oxygen species as probed by EPR spectroscopy: the underutilized research window on muscle ageing

    PubMed Central

    A. Abdel‐Rahman, Engy; Mahmoud, Ali M.; Khalifa, Abdulrahman M.

    2016-01-01

    Abstract Reactive oxygen and nitrogen species (ROS and RNS) play crucial roles in triggering, mediating and regulating physiological and pathophysiological signal transduction pathways within the cell. Within the cell, ROS efflux is firmly controlled both spatially and temporally, making the study of ROS dynamics a challenging task. Different approaches have been developed for ROS assessment; however, many of these assays are not capable of direct identification or determination of subcellular localization of different ROS. Here we highlight electron paramagnetic resonance (EPR) spectroscopy as a powerful technique that is uniquely capable of addressing questions on ROS dynamics in different biological specimens and cellular compartments. Due to their critical importance in muscle functions and dysfunction, we discuss in some detail spin trapping of various ROS and focus on EPR detection of nitric oxide before highlighting how EPR can be utilized to probe biophysical characteristics of the environment surrounding a given stable radical. Despite the demonstrated ability of EPR spectroscopy to provide unique information on the identity, quantity, dynamics and environment of radical species, its applications in the field of muscle physiology, fatiguing and ageing are disproportionately infrequent. While reviewing the limited examples of successful EPR applications in muscle biology we conclude that the field would greatly benefit from more studies exploring ROS sources and kinetics by spin trapping, protein dynamics by site‐directed spin labelling, and membrane dynamics and global redox changes by spin probing EPR approaches. PMID:26801204

  8. Are litter decomposition and fire linked through plant species traits?

    PubMed

    Cornelissen, Johannes H C; Grootemaat, Saskia; Verheijen, Lieneke M; Cornwell, William K; van Bodegom, Peter M; van der Wal, René; Aerts, Rien

    2017-11-01

    Contents 653 I. 654 II. 657 III. 659 IV. 661 V. 662 VI. 663 VII. 665 665 References 665 SUMMARY: Biological decomposition and wildfire are connected carbon release pathways for dead plant material: slower litter decomposition leads to fuel accumulation. Are decomposition and surface fires also connected through plant community composition, via the species' traits? Our central concept involves two axes of trait variation related to decomposition and fire. The 'plant economics spectrum' (PES) links biochemistry traits to the litter decomposability of different fine organs. The 'size and shape spectrum' (SSS) includes litter particle size and shape and their consequent effect on fuel bed structure, ventilation and flammability. Our literature synthesis revealed that PES-driven decomposability is largely decoupled from predominantly SSS-driven surface litter flammability across species; this finding needs empirical testing in various environmental settings. Under certain conditions, carbon release will be dominated by decomposition, while under other conditions litter fuel will accumulate and fire may dominate carbon release. Ecosystem-level feedbacks between decomposition and fire, for example via litter amounts, litter decomposition stage, community-level biotic interactions and altered environment, will influence the trait-driven effects on decomposition and fire. Yet, our conceptual framework, explicitly comparing the effects of two plant trait spectra on litter decomposition vs fire, provides a promising new research direction for better understanding and predicting Earth surface carbon dynamics. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  9. Low-dose ionizing radiation limitations to seed germination: Results from a model linking physiological characteristics and developmental-dynamics simulation strategy.

    PubMed

    Liu, Hui; Hu, Dawei; Dong, Chen; Fu, Yuming; Liu, Guanghui; Qin, Youcai; Sun, Yi; Liu, Dianlei; Li, Lei; Liu, Hong

    2017-08-01

    There is much uncertainty about the risks of seed germination after repeated or protracted environmental low-dose ionizing radiation exposure. The purpose of this study is to explore the influence mechanism of low-dose ionizing radiation on wheat seed germination using a model linking physiological characteristics and developmental-dynamics simulation. A low-dose ionizing radiation environment simulator was built to investigate wheat (Triticum aestivum L.) seeds germination process and then a kinetic model expressing the relationship between wheat seed germination dynamics and low-dose ionizing radiation intensity variations was developed by experimental data, plant physiology, relevant hypotheses and system dynamics, and sufficiently validated and accredited by computer simulation. Germination percentages were showing no differences in response to different dose rates. However, root and shoot lengths were reduced significantly. Plasma governing equations were set up and the finite element analysis demonstrated H 2 O, CO 2 , O 2 as well as the seed physiological responses to the low-dose ionizing radiation. The kinetic model was highly valid, and simultaneously the related influence mechanism of low-dose ionizing radiation on wheat seed germination proposed in the modeling process was also adequately verified. Collectively these data demonstrate that low-dose ionizing radiation has an important effect on absorbing water, consuming O 2 and releasing CO 2 , which means the risk for embryo and endosperm development was higher. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Accelerated increase in plant species richness on mountain summits is linked to warming.

    PubMed

    Steinbauer, Manuel J; Grytnes, John-Arvid; Jurasinski, Gerald; Kulonen, Aino; Lenoir, Jonathan; Pauli, Harald; Rixen, Christian; Winkler, Manuela; Bardy-Durchhalter, Manfred; Barni, Elena; Bjorkman, Anne D; Breiner, Frank T; Burg, Sarah; Czortek, Patryk; Dawes, Melissa A; Delimat, Anna; Dullinger, Stefan; Erschbamer, Brigitta; Felde, Vivian A; Fernández-Arberas, Olatz; Fossheim, Kjetil F; Gómez-García, Daniel; Georges, Damien; Grindrud, Erlend T; Haider, Sylvia; Haugum, Siri V; Henriksen, Hanne; Herreros, María J; Jaroszewicz, Bogdan; Jaroszynska, Francesca; Kanka, Robert; Kapfer, Jutta; Klanderud, Kari; Kühn, Ingolf; Lamprecht, Andrea; Matteodo, Magali; di Cella, Umberto Morra; Normand, Signe; Odland, Arvid; Olsen, Siri L; Palacio, Sara; Petey, Martina; Piscová, Veronika; Sedlakova, Blazena; Steinbauer, Klaus; Stöckli, Veronika; Svenning, Jens-Christian; Teppa, Guido; Theurillat, Jean-Paul; Vittoz, Pascal; Woodin, Sarah J; Zimmermann, Niklaus E; Wipf, Sonja

    2018-04-01

    Globally accelerating trends in societal development and human environmental impacts since the mid-twentieth century 1-7 are known as the Great Acceleration and have been discussed as a key indicator of the onset of the Anthropocene epoch 6 . While reports on ecological responses (for example, changes in species range or local extinctions) to the Great Acceleration are multiplying 8, 9 , it is unknown whether such biotic responses are undergoing a similar acceleration over time. This knowledge gap stems from the limited availability of time series data on biodiversity changes across large temporal and geographical extents. Here we use a dataset of repeated plant surveys from 302 mountain summits across Europe, spanning 145 years of observation, to assess the temporal trajectory of mountain biodiversity changes as a globally coherent imprint of the Anthropocene. We find a continent-wide acceleration in the rate of increase in plant species richness, with five times as much species enrichment between 2007 and 2016 as fifty years ago, between 1957 and 1966. This acceleration is strikingly synchronized with accelerated global warming and is not linked to alternative global change drivers. The accelerating increases in species richness on mountain summits across this broad spatial extent demonstrate that acceleration in climate-induced biotic change is occurring even in remote places on Earth, with potentially far-ranging consequences not only for biodiversity, but also for ecosystem functioning and services.

  11. Fanconi Anemia Links Reactive Oxygen Species to Insulin Resistance and Obesity

    PubMed Central

    Li, Jie; Sipple, Jared; Maynard, Suzette; Mehta, Parinda A.; Rose, Susan R.; Davies, Stella M.

    2012-01-01

    Abstract Aims: Insulin resistance is a hallmark of obesity and type 2 diabetes. Reactive oxygen species (ROS) have been proposed to play a causal role in insulin resistance. However, evidence linking ROS to insulin resistance in disease settings has been scant. Since both oxidative stress and diabetes have been observed in patients with the Fanconi anemia (FA), we sought to investigate the link between ROS and insulin resistance in this unique disease model. Results: Mice deficient for the Fanconi anemia complementation group A (Fanca) or Fanconi anemia complementation group C (Fancc) gene seem to be diabetes-prone, as manifested by significant hyperglycemia and hyperinsulinemia, and rapid weight gain when fed with a high-fat diet. These phenotypic features of insulin resistance are characterized by two critical events in insulin signaling: a reduction in tyrosine phosphorylation of the insulin receptor (IR) and an increase in inhibitory serine phosphorylation of the IR substrate-1 in the liver, muscle, and fat tissues from the insulin-challenged FA mice. High levels of ROS, spontaneously accumulated or generated by tumor necrosis factor alpha in these insulin-sensitive tissues of FA mice, were shown to underlie the FA insulin resistance. Treatment of FA mice with the natural anti-oxidant Quercetin restores IR signaling and ameliorates the diabetes- and obesity-prone phenotypes. Finally, pairwise screen identifies protein-tyrosine phosphatase (PTP)-α and stress kinase double-stranded RNA-dependent protein kinase (PKR) that mediate the ROS effect on FA insulin resistance. Innovation: These findings establish a pathogenic and mechanistic link between ROS and insulin resistance in a unique human disease setting. Conclusion: ROS accumulation contributes to the insulin resistance in FA deficiency by targeting both PTP-α and PKR. Antioxid. Redox Signal. 00, 000–000. PMID:22482891

  12. Reproductive physiology

    USGS Publications Warehouse

    Gee, G.F.; Russman, S.E.; Ellis, David H.; Gee, George F.; Mirande, Claire M.

    1996-01-01

    Conclusions: Although the general pattern of avian physiology applies to cranes, we have identified many physiological mechanisms (e.g., effects of disturbance) that need further study. Studies with cranes are expensive compared to those done with domestic fowl because of the crane's larger size, low reproductive rate, and delayed sexual maturity. To summarize, the crane reproductive system is composed of physiological and anatomical elements whose function is controlled by an integrated neural-endocrine system. Males generally produce semen at a younger age than when females lay eggs. Eggs are laid in clutches of two (1 to 3), and females will lay additional clutches if the preceding clutches are removed. Both sexes build nests and incubate the eggs. Molt begins during incubation and body molt may be completed annually in breeding pairs. However, remiges are replaced sequentially over 2 to 3 years, or abruptly every 2 to 3 years in other species. Most immature birds replace their juvenal remiges over a 2 to 3 year period. Stress interferes with reproduction in cranes by reducing egg production or terminating the reproductive effort. In other birds, stress elevates corticosterone levels and decreases LHRH release. We know little about the physiological response of cranes to stress.

  13. Interspecific variation in persistence of buried weed seeds follows trade-offs among physiological, chemical, and physical seed defenses.

    PubMed

    Davis, Adam S; Fu, Xianhui; Schutte, Brian J; Berhow, Mark A; Dalling, James W

    2016-10-01

    Soil seedbanks drive infestations of annual weeds, yet weed management focuses largely on seedling mortality. As weed seedbanks increasingly become reservoirs of herbicide resistance, species-specific seedbank management approaches will be essential to weed control. However, the development of seedbank management strategies can only develop from an understanding of how seed traits affect persistence.We quantified interspecific trade-offs among physiological, chemical, and physical traits of weed seeds and their persistence in the soil seedbank in a common garden study. Seeds of 11 annual weed species were buried in Savoy, IL, from 2007 through 2012. Seedling recruitment was measured weekly and seed viability measured annually. Seed physiological (dormancy), chemical (phenolic compound diversity and concentration; invertebrate toxicity), and physical traits (seed coat mass, thickness, and rupture resistance) were measured.Seed half-life in the soil ( t 0.5 ) showed strong interspecific variation ( F 10,30  = 15, p  < .0001), ranging from 0.25 years ( Bassia scoparia ) to 2.22 years ( Abutilon theophrasti ). Modeling covariances among seed traits and seedbank persistence quantified support for two putative defense syndromes (physiological-chemical and physical-chemical) and highlighted the central role of seed dormancy in controlling seed persistence.A quantitative comparison between our results and other published work indicated that weed seed dormancy and seedbank persistence are linked across diverse environments and agroecosystems. Moreover, among seedbank-forming early successional plant species, relative investment in chemical and physical seed defense varies with seedbank persistence. Synthesis and applications . Strong covariance among weed seed traits and persistence in the soil seedbank indicates potential for seedbank management practices tailored to specific weed species. In particular, species with high t 0.5 values tend to invest less in chemical

  14. Inter- and intrapopulation variation in the response of tree seedlings to drought: physiological adjustments based on geographical origin, water supply and species.

    PubMed

    Carevic, Felipe S; Delatorre-Herrera, José; Delatorre-Castillo, José

    2017-09-01

    Initiatives to restore natural ecosystems have had little success in arid and hyperarid ecosystems. In this context, the natural seedling establishment is particularly affected by drought patterns and climatic variability. Likewise, the effect of plant provenance on forest restoration success remains unclear, although previous studies have concluded that some seed locations might be better able to tolerate water stress. In this study, we examined the physiological mechanisms involved in the drought stress resistance of Prosopis tamarugo and Prosopis alba seedlings from different arid and hyperarid locations of the Atacama Desert in northern Chile. We measured the xylem water potential (Ψ), cuticular transpiration (E c ), specific leaf area (SLA) and pressure-volume curves at the intrapopulation and interpopulation levels of seedlings of both species subjected to three drought-induced treatments. In addition, plant characteristics such as seedling height (Sh), stem diameter (Sd), leaf biomass (Lb), root biomass (Rb) and seedling survival (Ss) were measured during the treatments. Seedlings of most hyperarid habitats had the highest values of Ψ and water content relative to the turgor loss point, as well as decreased SLA, especially during the strongest drought treatment. Ψ was strongly correlated with Sh in both species, and soil humidity was correlated with Sd. This study highlights the high variability of physiological responses to water stress in both species at the interpopulation and intrapopulation levels, which provides us with a powerful seed selection tool for future reforestation programmes aimed at the early selection and genetic improvement of species of the Prosopis genus.

  15. Inter- and intrapopulation variation in the response of tree seedlings to drought: physiological adjustments based on geographical origin, water supply and species

    PubMed Central

    Delatorre-Herrera, José; Delatorre-Castillo, José

    2017-01-01

    Abstract Initiatives to restore natural ecosystems have had little success in arid and hyperarid ecosystems. In this context, the natural seedling establishment is particularly affected by drought patterns and climatic variability. Likewise, the effect of plant provenance on forest restoration success remains unclear, although previous studies have concluded that some seed locations might be better able to tolerate water stress. In this study, we examined the physiological mechanisms involved in the drought stress resistance of Prosopis tamarugo and Prosopis alba seedlings from different arid and hyperarid locations of the Atacama Desert in northern Chile. We measured the xylem water potential (Ψ), cuticular transpiration (Ec), specific leaf area (SLA) and pressure–volume curves at the intrapopulation and interpopulation levels of seedlings of both species subjected to three drought-induced treatments. In addition, plant characteristics such as seedling height (Sh), stem diameter (Sd), leaf biomass (Lb), root biomass (Rb) and seedling survival (Ss) were measured during the treatments. Seedlings of most hyperarid habitats had the highest values of Ψ and water content relative to the turgor loss point, as well as decreased SLA, especially during the strongest drought treatment. Ψ was strongly correlated with Sh in both species, and soil humidity was correlated with Sd. This study highlights the high variability of physiological responses to water stress in both species at the interpopulation and intrapopulation levels, which provides us with a powerful seed selection tool for future reforestation programmes aimed at the early selection and genetic improvement of species of the Prosopis genus. PMID:28948009

  16. Toxicokinetics/toxicodynamics links bioavailability for assessing arsenic uptake and toxicity in three aquaculture species.

    PubMed

    Chen, Wei-Yu; Liao, Chung-Min

    2012-11-01

    The purpose of this study was to link toxicokinetics/toxicodynamics (TK/TD) and bioavailability-based metal uptake kinetics to assess arsenic (As) uptake and bioaccumulation in three common farmed species of tilapia (Oreochromis mossambicus), milkfish (Chanos chanos), and freshwater clam (Corbicula fluminea). We developed a mechanistic framework by linking damage assessment model (DAM) and bioavailability-based Michaelis-Menten model for describing TK/TD and As uptake mechanisms. The proposed model was verified with published acute toxicity data. The estimated TK/TD parameters were used to simulate the relationship between bioavailable As uptake and susceptibility probability. The As toxicity was also evaluated based on a constructed elimination-recovery scheme. Absorption rate constants were estimated to be 0.025, 0.016, and 0.175 mL g(-1) h(-1) and As uptake rate constant estimates were 22.875, 63.125, and 788.318 ng g(-1) h(-1) for tilapia, milkfish, and freshwater clam, respectively. Here we showed that a potential trade-off between capacities of As elimination and damage recovery was found among three farmed species. Moreover, the susceptibility probability can also be estimated by the elimination-recovery relations. This study suggested that bioavailability-based uptake kinetics and TK/TD-based DAM could be integrated for assessing metal uptake and toxicity in aquatic organisms. This study is useful to quantitatively assess the complex environmental behavior of metal uptake and implicate to risk assessment of metals in aquaculture systems.

  17. Linking species richness curves from non-contiguous sampling to contiguous-nested SAR: An empirical study

    NASA Astrophysics Data System (ADS)

    Lazarina, Maria; Kallimanis, Athanasios S.; Pantis, John D.; Sgardelis, Stefanos P.

    2014-11-01

    The species-area relationship (SAR) is one of the few generalizations in ecology. However, many different relationships are denoted as SARs. Here, we empirically evaluated the differences between SARs derived from nested-contiguous and non-contiguous sampling designs, using plants, birds and butterflies datasets from Great Britain, Greece, Massachusetts, New York and San Diego. The shape of SAR depends on the sampling scheme, but there is little empirical documentation on the magnitude of the deviation between different types of SARs and the factors affecting it. We implemented a strictly nested sampling design to construct nested-contiguous SAR (SACR), and systematic nested but non-contiguous, and random designs to construct non-contiguous species richness curves (SASRs for systematic and SACs for random designs) per dataset. The SACR lay below any SASR and most of the SACs. The deviation between them was related to the exponent f of the power law relationship between sampled area and extent. The lower the exponent f, the higher was the deviation between the curves. We linked SACR to SASR and SAC through the concept of "effective" area (Ae), i.e. the nested-contiguous area containing equal number of species with the accumulated sampled area (AS) of a non-contiguous sampling. The relationship between effective and sampled area was modeled as log(Ae) = klog(AS). A Generalized Linear Model was used to estimate the values of k from sampling design and dataset properties. The parameter k increased with the average distance between samples and with beta diversity, while k decreased with f. For both systematic and random sampling, the model performed well in predicting effective area in both the training set and in the test set which was totally independent from the training one. Through effective area, we can link different types of species richness curves based on sampling design properties, sampling effort, spatial scale and beta diversity patterns.

  18. Mitochondria and Reactive Oxygen Species: Physiology and Pathophysiology

    PubMed Central

    Bolisetty, Subhashini; Jaimes, Edgar A.

    2013-01-01

    The air that we breathe contains nearly 21% oxygen, most of which is utilized by mitochondria during respiration. While we cannot live without it, it was perceived as a bane to aerobic organisms due to the generation of reactive oxygen and nitrogen metabolites by mitochondria and other cellular compartments. However, this dogma was challenged when these species were demonstrated to modulate cellular responses through altering signaling pathways. In fact, since this discovery of a dichotomous role of reactive species in immune function and signal transduction, research in this field grew at an exponential pace and the pursuit for mechanisms involved began. Due to a significant number of review articles present on the reactive species mediated cell death, we have focused on emerging novel pathways such as autophagy, signaling and maintenance of the mitochondrial network. Despite its role in several processes, increased reactive species generation has been associated with the origin and pathogenesis of a plethora of diseases. While it is tempting to speculate that anti-oxidant therapy would protect against these disorders, growing evidence suggests that this may not be true. This further supports our belief that these reactive species play a fundamental role in maintenance of cellular and tissue homeostasis. PMID:23528859

  19. Network Physiology: How Organ Systems Dynamically Interact

    PubMed Central

    Bartsch, Ronny P.; Liu, Kang K. L.; Bashan, Amir; Ivanov, Plamen Ch.

    2015-01-01

    We systematically study how diverse physiologic systems in the human organism dynamically interact and collectively behave to produce distinct physiologic states and functions. This is a fundamental question in the new interdisciplinary field of Network Physiology, and has not been previously explored. Introducing the novel concept of Time Delay Stability (TDS), we develop a computational approach to identify and quantify networks of physiologic interactions from long-term continuous, multi-channel physiological recordings. We also develop a physiologically-motivated visualization framework to map networks of dynamical organ interactions to graphical objects encoded with information about the coupling strength of network links quantified using the TDS measure. Applying a system-wide integrative approach, we identify distinct patterns in the network structure of organ interactions, as well as the frequency bands through which these interactions are mediated. We establish first maps representing physiologic organ network interactions and discover basic rules underlying the complex hierarchical reorganization in physiologic networks with transitions across physiologic states. Our findings demonstrate a direct association between network topology and physiologic function, and provide new insights into understanding how health and distinct physiologic states emerge from networked interactions among nonlinear multi-component complex systems. The presented here investigations are initial steps in building a first atlas of dynamic interactions among organ systems. PMID:26555073

  20. Success stories and emerging themes in conservation physiology.

    PubMed

    Madliger, Christine L; Cooke, Steven J; Crespi, Erica J; Funk, Jennifer L; Hultine, Kevin R; Hunt, Kathleen E; Rohr, Jason R; Sinclair, Brent J; Suski, Cory D; Willis, Craig K R; Love, Oliver P

    2016-01-01

    The potential benefits of physiology for conservation are well established and include greater specificity of management techniques, determination of cause-effect relationships, increased sensitivity of health and disturbance monitoring and greater capacity for predicting future change. While descriptions of the specific avenues in which conservation and physiology can be integrated are readily available and important to the continuing expansion of the discipline of 'conservation physiology', to date there has been no assessment of how the field has specifically contributed to conservation success. However, the goal of conservation physiology is to foster conservation solutions and it is therefore important to assess whether physiological approaches contribute to downstream conservation outcomes and management decisions. Here, we present eight areas of conservation concern, ranging from chemical contamination to invasive species to ecotourism, where physiological approaches have led to beneficial changes in human behaviour, management or policy. We also discuss the shared characteristics of these successes, identifying emerging themes in the discipline. Specifically, we conclude that conservation physiology: (i) goes beyond documenting change to provide solutions; (ii) offers a diversity of physiological metrics beyond glucocorticoids (stress hormones); (iii) includes approaches that are transferable among species, locations and times; (iv) simultaneously allows for human use and benefits to wildlife; and (v) is characterized by successes that can be difficult to find in the primary literature. Overall, we submit that the field of conservation physiology has a strong foundation of achievements characterized by a diversity of conservation issues, taxa, physiological traits, ecosystem types and spatial scales. We hope that these concrete successes will encourage the continued evolution and use of physiological tools within conservation-based research and management

  1. Physiological and biochemical stress responses in grassland species are influenced by both early-season ozone exposure and interspecific competition.

    PubMed

    Scebba, Francesca; Canaccini, Francesca; Castagna, Antonella; Bender, Jürgen; Weigel, Hans-Joachim; Ranieri, Annamaria

    2006-08-01

    The effects of two-year early season ozone exposure on physiological and biochemical stress response were investigated in model plant communities. Achillea millefolium and Veronica chamaedrys target plants were grown in monocultures and in mixed cultures with Poa pratensis (phytometer) and exposed in open-top chambers over two years for five weeks to charcoal-filtered (CF) air plus 25 nl l(-1) O3 (control) and non-filtered (NF) air plus 50 nl l(-1) O3. Significant O3 effects were detected in different physiological and biochemical parameters, evidencing interspecific differences in metabolic stress responses and a strong influence of the competition factor. O3 induced strong oxidative effects in Achillea irrespective to the different growth modality. Veronica showed less O3-induced effects in monoculture than when grown in competition with the phytometer. Poa exhibited a different behaviour against O3 depending on the species in competition, showing an overall higher sensitivity to O3 when in mixture with Achillea.

  2. Genome sequence and physiological analysis of Yamadazyma laniorum f.a. sp. nov. and a reevaluation of the apocryphal xylose fermentation of its sister species, Candida tenuis.

    PubMed

    Haase, Max A B; Kominek, Jacek; Langdon, Quinn K; Kurtzman, Cletus P; Hittinger, Chris Todd

    2017-05-01

    Xylose fermentation is a rare trait that is immensely important to the cellulosic biofuel industry, and Candida tenuis is one of the few yeasts that has been reported with this trait. Here we report the isolation of two strains representing a candidate sister species to C. tenuis. Integrated analysis of genome sequence and physiology suggested the genetic basis of a number of traits, including variation between the novel species and C. tenuis in lactose metabolism due to the loss of genes encoding lactose permease and β-galactosidase in the former. Surprisingly, physiological characterization revealed that neither the type strain of C. tenuis nor this novel species fermented xylose in traditional assays. We reexamined three xylose-fermenting strains previously identified as C. tenuis and found that these strains belong to the genus Scheffersomyces and are not C. tenuis. We propose Yamadazyma laniorum f.a. sp. nov. to accommodate our new strains and designate its type strain as yHMH7 (=CBS 14780 = NRRL Y-63967T). Furthermore, we propose the transfer of Candida tenuis to the genus Yamadazyma as Yamadazyma tenuis comb. nov. This approach provides a roadmap for how integrated genome sequence and physiological analysis can yield insight into the mechanisms that generate yeast biodiversity. Published by Oxford University Press on behalf of FEMS 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  3. Identification of molecular and physiological responses to chronic environmental challenge in an invasive species: the Pacific oyster, Crassostrea gigas

    PubMed Central

    Clark, Melody S; Thorne, Michael A S; Amaral, Ana; Vieira, Florbela; Batista, Frederico M; Reis, João; Power, Deborah M

    2013-01-01

    Understanding the environmental responses of an invasive species is critical in predicting how ecosystem composition may be transformed in the future, especially under climate change. In this study, Crassostrea gigas, a species well adapted to the highly variable intertidal environment, was exposed to the chronic environmental challenges of temperature (19 and 24°C) and pH (ambient seawater and a reduction of 0.4 pH units) in an extended 3-month laboratory-based study. Physiological parameters were measured (condition index, shell growth, respiration, excretion rates, O:N ratios, and ability to repair shell damage) alongside molecular analyses. Temperature was by far the most important stressor, as demonstrated by reduced condition indexes and shell growth at 24°C, with relatively little effect detected for pH. Transcriptional profiling using candidate genes and SOLiD sequencing of mantle tissue revealed that classical “stress” genes, previously reported to be upregulated under acute temperature challenges, were not significantly expressed in any of the treatments, emphasizing the different response between acute and longer term chronic stress. The transcriptional profiling also elaborated on the cellular responses underpinning the physiological results, including the identification of the PI3K/AKT/mTOR pathway as a potentially novel marker for chronic environmental challenge. This study represents a first attempt to understand the energetic consequences of cumulative thermal stress on the intertidal C. gigas which could significantly impact on coastal ecosystem biodiversity and function in the future. PMID:24223268

  4. Proteomics as an approach to the understanding of the molecular physiology of fruit development and ripening.

    PubMed

    Palma, José M; Corpas, Francisco J; del Río, Luís A

    2011-08-12

    Fruit ripening is a developmental complex process which occurs in higher plants and involves a number of stages displayed from immature to mature fruits that depend on the plant species and the environmental conditions. Nowadays, the importance of fruit ripening comes mainly from the link between this physiological process in plants and the economic repercussions as a result of one of the human activities, the agricultural industry. In most cases, fruit ripening is accompanied by colour changes due to different pigment content and increases in sugar levels, among others. Major physiological modifications that affect colour, texture, flavour, and aroma are under the control of both external (light and temperature) and internal (developmental gene regulation and hormonal control) factors. Due to the huge amount of metabolic changes that take place during ripening in fruits from higher plants, the accomplishment of new throughput methods which can provide a global evaluation of this process would be desirable. Differential proteomics of immature and mature fruits would be a useful tool to gain information on the molecular changes which occur during ripening, but also the investigation of fruits at different ripening stages will provide a dynamic picture of the whole transformation of fruits. This subject is furthermore of great interest as many fruits are essential for human nutrition. Thus far different maturation profiles have been reported specific for each crop species. In this work, a thorough review of the proteomic database from fruit development and maturation of important crop species will be updated to understand the molecular physiology of fruits at ripening stages. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Molecular and phenotypic data supporting distinct species statuses for Scedosporium apiospermum and Pseudallescheria boydii and the proposed new species Scedosporium dehoogii.

    PubMed

    Gilgado, Fèlix; Cano, Josep; Gené, Josepa; Sutton, Deanna A; Guarro, Josep

    2008-02-01

    Based on the morphological, physiologic, and molecular (beta-tubulin gene) study of 141 isolates of the Pseudallescheria boydii species complex (including several synonyms) and relatives, the new species Scedosporium dehoogii is proposed. Scedosporium apiospermum and P. boydii are considered two different species and the new name Scedosporium boydii is proposed for the anamorph of the latter species. A summary of the key morphological and physiological features for distinguishing the species of Pseudallescheria/Scedosporium is provided.

  6. Success stories and emerging themes in conservation physiology

    PubMed Central

    Madliger, Christine L.; Cooke, Steven J.; Crespi, Erica J.; Funk, Jennifer L.; Hultine, Kevin R.; Hunt, Kathleen E.; Rohr, Jason R.; Sinclair, Brent J.; Suski, Cory D.; Willis, Craig K. R.; Love, Oliver P.

    2016-01-01

    The potential benefits of physiology for conservation are well established and include greater specificity of management techniques, determination of cause–effect relationships, increased sensitivity of health and disturbance monitoring and greater capacity for predicting future change. While descriptions of the specific avenues in which conservation and physiology can be integrated are readily available and important to the continuing expansion of the discipline of ‘conservation physiology’, to date there has been no assessment of how the field has specifically contributed to conservation success. However, the goal of conservation physiology is to foster conservation solutions and it is therefore important to assess whether physiological approaches contribute to downstream conservation outcomes and management decisions. Here, we present eight areas of conservation concern, ranging from chemical contamination to invasive species to ecotourism, where physiological approaches have led to beneficial changes in human behaviour, management or policy. We also discuss the shared characteristics of these successes, identifying emerging themes in the discipline. Specifically, we conclude that conservation physiology: (i) goes beyond documenting change to provide solutions; (ii) offers a diversity of physiological metrics beyond glucocorticoids (stress hormones); (iii) includes approaches that are transferable among species, locations and times; (iv) simultaneously allows for human use and benefits to wildlife; and (v) is characterized by successes that can be difficult to find in the primary literature. Overall, we submit that the field of conservation physiology has a strong foundation of achievements characterized by a diversity of conservation issues, taxa, physiological traits, ecosystem types and spatial scales. We hope that these concrete successes will encourage the continued evolution and use of physiological tools within conservation-based research and

  7. Taste and physiological responses to glucosinolates: seed predator versus seed disperser.

    PubMed

    Samuni-Blank, Michal; Izhaki, Ido; Gerchman, Yoram; Dearing, M Denise; Karasov, William H; Trabelcy, Beny; Edwards, Thea M; Arad, Zeev

    2014-01-01

    In contrast to most other plant tissues, fleshy fruits are meant to be eaten in order to facilitate seed dispersal. Although fleshy fruits attract consumers, they may also contain toxic secondary metabolites. However, studies that link the effect of fruit toxins with seed dispersal and predation are scarce. Glucosinolates (GLSs) are a family of bitter-tasting compounds. The fleshy fruit pulp of Ochradenus baccatus was previously found to harbor high concentrations of GLSs, whereas the myrosinase enzyme, which breaks down GLSs to produce foul tasting chemicals, was found only in the seeds. Here we show the differential behavioral and physiological responses of three rodent species to high dose (80%) Ochradenus' fruits diets. Acomys russatus, a predator of Ochradenus' seeds, was the least sensitive to the taste of the fruit and the only rodent to exhibit taste-related physiological adaptations to deal with the fruits' toxins. In contrast, Acomys cahirinus, an Ochradenus seed disperser, was more sensitive to a diet containing the hydrolyzed products of the GLSs. A third rodent (Mus musculus) was deterred from Ochradenus fruits consumption by the GLSs and their hydrolyzed products. We were able to alter M. musculus avoidance of whole fruit consumption by soaking Ochradenus fruits in a water solution containing 1% adenosine monophosphate, which blocks the bitter taste receptor in mice. The observed differential responses of these three rodent species may be due to evolutionary pressures that have enhanced or reduced their sensitivity to the taste of GLSs.

  8. Linking human nutrition and fisheries: incorporating micronutrient-dense, small indigenous fish species in carp polyculture production in Bangladesh.

    PubMed

    Roos, Nanna; Wahab, M Abdul; Hossain, Mostafa Ali Reza; Thilsted, Shakuntala Haraksingh

    2007-06-01

    Fish and fisheries are important for the livelihoods, food, and income of the rural population in Bangladesh. Increased rice production and changing agricultural patterns have resulted in a large decline in inland fisheries. Implementation of carp pond polyculture has been very successful, whereas little focus has been given to the commonly consumed small indigenous fish species, some of which are rich in vitamin A and minerals, such as calcium, iron, and zinc, and are an integral part of the rural diet. The overall objective of the research and capacity-building activities described in this paper is to increase the production, accessibility, and intake of nutrient-dense small indigenous fish species, in particular mola (Amblypharyngodon mola), in order to combat micronutrient deficiencies. The large contribution from small indigenous fish species to recommended intakes of vitamin A and calcium and the perception that mola is good for or protects the eyes have been well documented. An integrated approach was conducted jointly by Bangladeshi and Danish institutions, linking human nutrition and fisheries. Activities included food-consumption surveys, laboratory analyses of commonly consumed fish species, production trials of carp-mola pond polyculture, teaching, training, and dissemination of the results. No decline in carp production and thus in income was found with the inclusion of mola, and increased intake of mola has the potential to combat micronutrient deficiencies. Teaching and training of graduates and field staff have led to increased awareness of the role of small indigenous fish species for good nutrition and resulted in the promotion of carp-mola pond polyculture and research in small indigenous fish species. The decline in accessibility, increase in price, and decrease in intake of small indigenous fish species by the rural poor, as well as the increased intake of silver carp (Hypophthalmichthys molitrix), the most commonly cultured fish species, which

  9. Comparison of gene expression signatures of diamide, H2O2 and menadione exposed Aspergillus nidulans cultures – linking genome-wide transcriptional changes to cellular physiology

    PubMed Central

    Pócsi, István; Miskei, Márton; Karányi, Zsolt; Emri, Tamás; Ayoubi, Patricia; Pusztahelyi, Tünde; Balla, György; Prade, Rolf A

    2005-01-01

    Background In addition to their cytotoxic nature, reactive oxygen species (ROS) are also signal molecules in diverse cellular processes in eukaryotic organisms. Linking genome-wide transcriptional changes to cellular physiology in oxidative stress-exposed Aspergillus nidulans cultures provides the opportunity to estimate the sizes of peroxide (O22-), superoxide (O2•-) and glutathione/glutathione disulphide (GSH/GSSG) redox imbalance responses. Results Genome-wide transcriptional changes triggered by diamide, H2O2 and menadione in A. nidulans vegetative tissues were recorded using DNA microarrays containing 3533 unique PCR-amplified probes. Evaluation of LOESS-normalized data indicated that 2499 gene probes were affected by at least one stress-inducing agent. The stress induced by diamide and H2O2 were pulse-like, with recovery after 1 h exposure time while no recovery was observed with menadione. The distribution of stress-responsive gene probes among major physiological functional categories was approximately the same for each agent. The gene group sizes solely responsive to changes in intracellular O22-, O2•- concentrations or to GSH/GSSG redox imbalance were estimated at 7.7, 32.6 and 13.0 %, respectively. Gene groups responsive to diamide, H2O2 and menadione treatments and gene groups influenced by GSH/GSSG, O22- and O2•- were only partly overlapping with distinct enrichment profiles within functional categories. Changes in the GSH/GSSG redox state influenced expression of genes coding for PBS2 like MAPK kinase homologue, PSK2 kinase homologue, AtfA transcription factor, and many elements of ubiquitin tagging, cell division cycle regulators, translation machinery proteins, defense and stress proteins, transport proteins as well as many enzymes of the primary and secondary metabolisms. Meanwhile, a separate set of genes encoding transport proteins, CpcA and JlbA amino acid starvation-responsive transcription factors, and some elements of sexual development

  10. The chemistry and physiology of sour taste--a review.

    PubMed

    Ramos Da Conceicao Neta, Edith Ramos; Johanningsmeier, Suzanne D; McFeeters, Roger F

    2007-03-01

    Sour taste is the key element in the flavor profile of food acidulants. Understanding the chemistry and physiology of sour taste is critical for efficient control of flavor in the formulation of acid and acidified foods. After a brief introduction to the main applications of food acidulants, several chemical parameters associated with sour taste are discussed. Special emphasis is given to hydrogen ions, protonated (undissociated) acid species, titratable acidity, anions, molar concentration, and physical and chemical properties of organic acids. This article also presents an overview of the physiology of sour taste and proposed theories for the transduction mechanisms for sour taste. The physiology of sour taste perception remains controversial and significant diversity exists among species with regard to cellular schemes used for detection of stimuli. The variety of mechanisms proposed, even within individual species, highlights the complexity of elucidating sour taste transduction. However, recent evidence suggests that at least one specific sour taste receptor protein has been identified.

  11. Scale dependence in species turnover reflects variance in species occupancy.

    PubMed

    McGlinn, Daniel J; Hurlbert, Allen H

    2012-02-01

    Patterns of species turnover may reflect the processes driving community dynamics across scales. While the majority of studies on species turnover have examined pairwise comparison metrics (e.g., the average Jaccard dissimilarity), it has been proposed that the species-area relationship (SAR) also offers insight into patterns of species turnover because these two patterns may be analytically linked. However, these previous links only apply in a special case where turnover is scale invariant, and we demonstrate across three different plant communities that over 90% of the pairwise turnover values are larger than expected based on scale-invariant predictions from the SAR. Furthermore, the degree of scale dependence in turnover was negatively related to the degree of variance in the occupancy frequency distribution (OFD). These findings suggest that species turnover diverges from scale invariance, and as such pairwise turnover and the slope of the SAR are not redundant. Furthermore, models developed to explain the OFD should be linked with those developed to explain species turnover to achieve a more unified understanding of community structure.

  12. Pigment compositions are linked to the habitat types in dinoflagellates.

    PubMed

    Yamada, Norico; Tanaka, Ayumi; Horiguchi, Takeo

    2015-11-01

    Compared to planktonic species, there is little known about the ecology, physiology, and existence of benthic dinoflagellates living in sandy beach or seafloor environments. In a previous study, we discovered 13(2),17(3)-cyclopheophorbide a enol (cPPB-aE) from sand-dwelling benthic dinoflagellates. This enol had never been detected in phytoplankton despite the fact that it is a chlorophyll a catabolite. We speculated from this discovery that habitat selection might be linked to pigment compositions in dinoflagellates. To test the hypothesis of habitat selection linking to pigment compositions, we conducted extensive analysis of pigments with high performance liquid chromatography (HPLC) for 40 species using 45 strains of dinoflagellates including three habitat types; sand-dwelling benthic forms, tidal pool inhabitants and planktonic species. The 40 dinoflagellates are also able to be distinguished into two types based on their chloroplast origins; red alga-derived secondary chloroplasts and diatom-derived tertiary ones. By plotting the pigments profiles onto three habitats, we noticed that twelve pigments including cPPB-aE were found to occur only in benthic sand-dwelling species of red alga-derived type. The similar tendency was also observed in dinoflagellates with diatom-derived chloroplasts, i.e. additional sixteen pigments including chl c 3 were found only in sand-dwelling forms. This is the first report of the occurrence of chl c 3 in dinoflagellates with diatom-derived chloroplasts. These results clarify that far greater diversity of pigments are produced by the dinoflagellates living in sand regardless of chloroplast types relative to those of planktonic and tidal pool forms. Dinoflagellates seem to produce a part of their pigments in response to their habitats.

  13. Assessing physiological tipping points in response to ocean acidification

    NASA Astrophysics Data System (ADS)

    Dupont, S. T.; Dorey, N.; Lançon, P.; Thorndyke, M. S.

    2011-12-01

    rate is decreased. However, the intensity of the impact on the growth rate is depending on the tested pH. When pH is 7.3 or higher, only a small delay in development is observed with no effect on larval morphology (phenotypic plasticity). When the pH is lower than 7.3, the impact is more severe together with major developmental abnormalities. At pH 6.5, the development is totally arrested. The link between a species physiological tipping point and environmental variability will be discussed.

  14. Milkweed butterfly resistance to plant toxins is linked to sequestration, not coping with a toxic diet.

    PubMed

    Petschenka, Georg; Agrawal, Anurag A

    2015-11-07

    Insect resistance to plant toxins is widely assumed to have evolved in response to using defended plants as a dietary resource. We tested this hypothesis in the milkweed butterflies (Danaini) which have progressively evolved higher levels of resistance to cardenolide toxins based on amino acid substitutions of their cellular sodium-potassium pump (Na(+)/K(+)-ATPase). Using chemical, physiological and caterpillar growth assays on diverse milkweeds (Asclepias spp.) and isolated cardenolides, we show that resistant Na(+)/K(+)-ATPases are not necessary to cope with dietary cardenolides. By contrast, sequestration of cardenolides in the body (as a defence against predators) is associated with the three levels of Na(+)/K(+)-ATPase resistance. To estimate the potential physiological burden of cardenolide sequestration without Na(+)/K(+)-ATPase adaptations, we applied haemolymph of sequestering species on isolated Na(+)/K(+)-ATPase of sequestering and non-sequestering species. Haemolymph cardenolides dramatically impair non-adapted Na(+)/K(+)-ATPase, but had systematically reduced effects on Na(+)/K(+)-ATPase of sequestering species. Our data indicate that major adaptations to plant toxins may be evolutionarily linked to sequestration, and may not necessarily be a means to eat toxic plants. Na(+)/K(+)-ATPase adaptations thus were a potential mechanism through which predators spurred the coevolutionary arms race between plants and insects. © 2015 The Author(s).

  15. Milkweed butterfly resistance to plant toxins is linked to sequestration, not coping with a toxic diet

    PubMed Central

    Petschenka, Georg; Agrawal, Anurag A.

    2015-01-01

    Insect resistance to plant toxins is widely assumed to have evolved in response to using defended plants as a dietary resource. We tested this hypothesis in the milkweed butterflies (Danaini) which have progressively evolved higher levels of resistance to cardenolide toxins based on amino acid substitutions of their cellular sodium–potassium pump (Na+/K+-ATPase). Using chemical, physiological and caterpillar growth assays on diverse milkweeds (Asclepias spp.) and isolated cardenolides, we show that resistant Na+/K+-ATPases are not necessary to cope with dietary cardenolides. By contrast, sequestration of cardenolides in the body (as a defence against predators) is associated with the three levels of Na+/K+-ATPase resistance. To estimate the potential physiological burden of cardenolide sequestration without Na+/K+-ATPase adaptations, we applied haemolymph of sequestering species on isolated Na+/K+-ATPase of sequestering and non-sequestering species. Haemolymph cardenolides dramatically impair non-adapted Na+/K+-ATPase, but had systematically reduced effects on Na+/K+-ATPase of sequestering species. Our data indicate that major adaptations to plant toxins may be evolutionarily linked to sequestration, and may not necessarily be a means to eat toxic plants. Na+/K+-ATPase adaptations thus were a potential mechanism through which predators spurred the coevolutionary arms race between plants and insects. PMID:26538594

  16. Could behaviour and not physiological thermal tolerance determine winter survival of aphids in cereal fields?

    PubMed

    Alford, Lucy; Andrade, Thiago Oliveira; Georges, Romain; Burel, Françoise; van Baaren, Joan

    2014-01-01

    Traits of physiological thermotolerance are commonly measured in the laboratory as predictors of the field success of ectotherms at unfavourable temperatures (e.g. during harsh winters, heatwaves, or under conditions of predicted global warming). Due to being more complicated to measure, behavioural thermoregulation is less commonly studied, although both physiology and behaviour interact to explain the survival of ectotherms. The aphids Metopolophium dirhodum, Rhopalosiphum padi and Sitobion avenae are commercially important pests of temperate cereal crops. Although coexisting, these species markedly differ in winter success, with R. padi being the most abundant species during cold winters, followed by S. avenae and lastly M. dirhodum. To better understand the thermal physiology and behavioural factors contributing to differential winter success, the lethal temperature (physiological thermotolerance) and the behaviour of aphids in a declining temperature regime (behavioural thermotolerance) of these three species were investigated. Physiological thermotolerance significantly differed between the three species, with R. padi consistently the least cold tolerant and S. avenae the most cold tolerant. However, although the least cold tolerant of the study species, significantly more R. padi remained attached to the host plant at extreme sub-zero temperatures than S. avenae and M. dirhodum. Given the success of anholocyclic R. padi in harsh winters compared to its anholocyclic counterparts, this study illustrates that behavioural differences could be more important than physiological thermotolerance in explaining resistance to extreme temperatures. Furthermore it highlights that there is a danger to studying physiological thermotolerance in isolation when ascertaining risks of ectotherm invasions, the establishment potential of exotic species in glasshouses, or predicting species impacts under climate change scenarios.

  17. Cardiopulmonary physiology: why the heart and lungs are inextricably linked.

    PubMed

    Verhoeff, Kevin; Mitchell, Jamie R

    2017-09-01

    Because the heart and lungs are confined within the thoracic cavity, understanding their interactions is integral for studying each system. Such interactions include changes in external constraint to the heart, blood volume redistribution (venous return), direct ventricular interaction (DVI), and left ventricular (LV) afterload. During mechanical ventilation, these interactions can be amplified and result in reduced cardiac output. For example, increased intrathoracic pressure associated with mechanical ventilation can increase external constraint and limit ventricular diastolic filling and, therefore, output. Similarly, high intrathoracic pressures can alter blood volume distribution and limit diastolic filling of both ventricles while concomitantly increasing pulmonary vascular resistance, leading to increased DVI, which may further limit LV filling. While LV afterload is generally considered to decrease with increased intrathoracic pressure, the question arises if the reduced LV afterload is primarily a consequence of a reduced LV preload. A thorough understanding of the interaction between the heart and lungs can be complicated but is essential for clinicians and health science students alike. In this teaching review, we have attempted to highlight the present understanding of certain salient aspects of cardiopulmonary physiology and pathophysiology, as well as provide a resource for multidisciplined health science educators and students. Copyright © 2017 the American Physiological Society.

  18. Links between ammonia oxidizer species composition, functional diversity and nitrification kinetics in grassland soils.

    PubMed

    Webster, Gordon; Embley, T Martin; Freitag, Thomas E; Smith, Zena; Prosser, James I

    2005-05-01

    Molecular approaches have revealed considerable diversity and uncultured novelty in natural prokaryotic populations, but not direct links between the new genotypes detected and ecosystem processes. Here we describe the influence of the structure of communities of ammonia-oxidizing bacteria on nitrogen cycling in microcosms containing natural and managed grasslands and amended with artificial sheep urine, a major factor determining local ammonia concentrations in these environments. Nitrification kinetics were assessed by analysis of changes in urea, ammonia, nitrite and nitrate concentrations and ammonia oxidizer communities were characterized by analysis of 16S rRNA genes amplified from extracted DNA using ammonia oxidizer-specific primers. In natural soils, ammonia oxidizer community structure determined the delay preceding nitrification, which depended on the relative abundance of two Nitrosospira clusters, termed 3a and 3b. In batch cultures, pure culture and enrichment culture representatives of Nitrosospira 3a were sensitive to high ammonia concentration, while Nitrosospira cluster 3b representatives and Nitrosomonas europaea were tolerant. Delays in nitrification occurred in natural soils dominated by Nitrosospira cluster 3a and resulted from the time required for growth of low concentrations of Nitrosospira cluster 3b. In microcosms dominated by Nitrosospira cluster 3b and Nitrosomonas, no substantial delays were observed. In managed soils, no delays in nitrification were detected, regardless of initial ammonia oxidizer community structure, most probably resulting from higher ammonia oxidizer cell concentrations. The data therefore demonstrate a direct link between bacterial community structure, physiological diversity and ecosystem function.

  19. Physiological and health implications of a sedentary lifestyle.

    PubMed

    Tremblay, Mark Stephen; Colley, Rachel Christine; Saunders, Travis John; Healy, Genevieve Nissa; Owen, Neville

    2010-12-01

    Sedentary behaviour is associated with deleterious health outcomes, which differ from those that can be attributed to a lack of moderate to vigorous physical activity. This has led to the field of "sedentary physiology", which may be considered as separate and distinct from exercise physiology. This paper gives an overview of this emerging area of research and highlights the ways that it differs from traditional exercise physiology. Definitions of key terms associated with the field of sedentary physiology and a review of the self-report and objective methods for assessing sedentary behaviour are provided. Proposed mechanisms of sedentary physiology are examined, and how they differ from those linking physical activity and health are highlighted. Evidence relating to associations of sedentary behaviours with major health outcomes and the population prevalence and correlates of sedentary behaviours are reviewed. Recommendations for future research are proposed.

  20. Linking transcriptional responses to organismal tolerance reveals mechanisms of thermal sensitivity in a mesothermal endangered fish.

    PubMed

    Komoroske, Lisa M; Connon, Richard E; Jeffries, Ken M; Fangue, Nann A

    2015-10-01

    Forecasting species' responses to climate change requires understanding the underlying mechanisms governing environmental stress tolerance, including acclimation capacity and acute stress responses. Current knowledge of these physiological processes in aquatic ectotherms is largely drawn from eurythermal or extreme stenothermal species. Yet many species of conservation concern exhibit tolerance windows and acclimation capacities in between these extremes. We linked transcriptome profiles to organismal tolerance in a mesothermal endangered fish, the delta smelt (Hypomesus transpacificus), to quantify the cellular processes, sublethal thresholds and effects of thermal acclimation on acute stress responses. Delta smelt initiated rapid molecular changes in line with expectations of theoretical thermal limitation models, but also exhibited diminished capacity to modify the expression of some genes and cellular mechanisms key to coping with acute thermal stress found in eurytherms. Sublethal critical thresholds occurred 4-6 °C below their upper tolerance limits, and thermal acclimation shifted the onset of acute thermal stress and tolerance as predicted. However, we found evidence that delta smelt's limited thermal plasticity may be partially due to an inability of individuals to effectively make physiological adjustments to truly achieve new homoeostasis under heightened temperatures, resulting in chronic thermal stress. These findings provide insight into the physiological basis of the diverse patterns of thermal tolerances observed in nature. Moreover, understanding how underlying molecular mechanisms shape thermal acclimation capacity, acute stress responses and ultimately differential phenotypes contributes to a predictive framework to deduce species' responses in situ to changes in selective pressures due to climate change. © 2015 John Wiley & Sons Ltd.

  1. Coordination of physiological and structural traits in Amazon forest trees

    NASA Astrophysics Data System (ADS)

    Patiño, S.; Fyllas, N. M.; Baker, T. R.; Paiva, R.; Quesada, C. A.; Santos, A. J. B.; Schwarz, M.; Ter Steege, H.; Phillips, O. L.; Lloyd, J.

    2011-05-01

    Many plant traits covary in a non-random manner reflecting interdependencies associated with "ecological strategy" dimensions. To understand how plants modulate their structural investments to best maintain and utilise their physiological capabilities, data on leaf and leaflet size and the ratio of leaf area to sapwood area (ΦLS) obtained for 1040 tree species located in 53 tropical forest plots across the Amazon Basin were incorporated into an analysis utilising existing data on species maximum height (Hmax), seed size, leaf mass per unit area (MA), foliar nutrients and δ13C and branch xylem density (ρx). Utilising a common principal components approach allowing eigenvalues to vary between two soil fertility dependent species groups, five genetically controlled trait dimensions were identified. The first involves primarily cations, foliar carbon and MA and is associated with differences in foliar construction costs. The second relates to the classic "leaf economic spectrum", but with increased individual leaf areas and a higher ΦLS newly identified components. The third relates primarily to increasing Hmax and hence variations in light acquisition strategy involving greater MA, reductions in ΦLS and less negative δ13C. Although these first three dimensions were more important for species from high fertility sites the final two dimensions were more important for low fertility species and were associated with variations linked to reproductive and shade tolerance strategies. Environmental conditions also influenced structural traits with ρx decreasing with increased soil fertility and decreasing with increased temperatures. This soil fertility response appears to be synchronised with increases in foliar nutrient concentrations and reductions in foliar [C]. Leaf and leaflet area and ΦLS were less responsive to the environment than ρx. Thus although genetically determined foliar traits such as those associated with leaf construction costs coordinate

  2. Assessments at multiple levels of biological organization allow for an integrative determination of physiological tolerances to turbidity in an endangered fish species

    PubMed Central

    Hasenbein, Matthias; Fangue, Nann A; Geist, Juergen; Komoroske, Lisa M; Truong, Jennifer; McPherson, Rina; Connon, Richard E

    2016-01-01

    Abstract Turbidity can influence trophic levels by altering species composition and can potentially affect fish feeding strategies and predator–prey interactions. The estuarine turbidity maximum, described as an area of increased suspended particles, phytoplankton and zooplankton, generally represents a zone with higher turbidity and enhanced food sources important for successful feeding and growth in many fish species. The delta smelt (Hypomesus transpacificus) is an endangered, pelagic fish species endemic to the San Francisco Estuary and Sacramento–San Joaquin River Delta, USA, where it is associated with turbid waters. Turbidity is known to play an important role for the completion of the species' life cycle; however, turbidity ranges in the Delta are broad, and specific requirements for this fish species are still unknown. To evaluate turbidity requirements for early life stages, late-larval delta smelt were maintained at environmentally relevant turbidity levels ranging from 5 to 250 nephelometric turbidity units (NTU) for 24 h, after which a combination of physiological endpoints (molecular biomarkers and cortisol), behavioural indices (feeding) and whole-organism measures (survival) were determined. All endpoints delivered consistent results and identified turbidities between 25 and 80 NTU as preferential. Delta smelt survival rates were highest between 12 and 80 NTU and feeding rates were highest between 25 and 80 NTU. Cortisol levels indicated minimal stress between 35 and 80 NTU and were elevated at low turbidities (5, 12 and 25 NTU). Expression of stress-related genes indicated significant responses for gst, hsp70 and glut2 in high turbidities (250 NTU), and principal component analysis on all measured genes revealed a clustering of 25, 35, 50 and 80 NTU separating the medium-turbidity treatments from low- and high-turbidity treatments. Taken together, these data demonstrate that turbidity levels that are either too low or too high

  3. Assessments at multiple levels of biological organization allow for an integrative determination of physiological tolerances to turbidity in an endangered fish species.

    PubMed

    Hasenbein, Matthias; Fangue, Nann A; Geist, Juergen; Komoroske, Lisa M; Truong, Jennifer; McPherson, Rina; Connon, Richard E

    2016-01-01

    Turbidity can influence trophic levels by altering species composition and can potentially affect fish feeding strategies and predator-prey interactions. The estuarine turbidity maximum, described as an area of increased suspended particles, phytoplankton and zooplankton, generally represents a zone with higher turbidity and enhanced food sources important for successful feeding and growth in many fish species. The delta smelt (Hypomesus transpacificus) is an endangered, pelagic fish species endemic to the San Francisco Estuary and Sacramento-San Joaquin River Delta, USA, where it is associated with turbid waters. Turbidity is known to play an important role for the completion of the species' life cycle; however, turbidity ranges in the Delta are broad, and specific requirements for this fish species are still unknown. To evaluate turbidity requirements for early life stages, late-larval delta smelt were maintained at environmentally relevant turbidity levels ranging from 5 to 250 nephelometric turbidity units (NTU) for 24 h, after which a combination of physiological endpoints (molecular biomarkers and cortisol), behavioural indices (feeding) and whole-organism measures (survival) were determined. All endpoints delivered consistent results and identified turbidities between 25 and 80 NTU as preferential. Delta smelt survival rates were highest between 12 and 80 NTU and feeding rates were highest between 25 and 80 NTU. Cortisol levels indicated minimal stress between 35 and 80 NTU and were elevated at low turbidities (5, 12 and 25 NTU). Expression of stress-related genes indicated significant responses for gst, hsp70 and glut2 in high turbidities (250 NTU), and principal component analysis on all measured genes revealed a clustering of 25, 35, 50 and 80 NTU separating the medium-turbidity treatments from low- and high-turbidity treatments. Taken together, these data demonstrate that turbidity levels that are either too low or too high affect delta

  4. Differential growth responses to water balance of coexisting deciduous tree species are linked to wood density in a Bolivian tropical dry forest.

    PubMed

    Mendivelso, Hooz A; Camarero, J Julio; Royo Obregón, Oriol; Gutiérrez, Emilia; Toledo, Marisol

    2013-01-01

    A seasonal period of water deficit characterizes tropical dry forests (TDFs). There, sympatric tree species exhibit a diversity of growth rates, functional traits, and responses to drought, suggesting that each species may possess different strategies to grow under different conditions of water availability. The evaluation of the long-term growth responses to changes in the soil water balance should provide an understanding of how and when coexisting tree species respond to water deficit in TDFs. Furthermore, such differential growth responses may be linked to functional traits related to water storage and conductance. We used dendrochronology and climate data to retrospectively assess how the radial growth of seven coexisting deciduous tree species responded to the seasonal soil water balance in a Bolivian TDF. Linear mixed-effects models were used to quantify the relationships between basal area increment and seasonal water balance. We related these relationships with wood density and sapwood production to assess if they affect the growth responses to climate. The growth of all species responded positively to water balance during the wet season, but such responses differed among species as a function of their wood density. For instance, species with a strong growth response to water availability averaged a low wood density which may facilitate the storage of water in the stem. By contrast, species with very dense wood were those whose growth was less sensitive to water availability. Coexisting tree species thus show differential growth responses to changes in soil water balance during the wet season. Our findings also provide a link between wood density, a trait related to the ability of trees to store water in the stem, and wood formation in response to water availability.

  5. Physiological ecology of overwintering in hatchling turtles.

    PubMed

    Costanzo, Jon P; Lee, Richard E; Ultsch, Gordon R

    2008-07-01

    Temperate species of turtles hatch from eggs in late summer. The hatchlings of some species leave their natal nest to hibernate elsewhere on land or under water, whereas others usually remain inside the nest until spring; thus, post-hatching behavior strongly influences the hibernation ecology and physiology of this age class. Little is known about the habitats of and environmental conditions affecting aquatic hibernators, although laboratory studies suggest that chronically hypoxic sites are inhospitable to hatchlings. Field biologists have long been intrigued by the environmental conditions survived by hatchlings using terrestrial hibernacula, especially nests that ultimately serve as winter refugia. Hatchlings are unable to feed, although as metabolism is greatly reduced in hibernation, they are not at risk of starvation. Dehydration and injury from cold are more formidable challenges. Differential tolerances to these stressors may explain variation in hatchling overwintering habits among turtle taxa. Much study has been devoted to the cold-hardiness adaptations exhibited by terrestrial hibernators. All tolerate a degree of chilling, but survival of frost exposure depends on either freeze avoidance through supercooling or freeze tolerance. Freeze avoidance is promoted by behavioral, anatomical, and physiological features that minimize risk of inoculation by ice and ice-nucleating agents. Freeze tolerance is promoted by a complex suite of molecular, biochemical, and physiological responses enabling certain organisms to survive the freezing and thawing of extracellular fluids. Some species apparently can switch between freeze avoidance or freeze tolerance, the mode utilized in a particular instance of chilling depending on prevailing physiological and environmental conditions. (c) 2008 Wiley-Liss, Inc.

  6. Neuropeptide physiology in helminths.

    PubMed

    Mousley, Angela; Novozhilova, Ekaterina; Kimber, Michael J; Day, Tim A

    2010-01-01

    Parasitic worms come from two distinct, distant phyla, Nematoda (roundworms) and Platyhelminthes (flatworms). The nervous systems of worms from both phyla are replete with neuropeptides and there is ample physiological evidence that these neuropeptides control vital aspects of worm biology. In each phyla, the physiological evidence for critical roles for helminth neuropeptides is derived from both parasitic and free-living members. In the nematodes, the intestinal parasite Ascaris suum and the free-living Caenorhabditis elegans have yielded most of the data; in the platyhelminths, the most physiological data has come from the blood fluke Schistosoma mansoni. FMRFamide-like peptides (FLPs) have many varied effects (excitation, relaxation, or a combination) on somatic musculature, reproductive musculature, the pharynx and motor neurons in nematodes. Insulin-like peptides (INSs) play an essential role in nematode dauer formation and other developmental processes. There is also some evidence for a role in somatic muscle control for the somewhat heterogeneous grouping ofpeptides known as neuropeptide-like proteins (NLPs). In platyhelminths, as in nematodes, FLPs have a central role in somatic muscle function. Reports of FLP physiological action in platyhelminths are limited to a potent excitation of the somatic musculature. Platyhelminths are also abundantly endowed with neuropeptide Fs (NPFs), which appear absent from nematodes. There is not yet any data linking platyhelminth NPF to any particular physiological outcome, but this neuropeptide does potently and specifically inhibit cAMP accumulation in schistosomes. In nematodes and platyhelminths, there is an abundance of physiological evidence demonstrating that neuropeptides play critical roles in the biology of both free-living and parasitic helminths. While it is certainly true that there remains a great deal to learn about the biology of neuropeptides in both phyla, physiological evidence presently available points

  7. Integrative modelling reveals mechanisms linking productivity and plant species richness.

    PubMed

    Grace, James B; Anderson, T Michael; Seabloom, Eric W; Borer, Elizabeth T; Adler, Peter B; Harpole, W Stanley; Hautier, Yann; Hillebrand, Helmut; Lind, Eric M; Pärtel, Meelis; Bakker, Jonathan D; Buckley, Yvonne M; Crawley, Michael J; Damschen, Ellen I; Davies, Kendi F; Fay, Philip A; Firn, Jennifer; Gruner, Daniel S; Hector, Andy; Knops, Johannes M H; MacDougall, Andrew S; Melbourne, Brett A; Morgan, John W; Orrock, John L; Prober, Suzanne M; Smith, Melinda D

    2016-01-21

    How ecosystem productivity and species richness are interrelated is one of the most debated subjects in the history of ecology. Decades of intensive study have yet to discern the actual mechanisms behind observed global patterns. Here, by integrating the predictions from multiple theories into a single model and using data from 1,126 grassland plots spanning five continents, we detect the clear signals of numerous underlying mechanisms linking productivity and richness. We find that an integrative model has substantially higher explanatory power than traditional bivariate analyses. In addition, the specific results unveil several surprising findings that conflict with classical models. These include the isolation of a strong and consistent enhancement of productivity by richness, an effect in striking contrast with superficial data patterns. Also revealed is a consistent importance of competition across the full range of productivity values, in direct conflict with some (but not all) proposed models. The promotion of local richness by macroecological gradients in climatic favourability, generally seen as a competing hypothesis, is also found to be important in our analysis. The results demonstrate that an integrative modelling approach leads to a major advance in our ability to discern the underlying processes operating in ecological systems.

  8. Molecular and Phenotypic Data Supporting Distinct Species Statuses for Scedosporium apiospermum and Pseudallescheria boydii and the Proposed New Species Scedosporium dehoogii▿ † ‡

    PubMed Central

    Gilgado, Fèlix; Cano, Josep; Gené, Josepa; Sutton, Deanna A.; Guarro, Josep

    2008-01-01

    Based on the morphological, physiologic, and molecular (β-tubulin gene) study of 141 isolates of the Pseudallescheria boydii species complex (including several synonyms) and relatives, the new species Scedosporium dehoogii is proposed. Scedosporium apiospermum and P. boydii are considered two different species and the new name Scedosporium boydii is proposed for the anamorph of the latter species. A summary of the key morphological and physiological features for distinguishing the species of Pseudallescheria/Scedosporium is provided. PMID:18077629

  9. A new species of Bachia Gray, 1845 (Squamata: Gymnophthalmidae) from the Eastern Brazilian Cerrado, and data on its ecology, physiology and behavior.

    PubMed

    Teixeira, Mauro; Recoder, Renato Sousa; Camacho, Agustín; De Sena, Marco Aurélio; Navas, Carlos Arturo; Rodrigues, Miguel Trefaut

    2013-02-19

    A new species of Bachia of the bresslaui group, Bachia geralista sp. nov., is described from Planalto dos Gerais, an old and partially dissected plateau extending along the Cerrados of Bahia, Minas Gerais and Tocantins states, Brazil. The new species is morphologically similar to B. bresslaui, with which it has been confused; however head scalation resembles other species from sandy spots within the Cerrado (B. psamophila and B. oxyrhina). Like in B. psamophila and B. oxyrhina, the shovel-shaped snout of the new species is highly prominent, a typical trait of psammophilous habits in other gymnophthalmids. The examination of specimens of B. bresslaui from several populations within the Cerrado revealed great variation among localities, leading to the reidentification of a specimen from Utiariti, Mato Grosso, previously referred to in the literature as the second record of B. bresslaui, as the recently described B. didactyla, suggesting that cryptic diversity might remain still undiscovered within this genus in the Cerrado. Despite occurring in a relatively open Cerrado, thermal physiology of Bachia geralista sp. nov. restricts its occurrence to shaded microhabitats within this habitat.

  10. Dry Season Impact on Physiological Functioning of Two Tropical Tree Species in the Daintree Rainforest, Northeast Australia

    NASA Astrophysics Data System (ADS)

    Cernusak, L. A.; Dempsey, R.; Cheesman, A.; Meir, P.; Laurance, S.

    2016-12-01

    We measured leaf gas exchange, leaf biochemistry, and stem growth in two tropical tree species in the Daintree rainforest. The site experiences an average dry season length of three months, with global climate change predictions indicating that this could increase. Of the two studied species, Elaeocarpus angustifolius is wide-spread and early-successional, whereas Endiandra microneura is locally endemic and late-successional. Measurements started in 2014 and ended in 2015, thus encompassing the 2014 dry season. Upper canopy foliage was accessed from a 48 m tall canopy crane. Photosynthetic rates were higher during the wet season in Elaeocarpus than in Endiandra, consistent with its pioneering habit. Elaeocarpus showed larger reductions in both photosynthesis and stomatal conductance in response to the dry season than did Endiandra. Dry season depression of photosynthesis was associated with reduced intercellular carbon dioxide concentrations in Endiandra, but not in Elaeocarpus, indicating a role for photo-inhibition in restricting photosynthesis during the dry season in the early successional species, but not in the late successional species. Consistently, Endiandra invested more heavily in photoprotective and anti-oxidative compounds in its upper canopy foliage than did Elaeocarpus. Stem growth rates were four-fold higher in Elaeocarpus than in Endiandra during the wet season, reflecting the successional status of the two species. Stem growth slowed in both species in response to the dry season, and all but ceased by the late dry season. With the onset of the early wet season, stem growth increased markedly, and Elaeocarpus again maintained much faster growth than Endiandra. Overall, our results indicate that at the leaf level, biochemical and physiological processes associated with photosynthesis were more vulnerable to dry season stress in Elaeocarpus than in Endiandra; however, at the whole-plant level, our measurements and the geographic distribution of

  11. Comparative system identification of flower tracking performance in three hawkmoth species reveals adaptations for dim light vision.

    PubMed

    Stöckl, Anna L; Kihlström, Klara; Chandler, Steven; Sponberg, Simon

    2017-04-05

    Flight control in insects is heavily dependent on vision. Thus, in dim light, the decreased reliability of visual signal detection also prompts consequences for insect flight. We have an emerging understanding of the neural mechanisms that different species employ to adapt the visual system to low light. However, much less explored are comparative analyses of how low light affects the flight behaviour of insect species, and the corresponding links between physiological adaptations and behaviour. We investigated whether the flower tracking behaviour of three hawkmoth species with different diel activity patterns revealed luminance-dependent adaptations, using a system identification approach. We found clear luminance-dependent differences in flower tracking in all three species, which were explained by a simple luminance-dependent delay model, which generalized across species. We discuss physiological and anatomical explanations for the variance in tracking responses, which could not be explained by such simple models. Differences between species could not be explained by the simple delay model. However, in several cases, they could be explained through the addition on a second model parameter, a simple scaling term, that captures the responsiveness of each species to flower movements. Thus, we demonstrate here that much of the variance in the luminance-dependent flower tracking responses of hawkmoths with different diel activity patterns can be captured by simple models of neural processing.This article is part of the themed issue 'Vision in dim light'. © 2017 The Author(s).

  12. Genome Comparison of Human and Non-Human Malaria Parasites Reveals Species Subset-Specific Genes Potentially Linked to Human Disease

    PubMed Central

    Frech, Christian; Chen, Nansheng

    2011-01-01

    Genes underlying important phenotypic differences between Plasmodium species, the causative agents of malaria, are frequently found in only a subset of species and cluster at dynamically evolving subtelomeric regions of chromosomes. We hypothesized that chromosome-internal regions of Plasmodium genomes harbour additional species subset-specific genes that underlie differences in human pathogenicity, human-to-human transmissibility, and human virulence. We combined sequence similarity searches with synteny block analyses to identify species subset-specific genes in chromosome-internal regions of six published Plasmodium genomes, including Plasmodium falciparum, Plasmodium vivax, Plasmodium knowlesi, Plasmodium yoelii, Plasmodium berghei, and Plasmodium chabaudi. To improve comparative analysis, we first revised incorrectly annotated gene models using homology-based gene finders and examined putative subset-specific genes within syntenic contexts. Confirmed subset-specific genes were then analyzed for their role in biological pathways and examined for molecular functions using publicly available databases. We identified 16 genes that are well conserved in the three primate parasites but not found in rodent parasites, including three key enzymes of the thiamine (vitamin B1) biosynthesis pathway. Thirteen genes were found to be present in both human parasites but absent in the monkey parasite P. knowlesi, including genes specifically upregulated in sporozoites or gametocytes that could be linked to parasite transmission success between humans. Furthermore, we propose 15 chromosome-internal P. falciparum-specific genes as new candidate genes underlying increased human virulence and detected a currently uncharacterized cluster of P. vivax-specific genes on chromosome 6 likely involved in erythrocyte invasion. In conclusion, Plasmodium species harbour many chromosome-internal differences in the form of protein-coding genes, some of which are potentially linked to human

  13. Differential Growth Responses to Water Balance of Coexisting Deciduous Tree Species Are Linked to Wood Density in a Bolivian Tropical Dry Forest

    PubMed Central

    Mendivelso, Hooz A.; Camarero, J. Julio; Royo Obregón, Oriol; Gutiérrez, Emilia; Toledo, Marisol

    2013-01-01

    A seasonal period of water deficit characterizes tropical dry forests (TDFs). There, sympatric tree species exhibit a diversity of growth rates, functional traits, and responses to drought, suggesting that each species may possess different strategies to grow under different conditions of water availability. The evaluation of the long-term growth responses to changes in the soil water balance should provide an understanding of how and when coexisting tree species respond to water deficit in TDFs. Furthermore, such differential growth responses may be linked to functional traits related to water storage and conductance. We used dendrochronology and climate data to retrospectively assess how the radial growth of seven coexisting deciduous tree species responded to the seasonal soil water balance in a Bolivian TDF. Linear mixed-effects models were used to quantify the relationships between basal area increment and seasonal water balance. We related these relationships with wood density and sapwood production to assess if they affect the growth responses to climate. The growth of all species responded positively to water balance during the wet season, but such responses differed among species as a function of their wood density. For instance, species with a strong growth response to water availability averaged a low wood density which may facilitate the storage of water in the stem. By contrast, species with very dense wood were those whose growth was less sensitive to water availability. Coexisting tree species thus show differential growth responses to changes in soil water balance during the wet season. Our findings also provide a link between wood density, a trait related to the ability of trees to store water in the stem, and wood formation in response to water availability. PMID:24116001

  14. Employee subjective well-being and physiological functioning: An integrative model.

    PubMed

    Kuykendall, Lauren; Tay, Louis

    2015-01-01

    Research shows that worker subjective well-being influences physiological functioning-an early signal of poor health outcomes. While several theoretical perspectives provide insights on this relationship, the literature lacks an integrative framework explaining the relationship. We develop a conceptual model explaining the link between subjective well-being and physiological functioning in the context of work. Integrating positive psychology and occupational stress perspectives, our model explains the relationship between subjective well-being and physiological functioning as a result of the direct influence of subjective well-being on physiological functioning and of their common relationships with work stress and personal resources, both of which are influenced by job conditions.

  15. Employee subjective well-being and physiological functioning: An integrative model

    PubMed Central

    Tay, Louis

    2015-01-01

    Research shows that worker subjective well-being influences physiological functioning—an early signal of poor health outcomes. While several theoretical perspectives provide insights on this relationship, the literature lacks an integrative framework explaining the relationship. We develop a conceptual model explaining the link between subjective well-being and physiological functioning in the context of work. Integrating positive psychology and occupational stress perspectives, our model explains the relationship between subjective well-being and physiological functioning as a result of the direct influence of subjective well-being on physiological functioning and of their common relationships with work stress and personal resources, both of which are influenced by job conditions. PMID:28070359

  16. Epilithic Chamaesiphon (Synechococcales, Cyanobacteria) species in mountain streams of the Alps-interspecific differences in photo-physiological traits.

    PubMed

    Aigner, Siegfried; Herburger, Klaus; Holzinger, Andreas; Karsten, Ulf

    2018-01-01

    Many alpine streams inhabit conspicuous epilithic biofilms on pebbles and rocks that are formed by members of the cyanobacterial genus Chamaesiphon (Synechococcales). In the Austrian Alps, some Chamaesiphon species can even overgrow up to 70% of the surface of river rocks, and hence they must play an important but still unstudied ecological role in the organic matter flux. Since photo-biological traits have not been investigated so far, photosynthetic features, pigments, and UV-sunscreen compounds were studied in three Chamaesiphon morphospecies ( C. geitleri , C. polonicus , C. starmachii ). These species form conspicuously differently colored spots on cobbles and boulders in the alpine streams. While C. polonicus typically forms red crusts on flat pebble conglomerate, C. geitleri and C. starmachii are characterized by dark brown and black biofilms in the field, respectively. Photosynthesis-irradiance (PE) curves indicate that all three Chamaesiphon species have different light requirements for photosynthesis, with C. starmachii and C. polonicus preferring high and low photon fluence rates, respectively, while C. geitleri takes a position in between. This low-light requirement of C. polonicus is also reflected in ca. ten-times lower chlorophyll a , zeaxanthin, and ß-carotene concentrations, as well as in a lack of the UV-sunscreen scytonemin. All Chamaesiphon morphospecies exhibit the mycosporine-like amino acid porphyra-334. The physiological and biochemical data indicate strong intraspecific differences in photosynthetic activity and pigment patterns, which explain well the distinct preferences of the three studied Chamaesiphon morphospecies for sun-exposed or shaded habitats.

  17. A functional-structural model of rice linking quantitative genetic information with morphological development and physiological processes.

    PubMed

    Xu, Lifeng; Henke, Michael; Zhu, Jun; Kurth, Winfried; Buck-Sorlin, Gerhard

    2011-04-01

    Although quantitative trait loci (QTL) analysis of yield-related traits for rice has developed rapidly, crop models using genotype information have been proposed only relatively recently. As a first step towards a generic genotype-phenotype model, we present here a three-dimensional functional-structural plant model (FSPM) of rice, in which some model parameters are controlled by functions describing the effect of main-effect and epistatic QTLs. The model simulates the growth and development of rice based on selected ecophysiological processes, such as photosynthesis (source process) and organ formation, growth and extension (sink processes). It was devised using GroIMP, an interactive modelling platform based on the Relational Growth Grammar formalism (RGG). RGG rules describe the course of organ initiation and extension resulting in final morphology. The link between the phenotype (as represented by the simulated rice plant) and the QTL genotype was implemented via a data interface between the rice FSPM and the QTLNetwork software, which computes predictions of QTLs from map data and measured trait data. Using plant height and grain yield, it is shown how QTL information for a given trait can be used in an FSPM, computing and visualizing the phenotypes of different lines of a mapping population. Furthermore, we demonstrate how modification of a particular trait feeds back on the entire plant phenotype via the physiological processes considered. We linked a rice FSPM to a quantitative genetic model, thereby employing QTL information to refine model parameters and visualizing the dynamics of development of the entire phenotype as a result of ecophysiological processes, including the trait(s) for which genetic information is available. Possibilities for further extension of the model, for example for the purposes of ideotype breeding, are discussed.

  18. A functional–structural model of rice linking quantitative genetic information with morphological development and physiological processes

    PubMed Central

    Xu, Lifeng; Henke, Michael; Zhu, Jun; Kurth, Winfried; Buck-Sorlin, Gerhard

    2011-01-01

    Background and Aims Although quantitative trait loci (QTL) analysis of yield-related traits for rice has developed rapidly, crop models using genotype information have been proposed only relatively recently. As a first step towards a generic genotype–phenotype model, we present here a three-dimensional functional–structural plant model (FSPM) of rice, in which some model parameters are controlled by functions describing the effect of main-effect and epistatic QTLs. Methods The model simulates the growth and development of rice based on selected ecophysiological processes, such as photosynthesis (source process) and organ formation, growth and extension (sink processes). It was devised using GroIMP, an interactive modelling platform based on the Relational Growth Grammar formalism (RGG). RGG rules describe the course of organ initiation and extension resulting in final morphology. The link between the phenotype (as represented by the simulated rice plant) and the QTL genotype was implemented via a data interface between the rice FSPM and the QTLNetwork software, which computes predictions of QTLs from map data and measured trait data. Key Results Using plant height and grain yield, it is shown how QTL information for a given trait can be used in an FSPM, computing and visualizing the phenotypes of different lines of a mapping population. Furthermore, we demonstrate how modification of a particular trait feeds back on the entire plant phenotype via the physiological processes considered. Conclusions We linked a rice FSPM to a quantitative genetic model, thereby employing QTL information to refine model parameters and visualizing the dynamics of development of the entire phenotype as a result of ecophysiological processes, including the trait(s) for which genetic information is available. Possibilities for further extension of the model, for example for the purposes of ideotype breeding, are discussed. PMID:21247905

  19. Genetic and physiological bases for phenological responses to current and predicted climates

    PubMed Central

    Wilczek, A. M.; Burghardt, L. T.; Cobb, A. R.; Cooper, M. D.; Welch, S. M.; Schmitt, J.

    2010-01-01

    We are now reaching the stage at which specific genetic factors with known physiological effects can be tied directly and quantitatively to variation in phenology. With such a mechanistic understanding, scientists can better predict phenological responses to novel seasonal climates. Using the widespread model species Arabidopsis thaliana, we explore how variation in different genetic pathways can be linked to phenology and life-history variation across geographical regions and seasons. We show that the expression of phenological traits including flowering depends critically on the growth season, and we outline an integrated life-history approach to phenology in which the timing of later life-history events can be contingent on the environmental cues regulating earlier life stages. As flowering time in many plants is determined by the integration of multiple environmentally sensitive gene pathways, the novel combinations of important seasonal cues in projected future climates will alter how phenology responds to variation in the flowering time gene network with important consequences for plant life history. We discuss how phenology models in other systems—both natural and agricultural—could employ a similar framework to explore the potential contribution of genetic variation to the physiological integration of cues determining phenology. PMID:20819808

  20. Life-stage-specific physiology defines invasion extent of a riverine fish

    USGS Publications Warehouse

    Lawrence, David J.; Beauchamp, David A.; Olden, Julian D.

    2015-01-01

    Many ecologists have called for mechanism-based investigations to identify the underlying controls on species distributions. Understanding these controls can be especially useful to construct robust predictions of how a species range may change in response to climate change or the extent to which a non-native species may spread in novel environments.Here, we link spatially intensive observations with mechanistic models to illustrate how physiology determines the upstream extent of the aquatic ectotherm smallmouth bass (Micropterus dolomieu) in two headwater rivers.Our results demonstrate that as temperatures become increasingly cold across a downstream to upstream gradient, food consumption in age 0 bass becomes increasingly constrained, and as a result, these fish become growth limited. Sufficient first summer growth of age 0 bass is essential for overwinter survival because young bass must persist from energy reserves accumulated during the summer, and those reserves are determined by body size.Our field data reveal the upstream extent of adult bass reproduction corresponds to a point in the downstream/upstream gradient where cold temperatures impair growth opportunities in young bass. This pattern was repeated in both study streams and explained why bass positioned nests twice as far upstream in the warm compared to the cold stream in the same basin. Placement of spawning nests by adult bass is likely subject to strong evolutionary selection in temperate systems: if bass spawn too far upstream, their young are unlikely to grow large enough to survive the winter. Consumption and growth in older bass (age 3–4) was far less sensitive to temperature. Based on these data, we suggest that temperature-sensitive age 0 bass constrain the upstream distribution limits of bass within temperate streams.In this study, we investigated how temperature-dependent physiology changed through the life history of a species and, in doing so, identified a climate-sensitive life

  1. The effect of the breeding season, cryopreservation and physiological extender on selected sperm and semen parameters of four ferret species: implications for captive breeding in the endangered black-footed ferret.

    PubMed

    van der Horst, G; Kitchin, R M; van der Horst, M; Atherton, R W

    2009-01-01

    In the present investigation, comparative baseline information on selected sperm characteristics of ejaculate spermatozoa of the domestic (Mustela putorius furo), fitch (Mustela sp.) and black-footed ferrets (Mustela nigripes) and the Siberian polecat (Mustela eversmanni) are presented. The main emphasis was to establish differences and similarities among these species in relation to semen and sperm quality during the breeding season, in cryopreservation success and in supporting sperm motility in different extenders or physiological media. The results confirm that most sperm morphology abnormalities were evident during the beginning of the breeding cycle in all four species. No significant interspecies differences were apparent in the sperm attributes examined, for all sampling months during the breeding season. Moreover, all species exhibited comparable patterns of reproductive seasonality. Cryopreservation suppressed sperm characteristics equally in all species studied. Ejaculate spermatozoa of closely related ferret species shared many similar motion characteristics using computer-aided sperm motility analysis. These results suggest that the basic sperm physiology of the ferret species under examination is very similar. Disparate to the interspecies comparisons, there were significant differences for most sperm motion parameters when spermatozoa of any of the ferrets were compared in different extenders. Assisted reproductive technologies developed for use in domestic ferret, fitch ferret or Siberian polecat may be successfully applied to captive breeding of the black-footed ferret using semen during any of the functional breeding months.

  2. Hydraulic lift and tolerance to salinity of semiarid species: consequences for species interactions.

    PubMed

    Armas, Cristina; Padilla, Francisco M; Pugnaire, Francisco I; Jackson, Robert B

    2010-01-01

    The different abilities of plant species to use ephemeral or permanent water sources strongly affect physiological performance and species coexistence in water-limited ecosystems. In addition to withstanding drought, plants in coastal habitats often have to withstand highly saline soils, an additional ecological stress. Here we tested whether observed competitive abilities and C-water relations of two interacting shrub species from an arid coastal system were more related to differences in root architecture or salinity tolerance. We explored water sources of interacting Juniperus phoenicea Guss. and Pistacia lentiscus L. plants by conducting physiology measurements, including water relations, CO2 exchange, photochemical efficiency, sap osmolality, and water and C isotopes. We also conducted parallel soil analyses that included electrical conductivity, humidity, and water isotopes. During drought, Pistacia shrubs relied primarily on permanent salty groundwater, while isolated Juniperus plants took up the scarce and relatively fresh water stored in upper soil layers. As drought progressed further, the physiological activity of Juniperus plants nearly stopped while Pistacia plants were only slightly affected. Juniperus plants growing with Pistacia had stem-water isotopes that matched Pistacia, unlike values for isolated Juniperus plants. This result suggests that Pistacia shrubs supplied water to nearby Juniperus plants through hydraulic lift. This lifted water, however, did not appear to benefit Juniperus plants, as their physiological performance with co-occurring Pistacia plants was poor, including lower water potentials and rates of photosynthesis than isolated plants. Juniperus was more salt sensitive than Pistacia, which withstood salinity levels similar to that of groundwater. Overall, the different abilities of the two species to use salty water appear to drive the outcome of their interaction, resulting in asymmetric competition where Juniperus is negatively

  3. Digestive Physiology of Octopus maya and O. mimus: Temporality of Digestion and Assimilation Processes

    PubMed Central

    Gallardo, Pedro; Olivares, Alberto; Martínez-Yáñez, Rosario; Caamal-Monsreal, Claudia; Domingues, Pedro M.; Mascaró, Maite; Sánchez, Ariadna; Pascual, Cristina; Rosas, Carlos

    2017-01-01

    Digestive physiology is one of the bottlenecks of octopus aquaculture. Although, there are successful experimentally formulated feeds, knowledge of the digestive physiology of cephalopods is fragmented, and focused mainly on Octopus vulgaris. Considering that the digestive physiology could vary in tropical and sub-tropical species through temperature modulations of the digestive dynamics and nutritional requirements of different organisms, the present review was focused on the digestive physiology timing of Octopus maya and Octopus mimus, two promising aquaculture species living in tropical (22–30°C) and sub-tropical (15–24°C) ecosystems, respectively. We provide a detailed description of how soluble and complex nutrients are digested, absorbed, and assimilated in these species, describing the digestive process and providing insight into how the environment can modulate the digestion and final use of nutrients for these and presumably other octopus species. To date, research on these octopus species has demonstrated that soluble protein and other nutrients flow through the digestive tract to the digestive gland in a similar manner in both species. However, differences in the use of nutrients were noted: in O. mimus, lipids were mobilized faster than protein, while in O. maya, the inverse process was observed, suggesting that lipid mobilization in species that live in relatively colder environments occurs differently to those in tropical ecosystems. Those differences are related to the particular adaptations of animals to their habitat, and indicate that this knowledge is important when formulating feed for octopus species. PMID:28620313

  4. Effects of historically familiar and novel predator odors on the physiology of an introduced prey.

    PubMed

    Mella, Valentina S A; Cooper, Christine E; Davies, Stephen J J F

    2016-02-01

    Predator odors can elicit fear responses in prey and predator odor recognition is generally associated with physiological responses. Prey species are often more likely to respond to the odor of familiar rather than alien predators. However, predator naïvety in an introduced prey species has rarely been investigated. We examined the physiological response, as shown by changes in ventilatory variables, of an introduced terrestrial herbivore, the European rabbit Oryctolagus cuniculus , in Australia, to the odor of potential predators and to control odors (distilled water and horse), to explore if responses were limited to historical (cat and fox) predators, or extended to historically novel predators (snake and quoll). All odors except distilled water elicited a response, with rabbits showing long-term higher respiratory frequencies and lower tidal volumes after introduction of the odors, indicating an increase in alertness. However, the intensity of the rabbits' reaction could not be directly linked to any pattern of response with respect to the history of predator-prey relationships. Rabbits exhibited significantly stronger reactions in response to both cat and quoll odors than they did to distilled water, but responses to horse, fox, and snake odor were similar to that of water. Our results show that the introduced rabbit can respond to both historical and novel predators in Australia, and suggest that shared evolutionary history is not necessarily a prerequisite to predator odor recognition.

  5. Anatomy and Physiology of the Speech Mechanism.

    ERIC Educational Resources Information Center

    Sheets, Boyd V.

    This monograph on the anatomical and physiological aspects of the speech mechanism stresses the importance of a general understanding of the process of verbal communication. Contents include "Positions of the Body,""Basic Concepts Linked with the Speech Mechanism,""The Nervous System,""The Respiratory System--Sound-Power Source,""The…

  6. Fruit Calcium: Transport and Physiology

    PubMed Central

    Hocking, Bradleigh; Tyerman, Stephen D.; Burton, Rachel A.; Gilliham, Matthew

    2016-01-01

    Calcium has well-documented roles in plant signaling, water relations and cell wall interactions. Significant research into how calcium impacts these individual processes in various tissues has been carried out; however, the influence of calcium on fruit ripening has not been thoroughly explored. Here, we review the current state of knowledge on how calcium may impact the development, physical traits and disease susceptibility of fruit through facilitating developmental and stress response signaling, stabilizing membranes, influencing water relations and modifying cell wall properties through cross-linking of de-esterified pectins. We explore the involvement of calcium in hormone signaling integral to the physiological mechanisms behind common disorders that have been associated with fruit calcium deficiency (e.g., blossom end rot in tomatoes or bitter pit in apples). This review works toward an improved understanding of how the many roles of calcium interact to influence fruit ripening, and proposes future research directions to fill knowledge gaps. Specifically, we focus mostly on grapes and present a model that integrates existing knowledge around these various functions of calcium in fruit, which provides a basis for understanding the physiological impacts of sub-optimal calcium nutrition in grapes. Calcium accumulation and distribution in fruit is shown to be highly dependent on water delivery and cell wall interactions in the apoplasm. Localized calcium deficiencies observed in particular species or varieties can result from differences in xylem morphology, fruit water relations and pectin composition, and can cause leaky membranes, irregular cell wall softening, impaired hormonal signaling and aberrant fruit development. We propose that the role of apoplasmic calcium-pectin crosslinking, particularly in the xylem, is an understudied area that may have a key influence on fruit water relations. Furthermore, we believe that improved knowledge of the calcium

  7. A Complex Genetic Basis to X-Linked Hybrid Male Sterility Between Two Species of House Mice

    PubMed Central

    Good, Jeffrey M.; Dean, Matthew D.; Nachman, Michael W.

    2008-01-01

    The X chromosome plays a central role in the evolution of reproductive isolation, but few studies have examined the genetic basis of X-linked incompatibilities during the early stages of speciation. We report the results of a large experiment focused on the reciprocal introgression of the X chromosome between two species of house mice, Mus musculus and M. domesticus. Introgression of the M. musculus X chromosome into a wild-derived M. domesticus genetic background produced male-limited sterility, qualitatively consistent with previous experiments using classic inbred strains to represent M. domesticus. The genetic basis of sterility involved a minimum of four X-linked factors. The phenotypic effects of major sterility QTL were largely additive and resulted in complete sterility when combined. No sterility factors were uncovered on the M. domesticus X chromosome. Overall, these results revealed a complex and asymmetric genetic basis to X-linked hybrid male sterility during the early stages of speciation in mice. Combined with data from previous studies, we identify one relatively narrow interval on the M. musculus X chromosome involved in hybrid male sterility. Only a handful of spermatogenic genes are within this region, including one of the most rapidly evolving genes on the mouse X chromosome. PMID:18689897

  8. A complex genetic basis to X-linked hybrid male sterility between two species of house mice.

    PubMed

    Good, Jeffrey M; Dean, Matthew D; Nachman, Michael W

    2008-08-01

    The X chromosome plays a central role in the evolution of reproductive isolation, but few studies have examined the genetic basis of X-linked incompatibilities during the early stages of speciation. We report the results of a large experiment focused on the reciprocal introgression of the X chromosome between two species of house mice, Mus musculus and M. domesticus. Introgression of the M. musculus X chromosome into a wild-derived M. domesticus genetic background produced male-limited sterility, qualitatively consistent with previous experiments using classic inbred strains to represent M. domesticus. The genetic basis of sterility involved a minimum of four X-linked factors. The phenotypic effects of major sterility QTL were largely additive and resulted in complete sterility when combined. No sterility factors were uncovered on the M. domesticus X chromosome. Overall, these results revealed a complex and asymmetric genetic basis to X-linked hybrid male sterility during the early stages of speciation in mice. Combined with data from previous studies, we identify one relatively narrow interval on the M. musculus X chromosome involved in hybrid male sterility. Only a handful of spermatogenic genes are within this region, including one of the most rapidly evolving genes on the mouse X chromosome.

  9. A molecular signaling approach to linking intraspecific variation and macro-evolutionary patterns.

    PubMed

    Swanson, Eli M; Snell-Rood, Emilie C

    2014-11-01

    Macro-evolutionary comparisons are a valued tool in evolutionary biology. Nevertheless, our understanding of how systems involved in molecular signaling change in concert with phenotypic diversification has lagged. We argue that integrating our understanding of the evolution of molecular signaling systems with phylogenetic comparative methods is an important step toward understanding the processes linking variation among individuals with variation among species. Focusing mostly on the endocrine system, we discuss how the complexity and mechanistic nature of molecular signaling systems may influence the application and interpretation of macro-evolutionary comparisons. We also detail five hypotheses concerning the role that physiological mechanisms can play in shaping macro-evolutionary patterns, and discuss ways in which these hypotheses could influence phenotypic diversification. Finally, we review a series of tools able to analyze the complexity of physiological systems and the way they change in concert with the phenotypes for which they coordinate development. © The Author 2014. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  10. Landscape and plant physiological controls on water dynamics within a watershed

    NASA Astrophysics Data System (ADS)

    Hu, J.; Looker, N. T.; Martin, J. T.; Hoylman, Z. H.; Jencso, K. G.

    2014-12-01

    Across the Western U.S., declining snowpacks have resulted in increased water limitation, leading to reduced productivity in high elevation forests. While our current understanding of how forests respond to climate change is typically focused on measuring/modeling the physiological responses and climate feedbacks, our study aims to combine physiology with hydrology to examine how landscape topography modulates the sensitivity of forests to climate. In a forested watershed in Western Montana, we linked climate variability to the physical watershed characteristics and the physiological response of vegetation to examine forest transpiration and productivity rates. Across the entire watershed, we found a strong relationship between productivity and the topographic wetness index, a proxy for soil moisture storage. However, this relationship was highly dependent on the intensity of solar radiation, suggesting that at high elevations productivity was limited by temperature, while at low elevations productivity was limited by moisture. In order to identify the mechanisms responsible for this relationship, we then examined how different coniferous species respond to changing environmental and hydrologic regimes. We first examined transpiration and productivity rates at the hillslope scale at four plots, ranging in elevation and aspect across the watershed. We found trees growing in the hollows had higher transpiration and productivity rates than trees growing in the side slope, but that these differences were more pronounced at lower elevations. We then used oxygen isotope to examine water source use by different species across the watershed. We found that trees growing in the hollows used snowmelt for a longer period. This was most likely due to upslope subsidies of snowmelt water to the hollow areas. However, we found that trees growing at lower elevations used proportionally more snowmelt than trees at the higher elevations. This was most likely due to the trees at lower

  11. Physiological integration enhanced the tolerance of Cynodon dactylon to flooding.

    PubMed

    Li, Z J; Fan, D Y; Chen, F Q; Yuan, Q Y; Chow, W S; Xie, Z Q

    2015-03-01

    Many flooding-tolerant species are clonal plants; however, the effects of physiological integration on plant responses to flooding have received limited attention. We hypothesise that flooding can trigger changes in metabolism of carbohydrates and ROS (reactive oxygen species) in clonal plants, and that physiological integration can ameliorate the adverse effects of stress, subsequently restoring the growth of flooded ramets. In the present study, we conducted a factorial experiment combining flooding to apical ramets and stolon severing (preventing physiological integration) between apical and basal ramets of Cynodon dactylon, which is a stoloniferous perennial grass with considerable flooding tolerance. Flooding-induced responses including decreased root biomass, accumulation of soluble sugar and starch, as well as increased activity of superoxide dismutase (SOD) and ascorbate peroxidase (APX) in apical ramets. Physiological integration relieved growth inhibition, carbohydrate accumulation and induction of antioxidant enzyme activity in stressed ramets, as expected, without any observable cost in unstressed ramets. We speculate that relief of flooding stress in clonal plants may rely on oxidising power and electron acceptors transferred between ramets through physiological integration. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  12. Invasive Acer negundo outperforms native species in non-limiting resource environments due to its higher phenotypic plasticity

    PubMed Central

    2011-01-01

    Background To identify the determinants of invasiveness, comparisons of traits of invasive and native species are commonly performed. Invasiveness is generally linked to higher values of reproductive, physiological and growth-related traits of the invasives relative to the natives in the introduced range. Phenotypic plasticity of these traits has also been cited to increase the success of invasive species but has been little studied in invasive tree species. In a greenhouse experiment, we compared ecophysiological traits between an invasive species to Europe, Acer negundo, and early- and late-successional co-occurring native species, under different light, nutrient availability and disturbance regimes. We also compared species of the same species groups in situ, in riparian forests. Results Under non-limiting resources, A. negundo seedlings showed higher growth rates than the native species. However, A. negundo displayed equivalent or lower photosynthetic capacities and nitrogen content per unit leaf area compared to the native species; these findings were observed both on the seedlings in the greenhouse experiment and on adult trees in situ. These physiological traits were mostly conservative along the different light, nutrient and disturbance environments. Overall, under non-limiting light and nutrient conditions, specific leaf area and total leaf area of A. negundo were substantially larger. The invasive species presented a higher plasticity in allocation to foliage and therefore in growth with increasing nutrient and light availability relative to the native species. Conclusions The higher level of plasticity of the invasive species in foliage allocation in response to light and nutrient availability induced a better growth in non-limiting resource environments. These results give us more elements on the invasiveness of A. negundo and suggest that such behaviour could explain the ability of A. negundo to outperform native tree species, contributes to its spread

  13. Physiology modulates social flexibility and collective behaviour in equids and other large ungulates.

    PubMed

    Gersick, Andrew S; Rubenstein, Daniel I

    2017-08-19

    Though morphologically very similar, equids across the extant species occupy ecological niches that are surprisingly non-overlapping. Occupancy of these distinct niches appears related to subtle physiological and behavioural adaptations which, in turn, correspond to significant differences in the social behaviours and emergent social systems characterizing the different species. Although instances of intraspecific behavioural variation in equids demonstrate that the same body plan can support a range of social structures, each of these morphologically similar species generally shows robust fidelity to its evolved social system. The pattern suggests a subtle relationship between physiological phenotypes and behavioural flexibility. While environmental conditions can vary widely within relatively short temporal or spatial scales, physiological changes and changes to the behaviours that regulate physiological processes, are constrained to longer cycles of adaptation. Physiology is then the limiting variable in the interaction between ecological variation and behavioural and socio-structural flexibility. Behavioural and socio-structural flexibility, in turn, will generate important feedbacks that will govern physiological function, thus creating a coupled web of interactions that can lead to changes in individual and collective behaviour. Longitudinal studies of equid and other large-bodied ungulate populations under environmental stress, such as those discussed here, may offer the best opportunities for researchers to examine, in real time, the interplay between individual behavioural plasticity, socio-structural flexibility, and the physiological and genetic changes that together produce adaptive change.This article is part of the themed issue 'Physiological determinants of social behaviour in animals'. © 2017 The Author(s).

  14. Linking Resilience of Aquatic Species to Watershed Condition

    NASA Astrophysics Data System (ADS)

    Flitcroft, R. L.

    2017-12-01

    Watershed condition means different things to different people. From the perspective of aquatic ecology, watershed condition may be interpreted to mean the capacity of a watershed to support life history diversity of native species. Diversity in expression of life history is thought to confer resilience allowing portions of the broader population to survive stressful conditions. Different species have different life history strategies, many of which were developed through adaptation to regional or local environmental conditions and natural disturbance regimes. By reviewing adaptation strategies for species of interest at regional scales, characteristics of watersheds that confer resilience may be determined. Such assessments must be completed at multiple levels of spatial organization (i.e. sub-watershed, watershed, region) allowing assessments to be inferred across broad spatial extents. In a project on the Wenatchee River watershed, we guided models of wildfire effects on bull trout and spring Chinook from a meta-population perspective to determine risks to survival at local and population scales over multiple extents of spatial organization. In other work in the Oregon Coast Range, we found that historic landslides continue to exert habitat-forming pressure at local scales, leading to patchiness in distribution of habitats for different life stages of coho salmon. Further, climate change work in Oregon estuaries identified different vulnerabilities in terms of juvenile rearing habitat depending on the species of interest and the intensity of future changes in climate. All of these studies point to the importance of considering physical conditions in watersheds at multiple spatial extents from the perspective of native aquatic species in order to understand risks to long-term survival. The broader implications of watershed condition, from this perspective, is the determination of physical attributes that confer resilience to native biota. This may require

  15. Mammalian HspB1 (Hsp27) is a molecular sensor linked to the physiology and environment of the cell.

    PubMed

    Arrigo, André-Patrick

    2017-07-01

    Constitutively expressed small heat shock protein HspB1 regulates many fundamental cellular processes and plays major roles in many human pathological diseases. In that regard, this chaperone has a huge number of apparently unrelated functions that appear linked to its ability to recognize many client polypeptides that are subsequently modified in their activity and/or half-life. A major parameter to understand how HspB1 is dedicated to interact with particular clients in defined cellular conditions relates to its complex oligomerization and phosphorylation properties. Indeed, HspB1 structural organization displays dynamic and complex rearrangements in response to changes in the cellular environment or when the cell physiology is modified. These structural modifications probably reflect the formation of structural platforms aimed at recognizing specific client polypeptides. Here, I have reviewed data from the literature and re-analyzed my own studies to describe and discuss these fascinating changes in HspB1 structural organization.

  16. Conservation physiology in practice: how physiological knowledge has improved our ability to sustainably manage Pacific salmon during up-river migration.

    PubMed

    Cooke, Steven J; Hinch, Scott G; Donaldson, Michael R; Clark, Timothy D; Eliason, Erika J; Crossin, Glenn T; Raby, Graham D; Jeffries, Ken M; Lapointe, Mike; Miller, Kristi; Patterson, David A; Farrell, Anthony P

    2012-06-19

    Despite growing interest in conservation physiology, practical examples of how physiology has helped to understand or to solve conservation problems remain scarce. Over the past decade, an interdisciplinary research team has used a conservation physiology approach to address topical conservation concerns for Pacific salmon. Here, we review how novel applications of tools such as physiological telemetry, functional genomics and laboratory experiments on cardiorespiratory physiology have shed light on the effect of fisheries capture and release, disease and individual condition, and stock-specific consequences of warming river temperatures, respectively, and discuss how these findings have or have not benefited Pacific salmon management. Overall, physiological tools have provided remarkable insights into the effects of fisheries capture and have helped to enhance techniques for facilitating recovery from fisheries capture. Stock-specific cardiorespiratory thresholds for thermal tolerances have been identified for sockeye salmon and can be used by managers to better predict migration success, representing a rare example that links a physiological scope to fitness in the wild population. Functional genomics approaches have identified physiological signatures predictive of individual migration mortality. Although fisheries managers are primarily concerned with population-level processes, understanding the causes of en route mortality provides a mechanistic explanation and can be used to refine management models. We discuss the challenges that we have overcome, as well as those that we continue to face, in making conservation physiology relevant to managers of Pacific salmon.

  17. Conservation physiology in practice: how physiological knowledge has improved our ability to sustainably manage Pacific salmon during up-river migration

    PubMed Central

    Cooke, Steven J.; Hinch, Scott G.; Donaldson, Michael R.; Clark, Timothy D.; Eliason, Erika J.; Crossin, Glenn T.; Raby, Graham D.; Jeffries, Ken M.; Lapointe, Mike; Miller, Kristi; Patterson, David A.; Farrell, Anthony P.

    2012-01-01

    Despite growing interest in conservation physiology, practical examples of how physiology has helped to understand or to solve conservation problems remain scarce. Over the past decade, an interdisciplinary research team has used a conservation physiology approach to address topical conservation concerns for Pacific salmon. Here, we review how novel applications of tools such as physiological telemetry, functional genomics and laboratory experiments on cardiorespiratory physiology have shed light on the effect of fisheries capture and release, disease and individual condition, and stock-specific consequences of warming river temperatures, respectively, and discuss how these findings have or have not benefited Pacific salmon management. Overall, physiological tools have provided remarkable insights into the effects of fisheries capture and have helped to enhance techniques for facilitating recovery from fisheries capture. Stock-specific cardiorespiratory thresholds for thermal tolerances have been identified for sockeye salmon and can be used by managers to better predict migration success, representing a rare example that links a physiological scope to fitness in the wild population. Functional genomics approaches have identified physiological signatures predictive of individual migration mortality. Although fisheries managers are primarily concerned with population-level processes, understanding the causes of en route mortality provides a mechanistic explanation and can be used to refine management models. We discuss the challenges that we have overcome, as well as those that we continue to face, in making conservation physiology relevant to managers of Pacific salmon. PMID:22566681

  18. Species-specific physiological response by the cold-water corals Lophelia pertusa and Madrepora oculata to variations within their natural temperature range

    NASA Astrophysics Data System (ADS)

    Naumann, Malik S.; Orejas, Covadonga; Ferrier-Pagès, Christine

    2014-01-01

    The scleractinian cold-water corals (CWC) Lophelia pertusa and Madrepora oculata represent two major deep-sea reef-forming species that act as key ecosystem engineers over a wide temperature range, extending from the northern Atlantic (ca. 5-9 °C) to the Mediterranean Sea (ca. 11-13 °C). Recent research suggests that environmental parameters, such as food supply, settling substrate availability or aragonite saturation state may represent important precursors controlling habitat suitability for CWC. However, the effect of one principal environmental factor, temperature, on CWC key physiological processes is still unknown. In order to evaluate this effect on calcification, respiration, and dissolved organic carbon (DOC) net flux, colonies of Mediterranean L. pertusa and M. oculata were acclimated in aquaria to three temperatures (12, 9 and 6 °C), by consecutive decrements of 1 month duration. L. pertusa and M. oculata maintained at Mediterranean control conditions (i.e. 12 °C) displayed constant rates, on average respiring 4.8 and 4.0 μmol O2 cm-2 coral surface area d-1, calcifying 22.3 and 12.3 μmol CaCO3 g-1 skeletal dry weight d-1 and net releasing 2.6 and 3.1 μmol DOC cm-2 coral surface area d-1, respectively. Respiration of L. pertusa was not affected by lowered temperatures, while M. oculata respiration declined significantly (by 48%) when temperature decreased to 9 °C and 6 °C relative to controls. L. pertusa calcification at 9 °C was similar to controls, but decreased significantly (by 58%) at 6 °C. For M. oculata, calcification declined by 41% at 9 °C and by 69% at 6 °C. DOC net flux was similar throughout the experiment for both CWC. These findings reveal species-specific physiological responses by CWC within their natural temperature range. L. pertusa shows thermal acclimation in respiration and calcification, while these mechanisms appear largely absent in M. oculata. Conclusively, species-specific thermal acclimation may significantly affect

  19. Physiological Response and Habituation of Endangered Species to Military Training Activities

    DTIC Science & Technology

    2009-11-01

    Wasser. 2008. Long-term impacts of poaching on relatedness, stress physiology, and reproductive output of adult female African elephants . Conservation...Statistical analyses................................................................................................................ 19 Study 6: Impact of...Study 6: Impact of radio transmitters on northern cardinal parental investment and productivity

  20. Studying the Physiology of Tadpoles through their Naturally Transparent Abdomen Walls

    NASA Astrophysics Data System (ADS)

    Naitoh, T.; Yamashita, M.; Wassersug, R.

    Because their development is external and they grow rapidly, anurans (frogs and toads) have been important model species in studies of how spaceflight affects vertebrate development. However the long term effects of spaceflight on post embryonic stages have barely been studied in these, or for that matter, any other vertebrate species. Tadpoles of certain species have naturally transparent skin covering a large portion of their ventral abdomen wall. Consequently viscera and visceral movements can be observed through this window without any invasive treatment to the animals. Respiration rate (as measured by buccal floor movements), heart rate, and gut motility are all indices of physiological state that can be observed in unconstrained larvae of these particular anuran species. We are using changes in these physiological variables to study the responses of tadpoles to changes in their external environment. Our study of the physiological responses of these tadpoles to microgravity has been selected as a candidate spaceflight experiment (to be housed in the Canadian Aquatic Research Facility). Ground-based studies with these same larvae are currently underway. Those experiments make use of stepwise changes in temperature as a stimulus to document the effect of temperature on intestinal motility in tadpoles. The scope of our studies on gravitational physiology and key issues in post- embryonic development of anurans are the focus of our presentation. This research is a prelude to raising a vertebrate through a complete life cycle in the space environment.

  1. Physiological Limits along an Elevational Gradient in a Radiation of Montane Ground Beetles

    PubMed Central

    Slatyer, Rachel A.; Schoville, Sean D.

    2016-01-01

    A central challenge in ecology and biogeography is to determine the extent to which physiological constraints govern the geographic ranges of species along environmental gradients. This study tests the hypothesis that temperature and desiccation tolerance are associated with the elevational ranges of 12 ground beetle species (genus Nebria) occurring on Mt. Rainier, Washington, U.S.A. Species from higher elevations did not have greater cold tolerance limits than lower-elevation species (all species ranged from -3.5 to -4.1°C), despite a steep decline in minimum temperature with elevation. Although heat tolerance limits varied among species (from 32.0 to 37.0°C), this variation was not generally associated with the relative elevational range of a species. Temperature gradients and acute thermal tolerance do not support the hypothesis that physiological constraints drive species turnover with elevation. Measurements of intraspecific variation in thermal tolerance limits were not significant for individuals taken at different elevations on Mt. Rainier, or from other mountains in Washington and Oregon. Desiccation resistance was also not associated with a species’ elevational distribution. Our combined results contrast with previously-detected latitudinal gradients in acute physiological limits among insects and suggest that other processes such as chronic thermal stress or biotic interactions might be more important in constraining elevational distributions in this system. PMID:27043311

  2. Plasticity in seedling morphology, biomass allocation and physiology among ten temperate tree species in response to shade is related to shade tolerance and not leaf habit.

    PubMed

    Chmura, D J; Modrzyński, J; Chmielarz, P; Tjoelker, M G

    2017-03-01

    Mechanisms of shade tolerance in tree seedlings, and thus growth in shade, may differ by leaf habit and vary with ontogeny following seed germination. To examine early responses of seedlings to shade in relation to morphological, physiological and biomass allocation traits, we compared seedlings of 10 temperate species, varying in their leaf habit (broadleaved versus needle-leaved) and observed tolerance to shade, when growing in two contrasting light treatments - open (about 20% of full sunlight) and shade (about 5% of full sunlight). We analyzed biomass allocation and its response to shade using allometric relationships. We also measured leaf gas exchange rates and leaf N in the two light treatments. Compared to the open treatment, shading significantly increased traits typically associated with high relative growth rate (RGR) - leaf area ratio (LAR), specific leaf area (SLA), and allocation of biomass into leaves, and reduced seedling mass and allocation to roots, and net assimilation rate (NAR). Interestingly, RGR was not affected by light treatment, likely because of morphological and physiological adjustments in shaded plants that offset reductions of in situ net assimilation of carbon in shade. Leaf area-based rates of light-saturated leaf gas exchange differed among species groups, but not between light treatments, as leaf N concentration increased in concert with increased SLA in shade. We found little evidence to support the hypothesis of a increased plasticity of broadleaved species compared to needle-leaved conifers in response to shade. However, an expectation of higher plasticity in shade-intolerant species than in shade-tolerant ones, and in leaf and plant morphology than in biomass allocation was supported across species of contrasting leaf habit. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.

  3. Evolutionary dynamics of emblematic Araucaria species (Araucariaceae) in New Caledonia: nuclear and chloroplast markers suggest recent diversification, introgression, and a tight link between genetics and geography within species.

    PubMed

    Gaudeul, Myriam; Gardner, Martin F; Thomas, Philip; Ennos, Richard A; Hollingsworth, Pete M

    2014-09-05

    New Caledonia harbours a highly diverse and endemic flora, and 13 (out of the 19 worldwide) species of Araucaria are endemic to this territory. Their phylogenetic relationships remain largely unresolved. Using nuclear microsatellites and chloroplast DNA sequencing, we focused on five closely related Araucaria species to investigate among-species relationships and the distribution of within-species genetic diversity across New Caledonia. The species could be clearly distinguished here, except A. montana and A. laubenfelsii that were not differentiated and, at most, form a genetic cline. Given their apparent morphological and ecological similarity, we suggested that these two species may be considered as a single evolutionary unit. We observed cases of nuclear admixture and incongruence between nuclear and chloroplast data, probably explained by introgression and shared ancestral polymorphism. Ancient hybridization was evidenced between A. biramulata and A. laubenfelsii in Mt Do, and is strongly suspected between A. biramulata and A. rulei in Mt Tonta. In both cases, extensive asymmetrical backcrossing eliminated the influence of one parent in the nuclear DNA composition. Shared ancestral polymorphism was also observed for cpDNA, suggesting that species diverged recently, have large effective sizes and/or that cpDNA experienced slow rates of molecular evolution. Within-species genetic structure was pronounced, probably because of low gene flow and significant inbreeding, and appeared clearly influenced by geography. This may be due to survival in distinct refugia during Quaternary climatic oscillations. The study species probably diverged recently and/or are characterized by a slow rate of cpDNA sequence evolution, and introgression is strongly suspected. Within-species genetic structure is tightly linked with geography. We underline the conservation implications of our results, and highlight several perspectives.

  4. Assessment of filtration efficiency and physiological responses of selected plant species to indoor air pollutants (toluene and 2-ethylhexanol) under chamber conditions.

    PubMed

    Hörmann, Vanessa; Brenske, Klaus-Reinhard; Ulrichs, Christian

    2018-01-01

    Three common plant species (Dieffenbachia maculata, Spathiphyllum wallisii, and Asparagus densiflorus) were tested against their capacity to remove the air pollutants toluene (20.0 mg m -3 ) and 2-ethylhexanol (14.6 mg m -3 ) under light or under dark in chamber experiments of 48-h duration. Results revealed only limited pollutant filtration capabilities and indicate that aerial plant parts of the tested species are only of limited value for indoor air quality improvement. The removal rate constant ranged for toluene from 3.4 to 5.7 L h -1  m -2 leaf area with no significant differences between plant species or light conditions (light/dark). The values for 2-ethylhexanol were somewhat lower, fluctuating around 2 L h -1  m -2 leaf area for all plant species tested, whereas differences between light and dark were observed for two of the three species. In addition to pollutant removal, CO 2 fixation/respiration and transpiration as well as quantum yield were evaluated. These physiological characteristics seem to have no major impact on the VOC removal rate constant. Exposure to toluene or 2-ethylhexanol revealed no or only minor effects on D. maculata and S. wallisii. In contrast, a decrease in quantum yield and CO 2 fixation was observed for A. densiflorus when exposed to 2-ethylhexanol or toluene under light, indicating phytotoxic effects in this species.

  5. Conservation Physiology and Conservation Pathogens: White-Nose Syndrome and Integrative Biology for Host-Pathogen Systems.

    PubMed

    Willis, Craig K R

    2015-10-01

    Conservation physiology aims to apply an understanding of physiological mechanisms to management of imperiled species, populations, or ecosystems. One challenge for physiologists hoping to apply their expertise to conservation is connecting the mechanisms we study, often in the laboratory, with the vital rates of populations in the wild. There is growing appreciation that infectious pathogens can threaten populations and species, and represent an important issue for conservation. Conservation physiology has much to offer in terms of addressing the threat posed to some host species by infectious pathogens. At the same time, the well-developed theoretical framework of disease ecology could provide a model to help advance the application of physiology to a range of other conservation issues. Here, I use white-nose syndrome (WNS) in hibernating North American bats as an example of a conservation problem for which integrative physiological research has been a critical part of research and management. The response to WNS highlights the importance of a well-developed theoretical framework for the application of conservation physiology to a particular threat. I review what is known about physiological mechanisms associated with mortality from WNS and emphasize the value of combining a strong theoretical background with integrative physiological studies in order to connect physiological mechanisms with population processes and thereby maximize the potential benefits of conservation physiology. © The Author 2015. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  6. Estrogens in Male Physiology.

    PubMed

    Cooke, Paul S; Nanjappa, Manjunatha K; Ko, CheMyong; Prins, Gail S; Hess, Rex A

    2017-07-01

    Estrogens have historically been associated with female reproduction, but work over the last two decades established that estrogens and their main nuclear receptors (ESR1 and ESR2) and G protein-coupled estrogen receptor (GPER) also regulate male reproductive and nonreproductive organs. 17β-Estradiol (E2) is measureable in blood of men and males of other species, but in rete testis fluids, E2 reaches concentrations normally found only in females and in some species nanomolar concentrations of estrone sulfate are found in semen. Aromatase, which converts androgens to estrogens, is expressed in Leydig cells, seminiferous epithelium, and other male organs. Early studies showed E2 binding in numerous male tissues, and ESR1 and ESR2 each show unique distributions and actions in males. Exogenous estrogen treatment produced male reproductive pathologies in laboratory animals and men, especially during development, and studies with transgenic mice with compromised estrogen signaling demonstrated an E2 role in normal male physiology. Efferent ductules and epididymal functions are dependent on estrogen signaling through ESR1, whose loss impaired ion transport and water reabsorption, resulting in abnormal sperm. Loss of ESR1 or aromatase also produces effects on nonreproductive targets such as brain, adipose, skeletal muscle, bone, cardiovascular, and immune tissues. Expression of GPER is extensive in male tracts, suggesting a possible role for E2 signaling through this receptor in male reproduction. Recent evidence also indicates that membrane ESR1 has critical roles in male reproduction. Thus estrogens are important physiological regulators in males, and future studies may reveal additional roles for estrogen signaling in various target tissues. Copyright © 2017 the American Physiological Society.

  7. Good vibrations: "sirens," soundscapes, and physiology.

    PubMed

    Plock, Vike Martina

    2008-01-01

    This article establishes Joyce's ongoing interest in psychoacoustics and illustrates how much he drew, in the writing of the "Sirens" episode, on nineteenth-century sound experiments that were developed by the German physician Hermann von Helmholtz. It argues that Joyce consciously referenced nineteenth-century sound theories to explore the link between the emotional and sensory experience of music and the physical and physiological components of sound perception.

  8. The psychology and physiology of temperament: pragmatism in context.

    PubMed

    Bordogna, F

    2001-01-01

    This paper traces William James's famous "temperament thesis" according to which the philosophical stance that individuals take depends on their "temperaments." It seeks to understand James's conception of temperament by locating James within a set of contemporary investigations that linked the sources of mental, and even higher, intellectual processes to the physiological and organic constitution of the individual. The paper argues that James understood temperament along the reflex-arc model and discusses the implications of that physiological account of temperament for James's overall conception of philosophy.

  9. The physiological ecology of the supratidal amphipod Talorchestia longicornis.

    PubMed

    Ramus, Aaron P; Forward, Richard B

    2012-02-01

    Physiology, behavior, habitat, and morphology are used to determine the degree of adaptation to life on land for amphipod species and systemization within the four functional groups of the family talitridae. Talorchestia longicornis is a semi-terrestrial amphipod found in the supratidal zone of estuaries. The present study investigates the physiological adaptations of this species to life on land through measurements of osmoregulation and respiration. Over the salinity range of 1-40‰, T. longicornis regulated its hemolymph hyperosmotically at low salinities and hypoosmotically at high salinities. The isosmotic point was about 27‰. Analogously, hemolymph chloride levels were well regulated being hyperionic at low salinities and hypoionic at high salinities. This species is capable of respiration in both air and water. Slopes (b values) of the relationship between weight and oxygen uptake rates ranged from 0.316 to 0.590. Oxygen uptake rates were higher in air than water and at night versus day. Q(10) values were slightly below 2.0 for respiration in air for amphipods, irrespective of weight. These physiological adaptations, along with its behaviors, habitat, and morphology, place T. longicornis within the Group III sandhoppers of the Talitridae. Copyright © 2011. Published by Elsevier Inc.

  10. Physiological and biochemical responses of the Polychaete Diopatra neapolitana to organic matter enrichment.

    PubMed

    Carregosa, Vanessa; Velez, Cátia; Pires, Adília; Soares, Amadeu M V M; Figueira, Etelvina; Freitas, Rosa

    2014-10-01

    Several studies have demonstrated that organic matter enrichment may be associated to aquaculture, leading to impoverished benthic communities and species succession with loss of biodiversity, but very few studies have investigated biochemical and physiological alterations that species affected by aquaculture activities undergo. Thus, in the present study, the effects of the organic enrichment originating from an oyster culture were studied in the Polychaete Diopatra neapolitana, a species already shown to be sensitive to inorganic contamination. For this, physiological responses and biochemical alterations were evaluated. The results obtained revealed that individuals from highly organically enriched areas presented lower capacity to regenerate their body but higher glycogen and protein levels. Furthermore, with increasing organic matter D. neapolitana increased the lipid peroxidation (LPO), the oxidized glutathione content (GSSG) and Glutathione S-transferase activity (GSTs) content, and the activity of the antioxidant enzymes catalase (CAT) and superoxide dismutase (SOD). This study evidenced that organic matter enrichment induced biochemical and physiological alterations in D. neapolitana. Thus, this species was shown to be a good sentinel species to monitor organic contamination. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Transcriptome profiles link environmental variation and physiological response of Mytilus californianus between Pacific tides

    PubMed Central

    Place, Sean P.; Menge, Bruce A.; Hofmann, Gretchen E.

    2011-01-01

    Summary The marine intertidal zone is characterized by large variation in temperature, pH, dissolved oxygen and the supply of nutrients and food on seasonal and daily time scales. These oceanic fluctuations drive of ecological processes such as recruitment, competition and consumer-prey interactions largely via physiological mehcanisms. Thus, to understand coastal ecosystem dynamics and responses to climate change, it is crucial to understand these mechanisms. Here we utilize transcriptome analysis of the physiological response of the mussel Mytilus californianus at different spatial scales to gain insight into these mechanisms. We used mussels inhabiting different vertical locations within Strawberry Hill on Cape Perpetua, OR and Boiler Bay on Cape Foulweather, OR to study inter- and intra-site variation of gene expression. The results highlight two distinct gene expression signatures related to the cycling of metabolic activity and perturbations to cellular homeostasis. Intermediate spatial scales show a strong influence of oceanographic differences in food and stress environments between sites separated by ~65 km. Together, these new insights into environmental control of gene expression may allow understanding of important physiological drivers within and across populations. PMID:22563136

  12. Hydrometeorology organizes intra-annual patterns of tree growth across time, space and species in a montane watershed.

    PubMed

    Martin, Justin; Looker, Nathaniel; Hoylman, Zachary; Jencso, Kelsey; Hu, Jia

    2017-09-01

    Tree radial growth is often systematically limited by water availability, as is evident in tree ring records. However, the physiological nature of observed tree growth limitation is often uncertain outside of the laboratory. To further explore the physiology of water limitation, we observed intra-annual growth rates of four conifer species using point dendrometers and microcores, and coupled these data to observations of water potential, soil moisture, and vapor pressure deficit over 2 yr in the Northern Rocky Mountains, USA. The onset of growth limitation in four species was well explained by a critical balance between soil moisture supply and atmospheric demand representing relatively mesic conditions, despite the timing of this threshold response varying by up to 2 months across topographic and elevation gradients, growing locations, and study years. Our findings suggest that critical water deficits impeding tissue growth occurred at relatively high water potential values, often occurring when hydrometeorological conditions were relatively wet during the growing season (e.g. in early spring in some cases). This suggests that species-specific differences in water use strategies may not necessarily affect tree growth, and that tissue growth may be more directly linked to environmental moisture conditions than might otherwise be expected. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  13. Effects of historically familiar and novel predator odors on the physiology of an introduced prey

    PubMed Central

    Mella, Valentina S. A.; Cooper, Christine E.; Davies, Stephen J. J. F.

    2016-01-01

    Abstract Predator odors can elicit fear responses in prey and predator odor recognition is generally associated with physiological responses. Prey species are often more likely to respond to the odor of familiar rather than alien predators. However, predator naïvety in an introduced prey species has rarely been investigated. We examined the physiological response, as shown by changes in ventilatory variables, of an introduced terrestrial herbivore, the European rabbit Oryctolagus cuniculus, in Australia, to the odor of potential predators and to control odors (distilled water and horse), to explore if responses were limited to historical (cat and fox) predators, or extended to historically novel predators (snake and quoll). All odors except distilled water elicited a response, with rabbits showing long-term higher respiratory frequencies and lower tidal volumes after introduction of the odors, indicating an increase in alertness. However, the intensity of the rabbits’ reaction could not be directly linked to any pattern of response with respect to the history of predator–prey relationships. Rabbits exhibited significantly stronger reactions in response to both cat and quoll odors than they did to distilled water, but responses to horse, fox, and snake odor were similar to that of water. Our results show that the introduced rabbit can respond to both historical and novel predators in Australia, and suggest that shared evolutionary history is not necessarily a prerequisite to predator odor recognition. PMID:29491891

  14. Physiologic basis for understanding quantitative dehydration assessment.

    PubMed

    Cheuvront, Samuel N; Kenefick, Robert W; Charkoudian, Nisha; Sawka, Michael N

    2013-03-01

    Dehydration (body water deficit) is a physiologic state that can have profound implications for human health and performance. Unfortunately, dehydration can be difficult to assess, and there is no single, universal gold standard for decision making. In this article, we review the physiologic basis for understanding quantitative dehydration assessment. We highlight how phenomenologic interpretations of dehydration depend critically on the type (dehydration compared with volume depletion) and magnitude (moderate compared with severe) of dehydration, which in turn influence the osmotic (plasma osmolality) and blood volume-dependent compensatory thresholds for antidiuretic and thirst responses. In particular, we review new findings regarding the biological variation in osmotic responses to dehydration and discuss how this variation can help provide a quantitative and clinically relevant link between the physiology and phenomenology of dehydration. Practical measures with empirical thresholds are provided as a starting point for improving the practice of dehydration assessment.

  15. Linking host prokaryotic physiology to viral lifestyle dynamics in a temperate freshwater lake (Lake Pavin, France).

    PubMed

    Palesse, S; Colombet, J; Pradeep Ram, A S; Sime-Ngando, T

    2014-11-01

    In aquatic ecosystems, fluctuations in environmental conditions and prokaryotic host physiological states can strongly affect the dynamics of viral life strategies. The influence of prokaryote physiology and environmental factors on viral replication cycles (lytic and lysogeny) was investigated from April to September 2011 at three different strata (epi, meta, and hypolimnion) in the mixolimnion of deep volcanic temperate freshwater Lake Pavin (France). Overall, the euphotic region (epi and metalimnion) was more dynamic and showed significant variation in microbial standing stocks, prokaryotic physiological state, and viral life strategies compared to the aphotic hypolimnion which was stable within sampled months. The prokaryotic host physiology as inferred from the nucleic acid content of prokaryotic cells (high or low nucleic acid) was strongly regulated by the chlorophyll concentration. The predominance of the high nucleic acid (HNA) prokaryotes (cells) over low nucleic acid (LNA) prokaryotes (cells) in the spring (HNA/LNA = 1.2) and vice versa in the summer period (HNA/LNA = 0.4) suggest that the natural prokaryotic communities underwent major shifts in their physiological states during investigated time period. The increase in the percentage of inducible lysogenic prokaryotes in the summer period was associated with the switch in the dominance of LNA over HNA cells, which coincided with the periods of strong resource (nutrient) limitation. This supports the idea that lysogeny represents a maintenance strategy for viruses in unproductive or harsh nutrient/host conditions. A negative correlation of percentage of lysogenic prokaryotes with HNA cell abundance and chlorophyll suggest that lysogenic cycle is closely related to prokaryotic cells which are stressed or starved due to unavailability of resources for its growth and activity. Our results provide support to previous findings that changes in prokaryote physiology are critical for the promotion and

  16. Leaf Optical Properties in Higher Plants: Linking Spectral Characteristics to Stress and Chlorophyll Concentration

    NASA Technical Reports Server (NTRS)

    Carter, Gregory A.; Knapp, Alan K.

    2000-01-01

    A number of studies have linked responses in leaf spectral reflectance, transmittance or absorptance to physiological stress. A variety of stressors including dehydration, flooding,freezing, ozone, herbicides, competition, disease, insects and deficiencies in ectomycorrhizal development and N fertilization have been imposed on species ranging from grasses to conifers and deciduous trees. In this cases, the maximum difference in reflectance within the 400 - 850 nm wavelength range between control and stressed states occurred as a reflectance increase at wavelength near 700 nm. In studies that included transmittance and absorptance as well as reflectance, maximum differences occurred as increases and decreases, respectively, near 700 nm. This common optical response to stress could be simulated closely by varying the chlorophyll concentrations in senescent leaves of five species. The optical response to stress near 700 nm, as well as corresponding changes in reflectance that occur in the green-yellow spectrum, can be explained by the general tendency of stress to reduce leaf chlorophyll concentration.

  17. Practical Application of Fundamental Concepts in Exercise Physiology

    ERIC Educational Resources Information Center

    Ramsbottom R.; Kinch, R. F. T.; Morris, M. G.; Dennis, A. M.

    2007-01-01

    The collection of primary data in laboratory classes enhances undergraduate practical and critical thinking skills. The present article describes the use of a lecture program, running in parallel with a series of linked practical classes, that emphasizes classical or standard concepts in exercise physiology. The academic and practical program ran…

  18. Cytonuclear Theory for Haplodiploid Species and X-Linked Genes. I. Hardy-Weinberg Dynamics and Continent-Island, Hybrid Zone Models

    PubMed Central

    Goodisman, MAD.; Asmussen, M. A.

    1997-01-01

    We develop models that describe the cytonuclear structure for either a cytoplasmic and nuclear marker in a haplodiploid species or a cytoplasmic and X-linked marker in a diploid species. Sex-specific disequilibrium statistics that summarize nonrandom cytonuclear associations in such systems are defined, and their basic Hardy-Weinberg dynamics and admixture formulae are delimited. We focus on the context of hybrid zones and develop continent-island models whereby individuals from two genetically differentiated source populations migrate into and mate within a single zone of admixture. We examine the effects of differential migration of the sexes, assortative mating by pure type females, and census time (relative to mating and migration), as well as special cases of random mating and migration subsumed under the general models. We show that pure type individuals and nonzero cytonuclear disequilibria can be maintained within a hybrid zone if there is continued migration from both source populations, and that females generally have a greater influence over these cytonuclear variables than males. The resulting theoretical framework can be used to estimate the rates of assortative mating and sex-specific gene flow in hybrid zones and other zones of admixture involving haplodiploid or sex-linked cytonuclear data. PMID:9286692

  19. Reactive Oxygen Species in Cardiovascular Disease

    PubMed Central

    Sugamura, Koichi; Keaney, John F.

    2011-01-01

    Based on the ‘free-radical theory’ of disease, researchers have been trying to elucidate the role of oxidative stress from free radicals in cardiovascular disease. Considerable data indicate that ROS and oxidative stress are important features of cardiovascular diseases including atherosclerosis, hypertension, and congestive heart failure. However, blanket strategies with antioxidants to ameliorate cardiovascular disease have not generally yielded favorable results. However, our understanding or reactive oxygen species has evolved to the point that we now realize these species have important roles in physiology as well as pathophysiology. Thus, it is overly simplistic to assume a general antioxidant strategy will yield specific effects on cardiovascular disease. Indeed, there are several sources of reactive oxygen species that are known to be active in the cardiovascular system. This review will address our understanding of reactive oxygen species sources in cardiovascular disease and both animal and human data defining how reactive oxygen species contribute to physiology and pathology. PMID:21627987

  20. Spatial and temporal influences on the physiological condition of invasive silver carp.

    PubMed

    Liss, Stephanie A; Sass, Greg G; Suski, Cory D

    2013-01-01

    We quantified nutritional and stress parameters (alkaline phosphatase, cholesterol, protein, triglycerides, cortisol, and glucose) in invasive silver carp (Hypophthalmichthys molitrix) inhabiting four large rivers throughout three distinct time periods in the Midwestern USA. Examining the basic biology and ecology of an invasive species is crucial to gain an understanding of the interaction between an organism and its environment. Analysis of the physiological condition of wild-caught silver carp across broad spatial and temporal scales is essential because stress and nutritional parameters can link individuals to their habitats and vary among populations across environments. During each time period, we collected blood samples from individual silver carp in the Illinois River and portions of the Mississippi, Ohio, and Wabash rivers in Illinois. We tested for relationships between silver carp nutrition and stress across rivers, reaches within rivers, and time periods. Principal component analyses separated physiological parameters into a stress component (cortisol and glucose) and two nutritional components representative of short-term feeding (alkaline phosphatase, protein, and triglycerides) and body energy reserves (cholesterol and protein). Akaike's information criterion suggested that time period had the greatest influence on stress. Stress levels were consistent in all four rivers, and declined across time periods. Akaike's information criterion also suggested that interactions of time period and river had the greatest influence on short-term feeding and body energy reserves. There was no specific pattern across time periods within each river, nor was there a pattern across rivers. Our results provide a better understanding of nutritional and stress conditions in invasive silver carp across a broad landscape and temporal scale, with implications for managing and predicting the spread of this species.

  1. Physiology-based modelling approaches to characterize fish habitat suitability: Their usefulness and limitations

    NASA Astrophysics Data System (ADS)

    Teal, Lorna R.; Marras, Stefano; Peck, Myron A.; Domenici, Paolo

    2018-02-01

    Models are useful tools for predicting the impact of global change on species distribution and abundance. As ectotherms, fish are being challenged to adapt or track changes in their environment, either in time through a phenological shift or in space by a biogeographic shift. Past modelling efforts have largely been based on correlative Species Distribution Models, which use known occurrences of species across landscapes of interest to define sets of conditions under which species are likely to maintain populations. The practical advantages of this correlative approach are its simplicity and the flexibility in terms of data requirements. However, effective conservation management requires models that make projections beyond the range of available data. One way to deal with such an extrapolation is to use a mechanistic approach based on physiological processes underlying climate change effects on organisms. Here we illustrate two approaches for developing physiology-based models to characterize fish habitat suitability. (i) Aerobic Scope Models (ASM) are based on the relationship between environmental factors and aerobic scope (defined as the difference between maximum and standard (basal) metabolism). This approach is based on experimental data collected by using a number of treatments that allow a function to be derived to predict aerobic metabolic scope from the stressor/environmental factor(s). This function is then integrated with environmental (oceanographic) data of current and future scenarios. For any given species, this approach allows habitat suitability maps to be generated at various spatiotemporal scales. The strength of the ASM approach relies on the estimate of relative performance when comparing, for example, different locations or different species. (ii) Dynamic Energy Budget (DEB) models are based on first principles including the idea that metabolism is organised in the same way within all animals. The (standard) DEB model aims to describe

  2. A physiological perspective on fisheries-induced evolution.

    PubMed

    Hollins, Jack; Thambithurai, Davide; Koeck, Barbara; Crespel, Amelie; Bailey, David M; Cooke, Steven J; Lindström, Jan; Parsons, Kevin J; Killen, Shaun S

    2018-06-01

    There is increasing evidence that intense fishing pressure is not only depleting fish stocks but also causing evolutionary changes to fish populations. In particular, body size and fecundity in wild fish populations may be altered in response to the high and often size-selective mortality exerted by fisheries. While these effects can have serious consequences for the viability of fish populations, there are also a range of traits not directly related to body size which could also affect susceptibility to capture by fishing gears-and therefore fisheries-induced evolution (FIE)-but which have to date been ignored. For example, overlooked within the context of FIE is the likelihood that variation in physiological traits could make some individuals within species more vulnerable to capture. Specifically, traits related to energy balance (e.g., metabolic rate), swimming performance (e.g., aerobic scope), neuroendocrinology (e.g., stress responsiveness) and sensory physiology (e.g., visual acuity) are especially likely to influence vulnerability to capture through a variety of mechanisms. Selection on these traits could produce major shifts in the physiological traits within populations in response to fishing pressure that are yet to be considered but which could influence population resource requirements, resilience, species' distributions and responses to environmental change.

  3. An integrated physiology model to study regional lung damage effects and the physiologic response

    PubMed Central

    2014-01-01

    Background This work expands upon a previously developed exercise dynamic physiology model (DPM) with the addition of an anatomic pulmonary system in order to quantify the impact of lung damage on oxygen transport and physical performance decrement. Methods A pulmonary model is derived with an anatomic structure based on morphometric measurements, accounting for heterogeneous ventilation and perfusion observed experimentally. The model is incorporated into an existing exercise physiology model; the combined system is validated using human exercise data. Pulmonary damage from blast, blunt trauma, and chemical injury is quantified in the model based on lung fluid infiltration (edema) which reduces oxygen delivery to the blood. The pulmonary damage component is derived and calibrated based on published animal experiments; scaling laws are used to predict the human response to lung injury in terms of physical performance decrement. Results The augmented dynamic physiology model (DPM) accurately predicted the human response to hypoxia, altitude, and exercise observed experimentally. The pulmonary damage parameters (shunt and diffusing capacity reduction) were fit to experimental animal data obtained in blast, blunt trauma, and chemical damage studies which link lung damage to lung weight change; the model is able to predict the reduced oxygen delivery in damage conditions. The model accurately estimates physical performance reduction with pulmonary damage. Conclusions We have developed a physiologically-based mathematical model to predict performance decrement endpoints in the presence of thoracic damage; simulations can be extended to estimate human performance and escape in extreme situations. PMID:25044032

  4. Personality, emotion, and individual differences in physiological responses.

    PubMed

    Stemmler, Gerhard; Wacker, Jan

    2010-07-01

    A dominant paradigm in biopsychological personality research seeks to establish links between emotional and motivational traits and habitual, transsituationally consistent individual differences in measures of physiological activity. An alternative approach conceptualizes traits as dispositions that are only operative in certain situational contexts and consequently predicts associations between emotional and motivational traits and physiological activity only for trait-relevant situational contexts in which the physiological systems underlying the traits in question are engaged. In the present paper we first examine and contrast these personistic and interactionistic conceptualizations of personality and personality-physiology associations and then present data from several large studies (N>100) in which electrocortical (e.g., frontal alpha asymmetry) and somatovisceral parameters were measured in various situational contexts (e.g., after the induction of either anger, or fear, or anxiety). As predicted by the interactionistic conceptualization of traits as dispositions the situational context and its subjective representation by the participants moderated the personality-physiology relationships for measures of both central and peripheral nervous system activity. We conclude by outlining the implications of the interactionistic approach for biopsychological personality research. Copyright © 2009 Elsevier B.V. All rights reserved.

  5. Discerning Silk Produced by Bombyx mori from Those Produced by Wild Species Using an Enzyme-Linked Immunosorbent Assay Combined with Conventional Methods.

    PubMed

    You, Qiushi; Li, Qingqing; Zheng, Hailing; Hu, Zhiwen; Zhou, Yang; Wang, Bing

    2017-09-06

    Recently, much interest has been paid to the separation of silk produced by Bombyx mori from silk produced by other species and tracing the beginnings of silk cultivation from wild silk exploitation. In this paper, significant differences between silks from Bombyx mori and other species were found by microscopy and spectroscopy, such as morphology, secondary structure, and amino acid composition. For further accurate identification, a diagnostic antibody was designed by comparing the peptide sequences of silks produced by Bombyx mori and other species. The results of the noncompetitive indirect enzyme-linked immunosorbent assay (ELISA) indicated that the antibody that showed good sensitivity and high specificity can definitely discern silk produced by Bombyx mori from silk produced by wild species. Thus, the antibody-based immunoassay has the potential to be a powerful tool for tracing the beginnings of silk cultivation. In addition, combining the sensitive, specific, and convenient ELISA technology with other conventional methods can provide more in-depth and accurate information for species identification.

  6. Linking Essential Tremor to the Cerebellum: Physiological Evidence.

    PubMed

    Filip, Pavel; Lungu, Ovidiu V; Manto, Mario-Ubaldo; Bareš, Martin

    2016-12-01

    Essential tremor (ET), clinically characterized by postural and kinetic tremors, predominantly in the upper extremities, originates from pathological activity in the dynamic oscillatory network comprising the majority of nodes in the central motor network. Evidence indicates dysfunction in the thalamus, the olivocerebellar loops, and intermittent cortical engagement. Pathology of the cerebellum, a structure with architecture intrinsically predisposed to oscillatory activity, has also been implicated in ET as shown by clinical, neuroimaging, and pathological studies. Despite electrophysiological studies assessing cerebellar impairment in ET being scarce, their impact is tangible, as summarized in this review. The electromyography-magnetoencephalography combination provided the first direct evidence of pathological alteration in cortico-subcortical communication, with a significant emphasis on the cerebellum. Furthermore, complex electromyography studies showed disruptions in the timing of agonist and antagonist muscle activation, a process generally attributed to the cerebellum. Evidence pointing to cerebellar engagement in ET has also been found in electrooculography measurements, cerebellar repetitive transcranial magnetic stimulation studies, and, indirectly, in complex analyses of the activity of the ventral intermediate thalamic nucleus (an area primarily receiving inputs from the cerebellum), which is also used in the advanced treatment of ET. In summary, further progress in therapy will require comprehensive electrophysiological and physiological analyses to elucidate the precise mechanisms leading to disease symptoms. The cerebellum, as a major node of this dynamic oscillatory network, requires further study to aid this endeavor.

  7. Evolutionary History Underlies Plant Physiological Responses to Global Change Since the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Becklin, K. M.; Medeiros, J. S.; Sale, K. R.; Ward, J. K.

    2014-12-01

    Assessing family and species-level variation in physiological responses to global change across geologic time is critical for understanding factors that underlie changes in species distributions and community composition. Ancient plant specimens preserved within packrat middens are invaluable in this context since they allow for comparisons between co-occurring plant lineages. Here we used modern and ancient plant specimens preserved within packrat middens from the Snake Range, NV to investigate the physiological responses of a mixed montane conifer community to global change since the last glacial maximum. We used a conceptual model to infer relative changes in stomatal conductance and maximum photosynthetic capacity from measures of leaf carbon isotopes, stomatal characteristics, and leaf nitrogen content. Our results indicate that most of the sampled taxa decreased stomatal conductance and/or photosynthetic capacity from glacial to modern times. However, plant families differed in the timing and magnitude of these physiological responses. Additionally, leaf-level responses were more similar within plant families than within co-occurring species assemblages. This suggests that adaptation at the level of leaf physiology may not be the main determinant of shifts in community composition, and that plant evolutionary history may drive physiological adaptation to global change over recent geologic time.

  8. Cross-Species Extrapolation of Uptake and Disposition of Neutral Organic Chemicals in Fish Using a Multispecies Physiologically-Based Toxicokinetic Model Framework.

    PubMed

    Brinkmann, Markus; Schlechtriem, Christian; Reininghaus, Mathias; Eichbaum, Kathrin; Buchinger, Sebastian; Reifferscheid, Georg; Hollert, Henner; Preuss, Thomas G

    2016-02-16

    The potential to bioconcentrate is generally considered to be an unwanted property of a substance. Consequently, chemical legislation, including the European REACH regulations, requires the chemical industry to provide bioconcentration data for chemicals that are produced or imported at volumes exceeding 100 tons per annum or if there is a concern that a substance is persistent, bioaccumulative, and toxic. For the filling of the existing data gap for chemicals produced or imported at levels that are below this stipulated volume, without the need for additional animal experiments, physiologically-based toxicokinetic (PBTK) models can be used to predict whole-body and tissue concentrations of neutral organic chemicals in fish. PBTK models have been developed for many different fish species with promising results. In this study, we developed PBTK models for zebrafish (Danio rerio) and roach (Rutilus rutilus) and combined them with existing models for rainbow trout (Onchorhynchus mykiss), lake trout (Salvelinus namaycush), and fathead minnow (Pimephales promelas). The resulting multispecies model framework allows for cross-species extrapolation of the bioaccumulative potential of neutral organic compounds. Predictions were compared with experimental data and were accurate for most substances. Our model can be used for probabilistic risk assessment of chemical bioaccumulation, with particular emphasis on cross-species evaluations.

  9. Physiological and Growth Responses of Midrotation Loblolly Pine to Treatments of Fire, Herbicide, and Fertilizer

    Treesearch

    Emily J. Goodwin; Lisa M. Marino McInnis; Hans M. Williams; Brian P. Oswald; Kenneth W. Farrish

    2004-01-01

    The objectives of this study were to examine the effects of fertilizer and understory vegetation control (herbicide and prescribed fire) on mature tree physiology and to link observed physiological responses with tree growth. Photosynthetic rate (photosynthesis), transpiration, stomatal conductance, stem diameter, and crown area were measured in two midrotation...

  10. The Ecology of Stress: linking life-history traits with physiological control mechanisms in free-living guanacos

    PubMed Central

    Jahn, Graciela A.; Soto-Gamboa, Mauricio; Novaro, Andrés J.; Carmanchahi, Pablo

    2016-01-01

    Background Providing the context for the evolution of life-history traits, habitat features constrain successful ecological and physiological strategies. In vertebrates, a key response to life’s challenges is the activation of the Stress (HPA) and Gonadal (HPG) axes. Much of the interest in stress ecology is motivated by the desire to understand the physiological mechanisms in which the environment affects fitness. As reported in the literature, several intrinsic and extrinsic factors affect variability in hormone levels. In both social and non-social animals, the frequency and type of interaction with conspecifics, as well as the status in social species, can affect HPA axis activity, resulting in changes in the reproductive success of animals. We predicted that a social environment can affect both guanaco axes by increasing the secretion of testosterone (T) and Glucocorticoid (GCs) in response to individual social interactions and the energetic demands of breeding. Assuming that prolonged elevated levels of GCs over time can be harmful to individuals, it is predicted that the HPA axis suppresses the HPG axis and causes T levels to decrease, as GCs increase. Methods All of the data for individuals were collected by non-invasive methods (fecal samples) to address hormonal activities. This is a novel approach in physiological ecology because feces are easily obtained through non-invasive sampling in animal populations. Results As expected, there was a marked adrenal (p-value = .3.4e−12) and gonadal (p-value = 0.002656) response due to seasonal variation in Lama guanicoe. No significant differences were found in fecal GCs metabolites between males/females*season for the entire study period (p-value = 0.2839). Despite the seasonal activity variation in the hormonal profiles, our results show a positive correlation (p-value = 1.952e−11, COR = 0.50) between the adrenal and gonadal system. The marked endocrine (r2 = 0.806) and gonad (r2 = 0.7231) response due

  11. Impacts of precipitation variability on plant species and community water stress in a temperate deciduous forest in the central US

    DOE PAGES

    Gu, Lianhong; Pallardy, Stephen G.; Hosman, Kevin P.; ...

    2015-12-11

    Variations in precipitation regimes can shift ecosystem structure and function by altering frequency, severity and timing of plant water stress. There is a need for predictively understanding impacts of precipitation regimes on plant water stress in relation to species water use strategies. Here we first formulated two complementary, physiologically-linked measures of precipitation variability (PV) - Precipitation Variability Index (PVI) and Average Recurrence Interval of Effective Precipitation (ARIEP). We then used nine-year continuous measurements of Predawn Leaf Water Potential Integral (PLWPI) in a central US forest to relate PVI and ARIEP to actual plant water availability and comparative water stress responsesmore » of six species with different capacities to regulate their internal water status. We found that PVI and ARIEP explained nearly all inter-annual variations in PLWPI for all species as well as for the community scaled from species measurements. The six species investigated showed differential sensitivities to variations in precipitation regimes. Their sensitivities were reflected more in the responses to PVI and ARIEP than to the mean precipitation rate. Further, they exhibited tradeoffs between responses to low and high PV. Finally, PVI and ARIEP were closely correlated with temporal integrals of positive temperature anomalies and vapor pressure deficit. We suggest that the comparative responses of plant species to PV are part of species-specific water use strategies in a plant community facing the uncertainty of fluctuating precipitation regimes. In conclusion, PVI and ARIEP should be adopted as key indices to quantify physiological drought and the ecological impacts of precipitation regimes in a changing climate.« less

  12. Characterization of rat leydig cell gonadotropin receptor structure by affinity cross-linking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Q.Y.; Hwang, J.; Menon, K.M.J.

    1986-05-01

    The gonadotropin receptor from rat leydig cell has been characterized with respect to binding kinetics and physiological regulation. The present study was intended to examine the structure of the receptor. Leydig cell suspension was prepared by either collagenase digestion or by mechanical disruption of the testis. The cells were incubated with /sup 125/I-hCG and the unreacted hCG was removed by centrifugation. The /sup 125/I-hCG was then covalently linked to the cell surface receptor using cleavable (dithiobis (succinimidyl propionate)) and non-cleavable (disuccinimidyl suberate) cross-linking reagents. The extracted cross-linked membrane proteins were resolved on SDS-polyacrylamide gels under reducing and non-reducing conditions andmore » subjected to autoradiographic analysis. Under non-reducing conditions, two labeled species with M/sub r/ = 87,000 and 120,000 were detected. However, only one labeled band was detected under reducing conditions with M/sub r/ = 64,000. The binding of /sup 125/I-hCG to the receptor was inhibited by hCG and LH, but not by a number of peptides and proteins. The data suggest that hCG receptor in leydig cell is an oligomeric complex consisting of four subunits, ..cap alpha cap alpha beta gamma... The ..beta.. and ..gamma.. subunits are each linked to an ..cap alpha.. subunit through disulfide linkage and the hormone binds to each ..cap alpha.. subunit. The two dimers formed (..cap alpha beta cap alpha gamma..) are associated by noncovalent interactions.« less

  13. The Pineal and Photoperiodism in Artic Species,

    DTIC Science & Technology

    1977-01-01

    University of Iowa, Iowa City, Iowa *1 A chapter in the book: The Pineal Gland and Reproduction / ::. . / .. ,, " /-. ., . / >( JUN19 1981 A and sale; . td...Three Kinds of Bird Pineal Glands Arctic Mammals and Photoperiod Outline of Arctic Reproductive Physiology Arctic Pineal Physiology: Size Arctic... pineal physiology. Because this gland is not only associated with photoperiodic responses with some species, but also with resistance to cold (14; 21

  14. Physiological variation as a mechanism for developmental caste-biasing in a facultatively eusocial sweat bee.

    PubMed

    Kapheim, Karen M; Smith, Adam R; Ihle, Kate E; Amdam, Gro V; Nonacs, Peter; Wcislo, William T

    2012-04-07

    Social castes of eusocial insects may have arisen through an evolutionary modification of an ancestral reproductive ground plan, such that some adults emerge from development physiologically primed to specialize on reproduction (queens) and others on maternal care expressed as allo-maternal behaviour (workers). This hypothesis predicts that variation in reproductive physiology should emerge from ontogeny and underlie division of labour. To test these predictions, we identified physiological links to division of labour in a facultatively eusocial sweat bee, Megalopta genalis. Queens are larger, have larger ovaries and have higher vitellogenin titres than workers. We then compared queens and workers with their solitary counterparts-solitary reproductive females and dispersing nest foundresses-to investigate physiological variation as a factor in caste evolution. Within dyads, body size and ovary development were the best predictors of behavioural class. Queens and dispersers are larger, with larger ovaries than their solitary counterparts. Finally, we raised bees in social isolation to investigate the influence of ontogeny on physiological variation. Body size and ovary development among isolated females were highly variable, and linked to differences in vitellogenin titres. As these are key physiological predictors of social caste, our results provide evidence for developmental caste-biasing in a facultatively eusocial bee.

  15. Physiological variation as a mechanism for developmental caste-biasing in a facultatively eusocial sweat bee

    PubMed Central

    Kapheim, Karen M.; Smith, Adam R.; Ihle, Kate E.; Amdam, Gro V.; Nonacs, Peter; Wcislo, William T.

    2012-01-01

    Social castes of eusocial insects may have arisen through an evolutionary modification of an ancestral reproductive ground plan, such that some adults emerge from development physiologically primed to specialize on reproduction (queens) and others on maternal care expressed as allo-maternal behaviour (workers). This hypothesis predicts that variation in reproductive physiology should emerge from ontogeny and underlie division of labour. To test these predictions, we identified physiological links to division of labour in a facultatively eusocial sweat bee, Megalopta genalis. Queens are larger, have larger ovaries and have higher vitellogenin titres than workers. We then compared queens and workers with their solitary counterparts—solitary reproductive females and dispersing nest foundresses—to investigate physiological variation as a factor in caste evolution. Within dyads, body size and ovary development were the best predictors of behavioural class. Queens and dispersers are larger, with larger ovaries than their solitary counterparts. Finally, we raised bees in social isolation to investigate the influence of ontogeny on physiological variation. Body size and ovary development among isolated females were highly variable, and linked to differences in vitellogenin titres. As these are key physiological predictors of social caste, our results provide evidence for developmental caste-biasing in a facultatively eusocial bee. PMID:22048951

  16. Physiological basis of climate change impacts on North American inland fishes

    USGS Publications Warehouse

    Whitney, James E.; Al-Chokhachy, Robert K.; Bunnell, David B.; Caldwell, Colleen A.; Cooke, Steven J.; Eliason, Erika J.; Rogers, Mark W.; Lynch, Abigail J.; Paukert, Craig P.

    2016-01-01

    Global climate change is altering freshwater ecosystems and affecting fish populations and communities. Underpinning changes in fish distribution and assemblage-level responses to climate change are individual-level physiological constraints. In this review, we synthesize the mechanistic effects of climate change on neuroendocrine, cardiorespiratory, immune, osmoregulatory, and reproductive systems of freshwater and diadromous fishes. Observed climate change effects on physiological systems are varied and numerous, including exceedance of critical thermal tolerances, decreased cardiorespiratory performance, compromised immune function, and altered patterns of individual reproductive investment. However, effects vary widely among and within species because of species, population, and even sex-specific differences in sensitivity and resilience and because of habitat-specific variation in the magnitude of climate-related environmental change. Research on the interactive effects of climate change with other environmental stressors across a broader range of fish diversity is needed to further our understanding of climate change effects on fish physiology.

  17. Genetic approaches in comparative and evolutionary physiology

    PubMed Central

    Bridgham, Jamie T.; Kelly, Scott A.; Garland, Theodore

    2015-01-01

    Whole animal physiological performance is highly polygenic and highly plastic, and the same is generally true for the many subordinate traits that underlie performance capacities. Quantitative genetics, therefore, provides an appropriate framework for the analysis of physiological phenotypes and can be used to infer the microevolutionary processes that have shaped patterns of trait variation within and among species. In cases where specific genes are known to contribute to variation in physiological traits, analyses of intraspecific polymorphism and interspecific divergence can reveal molecular mechanisms of functional evolution and can provide insights into the possible adaptive significance of observed sequence changes. In this review, we explain how the tools and theory of quantitative genetics, population genetics, and molecular evolution can inform our understanding of mechanism and process in physiological evolution. For example, lab-based studies of polygenic inheritance can be integrated with field-based studies of trait variation and survivorship to measure selection in the wild, thereby providing direct insights into the adaptive significance of physiological variation. Analyses of quantitative genetic variation in selection experiments can be used to probe interrelationships among traits and the genetic basis of physiological trade-offs and constraints. We review approaches for characterizing the genetic architecture of physiological traits, including linkage mapping and association mapping, and systems approaches for dissecting intermediary steps in the chain of causation between genotype and phenotype. We also discuss the promise and limitations of population genomic approaches for inferring adaptation at specific loci. We end by highlighting the role of organismal physiology in the functional synthesis of evolutionary biology. PMID:26041111

  18. Genetic approaches in comparative and evolutionary physiology.

    PubMed

    Storz, Jay F; Bridgham, Jamie T; Kelly, Scott A; Garland, Theodore

    2015-08-01

    Whole animal physiological performance is highly polygenic and highly plastic, and the same is generally true for the many subordinate traits that underlie performance capacities. Quantitative genetics, therefore, provides an appropriate framework for the analysis of physiological phenotypes and can be used to infer the microevolutionary processes that have shaped patterns of trait variation within and among species. In cases where specific genes are known to contribute to variation in physiological traits, analyses of intraspecific polymorphism and interspecific divergence can reveal molecular mechanisms of functional evolution and can provide insights into the possible adaptive significance of observed sequence changes. In this review, we explain how the tools and theory of quantitative genetics, population genetics, and molecular evolution can inform our understanding of mechanism and process in physiological evolution. For example, lab-based studies of polygenic inheritance can be integrated with field-based studies of trait variation and survivorship to measure selection in the wild, thereby providing direct insights into the adaptive significance of physiological variation. Analyses of quantitative genetic variation in selection experiments can be used to probe interrelationships among traits and the genetic basis of physiological trade-offs and constraints. We review approaches for characterizing the genetic architecture of physiological traits, including linkage mapping and association mapping, and systems approaches for dissecting intermediary steps in the chain of causation between genotype and phenotype. We also discuss the promise and limitations of population genomic approaches for inferring adaptation at specific loci. We end by highlighting the role of organismal physiology in the functional synthesis of evolutionary biology. Copyright © 2015 the American Physiological Society.

  19. Linking xylem water storage with anatomical parameters in five temperate tree species.

    PubMed

    Jupa, Radek; Plavcová, Lenka; Gloser, Vít; Jansen, Steven

    2016-06-01

    The release of water from storage compartments to the transpiration stream is an important functional mechanism that provides the buffering of sudden fluctuations in water potential. The ability of tissues to release water per change in water potential, referred to as hydraulic capacitance, is assumed to be associated with the anatomy of storage tissues. However, information about how specific anatomical parameters determine capacitance is limited. In this study, we measured sapwood capacitance (C) in terminal branches and roots of five temperate tree species (Fagus sylvatica L., Picea abies L., Quercus robur L., Robinia pseudoacacia L., Tilia cordata Mill.). Capacitance was calculated separately for water released mainly from capillary (CI; open vessels, tracheids, fibres, intercellular spaces and cracks) and elastic storage compartments (CII; living parenchyma cells), corresponding to two distinct phases of the moisture release curve. We found that C was generally higher in roots than branches, with CI being 3-11 times higher than CII Sapwood density and the ratio of dead to living xylem cells were most closely correlated with C In addition, the magnitude of CI was strongly correlated with fibre/tracheid lumen area, whereas CII was highly dependent on the thickness of axial parenchyma cell walls. Our results indicate that water released from capillary compartments predominates over water released from elastic storage in both branches and roots, suggesting the limited importance of parenchyma cells for water storage in juvenile xylem of temperate tree species. Contrary to intact organs, water released from open conduits in our small wood samples significantly increased CI at relatively high water potentials. Linking anatomical parameters with the hydraulic capacitance of a tissue contributes to a better understanding of water release mechanisms and their implications for plant hydraulics. © The Author 2016. Published by Oxford University Press. All rights

  20. Environmental Factors that Influence Physiological Functioning of Eight Bottomland Hardwood Species

    NASA Astrophysics Data System (ADS)

    Kassahun, Z.; Renninger, H. J.

    2017-12-01

    With increases in extreme precipitation, flooding, and prolonged drought events in the southeastern United States, bottomland hardwood forests are expected to experience a drastic shift in their productivity and composition. As environmental conditions shift, certain tree species may experience an increase in productivity or could be more negatively affected over more resilient species, leading to a shift in species composition, water use, and carbon uptake. The goals of this research were to use sap flow measurements, leaf phenology, and photosynthetic rates to study species-specific responses to environmental drivers. Sap flow of eight co-occurring hardwood species as well as soil moisture and vapor pressure deficit were measured continuously over the course of a calendar year that included drought conditions and extended saturated soil conditions. We found that cherrybark oak used the most water during the growing season, about 20% more water than the next highest consumer, swamp chestnut oak. Given low, ample or saturated soil moisture conditions, we found that sap flow of winged elm, American elm, cherrybark oak, and shagbark hickory exhibited varying relationships with vapor pressure deficit under the different soil moisture conditions. While the relationship between sap flow and vapor pressure deficit did not differ depending on soil moisture in willow oak, swamp chestnut oak, and green ash. This suggests that winged elm, American elm, cherrybark oak, and shagbark hickory may be more negatively affected by drought conditions while willow oak, swamp chestnut oak, and green ash are more drought tolerant. Regarding leaf phenology, willow oak, cherrybark oak, and shagbark hickory were the first to experience leaf abscission at the end of the growing season when extended drought conditions occurred. In terms of leaf gas exchange, green ash exhibited the highest photosynthesis and transpiration rates, resulting in the lowest water-use efficiency compared with

  1. Back to the future! Revisiting the physiological cost of negative work as a team-based activity for exercise physiology students.

    PubMed

    Kilgas, Matthew A; Elmer, Steven J

    2017-03-01

    We implemented a team-based activity in our exercise physiology teaching laboratory that was inspired from Abbott et al.'s classic 1952 Journal of Physiology paper titled "The physiological cost of negative work." Abbott et al. connected two bicycles via one chain. One person cycled forward (muscle shortening contractions, positive work) while the other resisted the reverse moving pedals (muscle lengthening contractions, negative work), and the cost of work was compared. This study was the first to link human whole body energetics with isolated muscle force-velocity characteristics. The laboratory activity for our students ( n = 35) was designed to reenact Abbott et al.'s experiment, integrate previously learned techniques, and illustrate differences in physiological responses to muscle shortening and lengthening contractions. Students (11-12 students/laboratory section) were split into two teams (positive work vs. negative work). One student from each team volunteered to cycle against the other for ~10 min. The remaining students in each team were tasked with measuring: 1 ) O 2 consumption, 2 ) heart rate, 3 ) blood lactate, and 4 ) perceived exertion. Students discovered that O 2 consumption during negative work was about one-half that of positive work and all other physiological parameters were also substantially lower. Muscle lengthening contractions were discussed and applied to rehabilitation and sport training. The majority of students (>90%) agreed or strongly agreed that they stayed engaged during the activity and it improved their understanding of exercise physiology. All students recommended the activity be performed again. This activity was engaging, emphasized teamwork, yielded clear results, was well received, and preserved the history of classic physiological experiments. Copyright © 2017 the American Physiological Society.

  2. Differences in the Vulnerability of Waterbird Species to Botulism Outbreaks in Mediterranean Wetlands: an Assessment of Ecological and Physiological Factors

    PubMed Central

    Anza, I.; Vidal, D.; Feliu, J.; Crespo, E.

    2016-01-01

    ABSTRACT Avian botulism kills thousands of waterbirds every year, including endangered species, but information about the differences between species in vulnerability to botulism outbreaks and the capacity to act as carriers of Clostridium botulinum is still poorly known. Here, we estimated the vulnerability to botulism of 11 waterbird species from Mediterranean wetlands by comparing the number of affected birds with the census of individuals at risk. The capacity of different species to act as carriers was studied by detecting the presence of the C. botulinum type C/D botulinum neurotoxin (BoNT) gene in fecal samples and prey items of waterbirds in the wild and by the serial sampling of cloacal swabs of birds affected by botulism. We found differences among species in their vulnerabilities to botulism, probably related to feeding habits, season of arrival, turnover, and, possibly, phylogenetic resilience. The globally endangered white-headed duck (Oxyura leucocephala) showed mortality rates in the studied outbreaks of 7% and 17% of the maximum census, which highlights botulism as a risk factor for the conservation of the species. Invasive water snails, such as Physa acuta, may be important drivers in botulism epidemiology, because 30% of samples tested positive for the BoNT gene during outbreaks. Finally, our results show that birds may excrete the pathogen for up to 7 days, and some individuals can do it for longer periods. Rails and ducks excreted C. botulinum more often and for longer times than gulls, which could be related to their digestive physiology (i.e., cecum development). IMPORTANCE Botulism is an important cause of mortality in waterbirds, including some endangered species. The global climate change may have consequences in the ecology of wetlands that favor the occurrence of botulism outbreaks. Here, we offer some information to understand the ecology of this disease that can be useful to cope with these global changes in the future. We have found

  3. Shifting species interactions in terrestrial dryland ecosystems under altered water availability and climate change

    USGS Publications Warehouse

    McCluney, Kevin E.; Belnap, Jayne; Collins, Scott L.; González, Angélica L.; Hagen, Elizabeth M.; Holland, J. Nathaniel; Kotler, Burt P.; Maestre, Fernando T.; Smith, Stanley D.; Wolf, Blair O.

    2012-01-01

    Species interactions play key roles in linking the responses of populations, communities, and ecosystems to environmental change. For instance, species interactions are an important determinant of the complexity of changes in trophic biomass with variation in resources. Water resources are a major driver of terrestrial ecology and climate change is expected to greatly alter the distribution of this critical resource. While previous studies have documented strong effects of global environmental change on species interactions in general, responses can vary from region to region. Dryland ecosystems occupy more than one-third of the Earth's land mass, are greatly affected by changes in water availability, and are predicted to be hotspots of climate change. Thus, it is imperative to understand the effects of environmental change on these globally significant ecosystems. Here, we review studies of the responses of population-level plant-plant, plant-herbivore, and predator-prey interactions to changes in water availability in dryland environments in order to develop new hypotheses and predictions to guide future research. To help explain patterns of interaction outcomes, we developed a conceptual model that views interaction outcomes as shifting between (1) competition and facilitation (plant-plant), (2) herbivory, neutralism, or mutualism (plant-herbivore), or (3) neutralism and predation (predator-prey), as water availability crosses physiological, behavioural, or population-density thresholds. We link our conceptual model to hypothetical scenarios of current and future water availability to make testable predictions about the influence of changes in water availability on species interactions. We also examine potential implications of our conceptual model for the relative importance of top-down effects and the linearity of patterns of change in trophic biomass with changes in water availability. Finally, we highlight key research needs and some possible broader impacts

  4. Shifting species interactions in terrestrial dryland ecosystems under altered water availability and climate change.

    PubMed

    McCluney, Kevin E; Belnap, Jayne; Collins, Scott L; González, Angélica L; Hagen, Elizabeth M; Nathaniel Holland, J; Kotler, Burt P; Maestre, Fernando T; Smith, Stanley D; Wolf, Blair O

    2012-08-01

    Species interactions play key roles in linking the responses of populations, communities, and ecosystems to environmental change. For instance, species interactions are an important determinant of the complexity of changes in trophic biomass with variation in resources. Water resources are a major driver of terrestrial ecology and climate change is expected to greatly alter the distribution of this critical resource. While previous studies have documented strong effects of global environmental change on species interactions in general, responses can vary from region to region. Dryland ecosystems occupy more than one-third of the Earth's land mass, are greatly affected by changes in water availability, and are predicted to be hotspots of climate change. Thus, it is imperative to understand the effects of environmental change on these globally significant ecosystems. Here, we review studies of the responses of population-level plant-plant, plant-herbivore, and predator-prey interactions to changes in water availability in dryland environments in order to develop new hypotheses and predictions to guide future research. To help explain patterns of interaction outcomes, we developed a conceptual model that views interaction outcomes as shifting between (1) competition and facilitation (plant-plant), (2) herbivory, neutralism, or mutualism (plant-herbivore), or (3) neutralism and predation (predator-prey), as water availability crosses physiological, behavioural, or population-density thresholds. We link our conceptual model to hypothetical scenarios of current and future water availability to make testable predictions about the influence of changes in water availability on species interactions. We also examine potential implications of our conceptual model for the relative importance of top-down effects and the linearity of patterns of change in trophic biomass with changes in water availability. Finally, we highlight key research needs and some possible broader impacts

  5. Physiological relevance of plant 2-Cys peroxiredoxin overoxidation level and oligomerization status.

    PubMed

    Cerveau, Delphine; Ouahrani, Djelloul; Marok, Mohamed Amine; Blanchard, Laurence; Rey, Pascal

    2016-01-01

    Peroxiredoxins are ubiquitous thioredoxin-dependent peroxidases presumed to display, upon environmental constraints, a chaperone function resulting from a redox-dependent conformational switch. In this work, using biochemical and genetic approaches, we aimed to unravel the factors regulating the redox status and the conformation of the plastidial 2-Cys peroxiredoxin (2-Cys PRX) in plants. In Arabidopsis, we show that in optimal growth conditions, the overoxidation level mainly depends on the availability of thioredoxin-related electron donors, but not on sulfiredoxin, the enzyme reducing the 2-Cys PRX overoxidized form. We also observed that upon various physiological temperature, osmotic and light stress conditions, the overoxidation level and oligomerization status of 2-Cys PRX can moderately vary depending on the constraint type. Further, no major change was noticed regarding protein conformation in water-stressed Arabidopsis, barley and potato plants, whereas species-dependent up- and down-variations in overoxidation were observed. In contrast, both 2-Cys PRX overoxidation and oligomerization were strongly induced during a severe oxidative stress generated by methyl viologen. From these data, revealing that the oligomerization status of plant 2-Cys PRX does not exhibit important variation and is not tightly linked to the protein redox status upon physiologically relevant environmental constraints, the possible in planta functions of 2-Cys PRX are discussed. © 2015 John Wiley & Sons Ltd.

  6. Bud structure, position and fate generate various branching patterns along shoots of closely related Rosaceae species: a review

    PubMed Central

    Costes, Evelyne; Crespel, Laurent; Denoyes, Béatrice; Morel, Philippe; Demene, Marie-Noëlle; Lauri, Pierre-Eric; Wenden, Bénédicte

    2014-01-01

    Branching in temperate plants is closely linked to bud fates, either floral or vegetative. Here, we review how the fate of meristematic tissues contained in buds and their position along a shoot imprint specific branching patterns which differ among species. Through examples chosen in closely related species in different genera of the Rosaceae family, a panorama of patterns is apparent. Patterns depend on whether vegetative and floral buds are borne individually or together in mixed buds, develop as the shoot grows or after a rest period, and are located in axillary or terminal positions along the parent shoot. The resulting branching patterns are conserved among varieties in a given species but progressively change with the parent shoot length during plant ontogeny. They can also be modulated by agronomic and environmental conditions. The existence of various organizations in the topology and fate of meristematic tissues and their appendages in closely related species questions the between-species conservation of physiological and molecular mechanisms leading to bud outgrowth vs. quiescence and to floral induction vs. vegetative development. PMID:25520729

  7. Landscape and plant physiological controls on water dynamics and forest productivity within a watershed

    NASA Astrophysics Data System (ADS)

    Hu, Jia; Jencso, Kelsey; Looker, Nathaniel; Martin, Justin; Hoylman, Zachary

    2015-04-01

    Across the Western U.S., declining snowpacks have resulted in increased water limitation, leading to reduced productivity in high elevation forests. While our current understanding of how forests respond to climate change is typically focused on measuring/modeling the physiological responses and climate feedbacks, our study aims to combine physiology with hydrology to examine how landscape topography modulates the sensitivity of forests to climate. In a forested watershed in Western Montana, we linked climate variability to the physical watershed characteristics and the physiological response of vegetation to examine forest transpiration and productivity rates. Across the entire watershed, we found a strong relationship between productivity and the topographic wetness index, a proxy for soil moisture storage. However, this relationship was highly dependent on the intensity of solar radiation, suggesting that at high elevations productivity was limited by temperature, while at low elevations productivity was limited by moisture. In order to identify the mechanisms responsible for this relationship, we then examined how different coniferous species respond to changing environmental and hydrologic regimes. We first examined transpiration and productivity rates at the hillslope scale at four plots, ranging in elevation and aspect across the watershed. We found trees growing in the hollows had higher transpiration and productivity rates than trees growing in the side slope, but that these differences were more pronounced at lower elevations. We then used oxygen isotope to examine water source use by different species across the watershed. We found that trees growing in the hollows used snowmelt for a longer period. This was most likely due to upslope subsidies of snowmelt water to the hollow areas. However, we found that trees growing at lower elevations used proportionally more snowmelt than trees at the higher elevations. This was most likely due to the trees at lower

  8. Are tropical small mammals physiologically vulnerable to Arrhenius effects and climate change?

    PubMed

    Lovegrove, Barry G; Canale, Cindy; Levesque, Danielle; Fluch, Gerhard; Reháková-Petrů, Milada; Ruf, Thomas

    2014-01-01

    There is some urgency in the necessity to incorporate physiological data into mechanistic, trait-based, demographic climate change models. Physiological responses at the individual level provide the mechanistic link between environmental changes and individual performances and hence population dynamics. Here we consider the causal relationship between ambient temperature (Ta) and metabolic rate (MR), namely, the Arrhenius effect, which is directly affected by global warming through increases in average global air temperatures and the increase in the frequency and intensity of extreme climate events. We measured and collated data for several small, free-ranging tropical arboreal mammals and evaluated their vulnerability to Arrhenius effects and putative heat stress associated with climate change. Skin temperatures (Tskin) were obtained from free-ranging tarsiers (Tarsius syrichta) on Bohol Island, Philippines. Core body temperature (Tb) was obtained from the greater hedgehog tenrec (Setifer setosus) and the gray brown mouse lemur (Microcebus ravelobensis) from Ankarafantsika, Madagascar. Tskin for another mouse lemur, Microcebus griseorufus, was obtained from the literature. All four species showed evidence of hyperthermia during the daytime rest phase in the form of either Tskin or Tb that was higher than the normothermic Tb during the nighttime active phase. Potentially, tropical arboreal mammals with the lowest MRs and Tb, such as tarsiers, are the most vulnerable to sustained heat stress because their Tb is already close to Ta. Climate change may involve increases in MRs due to Arrhenius effects, especially during the rest phase or during torpor and hibernation. The most likely outcome of increased Arrhenius effects with climate change will be an increase in energy expenditure at the expense of other critical functions such as reproduction or growth and will thus affect fitness. However, we propose that these hypothetical Arrhenius costs can be, and in some

  9. Stomatal structure and physiology do not explain differences in water use among montane eucalypts.

    PubMed

    Gharun, Mana; Turnbull, Tarryn L; Pfautsch, Sebastian; Adams, Mark A

    2015-04-01

    Understanding the regulation of water use at the whole-tree scale is critical to advancing the utility of physiological ecology, for example in its role in predictive hydrology of forested catchments. For three eucalypt species that dominate high-elevation catchments in south-eastern Australia, we examined if whole-tree water use could be related to three widely discussed regulators of water use: stomatal anatomy, sensitivity of stomata [i.e. stomatal conductance (g(s))] to environmental influences, and sapwood area. While daily tree water use varied sixfold among species, sap velocity and sapwood area varied in parallel. Combined, stomatal structure and physiology could not explain differences in species-specific water use. Species which exhibited the fastest (Eucalyptus delegatensis) and slowest (Eucalyptus pauciflora) rates of water use both exhibited greater capacity for physiological control of g(s) [indicated by sensitivity to vapour pressure deficit (VPD)] and a reduced capacity to limit g(s) anatomically [indicated by greater potential g(s) (g(max))]. Conversely, g(s) was insensitive to VPD and g(max) was lowest for Eucalyptus radiata, the species showing intermediate rates of water use. Improved knowledge of stomatal anatomy will help us to understand the capacity of species to regulate leaf-level water loss, but seems likely to remain of limited use for explaining rates of whole-tree water use in montane eucalypts at the catchment scale.

  10. Modeling Physiological Processes That Relate Toxicant Exposure and Bacterial Population Dynamics

    PubMed Central

    Klanjscek, Tin; Nisbet, Roger M.; Priester, John H.; Holden, Patricia A.

    2012-01-01

    Quantifying effects of toxicant exposure on metabolic processes is crucial to predicting microbial growth patterns in different environments. Mechanistic models, such as those based on Dynamic Energy Budget (DEB) theory, can link physiological processes to microbial growth. Here we expand the DEB framework to include explicit consideration of the role of reactive oxygen species (ROS). Extensions considered are: (i) additional terms in the equation for the “hazard rate” that quantifies mortality risk; (ii) a variable representing environmental degradation; (iii) a mechanistic description of toxic effects linked to increase in ROS production and aging acceleration, and to non-competitive inhibition of transport channels; (iv) a new representation of the “lag time” based on energy required for acclimation. We estimate model parameters using calibrated Pseudomonas aeruginosa optical density growth data for seven levels of cadmium exposure. The model reproduces growth patterns for all treatments with a single common parameter set, and bacterial growth for treatments of up to 150 mg(Cd)/L can be predicted reasonably well using parameters estimated from cadmium treatments of 20 mg(Cd)/L and lower. Our approach is an important step towards connecting levels of biological organization in ecotoxicology. The presented model reveals possible connections between processes that are not obvious from purely empirical considerations, enables validation and hypothesis testing by creating testable predictions, and identifies research required to further develop the theory. PMID:22328915

  11. Variable setpoint as a relaxing component in physiological control.

    PubMed

    Risvoll, Geir B; Thorsen, Kristian; Ruoff, Peter; Drengstig, Tormod

    2017-09-01

    Setpoints in physiology have been a puzzle for decades, and especially the notion of fixed or variable setpoints have received much attention. In this paper, we show how previously presented homeostatic controller motifs, extended with saturable signaling kinetics, can be described as variable setpoint controllers. The benefit of a variable setpoint controller is that an observed change in the concentration of the regulated biochemical species (the controlled variable) is fully characterized, and is not considered a deviation from a fixed setpoint. The variation in this biochemical species originate from variation in the disturbances (the perturbation), and thereby in the biochemical species representing the controller (the manipulated variable). Thus, we define an operational space which is spanned out by the combined high and low levels of the variations in (1) the controlled variable, (2) the manipulated variable, and (3) the perturbation. From this operational space, we investigate whether and how it imposes constraints on the different motif parameters, in order for the motif to represent a mathematical model of the regulatory system. Further analysis of the controller's ability to compensate for disturbances reveals that a variable setpoint represents a relaxing component for the controller, in that the necessary control action is reduced compared to that of a fixed setpoint controller. Such a relaxing component might serve as an important property from an evolutionary point of view. Finally, we illustrate the principles using the renal sodium and aldosterone regulatory system, where we model the variation in plasma sodium as a function of salt intake. We show that the experimentally observed variations in plasma sodium can be interpreted as a variable setpoint regulatory system. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  12. Euryhaline pufferfish NBCe1 differs from nonmarine species NBCe1 physiology

    PubMed Central

    Plata, Consuelo; Kurita, Yukihiro; Kato, Akira; Hirose, Shigehisa; Romero, Michael F.

    2012-01-01

    Marine fish drink seawater and eliminate excess salt by active salt transport across gill and gut epithelia. Euryhaline pufferfish (Takifugu obscurus, mefugu) forms a CaCO3 precipitate on the luminal gut surface after transitioning to seawater. NBCe1 (Slc4a4) at the basolateral membrane of intestinal epithelial cell plays a major role in transepithelial intestinal HCO3− secretion and is critical for mefugu acclimation to seawater. We assayed fugu-NBCe1 (fNBCe1) activity in the Xenopus oocyte expression system. Similar to NBCe1 found in other species, fNBCe1 is an electrogenic Na+/HCO3− cotransporter and sensitive to the stilbene inhibitor DIDS. However, our experiments revealed several unique and distinguishable fNBCe1 transport characteristics not found in mammalian or other teleost NBCe1-orthologs: electrogenic Li+/nHCO3− cotransport; HCO3− independent, DIDS-insensitive transport; and increased basal intracellular Na+ accumulation. fNBCe1 is a voltage-dependent Na+/nHCO3− cotransporter that rectifies, independently from the extracellular Na+ or HCO3− concentration, around −60 mV. Na+ removal (0Na+ prepulse) is necessary to produce the true HCO3−-elicited current. HCO3− addition results in huge outward currents with quick current decay. Kinetic analysis of HCO3− currents reveals that fNBCe1 has a much higher transport capacity (higher maximum current) and lower affinity (higher Km) than human kidney NBCe1 (hkNBCe1) does in the physiological range (membrane potential = −80 mV; [HCO3−] = 10 mM). In this state, fNBCe1 is in favor of operating as transepithelial HCO3− secretion, opposite of hkNBCe1, from blood to the luminal side. Thus, fugu-NBCe1 represents the first ortholog-based tool to study amino acid substitutions in NBCe1 and how those change ion and voltage dependence. PMID:22159080

  13. Simple Identification of Human Taenia Species by Multiplex Loop-Mediated Isothermal Amplification in Combination with Dot Enzyme-Linked Immunosorbent Assay

    PubMed Central

    Nkouawa, Agathe; Sako, Yasuhito; Okamoto, Munehiro; Ito, Akira

    2016-01-01

    For differential detection of Taenia solium, Taenia saginata, and Taenia asiatica, loop-mediated isothermal amplification (LAMP) assay targeting the cytochrome c oxidase subunit 1 gene has been recently developed and shown to be sensitive, specific, and effective. However, to achieve differential identification, one specimen requires three reaction mixtures containing a primer set of each Taenia species separately, which is complex and time consuming and increases the risk of cross-contamination. In this study, we developed a simple differential identification of human Taenia species using multiplex LAMP (mLAMP) in combination with dot enzyme-linked immunosorbent assay (dot-ELISA). Forward inner primers of T. solium, T. saginata, and T. asiatica labeled with fluorescein isothiocyanate (FITC), digoxigenin (DIG), and tetramethylrhodamine (TAMRA), respectively, and biotin-labeled backward inner primers were used in mLAMP. The mLAMP assay succeeded in specific amplification of each respective target gene in a single tube. Furthermore, the mLAMP product from each species was easily distinguished by dot-ELISA with an antibody specific for FITC, DIG, or TAMRA. The mLAMP assay in combination with dot-ELISA will make identification of human Taenia species simpler, easier, and more practical. PMID:27044566

  14. The hypocretins/orexins: integrators of multiple physiological functions

    PubMed Central

    Li, Jingcheng; Hu, Zhian; Lecea, Luis

    2014-01-01

    The hypocretins (Hcrts), also known as orexins, are two peptides derived from a single precursor produced in the posterior lateral hypothalamus. Over the past decade, the orexin system has been associated with numerous physiological functions, including sleep/arousal, energy homeostasis, endocrine, visceral functions and pathological states, such as narcolepsy and drug abuse. Here, we review the discovery of Hcrt/orexins and their receptors and propose a hypothesis as to how the orexin system orchestrates these multifaceted physiological functions. Linked ArticlesThis article is part of a themed section on Orexin Receptors. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-2 PMID:24102345

  15. Life-Stage Physiologically-Based Pharmacokinetic (PBPK) ...

    EPA Pesticide Factsheets

    This presentation discusses methods used to extrapolate from in vitro high-throughput screening (HTS) toxicity data for an endocrine pathway to in vivo for early life stages in humans, and the use of a life stage PBPK model to address rapidly changing physiological parameters. Adverse outcome pathways (AOPs), in this case endocrine disruption during development, provide a biologically-based framework for linking molecular initiating events triggered by chemical exposures to key events leading to adverse outcomes. The application of AOPs to human health risk assessment requires extrapolation of in vitro HTS toxicity data to in vivo exposures (IVIVE) in humans, which can be achieved through the use of a PBPK/PD model. Exposure scenarios for chemicals in the PBPK/PD model will consider both placental and lactational transfer of chemicals, with a focus on age dependent dosimetry during fetal development and after birth for a nursing infant. This talk proposes a universal life-stage computational model that incorporates changing physiological parameters to link environmental exposures to in vitro levels of HTS assays related to a developmental toxicological AOP for vascular disruption. In vitro toxicity endpoints discussed are based on two mechanisms: 1) Fetal vascular disruption, and 2) Neurodevelopmental toxicity induced by altering thyroid hormone levels in neonates via inhibition of thyroperoxidase in the thyroid gland. Application of our Life-stage computati

  16. Influence of Population Variation of Physiological Parameters in Computational Models of Space Physiology

    NASA Technical Reports Server (NTRS)

    Myers, J. G.; Feola, A.; Werner, C.; Nelson, E. S.; Raykin, J.; Samuels, B.; Ethier, C. R.

    2016-01-01

    The earliest manifestations of Visual Impairment and Intracranial Pressure (VIIP) syndrome become evident after months of spaceflight and include a variety of ophthalmic changes, including posterior globe flattening and distension of the optic nerve sheath. Prevailing evidence links the occurrence of VIIP to the cephalic fluid shift induced by microgravity and the subsequent pressure changes around the optic nerve and eye. Deducing the etiology of VIIP is challenging due to the wide range of physiological parameters that may be influenced by spaceflight and are required to address a realistic spectrum of physiological responses. Here, we report on the application of an efficient approach to interrogating physiological parameter space through computational modeling. Specifically, we assess the influence of uncertainty in input parameters for two models of VIIP syndrome: a lumped-parameter model (LPM) of the cardiovascular and central nervous systems, and a finite-element model (FEM) of the posterior eye, optic nerve head (ONH) and optic nerve sheath. Methods: To investigate the parameter space in each model, we employed Latin hypercube sampling partial rank correlation coefficient (LHSPRCC) strategies. LHS techniques outperform Monte Carlo approaches by enforcing efficient sampling across the entire range of all parameters. The PRCC method estimates the sensitivity of model outputs to these parameters while adjusting for the linear effects of all other inputs. The LPM analysis addressed uncertainties in 42 physiological parameters, such as initial compartmental volume and nominal compartment percentage of total cardiac output in the supine state, while the FEM evaluated the effects on biomechanical strain from uncertainties in 23 material and pressure parameters for the ocular anatomy. Results and Conclusion: The LPM analysis identified several key factors including high sensitivity to the initial fluid distribution. The FEM study found that intraocular pressure and

  17. Diversity within the O-linked protein glycosylation systems of acinetobacter species.

    PubMed

    Scott, Nichollas E; Kinsella, Rachel L; Edwards, Alistair V G; Larsen, Martin R; Dutta, Sucharita; Saba, Julian; Foster, Leonard J; Feldman, Mario F

    2014-09-01

    The opportunistic human pathogen Acinetobacter baumannii is a concern to health care systems worldwide because of its persistence in clinical settings and the growing frequency of multiple drug resistant infections. To combat this threat, it is necessary to understand factors associated with disease and environmental persistence of A. baumannii. Recently, it was shown that a single biosynthetic pathway was responsible for the generation of capsule polysaccharide and O-linked protein glycosylation. Because of the requirement of these carbohydrates for virulence and the non-template driven nature of glycan biogenesis we investigated the composition, diversity, and properties of the Acinetobacter glycoproteome. Utilizing global and targeted mass spectrometry methods, we examined 15 strains and found extensive glycan diversity in the O-linked glycoproteome of Acinetobacter. Comparison of the 26 glycoproteins identified revealed that different A. baumannii strains target similar protein substrates, both in characteristics of the sites of O-glycosylation and protein identity. Surprisingly, glycan micro-heterogeneity was also observed within nearly all isolates examined demonstrating glycan heterogeneity is a widespread phenomena in Acinetobacter O-linked glycosylation. By comparing the 11 main glycoforms and over 20 alternative glycoforms characterized within the 15 strains, trends within the glycan utilized for O-linked glycosylation could be observed. These trends reveal Acinetobacter O-linked glycosylation favors short (three to five residue) glycans with limited branching containing negatively charged sugars such as GlcNAc3NAcA4OAc or legionaminic/pseudaminic acid derivatives. These observations suggest that although highly diverse, the capsule/O-linked glycan biosynthetic pathways generate glycans with similar characteristics across all A. baumannii. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Fine-scale distribution of zooplankton is linked to phytoplankton species composition and abundance in a North Norwegian fjord system

    NASA Astrophysics Data System (ADS)

    Norrbin, F.; Priou, P. D.; Varela, A. P.

    2016-02-01

    We studied the influence of dense layers of phytoplankton and aggregates on shaping the vertical distribution of zooplankton in a North Norwegian fjord using a Video Plankton Recorder (VPR). This instrument provided fine-scale vertical distribution (cm-m scale) of planktonic organisms as well as aggregates of marine snow in relation to environmental conditions. At the height - later stage of the spring phytoplankton bloom in May, the outer part of the fjord was dominated by Phaeocystis pouchetii, while diatoms (Chaetoceros spp.) were dominating in the innermost basin. Small copepods species like Pseudocalanus spp., Microsetella norvegica, and Oithona spp. prevailed over larger copepod species in the inner part of the fjord whereas the outer part was dominated by large copepods like Calanus finmarchicus. While the zooplankton where spread out over the water column during the early stage of the bloom, in May they were linked to the phytoplankton vertical distribution and in the winter situation they were found in deeper waters. Herbivorous zooplankton species were affected by phytoplankton species composition; C. finmarchicus and Pseudocalanus spp. avoided the dense layer of P. pouchetii while herbivorous zooplankton matched the distribution of the diatom-dominated bloom. Small, omnivorous copepod species like Microsetella sp., Oithona sp. and Pseudocalanus sp. were often associated with dense layers of snow aggregates. This distribution may provide a shelter from predators as well as a food source. Natural or anthropogenic-induced changes in phytoplankton composition and aggregate distribution may thus influence food-web interactions.

  19. Functional Groups Based on Leaf Physiology: Are they Spatially and Temporally Robust?

    NASA Technical Reports Server (NTRS)

    Foster, Tammy E.; Brooks, J. Renee

    2004-01-01

    The functional grouping hypothesis, which suggests that complexity in ecosystem function can be simplified by grouping species with similar responses, was tested in the Florida scrub habitat. Functional groups were identified based on how species in fire maintained Florida scrub regulate exchange of carbon and water with the atmosphere as indicated by both instantaneous gas exchange measurements and integrated measures of function (%N, delta C-13, delta N-15, C-N ratio). Using cluster analysis, five distinct physiologically-based functional groups were identified in the fire maintained scrub. These functional groups were tested to determine if they were robust spatially, temporally, and with management regime. Analysis of Similarities (ANOSIM), a non-parametric multivariate analysis, indicated that these five physiologically-based groupings were not altered by plot differences (R = -0.115, p = 0.893) or by the three different management regimes; prescribed burn, mechanically treated and burn, and fire-suppressed (R = 0.018, p = 0.349). The physiological groupings also remained robust between the two climatically different years 1999 and 2000 (R = -0.027, p = 0.725). Easy-to-measure morphological characteristics indicating functional groups would be more practical for scaling and modeling ecosystem processes than detailed gas-exchange measurements, therefore we tested a variety of morphological characteristics as functional indicators. A combination of non-parametric multivariate techniques (Hierarchical cluster analysis, non-metric Multi-Dimensional Scaling, and ANOSIM) were used to compare the ability of life form, leaf thickness, and specific leaf area classifications to identify the physiologically-based functional groups. Life form classifications (ANOSIM; R = 0.629, p 0.001) were able to depict the physiological groupings more adequately than either specific leaf area (ANOSIM; R = 0.426, p = 0.001) or leaf thickness (ANOSIM; R 0.344, p 0.001). The ability of

  20. Space Physiology within an Exercise Physiology Curriculum

    ERIC Educational Resources Information Center

    Carter, Jason R.; West, John B.

    2013-01-01

    Compare and contrast strategies remain common pedagogical practices within physiological education. With the support of an American Physiological Society Teaching Career Enhancement Award, we have developed a junior- or senior-level undergraduate curriculum for exercise physiology that compares and contrasts the physiological adaptations of…

  1. Physiologic Reference Ranges for Captive Black-Tailed Prairie Dogs (Cynomys ludovicianus)

    PubMed Central

    Keckler, M Shannon; Gallardo-Romero, Nadia F; Langham, Gregory L; Damon, Inger K; Karem, Kevin L; Carroll, Darin S

    2010-01-01

    The black-tailed prairie dog (Cynomys ludovicianus) is a member of the order Rodentia and the family Sciuridae. Ecologically, prairie dogs are a keystone species in prairie ecology. This species is used as an animal model for human gallbladder disease and diseases caused by infection with Clostridium difficile, Yersinia pestis, Francisella tularensis, and most recently, Orthopoxvirus. Despite increasing numbers of prairie dogs used in research and kept as pets, few data are available on their baseline physiology in animal facility housing conditions. To establish baseline physiologic reference ranges, we designed a study using 18 wild-caught black-tailed prairie dogs. Telemetry data were analyzed to establish circadian rhythms for activity and temperature. In addition, hematologic and serum chemistry analyses were performed. Baseline measurements were used to establish the mean for each animal, which then were compiled and analyzed to determine the reference ranges. Here we present physiologic data on serum chemistry and hematology profiles, as well as weight, core body temperature, and daily activity patterns for black-tailed prairie dogs. These results reflect the use of multiple measurements from species- and age-matched prairie dogs and likely will be useful to ecologists, scientists interested in using this animal model in research, and veterinarians caring for pet prairie dogs. PMID:20587156

  2. Human Cognitive Limitations. Broad, Consistent, Clinical Application of Physiological Principles Will Require Decision Support.

    PubMed

    Morris, Alan H

    2018-02-01

    Our education system seems to fail to enable clinicians to broadly understand core physiological principles. The emphasis on reductionist science, including "omics" branches of research, has likely contributed to this decrease in understanding. Consequently, clinicians cannot be expected to consistently make clinical decisions linked to best physiological evidence. This is a large-scale problem with multiple determinants, within an even larger clinical decision problem: the failure of clinicians to consistently link their decisions to best evidence. Clinicians, like all human decision-makers, suffer from significant cognitive limitations. Detailed context-sensitive computer protocols can generate personalized medicine instructions that are well matched to individual patient needs over time and can partially resolve this problem.

  3. N-fertilization has different effects on the growth, carbon and nitrogen physiology, and wood properties of slow- and fast-growing Populus species

    PubMed Central

    Luo, Zhi-Bin

    2012-01-01

    To investigate how N-fertilization affects the growth, carbon and nitrogen (N) physiology, and wood properties of poplars with contrasting growth characteristics, slow-growing (Populus popularis, Pp) and fast-growing (P. alba×P. glandulosa, Pg) poplar saplings were exposed to different N levels. Above-ground biomass, leaf area, photosynthetic rates (A), instantaneous photosynthetic nitrogen use efficiency (PNUE i), chlorophyll and foliar sugar concentrations were higher in Pg than in Pp. Foliar nitrate reductase (NR) activities and root glutamate synthase (GOGAT) activities were higher in Pg than in Pp as were the N amount and NUE of new shoots. Lignin contents and calorific values of Pg wood were less than that of Pp wood. N-fertilization reduced root biomass of Pg more than of Pp, but increased leaf biomass, leaf area, A, and PNUEi of Pg more than of Pp. Among 13 genes involved in the transport of ammonium or nitrate or in N assimilation, transcripts showed more pronounced changes to N-fertilization in Pg than in Pp. Increases in NR activities and N contents due to N-fertilization were larger in Pg than in Pp. In both species, N-fertilization resulted in lower calorific values as well as shorter and wider vessel elements/fibres. These results suggest that growth, carbon and N physiology, and wood properties are more sensitive to increasing N availability in fast-growing poplars than in slow-growing ones, which is probably due to prioritized resource allocation to the leaves and accelerated N physiological processes in fast-growing poplars under higher N levels. PMID:23028021

  4. N-fertilization has different effects on the growth, carbon and nitrogen physiology, and wood properties of slow- and fast-growing Populus species.

    PubMed

    Li, Hong; Li, Mengchun; Luo, Jie; Cao, Xu; Qu, Long; Gai, Ying; Jiang, Xiangning; Liu, Tongxian; Bai, Hua; Janz, Dennis; Polle, Andrea; Peng, Changhui; Luo, Zhi-Bin

    2012-10-01

    To investigate how N-fertilization affects the growth, carbon and nitrogen (N) physiology, and wood properties of poplars with contrasting growth characteristics, slow-growing (Populus popularis, Pp) and fast-growing (P. alba×P. glandulosa, Pg) poplar saplings were exposed to different N levels. Above-ground biomass, leaf area, photosynthetic rates (A), instantaneous photosynthetic nitrogen use efficiency (PNUE (i)), chlorophyll and foliar sugar concentrations were higher in Pg than in Pp. Foliar nitrate reductase (NR) activities and root glutamate synthase (GOGAT) activities were higher in Pg than in Pp as were the N amount and NUE of new shoots. Lignin contents and calorific values of Pg wood were less than that of Pp wood. N-fertilization reduced root biomass of Pg more than of Pp, but increased leaf biomass, leaf area, A, and PNUE(i) of Pg more than of Pp. Among 13 genes involved in the transport of ammonium or nitrate or in N assimilation, transcripts showed more pronounced changes to N-fertilization in Pg than in Pp. Increases in NR activities and N contents due to N-fertilization were larger in Pg than in Pp. In both species, N-fertilization resulted in lower calorific values as well as shorter and wider vessel elements/fibres. These results suggest that growth, carbon and N physiology, and wood properties are more sensitive to increasing N availability in fast-growing poplars than in slow-growing ones, which is probably due to prioritized resource allocation to the leaves and accelerated N physiological processes in fast-growing poplars under higher N levels.

  5. Evaluation of physiological stress in Australian wildlife: Embracing pioneering and current knowledge as a guide to future research directions.

    PubMed

    Narayan, Edward J

    2017-04-01

    Australia has a rich terrestrial and marine biodiversity and high species endemism. However, the oceanic continent is facing the biodiversity extinction crisis. The primary factors are anthropogenic induced environmental changes, including wildlife habitat destruction through urbanisation and predation by feral animals (e.g. red foxes and feral cats), increased severity of diseases (e.g. chytridiomycosis and chlamydia), and increased occurrence of summer heat waves and bush fires. Stress physiology is a dynamic field of science based on the studies of endocrine system functioning in animals. The primary stress regulator is the hypothalamo-pituitary adrenal (interrenal) axis and glucocorticoids (corticosterone and/or cortisol) provide stress index across vertebrate groups. This review paper focuses on physiological stress assessments in Australian wildlife using examples of amphibians, reptiles, birds and marsupials. I provide a thorough discussion of pioneering studies that have shaped the field of stress physiology in Australian wildlife species. The main findings point towards key aspects of stress endocrinology research, such as quantification of biologically active levels of glucocorticoids, development of species-specific GC assays and applications of stress physiology approaches in field ecology and wildlife conservation programs. Furthermore, I also discuss the importance of chronic stress assessment in wildlife populations. Finally, I provide a conceptual framework presenting key research questions in areas of wildlife stress physiology research. In conclusion, wildlife management programs can immensely benefit from stress physiology assessments to gauge the impact of human interventions on wildlife such as species translocation and feral species eradication. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Comparative physiology of a central hardwood old-growth forest canopy and forest gap

    Treesearch

    A. R. Gillespie; J. Waterman; K. Saylors

    1993-01-01

    Concerns of poor oak regeneration, changing climate, biodiversity patterns, and carbon cycling in the Central Hardwoods have prompted ecological and physiological studies of old-growth forests and their role in maintaining the landscape. To examine the effects of old-growth canopy structure on the physiological productivity of overstory and understory species, we...

  7. Knowledge Retention of Exercise Physiology Content between Athletes and Nonathletes

    ERIC Educational Resources Information Center

    Clark, Brian; Webster, Collin; Druger, Marvin

    2006-01-01

    Based on the idea that learning is linked to personal relevance, this study examined knowledge retention of exercise physiology content between college athletes and nonathletes. No differences were observed between the groups. These findings have implications on understanding the relationship between personal relevance and memory. (Contains 1…

  8. Physiological Adjustments of Leaf Respiration to Atmospheric Warming in Betula alleghaniensis and Quercus rubra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vollmar, A.; Gunderson, C.

    2006-01-01

    Global air temperatures are predicted to rise 1° to 4.5° Celsius by the year 2100. This climatic change is expected to have a great effect on the succession and migration of temperate deciduous forest species. Most physiologically based models of forest response to climatic change focus on the ecosystems as a whole instead of on individual tree species, assuming that the effects of warming on respiration are generally the same for each species, and that processes can not adjust to a changing climate. Experimental data suggest that physiological adjustments are possible, but there is a lack of data in deciduousmore » species. In order to correctly model the effects of climate change on temperate species, species-specific respiration acclimation (adjustment) to rising temperatures is being determined in this experiment. Two temperate deciduous tree species Betula alleghaniensis (BA) and Quercus rubra (QR) were grown over a span of four years in open-top chambers and subjected to two different temperature treatments; ambient and ambient plus 4° Celsius (E4). Between 0530 hours and 1100 hours, respiration was measured over a range of leaf temperatures on several comparable, fully expanded leaves in each treatment. Circular punches were taken from the leaves and dried at 60°C to determine leaf mass per area (LMA). Respiration rates at a common temperature decreased by 15-18% in both species, and the entire resperation versus temperature curve shifted by at least 4°C, indicating a large degree of physiological acclimation. Foliar mass per area decreased with increasing growth temperature for both species. It can be concluded that there is a relationship between leaf respiration and foliar mass as it relates to respiratory acclimation, and that these two species had similar patterns of adjustment to warming.« less

  9. The two "rules of speciation" in species with young sex chromosomes.

    PubMed

    Filatov, Dmitry A

    2018-05-21

    The two "rules of speciation," Haldane's rule (HR) and the large-X effect (LXE), are thought to be caused by recessive species incompatibilities exposed in the phenotype due to the hemizygosity of X-linked genes in the heterogametic sex. Thus, the reports of HR and the LXE in species with recently evolved non- or partially degenerate Y-chromosomes, such as Silene latifolia and its relatives, were surprising. Here, I argue that rapid species-specific degeneration of Y-linked genes and associated adjustment of expression of X-linked gametologs (dosage compensation) may lead to rapid evolution of sex-linked species incompatibilities. This process is likely to be too slow in species with old degenerate Y-chromosomes (e.g., in mammals), but Y-degeneration in species with young gene-rich sex chromosomes may be fast enough to play a significant role in speciation. To illustrate this point, I report the analysis of Y-degeneration and the associated evolution of gene expression on the X-chromosome of S. latifolia and Silene dioica, a close relative that shares the same recently evolved sex chromosomes. Despite the recent (≤1MY) divergence of the two species, ~7% of Y-linked genes have undergone degeneration in one but not the other species. This species-specific degeneration appears to drive faster expression divergence of X-linked genes, which may account for HR and the LXE reported for these species. Furthermore, I suggest that "exposure" of autosomal or sex-linked recessive species incompatibilities in the haploid plant gametophyte may mimic the presence of HR in plants. Both haploid expression and species-specific Y-degeneration need to receive more attention if we are to understand the role of these processes in speciation. © 2018 John Wiley & Sons Ltd.

  10. A conceptual framework for the emerging discipline of conservation physiology

    PubMed Central

    Coristine, Laura E.; Robillard, Cassandra M.; Kerr, Jeremy T.; O'Connor, Constance M.; Lapointe, Dominique; Cooke, Steven J.

    2014-01-01

    Current rates of biodiversity decline are unprecedented and largely attributed to anthropogenic influences. Given the scope and magnitude of conservation issues, policy and management interventions must maximize efficiency and efficacy. The relatively new field of conservation physiology reveals the physiological mechanisms associated with population declines, animal–environment relationships and population or species tolerance thresholds, particularly where these relate to anthropogenic factors that necessitate conservation action. We propose a framework that demonstrates an integrative approach between physiology, conservation and policy, where each can inform the design, conduct and implementation of the other. Each junction of the conservation physiology process has the capacity to foster dialogue that contributes to effective implementation, monitoring, assessment and evaluation. This approach enables effective evaluation and implementation of evidence-based conservation policy and management decisions through a process of ongoing refinement, but may require that scientists (from the disciplines of both physiology and conservation) and policy-makers bridge interdisciplinary knowledge gaps. Here, we outline a conceptual framework that can guide and lead developments in conservation physiology, as well as promote innovative research that fosters conservation-motivated policy. PMID:27293654

  11. Differences in the Vulnerability of Waterbird Species to Botulism Outbreaks in Mediterranean Wetlands: an Assessment of Ecological and Physiological Factors.

    PubMed

    Anza, I; Vidal, D; Feliu, J; Crespo, E; Mateo, R

    2016-05-15

    Avian botulism kills thousands of waterbirds every year, including endangered species, but information about the differences between species in vulnerability to botulism outbreaks and the capacity to act as carriers of Clostridium botulinum is still poorly known. Here, we estimated the vulnerability to botulism of 11 waterbird species from Mediterranean wetlands by comparing the number of affected birds with the census of individuals at risk. The capacity of different species to act as carriers was studied by detecting the presence of the C. botulinum type C/D botulinum neurotoxin (BoNT) gene in fecal samples and prey items of waterbirds in the wild and by the serial sampling of cloacal swabs of birds affected by botulism. We found differences among species in their vulnerabilities to botulism, probably related to feeding habits, season of arrival, turnover, and, possibly, phylogenetic resilience. The globally endangered white-headed duck (Oxyura leucocephala) showed mortality rates in the studied outbreaks of 7% and 17% of the maximum census, which highlights botulism as a risk factor for the conservation of the species. Invasive water snails, such as Physa acuta, may be important drivers in botulism epidemiology, because 30% of samples tested positive for the BoNT gene during outbreaks. Finally, our results show that birds may excrete the pathogen for up to 7 days, and some individuals can do it for longer periods. Rails and ducks excreted C. botulinum more often and for longer times than gulls, which could be related to their digestive physiology (i.e., cecum development). Botulism is an important cause of mortality in waterbirds, including some endangered species. The global climate change may have consequences in the ecology of wetlands that favor the occurrence of botulism outbreaks. Here, we offer some information to understand the ecology of this disease that can be useful to cope with these global changes in the future. We have found that some species (i

  12. Facial Shape Analysis Identifies Valid Cues to Aspects of Physiological Health in Caucasian, Asian, and African Populations.

    PubMed

    Stephen, Ian D; Hiew, Vivian; Coetzee, Vinet; Tiddeman, Bernard P; Perrett, David I

    2017-01-01

    Facial cues contribute to attractiveness, including shape cues such as symmetry, averageness, and sexual dimorphism. These cues may represent cues to objective aspects of physiological health, thereby conferring an evolutionary advantage to individuals who find them attractive. The link between facial cues and aspects of physiological health is therefore central to evolutionary explanations of attractiveness. Previously, studies linking facial cues to aspects of physiological health have been infrequent, have had mixed results, and have tended to focus on individual facial cues in isolation. Geometric morphometric methodology (GMM) allows a bottom-up approach to identifying shape correlates of aspects of physiological health. Here, we apply GMM to facial shape data, producing models that successfully predict aspects of physiological health in 272 Asian, African, and Caucasian faces - percentage body fat (21.0% of variance explained), body mass index (BMI; 31.9%) and blood pressure (BP; 21.3%). Models successfully predict percentage body fat and blood pressure even when controlling for BMI, suggesting that they are not simply measuring body size. Predicted values of BMI and BP, but not percentage body fat, correlate with health ratings. When asked to manipulate the shape of faces along the physiological health variable axes (as determined by the models), participants reduced predicted BMI, body fat and (marginally) BP, suggesting that facial shape provides a valid cue to aspects of physiological health.

  13. Facial Shape Analysis Identifies Valid Cues to Aspects of Physiological Health in Caucasian, Asian, and African Populations

    PubMed Central

    Stephen, Ian D.; Hiew, Vivian; Coetzee, Vinet; Tiddeman, Bernard P.; Perrett, David I.

    2017-01-01

    Facial cues contribute to attractiveness, including shape cues such as symmetry, averageness, and sexual dimorphism. These cues may represent cues to objective aspects of physiological health, thereby conferring an evolutionary advantage to individuals who find them attractive. The link between facial cues and aspects of physiological health is therefore central to evolutionary explanations of attractiveness. Previously, studies linking facial cues to aspects of physiological health have been infrequent, have had mixed results, and have tended to focus on individual facial cues in isolation. Geometric morphometric methodology (GMM) allows a bottom–up approach to identifying shape correlates of aspects of physiological health. Here, we apply GMM to facial shape data, producing models that successfully predict aspects of physiological health in 272 Asian, African, and Caucasian faces – percentage body fat (21.0% of variance explained), body mass index (BMI; 31.9%) and blood pressure (BP; 21.3%). Models successfully predict percentage body fat and blood pressure even when controlling for BMI, suggesting that they are not simply measuring body size. Predicted values of BMI and BP, but not percentage body fat, correlate with health ratings. When asked to manipulate the shape of faces along the physiological health variable axes (as determined by the models), participants reduced predicted BMI, body fat and (marginally) BP, suggesting that facial shape provides a valid cue to aspects of physiological health. PMID:29163270

  14. Seasonal variability in physiological and anatomical traits contributes to invasion success of Prosopis juliflora in tropical dry forest.

    PubMed

    Oliveira, Marciel T; Souza, Gustavo M; Pereira, Silvia; Oliveira, Deborah A S; Figueiredo-Lima, Karla V; Arruda, Emília; Santos, Mauro G

    2017-03-01

    We investigated whether there were consistent differences in the physiological and anatomical traits and phenotypic variability of an invasive (Prosopis juliflora (Sw.) DC.) and native species (Anadenanthera colubrina (Vell.) Brenan) in response to seasonality in a tropical dry forest. The water potential, organic solutes, gas exchange, enzymes of the antioxidant system, products of oxidative stress and anatomical parameters were evaluated in both species in response to seasonality. An analysis of physiological responses indicated that the invasive P. juliflora exhibited higher response in net photosynthetic rate to that of the native species between seasons. Higher values of water potential of the invasive species than those of the native species in the dry season indicate a more efficient mechanism for water regulation in the invasive species. The invasive species exhibits a thicker cuticle and trichomes, which can reduce transpiration. In combination, the increased epidermal thickness and the decreased thickness of the parenchyma in the dry season may contribute to water saving. Our data suggest a higher variability in anatomical traits in the invasive species as a response to seasonality, whereas physiological traits did not present a clear pattern of response. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Functional Groups Based on Leaf Physiology: Are they Spatially and Temporally Robust?

    NASA Technical Reports Server (NTRS)

    Foster, Tammy E.; Brooks, J. Renee; Quincy, Charles (Technical Monitor)

    2002-01-01

    The functional grouping hypothesis, which suggests that complexity in function can be simplified by grouping species with similar responses, was tested in the Florida scrub habitat. Functional groups were identified based on how species in fire maintained FL scrub function in terms of carbon, water and nitrogen dynamics. The suite of physiologic parameters measured to determine function included both instantaneous gas exchange measurements obtained from photosynthetic light response curves and integrated measures of function. Using cluster analysis, five distinct physiologically-based functional groups were identified. Using non-parametric multivariate analyses, it was determined that these five groupings were not altered by plot differences or by the three different management regimes; prescribed burn, mechanically treated and burn, and fire-suppressed. The physiological groupings also remained robust between the two years 1999 and 2000. In order for these groupings to be of use for scaling ecosystem processes, there needs to be an easy-to-measure morphological indicator of function. Life form classifications were able to depict the physiological groupings more adequately than either specific leaf area or leaf thickness. THe ability of life forms to depict the groupings was improved by separating the parasitic Ximenia americana from the shrub category.

  16. Linking epigenetic function to electrostatics: The DNMT2 structural model example.

    PubMed

    Vieira, Gilberto Cavalheiro; Vieira, Gustavo Fioravanti; Sinigaglia, Marialva; Silva Valente, Vera Lúcia da

    2017-01-01

    The amino acid sequence of DNMT2 is very similar to the catalytic domains of bacterial and eukaryotic proteins. However, there is great variability in the region of recognition of the target sequence. While bacterial DNMT2 acts as a DNA methyltransferase, previous studies have indicated low DNA methylation activity in eukaryotic DNMT2, with preference by tRNA methylation. Drosophilids are known as DNMT2-only species and the DNA methylation phenomenon is a not elucidated case yet, as well as the ontogenetic and physiologic importance of DNMT2 for this species group. In addition, more recently study showed that methylation in the genome in Drosophila melanogaster is independent in relation to DNMT2. Despite these findings, Drosophilidae family has more than 4,200 species with great ecological diversity and historical evolution, thus we, therefore, aimed to examine the drosophilids DNMT2 in order to verify its conservation at the physicochemical and structural levels in a functional context. We examined the twenty-six DNMT2 models generated by molecular modelling and five crystallographic structures deposited in the Protein Data Bank (PDB) using different approaches. Our results showed that despite sequence and structural similarity between species close related, we found outstanding differences when they are analyzed in the context of surface distribution of electrostatic properties. The differences found in the electrostatic potentials may be linked with different affinities and processivity of DNMT2 for its different substrates (DNA, RNA or tRNA) and even for interactions with other proteins involved in the epigenetic mechanisms.

  17. Linking epigenetic function to electrostatics: The DNMT2 structural model example

    PubMed Central

    Vieira, Gustavo Fioravanti; da Silva Valente, Vera Lúcia

    2017-01-01

    The amino acid sequence of DNMT2 is very similar to the catalytic domains of bacterial and eukaryotic proteins. However, there is great variability in the region of recognition of the target sequence. While bacterial DNMT2 acts as a DNA methyltransferase, previous studies have indicated low DNA methylation activity in eukaryotic DNMT2, with preference by tRNA methylation. Drosophilids are known as DNMT2-only species and the DNA methylation phenomenon is a not elucidated case yet, as well as the ontogenetic and physiologic importance of DNMT2 for this species group. In addition, more recently study showed that methylation in the genome in Drosophila melanogaster is independent in relation to DNMT2. Despite these findings, Drosophilidae family has more than 4,200 species with great ecological diversity and historical evolution, thus we, therefore, aimed to examine the drosophilids DNMT2 in order to verify its conservation at the physicochemical and structural levels in a functional context. We examined the twenty-six DNMT2 models generated by molecular modelling and five crystallographic structures deposited in the Protein Data Bank (PDB) using different approaches. Our results showed that despite sequence and structural similarity between species close related, we found outstanding differences when they are analyzed in the context of surface distribution of electrostatic properties. The differences found in the electrostatic potentials may be linked with different affinities and processivity of DNMT2 for its different substrates (DNA, RNA or tRNA) and even for interactions with other proteins involved in the epigenetic mechanisms. PMID:28575027

  18. Simple Identification of Human Taenia Species by Multiplex Loop-Mediated Isothermal Amplification in Combination with Dot Enzyme-Linked Immunosorbent Assay.

    PubMed

    Nkouawa, Agathe; Sako, Yasuhito; Okamoto, Munehiro; Ito, Akira

    2016-06-01

    For differential detection of Taenia solium, Taenia saginata, and Taenia asiatica, loop-mediated isothermal amplification (LAMP) assay targeting the cytochrome c oxidase subunit 1 gene has been recently developed and shown to be sensitive, specific, and effective. However, to achieve differential identification, one specimen requires three reaction mixtures containing a primer set of each Taenia species separately, which is complex and time consuming and increases the risk of cross-contamination. In this study, we developed a simple differential identification of human Taenia species using multiplex LAMP (mLAMP) in combination with dot enzyme-linked immunosorbent assay (dot-ELISA). Forward inner primers of T. solium, T. saginata, and T. asiatica labeled with fluorescein isothiocyanate (FITC), digoxigenin (DIG), and tetramethylrhodamine (TAMRA), respectively, and biotin-labeled backward inner primers were used in mLAMP. The mLAMP assay succeeded in specific amplification of each respective target gene in a single tube. Furthermore, the mLAMP product from each species was easily distinguished by dot-ELISA with an antibody specific for FITC, DIG, or TAMRA. The mLAMP assay in combination with dot-ELISA will make identification of human Taenia species simpler, easier, and more practical. © The American Society of Tropical Medicine and Hygiene.

  19. Physiological Linkage in Couples and its Implications for Individual and Interpersonal Functioning: A Literature Review

    PubMed Central

    Timmons, Adela C.; Margolin, Gayla; Saxbe, Darby E.

    2015-01-01

    Do partners’ levels of physiological arousal become linked in close relationships? The term “physiological linkage” describes covariation between people in their moment-to-moment physiological states. The current review presents a conceptual framework to guide research on linkage in romantic relationships and discusses the potential implications of being “linked.” Evidence of linkage was found across a broad range of physiological indices and in a variety of contexts, including during laboratory-based conflict and in daily life. Four hypotheses regarding how linkage relates to individual and interpersonal functioning are evaluated: (1) co-activation of the sympathetic nervous system or hypothalamic-pituitary adrenal axis is “bad,” (2) moderate physiological linkage is “just right,” (3) physiological linkage is problematic if the individual or couple is overloaded, and (4) the implications of physiological linkage depend on the emotional context. We found partial support for the first hypothesis and determined that more research is needed to evaluate the remaining hypotheses. Linkage in cortisol was negatively associated with relationship satisfaction; but at the same time, linkage in multiple systems was positively associated with indices of relationship connectedness, such as the amount of time spent together and the ability to identify the emotions of one’s partner. These results suggest that linkage may confer benefits but also may put couples at risk if they become entrenched in patterns of conflict or stress. With research in this area burgeoning in recent years, this review indicates that linkage is a promising construct with applications for interventions targeting individual health and couple functioning. PMID:26147932

  20. Are the metabolomic responses to folivory of closely related plant species linked to macroevolutionary and plant-folivore coevolutionary processes?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivas-Ubach, Albert; Hódar, José A.; Sardans, Jordi

    The debate whether the coevolution of plants and insects or macroevolutionary processes (phylogeny) is the main driver determining the arsenal of molecular defensive compounds of plants remains unresolved. Attacks by herbivorous insects affect not only the composition of defensive compounds in plants but the entire metabolome (the set of molecular metabolites), including defensive compounds. Metabolomes are the final products of genotypes and are directly affected by macroevolutionary processes, so closely related species should have similar metabolomic compositions and may respond in similar ways to attacks by folivores. We analyzed the elemental compositions and metabolomes of needles from Pinus pinaster, P.more » nigra and P. sylvestris to determine if these closely related Pinus species with different coevolutionary histories with the caterpillars of the processionary moth respond similarly to attacks by this lepidopteran. All pines had different metabolomes and metabolic responses to herbivorous attack. The metabolomic variation among the pine species and the responses to folivory reflected their macroevolutionary relationships, with P. pinaster having the most divergent metabolome. The concentrations of phenolic metabolites were generally not higher in the attacked trees, which had lower concentrations of terpenes, suggesting that herbivores avoid individuals with high concentrations of terpenes. Our results suggest that macroevolutionary history plays important roles in the metabolomic responses of these pine species to folivory, but plant-insect coevolution probably constrains those responses. Combinations of different evolutionary factors and trade-offs are likely responsible for the different responses of each species to folivory, which is not necessarily exclusively linked to plant-insect coevolution.« less

  1. Behavioral-Physiological Effects of Red Phosphorus Smoke Inhalation on Two Wildlife Species

    DTIC Science & Technology

    1989-04-01

    black-tailed prairie dog (Cynomys ludovicianus) and rock dove ( Columba livia ), with distributional range maps for each species shown as inserts...evaluations. This lack.of data led to the current work. Black-tailed prairie dogs (Cynomys ludovicianus) and rock doves ( Columba livia ) were selected ds...dove ( Columba livia ), with distributional range maps for each species shown as inserts. RP/BR-smoke exposure. As shown in Figure 1, both species share

  2. What is conservation physiology? Perspectives on an increasingly integrated and essential science†

    PubMed Central

    Cooke, Steven J.; Sack, Lawren; Franklin, Craig E.; Farrell, Anthony P.; Beardall, John; Wikelski, Martin; Chown, Steven L.

    2013-01-01

    Globally, ecosystems and their constituent flora and fauna face the localized and broad-scale influence of human activities. Conservation practitioners and environmental managers struggle to identify and mitigate threats, reverse species declines, restore degraded ecosystems, and manage natural resources sustainably. Scientific research and evidence are increasingly regarded as the foundation for new regulations, conservation actions, and management interventions. Conservation biologists and managers have traditionally focused on the characteristics (e.g. abundance, structure, trends) of populations, species, communities, and ecosystems, and simple indicators of the responses to environmental perturbations and other human activities. However, an understanding of the specific mechanisms underlying conservation problems is becoming increasingly important for decision-making, in part because physiological tools and knowledge are especially useful for developing cause-and-effect relationships, and for identifying the optimal range of habitats and stressor thresholds for different organisms. When physiological knowledge is incorporated into ecological models, it can improve predictions of organism responses to environmental change and provide tools to support management decisions. Without such knowledge, we may be left with simple associations. ‘Conservation physiology’ has been defined previously with a focus on vertebrates, but here we redefine the concept universally, for application to the diversity of taxa from microbes to plants, to animals, and to natural resources. We also consider ‘physiology’ in the broadest possible terms; i.e. how an organism functions, and any associated mechanisms, from development to bioenergetics, to environmental interactions, through to fitness. Moreover, we consider conservation physiology to include a wide range of applications beyond assisting imperiled populations, and include, for example, the eradication of invasive

  3. Asynchronous evolution of physiology and morphology in Anolis lizards.

    PubMed

    Hertz, Paul E; Arima, Yuzo; Harrison, Alexis; Huey, Raymond B; Losos, Jonathan B; Glor, Richard E

    2013-07-01

    Species-rich adaptive radiations typically diversify along several distinct ecological axes, each characterized by morphological, physiological, and behavioral adaptations. We test here whether different types of adaptive traits share similar patterns of evolution within a radiation by investigating patterns of evolution of morphological traits associated with microhabitat specialization and of physiological traits associated with thermal biology in Anolis lizards. Previous studies of anoles suggest that close relatives share the same "structural niche" (i.e., use the same types of perches) and are similar in body size and shape, but live in different "climatic niches" (i.e., use habitats with different insolation and temperature profiles). Because morphology is closely tied to structural niche and field active body temperatures are tied to climatic niches in Anolis, we expected phylogenetic analyses to show that morphology is more evolutionarily conservative than thermal physiology. In support of this hypothesis, we find (1) that thermal biology exhibits more divergence among recently diverged Anolis taxa than does morphology; and (2) diversification of thermal biology among all species often follows diversification in morphology. These conclusions are remarkably consistent with predictions made by anole biologists in the 1960s and 1970s. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.

  4. The conservation physiology of seed dispersal

    PubMed Central

    Ruxton, Graeme D.; Schaefer, H. Martin

    2012-01-01

    At a time when plant species are experiencing increasing challenges from climate change, land-use change, harvesting and invasive species, dispersal has become a very important aspect of plant conservation. Seed dispersal by animals is particularly important because some animals disperse seeds to suitable sites in a directed fashion. Our review has two aims: (i) to highlight the various ways plant dispersal by animals can be affected by current anthropogenic change and (ii) to show the important role of plant and (particularly) animal physiology in shaping seed–dispersal interactions. We argue that large-bodied seed dispersers may be particularly important for plant conservation because seed dispersal of large-seeded plants is often more specialized and because large-bodied animals are targeted by human exploitation and have smaller population sizes. We further argue that more specialized seed-dispersal systems on island ecosystems might be particularly at risk from climate change both owing to small population sizes involved but also owing to the likely thermal specialization, particularly on tropical islands. More generally, the inherent vulnerability of seed-dispersal mutualisms to disruption driven by environmental change (as well as their ubiquity) demands that we continue to improve our understanding of their conservation physiology. PMID:22566677

  5. Links between thermoregulation and aging in endotherms and ectotherms

    PubMed Central

    Flouris, Andreas D; Piantoni, Carla

    2014-01-01

    While the link between thermoregulation and aging is generally accepted, much further research, reflection, and debate is required to elucidate the physiological and molecular pathways that generate the observed thermal-induced changes in lifespan. Our aim in this review is to present, discuss, and scrutinize the thermoregulatory mechanisms that are implicated in the aging process in endotherms and ectotherms. Our analysis demonstrates that low body temperature benefits lifespan in both endothermic and ectothermic organisms. Research in endotherms has delved deeper into the physiological and molecular mechanisms linking body temperature and longevity. While research in ectotherms has been steadily increasing during the past decades, further mechanistic work is required in order to fully elucidate the underlying phenomena. What is abundantly clear is that both endotherms and ectotherms have a specific temperature zone at which they function optimally. This zone is defended through both physiological and behavioral means and plays a major role on organismal senescence. That low body temperature may be beneficial for lifespan is contrary to conventional medical theory where reduced body temperature is usually considered as a sign of underlying pathology. Regardless, this phenomenon has been targeted by scientists with the expectation that advancements may compress morbidity, as well as lower disease and mortality risk. The available evidence suggests that lowered body temperature may prolong life span, yet finding the key to temperature regulation remains the problem. While we are still far from a complete understanding of the mechanisms linking body temperature and longevity, we are getting closer. PMID:27226994

  6. Predicting organismal vulnerability to climate warming: roles of behaviour, physiology and adaptation

    PubMed Central

    Huey, Raymond B.; Kearney, Michael R.; Krockenberger, Andrew; Holtum, Joseph A. M.; Jess, Mellissa; Williams, Stephen E.

    2012-01-01

    A recently developed integrative framework proposes that the vulnerability of a species to environmental change depends on the species' exposure and sensitivity to environmental change, its resilience to perturbations and its potential to adapt to change. These vulnerability criteria require behavioural, physiological and genetic data. With this information in hand, biologists can predict organisms most at risk from environmental change. Biologists and managers can then target organisms and habitats most at risk. Unfortunately, the required data (e.g. optimal physiological temperatures) are rarely available. Here, we evaluate the reliability of potential proxies (e.g. critical temperatures) that are often available for some groups. Several proxies for ectotherms are promising, but analogous ones for endotherms are lacking. We also develop a simple graphical model of how behavioural thermoregulation, acclimation and adaptation may interact to influence vulnerability over time. After considering this model together with the proxies available for physiological sensitivity to climate change, we conclude that ectotherms sharing vulnerability traits seem concentrated in lowland tropical forests. Their vulnerability may be exacerbated by negative biotic interactions. Whether tropical forest (or other) species can adapt to warming environments is unclear, as genetic and selective data are scant. Nevertheless, the prospects for tropical forest ectotherms appear grim. PMID:22566674

  7. Predicting organismal vulnerability to climate warming: roles of behaviour, physiology and adaptation.

    PubMed

    Huey, Raymond B; Kearney, Michael R; Krockenberger, Andrew; Holtum, Joseph A M; Jess, Mellissa; Williams, Stephen E

    2012-06-19

    A recently developed integrative framework proposes that the vulnerability of a species to environmental change depends on the species' exposure and sensitivity to environmental change, its resilience to perturbations and its potential to adapt to change. These vulnerability criteria require behavioural, physiological and genetic data. With this information in hand, biologists can predict organisms most at risk from environmental change. Biologists and managers can then target organisms and habitats most at risk. Unfortunately, the required data (e.g. optimal physiological temperatures) are rarely available. Here, we evaluate the reliability of potential proxies (e.g. critical temperatures) that are often available for some groups. Several proxies for ectotherms are promising, but analogous ones for endotherms are lacking. We also develop a simple graphical model of how behavioural thermoregulation, acclimation and adaptation may interact to influence vulnerability over time. After considering this model together with the proxies available for physiological sensitivity to climate change, we conclude that ectotherms sharing vulnerability traits seem concentrated in lowland tropical forests. Their vulnerability may be exacerbated by negative biotic interactions. Whether tropical forest (or other) species can adapt to warming environments is unclear, as genetic and selective data are scant. Nevertheless, the prospects for tropical forest ectotherms appear grim.

  8. Are cicadas (Diceroprocta apache) both a "keystone" and a "critical-link" species in lower Colorado River riparian communities?

    USGS Publications Warehouse

    Andersen, Douglas C.

    1994-01-01

    Apache cicada (Homoptera: Cicadidae: Diceroprocta apache Davis) densities were estimated to be 10 individuals/m2 within a closed-canopy stand of Fremont cottonwood (Populus fremontii) and Goodding willow (Salix gooddingii) in a revegetated site adjacent to the Colorado River near Parker, Arizona. Coupled with data drawn from the literature, I estimate that up to 1.3 cm (13 1/m2) of water may be added to the upper soil layers annually through the feeding activities of cicada nymphs. This is equivalent to 12% of the annual precipitation received in the study area. Apache cicadas may have significant effects on ecosystem functioning via effects on water transport and thus act as a critical-link species in this southwest desert riverine ecosystem. Cicadas emerged later within the cottonwood-willow stand than in relatively open saltcedar-mesquite stands; this difference in temporal dynamics would affect their availability to several insectivorous bird species and may help explain the birds' recent declines. Resource managers in this region should be sensitive to the multiple and strong effects that Apache cicadas may have on ecosystem structure and functioning.

  9. Can multi-generational exposure to ocean warming and acidification lead to the adaptation of life history and physiology in a marine metazoan?

    PubMed

    Gibbin, Emma M; Chakravarti, Leela J; Jarrold, Michael D; Christen, Felix; Turpin, Vincent; Massamba N'Siala, Gloria; Blier, Pierre U; Calosi, Piero

    2017-02-15

    Ocean warming and acidification are concomitant global drivers that are currently threatening the survival of marine organisms. How species will respond to these changes depends on their capacity for plastic and adaptive responses. Little is known about the mechanisms that govern plasticity and adaptability or how global changes will influence these relationships across multiple generations. Here, we exposed the emerging model marine polychaete Ophryotrocha labronica to conditions simulating ocean warming and acidification, in isolation and in combination over five generations to identify: (i) how multiple versus single global change drivers alter both juvenile and adult life-history traits; (ii) the mechanistic link between adult physiological and fitness-related life-history traits; and (iii) whether the phenotypic changes observed over multiple generations are of plastic and/or adaptive origin. Two juvenile (developmental rate; survival to sexual maturity) and two adult (average reproductive body size; fecundity) life-history traits were measured in each generation, in addition to three physiological (cellular reactive oxygen species content, mitochondrial density, mitochondrial capacity) traits. We found that multi-generational exposure to warming alone caused an increase in juvenile developmental rate, reactive oxygen species production and mitochondrial density, decreases in average reproductive body size and fecundity, and fluctuations in mitochondrial capacity, relative to control conditions. Exposure to ocean acidification alone had only minor effects on juvenile developmental rate. Remarkably, when both drivers of global change were present, only mitochondrial capacity was significantly affected, suggesting that ocean warming and acidification act as opposing vectors of stress across multiple generations. © 2017. Published by The Company of Biologists Ltd.

  10. Stress response physiology of thermophiles.

    PubMed

    Ranawat, Preeti; Rawat, Seema

    2017-04-01

    Thermo (or hyperthermo) philic microorganisms are ubiquitous having a wide range of habitats from freshly fallen snow to pasteurized milk to geothermal areas like hot springs. The variations in physicochemical conditions, viz., temperature, pH, nutrient availability and light intensity in the habitats always pose stress conditions for the inhabitants leading to slow growth or cell death. The industrial processes used for harvesting secondary metabolites such as enzymes, toxins and organic acids also create stressed environments for thermophiles. The production of DNA-binding proteins, activation of reactive oxygen species detoxification system, compatible solute accumulation, expression of heat shock proteins and alterations in morphology are a few examples of physiological changes demonstrated by these microscopic lifeforms in stress. These microorganisms exhibit complex genetic and physiological changes to minimize, adapt to and repair damage caused by extreme environmental disturbances. These changes are termed as 'stress responses' which enable them to stabilize their homeostasis. The exploration of important thermophilic factors would pave the way in engineering the microbial strains for various biotechnological applications. This review article presents a picture of physiological responses of thermophiles against various stress conditions as their mechanisms to respond to stress make them model organisms to further explore them for basic and applied biology purposes.

  11. Physiological Effects of Trace Elements and Chemicals in Water

    ERIC Educational Resources Information Center

    Varma, M. M.; And Others

    1976-01-01

    The physiological effects on humans and animals of trace amounts of organic and unorganic pollutants in natural and waste waters are examined. The sensitivity of particular organs and species is emphasized. Substances reviewed include mercury, arsenic, cadmium, lead, chromium, fluorides, nitrates and organics, including polychlounated biphenyls.…

  12. Inferring species roles in metacommunity structure from species co-occurrence networks

    PubMed Central

    Borthagaray, Ana I.; Arim, Matías; Marquet, Pablo A.

    2014-01-01

    A long-standing question in community ecology is what determines the identity of species that coexist across local communities or metacommunity assembly. To shed light upon this question, we used a network approach to analyse the drivers of species co-occurrence patterns. In particular, we focus on the potential roles of body size and trophic status as determinants of metacommunity cohesion because of their link to resource use and dispersal ability. Small-sized individuals at low-trophic levels, and with limited dispersal potential, are expected to form highly linked subgroups, whereas large-size individuals at higher trophic positions, and with good dispersal potential, will foster the spatial coupling of subgroups and the cohesion of the whole metacommunity. By using modularity analysis, we identified six modules of species with similar responses to ecological conditions and high co-occurrence across local communities. Most species either co-occur with species from a single module or are connectors of the whole network. Among the latter are carnivorous species of intermediate body size, which by virtue of their high incidence provide connectivity to otherwise isolated communities playing the role of spatial couplers. Our study also demonstrates that the incorporation of network tools to the analysis of metacommunity ecology can help unveil the mechanisms underlying patterns and processes in metacommunity assembly. PMID:25143039

  13. Physiological uncoupling of mitochondrial oxidative phosphorylation. Studies in different yeast species.

    PubMed

    Guerrero-Castillo, Sergio; Araiza-Olivera, Daniela; Cabrera-Orefice, Alfredo; Espinasa-Jaramillo, Juan; Gutiérrez-Aguilar, Manuel; Luévano-Martínez, Luís A; Zepeda-Bastida, Armando; Uribe-Carvajal, Salvador

    2011-06-01

    Under non-phosphorylating conditions a high proton transmembrane gradient inhibits the rate of oxygen consumption mediated by the mitochondrial respiratory chain (state IV). Slow electron transit leads to production of reactive oxygen species (ROS) capable of participating in deleterious side reactions. In order to avoid overproducing ROS, mitochondria maintain a high rate of O(2) consumption by activating different exquisitely controlled uncoupling pathways. Different yeast species possess one or more uncoupling systems that work through one of two possible mechanisms: i) Proton sinks and ii) Non-pumping redox enzymes. Proton sinks are exemplified by mitochondrial unspecific channels (MUC) and by uncoupling proteins (UCP). Saccharomyces. cerevisiae and Debaryomyces hansenii express highly regulated MUCs. Also, a UCP was described in Yarrowia lipolytica which promotes uncoupled O(2) consumption. Non-pumping alternative oxido-reductases may substitute for a pump, as in S. cerevisiae or may coexist with a complete set of pumps as in the branched respiratory chains from Y. lipolytica or D. hansenii. In addition, pumps may suffer intrinsic uncoupling (slipping). Promising models for study are unicellular parasites which can turn off their aerobic metabolism completely. The variety of energy dissipating systems in eukaryote species is probably designed to control ROS production in the different environments where each species lives.

  14. Hedgehogs and sugar gliders: respiratory anatomy, physiology, and disease.

    PubMed

    Johnson, Dan H

    2011-05-01

    This article discusses the respiratory anatomy, physiology, and disease of African pygmy hedgehogs (Atelerix albiventris) and sugar gliders (Petaurus breviceps), two species commonly seen in exotic animal practice. Where appropriate, information from closely related species is mentioned because cross-susceptibility is likely and because these additional species may also be encountered in practice. Other body systems and processes are discussed insofar as they relate to or affect respiratory function. Although some topics, such as special senses, hibernation, or vocalization, may seem out of place, in each case the information relates back to respiration in some important way. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Predicting preschoolers' social-cognitive play behavior: attachment, peers, temperament, and physiological regulation.

    PubMed

    Porter, Christin L

    2009-04-01

    Research on children's social-cognitive play typologies (i.e., active and passive forms of solitary and social play) suggests links of early play behaviors and later social development and risk status. To date, few studies have examined simultaneously suspected links between children's social-cognitive play types and factors believed to shape these early social-play behaviors. This study examined a simultaneous model of individual (temperament, physiology) and relational variables (attachment, peer networks) believed to influence children's social-cognitive play types, including individual characteristics drawn from the Child Behavior Questionnaire which measures dimensions of shyness and impulsivity, a lab-based assessment of social withdrawal, and physiological markers linked to social regulation (cardiac vagal tone and vagal regulation). Children's attachment status to parents was gathered using Q-Sort methodology, and a measure of previous peer network size was obtained from parents' reports to examine potential links between relational history and social-cognitive play types. Predictive discriminant function analysis showed that children's (N = 54, age range 35 to 58 months) social-cognitive play was better predicted on the basis of multiple independent variables than individual, zero-order relations. When predicting children's social-cognitive play typologies, a multidimensional view which encompasses both individual characteristics and social-relational variables may best predict social -cognitive play types and help understanding of children's social trajectories.

  16. Impact of simulated heat waves on soybean physiology and yield

    USDA-ARS?s Scientific Manuscript database

    With increases in mean global temperatures and associated climate change, extreme temperature events are predicted to increase in both intensity and frequency. Despite the clearly documented negative public health impacts of heat waves, the impact on physiology and yields of key agricultural species...

  17. Sulfated Polysaccharides in the Freshwater Green Macroalga Cladophora surera Not Linked to Salinity Adaptation

    PubMed Central

    Arata, Paula X.; Alberghina, Josefina; Confalonieri, Viviana; Errea, María I.; Estevez, José M.; Ciancia, Marina

    2017-01-01

    The presence of sulfated polysaccharides in cell walls of seaweeds is considered to be a consequence of the physiological adaptation to the high salinity of the marine environment. Recently, it was found that sulfated polysaccharides were present in certain freshwater Cladophora species and some vascular plants. Cladophora (Ulvophyceae, Chlorophyta) is one of the largest genera of green algae that are able to grow in both, seas and freshwater courses. Previous studies carried out on the water-soluble polysaccharides of the marine species C. falklandica established the presence of sulfated xylogalactoarabinans constituted by a backbone of 4-linked β-L-arabinopyranose units partially sulfated mainly on C3 and also on C2 with partial glycosylation, mostly on C2, with terminal β-D-xylopyranose or β-D-galactofuranose units. Besides, minor amounts of 3-, 6- and/or 3,6-linked β-D-galactan structures, with galactose in the pyranosic form were detected. In this work, the main water soluble cell wall polysaccharides from the freshwater alga Cladophora surera were characterized. It was found that this green alga biosynthesizes sulfated polysaccharides, with a structure similar to those found in marine species of this genus. Calibration of molecular clock with fossil data suggests that colonization of freshwater environments occurred during the Miocene by its ancestor. Therefore, the presence of sulfated polysaccharides in the freshwater green macroalga C. surera could be, in this case, an adaptation to transient desiccation and changes in ionic strength. Retention of sulfated polysaccharides at the cell walls may represent a snapshot of an evolutionary event, and, thus constitutes an excellent model for further studies on the mechanisms of sulfation on cell wall polysaccharides and environmental stress co-evolution. PMID:29181012

  18. Sulfated Polysaccharides in the Freshwater Green Macroalga Cladophora surera Not Linked to Salinity Adaptation.

    PubMed

    Arata, Paula X; Alberghina, Josefina; Confalonieri, Viviana; Errea, María I; Estevez, José M; Ciancia, Marina

    2017-01-01

    The presence of sulfated polysaccharides in cell walls of seaweeds is considered to be a consequence of the physiological adaptation to the high salinity of the marine environment. Recently, it was found that sulfated polysaccharides were present in certain freshwater Cladophora species and some vascular plants. Cladophora (Ulvophyceae, Chlorophyta) is one of the largest genera of green algae that are able to grow in both, seas and freshwater courses. Previous studies carried out on the water-soluble polysaccharides of the marine species C. falklandica established the presence of sulfated xylogalactoarabinans constituted by a backbone of 4-linked β-L-arabinopyranose units partially sulfated mainly on C3 and also on C2 with partial glycosylation, mostly on C2, with terminal β-D-xylopyranose or β-D-galactofuranose units. Besides, minor amounts of 3-, 6- and/or 3,6-linked β-D-galactan structures, with galactose in the pyranosic form were detected. In this work, the main water soluble cell wall polysaccharides from the freshwater alga Cladophora surera were characterized. It was found that this green alga biosynthesizes sulfated polysaccharides, with a structure similar to those found in marine species of this genus. Calibration of molecular clock with fossil data suggests that colonization of freshwater environments occurred during the Miocene by its ancestor. Therefore, the presence of sulfated polysaccharides in the freshwater green macroalga C. surera could be, in this case, an adaptation to transient desiccation and changes in ionic strength. Retention of sulfated polysaccharides at the cell walls may represent a snapshot of an evolutionary event, and, thus constitutes an excellent model for further studies on the mechanisms of sulfation on cell wall polysaccharides and environmental stress co-evolution.

  19. Covalently Linked Tandem Lesions in DNA

    PubMed Central

    Patrzyc, Helen B.; Dawidzik, Jean B.; Budzinski, Edwin E.; Freund, Harold G.; Wilton, John H.; Box, Harold C.

    2013-01-01

    Reactive oxygen species (ROS) generate a type of DNA damage called tandem lesions, two adjacent nucleotides both modified. A subcategory of tandem lesions consists of adjacent nucleotides linked by a covalent bond. Covalently linked tandem lesions generate highly characteristic liquid chromotography-tandem mass spectrometry (LC-MS/MS) elution profiles. We have used this property to comprehensively survey X-irradiated DNA for covalently linked tandem lesions. A total of 15 tandem lesions were detected in DNA irradiated in deoxygenated aqueous solution, five tandem lesions were detected in DNA that was irradiated in oxygenated solution. PMID:23106212

  20. Physiological control of elaborate male courtship: Female choice for neuromuscular systems

    PubMed Central

    Fusani, Leonida; Barske, Julia; Day, Lainy D.; Fuxjager, Matthew J.; Schlinger, Barney A.

    2015-01-01

    Males of many animal species perform specialized courtship behaviours to gain copulations with females. Identifying physiological and anatomical specializations underlying performance of these behaviours helps clarify mechanisms through which sexual selection promotes the evolution of elaborate courtship. Our knowledge about neuromuscular specializations that support elaborate displays is limited to a few model species. In this review, we focus on the physiological control of the courtship of a tropical bird, the golden-collared manakin, which has been the focus of our research for nearly 20 years. Male manakins perform physically elaborate courtship displays that are quick, accurate and powerful. Females seem to choose males based on their motor skills suggesting that neuromuscular specializations possessed by these males are driven by female choice. Male courtship is activated by androgens and androgen receptors are expressed in qualitatively and quantitatively unconventional ways in manakin brain, spinal cord and skeletal muscles. We propose that in some species, females select males based on their neuromuscular capabilities and acquired skills and that elaborate steroid-dependent courtship displays evolve to signal these traits. PMID:25086380

  1. Medical student attitudes toward kidney physiology and nephrology: a qualitative study.

    PubMed

    Roberts, John K; Sparks, Matthew A; Lehrich, Ruediger W

    2016-11-01

    Interest in nephrology among trainees is waning in the USA. Early perceptions and attitudes to subject matter can be linked to the quality of pre-clinical curricula. We wanted to explore these attitudes in the setting of modern curriculum redesign. We utilized Q methodology to understand first-year medical student attitudes after an innovative kidney physiology curriculum redesign that focuses on blending multiple learning methods. First-year medical students were invited to take a Q sort survey at the conclusion of a kidney physiology course. Students prioritized statements related to their understanding of kidney physiology, learning preferences, preferred course characteristics, perceived clinical relevance of kidney physiology, and interest in nephrology as a career. Factor analysis was performed to identify different student viewpoints. At the conclusion of our modified course, all students (n = 108) were invited to take the survey and 44 (41%) Q sorts were returned. Two dominant viewpoints were defined according to interest in nephrology. The Potentials are students who understand kidney physiology, perceive kidney physiology as clinically relevant, attend class sessions, utilize videos, and are willing to shadow a nephrologist. The Uninterested are students who are less satisfied with their kidney physiology knowledge, prefer to study alone with a textbook, avoid lectures, and are not interested in learning about nephrology. In an updated renal physiology course, students that use multiple learning methods also have favorable attitudes toward learning kidney physiology. Thus, modern curriculum changes that accommodate a variety of learning styles may promote positive attitudes toward nephrology.

  2. Functional genomics of physiological plasticity and local adaptation in killifish.

    PubMed

    Whitehead, Andrew; Galvez, Fernando; Zhang, Shujun; Williams, Larissa M; Oleksiak, Marjorie F

    2011-01-01

    Evolutionary solutions to the physiological challenges of life in highly variable habitats can span the continuum from evolution of a cosmopolitan plastic phenotype to the evolution of locally adapted phenotypes. Killifish (Fundulus sp.) have evolved both highly plastic and locally adapted phenotypes within different selective contexts, providing a comparative system in which to explore the genomic underpinnings of physiological plasticity and adaptive variation. Importantly, extensive variation exists among populations and species for tolerance to a variety of stressors, and we exploit this variation in comparative studies to yield insights into the genomic basis of evolved phenotypic variation. Notably, species of Fundulus occupy the continuum of osmotic habitats from freshwater to marine and populations within Fundulus heteroclitus span far greater variation in pollution tolerance than across all species of fish. Here, we explore how transcriptome regulation underpins extreme physiological plasticity on osmotic shock and how genomic and transcriptomic variation is associated with locally evolved pollution tolerance. We show that F. heteroclitus quickly acclimate to extreme osmotic shock by mounting a dramatic rapid transcriptomic response including an early crisis control phase followed by a tissue remodeling phase involving many regulatory pathways. We also show that convergent evolution of locally adapted pollution tolerance involves complex patterns of gene expression and genome sequence variation, which is confounded with body-weight dependence for some genes. Similarly, exploiting the natural phenotypic variation associated with other established and emerging model organisms is likely to greatly accelerate the pace of discovery of the genomic basis of phenotypic variation.

  3. Functional Genomics of Physiological Plasticity and Local Adaptation in Killifish

    PubMed Central

    Galvez, Fernando; Zhang, Shujun; Williams, Larissa M.; Oleksiak, Marjorie F.

    2011-01-01

    Evolutionary solutions to the physiological challenges of life in highly variable habitats can span the continuum from evolution of a cosmopolitan plastic phenotype to the evolution of locally adapted phenotypes. Killifish (Fundulus sp.) have evolved both highly plastic and locally adapted phenotypes within different selective contexts, providing a comparative system in which to explore the genomic underpinnings of physiological plasticity and adaptive variation. Importantly, extensive variation exists among populations and species for tolerance to a variety of stressors, and we exploit this variation in comparative studies to yield insights into the genomic basis of evolved phenotypic variation. Notably, species of Fundulus occupy the continuum of osmotic habitats from freshwater to marine and populations within Fundulus heteroclitus span far greater variation in pollution tolerance than across all species of fish. Here, we explore how transcriptome regulation underpins extreme physiological plasticity on osmotic shock and how genomic and transcriptomic variation is associated with locally evolved pollution tolerance. We show that F. heteroclitus quickly acclimate to extreme osmotic shock by mounting a dramatic rapid transcriptomic response including an early crisis control phase followed by a tissue remodeling phase involving many regulatory pathways. We also show that convergent evolution of locally adapted pollution tolerance involves complex patterns of gene expression and genome sequence variation, which is confounded with body-weight dependence for some genes. Similarly, exploiting the natural phenotypic variation associated with other established and emerging model organisms is likely to greatly accelerate the pace of discovery of the genomic basis of phenotypic variation. PMID:20581107

  4. Physiological constraints and latitudinal breeding season in the Canidae.

    PubMed

    Valdespino, Carolina

    2007-01-01

    Physiological strategies that maximize reproductive success may be phylogenetically constrained or might have a plastic response to different environmental conditions. Among mammals, Canidae lend themselves to the study of these two influences on reproductive physiology because all the species studied to date have been characterized as monestrous (i.e., a single ovulatory event per breeding season), suggesting a phylogenetic effect. Greater flexibility could be associated with environments that are less seasonal, such as the tropics; however, little is known for many of the species from this region. To compensate for this lack of data, two regressions were done on the length of the reproductive season relative to the latitudinal distribution of a species: one with raw data and another with phylogenetically independent contrasts. There was a significant negative relationship, independent of phylogeny, with canids that have longer breeding seasons occurring at lower latitudes. In contrast, the pervasiveness of monestrus within Canidae appears to be phylogenetically constrained by their pairing/packing life and is most likely associated with monogamy. The persistence of the monestrous condition is supported by a captive study where a tropical canid, the fennec fox, Vulpes zerda, never exhibited polyestrous cycles despite a constant photoperiod (12L : 12D).

  5. The importance of physiological ecology in conservation biology

    USGS Publications Warehouse

    Tracy, C.R.; Nussear, K.E.; Esque, T.C.; Dean-Bradley, K.; DeFalco, L.A.; Castle, K.T.; Zimmerman, L.C.; Espinoza, R.E.; Barber, A.M.

    2006-01-01

    Many of the threats to the persistence of populations of sensitive species have physiological or pathological mechanisms, and those mechanisms are best understood through the inherently integrative discipline of physiological ecology. The desert tortoise was listed under the Endangered Species Act largely due to a newly recognized upper respiratory disease thought to cause mortality in individuals and severe declines in populations. Numerous hypotheses about the threats to the persistence of desert tortoise populations involve acquisition of nutrients, and its connection to stress and disease. The nutritional wisdom hypothesis posits that animals should forage not for particular food items, but instead, for particular nutrients such as calcium and phosphorus used in building bones. The optimal foraging hypothesis suggests that, in circumstances of resource abundance, tortoises should forage as dietary specialists as a means of maximizing intake of resources. The optimal digestion hypothesis suggests that tortoises should process ingesta in ways that regulate assimilation rate. Finally, the cost-of-switching hypothesis suggests that herbivores, like the desert tortoise, should avoid switching food types to avoid negatively affecting the microbe community responsible for fermenting plants into energy and nutrients. Combining hypotheses into a resource acquisition theory leads to novel predictions that are generally supported by data presented here. Testing hypotheses, and synthesizing test results into a theory, provides a robust scientific alternative to the popular use of untested hypotheses and unanalyzed data to assert the needs of species. The scientific approach should focus on hypotheses concerning anthropogenic modifications of the environment that impact physiological processes ultimately important to population phenomena. We show how measurements of such impacts as nutrient starvation, can cause physiological stress, and that the endocrine mechanisms

  6. Environmental limits to growth: physiological niche boundaries of corals along turbidity-light gradients.

    PubMed

    Anthony, Kenneth R N; Connolly, Sean R

    2004-11-01

    The physiological responses of organisms to resources and environmental conditions are important determinants of niche boundaries. In previous work, functional relationships between organism energetics and environment have been limited to energy intakes. However, energetic costs of maintenance may also depend on the supply of resources. In many mixotrophic organisms, two such resource types are light and particle concentration (turbidity). Using two coral species with contrasting abundances along light and turbidity gradients (Acropora valida and Turbinaria mesenterina), we incorporate the dual resource-stressor roles of these variables by calibrating functional responses of energy costs (respiration and loss of organic carbon) as well as energy intake (photosynthesis and particle feeding). This allows us to characterize physiological niche boundaries along light and turbidity gradients, identify species-specific differences in these boundaries, and assess the sensitivity of these differences to interspecific differences in particular functional response parameters. The turbidity-light niche of T. mesenterina was substantially larger than that of A. valida, consistent with its broader ecological distribution. As expected, the responses of photosynthesis, heterotrophic capacity, respiration, and organic carbon loss to light and turbidity varied between species. Niche boundaries were highly sensitive to the functional responses of energy costs to light and turbidity. Moreover, the study species' niche differences were almost entirely attributable to species-specific differences in one functional response: that of respiration to turbidity. These results demonstrate that functional responses of energy-loss processes are important determinants of species-specific physiological limits to growth, and thereby of niche differences in reef corals. Given that many resources can stress organisms when supply rates are high, we propose that the functional responses of energy

  7. Distribution drivers and physiological responses in geothermal bryophyte communities.

    PubMed

    García, Estefanía Llaneza; Rosenstiel, Todd N; Graves, Camille; Shortlidge, Erin E; Eppley, Sarah M

    2016-04-01

    Our ability to explain community structure rests on our ability to define the importance of ecological niches, including realized ecological niches, in shaping communities, but few studies of plant distributions have combined predictive models with physiological measures. Using field surveys and statistical modeling, we predicted distribution drivers in geothermal bryophyte (moss) communities of Lassen Volcanic National Park (California, USA). In the laboratory, we used drying and rewetting experiments to test whether the strong species-specific effects of relative humidity on distributions predicted by the models were correlated with physiological characters. We found that the three most common bryophytes in geothermal communities were significantly affected by three distinct distribution drivers: temperature, light, and relative humidity. Aulacomnium palustre, whose distribution is significantly affected by relative humidity according to our model, and which occurs in high-humidity sites, showed extreme signs of stress after drying and never recovered optimal values of PSII efficiency after rewetting. Campylopus introflexus, whose distribution is not affected by humidity according to our model, was able to maintain optimal values of PSII efficiency for 48 hr at 50% water loss and recovered optimal values of PSII efficiency after rewetting. Our results suggest that species-specific environmental stressors tightly constrain the ecological niches of geothermal bryophytes. Tests of tolerance to drying in two bryophyte species corresponded with model predictions of the comparative importance of relative humidity as distribution drivers for these species. © 2016 Botanical Society of America.

  8. Diving physiology of seabirds and marine mammals: Relevance, challenges and some solutions for field studies.

    PubMed

    Andrews, Russel D; Enstipp, Manfred R

    2016-12-01

    To fully understand how diving seabirds and marine mammals balance the potentially conflicting demands of holding their breath while living their lives underwater (and maintaining physiological homeostasis during exercise, feeding, growth, and reproduction), physiological studies must be conducted with animals in their natural environments. The purpose of this article is to review the importance of making physiological measurements on diving animals in field settings, while acknowledging the challenges and highlighting some solutions. The most extreme divers are great candidates for study, especially in a comparative and mechanistic context. However, physiological data are also required of a wide range of species for problems relating to other disciplines, in particular ecology and conservation biology. Physiological data help with understanding and predicting the outcomes of environmental change, and the direct impacts of anthropogenic activities. Methodological approaches that have facilitated the development of field-based diving physiology include the isolated diving hole protocol and the translocation paradigm, and while there are many techniques for remote observation, animal-borne biotelemetry, or "biologging", has been critical. We discuss issues related to the attachment of instruments, the retrieval of data and sensing of physiological variables, while also considering negative impacts of tagging. This is illustrated with examples from a variety of species, and an in-depth look at one of the best studied and most extreme divers, the emperor penguin (Aptenodytes forsteri). With a variety of approaches and high demand for data on the physiology of diving seabirds and marine mammals, the future of field studies is bright. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Response of Two Mytilids to a Heatwave: The Complex Interplay of Physiology, Behaviour and Ecological Interactions

    PubMed Central

    Gestoso, Ignacio; Lima, Fernando P.; Vázquez, Elsa; Comeau, Luc A.; Gomes, Filipa; Seabra, Rui

    2016-01-01

    Different combinations of behavioural and physiological responses may play a crucial role in the ecological success of species, notably in the context of biological invasions. The invasive mussel Xenostrobus securis has successfully colonised the inner part of the Galician Rias Baixas (NW Spain), where it co-occurs with the commercially-important mussel Mytilus galloprovincialis. This study investigated the effect of a heatwave on the physiological and behavioural responses in monospecific or mixed aggregations of these species. In a mesocosm experiment, mussels were exposed to simulated tidal cycles and similar temperature conditions to those experienced in the field during a heat-wave that occurred in the summer of 2013, when field robo-mussels registered temperatures up to 44.5°C at low tide. The overall responses to stress differed markedly between the two species. In monospecific aggregations M. galloprovincialis was more vulnerable than X. securis to heat exposure during emersion. However, in mixed aggregations, the presence of the invader was associated with lower mortality in M. galloprovincialis. The greater sensitivity of M. galloprovincialis to heat exposure was reflected in a higher mortality level, greater induction of Hsp70 protein and higher rates of respiration and gaping activity, which were accompanied by a lower heart rate (bradycardia). The findings show that the invader enhanced the physiological performance of M. galloprovincialis, highlighting the importance of species interactions in regulating responses to environmental stress. Understanding the complex interactions between ecological factors and physiological and behavioural responses of closely-related species is essential for predicting the impacts of invasions in the context of future climate change. PMID:27736896

  10. Measures of physiological stress: a transparent or opaque window into the status, management and conservation of species?

    PubMed Central

    Dantzer, Ben; Fletcher, Quinn E.; Boonstra, Rudy; Sheriff, Michael J.

    2014-01-01

    Conservation physiology proposes that measures of physiological stress (glucocorticoid levels) can be used to assess the status and future fate of natural populations. Increases in glucocorticoids may reflect a more challenging environment, suggesting that the influence of human activities on free-living animals could be quantified by measuring glucocorticoids. Biomedical studies suggest that chronic increases in glucocorticoids can have detrimental effects on survival and reproduction, which could influence the viability of populations. Here, we discuss the use of measurements of glucocorticoids in conservation physiology. We first provide an overview of the different methods to quantify glucocorticoids and their utility in conservation physiology. We then discuss five questions we think are essential for conservation physiologists to address. We highlight how intrinsic (e.g. sex, reproductive status, age, recent experiences) and ecological factors (e.g. predation, food availability, snowfall) can, by themselves or through their interactions with anthropogenic disturbances, affect the physiological stress response and mask any general patterns about the effects of anthropogenic disturbances on glucocorticoids. Using a meta-analysis, we show that anthropogenic disturbances are consistently associated with increased glucocorticoids regardless of the type of human disturbance. We also show that males may be more sensitive to anthropogenic disturbances than females and that faecal glucocorticoids, but not baseline plasma glucocorticoids, consistently increase in response to anthropogenic disturbances. Finally, we discuss how increases in glucocorticoids in free-living animals can sometimes enhance survival and reproduction. Unfortunately, our literature analysis indicates that this observation has not yet gained traction, and very few studies have shown that increases in glucocorticoid levels resulting from anthropogenic disturbances decrease survival or reproduction

  11. The Role of Emotional Responses and Physiological Reactivity in the Marital Conflict-Child Functioning Link

    ERIC Educational Resources Information Center

    El-Sheikh, Mona

    2005-01-01

    Background: Children's emotional responses and physiological reactivity to conflict were examined as mediators and moderators in the associations between exposure to parental marital conflict and child adjustment and cognitive problems. Method: One hundred and eighty elementary school children participated. In response to a simulated argument,…

  12. Formaldehyde cross-linking and structural proteomics: Bridging the gap.

    PubMed

    Srinivasa, Savita; Ding, Xuan; Kast, Juergen

    2015-11-01

    Proteins are dynamic entities constantly moving and altering their structures based on their functions and interactions inside and outside the cell. Formaldehyde cross-linking combined with mass spectrometry can accurately capture interactions of these rapidly changing biomolecules while maintaining their physiological surroundings. Even with its numerous established uses in biology and compatibility with mass spectrometry, formaldehyde has not yet been applied in structural proteomics. However, formaldehyde cross-linking is moving toward analyzing tertiary structure, which conventional cross-linkers have already accomplished. The purpose of this review is to describe the potential of formaldehyde cross-linking in structural proteomics by highlighting its applications, characteristics and current status in the field. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Particulate metal bioaccessibility in physiological fluids and cell culture media: Toxicological perspectives.

    PubMed

    Leclercq, Bérénice; Alleman, Laurent Yves; Perdrix, Esperanza; Riffault, Véronique; Happillon, Mélanie; Strecker, Alain; Lo-Guidice, Jean-Marc; Garçon, Guillaume; Coddeville, Patrice

    2017-07-01

    According to the literature, tiny amounts of transition metals in airborne fine particles (PM 2.5 ) may induce proinflammatory cell response through reactive oxygen species production. The solubility of particle-bound metals in physiological fluids, i.e. the metal bioaccessibility is driven by factors such as the solution chemical composition, the contact time with the particles, and the solid-to-liquid phase ratio (S/L). In this work, PM 2.5 -bound metal bioaccessibility was assessed in various physiological-like solutions including cell culture media in order to evidence the potential impact on normal human bronchial epithelial cells (NHBE) when studying the cytotoxicity and inflammatory responses of PM 2.5 towards the target bronchial compartment. Different fluids (H 2 O, PBS, LHC-9 culture medium, Gamble and human respiratory mucus collected from COPD patients), various S/L conditions (from 1/6000 to 1/100,000) and exposure times (6, 24 and 72h) were tested on urban PM 2.5 samples. In addition, metals' total, soluble and insoluble fractions from PM 2.5 in LHC-9 were deposited on NHBE cells (BEAS-2B) to measure their cytotoxicity and inflammatory potential (i.e., G6PDH activity, secretion of IL-6 and IL-8). The bioaccessibility is solution-dependent. A higher salinity or organic content may increase or inhibit the bioaccessibiliy according to the element, as observed in the complex mucus matrix. Decreasing the S/L ratio also affect the bioaccessibility depending on the solution tested while the exposure time appears less critical. The LHC-9 culture medium appears to be a good physiological proxy as it induces metal bioaccessibilities close to the mucus values and is little affected by S/L ratios or exposure time. Only the insoluble fraction can be linked to the PM 2.5 -induced cytotoxicity. By contrast, both soluble and insoluble fractions can be related to the secretion of cytokines. The metal bioaccessibility in LHC-9 of the total, soluble, and insoluble

  14. Cardiovascular reactivity as a mechanism linking child trauma to adolescent psychopathology

    PubMed Central

    Heleniak, Charlotte; McLaughlin, Katie A.; Ormel, Johan; Riese, Harriette

    2016-01-01

    Alterations in physiological reactivity to stress are argued to be central mechanisms linking adverse childhood environmental experiences to internalizing and externalizing psychopathology. Childhood trauma exposure may influence physiological reactivity to stress in distinct ways from other forms of childhood adversity. This study applied a novel theoretical model to investigate the impact of childhood trauma on cardiovascular stress reactivity – the biopsychosocial model of challenge and threat. This model suggests that inefficient cardiovascular responses to stress – a threat as opposed to challenge profile – are characterized by blunted cardiac output (CO) reactivity and increased vascular resistance. We examined whether childhood trauma exposure predicted an indicator of the threat profile of cardiovascular reactivity and whether such a pattern was associated with adolescent psychopathology in a population-representative sample of 488 adolescents (M = 16.17 years old, 49.2% boys) in the TRacking Adolescents’ Individual Lives Survey (TRAILS). Exposure to trauma was associated with both internalizing and externalizing symptoms and a pattern of cardiovascular reactivity consistent with the threat profile, including blunted CO reactivity during a social stress task. Blunted CO reactivity, in turn, was positively associated with externalizing, but not internalizing symptoms and mediated the link between trauma and externalizing psychopathology. None of these associations varied by gender. The biopsychosocial model of challenge and threat provides a novel theoretical framework for understanding disruptions in physiological reactivity to stress following childhood trauma exposure, revealing a potential pathway linking such exposure with externalizing problems in adolescents. PMID:27568327

  15. The vaginal microbiota, host defence and reproductive physiology.

    PubMed

    Smith, Steven B; Ravel, Jacques

    2017-01-15

    The interaction between the human host and the vaginal microbiota is highly dynamic. Major changes in the vaginal physiology and microbiota over a woman's lifetime are largely shaped by transitional periods such as puberty, menopause and pregnancy, while daily fluctuations in microbial composition observed through culture-independent studies are more likely to be the results of daily life activities and behaviours. The vaginal microbiota of reproductive-aged women is largely made up of at least five different community state types. Four of these community state types are dominated by lactic-acid producing Lactobacillus spp. while the fifth is commonly composed of anaerobes and strict anaerobes and is sometimes associated with vaginal symptoms. The production of lactic acid has been associated with contributing to the overall health of the vagina due to its direct and indirect effects on pathogens and host defence. Some species associated with non-Lactobacillus vaginal microbiota may trigger immune responses as well as degrade the host mucosa, processes that ultimately increase susceptibility to infections and contribute to negative reproductive outcomes such as infertility and preterm birth. Further studies are needed to better understand the functional underpinnings of how the vaginal microbiota affect host physiology but also how host physiology affects the vaginal microbiota. Understanding this fine-tuned interaction is key to maintaining women's reproductive health. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  16. The emergence of Applied Physiology within the discipline of Physiology.

    PubMed

    Tipton, Charles M

    2016-08-01

    Despite the availability and utilization of the physiology textbooks authored by Albrecht von Haller during the 18th century that heralded the modern age of physiology, not all physicians or physiologists were satisfied with its presentation, contents, or application to medicine. Initial reasons were fundamental disagreements between the "mechanists," represented by Boerhaave, Robinson, and von Haller, and the "vitalists," represented by the faculty and graduates of the Montpellier School of Medicine in France, notably, Bordeu and Barthez. Subsequently, objections originated from Europe, United Kingdom, and the United States in publications that focused not only on the teaching of physiology to medical and secondary students, but on the specific applications of the content of physiology to medicine, health, hygiene, pathology, and chronic diseases. At the turn of the 20th century, texts began to appear with applied physiology in their titles and in 1926, physician Samson Wright published a textbook entitled Applied Physiology that was intended for both medical students and the medical profession. Eleven years later, physicians Best and Taylor published The Physiological Basis of Medical Practice: A University of Toronto Texbook in Applied Physiology Although both sets of authors defined the connection between applied physiology and physiology, they failed to define the areas of physiology that were included within applied physiology. This was accomplished by the American Physiological Society (APS) Publications Committee in 1948 with the publication of the Journal of Appplied Physiology, that stated the word "applied" would broadly denote human physiology whereas the terms stress and environment would broadly include work, exercise, plus industrial, climatic and social factors. NIH established a study section (SS) devoted to applied physiology in 1964 which remained active until 2001 when it became amalgamated into other SSs. Before the end of the 20th century when

  17. Two DD-carboxypeptidases from Mycobacterium smegmatis affect cell surface properties through regulation of peptidoglycan cross-linking and glycopeptidolipids.

    PubMed

    Pandey, Satya Deo; Pal, Shilpa; Kumar N, Ganesh; Bansal, Ankita; Mallick, Sathi; Ghosh, Anindya S

    2018-05-07

    During the peptidoglycan (PG) maturation of mycobacteria, the glycan strands are interlinked by both 3-3 (between two meso-DAP) and 4-3 cross-links (between D-ala and meso-DAP), though there is a predominance (60-80%) of 3-3 cross-links. The DD-CPases act on pentapeptides to generate tetrapeptides that are used by LD-transpeptidases as substrates to form 3-3 cross-links. Therefore, DD-CPases play a crucial role in mycobacterial PG cross-link formation. However, the physiology of DD-CPases in mycobacteria is relatively unexplored. Here, we deleted two DD-CPase genes, msmeg_2433 , and msmeg_2432 , both individually and in combination, from Mycobacterium smegmatis mc 2 155. Though the single DD-CPase deletions had no significant impact on the mycobacterial physiology, many interesting functional alterations were observed in the double deletion mutant, viz. , a predominance in PG cross-link formation was shifted from 3-3 cross-links to 4-3, cell surface glycopeptidolipid (GPL) expression was reduced and susceptibility towards β-lactams and anti-tubercular agents was enhanced. Moreover, the existence of the double mutant within murine macrophages was better as compared to the parent. Interestingly, the complementation with any one of the DD-CPase genes could restore the wild-type phenotype. In a nutshell, we infer that the altered ratio of 4-3: 3-3 PG cross-links might have influenced the expression of surface GPLs, colony morphology, biofilm formation,, drug susceptibility and subsistence of the cells within macrophages. Importance The glycan strands in mycobacterial peptidoglycan (PG) are interlinked by both 3-3 and 4-3 cross-links. The DD-CPases generate tetrapeptides by acting on the pentapeptides, and LD-transpeptidases use tetrapeptides as substrates to form 3-3 cross-links. Here, we showed that simultaneous deletions of two DD-CPases alter the nature of PG cross-linking from 3-3 cross-links to 4-3 cross-links. The deletions subsequently decrease the expression

  18. Polyploidy and the relationship between leaf structure and function: implications for correlated evolution of anatomy, morphology, and physiology in Brassica.

    PubMed

    Baker, Robert L; Yarkhunova, Yulia; Vidal, Katherine; Ewers, Brent E; Weinig, Cynthia

    2017-01-05

    Polyploidy is well studied from a genetic and genomic perspective, but the morphological, anatomical, and physiological consequences of polyploidy remain relatively uncharacterized. Whether these potential changes bear on functional integration or are idiosyncratic remains an open question. Repeated allotetraploid events and multiple genomic combinations as well as overlapping targets of artificial selection make the Brassica triangle an excellent system for exploring variation in the connection between plant structure (anatomy and morphology) and function (physiology). We examine phenotypic integration among structural aspects of leaves including external morphology and internal anatomy with leaf-level physiology among several species of Brassica. We compare diploid and allotetraploid species to ascertain patterns of phenotypic correlations among structural and functional traits and test the hypothesis that allotetraploidy results in trait disintegration allowing for transgressive phenotypes and additional evolutionary and crop improvement potential. Among six Brassica species, we found significant effects of species and ploidy level for morphological, anatomical and physiological traits. We identified three suites of intercorrelated traits in both diploid parents and allotetraploids: Morphological traits (such as leaf area and perimeter) anatomic traits (including ab- and ad- axial epidermis) and aspects of physiology. In general, there were more correlations between structural and functional traits for allotetraploid hybrids than diploid parents. Parents and hybrids did not have any significant structure-function correlations in common. Of particular note, there were no significant correlations between morphological structure and physiological function in the diploid parents. Increased phenotypic integration in the allotetraploid hybrids may be due, in part, to increased trait ranges or simply different structure-function relationships. Genomic and chromosomal

  19. How can the study of physiological reactivity contribute to our understanding of adversity and resilience processes in development?

    PubMed

    Obradović, Jelena

    2012-05-01

    The focus of this article is to present current progress in understanding the interplay among adversity, physiological sensitivity to context, and adaptive functioning, with an emphasis on implications and future directions for resilience researchers. It includes a review of current literature that demonstrates (a) links between various levels of adversity exposure and variability in physiological reactivity, (b) how the interplay between children's physiological reactivity and different sources of risk and adversity relates to variability in adaptive functioning, and (c) various approaches for capturing a more dynamic nature of physiological reactivity and related processes. Throughout, important conceptual and empirical issues are highlighted.

  20. Comparative life history and physiology of two understory Neotropical herbs.

    PubMed

    Mulkey, Stephen S; Smith, Alan P; Wright, S Joseph

    1991-10-01

    Demography and physiology of two broad-leaved understory tropical herbs (Marantaceae) were studied in gaps and shaded understory in large-scale irrigated and control treatments during the dry season at Barro Colorado Island (BCI), Panama. Because photosynthetic acclimation potential may not predict light environments where tropical species are found, we studied a suite of physiological features to determine if they uniquely reflect the distribution of each species. Calathea inocephala and Pleiostachya pruinosa grow and reproduce in gaps, persist in shade, and have equivalent rates of leaf production. Calathea leaves survived 2 to 3 times as long as leaves of Pleiostachya and plants of Pleiostachya were 6 to 8 times more likely to die as plants of Calathea during 3.5 years of study. Pleiostachya had lowest survival in shade and when not irrigated during the dry season, while Calathea survived well in both habitats and both treatments. Pleiostachya had higher photosynthetic capacity and stomatal conductance than Calathea and acclimated to gaps by producing leaves with higher photosynthetic capacity. Calathea had lower mesophyll CO 2 concentrations than Pleiostachya. Both species had similar dark respiration rates and light compensation points, and water-use and nitrogen-use efficiencies were inversely related between species. Species showed no differences in leaf osmotic potentials at full turgor. Calathea roots were deeper and had tuberous swellings.Leaf-level assimilation and potential water loss are consistent with where these species are found, but photosynthetic acclimation to high light does not reflect both species' abilities to grow and reproduce in gaps. Pleiostachya's gap-dependent, rapid growth and reproduction require high rates of carbon gain in short-lived leaves, which can amortize their cost quickly. High rates of water loss are associated with reduced longevity during drought. Calathea's roots may confer greater capacitance, while its leaves are

  1. Coral physiology and microbiome dynamics under combined warming and ocean acidification

    PubMed Central

    Dalcin Martins, Paula; Wilkins, Michael J.; Johnston, Michael D.; Warner, Mark E.; Cai, Wei-Jun; Melman, Todd F.; Hoadley, Kenneth D.; Pettay, D. Tye; Levas, Stephen; Schoepf, Verena

    2018-01-01

    Rising seawater temperature and ocean acidification threaten the survival of coral reefs. The relationship between coral physiology and its microbiome may reveal why some corals are more resilient to these global change conditions. Here, we conducted the first experiment to simultaneously investigate changes in the coral microbiome and coral physiology in response to the dual stress of elevated seawater temperature and ocean acidification expected by the end of this century. Two species of corals, Acropora millepora containing the thermally sensitive endosymbiont C21a and Turbinaria reniformis containing the thermally tolerant endosymbiont Symbiodinium trenchi, were exposed to control (26.5°C and pCO2 of 364 μatm) and treatment (29.0°C and pCO2 of 750 μatm) conditions for 24 days, after which we measured the microbial community composition. These microbial findings were interpreted within the context of previously published physiological measurements from the exact same corals in this study (calcification, organic carbon flux, ratio of photosynthesis to respiration, photosystem II maximal efficiency, total lipids, soluble animal protein, soluble animal carbohydrates, soluble algal protein, soluble algal carbohydrate, biomass, endosymbiotic algal density, and chlorophyll a). Overall, dually stressed A. millepora had reduced microbial diversity, experienced large changes in microbial community composition, and experienced dramatic physiological declines in calcification, photosystem II maximal efficiency, and algal carbohydrates. In contrast, the dually stressed coral T. reniformis experienced a stable and more diverse microbiome community with minimal physiological decline, coupled with very high total energy reserves and particulate organic carbon release rates. Thus, the microbiome changed and microbial diversity decreased in the physiologically sensitive coral with the thermally sensitive endosymbiotic algae but not in the physiologically tolerant coral with

  2. Coral physiology and microbiome dynamics under combined warming and ocean acidification.

    PubMed

    Grottoli, Andréa G; Dalcin Martins, Paula; Wilkins, Michael J; Johnston, Michael D; Warner, Mark E; Cai, Wei-Jun; Melman, Todd F; Hoadley, Kenneth D; Pettay, D Tye; Levas, Stephen; Schoepf, Verena

    2018-01-01

    Rising seawater temperature and ocean acidification threaten the survival of coral reefs. The relationship between coral physiology and its microbiome may reveal why some corals are more resilient to these global change conditions. Here, we conducted the first experiment to simultaneously investigate changes in the coral microbiome and coral physiology in response to the dual stress of elevated seawater temperature and ocean acidification expected by the end of this century. Two species of corals, Acropora millepora containing the thermally sensitive endosymbiont C21a and Turbinaria reniformis containing the thermally tolerant endosymbiont Symbiodinium trenchi, were exposed to control (26.5°C and pCO2 of 364 μatm) and treatment (29.0°C and pCO2 of 750 μatm) conditions for 24 days, after which we measured the microbial community composition. These microbial findings were interpreted within the context of previously published physiological measurements from the exact same corals in this study (calcification, organic carbon flux, ratio of photosynthesis to respiration, photosystem II maximal efficiency, total lipids, soluble animal protein, soluble animal carbohydrates, soluble algal protein, soluble algal carbohydrate, biomass, endosymbiotic algal density, and chlorophyll a). Overall, dually stressed A. millepora had reduced microbial diversity, experienced large changes in microbial community composition, and experienced dramatic physiological declines in calcification, photosystem II maximal efficiency, and algal carbohydrates. In contrast, the dually stressed coral T. reniformis experienced a stable and more diverse microbiome community with minimal physiological decline, coupled with very high total energy reserves and particulate organic carbon release rates. Thus, the microbiome changed and microbial diversity decreased in the physiologically sensitive coral with the thermally sensitive endosymbiotic algae but not in the physiologically tolerant coral with

  3. Maternal Oxytocin Is Linked to Close Mother-Infant Proximity in Grey Seals (Halichoerus grypus)

    PubMed Central

    Robinson, Kelly J.; Twiss, Sean D.; Hazon, Neil; Pomeroy, Patrick P.

    2015-01-01

    Maternal behaviour is a crucial component of reproduction in all mammals; however the quality of care that mothers give to infants can vary greatly. It is vital to document variation in maternal behaviour caused by the physiological processes controlling its expression. This underlying physiology should be conserved throughout reproductive events and should be replicated across all individuals of a species; therefore, any correlates to maternal care quality may be present across many individuals or contexts. Oxytocin modulates the initiation and expression of maternal behaviour in mammals; therefore we tested whether maternal plasma oxytocin concentrations correlated to key maternal behaviours in wild grey seals (Halichoerus grypus). Plasma oxytocin concentrations in non-breeding individuals (4.3 ±0.5 pg/ml) were significantly lower than those in mothers with dependent pups in both early (8.2 ±0.8 pg/ml) and late (6.9 ±0.7 pg/ml) lactation. Maternal plasma oxytocin concentrations were not correlated to the amount of nursing prior to sampling, or a mother’s nursing intensity throughout the dependant period. Mothers with high plasma oxytocin concentrations stayed closer to their pups, reducing the likelihood of mother-pup separation during lactation which is credited with causing starvation, the largest cause of pup mortality in grey seals. This is the first study to link endogenous oxytocin concentrations in wild mammalian mothers with any type of maternal behaviour. Oxytocin’s structure and function is widely conserved across mammalian mothers, including humans. Defining the impact the oxytocin system has on maternal behaviour highlights relationships that may occur across many individuals or species, and such behaviours heavily influence infant development and an individual’s lifetime reproductive success. PMID:26698856

  4. Physiology of Sedentary Behavior and Its Relationship to Health Outcomes

    PubMed Central

    Thyfault, John P; Du, Mengmeng; Kraus, William E; Levine, James A; Booth, Frank W

    2014-01-01

    Purpose This paper reports on the findings and recommendations of the “Physiology of Sedentary Behavior and its Relationship to Health Outcomes” group, a part of a larger workshop entitled Sedentary Behavior: Identifying Research Priorities sponsored by the National Heart, and Lung and Blood Institute and the National Institute on Aging, which aimed to establish sedentary behavior research priorities. Methods The discussion within our workshop lead to the formation of critical physiological research objectives related to sedentary behaviors, that if appropriately researched would greatly impact our overall understanding of human health and longevity. Results and Conclusions Primary questions are related to physiological “health outcomes” including the influence of physical activity vs. sedentary behavior on function of a number of critical physiological systems (aerobic capacity, skeletal muscle metabolism and function, telomeres/genetic stability, and cognitive function). The group also derived important recommendations related to the “central and peripheral mechanisms” that govern sedentary behavior and how energy balance has a role in mediating these processes. General recommendations for future sedentary physiology research efforts include that studies of sedentary behavior, including that of sitting time only, should focus on the physiological impact of a “lack of human movement” in contradistinction to the effects of physical movement and that new models or strategies for studying sedentary behavior induced adaptations and links to disease development are needed to elucidate underlying mechanism(s). PMID:25222820

  5. How do cuticular hydrocarbons evolve? Physiological constraints and climatic and biotic selection pressures act on a complex functional trait

    PubMed Central

    Blaimer, Bonnie B.; Schmitt, Thomas

    2017-01-01

    Cuticular hydrocarbons (CHCs) cover the cuticles of virtually all insects, serving as a waterproofing agent and as a communication signal. The causes for the high CHC variation between species, and the factors influencing CHC profiles, are scarcely understood. Here, we compare CHC profiles of ant species from seven biogeographic regions, searching for physiological constraints and for climatic and biotic selection pressures. Molecule length constrained CHC composition: long-chain profiles contained fewer linear alkanes, but more hydrocarbons with disruptive features in the molecule. This is probably owing to selection on the physiology to build a semi-fluid cuticular layer, which is necessary for waterproofing and communication. CHC composition also depended on the precipitation in the ants' habitats. Species from wet climates had more alkenes and fewer dimethyl alkanes than those from drier habitats, which can be explained by different waterproofing capacities of these compounds. By contrast, temperature did not affect CHC composition. Mutualistically associated (parabiotic) species possessed profiles highly distinct from non-associated species. Our study is, to our knowledge, the first to show systematic impacts of physiological, climatic and biotic factors on quantitative CHC composition across a global, multi-species dataset. We demonstrate how they jointly shape CHC profiles, and advance our understanding of the evolution of this complex functional trait in insects. PMID:28298343

  6. Contrasting phenotypic plasticity in the photoprotective strategies of the invasive species Carpobrotus edulis and the coexisting native species Crithmum maritimum.

    PubMed

    Fenollosa, Erola; Munné-Bosch, Sergi; Pintó-Marijuan, Marta

    2017-06-01

    Photoprotective strategies vary greatly within the plant kingdom and reflect a plant's physiological status and capacity to cope with environment variations. The plasticity and intensity of these responses may determine plant success. Invasive species are reported to show increased vigor to displace native species. Describing the mechanisms that confer such vigor is essential to understanding the success of invasive species. We performed an experiment whereby two species were monitored: Carpobrotus edulis, an aggressive invasive species in the Mediterranean basin, and Crithmum maritimum, a coexisting native species in the Cap de Creus Natural Park (NE Spain). We analyzed their photoprotective responses to seasonal environmental dynamics by comparing the capacity of the invader to respond to the local environmental stresses throughout the year. Our study analyses ecophysiological markers and photoprotective strategies to gain an insight into the success of invaders. We found that both species showed completely different but effective photoprotective strategies: in summer, C. edulis took special advantage of the xanthophyll cycle, whereas the success of C. maritimum in summer stemmed from morphological changes and alterations on β-carotene content. Winter also presented differences between the species, as the native showed reduced F v /F m ratios. Our experimental design allowed us to introduce a new approach to compare phenotypic plasticity: the integrated phenotypic plasticity index (PP int ), defined as the maximum Euclidian distance between phenotypes, using a combination of different variables to describe them. This index revealed significantly greater phenotypic plasticity in the invasive species compared to the native species. © 2017 Scandinavian Plant Physiology Society.

  7. Nonindigenous vs. native species: A comparison of preferred niche breadth

    EPA Science Inventory

    To successfully invade and expand their populations, nonindigenous species must be able to physiologically cope with their new environment. Given this, species that tolerate a wide array of environmental conditions are often predicted to be better at establishing populations in ...

  8. Linking climate change and biological invasions: Ocean warming facilitates nonindigenous species invasions.

    PubMed

    Stachowicz, John J; Terwin, Jeffrey R; Whitlatch, Robert B; Osman, Richard W

    2002-11-26

    The spread of exotic species and climate change are among the most serious global environmental threats. Each independently causes considerable ecological damage, yet few data are available to assess whether changing climate might facilitate invasions by favoring introduced over native species. Here, we compare our long-term record of weekly sessile marine invertebrate recruitment with interannual variation in water temperature to assess the likely effect of climate change on the success and spread of introduced species. For the three most abundant introduced species of ascidian (sea squirt), the timing of the initiation of recruitment was strongly negatively correlated with winter water temperature, indicating that invaders arrived earlier in the season in years with warmer winters. Total recruitment of introduced species during the following summer also was positively correlated with winter water temperature. In contrast, the magnitude of native ascidian recruitment was negatively correlated with winter temperature (more recruitment in colder years) and the timing of native recruitment was unaffected. In manipulative laboratory experiments, two introduced compound ascidians grew faster than a native species, but only at temperatures near the maximum observed in summer. These data suggest that the greatest effects of climate change on biotic communities may be due to changing maximum and minimum temperatures rather than annual means. By giving introduced species an earlier start, and increasing the magnitude of their growth and recruitment relative to natives, global warming may facilitate a shift to dominance by nonnative species, accelerating the homogenization of the global biota.

  9. Differences between Helianthus winteri and Helianthus annuus are deeper than physiology

    USDA-ARS?s Scientific Manuscript database

    Winter’s sunflower (Helianthus winteri, Hw), a new sunflower species, is found on rocky, un-grazed, south facing slopes of the Southern Sierra Nevada foothills between the valley edge and several hundred feet upslope. This study characterized physiological differences between Helianthus winteri (Hw)...

  10. Conifer species adapt to low-rainfall climates by following one of two divergent pathways.

    PubMed

    Brodribb, Timothy J; McAdam, Scott A M; Jordan, Gregory J; Martins, Samuel C V

    2014-10-07

    Water stress is one of the primary selective forces in plant evolution. There are characters often cited as adaptations to water stress, but links between the function of these traits and adaptation to drying climates are tenuous. Here we combine distributional, climatic, and physiological evidence from 42 species of conifers to show that the evolution of drought resistance follows two distinct pathways, both involving the coordinated evolution of tissues regulating water supply (xylem) and water loss (stomatal pores) in leaves. Only species with very efficient stomatal closure, and hence low minimum rates of water loss, inhabit dry habitats, but species diverged in their apparent mechanism for maintaining closed stomata during drought. An ancestral mechanism found in Pinaceae and Araucariaceae species relies on high levels of the hormone abscisic acid (ABA) to close stomata during water stress. A second mechanism, found in the majority of Cupressaceae species, uses leaf desiccation rather than high ABA levels to close stomata during sustained water stress. Species in the latter group were characterized by xylem tissues with extreme resistance to embolism but low levels of foliar ABA after 30 d without water. The combination of low levels of ABA under stress with cavitation-resistant xylem enables these species to prolong stomatal opening during drought, potentially extending their photosynthetic activity between rainfall events. Our data demonstrate a surprising simplicity in the way conifers evolved to cope with water shortage, indicating a critical interaction between xylem and stomatal tissues during the process of evolution to dry climates.

  11. Coexisting oak species, including rear-edge populations, buffer climate stress through xylem adjustments.

    PubMed

    Granda, E; Alla, A Q; Laskurain, N A; Loidi, J; Sánchez-Lorenzo, A; Camarero, J J

    2018-02-01

    The ability of trees to cope with climate change is a pivotal feature of forest ecosystems, especially for rear-edge populations facing warm and dry conditions. To evaluate current and future forests threats, a multi-proxy focus on the growth, anatomical and physiological responses to climate change is needed. We examined the long-term xylem adjustments to climate variability of the temperate Quercus robur L. at its rear edge and the sub-Mediterranean Quercus pyrenaica Willd. Both species coexist at a mesic (ME, humid and warmer) and a xeric (XE, dry and cooler) site in northern Spain, the latter experiencing increasing temperatures in recent decades. We compared xylem traits at each site and assessed their trends, relationships and responses to climate (1960-2008). Traits included basal area increment, earlywood vessel hydraulic diameter, density and theoretical-specific hydraulic conductivity together with latewood oxygen (δ18O) stable isotopes and δ13C-derived water-use efficiency (iWUE). Quercus robur showed the highest growth at ME, likely through enhanced cambial activity. Quercus pyrenaica had higher iWUE at XE compared with ME, but limited plasticity of anatomical xylem traits was found for the two oak species. Similar physiological performance was found for both species. The iWUE augmented in recent years especially at XE, likely explained by stomatal closure given the increasing δ18O signal in response to drier and sunnier growing seasons. Overall, traits were more correlated at XE than at ME. The iWUE improvements were linked to higher growth up to a threshold (~85 μmol mol-1) after which reduced growth was found at XE. Our results are consistent with Q. pyrenaica and Q. robur coexisting at the central and dry edge of the climatic species distribution, respectively, showing similar responses to buffer warmer conditions. In fact, the observed adjustments found for Q. robur point towards growth stability of similar rear-edge oak populations under

  12. Physiological responses to variations in grazing and light conditions in native and invasive fucoids.

    PubMed

    Olabarria, Celia; Arenas, Francisco; Fernández, Ángela; Troncoso, Jesús S; Martínez, Brezo

    2018-08-01

    Poor physiological acclimatization to climate change has led to shifts in the distributional ranges of various species and to biodiversity loss. However, evidence also suggests the relevance of non-climatic physical factors, such as light, and biotic factors, which may act in interactive or additive way. We used a mechanistic approach to evaluate the ecophysiological responses of four seaweed species (three dominant intertidal fucoids, Fucus serratus, Ascophyllum nodosum, Bifurcaria bifurcata, and the invasive Sargassum muticum) to different conditions of grazing, light irradiance and ultraviolet (UV) radiation. We performed a large-scale mesocosm experiment with a total of 800 individual thalli of macroalgae. The factorial experimental design included major algal traits, photoacclimation, nutrient stoichiometry and chemical defence as response variables. Few significant effects of the factors acting alone or in combination were observed, suggesting a good capacity for acclimatization in all four species. The significant effects were generally additive and there were no potentially deleterious synergistic effects between factors. Fucus serratus, a species currently undergoing a drastic contraction of its southern distribution limit in Europe, was the most strongly affected species, showing overall lower photosynthetic efficiency than the other species. The growth rate of F. serratus decreased when UV radiation was filtered out, but only in the presence of grazers. Moreover, more individuals of this species tended to reach maturity in the absence of grazers, and the nitrogen content of tissues decreased under full-spectrum light. Only the phlorotannin content of tissues of B. bifurcata and of exudates of A. nodosum, both slow-growing species, were positively affected by respectively removal of UVB radiation and the presence of grazers. The findings for S. muticum, a well-established invasive seaweed across European coasts, suggested similar physiological response of

  13. Cross-Linked Micellar Spherical Nucleic Acids from Thermoresponsive Templates

    PubMed Central

    2017-01-01

    A one-pot synthesis of micellar spherical nucleic acid (SNA) nanostructures using Pluronic F127 as a thermoresponsive template is reported. These novel constructs are synthesized in a chemically straightforward process that involves intercalation of the lipid tails of DNA amphiphiles (CpG motifs for TLR-9 stimulation) into the hydrophobic regions of Pluronic F127 micelles, followed by chemical cross-linking and subsequent removal of non-cross-linked structures. The dense nucleic acid shell of the resulting cross-linked micellar SNA enhances their stability in physiological media and facilitates their rapid cellular internalization, making them effective TLR-9 immunomodulatory agents. These constructs underscore the potential of SNAs in regulating immune response and address the relative lack of stability of noncovalent constructs. PMID:28207251

  14. Metabolomic, enzymatic, and histochemical analyzes of cassava roots during postharvest physiological deterioration.

    PubMed

    Uarrota, Virgílio Gavicho; Maraschin, Marcelo

    2015-11-05

    Under postharvest physiological deterioration cassava root tubers alter the expression of biosynthetic pathways of certain primary and secondary metabolites, as well as the activity of some scavenging enzymes. Therefore, in this study we hypothesized that cassava cultivars differ as to their physiological responses to deterioration and their biochemical profiles can be an indicative of the tolerance or susceptibility to deterioration. The results corroborate the working hypothesis, revealing that high Levels of phenolic acids, scopoletin, carotenoids, proteins, and augmented activities of guaiacol peroxidase and hydrogen peroxide in non-stored cassava roots can be used as potential biomarkers of cassava deterioration. Cassava physiological deterioration depends on cultivar and many compounds are up and downregulated during storage time. Secondary metabolites, enzymes, scopoletin, scavenging reactive oxygen species, and acidic polysaccharides are activated as responses to the physiological stress induced in root tubers.

  15. Foliar uptake of fog in coastal California shrub species.

    PubMed

    Emery, Nathan C

    2016-11-01

    Understanding plant water uptake is important in ecosystems that experience periodic drought. In many Mediterranean-type climates like coastal California, plants are subject to significant drought and wildfire disturbance. During the dry summer months, coastal shrub species are often exposed to leaf wetting from overnight fog events. This study sought to determine whether foliar uptake of fog occurs in shrub species and how this uptake affects physiology and fuel condition. In a controlled greenhouse experiment, dominant California shrub species were exposed to isotopically labeled fog water and plant responses were measured. Potted plants were covered at the base to prevent root uptake. The deuterium label was detected in the leaves of four out of five species and in the stems of two of the species. While there was a minimal effect of foliar water uptake on live fuel moisture, several species had lower xylem tension and greater photosynthetic rates after overnight fog treatments, especially Salvia leucophylla. Coastal fog may provide a moisture source for many species during the summer drought, but the utilization of this water source may vary based on foliar morphology, phenology and plant water balance. From this study, it appears that drought-deciduous species (Artemisia californica and Salvia leucophylla) benefit more from overnight fog events than evergreen species (Adenostoma fasciculatum, Baccharis pilularis and Ceanothus megacarpus). This differential response to fog exposure among California shrub species may affect species distributions and physiological tolerances under future climate scenarios.

  16. Physiological stress and pathology in European whitefish (Coregonus lavaretus) induced by subchronic exposure to environmentally relevant densities of Planktothrix rubescens.

    PubMed

    Ernst, Bernhard; Hoeger, Stefan J; O'brien, Evelyn; Dietrich, Daniel R

    2007-04-20

    Planktothrix rubescens belongs to the most ubiquitous cyanobacterial species in mesotrophic and oligotrophic lakes in the pre-alpine regions. In most of these lakes, coregonids are among the dominant species of the ichthyofauna with great importance for the professional fishery. A possible link between the occurrence of toxic Planktothrix blooms and the recurrent slumps in coregonid yields has been suggested. Indeed, acute toxic effects of microcystins and other cyanobacterial toxins have been shown for various fish species. However, chronic exposure scenarios appear to be more common and thus more environmentally realistic than acute intoxications. The aim of this study was therefore to investigate the physiological stress response and organ pathology in coregonids sub-chronically exposed to ambient water containing low, medium and high P. rubescens densities, known to be typical of pre-alpine lakes. Coregonid hatchlings were exposed in four tanks containing 0 (sham-control) and approximately 1500 (low), 15,000 (medium) and 55,000 (high) P. rubescens cells/ml for up to 28 days. Temperature, oxygen concentration, pH-value, P. rubescens cell density and microcystin concentration were recorded and the fish were observed for behavioural changes and examined for parasite infestations. Gill ventilation rates, general condition factors and mortalities were determined and liver, kidney, gut and gill were assessed histopathologically and immunhistologically. Depending on the cell density, exposed fish showed behavioural changes, including increased ventilation rates possibly representing a physiological stress response. Susceptibility to ectoparasitic infestation and increased mortality in exposed fish suggested P. rubescens associated effects on fish fitness. Histopathological alterations in liver, gastrointestinal tract and kidney, which were also immunopositive for microcystin suggested causality of tissue damage and the presence of microcystins. In contrast, observed

  17. Manipulation of in vitro collagen matrix architecture for scaffolds of improved physiological relevance

    NASA Astrophysics Data System (ADS)

    Hapach, Lauren A.; VanderBurgh, Jacob A.; Miller, Joseph P.; Reinhart-King, Cynthia A.

    2015-12-01

    Type I collagen is a versatile biomaterial that is widely used in medical applications due to its weak antigenicity, robust biocompatibility, and its ability to be modified for a wide array of applications. As such, collagen has become a major component of many tissue engineering scaffolds, drug delivery platforms, and substrates for in vitro cell culture. In these applications, collagen constructs are fabricated to recapitulate a diverse set of conditions. Collagen fibrils can be aligned during or post-fabrication, cross-linked via numerous techniques, polymerized to create various fibril sizes and densities, and copolymerized into a wide array of composite scaffolds. Here, we review approaches that have been used to tune collagen to better recapitulate physiological environments for use in tissue engineering applications and studies of basic cell behavior. We discuss techniques to control fibril alignment, methods for cross-linking collagen constructs to modulate stiffness, and composite collagen constructs to better mimic physiological extracellular matrix.

  18. Linking assumptions in amblyopia

    PubMed Central

    LEVI, DENNIS M.

    2017-01-01

    Over the last 35 years or so, there has been substantial progress in revealing and characterizing the many interesting and sometimes mysterious sensory abnormalities that accompany amblyopia. A goal of many of the studies has been to try to make the link between the sensory losses and the underlying neural losses, resulting in several hypotheses about the site, nature, and cause of amblyopia. This article reviews some of these hypotheses, and the assumptions that link the sensory losses to specific physiological alterations in the brain. Despite intensive study, it turns out to be quite difficult to make a simple linking hypothesis, at least at the level of single neurons, and the locus of the sensory loss remains elusive. It is now clear that the simplest notion—that reduced contrast sensitivity of neurons in cortical area V1 explains the reduction in contrast sensitivity—is too simplistic. Considerations of noise, noise correlations, pooling, and the weighting of information also play a critically important role in making perceptual decisions, and our current models of amblyopia do not adequately take these into account. Indeed, although the reduction of contrast sensitivity is generally considered to reflect “early” neural changes, it seems plausible that it reflects changes at many stages of visual processing. PMID:23879956

  19. Direct impacts of climatic warming on heat stress in endothermic species: seabirds as bioindicators of changing thermoregulatory constraints.

    PubMed

    Oswald, Stephen A; Arnold, Jennifer M

    2012-06-01

    There is now abundant evidence that contemporary climatic change has indirectly affected a wide-range of species by changing trophic interactions, competition, epidemiology and habitat. However, direct physiological impacts of changing climates are rarely reported for endothermic species, despite being commonly reported for ectotherms. We review the evidence for changing physiological constraints on endothermic vertebrates at high temperatures, integrating theoretical and empirical perspectives on the morphology, physiology and behavior of marine birds. Potential for increasing heat stress exposure depends on changes in multiple environmental variables, not just air temperature, as well as organism-specific morphology, physiology and behavior. Endotherms breeding at high latitudes are vulnerable to the forecast, extensive temperature changes because of the adaptations they possess to minimize heat loss. Low-latitude species will also be challenged as they currently live close to their thermal limits and will likely suffer future water shortages. Small, highly-active species, particularly aerial foragers, are acutely vulnerable as they are least able to dissipate heat at high temperatures. Overall, direct physiological impacts of climatic change appear underrepresented in the published literature, but available data suggest they have much potential to shape behavior, morphology and distribution of endothermic species. Coincidence between future heat stress events and other energetic constraints on endotherms remains largely unexplored but will be key in determining the physiological impacts of climatic change. Multi-scale, biophysical modeling, informed by experiments that quantify thermoregulatory responses of endotherms to heat stress, is an essential precursor to urgently-needed analyses at the population or species level. © 2012 ISZS, Blackwell Publishing and IOZ/CAS.

  20. Physiological, morphological and allocation plasticity of a semi-deciduous shrub

    NASA Astrophysics Data System (ADS)

    Zunzunegui, M.; Ain-Lhout, F.; Barradas, M. C. Díaz; Álvarez-Cansino, L.; Esquivias, M. P.; García Novo, F.

    2009-05-01

    The main objective of this study was to look into the phenotypic plasticity of the semi-deciduous Mediterranean shrub, Halimium halimifolium. We studied morphological, allocation and physiological traits to determine which characters were more plastic and contribute in a greater extent to the acclimation ability of the species. We present a phenotypic plasticity index for morphological, physiological and allocation traits, which we have applied in the most contrasted plant communities where the species grows naturally. Data published by Díaz Barradas, M.C., García Novo, F. [1987. The vertical structure of Mediterranean scrub in Doñana National Park (SW Spain). Folia Geobotanica Phytotaxonomica 22, 415-433; 1988. Modificación y extinción de la luz a través de la copa en cuatro especies de matorral en el Parque Nacional de Doñana. Monografias Instituto Pirenaico de Ecologia 4, 503-516; 1990. Seasonal changes in canopy structure in two mediterranean dune shrubs. Journal of Vegetation Science 1, 31-40.], Díaz Barradas, M.C., Zunzunegui, M., García Novo, F. [1999a. Autoecological traits of Halimium halimifolium in contrasted habitats under Mediterranean type climate. Folia Geobotanica 34, 189-208.] and Zunzunegui et al. [Zunzunegui, M., Díaz Barradas, M.C., García Novo, F. 1997. Autoecological notes of Halimium halimifolium. Lagascalia 19, 725-736. Sevilla, Spain; Zunzunegui, M., Díaz Barradas, M.C., Fernández Baco, L., García Novo, F. 1999. Seasonal changes in photochemical efficiency in leaves of Halimium halimifolium a Mediterranean semideciduous shrub. Photosynthetica 36, 17-31; Zunzunegui, M., Díaz Barradas, M.C., García Novo, F. 2000. Different phenotypic response of Halimium halimifolium in relation to groundwater availability. Plant Ecology 148, 165-174; Zunzunegui, M., Díaz Barradas, M.C., Aguilar, F., Ain-Lhout, F., Clavijo, A., García Novo, F. 2002. Growth response of Halimium halimifolium at four sites with different soil water availability

  1. Cardiovascular reactivity as a mechanism linking child trauma to adolescent psychopathology.

    PubMed

    Heleniak, Charlotte; McLaughlin, Katie A; Ormel, Johan; Riese, Harriette

    2016-10-01

    Alterations in physiological reactivity to stress are argued to be central mechanisms linking adverse childhood environmental experiences to internalizing and externalizing psychopathology. Childhood trauma exposure may influence physiological reactivity to stress in distinct ways from other forms of childhood adversity. This study applied a novel theoretical model to investigate the impact of childhood trauma on cardiovascular stress reactivity - the biopsychosocial model of challenge and threat. This model suggests that inefficient cardiovascular responses to stress - a threat as opposed to challenge profile - are characterized by blunted cardiac output (CO) reactivity and increased vascular resistance. We examined whether childhood trauma exposure predicted an indicator of the threat profile of cardiovascular reactivity and whether such a pattern was associated with adolescent psychopathology in a population-representative sample of 488 adolescents (M=16.17years old, 49.2% boys) in the TRacking Adolescents' Individual Lives Survey (TRAILS). Exposure to trauma was associated with both internalizing and externalizing symptoms and a pattern of cardiovascular reactivity consistent with the threat profile, including blunted CO reactivity during a social stress task. Blunted CO reactivity, in turn, was positively associated with externalizing, but not internalizing symptoms and mediated the link between trauma and externalizing psychopathology. None of these associations varied by gender. The biopsychosocial model of challenge and threat provides a novel theoretical framework for understanding disruptions in physiological reactivity to stress following childhood trauma exposure, revealing a potential pathway linking such exposure with externalizing problems in adolescents. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Phylogeographic evidence for a link of species divergence of Ephedra in the Qinghai-Tibetan Plateau and adjacent regions to the Miocene Asian aridification.

    PubMed

    Qin, Ai-Li; Wang, Ming-Ming; Cun, Yu-Zhi; Yang, Fu-Sheng; Wang, Shan-Shan; Ran, Jin-Hua; Wang, Xiao-Quan

    2013-01-01

    The Qinghai-Tibetan Plateau (QTP) has become one of the hotspots for phylogeographical studies due to its high species diversity. However, most previous studies have focused on the effects of the Quaternary glaciations on phylogeographical structures and the locations of glacial refugia, and little is known about the effects of the aridization of interior Asia on plant population structure and speciation. Here the chloroplast DNA (cpDNA) trnT-trnF and trnS-trnfM sequences were used to investigate the differentiation and phylogeographical history of 14 Ephedra species from the QTP and northern China, based on a sampling of 107 populations. The phylogeographical analysis, together with phylogenetic reconstruction based on combined four cpDNA fragments (rbcL, rpl16, rps4, and trnS-trnfM), supports three main lineages (eastern QTP, southern QTP, and northern China) of these Ephedra species. Divergence of each lineage could be dated to the Middle or Late Miocene, and was very likely linked to the uplift of the QTP and the Asian aridification, given the high drought and/or cold tolerance of Ephedra. Most of the Ephedra species had low intraspecific variation and lacked a strong phylogeographical structure, which could be partially attributed to clonal reproduction and a relatively recent origin. In addition, ten of the detected 25 cpDNA haplotypes are shared among species, suggesting that a wide sampling of species is helpful to investigate the origin of observed haplotypes and make reliable phylogeographical inference. Moreover, the systematic positions of some Ephedra species are discussed.

  3. Stress and translocation: alterations in the stress physiology of translocated birds

    PubMed Central

    Dickens, Molly J.; Delehanty, David J.; Romero, L. Michael

    2009-01-01

    Translocation and reintroduction have become major conservation actions in attempts to create self-sustaining wild populations of threatened species. However, avian translocations have a high failure rate and causes for failure are poorly understood. While ‘stress’ is often cited as an important factor in translocation failure, empirical evidence of physiological stress is lacking. Here we show that experimental translocation leads to changes in the physiological stress response in chukar partridge, Alectoris chukar. We found that capture alone significantly decreased the acute glucocorticoid (corticosterone, CORT) response, but adding exposure to captivity and transport further altered the stress response axis (the hypothalamic–pituitary–adrenal axis) as evident from a decreased sensitivity of the negative feedback system. Animals that were exposed to the entire translocation procedure, in addition to the reduced acute stress response and disrupted negative feedback, had significantly lower baseline CORT concentrations and significantly reduced body weight. These data indicate that translocation alters stress physiology and that chronic stress is potentially a major factor in translocation failure. Under current practices, the restoration of threatened species through translocation may unwittingly depend on the success of chronically stressed individuals. This conclusion emphasizes the need for understanding and alleviating translocation-induced chronic stress in order to use most effectively this important conservation tool. PMID:19324794

  4. Integrating multi-scale data to create a virtual physiological mouse heart.

    PubMed

    Land, Sander; Niederer, Steven A; Louch, William E; Sejersted, Ole M; Smith, Nicolas P

    2013-04-06

    While the virtual physiological human (VPH) project has made great advances in human modelling, many of the tools and insights developed as part of this initiative are also applicable for facilitating mechanistic understanding of the physiology of a range of other species. This process, in turn, has the potential to provide human relevant insights via a different scientific path. Specifically, the increasing use of mice in experimental research, not yet fully complemented by a similar increase in computational modelling, is currently missing an important opportunity for using and interpreting this growing body of experimental data to improve our understanding of cardiac function. This overview describes our work to address this issue by creating a virtual physiological mouse model of the heart. We describe the similarities between human- and mouse-focused modelling, including the reuse of VPH tools, and the development of methods for investigating parameter sensitivity that are applicable across species. We show how previous results using this approach have already provided important biological insights, and how these can also be used to advance VPH heart models. Finally, we show an example application of this approach to test competing multi-scale hypotheses by investigating variations in length-dependent properties of cardiac muscle.

  5. Integrating multi-scale data to create a virtual physiological mouse heart

    PubMed Central

    Land, Sander; Niederer, Steven A.; Louch, William E.; Sejersted, Ole M.; Smith, Nicolas P.

    2013-01-01

    While the virtual physiological human (VPH) project has made great advances in human modelling, many of the tools and insights developed as part of this initiative are also applicable for facilitating mechanistic understanding of the physiology of a range of other species. This process, in turn, has the potential to provide human relevant insights via a different scientific path. Specifically, the increasing use of mice in experimental research, not yet fully complemented by a similar increase in computational modelling, is currently missing an important opportunity for using and interpreting this growing body of experimental data to improve our understanding of cardiac function. This overview describes our work to address this issue by creating a virtual physiological mouse model of the heart. We describe the similarities between human- and mouse-focused modelling, including the reuse of VPH tools, and the development of methods for investigating parameter sensitivity that are applicable across species. We show how previous results using this approach have already provided important biological insights, and how these can also be used to advance VPH heart models. Finally, we show an example application of this approach to test competing multi-scale hypotheses by investigating variations in length-dependent properties of cardiac muscle. PMID:24427525

  6. Stochastic dynamic programming illuminates the link between environment, physiology, and evolution.

    PubMed

    Mangel, Marc

    2015-05-01

    I describe how stochastic dynamic programming (SDP), a method for stochastic optimization that evolved from the work of Hamilton and Jacobi on variational problems, allows us to connect the physiological state of organisms, the environment in which they live, and how evolution by natural selection acts on trade-offs that all organisms face. I first derive the two canonical equations of SDP. These are valuable because although they apply to no system in particular, they share commonalities with many systems (as do frictionless springs). After that, I show how we used SDP in insect behavioral ecology. I describe the puzzles that needed to be solved, the SDP equations we used to solve the puzzles, and the experiments that we used to test the predictions of the models. I then briefly describe two other applications of SDP in biology: first, understanding the developmental pathways followed by steelhead trout in California and second skipped spawning by Norwegian cod. In both cases, modeling and empirical work were closely connected. I close with lessons learned and advice for the young mathematical biologists.

  7. Binary pulsar evolution: unveiled links and new species

    NASA Astrophysics Data System (ADS)

    Possenti, Andrea

    2013-03-01

    In the last years a series of blind and/or targeted pulsar searches led to almost triple the number of known binary pulsars in the galactic field with respect to a decade ago. The focus will be on few outliers, which are emerging from the average properties of the enlarged binary pulsar population. Some of them may represent the long sought missing links between two kinds of neutron star binaries, while others could represent the stereotype of new groups of binaries, resulting from an evolutionary path which is more exotic than those considered until recently. In particular, a new class of binaries, which can be dubbed Ultra Low Mass Binary Pulsars (ULMBPs), is emerging from recent data.

  8. Productivity links morphology, symbiont specificity and bleaching in the evolution of Caribbean octocoral symbioses.

    PubMed

    Baker, David M; Freeman, Christopher J; Knowlton, Nancy; Thacker, Robert W; Kim, Kiho; Fogel, Marilyn L

    2015-12-01

    Many cnidarians host endosymbiotic dinoflagellates from the genus Symbiodinium. It is generally assumed that the symbiosis is mutualistic, where the host benefits from symbiont photosynthesis while providing protection and photosynthetic substrates. Diverse assemblages of symbiotic gorgonian octocorals can be found in hard bottom communities throughout the Caribbean. While current research has focused on the phylo- and population genetics of gorgonian symbiont types and their photo-physiology, relatively less work has focused on biogeochemical benefits conferred to the host and how these benefits vary across host species. Here we examine this symbiosis among 11 gorgonian species collected in Bocas del Toro, Panama. By coupling light and dark bottle incubations (P/R) with (13)C-bicarbonate tracers, we quantified the link between holobiont oxygen metabolism with carbon assimilation and translocation from symbiont to host. Our data show that P/R varied among species, and was correlated with colony morphology and polyp size. Sea fans and sea plumes were net autotrophs (P/R>1.5), while nine species of sea rods were net heterotrophs with most below compensation (P/R<1.0). (13)C assimilation corroborated the P/R results, and maximum δ(13)Chost values were strongly correlated with polyp size, indicating higher productivity by colonies with high polyp SA:V. A survey of gorgonian-Symbiodinium associations revealed that productive species maintain specialized, obligate symbioses and are more resistant to coral bleaching, whereas generalist and facultative associations are common among sea rods that have higher bleaching sensitivities. Overall, productivity and polyp size had strong phylogenetic signals with carbon fixation and polyp size showing evidence of trait covariance.

  9. Growth and physiological plasticity among differentially adapted genotypes of a widespread C4 grass under altered precipitation

    USDA-ARS?s Scientific Manuscript database

    Background/Question/Methods Variation in precipitation expected with climate change may impact plant fitness and alter ecosystem dynamics by modifying species phenology, productivity, and physiology. Species responses to varied precipitation will depend in part on plastic responses of genotypes ad...

  10. Liquid behavior of cross-linked actin bundles.

    PubMed

    Weirich, Kimberly L; Banerjee, Shiladitya; Dasbiswas, Kinjal; Witten, Thomas A; Vaikuntanathan, Suriyanarayanan; Gardel, Margaret L

    2017-02-28

    The actin cytoskeleton is a critical regulator of cytoplasmic architecture and mechanics, essential in a myriad of physiological processes. Here we demonstrate a liquid phase of actin filaments in the presence of the physiological cross-linker, filamin. Filamin condenses short actin filaments into spindle-shaped droplets, or tactoids, with shape dynamics consistent with a continuum model of anisotropic liquids. We find that cross-linker density controls the droplet shape and deformation timescales, consistent with a variable interfacial tension and viscosity. Near the liquid-solid transition, cross-linked actin bundles show behaviors reminiscent of fluid threads, including capillary instabilities and contraction. These data reveal a liquid droplet phase of actin, demixed from the surrounding solution and dominated by interfacial tension. These results suggest a mechanism to control organization, morphology, and dynamics of the actin cytoskeleton.

  11. The tell-tale heart: physiological reactivity during resolution of ambiguity in youth anxiety.

    PubMed

    Rozenman, Michelle; Vreeland, Allison; Iglesias, Marisela; Mendez, Melissa; Piacentini, John

    2018-03-01

    In the past decade, cognitive biases and physiological arousal have each been proposed as mechanisms through which paediatric anxiety develops and is maintained over time. Preliminary studies have found associations between anxious interpretations of ambiguity, physiological arousal, and avoidance, supporting theories that link cognition, psychophysiology, and behaviour. However, little is known about the relationship between youths' resolutions of ambiguity and physiological arousal during acute stress. Such information may have important clinical implications for use of verbal self-regulation strategies and cognitive restructuring during treatments for paediatric anxiety. In this brief report, we present findings suggesting that anxious, but not typically developing, youth select avoidant goals via non-threatening resolution of ambiguity during a stressor, and that this resolution of ambiguity is accompanied by physiological reactivity (heart rate, heart rate variability, and respiratory sinus arrhythmia). We propose future empirical research on the interplay between interpretation bias, psychophysiology, and child anxiety, as well as clinical implications.

  12. Plant Physiological, Morphological and Yield-Related Responses to Night Temperature Changes across Different Species and Plant Functional Types

    PubMed Central

    Jing, Panpan; Wang, Dan; Zhu, Chunwu; Chen, Jiquan

    2016-01-01

    Land surface temperature over the past decades has shown a faster warming trend during the night than during the day. Extremely low night temperatures have occurred frequently due to the influence of land-sea thermal difference, topography and climate change. This asymmetric night temperature change is expected to affect plant ecophysiology and growth, as the plant carbon consumption processes could be affected more than the assimilation processes because photosynthesis in most plants occurs during the daytime whereas plant respiration occurs throughout the day. The effects of high night temperature (HNT) and low night temperature (LNT) on plant ecophysiological and growing processes and how the effects vary among different plant functional types (PFTs) have not been analyzed extensively. In this meta-analysis, we examined the effect of HNT and LNT on plant physiology and growth across different PFTs and experimental settings. Plant species were grouped according to their photosynthetic pathways (C3, C4, and CAM), growth forms (herbaceous, woody), and economic purposes (crop, non-crop). We found that HNT and LNT both had a negative effect on plant yield, but the effect of HNT on plant yield was primarily related to a reduction in biomass allocation to reproduction organs and the effect of LNT on plant yield was more related to a negative effect on total biomass. Leaf growth was stimulated at HNT and suppressed at LNT. HNT accelerated plants ecophysiological processes, including photosynthesis and dark respiration, while LNT slowed these processes. Overall, the results showed that the effects of night temperature on plant physiology and growth varied between HNT and LNT, among the response variables and PFTs, and depended on the magnitude of temperature change and experimental design. These findings suggest complexities and challenges in seeking general patterns of terrestrial plant growth in HNT and LNT. The PFT specific responses of plants are critical for

  13. Comparative physiology of sound localization in four species of owls.

    PubMed

    Volman, S F; Konishi, M

    1990-01-01

    Bilateral ear asymmetry is found in some, but not all, species of owls. We investigated the neural basis of sound localization in symmetrical and asymmetrical species, to deduce how ear asymmetry might have evolved from the ancestral condition, by comparing the response properties of neurons in the external nucleus of the inferior colliculus (ICx) of the symmetrical burrowing owl and asymmetrical long-eared owl with previous findings in the symmetrical great horned owl and asymmetrical barn owl. In the ICx of all of these owls, the neurons had spatially restricted receptive fields, and auditory space was topographically mapped. In the symmetrical owls, ICx units were not restricted in elevation, and only azimuth was mapped in ICx. In the barn owl, the space map is two-dimensional, with elevation forming the second dimension. Receptive fields in the long-eared owl were somewhat restricted in elevation, but their tuning was not sharp enough to determine if elevation is mapped. In every species, the primary cue for azimuth was interaural time difference, although ICx units were also tuned for interaural intensity difference (IID). In the barn owl, the IIDs of sounds with frequencies between about 5 and 8 kHz vary systematically with elevation, and the IID selectivity of ICx neurons primarily encodes elevation. In the symmetrical owls, whose ICx neurons do not respond to frequencies above about 5 kHz, IID appears to be a supplementary cue for azimuth. We hypothesize that ear asymmetry can be exploited by owls that have evolved the higher-frequency hearing necessary to generate elevation cues. Thus, the IID selectivity of ICx neurons in symmetrical owls may preadapt them for asymmetry; the neural circuitry that underlies IID selectivity is already present in symmetrical owls, but because IID is not absolutely required to encode azimuth it can come to encode elevation in asymmetrical owls.

  14. Physiology and biochemistry of recalcitrant Guarea guidonia (L.) Sleumer seeds

    Treesearch

    Kristina F. Connor; F.T. Bonner

    1998-01-01

    Investigations of recalcitrant, or desiccation-sensitive, seeds have as yet failed to identify the causes of this phenomenon. Experiments with Guarea guidonia (L.) Sleumer (American muskwood) were initiated to determine the effects of desiccation on the physiology and biochemistry of the seeds of this tropical tree species. Seeds were air-dried at...

  15. Physiological and genetic correlates of boldness: characterising the mechanisms of behavioural variation in rainbow trout, Oncorhynchus mykiss.

    PubMed

    Thomson, Jack S; Watts, Phillip C; Pottinger, Tom G; Sneddon, Lynne U

    2011-01-01

    Bold, risk-taking animals have previously been putatively linked with a proactive stress coping style whereas it is suggested shyer, risk-averse animals exhibit a reactive coping style. The aim of this study was to investigate whether differences in the expression of bold-type behaviour were evident within and between two lines of rainbow trout, Oncorhynchus mykiss, selectively bred for a low (LR) or high (HR) endocrine response to stress, and to link boldness and stress responsiveness with the expression of related candidate genes. Boldness was determined in individual fish over two trials by measuring the latency to approach a novel object. Differences in plasma cortisol concentrations and the expression of eight novel candidate genes previously identified as being linked with divergent behaviours or stress were determined. Bold and shy individuals, approaching the object within 180 s or not approaching within 300 s respectively, were evident within each line, and this was linked with activity levels in the HR line. Post-stress plasma cortisol concentrations were significantly greater in the HR line compared with the LR line, and six of the eight tested genes were upregulated in the brains of LR fish compared with HR fish. However, no direct relationship between boldness and either stress responsiveness or gene expression was found, although clear differences in stress physiology and, for the first time, gene expression could be identified between the lines. This lack of correlation between physiological and molecular responses and behavioural variation within both lines highlights the complexity of the behavioural-physiological complex. Copyright © 2010 Elsevier Inc. All rights reserved.

  16. Comparing photophysiology of seagrasses in the Pacific Northwest: potential implications for species interactions

    EPA Science Inventory

    Physiological tolerances are a primary control on species interactions mediated through production and growth. We examined how the physiology of native eelgrass (Zostera marina L.) and introduced Japanese eelgrass (Z. japonica Aschers. & Graeb) responded to temperature in or...

  17. The link between antioxidant enzymes catalase and glutathione S-transferase and physiological condition of a control population of terrestrial isopod (Porcellio scaber).

    PubMed

    Jemec, Anita; Lešer, Vladka; Drobne, Damjana

    2012-05-01

    The aim of this work was to investigate if the activities of catalase and glutathione S-transferase in a control population of terrestrial isopods (Porcellio scaber) are correlated with the physiological condition of the isopods. For this purpose, the activities of these enzymes were analysed in isopods from a stock population and in parallel, the physiological condition of the same specimens was assessed using a histological approach based on epithelial thickness and lipid droplets. We found a correlation between antioxidant enzymes and the physiological condition of the isopods. This implies that these enzymes could be used as predictive indicators of the physiological condition in a stock population before comprehensive toxicological studies are conducted and also in control group after the experiment. When a control group is found to be very heterogeneous in terms of physiological condition, the experiment should be repeated with a larger number of experimental animals. The findings of this study will contribute to more accurate experimental design of toxicity tests when using biomarkers. This should encourage other researchers to increase their effort to know the physiological state of their test organisms. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. A Rhomboid Protease Gene Deletion Affects a Novel Oligosaccharide N-Linked to the S-layer Glycoprotein of Haloferax volcanii*

    PubMed Central

    Parente, Juliana; Casabuono, Adriana; Ferrari, María Celeste; Paggi, Roberto Alejandro; De Castro, Rosana Esther; Couto, Alicia Susana; Giménez, María Inés

    2014-01-01

    Rhomboid proteases occur in all domains of life; however, their physiological role is not completely understood, and nothing is known of the biology of these enzymes in Archaea. One of the two rhomboid homologs of Haloferax volcanii (RhoII) is fused to a zinc finger domain. Chromosomal deletion of rhoII was successful, indicating that this gene is not essential for this organism; however, the mutant strain (MIG1) showed reduced motility and increased sensitivity to novobiocin. Membrane preparations of MIG1 were enriched in two glycoproteins, identified as the S-layer glycoprotein and an ABC transporter component. The H. volcanii S-layer glycoprotein has been extensively used as a model to study haloarchaeal protein N-glycosylation. HPLC analysis of oligosaccharides released from the S-layer glycoprotein after PNGase treatment revealed that MIG1 was enriched in species with lower retention times than those derived from the parent strain. Mass spectrometry analysis showed that the wild type glycoprotein released a novel oligosaccharide species corresponding to GlcNAc-GlcNAc(Hex)2-(SQ-Hex)6 in contrast to the mutant protein, which contained the shorter form GlcNAc2(Hex)2-SQ-Hex-SQ. A glycoproteomics approach of the wild type glycopeptide fraction revealed Asn-732 peptide fragments linked to the sulfoquinovose-containing oligosaccharide. This work describes a novel N-linked oligosaccharide containing a repeating SQ-Hex unit bound to Asn-732 of the H. volcanii S-layer glycoprotein, a position that had not been reported as glycosylated. Furthermore, this study provides the first insight on the biological role of rhomboid proteases in Archaea, suggesting a link between protein glycosylation and this protease family. PMID:24596091

  19. A rhomboid protease gene deletion affects a novel oligosaccharide N-linked to the S-layer glycoprotein of Haloferax volcanii.

    PubMed

    Parente, Juliana; Casabuono, Adriana; Ferrari, María Celeste; Paggi, Roberto Alejandro; De Castro, Rosana Esther; Couto, Alicia Susana; Giménez, María Inés

    2014-04-18

    Rhomboid proteases occur in all domains of life; however, their physiological role is not completely understood, and nothing is known of the biology of these enzymes in Archaea. One of the two rhomboid homologs of Haloferax volcanii (RhoII) is fused to a zinc finger domain. Chromosomal deletion of rhoII was successful, indicating that this gene is not essential for this organism; however, the mutant strain (MIG1) showed reduced motility and increased sensitivity to novobiocin. Membrane preparations of MIG1 were enriched in two glycoproteins, identified as the S-layer glycoprotein and an ABC transporter component. The H. volcanii S-layer glycoprotein has been extensively used as a model to study haloarchaeal protein N-glycosylation. HPLC analysis of oligosaccharides released from the S-layer glycoprotein after PNGase treatment revealed that MIG1 was enriched in species with lower retention times than those derived from the parent strain. Mass spectrometry analysis showed that the wild type glycoprotein released a novel oligosaccharide species corresponding to GlcNAc-GlcNAc(Hex)2-(SQ-Hex)6 in contrast to the mutant protein, which contained the shorter form GlcNAc2(Hex)2-SQ-Hex-SQ. A glycoproteomics approach of the wild type glycopeptide fraction revealed Asn-732 peptide fragments linked to the sulfoquinovose-containing oligosaccharide. This work describes a novel N-linked oligosaccharide containing a repeating SQ-Hex unit bound to Asn-732 of the H. volcanii S-layer glycoprotein, a position that had not been reported as glycosylated. Furthermore, this study provides the first insight on the biological role of rhomboid proteases in Archaea, suggesting a link between protein glycosylation and this protease family.

  20. Economic thermoregulatory response explains mismatch between thermal physiology and behaviour in newts.

    PubMed

    Gvoždík, Lumír; Kristín, Peter

    2017-03-15

    Temperature is an important factor determining distribution and abundance of organisms. Predicting the impact of warming climate on ectotherm populations requires information about species' thermal requirements, i.e. their so-called 'thermal niche'. The characterization of thermal niche remains a complicated task. We compared the applicability of two indirect approaches, based on reaction norm (aerobic scope curve) and optimality (preferred body temperature) concepts, for indirect estimation of thermal niche while using newts, Ichthyosaura alpestris , as a study system. If the two approaches are linked, then digesting newts should keep their body temperatures close to values maximizing aerobic scope for digestion. After feeding, newts maintained their body temperatures within a narrower range than did hungry individuals. The range of preferred body temperatures was well below the temperature maximizing aerobic scope for digestion. Optimal temperatures for factorial aerobic scope fell within the preferred body temperature range of digesting individuals. We conclude that digesting newts prefer body temperatures that are optimal for the maximum aerobic performance but relative to the maintenance costs. What might be termed the 'economic' thermoregulatory response explains the mismatch between thermal physiology and behaviour in this system. © 2017. Published by The Company of Biologists Ltd.

  1. Species as Stressors: Heterospecific Interactions and the Cellular Stress Response under Global Change.

    PubMed

    Gunderson, Alex R; King, Emily E; Boyer, Kirsten; Tsukimura, Brian; Stillman, Jonathon H

    2017-07-01

    Anthropogenic global change is predicted to increase the physiological stress of organisms through changes in abiotic conditions such as temperature, pH, and pollution. However, organisms can also experience physiological stress through interactions with other species, especially parasites, predators, and competitors. The stress of species interactions could be an important driver of species' responses to global change as the composition of biological communities change through factors such as distributional and phenological shifts. Interactions between biotic and abiotic stressors could also induce non-linear physiological stress responses under global change. One of the primary means by which organisms deal with physiological stress is through the cellular stress response (CSR), which is broadly the upregulation of a conserved set of genes that facilitate the removal and repair of damaged macromolecules. Here, we present data on behavioral interactions and CSR gene expression for two competing species of intertidal zone porcelain crab (Petrolisthes cinctipes and Petrolisthes manimaculis). We found that P. cinctipes and P. manimaculis engage in more agonistic behaviors when interacting with heterospecifics than conspecifics; however, we found no evidence that heterospecific interactions induced a CSR in these species. In addition to our new data, we review the literature with respect to CSR induction via species interactions, focusing on predator-prey systems and heterospecific competition. We find extensive evidence for predators to induce cellular stress and aspects of the CSR in prey, even in the absence of direct physical contact between species. Effects of heterospecific competition on the CSR have been studied far less, but we do find evidence that agonistic interactions with heterospecifics can induce components of the CSR. Across all published studies, there is clear evidence that species interactions can lead to cellular stress and induction of the CSR

  2. [Epidemiology of arbovirus diseases: use and value of physiologic age determination of female mosquito vectors].

    PubMed

    Mondet, B

    1996-01-01

    The physiological age of Yellow Fever Aedes females in Africa was studied during four years, from 1988 to 1992. We used a method, according to Polovodova's method, which looks for the "yellow body" under natural light. Those yellow bodies exist in the old females, the "parous" ones, and not in the young females, the "nulliparous" ones. We present some results to illustrate the interest of studying the physiological age of mosquitoes in the epidemiology of the arboviral diseases. The transmission risk, in relation with abundance and parity rate was illustrated, in particular for Aedes africanus and Aedes luteocephalus, which is useful to compare species, or with a given species, to compare periods. The parity rate of Aedes furcifer females was studied on 6 points along a transect between a forest and a village. The rate and the abundance of the females caught on human bates are inversely proportional. The parity rate is minimum in the canopy forest (about 50%) and maximum inside a house (100%). The rains have different consequences on the species, according to the period of fall. At the beginning of the dry season, they bring about hatching, but not at the end of the dry season. Massive hatching, will occur just at the beginning of the rainy season, some weeks later. Studying the physiological age of Ae. africanus females, the number of nulliparous is not related to the rain. That means a possibility of "natural" hatching for part of the eggs. Among the female of the dry season, young females are found, which is important for the transmission capacity. The method, described herein, to determine the physiological age is perfectly applicable to the Yellow Fever vector Haemagogus janthinomys in Southern America. But for the Dengue vectors Aedes aegypti and probably Aedes albopictus, the Detinova's method seems better. Actually, it seems important to study the physiological age of the vectors Ae. aegypti and Ae. albopictus, as well as the evolution of the physiological

  3. Exploring physiological plasticity and local thermal adaptation in an intertidal crab along a latitudinal cline.

    PubMed

    Gaitán-Espitia, Juan Diego; Bacigalupe, Leonardo D; Opitz, Tania; Lagos, Nelson A; Osores, Sebastián; Lardies, Marco A

    2017-08-01

    Intertidal organisms have evolved physiological mechanisms that enable them to maintain performance and survive during periods of severe environmental stress with temperatures close to their tolerance limits. The level of these adaptive responses in thermal physiology can vary among populations of broadly distributed species depending on their particular environmental context and genetic backgrounds. Here we examined thermal performances and reaction norms for metabolic rate (MR) and heart rate (HR) of seven populations of the porcelanid crab Petrolisthes violaceus from markedly different thermal environments across the latitudinal gradient of ~3000km. Physiological responses of this intertidal crab under common-garden conditions suggest the absence of local thermal adaptation along the geographic gradient (i.e., lack of latitudinal compensation). Moreover, thermal physiological sensitivities and performances in response to increased temperatures evidenced the existence of some level of: i) metabolic rate control or depression during warm temperature exposures; and ii) homeostasis/canalization (i.e., absence or low levels of plasticity) in physiological traits that may reflect some sort of buffering mechanism in most of the populations. Nevertheless, our results indicate that elevated temperatures can reduce cardiac function but not metabolic rate in high latitude crabs. The lack of congruence between HR and MR supports the idea that energy metabolism in marine invertebrates cannot be inferred from HR and different conclusions regarding geographic differentiation in energy metabolism can be obtained from both physiological traits. Integrating thermal physiology and species range extent can contribute to a better understanding of the likely effects of climate change on natural populations of marine ectotherms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Toddler parasympathetic regulation and fear: Links to maternal appraisal and behavior

    PubMed Central

    Cho, Sunghye; Buss, Kristin A.

    2017-01-01

    There is a growing recognition that parental socialization influences interact with young children’s emerging capacity for physiological regulation and shape children’s developmental trajectories. Nevertheless, the transactional processes linking parental socialization and physiological regulatory processes remain not well understood, particularly for fear-prone toddlers. To address this gap in the literature, the present study investigated the biopsychosocial processes that underlie toddlers’ fear regulation by examining the relations among toddler parasympathetic regulation, maternal appraisal, and parenting behaviors. Participants included 124 mothers and their toddlers (Mage = 24.43 months), who participated in a longitudinal study of temperament and socio-emotional development. Toddlers’ parasympathetic reactivity was found to moderate the links between maternal anticipatory appraisal of child fearfulness and (a) maternal provision of physical comfort and (b) preschool-age child inhibition. Additionally, maternal comforting behaviors during the low-threat task predicted preschool-age separation distress, specifically for toddlers demonstrating a low baseline RSA. PMID:27785806

  5. Toddler parasympathetic regulation and fear: Links to maternal appraisal and behavior.

    PubMed

    Cho, Sunghye; Buss, Kristin A

    2017-03-01

    There is a growing recognition that parental socialization influences interact with young children's emerging capacity for physiological regulation and shape children's developmental trajectories. Nevertheless, the transactional processes linking parental socialization and physiological regulatory processes remain not well understood, particularly for fear-prone toddlers. To address this gap in the literature, the present study investigated the biopsychosocial processes that underlie toddlers' fear regulation by examining the relations among toddler parasympathetic regulation, maternal appraisal, and parenting behaviors. Participants included 124 mothers and their toddlers (M age  = 24.43 months), who participated in a longitudinal study of temperament and socio-emotional development. Toddlers' parasympathetic reactivity was found to moderate the links between maternal anticipatory appraisal of child fearfulness and (a) maternal provision of physical comfort and (b) preschool-age child inhibition. Additionally, maternal comforting behaviors during the low-threat task predicted preschool-age separation distress, specifically for toddlers demonstrating a low baseline RSA. © 2016 Wiley Periodicals, Inc.

  6. Measurement of Reactive Oxygen Species, Reactive Nitrogen Species, and Redox-Dependent Signaling in the Cardiovascular System

    PubMed Central

    Griendling, Kathy K.; Touyz, Rhian M.; Zweier, Jay L.; Dikalov, Sergey; Chilian, William; Chen, Yeong-Renn; Harrison, David G.; Bhatnagar, Aruni

    2017-01-01

    Reactive oxygen species and reactive nitrogen species are biological molecules that play important roles in cardiovascular physiology and contribute to disease initiation, progression, and severity. Because of their ephemeral nature and rapid reactivity, these species are difficult to measure directly with high accuracy and precision. In this statement, we review current methods for measuring these species and the secondary products they generate and suggest approaches for measuring redox status, oxidative stress, and the production of individual reactive oxygen and nitrogen species. We discuss the strengths and limitations of different methods and the relative specificity and suitability of these methods for measuring the concentrations of reactive oxygen and reactive nitrogen species in cells, tissues, and biological fluids. We provide specific guidelines, through expert opinion, for choosing reliable and reproducible assays for different experimental and clinical situations. These guidelines are intended to help investigators and clinical researchers avoid experimental error and ensure high-quality measurements of these important biological species. PMID:27418630

  7. Rapid changes in cell physiology as a result of acute thermal stress house sparrows, Passer domesticus.

    PubMed

    Jimenez, Ana G; Williams, Joseph B

    2014-12-01

    Given that our climate is rapidly changing, Physiological Ecologists have the critical task of identifying characteristics of species that make them either resilient or susceptible to changes in their natural air temperature regime. Because climate change models suggest that heat events will become more common, and in some places more extreme, it is important to consider how extreme heat events might affect the physiology of a species. The implications of more frequent heat wave events for birds have only recently begun to be addressed, however, the impact of these events on the cellular physiology of a species is difficult to assess. We have developed a novel approach using dermal fibroblasts to explore how short-term thermal stress at the whole animal level might affect cellular rates of metabolism. House sparrows, Passer domesticus were separated into a "control group" and a "heat shocked" group, the latter acclimated to 43°C for 24h. We determined the plasticity of cellular thermal responses by assigning a "recovery group" that was heat shocked as above, but then returned to room temperature for 24h. Primary dermal fibroblasts were grown from skin of all treatment groups and the pectoralis muscle was collected. We found that glycolysis (ECAR) and oxygen consumption rates (OCR), measured using a Seahorse XF 96 analyzer, were significantly higher in the fibroblasts from the heat shocked group of House sparrows compared with their control counterparts. Additionally, muscle fiber diameters decreased and, in turn, Na(+)-K(+)-ATPase maximal activity in the muscle significantly increased in heat shocked sparrows compared with birds in the control group. All of these physiological alterations due to short-term heat exposure were reversible within 24h of recovery at room temperature. These results show that acute exposure to heat stress significantly alters the cellular physiology of sparrows, but that this species is plastic enough to recover from such a thermal

  8. Behavioral and physiological correlates of the geographic distributions of amphibious sea kraits (Laticauda spp.)

    NASA Astrophysics Data System (ADS)

    Brischoux, François; Tingley, Reid; Shine, Richard; Lillywhite, Harvey B.

    2013-02-01

    The physiological costs of living in seawater likely influenced the secondary evolutionary transitions to marine life in tetrapods. However, these costs are alleviated for species that commute between the land and the sea, because terrestrial habitats can provide frequent access to fresh water. Here, we investigate how differences in the ecology and physiology of three sea krait species (Laticauda spp.) interact to determine their environmental tolerances and geographic distributions. These three species vary in their relative use of terrestrial versus marine environments, and they display concomitant adaptations to life on land versus at sea. A species with relatively high dehydration rates in seawater (Laticauda colubrina) occupied oceanic areas with low mean salinities, whereas a species with comparatively high rates of transcutaneous evaporative water loss on land (Laticauda semifasciata) occupied regions with low mean temperatures. A third taxon (Laticauda laticaudata) was intermediate in both of these traits, and yet occupied the broadest geographic range. Our results suggest that the abilities of sea kraits to acquire fresh water on land and tolerate dehydration at sea determine their environmental tolerances and geographic distributions. This finding supports the notion that speciation patterns within sea kraits have been driven by interspecific variation in the degree of reliance upon terrestrial versus marine habitats. Future studies could usefully examine the effects of osmotic challenges on diversification rates in other secondarily marine tetrapod species.

  9. Forecasting an invasive species’ distribution with global distribution data, local data, and physiological information

    USGS Publications Warehouse

    Jarnevich, Catherine S.; Young, Nicholas E.; Talbert, Marian; Talbert, Colin

    2018-01-01

    Understanding invasive species distributions and potential invasions often requires broad‐scale information on the environmental tolerances of the species. Further, resource managers are often faced with knowing these broad‐scale relationships as well as nuanced environmental factors related to their landscape that influence where an invasive species occurs and potentially could occur. Using invasive buffelgrass (Cenchrus ciliaris), we developed global models and local models for Saguaro National Park, Arizona, USA, based on location records and literature on physiological tolerances to environmental factors to investigate whether environmental relationships of a species at a global scale are also important at local scales. In addition to correlative models with five commonly used algorithms, we also developed a model using a priori user‐defined relationships between occurrence and environmental characteristics based on a literature review. All correlative models at both scales performed well based on statistical evaluations. The user‐defined curves closely matched those produced by the correlative models, indicating that the correlative models may be capturing mechanisms driving the distribution of buffelgrass. Given climate projections for the region, both global and local models indicate that conditions at Saguaro National Park may become more suitable for buffelgrass. Combining global and local data with correlative models and physiological information provided a holistic approach to forecasting invasive species distributions.

  10. Rice Physiology

    Treesearch

    P.A. Counce; Davidi R. Gealy; Shi-Jean Susana Sung

    2002-01-01

    Physiology occurs tn physical space through chemical reactions constrained by anatomy and morphology, yet guided by genetics. Physiology has been called the logic of life. Genes encode structural and fimcdonal proteins. These proteins are subsequently processed to produce enzymes that direct and govern the biomechanical processes involved in the physiology of the...

  11. Physiology of Calcium, Phosphate, Magnesium and Vitamin D.

    PubMed

    Allgrove, Jeremy

    2015-01-01

    The physiology of calcium and the other minerals involved in its metabolism is complex and intimately linked to the physiology of bone. Five principal humoral factors are involved in maintaining plasma concentrations of calcium, magnesium and phosphate and in coordinating the balance between their content in bone. The transmembrane transport of these elements is dependent on a series of complex mechanisms that are partly controlled by these hormones. The plasma concentration of calcium is initially sensed by a calcium-sensing receptor, which then sets up a cascade of events that initially determines parathyroid hormone secretion and eventually results in a specific action within the target organs, mainly bone and kidney. This chapter describes the physiology of these humoral factors and relates them to the pathological processes that give rise to disorders of calcium, phosphate and magnesium metabolism as well as of bone metabolism. This chapter also details the stages in the calcium cascade, describes the effects of calcium on the various target organs, gives details of the processes by which phosphate and magnesium are controlled and summarises the metabolism of vitamin D. The pathology of disorders of bone and calcium metabolism is described in detail in the relevant chapters. © 2015 S. Karger AG, Basel.

  12. Physiological effects of polybrominated diphenyl ether (PBDE-47) on pregnant gartersnakes and resulting offspring.

    PubMed

    Neuman-Lee, Lorin A; Carr, James; Vaughn, Katelynn; French, Susannah S

    2015-08-01

    Polybrominated diphenyl ethers (PBDEs) are used as flame retardants and are persistent contaminants found in virtually every environment and organism sampled to date, including humans. There is growing evidence that PBDEs are the source of thyroid, neurodevelopmental, and reproductive toxicity. Yet little work has focused on how this pervasive contaminant may influence the reproduction and physiology of non-traditional model species. This is especially critical because in many cases non-model species, such as reptiles, are most likely to come into contact with PBDEs in nature. We tested how short-term, repeated exposure to the PBDE congener BDE-47 during pregnancy affected physiological processes in pregnant female gartersnakes (thyroid follicular height, bactericidal ability, stress responsiveness, reproductive output, and tendency to terminate pregnancy) and their resulting offspring (levels of corticosterone, bactericidal ability, and size differences). We found potential effects of BDE-47 on both the mother, such as increased size and higher thyroid follicular height, and her offspring (increased size), suggesting the effects on physiological function of PBDEs do indeed extend beyond the traditional rodent models. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Physiological Regulation of Stress in Referred Adolescents: The Role of the Parent-Adolescent Relationship

    ERIC Educational Resources Information Center

    Willemen, Agnes M.; Schuengel, Carlo; Koot, Hans M.

    2009-01-01

    Background: Psychopathology in youth appears to be linked to deficits in regulating affective responses to stressful situations. In children, high-quality parental support facilitates affect regulation. However, in adolescence, the role of parent-child interaction in the regulation of affect is unclear. This study examined physiological reactivity…

  14. Antibiotics induce redox-related physiological alterations as part of their lethality

    PubMed Central

    Dwyer, Daniel J.; Belenky, Peter A.; Yang, Jason H.; MacDonald, I. Cody; Martell, Jeffrey D.; Takahashi, Noriko; Chan, Clement T. Y.; Lobritz, Michael A.; Braff, Dana; Schwarz, Eric G.; Ye, Jonathan D.; Pati, Mekhala; Vercruysse, Maarten; Ralifo, Paul S.; Allison, Kyle R.; Khalil, Ahmad S.; Ting, Alice Y.; Walker, Graham C.; Collins, James J.

    2014-01-01

    Deeper understanding of antibiotic-induced physiological responses is critical to identifying means for enhancing our current antibiotic arsenal. Bactericidal antibiotics with diverse targets have been hypothesized to kill bacteria, in part by inducing production of damaging reactive species. This notion has been supported by many groups but has been challenged recently. Here we robustly test the hypothesis using biochemical, enzymatic, and biophysical assays along with genetic and phenotypic experiments. We first used a novel intracellular H2O2 sensor, together with a chemically diverse panel of fluorescent dyes sensitive to an array of reactive species to demonstrate that antibiotics broadly induce redox stress. Subsequent gene-expression analyses reveal that complex antibiotic-induced oxidative stress responses are distinct from canonical responses generated by supraphysiological levels of H2O2. We next developed a method to quantify cellular respiration dynamically and found that bactericidal antibiotics elevate oxygen consumption, indicating significant alterations to bacterial redox physiology. We further show that overexpression of catalase or DNA mismatch repair enzyme, MutS, and antioxidant pretreatment limit antibiotic lethality, indicating that reactive oxygen species causatively contribute to antibiotic killing. Critically, the killing efficacy of antibiotics was diminished under strict anaerobic conditions but could be enhanced by exposure to molecular oxygen or by the addition of alternative electron acceptors, indicating that environmental factors play a role in killing cells physiologically primed for death. This work provides direct evidence that, downstream of their target-specific interactions, bactericidal antibiotics induce complex redox alterations that contribute to cellular damage and death, thus supporting an evolving, expanded model of antibiotic lethality. PMID:24803433

  15. Phosphorus physiological ecology and molecular mechanisms in marine phytoplankton.

    PubMed

    Lin, Senjie; Litaker, Richard Wayne; Sunda, William G

    2016-02-01

    Phosphorus (P) is an essential nutrient for marine phytoplankton and indeed all life forms. Current data show that P availability is growth-limiting in certain marine systems and can impact algal species composition. Available P occurs in marine waters as dissolved inorganic phosphate (primarily orthophosphate [Pi]) or as a myriad of dissolved organic phosphorus (DOP) compounds. Despite numerous studies on P physiology and ecology and increasing research on genomics in marine phytoplankton, there have been few attempts to synthesize information from these different disciplines. This paper is aimed to integrate the physiological and molecular information on the acquisition, utilization, and storage of P in marine phytoplankton and the strategies used by these organisms to acclimate and adapt to variations in P availability. Where applicable, we attempt to identify gaps in our current knowledge that warrant further research and examine possible metabolic pathways that might occur in phytoplankton from well-studied bacterial models. Physical and chemical limitations governing cellular P uptake are explored along with physiological and molecular mechanisms to adapt and acclimate to temporally and spatially varying P nutrient regimes. Topics covered include cellular Pi uptake and feedback regulation of uptake systems, enzymatic utilization of DOP, P acquisition by phagotrophy, P-limitation of phytoplankton growth in oceanic and coastal waters, and the role of P-limitation in regulating cell size and toxin levels in phytoplankton. Finally, we examine the role of P and other nutrients in the transition of phytoplankton communities from early succession species (diatoms) to late succession ones (e.g., dinoflagellates and haptophytes). © 2015 Phycological Society of America.

  16. Gamma-irradiation produces active chlorine species (ACS) in physiological solutions: Secoisolariciresinol diglucoside (SDG) scavenges ACS - A novel mechanism of DNA radioprotection

    PubMed Central

    Mishra, Om P.; Popov, Anatoliy V.; Pietrofesa, Ralph A.; Christofidou-Solomidou, Melpo

    2017-01-01

    Background Secoisolariciresinol diglucoside (SDG), the main lignan in whole grain flaxseed, is a potent antioxidant and free radical scavenger with known radioprotective properties. However, the exact mechanism of SDG radioprotection is not well understood. The current study identified a novel mechanism of DNA radioprotection by SDG in physiological solutions by scavenging active chlorine species (ACS) and reducing chlorinated nucleobases. Methods The ACS scavenging activity of SDG was determined using two highly specific fluoroprobes: hypochlorite-specific 3′-(p-aminophenyl) fluorescein (APF) and hydroxyl radical-sensitive 3′-(p-hydroxyphenyl) fluorescein (HPF). Dopamine, an SDG structural analog, was used for proton 1H NMR studies to trap primary ACS radicals. Taurine N-chlorination was determined to demonstrate radiation-induced generation of hypochlorite, a secondary ACS. DNA protection was assessed by determining the extent of DNA fragmentation and plasmid DNA relaxation following exposure to ClO− and radiation. Purine base chlorination by ClO− and γ-radiation was determined by using 2-aminopurine (2-AP), a fluorescent analog of 6-aminopurine. Results: Chloride anions (Cl−) consumed >90% of hydroxyl radicals in physiological solutions produced by γ-radiation resulting in ACS formation, which was detected by 1H NMR. Importantly, SDG scavenged hypochlorite- and γ-radiation-induced ACS. In addition, SDG blunted ACS-induced fragmentation of calf thymus DNA and plasmid DNA relaxation. SDG treatment before or after ACS exposure decreased the ClO− or γ-radiation-induced chlorination of 2-AP. Exposure to γ-radiation resulted in increased taurine chlorination, indicative of ClO− generation. NMR studies revealed formation of primary ACS radicals (chlorine atoms (Cl•) and dichloro radical anions (Cl2−•)), which were trapped by SDG and its structural analog dopamine. Conclusion We demonstrate that γ-radiation induces the generation of ACS in

  17. Gamma-irradiation produces active chlorine species (ACS) in physiological solutions: Secoisolariciresinol diglucoside (SDG) scavenges ACS - A novel mechanism of DNA radioprotection.

    PubMed

    Mishra, Om P; Popov, Anatoliy V; Pietrofesa, Ralph A; Christofidou-Solomidou, Melpo

    2016-09-01

    Secoisolariciresinol diglucoside (SDG), the main lignan in whole grain flaxseed, is a potent antioxidant and free radical scavenger with known radioprotective properties. However, the exact mechanism of SDG radioprotection is not well understood. The current study identified a novel mechanism of DNA radioprotection by SDG in physiological solutions by scavenging active chlorine species (ACS) and reducing chlorinated nucleobases. The ACS scavenging activity of SDG was determined using two highly specific fluoroprobes: hypochlorite-specific 3'-(p-aminophenyl) fluorescein (APF) and hydroxyl radical-sensitive 3'-(p-hydroxyphenyl) fluorescein (HPF). Dopamine, an SDG structural analog, was used for proton (1)H NMR studies to trap primary ACS radicals. Taurine N-chlorination was determined to demonstrate radiation-induced generation of hypochlorite, a secondary ACS. DNA protection was assessed by determining the extent of DNA fragmentation and plasmid DNA relaxation following exposure to ClO(-) and radiation. Purine base chlorination by ClO(-) and γ-radiation was determined by using 2-aminopurine (2-AP), a fluorescent analog of 6-aminopurine. Chloride anions (Cl(-)) consumed >90% of hydroxyl radicals in physiological solutions produced by γ-radiation resulting in ACS formation, which was detected by (1)H NMR. Importantly, SDG scavenged hypochlorite- and γ-radiation-induced ACS. In addition, SDG blunted ACS-induced fragmentation of calf thymus DNA and plasmid DNA relaxation. SDG treatment before or after ACS exposure decreased the ClO(-) or γ-radiation-induced chlorination of 2-AP. Exposure to γ-radiation resulted in increased taurine chlorination, indicative of ClO(-) generation. NMR studies revealed formation of primary ACS radicals (chlorine atoms (Cl) and dichloro radical anions (Cl2¯)), which were trapped by SDG and its structural analog dopamine. We demonstrate that γ-radiation induces the generation of ACS in physiological solutions. SDG treatment scavenged

  18. Triacylglycerols determine the unusual storage physiology of Cuphea seed.

    PubMed

    Crane, Jennifer; Miller, Annette L; van Roekel, J William; Walters, Christina

    2003-09-01

    Many species within the genus Cuphea (Lythraceae) produce seed with high levels of medium-chain fatty acids. Seeds of some Cuphea species lose viability when placed into storage at -18 degrees C. These species tolerate significant drying to 0.05 g/g and may, therefore, be intermediate in their storage characteristics. The thermal properties of seed lipids were observed using differential scanning calorimetry. Species with peak lipid melting temperatures >/=27 degrees C were found to be sensitive to -18 degrees C exposure while those with melting temperatures <27 degrees C were able to tolerate low-temperature exposure. This relationship was determined by the triacylglycerol composition of the individual species. Sensitive species have high concentrations of lauric acid (C(12)) and/or myristic acid (C(14)). Species with high concentrations of capric (C(8)) or caprylic acid (C(10)) or with high concentrations of unsaturated fatty acids tolerate low temperature exposure. Potential damage caused by low temperature exposure can be avoided by exposing seeds to a brief heat pulse of 45 degrees C to melt solidified lipids prior to imbibition. The relationship between the behavior of triacylglycerols in vivo, seed storage behavior and sensitivity to imbibitional damage is previously unreported and may apply to other species with physiologies that make them difficult to store.

  19. Physiology of temperature regulation: comparative aspects.

    PubMed

    Bicego, Kênia C; Barros, Renata C H; Branco, Luiz G S

    2007-07-01

    Few environmental factors have a larger influence on animal energetics than temperature, a fact that makes thermoregulation a very important process for survival. In general, endothermic species, i.e., mammals and birds, maintain a constant body temperature (Tb) in fluctuating environmental temperatures using autonomic and behavioural mechanisms. Most of the knowledge on thermoregulatory physiology has emerged from studies using mammalian species, particularly rats. However, studies with all vertebrate groups are essential for a more complete understanding of the mechanisms involved in the regulation of Tb. Ectothermic vertebrates-fish, amphibians and reptiles-thermoregulate essentially by behavioural mechanisms. With few exceptions, both endotherms and ectotherms develop fever (a regulated increase in Tb) in response to exogenous pyrogens, and regulated hypothermia (anapyrexia) in response to hypoxia. This review focuses on the mechanisms, particularly neuromediators and regions in the central nervous system, involved in thermoregulation in vertebrates, in conditions of euthermia, fever and anapyrexia.

  20. Sex-related differences in stress tolerance in dioecious plants: a critical appraisal in a physiological context.

    PubMed

    Juvany, Marta; Munné-Bosch, Sergi

    2015-10-01

    Sex-related differences in reproductive effort can lead to differences in vegetative growth and stress tolerance. However, do all dioecious plants show sex-related differences in stress tolerance? To what extent can the environmental context and modularity mask sex-related differences in stress tolerance? Finally, to what extent can physiological measurements help us understand secondary sexual dimorphism? This opinion paper aims to answer these three basic questions with special emphasis on developments in research in this area over the last decade. Compelling evidence indicates that dimorphic species do not always show differences in stress tolerance between sexes; and when sex-related differences do occur, they seem to be highly species-specific, with greater stress tolerance in females than males in some species, and the opposite in others. The causes of such sex-related species-specific differences are still poorly understood, and more physiological studies and diversity of plant species that allow comparative analyses are needed. Furthermore, studies performed thus far demonstrate that the expression of dioecy can lead to sex-related differences in physiological traits-from leaf gas exchange to gene expression-but the biological significance of modularity and sectoriality governing such differences has been poorly investigated. Future studies that consider the importance of modularity and sectoriality are essential for unravelling the mechanisms underlying stress adaptation in male and female plants growing in their natural habitat. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  1. Seeing double: visual physiology of double-retina eye ontogeny in stomatopod crustaceans.

    PubMed

    Feller, Kathryn D; Cohen, Jonathan H; Cronin, Thomas W

    2015-03-01

    Stomatopod eye development is unusual among crustaceans. Just prior to metamorphosis, an adult retina and associated neuro-processing structures emerge adjacent to the existing material in the larval compound eye. Depending on the species, the duration of this double-retina eye can range from a few hours to several days. Although this developmental process occurs in all stomatopod species observed to date, the retinal physiology and extent to which each retina contributes to the animal's visual sensitivity during this transition phase is unknown. We investigated the visual physiology of stomatopod double retinas using microspectrophotometry and electroretinogram recordings from different developmental stages of the Western Atlantic species Squilla empusa. Though microspectrophotometry data were inconclusive, we found robust ERG responses in both larval and adult retinas at all sampled time points indicating that the adult retina responds to light from the very onset of its emergence. We also found evidence of an increase in the response dynamics with ontogeny as well as an increase in sensitivity of retinal tissue during the double-retina phase relative to single retinas. These data provide an initial investigation into the ontogeny of vision during stomatopod double-retina eye development.

  2. Using physiology to predict the responses of ants to climatic warming.

    PubMed

    Diamond, Sarah E; Penick, Clint A; Pelini, Shannon L; Ellison, Aaron M; Gotelli, Nicholas J; Sanders, Nathan J; Dunn, Robert R

    2013-12-01

    Physiological intolerance of high temperatures places limits on organismal responses to the temperature increases associated with global climatic change. Because ants are geographically widespread, ecologically diverse, and thermophilic, they are an ideal system for exploring the extent to which physiological tolerance can predict responses to environmental change. Here, we expand on simple models that use thermal tolerance to predict the responses of ants to climatic warming. We investigated the degree to which changes in the abundance of ants under warming reflect reductions in the thermal niche space for their foraging. In an eastern deciduous forest system in the United States with approximately 40 ant species, we found that for some species, the loss of thermal niche space for foraging was related to decreases in abundance with increasing experimental climatic warming. However, many ant species exhibited no loss of thermal niche space. For one well-studied species, Temnothorax curvispinosus, we examined both survival of workers and growth of colonies (a correlate of reproductive output) as functions of temperature in the laboratory, and found that the range of thermal tolerances for colony growth was much narrower than for survival of workers. We evaluated these functions in the context of experimental climatic warming and found that the difference in the responses of these two attributes to temperature generates differences in the means and especially the variances of expected fitness under warming. The expected mean growth of colonies was optimized at intermediate levels of warming (2-4°C above ambient); yet, the expected variance monotonically increased with warming. In contrast, the expected mean and variance of the survival of workers decreased when warming exceeded 4°C above ambient. Together, these results for T. curvispinosus emphasize the importance of measuring reproduction (colony growth) in the context of climatic change: indeed, our examination

  3. Functional analysis of the Helicobacter pullorum N-linked protein glycosylation system.

    PubMed

    Jervis, Adrian J; Wood, Alison G; Cain, Joel A; Butler, Jonathan A; Frost, Helen; Lord, Elizabeth; Langdon, Rebecca; Cordwell, Stuart J; Wren, Brendan W; Linton, Dennis

    2018-04-01

    N-linked protein glycosylation systems operate in species from all three domains of life. The model bacterial N-linked glycosylation system from Campylobacter jejuni is encoded by pgl genes present at a single chromosomal locus. This gene cluster includes the pglB oligosaccharyltransferase responsible for transfer of glycan from lipid carrier to protein. Although all genomes from species of the Campylobacter genus contain a pgl locus, among the related Helicobacter genus only three evolutionarily related species (H. pullorum, H. canadensis and H. winghamensis) potentially encode N-linked protein glycosylation systems. Helicobacter putative pgl genes are scattered in five chromosomal loci and include two putative oligosaccharyltransferase-encoding pglB genes per genome. We have previously demonstrated the in vitro N-linked glycosylation activity of H. pullorum resulting in transfer of a pentasaccharide to a peptide at asparagine within the sequon (D/E)XNXS/T. In this study, we identified the first H. pullorum N-linked glycoprotein, termed HgpA. Production of histidine-tagged HgpA in the background of insertional knockout mutants of H. pullorum pgl/wbp genes followed by analysis of HgpA glycan structures demonstrated the role of individual gene products in the PglB1-dependent N-linked protein glycosylation pathway. Glycopeptide purification by zwitterionic-hydrophilic interaction liquid chromatography coupled with tandem mass spectrometry identified six glycosites from five H. pullorum proteins, which was consistent with proteins reactive with a polyclonal antiserum generated against glycosylated HgpA. This study demonstrates functioning of a H. pullorum N-linked general protein glycosylation system.

  4. Drought resilience across ecologically dominant species: An experiment-model integration approach

    NASA Astrophysics Data System (ADS)

    Felton, A. J.; Warren, J.; Ricciuto, D. M.; Smith, M. D.

    2017-12-01

    Poorly understood are the mechanisms contributing to variability in ecosystem recovery following drought. Grasslands of the central U.S. are ecologically and economically important ecosystems, yet are also highly sensitive to drought. Although characteristics of these ecosystems change across gradients of temperature and precipitation, a consistent feature among these systems is the presence of highly abundant, dominant grass species that control biomass production. As a result, the incorporation of these species' traits into terrestrial biosphere models may constrain predictions amid increases in climatic variability. Here we report the results of a modeling-experiment (MODEX) research approach. We investigated the physiological, morphological and growth responses of the dominant grass species from each of the four major grasslands of the central U.S. (ranging from tallgrass prairie to desert grassland) following severe drought. Despite significant differences in baseline values, full recovery in leaf physiological function was evident across species, of which was consistently driven by the production of new leaves. Further, recovery in whole-plant carbon uptake tended to be driven by shifts in allocation from belowground to aboveground structures. However, there was clear variability among species in the magnitude of this dynamic as well as the relative allocation to stem versus leaf production. As a result, all species harbored the physiological capacity to recover from drought, yet we posit that variability in the recovery of whole-plant carbon uptake to be more strongly driven by variability in the sensitivity of species' morphology to soil moisture increases. The next step of this project will be to incorporate these and other existing data on these species and ecosystems into the community land model in an effort to test the sensitivity of this model to these data.

  5. Recovery of Physiological Traits in Saplings of Invasive Bischofia Tree Compared with Three Species Native to the Bonin Islands under Successive Drought and Irrigation Cycles

    PubMed Central

    Yazaki, Kenichi; Kuroda, Katsushi; Nakano, Takashi; Kitao, Mitsutoshi; Tobita, Hiroyuki; Ogasa, Mayumi Y.; Ishida, Atsushi

    2015-01-01

    Partial leaf shedding induced by hydraulic failure under prolonged drought can prevent excess water consumption, resulting in delayed recovery of carbon productivity following rainfall. To understand the manner of water use of invasive species in oceanic island forests under a fluctuating water regime, leaf shedding, multiple physiological traits, and the progress of embolism in the stem xylem under repeated drought-irrigation cycles were examined in the potted saplings of an invasive species, Bischofia javanica Blume, and three endemic native species, Schima mertensiana (Sieb. Et Zucc,) Koitz., Hibiscus glaber Matsum, and Distylium lepidotum Nakai, from the Bonin Islands, Japan. The progress of xylem embolism was observed by cryo-scanning electron microscopy. The samples exhibited different processes of water saving and drought tolerance based on the different combinations of partial leaf shedding involved in embolized conduits following repeated de-rehydration. Predawn leaf water potential largely decreased with each successive drought-irrigation cycle for all tree species, except for B. javanica. B. javanica shed leaves conspicuously under drought and showed responsive stomatal conductance to VPD, which contributed to recover leaf gas exchange in the remaining leaves, following a restored water supply. In contrast, native tree species did not completely recover photosynthetic rates during the repeated drought-irrigation cycles. H. glaber and D. lepidotum preserved water in vessels and adjusted leaf osmotic rates but did not actively shed leaves. S. mertensiana exhibited partial leaf shedding during the first cycle with an osmotic adjustment, but they showed less responsive stomatal conductance to VPD. Our data indicate that invasive B. javanica saplings can effectively use water supplied suddenly under drought conditions. We predict that fluctuating precipitation in the future may change tree distributions even in mesic or moist sites in the Bonin Islands. PMID

  6. Recovery of Physiological Traits in Saplings of Invasive Bischofia Tree Compared with Three Species Native to the Bonin Islands under Successive Drought and Irrigation Cycles.

    PubMed

    Yazaki, Kenichi; Kuroda, Katsushi; Nakano, Takashi; Kitao, Mitsutoshi; Tobita, Hiroyuki; Ogasa, Mayumi Y; Ishida, Atsushi

    2015-01-01

    Partial leaf shedding induced by hydraulic failure under prolonged drought can prevent excess water consumption, resulting in delayed recovery of carbon productivity following rainfall. To understand the manner of water use of invasive species in oceanic island forests under a fluctuating water regime, leaf shedding, multiple physiological traits, and the progress of embolism in the stem xylem under repeated drought-irrigation cycles were examined in the potted saplings of an invasive species, Bischofia javanica Blume, and three endemic native species, Schima mertensiana (Sieb. Et Zucc,) Koitz., Hibiscus glaber Matsum, and Distylium lepidotum Nakai, from the Bonin Islands, Japan. The progress of xylem embolism was observed by cryo-scanning electron microscopy. The samples exhibited different processes of water saving and drought tolerance based on the different combinations of partial leaf shedding involved in embolized conduits following repeated de-rehydration. Predawn leaf water potential largely decreased with each successive drought-irrigation cycle for all tree species, except for B. javanica. B. javanica shed leaves conspicuously under drought and showed responsive stomatal conductance to VPD, which contributed to recover leaf gas exchange in the remaining leaves, following a restored water supply. In contrast, native tree species did not completely recover photosynthetic rates during the repeated drought-irrigation cycles. H. glaber and D. lepidotum preserved water in vessels and adjusted leaf osmotic rates but did not actively shed leaves. S. mertensiana exhibited partial leaf shedding during the first cycle with an osmotic adjustment, but they showed less responsive stomatal conductance to VPD. Our data indicate that invasive B. javanica saplings can effectively use water supplied suddenly under drought conditions. We predict that fluctuating precipitation in the future may change tree distributions even in mesic or moist sites in the Bonin Islands.

  7. Leaf Photosynthetic Rate of Tropical Ferns Is Evolutionarily Linked to Water Transport Capacity

    PubMed Central

    Cao, Kun-Fang; Hu, Hong; Zhang, Jiao-Lin

    2014-01-01

    Ferns usually have relatively lower photosynthetic potential than angiosperms. However, it is unclear whether low photosynthetic potential of ferns is linked to leaf water supply. We hypothesized that there is an evolutionary association of leaf water transport capacity with photosynthesis and stomatal density in ferns. In the present study, a series of functional traits relating to leaf anatomy, hydraulics and physiology were assessed in 19 terrestrial and 11 epiphytic ferns in a common garden, and analyzed by a comparative phylogenetics method. Compared with epiphytic ferns, terrestrial ferns had higher vein density (Dvein), stomatal density (SD), stomatal conductance (gs), and photosynthetic capacity (Amax), but lower values for lower epidermal thickness (LET) and leaf thickness (LT). Across species, all traits varied significantly, but only stomatal length (SL) showed strong phylogenetic conservatism. Amax was positively correlated with Dvein and gs with and without phylogenetic corrections. SD correlated positively with Amax, Dvein and gs, with the correlation between SD and Dvein being significant after phylogenetic correction. Leaf water content showed significant correlations with LET, LT, and mesophyll thickness. Our results provide evidence that Amax of the studied ferns is linked to leaf water transport capacity, and there was an evolutionary association between water supply and demand in ferns. These findings add new insights into the evolutionary correlations among traits involving carbon and water economy in ferns. PMID:24416265

  8. Invasive species and biodiversity crises: testing the link in the late devonian.

    PubMed

    Stigall, Alycia L

    2010-12-29

    During the Late Devonian Biodiversity Crisis, the primary driver of biodiversity decline was the dramatic reduction in speciation rates, not elevated extinction rates; however, the causes of speciation decline have been previously unstudied. Speciation, the formation of new species from ancestral populations, occurs by two primary allopatric mechanisms: vicariance, where the ancestral population is passively divided into two large subpopulations that later diverge and form two daughter species, and dispersal, in which a small subset of the ancestral population actively migrates then diverges to form a new species. Studies of modern and fossil clades typically document speciation by vicariance in much higher frequencies than speciation by dispersal. To assess the mechanism behind Late Devonian speciation reduction, speciation rates were calculated within stratigraphically constrained species-level phylogenetic hypotheses for three representative clades and mode of speciation at cladogenetic events was assessed across four clades in three phyla: Arthropoda, Brachiopoda, and Mollusca. In all cases, Devonian taxa exhibited a congruent reduction in speciation rate between the Middle Devonian pre-crisis interval and the Late Devonian crisis interval. Furthermore, speciation via vicariance is almost entirely absent during the crisis interval; most episodes of speciation during this time were due to dispersal. The shutdown of speciation by vicariance during this interval was related to widespread interbasinal species invasions. The lack of Late Devonian vicariance is diametrically opposed to the pattern observed in other geologic intervals, which suggests the loss of vicariant speciation attributable to species invasions during the Late Devonian was a causal factor in the biodiversity crisis. Similarly, modern ecosystems, in which invasive species are rampant, may be expected to exhibit similar shutdown of speciation by vicariance as an outcome of the modern biodiversity

  9. Soil warming increases plant species richness but decreases germination from the alpine soil seed bank.

    PubMed

    Hoyle, Gemma L; Venn, Susanna E; Steadman, Kathryn J; Good, Roger B; McAuliffe, Edward J; Williams, Emlyn R; Nicotra, Adrienne B

    2013-05-01

    Global warming is occurring more rapidly above the treeline than at lower elevations and alpine areas are predicted to experience above average warming in the future. Temperature is a primary factor in stimulating seed germination and regulating changes in seed dormancy status. Thus, plant regeneration from seed will be crucial to the persistence, migration and post disturbance recruitment of alpine plants in future climates. Here, we present the first assessment of the impact of soil warming on germination from the persistent alpine soil seed bank. Contrary to expectations, soil warming lead to reduced overall germination from the soil seed bank. However, germination response to soil temperature was species specific such that total species richness actually increased by nine with soil warming. We further explored the system by assessing the prevalence of seed dormancy and germination response to soil disturbance, the frequency of which is predicted to increase under climate change. Seeds of a significant proportion of species demonstrated physiological dormancy mechanisms and germination of several species appeared to be intrinsically linked to soil disturbance. In addition, we found no evidence of subalpine species and little evidence of exotic weed species in the soil, suggesting that the soil seed bank will not facilitate their invasion of the alpine zone. In conclusion, changes in recruitment via the alpine soil seed bank can be expected under climate change, as a result of altered dormancy alleviation and germination cues. Furthermore, the alpine soil seed bank, and the species richness therein, has the potential to help maintain local species diversity, support species range shift and moderate species dominance. Implications for alpine management and areas for further study are also discussed. © 2013 Blackwell Publishing Ltd.

  10. Real-time physiological monitoring with distributed networks of sensors and object-oriented programming techniques

    NASA Astrophysics Data System (ADS)

    Wiesmann, William P.; Pranger, L. Alex; Bogucki, Mary S.

    1998-05-01

    Remote monitoring of physiologic data from individual high- risk workers distributed over time and space is a considerable challenge. This is often due to an inadequate capability to accurately integrate large amounts of data into usable information in real time. In this report, we have used the vertical and horizontal organization of the 'fireground' as a framework to design a distributed network of sensors. In this system, sensor output is linked through a hierarchical object oriented programing process to accurately interpret physiological data, incorporate these data into a synchronous model and relay processed data, trends and predictions to members of the fire incident command structure. There are several unique aspects to this approach. The first includes a process to account for variability in vital parameter values for each individual's normal physiologic response by including an adaptive network in each data process. This information is used by the model in an iterative process to baseline a 'normal' physiologic response to a given stress for each individual and to detect deviations that indicate dysfunction or a significant insult. The second unique capability of the system orders the information for each user including the subject, local company officers, medical personnel and the incident commanders. Information can be retrieved and used for training exercises and after action analysis. Finally this system can easily be adapted to existing communication and processing links along with incorporating the best parts of current models through the use of object oriented programming techniques. These modern software techniques are well suited to handling multiple data processes independently over time in a distributed network.

  11. Is deciduousness a key to climate resilience among iconic California savanna oak species? Relating phenological habits to seasonal indicators of tree physiological and water stress across field, hyperspectral, drone (UAS)-based multispectral and thermal image data

    NASA Astrophysics Data System (ADS)

    Mayes, M. T.; Caylor, K. K.; Ehlmann, B. L.; Greenberger, R. N.; Estes, L. D.

    2017-12-01

    In California (CA) savannas, oak trees (genus Quercus) play keystone roles in water and nutrient cycling, support biodiversity and many land-use activities. Declines in oak basal area of up to 25% from the 1930s-2000s, which have occurred alongside climate trends such as increasing variability of rainfall and prevalence of hotter droughts, threaten the services and ecological functions these trees provide. It is particularly unclear how climate relates to productivity and stress across oak species. Past work has found that seedling recruitment has varied inversely with "deciduousness." That is, evergreen oaks (e.g. Quercus agrifola. Coast Live Oak) are reproducing more successfully than drought-deciduous (e.g. Quercus douglassi, Blue Oak), which in turn are more successful than fully deciduous species (e.g. Quercus lobata, Valley Oak). However, there is poor understanding of how these ecological trends by species, corresponding with phenological habit, relate to physiological and ecohydrological processes such as carbon assimilation, water or nutrient use efficiency in mature tree stands. This limits predictive capability for which species will be most resilient to harsher future growing conditions, and, how to monitor stress and productivity in long-lived mature oak communities across landscapes via tools including remotely sensed data. This project explores how ecophysiological variables (e.g. stomatal conductance) relate to phenological habits across three oak species (Coast Live, Blue and Valley) over a seasonal dry-down period in Santa Barbara County, CA. Our goal is to probe if deciduousness is a key to resilience in productivity and water stress across iconic oak species. We test relationships between leaf and canopy-level field data, and indicators from multiple new sources of remotely sensed data, including ground hyperspectral, drone (UAS)-based multi-spectral and thermal image data, as means of monitoring tree physiological and water stress from scales

  12. Allocation, morphology, physiology, architecture: the multiple facets of plant above- and below-ground responses to resource stress.

    PubMed

    Freschet, Grégoire T; Violle, Cyrille; Bourget, Malo Y; Scherer-Lorenzen, Michael; Fort, Florian

    2018-06-01

    Plants respond to resource stress by changing multiple aspects of their biomass allocation, morphology, physiology and architecture. To date, we lack an integrated view of the relative importance of these plastic responses in alleviating resource stress and of the consistency/variability of these responses among species. We subjected nine species (legumes, forbs and graminoids) to nitrogen and/or light shortages and measured 11 above-ground and below-ground trait adjustments critical in the alleviation of these stresses (plus several underlying traits). Nine traits out of 11 showed adjustments that improved plants' potential capacity to acquire the limiting resource at a given time. Above ground, aspects of plasticity in allocation, morphology, physiology and architecture all appeared important in improving light capture, whereas below ground, plasticity in allocation and physiology were most critical to improving nitrogen acquisition. Six traits out of 11 showed substantial heterogeneity in species plasticity, with little structuration of these differences within trait covariation syndromes. Such comprehensive assessment of the complex nature of phenotypic responses of plants to multiple stress factors, and the comparison of plant responses across multiple species, makes a clear case for the high (but largely overlooked) diversity of potential plastic responses of plants, and for the need to explore the potential rules structuring them. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  13. The evolution of honest communication: integrating social and physiological costs of ornamentation.

    PubMed

    Tibbetts, Elizabeth A

    2014-10-01

    Much research on animal communication has addressed how costs such as social costs or physiological costs favor the accuracy of signals. Previous work has largely considered these costs separately, but we may be missing essential connections by studying costs in isolation. After all, social interactions produce rapid changes in hormone titers which can then affect individual behavior and physiology. As a result, social costs are likely to have widespread physiological consequences. Here, I present a new perspective on the factors that maintain honest signals by describing how the interplay between social costs and physiological costs may maintain an accurate link between an animal's abilities and ornament elaboration. I outline three specific mechanisms by which the interaction between social behavior and hormones could favor honest signals and present specific predictions for each of the three models. Then, I review how ornaments alter agonistic behavior, agonistic behavior influences hormones, and how these hormonal effects influence fitness. I also describe the few previous studies that have directly tested how ornaments influence hormones. Finally, opportunities for future work are discussed. Considering the interaction between social behavior and physiology may address some challenges associated with both social and physiological models of costs. Understanding the dynamic feedbacks between physiology and social costs has potential to transform our understanding of the stability of animals' communication systems. © The Author 2014. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  14. Conservation implications of physiological carry-over effects in bats recovering from white-nose syndrome.

    PubMed

    Davy, Christina M; Mastromonaco, Gabriela F; Riley, Julia L; Baxter-Gilbert, James H; Mayberry, Heather; Willis, Craig K R

    2017-06-01

    Although it is well documented that infectious diseases can pose threats to biodiversity, the potential long-term consequences of pathogen exposure on individual fitness and its effects on population viability have rarely been studied. We tested the hypothesis that pathogen exposure causes physiological carry-over effects with a pathogen that is uniquely suited to this question because the infection period is specific and time limited. The fungus Pseudogymnoascus destructans causes white-nose syndrome (WNS) in hibernating bats, which either die due to the infection while hibernating or recover following emergence from hibernation. The fungus infects all exposed individuals in an overwintering site simultaneously, and bats that survive infection during hibernation clear the pathogen within a few weeks following emergence. We quantified chronic stress during the active season, when bats are not infected, by measuring cortisol in bat claws. Free-ranging Myotis lucifugus who survived previous exposure to P. destructans had significantly higher levels of claw cortisol than naïve individuals. Thus, cryptic physiological carry-over effects of pathogen exposure may persist in asymptomatic, recovered individuals. If these effects result in reduced survival or reproductive success, they could also affect population viability and even act as a third stream in the extinction vortex. For example, significant increases in chronic stress, such as those indicated here, are correlated with reduced reproductive success in a number of species. Future research should directly explore the link between pathogen exposure and the viability of apparently recovered populations to improve understanding of the true impacts of infectious diseases on threatened populations. © 2016 Society for Conservation Biology.

  15. Ant Species Differences Determined by Epistasis between Brood and Worker Genomes

    PubMed Central

    Linksvayer, Timothy A.

    2007-01-01

    Epistasis arising from physiological interactions between gene products often contributes to species differences, particularly those involved in reproductive isolation. In social organisms, phenotypes are influenced by the genotypes of multiple interacting individuals. In theory, social interactions can give rise to an additional type of epistasis between the genomes of social partners that can contribute to species differences. Using a full-factorial cross-fostering design with three species of closely related Temnothorax ants, I found that adult worker size was determined by an interaction between the genotypes of developing brood and care-giving workers, i.e. intergenomic epistasis. Such intergenomic social epistasis provides a strong signature of coevolution between social partners. These results demonstrate that just as physiologically interacting genes coevolve, diverge, and contribute to species differences, so do socially interacting genes. Coevolution and conflict between social partners, especially relatives such as parents and offspring, has long been recognized as having widespread evolutionary effects. This coevolutionary process may often result in coevolved socially-interacting gene complexes that contribute to species differences. PMID:17912371

  16. Intraspecific Variation in Physiological Condition of Reef-Building Corals Associated with Differential Levels of Chronic Disturbance

    PubMed Central

    Pisapia, Chiara; Anderson, Kristen; Pratchett, Morgan S.

    2014-01-01

    Even in the absence of major disturbances (e.g., cyclones, bleaching), corals are subject to high levels of partial or whole-colony mortality, often caused by chronic and small-scale disturbances. Depending on levels of background mortality, these chronic disturbances may undermine individual fitness and have significant consequences on the ability of colonies to withstand subsequent acute disturbances or environmental change. This study quantified intraspecific variations in physiological condition (measured based on total lipid content and zooxanthellae density) through time in adult colonies of two common and widespread coral species (Acropora spathulata and Pocillopora damicornis), subject to different levels of biological and physical disturbances along the most disturbed reef habitat, the crest. Marked intraspecific variation in the physiological condition of A. spathulata was clearly linked to differences in local disturbance regimes and habitat. Specifically, zooxanthellae density decreased (r2 = 26, df = 5,42, p<0.02, B =  −121255, p = 0.03) and total lipid content increased (r2 = 14, df = 5,42, p = 0.01, B = 0.9, p = 0.01) with increasing distance from exposed crests. Moreover, zooxanthellae density was strongly and negatively correlated with the individual level of partial mortality (r2 = 26, df = 5,42, p<0.02, B =  −7386077, p = 0.01). Conversely, P. damicornis exhibited very limited intraspecific variation in physiological condition, despite marked differences in levels of partial mortality. This is the first study to relate intraspecific variation in the condition of corals to localized differences in chronic disturbance regimes. The next step is to ascertain whether these differences have further ramifications for susceptibility to periodic acute disturbances, such as climate-induced coral bleaching. PMID:24626395

  17. Intraspecific variation in physiological condition of reef-building corals associated with differential levels of chronic disturbance.

    PubMed

    Pisapia, Chiara; Anderson, Kristen; Pratchett, Morgan S

    2014-01-01

    Even in the absence of major disturbances (e.g., cyclones, bleaching), corals are subject to high levels of partial or whole-colony mortality, often caused by chronic and small-scale disturbances. Depending on levels of background mortality, these chronic disturbances may undermine individual fitness and have significant consequences on the ability of colonies to withstand subsequent acute disturbances or environmental change. This study quantified intraspecific variations in physiological condition (measured based on total lipid content and zooxanthellae density) through time in adult colonies of two common and widespread coral species (Acropora spathulata and Pocillopora damicornis), subject to different levels of biological and physical disturbances along the most disturbed reef habitat, the crest. Marked intraspecific variation in the physiological condition of A. spathulata was clearly linked to differences in local disturbance regimes and habitat. Specifically, zooxanthellae density decreased (r2 = 26, df = 5,42, p<0.02, B =  -121255, p = 0.03) and total lipid content increased (r2 = 14, df = 5,42, p = 0.01, B = 0.9, p = 0.01) with increasing distance from exposed crests. Moreover, zooxanthellae density was strongly and negatively correlated with the individual level of partial mortality (r2 = 26, df = 5,42, p<0.02, B =  -7386077, p = 0.01). Conversely, P. damicornis exhibited very limited intraspecific variation in physiological condition, despite marked differences in levels of partial mortality. This is the first study to relate intraspecific variation in the condition of corals to localized differences in chronic disturbance regimes. The next step is to ascertain whether these differences have further ramifications for susceptibility to periodic acute disturbances, such as climate-induced coral bleaching.

  18. The influence of the Re-Link Trainer on gait symmetry in healthy adults.

    PubMed

    Ward, Sarah; Wiedemann, Lukas; Stinear, Cathy; Stinear, James; McDaid, Andrew

    2017-07-01

    Walking function post-stroke is characterized by asymmetries in gait cycle parameters and joint kinematics. The Re-Link Trainer is designed to provide kinematic constraint to the paretic lower limb, to guide a physiologically normal and symmetrical gait pattern. The purpose of this pilot study was to assess the immediate influence of the Re-Link Trainer on measures of gait symmetry in healthy adults. Participants demonstrated a significantly lower cadence and a 62% reduction in walking speed in the Re-Link Trainer compared to normal walking. The step length ratio had a significant increase from 1.0 during normal walking to 2.5 when walking in the Re-Link Trainer. The results from this pilot study suggest in its current iteration the Re-Link Trainer imposes an asymmetrical constraint on lower limb kinematics.

  19. Do temperate tree species diversity and identity influence soil microbial community function and composition?

    PubMed

    Khlifa, Rim; Paquette, Alain; Messier, Christian; Reich, Peter B; Munson, Alison D

    2017-10-01

    Studies of biodiversity-ecosystem function in treed ecosystems have generally focused on aboveground functions. This study investigates intertrophic links between tree diversity and soil microbial community function and composition. We examined how microbial communities in surface mineral soil responded to experimental gradients of tree species richness (SR), functional diversity (FD), community-weighted mean trait value (CWM), and tree identity. The site was a 4-year-old common garden experiment near Montreal, Canada, consisting of deciduous and evergreen tree species mixtures. Microbial community composition, community-level physiological profiles, and respiration were evaluated using phospholipid fatty acid (PLFA) analysis and the MicroResp ™ system, respectively. The relationship between tree species richness and glucose-induced respiration (GIR), basal respiration (BR), metabolic quotient (qCO 2 ) followed a positive but saturating shape. Microbial communities associated with species mixtures were more active (basal respiration [BR]), with higher biomass (glucose-induced respiration [GIR]), and used a greater number of carbon sources than monocultures. Communities associated with deciduous tree species used a greater number of carbon sources than those associated with evergreen species, suggesting a greater soil carbon storage capacity. There were no differences in microbial composition (PLFA) between monocultures and SR mixtures. The FD and the CWM of several functional traits affected both BR and GIR. In general, the CWM of traits had stronger effects than did FD, suggesting that certain traits of dominant species have more effect on ecosystem processes than does FD. Both the functions of GIR and BR were positively related to aboveground tree community productivity. Both tree diversity (SR) and identity (species and functional identity-leaf habit) affected soil microbial community respiration, biomass, and composition. For the first time, we identified

  20. Arsenic Uptake, Toxicity, Detoxification, and Speciation in Plants: Physiological, Biochemical, and Molecular Aspects

    PubMed Central

    Abbas, Ghulam; Murtaza, Behzad; Bibi, Irshad; Shahid, Muhammad; Khan, Muhammad Imran; Amjad, Muhammad; Hussain, Munawar; Natasha

    2018-01-01

    Environmental contamination with arsenic (As) is a global environmental, agricultural and health issue due to the highly toxic and carcinogenic nature of As. Exposure of plants to As, even at very low concentration, can cause many morphological, physiological, and biochemical changes. The recent research on As in the soil-plant system indicates that As toxicity to plants varies with its speciation in plants (e.g., arsenite, As(III); arsenate, As(V)), with the type of plant species, and with other soil factors controlling As accumulation in plants. Various plant species have different mechanisms of As(III) or As(V) uptake, toxicity, and detoxification. This review briefly describes the sources and global extent of As contamination and As speciation in soil. We discuss different mechanisms responsible for As(III) and As(V) uptake, toxicity, and detoxification in plants, at physiological, biochemical, and molecular levels. This review highlights the importance of the As-induced generation of reactive oxygen species (ROS), as well as their damaging impacts on plants at biochemical, genetic, and molecular levels. The role of different enzymatic (superoxide dismutase, catalase, glutathione reductase, and ascorbate peroxidase) and non-enzymatic (salicylic acid, proline, phytochelatins, glutathione, nitric oxide, and phosphorous) substances under As(III/V) stress have been delineated via conceptual models showing As translocation and toxicity pathways in plant species. Significantly, this review addresses the current, albeit partially understood, emerging aspects on (i) As-induced physiological, biochemical, and genotoxic mechanisms and responses in plants and (ii) the roles of different molecules in modulation of As-induced toxicities in plants. We also provide insight on some important research gaps that need to be filled to advance our scientific understanding in this area of research on As in soil-plant systems. PMID:29301332

  1. Individual Apostichopus japonicus fecal microbiome reveals a link with polyhydroxybutyrate producers in host growth gaps.

    PubMed

    Yamazaki, Yohei; Meirelles, Pedro Milet; Mino, Sayaka; Suda, Wataru; Oshima, Kenshiro; Hattori, Masahira; Thompson, Fabiano L; Sakai, Yuichi; Sawabe, Toko; Sawabe, Tomoo

    2016-02-24

    Gut microbiome shapes various aspects of a host's physiology, but these functions in aquatic animal hosts have yet to be fully investigated. The sea cucumber Apostichopus japonicus Selenka is one such example. The large growth gap in their body size has delayed the development of intensive aquaculture, nevertheless the species is in urgent need of conservation. To understand possible contributions of the gut microbiome to its host's growth, individual fecal microbiome comparisons were performed. High-throughput 16S rRNA sequencing revealed significantly different microbiota in larger and smaller individuals; Rhodobacterales in particular was the most significantly abundant bacterial group in the larger specimens. Further shotgun metagenome of representative samples revealed a significant abundance of microbiome retaining polyhydroxybutyrate (PHB) metabolism genes in the largest individual. The PHB metabolism reads were potentially derived from Rhodobacterales. These results imply a possible link between microbial PHB producers and potential growth promotion in Deuterostomia marine invertebrates.

  2. Tree Species with Photosynthetic Stems Have Greater Nighttime Sap Flux

    PubMed Central

    Chen, Xia; Gao, Jianguo; Zhao, Ping; McCarthy, Heather R.; Zhu, Liwei; Ni, Guangyan; Ouyang, Lei

    2018-01-01

    An increasing body of evidence has shown that nighttime sap flux occurs in most plants, but the physiological implications and regulatory mechanism are poorly known. The significance of corticular photosynthesis has received much attention during the last decade, however, the knowledge of the relationship between corticular photosynthesis and nocturnal stem sap flow is limited at present. In this study, we divided seven tree species into two groups according to different photosynthetic capabilities: trees of species with (Castanopsis hystrix, Michelia macclurei, Eucalyptus citriodora, and Eucalyptus grandis × urophylla) and without (Castanopsis fissa, Schima superba, and Acacia auriculiformis) photosynthetic stems, and the sap flux (Js) and chlorophyll fluorescence parameters for these species were measured. One-way ANOVA analysis showed that the Fv/Fm (Maximum photochemical quantum yield of PSII) and ΦPSII (effective photochemical quantum yield of PSII) values were lower in non-photosynthetic stem species compared to photosynthetic stem species. The linear regression analysis showed that Js,d (daytime sap flux) and Js,n (nighttime sap flux) of non-photosynthetic stem species was 87.7 and 60.9% of the stem photosynthetic species. Furthermore, for a given daytime transpiration water loss, total nighttime sap flux was higher in species with photosynthetic stems (SlopeSMA = 2.680) than in non-photosynthetic stems species (SlopeSMA = 1.943). These results mean that stem corticular photosynthesis has a possible effect on the nighttime water flow, highlighting the important eco-physiological relationship between nighttime sap flux and corticular photosynthesis. PMID:29416547

  3. Dry Preservation of Spermatozoa: Considerations for Different Species.

    PubMed

    Patrick, Jennifer; Comizzoli, Pierre; Elliott, Gloria

    2017-04-01

    The current gold standard for sperm preservation is storage at cryogenic temperatures. Dry preservation is an attractive alternative, eliminating the need for ultralow temperatures, reducing storage maintenance costs, and providing logistical flexibility for shipping. Many seeds and anhydrobiotic organisms are able to survive extended periods in a dry state through the accumulation of intracellular sugars and other osmolytes and are capable of returning to normal physiology postrehydration. Using techniques inspired by nature's adaptations, attempts have been made to dehydrate and dry preserve spermatozoa from a variety of species. Most of the anhydrous preservation research performed to date has focused on mouse spermatozoa, with only a small number of studies in nonrodent mammalian species. There is a significant difference between sperm function in rodent and nonrodent mammalian species with respect to centrosomal inheritance. Studies focused on reproductive technologies have demonstrated that in nonrodent species, the centrosome must be preserved to maintain sperm function as the spermatozoon centrosome contributes the dominant nucleating seed, consisting of the proximal centriole surrounded by pericentriolar components, onto which the oocyte's centrosomal material is assembled. Preservation techniques used for mouse sperm may therefore not necessarily be applicable to nonrodent spermatozoa. The range of technologies used to dehydrate sperm and the effect of processing and storage conditions on fertilization and embryogenesis using dried sperm are reviewed in the context of reproductive physiology and cellular morphology in different species.

  4. Measuring and modeling the variation in species-specific transpiration in temperate deciduous hardwoods.

    PubMed

    Bowden, Joseph D; Bauerle, William L

    2008-11-01

    We investigated which parameters required by the MAESTRA model were most important in predicting leaf-area-based transpiration in 5-year-old trees of five deciduous hardwood species-yoshino cherry (Prunus x yedoensis Matsum.), red maple (Acer rubrum L. 'Autumn Flame'), trident maple (Acer buergeranum Miq.), Japanese flowering cherry (Prunus serrulata Lindl. 'Kwanzan') and London plane-tree (Platanus x acerifolia (Ait.) Willd.). Transpiration estimated from sap flow measured by the heat balance method in branches and trunks was compared with estimates predicted by the three-dimensional transpiration, photosynthesis and absorbed radiation model, MAESTRA. MAESTRA predicted species-specific transpiration from the interactions of leaf-level physiology and spatially explicit micro-scale weather patterns in a mixed deciduous hardwood plantation on a 15-min time step. The monthly differences between modeled mean daily transpiration estimates and measured mean daily sap flow ranged from a 35% underestimation for Acer buergeranum in June to a 25% overestimation for A. rubrum in July. The sensitivity of the modeled transpiration estimates was examined across a 30% error range for seven physiological input parameters. The minimum value of stomatal conductance as incident solar radiation tends to zero was determined to be eight times more influential than all other physiological model input parameters. This work quantified the major factors that influence modeled species-specific transpiration and confirmed the ability to scale leaf-level physiological attributes to whole-crown transpiration on a species-specific basis.

  5. Assessing the Congruence of Thermal Niche Estimations Derived from Distribution and Physiological Data. A Test Using Diving Beetles

    PubMed Central

    Sánchez-Fernández, David; Aragón, Pedro; Bilton, David T.; Lobo, Jorge M.

    2012-01-01

    A basic aim of ecology is to understand the determinants of organismal distribution, the niche concept and species distribution models providing key frameworks to approach the problem. As temperature is one of the most important factors affecting species distribution, the estimation of thermal limits is crucially important for inferring range constraints. It is expectable that thermal physiology data derived from laboratory experiments and species' occurrences may express different aspects of the species' niche. However, there is no study systematically testing this prediction in a given taxonomic group while controlling by potential phylogenetic inertia. We estimate the thermal niches of twelve Palaearctic diving beetles species using physiological data derived from experimental analyses in order to examine the extent to which these coincided with those estimated from distribution models based on observed occurrences. We found that thermal niche estimates derived from both approaches lack general congruence, and these results were similar before and after controlling by phylogeny. The congruence between potential distributions obtained from the two different procedures was also explored, and we found again that the percentage of agreement were not very high (∼60%). We confirm that both thermal niche estimates derived from geographical and physiological data are likely to misrepresent the true range of climatic variation that these diving beetles are able to tolerate, and so these procedures could be considered as incomplete but complementary estimations of an inaccessible reality. PMID:23133560

  6. Smolt physiology and endocrinology: Chapter 5

    USGS Publications Warehouse

    McCormick, Stephen D.; McCormick, Stephen D.; Farrell, Anthony Peter; Brauner, Colin J.

    2012-01-01

    The parr-smolt transformation of anadromous salmonids is a suite of behavioral, morphological, and physiological changes that are preparatory for downstream migration and seawater entry. The timing of smolt development varies among species, occurring soon after hatching in pink and chum salmon and after one to several years in Atlantic salmon. In many species the transformation is size dependent and occurs in spring, mediated through photoperiod and temperature cues. Smolt development is stimulated by several hormones including growth hormone, insulin-like growth factor-1, cortisol, and thyroid hormones, whereas prolactin is generally inhibitory. Increased salinity tolerance is one of the most important and tractable changes, and is caused by alteration in the function of the major osmoregulatory organs, the gill, gut, and kidney. Increased abundance of specific ion transporters (Na+/K+-ATPase, Na+/K+/Cl− cotransporter and apical Cl− channel) in gill ionocytes results in increased salt secretory capacity, increased growth and swimming performance in seawater, and higher marine survival.

  7. Species performance: The relationship between nutrient availability, life history traits and stress [Chapter 8

    Treesearch

    Jeremy J. James

    2012-01-01

    Differences in species performance (i.e. how a species captures and utilizes resources to maintain and increase population size), influences the rate and direction of plant community change (Sheley et al., 2006). Species performance is determined by a number of interacting factors. This includes resource supply rates, physiological traits that determine how a species...

  8. Intraguild predation may reinforce a species-environment gradient

    NASA Astrophysics Data System (ADS)

    MacNeil, Calum; Dick, Jaimie T. A.

    2012-05-01

    Species-environment gradients are ubiquitous in nature, with studies often partially explaining the replacement of species along such gradients by autecological factors such as differential physiological tolerances. However, lacking direct evidence, the majority of studies only infer some form of inter-specific interaction, often competition, as reinforcing these gradients. There is usually the further implication that environmental factors mediate asymmetries in the interaction. Recognising the lack of explicit experimental considerations of how key inter-specific interactions are modified by the environment, we chose a study system where we were able to bring the species in question into the laboratory and conduct experiments to test hypotheses about gradient-induced asymmetries in an inter-specific interaction. To this end, we tested the hypothesis that a species-salinity gradient may be reinforced by changes in the asymmetry of intraguild predation between two species of amphipod crustaceans with wide salinity tolerances. River and estuary surveys showed that Gammarus duebeni and Gammarus zaddachi have overlapping distributions, with both surviving and reproducing in salinities ranging from freshwater to fully marine. However, the former species is relatively more abundant in low salinities and the latter in higher salinities. In the laboratory, survival of both species was high in all salinities and cannibalism occurred at low frequencies. However, intraguild predation by males on moulted females was asymmetric in favour of G. duebeni at low salinities, this asymmetry completely reversing to favour G. zaddachi at higher salinities. Thus, we provide evidence that this species-environment gradient occurs due to overlapping physiological tolerances and salinity-driven shifts in the asymmetry of a key inter-specific interaction, intraguild predation.

  9. Species climate range influences hydraulic and stomatal traits in Eucalyptus species.

    PubMed

    Bourne, Aimee E; Creek, Danielle; Peters, Jennifer M R; Ellsworth, David S; Choat, Brendan

    2017-07-01

    Plant hydraulic traits influence the capacity of species to grow and survive in water-limited environments, but their comparative study at a common site has been limited. The primary aim of this study was to determine whether selective pressures on species originating in drought-prone environments constrain hydraulic traits among related species grown under common conditions. Leaf tissue water relations, xylem anatomy, stomatal behaviour and vulnerability to drought-induced embolism were measured on six Eucalyptus species growing in a common garden to determine whether these traits were related to current species climate range and to understand linkages between the traits. Hydraulically weighted xylem vessel diameter, leaf turgor loss point, the water potential at stomatal closure and vulnerability to drought-induced embolism were significantly ( P < 0·05) correlated with climate parameters from the species range. There was a co-ordination between stem and leaf parameters with the water potential at turgor loss, 12 % loss of conductivity and the point of stomatal closure significantly correlated. The correlation of hydraulic, stomatal and anatomical traits with climate variables from the species' original ranges suggests that these traits are genetically constrained. The conservative nature of xylem traits in Eucalyptus trees has important implications for the limits of species responses to changing environmental conditions and thus for species survival and distribution into the future, and yields new information for physiological models. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  10. Simmondsia chinensis (Link) Schneid.: jojoba

    Treesearch

    Susan E. Meyer

    2008-01-01

    The Simmondsiaceae (jojoba family), has only 1 genus, Simmondsia, which consists of only 1 species, jojoba - S. chinensis (Link) Schneid. Once considered an isolated member of the box family (Buxaceae), jojoba is now regarded as sufficiently distinct to be placed in its own family. Jojoba is found from coastal and cis-montane southern California east to central Arizona...

  11. Contrasting physiological responses of two co-occurring eucalypts to seasonal drought at restored bauxite mine sites.

    PubMed

    Szota, Christopher; Farrell, Claire; Koch, John M; Lambers, Hans; Veneklaas, Erik J

    2011-10-01

    This study describes the physiological response of two co-occurring tree species (Eucalyptus marginata and Corymbia calophylla) to seasonal drought at low- and high-quality restored bauxite mine sites in south-western Australia. Seasonal changes in photosynthesis (A), stomatal conductance (g(s)), leaf water potential (ψ), leaf osmotic potential (ψ), leaf relative water content (RWC) and pressure-volume analysis were captured over an 18-month field study to (i) determine the nature and severity of physiological stress in relation to site quality and (ii) identify any physiological differences between the two species. Root system restriction at the low-quality site reduced maximum rates of gas exchange (g(s) and A) and increased water stress (midday ψ and daily RWC) in both species during drought. Both species showed high stomatal sensitivity during drought; however, E. marginata demonstrated a higher dehydration tolerance where ψ and RWC fell to -3.2 MPa and 73% compared with -2.4 MPa and 80% for C. calophylla. Corymbia calophylla showed lower g(s) and higher ψ and RWC during drought, indicating higher drought tolerance. Pressure-volume curves showed that cell-wall elasticity of E. marginata leaves increased in response to drought, while C. calophylla leaves showed lower osmotic potential at zero turgor in summer than in winter, indicating osmotic adjustment. Both species are clearly able to tolerate seasonal drought at hostile sites; however, by C. calophylla closing stomata earlier in the drought cycle, maintaining a higher water status during drought and having the additional mechanism of osmotic adjustment, it may have a greater capacity to survive extended periods of drought.

  12. The Promotion of Erythropoiesis via the Regulation of Reactive Oxygen Species by Lactic Acid

    PubMed Central

    Luo, Shun-Tao; Zhang, Dong-Mei; Qin, Qing; Lu, Lian; Luo, Min; Guo, Fu-Chun; Shi, Hua-Shan; Jiang, Li; Shao, Bin; Li, Meng; Yang, Han-Shuo; Wei, Yu-Quan

    2017-01-01

    The simultaneous increases in blood lactic acid and erythrocytes after intense exercise could suggest a link between lactate and the erythropoiesis. However, the effects of lactic acid on erythropoiesis remain to be elucidated. Here, we utilized a mouse model to determine the role of lactic acid in this process in parallel with studies using leukaemic K562 cells. Treatment of K562 cells in vitro with lactic acid increased the mRNA and protein expression of haemoglobin genes and the frequency of GPA+ cells. Also, increases in haematocrit and CD71−/Ter119+ erythroid cells were observed in lactic acid-treated mice, which showed a physiological increase in blood lactate. Mouse bone marrow CD34+/CD117− cells showed an increase in erythroid burst-forming units after stimulation with lactic acid in vitro. Furthermore, lactic acid increased the intracellular reactive oxygen species (ROS) content in bone marrow and in K562 cells. Erythroid differentiation induced in Haematopoietic Stem Cells (HSCs) and K562 cells by lactic acid was abolished by reducing ROS levels with SOD or 2-mercaptoethanol, which suggests that ROS is a critical regulator of this process. These findings provide a better understanding of the role of lactic acid in cellular metabolism and physiological functions. PMID:28165036

  13. Host physiological condition regulates parasitic plant performance: Arceuthobium vaginatum subsp. cryptopodum on Pinus ponderosa.

    PubMed

    Bickford, Christopher P; Kolb, Thomas E; Geils, Brian W

    2005-12-01

    Much research has focused on effects of plant parasites on host-plant physiology and growth, but little is known about effects of host physiological condition on parasite growth. Using the parasitic dwarf mistletoe Arceuthobium vaginatum subsp. cryptopodum (Viscaceae) and its host Pinus ponderosa, we investigated whether changes in host physiological condition influenced mistletoe shoot development in northern Arizona forests. We conducted two studies in two consecutive years and used forest thinning (i.e., competitive release) to manipulate host physiological condition. We removed dwarf mistletoe shoots in April, before the onset of the growing season, and measured the amount of regrowth in the first season after forest thinning (Study I: n=38 trees; Study II: n=35 trees). Thinning increased tree uptake of water and carbon in both studies, but had no effect on leaf N concentration or delta13C. Mistletoe shoot growth was greater on trees with high uptake of water and carbon in thinned stands than trees with low uptake in unthinned stands. These findings show that increased resource uptake by host trees increases resources to these heterotrophic dwarf mistletoes, and links mistletoe performance to changes in host physiological condition.

  14. The Distribution and Abundance of Bird Species: Towards a Satellite, Data Driven Avian Energetics and Species Richness Model

    NASA Technical Reports Server (NTRS)

    Smith, James A.

    2003-01-01

    This paper addresses the fundamental question of why birds occur where and when they do, i.e., what are the causative factors that determine the spatio-temporal distributions, abundance, or richness of bird species? In this paper we outline the first steps toward building a satellite, data-driven model of avian energetics and species richness based on individual bird physiology, morphology, and interaction with the spatio-temporal habitat. To evaluate our model, we will use the North American Breeding Bird Survey and Christmas Bird Count data for species richness, wintering and breeding range. Long term and current satellite data series include AVHRR, Landsat, and MODIS.

  15. Measuring physiological stress in Australian flying-fox populations.

    PubMed

    McMichael, Lee A; Edson, Daniel; Field, Hume

    2014-09-01

    Flying-foxes (pteropid bats) are the natural host of Hendra virus, a recently emerged zoonotic virus responsible for mortality or morbidity in horses and humans in Australia since 1994. Previous studies have suggested physiological and ecological risk factors for infection in flying-foxes, including physiological stress. However, little work has been done measuring and interpreting stress hormones in flying-foxes. Over a 12-month period, we collected pooled urine samples from underneath roosting flying-foxes, and urine and blood samples from captured individuals. Urine and plasma samples were assayed for cortisol using a commercially available enzyme immunoassay. We demonstrated a typical post-capture stress response in flying-foxes, established urine specific gravity as an attractive alternative to creatinine to correct urine concentration, and established population-level urinary cortisol ranges (and geometric means) for the four Australian species: Pteropus alecto 0.5-305.1 ng/mL (20.1 ng/mL); Pteropus conspicillatus 0.3-370.9 ng/mL (18.9 ng/mL); Pteropus poliocephalus 0.3-311.3 ng/mL (10.1 ng/mL); Pteropus scapulatus 5.2-205.4 ng/mL (40.7 ng/mL). Geometric means differed significantly except for P. alecto and P. conspicillatus. Our approach is methodologically robust, and has application both as a research or clinical tool for flying-foxes, and for other free-living colonial wildlife species.

  16. Linking vegetation structure, function and physiology through spectroscopic remote sensing

    NASA Astrophysics Data System (ADS)

    Serbin, S.; Singh, A.; Couture, J. J.; Shiklomanov, A. N.; Rogers, A.; Desai, A. R.; Kruger, E. L.; Townsend, P. A.

    2015-12-01

    Terrestrial ecosystem process models require detailed information on ecosystem states and canopy properties to properly simulate the fluxes of carbon (C), water and energy from the land to the atmosphere and assess the vulnerability of ecosystems to perturbations. Current models fail to adequately capture the magnitude, spatial variation, and seasonality of terrestrial C uptake and storage, leading to significant uncertainties in the size and fate of the terrestrial C sink. By and large, these parameter and process uncertainties arise from inadequate spatial and temporal representation of plant traits, vegetation structure, and functioning. With increases in computational power and changes to model architecture and approaches, it is now possible for models to leverage detailed, data rich and spatially explicit descriptions of ecosystems to inform parameter distributions and trait tradeoffs. In this regard, spectroscopy and imaging spectroscopy data have been shown to be invaluable observational datasets to capture broad-scale spatial and, eventually, temporal dynamics in important vegetation properties. We illustrate the linkage of plant traits and spectral observations to supply key data constraints for model parameterization. These constraints can come either in the form of the raw spectroscopic data (reflectance, absorbtance) or physiological traits derived from spectroscopy. In this presentation we highlight our ongoing work to build ecological scaling relationships between critical vegetation characteristics and optical properties across diverse and complex canopies, including temperate broadleaf and conifer forests, Mediterranean vegetation, Arctic systems, and agriculture. We focus on work at the leaf, stand, and landscape scales, illustrating the importance of capturing the underlying variability in a range of parameters (including vertical variation within canopies) to enable more efficient scaling of traits related to functional diversity of ecosystems.

  17. Species turnover (β-diversity) in ectomycorrhizal fungi linked to NH4+ uptake capacity.

    PubMed

    Kranabetter, J M; Hawkins, B J; Jones, M D; Robbins, S; Dyer, T; Li, T

    2015-12-01

    Ectomycorrhizal (EcM) fungal communities may be shaped by both deterministic and stochastic processes, potentially influencing ecosystem development and function. We evaluated community assembly processes for EcM fungi of Pseudotsuga menziesii among 12 sites up to 400 km apart in southwest British Columbia (Canada) by investigating species turnover (β-diversity) in relation to soil nitrogen (N) availability and physical distance. We then examined functional traits for an N-related niche by quantifying net fluxes of NH4+, NO3- and protons on excised root tips from three contrasting sites using a microelectrode ion flux measurement system. EcM fungal communities were well aligned with soil N availability and pH, with no effect of site proximity (distance-decay curve) on species assemblages. Species turnover was significant (β(1/2) = 1.48) along soil N gradients, with many more Tomentella species on high N than low N soils, in contrast to Cortinarius species. Ammonium uptake was greatest in the spring on the medium and rich sites and averaged over 190 nmol/m(2)/s for Tomentella species. The lowest uptake rates of NH4+ were by nonmycorrhizal roots of axenically grown seedlings (10 nmol/m(2)/s), followed by Cortinarius species (60 nmol/m(2)/s). EcM roots from all sites displayed only marginal uptake of nitrate (8.3 nmol/m(2)/s). These results suggest NH4+ uptake capacity is an important functional trait influencing the assembly of EcM fungal communities. The diversity of EcM fungal species across the region arguably provides critical belowground adaptations to organic and inorganic N supply that are integral to temperate rainforest ecology. © 2015 John Wiley & Sons Ltd.

  18. Determinants of physiological and perceived physiological stress reactivity in children and adolescents.

    PubMed

    Evans, Brittany E; Greaves-Lord, Kirstin; Euser, Anja S; Tulen, Joke H M; Franken, Ingmar H A; Huizink, Anja C

    2013-01-01

    Abnormal physiological stress reactivity is increasingly investigated as a vulnerability marker for various physical and psychological health problems. However, studies are inconsistent in taking into account potential covariates that may influence the developing stress system. We systematically tested determinants (individual, developmental, environmental and substance use-related) of physiological and perceived physiological stress reactivity. We also examined the relation between physiological and perceived physiological stress reactivity. In a stratified sample of 363 children (7-12 years) and 344 adolescents (13-20 years) from the general population, we examined cortisol, heart rate, respiratory sinus arrhythmia and perceived physiological stress reactivity to a psychosocial stress procedure. Using multivariate linear regression models, we found that individual, developmental, environmental and substance use-related factors were related to each of the stress response indices. These determinant factors were different for each of the stress reactivity indices, and different in children versus adolescents. Perceived physiological stress reactivity predicted cortisol reactivity in adolescents only. All other relations between perceived physiological and physiological stress reactivity were not significant. As physiological stress variables are often examined as vulnerability markers for the development of health problems, we maintain that it is essential that future studies take into consideration factors that may account for found relations. Our study provides an overview and indication of which variables should be considered in the investigation of the relation between physiological stress indices and illness.

  19. Staphylococcus muscae, a new species isolated from flies.

    PubMed

    Hájek, V; Ludwig, W; Schleifer, K H; Springer, N; Zitzelsberger, W; Kroppenstedt, R M; Kocur, M

    1992-01-01

    A new coagulase-negative species of the genus Staphylococcus, Staphylococcus muscae, is described on the basis of the results of a study of four strains that were isolated from flies. 16S rRNA sequences of the type strains of S. muscae, Staphylococcus schleiferi, and Staphylococcus sciuri were determined and used, together with the corresponding sequences of Staphylococcus aureus and Staphylococcus epidermidis, for a comparative analysis. The new species is characterized taxonomically; this species is differentiated from the other novobiocin-susceptible staphylococci by its physiological and biochemical activities, cell wall composition, and levels of genetic relatedness. The type strain of this species is strain MB4 (= CCM 4175).

  20. Red Cell Physiology and Signaling Relevant to the Critical Care Setting

    PubMed Central

    Said, Ahmed; Rogers, Stephen; Doctor, Allan

    2015-01-01

    Purpose of Review Oxygen (O2) delivery, the maintenance of which is fundamental to supporting those with critical illness, is a function of blood O2 content and flow. Here, we review red blood cell (RBC) physiology relevant to disordered O2 delivery in the critically ill. Recent Findings Flow (rather then content) is the focus of O2 delivery regulation: O2 content is relatively fixed, whereas flow fluctuates by several orders of magnitude. Thus, blood flow volume and distribution vary to maintain coupling between O2 delivery and demand. The trapping, processing and delivery of nitric oxide (NO) by RBCs has emerged as a conserved mechanism through which regional blood flow is linked to biochemical cues of perfusion sufficiency. We will review conventional RBC physiology influencing O2 delivery (O2 affinity & rheology) and introduce a new paradigm for O2 delivery homeostasis based on coordinated gas transport and vascular signaling by RBCs. Summary By coordinating vascular signaling in a fashion that links O2 and NO flux, RBCs couple vessel caliber (and thus blood flow) to O2 need in tissue. Malfunction of this signaling system is implicated in a wide array of pathophysiologies and may be explanatory for the dysoxia frequently encountered in the critical care setting. PMID:25888155

  1. Red cell physiology and signaling relevant to the critical care setting.

    PubMed

    Said, Ahmed; Rogers, Stephen; Doctor, Allan

    2015-06-01

    Oxygen (O2) delivery, the maintenance of which is fundamental to supporting those with critical illness, is a function of blood O2 content and flow. Here, we review red blood cell (RBC) physiology relevant to disordered O2 delivery in the critically ill. Flow (rather than content) is the focus of O2 delivery regulation. O2 content is relatively fixed, whereas flow fluctuates by several orders of magnitude. Thus, blood flow volume and distribution vary to maintain coupling between O2 delivery and demand. The trapping, processing and delivery of nitric oxide (NO) by RBCs has emerged as a conserved mechanism through which regional blood flow is linked to biochemical cues of perfusion sufficiency. We will review conventional RBC physiology that influences O2 delivery (O2 affinity & rheology) and introduce a new paradigm for O2 delivery homeostasis based on coordinated gas transport and vascular signaling by RBCs. By coordinating vascular signaling in a fashion that links O2 and NO flux, RBCs couple vessel caliber (and thus blood flow) to O2 need in tissue. Malfunction of this signaling system is implicated in a wide array of pathophysiologies and may be explanatory for the dysoxia frequently encountered in the critical care setting.

  2. The Coral Trait Database, a curated database of trait information for coral species from the global oceans

    NASA Astrophysics Data System (ADS)

    Madin, Joshua S.; Anderson, Kristen D.; Andreasen, Magnus Heide; Bridge, Tom C. L.; Cairns, Stephen D.; Connolly, Sean R.; Darling, Emily S.; Diaz, Marcela; Falster, Daniel S.; Franklin, Erik C.; Gates, Ruth D.; Hoogenboom, Mia O.; Huang, Danwei; Keith, Sally A.; Kosnik, Matthew A.; Kuo, Chao-Yang; Lough, Janice M.; Lovelock, Catherine E.; Luiz, Osmar; Martinelli, Julieta; Mizerek, Toni; Pandolfi, John M.; Pochon, Xavier; Pratchett, Morgan S.; Putnam, Hollie M.; Roberts, T. Edward; Stat, Michael; Wallace, Carden C.; Widman, Elizabeth; Baird, Andrew H.

    2016-03-01

    Trait-based approaches advance ecological and evolutionary research because traits provide a strong link to an organism’s function and fitness. Trait-based research might lead to a deeper understanding of the functions of, and services provided by, ecosystems, thereby improving management, which is vital in the current era of rapid environmental change. Coral reef scientists have long collected trait data for corals; however, these are difficult to access and often under-utilized in addressing large-scale questions. We present the Coral Trait Database initiative that aims to bring together physiological, morphological, ecological, phylogenetic and biogeographic trait information into a single repository. The database houses species- and individual-level data from published field and experimental studies alongside contextual data that provide important framing for analyses. In this data descriptor, we release data for 56 traits for 1547 species, and present a collaborative platform on which other trait data are being actively federated. Our overall goal is for the Coral Trait Database to become an open-source, community-led data clearinghouse that accelerates coral reef research.

  3. The Coral Trait Database, a curated database of trait information for coral species from the global oceans

    PubMed Central

    Madin, Joshua S.; Anderson, Kristen D.; Andreasen, Magnus Heide; Bridge, Tom C.L.; Cairns, Stephen D.; Connolly, Sean R.; Darling, Emily S.; Diaz, Marcela; Falster, Daniel S.; Franklin, Erik C.; Gates, Ruth D.; Hoogenboom, Mia O.; Huang, Danwei; Keith, Sally A.; Kosnik, Matthew A.; Kuo, Chao-Yang; Lough, Janice M.; Lovelock, Catherine E.; Luiz, Osmar; Martinelli, Julieta; Mizerek, Toni; Pandolfi, John M.; Pochon, Xavier; Pratchett, Morgan S.; Putnam, Hollie M.; Roberts, T. Edward; Stat, Michael; Wallace, Carden C.; Widman, Elizabeth; Baird, Andrew H.

    2016-01-01

    Trait-based approaches advance ecological and evolutionary research because traits provide a strong link to an organism’s function and fitness. Trait-based research might lead to a deeper understanding of the functions of, and services provided by, ecosystems, thereby improving management, which is vital in the current era of rapid environmental change. Coral reef scientists have long collected trait data for corals; however, these are difficult to access and often under-utilized in addressing large-scale questions. We present the Coral Trait Database initiative that aims to bring together physiological, morphological, ecological, phylogenetic and biogeographic trait information into a single repository. The database houses species- and individual-level data from published field and experimental studies alongside contextual data that provide important framing for analyses. In this data descriptor, we release data for 56 traits for 1547 species, and present a collaborative platform on which other trait data are being actively federated. Our overall goal is for the Coral Trait Database to become an open-source, community-led data clearinghouse that accelerates coral reef research. PMID:27023900

  4. The Coral Trait Database, a curated database of trait information for coral species from the global oceans.

    PubMed

    Madin, Joshua S; Anderson, Kristen D; Andreasen, Magnus Heide; Bridge, Tom C L; Cairns, Stephen D; Connolly, Sean R; Darling, Emily S; Diaz, Marcela; Falster, Daniel S; Franklin, Erik C; Gates, Ruth D; Harmer, Aaron; Hoogenboom, Mia O; Huang, Danwei; Keith, Sally A; Kosnik, Matthew A; Kuo, Chao-Yang; Lough, Janice M; Lovelock, Catherine E; Luiz, Osmar; Martinelli, Julieta; Mizerek, Toni; Pandolfi, John M; Pochon, Xavier; Pratchett, Morgan S; Putnam, Hollie M; Roberts, T Edward; Stat, Michael; Wallace, Carden C; Widman, Elizabeth; Baird, Andrew H

    2016-03-29

    Trait-based approaches advance ecological and evolutionary research because traits provide a strong link to an organism's function and fitness. Trait-based research might lead to a deeper understanding of the functions of, and services provided by, ecosystems, thereby improving management, which is vital in the current era of rapid environmental change. Coral reef scientists have long collected trait data for corals; however, these are difficult to access and often under-utilized in addressing large-scale questions. We present the Coral Trait Database initiative that aims to bring together physiological, morphological, ecological, phylogenetic and biogeographic trait information into a single repository. The database houses species- and individual-level data from published field and experimental studies alongside contextual data that provide important framing for analyses. In this data descriptor, we release data for 56 traits for 1547 species, and present a collaborative platform on which other trait data are being actively federated. Our overall goal is for the Coral Trait Database to become an open-source, community-led data clearinghouse that accelerates coral reef research.

  5. Regulation of RIG-I Activation by K63-Linked Polyubiquitination.

    PubMed

    Okamoto, Masaaki; Kouwaki, Takahisa; Fukushima, Yoshimi; Oshiumi, Hiroyuki

    2017-01-01

    RIG-I is a pattern recognition receptor and recognizes cytoplasmic viral double-stranded RNA (dsRNA). Influenza A virus, hepatitis C virus, and several other pathogenic viruses are mainly recognized by RIG-I, resulting in the activation of the innate immune responses. The protein comprises N-terminal two caspase activation and recruitment domains (2CARDs), an RNA helicase domain, and the C-terminal domain (CTD). The CTD recognizes 5'-triphosphate viral dsRNA. After recognition of viral dsRNA, the protein harbors K63-linked polyubiquitination essential for RIG-I activation. First, it was reported that TRIM25 ubiquitin ligase delivered K63-linked polyubiquitin moiety to the 2CARDs. The polyubiquitin chain stabilizes a structure called the 2CARD tetramer, in which four 2CARDs assemble and make a core that promotes the aggregation of the mitochondrial antiviral-signaling (MAVS) protein on mitochondria. MAVS aggregation then triggers the signal to induce the innate immune responses. However, subsequent studies have reported that Riplet, MEX3C, and TRIM4 ubiquitin ligases are also involved in K63-linked polyubiquitination and the activation of RIG-I. MEX3C and TRIM4 mediate polyubiquitination of the 2CARDs. By contrast, Riplet ubiquitinates the CTD. The physiological significance of each ubiquitin ligases has been shown by knockout and knockdown studies, but there appears to be contradictory to evidence reported in the literature. In this review, we summarize recent findings related to K63-linked polyubiquitination and propose a model that could reconcile current contradictory theories. We also discuss the physiological significance of the ubiquitin ligases in the immune system against viral infection.

  6. Regulation of RIG-I Activation by K63-Linked Polyubiquitination

    PubMed Central

    Okamoto, Masaaki; Kouwaki, Takahisa; Fukushima, Yoshimi; Oshiumi, Hiroyuki

    2018-01-01

    RIG-I is a pattern recognition receptor and recognizes cytoplasmic viral double-stranded RNA (dsRNA). Influenza A virus, hepatitis C virus, and several other pathogenic viruses are mainly recognized by RIG-I, resulting in the activation of the innate immune responses. The protein comprises N-terminal two caspase activation and recruitment domains (2CARDs), an RNA helicase domain, and the C-terminal domain (CTD). The CTD recognizes 5′-triphosphate viral dsRNA. After recognition of viral dsRNA, the protein harbors K63-linked polyubiquitination essential for RIG-I activation. First, it was reported that TRIM25 ubiquitin ligase delivered K63-linked polyubiquitin moiety to the 2CARDs. The polyubiquitin chain stabilizes a structure called the 2CARD tetramer, in which four 2CARDs assemble and make a core that promotes the aggregation of the mitochondrial antiviral-signaling (MAVS) protein on mitochondria. MAVS aggregation then triggers the signal to induce the innate immune responses. However, subsequent studies have reported that Riplet, MEX3C, and TRIM4 ubiquitin ligases are also involved in K63-linked polyubiquitination and the activation of RIG-I. MEX3C and TRIM4 mediate polyubiquitination of the 2CARDs. By contrast, Riplet ubiquitinates the CTD. The physiological significance of each ubiquitin ligases has been shown by knockout and knockdown studies, but there appears to be contradictory to evidence reported in the literature. In this review, we summarize recent findings related to K63-linked polyubiquitination and propose a model that could reconcile current contradictory theories. We also discuss the physiological significance of the ubiquitin ligases in the immune system against viral infection. PMID:29354136

  7. Physiological Response of Orchids to Mealybugs (Hemiptera: Pseudococcidae) Infestation.

    PubMed

    Kmiec, K; Kot, I; Golan, K; Górska-Drabik, E; Lagowska, B; Rubinowska, K; Michalek, W

    2016-12-01

    The harmfulness of mealybugs resulting from sucking plant sap, secreting honeydew, and transmitting plant viruses can give them the status of serious pests. This study documents the influence of Pseudococcus maritimus (Ehrhorn) and Pseudococcus longispinus (Targioni Tozzetti) infestation on alterations in selected physiological parameters of Phalaenopsis x hybridum 'Innocence'. The condition of the cytoplasmic membranes was expressed as the value of thiobarbituric acid reactive substances. We have determined changes in the activities of catalase and guaiacol peroxidase and measured the following chlorophyll fluorescence parameters: maximum quantum yield of photosystem II (Fv/Fm), effective quantum yield (Y), photochemical quenching (qP), and nonphotochemical quenching (qN). The strongest physiological response of orchids was recorded in the initial period of mealybugs infestation. Prolonged insect feeding suppressed lipid peroxidation, peroxidase and catalase activity, as well as photosynthesis photochemistry. The pattern of changes was dependent on mealybug species. This indicated the complexity of the processes responsible for plant tolerance. Data generated in this study have provided a better understanding of the impact of two mealybug species infestation on Phalaenopsis and should be useful in developing pest management strategies. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Applications of physiologically based pharmacokinetic modeling for the optimization of anti-infective therapies.

    PubMed

    Moss, Darren Michael; Marzolini, Catia; Rajoli, Rajith K R; Siccardi, Marco

    2015-01-01

    The pharmacokinetic properties of anti-infective drugs are a determinant part of treatment success. Pathogen replication is inhibited if adequate drug levels are achieved in target sites, whereas excessive drug concentrations linked to toxicity are to be avoided. Anti-infective distribution can be predicted by integrating in vitro drug properties and mathematical descriptions of human anatomy in physiologically based pharmacokinetic models. This method reduces the need for animal and human studies and is used increasingly in drug development and simulation of clinical scenario such as, for instance, drug-drug interactions, dose optimization, novel formulations and pharmacokinetics in special populations. We have assessed the relevance of physiologically based pharmacokinetic modeling in the anti-infective research field, giving an overview of mechanisms involved in model design and have suggested strategies for future applications of physiologically based pharmacokinetic models. Physiologically based pharmacokinetic modeling provides a powerful tool in anti-infective optimization, and there is now no doubt that both industry and regulatory bodies have recognized the importance of this technology. It should be acknowledged, however, that major challenges remain to be addressed and that information detailing disease group physiology and anti-infective pharmacodynamics is required if a personalized medicine approach is to be achieved.

  9. Physiological limitation at alpine treeline: relationships of threshold responses of conifers to their establishment patterns

    NASA Astrophysics Data System (ADS)

    Germino, M. J.; Lazarus, B.; Castanha, C.; Moyes, A. B.; Kueppers, L. M.

    2014-12-01

    An understanding of physiological limitations to tree establishment at alpine treeline form the basis for predicting how this climate-driven boundary will respond to climate shifts. Most research on this topic has focused on limitations related to carbon balance and growth of trees. Carbon balance could limit survival and establishment primarily through slow-acting, chronic means. We asked whether tree survival and thus establishment patterns reflect control by chronic effects in comparison to acute, threshold responses, such as survival of frost events. Seedling survivorship patterns were compared to thresholds in freezing (temperature causing leaf freezing, or freezing point, FP; and physiological response to freezing) and water status (turgor loss point, TLP; and related physiological adjustments). Subject seedlings were from forest, treeline, and alpine sites in the Alpine Treeline Warming Experiment in Colorado, and included limber and lodgepole pine (a low-elevation species), and Engelmann Spruce. Preliminary results show survival increases with seedling age, but the only corresponding increase in stress acclimation was photosynthetic resistance to freezing and TLP, not FP. Differences in survivorship among the species were not consistent with variation in FP but they generally agreed with variation in photosynthetic resistance to deep freezing and to early-season drought avoidance. Mortality of limber pine increased 35% when minimum temperatures decreased below -9C, which compares with FPs of >-8.6C, and about 1/3 of its mortality occurred during cold/wet events, particularly in the alpine. The other major correlate of mortality is midsummer drying events, as previously reported. Also in limber pine, the TLP for year-old seedlings (-2.5 MPa) corresponded with seasonal-drought mortality. In summary, we show several examples of correspondence in physiological thresholds to mortality events within a species, although the relationships are not strong. Across

  10. Contrasting extremes in water-related stresses determine species survival

    NASA Astrophysics Data System (ADS)

    Bartholomeus, R. P.; Witte, J. P. M.; van Bodegom, P. M.; van Dam, J. C.; Aerts, R.

    2012-04-01

    In temperate climates, soil moisture, in concert with nutrient availability and soil acidity, is the most important environmental filter in determining local plant species composition, as it determines the availability of both oxygen and water to plant roots. These resources are indispensable for meeting the physiological demands of plants. Especially the occurrence of both excessive dry and wet moisture conditions at a particular site has strong implications for the survival of species, because plants need traits that allow them to respond to such counteracting conditions. However, adapting to one stress may go at the cost of the other, i.e. there exists a trade-off in the tolerance for wet conditions and the tolerance for dry conditions. Until now, both large-scale (global) and plot-scale effects of soil moisture conditions on plant species composition have mostly been investigated through indirect environmental measures, which do not include the key soil physical and plant physiological processes in the soil-plant-atmosphere system. Moreover, researchers only determined effects of one of the water-related stresses, i.e. either oxygen or drought stress. In order to quantify both oxygen and drought stress with causal measures, we focused on interacting meteorological, soil physical, microbial, and plant physiological processes in the soil-plant-atmosphere system. We simulated these plant stresses with a novel, process-based approach, incorporating in detail the interacting processes in the soil-plant-atmosphere interface. High variability and extremes in resource availability can be highly detrimental to plant species ('you can only die once'). We show that co-occurrence of oxygen and drought stress reduces the percentage of specialists within a vegetation plot. The percentage of non-specialists within a vegetation plot, however, decreases significantly with increasing stress as long as only one of the stresses prevails, but increases significantly with an

  11. Integrative modelling reveals mechanisms linking productivity and plant species richness

    USDA-ARS?s Scientific Manuscript database

    For 40 years ecologists have sought a canonical productivity-species richness relationship 48 (PRR) for ecosystems, despite continuing disagreements about expected form and 49 interpretation. Using a large global dataset of terrestrial grasslands, we consider how 50 productivity and richness relate ...

  12. Extinction risks forced by climatic change and intraspecific variation in the thermal physiology of a tropical lizard.

    PubMed

    Pontes-da-Silva, Emerson; Magnusson, William E; Sinervo, Barry; Caetano, Gabriel H; Miles, Donald B; Colli, Guarino R; Diele-Viegas, Luisa M; Fenker, Jessica; Santos, Juan C; Werneck, Fernanda P

    2018-04-01

    Temperature increases can impact biodiversity and predicting their effects is one of the main challenges facing global climate-change research. Ectotherms are sensitive to temperature change and, although predictions indicate that tropical species are highly vulnerable to global warming, they remain one of the least studied groups with respect to the extent of physiological variation and local extinction risks. We model the extinction risks for a tropical heliothermic teiid lizard (Kentropyx calcarata) integrating previously obtained information on intraspecific phylogeographic structure, eco-physiological traits and contemporary species distributions in the Amazon rainforest and its ecotone to the Cerrado savannah. We also investigated how thermal-biology traits vary throughout the species' geographic range and the consequences of such variation for lineage vulnerability. We show substantial variation in thermal tolerance of individuals among thermally distinct sites. Thermal critical limits were highly correlated with operative environmental temperatures. Our physiological/climatic model predicted relative extinction risks for local populations within clades of K. calcarata for 2050 ranging between 26.1% and 70.8%, while for 2070, extinction risks ranged from 52.8% to 92.8%. Our results support the hypothesis that tropical-lizard taxa are at high risk of local extinction caused by increasing temperatures. However, the thermo-physiological differences found across the species' distribution suggest that local adaptation may allow persistence of this tropical ectotherm in global warming scenarios. These results will serve as basis to further research to investigate the strength of local adaptation to climate change. Persistence of Kentropyx calcarata also depends on forest preservation, but the Amazon rainforest is currently under high deforestation rates. We argue that higher conservation priority is necessary so the Amazon rainforest can fulfill its capacity to

  13. Bioinformatic as a tool to highlight and characterize extragenomic sequences within Fusarium verticillioides strains isolated from Italian Zea mays kernels

    USDA-ARS?s Scientific Manuscript database

    Fusarium Link is a genus including ubiquitous plant-pathogenic fungi that may cause severe crop losses. The Fusarium genus is divided in species complexes; the species are grouped by physiological, biological, ecological and genetic similarity. The Fusarium fujikuroi species complex (FFSC) is one of...

  14. Determinants of Physiological and Perceived Physiological Stress Reactivity in Children and Adolescents

    PubMed Central

    Evans, Brittany E.; Greaves-Lord, Kirstin; Euser, Anja S.; Tulen, Joke H. M.; Franken, Ingmar H. A.; Huizink, Anja C.

    2013-01-01

    Aims Abnormal physiological stress reactivity is increasingly investigated as a vulnerability marker for various physical and psychological health problems. However, studies are inconsistent in taking into account potential covariates that may influence the developing stress system. We systematically tested determinants (individual, developmental, environmental and substance use-related) of physiological and perceived physiological stress reactivity. We also examined the relation between physiological and perceived physiological stress reactivity. Method In a stratified sample of 363 children (7–12 years) and 344 adolescents (13–20 years) from the general population, we examined cortisol, heart rate, respiratory sinus arrhythmia and perceived physiological stress reactivity to a psychosocial stress procedure. Results Using multivariate linear regression models, we found that individual, developmental, environmental and substance use-related factors were related to each of the stress response indices. These determinant factors were different for each of the stress reactivity indices, and different in children versus adolescents. Perceived physiological stress reactivity predicted cortisol reactivity in adolescents only. All other relations between perceived physiological and physiological stress reactivity were not significant. Conclusions As physiological stress variables are often examined as vulnerability markers for the development of health problems, we maintain that it is essential that future studies take into consideration factors that may account for found relations. Our study provides an overview and indication of which variables should be considered in the investigation of the relation between physiological stress indices and illness. PMID:23620785

  15. A survey of swainsonine content in Swainsona species

    USDA-ARS?s Scientific Manuscript database

    Swainsonine, an indolizidine alkaloid with significant physiological activity, is an a-mannosidase and mannosidase II inhibitor that causes lysosomal storage disease and alters glycoprotein processing. Swainsonine is found in a number of plant species worldwide, and causes severe toxicosis in lives...

  16. Hybridization improved bacteria resistance in abalone: Evidence from physiological and molecular responses.

    PubMed

    Liang, Shuang; Luo, Xuan; You, Weiwei; Ke, Caihuan

    2018-01-01

    Hybridization is an effective way of improving germplasm in abalone, as it often generates benign traits in the hybrids. The hybrids of Haliotis discus hannai and H. gigantea have shown heterosis in terms of disease resistance than one or both parental species. In the present study, to elucidate the physiological and molecular mechanism of this heterosis, we analyzed the dynamic changes of several immune indexes including survival rate, total circulating haemocyte count (THC), phagocytic activity, reactive oxygen species level (ROS) and phenoloxidase activity (PO) in two parental species, H. discus hannai (DD) and H. gigantea (GG), and their reciprocal hybrids H. discus hannai ♀ × H. gigantea ♂ (DG), H. gigantea ♀ × H. discus hannai ♂ (GD) challenged with a mixture of Vibrio harveyi, V. alginolyticus and V. parahaemolyticus (which have been demonstrated to be pathogenic to abalone). Besides, we cloned and analyzed three important immune genes: heat shock protein 70 (hsp70), ferritin and cold shock domain protein (csdp) in H. discus hannai and H. gigantea, then further investigated their mRNA level changes in the four abalone genotypes after bacterial challenge. Results showed that these physiological and molecular parameters were significantly induced by bacterial exposure, and their changing patterns were obviously different between the four genotypes: (1) Survival rates of the two hybrids were higher than both parental species after bacterial exposure; (2) DG had higher THC than the other three genotypes; (3) Phagocytosis responded slower in the hybrids than in the parental species; (4) DD's ROS level was lower than the other three genotypes at 48 h post infection; (5) Phenoloxidase activity was lower in DD during the infection compared to the other genotypes; (6) mRNA levels of hsp70 and csdp, were always lower in at least one parental species (DD) than in the hybrids after the bacterial exposure. Results from this study indicate that the hybrids

  17. An examination of processes linking perceived neighborhood disorder and obesity.

    PubMed

    Burdette, Amy M; Hill, Terrence D

    2008-07-01

    In this paper, we use data collected from a statewide probability sample of Texas, USA adults to test whether perceptions of neighborhood disorder are associated with increased risk of obesity. Building on prior research, we also test whether the association between neighborhood disorder and obesity is mediated by psychological, physiological, and behavioral mechanisms. We propose and test a theoretical model which suggests that psychological distress is a lynchpin mechanism that links neighborhood disorder with obesity risk through chronic activation of the physiological stress response, poor self-rated overall diet quality, and irregular exercise. The results of our analyses are generally consistent with this theoretical model. We find that neighborhood disorder is associated with increased risk of obesity, and this association is entirely mediated by psychological distress. We also observe that the positive association between psychological distress and obesity is fully mediated by physiological distress and poor self-rated overall diet quality and only partially mediated by irregular exercise.

  18. Dietary specialization is linked to reduced species durations in North American fossil canids

    PubMed Central

    Casey, Corinna; Van Valkenburgh, Blaire

    2018-01-01

    How traits influence species persistence is a fundamental question in ecology, evolution and palaeontology. We test the relationship between dietary traits and both species duration and locality coverage over 40 million years in North American canids, a clade with considerable ecomorphological disparity and a dense fossil record. Because ecomorphological generalization—broad resource use—may enable species to withstand disturbance, we predicted that canids of average size and mesocarnivory would exhibit longer durations and wider distributions than specialized larger or smaller species. Second, because locality coverage might reflect dispersal ability and/or survivability in a range of habitats, we predicted that high coverage would correspond with longer durations. We find a nonlinear relationship between species duration and degree of carnivory: species at either end of the carnivory spectrum tend to have shorter durations than mesocarnivores. Locality coverage shows no relationship with size, diet or duration. To test whether generalization (medium size, mesocarnivory) corresponds to an adaptive optimum, we fit trait evolution models to previously generated canid phylogenies. Our analyses identify no single optimum in size or diet. Instead, the primary model of size evolution is a classic Cope's Rule increase over time, while dietary evolution does not conform to a single model. PMID:29765649

  19. Dietary specialization is linked to reduced species durations in North American fossil canids

    NASA Astrophysics Data System (ADS)

    Balisi, Mairin; Casey, Corinna; Van Valkenburgh, Blaire

    2018-04-01

    How traits influence species persistence is a fundamental question in ecology, evolution and palaeontology. We test the relationship between dietary traits and both species duration and locality coverage over 40 million years in North American canids, a clade with considerable ecomorphological disparity and a dense fossil record. Because ecomorphological generalization-broad resource use-may enable species to withstand disturbance, we predicted that canids of average size and mesocarnivory would exhibit longer durations and wider distributions than specialized larger or smaller species. Second, because locality coverage might reflect dispersal ability and/or survivability in a range of habitats, we predicted that high coverage would correspond with longer durations. We find a nonlinear relationship between species duration and degree of carnivory: species at either end of the carnivory spectrum tend to have shorter durations than mesocarnivores. Locality coverage shows no relationship with size, diet or duration. To test whether generalization (medium size, mesocarnivory) corresponds to an adaptive optimum, we fit trait evolution models to previously generated canid phylogenies. Our analyses identify no single optimum in size or diet. Instead, the primary model of size evolution is a classic Cope's Rule increase over time, while dietary evolution does not conform to a single model.

  20. Evolution, ecology and physiology of amphibious killifishes (Cyprinodontiformes).

    PubMed

    Turko, A J; Wright, P A

    2015-10-01

    The order Cyprinodontiformes contains an exceptional diversity of amphibious taxa, including at least 34 species from six families. These cyprinodontiforms often inhabit intertidal or ephemeral habitats characterized by low dissolved oxygen or otherwise poor water quality, conditions that have been hypothesized to drive the evolution of terrestriality. Most of the amphibious species are found in the Rivulidae, Nothobranchiidae and Fundulidae. It is currently unclear whether the pattern of amphibiousness observed in the Cyprinodontiformes is the result of repeated, independent evolutions, or stems from an amphibious common ancestor. Amphibious cyprinodontiforms leave water for a variety of reasons: some species emerse only briefly, to escape predation or capture prey, while others occupy ephemeral habitats by living for months at a time out of water. Fishes able to tolerate months of emersion must maintain respiratory gas exchange, nitrogen excretion and water and salt balance, but to date knowledge of the mechanisms that facilitate homeostasis on land is largely restricted to model species. This review synthesizes the available literature describing amphibious lifestyles in cyprinodontiforms, compares the behavioural and physiological strategies used to exploit the terrestrial environment and suggests directions and ideas for future research. © 2015 The Fisheries Society of the British Isles.

  1. Development of a Sandwich Hybridization Assay to Rapidly Detect and Quantify Harmful Algal Bloom (hab) Species Linked with Coastal Fish Kills and Public Health Concerns

    NASA Astrophysics Data System (ADS)

    Greenfield, D.; Jones, W. J.; Mortensen, R.; Doll, C.; Reed, M.

    2016-02-01

    Molecular probe technologies have enabled more rapid and specific phytoplankton identification and enumeration compared to traditional technologies, such as microscopy. The method considered for this study is sandwich hybridization assay (SHA), a fast, efficient, and economic approach to detecting and quantifying plankton species. SHA employs two DNA probes, capture and signal, to detect ribosomal RNA (rRNA) sequences. The reaction entails an anti-digoxygenin horse-radish peroxidase (HRP) conjugate to which a HRP substrate is applied. The result is a colorimetric reaction, and the resultant absorbance can be used to estimate organism abundances. This project focuses on two raphidophyte HAB species that have been responsible for declining water quality and fish kills globally, but are particularly problematic in states along the southeastern (US) coast, Fibrocapsa japonica and Chattonella subsalsa. These species produce recurrent, dense blooms annually, and are directly linked with fish kills. Work presented here also includes the domoic acid (DA) producing diatom Pseudo-nitzschia pseudodelicatissima because DA has been associated with pigmy and dwarf sperm whale strandings in the southeastern US, and blooms of this genus are frequently reported in regional waters. Here we present findings from field samplings and multiple blooms (2014-2015) of all three species that occurred in South Carolina (US) and regional waters. We also provide updates on the development, validation, and quantification of SHA applications for each of these HAB species.

  2. SREBP-regulated lipid metabolism: convergent physiology - divergent pathophysiology.

    PubMed

    Shimano, Hitoshi; Sato, Ryuichiro

    2017-12-01

    Cellular lipid metabolism and homeostasis are controlled by sterol regulatory-element binding proteins (SREBPs). In addition to performing canonical functions in the transcriptional regulation of genes involved in the biosynthesis and uptake of lipids, genome-wide system analyses have revealed that these versatile transcription factors act as important nodes of convergence and divergence within biological signalling networks. Thus, they are involved in myriad physiological and pathophysiological processes, highlighting the importance of lipid metabolism in biology. Changes in cell metabolism and growth are reciprocally linked through SREBPs. Anabolic and growth signalling pathways branch off and connect to multiple steps of SREBP activation and form complex regulatory networks. In addition, SREBPs are implicated in numerous pathogenic processes such as endoplasmic reticulum stress, inflammation, autophagy and apoptosis, and in this way, they contribute to obesity, dyslipidaemia, diabetes mellitus, nonalcoholic fatty liver disease, nonalcoholic steatohepatitis, chronic kidney disease, neurodegenerative diseases and cancers. This Review aims to provide a comprehensive understanding of the role of SREBPs in physiology and pathophysiology at the cell, organ and organism levels.

  3. Thermal ecological physiology of native and invasive frog species: do invaders perform better?

    PubMed

    Cortes, Pablo A; Puschel, Hans; Acuña, Paz; Bartheld, José L; Bozinovic, Francisco

    2016-01-01

    Biological invasions are recognized as an important biotic component of global change that threatens the composition, structure and functioning of ecosystems, resulting in loss of biodiversity and displacement of native species. Although ecological characteristics facilitating the establishment and spread of non-native species are widely recognized, little is known about organismal attributes underlying invasion success. In this study, we tested the effect of thermal acclimation on thermal tolerance and locomotor performance in the invasive Xenopus laevis and the Chilean native Calyptocephalella gayi . In particular, the maximal righting performance (μ MAX ), optimal temperature ( T O ), lower (CT min ) and upper critical thermal limits (CT max ), thermal breadth ( T br ) and the area under the performance curve (AUC) were studied after 6 weeks acclimation to 10 and 20°C. We observed higher values of μ max and AUC in X. laevis in comparison to C. gayi . On the contrary, the invasive species showed lower values of CT min in comparison to the native one. In contrast, CT max , T O and T br showed no inter-specific differences. Moreover, we found that both species have the ability to acclimate their locomotor performance and lower thermal tolerance limit at low temperatures. Our results demonstrate that X. laevis is a better performer than C. gayi . Although there were differences in CT min , the invasive and native frogs did not differ in their thermal tolerance. Interestingly, in both species the lower and upper critical thermal limits are beyond the minimal and maximal temperatures encountered in nature during the coldest and hottest month, respectively. Overall, our findings suggest that both X. laevis and C. gayi would be resilient to climate warming expectations in Chile.

  4. Nasal Physiology

    MedlinePlus

    ... Anatomy Virtual Anatomy Disclosure Statement Printer Friendly Nasal Physiology Jeremiah A. Alt, MD, PhD Noam Cohen, MD, ... control the inflammation. CONCLUSION An understanding of the physiology of the nose is critical to understand nasal ...

  5. From the Arctic to fetal life: physiological importance and structural basis of an 'additional' chloride-binding site in haemoglobin.

    PubMed

    De Rosa, M Cristina; Castagnola, Massimo; Bertonati, Claudia; Galtieri, Antonio; Giardina, Bruno

    2004-06-15

    Haemoglobins from mammals of sub-Arctic and Arctic species, as well as fetal human Hb, are all characterized by a significantly lower Delta H of oxygenation compared with the majority of mammalian haemoglobins from temperate species (exceptions are represented by some cold-resistant species, such as cow, horse and pig). This has been interpreted as an adaptive mechanism of great importance from a physiological point of view. To date, the molecular basis of this thermodynamic characteristic is still not known. In the present study, we show that binding of extra chloride (with respect to adult human Hb) ions to Hb would significantly contribute to lowering the overall heat of oxygenation, thus providing a molecular basis for the low effect of temperature on the oxygenation-deoxygenation cycle. To this aim, the oxygen binding properties of bovine Hb, bear (Ursus arctos) Hb and horse Hb, which are representative of this series of haemoglobins, have been studied with special regard to the effect of heterotropic ligands, such as organic phosphates (namely 2,3-diphosphoglycerate) and chloride. Functional results are consistent with a mechanism for ligand binding that involves an additional binding site for chloride ion. Analysis of computational chemistry results, obtained by the GRID program, further confirm the hypothesis that the reason for the lower Delta H of oxygenation is mainly due to an increase in the number of the oxygen-linked chloride-binding sites.

  6. Leaf morphology shift linked to climate change.

    PubMed

    Guerin, Greg R; Wen, Haixia; Lowe, Andrew J

    2012-10-23

    Climate change is driving adaptive shifts within species, but research on plants has been focused on phenology. Leaf morphology has demonstrated links with climate and varies within species along climate gradients. We predicted that, given within-species variation along a climate gradient, a morphological shift should have occurred over time due to climate change. We tested this prediction, taking advantage of latitudinal and altitudinal variations within the Adelaide Geosyncline region, South Australia, historical herbarium specimens (n = 255) and field sampling (n = 274). Leaf width in the study taxon, Dodonaea viscosa subsp. angustissima, was negatively correlated with latitude regionally, and leaf area was negatively correlated with altitude locally. Analysis of herbarium specimens revealed a 2 mm decrease in leaf width (total range 1-9 mm) over 127 years across the region. The results are consistent with a morphological response to contemporary climate change. We conclude that leaf width is linked to maximum temperature regionally (latitude gradient) and leaf area to minimum temperature locally (altitude gradient). These data indicate a morphological shift consistent with a direct response to climate change and could inform provenance selection for restoration with further investigation of the genetic basis and adaptive significance of observed variation.

  7. Tree Species with Photosynthetic Stems Have Greater Nighttime Sap Flux.

    PubMed

    Chen, Xia; Gao, Jianguo; Zhao, Ping; McCarthy, Heather R; Zhu, Liwei; Ni, Guangyan; Ouyang, Lei

    2018-01-01

    An increasing body of evidence has shown that nighttime sap flux occurs in most plants, but the physiological implications and regulatory mechanism are poorly known. The significance of corticular photosynthesis has received much attention during the last decade, however, the knowledge of the relationship between corticular photosynthesis and nocturnal stem sap flow is limited at present. In this study, we divided seven tree species into two groups according to different photosynthetic capabilities: trees of species with ( Castanopsis hystrix, Michelia macclurei, Eucalyptus citriodora , and Eucalyptus grandis × urophylla ) and without ( Castanopsis fissa, Schima superba , and Acacia auriculiformis ) photosynthetic stems, and the sap flux ( J s ) and chlorophyll fluorescence parameters for these species were measured. One-way ANOVA analysis showed that the F v / F m (Maximum photochemical quantum yield of PSII) and Φ PSII (effective photochemical quantum yield of PSII) values were lower in non-photosynthetic stem species compared to photosynthetic stem species. The linear regression analysis showed that J s,d (daytime sap flux) and J s,n (nighttime sap flux) of non-photosynthetic stem species was 87.7 and 60.9% of the stem photosynthetic species. Furthermore, for a given daytime transpiration water loss, total nighttime sap flux was higher in species with photosynthetic stems (Slope SMA = 2.680) than in non-photosynthetic stems species (Slope SMA = 1.943). These results mean that stem corticular photosynthesis has a possible effect on the nighttime water flow, highlighting the important eco-physiological relationship between nighttime sap flux and corticular photosynthesis.

  8. Succession and physiological health of freshwater microalgal fouling in a Tasmanian hydropower canal.

    PubMed

    Perkins, Kathryn J; Andrewartha, Jessica M; McMinn, Andrew; Cook, Suellen S; Hallegraeff, Gustaaf M

    2010-08-01

    Freshwater microalgal biofouling in hydropower canals in Tarraleah, Tasmania, is dominated by a single diatom species, Gomphonema tarraleahae. The microfouling community is under investigation with the aim of reducing its impact on electricity generation. Species succession was investigated using removable glass slides. Fouled slides were examined microscopically and for chlorophyll a biomass. Chl a biomass increased steeply after 8 weeks (0.09-0.87 mg m(-2)), but increased much earlier on slides surrounded by a biofouled inoculum. Succession began with low profile diatoms such as Tabellaria flocculosa, progressing to stalked diatoms such as Gomphonema spp. and Cymbella aspera. Few chlorophytes and no filamentous algae were present. Pulse amplitude modulated fluorometry was used to measure the physiological health of fouling on the canal wall. Maximum quantum yield (F(v)/F(m)) measurements were consistently <0.18, indicating that the fouling mat consisted of dead or dying algae. The succession and physiological health of cells in the fouling community has broad implications for mitigation techniques used.

  9. PHYCAA+: an optimized, adaptive procedure for measuring and controlling physiological noise in BOLD fMRI.

    PubMed

    Churchill, Nathan W; Strother, Stephen C

    2013-11-15

    The presence of physiological noise in functional MRI can greatly limit the sensitivity and accuracy of BOLD signal measurements, and produce significant false positives. There are two main types of physiological confounds: (1) high-variance signal in non-neuronal tissues of the brain including vascular tracts, sinuses and ventricles, and (2) physiological noise components which extend into gray matter tissue. These physiological effects may also be partially coupled with stimuli (and thus the BOLD response). To address these issues, we have developed PHYCAA+, a significantly improved version of the PHYCAA algorithm (Churchill et al., 2011) that (1) down-weights the variance of voxels in probable non-neuronal tissue, and (2) identifies the multivariate physiological noise subspace in gray matter that is linked to non-neuronal tissue. This model estimates physiological noise directly from EPI data, without requiring external measures of heartbeat and respiration, or manual selection of physiological components. The PHYCAA+ model significantly improves the prediction accuracy and reproducibility of single-subject analyses, compared to PHYCAA and a number of commonly-used physiological correction algorithms. Individual subject denoising with PHYCAA+ is independently validated by showing that it consistently increased between-subject activation overlap, and minimized false-positive signal in non gray-matter loci. The results are demonstrated for both block and fast single-event task designs, applied to standard univariate and adaptive multivariate analysis models. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Variation in functional responses to water stress and differentiation between natural allopolyploid populations in the Brachypodium distachyon species complex.

    PubMed

    Martínez, Luisa M; Fernández-Ocaña, Ana; Rey, Pedro J; Salido, Teresa; Amil-Ruiz, Francisco; Manzaneda, Antonio J

    2018-06-08

    Some polyploid species show enhanced physiological tolerance to drought compared with their progenitors. However, very few studies have examined the consistency of physiological drought response between genetically differentiated natural polyploid populations, which is key to evaluation of the importance of adaptive evolution after polyploidization in those systems where drought exerts a selective pressure. A comparative functional approach was used to investigate differentiation of drought-tolerance-related traits in the Brachypodium species complex, a model system for grass polyploid adaptive speciation and functional genomics that comprises three closely related annual species: the two diploid parents, B. distachyon and B. stacei, and the allotetraploid derived from them, B. hybridum. Differentiation of drought-tolerance-related traits between ten genetically distinct B. hybridum populations and its ecological correlates was further analysed. The functional drought response is overall well differentiated between Brachypodium species. Brachypodium hybridum allotetraploids showed a transgressive expression pattern in leaf phytohormone content in response to drought. In contrast, other B. hybridum physiological traits correlated to B. stacei ones. Particularly, proline and water content were the traits that best discriminated these species from B. distachyon under drought. After polyploid formation and/or colonization, B. hybridum populations have adaptively diverged physiologically and genetically in response to variations in aridity.

  11. Dietary fiber type reflects physiological functionality: comparison of grain fiber, inulin, and polydextrose.

    PubMed

    Raninen, Kaisa; Lappi, Jenni; Mykkänen, Hannu; Poutanen, Kaisa

    2011-01-01

    Dietary fiber is a nutritional concept based not on physiological functions but on defined chemical and physical properties. Recent definitions of dietary fiber differentiate inherent plant cell wall-associated fiber from isolated or synthetic fiber. For the latter to be defined as fiber, beneficial physiological effects should be demonstrated, such as laxative effects, fermentability, attenuation of blood cholesterol levels, or postprandial glucose response. Grain fibers are a major natural source of dietary fiber worldwide, while inulin, a soluble indigestible fructose polymer isolated from chicory, and polydextrose, a synthetic indigestible glucose polymer, have more simple structures. Inulin and polydextrose show many of the same functionalities of grain fiber in the large intestine, in that they are fermentable, bifidogenic, and laxative. The reported effects on postprandial blood glucose and fasting cholesterol levels have been modest, but grain fibers also show variable effects. New biomarkers are needed to link the physiological functions of specific fibers with long-term health benefits. © 2011 International Life Sciences Institute.

  12. Dry Preservation of Spermatozoa: Considerations for Different Species

    PubMed Central

    Patrick, Jennifer; Comizzoli, Pierre

    2017-01-01

    The current gold standard for sperm preservation is storage at cryogenic temperatures. Dry preservation is an attractive alternative, eliminating the need for ultralow temperatures, reducing storage maintenance costs, and providing logistical flexibility for shipping. Many seeds and anhydrobiotic organisms are able to survive extended periods in a dry state through the accumulation of intracellular sugars and other osmolytes and are capable of returning to normal physiology postrehydration. Using techniques inspired by nature's adaptations, attempts have been made to dehydrate and dry preserve spermatozoa from a variety of species. Most of the anhydrous preservation research performed to date has focused on mouse spermatozoa, with only a small number of studies in nonrodent mammalian species. There is a significant difference between sperm function in rodent and nonrodent mammalian species with respect to centrosomal inheritance. Studies focused on reproductive technologies have demonstrated that in nonrodent species, the centrosome must be preserved to maintain sperm function as the spermatozoon centrosome contributes the dominant nucleating seed, consisting of the proximal centriole surrounded by pericentriolar components, onto which the oocyte's centrosomal material is assembled. Preservation techniques used for mouse sperm may therefore not necessarily be applicable to nonrodent spermatozoa. The range of technologies used to dehydrate sperm and the effect of processing and storage conditions on fertilization and embryogenesis using dried sperm are reviewed in the context of reproductive physiology and cellular morphology in different species. PMID:28398834

  13. Melanin: the biophysiology of oral melanocytes and physiological oral pigmentation

    PubMed Central

    2014-01-01

    The presence of melanocytes in the oral epithelium is a well-established fact, but their physiological functions are not well defined. Melanin provides protection from environmental stressors such as ultraviolet radiation and reactive oxygen species; and melanocytes function as stress-sensors having the capacity both to react to and to produce a variety of microenvironmental cytokines and growth factors, modulating immune, inflammatory and antibacterial responses. Melanocytes also act as neuroendocrine cells producing local neurotransmitters including acetylcholine, catecholamines and opioids, and hormones of the melanocortin system such as proopiomelanocortin, adrenocorticotropic hormone and α-melanocyte stimulating hormone, that participate in intracellular and in intercellular signalling pathways, thus contributing to tissue homeostasis. There is a wide range of normal variation in melanin pigmentation of the oral mucosa. In general, darker skinned persons more frequently have oral melanin pigmentation than light-skinned persons. Variations in oral physiological pigmentation are genetically determined unless associated with some underlying disease. In this article, we discuss some aspects of the biophysiology of oral melanocytes, of the functions of melanin, and of physiological oral pigmentation. PMID:24661309

  14. Behavioural and physiological mechanisms of polarized light sensitivity in birds.

    PubMed

    Muheim, Rachel

    2011-03-12

    Polarized light (PL) sensitivity is relatively well studied in a large number of invertebrates and some fish species, but in most other vertebrate classes, including birds, the behavioural and physiological mechanism of PL sensitivity remains one of the big mysteries in sensory biology. Many organisms use the skylight polarization pattern as part of a sun compass for orientation, navigation and in spatial orientation tasks. In birds, the available evidence for an involvement of the skylight polarization pattern in sun-compass orientation is very weak. Instead, cue-conflict and cue-calibration experiments have shown that the skylight polarization pattern near the horizon at sunrise and sunset provides birds with a seasonally and latitudinally independent compass calibration reference. Despite convincing evidence that birds use PL cues for orientation, direct experimental evidence for PL sensitivity is still lacking. Avian double cones have been proposed as putative PL receptors, but detailed anatomical and physiological evidence will be needed to conclusively describe the avian PL receptor. Intriguing parallels between the functional and physiological properties of PL reception and light-dependent magnetoreception could point to a common receptor system.

  15. The political left rolls with the good and the political right confronts the bad: connecting physiology and cognition to preferences

    PubMed Central

    Dodd, Michael D.; Balzer, Amanda; Jacobs, Carly M.; Gruszczynski, Michael W.; Smith, Kevin B.; Hibbing, John R.

    2012-01-01

    We report evidence that individual-level variation in people's physiological and attentional responses to aversive and appetitive stimuli are correlated with broad political orientations. Specifically, we find that greater orientation to aversive stimuli tends to be associated with right-of-centre and greater orientation to appetitive (pleasing) stimuli with left-of-centre political inclinations. These findings are consistent with recent evidence that political views are connected to physiological predispositions but are unique in incorporating findings on variation in directed attention that make it possible to understand additional aspects of the link between the physiological and the political. PMID:22271780

  16. Eco-physiological Baltic picoplankton analysis and its implementation in Synechoccocus species life cycle numerical algorithm

    NASA Astrophysics Data System (ADS)

    Cieszyńska, Agata; Śliwińska-Wilczewska, Sylwia

    2017-04-01

    Picocyanobacteria strain of the genus Synechococcus are extremely important organisms in the world's oceans. Synechococcus sp. is distributed widely in the oceans and freshwater ecosystems. However, the presence of picoplankton and its account for marine biomass were ignored in environmental studies before 1970. This was probably connected with too low accuracy of research equipment for examining such small organisms. In 1979 the picoplankton assemblages were defined to be present en masse in marine environments. Despite its association with open ocean systems, it is becoming increasingly evident in recent years that Synechococcus sp. is a significant contributor to cyanobacterial blooms. Moreover, bloom of picocyanobacteria, accompanied by a drastic ecological crisis was a new phenomenon in Europe, which needed careful investigation. In the Baltic Sea, picocyanobacteria belongs mainly to the genus Synechococcus. Depending on pigment content, they are classified as red strains with phycoerythrin, green strains rich in phycocyanin, and the phycourobilin (brown strains) containing cyanobacteria rich in phycoerythrin. So far, picocyanobacteria in the area of interest have been being studied insufficiently. The knowledge of picocyanobacteria life cycle needs to be improved as these microorganisms can comprise even about 98% of marine biomass and are able to excrete many toxic and harmful substances. Different eco-physiological conditions influence growth of Baltic picocyanobacteria. In this study, three strains of Synechococcus sp. (red: BA-120, green: BA-124 and brown: BA-132) were isolated from the coastal zone of the Gulf of Gdańsk (southern Baltic Sea) and analyzed in laboratory under previously determined eco-physiological conditions. These conditions were as follows: temperature from 15 to 25°C, salinity from 3 to 13 and insolation in Photosynthetically Active Radiation (PAR) spectrum from 10 to 190 μmol photons m-2 s-1. Scenarios reflecting all possible

  17. Comparing photophysiology of seagrasses in the Pacific Northwest: potential implications for species interactions - July 28, 2014

    EPA Science Inventory

    Physiological tolerances are a primary control on species interactions mediated through production and growth. We examined how the physiology of native eelgrass (Zostera marina L.) and introduced Japanese eelgrass (Z. japonica Aschers. & Graeb) responded to temperature in ord...

  18. Linking physiological and cellular responses to thermal stress: β-adrenergic blockade reduces the heat shock response in fish.

    PubMed

    Templeman, Nicole M; LeBlanc, Sacha; Perry, Steve F; Currie, Suzanne

    2014-08-01

    When faced with stress, animals use physiological and cellular strategies to preserve homeostasis. We were interested in how these high-level stress responses are integrated at the level of the whole animal. Here, we investigated the capacity of the physiological stress response, and specifically the β-adrenergic response, to affect the induction of the cellular heat shock proteins, HSPs, following a thermal stress in vivo. We predicted that blocking β-adrenergic stimulation during an acute heat stress in the whole animal would result in reduced levels of HSPs in red blood cells (RBCs) of rainbow trout compared to animals where adrenergic signaling remained intact. We first determined that a 1 h heat shock at 25 °C in trout acclimated to 13 °C resulted in RBC adrenergic stimulation as determined by a significant increase in cell swelling, a hallmark of the β-adrenergic response. A whole animal injection with the β2-adrenergic antagonist, ICI-118,551, successfully reduced this heat-induced RBC swelling. The acute heat shock caused a significant induction of HSP70 in RBCs of 13 °C-acclimated trout as well as a significant increase in plasma catecholamines. When heat-shocked fish were treated with ICI-118,551, we observed a significant attenuation of the HSP70 response. We conclude that circulating catecholamines influence the cellular heat shock response in rainbow trout RBCs, demonstrating physiological/hormonal control of the cellular stress response.

  19. Prospects for surviving climate change in Antarctic aquatic species.

    PubMed

    Peck, Lloyd S

    2005-06-06

    Maritime Antarctic freshwater habitats are amongst the fastest changing environments on Earth. Temperatures have risen around 1 degrees C and ice cover has dramatically decreased in 15 years. Few animal species inhabit these sites, but the fairy shrimp Branchinecta gaini typifies those that do. This species survives up to 25 degrees C daily temperature fluctuations in summer and passes winter as eggs at temperatures down to -25 degrees C. Its annual temperature envelope is, therefore around 50 degrees C. This is typical of Antarctic terrestrial species, which exhibit great physiological flexibility in coping with temperature fluctuations. The rapidly changing conditions in the Maritime Antarctic are enhancing fitness in these species by increasing the time available for feeding, growth and reproduction, as well as increasing productivity in lakes. The future problem these animals face is via displacement by alien species from lower latitudes. Such invasions are now well documented from sub-Antarctic sites. In contrast the marine Antarctic environment has very stable temperatures. However, seasonality is intense with very short summers and long winter periods of low to no algal productivity. Marine animals grow slowly, have long generation times, low metabolic rates and low levels of activity. They also die at temperatures between +5 degrees C and +10 degrees C. Failure of oxygen supply mechanisms and loss of aerobic scope defines upper temperature limits. As temperature rises, their ability to perform work declines rapidly before lethal limits are reached, such that 50% of populations of clams and limpets cannot perform essential activities at 2-3 degrees C, and all scallops are incapable of swimming at 2 degrees C. Currently there is little evidence of temperature change in Antarctic marine sites. Models predict average global sea temperatures will rise by around 2 degrees C by 2100. Such a rise would take many Antarctic marine animals beyond their survival limits

  20. Associations of Marital Conflict with Emotional and Physiological Stress: Evidence for Different Patterns of Dysregulation

    ERIC Educational Resources Information Center

    Lucas-Thompson, Rachel G.

    2012-01-01

    The goal of this study was to explore theoretically suggested but untested links between interparental conflict and stress physiology in late adolescence. A multi-method study was conducted involving families (n = 42) who previously participated in the University California, Irvine site of the NICHD Study of Early Child Care and Youth Development;…

  1. Fort Collins Science Center: Invasive Species Science

    USGS Publications Warehouse

    Stohlgren, Tom

    2004-01-01

    FORT is also the administrative home of the National Institute of Invasive Species Science, a growing consortium of partnerships between government and private organizations established by the U.S. Geological Survey (USGS) and its many cooperators. The Institute was formed to develop cooperative approaches for invasive species science that meet the urgent needs of land managers and the public. Its mission is to work with others to coordinate data and research from many sources to predict and reduce the effects of harmful nonnative plants, animals, and diseases in natural areas and throughout the United States, with a strategic approach to information management, research, modeling, technical assistance, and outreach. The Institute research team will develop local-, regional-, and national- scale maps of invasive species and identify priority invasive species, vulnerable habitats, and pathways of invasion. County-level and point data on occurrence will be linked to plot-level and site-level information on species abundance and spread. FORT scientists and Institute partners are working to integrate remote sensing data and GIS-based predictive models to track the spread of invasive species across the country. This information will be linked to control and restoration efforts to evaluate their cost-effectiveness. Understanding both successes and failures will advance the science of invasive species containment and control as well as restoration of habitats and native biodiversity.

  2. Links between tree species, symbiotic fungal diversity and ecosystem functioning in simplified tropical ecosystems.

    PubMed

    Lovelock, Catherine E; Ewel, John J

    2005-07-01

    We studied the relationships among plant and arbuscular mycorrhizal (AM) fungal diversity, and their effects on ecosystem function, in a series of replicate tropical forestry plots in the La Selva Biological Station, Costa Rica. Forestry plots were 12 yr old and were either monocultures of three tree species, or polycultures of the tree species with two additional understory species. Relationships among the AM fungal spore community, host species, plant community diversity and ecosystem phosphorus-use efficiency (PUE) and net primary productivity (NPP) were assessed. Analysis of the relative abundance of AM fungal spores found that host tree species had a significant effect on the AM fungal community, as did host plant community diversity (monocultures vs polycultures). The Shannon diversity index of the AM fungal spore community differed significantly among the three host tree species, but was not significantly different between monoculture and polyculture plots. Over all the plots, significant positive relationships were found between AM fungal diversity and ecosystem NPP, and between AM fungal community evenness and PUE. Relative abundance of two of the dominant AM fungal species also showed significant correlations with NPP and PUE. We conclude that the AM fungal community composition in tropical forests is sensitive to host species, and provide evidence supporting the hypothesis that the diversity of AM fungi in tropical forests and ecosystem NPP covaries.

  3. Stage-Specific Changes in Physiological and Life-History Responses to Elevated Temperature and Pco2 during the Larval Development of the European Lobster Homarus gammarus (L.).

    PubMed

    Small, Daniel P; Calosi, Piero; Boothroyd, Dominic; Widdicombe, Steve; Spicer, John I

    2015-01-01

    An organism's physiological processes form the link between its life-history traits and the prevailing environmental conditions, especially in species with complex life cycles. Understanding how these processes respond to changing environmental conditions, thereby affecting organismal development, is critical if we are to predict the biological implications of current and future global climate change. However, much of our knowledge is derived from adults or single developmental stages. Consequently, we investigated the metabolic rate, organic content, carapace mineralization, growth, and survival across each larval stage of the European lobster Homarus gammarus, reared under current and predicted future ocean warming and acidification scenarios. Larvae exhibited stage-specific changes in the temperature sensitivity of their metabolic rate. Elevated Pco2 increased C∶N ratios and interacted with elevated temperature to affect carapace mineralization. These changes were linked to concomitant changes in survivorship and growth, from which it was concluded that bottlenecks were evident during H. gammarus larval development in stages I and IV, the transition phases between the embryonic and pelagic larval stages and between the larval and megalopa stages, respectively. We therefore suggest that natural changes in optimum temperature during ontogeny will be key to larvae survival in a future warmer ocean. The interactions of these natural changes with elevated temperature and Pco2 significantly alter physiological condition and body size of the last larval stage before the transition from a planktonic to a benthic life style. Thus, living and growing in warm, hypercapnic waters could compromise larval lobster growth, development, and recruitment.

  4. Water-soluble triazabutadienes that release diazonium species upon protonation under physiologically relevant conditions.

    PubMed

    Kimani, Flora W; Jewett, John C

    2015-03-23

    Triazabutadienes are an understudied structural motif that have remarkable reactivity once rendered water-soluble. It is shown that these molecules readily release diazonium species in a pH-dependent manner in a series of buffer solutions with pH ranges similar to those found in cells. Upon further development, we expect that this process will be well suited to cargo-release strategies and organelle-specific bioconjugation reactions. These compounds offer one of the mildest ways of generating diazonium species in aqueous solutions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. From Claude Bernard to the Batcave and Beyond: Using Batman as a Hook for Physiology Education

    ERIC Educational Resources Information Center

    Zehr, E. Paul

    2011-01-01

    Communicating physiology to the general public and popularizing science can be tremendously rewarding activities. Providing relevant and compelling points of linkage, however, between the scientific experiences and the interests of the general public can be challenging. One avenue for popularizing science is to link scientific concepts to images,…

  6. Molecular detection of trophic links in a complex insect host-parasitoid food web.

    PubMed

    Hrcek, Jan; Miller, Scott E; Quicke, Donald L J; Smith, M Alex

    2011-09-01

    Previously, host-parasitoid links have been unveiled almost exclusively by time-intensive rearing, while molecular methods were used only in simple agricultural host-parasitoid systems in the form of species-specific primers. Here, we present a general method for the molecular detection of these links applied to a complex caterpillar-parasitoid food web from tropical rainforest of Papua New Guinea. We DNA barcoded hosts, parasitoids and their tissue remnants and matched the sequences to our extensive library of local species. We were thus able to match 87% of host sequences and 36% of parasitoid sequences to species and infer subfamily or family in almost all cases. Our analysis affirmed 93 hitherto unknown trophic links between 37 host species from a wide range of Lepidoptera families and 46 parasitoid species from Hymenoptera and Diptera by identifying DNA sequences for both the host and the parasitoid involved in the interaction. Molecular detection proved especially useful in cases where distinguishing host species in caterpillar stage was difficult morphologically, or when the caterpillar died during rearing. We have even detected a case of extreme parasitoid specialization in a pair of Choreutis species that do not differ in caterpillar morphology and ecology. Using the molecular approach outlined here leads to better understanding of parasitoid host specificity, opens new possibilities for rapid surveys of food web structure and allows inference of species associations not already anticipated. Published 2011. This article is a US Government work and is in the public domain in the USA.

  7. Diversity is maintained by seasonal variation in species abundance

    PubMed Central

    2013-01-01

    Background Some of the most marked temporal fluctuations in species abundances are linked to seasons. In theory, multispecies assemblages can persist if species use shared resources at different times, thereby minimizing interspecific competition. However, there is scant empirical evidence supporting these predictions and, to the best of our knowledge, seasonal variation has never been explored in the context of fluctuation-mediated coexistence. Results Using an exceptionally well-documented estuarine fish assemblage, sampled monthly for over 30 years, we show that temporal shifts in species abundances underpin species coexistence. Species fall into distinct seasonal groups, within which spatial resource use is more heterogeneous than would be expected by chance at those times when competition for food is most intense. We also detect seasonal variation in the richness and evenness of the community, again linked to shifts in resource availability. Conclusions These results reveal that spatiotemporal shifts in community composition minimize competitive interactions and help stabilize total abundance. PMID:24007204

  8. Plasticity of brain wave network interactions and evolution across physiologic states

    PubMed Central

    Liu, Kang K. L.; Bartsch, Ronny P.; Lin, Aijing; Mantegna, Rosario N.; Ivanov, Plamen Ch.

    2015-01-01

    network connectivity and link strength, while at the same time each frequency-specific network is characterized by a different signature pattern of sleep-stage stratification, reflecting a remarkable flexibility in response to change in physiologic state. These new aspects of neural plasticity demonstrate that in addition to dominant brain waves, the network of brain wave interactions is a previously unrecognized hallmark of physiologic state and function. PMID:26578891

  9. A PHYSIOLOGICALLY-BASED PHARMACOKINETIC MODEL FOR TOLUENE IN THE LONG EVANS RAT: BODY COMPOSITION AND PHYSICAL ACTIVITY.

    EPA Science Inventory

    A physiologically-based pharmacokinetic (PBPK) model for inhaled toluene was developed for Long-Evans rats as a component of an exposure-dose-response (EDR) model for volatile organic compounds. The PBPK model was needed to link airborne toluene exposure to its concentration in b...

  10. Integrated monitoring and information systems for managing aquatic invasive species in a changing climate.

    PubMed

    Lee, Henry; Reusser, Deborah A; Olden, Julian D; Smith, Scott S; Graham, Jim; Burkett, Virginia; Dukes, Jeffrey S; Piorkowski, Robert J; McPhedran, John

    2008-06-01

    Changes in temperature, precipitation, and other climatic drivers and sea-level rise will affect populations of existing native and non-native aquatic species and the vulnerability of aquatic environments to new invasions. Monitoring surveys provide the foundation for assessing the combined effects of climate change and invasions by providing baseline biotic and environmental conditions, although the utility of a survey depends on whether the results are quantitative or qualitative, and other design considerations. The results from a variety of monitoring programs in the United States are available in integrated biological information systems, although many include only non-native species, not native species. Besides including natives, we suggest these systems could be improved through the development of standardized methods that capture habitat and physiological requirements and link regional and national biological databases into distributed Web portals that allow drawing information from multiple sources. Combining the outputs from these biological information systems with environmental data would allow the development of ecological-niche models that predict the potential distribution or abundance of native and non-native species on the basis of current environmental conditions. Environmental projections from climate models can be used in these niche models to project changes in species distributions or abundances under altered climatic conditions and to identify potential high-risk invaders. There are, however, a number of challenges, such as uncertainties associated with projections from climate and niche models and difficulty in integrating data with different temporal and spatial granularity. Even with these uncertainties, integration of biological and environmental information systems, niche models, and climate projections would improve management of aquatic ecosystems under the dual threats of biotic invasions and climate change.

  11. Integrated monitoring and information systems for managing aquatic invasive species in a changing climate

    USGS Publications Warehouse

    Lee, Henry; Reusser, Deborah A.; Olden, Julian D.; Smith, Scott S.; Graham, Jim; Burkett, Virginia; Dukes, Jeffrey S.; Piorkowski, Robert J.; Mcphedran, John

    2008-01-01

    Changes in temperature, precipitation, and other climatic drivers and sea-level rise will affect populations of existing native and non-native aquatic species and the vulnerability of aquatic environments to new invasions. Monitoring surveys provide the foundation for assessing the combined effects of climate change and invasions by providing baseline biotic and environmental conditions, although the utility of a survey depends on whether the results are quantitative or qualitative, and other design considerations. The results from a variety of monitoring programs in the United States are available in integrated biological information systems, although many include only non-native species, not native species. Besides including natives, we suggest these systems could be improved through the development of standardized methods that capture habitat and physiological requirements and link regional and national biological databases into distributed Web portals that allow drawing information from multiple sources. Combining the outputs from these biological information systems with environmental data would allow the development of ecological-niche models that predict the potential distribution or abundance of native and non-native species on the basis of current environmental conditions. Environmental projections from climate models can be used in these niche models to project changes in species distributions or abundances under altered climatic conditions and to identify potential high-risk invaders. There are, however, a number of challenges, such as uncertainties associated with projections from climate and niche models and difficulty in integrating data with different temporal and spatial granularity. Even with these uncertainties, integration of biological and environmental information systems, niche models, and climate projections would improve management of aquatic ecosystems under the dual threats of biotic invasions and climate change

  12. Physiology in Medicine: neuromuscular consequences of diabetic neuropathy.

    PubMed

    Allen, Matti D; Doherty, Timothy J; Rice, Charles L; Kimpinski, Kurt

    2016-07-01

    Diabetic polyneuropathy (DPN) refers to peripheral nerve dysfunction as a complication of diabetes mellitus. This condition is relatively common and is likely a result of vascular and/or metabolic disturbances related to diabetes. In the early or less severe stages of DPN it typically results in sensory impairments but can eventually lead to major dysfunction of the neuromuscular system. Some of these impairments may include muscle atrophy and weakness, slowing of muscle contraction, and loss of power and endurance. Combined with sensory deficits these changes in the motor system can contribute to decreased functional capacity, impaired mobility, altered gait, and increased fall risk. There is no pharmacological disease-modifying therapy available for DPN and the mainstay of treatment is linked to treating the diabetes itself and revolves around strict glycemic control. Exercise therapy (including aerobic, strength, or balance training-based exercise) appears to be a promising preventative and treatment strategy for patients with DPN and those at risk. The goal of this Physiology in Medicine article is to highlight important and overlooked dysfunction of the neuromuscular system as a result of DPN with an emphasis on the physiologic basis for that dysfunction. Additionally, we sought to provide information that clinicians can use when following patients with diabetes or DPN including support for the inclusion of exercise-based therapy as an effective, accessible, and inexpensive form of treatment. Copyright © 2016 the American Physiological Society.

  13. Conservation and modification of genetic and physiological toolkits underpinning diapause in bumble bee queens

    USDA-ARS?s Scientific Manuscript database

    Diapause is the key adaptation allowing insects to survive unfavourable conditions and inhabit an array of environments. Physiological changes during diapause are largely conserved across species and are hypothesized to be regulated by a conserved suite of genes (a ‘toolkit’). Furthermore, it is hyp...

  14. Loss of functionally unique species may gradually undermine ecosystems

    PubMed Central

    O'Gorman, Eoin J.; Yearsley, Jon M.; Crowe, Tasman P.; Emmerson, Mark C.; Jacob, Ute; Petchey, Owen L.

    2011-01-01

    Functionally unique species contribute to the functional diversity of natural systems, often enhancing ecosystem functioning. An abundance of weakly interacting species increases stability in natural systems, suggesting that loss of weakly linked species may reduce stability. Any link between the functional uniqueness of a species and the strength of its interactions in a food web could therefore have simultaneous effects on ecosystem functioning and stability. Here, we analyse patterns in 213 real food webs and show that highly unique species consistently tend to have the weakest mean interaction strength per unit biomass in the system. This relationship is not a simple consequence of the interdependence of both measures on body size and appears to be driven by the empirical pattern of size structuring in aquatic systems and the trophic position of each species in the web. Food web resolution also has an important effect, with aggregation of species into higher taxonomic groups producing a much weaker relationship. Food webs with fewer unique and less weakly interacting species also show significantly greater variability in their levels of primary production. Thus, the loss of highly unique, weakly interacting species may eventually lead to dramatic state changes and unpredictable levels of ecosystem functioning. PMID:21106593

  15. Incorporating Context Dependency of Species Interactions in Species Distribution Models.

    PubMed

    Lany, Nina K; Zarnetske, Phoebe L; Gouhier, Tarik C; Menge, Bruce A

    2017-07-01

    Species distribution models typically use correlative approaches that characterize the species-environment relationship using occurrence or abundance data for a single species. However, species distributions are determined by both abiotic conditions and biotic interactions with other species in the community. Therefore, climate change is expected to impact species through direct effects on their physiology and indirect effects propagated through their resources, predators, competitors, or mutualists. Furthermore, the sign and strength of species interactions can change according to abiotic conditions, resulting in context-dependent species interactions that may change across space or with climate change. Here, we incorporated the context dependency of species interactions into a dynamic species distribution model. We developed a multi-species model that uses a time-series of observational survey data to evaluate how abiotic conditions and species interactions affect the dynamics of three rocky intertidal species. The model further distinguishes between the direct effects of abiotic conditions on abundance and the indirect effects propagated through interactions with other species. We apply the model to keystone predation by the sea star Pisaster ochraceus on the mussel Mytilus californianus and the barnacle Balanus glandula in the rocky intertidal zone of the Pacific coast, USA. Our method indicated that biotic interactions between P. ochraceus and B. glandula affected B. glandula dynamics across >1000 km of coastline. Consistent with patterns from keystone predation, the growth rate of B. glandula varied according to the abundance of P. ochraceus in the previous year. The data and the model did not indicate that the strength of keystone predation by P. ochraceus varied with a mean annual upwelling index. Balanus glandula cover increased following years with high phytoplankton abundance measured as mean annual chlorophyll-a. M. californianus exhibited the same

  16. Undergraduate Students as Promoters of Science Dissemination: A Strategy to Increase Students' Interest in Physiology

    ERIC Educational Resources Information Center

    Borges, Sidnei; Mello-Carpes, Pâmela Billig

    2015-01-01

    Physiology teaching-learning methods have passed through several changes over the years. The traditional model of education appears to be linked to the teacher, who resists the use of tools and methods designed to provide something different to the student, depriving the student of new things or even the motivation to realize the applicability of…

  17. Understanding the physiology and adaptation of staphylococci: a post-genomic approach.

    PubMed

    Becker, Karsten; Bierbaum, Gabriele; von Eiff, Christof; Engelmann, Susanne; Götz, Friedrich; Hacker, Jörg; Hecker, Michael; Peters, Georg; Rosenstein, Ralf; Ziebuhr, Wilma

    2007-11-01

    Staphylococcus aureus as well as coagulase-negative staphylococci are medically highly important pathogens characterized by an increasing resistance rate toward many antibiotics. Although normally being skin and mucosa commensals, some staphylococcal species and strains have the capacity to cause a wide range of infectious diseases. Many of these infections affect immunocompromised patients in hospitals. However, community-acquired staphylococcal infections due to resistant strains are also currently on the rise. In the light of this development, there is an urgent need for novel anti-staphylococcal therapeutic and prevention strategies for which a better understanding of the physiology of these bacteria is an essential prerequisite. Within the past years, staphylococci have been in the focus of genomic research, resulting in the determination and publication of a range of full-genome sequences of different staphylococcal species and strains which provided the basis for the design and application of DNA microarrays and other genomic tools. Here we summarize the results of the project group 'Staphylococci' within the research network 'Pathogenomics' giving new insights into the genome structure, molecular epidemiology, physiology, and genetic adaptation of both S. aureus and coagulase-negative staphylococci.

  18. Physiological genomics of response to soil drying in diverse Arabidopsis accessions.

    PubMed

    Des Marais, David L; McKay, John K; Richards, James H; Sen, Saunak; Wayne, Tierney; Juenger, Thomas E

    2012-03-01

    Arabidopsis thaliana, like many species, is characterized by abundant genetic variation. This variation is rapidly being cataloged at the sequence level, but careful dissection of genetic variation in whole-organism responses to stresses encountered in the natural environment are lacking; this functional variation can be exploited as a natural mutant screen to determine gene function. Here, we document physiological and transcriptomic response to soil drying in 17 natural accessions of Arabidopsis. By imposing ecologically realistic stress conditions, we found that acclimation in Arabidopsis involved a strong signature of increased investment in photosynthesis, carbohydrate turnover, and root growth. Our results extend previous work in the Columbia accession suggesting that abscisic acid signaling pathways play an important role in drought stress response. We also identified several mechanisms, including an increase in leaf nitrogen concentration and upregulation of two-component signaling relays, that were common to most natural accessions but had not been identified in studies using only the Columbia accession. Principal component analysis reveals strong correlations between suites of genes and specific physiological responses to stress. The functional variants we identified may represent adaptive mutations in natural habitats and useful variants for agronomic improvement of crop species.

  19. Physiological disturbances and overwinter mortality of largemouth bass from different latitudes.

    PubMed

    VanLandeghem, Matthew M; Wagner, Curtis P; Wahl, David H; Suski, Cory D

    2013-01-01

    Thermal conditions associated with winter can influence the distribution of a species. Because winter severity varies along latitudes, populations of temperate fish located along a latitudinal gradient may display variation in both sublethal and lethal responses to cold stressors. Sublethal physiological disturbances were quantified in age 1 largemouth bass (Micropterus salmoides) from populations originating from Alabama and Illinois but raised in a common environment. Fish were exposed to 6 h of rapid cold shock from 20° to 8°C (controls were held at 20°C) and then sampled for white muscle, whole blood, and plasma. After cold shock, glucose concentrations were elevated in Alabama but not Illinois fish. Sodium was lower and chloride was higher in Alabama largemouth bass, but fish from Illinois had a greater propensity for potassium loss during cold shock. In Illinois ponds, Alabama largemouth bass exhibited lower overwinter survival (adult: 10%; age 0: 22%) than did those from Illinois (adult: 80%; age 0: 82%). Latitudinal variation in physiological responses to cold stressors may therefore influence overwinter survival of largemouth bass and the ability of a fish species to exist over large geographic areas.

  20. Calcium and aluminum impacts on sugar maple physiology in a northern hardwood forest

    Treesearch

    Joshua M. Halman; Paul G. Schaberg; Gary J. Hawley; Linda H. Pardo; Timothy J. Fahey

    2013-01-01

    Forests of northeastern North America have been exposed to anthropogenic acidic inputs for decades, resulting in altered cation relations and disruptions to associated physiological processes in multiple tree species, including sugar maple (Acer saccharum Marsh.). In the current study, the impacts of calcium (Ca) and aluminum (Al) additions on mature...