Science.gov

Sample records for lipid nanoemulsion resembling

  1. Lipid materials for topical and transdermal delivery of nanoemulsions.

    PubMed

    Pawar, Kasturi R; Babu, R Jayachandra

    2014-01-01

    Over the past two decades, nanoemulsions have gained significant scientific attention because of their unique features such as high solubilization capacity, spontaneous formation, enhanced thermodynamic stability, ability to load both hydrophilic and hydrophobic drug molecules, enhanced stability of the encapsulated therapeutic molecule, and high diffusion/absorption rates. Further, they have applications in dermal and epidermal targeting for various skin disorders. The materials used in nanoemulsion formulations can greatly influence the in vitro and in vivo performance of the therapeutic moiety. This review describes various lipid materials used in the preparation of nanoemulsions for topical and transdermal drug delivery. The lipids are classified as vegetable oils, fatty acids, fatty alcohols, medium chain glycerides, and fatty acid esters. PMID:25271559

  2. Tocopheryl acetate nanoemulsions stabilized with lipid-polymer hybrid emulsifiers for effective skin delivery.

    PubMed

    Nam, Yoon Sung; Kim, Jin-Woong; Park, Jaeyoon; Shim, Jongwon; Lee, Jong Suk; Han, Sang Hoon

    2012-06-01

    Tocopheryl acetate is used as the oil component of nanoemulsions using a mixture of unsaturated phospholipids and polyethylene oxide-block-poly(ε-caprolactone) (PEO-b-PCL). This study investigates the effects of the lipid-polymer composition on the size and surface charge of nanoemulsions, microviscosity of the interfacial layer, and skin absorption of tocopheryl acetate. The lipid-polymer hybrid system exhibits excellent colloidal dispersion stability, which is comparable to that of polymer-based nanoemulsions. If lipids are used as emulsifiers, nanoemulsions show poor dispersion stability despite a good skin absorption enhancing effect. The amount of tocopheryl acetate absorbed by the skin increases with an increased lipid-to-polymer ratio, as determined using the hairless guinea pig skin loaded in a Franz-type diffusion cell. An 8:2 (w/w) mixture of unsaturated phospholipids and PEO-b-PCL exhibits the most efficient delivery of tocopheryl acetate into the skin. Our results show that tocopheryl acetate is absorbed almost twice as fast by the lipid-polymer hybrid system than the nanoemulsions stabilized with PEO-b-PCL. This study suggests that the lipid-polymer hybrid system can be used as an effective means of optimizing nanoemulsions in terms of dispersion stability and skin delivery capability. PMID:22326341

  3. Anti-inflammatory effects of intravenous methotrexate associated with lipid nanoemulsions on antigen-induced arthritis

    PubMed Central

    Mello, Suzana B V; Tavares, Elaine R; Guido, Maria Carolina; Bonfá, Eloisa; Maranhão, Raul C

    2016-01-01

    OBJECTIVE: To test the hypothesis that intravenous use of methotrexate associated with lipid nanoemulsions can achieve superior anti-inflammatory effects in the joints of rabbits with antigen-induced arthritis compared with commercial methotrexate. METHODS: Arthritis was induced in New Zealand rabbits sensitized with methylated bovine serum albumin and subsequently intra-articularly injected with the antigen. A nanoemulsion of methotrexate labeled with 3H-cholesteryl ether (4 mg/kg methotrexate) was then intravenously injected into four rabbits to determine the plasma decaying curves and the biodistribution of the methotrexate nanoemulsion by radioactive counting. Additionally, the pharmacokinetics of the methotrexate nanoemulsion were determined by high-pressure liquid chromatography. Twenty-four hours after arthritis induction, the animals were allocated into three groups, with intravenous injection with saline solution (n=9), methotrexate nanoemulsion (0.5 µmol/kg methotrexate, n=7), or commercial methotrexate (0.5 µmol/kg, n=4). The rabbits were sacrificed 24 h afterward. Synovial fluid was then collected for protein leakage and cell content analyses and synovial membranes were collected for histopathological analysis. RESULTS: The methotrexate nanoemulsion was taken up mainly by the liver and the uptake by arthritic joints was two-fold greater than that by control joints. The methotrexate nanoemulsion treatment reduced leukocyte influx into the synovial fluid by nearly 65%; in particular, mononuclear and polymorphonuclear cells were reduced by 47 and 72%, respectively. In contrast, cell influx was unaffected following treatment with commercial methotrexate. Protein leakage into the arthritic knees of the rabbits was also more limited following methotrexate nanoemulsion treatment than following commercial methotrexate treatment. CONCLUSIONS: The intravenous methotrexate nanoemulsion showed anti-inflammatory effects on the synovia of arthritic joints that were

  4. Delivery of dietary triglycerides to Caenorhabditis elegans using lipid nanoparticles: Nanoemulsion-based delivery systems.

    PubMed

    Colmenares, Daniel; Sun, Quancai; Shen, Peiyi; Yue, Yiren; McClements, D Julian; Park, Yeonhwa

    2016-07-01

    The nematode Caenorhabditis elegans is a powerful tool for studying food bioactives on specific biochemical pathways. However, many food bioactives are highly hydrophobic with extremely low water-solubilities, thereby making them difficult to study using C. elegans. The purpose of this study was to develop nanoemulsion-based systems to deliver hydrophobic molecules in a form that could be ingested by C. elegans. Optical microscopy showed that oil-in-water nanoemulsions with a range of particle diameters (40-500nm) could be ingested by C. elegans. The amount of lipid ingested depended on the size and concentration of the nanoparticles. Fatty acid analysis showed incorporation of conjugated linoleic acid and there was a significant reduction in the fat levels of C. elegans when they were incubated with nanoemulsions containing conjugated linoleic acid, which suggested that this hydrophobic lipid was successfully delivered to the nematodes. The incorporation of hydrophobic molecules into nanoemulsion based-delivery systems may therefore enable their activities to be studied using C. elegans. PMID:26920318

  5. Microencapsulation of nanoemulsions: novel Trojan particles for bioactive lipid molecule delivery

    PubMed Central

    Li, Xiang; Anton, Nicolas; Ta, Thi Minh Chau; Zhao, Minjie; Messaddeq, Nadia; Vandamme, Thierry F

    2011-01-01

    Background Nanoemulsions consist of very stable nanodroplets of oil dispersed in an aqueous phase, typically below 300 nm in size. They can be used to obtain a very fine, homogeneous dispersion of lipophilic compounds in water, thus facilitating their handling and use in nanomedicine. However, the drawback is that they are suspended in an aqueous media. This study proposes a novel technique for drying lipid nanoemulsion suspensions to create so-called Trojan particles, ie, polymer microparticles (around 2 μm) which very homogeneously “entrap” the nano-oil droplets (around 150 nm) in their core. Methods Microencapsulation of the nanoemulsions was performed using a spray-drying process and resulted in a dried powder of microparticles. By using a low-energy nanoemulsification method and relatively gentle spray-drying, the process was well suited to sensitive molecules. The model lipophilic molecule tested was vitamin E acetate, encapsulated at around 20% in dried powder. Results We showed that the presence of nanoemulsions in solution before spray-drying had a significant impact on microparticle size, distribution, and morphology. However, the process itself did not destroy the oil nanodroplets, which could easily be redispersed when the powder was put back in contact with water. High-performance liquid chromatography follow-up of the integrity of the vitamin E acetate showed that the molecules were intact throughout the process, as well as when conserved in their dried form. Conclusion This study proposes a novel technique using a spray-drying process to microencapsulate nanoemulsions. The multiscale object formed, so-called Trojan microparticles, were shown to successfully encapsulate, protect, and release the lipid nanodroplets. PMID:21760727

  6. Novel nanoemulsion based lipid nanosystems for favorable in vitro and in vivo characteristics of curcumin.

    PubMed

    Wan, Kun; Sun, Lili; Hu, Xueyuan; Yan, Zijun; Zhang, Yonghong; Zhang, Xue; Zhang, Jingqing

    2016-05-17

    The goal of this study was to assess the enhanced elementary characteristics, in vitro release, anti-cancer cytotoxicity, in situ absorption and in vivo bioavailability of a novel nanoemulsion based lipid nanosystems containing curcumin (CNELNs) when administered orally. The CNELNs were first fabricated by loading water-in-oil nanoemulsions into lipid nanosystems using a nanoemulsion-film dispersion-sonication method. The gastro-intestinal absorption, in vitro release and in vivo kinetic property of CNELNs were investigated using an in situ perfusion method, a dialysis method and a concentration-time curve based method, respectively. The inhibitory effects of CNELNs on human lung cancer A549 cell growth were determined using MTT assay. The absorption constants and effective permeabilities of CNELNs in different gastro-intestinal tracts increased 2.29-4.04 times and 4.06-8.27 times that of curcumin (CUR), respectively. The relative bioavailability of CNELNs to free CUR was 733.59%. CNELNs inhibited A549 growth in a dose- and time-dependent manner. CNELNs markedly improved the oral bioavailability of CUR which was probably due to the increased gastro-intestinal absorption. CNELNs had stronger inhibitory effects on the viabilities of A549 cells than that of free CUR. CNELNs might be promising nanosystems for oral delivery of CUR to satisfy clinical requirements. PMID:27034002

  7. Enhancement of Nutraceutical Bioavailability using Excipient Nanoemulsions: Role of Lipid Digestion Products on Bioaccessibility of Carotenoids and Phenolics from Mangoes.

    PubMed

    Liu, Xuan; Bi, Jinfeng; Xiao, Hang; McClements, David Julian

    2016-03-01

    The ability of excipient nanoemulsions to increase the bioaccessibility of different kinds of nutraceuticals (phenolics and carotenoids) in mangoes was studied. Oil-in-water excipient nanoemulsions containing small digestible lipid nanoparticles (d < 200 nm) were prepared using different oil phases: medium chain triglycerides (MCT) and long-chain triglycerides (LCT). These nanoemulsions were then mixed with pureed mango and passed through a simulated gastrointestinal tract (GIT): mouth, stomach, and small intestine. Carotenoid bioaccessibility decreased in the following order: LCT nanoemulsions > MCT nanoemulsions > buffer solution, which was attributed to differences in the solubilization capacity of the mixed micelles generated in the intestinal fluids. The digestion products of LCT formed mixed micelles with hydrophobic domains large enough to accommodate the carotenoids, whereas those of MCT did not. Excipient emulsions had much less effect on phenolic bioaccessibility, which may be because phenolics are smaller more polar molecules and are therefore more easily solubilized in aqueous intestinal fluids. These results highlight the potential of excipient nanoemulsions in boosting the bioavailability of lipophilic bioactive agents in fruits and vegetables. PMID:26816342

  8. Behavior of vitamin E acetate delivery systems under simulated gastrointestinal conditions: lipid digestion and bioaccessibility of low-energy nanoemulsions.

    PubMed

    Mayer, Sinja; Weiss, Jochen; McClements, David Julian

    2013-08-15

    Colloidal delivery systems are needed to incorporate oil-soluble vitamins into aqueous-based foods and beverage products. In this study, we encapsulated vitamin E acetate into oil-in-water nanoemulsions produced using either a low-energy method (Emulsion Phase Inversion, EPI) or a high energy method (microfluidization). Oil-in-water nanoemulsions (d<200 nm) could be produced using both low- and high-energy methods from a non-ionic surfactant (Tween 80) and medium chain triglycerides (MCTs). The influence of surfactant-to-oil ratio (SOR) on lipid digestion and vitamin bioaccessibility of EPI nanoemulsions was determined using a gastrointestinal tract (GIT) model that simulated the mouth, stomach, and small intestine. There were increases in the size and negative charge of the oil droplets after passage through the GIT, which was attributed to droplet coalescence and changes in interfacial composition. The rate and extent of lipid digestion decreased with increasing surfactant concentration, but the bioaccessibility of vitamin E acetate was high in all of the samples (>95%). No appreciable influence of the preparation method (low-energy versus high-energy) on lipid digestion and vitamin bioaccessibility was observed. The major advantage of the EPI method for forming nanoemulsions is that no expensive equipment is required, but relatively high surfactant concentrations are needed compared to microfluidization. PMID:23721832

  9. Development of an optimized hyaluronic acid-based lipidic nanoemulsion co-encapsulating two polyphenols for nose to brain delivery.

    PubMed

    Nasr, Maha

    2016-05-01

    The development of mucoadhesive lipidic nanoemulsion based on hyaluronic acid, co-encapsulating two polyphenols (resveratrol and curcumin) for the transnasal treatment of neurodegenerative diseases was attempted in the current manuscript. Nanoemulsions were prepared by the spontaneous emulsification method, and were characterized for their particle size, zeta potential, mucoadhesive strength and morphology. The selected formula was tested for its antioxidant potential, in vitro and ex vivo release of the two polyphenols, safety on nasal mucosa and in vivo quantification of the two drugs in rat brains. Its stability was tested by monitoring the change in particle size, zeta potential, drugs' content and antioxidant potential upon storage for 3 months. The optimized hyaluronic acid based nanoemulsion formula displayed a particle size of 115.2 ± 0.15 and a zeta potential of -23.9 ± 1.7. The formula displayed a spherical morphology and significantly higher mucoadhesive strength compared to its non mucoadhesive counterpart. In addition, the nanoemulsion was able to preserve the antioxidant ability of the two polyphenols and protect them from degradation. Diffusion controlled release of the two drugs was achievable till 6 hours, with an ex vivo flux across sheep nasal mucosa of 2.86 and 2.09 µg/cm(2)hr for resveratrol and curcumin, respectively. Moreover, the mucoadhesive nanoemulsion was safe on nasal mucosa and managed to increase the amounts of the two polypehnols in the brain (about 7 and 9 folds increase in AUC0-7 h for resveratrol and curcumin, respectively). Hyaluronic acid based lipidic nanoemulsion proved itself as a successful carrier enhancing the solubility, stability and brain targetability of polyphenols. PMID:26401600

  10. The preparation of magnetically guided lipid based nanoemulsions using self-emulsifying technology.

    PubMed

    Bakandritsos, Aristides; Zboril, Radek; Bouropoulos, Nikolaos; Kallinteri, Paraskevi; Favretto, Marco E; Parker, Terry L; Mullertz, Anette; Fatouros, Dimitrios G

    2010-02-01

    This paper reports an easy and highly reproducible preparation route, using self-emulsifying technology, for an orally administered high quality magnetically responsive drug delivery system. Hydrophobic iron oxide nanoparticles of about 5 nm in diameter were prepared and incorporated into the lipid core of the produced oil droplets of a self-nanoemulsifying drug delivery system (MagC(18)/SNEDDS). The produced nanoemulsion exhibits colloidal stability at high ionic strengths and temperatures. The observed value of the saturation magnetization at 2 K is approximately 4.1 emu g(-1). The nanoemulsion displayed the magnetic properties of a non-interacting assembly of superparamagnetic particles and a low blocking temperature. Moreover the effect of MagC(18)/SNEDDS on biological systems in vitro was investigated in rodent fibroblasts (3T3 cells). The cytotoxicity studies show that none of the formulations tested affected cell activity significantly over the 24 h incubation. Such systems might have a potential use for oral delivery of poorly soluble compounds by extending the residence time of the formulation in the small intestine resulting in increased drug absorption values. PMID:20032554

  11. The preparation of magnetically guided lipid based nanoemulsions using self-emulsifying technology

    NASA Astrophysics Data System (ADS)

    Bakandritsos, Aristides; Zboril, Radek; Bouropoulos, Nikolaos; Kallinteri, Paraskevi; Favretto, Marco E.; Parker, Terry L.; Mullertz, Anette; Fatouros, Dimitrios G.

    2010-02-01

    This paper reports an easy and highly reproducible preparation route, using self-emulsifying technology, for an orally administered high quality magnetically responsive drug delivery system. Hydrophobic iron oxide nanoparticles of about 5 nm in diameter were prepared and incorporated into the lipid core of the produced oil droplets of a self-nanoemulsifying drug delivery system (MagC18/SNEDDS). The produced nanoemulsion exhibits colloidal stability at high ionic strengths and temperatures. The observed value of the saturation magnetization at 2 K is ≈4.1 emu g-1. The nanoemulsion displayed the magnetic properties of a non-interacting assembly of superparamagnetic particles and a low blocking temperature. Moreover the effect of MagC18/SNEDDS on biological systems in vitro was investigated in rodent fibroblasts (3T3 cells). The cytotoxicity studies show that none of the formulations tested affected cell activity significantly over the 24 h incubation. Such systems might have a potential use for oral delivery of poorly soluble compounds by extending the residence time of the formulation in the small intestine resulting in increased drug absorption values.

  12. Coencapsulated doxorubicin and bromotetrandrine lipid nanoemulsions in reversing multidrug resistance in breast cancer in vitro and in vivo.

    PubMed

    Cao, Xi; Luo, Jingwen; Gong, Tao; Zhang, Zhi-Rong; Sun, Xun; Fu, Yao

    2015-01-01

    Multidrug resistance has remained a major cause of treatment failure in chemotherapy due to the presence of P-glycoproteins (P-gp) that actively pump drugs from inside the cell to the outside. P-gp inhibitors were developed and coadministered with chemotherapeutic drugs to overcome the effect of efflux pumps thus enhancing the chemosensitivity of therapeutics. Our study aimed at developing a lipid nanoemulsion system for the coencapsulation of doxorubicin (DOX) and bromotetrandrine (W198) to reverse multidrug resistance (MDR) in breast cancer. W198 was a potent P-gp inhibitor, and DOX was selected as a model compound which is a common substrate for P-gp. Coencapsulated DOX and W198 lipid nanoemulsions (DOX/W198-LNs) displayed significantly enhanced cytotoxicity in DOX-resistant human breast cancer cells (MCF-7/ADR) compared with DOX loaded lipid nanoemulsions (DOX-LNs) (p < 0.05), which is due to the enhanced intracellular uptake of DOX in MCF-7/ADR cells. The biodistribution study was performed using a nude mice xenograft model, which demonstrates enhanced tumor uptake of DOX in the DOX/W198-LN treated group. Compared with DOX solution, DOX/W198-LNs showed reduced cardiac toxicity and gastrointestinal injury in rats. Taken together, DOX/W198-LNs represent a promising formulation for overcoming MDR in breast cancer. PMID:25469833

  13. Functional nanoemulsion-hybrid lipid nanocarriers enhance the bioavailability and anti-cancer activity of lipophilic diferuloylmethane

    NASA Astrophysics Data System (ADS)

    Sun, Lili; Wan, Kun; Hu, Xueyuan; Zhang, Yonghong; Yan, Zijun; Feng, Jiao; Zhang, Jingqing

    2016-02-01

    The purpose of this study was to assess the enhanced physicochemical characteristics, in vitro release behavior, anti-lung cancer activity, gastrointestinal absorption, in vivo bioavailability and bioequivalence of functional nanoemulsion-hybrid lipid nanocarriers containing diferuloylmethane (DNHLNs). The DNHLNs were first fabricated by loading water-in-oil nanoemulsions into hybrid lipid nanosystems using nanoemulsion-thin film-sonication dispersion technologies. The in situ absorption and in vitro and in vivo kinetic features of DNHLNs were measured using an in situ unidirectional perfusion method, a dynamic dialysis method and a plasma concentration-time profile-based method, respectively. The cytotoxic effects of DNHLNs in lung adenocarcinoma A549 cells were examined using MTT colorimetric analysis. The absorptive constants and permeabilities of DNHLNs in four gastrointestinal sections increased by 1.43-3.23 times and by 3.10-7.76 times that of diferuloylmethane (DIF), respectively. The relative bioavailability of DNHLNs to free DIF was 855.02%. DNHLNs inhibited cancer cell growth in a time- and dose-dependent manner. DNHLNs markedly improved the absorption and bioavailability of DIF after oral administration. DNHLNs had stronger inhibitory effects on the viability of A549 cells than that of free DIF. DNHLNs might be potentially promising nanocarriers for DIF delivery via the oral route to address unmet clinical needs.

  14. Effect of lipid-containing, positively charged nanoemulsions on skin hydration, elasticity and erythema--an in vivo study.

    PubMed

    Yilmaz, Erol; Borchert, Hans-Hubert

    2006-01-13

    Dry skin and other skin disorders such as atopic dermatitis are characterized by impaired stratum corneum (SC) barrier function and by an increase in transepidermal water loss (TEWL) leading to a decrease in skin hydration. The possibility that dermatological and cosmetic products containing SC lipids could play a part in the restoration of disturbed skin barrier function is of great interest in the field of dermatology and cosmetics. The aim of the present study was to evaluate the effect of positively charged oil/water nanoemulsions (PN) containing ceramide 3B and naturally found SC lipids (PNSC) such as ceramide 3, cholesterol, and palmitic acid on skin hydration, elasticity, and erythema. Creams of PNSC were compared to PN creams, to creams with negatively charged o/w nanoemulsion and SC lipids (NNSC) and to Physiogel cream, a SC lipid containing formulation, which is already on the market. The formulations (PN, PNSC, and NNSC) were prepared by high-pressure homogenization. After adding Carbopol 940 as thickener, particle size and stability of the creams were not significantly changed compared to the nanoemulsions. The studies were carried out on three groups, each with 14 healthy female test subjects between 25 and 50 years of age, using Corneometer 825, Cutometer SEM 575 and Mexameter 18 for measurements of skin hydration, elasticity, and erythema of the skin, respectively. The creams were applied regularly and well tolerated throughout the study. All formulations increased skin hydration and elasticity. There was no significant difference between PNSC and Physiogel. However, PNSC was significantly more effective in increasing skin hydration and elasticity than PN and NNSC indicating that phytosphingosine inducing the positive charge, SC lipids and ceramide 3B are crucial for the enhanced effect on skin hydration and viscoelasticity. PMID:16289984

  15. Albumin anchored docetaxel lipid nanoemulsion for improved targeting efficiency - preparation, characterization, cytotoxic, antitumor and in vivo imaging studies.

    PubMed

    Muzammil Afzal, Syed; Naidu, V G M; Harishankar, N; Kishan, Veerabrahma

    2016-05-01

    The aim was to develop albumin anchored docetaxel lipid nanoemulsion (ALNE) for improving tumor targeted delivery. The O/W lipid nanoemulsion, LNEs were prepared by homogenization and ultrasonication processes. The size of globules and zeta potential were measured by Malvern Zetasizer. Albumin was coupled to stearylamine containing lipid nanoemulsion (SALNE) globules using water soluble EDC reaction. The drug content and entrapment efficiencies for the LNEs were determined by the high-performance liquid chromatography. The in vitro cytotoxic studies of the delivery systems were performed on MCF-7 and Hela cells. The IC 50 values of ALNE on both the cell lines were statistically significant. The in vivo antitumor activity was tested on solid tumors induced in C57BL/6 mice. This study revealed that the percentage tumor inhibition for the groups treated with DLNE, SALNE and ALNE when compared with untreated control was found to be 55.62 ± 5.41%, 54.27 ± 4.85% and 80.01 ± 2.74%, respectively. Furthermore, in vivo distribution studies were carried out in breast cancer MDA-MB231 xenografted Balb/c mice. The LNEs were loaded with fluorescent DiD oil and the distribution in different organs after 6 h was tracked using Caliper life sciences in vivo imaging system. The studies revealed that ALNE was superior in tumor targeting activity when compared with DLNE and SALNE by 3.04 and 2.26 folds, respectively. The average radiance values of ALNE on the tumor tissue were statistically significant when compared with DLNE, SALNE at p < 0.01. In addition, this strategy can become a platform technology for other lipophilic drugs to target tumors. PMID:25987186

  16. Rationalizing lipid nanoemulsion formation for utilization in the food and beverage industry

    NASA Astrophysics Data System (ADS)

    Rao, Jiajia

    There is growing interest in the use of nanoemulsions as delivery systems for lipophilic functional agents in food and beverage products due to their high optical clarity, physical stability and bioavailability. The goal of this research is to establish quantitative structure-function relationships to allow rational formulation of food-grade nanoemulsions for food and beverage applications. Initially, formation of oil-in-water nanoemulsions using a low energy method was examined. Nanoemulsions were formed using the phase inversion temperature (PIT) method, which involves heating a surfactant, oil, water (SOW) systems near the PIT, and then cooling rapidly with stirring. Preliminary experiments were carried out using a model system consisting of a non-ionic surfactant (C12E4), hydrocarbon oil (tetradecane), and water. Nanoemulsions were formed by holding SOW mixtures near their PIT (38.5 °C) and then cooling them rapidly to 10 °C. The PIT was measured using electrical, conductivity and turbidity methods. The optimum storage temperature for PIT-nanoemulsions was about 27 °C lower than the PIT. The stability of PIT-nanoemulsions at ambient temperatures can be improved by adding either Tween 80 (0.2 wt%) or SDS (0.1 wt%) to displace the C12E4 (Brij 30) from the nano-droplet surfaces. Experiments were then carried out to establish if stable nanoemulsions could be formed using the PIT method from food-grade ingredients. Nanoemulsions were fabricated from a non-ionic surfactant (Tween 80) and flavor oil (lemon oil) by heat treatment. Different types of colloidal dispersion could be formed by simple heat treatment (90 °C, 30 minutes) depending on the surfactant-to-oil ratio (SOR): emulsions at SOR < 1; nanoemulsions at 1 < SOR < 2; microemulsions at SOR > 2. The results suggested that there was a kinetic energy barrier in the SOW system at ambient temperature that prevented it from moving from a highly unstable system into a nanoemulsion system. The conditions where

  17. Rationalizing lipid nanoemulsion formation for utilization in the food and beverage industry

    NASA Astrophysics Data System (ADS)

    Rao, Jiajia

    There is growing interest in the use of nanoemulsions as delivery systems for lipophilic functional agents in food and beverage products due to their high optical clarity, physical stability and bioavailability. The goal of this research is to establish quantitative structure-function relationships to allow rational formulation of food-grade nanoemulsions for food and beverage applications. Initially, formation of oil-in-water nanoemulsions using a low energy method was examined. Nanoemulsions were formed using the phase inversion temperature (PIT) method, which involves heating a surfactant, oil, water (SOW) systems near the PIT, and then cooling rapidly with stirring. Preliminary experiments were carried out using a model system consisting of a non-ionic surfactant (C12E4), hydrocarbon oil (tetradecane), and water. Nanoemulsions were formed by holding SOW mixtures near their PIT (38.5 °C) and then cooling them rapidly to 10 °C. The PIT was measured using electrical, conductivity and turbidity methods. The optimum storage temperature for PIT-nanoemulsions was about 27 °C lower than the PIT. The stability of PIT-nanoemulsions at ambient temperatures can be improved by adding either Tween 80 (0.2 wt%) or SDS (0.1 wt%) to displace the C12E4 (Brij 30) from the nano-droplet surfaces. Experiments were then carried out to establish if stable nanoemulsions could be formed using the PIT method from food-grade ingredients. Nanoemulsions were fabricated from a non-ionic surfactant (Tween 80) and flavor oil (lemon oil) by heat treatment. Different types of colloidal dispersion could be formed by simple heat treatment (90 °C, 30 minutes) depending on the surfactant-to-oil ratio (SOR): emulsions at SOR < 1; nanoemulsions at 1 < SOR < 2; microemulsions at SOR > 2. The results suggested that there was a kinetic energy barrier in the SOW system at ambient temperature that prevented it from moving from a highly unstable system into a nanoemulsion system. The conditions where

  18. Pilot clinical study of carmustine associated with a lipid nanoemulsion in combination with vincristine and prednisone for the treatment of canine lymphoma.

    PubMed

    Lucas, S R R; Maranhão, R C; Guerra, J L; Coelho, B M P; Barboza, R; Pozzi, D H B

    2015-09-01

    A lipid nanoemulsion (LDE) resembling low-density lipoprotein can target malignant tumours. In in vivo and clinical studies, association of chemotherapeutic agents to LDE decreased their toxicity and increased pharmacological action. Here, safety of LDE as carmustine carrier (50 mg m(-2) , intravenous) combined with vincristine and prednisone for the treatment of dogs with lymphoma was tested and compared with commercial carmustine with vincristine and prednisone. In five dogs from LDE-carmustine and six from commercial carmustine, complete remission was achieved (P > 0.05). Partial remission occurred in two dogs from each group. In both groups, the median progression-free intervals (119 and 199 days) and overall survival times (207 and 247 days) were equal. Neutropenia was observed in both groups, but no other major toxicities occurred. Therefore, no difference was observed between the treatments. LDE-carmustine was shown to be safe and effective in a drug combination protocol, which encourages larger studies to investigate the use of this novel formulation to treat canine lymphomas. PMID:23615221

  19. Factorial design applied to the optimization of lipid composition of topical antiherpetic nanoemulsions containing isoflavone genistein

    PubMed Central

    Argenta, Débora Fretes; de Mattos, Cristiane Bastos; Misturini, Fabíola Dallarosa; Koester, Leticia Scherer; Bassani, Valquiria Linck; Simões, Cláudia Maria Oliveira; Teixeira, Helder Ferreira

    2014-01-01

    The aim of this study was to optimize topical nanoemulsions containing genistein, by means of a 23 full factorial design based on physicochemical properties and skin retention. The experimental arrangement was constructed using oil type (isopropyl myristate or castor oil), phospholipid type (distearoylphosphatidylcholine [DSPC] or dioleylphosphaditylcholine [DOPC]), and ionic cosurfactant type (oleic acid or oleylamine) as independent variables. The analysis of variance showed effect of third order for particle size, polydispersity index, and skin retention of genistein. Nanoemulsions composed of isopropyl myristate/DOPC/oleylamine showed the smallest diameter and highest genistein amount in porcine ear skin whereas the formulation composed of isopropyl myristate/DSPC/oleylamine exhibited the lowest polydispersity index. Thus, these two formulations were selected for further studies. The formulations presented positive ζ potential values (>25 mV) and genistein content close to 100% (at 1 mg/mL). The incorporation of genistein in nanoemulsions significantly increased the retention of this isoflavone in epidermis and dermis, especially when the formulation composed by isopropyl myristate/DOPC/oleylamine was used. These results were supported by confocal images. Such formulations exhibited antiherpetic activity in vitro against herpes simplex virus 1 (strain KOS) and herpes simplex virus 22 (strain 333). Taken together, the results show that the genistein-loaded nanoemulsions developed in this study are promising options in herpes treatment. PMID:25336951

  20. Development and in vitro cytotoxic evaluation of parenteral docetaxel lipid nanoemulsions for application in cancer treatment.

    PubMed

    Venkateshwarlu, Isnepally; Prabhakar, Kandadi; Ali, Mubarak; Kishan, Veerabrahma

    2010-01-01

    The aim of the present study was to develop stable lipid nanoemulsions (LNEs) for delivery of docetaxel for treatment of cancer. The LNEs of docetaxel were prepared by using olive oil and egg lecithin by hot homogenization followed by ultrasonication. The influence of formulation variables such as change in proportion of charge inducers, that is, oleic acid (negative) and stearyl amine (positive), was studied. Stable LNEs of docetaxel having the mean size range of 190-230 nm and zeta potential of -19.2 to -31 mV in the case of oleic acid emulsions and 49.5 to 50.5 mV in the case of stearyl amine emulsions were developed. There was considerable increase in zeta potential value on increasing concentration of oleic acid, whereas no such effect was observed on increasing stearyl amine concentration. During in vitro studies the cumulative amount of docetaxel released from LNE (control emulsion), LNE-O1, LNE-O2, LNE-O3, LNE-S1, LNE-S2, and LNE-S3 was determined. The results indicated that there was no significant effect in varying the concentration of charge inducers on size and in vitro cumulative release of prepared LNEs at 12 h. The optimized formulations were identified as LNE-O3 and LNE-S3 based on relative stabilities during centrifugal stress, dilution stress, and in storage at room temperature. The total drug content and entrapment efficiency of LNE-O3 were found to be 0.96 ± 0.02 mg/mL and 96.35 ± 1.21%, respectively, whereas for LNE-S3 the total drug content and entrapment efficiency were 0.97 ± 0.01 mg/mL and 97.07 ± 0.82%, respectively. During in vitro studies on cancer cell lines both of the optimized formulations, LNE-O3 and LNE-S3, showed similar values of IC50 (half maximal inhibitory concentration) in comparison to docetaxel solution. Based on this, it was concluded that the optimized LNEs were efficacious for the delivery of docetaxel and could act as alternative delivery systems to overcome the poor solubility, hydrolytic instability, and drug

  1. Simvastatin increases the antineoplastic actions of paclitaxel carried in lipid nanoemulsions in melanoma-bearing mice

    PubMed Central

    Kretzer, Iara F; Maria, Durvanei A; Guido, Maria C; Contente, Thaís C; Maranhão, Raul C

    2016-01-01

    Purpose Lipid nanoemulsions (LDEs) that bind to low-density lipoprotein (LDL) receptors used as carriers of paclitaxel (PTX) can decrease toxicity and increase PTX antitumoral action. The administration of simvastatin (Simva), which lowers LDL-cholesterol, was tested as an adjuvant to commercial PTX and to PTX associated with LDE (LDE-PTX). Materials and methods B16F10 melanoma-bearing mice were treated with saline solution or LDE (controls), Simva, PTX, PTX and Simva, LDE-PTX, and LDE-PTX and Simva: PTX dose 17.5 μmol/kg (three intraperitoneal injections, 3 alternate days): Simva 50 mg/kg/day by gavage, 9 consecutive days. Results Compared with saline controls, 95% tumor-growth inhibition was achieved by LDE-PTX and Simva, 61% by LDE-PTX, 44% by PTX and Simva, and 43% by PTX. Simva alone had no effect. Metastasis developed in only 37% of the LDE-PTX and Simva, 60% in LDE-PTX, and 90% in PTX and Simva groups. Survival rates were higher in LDE-PTX and Simva and in LDE-PTX groups. The LDE-PTX and Simva group presented tumors with reduced cellular density and increased collagen fibers I and III. Tumors from all groups showed reduction in immunohistochemical expression of ICAM, MCP-1, and MMP-9; LDE-PTX and Simva presented the lowest MMP-9 expression. Expression of p21 was increased in the Simva, LDE-PTX, and LDE-PTX and Simva groups. In the Simva and LDE-PTX and Simva groups, expression of cyclin D1, a proliferation and survival promoter of tumor cells, was decreased. Therapy with LDE-PTX and Simva showed negligible toxicity compared with PTX and Simva, which resulted in weight loss and myelosuppression. Conclusion Simva increased the antitumor activity of PTX carried in LDE but not of PTX commercial presentation, possibly because statins increase the expression of LDL receptors that internalize LDE-PTX. PMID:27022257

  2. A New Application of Lipid Nanoemulsions as Coating Agent, Providing Zero-Order Hydrophilic Drug Release from Tablets

    PubMed Central

    Anton, Nicolas; de Crevoisier, Astrid; Schmitt, Sabrina; Vandamme, Thierry

    2012-01-01

    The objective of the present investigation was to evaluate potential of nanoemulsions as a coating material for the tablets. The nanoemulsion of size less than 100 nm was prepared using a simple and low-energy spontaneous emulsification method. Conventional tablets containing theophylline as a model hydrophilic drug were prepared. The theophylline tablets were coated with the nanoemulsion using a fluid bed coater. The effect of different levels of the nanoemulsion coating on the theophylline release was evaluated. The theophylline tablets containing different levels of the nanoemulsion coating could be successfully prepared. Interestingly, the coating of tablet with the nanoemulsion resulted in zero-order release of theophylline from the tablets. The noncoated theophylline tablets release the entire drug in less than 2 minutes, whereas nanoemulsion coating delayed the release of theophylline from tablets. This investigation establishes the proof of concept for the potential of nanoemulsions as a coating material for tablets. PMID:22272376

  3. Nanoemulsion delivery systems for oil-soluble vitamins: Influence of carrier oil type on lipid digestion and vitamin D3 bioaccessibility.

    PubMed

    Ozturk, Bengu; Argin, Sanem; Ozilgen, Mustafa; McClements, David Julian

    2015-11-15

    The influence of carrier oil type on the bioaccessibility of vitamin D3 encapsulated within oil-in-water nanoemulsions prepared using a natural surfactant (quillaja saponin) was studied using a simulated gastrointestinal tract (GIT) model: mouth; stomach; small intestine. The rate of free fatty acid release during lipid digestion decreased in the following order: medium chain triglycerides (MCT) > corn oil ≈ fish oil > orange oil > mineral oil. Conversely, the measured bioaccessibility of vitamin D3 decreased in the following order: corn oil ≈ fish oil > orange oil > mineral oil > MCT. These results show that carrier oil type has a considerable impact on lipid digestion and vitamin bioaccessibility, which was attributed to differences in the release of bioactives from lipid droplets, and their solubilization in mixed micelles. Nanoemulsions prepared using long chain triglycerides (corn or fish oil) were most effective at increasing vitamin bioaccessibility. PMID:25977056

  4. Preparation of lipid nanoemulsions by premix membrane emulsification with disposable materials.

    PubMed

    Gehrmann, Sandra; Bunjes, Heike

    2016-09-25

    The possibility to prepare nanoemulsions as drug carrier systems on small scale was investigated with disposable materials. For this purpose premix membrane emulsification (premix ME) as a preparation method for nanoemulsions with narrow particle size distributions on small scale was used. The basic principle of premix ME is that the droplets of a coarse pre-emulsion get disrupted by the extrusion through a porous membrane. In order to implement the common preparation setup for premix ME with disposable materials, the suitability of different syringe filters (made from polyethersulfone, cellulose acetate, cellulose ester and nylon) and different pharmaceutically relevant emulsifiers (phospholipids, polysorbate 80 and sucrose laurate) for the preparation of nanoemulsions was investigated. Already the preparation of the premix could be realized by emulsification with the help of two disposable syringes. As shown for a phospholipid-stabilized emulsion, the polyethersulfone filter was the most appropriate one and was used for the study with different emulsifiers. With this syringe filter, the median particle size of all investigated emulsions was below 500nm after 21 extrusion cycles through a 200nm filter and a subsequent extrusion cycle through a 100nm filter. Furthermore, the particle size distribution of the polysorbate 80- and sucrose laurate-stabilized emulsions prepared this way was very narrow (span value of 0.7). PMID:27477104

  5. Advanced Nanoemulsions

    NASA Astrophysics Data System (ADS)

    Fryd, Michael M.; Mason, Thomas G.

    2012-05-01

    Recent advances in the growing field of nanoemulsions are opening up new applications in many areas such as pharmaceuticals, foods, and cosmetics. Moreover, highly controlled nanoemulsions can also serve as excellent model systems for investigating basic scientific questions about soft matter. Here, we highlight some of the most recent developments in nanoemulsions, focusing on methods of formation, surface modification, material properties, and characterization. These developments provide insight into the substantial advantages that nanoemulsions can offer over their microscale emulsion counterparts.

  6. Development and validation of TLC-densitometric method for determination of lipid A adjuvant as a bulk and in solid fat nanoemulsions.

    PubMed

    Minz, Sunita; Kaurav, Monika; Sahu, Kantrol Kumar; Mandal, Vivekananda; Pandey, Ravi Shankar

    2015-10-01

    A simple, sensitive, selective and precise high-performance thin-layer chromatographic method was developed for determination of lipid A (MPLA) adjuvant as a bulk and in solid fat nanoemulsions. Chromatographic separations were performed on thin-layer chromatography aluminum plates precoated with silica gel 60 F-254 as stationary phase and chloroform-methanol-ethyl acetate solution (10:2:4, v/v/v) as mobile phase. With this solvent system, compact spots for MPLA at Rf value 0.80 ± 0.02 were obtained. Densitometric analysis of MPLA was carried out in absorbance mode at 357 nm. Linear regression analysis for the calibration plots showed good linear relationship with r = 0.9996 in the concentration range of 20-100 ng/spot. The mean values (±SD) of slope and intercept were found to be 7.355 ± 0.006 and 109.52 ± 0.170, respectively. Limits of detection (LOD) and quantitation (LOQ) were observed at 3.096 and 9.382 ng/spot, respectively.The method was validated for precision, accuracy, robustness and recovery as per the International Conference on Harmonization guidelines. Statistical analysis proved that the developed method for quantification of MPLA as a bulk and in solid fat nanoemulsions is reproducible, selective and economical. This method could be applied for quantitative assay of MPLA in lipid-based vaccine formulations. PMID:25708181

  7. Design and evaluation of lipoprotein resembling curcumin-encapsulated protein-free nanostructured lipid carrier for brain targeting.

    PubMed

    Meng, Fanfei; Asghar, Sajid; Xu, Yurui; Wang, Jianping; Jin, Xin; Wang, Zhilin; Wang, Jing; Ping, Qineng; Zhou, Jianping; Xiao, Yanyu

    2016-06-15

    Many nanoparticle matrixes have been demonstrated to be efficient in brain targeting, but there are still certain limitations for them. To overcome the shortcomings of the existing nanoparticulate systems for brain-targeted delivery, a lipoprotein resembling protein-free nanostructured lipid carrier (PS80-NLC) loaded with curcumin was constructed and assessed for in vitro and in vivo performance. Firstly, single factor at a time approach was employed to investigate the effects of various formulation factors. Mean particle sizes of ≤100nm, high entrapment efficiency (EE, about 95%) and drug loading (DL, >3%) were obtained for the optimized formulations. In vitro release studies in the presence of plasma indicated stability of the formulation under physiological condition. Compared with NLC, PS80-NLC showed noticeably higher affinity for bEnd.3 cells (1.56 folds greater than NLC) but with lower uptake in macrophages. The brain coronal sections showed strong and widely distributed fluorescence intensity of PS80-NLC than that of NLC in the cortex. Ex vivo imaging studies further confirmed that PS80-NLC could effectively permeate BBB and preferentially accumulate in the brain (2.38 times greater than NLC). The considerable in vitro and in vivo performance of the safe and biocompatible PS80-NLC makes it a suitable option for further investigations in brain targeted drug delivery. PMID:27094357

  8. Effects of Lipids on in Vitro Release and Cellular Uptake of β-Carotene in Nanoemulsion-Based Delivery Systems.

    PubMed

    Yi, Jiang; Zhong, Fang; Zhang, Yuzhu; Yokoyama, Wallace; Zhao, Liqing

    2015-12-23

    β-Carotene (BC) nanoemulsions were successfully prepared by microfluidization. BC micellarization was significantly affected by bile salts and pancreatin concentration. Positive and linear correlation was observed between BC release and bile salts concentration. Pancreatin facilitated BC's release in simulated digestion. Compared to the control (bulk oil) (4.6%), nanoemulsion delivery systems significantly improved the micellarization of BC (70.9%). The amount of BC partitioned into micelles was positively proportional to the length of carrier oils. Unsaturated fatty acid (UFA)-rich oils were better than saturated fatty acid (SFA)-rich oils in transferring BC (p < 0.05). No significant difference was observed between monounsaturated fatty acid (MUFA)-rich oils and polyunsaturated fatty acid (PUFA)-rich oils (p > 0.05). A positive and linear relationship between the degree of lipolysis and the release of BC in vitro digestion was observed. Bile salts showed cytotoxicity to Caco-2 cells below 20 times dilution. BC uptake by Caco-2 cells was not affected by fatty acid (FA) compositions in micelles, but BC uptake was proportional to its concentration in the diluted micelle fraction. The results obtained are beneficial to encapsulate and deliver BC or other bioactive lipophilic carotenoids in a wide range of commercial products. PMID:26629789

  9. Size fractionation and size characterization of nanoemulsions of lipid droplets and large unilamellar lipid vesicles by asymmetric-flow field-flow fractionation/multi-angle light scattering and dynamic light scattering.

    PubMed

    Vezočnik, Valerija; Rebolj, Katja; Sitar, Simona; Ota, Katja; Tušek-Žnidarič, Magda; Štrus, Jasna; Sepčić, Kristina; Pahovnik, David; Maček, Peter; Žagar, Ema

    2015-10-30

    Asymmetric-flow field-flow fractionation technique coupled to a multi-angle light-scattering detector (AF4-MALS) was used together with dynamic light-scattering (DLS) in batch mode and transmission electron microscopy (TEM) to study the size characteristics of the trioleoylglycerol lipid droplets covered by a monolayer of sphingomyelin and cholesterol, in water phase. These lipid droplet nanoemulsions (LD) were formed by ultrasonication. In parallel, the size characteristics of large unilamellar lipid vesicles (LUV) prepared by extrusion and composed of sphingomyelin and cholesterol were determined. LD and LUV were prepared at two different molar ratios (1/1, 4/1) of sphingomyelin and cholesterol. In AF4-MALS, various cross-flow conditions and mobile phase compositions were tested to optimize the separation of LD or LUV particles. The particle radii, R, as well as the root-mean-square radii, Rrms, of LD and LUV were determined by AF4-MALS, whereas the hydrodynamic radii, Rh, were obtained by DLS. TEM visualization revealed round shape particles of LD and LUV. PMID:26409772

  10. Nanoemulsion: for improved oral delivery of repaglinide.

    PubMed

    Akhtar, Juber; Siddiqui, Hefazat Hussain; Fareed, Sheeba; Badruddeen; Khalid, Mohammad; Aqil, Mohammed

    2016-07-01

    Repaglinide (RPG) is a fast-acting prandial glucose regulator. It acts by stimulating insulin release from pancreatic β-cells. Recurrent dosing of RPG before each meal is burdensome remedy. Hence the plan of the present study was to evaluate nanoemulsion as a hopeful carrier for RPG for persistent hypoglycemic effect. The drug was incorporated into oil phase of nanoemulsion to give improved biopharmaceutical properties as compared to the lipid-based systems. Pseudo ternary phase diagrams were prepared by aqueous titration method. Formulations were selected at a difference of 5% w/w of oil from the o/w nanoemulsion region of phase diagrams. The optimized nanoemulsion formulation constituted sefsol-218 (5% v/v) as an oil phase, 30% v/v of Tween-80 and transcutol as a surfactant and co-surfactant to restrain nanodroplet size and low viscosity and distilled water (65%). In vitro dissolution studies showed higher drug release (98.22%), finest droplet size (76.23 nm), slightest polydispersity value (0.183), least viscosity (21.45 cps) and immeasurable dilution capability from the nanoemulsion as compared with existing oral tablet formulation. The optimized RPG nanoemulsion formulation showed better hypoglycemic effect in comparison to tablet formulation in experimental diabetic rats. No significant variations were also observed in the optimized formulation when subjected to accelerated stability study at different temperature and relative humidity over a period of 3 months. PMID:27187792

  11. Improvement of β-Carotene Bioaccessibility from Dietary Supplements Using Excipient Nanoemulsions.

    PubMed

    Salvia-Trujillo, Laura; McClements, David Julian

    2016-06-01

    The influence of excipient nanoemulsions on β-carotene bioaccessibility from commercial dietary supplements (tablets or soft gels) was studied employing an in vitro gastrointestinal tract (GIT) model. Excipient nanoemulsions were formulated from long or medium chain triglycerides (LCT or MCT) to determine the impact of lipid type on carotenoid bioaccessibility. Dietary supplements were tested using the GIT model in the absence or presence of excipient nanoemulsions. β-carotene bioaccessibility from tablets (0.3%) or soft gels (2.4%) was low when tested in isolation. LCT nanoemulsions greatly improved β-carotene bioaccessibility from tablets (20%) and slightly improved it from soft gels (5%), whereas MCT nanoemulsions only slightly improved bioaccessibility. These results were attributed to the ability of large carotenoid molecules to be incorporated into large mixed micelles formed by LCT digestion but not by small ones formed by MCT digestion. Our results indicate that excipient nanoemulsions have considerable potential for improving nutraceutical bioavailability from dietary supplements. PMID:27198626

  12. Reversible Lipid Accumulation and Associated Division Arrest of Mycobacterium avium in Lipoprotein-Induced Foamy Macrophages May Resemble Key Events during Latency and Reactivation of Tuberculosis

    PubMed Central

    Caire-Brändli, Irène; Papadopoulos, Alexia; Malaga, Wladimir; Marais, David; Canaan, Stéphane; Thilo, Lutz

    2014-01-01

    During the dormant phase of tuberculosis, Mycobacterium tuberculosis persists in lung granulomas by residing in foamy macrophages (FM) that contain abundant lipid bodies (LB) in their cytoplasm, allowing bacilli to accumulate lipids as intracytoplasmic lipid inclusions (ILI). An experimental model of FM is presented where bone marrow-derived mouse macrophages are infected with M. avium and exposed to very-low-density lipoprotein (VLDL) as a lipid source. Quantitative analysis of detailed electron microscope observations showed the following results. (i) Macrophages became foamy, and mycobacteria formed ILI, for which host triacylglycerides, rather than cholesterol, was essential. (ii) Lipid transfer occurred via mycobacterium-induced fusion between LB and phagosomes. (iii) Mycobacteria showed a thinned cell wall and became elongated but did not divide. (iv) Upon removal of VLDL, LB and ILI declined within hours, and simultaneous resumption of mycobacterial division restored the number of mycobacteria to the same level as that found in untreated control macrophages. This showed that the presence of ILI resulted in a reversible block of division without causing a change in the mycobacterial replication rate. Fluctuation between ILI either partially or fully extending throughout the mycobacterial cytoplasm was suggestive of bacterial cell cycle events. We propose that VLDL-driven FM constitute a well-defined cellular system in which to study changed metabolic states of intracellular mycobacteria that may relate to persistence and reactivation of tuberculosis. PMID:24478064

  13. Entrapment into nanoemulsions potentiates the anticancer activity of tocotrienols against the highly malignant (+SA) mouse mammary epithelial cells.

    PubMed

    Alayoubi, Alaadin; Ayoub, Nehad M; Malaviya, Abhita; Sylvester, Paul W; Nazzal, Sami

    2014-05-01

    The highly malignant +SA mouse mammary epithelial cells were used as the model cell line over the years to establish the anticancer activity of tocotrienols. Tocotrienols, however, have poor oral bioavailability and were therefore entrapped into parenteral nanoemulsions for parenteral administration. The objective of this work was to test whether the activity of tocotrienols in lipid nanoemulsions against the +SA cells was retained. A secondary objective was to test whether stabilizing the nanoemulsions with poloxamer or sodium oleate would affect their activity. Nanoemulsions were found to be significantly more potent than tocotrienol/albumin conjugate. The IC50 values of the poloxamer and sodium oleate nanoemulsions were 3 and 6 microM, respectively, whereas the IC50 value of the conjugate was 10 microM. The antiproliferative activity of the nanoemulsions was also found to inversely correlate with particle size. No activity was observed with nanoemulsions loaded with alpha-tocopherol or vehicle, which confirmed the cytotoxic activity of tocotrienols and the potential use of nanoemulsions in cancer therapy. PMID:24734680

  14. Study on antimicrobial potential of neem oil nanoemulsion against Pseudomonas aeruginosa infection in Labeo rohita.

    PubMed

    Mishra, Prabhakar; R S, Suresh Kumar; Jerobin, Jayakumar; Thomas, John; Mukherjee, Amitava; Chandrasekaran, Natarajan

    2014-01-01

    Presence of several biochemical constituents in neem makes it an efficient antimicrobial agent for pathogenic diseases. The current investigation was aimed to assess the therapeutic potential of neem nanoemulsion as a control measure for Pseudomonas aeruginosa infection in freshwater fish Labeo rohita. The median lethal concentration (LC50) for the neem oil and neem nanoemulsion was 73.9 and 160.3 mg/L, respectively. The biomarker enzymes of treated fish tissues showed a significant difference in the level of glutathione reductase, catalase, and lipid peroxidation in neem oil-treated samples than in neem nanoemulsion-treated samples at P<0.05. The results were corroborative with histopathology and ultrastructural analysis. The bacterial infection of P. aeruginosa treated using neem nanoemulsion was more effective in both in vitro and in vivo methods. Present findings suggest that neem-based nanoemulsion has negligible toxicity to Rohu fishes. This makes neem-based nanoemulsion as an efficient therapeutic agent against P. aeruginosa infection, leading to its possible usage in the aquaculture industry. PMID:24502533

  15. Tuneable stability of nanoemulsions fabricated using spontaneous emulsification by biopolymer electrostatic deposition.

    PubMed

    Saberi, Amir Hossein; Zeeb, Benjamin; Weiss, Jochen; McClements, David Julian

    2015-10-01

    Nanoemulsions can be formed spontaneously from surfactant-oil-water systems using low energy methods. In this work, we showed that the droplets in oil-in-water nanoemulsions fabricated by spontaneous emulsification could be coated with an anionic biopolymer (beet pectin) using electrostatic deposition. Nanoemulsions were formed by titrating oil (medium chain triglycerides) and surfactant (polyoxyethylene sorbitan monostearate+lauric arginate) mixtures into an aqueous solution (10 mM citrate buffer, pH 4). Lauric arginate was used to generate a positive charge on the droplet surfaces, thereby enabling subsequent electrostatic deposition of anionic pectin. Extensive droplet aggregation occurred when intermediate pectin concentrations were used due to bridging flocculation. However, stable anionic pectin-coated lipid droplets could be formed at high pectin concentrations. These results demonstrate the possibility of tailoring the functionality of lipid nanodroplets produced by spontaneous emulsification. PMID:26070187

  16. Nanoemulsion-Based Delivery Systems to Improve Functionality of Lipophilic Components

    PubMed Central

    Odriozola-Serrano, Isabel; Oms-Oliu, Gemma; Martín-Belloso, Olga

    2014-01-01

    The use of active lipophilic substances such as antimicrobials and health-related compounds in the food industry is still a challenge due to their poor water solubility and instability in food formulations. Nano-sized structures such as nanoemulsions of oil-in-water are regarded as useful tools with a great potential in the food sector to incorporate food ingredients. Reducing the size of the active compounds incorporated within a solution would increase the surface area per mass unit of nanoemulsions, thus enhancing solubility and stability in foods. In addition, the ability of the active lipids to penetrate across biological membranes is also enhanced, thus boosting their biological functionality. An overview of the most significant studies reporting data about the potential benefits of active lipid nanoemulsions over conventional emulsions is presented. PMID:25988126

  17. Cationic nanoemulsion as a delivery system for oligonucleotides targeting malarial topoisomerase II.

    PubMed

    Bruxel, F; Cojean, S; Bochot, A; Teixeira, H; Bories, C; Loiseau, P-M; Fattal, E

    2011-09-20

    A promising strategy based on the antisense oligonucleotides against the Plasmodium falciparum topoisomerase II has been considered using cationic nanoemulsion as oligonucleotide delivery system. Phosphodiester and chemically modified phosphorothioate oligonucleotides bearing negative charges were adsorbed on positively charged emulsion composed of medium chain triglycerides, egg lecithin, 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP), and water, at different +/- charge ratios (positive charges from cationic lipid/negative charges from oligonucleotide): +0.5/-, +2/-, +4/- and +6/-. The physicochemical properties of the complexes were determined, as well as their stability in culture medium. Their interaction with erythrocytes through hemolysis, binding experiments and confocal microscopy were also evaluated. Finally, the in vitro evaluation of parasite growth and reinfection capacity was performed. The overall results showed that antisense oligonucleotides against P. falciparum topoisomerase II gene can be efficiently adsorbed onto a cationic nanoemulsion forming complexes. Whereas unloaded nanoemulsion displayed an hemolytic effect due to the presence of the cationic lipid, this was not the case of loaded nanoemulsion at low +/- ratios. Oligonucleotide-loaded nanoemulsions were found to be located inside the infected erythrocytes, inhibiting efficiently parasite growth (until 80%) and causing a delay in P. falciparum life cycle. PMID:21291974

  18. Three Dimensional Nano "Langmuir Trough" for Lipid Studies.

    PubMed

    Chen, Yixing; Jena, Kailash C; Lütgebaucks, Cornelis; Okur, Halil I; Roke, Sylvie

    2015-08-12

    A three-dimensional-phospholipid monolayer with tunable molecular structure was created on the surface of oil nanodroplets from a mixture of phospholipids, oil, and water. This simple nanoemulsion preparation technique generates an in situ prepared membrane model system with controllable molecular surface properties that resembles a lipid droplet. The molecular interfacial structure of such a nanoscopic system composed of hexadecane, 1,2-dihexadecanoyl-sn-glycero-3-phosphocholine (DPPC), and water was determined using vibrational sum frequency scattering and second harmonic scattering techniques. The droplet surface structure of DPPC can be tuned from a tightly packed liquid condensed phase like monolayer to a more dilute one that resembles the liquid condensed/liquid expanded coexistence phase by varying the DPPC/oil/water ratio. The tunability of the chemical structure, the high surface-to-volume ratio, and the small sample volume make this system an ideal model membrane for biochemical research. PMID:26151602

  19. Physical factors affecting plasmid DNA compaction in stearylamine-containing nanoemulsions intended for gene delivery.

    PubMed

    Silva, André Leandro; Alexandrino, Francisco; Verissimo, Lourena Mafra; Agnez-Lima, Lucymara Fassarella; Egito, Lucila Carmem Monte; de Oliveira, Anselmo Gomes; do Egito, Eryvaldo Socrates Tabosa

    2012-01-01

    Cationic lipids have been used in the development of non-viral gene delivery systems as lipoplexes. Stearylamine, a cationic lipid that presents a primary amine group when in solution, is able to compact genetic material by electrostatic interactions. In dispersed systems such as nanoemulsions this lipid anchors on the oil/water interface confering a positive charge to them. The aim of this work was to evaluate factors that influence DNA compaction in cationic nanoemulsions containing stearylamine. The influence of the stearylamine incorporation phase (water or oil), time of complexation, and different incubation temperatures were studied. The complexation rate was assessed by electrophoresis migration on agarose gel 0.7%, and nanoemulsion and lipoplex characterization was done by Dynamic Light Scattering (DLS). The results demonstrate that the best DNA compaction process occurs after 120 min of complexation, at low temperature (4 ± 1 °C), and after incorporation of the cationic lipid into the aqueous phase. Although the zeta potential of lipoplexes was lower than the results found for basic nanoemulsions, the granulometry did not change. Moreover, it was demonstrated that lipoplexes are suitable vehicles for gene delivery. PMID:24281666

  20. Physical Factors Affecting Plasmid DNA Compaction in Stearylamine-Containing Nanoemulsions Intended for Gene Delivery

    PubMed Central

    Silva, André Leandro; Júnior, Francisco Alexandrino; Verissimo, Lourena Mafra; Agnez-Lima, Lucymara Fassarella; Egito, Lucila Carmem Monte; de Oliveira, Anselmo Gomes; do Egito, Eryvaldo Socrates Tabosa

    2012-01-01

    Cationic lipids have been used in the development of non-viral gene delivery systems as lipoplexes. Stearylamine, a cationic lipid that presents a primary amine group when in solution, is able to compact genetic material by electrostatic interactions. In dispersed systems such as nanoemulsions this lipid anchors on the oil/water interface confering a positive charge to them. The aim of this work was to evaluate factors that influence DNA compaction in cationic nanoemulsions containing stearylamine. The influence of the stearylamine incorporation phase (water or oil), time of complexation, and different incubation temperatures were studied. The complexation rate was assessed by electrophoresis migration on agarose gel 0.7%, and nanoemulsion and lipoplex characterization was done by Dynamic Light Scattering (DLS). The results demonstrate that the best DNA compaction process occurs after 120 min of complexation, at low temperature (4 ± 1 °C), and after incorporation of the cationic lipid into the aqueous phase. Although the zeta potential of lipoplexes was lower than the results found for basic nanoemulsions, the granulometry did not change. Moreover, it was demonstrated that lipoplexes are suitable vehicles for gene delivery. PMID:24281666

  1. Nanoemulsions prepared by a low-energy emulsification method applied to edible films

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Catastrophic phase inversion (CPI) was used as a low-energy emulsification method to prepare oil-in-water (O/W) nanoemulsions in a lipid (Acetem)/water/nonionic surfactant (Tween 60) system. CPIs in which water-in-oil emulsions (W/O) are transformed into oil-in-water emulsions (O/W) were induced by ...

  2. Fabrication, stability and efficacy of dual-component antimicrobial nanoemulsions: essential oil (thyme oil) and cationic surfactant (lauric arginate).

    PubMed

    Chang, Yuhua; McLandsborough, Lynne; McClements, David Julian

    2015-04-01

    The influence of a cationic surfactant (lauric arginate, LAE) on the physical properties and antimicrobial efficacy of thyme oil nanoemulsions was investigated. Nanoemulsions prepared from pure thyme oil were highly unstable due to Ostwald ripening, but they could be stabilized by adding a ripening inhibitor (corn oil) to the oil phase prior to homogenisation. The loading capacity and antimicrobial efficacy of thyme oil nanoemulsions were significantly increased by adding LAE. In the absence of LAE, at least 60 wt% corn oil had to be added to the lipid phase to inhibit Ostwald ripening; but in the presence of 0.1 wt% LAE, only 30 wt% corn oil was needed. LAE addition substantially increased the antimicrobial efficacy of the thyme oil nanoemulsions: 200 μg/ml thyme oil was needed to inhibit growth of a spoilage yeast (Zygosaccharomyces bailii) if LAE was added, whereas ⩾ 400 μg/ml was needed in the absence of LAE. PMID:25442557

  3. Physical Stability, Autoxidation, and Photosensitized Oxidation of ω-3 Oils in Nanoemulsions Prepared with Natural and Synthetic Surfactants.

    PubMed

    Uluata, Sibel; McClements, D Julian; Decker, Eric A

    2015-10-28

    The food industry is interested in the utilization of nanoemulsions stabilized by natural emulsifiers, but little research has been conducted to determine the oxidative stability of such emulsions. In this study, two natural (lecithin and quillaja saponin) and two synthetic (Tween 80 and sodium dodecyl sulfate) surfactants were used to fabricate omega-3 nanoemulsion using high pressure homogenization (microfluidization). Initially, all the nanoemulsions contained small (d from 45 to 89 nm) and anionic (ζ-potential from -8 to -65 mV) lipid droplets (pH 7). The effect of pH, ionic strength, and temperature on the physical stability of the nanoemulsion system was examined. Nanoemulsion stabilized with Tween 80, quillaja saponin, or sodium dodecyl sulfate (SDS) exhibited no major changes in particle size or visible creaming in the pH range of 3 to 8. All nanoemulsions were relatively stable to salt addition (0 to 500 mM NaCl, pH 7.0). Nanoemulsions stabilized with SDS and quillaja saponin were stable to heating (30 to 90 °C). The impact of surfactant type on lipid oxidation was determined in the presence and absence of the singlet oxygen photosensitizers, riboflavin, and rose bengal. Riboflavin and rose bengal accelerated lipid oxidation when compare to samples without photosensitizers. Lipid hydroperoxide formation followed the order Tween 80 > SDS > lecithin > quillaja saponin, and propanal formation followed the order lecithin > Tween 80 > SDS > quillaja saponin at 37 °C for autoxidation. The same order of oxidative stability was observed in the presence of photosensitized oxidation promoted by riboflavin. Quillaja saponin consistently produced the most oxidatively stable emulsions, which could be due to its high free radical scavenging capacity. PMID:26452408

  4. Protection against oxidative damage in human erythrocytes and preliminary photosafety assessment of Punica granatum seed oil nanoemulsions entrapping polyphenol-rich ethyl acetate fraction.

    PubMed

    Baccarin, Thaisa; Mitjans, Montserrat; Lemos-Senna, Elenara; Vinardell, Maria Pilar

    2015-12-25

    The main purpose of the present study is to evaluate the ability of nanoemulsion entrapping pomegranate peel polyphenol-rich ethyl acetate fraction (EAF) prepared from pomegranate seed oil and medium chain triglyceride to protect human erythrocyte membrane from oxidative damage and to assess preliminary in vitro photosafety. In order to evaluate the phototoxic effect of nanoemulsions, human red blood cells (RBCs) are used as a biological model and the rate of haemolysis and photohaemolysis (5 J cm(-2) UVA) is assessed in vitro. The level of protection against oxidative damage caused by the peroxyl radical generator AAPH in human RBCs as well as its effects on bilayer membrane characteristics such as fluidity, protein profile and RBCs morphology are determined. EAF-loaded nanoemulsions do not promote haemolysis or photohaemolysis. Anisotropy measurements show that nanoemulsions significantly retrain the increase in membrane fluidity caused by AAPH. SDS-PAGE analysis reveals that AAPH induced degradation of membrane proteins, but that nanoemulsions reduce the extension of degradation. Scanning electron microscopy examinations corroborate the interaction between AAPH, nanoemulsions and the RBC membrane bilayer. Our work demonstrates that Punica granatum nanoemulsions are photosafe and protect RBCs against oxidative damage and possible disturbance of the lipid bilayer of biomembranes. Moreover it suggests that these nanoemulsions could be promising new topical products to reduce the effects of sunlight on skin. PMID:26407526

  5. Does Facial Resemblance Enhance Cooperation?

    PubMed Central

    Giang, Trang; Bell, Raoul; Buchner, Axel

    2012-01-01

    Facial self-resemblance has been proposed to serve as a kinship cue that facilitates cooperation between kin. In the present study, facial resemblance was manipulated by morphing stimulus faces with the participants' own faces or control faces (resulting in self-resemblant or other-resemblant composite faces). A norming study showed that the perceived degree of kinship was higher for the participants and the self-resemblant composite faces than for actual first-degree relatives. Effects of facial self-resemblance on trust and cooperation were tested in a paradigm that has proven to be sensitive to facial trustworthiness, facial likability, and facial expression. First, participants played a cooperation game in which the composite faces were shown. Then, likability ratings were assessed. In a source memory test, participants were required to identify old and new faces, and were asked to remember whether the faces belonged to cooperators or cheaters in the cooperation game. Old-new recognition was enhanced for self-resemblant faces in comparison to other-resemblant faces. However, facial self-resemblance had no effects on the degree of cooperation in the cooperation game, on the emotional evaluation of the faces as reflected in the likability judgments, and on the expectation that a face belonged to a cooperator rather than to a cheater. Therefore, the present results are clearly inconsistent with the assumption of an evolved kin recognition module built into the human face recognition system. PMID:23094095

  6. Dilute nanoemulsions via separation of satellite droplets.

    PubMed

    Deen, Shad; Sajjadi, Shahriar

    2013-10-01

    A facile method is suggested for fabrication of dilute nanoemulsions. In a typical emulsification process, drops are usually accompanied by off-grade satellite droplets. The size of these satellite droplets ranges from hundreds of nanometers to above microns. Experiments were carried out to assess the possibility of separation of nanodrops from macroemulsions made via a conventional method in order to produce nanoemulsions. A low-power homogenizer was used to produce parent emulsions which were then injected from the bottom to a glass column containing water and allowed to cream. By monitoring drops remaining in the bottom of the column, it is clearly shown how progressively smaller they become with time yielding eventually dilute nanoemulsions. The average diameter of drops reduced to 100 nm when oil with high viscosity was used. The concentration of resulting nanoemulsions increased with increasing viscosity and ratio of the disperse phase of parent emulsions. PMID:23830283

  7. Impact of alcohols on the formation and stability of protein-stabilized nanoemulsions.

    PubMed

    Zeeb, Benjamin; Herz, Eva; McClements, David Julian; Weiss, Jochen

    2014-11-01

    Nanoemulsions are increasingly being used for encapsulation, protection, and delivery of bioactive lipids, however, their formation from natural emulsifiers is still challenging. We investigated the impact of alcohol on the formation and stability of protein-stabilized oil-in-water nanoemulsions prepared by high-pressure homogenization. The influence of different alcohols (ethanol, 1-propanol, and 1-butanol) at various concentrations (0-25% w/w) on the formation and stability of emulsions stabilized by sodium caseinate, whey protein isolate, and fish gelatin was investigated. The mean particle diameter decreased with increasing alcohol concentrations from 0 to 10%w/w, but extensive droplet aggregation occurred at higher levels. This phenomenon was attributed to enhanced protein-protein interactions between the adsorbed emulsifier molecules in the presence of alcohol leading to droplet flocculation. The smallest droplets (d<100nm) were obtained when 10%w/w 1-butanol was added to sodium caseinate-stabilized nanoemulsions, but relatively small droplets (d<150nm) could also be obtained in the presence of a food-grade alcohol (ethanol). This study demonstrated that alcohol addition might be a useful tool for producing protein-stabilized nanoemulsions suitable for use as delivery systems of lipophilic bioactive agents. PMID:25129338

  8. Reprint of: Impact of alcohols on the formation and stability of protein-stabilized nanoemulsions.

    PubMed

    Zeeb, Benjamin; Herz, Eva; McClements, David Julian; Weiss, Jochen

    2015-07-01

    Nanoemulsions are increasingly being used for encapsulation, protection, and delivery of bioactive lipids, however, their formation from natural emulsifiers is still challenging. We investigated the impact of alcohol on the formation and stability of protein-stabilized oil-in-water nanoemulsions prepared by high-pressure homogenization. The influence of different alcohols (ethanol, 1-propanol, and 1-butanol) at various concentrations (0-25% w/w) on the formation and stability of emulsions stabilized by sodium caseinate, whey protein isolate, and fish gelatin was investigated. The mean particle diameter decreased with increasing alcohol concentrations from 0 to 10%w/w, but extensive droplet aggregation occurred at higher levels. This phenomenon was attributed to enhanced protein-protein interactions between the adsorbed emulsifier molecules in the presence of alcohol leading to droplet flocculation. The smallest droplets (d<100 nm) were obtained when 10%w/w 1-butanol was added to sodium caseinate-stabilized nanoemulsions, but relatively small droplets (d<150 nm) could also be obtained in the presence of a food-grade alcohol (ethanol). This study demonstrated that alcohol addition might be a useful tool for producing protein-stabilized nanoemulsions suitable for use as delivery systems of lipophilic bioactive agents. PMID:25865241

  9. The application of nanoemulsion in dermatology: an overview.

    PubMed

    Wu, Yan; Li, Yuan-Hong; Gao, Xing-Hua; Chen, Hong-Duo

    2013-05-01

    Nanotechnology has been introduced into dermatology for years. Nanoemulsions (NEs) are promising drug delivery systems with practical applications for pharmaceutical, cosmetic and chemical industry applications. Herein, we provide an overview of the application of NEs in dermatology during the latest 5 years. We reviewed the antioxidants in NEs form, non-steroidal anti-inflammatory drug loaded by NE, NEs in photodynamic therapy, NEs in decontamination of radionuclides, antimicrobial NEs, NEs carrying lipids, NEs containing Octyl Methoxycinnamate, et al. NEs demonstrate good stability, stable physical and chemical properties. NEs are able to enhance the functionality and efficacy of active chemicals and natural ingredients. NEs exhibit great application potential in the field of dermatology. PMID:23600746

  10. Resemblance and investment in children.

    PubMed

    Dolinska, Barbara

    2013-01-01

    According to evolutionary explanations men hardly ever are absolutely certain about their biological fatherhood therefore they must seek various sources of information to subjectively establish whether they are the genetic fathers of the children they raise. Apicella and Marlowe (2004) showed that fathers who perceived greater similarity between their children and themselves were willing to invest more resources (e.g., time, money, care) in their offspring presumably because the perceived resemblance indicated to the fathers their genetic relatedness with their children. The present study extended the design of Apicella and Marlowe's original study and included both fathers and mothers as participants. Parents were recruited by a female confederate at the airport and at the railway station in Wroclaw (Poland). Multiple regression analyses showed that perceived resemblance predicted parental investment in the child for both men and women. The fact that mothers' declarations of investment in their children also depended on the perceived resemblance factor is not consistent with evolutionary formulations delineated by Apicella and Marlowe (2004; 2007). Future studies must resolve the issue of whether the resemblance-investment relation in fathers results from men relaying on child's resemblance to themselves as an indicator of their own biological paternity, or whether it results from the more parsimonious phenomenon that people in general are attracted more to other people who are similar to them. PMID:22385106

  11. Children's Explanations of Family Resemblances.

    ERIC Educational Resources Information Center

    Horobin, Karen D.

    Four studies investigated children's explanations for family resemblance and species-typical characteristics, under different conditions of biological parentage and rearing environment. Participating were 226 children between 3 and 11 years. Children Children were presented with a number of different tasks, some involving people and some domestic…

  12. Nanoemulsion: process selection and application in cosmetics--a review.

    PubMed

    Yukuyama, M N; Ghisleni, D D M; Pinto, T J A; Bou-Chacra, N A

    2016-02-01

    In recent decades, considerable and continuous growth in consumer demand in the cosmetics field has spurred the development of sophisticated formulations, aiming at high performance, attractive appearance, sensorial benefit and safety. Yet despite increasing demand from consumers, the formulator faces certain restrictions regarding the optimum equilibrium between the active compound concentration and the formulation base taking into account the nature of the skin structure, mainly concerning to the ideal penetration of the active compound, due to the natural skin barrier. Emulsion is a mixture of two immiscible phases, and the interest in nanoscale emulsion has been growing considerably in recent decades due to its specific attributes such as high stability, attractive appearance and drug delivery properties; therefore, performance is expected to improve using a lipid-based nanocarrier. Nanoemulsions are generated by different approaches: the so-called high-energy and low-energy methods. The global overview of these mechanisms and different alternatives for each method are presented in this paper, along with their benefits and drawbacks. As a cosmetics formulation is reflected in product delivery to consumers, nanoemulsion development with prospects for large-scale production is one of the key attributes in the method selection process. Thus, the aim of this review was to highlight the main high- and low-energy methods applicable in cosmetics and dermatological product development, their specificities, recent research on these methods in the cosmetics and consideration for the process selection optimization. The specific process with regard to inorganic nanoparticles, polymer nanoparticles and nanocapsule formulation is not considered in this paper. PMID:26171789

  13. In vitro and in vivo Effects of Free and Chalcones-Loaded Nanoemulsions: Insights and Challenges in Targeted Cancer Chemotherapies

    PubMed Central

    Winter, Evelyn; Dal Pizzol, Carine; Locatelli, Claudriana; Silva, Adny H.; Conte, Aline; Chiaradia-Delatorre, Louise D.; Nunes, Ricardo J.; Yunes, Rosendo A.; Creckzynski-Pasa, Tânia B.

    2014-01-01

    Several obstacles are encountered in conventional chemotherapy, such as drug toxicity and poor stability. Nanotechnology is envisioned as a strategy to overcome these effects and to improve anticancer therapy. Nanoemulsions comprise submicron emulsions composed of biocompatible lipids, and present a large surface area revealing interesting physical properties. Chalcones are flavonoid precursors, and have been studied as cytotoxic drugs for leukemia cells that induce cell death by different apoptosis pathways. In this study, we encapsulated chalcones in a nanoemulsion and compared their effect with the respective free compounds in leukemia and in non-tumoral cell lines, as well as in an in vivo model. Free and loaded-nanoemulsion chalcones induced a similar anti-leukemic effect. Free chalcones induced higher toxicity in VERO cells than chalcones-loaded nanoemulsions. Similar results were observed in vivo. Free chalcones induced a reduction in weight gain and liver injuries, evidenced by oxidative stress, as well as an inflammatory response. Considering the high toxicity and the side effects induced generally by all cancer chemotherapies, nanotechnology provides some options for improving patients’ life quality and/or increasing survival rates. PMID:25264679

  14. Nanoemulsion-based delivery systems for poorly water-soluble bioactive compounds: Influence of formulation parameters on Polymethoxyflavone crystallization

    PubMed Central

    Li, Yan; Zheng, Jinkai; Xiao, Hang; McClements, David Julian

    2012-01-01

    Polymethoxyflavones (PMFs) extracted from citrus peel exhibit potent anti-cancer activity, but are highly hydrophobic molecules with poor solubility in both water and oil at ambient and body temperature, which limits their bioavailability. The possibility of encapsulating PMFs within nanoemulsion-based delivery systems to facilitate their application in nutraceutical and pharmaceutical products was investigated. The influence of oil type (corn oil, MCT, orange oil), emulsifier type (β-lactoglobulin, lyso-lecithin, Tween, and DTAB), and neutral cosolvents (glycerol and ethanol) on the formation and stability of PMF-loaded nanoemulsions was examined. Nanoemulsions (r < 100 nm) could be formed using high pressure homogenization for all emulsifier types, except DTAB. Lipid droplet charge could be altered from highly cationic (DTAB), to near neutral (Tween), to highly anionic (β-lactoglobulin, lyso-lecithin) by varying emulsifier type. PMF crystals formed in all nanoemulsions after preparation, which had a tendency to sediment during storage. The size, morphology, and aggregation of PMF crystals depended on preparation method, emulsifier type, oil type, and cosolvent addition. These results have important implications for the development of delivery systems for bioactive components that have poor oil and water solubility at application temperatures. PMID:22685367

  15. Nanoemulsion-based delivery systems for poorly water-soluble bioactive compounds: Influence of formulation parameters on Polymethoxyflavone crystallization.

    PubMed

    Li, Yan; Zheng, Jinkai; Xiao, Hang; McClements, David Julian

    2012-06-01

    Polymethoxyflavones (PMFs) extracted from citrus peel exhibit potent anti-cancer activity, but are highly hydrophobic molecules with poor solubility in both water and oil at ambient and body temperature, which limits their bioavailability. The possibility of encapsulating PMFs within nanoemulsion-based delivery systems to facilitate their application in nutraceutical and pharmaceutical products was investigated. The influence of oil type (corn oil, MCT, orange oil), emulsifier type (β-lactoglobulin, lyso-lecithin, Tween, and DTAB), and neutral cosolvents (glycerol and ethanol) on the formation and stability of PMF-loaded nanoemulsions was examined. Nanoemulsions (r < 100 nm) could be formed using high pressure homogenization for all emulsifier types, except DTAB. Lipid droplet charge could be altered from highly cationic (DTAB), to near neutral (Tween), to highly anionic (β-lactoglobulin, lyso-lecithin) by varying emulsifier type. PMF crystals formed in all nanoemulsions after preparation, which had a tendency to sediment during storage. The size, morphology, and aggregation of PMF crystals depended on preparation method, emulsifier type, oil type, and cosolvent addition. These results have important implications for the development of delivery systems for bioactive components that have poor oil and water solubility at application temperatures. PMID:22685367

  16. Intracellular pH measurements using perfluorocarbon nanoemulsions.

    PubMed

    Patrick, Michael J; Janjic, Jelena M; Teng, Haibing; O'Hear, Meredith R; Brown, Cortlyn W; Stokum, Jesse A; Schmidt, Brigitte F; Ahrens, Eric T; Waggoner, Alan S

    2013-12-11

    We report the synthesis and formulation of unique perfluorocarbon (PFC) nanoemulsions enabling intracellular pH measurements in living cells via fluorescent microscopy and flow cytometry. These nanoemulsions are formulated to readily enter cells upon coincubation and contain two cyanine-based fluorescent reporters covalently bound to the PFC molecules, specifically Cy3-PFC and CypHer5-PFC conjugates. The spectral and pH-sensing properties of the nanoemulsions were characterized in vitro and showed the unaltered spectral behavior of dyes after formulation. In rat 9L glioma cells loaded with nanoemulsion, the local pH of nanoemulsions was longitudinally quantified using optical microscopy and flow cytometry and displayed a steady decrease in pH to a level of 5.5 over 3 h, indicating rapid uptake of nanoemulsion to acidic compartments. Overall, these reagents enable real-time optical detection of intracellular pH in living cells in response to pharmacological manipulations. Moreover, recent approaches for in vivo cell tracking using magnetic resonance imaging (MRI) employ intracellular PFC nanoemulsion probes to track cells using (19)F MRI. However, the intracellular fate of these imaging probes is poorly understood. The pH-sensing nanoemulsions allow the study of the fate of the PFC tracer inside the labeled cell, which is important for understanding the PFC cell loading dynamics, nanoemulsion stability and cell viability over time. PMID:24266634

  17. Intracellular pH measurements using perfluorocarbon nanoemulsions

    PubMed Central

    Patrick, Michael J.; Janjic, Jelena M.; Teng, Haibing; O’Hear, Meredith R.; Brown, Cortlyn W.; Stokum, Jesse A.; Schmidt, Brigitte F.; Ahrens, Eric T.; Waggoner, Alan S.

    2014-01-01

    We report the synthesis and formulation of unique perfluorocarbon (PFC) nanoemulsions enabling intracellular pH measurements in living cells via fluorescent microscopy and flow cytometry. These nanoemulsions are formulated to readily enter cells upon co-incubation and contain two cyanine-based fluorescent reporters covalently bound to the PFC molecules, specifically Cy3-PFC and CypHer5-PFC conjugates. The spectral and pH-sensing properties of the nanoemulsions where characterized in vitro and showed the unaltered spectral behavior of dyes after formulation. In rat 9L glioma cells loaded with nanoemulsion, the local pH of nanoemulsions was longitudinally quantified using optical microscopy and flow cytometry, and displayed a steady decrease in pH to a level of 5.5 over 3 hours, indicating rapid uptake of nanoemulsion to acidic compartments. Overall, these reagents enable real-time optical detection of intracellular pH in living cells in response to pharmacological manipulations. Moreover, recent approaches for in vivo cell tracking using magnetic resonance imaging (MRI) employ intracellular PFC nanoemulsion probes to track cells using 19F MRI. However, the intracellular fate of these imaging probes is poorly understood. The pH sensing nanoemulsions allow the study of the fate of the PFC tracer inside the labeled cell, which is important for understanding the PFC cell loading dynamics and nanoemulsion stability and cell viability over time. PMID:24266634

  18. Slow, nondiffusive dynamics in concentrated nanoemulsions

    NASA Astrophysics Data System (ADS)

    Guo, H.; Wilking, J. N.; Liang, D.; Mason, T. G.; Harden, J. L.; Leheny, R. L.

    2007-04-01

    Using multispeckle x-ray photon correlation spectroscopy, we have measured the slow, wave-vector-dependent dynamics of concentrated, disordered nanoemulsions composed of silicone oil droplets in water. The intermediate scattering function possesses a compressed exponential line shape and a relaxation time that varies inversely with wave vector. We interpret this dynamics as strain in response to local stress relaxation. The motion includes a transient component whose characteristic velocity decays exponentially with time following a mechanical perturbation of the nanoemulsions and a second component whose characteristic velocity is essentially independent of time. The steady-state characteristic velocity is surprisingly insensitive to the droplet volume fraction in the concentrated regime, indicating that the strain motion is only weakly dependent on the droplet-droplet interactions.

  19. Archaic artifacts resembling celestial spheres

    NASA Astrophysics Data System (ADS)

    Dimitrakoudis, S.; Papaspyrou, P.; Petoussis, V.; Moussas, X.

    We present several bronze artifacts from the Archaic Age in Greece (750-480 BC) that resemble celestial spheres or forms of other astronomical significance. They are studied in the context of the Dark Age transition from Mycenaean Age astronomical themes to the philosophical and practical revival of astronomy in the Classical Age with its plethora of astronomical devices. These artifacts, mostly votive in nature are spherical in shape and appear in a variety of forms their most striking characteristic being the depiction of meridians and/or an equator. Most of those artifacts come from Thessaly, and more specifically from the temple of Itonia Athena at Philia, a religious center of pan-Hellenic significance. Celestial spheres, similar in form to the small artifacts presented in this study, could be used to measure latitudes, or estimate the time at a known place, and were thus very useful in navigation.

  20. Synthesis of carbonated hydroxyapatite nanospheres through nanoemulsion.

    PubMed

    Zhou, W Y; Wang, M; Cheung, W L; Guo, B C; Jia, D M

    2008-01-01

    This study investigated the nanoemulsion technique as a means to synthesize carbonated hydroxyapatite (CHAp) nanospheres which could be used to produce composite tissue engineering scaffolds. CHAp nanospheres were successfully synthesized by mixing an acetone solution of Ca(NO(3))(2).4H(2)O with an aqueous solution of (NH(4))(2)HPO(4) and NH(4)HCO(3). Four reaction temperatures, namely, 4, 25, 37 and 55 degrees C, were investigated and no surfactant was added in all nanoemulsion processes. Wet slurries of CHAp from the nanoemulsions were freeze-dried to obtain dry powders. X-ray diffraction (XRD) results showed that the as-synthesized CHAp nanoparticles were mainly in an amorphous state. After calcination at 900 degrees C, the apatite became well crystallized. Fourier transform infrared (FTIR) spectroscopy showed that the CHAp was B-type substitution. Both scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed that the CHAp particles were spherical in shape and that their sizes were in the nanometer range. The successful synthesis of CHAp nanospheres is a critical step forward in our efforts to fabricate bone tissue engineering scaffolds using the selective laser sintering technology. PMID:17577636

  1. Curcumin nanoemulsion for transdermal application: formulation and evaluation.

    PubMed

    Rachmawati, Heni; Budiputra, Dewa Ken; Mauludin, Rachmat

    2015-04-01

    The aim of this work is to develop a curcumin nanoemulsion for transdermal delivery. The incorporation of curcumin inside a nanoglobul should improve curcumin stability and permeability. A nanoemulsion was prepared by the self-nanoemulsification method, using an oil phase of glyceryl monooleate, Cremophor RH40 and polyethylene glycol 400. Evaluation of the nanoemulsion included analysis of particle size, polydispersity index, zeta potential, physical stability, Raman spectrum and morphology. In addition, the physical performance of the nanoemulsion in Viscolam AT 100P gel was studied. A modified vertical diffusion cell and shed snake skin of Python reticulatus were used to study the in vitro permeation of curcumin. A spontaneously formed stable nanoemulsion has a loading capacity of 350 mg curcumin/10 g of oil phase. The mean droplet diameter, polydispersity index and zeta potential of optimized nanoemulsion were 85.0 ± 1.5 nm, 0.18 ± 0.0 and -5.9 ± 0.3 mV, respectively. Curcumin in a nanoemulsion was more stable than unencapsulated curcumin. Furthermore, nanoemulsification significantly improved the permeation flux of curcumin from the hydrophilic matrix gel; the release kinetic of curcumin changed from zero order to a Higuchi release profile. Overall, the developed nanoemulsion system not only improved curcumin permeability but also protected the curcumin from chemical degradation. PMID:24502271

  2. Development of a nanoemulsion of Phyllanthus emblica L. branch extract.

    PubMed

    Chaiittianan, Rungsiri; Sripanidkulchai, Bungorn

    2014-12-01

    For potential topical administration, we formulated a nanoemulsion containing phenolic constituents of Phyllanthus emblica branch extract. The nanoemulsion has high entrapment efficiency, small particle size, is stable, and can release its main chemical components. Branches of P. emblica were extracted with 50% ethanol (EPE) with 5.4% yield. HPLC analysis indicated several phenolic compounds, including gallic acid, vanillic acid, epigallocatechin (EGC), epigallocatechin gallate (EGCG) and ellagic acid. These were selected as chemical markers of EPE in the nanoemulsion development. The nanoemulsion was prepared by microemulsion techniques with hot high pressure homogenization. A ternary phase diagram was constructed to obtain the optimized nanoemulsion. The obtained transparent EPE nanoemulsion is composed of isopropyl myristate (0.6% w/w), Brij® 78 (0.35% w/w), and 0.15% (w/w) EPE. The optimized EPE nanoemulsion had a median particle size of 191.63 ± 4.07 nm with a narrow particle size distribution, a zeta potential of -10.19 ± 0.54 mV, high entrapment efficiency at 67.99 ± 0.87% and good stability at 4 °C after 90 d of storage. The release of active ingredients from the EPE nanoemulsion was slower than that of the EPE aqueous formulation. The loading ratios of the five phenolic compounds were high, with relative order of EGC > EGCG > vanillic acid > gallic acid > ellagic acid, resulting in slow release profiles of EGC and EGCG in the EPE nanoemulsion. In conclusion, the obtained EPE nanoemulsion has good characteristics for future clinical trials. PMID:24053418

  3. Effect of PEG surface conformation on anticancer activity and blood circulation of nanoemulsions loaded with tocotrienol-rich fraction of palm oil.

    PubMed

    Alayoubi, Alaadin; Alqahtani, Saeed; Kaddoumi, Amal; Nazzal, Sami

    2013-10-01

    Tocotrienol-rich fraction of palm oil, which contains the isomers of vitamin E, was shown to possess potent anticancer activity against mammary adenocarcinoma cell lines. Its clinical use, however, is limited by poor oral bioavailability and short half-life. Previously, we developed tocotrienol-rich lipid nanoemulsions for intravenous administration. The objective of this study was to investigate the effect of surface grafted polyethylene glycol (PEG) on the properties of the nanoemulsions. PEGylation was achieved by the addition of equimolar PEG groups using poloxamer or 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethylene glycol)2000] (PEG2000-DSPE). The effect of PEG surface topography on the antiproliferative activity of nanoemulsions against mammary adenocarcinoma cells, their susceptibility to protein adsorption, and its effect on blood hemolysis and circulation time was investigated. Nanoemulsions PEGylated with poloxamer or PEG2000-DSPE were stable under physical stress. Poloxamer nanoemulsion, however, displayed higher uptake and potency against MCF-7 tumor cells in 2D and 3D culture and increased hemolytic effect and susceptibility to IgG adsorption, which was reflected in its rapid clearance and short circulation half-life (1.7 h). Conversely, PEGylation with PEG2000-DSPE led to a 7-fold increase in mean residence time (12.3 h) after IV injection in rats. Reduced activity in vitro and improved circulation time suggested strong shielding of plasma proteins from the droplets. Differences between the nanoemulsions were attributed to polymer imbibitions and the differences in PEG conformation and density on the surface of the droplets. PMID:23990503

  4. The First Scale-Up Production of Theranostic Nanoemulsions

    PubMed Central

    Liu, Lu; Bagia, Christina; Janjic, Jelena M.

    2015-01-01

    Abstract Theranostic nanomedicines are a promising new technological advancement toward personalized medicine. Although much progress has been made in pre-clinical studies, their clinical utilization is still under development. A key ingredient for successful theranostic clinical translation is pharmaceutical process design for production on a sufficient scale for clinical testing. In this study, we report, for the first time, a successful scale-up of a model theranostic nanoemulsion. Celecoxib-loaded near-infrared-labeled perfluorocarbon nanoemulsion was produced on three levels of scale (small at 54 mL, medium at 270 mL, and large at 1,000 mL) using microfluidization. The average size and polydispersity were not affected by the equipment used or production scale. The overall nanoemulsion stability was maintained for 90 days upon storage and was not impacted by nanoemulsion production scale or composition. Cell-based evaluations show comparable results for all nanoemulsions with no significant impact of nanoemulsion scale on cell toxicity and their pharmacological effects. This report serves as the first example of a successful scale-up of a theranostic nanoemulsion and a model for future studies on theranostic nanomedicine production and development. PMID:26309798

  5. Perfluorocarbon nanoemulsions with fluorescent, colloidal and magnetic properties

    PubMed Central

    Janjic, Jelena M.; Shao, Pin; Zhang, Shaojuan; Yang, Xun; Patel, Sravan K.; Bai, Mingfeng

    2014-01-01

    Bimodal imaging agents that combine magnetic resonance imaging (MRI) and nearinfrared (NIR) imaging formulated as nanoemulsions became increasingly popular for imaging inflammation in vivo. Quality of in vivo imaging using nanoemulsions is directly dependent on their integrity and stability. Here we report the design of nanoemulsions for bimodal imaging, where both photostability and colloidal stability are equally addressed. A highly chemically and photo stable quaterrylenediimide dye was introduced into perfluoro-15-crown-5 ether (PCE) nanoemulsions. The nanoemulsions were prepared with PCE and Miglyol 812N mixed at 1:1 v/v ratio as internal phase stabilized by non-ionic surfactants. Data shows exceptional colloidal stability demonstrated as unchanged droplet size (~130 nm) and polydispersity (<0.15) after 182 days follow up at both 4 and 25 °C. Nanoemulsions also sustained the exposure to mechanical and temperature stress, and prolonged exposure to light without changes in droplet size, 19F signal or fluorescence signal. No toxicity was observed in vitro in model inflammatory cells upon 24 h exposure while confocal microscopy showed that nanoemulsions droplets accumulated in the cytoplasm. Overall, our data demonstrates that design of bimodal imaging agents requires consideration of stability of each imaging component and that of the nanosystem as a whole to achieve excellent imaging performance. PMID:24674463

  6. Cryogenic electron microscopy study of nanoemulsion formation from microemulsions.

    PubMed

    Lee, Han Seung; Morrison, Eric D; Frethem, Chris D; Zasadzinski, Joseph A; McCormick, Alon V

    2014-09-16

    We examine a process of preparing oil-in-water nanoemulsions by quenching (diluting and cooling) precursor microemulsions made with nonionic surfactants and a cosurfactant. The precursor microemulsion structure is varied by changing the concentration of the cosurfactant. Water-continuous microemulsions produce initial nanoemulsion structures that are small and simple, mostly unilamellar vesicles, but microemulsions that are not water-continuous produce initial nanoemulsion structures that are larger and multilamellar. Examination of these structures by cryo-electron microscopy supports the hypothesis that they are initially vesicular structures formed via lamellar intermediate structures, and that if the lamellar structures are too well ordered they fail to produce small simple structures. PMID:25141294

  7. Development of a positively charged prednicarbate nanoemulsion.

    PubMed

    Baspinar, Yücel; Keck, Cornelia M; Borchert, Hans-Hubert

    2010-01-01

    A physically and chemically stable positively charged prednicarbate nanoemulsion was developed as a carrier system for the treatment of atopic dermatitis. Phytosphingosine was used to obtain the positive charge and also because of its supportive properties for the restoration of damaged skin. As production method high pressure homogenization was employed. The optimal concentrations of phytosphingosine, the oil phase, and the emulsifiers were investigated. The production was optimized by investigating the influence of homogenization cycles, homogenization pressure, production temperature and type of homogenizer with respect to particle size, physical stability of the emulsions and chemical stability of prednicarbate. From the results the best formulation and the most appropriate production parameters were identified. In addition it could be shown that during high pressure homogenization the drug is relocated from the inner oil phase of the emulsion towards the stabilizer layer, which could be shown by an increase in chemical stability of prednicarbate. The efficiency of incorporation is influenced by the energy input during homogenization (e.g. number of homogenization cycles) but also by the production temperature. It was found that the nanoemulsions should be produced at elevated temperatures, with low homogenization pressures but higher numbers of homogenization cycles (e.g. 300 bar and 10 cycles). The results prove that the efficiency of high pressure homogenization should not only be judged by investigating the particle size and the physical stability of the emulsions alone, but also by assessing the chemical stability of the incorporated drug. PMID:19747968

  8. Moxifloxacin-loaded nanoemulsions having tocopheryl succinate as the integral component improves pharmacokinetics and enhances survival in E. coli-induced complicated intra-abdominal infection.

    PubMed

    Shukla, Prashant; Verma, Ajeet Kumar; Dwivedi, Pankaj; Yadav, Arti; Gupta, Pramod Kumar; Rath, Srikanta Kumar; Mishra, Prabhat Ranjan

    2014-12-01

    In the present work, a novel nanoemulsion laden with moxifloxacin has been developed for effective management of complicated intra-abdominal infections. Moxifloxacin nanoemulsion fabricated using high pressure homogenization was evaluated for various pharmaceutical parameters, pharmacokinetics (PK) and pharmacodynamics (PD) in rats with E. coli-induced peritonitis and sepsis. The developed nanoemulsion MONe6 (size 168 ± 28 nm and zeta potential (ZP) 24.78 ± 0.45 mV, respectively) was effective for intracellular delivery and sustaining the release of MOX. MONe6 demonstrated improved plasma (AUC(MONe6/MOX) = 2.38-fold) and tissue pharmacokinetics of MOX (AUC(MONe6/MOX) = 2.63 and 1.47 times in lung and liver, respectively). Calculated PK/PD index correlated well with a reduction in bacterial burden in plasma as well as tissues. Enhanced survival on treatment with MONe6 (65.44%) and as compared to the control group (8.22%) was a result of reduction in lipid peroxidation, neutrophil migration, and cytokine levels (TNF-α and IL6) as compared to untreated groups in the rat model of E. coli-induced sepsis. Parenteral nanoemulsions of MOX hold a promising advantage in the therapy of E. coli-induced complicated intra-abdominal infections and is helpful in the prevention of further complications like septic shock and death. PMID:25317848

  9. Pentyl Gallate Nanoemulsions as Potential Topical Treatment of Herpes Labialis.

    PubMed

    Kelmann, Regina G; Colombo, Mariana; De Araújo Lopes, Sávia Caldeira; Nunes, Ricardo J; Pistore, Morgana; Dall Agnol, Daniele; Rigotto, Caroline; Silva, Izabella Thais; Roman, Silvane S; Teixeira, Helder F; Oliveira Simões, Cláudia M; Koester, Letícia S

    2016-07-01

    Previous studies have demonstrated the antiherpes activity of pentyl gallate (PG), suggesting that it could be a promising candidate for the topical treatment of human herpes labialis. PG low aqueous solubility represents a major drawback to its incorporation in topical dosage forms. Hence, the feasibility of incorporating PG into nanoemulsions, the ability to penetrate the skin, to inhibit herpes simplex virus (HSV)-1 replication, and to cause dermal sensitization or toxicity were evaluated. Oil/water nanoemulsions containing 0.5% PG were prepared by spontaneous emulsification. The in vitro PG distribution into porcine ear skin after topical application of nanoemulsions was assessed, and the in vitro antiviral activity against HSV-1 replication was evaluated. Acute dermal toxicity and risk of dermal sensitization were evaluated in rat model. Nanoemulsions presented nanometric particle size (from 124.8 to 143.7 nm), high zeta potential (from -50.1 to -66.1 mV), loading efficiency above 99%, and adequate stability during 12 months. All formulations presented anti-HSV-1 activity. PG was able to reach deeper into the dermis more efficiently from the nanoemulsion F4. This formulation as well as PG were considered safe for topical use. Nanoemulsions seem to be a safe and effective approach for topically delivering PG in the treatment of human herpes labialis infection. PMID:27290627

  10. Cationic nanoemulsions as potential carriers for intracellular delivery.

    PubMed

    Khachane, P V; Jain, A S; Dhawan, V V; Joshi, G V; Date, A A; Mulherkar, R; Nagarsenker, M S

    2015-04-01

    Successful cytosolic delivery enables opportunities for improved treatment of various genetic disorders, infectious diseases and cancer. Cationic nanoemulsions were designed using alternative excipients and evaluated for particle size, charge, effect of sterilization on its stability, DNA condensation potential and cellular uptake efficiency. Various concentrations of non-ionic and ionic stabilizers were evaluated to design formula for colloidally stable cationic nanoemulsion. The nanoemulsion comprised of 5% Capmul MCM, 0.5% didodecyldimethylammonium bromide (DDAB), 1% phospholipid, 1% Poloxamer 188 and 2.25% glycerol and possessed particle size of 81.6 ± 3.56 nm and 137.1 ± 1.57 nm before and after steam sterilization, respectively. DNA condensation studies were carried out at various nanoemulsion: DNA ratios ranging from 1:1 to 10:1. Cell uptake studies were conducted on human embryonic kidney (HEK) cell lines which are widely reported for transfection studies. The nanoemulsions showed excellent cellular uptake as evaluated by fluorescence microscopy and flow cytometry. Overall, a colloidally stable cationic nanoemulsion with good DNA condensation ability was successfully fabricated for efficient cytosolic delivery and potential for in vivo effectiveness. PMID:25972740

  11. Encapsulation and Delivery of Crystalline Hydrophobic Nutraceuticals using Nanoemulsions: Factors Affecting Polymethoxyflavone Solubility.

    PubMed

    Li, Yan; Xiao, Hang; McClements, David Julian

    2012-12-01

    Polymethoxyflavones (PMF) isolated from citrus peel have potent anti-cancer activity, however their utilization as functional ingredients in foods is currently limited because of their high melting point and poor water-solubility. The influence of oil type and concentration, hydrophilic polymer addition, and simulated intestinal conditions on PMF (5-hydroxytangeretin) solubility in solutions and nanoemulsions was examined. The saturation concentration of PMF in water was relatively low (0.93 µM), but could be increased appreciably by adding certain hydrophilic polymers: polyethylene glycol (PEG) and β-cyclodextrin (CD) were ineffective at increasing solubility, but poly(vinyl alcohol) (PVA) and hydroxypropyl methylcellulose (HPMC) greatly enhanced solubility (e.g., > 6 µM for 0.5 % polymer). PMF was more soluble in medium chain triglycerides (MCT, 6.1 mM) than long chain triglycerides (LCT, 4.2 mM). The encapsulation efficiency of PMF in oil-in-water nanoemulsions was higher when MCT was used as the oil phase rather than LCT, and could be increased by increasing the oil droplet content. The solubility of PMF in simulated small intestinal fluids was increased by solubilization in bile micelles and mixed micelles formed during lipid digestion. These results have important implications for the development of functional foods fortified with bioactive hydrophobic components aimed at improving human health and wellness. PMID:23646037

  12. Nanoemulsions prepared by a low-energy emulsification method applied to edible films.

    PubMed

    Bilbao-Sáinz, Cristina; Avena-Bustillos, Roberto J; Wood, Delilah F; Williams, Tina G; McHugh, Tara H

    2010-11-24

    Catastrophic phase inversion (CPI) was used as a low-energy emulsification method to prepare oil-in-water (O/W) nanoemulsions in a lipid (Acetem)/water/nonionic surfactant (Tween 60) system. CPIs in which water-in-oil emulsions (W/O) are transformed into oil-in-water emulsions (O/W) were induced by changes in the phase ratio. Dynamic phase inversion emulsification was achieved by slowly increasing the water volume fraction (fw) to obtain O/W emulsions from water in oil emulsions. Composition and processing variables were optimized to minimize droplet size and polydispersity index (PdI). It was found that addition of the continuous phase to the dispersed phase following the standard CPI procedure resulted in the formation of oil droplets with diameters of 100-200 nm. Droplet size distribution during CPI and emulsification time depended on stirring speed and surfactant concentration. Droplet sizes in the inverted emulsions were compared to those obtained by direct emulsification: The process time to reach droplet sizes of around 100 nm was reduced by 12 times by using CPI emulsification. The Acetem/water nanoemulsion was also used as a carrier to incorporate oregano and cinnamon essential oils into soy protein edible films. The resulting composite films containing oregano oil showed better moisture barrier and mechanical properties compared to soy protein films. PMID:20977191

  13. Development of a frozen yogurt fortified with a nano-emulsion containing purple rice bran oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objectives of this study were to develop and evaluate a frozen yogurt (FY) fortified with a nano-emulsion containing purple rice bran oil (NPRBO). A nano-emulsion with a droplet size range of 150-300 nm was produced by sonication followed by ultra-shear homogenization. The nano-emulsion was mi...

  14. Development and bioavailability assessment of ramipril nanoemulsion formulation.

    PubMed

    Shafiq, Sheikh; Shakeel, Faiyaz; Talegaonkar, Sushma; Ahmad, Farhan J; Khar, Roop K; Ali, Mushir

    2007-05-01

    The objective of our investigation was to design a thermodynamically stable and dilutable nanoemulsion formulation of Ramipril, with minimum surfactant concentration that could improve its solubility, stability and oral bioavailability. Formulations were taken from the o/w nanoemulsion region of phase diagrams, which were subjected to thermodynamic stability and dispersibility tests. The composition of optimized formulation was Sefsol 218 (20% w/w), Tween 80 (18% w/w), Carbitol (18% w/w) and standard buffer solution pH 5 (44% w/w) as oil, surfactant, cosurfactant and aqueous phase, respectively, containing 5 mg of ramipril showing drug release (95%), droplet size (80.9 nm), polydispersity (0.271), viscosity (10.68 cP), and infinite dilution capability. In vitro drug release of the nanoemulsion formulations was highly significant (p<0.01) as compared to marketed capsule formulation and drug suspension. The relative bioavailability of ramipril nanoemulsion to that of conventional capsule form was found to be 229.62% whereas to that of drug suspension was 539.49%. The present study revealed that ramipril nanoemulsion could be used as a liquid formulation for pediatric and geriatric patients and can be formulated as self-nanoemulsifying drug delivery system (SNEDDS) as a unit dosage form. PMID:17127045

  15. Physical and antimicrobial properties of peppermint oil nanoemulsions.

    PubMed

    Liang, Rong; Xu, Shiqi; Shoemaker, Charles F; Li, Yue; Zhong, Fang; Huang, Qingrong

    2012-08-01

    The mixture of peppermint oil (PO) with medium-chain triacylglycerol was emulsified in water and stabilized with a food-grade biopolymer, modified starch, to form PO nanoemulsions. The effects of emulsifying conditions including homogenization pressure, the number of processing cycles, and oil loading on the mean diameters and viscosities of nanoemulsions were characterized by dynamic light scattering, optical microscopy, and rheological measurements. The formulated PO nanoemulsions with mean diameters normally <200 nm showed high stability over at least 30 days of storage time. Their antimicrobial properties related to those of PO have also been evaluated by two assays, the minimum inhibitory concentration (MIC) and time-kill dynamic processes, against two Gram-positive bacterial strains of Listeria monocytogenes Scott A and Staphylococcus aureus ATCC 25923. Compared with bulk PO, the PO nanoemulsions showed prolonged antibacterial activities. The results suggest that the nanoemulsion technology can provide novel applications of essential oils in extending the shelf life of aqueous food products. PMID:22746096

  16. Nano-emulsions of fluorinated trityl radicals as sensors for EPR oximetry

    NASA Astrophysics Data System (ADS)

    Charlier, N.; Driesschaert, B.; Wauthoz, N.; Beghein, N.; Préat, V.; Amighi, K.; Marchand-Brynaert, J.; Gallez, B.

    2009-04-01

    This article reports the development and evaluation of two nano-emulsions (F45T-03/HFB and F15T-03/PFOB) containing fluorinated trityl radicals dissolved in perfluorocarbons. Preparation with a high-pressure homogenizer conferred sub-micronic size to both nano-emulsions. In vitro and in vivo EPR spectroscopy showed that the nano-emulsions had much greater oxygen sensitivity than the hydrophilic trityl, CT-03. In vivo experiments in rodents confirmed the ability of the nano-emulsions to follow the changes in oxygen concentration after induced ischemia. Histological evaluation of the tissue injected with the nano-emulsions revealed some acute toxicity for the F45T-03/HFB nano-emulsion but none for the F15T-03/PFOB nano-emulsion. These new formulations should be considered for further EPR oximetry experiments in pathophysiological situations where subtle changes in tissue oxygenation are expected.

  17. Nano-emulsions of fluorinated trityl radicals as sensors for EPR oximetry.

    PubMed

    Charlier, N; Driesschaert, B; Wauthoz, N; Beghein, N; Préat, V; Amighi, K; Marchand-Brynaert, J; Gallez, B

    2009-04-01

    This article reports the development and evaluation of two nano-emulsions (F45T-03/HFB and F15T-03/PFOB) containing fluorinated trityl radicals dissolved in perfluorocarbons. Preparation with a high-pressure homogenizer conferred sub-micronic size to both nano-emulsions. In vitro and in vivo EPR spectroscopy showed that the nano-emulsions had much greater oxygen sensitivity than the hydrophilic trityl, CT-03. In vivo experiments in rodents confirmed the ability of the nano-emulsions to follow the changes in oxygen concentration after induced ischemia. Histological evaluation of the tissue injected with the nano-emulsions revealed some acute toxicity for the F45T-03/HFB nano-emulsion but none for the F15T-03/PFOB nano-emulsion. These new formulations should be considered for further EPR oximetry experiments in pathophysiological situations where subtle changes in tissue oxygenation are expected. PMID:19128993

  18. Mucoadhesive dexamethasone acetate-polymyxin B sulfate cationic ocular nanoemulsion--novel combinatorial formulation concept.

    PubMed

    Li, X; Müller, R H; Keck, C M; Bou-Chacra, N A

    2016-06-01

    Dexamethasone acetate (DEX) and polymyxin B sulfate (polymyxin B) were formulated as a cationic nanoemulsion for the treatment of ophthalmic infections. As novel concept, the positive charge to achieve mucoadhesion was not generated by toxicologically and regulatorily problematic cationic lipids or polymers, but by using a positively charged drug in combination with positively charged preservatives. The preservative also acts as co-surfactant to stabilize the emulsion. Nanoemulsions with the lipid phase Eutanol G-Lipoid S 100 (70%:30%) containing 0.05% (w/w) DEX were produced by high pressure homogenization, followed by dissolving the hydrophilic molecules in the water phase, e.g. polymyxin B (0.1%, w/w), cetylpyridinium chloride (0.01%, w/w) and glycerol (2.6%, w/w) to yield a combination product. The particles were below 200 nm with narrow size distribution. The osmolality (374 mOsm/kg), pH (5.31) and viscosity (2.45 mPa s at 37 degrees C) were compatible to the ocular administration. The zeta potential of the optimized formulation was shifted from approx. +9 mV to -11 mV after mucin incubation. The in vitro test revealed no potential cytotoxicity. The final products were stable after 180 days of storage at 4 degrees C and room temperature. The developed product is a viable alternative to the commercial ophthalmic suspensions. Moreover, this concept of generating the positive charge by cationic drug and/or preservative addition can be transferred to other ophthalmic products. PMID:27455551

  19. The impact of vaporized nanoemulsions on ultrasound-mediated ablation

    PubMed Central

    2013-01-01

    Background The clinical feasibility of using high-intensity focused ultrasound (HIFU) for ablation of solid tumors is limited by the high acoustic pressures and long treatment times required. The presence of microbubbles during sonication can increase the absorption of acoustic energy and accelerate heating. However, formation of microbubbles within the tumor tissue remains a challenge. Phase-shift nanoemulsions (PSNE) have been developed as a means for producing microbubbles within tumors. PSNE are emulsions of submicron-sized, lipid-coated, and liquid perfluorocarbon droplets that can be vaporized into microbubbles using short (<1 ms), high-amplitude (>5 MPa) acoustic pulses. In this study, the impact of vaporized phase-shift nanoemulsions on the time and acoustic power required for HIFU-mediated thermal lesion formation was investigated in vitro. Methods PSNE containing dodecafluoropentane were produced with narrow size distributions and mean diameters below 200 nm using a combination of sonication and extrusion. PSNE was dispersed in albumin-containing polyacrylamide gel phantoms for experimental tests. Albumin denatures and becomes opaque at temperatures above 58°C, enabling visual detection of lesions formed from denatured albumin. PSNE were vaporized using a 30-cycle, 3.2-MHz, at an acoustic power of 6.4 W (free-field intensity of 4,586 W/cm2) pulse from a single-element, focused high-power transducer. The vaporization pulse was immediately followed by a 15-s continuous wave, 3.2-MHz signal to induce ultrasound-mediated heating. Control experiments were conducted using an identical procedure without the vaporization pulse. Lesion formation was detected by acquiring video frames during sonication and post-processing the images for analysis. Broadband emissions from inertial cavitation (IC) were passively detected with a focused, 2-MHz transducer. Temperature measurements were acquired using a needle thermocouple. Results Bubbles formed at the HIFU focus via

  20. Characteristics of Nano-emulsion for Cold Thermal Storage

    NASA Astrophysics Data System (ADS)

    Fumoto, Koji; Kawaji, Masahiro; Kawanami, Tsuyoshi

    Phase change emulsion (PCE) is novel kind of heat storage and heat transfer fluids. It has characteristics as follows; greater apparent specific heat and higher heat transfer abilities in the phase change temperature range than conventional single phase heat transfer fluid. In this paper, a phase change emulsion, which has droplet diameter distribution of nanometer, were prepared. The Nano-emulsion was formed by low energy emulsification methods, as known the phase inversion temperature (PIT) method. Physical properties, such as viscosity, diameter and its distribution of emulsion were investigated. Especially, the relationships between preparation method and the concentration of surfactant have been discussed in detail. The results show that the viscosity of the Nano-emulsion is lower than the micro-emulsion, which was made by same mixing ratio of surfactant and concentration of phase change material. In addition, the Nano-emulsion clarified that stability was higher than microemulsions.

  1. Antimicrobial Activity of Nanoemulsion on Cariogenic Planktonic and Biofilm Organisms

    PubMed Central

    Amaechi, Bennett T.; Rawls, H Ralph; Valerie, A Lee

    2011-01-01

    Introduction Nanoemulsions (NE) are a unique class of disinfectants produced by mixing a water immiscible liquid phase into an aqueous phase under high shear forces. NE have antimicrobial properties and are also effective anti-biofilm agents. Materials and Methods The effectiveness of nanoemulsion and its components was determined against Streptococcus mutans and Lactobacillus casei by live/dead staining. In vitro antimicrobial effectiveness of nanoemulsion against planktonic Streptococcus mutans, Lactobacillus casei, Actinomyces viscosus, Candida albicans and mixed culture was determined by a serial dilution technique to obtain minimum inhibitory concentration and minimum bactericidal concentration (MIC/MBC). In addition, efficacy was investigated by kinetics of killing, adherence and biofilm assays. Results Compared to its components, nanoemulsion showed notable antimicrobial activity against biofilm organisms, up to 83.0% kill within 1 min. NE dilutions ranging from 243 to 19683 were effective against planktonic S. mutans, L. casei, A. viscosus, C. albicans and mixed culture of these four strains as shown through MIC/MBC assays. NE showed antimicrobial activity against planktonic cells at high dilutions, confirmed by time kill studies. The level of adhesion on glass surface was reduced by 94.2 to 99.5 % in nanoemulsion treated groups (p < 0.001). 4-day-old S. mutans, L. casei, A. viscosus, C. albicans and mixed cultures biofilms treated with NE showed reductions of bacterial counts with decreasing dilutions (p < 0.001). Conclusion These results suggest that nanoemulsion has effective anti-cariogenic activity against cariogenic microorganisms and may be a useful medication in the prevention of caries. PMID:21807359

  2. In vitro release testing methods for vitamin E nanoemulsions.

    PubMed

    Morais, Jacqueline M; Burgess, Diane J

    2014-11-20

    This study reports the release properties of the poorly water-soluble active vitamin E acetate from oil/water nanoemulsions containing canola oil, CremophorRH40(®) and Span80(®) prepared using a low energy emulsification method (EPI process). Drug release was measured via dialysis sac and reverse dialysis sac methods as well as USP apparatus 4 fitted with dialysis sac adapters. Macro- and microscopic stability were evaluated and no instabilities were observed during the test period. In vitro release testing was adequately performed using the reverse dialysis sac and USP apparatus 4 methods. However, the dialysis method produced a slower release rate compared to the other methods and this was considered a result of violation of sink conditions within the dialysis sacs as well as inadequate mixing. Micellar solubilization was able to increase vitamin E transport from canola oil to buffer solution, but no model active concentration increase in the nanoemulsion external aqueous phase was observed despite the presence of micelles. Accordingly, it appeared that diffusion across the interfacial film was the rate-limiting step for in vitro release from these nanoemulsions. Sustained/prolonged release of vitamin E was observed and could be explained based on the high partition coefficient and on the nanoemulsion interfacial film proprieties. PMID:25178829

  3. Design and Development of Nanoemulsion Systems Containing Interferon Gamma.

    PubMed

    Ribeiro, Elton B; Honorio-França, Adenilda C; França, Eduardo L; Soler, Maria A G

    2016-01-01

    The aim of this study was to design and develop stable nanoemulsion formulations containing IFN-γ to probe their use as an immunomodulating agent. The nanoemulsions comprising distilled water, triglycerides of capric acid/caprylic, sobitan-oleate (SP), polysorbate 80 (TW) and propylene glycol (PG) were prepared through ultra-homogenization and characterized regarding droplet size, polydispersity, surface charge, preliminary and accelerated physical stability, and rheological properties. Stable nanoemulsions were selected to incorporate nano doses of IFN-γ (100 ng.mL-1). The influence of IFN-γ incorporated nanoemulsions on functional activity of mononuclear cell for Escherichia coli enteropathogenic was analyzed through superoxide release, phagocytosis, microbicidal activity and intracellular calcium release. The optimized formulation, comprising aqueous and oily phase of 10 % and 80 %, respectively, and surfactant mix ratio (SP/TW/PG) of 3.5/5.5/1.0, remained stable in extreme conditions during 90 days, displaying oil-in-water characteristics, biocompatible pH value, significant maintenance of its rheological profile, hydrodynamic radius of 205 nm, zeta potential of -40 mV and average dose of IFN-γ 91 ng.mL- The developed formulation did not alter the MN cell viability rates. Increased the superoxide release, phagocytosis index and intracellular calcium release of MN cells of human blood. Our findings indicate that the produced formulation improved the immunomodulatory activity of the IFN-γ. PMID:27137130

  4. Characterization of rice bran wax policosanol and its nanoemulsion formulation

    PubMed Central

    Ishaka, Aminu; Umar Imam, Mustapha; Mahamud, Rozi; Zuki, Abu Bakar Zakaria; Maznah, Ismail

    2014-01-01

    Policosanol, a mixture of long-chain alcohols found in animal and plant waxes, has several biological effects; however, it has a bioavailability of less than 10%. Therefore, there is a need to improve its bioavailability, and one of the ways of doing this is by nanoemulsion formulation. Different droplet size distributions are usually achieved when emulsions are formed, which solely depends on the preparation method used. Mostly, emulsions are intended for better delivery with maintenance of the characteristics and properties of the leading components. In this study, policosanol was extracted from rice bran wax, its composition was determined by gas chromatography mass spectrophotometry, nanoemulsion was made, and the physical stability characteristics were determined. The results showed that policosanol nanoemulsion has a nanosize particle distribution below 100 nm (92.56–94.52 nm), with optimum charge distribution (−55.8 to −45.12 mV), pH (6.79–6.92) and refractive index (1.50); these were monitored and found to be stable for 8 weeks. The stability of policosanol nanoemulsion confers the potential to withstand long storage times. PMID:24872689

  5. Characterization of rice bran wax policosanol and its nanoemulsion formulation.

    PubMed

    Ishaka, Aminu; Umar Imam, Mustapha; Mahamud, Rozi; Zuki, Abu Bakar Zakaria; Maznah, Ismail

    2014-01-01

    Policosanol, a mixture of long-chain alcohols found in animal and plant waxes, has several biological effects; however, it has a bioavailability of less than 10%. Therefore, there is a need to improve its bioavailability, and one of the ways of doing this is by nanoemulsion formulation. Different droplet size distributions are usually achieved when emulsions are formed, which solely depends on the preparation method used. Mostly, emulsions are intended for better delivery with maintenance of the characteristics and properties of the leading components. In this study, policosanol was extracted from rice bran wax, its composition was determined by gas chromatography mass spectrophotometry, nanoemulsion was made, and the physical stability characteristics were determined. The results showed that policosanol nanoemulsion has a nanosize particle distribution below 100 nm (92.56-94.52 nm), with optimum charge distribution (-55.8 to -45.12 mV), pH (6.79-6.92) and refractive index (1.50); these were monitored and found to be stable for 8 weeks. The stability of policosanol nanoemulsion confers the potential to withstand long storage times. PMID:24872689

  6. Essential oil nanoemulsions as antimicrobial agents in food.

    PubMed

    Donsì, Francesco; Ferrari, Giovanna

    2016-09-10

    The crescent interest in the use of essential oils (EOs) as natural antimicrobials and preservatives in the food industry has been driven in the last years by the growing consumers' demand for natural products with improved microbial safety, and fresh-like organoleptic properties. Nanoemulsions efficiently contribute to support the use of EOs in foods by increasing their dispersibility in the food areas where microorganisms grow and proliferate, by reducing the impact on the quality attributes of the product, as well as by enhancing their antimicrobial activity. Understanding how nanoemulsions intervene on the mass transfer of EOs to the cell membrane and on the mechanism of antimicrobial action will support the engineering of more effective delivery systems and foster the application of EOs in real food systems. This review focuses on the enabling contribution of nanoemulsions to the use of EOs as natural preservative agents in food, (a) specifically addressing the formulation and fabrication of stable EO nanoemulsions, (b) critically analyzing the reported antimicrobial activity data, both in vitro and in product, to infer the impact of the delivery system on the mechanisms of action of EOs, as well as (c) discussing the regulatory issues associated with their use in food systems. PMID:27416793

  7. Opportunities and challenges for the nasal administration of nanoemulsions.

    PubMed

    Comfort, Claurice; Garrastazu, Gabriela; Pozzoli, Michele; Sonvico, Fabio

    2015-01-01

    Nasal delivery has become a growing area of interest for drug administration as a consequence of several practical advantages, such as ease of administration and non-invasiveness. Moreover, the avoidance of hepatic first-pass metabolism and rapid and efficient absorption across the permeable nasal mucosa offer a promising alternative to other traditional administration routes, such as oral or parenteral delivery. In fact, nasal delivery has been proposed for a number of applications, including local, systemic, direct nose-to-brain and mucosal vaccine delivery. Nanoemulsions, due to their stability, small droplet size and optimal solubilization properties, represent a versatile formulation approach suitable for several administration routes. Nanoemulsions demonstrated great potential in nasal drug delivery, increasing the absorption and the bioavailability of many drugs for systemic and nose-to-brain delivery. Furthermore, they act as an active component, i.e. an adjuvant, in nasal mucosal vaccinations, displaying the ability to induce robust mucosal immunity, high serum antibodies titres and a cellular immune response avoiding inflammatory response. Interestingly, nanoemulsions have not been proposed for the treatment of local ailments of the nose. Despite the promising results in vitro and in vitro, the application of nanoemulsions for nasal delivery in humans appears mainly hindered by the lack of detailed toxicology studies to determine the effect of these formulations on the nasal mucosa and cilia and the lack of extensive clinical trials. PMID:25579345

  8. Development of an insecticidal nanoemulsion with Manilkara subsericea (Sapotaceae) extract

    PubMed Central

    2014-01-01

    Background Plants have been recognized as a good source of insecticidal agents, since they are able to produce their own defensives to insect attack. Moreover, there is a growing concern worldwide to develop pesticides with low impact to environment and non-target organisms. Hexane-soluble fraction from ethanolic crude extract from fruits of Manilkara subsericea and its triterpenes were considered active against a cotton pest (Dysdercus peruvianus). Several natural products with insecticidal activity have poor water solubility, including triterpenes, and nanotechnology has emerged as a good alternative to solve this main problem. On this context, the aim of the present study was to develop an insecticidal nanoemulsion containing apolar fraction from fruits of Manilkara subsericea. Results It was obtained a formulation constituted by 5% of oil (octyldodecyl myristate), 5% of surfactants (sorbitan monooleate/polysorbate 80), 5% of apolar fraction from M. subsericea and 85% of water. Analysis of mean droplet diameter (155.2 ± 3.8 nm) confirmed this formulation as a nanoemulsion. It was able to induce mortality in D. peruvianus. It was observed no effect against acetylcholinesterase or mortality in mice induced by the formulation, suggesting the safety of this nanoemulsion for non-target organisms. Conclusions The present study suggests that the obtained O/A nanoemulsion may be useful to enhance water solubility of poor water soluble natural products with insecticidal activity, including the hexane-soluble fraction from ethanolic crude extract from fruits of Manilkara subsericea. PMID:24886215

  9. Social perception of facial resemblance in humans.

    PubMed

    DeBruine, Lisa M; Jones, Benedict C; Little, Anthony C; Perrett, David I

    2008-02-01

    Two lines of reasoning predict that highly social species will have mechanisms to influence behavior toward individuals depending on their degree of relatedness. First, inclusive fitness theory leads to the prediction that organisms will preferentially help closely related kin over more distantly related individuals. Second, evaluation of the relative costs and potential benefits of inbreeding suggests that the degree of kinship should also be considered when choosing a mate. In order to behaviorally discriminate between individuals with different levels of relatedness, organisms must be able to discriminate cues of kinship. Facial resemblance is one such potential cue in humans. Computer-graphic manipulation of face images has made it possible to experimentally test hypotheses about human kin recognition by facial phenotype matching. We review recent experimental evidence that humans respond to facial resemblance in ways consistent with inclusive fitness theory and considerations of the costs of inbreeding, namely by increasing prosocial behavior and positive attributions toward self-resembling images and selectively tempering attributions of attractiveness to other-sex faces in the context of a sexual relationship. PMID:18157627

  10. Development and characterization of nanoemulsion as carrier for the enhancement of bioavailability of artemether.

    PubMed

    Laxmi, Moksha; Bhardwaj, Ankur; Mehta, Shuchi; Mehta, Abhinav

    2015-01-01

    The present study aimed to develop a kinetically stable nanoemulsion of artemether with improved solubility, stability and oral bioavailability. Nanoemulsion was prepared by ultrasonication technique using internal oil phase (consisted of the drug dissolved in coconut oil and span 80) and external phase (comprising tween 80 and ethanol dissolved in water). The formulations were optimized using various parameters like percentage transmittance, refractive index, drug content, viscosity, zeta potential and release rate. Stability studies were conducted for a period of 90 days using stability chambers. In vivo studies of the developed formulations were conducted on Wistar rats and data were analyzed statistically. The nanoemulsion as observed under transmission electron microscope were found to be spherical in shape with an average size of 79.0 nm and a zeta potential of -15 mV which indicated of good electrokinetic stability of nanoemulsion . Nanoemulsion was found to be clear and transparent in appearance with a percentage transmittance of 98.2. Refractive index of 1.32 of the nanoemulsion indicated the isotropic nature of the drug. Release rate of the drug from the nanoemulsion formulation was found to be quite significant (P < 0.001) as compared to the plain drug. In vivo oral bioavailability of the nanoemulsion formulation was found to be 2.6-fold higher than the plain drug (˜ 40%) as observed from pharmacokinetic studies. Thus it was observed that nanoemulsion proved itself as a promising alternate for improving the bioavailability of artemether. PMID:24641773

  11. Nanoemulsion formulations for anti-cancer agent piplartine--Characterization, toxicological, pharmacokinetics and efficacy studies.

    PubMed

    Fofaria, Neel M; Qhattal, Hussaini Syed Sha; Liu, Xinli; Srivastava, Sanjay K

    2016-02-10

    Piplartine (PL) is an alkaloid found in black-pepper and known for its anticancer activity, however, due to poor solubility and lack of proper formulation, its use for oral administration is a challenge. The objective of this study was to formulate PL into nanoemulsion drug delivery system for oral delivery and thereafter evaluate toxicity, pharmacokinetics and therapeutic efficacy. Optimized nanoemulsions were formulated by self-emulsification as well as by homogenization-sonication method. Two nanoemulsions enhanced the solubility of PL with low polydispersity index and high stability. Both PL loaded nanoemulsions exhibited enhanced dissolution, cellular permeability and cytotoxic effects as compared to pure PL. Formulation of PL into nanoemulsions did not obstruct its cellular uptake in cancer cells. Blank or PL loaded nanoemulsions did not exhibited toxicity in mice upon daily oral administration for 60 days. Pharmacokinetics of PL followed a two-compartment model after intravenous administration. PL loaded nanoemulsions showed 1.5-fold increase in oral bioavailability as compared to free PL. Finally, PL loaded nanoemulsions showed marked anti-tumor activity at a dose of 10mg/kg in melanoma tumor bearing mice. In conclusion, for the first time we have developed a stable nanoemulsion delivery system for oral administration of PL, which enhanced its solubility, oral bioavailability and anti-tumor efficacy. PMID:26642946

  12. Nanoemulsion of eucalyptus oil and its larvicidal activity against Culex quinquefasciatus.

    PubMed

    Sugumar, S; Clarke, S K; Nirmala, M J; Tyagi, B K; Mukherjee, A; Chandrasekaran, N

    2014-06-01

    Filariasis is a mosquito-borne disease that causes lymphedema and the main vector is Culex quinquefasciatus. A simple measure was taken to eradicate the vector using nanoemulsion. Eucalyptus oil nanoemulsion was formulated in various ratios comprising of eucalyptus oil, tween 80 and water by ultrasonication. The stability of nanoemulsion was observed over a period of time and 1:2 ratios of eucalyptus oil (6%) and surfactant (12%) was found to be stable. The formulated eucalyptus oil nanoemulsion was characterized by transmission electron microscopy and dynamic light scattering. The nanoemulsion droplets were found to have a Z-average diameter of 9.4 nm and were spherical in shape. The larvicidal activity of eucalyptus oil nanoemulsion and bulk emulsion was tested and compared. Our nanoemulsion showed higher activity when compared to bulk emulsion. The histopathology of larvae-treated and untreated nanoemulsion was analyzed. Furthermore, biochemical assays were carried out to examine the effect of nanoemulsion on biochemical characteristics of larvae. The treated larval homogenate showed decrease in total protein content and a significant reduction in the levels of acetylcholinesterase. The levels of acid and alkaline phosphatase also showed reduction as compared to control larval homogenate. PMID:24401169

  13. Exotic Vegetable Oils for Cosmetic O/W Nanoemulsions: In Vivo Evaluation.

    PubMed

    Pereira, Tatiana A; Guerreiro, Carolina M; Maruno, Monica; Ferrari, Marcio; Rocha-Filho, Pedro Alves

    2016-01-01

    Oil-in-water nanoemulsions are stable systems with droplet sizes in the 20-200 nm range. The physicochemical properties of these systems may be influenced by the addition of additives. Thus, the influence of ethoxylated (EL) and acetylated lanolin (AL) addition on the droplet size, pH values, electrical conductivity and stability of nanoemulsions was investigated. Then, effect of nano-emulsions additives with EL (NE-EL) or AL (NE-AL) in hydration, oiliness and pH of the skin were evaluated. Nanoemulsion safety was evaluated through the observation of no undesirable effects after skin formulation application. Both additives caused changes in droplet size and electrical conductivity, but not in pH values. Nanoemulsions containing up to 6.0% ethoxylated lanolin and 2.0% acetylated lanolin remained stable after centrifugation tests. Higher concentrations of the additives made the nanoemulsions unstable. Stability tests showed that ethoxylated lanolin produced more stable nanoemulsions then acetylated lanolin and that the major instability phenomenon occurring in these systems is coalescence at elevated temperatures. Nanoemulsion-based lanolin derivatives increased skin hydration and oiliness and did not change cutaneous pH values. These formulations are non-toxic since they did not cause any irritation on the skin surface after nanoemulsion application, showing potential as carriers for pharmaceuticals and cosmetic applications. PMID:26927034

  14. Familial resemblance for serum metabolite concentrations.

    PubMed

    Draisma, Harmen H M; Beekman, Marian; Pool, René; van Ommen, Gert-Jan B; Adamski, Jerzy; Prehn, Cornelia; Vaarhorst, Anika A M; de Craen, Anton J M; Willemsen, Gonneke; Slagboom, P Eline; Boomsma, Dorret I

    2013-10-01

    Metabolomics is the comprehensive study of metabolites, which are the substrates, intermediate, and end products of cellular metabolism. The heritability of the concentrations of circulating metabolites bears relevance for evaluating their suitability as biomarkers for disease. We report aspects of familial resemblance for the concentrations in human serum of more than 100 metabolites, measured using a targeted metabolomics platform. Age- and sex-corrected monozygotic twin correlations, midparent-offspring regression coefficients, and spouse correlations in subjects from two independent cohorts (Netherlands Twin Register and Leiden Longevity Study) were estimated for each metabolite. In the Netherlands Twin Register subjects, who were largely fasting, we found significant monozygotic twin correlations for 121 out of 123 metabolites. Heritability was confirmed by midparent-offspring regression. For most detected metabolites, the correlations between spouses were considerably lower than those between twins, indicating a contribution of genetic effects to familial resemblance. Remarkably high heritability was observed for free carnitine (monozygotic twin correlation 0.66), for the amino acids serine (monozygotic twin correlation 0.77) and threonine (monozygotic twin correlation 0.64), and for phosphatidylcholine acyl-alkyl C40:3 (monozygotic twin correlation 0.77). For octenoylcarnitine, a consistent point estimate of approximately 0.50 was found for the spouse correlations in the two cohorts as well as for the monozygotic twin correlation, suggesting that familiality for this metabolite is explained by shared environment. We conclude that for the majority of metabolites targeted by the used metabolomics platform, the familial resemblance of serum concentrations is largely genetic. Our results contribute to the knowledge of the heritability of fasting serum metabolite concentrations, which is relevant for biomarker research. PMID:23985338

  15. Modification of palm kernel oil esters nanoemulsions with hydrocolloid gum for enhanced topical delivery of ibuprofen

    PubMed Central

    Salim, Norazlinaliza; Basri, Mahiran; Rahman, Mohd BA; Abdullah, Dzulkefly K; Basri, Hamidon

    2012-01-01

    Introduction During recent years, there has been growing interest in the use of nanoemulsion as a drug-carrier system for topical delivery. A nanoemulsion is a transparent mixture of oil, surfactant and water with a very low viscosity, usually the product of its high water content. The present study investigated the modification of nanoemulsions with different hydrocolloid gums, to enhanced drug delivery of ibuprofen. The in vitro characterization of the initial and modified nanoemulsions was also studied. Methods A palm kernel oil esters nanoemulsion was modified with different hydrocolloid gums for the topical delivery of ibuprofen. Three different hydrocolloids (gellan gum, xanthan gum, and carrageenan) were selected for use. Ternary phase diagrams were constructed using palm kernel oil esters as the oil, Tween 80 as the surfactant, and water. Nanoemulsions were prepared by phase inversion composition, and were gradually mixed with the freshly prepared hydrocolloids. The initial nanoemulsion and modified nanoemulsions were characterized. The abilities of the nanoemulsions to deliver ibuprofen were assessed in vitro, using a Franz diffusion cell fitted with rat skin. Results No significant changes were observed in droplet size (~16–20 nm) but a significant difference in polydispersity indexes were observed before and after the modification of nanoemulsions using gellan gum, carrageenan, and xanthan gum. The zeta potentials of the initial nanoemulsions (−11.0 mV) increased to −19.6 mV, −13.9 mV, and −41.9 mV, respectively. The abilities of both the initial nanoemulsion (T802) and the modified nanoemulsion to deliver ibuprofen through the skin were evaluated in vitro, using Franz diffusion cells fitted with rat skin. The in vitro permeation data showed that the modified nanoemulsion (Kp value of 55.4 × 10−3 cm · h−1) increased the permeability of ibuprofen 4.40 times over T802 (Kp value of 12.6 × 10−3 cm · h−1) (P < 0.05). Conclusion The

  16. Microemulsions and nanoemulsions: novel vehicles for whitening cosmeceuticals.

    PubMed

    Boonme, Prapaporn; Junyaprasert, Varaporn B; Suksawad, Nattiya; Songkro, Sarunyoo

    2009-08-01

    For Asian women, white skin is preferable. During the last decade, skin whitening products appear to be the largest and continually growing segment in skin-care market in Asia and have an impaction of economic worth. Skin whitening or lightening agents are as cosmetics which act as a drug-like benefit since melanin producing process of the skin is disturbed and can be classified as cosmeceuticals. To increase efficiency, novel vehicles are necessary for skin penetration enhancement of these agents. Microemulsions and nanoemulsions are one of useful nanocarriers for skin application in view of achieving efficiency of the active substances. Moreover, they can be formulated with ease for active ingredient incorporation, high stability and good appearance. In this review article, applications of well-known whitening or lightening agents were summarized. In addition, the use of microemulsions and nanoemulsions as novel vehicles for whitening products were discussed. PMID:20055083

  17. Multifunctional perfluorocarbon nanoemulsions for cancer therapy and imaging

    NASA Astrophysics Data System (ADS)

    Fernandes, Donald A.; Fernandes, Dennis D.; Wang, Yan J.; Li, Yuchong; Gradinaru, Claudiu C.; Rousseau, Dérick; Kolios, Michael C.

    2015-03-01

    There is currently interest in the development of nanoemulsions as imaging and therapeutic agents, particularly perfluorohexane (PFH) droplets, whose amphiphilic shell protects drugs against physico-chemical and enzymatic degradation. When delivered to their target sites, these perfluorocarbon (PFC) droplets can vaporize upon laser excitation, efficiently releasing their drug payload and/or imaging tracers. Due to the optical properties of gold, coupling PFC droplets with gold nanoparticles significantly reduces the energy required for vaporization. In this work, nanoemulsions with a PFC core and Zonyl FSP surfactant shell were produced using sonication. Droplets were characterized in terms of size and morphology using high resolution fluorescence microscopy (i.e. total internal reflection fluorescence microscopy, TIRFM), fluorescence correlation spectroscopy (FCS), transmission electron microscopy (TEM), and light scattering techniques (i.e. dynamic light scattering, DLS). The ability of PFC droplets to vaporize was demonstrated using optical light microscopy.

  18. Development of a Larvicidal Nanoemulsion with Pterodon emarginatus Vogel Oil.

    PubMed

    Oliveira, Anna E M F M; Duarte, Jonatas L; Amado, Jesus R R; Cruz, Rodrigo A S; Rocha, Clarice F; Souto, Raimundo N P; Ferreira, Ricardo M A; Santos, Karen; da Conceição, Edemilson C; de Oliveira, Leandra A R; Kelecom, Alphonse; Fernandes, Caio P; Carvalho, José C T

    2016-01-01

    Pterodon emarginatus Vogel is a Brazilian species that belongs to the family Fabaceae, popularly known as sucupira. Its oil has several biological activities, including potent larvicidal property against Aedes aegypti. This insect is the vector of dengue, a tropical disease that has been considered a critical health problem in developing countries, such as Brazil. Most of dengue control methods involve larvicidal agents suspended or diluted in water and making active lipophilic natural products available is therefore considered a technological challenge. In this context, nanoemulsions appear as viable alternatives to solve this major problem. The present study describes the development of a novel nanoemulsion with larvicidal activity against A. aegypti along with the required Hydrophile Lipophile Balance determination of this oil. It was suggested that the mechanism of action might involve reversible inhibition of acetylcholinesterase and our results also suggest that the P. emarginatus nanoemulsion is not toxic for mammals. Thus, it contributes significantly to alternative integrative practices of dengue control, as well as to develop sucupira based nanoproducts for application in aqueous media. PMID:26742099

  19. Development of a Larvicidal Nanoemulsion with Pterodon emarginatus Vogel Oil

    PubMed Central

    Oliveira, Anna E. M. F. M.; Duarte, Jonatas L.; Amado, Jesus R. R.; Cruz, Rodrigo A. S.; Rocha, Clarice F.; Souto, Raimundo N. P.; Ferreira, Ricardo M. A.; Santos, Karen; da Conceição, Edemilson C.; de Oliveira, Leandra A. R.; Kelecom, Alphonse; Fernandes, Caio P.; Carvalho, José C. T.

    2016-01-01

    Pterodon emarginatus Vogel is a Brazilian species that belongs to the family Fabaceae, popularly known as sucupira. Its oil has several biological activities, including potent larvicidal property against Aedes aegypti. This insect is the vector of dengue, a tropical disease that has been considered a critical health problem in developing countries, such as Brazil. Most of dengue control methods involve larvicidal agents suspended or diluted in water and making active lipophilic natural products available is therefore considered a technological challenge. In this context, nanoemulsions appear as viable alternatives to solve this major problem. The present study describes the development of a novel nanoemulsion with larvicidal activity against A. aegypti along with the required Hydrophile Lipophile Balance determination of this oil. It was suggested that the mechanism of action might involve reversible inhibition of acetylcholinesterase and our results also suggest that the P. emarginatus nanoemulsion is not toxic for mammals. Thus, it contributes significantly to alternative integrative practices of dengue control, as well as to develop sucupira based nanoproducts for application in aqueous media. PMID:26742099

  20. Clotrimazole nanoemulsion for malaria chemotherapy. Part I: preformulation studies, formulation design and physicochemical evaluation.

    PubMed

    Borhade, Vivek; Pathak, Sulabha; Sharma, Shobhona; Patravale, Vandana

    2012-07-15

    Clotrimazole was formulated in nanoemulsion based system with the aim of improving its solubility and dissolution, which can further used for its preclinical evaluation. Clotrimazole nanoemulsion was prepared using spontaneous nanoemulsification method. Preformulation studies were preformed to evaluate drug-excipient compatibility, solution state pH stability and pH solubility profile. Solubility of clotrimazole in oils, surfactants and cosurfactants was determined to identify nanoemulsion components. Surfactants and cosurfactants were screened for their ability to emulsify selected oily phases. Phase diagrams were constructed to identify area of nanoemulsification. Influence of clotrimazole and pH of dilution medium on phase behavior were assessed. Drug-excipient chemical compatibility study facilitated to anticipate acid catalyzed degradation of clotrimazole. The pH of nanoemulsion was adjusted to 7.5, which could stabilize clotrimazole. Nanoemulsion composed of Capryol 90, Solutol HS 15 and Gelucire 44/14 enhanced solubility of clotrimazole up to 25mg/ml. The optimized clotrimazole nanoemulsion could withstand the extensive dilution and did not show any phase separation or drug precipitation. The nanoemulsion exhibited mean globule size <25 nm, which was not affected by pH of dilution medium. Dissolution profile of clotrimazole nanoemulsion in various media showed 100% drug release within 15 min irrespective of pH of medium. PMID:22227344

  1. Nanoemulsion-based gel formulations of COX-2 inhibitors for enhanced efficacy in inflammatory conditions

    NASA Astrophysics Data System (ADS)

    Lala, R. R.; Awari, N. G.

    2013-01-01

    In the present study, we have investigated the potential of a nanoemulsion (thermodynamically stable transparent dispersions of oil and water having a droplet size <200 nm) formulation for the topical delivery of COX-2 inhibitors using etoricoxib as a model drug. Various oil-in-water nanoemulsions were prepared by the spontaneous emulsification method. The nanoemulsion area was identified by constructing pseudo-ternary phase diagrams. The prepared nanoemulsions were subjected to thermodynamic stability testing. Those that passed these tests were characterized for viscosity, droplet size and differential scanning calorimetry. Topical permeation of etoricoxib through porcine abdominal skin was estimated using the Franz diffusion cell. The ex vivo skin permeation profile of optimized formulations was compared with that of etoricoxib conventional gel. A significant increase in permeability was observed in optimized nanoemulsion formulations consisting of 2 % w/w of etoricoxib, 20 % w/w of Triacetin, 38 % w/w of a surfactant mixture (Cremophor RH 40:Transcutol P), and 42 % w/w of water. The anti-inflammatory effects of this formulation on carrageenan-induced paw edema in rats showed a significant increase in the percent inhibition value (84.61 % with the nanoemulsion gel and 92.30 % with the nanoemulsion) as compared with the conventional gel (69.23 %) after 6 h when compared with etoricoxib conventional gel. These results suggest that nanoemulsions can serve as potential vehicles for improved transdermal delivery of anti-inflammatory agents such as etoricoxib.

  2. Development and Evaluation of Nanoemulsions Containing Phthalocyanines for Use in Photodynamic Cancer Therapy.

    PubMed

    Senna, Juliana P; Ricci-Júnior, Eduardo; Mansur, Claudia R E

    2015-06-01

    This work reports the development of oil in water (o/w) nanoemulsions containing poly(ethylene oxide)-poly(propylene oxide) block copolymer surfactant for the formulation of a delivery system for endovenous zinc and chloroaluminum phthalocyanines. A solubility study suggested clove oil and its combination with ethanol as the best candidates for the oil phase composition. The nanoemulsions were obtained using a high-pressure homogenizer and analyzed for droplet size to determine their short- and long-term stability. Formulations containing 7 and 10% oil phase and 12% surfactant presented higher stability and allowed the incorporation of a bigger amount of phthalocyanines in the formulation. Rheological analyses showed the prevailing Newtonian behavior of the nanoemulsions. Studies of toxicity and phototoxicity determined that the nanoemulsions produced were capable of inhibiting the growth of adenocarcinoma tumor cells. The nanoemulsions proved to be a good alternative for use in photodynamic therapy. PMID:26369031

  3. Ultrasonic emulsification of food-grade nanoemulsion formulation and evaluation of its bactericidal activity.

    PubMed

    Ghosh, Vijayalakshmi; Mukherjee, Amitava; Chandrasekaran, Natarajan

    2013-01-01

    Basil oil (Ocimum basilicum) nanoemulsion was formulated using non-ionic surfactant Tween80 and water by ultrasonic emulsification method. Process of nanoemulsion development was optimized for parameters such as surfactant concentration and emulsification time to achieve minimum droplet diameter with high physical stability. Surfactant concentration was found to have a negative correlation with droplet diameter, whereas emulsification time had a positive correlation with droplet diameter and also with intrinsic stability of the emulsion. Stable basil oil nanoemulsion with droplet diameter 29.3 nm was formulated by ultrasonic emulsification for 15 min. Formulated nanoemulsion was evaluated for antibacterial activity against Escherichia coli by kinetics of killing experiment. Fluorescence microscopy and FT-IR results showed that nanoemulsion treatment resulted alteration in permeability and surface features of bacterial cell membrane. PMID:22954686

  4. Biodegradable polymer based encapsulation of neem oil nanoemulsion for controlled release of Aza-A.

    PubMed

    Jerobin, Jayakumar; Sureshkumar, R S; Anjali, C H; Mukherjee, Amitava; Chandrasekaran, Natarajan

    2012-11-01

    Azadirachtin a biological compound found in neem have medicinal and pesticidal properties. The present work reports on the encapsulation of neem oil nanoemulsion using sodium alginate (Na-Alg) by cross linking with glutaraldehyde. Starch and polyethylene glycol (PEG) were used as coating agents for smooth surface of beads. The SEM images showed beads exhibited nearly spherical shape. Swelling of the polymeric beads reduced with coating which in turn decreased the rate of release of Aza-A. Starch coated encapsulation of neem oil nanoemulsion was found to be effective when compared to PEG coated encapsulation of neem oil nanoemulsion. The release rate of neem Aza-A from the beads into an aqueous environment was analyzed by UV-visible spectrophotometer (214 nm). The encapsulated neem oil nanoemulsion have the potential for controlled release of Aza-A. Neem oil nanoemulsion encapsulated beads coated with PEG was found to be toxic in lymphocyte cells. PMID:22944443

  5. Antioxidant activity and bioaccessibility of size-different nanoemulsions for lycopene-enriched tomato extract.

    PubMed

    Ha, Thi Van Anh; Kim, Saehoon; Choi, Yeri; Kwak, Hae-Soo; Lee, Sung Je; Wen, Jingyuan; Oey, Indrawati; Ko, Sanghoon

    2015-07-01

    Lycopene nanoemulsions were prepared to protect the antioxidant activity and improve the bioaccessibility of lycopene-enriched tomato extract (containing 6% of lycopene) by an emulsification-evaporation method. Lycopene nanoemulsions, with droplet sizes between 100 and 200 nm, exhibited higher anti-radical efficiency and antioxidant activity, than did those smaller than 100 nm. Strong protectability of lycopene in droplets smaller than 100 nm was associated with relatively slower rates of DPPH and ABTS reactions. In vitro bioaccessibility values of lycopene-enriched tomato extract, lycopene nanoemulsions with droplets larger than 100 nm (approximately 150 nm on average), and lycopene nanoemulsions with droplets smaller than 100 nm (69 nm on average) were 0.01, 0.53, and 0.77, respectively. Interestingly, nanoemulsions with droplets smaller than 100 nm showed the highest in vitro bioaccessibility, which could be interpreted as evidence of nanoemulsification enhancing the in vitro bioaccessibility of lycopene. PMID:25704691

  6. Body elimination attitude family resemblance in Kuwait.

    PubMed

    Al-Fayez, Ghenaim; Awadalla, Abdelwahid; Arikawa, Hiroko; Templer, Donald I; Hutton, Shane

    2009-12-01

    The purpose of the present study was to determine the family resemblance of attitude toward body elimination in Kuwaiti participants. This study was conceptualized in the context of the theories of moral development, importance of cleanliness in the Muslim religion, cross-cultural differences in personal hygiene practices, previous research reporting an association between family attitudes and body elimination attitude, and health implications. The 24-item Likert-type format Body Elimination Attitude Scale-Revised was administered to 277 Kuwaiti high school students and 437 of their parents. Females scored higher, indicating greater disgust, than the males. Moreover, sons' body elimination attitude correlated more strongly with fathers' attitude (r = .85) than with that of the mothers (r = .64). Daughters' attitude was similarly associated with the fathers' (r = .89) and the mothers' attitude (r = .86). The high correlations were discussed within the context of Kuwait having a collectivistic culture with authoritarian parenting style. The higher adolescent correlations, and in particular the boys' correlation with fathers than with mothers, was explained in terms of the more dominant role of the Muslim father in the family. Public health and future research implications were suggested. A theoretical formulation was advanced in which "ideal" body elimination attitude is relative rather than absolute, and is a function of one's life circumstances, one's occupation, one's culture and subculture, and the society that one lives in. PMID:22029659

  7. Eugenol improves physical and chemical stabilities of nanoemulsions loaded with β-carotene.

    PubMed

    Guan, Yongguang; Wu, Jine; Zhong, Qixin

    2016-03-01

    Food-grade nanoemulsions are potential vehicles of labile lipophilic compounds such as β-carotene, but much work is needed to improve physical and chemical stabilities. The objective of this work was to study impacts of eugenol on physical and chemical stabilities of β-carotene-loaded nanoemulsions prepared with whey protein and lecithin. The combination of whey protein and lecithin resulted in stable nanoemulsions with eugenol added at 10% mass of soybean oil. Nanoemulsions, especially with eugenol, drastically reduced the degradation of β-carotene during ambient storage, heating at 60 and 80°C, and UV radiation at 254, 302, and 365nm. The droplet diameter of the nanoemulsion without eugenol increased from 153.6 to 227.3nm after 30-day ambient storage, contrasting with no significant changes of nanoemulsions with eugenol. Heating or UV radiation up to 8h did not significantly change the droplet diameter. Therefore, eugenol can be used to improve the stability of nanoemulsion delivery systems. PMID:26471619

  8. Highly stable concentrated nanoemulsions by the phase inversion composition method at elevated temperature.

    PubMed

    Yu, Lijie; Li, Chao; Xu, Jian; Hao, Jingcheng; Sun, Dejun

    2012-10-16

    Oil-in-water nanoemulsions were produced in the system water/Span 80-Tween 80/paraffin oil via the phase inversion composition (PIC) method at elevated temperature. With the increase of preparation temperature from 20 to 70 °C, we found that the emulsion droplet diameter decreases from 10.3 μm to 51 nm, proving the formation of nanoemulsions. The viscosity of nanoemulsions clearly increases with droplet volume fraction, φ, but the droplet size changes less. Significantly, at φ ≤ 0.5, the size distribution of nanoemulsions can be kept unchangeable more than 5 months. These results proved that the highly viscous paraffin oil can hardly be dispersed by the PIC method at 25 °C, but the increase in preparation temperature makes it possible for producing monodisperse nanoemulsions. Once the nanoemulsion is produced, the stability against Ostwald ripening is outstanding due to the extremely low solubility of the paraffin oil in the continuous phase. The highly stable nanoemulsions are of great importance in practical applications. PMID:22985401

  9. Organogel-nanoemulsion containing nisin and D-limonene and its antimicrobial activity

    PubMed Central

    Bei, Weiya; Zhou, Yan; Xing, Xuya; Zahi, Mohamed Reda; Li, Yuan; Yuan, Qipeng; Liang, Hao

    2015-01-01

    The aim of this study was to investigate a novel delivery system containing D-limonene and nisin by food organogel-nanoemulsion and study its effect on the antimicrobial activity. Organogel-nanoemulsion containing with D-limonene and nisin or without nisin was prepared by a homogenization method. Factors that may affect the droplet size and stability of organogel-nanoemulsion such as pressure and surfactant to oil ratio (SOR) were studied. The average droplet size decreased with pressure, and the organogel-nanoemulsion could achieve good stability at low SOR. Positive effects and outstanding antimicrobial activities of organogel-nanoemulsion containing with D-limonene and nisin were confirmed by minimal inhibitory concentrations comparison, growth curves of bacteria, scanning electron microscopy and determination of cell constituents’ release. Furthermore, the organogel-nanoemulsion applied as food preservative in milk also shown excellent antimicrobial performance. Overall, the research described in the current article show that organogel-nanoemulsion containing with D-limonene and nisin may be an effective antimicrobial system for the production and preservation of food. PMID:26441935

  10. Two-color fluorescent (near-infrared and visible) triphasic perfluorocarbon nanoemulsions

    PubMed Central

    Patel, Sravan Kumar; Patrick, Michael J.; Pollock, John A.

    2013-01-01

    Abstract. Design and development of a new formulation as a unique assembly of distinct fluorescent reporters with nonoverlapping fluorescence spectra and a F19 magnetic resonance imaging agent into colloidally and optically stable triphasic nanoemulsion are reported. Specifically, a cyanine dye-perfluorocarbon (PFC) conjugate was introduced into the PFC phase of the nanoemulsion and a near-infrared dye was introduced into the hydrocarbon (HC) layer. To the best of our knowledge, this is the first report of a triphasic nanoemulsion system where each oil phase, HC, and PFC are fluorescently labeled and formulated into an optically and colloidally stable nanosystem. Having, each oil phase separately labeled by a fluorescent dye allows for improved correlation between in vivo imaging and histological data. Further, dual fluorescent labeling can improve intracellular tracking of the nanodroplets and help assess the fate of the nanoemulsion in biologically relevant media. The nanoemulsions were produced by high shear processing (microfluidization) and stabilized with biocompatible nonionic surfactants resulting in mono-modal size distribution with average droplet size less than 200 nm. Nanoemulsions demonstrate excellent colloidal stability and only moderate changes in the fluorescence signal for both dyes. Confocal fluorescence microscopy of macrophages exposed to nanoemulsions shows the presence of both fluorescence agents in the cytoplasm. PMID:23912666

  11. Cell Labeling for 19F MRI: New and Improved Approach to Perfluorocarbon Nanoemulsion Design

    PubMed Central

    Patel, Sravan K.; Williams, Jonathan; Janjic, Jelena M.

    2013-01-01

    This report describes novel perfluorocarbon (PFC) nanoemulsions designed to improve ex vivo cell labeling for 19F magnetic resonance imaging (MRI). 19F MRI is a powerful non-invasive technique for monitoring cells of the immune system in vivo, where cells are labeled ex vivo with PFC nanoemulsions in cell culture. The quality of 19F MRI is directly affected by the quality of ex vivo PFC cell labeling. When co-cultured with cells for longer periods of time, nanoemulsions tend to settle due to high specific weight of PFC oils (1.5–2.0 g/mL). This in turn can decrease efficacy of excess nanoemulsion removal and reliability of the cell labeling in vitro. To solve this problem, novel PFC nanoemulsions are reported which demonstrate lack of sedimentation and high stability under cell labeling conditions. They are monodisperse, have small droplet size (~130 nm) and low polydispersity (<0.15), show a single peak in the 19F nuclear magnetic resonance spectrum at −71.4 ppm and possess high fluorine content. The droplet size and polydispersity remained unchanged after 160 days of follow up at three temperatures (4, 25 and 37 °C). Further, stressors such as elevated temperature in the presence of cells, and centrifugation, did not affect the nanoemulsion droplet size and polydispersity. Detailed synthetic methodology and in vitro testing for these new PFC nanoemulsions is presented. PMID:25586263

  12. Stability studies of silymarin nanoemulsion containing Tween 80 as a surfactant

    PubMed Central

    Parveen, Rabea; Baboota, Sanjula; Ali, Javed; Ahuja, Alka; Ahmad, Sayeed

    2015-01-01

    Background: Silymarin, a flavonolignan from “milk thistle” (Silybum marianum) plant is used almost exclusively for hepatoprotection. Because of its low bioavailability, it was incorporated into a nanoemulsion formulation. The aim of the present study was to check the stability of silymarin nanoemulsion at different temperatures for 3 months. Materials and Methods: The oil-in-water based nanoemulsion formulation was prepared by titration method. Silymarin nanoemulsion was characterized by droplet size, viscosity, and refractive index. Droplet size, viscosity, and refractive index were determined every month. The shelf-life of silymarin nanoemulsion was determined by accelerated stability testing. Results: It was found that there was no significant change in the droplet size, viscosity, and refractive index at refrigerator and room temperature during the period of 3 months. The half-life of the optimized nanoemulsion formulation was found to be 4.74 years at room temperature. Conclusion: These results indicated that stability of silymarin can be enhanced in nanoemulsion formulation using Tween 80 as a surfactant. PMID:26681893

  13. Impact of microemulsion inspired approaches on the formation and destabilisation mechanisms of triglyceride nanoemulsions.

    PubMed

    Wooster, Tim J; Labbett, Deanne; Sanguansri, Peerasak; Andrews, Helen

    2016-02-01

    Even after 30+ years of research, there are still few examples of physically stable transparent nanoemulsions despite their high potential to revolutionise pharmaceutical, personal care, and food products. In this study, we examine how low-energy "microemulsion inspired" (co-solvent/co-surfactant) approaches impact the formation and destabilisation mechanisms of homogenised triglyceride nanoemulsions. The addition of n-alcohol co-solvents and Span 80 co-surfactants had two effects on nanoemulsion droplet diameter; a beneficial one that reduced droplet diameter from 120 to 50 nm and a deleterious one that caused destabilisation. The decrease in nanoemulsion droplet diameter facilitated by n-alcohols is thought to arise from changes in: (i) solvent quality near the interface and (ii) interface spontaneous curvature which dramatically reduce interfacial tension. The strength of this effect was magnified by n-alcohol partitioning behaviour and their tendency to associate with the headgroup of POE surfactants. Addition of an excess of n-alcohol led to nanoemulsion destabilisation, unusually for nanoemulsions, destabilisation was not via Ostwald ripening, instead coalescence was found to be the primary destabilisation mechanism. A rapid increase in nanoemulsion droplet growth rate with increasing n-alcohol content was observed for each n-alcohol. Such rapid changes in nanoemulsion instability with composition are reminiscent of PIC/PIT emulsions in the Winsor III region, whose instability has been described to be a function of the activation energy barrier to coalescence. The microemulsion inspired approaches developed in this work highlight a new general approach to the creation of transparent nanoemulsions, and are particularly advantageous for triglyceride oils which are inherently stable against Ostwald ripening. PMID:26620843

  14. Formation and stabilization of nanoemulsions using biosurfactants: Rhamnolipids.

    PubMed

    Bai, Long; McClements, David Julian

    2016-10-01

    Nanoemulsions are used in the food, cosmetics, personal care and pharmaceutical industries to provide desirable optical, textural, stability, and delivery characteristics. In many industrial applications, it is desirable to formulate nanoemulsions using natural ingredients so as to develop label-friendly products. Rhamnolipids are biosurfactants isolated from certain microorganisms using fermentation processes. They are glycolipids that have a polar head consisting of rhamnose units and a non-polar tail consisting of a hydrocarbon chain. In this study, the interfacial characteristics of this natural surfactant at medium chain triglyceride (MCT) oil-water interfaces were characterized, and its ability to form nanoemulsions was compared to that of another natural surfactant (quillaja saponins). The influence of rhamnolipid concentration, homogenization pressure, and oil type on the mean droplet diameter of emulsions produced by microfluidization was determined. Rhamnolipids were highly effective at forming small droplets (d32<0.15μm) at low surfactant-to-oil ratios (SOR<1:10) for MCT oil. Rhamnolipids could also be used to form small droplets using long chain triglyceride oils, such as corn and fish oil. Rhamnolipid-coated droplets were stable to aggregation over a range of pH values (5-9), salt concentrations (<100mM NaCl) and temperatures (20-90°C). However, droplet aggregation was observed at highly acidic (pH 2-4) and high ionic strength (200-500mM NaCl) conditions. These effects were attributed to a reduction in electrostatic repulsion at low pH and high salt levels. Rhamnolipid-coated droplets had a high negative charge at neutral pH that decreased in magnitude with decreasing pH. These results indicate that rhamnolipids are effective natural surfactants that may be able to replace synthetic surfactants in certain commercial applications. PMID:27372634

  15. Ultrasound assisted manufacturing of paraffin wax nanoemulsions: process optimization.

    PubMed

    Jadhav, A J; Holkar, C R; Karekar, S E; Pinjari, D V; Pandit, A B

    2015-03-01

    This work reports on the process optimization of ultrasound-assisted, paraffin wax in water nanoemulsions, stabilized by modified sodium dodecyl sulfate (SDS). This work focuses on the optimization of major emulsification process variables including sonication time, applied power and surfactant concentration. The effects of these variables were investigated on the basis of mean droplet diameter and stability of the prepared emulsion. It was found that the stable emulsion with droplet diameters about 160.9 nm could be formed with the surfactant concentration of 10 mg/ml and treated at 40% of applied power (power density: 0.61 W/ml) for 15 min. Scanning electron microscopy (SEM) was used to study the morphology of the emulsion droplets. The droplets were solid at room temperature, showing bright spots under polarized light and a spherical shape under SEM. The electrophoretic properties of emulsion droplets showed a negative zeta potential due to the adsorption of head sulfate groups of the SDS surfactant. For the sake of comparison, paraffin wax emulsion was prepared via emulsion inversion point method and was checked its intrinsic stability. Visually, it was found that the emulsion get separated/creamed within 30 min. while the emulsion prepared via ultrasonically is stable for more than 3 months. From this study, it was found that the ultrasound-assisted emulsification process could be successfully used for the preparation of stable paraffin wax nanoemulsions. PMID:25465097

  16. High carotenoid bioaccessibility through linseed oil nanoemulsions with enhanced physical and oxidative stability.

    PubMed

    Sotomayor-Gerding, Daniela; Oomah, B Dave; Acevedo, Francisca; Morales, Eduardo; Bustamante, Mariela; Shene, Carolina; Rubilar, Mónica

    2016-05-15

    Carotenoid (astaxanthin or lycopene) emulsions obtained by high pressure homogenization were investigated for their physical, oxidative and storage stability and biological fate on an in vitro digestion model of bioaccessibility. Emulsion stability evaluated at various processing environments (20-50°C, 2-10 pH, 0-500 mM NaCl, and 0-35 days storage at 25°C) depended on carotenoid and homogenization pressures (5, 10, 100 MPa). Trolox increased the oxidative stability of nanoemulsions (100 MPa) and acted synergistically with BHT in increasing the stability of lycopene nanoemulsion. Intestinal digestibility depended on homogenization pressures with the fastest release and lower amount of free fatty acids observed at 100 MPa. Carotenoid nanoemulsions (100 MPa) were partially (66%) digested and highly bioaccessible (>70%). Therefore, nanoemulsions provide an effective and stable system for efficient astaxanthin or lycopene delivery and bioavailability in foods, beverages, nutraceuticals and/or other agriproducts. PMID:26775996

  17. Design and evaluation of oral nanoemulsion drug delivery system of mebudipine.

    PubMed

    Khani, Samira; Keyhanfar, Fariborz; Amani, Amir

    2016-07-01

    A nanoemulsion drug delivery system was developed to increase the oral bioavailability of mebudipine as a calcium channel blocker with very low bioavailability profile. The impact of nano-formulation on the pharmacokinetic parameters of mebudipine in rats was investigated. Nanoemulsion formulations containing ethyl oleate, Tween 80, Span 80, polyethylene glycol 400, ethanol and deionized water were prepared using probe sonicator. The optimum formulation was evaluated for physicochemical properties, such as particle size, morphology and stability. The particle size of optimum formulation was 22.8 ± 4.0 nm. Based on the results of this study, the relative bioavailability of mebudipine nanoemulsion was enhanced by about 2.6-, 2.0- and 1.9-fold, respectively, compared with suspension, ethyl oleate solution and micellar solution. In conclusion, nanoemulsion is an interesting option for the delivery of poorly water soluble molecules, such as mebudipine. PMID:26406153

  18. Size controlled protein nanoemulsions for active targeting of folate receptor positive cells.

    PubMed

    Loureiro, Ana; Nogueira, Eugénia; Azoia, Nuno G; Sárria, Marisa P; Abreu, Ana S; Shimanovich, Ulyana; Rollett, Alexandra; Härmark, Johan; Hebert, Hans; Guebitz, Georg; Bernardes, Gonçalo J L; Preto, Ana; Gomes, Andreia C; Cavaco-Paulo, Artur

    2015-11-01

    Bovine serum albumin (BSA) nanoemulsions were produced by high pressure homogenization with a tri-block copolymer (Poloxamer 407), which presents a central hydrophobic chain of polyoxypropylene (PPO) and two identical lateral hydrophilic chains of polyethylene glycol (PEG). We observed a linear correlation between tri-block copolymer concentration and size - the use of 5mg/mL of Poloxamer 407 yields nanoemulsions smaller than 100nm. Molecular dynamics and fluorescent tagging of the tri-block copolymer highlight their mechanistic role on the size of emulsions. This novel method enables the fabrication of highly stable albumin emulsions in the nano-size range, highly desirable for controlled drug delivery. Folic Acid (FA)-tagged protein nanoemulsions were shown to promote specific folate receptor (FR)-mediated targeting in FR positive cells. The novel strategy presented here enables the construction of size controlled, functionalized protein-based nanoemulsions with excellent characteristics for active targeting in cancer therapy. PMID:26241920

  19. Effects of oil and drug concentrations on droplets size of palm oil esters (POEs) nanoemulsion.

    PubMed

    Sakeena, M H F; Elrashid, S M; Munavvar, A S; Azmin, M N

    2011-01-01

    Aim of the present work is to study the effects of oil and drug concentrations on droplets size of a nanoemulsion. Newly introduced oil, palm oil esters (POEs) by Universiti Putra Malaysia researchers was selected for the oil phase of the nanoemulsion, because the oil was reported to be a good vehicle for pharmaceutical use. Nanoemulsions were prepared with different concentrations of oil and drug and their effects on droplets size were studied by laser scattering spectroscopy (Nanophox). The results of droplets size analysis shows the droplets size increase with increasing concentration of oil and drug concentrations. It can be concluded from this study, that oil and drug concentrations have an effect on the droplets size of POEs nanoemulsion system. PMID:21427510

  20. Formulation optimization of palm kernel oil esters nanoemulsion-loaded with chloramphenicol suitable for meningitis treatment.

    PubMed

    Musa, Siti Hajar; Basri, Mahiran; Masoumi, Hamid Reza Fard; Karjiban, Roghayeh Abedi; Malek, Emilia Abd; Basri, Hamidon; Shamsuddin, Ahmad Fuad

    2013-12-01

    Palm kernel oil esters nanoemulsion-loaded with chloramphenicol was optimized using response surface methodology (RSM), a multivariate statistical technique. Effect of independent variables (oil amount, lecithin amount and glycerol amount) toward response variables (particle size, polydispersity index, zeta potential and osmolality) were studied using central composite design (CCD). RSM analysis showed that the experimental data could be fitted into a second-order polynomial model. Chloramphenicol-loaded nanoemulsion was formulated by using high pressure homogenizer. The optimized chloramphenicol-loaded nanoemulsion response values for particle size, PDI, zeta potential and osmolality were 95.33nm, 0.238, -36.91mV, and 200mOsm/kg, respectively. The actual values of the formulated nanoemulsion were in good agreement with the predicted values obtained from RSM. The results showed that the optimized compositions have the potential to be used as a parenteral emulsion to cross blood-brain barrier (BBB) for meningitis treatment. PMID:23974000

  1. Formation of flavor oil microemulsions, nanoemulsions and emulsions: influence of composition and preparation method.

    PubMed

    Rao, Jiajia; McClements, David Julian

    2011-05-11

    This study aimed to establish conditions where stable microemulsions, nanoemulsions or emulsions could be fabricated from a nonionic surfactant (Tween 80) and flavor oil (lemon oil). Different colloidal dispersions could be formed by simple heat treatment (90 °C, 30 min) depending on the surfactant-to-oil ratio (SOR): emulsions (r > 100 nm) at SOR < 1; nanoemulsions (r < 100 nm) at 1 < SOR < 2; microemulsions (r < 10 nm) at SOR > 2. Turbidity, electrical conductivity, shear rheology, and DSC measurements suggested there was a kinetic energy barrier in the oil-water-surfactant systems at ambient temperature that prevented them from forming metastable emulsion/nanoemulsion or thermodynamically stable microemulsion systems. High energy homogenization (high pressure or ultrasonic homogenizer) or low energy homogenization (heating) could be used to form emulsions or nanoemulsions at low or intermediate SOR values; whereas only heating was necessary to form stable microemulsions at high SOR values. PMID:21410259

  2. Polymeric micelles and nanoemulsions as drug carriers: Therapeutic efficacy, toxicity, and drug resistance.

    PubMed

    Gupta, Roohi; Shea, Jill; Scafe, Courtney; Shurlygina, Anna; Rapoport, Natalya

    2015-08-28

    The manuscript reports the side-by-side comparison of therapeutic properties of polymeric micelles and nanoemulsions generated from micelles. The effect of the structure of a hydrophobic block of block copolymer on the therapeutic efficacy, tumor recurrence, and development of drug resistance was studied in pancreatic tumor bearing mice. Mice were treated with paclitaxel (PTX) loaded poly(ethylene oxide)-co-polylactide micelles or corresponding perfluorocarbon nanoemulsions. Two structures of the polylactide block differing in a physical state of micelle cores or corresponding nanodroplet shells were compared. Poly(ethylene oxide)-co-poly(d,l-lactide) (PEG-PDLA) formed micelles with elastic amorphous cores while poly(ethylene oxide)-co-poly(l-lactide) (PEG-PLLA) formed micelles with solid crystalline cores. Micelles and nanoemulsions stabilized with PEG-PDLA copolymer manifested higher therapeutic efficacy than those formed with PEG-PLLA copolymer studied earlier. Better performance of PEG-PDLA micelles and nanodroplets was attributed to the elastic physical state of micelle cores (or droplet shells) allowing adequate rate of drug release via drug diffusion and/or copolymer biodegradation. The biodegradation of PEG-PDLA stabilized nanoemulsions was monitored by the ultrasonography of nanodroplets injected directly into the tumor; the PEG-PDLA stabilized nanodroplets disappeared from the injection site within 48h. In contrast, nanodroplets stabilized with PEG-PLLA copolymer were preserved at the injection site for weeks and months indicating extremely slow biodegradation of solid PLLA blocks. Multiple injections of PTX-loaded PEG-PDLA micelles or nanoemulsions to pancreatic tumor bearing mice resulted in complete tumor resolution. Two of ten tumors treated with either PEG-PDLA micellar or nanoemulsion formulation recurred after the completion of treatment but proved sensitive to the second treatment cycle indicating that drug resistance has not been developed. This

  3. Influence of palmitoyl pentapeptide and Ceramide III B on the droplet size of nanoemulsion

    NASA Astrophysics Data System (ADS)

    Sondari, Dewi; Haryono, Agus; Harmami, Sri Budi; Randy, Ahmad

    2010-05-01

    The influence of the Palmitoyl Pentapeptide (PPp) and Ceramide IIIB (Cm III B) as active ingredients on the droplet size of nano-emulsion was studied using different kinds of oil (avocado oil, sweet almond oil, jojoba oil, mineral oil and squalene). The formation of nano-emulsions were prepared in water mixed non ionic surfactant/oils system using the spontaneous emulsification mechanism. The aqueous solution, which consist of water and Tween® 20 as a hydrophilic surfactant was mixed homogenously. The organic solution, which consist of oil and Span® 80 as a lipophilic surfactant was mixed homogenously in ethanol. Ethanol was used as a water miscible solvent, which can help the formation of nano-emulsion. The oil phase (containing the blend of surfactant Span® 80, ethanol, oil and active ingredient) and the aqueous phase (containing water and Tween® 20) were separately prepared at room temperatures. The oil phase was slowly added into aqueous phase under continuous mechanical agitation (18000 rpm). All samples were subsequently homogenized with Ultra-Turrax for 30 minutes. The characterizations of nano-emulsion were carried out using photo-microscope and particle size analyzer. Addition of active ingredients on the formation of nano-emulsion gave smallest droplet size compared without active ingredients addition on the formation of nano-emulsion. Squalene oil with Palmitoyl Pentapeptide (PPm) and Ceramide IIIB (Cm IIIB) gave smallest droplet size (184.0 nm) compared without Palmitoyl Pentapeptide and Ceramide IIIB (214.9 nm), however the droplets size of the emulsion prepared by the other oils still in the range of nano-emulsion (below 500 nm). The stability of nano-emulsion was observed using two methods. In one method, the stability of nano-emulsion was observed for three months at temperature of 5°C and 50°C, while in the other method, the stability nano-emulsion was observed by centrifuged at 12000 rpm for 30 minutes. Nanoemulsion with active ingredient

  4. Inhibition of colon cancer cell growth by nanoemulsion carrying gold nanoparticles and lycopene

    PubMed Central

    Huang, Rwei-Fen S; Wei, Yi-Jun; Inbaraj, Baskaran Stephen; Chen, Bing-Huei

    2015-01-01

    Lycopene (LP), an important functional compound in tomatoes, and gold nanoparticles (AN), have received considerable attention as potential candidates for cancer therapy. However, the extreme instability and poor bioavailability of LP limits its in vivo application. This study intends to develop a nanoemulsion system incorporating both LP and AN, and to study the possible synergistic effects on the inhibition of the HT-29 colon cancer cell line. LP–nanogold nanoemulsion containing Tween 80 as an emulsifier was prepared, followed by characterization using transmission electron microscopy (TEM), dynamic light scattering (DLS) analysis, ultraviolet spectroscopy, and zeta potential analysis. The particle size as determined by TEM and DLS was 21.3±3.7 nm and 25.0±4.2 nm for nanoemulsion and 4.7±1.1 nm and 3.3±0.6 nm for AN, while the zeta potential of nanoemulsion and AN was −32.2±1.8 mV and −48.5±2.7 mV, respectively. Compared with the control treatment, both the combo (AN 10 ppm plus LP 12 μM) and nanoemulsion (AN 0.16 ppm plus LP 0.4 μM) treatments resulted in a five- and 15-fold rise in early apoptotic cells of HT-29, respectively. Also, the nanoemulsion significantly reduced the expressions of procaspases 8, 3, and 9, as well as PARP-1 and Bcl-2, while Bax expression was enhanced. A fivefold decline in the migration capability of HT-29 cells was observed for this nanoemulsion when compared to control, with the invasion-associated markers being significantly reversed through the upregulation of the epithelial marker E-cadherin and downregulation of Akt, nuclear factor kappa B, pro-matrix metalloproteinase (MMP)-2, and active MMP-9 expressions. The TEM images revealed that numerous nanoemulsion-filled vacuoles invaded cytosol and converged into the mitochondria, resulting in an abnormally elongated morphology with reduced cristae and matrix contents, demonstrating a possible passive targeting effect. The nanoemulsion containing vacuoles were engulfed

  5. Indocyanine green-loaded perfluorocarbon nanoemulsions for bimodal 19F-magnetic resonance/nearinfrared fluorescence imaging and subsequent phototherapy

    PubMed Central

    Wang, Yuan-Guo; Kim, Hyunjin; Mun, Saehun

    2013-01-01

    We have developed an indocyanine green-loaded perfluorocarbon (ICG/PFCE) nanoemulsion as a multifunctional theranostic nanomedicine which enables not only 19F magnetic resonance (MR)/near-infrared fluorescence (NIRF) bimodal imaging but also subsequent photodynamic/photothermal dual therapy of cancer. The hydrodynamic size of ICG/PFCE nanoemulsions was 164.2 nm. The stability of indocyanine green (ICG) in aqueous solution was significantly improved when loaded on perfluorocarbon nanoemulsions. In addition, ICG/PFCE nanoemulsions showed good dispersion stability in aqueous media containing 10% fetal bovine serum, for at least 14 days. 19F-MRI of ICG/PFCE nanoemulsions showed that the signal intensity increased with increasing nanoemulsion concentration with no signal observed from the surrounding background. Using NIRF imaging with perfluorocarbon nanoemulsion alone, without ICG, did not produce NIRF, while clear and bright fluorescent images were obtained with ICG/PFCE nanoemulsions at 10-µM ICG equivalent. The capacity of ICG-loaded nanoemulsions to generate heat following light irradiation by using an 810-nm laser was comparable to that of free ICG, while singlet oxygen generation of ICG-loaded nanoemulsions was significantly better than that of free ICG. In vitro cytotoxicity tests and fluorescence microscopy confirmed biocompatibility of the nanoemulsion. Upon light irradiation, U87MG glioblastoma cells incubated with ICG/PFCE nanoemulsions underwent necrotic cell death. The therapeutic mechanism during light illumination appears to be mainly due to the photodynamic effect at lower ICG concentrations, whilst the photothermal effect became more obvious at increased ICG concentrations, enabling combined photodynamic/photothermal therapy of cancer cells. PMID:23833726

  6. Preparation of betulinic acid nanoemulsions stabilized by ω-3 enriched phosphatidylcholine.

    PubMed

    Cavazos-Garduño, A; Ochoa Flores, A A; Serrano-Niño, J C; Martínez-Sanchez, C E; Beristain, C I; García, H S

    2015-05-01

    Bioactive compounds such as ω-3 fatty acids and terpenes, have been associated with beneficial health effects; however, their solubility in the gastrointestinal tract and its bioavailability in the body are low. Nanoemulsions offer a viable alternative to disperse lipophilic compounds and improve their dissolution, permeation, absorption and bioavailability. Enzyme modified phosphatidylcholine (PC) with ω-3 fatty acids was used as emulsifier to stabilize oil-in-water nanoemulsions generated using ultrasound device. These systems were used as carriers of betulinic acid, which has reported anti-carcinogenic activity. Phospholipase-catalyzed modification of PC allowed the incorporation of 50 mol% of ω-3 fatty acids. Formation variables such as oil type and ultrasound amplitude had effects on nanoemulsion characteristics. Incorporation of betulinic acid affected globule size; however, betulinic acid nanoemulsions below 200 nm could be prepared. The conditions under which betulinic acid nanoemulsions were obtained using the modified phosphatidylcholine with the smaller globule size (91 nm) were 10% PC, 25% glycerol, medium chain oil and 30% amplitude for 12 min in the sonicator. Storage temperature had an effect on the stability of the nanoemulsions, at 5°C we observed the smallest growth in globule size. The use of olive oil decreased the globule size growth during storage of the nanoemulsion stabilized with modified phosphatidylcholine, although globule size obtained was greater than 200 nm. Medium pH had a significant effect on the nanoemulsions; alkaline pH values improved storage stability. These results provide useful information for using this type of carrier system on the formulation of products in the pharmaceutical or food industry. PMID:25572417

  7. Parenteral nanoemulsions as promising carriers for brain delivery of risperidone: Design, characterization and in vivo pharmacokinetic evaluation.

    PubMed

    Đorđević, Sanela M; Cekić, Nebojša D; Savić, Miroslav M; Isailović, Tanja M; Ranđelović, Danijela V; Marković, Bojan D; Savić, Saša R; Timić Stamenić, Tamara; Daniels, Rolf; Savić, Snežana D

    2015-09-30

    This paper describes design and evaluation of parenteral lecithin-based nanoemulsions intended for brain delivery of risperidone, a poorly water-soluble psychopharmacological drug. The nanoemulsions were prepared through cold/hot high pressure homogenization and characterized regarding droplet size, polydispersity, surface charge, morphology, drug-vehicle interactions, and physical stability. To estimate the simultaneous influence of nanoemulsion formulation and preparation parameters--co-emulsifier type, aqueous phase type, homogenization temperature--on the critical quality attributes of developed nanoemulsions, a general factorial experimental design was applied. From the established design space and stability data, promising risperidone-loaded nanoemulsions (mean size about 160 nm, size distribution <0.15, zeta potential around -50 mV), containing sodium oleate in the aqueous phase and polysorbate 80, poloxamer 188 or Solutol(®) HS15 as co-emulsifier, were produced by hot homogenization and their ability to improve risperidone delivery to the brain was assessed in rats. Pharmacokinetic study demonstrated erratic brain profiles of risperidone following intraperitoneal administration in selected nanoemulsions, most probably due to their different droplet surface properties (different composition of the stabilizing layer). Namely, polysorbate 80-costabilized nanoemulsion showed increased (1.4-7.4-fold higher) risperidone brain availability compared to other nanoemulsions and drug solution, suggesting this nanoemulsion as a promising carrier worth exploring further for brain targeting. PMID:26209070

  8. Highly efficient and lowly toxic docetaxel nanoemulsions for intravenous injection to animals.

    PubMed

    Li, Xin; Du, Lina; Wang, Chenyun; Liu, Yan; Mei, Xingguo; Jin, Yiguang

    2011-07-01

    Hypersensitivity many occur with commercial docetaxel injections containing Tween 80 and ethanol. An alternative formulation of docetaxel, an oil-in-water nanoemulsion was prepared using the high-pressure homogenization method. It was composed of medium-chain triglyceride, oleic acid, egg lecithin, and poloxamer. These ingredients are known as safe agents for intravenous (i.v.) injection. The nanoemulsion had a small size of 169 nm, and a high surface charge with the zeta potential of -33.9 mV. It maintained well stable even under high centrifugation. Acute toxicity of i.v. injection, erythrocyte hemolysis experiment, and rabbit ear vein irritation test showed no toxicity for the docetaxel nanoemulsion. The docetaxel nanoemulsion led to a larger apparent distribution volume and area under curve than the docetaxel injection after i.v. administration to rats. The histopathological test of tumor further demonstrated the highly anticancer efficiency of the docetaxel nanoemulsion. Thus, the nanoemulsion is a promising delivery system for docetaxel with highly anticancer efficiency and low toxicity. PMID:21812321

  9. A novel preparation method for silicone oil nanoemulsions and its application for coating hair with silicone

    PubMed Central

    Hu, Zhenhua; Liao, Meiling; Chen, Yinghui; Cai, Yunpeng; Meng, Lele; Liu, Yajun; Lv, Nan; Liu, Zhenguo; Yuan, Weien

    2012-01-01

    Background Silicone oil, as a major component in conditioner, is beneficial in the moisture preservation and lubrication of hair. However, it is difficult for silicone oil to directly absorb on the hair surface because of its hydrophobicity. Stable nanoemulsions containing silicone oil may present as a potential solution to this problem. Methods Silicone oil nanoemulsions were prepared using the oil-in-water method with nonionic surfactants. Emulsion particle size and distribution were characterized by scanning electron microscopy. The kinetic stability of this nanoemulsion system was investigated under accelerated stability tests and long-term storage. The effect of silicone oil deposition on hair was examined by analyzing the element of hair after treatment of silicone oil nanoemulsions. Results Nonionic surfactants such as Span 80 and Tween 80 are suitable emulsifiers to prepare oil-in-water nanoemulsions that are both thermodynamically stable and can enhance the absorption of silicone oil on hair surface. Conclusion The silicone oil-in-water nanoemulsions containing nonionic surfactants present as a promising solution to improve the silicone oil deposition on the hair surface for hair care applications. PMID:23166436

  10. Vitamin E-enriched nanoemulsions formed by emulsion phase inversion: factors influencing droplet size and stability.

    PubMed

    Mayer, Sinja; Weiss, Jochen; McClements, David Julian

    2013-07-15

    There is considerable interest in using nanoemulsions as delivery systems for lipophilic bioactive ingredients, such as oil-soluble vitamins. Nanoemulsions can be fabricated using either high-energy or low-energy methods, but the latter offer advantages in terms of low cost, higher energy efficiency, and simplicity of implementation. In this study, the emulsion phase inversion (EPI) method was used to produce food-grade nanoemulsions enriched with vitamin E acetate. The EPI method simply involves titrating water into a mixture containing oil and surfactant, which initially leads to the formation of a water-in-oil emulsion that then inverts into an oil-in-water emulsion. Oil composition, surfactant type, and surfactant-to-oil ratio (SOR) were all found to influence the particle size distribution of the systems produced. Nanoemulsions with a mean particle diameter of 40 nm could be produced at a final system composition of 2 wt% MCT, 8 wt%vitamin E acetate, and 20 wt% Tween 80. The EPI method was shown to be unsuitable for producing nanoemulsions from label-friendly surfactants, such as Quillaja saponin, whey protein, casein, and sucrose monoesters. The EPI method was more effective at producing nanoemulsions at high SOR than microfluidization, but much less effective at low SOR. PMID:23660020

  11. Anti-inflammatory and analgesic effects of ketoprofen in palm oil esters nanoemulsion.

    PubMed

    Sakeena, M H F; Yam, M F; Elrashid, S M; Munavvar, A S; Azmin, M N

    2010-01-01

    Ketoprofen is a potent non-steroidal anti-inflammatory drug has been used in the treatment of various kinds of pains, inflammation and arthritis. However, oral administration of ketoprofen produces serious gastrointestinal adverse effects. One of the promising methods to overcome these adverse effects is to administer the drug through the skin. The aim of the present work is to evaluate the anti-inflammatory and analgesic effects from topically applied ketoprofen entrapped palm oil esters (POEs) based nanoemulsion and to compare with market ketoprofen product, Fastum(®) gel. The novelty of this study is, use of POEs for the oil phase of nanoemulsion. The anti-inflammatory and analgesic studies were performed on rats by carrageenan-induced rat hind paw edema test and carrageenan-induced hyperalgesia pain threshold test to compare the ketoprofen entrapped POEs based nanoemulsion formulation and market formulation. Results indicated that there are no significant different between ketoprofen entrapped POEs nanoemulsion and market formulation in carrageenan-induced rat hind paw edema study and carrageenan-induced hyperalgesia pain threshold study. However, it shows a significant different between POEs nanoemulsion formulation and control group in these studies at p<0.05. From these results it was concluded that the developed nanoemulsion have great potential for topical application of ketoprofen. PMID:21099145

  12. Multiplexed detection of various breast cancer cells by perfluorocarbon/quantum dot nanoemulsions conjugated with antibodies

    NASA Astrophysics Data System (ADS)

    Bae, Pan Kee; Chung, Bong Hyun

    2014-07-01

    The effective targeting of cancer cell surface antigens is an attractive approach in cancer diagnosis and therapy. Multifunctional nanoprobes with cell-targeting specificity are likely to find important applications in bioanalysis, biomedicine, and clinical diagnosis. In this study, we have fabricated biocompatible perfluorocan/quantum dot nanoemulsions as bimodal imaging nanoprobes for the targeting of breast cancer cells. Perfluorocarbon/quantum dot nanoemulsions conjugated with monoclonal antibodies, as a type of bimodal imaging nanoprobe based on 19 F-MR and optical imaging, have been synthesized and applied for targeted imaging of three different breast cancer cells (SKBR3, MCF-7, MDA-MB 468), respectively. We have shown that the cancer-detection capabilities of antibody-conjugated PFC/QDs nanoemulsions could be successfully applied to target of various breast cancer cells. These modified PFC/QDs nanoemulsions were shown to target the cancer cell surface receptors specially. Conjugation of ligands to nanoemulsions targeting over-expressed cell surface receptors is a promising approach for targeted imaging to tumor cells. We further propose that the PFC/QDs nanoemulsions could be used in targeted imaging of breast cancer cells.

  13. Development of Food-Grade Curcumin Nanoemulsion and its Potential Application to Food Beverage System: Antioxidant Property and In Vitro Digestion.

    PubMed

    Joung, Hee Joung; Choi, Mi-Jung; Kim, Jun Tae; Park, Seok Hoon; Park, Hyun Jin; Shin, Gye Hwa

    2016-03-01

    Curcumin nanoemulsions (Cur-NEs) were developed with various surfactant concentrations by using high pressure homogenization and finally applied to the commercial milk system. Characterization of Cur-NEs was performed by measuring the droplet size and polydispersity index value at different Tween 20 concentrations. The morphology of the Cur-NEs was observed by confocal laser scanning microscopy and transmission electron microscopy. Antioxidant activity and in vitro digestion ability were tested using 2,2-diphenyl-1-picrylhydrazyl, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt, pH-stat method, and thiobarbituric acid reactive substances assays. Cur-NEs were found to be physically stable for 1 mo at room temperature. The surfactant concentration affects particle formation and droplet size. The mean droplet size decreased from 122 to 90 nm when surfactant concentration increased 3 times. Cur-NEs had shown an effective oxygen scavenging activity. Cur-NEs-fortified milk showed significantly lower lipid oxidation than control (unfortified) milk and milk containing curcumin-free nanoemulsions. These properties make Cur-NEs suitable systems for the beverage industry. PMID:26807662

  14. Non-enzymatic glucose detection using magnetic nanoemulsions

    SciTech Connect

    Mahendran, V.; Philip, John

    2014-09-22

    We probe the optical properties and intermolecular interactions in magnetically responsive nanoemulsions in the presence of glucose. The equilibrium interdroplet distance between the emulsion droplets in an one-dimensional array increases by several nanometers in the presence of glucose because of intermolecular hydrogen bonding with sodium dodecyl sulphate molecules at the oil-water interface that gives rise to stretched lamellae-like structure. The observed large red shift in the diffracted Bragg peak (∼50–100 nm) and the linear response in the glucose concentration range of 0.25–25 mM offer a simple, fast, and cost effective non-enzymatic approach for glucose detection.

  15. Lipid-Based Nanocarriers for RNA Delivery.

    PubMed

    Xue, Hui Yi; Guo, Pengbo; Wen, Wu-Cheng; Wong, Ho Lun

    2015-01-01

    RNA-interference (RNAi) agents such as small-interfering RNA (siRNA) and micro-RNA (miRNA) have strong potential as therapeutic agents for the treatment of a broad range of diseases such as malignancies, infections, autoimmune diseases and neurological diseases that are associated with undesirable gene expression. In recent years, several clinical trials of RNAi therapeutics especially siRNAs have been conducted with limited success so far. For systemic administration of these poorly permeable and easily degradable macromolecules, it is obvious that a safe and efficient delivery platform is highly desirable. Because of high biocompatibility, biodegradability and solid track record for clinical use, nanocarriers made of lipids and/or phospholipids have been commonly employed to facilitate RNA delivery. In this article, the key features of the major sub-classes of lipid-based nanocarriers, e.g. liposomes, lipid nanoparticles and lipid nanoemulsions, will be reviewed. Focus of the discussion is on the various challenges researchers face when developing lipid-based RNA nanocarriers, such as the toxicity of cationic lipids and issues related to PEGylated lipids, as well as the strategies employed in tackling these challenges. It is hoped that by understanding more about the pros and cons of these most frequently used RNA delivery systems, the pharmaceutical scientists, biomedical researchers and clinicians will be more successful in overcoming some of the obstacles that currently limit the clinical translation of RNAi therapy. PMID:26027572

  16. Lipid-Based Nanocarriers for RNA Delivery

    PubMed Central

    Xue, Hui Yi; Guo, Pengbo; Wen, Wu-Cheng; Wong, Ho Lun

    2015-01-01

    RNA-interference (RNAi) agents such as small-interfering RNA (siRNA) and micro-RNA (miRNA) have strong potential as therapeutic agents for the treatment of a broad range of diseases such as malignancies, infections, autoimmune diseases and neurological diseases that are associated with undesirable gene expression. In recent years, several clinical trials of RNAi therapeutics especially siRNAs have been conducted with limited success so far. For systemic administration of these poorly permeable and easily degradable macromolecules, it is obvious that a safe and efficient delivery platform is highly desirable. Because of high biocompatibility, biodegradability and solid track record for clinical use, nanocarriers made of lipids and/or phospholipids have been commonly employed to facilitate RNA delivery. In this article, the key features of the major sub-classes of lipid-based nanocarriers, e.g. liposomes, lipid nanoparticles and lipid nanoemulsions, will be reviewed. Focus of the discussion is on the various challenges researchers face when developing lipid-based RNA nanocarriers, such as the toxicity of cationic lipids and issues related to PEGylated lipids, as well as the strategies employed in tackling these challenges. It is hoped that by understanding more about the pros and cons of these most frequently used RNA delivery systems, the pharmaceutical scientists, biomedical researchers and clinicians will be more successful in overcoming some of the obstacles that currently limit the clinical translation of RNAi therapy. PMID:26027572

  17. Layered nanoemulsions as mucoadhesive buccal systems for controlled delivery of oral cancer therapeutics

    PubMed Central

    Gavin, Amy; Pham, Jimmy TH; Wang, Dawei; Brownlow, Bill; Elbayoumi, Tamer A

    2015-01-01

    Oral cavity and oropharyngeal cancers are considered the eighth most common cancer worldwide, with relatively poor prognosis (62% of patients surviving 5 years, after diagnosis). The aim of this study was to develop a proof-of-concept mucoadhesive lozenge/buccal tablet, as a potential platform for direct sustained delivery of therapeutic antimitotic nanomedicines. Our system would serve as an adjuvant therapy for oral cancer patients undergoing full-scale diagnostic and operative treatment plans. We utilized lipid-based nanocarriers, namely nanoemulsions (NEs), containing mixed-polyethoxylated emulsifiers and a tocopheryl moiety–enriched oil phase. Prototype NEs, loaded with the proapoptotic lipophilic drug genistein (Gen), were further processed into buccal tablet formulations. The chitosan polyelectrolyte solution overcoat rendered NE droplets cationic, by acting as a mucoadhesive interfacial NE layer. With approximate size of 110 nm, the positively charged chitosan-layered NE (+25 mV) vs negatively charged chitosan-free/primary aqueous NE (−28 mV) exhibited a controlled-release profile and effective mucoadhesion for liquid oral spray prototypes. When punch-pressed, porous NE-based buccal tablets were physically evaluated for hardness, friability, and swelling in addition to ex vivo tissue mucoadhesion force and retention time measurements. Chitosan-containing NE tablets were found equivalent to primary NE and placebo tablets in compression tests, yet significantly superior in all ex vivo adhesion and in vitro release assays (P≤0.05). Following biocompatibility screening of prototype chitosan-layered NEs, substantial anticancer activity of selected cationic Gen-loaded NE formulations, against two oropahryngeal carcinomas, was observed. The data strongly indicate the potential of such nanomucoadhesive systems as maintenance therapy for oral cancer patients awaiting surgical removal, or postresection of identified cancerous lesions. PMID:25759580

  18. Accelerated Stability Testing of a Clobetasol Propionate-Loaded Nanoemulsion as per ICH Guidelines.

    PubMed

    Ali, Mohammad Sajid; Alam, Mohammad Sarfaraz; Alam, Nawazish; Anwer, Tarique; Safhi, Mohammed Mohsen A

    2013-12-01

    The physical and chemical degradation of drugs may result in altered therapeutic efficacy and even toxic effects. Therefore, the objective of this work was to study the stability of clobetasol propionate (CP) in a nanoemulsion. The nanoemulsion formulation containing CP was prepared by the spontaneous emulsification method. For the formulation of the nanoemulsion, Safsol, Tween 20, ethanol, and distilled water were used. The drug was incorporated into an oil phase in 0.05% w/v. The lipophilic nature of the drug led to the O/W nanoemulsion formulation. This was characterized by droplet size, pH, viscosity, conductivity, and refractive index. Stability studies were performed as per ICH guidelines for a period of three months. The shelf life of the nanoemulsion formulation was also determined after performing accelerated stability testing (40°C ± 2°C and 75% ± 5% RH). We also performed an intermediate stability study (30°C ± 2°C/65% RH ± 5% RH). It was found that the droplet size, conductivity, and refractive index were slightly increased, while the viscosity and pH slightly decreased at all storage conditions during the 3-month period. However, the changes in these parameters were not statistically significant (p≥0.05). The degradation (%) of the optimized nanoemulsion of CP was determined and the shelf life was found to be 2.18 years at room temperature. These studies confirmed that the physical and chemical stability of CP were enhanced in the nanoemulsion formulation. PMID:24482775

  19. Accelerated Stability Testing of a Clobetasol Propionate-Loaded Nanoemulsion as per ICH Guidelines

    PubMed Central

    Ali, Mohammad Sajid; Alam, Mohammad Sarfaraz; Alam, Nawazish; Anwer, Tarique; Safhi, Mohammed Mohsen A.

    2013-01-01

    The physical and chemical degradation of drugs may result in altered therapeutic efficacy and even toxic effects. Therefore, the objective of this work was to study the stability of clobetasol propionate (CP) in a nanoemulsion. The nanoemulsion formulation containing CP was prepared by the spontaneous emulsification method. For the formulation of the nanoemulsion, Safsol, Tween 20, ethanol, and distilled water were used. The drug was incorporated into an oil phase in 0.05% w/v. The lipophilic nature of the drug led to the O/W nanoemulsion formulation. This was characterized by droplet size, pH, viscosity, conductivity, and refractive index. Stability studies were performed as per ICH guidelines for a period of three months. The shelf life of the nanoemulsion formulation was also determined after performing accelerated stability testing (40°C ± 2°C and 75% ± 5% RH). We also performed an intermediate stability study (30°C ± 2°C/65% RH ± 5% RH). It was found that the droplet size, conductivity, and refractive index were slightly increased, while the viscosity and pH slightly decreased at all storage conditions during the 3-month period. However, the changes in these parameters were not statistically significant (p≥0.05). The degradation (%) of the optimized nanoemulsion of CP was determined and the shelf life was found to be 2.18 years at room temperature. These studies confirmed that the physical and chemical stability of CP were enhanced in the nanoemulsion formulation. PMID:24482775

  20. Ultrasound-Mediated Tumor Imaging and Nanotherapy using Drug Loaded, Block Copolymer Stabilized Perfluorocarbon Nanoemulsions

    PubMed Central

    Rapoport, Natalya; Nam, Kweon-Ho; Gupta, Roohi; Gao, Zhongao; Mohan, Praveena; Payne, Allison; Todd, Nick; Liu, Xin; Kim, Taeho; Shea, Jill; Scaife, Courtney; Parker, Dennis L.; Jeong, Eun-Kee; Kennedy, Anne M.

    2011-01-01

    Perfluorocarbon nanoemulsions can deliver lipophilic therapeutic agents to solid tumors and simultaneously provide for monitoring nanocarrier biodistribution via ultrasonography and/or 19F MRI. In the first generation of block copolymer stabilized perfluorocarbon nanoemulsions, perfluoropentane (PFP) was used as the droplet forming compound. Although manifesting excellent therapeutic and ultrasound imaging properties, PFP nanoemulsions were unstable at storage, difficult to handle, and underwent hard to control phenomenon of irreversible droplet-to-bubble transition upon injection. To solve the above problems, perfluoro-15-crown-5-ether (PFCE) was used as a core forming compound in the second generation of block copolymer stabilized perfluorocarbon nanoemulsions. PFCE nanodroplets manifest both ultrasound and fluorine (19F) MR contrast properties, which allows using multimodal imaging and 19F MR spectroscopy for monitoring nanodroplet pharmacokinetics and biodistribution. In the present paper, acoustic, imaging, and therapeutic properties of unloaded and paclitaxel (PTX) loaded PFCE nanoemulsions are reported. As manifested by the 19F MR spectroscopy, PFCE nanodroplets are long circulating, with about 50% of the injected dose remaining in circulation two hours after the systemic injection. Sonication with 1-MHz therapeutic ultrasound triggered reversible droplet-to-bubble transition in PFCE nanoemulsions. Microbubbles formed by acoustic vaporization of nanodroplets underwent stable cavitation. The nanodroplet size (200 nm to 350 nm depending on a type of the shell and conditions of emulsification) as well as long residence in circulation favored their passive accumulation in tumor tissue that was confirmed by ultrasonography. In the breast and pancreatic cancer animal models, ultrasound-mediated therapy with paclitaxel-loaded PFCE nanoemulsions showed excellent therapeutic properties characterized by tumor regression and suppression of metastasis. Anticipated

  1. Nanoemulsion strategy for olmesartan medoxomil improves oral absorption and extended antihypertensive activity in hypertensive rats.

    PubMed

    Gorain, Bapi; Choudhury, Hira; Kundu, Amit; Sarkar, Lipi; Karmakar, Sanmoy; Jaisankar, P; Pal, Tapan Kumar

    2014-03-01

    Olmesartan medoxomil (OM) is hydrolyzed to its active metabolite olmesartan by the action of aryl esterase to exert its antihypertensive actions by selectively blocking angiotensin II-AT1 receptor. Poor aqueous solubility and uncontrolled enzymatic conversion of OM to its poorly permeable olmesartan limits its oral bioavailability. The aim of the current study was to formulate a novel nanoemulsion of OM to improve its pharmacokinetics and therapeutic efficacy. The oil-in-water (o/w) nanoemulsion of OM was developed using lipoid purified soybean oil 700, sefsol 218 and solutol HS 15. We have characterized the nanoemulsions by considering their thermodynamic stability, morphology, droplet size, zeta potential and viscosity and in vitro drug release characteristics in fasting state simulated gastric fluid (pH 1.2) and intestinal fluid (pH 6.5). The thermodynamically stable nanoemulsions comprises of spherical nanometer sized droplets (<50 nm) with low polydispersity index showed enhanced permeability through the Caco-2 cell monolayer. The concentration of active olmesartan in rat plasma following oral absorption study was determined by our validated LC-MS/MS method. The result of the pharmacokinetic study showed 2.8-fold increased in area under the curve (AUC0-27) of olmesartan upon oral administration of OM nanoemulsion and sustained release profile. Subsequent, in vivo studies with nanoemulsion demonstrated better and prolonged control of experimentally induced hypertension with 3-fold reduction in conventional dose. By analysing the findings of the present investigations based on stability study, Caco-2 permeability, pharmacokinetic profile and pharmacodynamic evaluation indicated that the nanoemulsion of OM (OMF6) could significantly enhance the oral bioavailability of relatively insoluble OM contributing to improved clinical application. PMID:24388859

  2. Formation and stability of nanoemulsions with mixed ionic-nonionic surfactants.

    PubMed

    Wang, Lijuan; Tabor, Rico; Eastoe, Julian; Li, Xuefeng; Heenan, Richard K; Dong, Jinfeng

    2009-11-14

    A simple, low-energy two-step dilution process has been applied with binary mixtures of ionic-nonionic surfactants to prepare nanoemulsions. The systems consist of water/DDAB-C(12)E(5)/decane. Nanoemulsions were obtained by dilution of concentrates located in bicontinuous microemulsion or lamellar liquid crystal phase regions. The nanoemulsions generated were investigated both by contrast-variation small-angle neutron scattering (SANS) and dynamic light scattering (DLS). The SANS profiles show that C(12)E(5) nanodroplets suffer essentially no structural change on incorporation of the cationic DDAB surfactant, except for increased electrostatic repulsive interactions. Interestingly, SANS indicated that the preferred droplet sizes were hardly affected by the surfactant mixture composition (up to a DDAB molar ratio (m(DDAB)/(m(DDAB) + m(C(12)E(5))) of 0.40) and droplet volume fraction, phi, between 0.006 and 0.120. No notable changes in the structure or radius of nanoemulsion droplets were observed by SANS over the test period of 1 d, although the droplet number intensity decreased significantly in systems stabilized by C(12)E(5) only. However, the DLS sizing shows a marked increase with time, with higher droplet volume fractions giving rise to the largest changes. The discrepancy between apparent nanoemulsion droplet size determined by DLS and SANS data can be attributed to long-range droplet interactions occurring outside of the SANS sensitivity range. The combined SANS and DLS results suggest flocculation is the main mechanism of instability for these nanoemulsions. The flocculation rate is shown to be significantly retarded by addition of the charged DDAB, which may be due to enhanced electrostatic repulsive forces between droplets, leading to improved stability of the nanoemulsions. PMID:19851556

  3. Lanolin-derived lipid mixtures mimic closely the lipid composition and organization of vernix caseosa lipids.

    PubMed

    Rissmann, Robert; Oudshoorn, Marion H M; Kocks, Elise; Hennink, Wim E; Ponec, Maria; Bouwstra, Joke A

    2008-10-01

    The aim of the present study was to use semi-synthetic lipid mixtures to mimic the complex lipid composition, organization and thermotropic behaviour of vernix caseosa (VC) lipids. As VC shows multiple protecting and barrier supporting properties before and after birth, it is suggested that a VC substitute could be an innovative barrier cream for barrier deficient skin. Lanolin was selected as the source of the branched chain sterol esters and wax esters--the main lipid classes of VC. Different lipid fractions were isolated from lanolin and subsequently mixed with squalene, triglycerides, cholesterol, ceramides and fatty acids to generate semi-synthetic lipid mixtures that mimic the lipid composition of VC, as established by high-performance thin-layer chromatography. Differential scanning calorimetry and Fourier transform infrared spectroscopy investigations revealed that triglycerides play an important role in the (lateral) lipid organization and thermotropic behaviour of the synthetic lipid mixtures. Excellent resemblance of VC lipids was obtained when adding unsaturated triglycerides. Moreover, these lipid mixtures showed similar long range ordering as VC. The optimal lipid mixture was evaluated on tape-stripped hairless mouse skin in vivo. The rate of barrier recovery was increased and comparable to VC lipid treatment. PMID:18655769

  4. Nanoemulsions of thymol and eugenol co-emulsified by lauric arginate and lecithin.

    PubMed

    Ma, Qiumin; Davidson, P Michael; Zhong, Qixin

    2016-09-01

    Lauric arginate (LAE) is a cationic surfactant with excellent antimicrobial activities. To incorporate essential oil components (EOCs) in aqueous systems, properties of EOC nanoemulsions prepared with a LAE and lecithin mixture were studied. The LAE-lecithin mixture resulted in stable translucent nanoemulsions of thymol and eugenol with spherical droplets smaller than 100nm, contrasting with the turbid emulsions prepared with individual emulsifiers. Zeta-potential data suggested the formation of LAE-lecithin complexes probably through hydrophobic interaction. Negligible difference was observed for antimicrobial activities of nanoemulsions and LAE in tryptic soy broth. In 2% reduced fat milk, nanoemulsions showed similar antilisterial activities compared to free LAE in inhibiting Listeria monocytogenes, but was less effective against Escherichia coli O157:H7 than free LAE, which was correlated with the availability of LAE as observed in release kinetics. Therefore, mixing LAE with lecithin improved the physical properties of EOC nanoemulsions but did not improve antimicrobial activities, especially against Gram-negative bacteria. PMID:27041312

  5. Nanoemulsion delivery systems: influence of carrier oil on β-carotene bioaccessibility.

    PubMed

    Qian, Cheng; Decker, Eric Andrew; Xiao, Hang; McClements, David Julian

    2012-12-01

    Consumption of carotenoids may reduce the incidences of certain chronic diseases, but their use in foods is currently limited because of their poor water-solubility, low bioavailability and chemical instability. We examined the impact of carrier oil type on the bioaccessibility of β-carotene encapsulated within nanoemulsion-based delivery systems. Oil-in-water nanoemulsions (d<200nm) were formed using a non-ionic surfactant (Tween 20) as emulsifier and long chain triglycerides (LCT), medium chain triglycerides (MCT) or orange oil as carrier oils. The influence of carrier oil type on β-carotene bioaccessibility was established using an in vitro model to simulate the oral, gastric and small intestinal phases of the gastrointestinal tract. The rate and extent of free fatty acid production in the intestine decreased in the order LCT≈MCT≫orange oil; whereas β-carotene bioaccessibility decreased in the order LCT≫MCT>orange oil. The bioaccessibility of β-carotene was negligible (≈0%) in orange oil nanoemulsions because no mixed micelles were formed to solubilise β-carotene, and was relatively low (≈2%) in MCT nanoemulsions because the mixed micelles formed were too small to solubilise β-carotene. In contrast, β-carotene bioaccessibility was relatively high (≈66%) in LCT nanoemulsions. Our results have important implications for the design of effective delivery systems for encapsulation of carotenoids and other lipophilic bioactive components. PMID:22953878

  6. Ketoprofen-loaded pomegranate seed oil nanoemulsion stabilized by pullulan: Selective antiglioma formulation for intravenous administration.

    PubMed

    Ferreira, Luana M; Cervi, Verônica F; Gehrcke, Mailine; da Silveira, Elita F; Azambuja, Juliana H; Braganhol, Elizandra; Sari, Marcel H M; Zborowski, Vanessa A; Nogueira, Cristina W; Cruz, Letícia

    2015-06-01

    This study aimed to prepare pomegranate seed oil nanoemulsions containing ketoprofen using pullulan as a polymeric stabilizer, and to evaluate antitumor activity against in vitro glioma cells. Formulations were prepared by the spontaneous emulsification method and different concentrations of pullulan were tested. Nanoemulsions presented adequate droplet size, polydispersity index, zeta potential, pH, ketoprofen content and encapsulation efficiency. Nanoemulsions were able to delay the photodegradation profile of ketoprofen under UVC radiation, regardless of the concentration of pullulan. In vitro release study indicates that nanoemulsions were able to release approximately 95.0% of ketoprofen in 5h. Free ketoprofen and formulations were considered hemocompatible at 1 μg/mL, in a hemolysis study, for intravenous administration. In addition, a formulation containing the highest concentration of pullulan was tested against C6 cell line and demonstrated significant activity, and did not reduce fibroblasts viability. Thus, pullulan can be considered an interesting excipient to prepare nanostructured systems and nanoemulsion formulations can be considered promising alternatives for the treatment of glioma. PMID:25935266

  7. Chemoprevention of skin cancer using low HLB surfactant nanoemulsion of 5-fluorouracil: a preliminary study.

    PubMed

    Shakeel, Faiyaz; Haq, Nazrul; Al-Dhfyan, Abdullah; Alanazi, Fars K; Alsarra, Ibrahim A

    2015-01-01

    Oral delivery of 5-fluorouracil (5-FU) is difficult due to its serious adverse effects and extremely low bioavailability. Therefore, the aim of present investigation was to develop and evaluate low HLB surfactant nanoemulsion of 5-FU for topical chemoprevention of skin cancer. Low HLB surfactant nanoemulsions were prepared by oil phase titration method. Thermodynamically stable nanoemulsions were characterized in terms of droplet size distribution, zeta potential, viscosity and refractive index. Selected formulations and control were subjected to in vitro skin permeation studies through rat skin using Franz diffusion cells. Optimized formulation F9 was subjected to stability and in vitro cytotoxic studies on melanoma cell lines. Enhancement ratio was found to be 22.33 in formulation F9 compared with control and other formulations. The values of steady state flux and permeability coefficient for formulation F9 were found to be 206.40 ± 14.56 µg cm(-2) h(-1) and 2.064 × 10(-2) ± 0.050 × 10(-2 )cm h(-1), respectively. Optimized formulation F9 was found to be physical stable. In vitro cytotoxicity studies on SK-MEL-5 cancer cells indicated that 5-FU in optimized nanoemulsion is much more efficacious than free 5-FU. From these results, it can be concluded that the developed nanoemulsion might be a promising vehicle for chemoprevention of skin cancer. PMID:24350612

  8. Formulation and characterisation of wheat bran oil-in-water nanoemulsions.

    PubMed

    Rebolleda, Sara; Sanz, María Teresa; Benito, José Manuel; Beltrán, Sagrario; Escudero, Isabel; González San-José, María Luisa

    2015-01-15

    Wheat bran oil (WBO) has been reported to have an important content of bioactive compounds, such as tocopherols, alkylresorcinols, steryl ferulates and other phenolic compounds; however, its poor solubility in water systems restricts its applications in the food industry. This study is focussed on the formulation of oil-in-water (O/W) nanoemulsions of WBO in order to improve the bioaccessibility of its active compounds. The influences of oil concentration, surfactant type and concentration, and emulsification method, on the droplet size and stability of the nanoemulsions were investigated. Response surface methodology was used to optimise the conditions for preparing stable nanoemulsions with the minimum droplet size. The optimal nanoemulsion was obtained when 1% of WBO and 7.3% of a surfactant mixture of Span 80 (37.4%) and Tween 80 (62.6%) were emulsified in water by high intensity ultrasonication for 50s after pre-emulsification with a high speed blender during 5 min. The optimal nanoemulsion showed good stability over time and antioxidant and tyrosinase inhibitory activities, which make it suitable for use in food applications. PMID:25148953

  9. Stearylamine-Containing Cationic Nanoemulsion as a Promising Carrier for Gene Delivery.

    PubMed

    Silva, André L; Marcelino, Henrique R; Verissimo, Lourena M; Araujo, Ivonete B; Agnez-Lima, Lucymara F; do Egito, Eryvaldo S T

    2016-02-01

    The drawbacks related to the use of viral vectors in gene therapy have been stimulated the research in non-viral strategies such as cationic nanoemulsions. The aim of this work was to develop a stearylamine-containing nanoemulsion for gene therapy purpose. The formulation was chosen from a Pseudo-Ternary Phase Diagram and had its long-term stability assessed by Dynamic Light Scattering and Phase Analysis Light Scattering during 180 days at 4 degrees C, 25 degrees C and 40 degrees C. Besides, studies of sterilization and scale up of the product were conducted. It was demonstrated that the proposed system was stable up to 180 days when stored at 4 degrees C and could be sterilized by a 0.22 microm filter pore without changes on its characteristics. The scale up was possible by adjusting the volume to the sonication time. Because the nanoemulsion presented a droplet size smaller than 200 nm and a zeta potential higher than 30 mV, this system was able to correctly complex the plasmid model PIRES2-EGFP, as confirmed by the agarosis gel electrophoresis assay. The nanoemulsion toxicity evaluated over lung fetus human cells (MRC-5) was dose-dependent. However, it does not appear to be a limiting factor for further experiments aiming gene transfection. As a conclusion, stearylamine-containing cationic nanoemulsions can be used for gene therapy, since it presents suitable characteristics, stability and possibility of sterilization. PMID:27433584

  10. Superior antibacterial activity of nanoemulsion of Thymus daenensis essential oil against E. coli.

    PubMed

    Moghimi, Roya; Ghaderi, Lida; Rafati, Hasan; Aliahmadi, Atousa; McClements, David Julian

    2016-03-01

    Natural preservatives are being extensively investigated for their potential industrial applications in foods and other products. In this work, an essential oil (Thymus daenensis) was formulated as a water-dispersible nanoemulsion (diameter=143nm) using high-intensity ultrasound. The antibacterial activity of the essential oil in both pure and nanoemulsion forms was measured against an important food-borne pathogen bacterium, Escherichia coli. Antibacterial activity was determined by measuring the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). The antibacterial activity of the essential oil against E. coli was enhanced considerably when it was converted into a nanoemulsion, which was attributed to easier access of the essential oils to the bacterial cells. The mechanism of antibacterial activity was investigated by measuring potassium, protein, and nucleic acid leakage from the cells, and electron microscopy. Evaluation of the kinetics of microbial deactivation showed that the nanoemulsion killed all the bacteria in about 5min, whereas only a 1-log reduction was observed for pure essential oil. The nanoemulsion appeared to amplify the antibacterial activity of essential oils against E. coli by increasing their ability to disrupt cell membrane integrity. PMID:26471573

  11. Design of nanoemulsion-based delivery systems of natural antimicrobials: effect of the emulsifier.

    PubMed

    Donsì, Francesco; Annunziata, Marianna; Vincensi, Mariarosaria; Ferrari, Giovanna

    2012-06-30

    This work aims at investigating the effect of the nanoemulsion delivery systems on the antimicrobial activity of different essential oil components. Carvacrol, limonene and cinnamaldehyde were encapsulated in the sunflower oil droplets of nanoemulsions prepared by high pressure homogenization and stabilized by different emulsifiers: (a) lecithin, (b) pea proteins, (c) sugar ester and (d) a combination of Tween 20 and glycerol monooleate. The antimicrobial activity was measured against three different microorganisms, such as Escherichia coli, Lactobacillus delbrueckii and Saccharomyces cerevisiae. The measured antimicrobial activity was significantly affected by the formulation of the nanoemulsion, where the different bioactive compounds were encapsulated. In particular, the effect of the delivery systems on the antimicrobial activity was correlated to the concentration of the essential oil components in the aqueous phase in equilibrium with the nanoemulsion droplets, suggesting that the ability of the active molecules to interact with cell membranes is associated to their dissolution in the aqueous phase. These considerations can lead to a more rational design of the nanoemulsion-based delivery systems for essential oils, based on the opportune choice of the emulsifiers in dependence of the desired function of the antimicrobials within the food system. PMID:21763730

  12. The Effect of Nanoemulsion as a Carrier of Hydrophilic Compound for Transdermal Delivery

    PubMed Central

    Lin, Yu-Hsuan; Huang, Yaw-Bin; Wu, Pao-Chu

    2014-01-01

    The purpose of the present study was to investigate the effect of nanoemulsions as a carrier vehicle of hydrophilic drug for transdermal delivery. The response surface methodology with a mixture design was used to evaluate the effect of ingredient levels of nanoemulsion formulations including cosurfactant (isopropyl alcohol, 20∼30%), surfactant (mixed of Brij 30 and Brij 35, 20∼30%), and distilled-water (34.5∼50.0%) on properties of the drug-loaded nanoemulsions including physicochemical characters and drug permeability through rat skin. The result showed that the hydrophilic drug in aqueous solution with or without penetration enhancer could not transport across rat skin after 12 h of application. Used nanoemulsions as carrier vehicle, the permeation rate of drug was significantly increased from 0 to 63.23 µg/cm2/h and the lag time was shortened from more than 12 h to about 2.7∼4.0 h. Moreover, the drug-loaded nanoemulsion formulation also showed physicochemical stability after 3 month storage at 25°C and 40°C. PMID:25068531

  13. Nanoemulsions as novel oral carriers of stiripentol: insights into the protective effect and absorption enhancement

    PubMed Central

    Lu, Rong; Liu, Shan; Wang, Qilin; Li, Xia

    2015-01-01

    Oral administration remains a significant challenge in regards to drugs with serious solubility and stability issues. This article aimed to investigate the suitability of nanoemulsions as oral carriers of stiripentol (STP), an acid-labile drug, for enhancement of stability and bioavailability. STP-loaded nanoemulsions (STP-NEs) were prepared by using a solvent-diffusion/ultrasonication technique. STP-NEs were characterized in a variety of ways such as by particle size, entrapment efficiency, in vitro drug release, and transmission electron microscopy. A bioavailability study was performed in rats after oral administration of either STP-NEs, or commercial formulation (Diacomit®). The resultant nanoemulsions were 146.6 nm in particle size with an entrapment efficiency of 99.47%. It was demonstrated that nanoemulsions significantly improved the biochemical stability and bioavailability of STP. The bioavailability of STP-NEs was up to 206.2% relative to Diacomit®. Nanoemulsions fabricated from poly(ethylene glycol) monooleate/medium-chain triglycerides exhibited excellent performance in drug stabilization and absorption enhancement. The results suggest that STP-NEs are a promising means to solve the problems associated with stability and solubility of STP. PMID:26261418

  14. Biocompatible Nanoemulsions for Improved Aceclofenac Skin Delivery: Formulation Approach Using Combined Mixture-Process Experimental Design.

    PubMed

    Isailović, Tanja; Ðorđević, Sanela; Marković, Bojan; Ranđelović, Danijela; Cekić, Nebojša; Lukić, Milica; Pantelić, Ivana; Daniels, Rolf; Savić, Snežana

    2016-01-01

    We aimed to develop lecithin-based nanoemulsions intended for effective aceclofenac (ACF) skin delivery utilizing sucrose esters [sucrose palmitate (SP) and sucrose stearate (SS)] as additional stabilizers and penetration enhancers. To find the suitable surfactant mixtures and levels of process variables (homogenization pressure and number of cycles - high pressure homogenization manufacturing method) that result in drug-loaded nanoemulsions with minimal droplet size and narrow size distribution, a combined mixture-process experimental design was employed. Based on optimization data, selected nanoemulsions were evaluated regarding morphology, surface charge, drug-excipient interactions, physical stability, and in vivo skin performances (skin penetration and irritation potential). The predicted physicochemical properties and storage stability were proved satisfying for ACF-loaded nanoemulsions containing 2% of SP in the blend with 0%-1% of SS and 1%-2% of egg lecithin (produced at 50°C/20 cycles/800 bar). Additionally, the in vivo tape stripping demonstrated superior ACF skin absorption from these nanoemulsions, particularly from those containing 2% of SP, 0.5% of SS, and 1.5% of egg lecithin, when comparing with the sample costabilized by conventional surfactant - polysorbate 80. In summary, the combined mixture-process experimental design was shown as a feasible tool for formulation development of multisurfactant-based nanosized delivery systems with potentially improved overall product performances. PMID:26539935

  15. Nanoemulsions as novel oral carriers of stiripentol: insights into the protective effect and absorption enhancement.

    PubMed

    Lu, Rong; Liu, Shan; Wang, Qilin; Li, Xia

    2015-01-01

    Oral administration remains a significant challenge in regards to drugs with serious solubility and stability issues. This article aimed to investigate the suitability of nanoemulsions as oral carriers of stiripentol (STP), an acid-labile drug, for enhancement of stability and bioavailability. STP-loaded nanoemulsions (STP-NEs) were prepared by using a solvent-diffusion/ultrasonication technique. STP-NEs were characterized in a variety of ways such as by particle size, entrapment efficiency, in vitro drug release, and transmission electron microscopy. A bioavailability study was performed in rats after oral administration of either STP-NEs, or commercial formulation (Diacomit). The resultant nanoemulsions were 146.6 nm in particle size with an entrapment efficiency of 99.47%. It was demonstrated that nanoemulsions significantly improved the biochemical stability and bioavailability of STP. The bioavailability of STP-NEs was up to 206.2% relative to Diacomit. Nanoemulsions fabricated from poly(ethylene glycol) monooleate/medium-chain triglycerides exhibited excellent performance in drug stabilization and absorption enhancement. The results suggest that STP-NEs are a promising means to solve the problems associated with stability and solubility of STP. PMID:26261418

  16. Influence of surfactant charge on antimicrobial efficacy of surfactant-stabilized thyme oil nanoemulsions.

    PubMed

    Ziani, Khalid; Chang, Yuhua; McLandsborough, Lynne; McClements, David Julian

    2011-06-01

    Thyme oil-in-water nanoemulsions stabilized by a nonionic surfactant (Tween 80, T80) were prepared as potential antimicrobial delivery systems (pH 4). The nanoemulsions were highly unstable to droplet growth and phase separation, which was attributed to Ostwald ripening due to the relatively high water solubility of thyme oil. Ostwald ripening could be inhibited by incorporating ≥75% of corn oil (a hydrophobic material with a low water solubility) into the nanoemulsion droplets. The electrical characteristics of the droplets in the nanoemulsions were varied by incorporating ionic surfactants with different charges after homogenization: a cationic surfactant (lauric arginate, LAE) or an anionic surfactant (sodium dodecyl sulfate, SDS). The antifungal activity of nanoemulsions containing positive, negative, or neutral thymol droplets was then conducted against four strains of acid-resistant spoilage yeasts: Zygosaccharomyces bailli, Saccharomyces cerevisiae, Brettanomyces bruxellensis, and Brettanomyces naardenensis. The antifungal properties of the three surfactants (T80, LAE, SDS) were also tested in the absence of thymol droplets. Both ionic surfactants showed strong antifungal activity in the absence of thymol droplets, but no antimicrobial activity in their presence. This effect was attributed to partitioning of the antimicrobial surfactant molecules between the oil droplet and microbial surfaces, thereby reducing the effective concentration of active surfactants available to act as antimicrobials. This study shows oil droplets may decrease the efficacy of surfactant-based antimicrobials, which has important consequences for formulating effective antimicrobial agents for utilization in emulsion-based food and beverage products. PMID:21520914

  17. Formulation and in vitro evaluation of ketoprofen in palm oil esters nanoemulsion for topical delivery.

    PubMed

    Sakeena, M H F; Muthanna, F A; Ghassan, Z A; Kanakal, M M; Elrashid, S M; Munavvar, A S; Azmin, M N

    2010-01-01

    The aim of the present study is to formulate and investigate the potential of nanoemulsion formulation for topical delivery of ketoprofen. In this study, Palm Oil Esters (POEs) a newly introduced oil by Universiti Putra Malaysia researchers was chosen for the oil phase of the nanoemulsion, because the oil was reported to be a good vehicle for pharmaceutical use. Oil-in-water nanoemulsion was prepared by spontaneous emulsification method. The droplets size was studied by laser scattering spectroscopy (Nanophox) and Transmission Electron Microscopy (TEM). Franz diffusion cells were used, to determine the drug release and drug transferred through methyl acetate cellulose membrane (artificial membrane). The results of droplets size analysis shows the droplets are in the range of nanoemulsion which is below than 500 nm. The in vitro release profile shows a sufficient percentage of drugs released through the methyl acetate cellulose membrane. This initial study showed that the nanoemulsion formulated using POEs has great potential for topical delivery of ketoprofen. PMID:20299769

  18. Optimization of ultrasonic emulsification conditions for the production of orange peel essential oil nanoemulsions.

    PubMed

    Hashtjin, Adel Mirmajidi; Abbasi, Soleiman

    2015-05-01

    The aim of the present study was to investigate the influence of emulsifying conditions on some physical and rheological properties of orange peel essential oil (OPEO) in water nanoemulsions. In this regard, using the response surface methodology, the influence of ultrasonication conditions including sonication amplitude (70-100 %), sonication time (90-150 s) and process temperature (5-45 °C) on the mean droplets diameter (Z-average value), polydispersity index (PDI), and viscosity of the OPEO nanoemulsions was evaluated. In addition, the flow behavior and stability of selected nanoemulsions was evaluated during storage (up to 3 months) at different temperatures (5, 25 and 45 °C). Based on the results of the optimization, the optimum conditions for producing OPEO nanoemulsions (Z-average value 18.16 nm) were determined as 94 % (sonication amplitude), 138 s (sonication time) and 37 °C (process temperature). Moreover, analysis of variance (ANOVA) showed high coefficients of determination values (R (2) > 0.95) for the response surface models of the energy input and Z-average. In addition, the flow behavior of produced nanoemulsions was Newtonian, and the effect of time and storage temperature as well as their interactions on the Z-average value was highly significant (P < 0.0001). PMID:25892765

  19. Antioxidant Effect of Nanoemulsions Containing Extract of Achyrocline satureioides (Lam) D.C.-Asteraceae.

    PubMed

    Zorzi, Giovanni Konat; Caregnato, Fernanda; Moreira, José Cláudio Fonseca; Teixeira, Helder Ferreira; Carvalho, Edison Luis Santana

    2016-08-01

    Ethanolic extracts of Achyrocline satureioides have pronounced antioxidant activity mainly due to the presence of the flavonoid quercetin. However, direct topical application of the extract is not possible due to the presence of high amounts of ethanol. In this sense, nanoemulsions arise as an alternative for topical formulation associating molecules with limited aqueous solubility. This article describes the development of topical nanoemulsions containing either A. satureioides extract or one of its most abundant flavonoid, quercetin. Nanoemulsions composed of octyldodecanol, egg lecithin, water and extract (NEE), or quercetin (NEQ) were prepared by spontaneous emulsification. This process led to monodisperse nanoemulsions presenting a mean droplet size of approximately 200-300 nm, negative zeta potential, and high association efficiency. A study of quercetin skin retention using porcine skin which was performed using a Franz diffusion cell revealed a higher accumulation of quercetin in skin for NEE when compared to NEQ. Finally, the antioxidant activity of formulations was measured by thiobarbituric acid-reactive species and the APPH model. A lower lipoperoxidation for the extract in respect to quercetin solution was observed. However, no difference between NEQ and NEE lipoperoxidation could be seen. The protection against lipoperoxidation by the formulations was also measured in the skin, where lower formation of reactive species was observed after treatment with NEE. In conclusion, this study shows the formulation effect on the physicochemical properties of nanoemulsions as well as on the skin retention and antioxidant activity of quercetin. PMID:26361953

  20. Physicochemical Characterization and Thermodynamic Studies of Nanoemulsion-Based Transdermal Delivery System for Fullerene

    PubMed Central

    Basri, Mahiran; Tripathy, Minaketan; Abdul-Malek, Emilia

    2014-01-01

    Fullerene nanoemulsions were formulated in palm kernel oil esters stabilized by low amount of mixed nonionic surfactants. Pseudoternary phase diagrams were established in the colloidal system of PKOEs/Tween 80 : Span 80/water incorporated with fullerene as antioxidant. Preformulation was subjected to combination of high and low energy emulsification methods and the physicochemical characteristics of fullerene nanoemulsions were analyzed using electroacoustic spectrometer. Oil-in-water (O/W) nanoemulsions with particle sizes in the range of 70–160 nm were formed. The rheological characteristics of colloidal systems exhibited shear thinning behavior which fitted well into the power law model. The effect of xanthan gum (0.2–1.0%, w/w) and beeswax (1–3%, w/w) in the estimation of thermodynamics was further studied. From the energetic parameters calculated for the viscous flow, a moderate energy barrier for transport process was observed. Thermodynamic study showed that the enthalpy was positive in all xanthan gum and beeswax concentrations indicating that the formation of nanoemulsions could be endothermic in nature. Fullerene nanoemulsions with 0.6% or higher xanthan gum content were found to be stable against creaming and flocculation when exposed to extreme environmental conditions. PMID:25165736

  1. β-lactoglobulin stabilized nanemulsions--Formulation and process factors affecting droplet size and nanoemulsion stability.

    PubMed

    Ali, Ali; Mekhloufi, Ghozlene; Huang, Nicolas; Agnely, Florence

    2016-03-16

    To avoid the toxicological concerns associated to synthetic surfactants, proteins might be an alternative for the stabilization of pharmaceutical nanoemulsions. The present study investigates the use of β-lactoglobulin (β-lg) to stabilize oil in water biocompatible nanoemulsions intended for a pharmaceutical use and prepared by high pressure homogenization (HPH). The effects of composition (nature and weight fraction of oil, β-lg concentration) and of process parameters (pressure and number of cycles) on the droplet size and on the stability of nanoemulsions were thoroughly assessed. The nanoemulsions prepared with β-lg at 1 wt% and with 5 wt% Miglyol 812 (the oil with the lowest viscosity) displayed a relatively small particle size (about 200 nm) and a low polydispersity when a homogenization pressure of 100 MPa was applied for 4 cycles. These nanoemulsions were the most stable formulations over 30 days at least. Emulsification efficiency of β-lg was reduced at higher homogenization pressures (200 MPa and 300 MPa). The effect of HPH process on the interfacial properties of β-lg was evaluated by drop shape analysis. This treatment had an effect neither on the interfacial tension nor on the interfacial dilatational rheology of β-lg at the Miglyol 812/water interface. PMID:26784982

  2. Comparison of modified starch and Quillaja saponins in the formation and stabilization of flavor nanoemulsions.

    PubMed

    Zhang, Jian; Bing, Lu; Reineccius, Gary A

    2016-02-01

    Modified starch (MS) and Quillaja saponins (QS) were compared to fabricate and stabilize orange oil nanoemulsions using microfluidization. Ester gum (EG) was incorporated in the oil phase at variable proportions (0-60%) as Ostwald ripening inhibitor and viscosity modifier. Optimal viscosity ratios of dispersed to continuous phase (ηd/ηc) were identified as 0.8-3.1 and 2.1-3.3 with MS and QS as emulsifier, respectively. QS was found superior to MS in fabricating nanoemulsion with smallest MDD of 69 nm and turbidity of 102 NTU at 0.05% of dispersed phase. With EG incorporated in the oil phase, QS stabilized nanoemulsions were stable during 2 weeks of storage at 23 °C; whereas MS stabilized nanoemulsions showed significant increases in MDD and turbidity. Zeta potential measurements showed QS imparted higher droplet charge (>-20 mV) than MS (<-5 mV) at pH 3.6 indicating MS stabilized nanoemulsions were destabilized by coalescence due to insufficient interfacial charge. PMID:26304319

  3. Physicochemical characterization and thermodynamic studies of nanoemulsion-based transdermal delivery system for fullerene.

    PubMed

    Ngan, Cheng Loong; Basri, Mahiran; Tripathy, Minaketan; Abedi Karjiban, Roghayeh; Abdul-Malek, Emilia

    2014-01-01

    Fullerene nanoemulsions were formulated in palm kernel oil esters stabilized by low amount of mixed nonionic surfactants. Pseudoternary phase diagrams were established in the colloidal system of PKOEs/Tween 80 : Span 80/water incorporated with fullerene as antioxidant. Preformulation was subjected to combination of high and low energy emulsification methods and the physicochemical characteristics of fullerene nanoemulsions were analyzed using electroacoustic spectrometer. Oil-in-water (O/W) nanoemulsions with particle sizes in the range of 70-160 nm were formed. The rheological characteristics of colloidal systems exhibited shear thinning behavior which fitted well into the power law model. The effect of xanthan gum (0.2-1.0%, w/w) and beeswax (1-3%, w/w) in the estimation of thermodynamics was further studied. From the energetic parameters calculated for the viscous flow, a moderate energy barrier for transport process was observed. Thermodynamic study showed that the enthalpy was positive in all xanthan gum and beeswax concentrations indicating that the formation of nanoemulsions could be endothermic in nature. Fullerene nanoemulsions with 0.6% or higher xanthan gum content were found to be stable against creaming and flocculation when exposed to extreme environmental conditions. PMID:25165736

  4. Nanoemulsion of D-limonene in water system prepared by ultrasonic emulsification.

    PubMed

    Lu, Wen-Chien; Zhang, Ting-Jie; Huang, Da-Wei; Li, Po-Hsien

    2014-01-01

    D-Limonene is a component of essential oil extracted from citrus fruits. This component has shown chemopreventive and therapeutic activity against a wide variety of experimental tumors, but D-limonene is unstable and lose its lemon-like flavor under normal storage condition, and it is almost insoluble in water. Therefore, studying the formation of nanoemulsion in D-limonene in water system is probably a good method to prevent the oxidation degradation of D-limonene. For the purpose of our study, we used mixed surfactant to form D- limonene-in-water emulsion, and found the best formula for forming nanoemulsion droplets with specified hydrophilic-lipophilic balance (HLB) value and droplet size. The results demonstrated that nanoemulsion droplets formed at So ratio of 0.4 and applied power of 18 W for 120 s under mixed surfactant at HLB values 12 and had droplet size of 20-50 nm. PMID:25423744

  5. Theranostic nanoemulsions for macrophage COX-2 inhibition in a murine inflammation model.

    PubMed

    Patel, Sravan Kumar; Beaino, Wissam; Anderson, Carolyn J; Janjic, Jelena M

    2015-09-01

    Targeting macrophages for therapeutic and diagnostic purposes is an attractive approach applicable to multiple diseases. Here, we present a theranostic nanoemulsion platform for simultaneous delivery of an anti-inflammatory drug (celecoxib) to macrophages and monitoring of macrophage migration patterns by optical imaging, as measurement of changes in inflammation. The anti-inflammatory effect of the theranostic nanoemulsions was evaluated in a mouse inflammation model induced with complete Freund's adjuvant (CFA). Nanoemulsions showed greater accumulation in the inflamed vs. control paw, with histology confirming their specific localization in CD68 positive macrophages expressing cyclooxygenase-2 (COX-2) compared to neutrophils. With a single dose administration of the celecoxib-loaded theranostic, we observed a reduction in fluorescence in the paw with time, corresponding to a reduction in macrophage infiltration. Our data strongly suggest that delivery of select agents to infiltrating macrophages can potentially lead to new treatments of inflammatory diseases where macrophage behavior changes are monitored in vivo. PMID:25959685

  6. Argan oil nanoemulsions as new hydrophobic drug-loaded delivery system for transdermal application.

    PubMed

    Lococo, D; Mora-Huertas, C E; Fessi, H; Zaanoun, I; Elaissari, A

    2012-10-01

    This research work deals with the development of argan oil-based nanoemulsions as vehicle of hydrophobic drugs such as diclofenac used as model. Nanoemulsions of oil in water were prepared using the ultrasonication method in order to obtain submicron size colloidal dispersion. The size, zeta potential and encapsulation efficiency of the dispersions obtained were investigated. In addition, the ability of sorbitan ester derivatives to form nanovesicles (niosomes), which in turn were used for encapsulating drug in oily solutions forming stable nanoemulsions, was particularly examined. Thus, additional stabilizing agents were not required in the recipe and formulations using only sorbitan monolaurate, argan oil and water lead to attractive results. Their submicronic size (<250 nm), high negative zeta potential (between -40 and -50 mV) and drug-encapsulation efficiency (higher than 85%) allow predicting both a good physical stability and a good performance as drug carriers. PMID:22888756

  7. Nanoemulsion of D-limonene in water system prepared by ultrasonic emulsification.

    PubMed

    Lu, Wen-Chien; Zhang, Ting-Jie; Huang, Da-Wei; Li, Po-Hsien

    2014-01-01

    D-Limonene is a component of essential oil extracted from citrus fruits. This component has shown chemopreventive and therapeutic activity against a wide variety of experimental tumors, but D-limonene is unstable and lose its lemon-like flavor under normal storage condition, and it is almost insoluble in water. Therefore, studying the formation of nanoemulsion in D-limonene in water system is probably a good method to prevent the oxidation degradation of D-limonene. For the purpose of our study, we used mixed surfactant to form D- limonene-in-water emulsion, and found the best formula for forming nanoemulsion droplets with specified hydrophilic-lipophilic balance (HLB) value and droplet size. The results demonstrated that nanoemulsion droplets formed at So ratio of 0.4 and applied power of 18 W for 120 s under mixed surfactant at HLB values 12 and had droplet size of 20-50 nm. PMID:25507467

  8. Preparation, Characterization and Stability Study of Dutasteride Loaded Nanoemulsion for Treatment of Benign Prostatic Hypertrophy

    PubMed Central

    Ali, Mohammad Sajid; Alam, Mohammad Sarfaraz; Alam, Nawazish; Siddiqui, Masoom Raza

    2014-01-01

    Benign prostatic hyperplasia (BPH)is the most common condition in aging men, associated with lower urinary tract symptoms. It is caused due to the augmented levels of the androgen dihydrotestosterone. Dutasteride, a 5α-Reductase inhibitor has been recommended for the treatment of BPH upon oral administration. However, long term oral administration of dutasteride may cause sexual problem in man. Therefore the main objective of this study was to develop transdermal patch having nanoemulsion gel of dutasteride in order to enhance physical and chemical stability and eliminate adverse effect of dutasteride. Optimized nanoemulsion was prepared by aqueous phase-titration method and characterized by droplet size, viscosity and refractive index. In-vitro skin permeation of dutasteride through rat abdominal skin was determined by the Franz diffusion cell.Significant increase in the steady state flux (Jss), permeability coefficient (Kp) and enhancement ratio (Er) was observed in optimized nanoemulsion formulation A1 (p < 0.05). The Er of optimized nanoemulsion A1 was found to be 1.52 times with respect to control which indicates transdermal delivery may be better approach for BPH. Stability studies were performed for the period of 3 months. It was found that droplet size, viscosity and refractive index were slightly increased at refrigerator and room temperature in 3 months period. However, the changes in these parameters were not statistically significant (p ≥ 0.05). The shelf-life of optimized nanoemulsion A1 was found to be 2.18 years at room temperature. These results indicated that both physical as well as chemical stability of dutasteride in nanoemulsion formulation. PMID:25587300

  9. Preparation, characterization and stability study of dutasteride loaded nanoemulsion for treatment of benign prostatic hypertrophy.

    PubMed

    Ali, Mohammad Sajid; Alam, Mohammad Sarfaraz; Alam, Nawazish; Siddiqui, Masoom Raza

    2014-01-01

    Benign prostatic hyperplasia (BPH)is the most common condition in aging men, associated with lower urinary tract symptoms. It is caused due to the augmented levels of the androgen dihydrotestosterone. Dutasteride, a 5α-Reductase inhibitor has been recommended for the treatment of BPH upon oral administration. However, long term oral administration of dutasteride may cause sexual problem in man. Therefore the main objective of this study was to develop transdermal patch having nanoemulsion gel of dutasteride in order to enhance physical and chemical stability and eliminate adverse effect of dutasteride. Optimized nanoemulsion was prepared by aqueous phase-titration method and characterized by droplet size, viscosity and refractive index. In-vitro skin permeation of dutasteride through rat abdominal skin was determined by the Franz diffusion cell.Significant increase in the steady state flux (J ss), permeability coefficient (K p) and enhancement ratio (E r) was observed in optimized nanoemulsion formulation A1 (p < 0.05). The Er of optimized nanoemulsion A1 was found to be 1.52 times with respect to control which indicates transdermal delivery may be better approach for BPH. Stability studies were performed for the period of 3 months. It was found that droplet size, viscosity and refractive index were slightly increased at refrigerator and room temperature in 3 months period. However, the changes in these parameters were not statistically significant (p ≥ 0.05). The shelf-life of optimized nanoemulsion A1 was found to be 2.18 years at room temperature. These results indicated that both physical as well as chemical stability of dutasteride in nanoemulsion formulation. PMID:25587300

  10. Novel paclitaxel formulations solubilized by parenteral nutrition nanoemulsions for application against glioma cell lines.

    PubMed

    Najlah, Mohammad; Kadam, Alisha; Wan, Ka-Wai; Ahmed, Waqar; Taylor, Kevin M G; Elhissi, Abdelbary M A

    2016-06-15

    The aim of this study is to investigate using nanoemulsion formulations as drug-delivery vehicles of paclitaxel (PX), a poor water-soluble anticancer drug. Two commercially available nanoemulsion fat formulations (Clinoleic 20% and Intralipid 20%) were loaded with PX and characterised based on their size, zeta potential, pH and loading efficiency. The effect of formulation on the cytotoxicity of PX was also evaluated using MTT assay. The droplet size of the Clinoleic emulsion increased from 254.1nm to 264.7nm when paclitaxel (6mg/ml) was loaded into the formulation, compared to the drug-free formulation. Similarly, the droplet size of Intralipid increased from 283.3 to 294.6nm on inclusion of 6mg/ml paclitaxel. The Polydispersity Indexes (PDIs) of all the nanoemulsion formulations (Clinoleic and Intralipid) were less than 0.2 irrespective of paclitaxel concentration indicating that all nanoemulsion formulations used were homogeneously sized. The pH range for the Clinoleic formulations (7.1-7.5) was slightly higher than that of the Intralipid formulations (6.5-6.9). The zeta potential of linoleic had a greater negative value than that of Intralipid. Loading efficiencies for paclitaxel were 70.4-80.2% and 44.2-57.4% for Clinoleic and Intralipid formulations, respectively. Clinoleic loaded with paclitaxel decreased the viability of U87-MG cell to 6.4±2.3%, compared to Intralipid loaded with paclitaxel (21.29±3.82%). Both nanoemulsions were less toxic to the normal glial cells (SVG-P12), decreasing the cell viability to 25-35%. This study suggests that nanoemulsions are useful and potentially applicable vehicles of paclitaxel for treatment of glioma. PMID:27107899

  11. Cavitation technology - a greener processing technique for the generation of pharmaceutical nanoemulsions.

    PubMed

    Sivakumar, Manickam; Tang, Siah Ying; Tan, Khang Wei

    2014-11-01

    Novel nanoemulsion-based drug delivery systems (DDS) have been proposed as alternative and effective approach for the delivery of various types of poorly water-soluble drugs in the last decade. This nanoformulation strategy significantly improves the cell uptake and bioavailability of numerous hydrophobic drugs by increasing their solubility and dissolution rate, maintaining drug concentration within the therapeutic range by controlling the drug release rate, and reducing systemic side effects by targeting to specific disease site, thus offering a better patient compliance. To date, cavitation technology has emerged to be an energy-efficient and promising technique to generate such nanoscale emulsions encapsulating a variety of highly potent pharmaceutical agents that are water-insoluble. The micro-turbulent implosions of cavitation bubbles tear-off primary giant oily emulsion droplets to nano-scale, spontaneously leading to the formation of highly uniform drug contained nanodroplets. A substantial body of recent literatures in the field of nanoemulsions suggests that cavitation is a facile, cost-reducing yet safer generation tool, remarkably highlighting its industrial commercial viability in the development of designing novel nanocarriers or enhancing the properties of existing pharmaceutical products. In this review, the fundamentals of nanoemulsion and the principles involved in their formation are presented. The underlying mechanisms in the generation of pharmaceutical nanoemulsion under acoustic field as well as the advantages of using cavitation compared to the conventional techniques are also highlighted. This review focuses on recent nanoemulsion-based DDS development and how cavitation through ultrasound and hydrodynamic means is useful to generate the pharmaceutical grade nanoemulsions including the complex double or submicron multiple emulsions. PMID:24755340

  12. Evaluation of a nanoemulsion formulation strategy for oral bioavailability enhancement of danazol in rats and dogs.

    PubMed

    Devalapally, Harikrishna; Silchenko, Svitlana; Zhou, Feng; McDade, Jessica; Goloverda, Galina; Owen, Albert; Hidalgo, Ismael J

    2013-10-01

    The objective of this study was to determine whether nanoemulsion formulations constitute a viable strategy to improve the oral bioavailability of danazol, a compound whose poor aqueous solubility limits its oral bioavailability. Danazol-containing oil-in-water nanoemulsions (NE) with and without cosurfactants stearylamine (SA) and deoxycholic acid (DCA) were prepared and characterized. Nanoemulsion droplets size ranging from 238 to 344 nm and with surface charges of -24.8 mV (NE), -26.5 mV (NE-DCA), and +27.8 mV (NE-SA) were reproducibly obtained. Oral bioavailability of danazol in nanoemulsions was compared with other vehicles such as PEG400, 1% methylcellulose (MC) in water (1% MC), Labrafil, and a Labrafil/Tween 80 (9:1) mixture, after intragastric administration to rats and after oral administration of NE-SA, a Labrafil solution, or a Danocrine® tablet to dogs. The absolute bioavailability of danazol was 0.6% (PEG400), 1.2% (1% MC), 6.0% (Labrafil), 7.5% (Labrafil/Tween80), 8.1% (NE-DCA), 14.8% (NE), and 17.4% (NE-SA) in rats, and 0.24% (Danocrine), 6.2% (Labrafil), and 58.7% (NE-SA) in dogs. Overall, danazol bioavailability in any nanoemulsion was higher than any other formulation. Danazol bioavailability from NE and NE-SA was 1.8- to 2.2-fold higher than NE-DCA nanoemulsion and could be due to significant difference in droplet size. PMID:23878097

  13. Evaluation of a Nanoemulsion Formulation Strategy for Oral Bioavailability Enhancement of Danazol in Rats and Dogs

    PubMed Central

    Devalapally, Harikrishna; Silchenko, Svitlana; Zhou, Feng; McDade, Jessica; Goloverda, Galina; Owen, Albert; Hidalgo, Ismael J.

    2013-01-01

    The objective of this study was to determine whether nanoemulsion formulations constitute a viable strategy to improve the oral bioavailability of danazol, a compound whose poor aqueous solubility limits its oral bioavailability. Danazol-containing oil-in-water nanoemulsions (NE) with and without co-surfactants stearylamine (SA) and deoxycholic acid (DCA) were prepared and characterized. Nanoemulsion droplets size ranging from 238 to 344 nm and with surface charges of −24.8 mV (NE), −26.5 mV (NE-DCA), and +27.8 mV (NE-SA) were reproducibly obtained. Oral bioavailability of danazol in nanoemulsions was compared with other vehicles such as, PEG400, 1% methylcellulose in water (1% MC), Labrafil, and a Labrafil/Tween 80 (9:1) mixture, after intragastric administration to rats and after oral administration of NE-SA, a Labrafil solution, or a Danocrine® tablet to dogs. The absolute bioavailability of danazol was 0.6% (PEG400), 1.2% (1% MC), 6.0% (Labrafil), 7.5% (Labrafil/Tween80), 8.1% (NE-DCA), 14.8% (NE), and 17.4% (NE-SA) in rats, and 0.24% (Danocrine), 6.2% (Labrafil), and 58.7% (NE-SA) in dogs. Overall, danazol bioavailability in any nanoemulsion was higher than any other formulation. Danazol bioavailability from NE and NE-SA was 1.8 to 2.2-fold higher than NE-DCA nanoemulsion and could be due to significant difference in droplet size. PMID:23878097

  14. Insights into the Role of Biomineralizing Peptide Surfactants on Making Nanoemulsion-Templated Silica Nanocapsules.

    PubMed

    Hui, Yue; Wibowo, David; Zhao, Chun-Xia

    2016-01-26

    We recently developed a novel approach for making oil-core silica-shell nanocapsules using designed bifunctional peptides (also called biomineralizing peptide surfactants) having both surface activity and biomineralization activity. Using the bifunctional peptides, oil-in-water nanoemulsion templates can be readily prepared, followed by the silicification directed exclusively onto the oil droplet surfaces and thus the formation of the silica shell. To explore their roles in the synthesis of silica nanocapsules, two bifunctional peptides, AM1 and SurSi, were systematically studied and compared. Peptide AM1, which was designed as a stimuli-responsive surfactant, demonstrated quick adsorption kinetics with a rapid decrease in the oil-water interfacial tension, thus resulting in the formation of nanoemulsions with a droplet size as small as 38 nm. Additionally, the nanoemulsions showed good stability over 4 weeks because of the formation of a histidine-Zn(2+) interfacial network. In comparison, the SurSi peptide that was designed by modularizing an AM1-like surface-active module with a highly cationic biosilicification-active module was unable to effectively reduce the oil-water interfacial tension because of its high molecular charge at neutral pH. The slow adsorption resulted in the formation of less stable nanoemulsions with a larger size (60 nm) than that of AM1. Besides, both AM1 and SurSi were found to be able to induce biomimetic silica formation. SurSi produced well-dispersed and uniform silica nanospheres in the bulk solution, whereas AM1 generated only irregular silica aggregates. Consequently, well-defined silica nanocapsules were synthesized using SurSi nanoemulsion templates, whereas silica aggregates instead of nanocapsules predominated when templating AM1 nanoemulsions. This finding indicated that the capability of peptide surfactants to form isolated silica nanospheres might play a role in the successful fabrication of silica nanocapsules. This

  15. Tunable stability of monodisperse secondary O/W nano-emulsions

    NASA Astrophysics Data System (ADS)

    Vecchione, R.; Ciotola, U.; Sagliano, A.; Bianchini, P.; Diaspro, A.; Netti, P. A.

    2014-07-01

    Stable and biodegradable oil in water (O/W) nano-emulsions can have a huge impact on a wide range of bio-applications, from food to cosmetics and pharmaceuticals. Emulsions, however, are immiscible systems unstable over time; polymer coatings are known to be helpful, but an effective procedure to stabilize monodisperse and biodegradable O/W nano-emulsions is yet to be designed. Here, we coat biodegradable O/W nano-emulsions with a molecular layer of biodegradable polyelectrolytes such as polysaccharides - like chitosan - and polypeptides - like polylysine - and effectively re-disperse and densify the polymer coating at high pressure, thus obtaining monodisperse and stable systems. In particular, focusing on chitosan, our tests show that it is possible to obtain unprecedented ultra-stable O/W secondary nano-emulsions (diameter sizes tunable from ~80 to 160 nm and polydispersion indices below 0.1) by combining this process with high concentrations of polymers. Depending on the polymer concentration, it is possible to control the level of coating that results in a tunable stability ranging from a few weeks to several months. The above range of concentrations has been investigated using a fluorescence-based approach with new insights into the coating evolution.Stable and biodegradable oil in water (O/W) nano-emulsions can have a huge impact on a wide range of bio-applications, from food to cosmetics and pharmaceuticals. Emulsions, however, are immiscible systems unstable over time; polymer coatings are known to be helpful, but an effective procedure to stabilize monodisperse and biodegradable O/W nano-emulsions is yet to be designed. Here, we coat biodegradable O/W nano-emulsions with a molecular layer of biodegradable polyelectrolytes such as polysaccharides - like chitosan - and polypeptides - like polylysine - and effectively re-disperse and densify the polymer coating at high pressure, thus obtaining monodisperse and stable systems. In particular, focusing on

  16. Nanoemulsion of ethanolic extracts of propolis and its antioxidant activity

    NASA Astrophysics Data System (ADS)

    Mauludin, R.; Primaviri, D. S.; Fidrianny, I.

    2015-09-01

    Propolis contains several antioxidant compounds which can be used in topical application to protect skin against free radical and prevent skin cancer and skin aging. Ethanolic extracts of propolis (EEP) provided the greatest antioxidant activity but has very small solubility in water thus was prepared in nanoemulsion (NE). EEP contains steroid/triterpenoid, flavonoid, and saponin. EEP had the value of DPPH scavenging activity 61.14% and IC50 0.41629 ppm. The best NE formulation consisted of 26.25% Kolliphor RH40; 8.75% glycerin; 5% rice bran oil; and 3% EEP. NE was transparent, had particle size of 23.72 nm and polydispersity index of 0.338. Based on TEM morphology, NE was almost spherical and has particle size below 50 nm. NE propolis revealed to be physically stable after stability test within 63 days at 25°C and passed 6 cycles of Freeze and Thaw test without separated. NE propolis reduced around 58% of free radical DPPH similar to antioxidant activity of the original extracts. Antioxidant activity of NE propolis is relatively stable after stored for 6 weeks. NE propolis was proven to be safe by primary irritation test with the value of primary irritation index (OECD) was 0.

  17. Eucalyptus oil nanoemulsion-impregnated chitosan film: antibacterial effects against a clinical pathogen, Staphylococcus aureus, in vitro

    PubMed Central

    Sugumar, Saranya; Mukherjee, Amitava; Chandrasekaran, Natarajan

    2015-01-01

    Eucalyptus oil (Eucalyptus globulus) nanoemulsion was formulated using low-and high-energy emulsification methods. Development of nanoemulsion was optimized for system parameters such as emulsifier type, emulsifier concentration, and emulsification methods to obtain a lower droplet size with greater stability. The minimized droplet diameter was achieved using the high-energy method of ultrasonication. Tween 80 was more effective in reducing droplet size and emulsion appearance when compared to Tween 20. Stable nanoemulsion was formulated with Tween 80 as a surfactant, and the particle size was found to be 9.4 nm (1:2 v/v). The eucalyptus oil nanoemulsion was impregnated into chitosan (1%) as a biopolymer in varying concentrations. Further, the film was characterized by moisture content, microscopic study, X-ray diffraction, and Fourier transform infrared spectroscopy. Also, the film with and without nanoemulsion was evaluated against Staphylococcus aureus. The nanoemulsion-impregnated chitosan film showed higher antibacterial activity than chitosan film. These results support the inclusion of nanoemulsion-impregnated chitosan film in wound management studies. PMID:26491308

  18. Eucalyptus oil nanoemulsion-impregnated chitosan film: antibacterial effects against a clinical pathogen, Staphylococcus aureus, in vitro.

    PubMed

    Sugumar, Saranya; Mukherjee, Amitava; Chandrasekaran, Natarajan

    2015-01-01

    Eucalyptus oil (Eucalyptus globulus) nanoemulsion was formulated using low-and high-energy emulsification methods. Development of nanoemulsion was optimized for system parameters such as emulsifier type, emulsifier concentration, and emulsification methods to obtain a lower droplet size with greater stability. The minimized droplet diameter was achieved using the high-energy method of ultrasonication. Tween 80 was more effective in reducing droplet size and emulsion appearance when compared to Tween 20. Stable nanoemulsion was formulated with Tween 80 as a surfactant, and the particle size was found to be 9.4 nm (1:2 v/v). The eucalyptus oil nanoemulsion was impregnated into chitosan (1%) as a biopolymer in varying concentrations. Further, the film was characterized by moisture content, microscopic study, X-ray diffraction, and Fourier transform infrared spectroscopy. Also, the film with and without nanoemulsion was evaluated against Staphylococcus aureus. The nanoemulsion-impregnated chitosan film showed higher antibacterial activity than chitosan film. These results support the inclusion of nanoemulsion-impregnated chitosan film in wound management studies. PMID:26491308

  19. Multimodal Perfluorocarbon Nanoemulsions for 19F MRI, Ultrasonography, and Catalysis of MRgFUS-Mediated Drug Delivery

    NASA Astrophysics Data System (ADS)

    Rapoport, N.; Nam, K.-H.; Christensen, D. A.; Kennedy, A. M.; Parker, D. L.; Payne, A. H.; Todd, N.; Shea, J. E.; Scaife, C. L.

    2011-09-01

    Perfluorocarbon nanoemulsions can target lipophilic therapeutic agents to solid tumors and simultaneously provide for monitoring nanocarrier biodistribution via ultrasonography and/or 19F MRI. In the first generation of block copolymer stabilized perfluorocarbon nanoemulsions, perfluoropentane (PFP) was used as the droplet forming compound. Although manifesting excellent therapeutic and ultrasound imaging properties, PFP nanoemulsions were unstable at storage, difficult to handle, and underwent droplet-to-bubble transition upon injection that was hard to control. To solve the above problems, perfluoro-15-crown-5-ether (PFCE) was used as a core forming compound in the second generation of block copolymer stabilized perfluorocarbon nanoemulsions. In the present paper, acoustic, imaging, and therapeutic properties of unloaded and paclitaxel (PTX) loaded PFCE nanoemulsions are reported. The size of paclitaxel-loaded PFCE nanodroplets (300 nm to 500 nm depending on emulsification conditions) favors their passive accumulation in tumor tissue. PFCE nanodroplets manifest both ultrasound and 19F MR contrast properties, which allows the use of multimodal imaging to monitor nanodroplet biodistribution. Ultrasonography and 19F MRI produced consistent results on nanodroplet biodistribution. Sonication with 1-MHz therapeutic ultrasound triggered reversible droplet-to-bubble transition in PFCE nanoemulsions. Microbubbles formed by acoustic vaporization underwent stable cavitation. In a pilot study on ultrasound-mediated therapy of a large breast cancer tumor, paclitaxel-loaded PFCE nanoemulsions combined with 1-MHz ultrasound (MI≥1.75) showed excellent therapeutic properties. Anticipated mechanisms of the observed effects are discussed.

  20. Optimization of orange oil nanoemulsion formation by isothermal low-energy methods: influence of the oil phase, surfactant, and temperature.

    PubMed

    Chang, Yuhua; McClements, David Julian

    2014-03-12

    Nanoemulsions are particularly suitable as a platform in the development of delivery systems for lipophilic functional agents. This study shows that transparent orange oil nanoemulsions can be fabricated using an isothermal low-energy method (spontaneous emulsification), which offers the advantage of fabricating flavor oil delivery systems using rapid and simple processing operations. Orange oil nanoemulsions were formed spontaneously by titration of a mixture of orange oil, carrier oil [medium-chain triglyceride (MCT)], and non-ionic surfactant (Tween) into an aqueous solution (5 mM citrate buffer at pH 3.5) with continuous stirring. The oil/emulsion ratio content was kept constant (10 wt %), while the surfactant/emulsion ratio (SER) was varied (2.5-20 wt %). Oil-phase composition (orange oil/MCT ratio), SER, and surfactant type all had an appreciable effect on nanoemulsion formation and stability. Transparent nanoemulsions could be formed under certain conditions: 20% surfactant (Tween 40, 60, or 80) and 10% oil phase (4-6% orange oil + 6-4% MCT). Surfactant type and oil-phase composition also affected the thermal stability of the nanoemulsions. Most of the nanoemulsions broke down after thermal cycling (from 20 to 90 °C and back to 20 °C); however, one system remained transparent after thermal cycling: 20% Tween 80, 5% orange oil, and 5% MCT. The mean droplet size of these nanoemulsions increased over time, but the droplet growth rate was reduced appreciably after dilution. These results have important implications for the design and utilization of nanoemulsions as delivery systems in the food and other industries. PMID:24564878

  1. Evaluation of transdermal delivery of nanoemulsions in ex vivo porcine skin using two-photon microscopy and confocal laser-scanning microscopy

    NASA Astrophysics Data System (ADS)

    Choi, Sanghoon; Kim, Jin Woong; Lee, Yong Joong; Delmas, Thomas; Kim, Changhwan; Park, Soyeun; Lee, Ho

    2014-10-01

    This study experimentally evaluates the self-targeting ability of asiaticoside-loaded nanoemulsions compared with nontargeted nanoemulsions in ex vivo experiments with porcine skin samples. Homebuilt two-photon and confocal laser-scanning microscopes were employed to noninvasively examine the transdermal delivery of two distinct nanoemulsions. Prior to the application of nanoemulsions, we noninvasively observed the morphology of porcine skin using two-photon microscopy. We have successfully visualized the distributions of the targeted and nontargeted nanoemulsions absorbed into the porcine skin samples. Asiaticoside-loaded nanoemulsions showed an improved ex vivo transdermal delivery through the stratum corneum compared with nonloaded nanoemulsions. As a secondary measure, nanoemulsions-applied samples were sliced in the depth direction with a surgical knife in order to obtain the complete depth-direction distribution profile of Nile red fluorescence. XZ images demonstrated that asiaticoside-loaded nanoemulsion penetrated deeper into the skin compared with nontargeted nanoemulsions. The basal layer boundary is clearly visible in the case of the asiaticoside-loaded skin sample. These results reaffirm the feasibility of using self-targeting ligands to improve permeation through the skin barrier for cosmetics and topical drug applications.

  2. Allergic Contact Dermatitis to Benzoyl Peroxide Resembling Impetigo.

    PubMed

    Kim, Changhyun; Craiglow, Brittany G; Watsky, Kalman L; Antaya, Richard J

    2015-01-01

    A 17-year-old boy presented with recurring severe dermatitis of the face of 5-months duration that resembled impetigo. He had been treated with several courses of antibiotics without improvement. Biopsy showed changes consistent with allergic contact dermatitis and patch testing later revealed sensitization to benzoyl peroxide, which the patient had been using for the treatment of acne vulgaris. PMID:25782705

  3. ASL Nominal Constructions Involving Signs That Resemble Pronouns

    ERIC Educational Resources Information Center

    Sloan, Vivion Smith

    2013-01-01

    This dissertation examines six different types of noun phrases that commonly occur in American Sign Language. These noun phrases all include at least a head noun and one of four signs resembling a pronoun. Videos of natural ASL discourses are gathered, multiple instances of the six types of noun phrases are identified, and their meanings are…

  4. Analysis of anti-neoplastic drug in bacterial ghost matrix, w/o/w double nanoemulsion and w/o nanoemulsion by a validated 'green' liquid chromatographic method.

    PubMed

    Youssof, Abdullah M E; Salem-Bekhit, Mounir M; Shakeel, Faiyaz; Alanazi, Fars K; Haq, Nazrul

    2016-07-01

    The objective of the present investigation was to develop and validate a 'green' reversed phase high-performance liquid chromatography (RP-HPLC) method for rapid analysis of a cytotoxic drug 5-fluorouracil (5-FU) in bulk drug, marketed injection, water-in-oil (w/o) nanoemulsion, double water-in-oil-in-water (w/o/w) nanoemulsion and bacterial ghost (BG) matrix. The chromatography study was carried out at room temperature (25±1°C) using an HPLC system with the help of ultraviolet (UV)-visible detector. The chromatographic performance was achieved with a Nucleodur 150mm×4.6mm RP C8 column filled with 5µm filler as a static phase. The mobile phase consisted of ethyl acetate: methanol (7:3% v/v) which was delivered at a flow rate of 1.0mLmin(-1) and the drug was detected in UV mode at 254nm. The developed method was validated in terms of linearity (r(2)=0.998), accuracy (98.19-102.09%), precision (% RSD=0.58-1.17), robustness (% RSD=0.12-0.53) and sensitivity with satisfactory results. The efficiency of the method was demonstrated by the assay of the drug in marketed injection, w/o nanoemulsion, w/o/w nanoemulsion and BG with satisfactory results. The successful resolution of the drug along with its degradation products clearly established the stability-indicating nature of the proposed method. Overall, these results suggested that the proposed analytical method could be effectively applied to the routine analysis of 5-FU in bulk drug, various pharmaceutical dosage forms and BG. PMID:27154677

  5. Antimicrobial eugenol nanoemulsion prepared by gum arabic and lecithin and evaluation of drying technologies.

    PubMed

    Hu, Qiaobin; Gerhard, Hannah; Upadhyaya, Indu; Venkitanarayanan, Kumar; Luo, Yangchao

    2016-06-01

    The purpose of present work was to develop eugenol oil nanoemulsions using gum arabic and lecithin as food grade natural emulsifiers, and study their antimicrobial activity. In addition, our study also evaluated different drying techniques (spray drying and freeze drying) on the morphology and redispersibility of nanoemulsion powders. The optimal fabrication method, physicochemical and structural characterization, stability, and antimicrobial activity were investigated. Results showed that nanoemusions with a particle size of 103.6±7.5nm were obtained by mixing aqueous phase (0.5% gum arabic, 0.5% lecithin, w/v) and eugenol oil (1.25%, w/v), which was premixed with ethanol (as a co-surfactant), followed by high speed homogenization process. The molecular interactions among emulsifiers and eugenol were evidenced by Fourier transform infrared spectroscopy. Buchi B-90 Nano Spray Dryer was evaluated as a powerful tool to obtain ultrafine spherical powders with a size of less than 500nm, compared to flake-like aggregation obtained by freeze-drying. The dried powders exhibited excellent re-dispersibility in water and maintained their physicochemical properties after re-hydration. The nanoemulsions did not adversely affect the antimicrobial activity of eugenol against Listeria monocytogenes and Salmonella Enteritidis. Therefore, the nanoemulsions have the potential to be applied in the food industry as a food preservative or sanitizer. PMID:26902894

  6. Bactericidal action mechanism of negatively charged food grade clove oil nanoemulsions.

    PubMed

    Majeed, Hamid; Liu, Fei; Hategekimana, Joseph; Sharif, Hafiz Rizwan; Qi, Jing; Ali, Barkat; Bian, Yuan-Yuan; Ma, Jianguo; Yokoyama, Wallace; Zhong, Fang

    2016-04-15

    Clove oil (CO) anionic nanoemulsions were prepared with varying ratios of CO to canola oil (CA), emulsified and stabilized with purity gum ultra (PGU), a newly developed succinylated waxy maize starch. Interfacial tension measurements showed that CO acted as a co-surfactant and there was a gradual decrease in interfacial tension which favored the formation of small droplet sizes on homogenization until a critical limit (5:5% v/v CO:CA) was reached. Antimicrobial activity of the negatively charged CO nanoemulsion was determined against Gram positive GPB (Listeria monocytogenes and Staphylococcus aureus) and Gram negative GNB (Escherichia coli) bacterial strains using minimum inhibitory concentration (MIC) and a time kill dynamic method. Negatively charged PGU emulsified CO nanoemulsion showed prolonged antibacterial activities against Gram positive bacterial strains. We concluded that negatively charged CO nanoemulsion droplets self-assemble with GPB cell membrane, and facilitated interaction with cellular components of bacteria. Moreover, no electrostatic interaction existed between negatively charged droplets and the GPB membrane. PMID:26616926

  7. Thermal conductivity and viscosity of self-assembled alcohol/polyalphaolefin nanoemulsion fluids

    PubMed Central

    2011-01-01

    Very large thermal conductivity enhancement had been reported earlier in colloidal suspensions of solid nanoparticles (i.e., nanofluids) and more recently also in oil-in-water emulsions. In this study, nanoemulsions of alcohol and polyalphaolefin (PAO) are spontaneously generated by self-assembly, and their thermal conductivity and viscosity are investigated experimentally. Alcohol and PAO have similar thermal conductivity values, so that the abnormal effects, such as particle Brownian motion, on thermal transport could be deducted in these alcohol/PAO nanoemulsion fluids. Small angle neutron-scattering measurement shows that the alcohol droplets are spheres of 0.8-nm radius in these nanoemulsion fluids. Both thermal conductivity and dynamic viscosity of the fluids are found to increase with alcohol droplet loading, as expected from classical theories. However, the measured conductivity increase is very moderate, e.g., a 2.3% increase for 9 vol%, in these fluids. This suggests that no anomalous enhancement of thermal conductivity is observed in the alcohol/PAO nanoemulsion fluids tested in this study. PMID:21711807

  8. Nutraceutical delivery systems: resveratrol encapsulation in grape seed oil nanoemulsions formed by spontaneous emulsification.

    PubMed

    Davidov-Pardo, Gabriel; McClements, David Julian

    2015-01-15

    The aim of this work was to fabricate nanoemulsions-based delivery systems to encapsulate resveratrol. Nanoemulsions were formed using spontaneous emulsification method: 10% oil phase (grape seed oil plus orange oil) and 10% surfactant (Tween 80) were titrated into 80% aqueous phase. An optimum orange oil-to-grape seed oil ratio of 1:1(w/w) formed small droplets (d ≈ 100 nm) with good stability to droplet growth. The maximum amount of resveratrol that could be dissolved in the oil phase was 120 ± 10 μg/ml. The effect of droplet size on the chemical stability of encapsulated resveratrol was examined by preparing systems with different mean droplet diameters of 220 ± 2; 99 ± 3; and 45 ± 0.4 nm. Encapsulation of resveratrol improved its chemical stability after exposure to UV-light: 88% retention in nanoemulsions compared to 50% in dimethylsulphoxide (DMSO). This study showed that resveratrol could be encapsulated within low-energy nanoemulsion-based delivery systems and protected against degradation. PMID:25148980

  9. Benefits of cetalkonium chloride cationic oil-in-water nanoemulsions for topical ophthalmic drug delivery

    PubMed Central

    Daull, Philippe; Lallemand, Frédéric; Garrigue, Jean-Sébastien

    2014-01-01

    Objectives Topical ocular administration is the most convenient route of administration of drugs for the treatment of eye diseases. However, the bioavailability of drugs following eye instillations of eye drops is very low. Over the past 20 years, extensive efforts have been put into research to improve drug bioavailability without compromising treatment compliance and patients' quality of life. Key findings One of the most efficient ways to improve drug bioavailability is to increase the precorneal residence time of the eye drop formulations. As a result, new eye drops, with bioadhesive properties, have been developed based on the cationic oil-in-water (o/w) nanoemulsion technology. These low viscosity eye drop nanoemulsions have improved precorneal residence time through the electrostatic interactions between the positively charged oil nanodroplets and the negatively charged ocular surface epithelium. Summary This review is the first to present the benefits of this new strategy used to improve ocular drug bioavailability. The roles of the cationic agent in the stabilization of a safe cationic o/w nanoemulsion have been discussed, as well as the unexpected benefits of the cationic o/w nanoemulsion for the protection and restoration of a healthy tear film and corneal epithelium. PMID:24001405

  10. Physico-chemical characterization of nano-emulsions in cosmetic matrix enriched on omega-3

    PubMed Central

    2011-01-01

    Background Nano-emulsions, as non-equilibrium systems, present characteristics and properties which depend not only on composition but also on their method of preparation. To obtain better penetration, nanocosmeceuticals use nano-sized systems for the delivery of active ingredients to targeted cells. In this work, nano-emulsions composed of miglyol, rapeseed oil and salmon oil were developed as a cosmetic matrix. Measurements of different physico-chemical properties of nano-emulsions were taken according to size, electrophoretic mobility, conductivity, viscosity, turbidity, cristallization and melting point. The RHLB was calculated for each formulation in order to achieve maximum stability. Results Both tween 80 and soya lecithin were found to stabilize formulations. The results showed that rapeseed oil and miglyol are the predominant parameters for determining the expression of results concerning the characterization of emulsion. Based on the mixture design, we achieved the optimal point using the following formulation: 56.5% rapessed oil, 35.5% miglyol, and 8% salmon oil. We considered this formulation to be the best as a nanocosmeceutical product due to the small size, good turbidity, and average HLB. Conclusions This study demonstrates the influence of formulation on the physico-chemical properties of each nano-emulsion obtained by the mixture design. PMID:21936893

  11. Characteristics of cinnamaldehyde nanoemulsion prepared using APV-high pressure homogenizer and ultra turrax

    NASA Astrophysics Data System (ADS)

    Asmawati, Mustapha, Wan Aida Wan; Yusop, Salma Mohamad; Maskat, Mohamad Yusof; Shamsuddin, Ahmad Fuad

    2014-09-01

    This work aims at determining the optimized parameter to prepare cinnamaldehyde nanoemulsion by using high pressure homogenizer (2 passes at 900 bar) and ultra turrax T25 (12000 rpm for 5 min). Thirteen formulation of cinnamaldehyde nanoemulsion obtained by Design Expert software were prepared at a range of oil and surfactant concentration between of 5% and 10% (v/v). Commercial cinnamaldehyde was blended with deionized water and Tween 80 (emulsifier). The responses used in obtaining the optimized condition were droplet size, polydispersity index (PDI) and emulsion stability (ζ-potential). Result showed that nanoemulsion prepared using 5% (v/v) cinnamaldehyde and 5% (v/v) Tween 80 and homogenized using high pressure homogenizer (APV, Germany) has the smallest size of droplet. The response surface plots for droplet size showed that droplet size (diameter, nm) decreased as the concentration of cinnamaldehyde oil and Tween 80 decreased. However ζ-potential value (mV) showed an increment as the cinnamaldehyde oil concentration decreased and Tween 80 increased. The optimum formulation as predicted by response surface methodology in order to produce a stable cinnamaldehyde nanoemulsion was at 5% cinnamaldehyde oil and 7.11% Tween 80. At this optimized conditions the droplet size and ζ-potential values were 56.56 nm and -4.32 mV, respectively.

  12. In Vitro Evaluation of Mucosa Permeation/Retention and Antiherpes Activity of Genistein from Cationic Nanoemulsions.

    PubMed

    Argenta, D F; Bidone, J; Misturini, F D; Koester, L S; Bassani, V L; Simbes, C M; Teixeira, H F

    2016-02-01

    In this report, we described the genistein distribution on excised porcine esophageal mucosa from cationic nanoemulsions, as well as the anti-HSV-1 activity against a viral strain resistant to acyclovir. Genistein-loaded cationic nanoemulsions were prepared by spontaneous emulsification. This procedure yielded monodisperse nanoemulsions exhibiting a mean droplet size of approximately 200-300 nm. Hydroxyethyl cellulose (HEC) was added at the end of the manufacturing process as a thickening agent (at 3%). Such formulations exhibit a non-Newtonian pseudoplastic behavior. The addition of HEC significantly reduces the genistein flux through excised porcine mucosa specimens as compared with values elicited by nanoemulsions before thickening. Furthermore, a significant increase of genistein retention in mucosa was observed as compared to the genistein propylene glycol solution, as illustrated by confocal fluorescence microscopy images. Formulations exhibited antiherpetic activity in vitro against HSV-1 (strain 29R). Taken together, these results suggest that these formulations have promising potential to be used topically for herpes infections. PMID:27433578

  13. Production of Nanoemulsions from Palm-Based Tocotrienol Rich Fraction by Microfluidization.

    PubMed

    Goh, Pik Seah; Ng, Mei Han; Choo, Yuen May; Amru, Nasrulhaq Boyce; Chuah, Cheng Hock

    2015-01-01

    In the present study, tocotrienol rich fraction (TRF) nanoemulsions were produced as an alternative approach to improve solubility and absorption of tocotrienols. In the present study, droplet size obtained after 10 cycles of homogenization with increasing pressure was found to decrease from 120 to 65.1 nm. Nanoemulsions stabilized with Tween series alone or emulsifier blend Brij 35:Span 80 (0.6:0.4 w/w) homogenized at 25,000 psi and 10 cycles, produced droplet size less than 100 nm and a narrow size distribution with a polydispersity index (PDI) value lower than 0.2. However blend of Tween series with Span 80 produced nanoemulsions with droplet size larger than 200 nm. This work has also demonstrated the amount of tocols losses in TRF nanoemulsion stabilized Tweens alone or emulsifier blend Brij 35:Span 80 (0.6:0.4 w/w) ranged between 3%-25%. This can be attributed to the interfacial film formed surrounding the droplets exhibited different level of oxidative stability against heat and free radicals created during high pressure emulsification. PMID:26556328

  14. Preparation and in vitro/ex vivo evaluation of nanoemulsion for transnasal delivery of paliperidone

    NASA Astrophysics Data System (ADS)

    Patel, Mrunali R.; Patel, Mitali H.; Patel, Rashmin B.

    2016-03-01

    Paliperidone was formulated in mucoadhesive nanoemulsion with the aim of improving its solubility and transnasal delivery, which can further utilized for its preclinical evaluation. Solubility of Paliperidone in oils, emulsifiers, co-emulsifiers was determined to identify nanoemulsion components. Emulsifier and co-emulsifiers were screened for their ability to emulsify selected oily phase. Phase diagrams were constructed to identify the area of nanoemulsification. Paliperidone nanoemulsion was formulated using spontaneous nanoemulsification method. The three nanoemulsions (PMNE4, PMNE5, and PMNE6) containing 5.71-6.80 % oleic acid as an oily phase, 47.62-51.63 % labrasol and plurol oleique CC 497 as emulsifier mixture (1:1), 42.86-45.58 % (wt/wt) aqueous phase having a suitable optical transparency of 98.33-99.33 %, globule size of 28.8-43.2 nm and polydispersity of 0.129-0.152 were selected for the incorporation of mucoadhesive polymer. The PMNE6 showed highest flux (5.072 ± 0.13 µg/cm2/min) with enhancement ratio of 1.1 as compared to Paliperidone solution (PS). The diffusion co-efficient of PMNE6 was significantly higher than PMNE5, PMNE4 and PS and followed higuchi model. The formulation was found to be free from nasal cilio toxicity. All formulations were found to be stable for 6 months at room temperature.

  15. Pre-Clinical Evaluation of a Novel Nanoemulsion-Based Hepatitis B Mucosal Vaccine

    PubMed Central

    Nigavekar, Shraddha S.; Janczak, Katarzyna W.; Knowlton, Jessica; Scott, Alison J.; Mank, Nicholas; Cao, Zhengyi; Rathinavelu, Sivaprakash; Beer, Michael R.; Wilkinson, J. Erby; Blanco, Luz P.; Landers, Jeffrey J.; Baker, James R.

    2008-01-01

    Background Hepatitis B virus infection remains an important global health concern despite the availability of safe and effective prophylactic vaccines. Limitations to these vaccines include requirement for refrigeration and three immunizations thereby restricting use in the developing world. A new nasal hepatitis B vaccine composed of recombinant hepatitis B surface antigen (HBsAg) in a novel nanoemulsion (NE) adjuvant (HBsAg-NE) could be effective with fewer administrations. Methodology and Principal Findings Physical characterization indicated that HBsAg-NE consists of uniform lipid droplets (349+/−17 nm) associated with HBsAg through electrostatic and hydrophobic interactions. Immunogenicity of HBsAg-NE vaccine was evaluated in mice, rats and guinea pigs. Animals immunized intranasally developed robust and sustained systemic IgG, mucosal IgA and strong antigen-specific cellular immune responses. Serum IgG reached ≥106 titers and was comparable to intramuscular vaccination with alum-adjuvanted vaccine (HBsAg-Alu). Normalization showed that HBsAg-NE vaccination correlates with a protective immunity equivalent or greater than 1000 IU/ml. Th1 polarized immune response was indicated by IFN-γ and TNF-α cytokine production and elevated levels of IgG2 subclass of HBsAg-specific antibodies. The vaccine retains full immunogenicity for a year at 4°C, 6 months at 25°C and 6 weeks at 40°C. Comprehensive pre-clinical toxicology evaluation demonstrated that HBsAg-NE vaccine is safe and well tolerated in multiple animal models. Conclusions Our results suggest that needle-free nasal immunization with HBsAg-NE could be a safe and effective hepatitis B vaccine, or provide an alternative booster administration for the parenteral hepatitis B vaccines. This vaccine induces a Th1 associated cellular immunity and also may provide therapeutic benefit to patients with chronic hepatitis B infection who lack cellular immune responses to adequately control viral replication. Long

  16. Eugenol oil nanoemulsion: antifungal activity against Fusarium oxysporum f. sp. vasinfectum and phytotoxicity on cottonseeds

    NASA Astrophysics Data System (ADS)

    Abd-Elsalam, Kamel A.; Khokhlov, Alexei R.

    2015-02-01

    The current research deals with the formulation and characterization of bio-based oil-in-water nanoemulsion. The formulated eugenol oil nanoemulsion was characterized by dynamic light scattering, stability test, transmission electron microscopy and thin layer chromatography. The nanoemulsion droplets were found to have a Z-average diameter of 80 nm and TEM study reveals the spherical shape of eugenol oil nanoemulsion (EON). The size of the nanoemulsion was found to be physically stable up to more than 1-month when it was kept at room temperature (25 °C). The TEM micrograph showed that the EON was spherical in shape and moderately mono or di-dispersed and was in the range of 50-110 nm. Three concentrations of the nanoformulation were used to evalute the anti-fusarium activity both in vitro and in vivo experiments. SDS-PAGE results of total protein from the Fusarium oxysporum f. sp. vasinfectum (FOV) isolate before and after treatment with eugenol oil nanoemulsion indicate that the content of extra cellular soluble small molecular proteins decreased significantly in EON-treated fungus. Light micrographs of mycelia and spores treated with EON showed the disruption of the fungal structures. The analysis of variance (ANOVA) for Fusarium wilt incidence indicated highly significant ( p = 0.000) effects of concentration, genotype, and their interaction. The difference in wilt incidence between concentrations and control was not the same for each genotype, that is, the genotypes responded differently to concentrations. Effects of three EON concentration on germination percentage, and radicle length, were determined in the laboratory. One very interesting finding in the current study is that cotton genotypes was the most important factors in determining wilt incidence as it accounted for 93.18 % of the explained (model) variation. In vitro experiments were conducted to evaluate the potential phytotoxic effect of three EON concentrations. Concentration, genotype and

  17. Ultrathin cellulose nanosheet membranes for superfast separation of oil-in-water nanoemulsions

    NASA Astrophysics Data System (ADS)

    Zhou, Ke; Zhang, Qiu Gen; Li, Hong Mei; Guo, Nan Nan; Zhu, Ai Mei; Liu, Qing Lin

    2014-08-01

    Oily wastewater is generated in diverse industrial processes, and its treatment has become crucial due to increasing environmental concerns. Herein, novel ultrathin nanoporous membranes of cellulose nanosheets have been fabricated for separation of oil-in-water nanoemulsions. The fabrication approach is facile and environmentally friendly, in which cellulose nanosheets are prepared by freeze-extraction of a very dilute cellulose solution. The as-prepared membranes have a cellulose nanosheet layer with a cut-off of 10-12 nm and a controllable thickness of 80-220 nm. They allow ultrafast water permeation and exhibit excellent size-selective separation properties. A 112 nm-thick membrane has a water flux of 1620 l m-2 h-1 bar-1 and a ferritin rejection of 92.5%. These membranes have been applied to remove oil from its aqueous nanoemulsions successfully, and they show an ultrafast and effective separation of oil-in-water nanoemulsions. The newly developed ultrathin cellulose membranes have a wide application in oily wastewater treatment, separation and purification of nanomaterials.Oily wastewater is generated in diverse industrial processes, and its treatment has become crucial due to increasing environmental concerns. Herein, novel ultrathin nanoporous membranes of cellulose nanosheets have been fabricated for separation of oil-in-water nanoemulsions. The fabrication approach is facile and environmentally friendly, in which cellulose nanosheets are prepared by freeze-extraction of a very dilute cellulose solution. The as-prepared membranes have a cellulose nanosheet layer with a cut-off of 10-12 nm and a controllable thickness of 80-220 nm. They allow ultrafast water permeation and exhibit excellent size-selective separation properties. A 112 nm-thick membrane has a water flux of 1620 l m-2 h-1 bar-1 and a ferritin rejection of 92.5%. These membranes have been applied to remove oil from its aqueous nanoemulsions successfully, and they show an ultrafast and effective

  18. Real-time sono-photoacoustic imaging of gold nanoemulsions

    NASA Astrophysics Data System (ADS)

    Arnal, Bastien; Wei, Chen-Wei; Perez, Camilo; Lombardo, Michael; Pelivanov, Ivan M.; Pozzo, Danilo; O'Donnell, Matthew

    2015-03-01

    Phase transition contrast agents were first introduced in ultrasound (US) in the form of perfluorocarbon droplets. When their size is reduced to the nanoscale, surface tension dominates their stability and high pressure is required to vaporize them using long US emissions at high frequencies. Our group recently showed that nanoemulsion beads (100-300 nm) coated with gold nanopsheres could be used as non-linear contrast agents. Beads can be vaporized with light only, inducing stronger photoacoustic signals by increasing thermal expansion. A photoacoustic cavitation threshold study (US: 1.2 MHz, Laser 750 nm and 10-ns pulse) shows that the vaporization thresholds of NEB-GNS can be greatly reduced using simultaneous light and US excitations. The resulting signal is driven only by the pressure amplitude for a fluence higher than 2.4 mJ/cm2. At diagnostic exposures, it is possible to capture very high signals from the vaporized beads at concentrations reduced to 10 pM with optical absorption smaller than 0.01 cm-1. A real-time imaging mode selectively isolating vaporization signals was implemented on a Verasonics system. A linear US probe (L74, 3 MHz) launched short US bursts before light was emitted from the laser. Vaporization of NEB-GNS resulted in a persistent 30-dB signal enhancement compared to a dye with the same absorption. Specific vaporization signals were retrieved in phantom experiments with US scatterers. This technique, called sonophotoacoustics, has great potential for targeted molecular imaging and therapy using compact nanoprobes with potentially high-penetrability into tissue.

  19. Formulation development and optimization of palm kernel oil esters-based nanoemulsions containing sodium diclofenac

    PubMed Central

    Rezaee, Malahat; Basri, Mahiran; Rahman, Raja Noor Zaliha Raja Abdul; Salleh, Abu Bakar; Chaibakhsh, Naz; Karjiban, Roghayeh Abedi

    2014-01-01

    Response surface methodology was employed to study the effect of formulation composition variables, water content (60%–80%, w/w) and oil and surfactant (O/S) ratio (0.17–1.33), as well as high-shear emulsification conditions, mixing rate (300–3,000 rpm) and mixing time (5–30 minutes) on the properties of sodium diclofenac-loaded palm kernel oil esters-nanoemulsions. The two response variables were droplet size and viscosity. Optimization of the conditions according to the four variables was performed for preparation of the nanoemulsions with the minimum values of particle size and viscosity. The results showed that the experimental data could be sufficiently fitted into a third-order polynomial model with multiple regression coefficients (R2) of 0.938 and 0.994 for the particle size and viscosity, respectively. Water content, O/S ratio and mixing time, quadrics of all independent variables, interaction between O/S ratio and mixing rate and between mixing time and rate, as well as cubic term of water content had a significant effect (P<0.05) on the particle size of nanoemulsions. The linear effect of all independent variables, quadrics of water content and O/S ratio, interaction of water content and O/S ratio, as well as cubic term of water content and O/S ratio had significant effects (P<0.05) on the viscosity of all nanoemulsions. The optimum conditions for preparation of sodium diclofenac nanoemulsions were predicted to be: 71.36% water content; 0.69 O/S ratio; 950 rpm mixing rate, and 5 minute mixing time. The optimized formulation showed good storage stability in different temperatures. PMID:24531324

  20. Optimization of Ibuprofen Delivery through Rat Skin from Traditional and Novel Nanoemulsion Formulations

    PubMed Central

    Sharif Makhmalzadeh, Behzad; Torabi, Shiva; Azarpanah, Armita

    2012-01-01

    The topical delivery of non-steroidal anti-inflammatory drugs (NSAIDS) such as Ibuprofen has been explored as a potential method of avoiding the first pass effects and the gastric irritation, which may occur when used orally. Ibuprofen is formulated into many topical preparations to reduce the adverse effects and simultaneously avoid the hepatic first-pass metabolism as well. However, it is difficult to obtain an effective concentration through topical delivery of Ibuprofen due to its low skin permeability. The aim of this study was to develop two types of nanoemulsions formulations and focused on the screening of Ibuprofen-loaded nanoemulsions and evaluating the influence of these types of nanoemulsions on the skin permeability of the drug. In both nanoemulsion formulations, oil was similar, but the surfactant and co-surfactant were different. The effect of independent variables on skin permeability parameters was evaluated using full factorial design. Results demonstrate that novel formulations were more effective as skin enhancer than traditional formulation. In case of the novel formulation, any increase in percentage of surfactant and co-surfactant had increasing effect on flux (Jss). On the other hand, the proportion of surfactant/co-surfactant (S/C) demonstrated reverse correlation with Jss. While, in traditional formulations, direct correlation was found between both variables, and Jss. Comparison between two types of nanoemulsion formulations revealed that, novel formulations were more effective as topical Ibuprofen carrier in contrast to traditional type due to lower amounts of surfactant and co-surfactant and less irritating effect. PMID:25317184

  1. Encapsulation of ω-3 fatty acids in nanoemulsion-based delivery systems fabricated from natural emulsifiers: Sunflower phospholipids.

    PubMed

    Komaiko, Jennifer; Sastrosubroto, Ashtri; McClements, David Julian

    2016-07-15

    Nanoemulsions have considerable potential for encapsulating and delivering ω-3 fatty acids, but they are typically fabricated from synthetic surfactants. This study shows that fish oil-in-water nanoemulsions can be formed from sunflower phospholipids, which have advantages for food applications because they have low allergenicity and do not come from genetically modified organisms. Nanoemulsions containing small droplets (d<150 nm) could be produced using microfluidization, by optimizing phospholipid type and concentration, with the smallest droplets being formed at high phosphatidylcholine levels and at surfactant-to-oil ratios exceeding unity. The physical stability of the nanoemulsions was mainly attributed to electrostatic repulsion, with droplet aggregation occurring at low pH values (low charge magnitude) and at high ionic strengths (electrostatic screening). These results suggest that sunflower phospholipids may be a viable natural emulsifier to deliver ω-3 fatty acids into food and beverage products. PMID:26948622

  2. Carbonaceous objects resembling nannobacteria in the Allende meteorite

    NASA Astrophysics Data System (ADS)

    Folk, Robert L.; Lynch, F. Leo

    1998-07-01

    The carbon in Allende consists of balls ranging form 30 to 150 nm in diameter.Most are spheres, but some ovoid to worm- like forms occur. Grape-like clumps and rosary-like chains are the most dramatic mimics of terrestrial bacterial colonies. We propose that the carbon balls in Allende represent roasted corpses of nanobacteria because of their resemblance to nanobacteria on earth.

  3. Vitamin E loaded resveratrol nanoemulsion for brain targeting for the treatment of Parkinson’s disease by reducing oxidative stress

    NASA Astrophysics Data System (ADS)

    Pangeni, Rudra; Sharma, Shrestha; Mustafa, Gulam; Ali, Javed; Baboota, Sanjula

    2014-12-01

    Resveratrol, a potent natural antioxidant, possesses a wide range of pharmacological activities, but its oral bioavailability is very low due to its extensive hepatic and presystemic metabolism. The aim of the present study was to formulate a kinetically stable nanoemulsion (o/w) using vitamin E:sefsol (1:1) as the oil phase, Tween 80 as the surfactant and Transcutol P as the co-surfactant for the better management of Parkinson’s disease. The nanoemulsion was prepared by a spontaneous emulsification method, followed by high-pressure homogenization. Ternary phase diagrams were constructed to locate the area of nanoemulsion. The prepared formulations were studied for globule size, zeta potential, refractive index, viscosity, surface morphology and in vitro and ex vivo release. The homogenized formulation, which contained 150 mg ml-1 of resveratrol, showed spherical globules with an average globule diameter of 102 ± 1.46 nm, a least poly dispersity index of 0.158 ± 0.02 and optimal zeta potential values of -35 ± 0.02. The cumulative percentage drug release for the pre-homogenized resveratrol suspension, pre-homogenized nanoemulsion and post-homogenized nanoemulsion were 24.18 ± 2.30%, 54.32 ± 0.95% and 88.57 ± 1.92%, respectively, after 24 h. The ex vivo release also showed the cumulative percentage drug release of 85.48 ± 1.34% at 24 h. The antioxidant activity determined by using a DPPH assay showed high scavenging efficiency for the optimized formulation. Pharmacokinetic studies showed the higher concentration of the drug in the brain (brain/blood ratio: 2.86 ± 0.70) following intranasal administration of the optimized nanoemulsion. Histopathological studies showed decreased degenerative changes in the resveratrol nanoemulsion administered groups. The levels of GSH and SOD were significantly higher, and the level of MDA was significantly lower in the resveratrol nanoemulsion treated group.

  4. Steroid Dermatitis Resembling Rosacea: A Clinical Evaluation of 75 Patients

    PubMed Central

    Hameed, Ammar F.

    2013-01-01

    Background. The use of topical steroids on the skin of the face should be carefully evaluated by the dermatologist; however, its misuse still occurs producing dermatological problem resembling rosacea. Objectives. To report the different clinical manifestations of steroid dermatitis resembling rosacea and to discover causes behind abusing topical steroids on the face. Methods. In this prospective observational study, 75 patients with steroid dermatitis resembling rosacea who had history of topical steroid use on their faces for at least 1–3 months were evaluated at the Department of Dermatology, Baghdad Teaching Hospital, between August 2010 and December 2012. Results. The majority of patients were young women who used a combinations of potent and very potent topical steroid for average period of 0.25–10 years. Facial redness and hotness, telangiectasia, and rebound phenomenon with papulopustular eruption were the main clinical presentations. The most common causes of using topical steroid on the face were pigmentary problems and acne through recommendations from nonmedical personnel. Conclusion. Topical steroid should not be used on the face unless it is under strict dermatological supervision. PMID:23691345

  5. Delivery of lipophilic bioactives: assembly, disassembly, and reassembly of lipid nanoparticles.

    PubMed

    Yao, Mingfei; Xiao, Hang; McClements, David Julian

    2014-01-01

    The oral bioavailability of lipophilic bioactive molecules can be greatly increased by encapsulating them within engineered lipid nanoparticles (ELNs), such as micelles, microemulsions, nanoemulsions, or solid lipid nanoparticles (SLNs). After ingestion, these ELNs are disassembled in the gastrointestinal tract (GIT) and then reassembled into biological lipid nanoparticles (mixed micelles) in the small intestine. These mixed micelles solubilize and transport lipophilic bioactive components to the epithelial cells. The mixed micelles are then disassembled and reassembled into yet another form of biological lipid nanoparticle [chylomicrons (CMs)] within the enterocyte cells. The CMs carry the bioactive components into the systemic (blood) circulation via the lymphatic system, thereby avoiding first-pass metabolism. This article provides an overview of the various physicochemical and physiological processes responsible for the assembly and disassembly of lipid nanoparticles outside and inside the GIT. This knowledge can be used to design food-grade delivery systems to improve the oral bioavailability of encapsulated lipophilic bioactive components. PMID:24328432

  6. Recent Techniques and Patents on Solid Lipid Nanoparticles as Novel Carrier for Drug Delivery.

    PubMed

    Khatak, Sunil; Dureja, Harish

    2015-01-01

    The various approaches have been utilized in the treatment of a variety of diseases by applying drug delivery system such as polymeric nanoparticles, self-emulsifying delivery systems, liposomes, microemulsions and micellar solutions. Recently, solid lipid nanoparticles (SLNs), nanostructured lipid carriers (NLCs) and lipid-drug conjugates (LDCs) have been exploited as a carrier of lipophilic and hydrophilic/amphiphilic substances for invasive and non-invasive routes of delivery. SLNs are colloidal drug carrier system and are like nanoemulsion, however, the lipid content in SLNs is solid in nature. These novel type of lipid nanoparticles with solid matrix offers to develop new prototype therapeutics in drug delivery, which could be used for controlled release, drug targeting, gene therapy, physical and chemical stability and site-specific drug delivery and thereby attracted the research groups worldwide. This manuscript overviews the recent patents, advantages, formulation techniques, stability aspects and applications of SLNs. PMID:27009132

  7. Association efficiency of three ionic forms of oxytetracycline to cationic and anionic oil-in-water nanoemulsions analyzed by diafiltration.

    PubMed

    Orellana, Sandra L; Torres-Gallegos, Cesar; Araya-Hermosilla, Rodrigo; Oyarzun-Ampuero, Felipe; Moreno-Villoslada, Ignacio

    2015-03-01

    The association efficiency of oxytetracycline (OTC) to pharmaceutical available, ionic oil-in-water nanoemulsions is studied. Theoretical mathematical developments allowed us to differentiate by diafiltration (DF) between thermodynamically and kinetically controlled binding of the drug to the nanoemulsions, and relate these important magnitudes to the association efficiency. The nanoemulsions have been prepared by the solvent displacement technique in the presence of cationic and anionic surfactants. The resulting nanoemulsions were stable at 4°C and 25°C for 60 days, have a size of ∼ 200 nm, showing polydispersity indexes ranging between 0.11 and 0.23, and present zeta potentials ranging between -90 and +60 mV, depending on the charge of the surfactants used. The zeta potential of the nanoemulsions influenced the interaction with OTC, having three ionic forms at different pH, namely, cationic, zwitterionic, and anionic. DF proved to be a powerful tool for the quantification of the drug association efficiency, achieving values up to 84%. Furthermore, this technique allowed obtaining different values of the drug fractions reversibly bound (11%-57%) and irreversibly bound (10%-40%) to the nanoemulsions depending on the surfactants used and pH. These findings may be useful for the development of new drug delivery systems, and as routine assays in academia and pharmaceutical industries. PMID:25557590

  8. Formation and stability of oil-in-water nanoemulsions containing rice bran oil: in vitro and in vivo assessments

    PubMed Central

    2011-01-01

    Background Nanoemulsions have practical application in a multitude of commercial areas, such as the chemical, pharmaceutical and cosmetic industries. Cosmetic industries use rice bran oil in sunscreen formulations, anti ageing products and in treatments for skin diseases. The aim of this study was to create rice bran oil nanoemulsions using low energy emulsification methods and to evaluate their physical stability, irritation potential and moisturising activity on volunteers with normal and diseased skin types. Results The nanoemulsion developed by this phase diagram method was composed of 10% rice bran oil, 10% surfactants sorbitan oleate/PEG-30 castor oil, 0.05% antioxidant and 0.50% preservatives formulated in distilled water. The nanoemulsion was stable over the time course of this study. In vitro assays showed that this formulation has a low irritation potential, and when applied to human skin during in vivo studies, the nanoemulsion improved the skin's moisture and maintained normal skin pH values. Conclusion The results of irritation potential studies and in vivo assessments indicate that this nanoemulsion has potential to be a useful tool to treat skin diseases, such as atopic dermatitis and psoriasis. PMID:21952107

  9. Physicochemical properties of whey protein, lactoferrin and Tween 20 stabilised nanoemulsions: Effect of temperature, pH and salt.

    PubMed

    Teo, Anges; Goh, Kelvin K T; Wen, Jingyuan; Oey, Indrawati; Ko, Sanghoon; Kwak, Hae-Soo; Lee, Sung Je

    2016-04-15

    Oil-in-water nanoemulsions were prepared by emulsification and solvent evaporation using whey protein isolate (WPI), lactoferrin and Tween 20 as emulsifiers. Protein-stabilised nanoemulsions showed a decrease in particle size with increasing protein concentration from 0.25% to 1% (w/w) level with Z-average diameter between 70 and 90 nm. However, larger droplets were produced by Tween 20 (120-450 nm) especially at concentration above 0.75% (w/w). The stability of nanoemulsions to temperature (30-90°C), pH (2-10) and ionic strength (0-500 mM NaCl or 0-90 mM CaCl2) was also tested. Tween 20 nanoemulsions were unstable to heat treatment at 90°C for 15 min. WPI-stabilised nanoemulsions exhibited droplet aggregation near the isoelectric point at pH 4.5 and 5 and they were also unstable at salt concentration above 30 mM CaCl2. These results indicated that stable nanoemulsions can be prepared by careful selection of emulsifiers. PMID:26616953

  10. In Vitro Study on Antihypertensive and Antihypercholesterolemic Effects of a Curcumin Nanoemulsion

    PubMed Central

    Rachmawati, Heni; Soraya, Irene Surya; Kurniati, Neng Fisheri; Rahma, Annisa

    2016-01-01

    Atherosclerosis and hypertension can potentially progess into dangerous cardiovascular diseases such as myocardial infarction and stroke. Statins are widely used to lower cholesterol levels while antihypertensive agents such as captopril are widely prescribed to treat high blood pressure. Curcumin, a phenolic compound isolated from Curcuma domestica, has been proven effective for a broad spectrum of diseases, including hypertension and hypercholesterolemia. Therefore, curcumin is quite promising as an alternative therapeutic compound. Our previous studies have proven a significant increase in physical properties, bioavailability, and stability of curcumin when encapsulated in a nanoemulsion. The purpose of this study was to assess the ability of the nanoemulsion in enhancing curcumin activity as a antihypertensive and antihypercholesterolemic agent. The formulation and preparation method of the curcumin nanoemulsion have been developed in our previous study. Physical characterization was performed, including measurement of droplet size, polidispersity index, zeta potential, entrapment efficiency, and loading capacity. Antihypertensive activity of curcumin was evaluated by determining Angiotensin Converting Enzyme (ACE) inhibition in vitro. A substrate for ACE, hippuryl-L-histidyl-L-leucine was allowed to react with ACE, resulting in hippuric acid formation as the product. The degree of ACE inhibition by curcumin was represented by the amount of hippuric acid formed. Antihypercholesterolemic activity of curcumin was studied using the HMG-CoA reductase assay equipped with a 96-well UV plate. This assay was based on the spectrophotometric measurement of the decrease in absorbance which represents the oxidation of NADPH by the catalytic subunit of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) in the presence of the substrate HMG-CoA. Curcumin is known to have no significant difference in inhibiting ACE compared to Captopril, but when it was incorporated in the self

  11. In Vitro Study on Antihypertensive and Antihypercholesterolemic Effects of a Curcumin Nanoemulsion.

    PubMed

    Rachmawati, Heni; Soraya, Irene Surya; Kurniati, Neng Fisheri; Rahma, Annisa

    2016-01-01

    Atherosclerosis and hypertension can potentially progess into dangerous cardiovascular diseases such as myocardial infarction and stroke. Statins are widely used to lower cholesterol levels while antihypertensive agents such as captopril are widely prescribed to treat high blood pressure. Curcumin, a phenolic compound isolated from Curcuma domestica, has been proven effective for a broad spectrum of diseases, including hypertension and hypercholesterolemia. Therefore, curcumin is quite promising as an alternative therapeutic compound. Our previous studies have proven a significant increase in physical properties, bioavailability, and stability of curcumin when encapsulated in a nanoemulsion. The purpose of this study was to assess the ability of the nanoemulsion in enhancing curcumin activity as a antihypertensive and antihypercholesterolemic agent. The formulation and preparation method of the curcumin nanoemulsion have been developed in our previous study. Physical characterization was performed, including measurement of droplet size, polidispersity index, zeta potential, entrapment efficiency, and loading capacity. Antihypertensive activity of curcumin was evaluated by determining Angiotensin Converting Enzyme (ACE) inhibition in vitro. A substrate for ACE, hippuryl-L-histidyl-L-leucine was allowed to react with ACE, resulting in hippuric acid formation as the product. The degree of ACE inhibition by curcumin was represented by the amount of hippuric acid formed. Antihypercholesterolemic activity of curcumin was studied using the HMG-CoA reductase assay equipped with a 96-well UV plate. This assay was based on the spectrophotometric measurement of the decrease in absorbance which represents the oxidation of NADPH by the catalytic subunit of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) in the presence of the substrate HMG-CoA. Curcumin is known to have no significant difference in inhibiting ACE compared to Captopril, but when it was incorporated in the self

  12. Characterization of Stability and Nasal Delivery Systems for Immunization with Nanoemulsion-Based Vaccines

    PubMed Central

    Nigavekar, Shraddha S.; Bielinska, Anna U.; Mank, Nicholas; Shetty, Abhishek M.; Suman, Julie; Knowlton, Jessica; Myc, Andrzej; Rook, Trent; Baker, James R.

    2010-01-01

    Abstract Background Many infectious diseases that cause significant morbidity and mortality, especially in the developing world, could be preventable through vaccination. The effort to produce safe, thermally stable, and needle-free mucosal vaccines has become increasingly important for global health considerations. We have previously demonstrated that a thermally stable nanoemulsion, a mucosal adjuvant for needle-free nasal immunization, is safe and induces protective immunity with a variety of antigens, including recombinant protein. The successful use of nanoemulsion-based vaccines, however, poses numerous challenges. Among the challenges is optimization of the formulation to maintain thermal stability and potency and another is accuracy and efficiency of dispensing the vaccines to the nasal mucosa in the anterior and turbinate region of the nasal cavity or potentially to the nasopharynx-associated lymphoid tissue. Methods We have examined the effects of different diluents [phosphate-buffered saline (PBS) and 0.9% NaCl] on the stability and potency of nanoemulsion-based vaccines. In addition, we have determined the efficiency of delivering them using commercially available nasal spray devices (Pfeiffer SAP-62602 multidose pump and the BD Hypak SCF 0.5 ml unit dose AccusprayTM). Results We report the stability and potency of PBS–diluted ovalbumin–nanomeulsion mixtures for up to 8 months and NaCl-diluted mixtures up to 6 months when stored at room temperature. Significant differences in spray characteristics including droplet size, spray angle, plume width, and ovality ratios were observed between the two pumps. Further, we have demonstrated that the nanoemulsion-based vaccines are not physically or chemically altered and retain potency following actuation with nasal spray devices. Using either device, the measured spray characteristics suggest deposition of nanoemulsion-based vaccines in inductive tissues located in the anterior region of the nasal cavity

  13. Sequence of retrovirus provirus resembles that of bacterial transposable elements

    NASA Astrophysics Data System (ADS)

    Shimotohno, Kunitada; Mizutani, Satoshi; Temin, Howard M.

    1980-06-01

    The nucleotide sequences of the terminal regions of an infectious integrated retrovirus cloned in the modified λ phage cloning vector Charon 4A have been elucidated. There is a 569-base pair direct repeat at both ends of the viral DNA. The cell-virus junctions at each end consist of a 5-base pair direct repeat of cell DNA next to a 3-base pair inverted repeat of viral DNA. This structure resembles that of a transposable element and is consistent with the protovirus hypothesis that retroviruses evolved from the cell genome.

  14. Carisoprodol withdrawal syndrome resembling neuroleptic malignant syndrome: Diagnostic dilemma

    PubMed Central

    Paul, Gunchan; Parshotam, Gautam L; Garg, Rajneesh

    2016-01-01

    Soma (Carisoprodol) is N-isopropyl-2 methyl-2-propyl-1,3-propanediol dicarbamate; a commonly prescribed, centrally acting skeletal muscle relaxant. Neuroleptic malignant syndrome (NMS) is a potentially life-threatening adverse effect of antipsychotic agents. Although diagnostic criteria for NMS have been established, it should be recognized that atypical presentations occur and more flexible diagnostic criteria than currently mandated, may be warranted. We wish to report a postoperative case of bilateral knee replacement who presented with carisoprodol (Soma) withdrawal resembling NMS that was a diagnostic dilemma. Subsequently, it was successfully treated with oral baclofen in absence of sodium dantrolene.

  15. Antimicrobial effects of a microemulsion and a nanoemulsion on enteric and other pathogens and biofilms.

    PubMed

    Teixeira, Paula C; Leite, Gonçalo M; Domingues, Ricardo J; Silva, Joana; Gibbs, Paul A; Ferreira, João Paulo

    2007-08-15

    Some microemulsions and nanoemulsions may have antimicrobial properties and be effective anti-biofilm agents. We examined the abilities of two fine emulsions, designated BCTP and TEOP, to inactivate suspensions of vegetative cells of Salmonella spp. Escherichia coli 0157:H7 (VT-), Pseudomonas aeruginosa, Staphylococcus aureus and Listeria monocytogenes. BCTP is an O/W nanoemulsion of soybean oil and tri-n-butyl phosphate emulsified with Triton X-100, while TEOP is an O/W microemulsion of ethyl oleate with Tween 80 as emulsifier and n-pentanol as a co-emulsifier. BCTP was effective in reducing the cell numbers of L. monocytogenes, while TEOP was effective against all five organisms investigated. The abilities of these emulsions to reduce preformed biofilms of the five bacteria were also investigated. With the exception of the biofilm formed by L. monocytogenes, which surprisingly was not significantly affected by BCTP, all biofilms were inhibited by both BCTP and TEOP. PMID:17610974

  16. Immunoadjuvant Chemotherapy of Visceral Leishmaniasis in Hamsters Using Amphotericin B-Encapsulated Nanoemulsion Template-Based Chitosan Nanocapsules

    PubMed Central

    Asthana, Shalini; Jaiswal, Anil K.; Gupta, Pramod K.; Pawar, Vivek K.; Dube, Anuradha

    2013-01-01

    The accessible treatment options for life-threatening neglected visceral leishmaniasis (VL) disease have problems with efficacy, stability, adverse effects, and cost, making treatment a complex issue. Here we formulated nanometric amphotericin B (AmB)-encapsulated chitosan nanocapsules (CNC-AmB) using a polymer deposition technique mediated by nanoemulsion template fabrication. CNC-AmB exhibited good steric stability in vitro, where the chitosan content was found to be efficient at preventing destabilization in the presence of protein and Ca2+. A toxicity study on the model cell line J774A and erythrocytes revealed that CNC-AmB was less toxic than commercialized AmB formulations such as Fungizone and AmBisome. The results of in vitro (macrophage-amastigote system; 50% inhibitory concentration [IC50], 0.19 ± 0.04 μg AmB/ml) and in vivo (Leishmania donovani-infected hamsters; 86.1% ± 2.08% parasite inhibition) experiments in conjunction with effective internalization by macrophages illustrated the efficacy of CNC-AmB at augmenting antileishmanial properties. Quantitative mRNA analysis by real-time PCR (RT-PCR) showed that the improved effect was synergized with the upregulation of tumor necrosis factor alpha (TNF-α), interleukin-12 (IL-12), and inducible nitric oxide synthase and with the downregulation of transforming growth factor β (TGF-β), IL-10, and IL-4. These research findings suggest that a cost-effective CNC-AmB immunoadjuvant chemotherapeutic delivery system could be a viable alternative to the current high-cost commercial lipid-based formulations. PMID:23357762

  17. Nanoemulsions for dermal controlled release of oleanolic and ursolic acids: In vitro, ex vivo and in vivo characterization.

    PubMed

    Alvarado, H L; Abrego, G; Souto, E B; Garduño-Ramirez, M L; Clares, B; García, M L; Calpena, A C

    2015-06-01

    The aim of the present study was to design and optimize a nanoemulsion for dermal administration of mixtures of natural or synthetic pentacyclic triterpenes with recognized anti-inflammatory activity. The composition of the developed nanoemulsions was obtained from pseudo-ternary phase diagrams, composed of castor oil as the oil phase, labrasol as the surfactant, transcutol-P as co-surfactant and propylene glycol as the aqueous phase. Different ratios of surfactant/co-surfactant mixture (Smix) (4:1, 3:1, 2:1, 1:1, 1:2 and 1:4) were produced, and Smix 4:1 was chosen based on the greater area of optimal nanoemulsion conditions. Two different nanoemulsions of mean droplet size below 600 nm were produced, loading mixtures of natural or synthetic pentacyclic triterpenes, respectively. The viscosity of nanoemulsion containing natural pentacyclic triterpenes was 51.97±4.57 mPas and that loaded with synthetic mixtures was 55.33±0.28 mPas. The studies of release and skin permeation were performed using Franz diffusion cells, adjusting the release kinetics of both formulations to Korsmeyer-Peppas model. No significant differences in permeation parameters between the two nanoemulsions were observed. The amount of drug retained in the skin was higher than the amount of drug that has permeated, favoring a local action. The results of the in vivo tests demonstrated that the developed formulations were not toxic and not irritant to the skin. The formulation loading a mixture of natural triterpenes showed greater ability to inhibit inflammation than that loading the synthetic mixture. The findings clearly corroborate the added value of o/w nanoemulsions for dermal delivery of pentacyclic triterpenes. PMID:25899842

  18. Ultrasonic emulsification of parenteral valproic acid-loaded nanoemulsion with response surface methodology and evaluation of its stability.

    PubMed

    Tan, Suk Fei; Masoumi, Hamid Reza Fard; Karjiban, Roghayeh Abedi; Stanslas, Johnson; Kirby, Brian P; Basri, Mahiran; Basri, Hamidon Bin

    2016-03-01

    Response surface methodology (RSM) was used to optimize the formulation of a nanoemulsion for central delivery following parenteral administration. A mixture of medium-chain triglyceride (MCT) and safflower seed oil (SSO) was determined as a sole phase from the emulsification properties. Similarly, a natural surfactant (lecithin) and non-ionic surfactant (Tween 80) (ratio 1:2) were used in the formulation. A central composite design (CCD) with three-factor at five-levels was used to optimize the processing method of high energy ultrasonicator. Effects of pre-sonication ultrasonic intensity (A), sonication time (B), and temperature (C) were studied on the preparation of nanoemulsion loaded with valproic acid. Influence of the aforementioned specifically the effects of the ultrasonic processing parameters on droplet size and polydispersity index were investigated. From the analysis, it was found that the interaction between ultrasonic intensity and sonication time was the most influential factor on the droplet size of nanoemulsion formulated. Ultrasonic intensity (A) significantly affects the polydispersity index value. With this optimization method, a favorable droplet size of a nanoemulsion with reasonable polydispersity index was able to be formulated within a short sonication time. A valproic acid loaded nanoemulsion can be obtained with 60% power intensity for 15 min at 60 °C. Droplet size of 43.21±0.11 nm with polydispersity index of 0.211 were produced. The drug content was then increased to 1.5%. Stability study of nanoemulsion containing 1.5% of valproic acid had a good stability as there are no significant changes in physicochemical aspects such as droplet size and polydispersity index. With the characteristisation study of pH, viscosity, transmission electron microscope (TEM) and stability assessment study the formulated nanoemulsion has the potential to penetrate blood-brain barrier in the treatment of epilepsy. PMID:26585010

  19. Monitoring the Stability of Perfluorocarbon Nanoemulsions by Cryo-TEM Image Analysis and Dynamic Light Scattering

    PubMed Central

    Grapentin, Christoph; Barnert, Sabine; Schubert, Rolf

    2015-01-01

    Perfluorocarbon nanoemulsions (PFC-NE) are disperse systems consisting of nanoscale liquid perfluorocarbon droplets stabilized by an emulsifier, usually phospholipids. Perfluorocarbons are chemically inert and non-toxic substances that are exhaled after in vivo administration. The manufacture of PFC-NE can be done in large scales by means of high pressure homogenization or microfluidization. Originally investigated as oxygen carriers for cases of severe blood loss, their application nowadays is more focused on using them as marker agents in 19F Magnetic Resonance Imaging (19F MRI). 19F is scarce in organisms and thus PFC-NE are a promising tool for highly specific and non-invasive imaging of inflammation via 19F MRI. Neutrophils, monocytes and macrophages phagocytize PFC-NE and subsequently migrate to inflamed tissues. This technique has proven feasibility in numerous disease models in mice, rabbits and mini pigs. The translation to clinical trials in human needs the development of a stable nanoemulsion whose droplet size is well characterized over a long storage time. Usually dynamic light scattering (DLS) is applied as the standard method for determining particle sizes in the nanometer range. Our study uses a second method, analysis of transmission electron microscopy images of cryo-fixed samples (Cryo-TEM), to evaluate stability of PFC-NE in comparison to DLS. Four nanoemulsions of different composition are observed for one year. The results indicate that DLS alone cannot reveal the changes in particle size, but can even mislead to a positive estimation of stability. The combination with Cryo-TEM images gives more insight in the particulate evolution, both techniques supporting one another. The study is one further step in the development of analytical tools for the evaluation of a clinically applicable perfluorooctylbromide nanoemulsion. PMID:26098661

  20. Formulation and cytotoxicity evaluation of new self-emulsifying multiple W/O/W nanoemulsions

    PubMed Central

    Sigward, Estelle; Mignet, Nathalie; Rat, Patrice; Dutot, Mélody; Muhamed, Saleh; Guigner, Jean-Michel; Scherman, Daniel; Brossard, Denis; Crauste-Manciet, Sylvie

    2013-01-01

    Three multiple water-in-oil-in-water (W/O/W) nanoemulsions have been designed for potential inclusion of either lipophilic or hydrophilic drugs using a two-step emulsification process exclusively based on low-energy self-emulsification. The W/O primary emulsion was constituted by a blend of oil (medium chain triglyceride), a mixture (7:3) of two surfactants, and a 10% water phase. The surfactants were a mixture of Polysorbate-85/Labrasol®, Polysorbate-85/Cremophor® EL or glycerol/Polysorbate-85. The final W/O/W nanoemulsions were obtained by the addition of water, with a weight ratio nanoemulsion/water of 1:2. The multiple emulsion stability was found to increase from 24 hours to 2 and 6 months with Labrasol, glycerol, and Cremophor, respectively. Cytotoxicity was found for formulations including Labrasol and Cremophor EL. The concentration of emulsion inhibiting 50% cell viability (IC50) was determined using the alamarBlue® test, giving after 24 hours of incubation, IC50 = 10.2 mg/mL for the Labrasol formulation and IC50 = 11.8 mg/mL for the Cremophor EL formulation. Corresponding calculated IC50 values for surfactants were 0.51 mg/mL for Labrasol and 0.59 mg/mL for Cremophor EL. In both cases, cytotoxicity was due to an apoptotic mechanism, evidenced by chromatin condensation and P2X7 cell death receptor activation. The formulation including glycerol, investigated between 1 and 100 mg/mL concentration of nanoemulsion, did not affect cell viability. Moreover, neither chromatin condensation nor P2X7 activation was found between the 10 and 30 mg/mL final concentration of the emulsion. This last formulation would therefore be of major interest for further developments. PMID:23403891

  1. Fabrication of polymeric nanocapsules from curcumin-loaded nanoemulsion templates by self-assembly.

    PubMed

    Abbas, Shabbar; Karangwa, Eric; Bashari, Mohanad; Hayat, Khizar; Hong, Xiao; Sharif, Hafiz Rizwan; Zhang, Xiaoming

    2015-03-01

    In this study, biodegradable polymeric nanocapsules were prepared by sequential deposition of food-grade polyelectrolytes through the self-assembling process onto the oil (medium chain triglycerides) droplets enriched with curcumin (lipophilic bioactive compound). Optimum conditions were used to prepare ultrasound-assisted nanoemulsions stabilized by octenyl-succinic-anhydride (OSA)-modified starch. Negatively charged droplets (-39.4 ± 1.84 mV) of these nanoemulsions, having a diameter of 142.7 ± 0.85 nm were used as templates for the fabrication of nanocapsules. Concentrations of layer-forming cationic (chitosan) and anionic (carboxymethylcellulose) biopolymers were optimized based on the mean droplet/particle diameter (MDD/MPD), polydispersity index (PDI) and net charge on the droplets/capsules. Prepared core-shell structures or nanocapsules, having MPD of 159.85 ± 0.92 nm, were characterized by laser diffraction (DLS), ζ-potential (ZP), atomic force microscopy (AFM), transmission electron microscopy (TEM) and confocal laser scanning microscopy (CLSM). Furthermore, physical stability of curcumin-loaded nanocapsules in suspension was determined and compared at different storage temperatures. This study may provide information regarding the formation of ultrasound-assisted polymeric nanocapsules from the nanoemulsion templates which could be helpful in the development of delivery systems for lipophilic food bioactives. PMID:25453208

  2. Nonlinear acoustic enhancement in photoacoustic imaging with wideband absorptive nanoemulsion beads

    NASA Astrophysics Data System (ADS)

    Wei, Chen-wei; Lombardo, Michael; Xia, Jinjun; Pelivanov, Ivan; Perez, Camilo; Larson-Smith, Kjersta; Matula, Thomas J.; Pozzo, Danilo; O'Donnell, Matthew

    2014-03-01

    A nanoemulsion contrast agent with a perfluorohexane core and optically absorptive gold nanospheres (GNSs) assembled on the surface, is presented to improve the specificity of photoacoustic (PA) molecular imaging in differentiating targeted cells or aberrant regions from heterogeneous background signals. Compared to distributed GNSs, clustered GNSs at the emulsion oil-water interface produce a red-shifted and broadened absorption spectrum, exhibiting fairly high absorption in the near-infrared region commonly used for deep tissue imaging. Above a certain laser irradiation fluence threshold, a phase transition creating a microbubble in the emulsion core leads to more than 10 times stronger PA signals compared with conventional thermal-expansion-induced PA signals. These signals are also strongly non-linear, as verified by a differential scheme using recorded PA images at different laser fluences. Assuming a linear relation between laser fluence and the PA signal amplitude, differential processing results in nearly perfect suppression of linear sources, but retains a significant residue for the non-linear nanoemulsion with more than 35 dB enhancement. This result demonstrates that contrast specificity can be improved using the nanoemulsion as a targeting agent in PA molecular imaging by suppressing all background signals related to a linear PA response. Furthermore, combined with a system providing simultaneous laser/ultrasound excitation, cavitation-generated bubbles have the potential to be a highly specific contrast agent for ultrasound molecular imaging and harmonic imaging, as well as a targeted means for noninvasive ultrasound-based therapies.

  3. Vitamin E derivative-based multifunctional nanoemulsions for overcoming multidrug resistance in cancer.

    PubMed

    Zheng, Nannan; Gao, Yanan; Ji, Hongyu; Wu, Linhua; Qi, Xuejing; Liu, Xiaona; Tang, Jingling

    2016-08-01

    The multidrug resistance (MDR), including intrinsic and acquired multidrug resistance, is a major problem in tumor chemotherapy. Here, we proposed a strategy for modulating intrinsic and/or acquired multidrug resistance by altering the levels of Bax and Bcl-2 expression and inhibiting the transport function of P-gp, increasing the intracellular concentration of its substrate anticancer drugs. Vitamin E derivative-based nanoemulsions containing paclitaxel (MNEs-PTX) were fabricated in this study, and in vitro anticancer efficacy of the nanoemulsion system was evaluated in the paclitaxel-resistant human ovarian carcinoma cell line A2780/Taxol. The MNEs-PTX exhibited a remarkably enhanced antiproliferation effect on A2780/Taxol cells than free paclitaxel (PTX) (p < 0.01). Compared with that in the Taxol group, MNEs-PTX further decreased mitochondrial potential. Vitamin E derivative-based multifunctional nanoemulsion (MNEs) obviously increased intracellular accumulation of rhodamine 123 (P-gp substrate). Overexpression of Bcl-2 is generally associated with tumor drug resistance, we found that MNEs could reduce Bcl-2 protein level and increase Bax protein level. Taken together, our findings suggest that anticancer drugs associated with MNEs could play a role in the development of MDR in cancers. PMID:26710274

  4. Ultrathin cellulose nanosheet membranes for superfast separation of oil-in-water nanoemulsions.

    PubMed

    Zhou, Ke; Zhang, Qiu Gen; Li, Hong Mei; Guo, Nan Nan; Zhu, Ai Mei; Liu, Qing Lin

    2014-09-01

    Oily wastewater is generated in diverse industrial processes, and its treatment has become crucial due to increasing environmental concerns. Herein, novel ultrathin nanoporous membranes of cellulose nanosheets have been fabricated for separation of oil-in-water nanoemulsions. The fabrication approach is facile and environmentally friendly, in which cellulose nanosheets are prepared by freeze-extraction of a very dilute cellulose solution. The as-prepared membranes have a cellulose nanosheet layer with a cut-off of 10-12 nm and a controllable thickness of 80-220 nm. They allow ultrafast water permeation and exhibit excellent size-selective separation properties. A 112 nm-thick membrane has a water flux of 1620 l m(-2) h(-1) bar(-1) and a ferritin rejection of 92.5%. These membranes have been applied to remove oil from its aqueous nanoemulsions successfully, and they show an ultrafast and effective separation of oil-in-water nanoemulsions. The newly developed ultrathin cellulose membranes have a wide application in oily wastewater treatment, separation and purification of nanomaterials. PMID:25073443

  5. Paramagnetic fluorinated nanoemulsions for sensitive cellular fluorine-19 magnetic resonance imaging.

    PubMed

    Kislukhin, Alexander A; Xu, Hongyan; Adams, Stephen R; Narsinh, Kazim H; Tsien, Roger Y; Ahrens, Eric T

    2016-06-01

    Fluorine-19 magnetic resonance imaging ((19)F MRI) probes enable quantitative in vivo detection of cell therapies and inflammatory cells. Here, we describe the formulation of perfluorocarbon-based nanoemulsions with improved sensitivity for cellular MRI. Reduction of the (19)F spin-lattice relaxation time (T1) enables rapid imaging and an improved signal-to-noise ratio, thereby improving cell detection sensitivity. We synthesized metal-binding β-diketones conjugated to linear perfluoropolyether (PFPE), formulated these fluorinated ligands as aqueous nanoemulsions, and then metallated them with various transition and lanthanide ions in the fluorous phase. Iron(III) tris-β-diketonate ('FETRIS') nanoemulsions with PFPE have low cytotoxicity (<20%) and superior MRI properties. Moreover, the (19)F T1 can readily be reduced by an order of magnitude and tuned by stoichiometric modulation of the iron concentration. The resulting (19)F MRI detection sensitivity is enhanced by three- to fivefold over previously used tracers at 11.7 T, and is predicted to increase by at least eightfold at the clinical field strength of 3 T. PMID:26974409

  6. Inactivation of Salmonella on Sprouting Seeds Using a Spontaneous Carvacrol Nanoemulsion Acidified with Organic Acids.

    PubMed

    Landry, Kyle S; Komaiko, Jennifer; Wong, Dana E; Xu, Ting; McClements, David Julian; McLandsborough, Lynne

    2016-07-01

    Over the past decade, demand has increased for natural, minimally processed produce, including sprout-based products. Sanitization with 20,000 ppm of calcium hypochlorite is currently recommended for all sprouting seeds before germination to limit sprout-related foodborne outbreaks. A potentially promising disinfectant as an alternative to calcium hypochlorite is acidified spontaneous essential oil nanoemulsions. In this study, the efficacy of an acidified carvacrol nanoemulsion was tested against mung beans and broccoli seeds artificially contaminated with a Salmonella enterica Enteritidis cocktail (ATCC BAA-709, ATCC BAA-711, and ATCC BAA-1045). Treatments were performed by soaking inoculated seeds in acidified (50 mM acetic or levulinic acid) carvacrol nanoemulsions (4,000 or 8,000 ppm) for 30 or 60 min. After treatment, the number of surviving cells was determined via plate counts and/or the most probable number (MPN) approach. Treatment for 30 min successfully reduced Salmonella Enteritidis by 4 log CFU/g on mung beans (from an initial contamination level of 4.2 to 4.6 log CFU/g) and by 2 log CFU/g on broccoli seeds (from an initial contamination level of 2.4 to 2.6 log CFU/g) to below our detection limit (≤3 MPN/g). Treated seeds were sprouted and tested for the presence of pathogens and sprout yield. The final sprout product had no detectable pathogens, and total sprout yield was not influenced by any treatment. PMID:27357030

  7. Anti-cariogenic effect of a cetylpyridinium chloride-containing nanoemulsion

    PubMed Central

    Lee, Valerie A.; Karthikeyan, Ramalingam; Rawls, H. Ralph; Amaechi, Bennett T.

    2010-01-01

    Objectives The aim of this pilot study was to investigate the anticaries activity of a nanoemulsion composed of soybean oil, water, Triton X-100 and cetylpyridinium chloride. Methods Tooth blocks (3 mm length × 3 mm width × 2 mm thickness) were cut from smooth surfaces of selected molar teeth using a water-cooled diamond wire saw. The blocks were randomly assigned to three experimental groups, (A) nanoemulsion, (B) 0.12% chlorhexidine gluconate, and (C) no treatment. The formation of dental caries in human tooth enamel was tested using a continuous flow dual-organism (Streptococcus mutans and Lactobacillus casei), biofilm model, which acts as an artificial mouth and simulates the biological and physiological activities observed within the oral environment. Experimental groups A and B were treated with their respective solutions once daily for 30 seconds on each occasion, while group C received no treatment. 10% sucrose was supplied every 6 hours for 6 minutes to simulate meals and pH cycling. The experiment lasted for 5 days, and the tooth blocks were harvested and processed for demineralization assessment using transverse microradiography (TMR). Results For both lesion depth and mineral loss, statistical analysis indicated that Emulsion was significantly lower than Control and Chlorhexidine, and Chlorhexidine was significantly lower than Control. Conclusions We conclude that cetylpyridinium-containing nanoemulsions appear to present a feasible means of preventing the occurrence of early caries. PMID:20600554

  8. Acoustic Droplet Vaporization, Cavitation, and Therapeutic Properties of Copolymer-Stabilized Perfluorocarbon Nanoemulsions

    SciTech Connect

    Nam, Kweon-Ho; Christensen, Douglas A.; Rapoport, Natalya; Kennedy, Anne M.

    2009-04-14

    Acoustic and therapeutic properties of Doxorubicin (DOX) and paclitaxel (PTX)-loaded perfluorocarbon nanoemulsions have been investigated in a mouse model of ovarian cancer. The nanoemulsions were stabilized by two biodegradable amphiphilic block copolymers that differed in the structure of the hydrophobic block. Acoustic droplet vaporization (ADV) and cavitation parameters were measured as a function of ultrasound frequency, pressure, duty cycles, and temperature. The optimal parameters that induced ADV and inertial cavitation of the formed microbubbles were used in vivo in the experiments on the ultrasound-mediated chemotherapy of ovarian cancer. A combination tumor treatment by intravenous injections of drug-loaded perfluoropentane nanoemulsions and tumor-directed 1-MHz ultrasound resulted in a dramatic decrease of ovarian or breast carcinoma tumor volume and sometimes complete tumor resolution. However, tumors often recurred three to six weeks after the treatment indicating that some cancer cells survived the treatment. The recurrent tumors proved more aggressive and resistant to the repeated therapy than initial tumors suggesting selection for the resistant cells during the first treatment.

  9. In vitro characterization and mosquito (Aedes aegypti) repellent activity of essential-oils-loaded nanoemulsions.

    PubMed

    Nuchuchua, Onanong; Sakulku, Usawadee; Uawongyart, Napaporn; Puttipipatkhachorn, Satit; Soottitantawat, Apinan; Ruktanonchai, Uracha

    2009-01-01

    The nanoemulsions composed of citronella oil, hairy basil oil, and vetiver oil with mean droplet sizes ranging from 150 to 220 nm were prepared and investigated both in vitro and in vivo. Larger emulsion droplets (195-220 nm) shifted toward a smaller size (150-160 nm) after high-pressure homogenization and resulted in higher release rate. We proposed that thin films obtained from the nanoemulsions with smaller droplet size would have higher integrity, thus increasing the vaporization of essential oils and subsequently prolonging the mosquito repellant activity. The release rates were fitted with Avrami's equations and n values were in the same range of 0.6 to 1.0, implying that the release of encapsulated limonene was controlled by the diffusion mechanism from the emulsion droplet. By using high-pressure homogenization together with optimum concentrations of 5% (w/w) hairy basil oil, 5% (w/w) vetiver oil (5%), and 10% (w/w) citronella oil could improve physical stability and prolong mosquito protection time to 4.7 h due to the combination of these three essential oils as well as small droplet size of nanoemulsion. PMID:19862624

  10. Development of O/W nanoemulsions for ophthalmic administration of timolol.

    PubMed

    Gallarate, M; Chirio, D; Bussano, R; Peira, E; Battaglia, L; Baratta, F; Trotta, M

    2013-01-20

    After an initial screening of ingredients and production methods, nanoemulsions for ocular administration of timolol containing the drug as maleate (TM) or as ion-pair with AOT (TM/AOT) were prepared. The physico-chemical characterization of nanoemulsions, regarding mean diameter, pH, zeta potential, osmolarity, viscosity and surface tension, underlined their feasibility to be instilled into the eyes. Single components and emulsions were tested ex vivo on rabbit corneas to evaluate corneal irritation, that was measured according to opacity test. A marked decrease in corneal opacity was observed using the drug formulated in nanoemulsions rather than in aqueous solutions. Drug permeation and accumulation studies were performed on excised rabbit corneas. An increase in drug permeation through and accumulation into the corneas were observed using TM-AOT compared to TM due to an increase of lipophilicity of the drug as ion-pair. The introduction of chitosan (a positive charged mucoadhesive polymer) into emulsions allowed to increase TM permeation probably due to the interaction of chitosan with corneal epithelial cells. PMID:23078859

  11. Development and characterization of a new oral dapsone nanoemulsion system: permeability and in silico bioavailability studies

    PubMed Central

    Monteiro, Lidiane M; Lione, Viviane F; do Carmo, Flavia A; do Amaral, Lilian H; da Silva, Julianna H; Nasciutti, Luiz E; Rodrigues, Carlos R; Castro, Helena C; de Sousa, Valeria P; Cabral, Lucio M

    2012-01-01

    Background Dapsone is described as being active against Mycobacterium leprae, hence its role in the treatment of leprosy and related pathologies. Despite its therapeutic potential, the low solubility of dapsone in water results in low bioavailability and high microbial resistance. Nanoemulsions are pharmaceutical delivery systems derived from micellar solutions with a good capacity for improving absorption. The aim of this work was to develop and compare the permeability of a series of dapsone nanoemulsions in Caco-2 cell culture against that of effective permeability in the human body simulated using Gastroplus™ software. Methods and results The release profiles of the dapsone nanoemulsions using different combinations of surfactants and cosolvent showed a higher dissolution rate in simulated gastric and enteric fluid than did the dispersed dapsone powder. The drug release kinetics were consistent with a Higuchi model. Conclusion This comparison of dapsone permeability in Caco-2 cells with effective permeability in the human body simulated by Gastroplus showed a good correlation and indicates potential improvement in the biodisponibility of dapsone using this new system. PMID:23055729

  12. Controlled and targeted tumor chemotherapy by ultrasound-activated nanoemulsions/microbubbles

    PubMed Central

    Rapoport, Natalya Y.; Kennedy, Anne M.; Shea, Jill E.; Scaife, Courtney L.; Nam, Kweon-Ho

    2009-01-01

    The paper reports the results of nanotherapy of ovarian, breast, and pancreatic cancerous tumors by paclitaxel-loaded nanoemulsions that convert into microbubbles locally in tumor tissue under the action of tumor-directed therapeutic ultrasound. Tumor accumulation of nanoemulsions was confirmed by ultrasound imaging. Dramatic regression of ovarian, breast, and orthotopic pancreatic tumors was observed in tumor therapy through systemic injections of drug-loaded nanoemulsions combined with therapeutic ultrasound, signifying efficient ultrasound-triggered drug release from tumor-accumulated nanodroplets. The mechanism of drug release in the process of droplet-to-bubble conversion is discussed. No therapeutic effect from the nanodroplet/ultrasound combination was observed without the drug, indicating that therapeutic effect was caused by the ultrasound-enhanced chemotherapeutic action of the tumor-targeted drug, rather than the mechanical or thermal action of ultrasound itself. Tumor recurrence was observed after the completion of the first treatment round; a second treatment round with the same regimen proved less effective, suggesting that drug resistant cells were either developed or selected during the first treatment round. PMID:19477208

  13. Synergistic Skin Penetration Enhancer and Nanoemulsion Formulations Promote the Human Epidermal Permeation of Caffeine and Naproxen.

    PubMed

    Abd, Eman; Namjoshi, Sarika; Mohammed, Yousuf H; Roberts, Michael S; Grice, Jeffrey E

    2016-01-01

    We examined the extent of skin permeation enhancement of the hydrophilic drug caffeine and lipophilic drug naproxen applied in nanoemulsions incorporating skin penetration enhancers. Infinite doses of fully characterized oil-in-water nanoemulsions containing the skin penetration enhancers oleic acid or eucalyptol as oil phases and caffeine (3%) or naproxen (2%) were applied to human epidermal membranes in Franz diffusion cells, along with aqueous control solutions. Caffeine and naproxen fluxes were determined over 8 h. Solute solubility in the formulations and in the stratum corneum (SC), as well as the uptake of product components into the SC were measured. The nanoemulsions significantly enhanced the skin penetration of caffeine and naproxen, compared to aqueous control solutions. Caffeine maximum flux enhancement was associated with a synergistic increase in both caffeine SC solubility and skin diffusivity, whereas a formulation-increased solubility in the SC was the dominant determinant for increased naproxen fluxes. Enhancements in SC solubility were related to the uptake of the formulation excipients containing the active compounds into the SC. Enhanced skin penetration in these systems is largely driven by uptake of formulation excipients containing the active compounds into the SC with impacts on SC solubility and diffusivity. PMID:26554868

  14. Improved absorption and in vivo kinetic characteristics of nanoemulsions containing evodiamine–phospholipid nanocomplex

    PubMed Central

    Hu, Jiangbo; Chen, Dilong; Jiang, Rong; Tan, Qunyou; Zhu, Biyue; Zhang, Jingqing

    2014-01-01

    Purpose The purpose of this study was to assess the improved absorption and in vivo kinetic characteristics of a novel water-in-oil nanoemulsion containing evodiamine–phospholipid nanocomplex (NEEPN) when administered orally. Methods NEEPN was fabricated by loading an evodiamine–phospholipid nanocomplex into a water-in-oil nanoemulsive system. The gastrointestinal absorption of NEEPN was investigated using an in situ perfusion method. The modified in vivo kinetic characteristics of evodiamine (EDA) in NEEPN were also evaluated. Results Compared with EDA or conventional nanoemulsions containing EDA instead of evodiamine–phospholipid complex, NEEPN with its favorable in vivo kinetic characteristics clearly enhanced the gastrointestinal absorption and oral bioavailability of EDA; for example, the relative bioavailability of NEEPN to free EDA was calculated to be 630.35%, and the effective permeability of NEEPN in the colon was 8.64-fold that of EDA. Conclusion NEEPN markedly improved the oral bioavailability of EDA, which was probably due to its increased gastrointestinal absorption. NEEPN also increased efficacy and reduced adverse effects for oral delivery of EDA. Such finding demonstrates great clinical significance as an ideal drug delivery system demands high efficacy and no adverse effects. PMID:25258531

  15. In vitro effects of Eucalyptus staigeriana nanoemulsion on Haemonchus contortus and toxicity in rodents.

    PubMed

    Ribeiro, Wesley Lyeverton Correia; Camurça-Vasconcelos, Ana Lourdes Fernandes; Macedo, Iara Tersia Freitas; dos Santos, Jessica Maria Leite; de Araújo-Filho, José Vilemar; Ribeiro, Juliana de Carvalho; Pereira, Vanessa de Abreu; Viana, Daniel de Araújo; de Paula, Haroldo Cesar Beserra; Bevilaqua, Claudia Maria Leal

    2015-09-15

    Strategies for controlling gastrointestinal nematodes have been developed based on the use of numerous alternative methods, including the use of phytotherapy. New formulations of essential oils with anthelmintic activity have been proposed as a means to optimize their biological effects. Thus, the objective of this study was to formulate a nanoemulsion to optimize the nematicide effect of Eucalyptus staigeriana essential oil (EsEO). Initially, physico-chemical analyses were performed to verify the stability of the E. staigeriana nanoemulsion (EsNano). In vitro tests were conducted to evaluate the ovicidal and larvicidal activities of both EsNano and EsEO against Haemonchus contortus, and toxicology tests were then performed on rodents. The EsEO content in the nanoemulsion was 36.4% (v/v), and the mean particle size was 274.3 nm. EsNano and EsEO inhibited larval hatching by 99% and 96.3% at 1 and 2mg/ml concentrations, respectively, and inhibited larval development by 96.3% and 97.3% at 8 mg/ml concentrations. The acute toxicity test revealed that the EsNano and EsEO doses required to kill 50% of the mice (LD50) were 1,603.9 and 3,495.9 mg/ml, respectively. EsNano did not alter the hematological parameters in the rats after treatment. PMID:26233731

  16. Acoustic Droplet Vaporization, Cavitation, and Therapeutic Properties of Copolymer-Stabilized Perfluorocarbon Nanoemulsions

    NASA Astrophysics Data System (ADS)

    Nam, Kweon-Ho; Christensen, Douglas A.; Kennedy, Anne M.; Rapoport, Natalya

    2009-04-01

    Acoustic and therapeutic properties of Doxorubicin (DOX) and paclitaxel (PTX)-loaded perfluorocarbon nanoemulsions have been investigated in a mouse model of ovarian cancer. The nanoemulsions were stabilized by two biodegradable amphiphilic block copolymers that differed in the structure of the hydrophobic block. Acoustic droplet vaporization (ADV) and cavitation parameters were measured as a function of ultrasound frequency, pressure, duty cycles, and temperature. The optimal parameters that induced ADV and inertial cavitation of the formed microbubbles were used in vivo in the experiments on the ultrasound-mediated chemotherapy of ovarian cancer. A combination tumor treatment by intravenous injections of drug-loaded perfluoropentane nanoemulsions and tumor-directed 1-MHz ultrasound resulted in a dramatic decrease of ovarian or breast carcinoma tumor volume and sometimes complete tumor resolution. However, tumors often recurred three to six weeks after the treatment indicating that some cancer cells survived the treatment. The recurrent tumors proved more aggressive and resistant to the repeated therapy than initial tumors suggesting selection for the resistant cells during the first treatment.

  17. Solid-Nanoemulsion Preconcentrate for Oral Delivery of Paclitaxel: Formulation Design, Biodistribution, and γ Scintigraphy Imaging

    PubMed Central

    Ahmad, Javed; Mir, Showkat R.; Kohli, Kanchan; Chuttani, Krishna; Mishra, Anil K.; Panda, A. K.

    2014-01-01

    Aim of present study was to develop a solid nanoemulsion preconcentrate of paclitaxel (PAC) using oil [propylene glycol monocaprylate/glycerol monooleate, 4 : 1 w/w], surfactant [polyoxyethylene 20 sorbitan monooleate/polyoxyl 15 hydroxystearate, 1 : 1 w/w], and cosurfactant [diethylene glycol monoethyl ether/polyethylene glycol 300, 1 : 1 w/w] to form stable nanocarrier. The prepared formulation was characterized for droplet size, polydispersity index, and zeta potential. Transmission electron microscopy (TEM), differential scanning calorimetry (DSC), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) were used to assess surface morphology and drug encapsulation and its integrity. Cumulative drug release of prepared formulation through dialysis bag and permeability coefficient through everted gut sac were found to be remarkably higher than the pure drug suspension and commercial intravenous product (Intaxel), respectively. Solid nanoemulsion preconcentrate of PAC exhibited strong inhibitory effect on proliferation of MCF-7 cells in MTT assay. In vivo systemic exposure of prepared formulation through oral administration was comparable to that of Intaxel in γ scintigraphy imaging. Our findings suggest that the prepared solid nanoemulsion preconcentrate can be used as an effective oral solid dosage form to improve dissolution and bioavailability of PAC. PMID:25114933

  18. Paramagnetic fluorinated nanoemulsions for sensitive cellular fluorine-19 magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Kislukhin, Alexander A.; Xu, Hongyan; Adams, Stephen R.; Narsinh, Kazim H.; Tsien, Roger Y.; Ahrens, Eric T.

    2016-06-01

    Fluorine-19 magnetic resonance imaging (19F MRI) probes enable quantitative in vivo detection of cell therapies and inflammatory cells. Here, we describe the formulation of perfluorocarbon-based nanoemulsions with improved sensitivity for cellular MRI. Reduction of the 19F spin-lattice relaxation time (T1) enables rapid imaging and an improved signal-to-noise ratio, thereby improving cell detection sensitivity. We synthesized metal-binding β-diketones conjugated to linear perfluoropolyether (PFPE), formulated these fluorinated ligands as aqueous nanoemulsions, and then metallated them with various transition and lanthanide ions in the fluorous phase. Iron(III) tris-β-diketonate (`FETRIS’) nanoemulsions with PFPE have low cytotoxicity (<20%) and superior MRI properties. Moreover, the 19F T1 can readily be reduced by an order of magnitude and tuned by stoichiometric modulation of the iron concentration. The resulting 19F MRI detection sensitivity is enhanced by three- to fivefold over previously used tracers at 11.7 T, and is predicted to increase by at least eightfold at the clinical field strength of 3 T.

  19. Effects of nisin on the antimicrobial activity of d-limonene and its nanoemulsion.

    PubMed

    Zhang, Zijie; Vriesekoop, Frank; Yuan, Qipeng; Liang, Hao

    2014-05-01

    d-Limonene has been considered to be a safer alternative compared to synthetic antimicrobial food additives. However, its hydrophobic and oxidative nature has limited its application in foods. The purpose of this research was to study effects of nisin on the antimicrobial activity of d-limonene and its nanoemulsion and develop a novel antimicrobial delivery system by combining the positive effect of these two antibacterial agents at the same time. By the checkerboard method, both the synergistic and additive effects of d-limonene and nisin were found against four selected food-related microorganisms. Then, d-limonene nanoemulsion with or without nisin was prepared by catastrophic phase inversion method, which has shown good droplet size and stability. The positive effects and outstanding antimicrobial activity of d-limonene nanoemulsion with nisin were confirmed by MICs comparison, scanning electron microscopy and determination of cell constituents released. Overall, the research described in the current article would be helpful in developing a more effective antimicrobial system for the production and preservation of foods. PMID:24360455

  20. The family resemblance metaphor: some unfinished business of interpretive inquiry.

    PubMed

    Miller, S I; Fredericks, M

    2000-07-01

    The rapidly expanding discipline of interpretive inquiry, especially in its narrative analysis form, has not been fully cognizant of certain crucial epistemological and methodological assumptions that form the ultimate basis of its purpose. Even after abandoning traditional positivist views, the related disciplines within the human sciences that are engaged in interpretive inquiry have still not discovered the core implicit assumptions that militate against a full acceptance of this form of inquiry. This article outlines the locus of these implicit assumptions and then argues that the legitimacy of these enterprises must be grounded in a well-known but heretofore undiscovered perspective, namely, Wittgenstein's notion of a family resemblance. It is argued that this metaphoric phrase is the key to unlocking the real and unique nature of narrative analysis. PMID:11010071

  1. Design and formulation of nanoemulsions using 2-(poly(hexafluoropropylene oxide)) perfluoropropyl benzene in combination with linear perfluoro(polyethylene glycol dimethyl ether).

    PubMed

    Mountain, Gregory A; Jelier, Benson J; Bagia, Christina; Friesen, Chadron M; Janjic, Jelena M

    2014-06-01

    This is the first report where PFPAE aromatic conjugates and perfluoro(polyethylene glycol dimethyl ether) are combined and formulated as nanoemulsions with droplet size below 100 nm. A perfluoropolyalkylether (PFPAE) aromatic conjugate, 2-(poly(hexafluoropropylene oxide)) perfluoropropyl benzene, was used as fluorophilic-hydrophilic diblock (FLD) aimed at stabilizing perfluoro(polyethylene glycol dimethyl ether) nanoemulsions. Its effects on colloidal behaviors in triphasic (organic/fluorous/aqueous) nanoemulsions were studied. The addition of FLD construct to fluorous phase led to decrease in PFPAE nanoemulsion droplet size to as low as 85 nm. Prepared nanoemulsions showed high colloidal stability. Our results suggest that these materials represent viable novel approach to fluorous colloid systems design with potential for biomedical and synthetic applications. PMID:24976645

  2. Design and formulation of nanoemulsions using 2-(poly(hexafluoropropylene oxide)) perfluoropropyl benzene in combination with linear perfluoro(polyethylene glycol dimethyl ether)

    PubMed Central

    Mountain, Gregory A.; Jelier, Benson J.; Bagia, Christina; Friesen, Chadron M.; Janjic, Jelena M.

    2014-01-01

    This is the first report where PFPAE aromatic conjugates and perfluoro(polyethylene glycol dimethyl ether) are combined and formulated as nanoemulsions with droplet size below 100 nm. A perfluoropolyalkylether (PFPAE) aromatic conjugate, 2-(poly(hexafluoropropylene oxide)) perfluoropropyl benzene, was used as fluorophilic-hydrophilic diblock (FLD) aimed at stabilizing perfluoro(polyethylene glycol dimethyl ether) nanoemulsions. Its effects on colloidal behaviors in triphasic (organic/fluorous/aqueous) nanoemulsions were studied. The addition of FLD construct to fluorous phase led to decrease in PFPAE nanoemulsion droplet size to as low as 85 nm. Prepared nanoemulsions showed high colloidal stability. Our results suggest that these materials represent viable novel approach to fluorous colloid systems design with potential for biomedical and synthetic applications. PMID:24976645

  3. Formulation of saponin stabilized nanoemulsion by ultrasonic method and its role to protect the degradation of quercitin from UV light.

    PubMed

    Kaur, Khushwinder; Kumar, Raj; Mehta, S K

    2016-07-01

    The objective of the present study was to prepare quercitin (QT) loaded o/w nanoemulsion using food grade surfactants (saponin and tween 80). The prepared nanoemulsion) was stable up to 30 days. The average particle size of the nanoemulsion was 52 ± 10 nm. The formation of saponin stabilized nanoemulsion was confirmed by transmission electron microscopy. Quercitin (QT) trapped nanoemulsion showed higher stability on exposure to UV light (254 nm) as compared to water/ethanol system. The degradation rate was found to decrease from 9 ± 1%, 11 ± 1% at pH 7.4, 8.0 respectively as compared to 42 ± 2% in water/ethanol system. Attempt was also made to study the interaction of QT with two different bile salts (sodium cholate and sodium taurocholate). The free radical scavenging activity of DPPH quercitin and curcumin was compared in NEm media. The obtained IC50 value of quercitin, curcumin and ascorbic acid are 28.88 ± 1, 45.53 ± 2 and 51.51 ± 2 μM respectively. The values of binding constant for sodium cholate (NaC) and sodium taurocholate (NaTC) are 2.66 × 10(5) and 2.72 × 10(4) M(-1) respectively. Sodium cholate (NaC) was found to show strong interaction towards quercitin (QT) due to more electron density on oxygen atom of carboxylate ion. PMID:26964921

  4. Ultrasonic emulsification of eucalyptus oil nanoemulsion: antibacterial activity against Staphylococcus aureus and wound healing activity in Wistar rats.

    PubMed

    Sugumar, Saranya; Ghosh, Vijayalakshmi; Nirmala, M Joyce; Mukherjee, Amitava; Chandrasekaran, Natarajan

    2014-05-01

    The plant derived essential oil nanoemulsion was prepared using a mixture of components containing eucalyptus oil as organic phase, water as continuous phase, and non ionic surfactant, Tween 80, as emulsifier at a particular proportion of 1:1 v/v%. The ultrasonication was applied for varied processing time from 0 to 30 min to study the effect of time on the formation of nanoemulsion and physical stability of formulation by this method. The transparency and stability of emulsion was enhanced when the sonication time was increased compared to hand blender emulsion. The most stable nanoemulsion was obtained in 30 min sonication having the mean droplet diameter of 3.8 nm. The antibacterial studies of nanoemulsion against Staphylococcus aureus by time kill analysis showed complete loss of viability within 15 min of interaction. Observations from scanning electron microscopy of treated bacterial cells confirmed the membrane damage compared to control bacteria. Furthermore, the wound healing potential and skin irritation activity of the formulated nanoemulsion in Wistar rats, suggested non-irritant and higher wound contraction rate with respect to control and neomycin treated rats. These results proposed that the formulated system could be favourable for topical application in pharmaceutical industries. PMID:24262758

  5. Formation and stability of D-limonene organogel-based nanoemulsion prepared by a high-pressure homogenizer.

    PubMed

    Zahi, Mohamed Reda; Wan, Pingyu; Liang, Hao; Yuan, Qipeng

    2014-12-31

    D-limonene organogel-based nanoemulsion was prepared by high-pressure homogenization technology. The organogelator type had a major role on the formation of the formulations, in which stearic acid has given nanoemulsions with the smallest droplet size. The surfactant type and concentration also had an appreciable effect on droplet formation, with Tween 80 giving a mean droplet diameter (d ≈ 112 nm) among a range of non-ionic surfactants (Tween 20, 40, 60, 80, and 85). In addition, high-pressure homogenization conditions played a key role in the nanoemulsion preparation. The stability of d-limonene organogel-based nanoemulsion was also investigated under two different temperatures (4 and 28 °C) through 2 weeks of storage. Results showed a good stability of the formulations, which is maybe due to the incorporation of D-limonene into the organogel prior to homogenization. This study may have a valuable contribution for the design and use of organogel-based nanoemulsion as a delivery system in food. PMID:25514199

  6. Characteristics of spontaneously formed nanoemulsions in octane/AOT/brine systems.

    PubMed

    Kini, Gautam C; Biswal, Sibani Lisa; Wong, Michael S; Miller, Clarence A

    2012-11-01

    Nanoemulsions were formed spontaneously by diluting water-in-oil (W/O) or brine-in-oil (B/O) microemulsions of a hydrocarbon (octane), anionic surfactant (Aerosol-OT or AOT) and water or NaCl brine in varying levels of excess brine. The water-continuous nanoemulsions were characterized by interfacial tension, dynamic light scattering, electrophoresis, optical microscopy and phase-behavior studies. The mechanism of emulsification was local supersaturation and resulting nucleation of oil during inversion. For nanoemulsions formed at low salinities with Winsor I phase behavior, octane drops grew from initial diameters of 150-250 nm to 480-1000 nm over 24h, depending on salinity. Growth was caused by mass transfer but seemed to approach the asymptotic stage of Ostwald ripening described by the Lifshitz-Slyozov-Wagner (LSW) theory only for dilution with salt-free water. Near the higher cross-over salinity (Winsor III), the nanoemulsions showed much slower growth with droplet size consistently remaining below 200 nm over 24h and reaching 250 nm after 1 week. Birefringence indicated the presence of liquid crystal for these conditions, which could have contributed to the slow growth rate. At even higher salinity levels in the Winsor II domain, W/O/W multiple emulsions having drops greater than 1 μm in diameter were consistently recorded for the first 5-7h, after which size decreased to values below 1 μm. The number and size of internal water droplets in multiple emulsion drops was found to decrease over time, suggesting coalescence of internal droplets with the continuous water phase and mass transfer of water from internal droplets to continuous phase as possible mechanisms of the observed drop shrinkage. Electrophoresis studies showed the nanoemulsions to be highly negatively charged (zeta potentials of -60 mV to -120 mV). The high charge on octane droplets helped assure stability to flocculation and coalescence, thereby allowing mass transfer to control growth in the

  7. Lipid-based systems as a promising approach for enhancing the bioavailability of poorly water-soluble drugs.

    PubMed

    Cerpnjak, Katja; Zvonar, Alenka; Gašperlin, Mirjana; Vrečer, Franc

    2013-12-01

    Low oral bioavailability as a consequence of low water solubility of drugs is a growing challenge to the development of new pharmaceutical products. One of the most popular approaches of oral bioavailability and solubility enhancement is the utilization of lipid-based drug delivery systems. Their use in product development is growing due to the versatility of pharmaceutical lipid excipients and drug formulations, and their compatibility with liquid, semi-solid, and solid dosage forms. Lipid formulations, such as self-emulsifying (SEDDS), self-microemulsifying SMEDDS) and self- -nanoemulsifying drug delivery systems (SNEDDS) were explored in many studies as an efficient approach for improving the bioavailability and dissolution rate of poorly water-soluble drugs. One of the greatest advantages of incorporating poorly soluble drugs into such formulations is their spontaneous emulsification and formation of an emulsion, microemulsion or nanoemulsion in aqueous media. This review article focuses on the following topics. First, it presents a classification overview of lipid-based drug delivery systems and mechanisms involved in improving the solubility and bioavailability of poorly water-soluble drugs. Second, the article reviews components of lipid-based drug delivery systems for oral use with their characteristics. Third, it brings a detailed description of SEDDS, SMEDDS and SNEDDS, which are very often misused in literature, with special emphasis on the comparison between microemulsions and nanoemulsions. PMID:24451070

  8. Design, Synthesis, and Characterization of Folate-Targeted Platinum-Loaded Theranostic Nanoemulsions for Therapy and Imaging of Ovarian Cancer.

    PubMed

    Patel, Niravkumar R; Piroyan, Aleksandr; Nack, Abbegial H; Galati, Corin A; McHugh, Mackenzi; Orosz, Samantha; Keeler, Amanda W; O'Neal, Sara; Zamboni, William C; Davis, Barbara; Coleman, Timothy P

    2016-06-01

    Platinum (Pt) based chemotherapy is widely used to treat many types of cancer. Pt therapy faces challenges such as dose limiting toxicities, cumulative side effects, and multidrug resistance. Nanoemulsions (NEs) have tremendous potential in overcoming these challenges as they can be designed to improve circulation time, limit non-disease tissue uptake, and enhance tumor uptake by surface modification. We designed novel synthesis of three difattyacid platins, dimyrisplatin, dipalmiplatin, and distearyplatin, suitable for encapsulation in the oil core of an NE. The dimyrisplatin, dipalmiplatin, and distearyplatin were synthesized, characterized, and loaded into the oil core of our NEs, NMI-350, NMI-351, and NMI-352 respectively. Sequestration of the difattyacid platins was accomplished through high energy microfluidization. To target the NE, FA-PEG3400-DSPE was incorporated into the surface during microfluidization. The FA-NEs selectively bind the folate receptor α (FR-α) and utilize receptor mediated endocytosis to deliver Pt past cell surface resistance mechanisms. FR-α is overexpressed in a number of oncological conditions including ovarian cancer. The difattyacid platins, lipidated Gd-DTPA, and lipidated folate were characterized by nuclear magnetic resonance (NMR), mass spectrometry (MS), and elemental analysis. NEs were synthesized using high shear microfluidization process and characterized for size, zeta-potential, and loading efficiency. In vitro cytotoxicity was determined using KB-WT (Pt-sensitive) and KBCR-1000 (Pt-resistant) cancer cells and measured by MTT assay. Pharmacokinetic profiles were studied in CD-1 mice. NEs loaded with difattyacid platins are highly stable and had size distribution in the range of ∼120 to 150 nm with low PDI. Cytotoxicity data indicates the longer the fatty acid chains, the less potent the NEs. The inclusion of C6-ceramide, an apoptosis enhancer, and surface functionalization with folate molecules significantly increased

  9. Cyanogenic Lipids

    PubMed Central

    Selmar, Dirk; Grocholewski, Sabine; Seigler, David S.

    1990-01-01

    Large amounts of cyanogenic lipids (esters of 1 cyano-2-methylprop-2-ene-1-ol with C:20 fatty acids) are stored in the seeds of Ungnadia speciosa. During seedling development, these lipids are completely consumed without liberation of free HCN to the atmosphere. At the same time, cyanogenic glycosides are synthesized, but the total amount is much lower (about 26%) than the quantity of cyanogenic lipids formerly present in the seeds. This large decrease in the total content of cyanogens (HCN-potential) demonstrates that at least 74% of cyanogenic lipids are converted to noncyanogenic compounds. Whether the newly synthesized cyanogenic glycosides are derived directly from cyanogenic lipids or produced by de novo synthesis is still unknown. Based on the utilization of cyanogenic lipids for the synthesis of noncyanogenic compounds, it is concluded that these cyanogens serve as storage for reduced nitrogen. The ecophysiological significance of cyanolipids based on multifunctional aspects is discussed. PMID:16667514

  10. A neural network dynamics that resembles protein evolution

    NASA Astrophysics Data System (ADS)

    Ferrán, Edgardo A.; Ferrara, Pascual

    1992-06-01

    We use neutral networks to classify proteins according to their sequence similarities. A network composed by 7 × 7 neurons, was trained with the Kohonen unsupervised learning algorithm using, as inputs, matrix patterns derived from the bipeptide composition of cytochrome c proteins belonging to 76 different species. As a result of the training, the network self-organized the activation of its neurons into topologically ordered maps, wherein phylogenetically related sequences were positioned close to each other. The evolution of the topological map during learning, in a representative computational experiment, roughly resembles the way in which one species evolves into several others. For instance, sequences corresponding to vertebrates, initially grouped together into one neuron, were placed in a contiguous zone of the final neural map, with sequences of fishes, amphibia, reptiles, birds and mammals associated to different neurons. Some apparent wrong classifications are due to the fact that some proteins have a greater degree of sequence identity than the one expected by phylogenetics. In the final neural map, each synaptic vector may be considered as the pattern corresponding to the ancestor of all the proteins that are attached to that neuron. Although it may be also tempting to link real time with learning epochs and to use this relationship to calibrate the molecular evolutionary clock, this is not correct because the evolutionary time schedule obtained with the neural network depends highly on the discrete way in which the winner neighborhood is decreased during learning.