Science.gov

Sample records for lipopeptides induce systemic

  1. Synthetic Ultrashort Cationic Lipopeptides Induce Systemic Plant Defense Responses against Bacterial and Fungal Pathogens ▿

    PubMed Central

    Brotman, Yariv; Makovitzki, Arik; Shai, Yechiel; Chet, Ilan; Viterbo, Ada

    2009-01-01

    A new family of synthetic, membrane-active, ultrashort lipopeptides composed of only four amino acids linked to fatty acids was tested for the ability to induce systemic resistance and defense responses in plants. We found that two peptides wherein the third residue is a d-enantiomer (italic), C16-KKKK and C16-KLLK, can induce medium alkalinization of tobacco suspension-cultured cells and expression of defense-related genes in cucumber and Arabidopsis seedlings. Moreover, these compounds can prime systemic induction of antimicrobial compounds in cucumber leaves similarly to the plant-beneficial fungus Trichoderma asperellum T203 and provide systemic protection against the phytopathogens Botrytis cinerea B05, Pseudomonas syringae pv. lachrimans, and P. syringae pv. tomato DC3000. Thus, short cationic lipopeptides are a new category of compounds with potentially high utility in the induction of systemic resistance in plants. PMID:19542326

  2. Endophytic Bacillus spp. produce antifungal lipopeptides and induce host defence gene expression in maize.

    PubMed

    Gond, Surendra K; Bergen, Marshall S; Torres, Mónica S; White, James F

    2015-03-01

    Endophytes are mutualistic symbionts within healthy plant tissues. In this study we isolated Bacillus spp. from seeds of several varieties of maize. Bacillus amyloliquifaciens or Bacillus subtilis were found to be present in all maize varieties examined in this study. To determine whether bacteria may produce antifungal compounds, generally lipopeptides in Bacillus spp., bacterial cultures were screened for production of lipopeptides. Lipopeptides were extracted by acid precipitation from liquid cultures of Bacillus spp. Lipopeptide extracts from Bacillus spp. isolated from Indian popcorn and yellow dent corn showed inhibitory activity against Fusarium moniliforme at 500μg per disk. Using MALDI-TOF mass spectrometry we detected the presence of antifungal iturin A, fengycin and bacillomycin in these isolates. PCR amplification also showed the presence of genes for iturin A and fengycin. B. subtilis (SG_JW.03) isolated from Indian popcorn showed strong inhibition of Arabidopsis seed mycoflora and enhanced seedling growth. We tested for the induction of defence gene expression in the host plant after treatment of plants with B. subtilis (SG_JW.03) and its lipopeptide extract using RT-qPCR. Roots of Indian popcorn seedlings treated with a suspension of B. subtilis (SG_JW.03) showed the induction of pathogenesis-related genes, including PR-1 and PR-4, which relate to plant defence against fungal pathogens. The lipopeptide extract alone did not increase the expression of these pathogenesis-related genes. Based on our study of maize endophytes, we hypothesize that, bacterial endophytes that naturally occur in many maize varieties may function to protect hosts by secreting antifungal lipopeptides that inhibit pathogens as well as inducing the up-regulation of pathogenesis-related genes of host plants (systemic acquired resistance). PMID:25497916

  3. Induced systemic resistance responses in perennial ryegrass against Magnaporthe oryzae elicited by semi-purified surfactin lipopeptides and live cells of Bacillus amyloliquefaciens.

    PubMed

    Rahman, Alamgir; Uddin, Wakar; Wenner, Nancy G

    2015-08-01

    The suppressive ability of several strains of cyclic lipopeptide-producing Bacillus rhizobacteria to grey leaf spot disease caused by Magnaporthe oryzae has been documented previously; however, the underlying mechanism(s) involved in the induced systemic resistance (ISR) activity in perennial ryegrass (Lolium perenne L.) remains unknown. Root-drench application of solid-phase extraction (SPE)-enriched surfactin and live cells of mutant Bacillus amyloliquefaciens strain FZB42-AK3 (produces surfactin, but not bacillomycin D and fengycin) significantly reduced disease incidence and severity on perennial ryegrass. The application of the treatments revealed a pronounced multilayered ISR defence response activation via timely and enhanced accumulation of hydrogen peroxide (H2O2), elevated cell wall/apoplastic peroxidase activity, and deposition of callose and phenolic/polyphenolic compounds underneath the fungal appressoria in naïve leaves, which was significantly more intense in treated plants than in mock-treated controls. Moreover, a hypersensitive response (HR)-type reaction and enhanced expression of LpPrx (Prx, peroxidase), LpOXO4 (OXO, oxalate oxidase), LpPAL (PAL, phenylalanine ammonia lyase), LpLOXa (LOX, lipoxygenase), LpTHb (putative defensin) and LpDEFa (DEFa, putative defensin) in perennial ryegrass were associated with SPE-enriched surfactin and live AK3 cell treatments, acting as a second layer of defence when pre-invasive defence responses failed. The results indicate that ISR activity following surfactin perception may sensitize H2O2 -mediated defence responses, thereby providing perennial ryegrass with enhanced protection against M. oryzae. PMID:25285593

  4. Plant polysaccharides initiate underground crosstalk with bacilli by inducing synthesis of the immunogenic lipopeptide surfactin.

    PubMed

    Debois, Delphine; Fernandez, Olivier; Franzil, Laurent; Jourdan, Emmanuel; de Brogniez, Alix; Willems, Luc; Clément, Christophe; Dorey, Stephan; De Pauw, Edwin; Ongena, Marc

    2015-06-01

    Some plant-associated bacteria such as Bacillus sp. can protect their host from pathogen ingress and this biocontrol activity correlates with their potential to form multiple antibiotics upon in vitro growth. However, our knowledge on antibiotic production by soil bacilli evolving on roots in natural conditions is still limited. In this work, antibiome imaging first revealed that the lipopeptide surfactin is the main bacterial ingredient produced in planta within the first hours of interaction with root tissues. We further demonstrated that surfactin synthesis is specifically stimulated upon perception of plant cell wall polymers such as xylan or arabinogalactan, leading to fast accumulation of micromolar amounts in the root environment. At such concentrations, the lipopeptide may not only favour the ecological fitness of the producing strain in term of root colonization, but also triggers systemic resistance in the host plant. This surfactin-induced immunity primes the plant to better resist further pathogen ingress, and involves only limited expression of defence-related molecular events and does not provoke seedling growth inhibition. By contrast with the strong response mounted upon perception of pathogens, this strongly attenuated defensive reaction induced by surfactin in plant tissues should help Bacillus to be tolerated as saprophytic partner by its host. PMID:25731631

  5. BCG Vaccination Induces Robust CD4+ T Cell Responses to Mycobacterium tuberculosis Complex-Specific Lipopeptides in Guinea Pigs.

    PubMed

    Kaufmann, Eva; Spohr, Christina; Battenfeld, Sibylle; De Paepe, Diane; Holzhauser, Thomas; Balks, Elisabeth; Homolka, Susanne; Reiling, Norbert; Gilleron, Martine; Bastian, Max

    2016-03-15

    A new class of highly antigenic, MHC-II-restricted mycobacterial lipopeptides that are recognized by CD4-positive T lymphocytes of Mycobacterium tuberculosis-infected humans has recently been described. To investigate the relevance of this novel class of mycobacterial Ags in the context of experimental bacille Calmette-Guérin (BCG) vaccination, Ag-specific T cell responses to mycobacterial lipid and lipopeptide-enriched Ag preparations were analyzed in immunized guinea pigs. Lipid and lipopeptide preparations as well as complex Ag mixtures, such as tuberculin, mycobacterial lysates, and culture supernatants, all induced a similar level of T cell proliferation. The hypothesis that lipopeptide-specific T cells dominate the early BCG-induced T cell response was corroborated in restimulation assays by the observation that Ag-expanded T cells specifically responded to the lipopeptide preparation. A comparative analysis of the responses to Ag preparations from different mycobacterial species revealed that the antigenic lipopeptides are specific for strains of the M. tuberculosis complex. Their intriguing conservation in pathogenic tuberculous bacteria and the fact that these highly immunogenic Ags seem to be actively released during in vitro culture and intracellular infection prompt the urgent question about their role in the fine-tuned interplay between the pathogen and its mammalian host, in particular with regard to BCG vaccination strategies. PMID:26889044

  6. Identification of a molecular target of kurahyne, an apoptosis-inducing lipopeptide from marine cyanobacterial assemblages.

    PubMed

    Iwasaki, Arihiro; Ohno, Osamu; Katsuyama, Shun; Morita, Maho; Sasazawa, Yukiko; Dan, Shingo; Simizu, Siro; Yamori, Takao; Suenaga, Kiyotake

    2015-11-15

    In 2014, we isolated kurahyne, an acetylene-containing lipopeptide, from a marine cyanobacterial assemblage of Lyngbya sp. Kurahyne exhibited growth-inhibitory activity against human cancer cells, and induced apoptosis in HeLa cells. However, its mode of action is not yet clear. To elucidate its mode of action, we carried out several cell-based assays, and identified the intracellular target molecule of kurahyne as sarco/endoplasmic reticulum Ca(2+) ATPase (SERCA). In addition, we found that kurahyne inhibited the differentiation of macrophages into osteoclasts. PMID:26428873

  7. Pam2 lipopeptides systemically increase myeloid-derived suppressor cells through TLR2 signaling

    SciTech Connect

    Maruyama, Akira; Shime, Hiroaki Takeda, Yohei; Azuma, Masahiro; Matsumoto, Misako; Seya, Tsukasa

    2015-02-13

    Myeloid-derived suppressor cells (MDSCs) are immature myeloid cells that exhibit potent immunosuppressive activity. They are increased in tumor-bearing hosts and contribute to tumor development. Toll-like receptors (TLRs) on MDSCs may modulate the tumor-supporting properties of MDSCs through pattern-recognition. Pam2 lipopeptides represented by Pam2CSK4 serve as a TLR2 agonist to exert anti-tumor function by dendritic cell (DC)-priming that leads to NK cell activation and cytotoxic T cell proliferation. On the other hand, TLR2 enhances tumor cell progression/invasion by activating tumor-infiltrating macrophages. How MDSCs respond to TLR2 agonists has not yet been determined. In this study, we found intravenous administration of Pam2CSK4 systemically up-regulated the frequency of MDSCs in EG7 tumor-bearing mice. The frequency of tumor-infiltrating MDSCs was accordingly increased in response to Pam2CSK4. MDSCs were not increased by Pam2CSK4 stimuli in TLR2 knockout (KO) mice. Adoptive transfer experiments using CFSE-labeled MDSCs revealed that the TLR2-positive MDSCs survived long in tumor-bearing mice in response to Pam2CSK4 treatment. Since the increased MDSC population sustained immune-suppressive properties, our study suggests that Pam2CSK4-triggered TLR2 activation enhances the MDSC potential and suppress antitumor immune response in tumor microenvironment. - Highlights: • Pam2CSK4 administration induces systemic accumulation of CD11b{sup +}Gr1{sup +} MDSCs. • TLR2 is essential for Pam2CSK4-induced accumulation of CD11b{sup +}Gr1{sup +} MDSCs. • Pam2CSK4 supports survival of CD11b{sup +}Gr1{sup +} MDSCs in vivo.

  8. Single nucleotide polymorphisms in toll-like receptor 6 are associated with altered lipopeptide- and mycobacteria-induced IL-6 secretion

    PubMed Central

    Shehu Shey, Muki; Randhawa, April Kaur; Bowmaker, Mark; Smith, Elizabeth; Jens Scriba, Thomas; de Kock, Marwou; Mahomed, Hassan; Hussey, Gregory; Richard Hawn, Thomas; Albert Hanekom, Willem

    2010-01-01

    Toll-like receptors (TLRs) are critical mediators of the immune response to pathogens. The influence of human TLR6 polymorphisms on susceptibility to infection is only partially understood. Most microbes contain lipopeptides recognized by TLR2/1 or TLR2/6 heterodimers. Our aim was to determine whether single nucleotide polymorphisms (SNPs) in TLR6 are associated with altered immune responses to lipopeptides and whole mycobacteria. We sequenced the TLR6 coding region in 100 healthy South African adults to assess genetic variation and determined associations between polymorphisms and lipopeptide- and mycobacteria-induced IL-6 production in whole blood. We found 2 polymorphisms, C745T and G1083C that were associated with altered IL-6 secretion. G1083C was associated with altered IL-6 levels in response to lipopeptides, Mycobacterium tuberculosis lysate (Mtb, P = 0.018) and BCG (P = 0.039). The 745T allele was also associated with lower NF-κB signaling in response to di-acylated lipopeptide, PAM2 (P = 0.019) or Mtb (P = 0.026) in a HEK293 cell line reconstitution assay, compared with the 745C allele. We conclude that TLR6 polymorphisms may be associated with altered lipopeptide-induced cytokine responses and recognition of Mtb. These studies provide new insight into the role of TLR6 variation and the innate immune response to human infection. PMID:20445564

  9. Ralstonia solanacearum lipopeptide induces chlamydospore development in fungi and facilitates bacterial entry into fungal tissues.

    PubMed

    Spraker, Joseph E; Sanchez, Laura M; Lowe, Tiffany M; Dorrestein, Pieter C; Keller, Nancy P

    2016-09-01

    Ralstonia solanacearum is a globally distributed soil-borne plant pathogenic bacterium, which shares a broad ecological range with many plant- and soil-associated fungi. We sought to determine if R. solanacearum chemical communication directs symbiotic development of polymicrobial consortia. R. solanacearum produced a diffusible metabolite that induced conserved morphological differentiation in 34 species of fungi across three diverse taxa (Ascomycetes, Basidiomycetes and Zygomycetes). Fungi exposed to this metabolite formed chlamydospores, survival structures with thickened cell walls. Some chlamydospores internally harbored R. solanacearum, indicating a newly described endofungal lifestyle for this important plant pathogen. Using imaging mass spectrometry and peptidogenomics, we identified an undescribed lipopeptide, ralsolamycin, produced by an R. solanacearum non-ribosomal peptide synthetase-polyketide synthase hybrid. Inactivation of the hybrid non-ribosomal peptide synthetase-polyketide synthase gene, rmyA, abolished ralsolamycin synthesis. R. solanacearum mutants lacking ralsolamycin no longer induced chlamydospore development in fungal coculture and invaded fungal hyphae less well than wild-type. We propose that ralsolamycin contributes to the invasion of fungal hyphae and that the formation of chlamydospores may provide not only a specific niche for bacterial colonization but also enhanced survival for the partnering fungus. PMID:26943626

  10. Ralstonia solanacearum lipopeptide induces chlamydospore development in fungi and facilitates bacterial entry into fungal tissues

    PubMed Central

    Spraker, Joseph E; Sanchez, Laura M; Lowe, Tiffany M; Dorrestein, Pieter C; Keller, Nancy P

    2016-01-01

    Ralstonia solanacearum is a globally distributed soil-borne plant pathogenic bacterium, which shares a broad ecological range with many plant- and soil-associated fungi. We sought to determine if R. solanacearum chemical communication directs symbiotic development of polymicrobial consortia. R. solanacearum produced a diffusible metabolite that induced conserved morphological differentiation in 34 species of fungi across three diverse taxa (Ascomycetes, Basidiomycetes and Zygomycetes). Fungi exposed to this metabolite formed chlamydospores, survival structures with thickened cell walls. Some chlamydospores internally harbored R. solanacearum, indicating a newly described endofungal lifestyle for this important plant pathogen. Using imaging mass spectrometry and peptidogenomics, we identified an undescribed lipopeptide, ralsolamycin, produced by an R. solanacearum non-ribosomal peptide synthetase-polyketide synthase hybrid. Inactivation of the hybrid non-ribosomal peptide synthetase-polyketide synthase gene, rmyA, abolished ralsolamycin synthesis. R. solanacearum mutants lacking ralsolamycin no longer induced chlamydospore development in fungal coculture and invaded fungal hyphae less well than wild-type. We propose that ralsolamycin contributes to the invasion of fungal hyphae and that the formation of chlamydospores may provide not only a specific niche for bacterial colonization but also enhanced survival for the partnering fungus. PMID:26943626

  11. Lipopeptides of Borrelia burgdorferi outer surface proteins induce Th1 phenotype development in alphabeta T-cell receptor transgenic mice.

    PubMed Central

    Infante-Duarte, C; Kamradt, T

    1997-01-01

    Induction of the appropriate T helper cell (Th) subset is crucial for the resolution of infectious diseases and the prevention of immunopathology. Some pathogens preferentially induce Th1 or Th2 responses. How microorganisms influence Th phenotype development is unknown. We asked if Borrelia burgdorferi, the spirochete which causes Lyme arthritis, can promote a cytokine milieu in which T cells which are not specific for B. burgdorferi are induced to produce proinflammatory cytokines. Using alphabeta T-cell receptor transgenic mice as a source of T cells with a defined specificity other than for B. burgdorferi, we found that B. burgdorferi induced Th1 phenotype development in ovalbumin-specific transgenic T cells. Small synthetic lipopeptides corresponding to the N-terminal sequences of B. burgdorferi outer surface lipoproteins had similar effects. B. burgdorferi and its lipopeptides induced host cells to produce interleukin-12. When the peptides were used in delipidated form, they did not induce Th1 development. These findings may be of pathogenic importance, since it is currently assumed that a Th2-mediated antibody response is protective against B. burgdorferi. Bacteria associated with reactive arthritis, namely, Yersinia enterocolitica, Shigella flexneri, and Salmonella enteritidis, had different effects. The molecular definition of pathogen-host interactions determining cytokine production should facilitate rational therapeutic interventions directing the host response towards the desired cytokine response. Here, we describe small synthetic molecules capable of inducing Th1 phenotype development. PMID:9317013

  12. Targeting the Genital Tract Mucosa with a Lipopeptide/Recombinant Adenovirus Prime/Boost Vaccine Induces Potent and Long-Lasting CD8+ T Cell Immunity Against Herpes: Importance of Myeloid Differentiation Factor 881

    PubMed Central

    Zhang, Xiuli; Dervillez, Xavier; Chentoufi, Aziz Alami; Badakhshan, Tina; Bettahi, Ilham; BenMohamed, Lbachir

    2012-01-01

    Targeting the mucosal immune system of the genital tract (GT) with subunit vaccines failed to induce potent and durable local CD8+ T cell immunity, crucial for protection against many sexually transmitted viral (STV) pathogens, including herpes simplex virus type 2 (HSV-2) that causes genital herpes. In this study, we aimed to investigate the potential of a novel lipopeptide/adenovirus type 5 (Lipo/rAdv5) prime/boost mucosal vaccine for induction of CD8+ T cell immunity to protect the female genital tract from herpes. The lipopeptide and the rAdv5 vaccine express the immunodominant HSV-2 CD8+ T cell epitope (gB498-505) and both were delivered intravaginally (IVAG) in the progesterone-induced B6 mouse model of genital herpes. Compared to its homologous lipopeptide/lipopeptide (Lipo/Lipo); the Lipo/rAdv5 prime/boost immunized mice: (i) developed potent and sustained HSV-specific CD8+ T cells, detected in both the GT draining nodes (GT-DLN) and in the vaginal mucosa (VM); (ii) had significantly lower virus titers; (iii) had decreased overt signs of genital herpes disease; and (iv) did not succumb to lethal infection (p < 0.005), following intravaginal HSV-2 challenge. Polyfunctional CD8+ T cells, producing IFN-γ, TNF-α and IL-2 and exhibiting cytotoxic activity, were associated with protection (p < 0.005). The protective CD8+ T cell response was significantly compromised in the absence of the adaptor myeloid differentiation factor 88 (MyD88) (p = 0.0001). Taken together, these findings indicate that targeting the VM with a Lipo/rAdv5 prime/boost vaccine elicits a potent, MyD88-dependent, and long-lasting mucosal CD8+ T cell protective immunity against sexually transmitted herpes infection and disease. PMID:23018456

  13. Cyclic lipopeptide iturin A structure-dependently induces defense response in Arabidopsis plants by activating SA and JA signaling pathways.

    PubMed

    Kawagoe, Yumi; Shiraishi, Soma; Kondo, Hiroko; Yamamoto, Shoko; Aoki, Yoshinao; Suzuki, Shunji

    2015-05-15

    Iturin A is the most well studied antifungal cyclic lipopeptide produced by Bacillus species that are frequently utilized as biological control agents. Iturin A not only shows strong antifungal activity against phytopathogens but also induces defense response in plants, thereby reducing plant disease severity. Here we report the defense signaling pathways triggered by iturin A in Arabidopsis salicylic acid (SA) or jasmonic acid (JA)-insensitive mutants. Iturin A activated the transcription of defense genes PR1 and PDF1.2 through the SA and JA signaling pathways, respectively. The role of iturin A as an elicitor was dependent on the cyclization of the seven amino acids and/or the β-hydroxy fatty acid chain. The iturin A derivative peptide, NH2-(L-Asn)-(D-Tyr)-(D-Asn)-(L-Gln)-(L-Pro)-(D-Asn)-(L-Ser)-COOH, completely suppressed PR1 and PDF1.2 gene expression in wild Arabidopsis plants. The identification of target molecules binding to iturin A and its derivative peptide is expected to shed new light on defense response in plants through the SA and JA signaling pathways. PMID:25842204

  14. Genetic and Functional Characterization of Cyclic Lipopeptide White-Line-Inducing Principle (WLIP) Production by Rice Rhizosphere Isolate Pseudomonas putida RW10S2

    PubMed Central

    Rokni-Zadeh, Hassan; Li, Wen; Sanchez-Rodriguez, Aminael; Sinnaeve, Davy; Rozenski, Jef; Martins, José C.

    2012-01-01

    The secondary metabolite mediating the GacS-dependent growth-inhibitory effect exerted by the rice rhizosphere isolate Pseudomonas putida RW10S2 on phytopathogenic Xanthomonas species was identified as white-line-inducing principle (WLIP), a member of the viscosin group of cyclic lipononadepsipeptides. WLIP producers are commonly referred to by the taxonomically invalid name “Pseudomonas reactans,” based on their capacity to reveal the presence of a nearby colony of Pseudomonas tolaasii by inducing the formation of a visible precipitate (“white line”) in agar medium between both colonies. This phenomenon is attributed to the interaction of WLIP with a cyclic lipopeptide of a distinct structural group, the fungitoxic tolaasin, and has found application as a diagnostic tool to identify tolaasin-producing bacteria pathogenic to mushrooms. The genes encoding the WLIP nonribosomal peptide synthetases WlpA, WlpB, and WlpC were identified in two separate genomic clusters (wlpR-wlpA and wlpBC) with an operon organization similar to that of the viscosin, massetolide, and entolysin biosynthetic systems. Expression of wlpR is dependent on gacS, and the encoded regulator of the LuxR family (WlpR) activates transcription of the biosynthetic genes and the linked export genes, which is not controlled by the RW10S2 quorum-sensing system PmrR/PmrI. In addition to linking the known phenotypes of white line production and hemolytic activity of a WLIP producer with WLIP biosynthesis, additional properties of ecological relevance conferred by WLIP production were identified, namely, antagonism against Xanthomonas and involvement in swarming and biofilm formation. PMID:22544260

  15. Development of a Genetic System for Combinatorial Biosynthesis of Lipopeptides in Streptomyces fradiae and Heterologous Expression of the A54145 Biosynthesis Gene Cluster ▿ †

    PubMed Central

    Alexander, Dylan C.; Rock, Jessica; He, Xiaowei; Brian, Paul; Miao, Vivian; Baltz, Richard H.

    2010-01-01

    A54145 factors are calcium-dependent lipopeptide antibiotics produced by Streptomyces fradiae NRRL 18160. A54145 is structurally related to the clinically important daptomycin, and as such may be a useful scaffold for the development of a novel lipopeptide antibiotic. We developed methods to genetically manipulate S. fradiae by deletion mutagenesis and conjugal transfer of plasmids from Escherichia coli. Cloning the complete pathway on a bacterial artificial chromosome (BAC) vector and the construction of ectopic trans-complementation with plasmids utilizing the φC31 or φBT1 site-specific integration system allowed manipulation of A54145 biosynthesis. The BAC clone pDA2002 was shown to harbor the complete A54145 biosynthesis gene cluster by heterologous expression in Streptomyces ambofaciens and Streptomyces roseosporus strains in yields of >100 mg/liter. S. fradiae mutants defective in LptI methyltransferase function were constructed, and they produced only A54145 factors containing glutamic acid (Glu12), at the expense of factors containing 3-methyl-glutamic acid (3mGlu12). This provided a practical route to produce high levels of pure Glu12-containing lipopeptides. A suite of mutant strains and plasmids was created for combinatorial biosynthesis efforts focused on modifying the A54145 peptide backbone to generate a compound with daptomycin antibacterial activity and activity in Streptococcus pneumoniae pulmonary infections. PMID:20802082

  16. Lipopeptide Biosurfactant Pseudofactin II Induced Apoptosis of Melanoma A 375 Cells by Specific Interaction with the Plasma Membrane

    PubMed Central

    Janek, Tomasz; Krasowska, Anna; Radwańska, Agata; Łukaszewicz, Marcin

    2013-01-01

    In the case of melanoma, advances in therapies are slow, which raises the need to evaluate new therapeutic strategies and natural products with potential cancer cell inhibiting effect. Pseudofactin II (PFII), a novel cyclic lipopeptide biosurfactant has been isolated from the Arctic strain of Pseudomonas fluorescens BD5. The aim of this study was to investigate the effect of PFII on A375 melanoma cells compared with the effect of PFII on Normal Human Dermis Fibroblast (NHDF) cells and elucidate the underlying mechanism of PFII cytotoxic activity. Melanoma A375 cells and NHDF cells were exposed to PFII or staurosporine and apoptotic death was assessed by monitoring caspase 3-like activity and DNA fragmentation. From time-dependent monitoring of lactate dehydrogenase (LDH) release, Ca2+ influx, and a correlation between Critical Micelle Concentration (CMC) we concluded that cell death is the consequence of plasma membrane permeabilisation by micelles. This finding suggests that pro-apoptotic mechanism of PFII is different from previously described cyclic lipopeptides. The mechanism of PFII specificity towards malignant cells remains to be discovered. The results of this study show that PFII could be a new promising anti-melanoma agent. PMID:23483962

  17. Structure determination of lipopeptides from Mycobacterium avium subspecies paratuberculosis and identification of antigenic lipopeptide probes.

    PubMed

    Mitachi, Katsuhiko; Sharma Gautam, Lekh Nath; Rice, Jeffrey H; Eda, Keiko; Wadhwa, Ashutosh; Momotani, Eiichi; Hlopak, Joseph P; Eda, Shigetoshi; Kurosu, Michio

    2016-07-15

    Mycobacterium avium subspecies paratuberculosis (MAP) causes chronic illnesses mostly in ruminants. MAP infection of intestinal tissue triggers a fatal inflammatory disorder, Johne's disease (paratuberculosis). Development of fast and reliable diagnostic methods for Johne's disease in clinically suspected ruminants requires the discovery of MAP-specific antigens that induce immune responses. Despite a longtime interest in finding such antigens that can detect serum antibody responses with high sensitivity, the antigens currently used for a diagnosis of the MAP infections are the crude extracts from the whole cell. We performed the serum antibody response assay-guided purification of the ethanol extract from MAP isolated from an infected cow. With the results of extensive fractionations and in vitro assays, we identified that arachidyl-d-Phe-N-Me-l-Val-l-Ile-l-Phe-l-Ala-OH (named lipopeptide IIß, 3) exhibited the highest antibody binding activity in serum of a MAP-infected cattle compared with the other lipopeptides isolated from MAP. The absolute chemistry of 3 was determined unequivocally via our high-performance liquid chromatography (HPLC)-amino acid databases. α-Amino lipopeptide IIß and its fluorescent probes were synthesized and evaluated in serum antibody binding activity assays. Lipopeptide IIß-(2S)-NH2 (9) and its dansyl and fluorescein isothiocyanate (FITC) probes (10 and 11) exhibited antibody-mediated binding activity; thus, such MAP-specific lipopeptide probes can be potential biomarkers for the development of rapid and accurate diagnosis of Johne's disease. PMID:27114041

  18. Solvent-induced conformational modifications of iturin A: an infrared and circular dichroic study of a L,D-lipopeptide of Bacillus subtilis

    NASA Astrophysics Data System (ADS)

    Besson, F.; Raimbault, C.; Hourdou, M. L.; Buchet, R.

    1996-07-01

    The structure of iturin A, an L,D-lipopeptide of Bacillus subtilis, has been investigated by measuring its infrared spectrum in different solvents. Because the amino acid side chain absorbances could overlap the component bands of the amide I region, the net contribution of peptide bonds are determined by curve fitting analysis of the IR spectra. Our results confirm the presence of β-turns, previously identified by NMR study of iturin in pyridine. The β-turns are identified in different states of iturin (dry or hydrated states) and in organic solvents (trifluoroethanol or chloroform-methanol). However, the number of β-turns cannot be estimated on the basis of FTIR spectra. The solvent-induced spectral changes are interpreted as interactions of carbonyl groups of peptide backbone and of side chains of Asn and Gln with the solvent molecules. These interactions indirectly modify the conformation of iturin, indicating that mobile side chains might have an important role in its conformational stability. The circular dichroism data on far- and near-UV spectra confirm the alteration of iturin conformation induced by trifluoroethanol and water.

  19. The Antibiosis Action and Rice-Induced Resistance, Mediated by a Lipopeptide from Bacillus amyloliquefaciens B014, in Controlling Rice Disease Caused by Xanthomonas oryzae pv. oryzae.

    PubMed

    Li, Shu Bin; Xu, Shi Ru; Zhang, Rui Ning; Liu, Yuan; Zhou, Ren Chao

    2016-04-28

    In the present study, a lipopeptide (named AXLP14) antagonistic to Xanthomonas oryzae pv. oryzae (Xoo) was obtained from the culture supernatant of Bacillus amyloliquefaciens B014. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis demonstrated that AXLP14 consisted of surfactin homologs. The minimum inhibition concentration and minimum bactericidal concentration of AXLP14 against Xoo were determined to be 1.25 and 2.50 mg/ml, respectively. At a concentration of 0.613 mg/ml, AXLP14 strongly inhibited the formation of Xoo biofilm. AXLP14 also inhibited the motility of Xoo in a concentration-dependent manner. Applying AXLP14 to rice seedlings significantly reduced the incidence and severity of disease caused by Xoo. In Xoo-infected rice seedlings, AXLP14 strongly and continuously up-regulated the expression of both OsNPR1 and OsWRKY45. In addition, AXLP14 effectively inhibited the Xoo-induced up-regulation of the expression of the abscisic acid biosynthesis gene OsNECD3 and the abscisic acid signalingresponsive gene OsLip9, indicating that AXLP14 may protect rice against Xoo-induced disease by enhancing salicylic acid defense and interfering with the abscisic acid response to virulence. PMID:26718470

  20. Effect of Fengycin, a Lipopeptide Produced by Bacillus subtilis, on Model Biomembranes

    PubMed Central

    Deleu, Magali; Paquot, Michel; Nylander, Tommy

    2008-01-01

    Fengycin is a biologically active lipopeptide produced by several Bacillus subtilis strains. The lipopeptide is known to develop antifungal activity against filamentous fungi and to have hemolytic activity 40-fold lower than that of surfactin, another lipopeptide produced by B. subtilis. The aim of this work is to use complementary biophysical techniques to reveal the mechanism of membrane perturbation by fengycin. These include: 1), the Langmuir trough technique in combination with Brewster angle microscopy to study the lipopeptide penetration into monolayers; 2), ellipsometry to investigate the adsorption of fengycin onto supported lipid bilayers; 3), differential scanning calorimetry to determine the thermotropic properties of lipid bilayers in the presence of fengycin; and 4), cryogenic transmission electron microscopy, which provides information on the structural organization of the lipid/lipopeptide system. From these experiments, the mechanism of fengycin action appears to be based on a two-state transition controlled by the lipopeptide concentration. One state is the monomeric, not deeply anchored and nonperturbing lipopeptide, and the other state is a buried, aggregated form, which is responsible for membrane leakage and bioactivity. The mechanism, thus, appears to be driven mainly by the physicochemical properties of the lipopeptide, i.e., its amphiphilic character and affinity for lipid bilayers. PMID:18178659

  1. Anorexigenic lipopeptides ameliorate central insulin signaling and attenuate tau phosphorylation in hippocampi of mice with monosodium glutamate-induced obesity.

    PubMed

    Špolcová, Andrea; Mikulášková, Barbora; Holubová, Martina; Nagelová, Veronika; Pirnik, Zdenko; Zemenová, Jana; Haluzík, Martin; Železná, Blanka; Galas, Marie-Christine; Maletínská, Lenka

    2015-01-01

    Numerous epidemiological and experimental studies have demonstrated that patients who suffer from metabolic disorders, such as type 2 diabetes mellitus (T2DM) or obesity, have higher risks of cognitive dysfunction and of Alzheimer's disease (AD). Impaired insulin signaling in the brain could contribute to the formation of neurofibrillary tangles, which contain an abnormally hyperphosphorylated tau protein. This study aimed to determine whether potential tau hyperphosphorylation could be detected in an obesity-induced pre-diabetes state and whether anorexigenic agents could affect this state. We demonstrated that 6-month-old mice with monosodium glutamate (MSG) obesity, which represent a model of obesity-induced pre-diabetes, had increased tau phosphorylation at Ser396 and Thr231 in the hippocampus compared with the controls, as determined by western blots. Two weeks of subcutaneous treatment with a lipidized analog of prolactin-releasing peptide (palm-PrRP31) or with the T2DM drug liraglutide, which both had a central anorexigenic effect, resulted in increased phosphorylation of the insulin cascade kinases PDK1 (Ser241), Akt (Thr308), and GSK-3β (Ser9). Furthermore, these drugs attenuated phosphorylation at Ser396, Thr231, and Thr212 of tau and of the primary tau kinases in the hippocampi of 6-month-old MSG-obese mice. We identified tau hyperphosphorylation in the obesity-induced pre-diabetes state in MSG-obese mice and demonstrated the beneficial effects of palm-PrRP31 and liraglutide, both of known central anorexigenic effects, on hippocampal insulin signaling and on tau phosphorylation. PMID:25624414

  2. Production and identification of iturin A lipopeptide from Bacillus methyltrophicus TEB1 for control of Phoma tracheiphila.

    PubMed

    Kalai-Grami, Leila; Karkouch, Ines; Naili, Omar; Slimene, Imen Ben; Elkahoui, Salem; Zekri, Roudaina Ben; Touati, Ines; Mnari-Hattab, Monia; Hajlaoui, Mohamed Rabeh; Limam, Ferid

    2016-08-01

    A lipopeptide-producing endophytic Bacillus methyltrophicus TEB1 strain exhibited potent antifungal activity against Phoma tracheiphila. Lipopeptide production started at the early growth phase plateaued after 36 h of culture where it reduced the mycelium growth by 80%. The crude lipopeptide extract harvested at the stationary phase efficiently inhibited the growth of P. tracheiphila mycelium and MIC values displaying 50 and 90% inhibition of conidia germination were around 47.5 and 100 μg ml(-1) , respectively. Increasing lipopeptide extract till 3 mg ml(-1) induced 10% swelling and 3% crumbling of P. tracheiphila conidia whereas 5 mg ml(-1) induced 40% swelling and 20% crumbling. Mass spectrometry analysis of the lipopeptide extract indicated that surfactin production took place from 12 to 20 h, iturin A from 16 to 72 h, and fengycin from 12 to 72 h and that the main active compound against P. tracheiphila was identified as C15 iturin A lipopeptide. Iturin A appeared as a potential biological control agent able to substitute the currently used chemical pesticides in agriculture. PMID:27125201

  3. Toll-Like Receptor 2- and 6-Mediated Stimulation by Macrophage-Activating Lipopeptide 2 Induces Lipopolysaccharide (LPS) Cross Tolerance in Mice, Which Results in Protection from Tumor Necrosis Factor Alpha but in Only Partial Protection from Lethal LPS Doses

    PubMed Central

    Deiters, Ursula; Gumenscheimer, Marina; Galanos, Chris; Mühlradt, Peter F.

    2003-01-01

    Patients or experimental animals previously exposed to lipopolysaccharide (LPS) become tolerant to further LPS challenge. We investigated the potential of the macrophage-activating lipopeptide 2 (MALP-2) to induce in vivo cross tolerance to tumor necrosis factor alpha (TNF-α) and LPS. MALP-2-induced tolerance could be of practical interest, as MALP-2 proved much less pyrogenic in rabbits than LPS. Whereas LPS signals via Toll-like receptor 4 (TLR4), MALP-2 uses TLR2 and TLR6. LPS-mediated cytokine release was studied in mice pretreated with intraperitoneal injections of MALP-2. No biologically active TNF-α could be detected in the serum of MALP-2-treated animals when challenged with LPS 24 or 72 h later, whereas suppression of LPS-dependent interleukin (IL)-6 lasted for only 24 h. Protection from lethal TNF-α shock was studied in galactosamine-treated mice. Dose dependently, MALP-2 prevented death from lethal TNF-α doses in TLR4−/− but not in TLR2−/− mice, with protection lasting from 5 to 24 h. To assay protection from LPS, mice were pretreated with MALP-2 doses of up to 10 μg. Five and 24 h later, the animals were simultaneously sensitized and challenged by intravenous coinjection of galactosamine and a lethal dose of 50 ng of LPS. There was only limited protection (four of seven mice survived) when mice were challenged 5 h after MALP-2 pretreatment, and no protection when mice were challenged at later times. The high effectiveness of MALP-2 in suppressing TNF-α, the known ways of biological inactivation, and low pyrogenicity make MALP-2 a potential candidate for clinical use. PMID:12874325

  4. Comparison of lipopeptide-based immunocontraceptive vaccines containing different lipid groups.

    PubMed

    Chua, Brendon Y; Zeng, Weiguang; Lau, Yuk Fai; Jackson, David C

    2007-01-01

    We have previously shown that incorporating the lipid moiety dipalmitoyl-S-glyceryl cysteine (Pam2Cys) into peptide structures effectively adjuvants otherwise weak immunogens. In this study lipopeptides based on luteinising hormone releasing hormone (LHRH) as a B cell epitope, [B], were synthesised in tandem with a 17-residue T-helper epitope, [T], derived from the fusion protein of the morbillivirus canine distemper virus. In this way vaccine candidates with the structure [T]-[B] were produced. These peptides were then lipidated with different diacylated moieties. The acyl moieties used were: palmitic acid (C16) to give Pam2Cys, stearic acid (C18) to give Ste2Cys, lauric acid (C12) to give Lau2Cys and octanoic acid (C8) to give Oct2Cys. We compared the immunogenicities of these simple lipopeptides in BALB/c mice by measuring their ability to induce anti-LHRH antibodies and found that immunogenicity was dependent on the length of the alkane chains of the incorporated lipid moieties with the hierarchy C16=C18>C12>C8. The antibody levels elicited by the lipopeptides also correlated with their ability to inhibit the reproductive capability of female mice in fertility trials. Furthermore, the C16 lipopeptide was the most effective in activating dendritic cells, measured by up regulation of surface MHC Class II molecules, and also in activating NF-kappaB in a Toll-like receptor-2 (TLR2)-dependent manner. PMID:17055123

  5. A Novel Chemical Biology Approach for Mapping of Polymyxin Lipopeptide Antibody Binding Epitopes.

    PubMed

    Velkov, Tony; Yun, Bo; Schneider, Elena K; Azad, Mohammad A K; Dolezal, Olan; Morris, Faye C; Nation, Roger L; Wang, Jiping; Chen, Ke; Yu, Heidi H; Wang, Lv; Thompson, Philip E; Roberts, Kade D; Li, Jian

    2016-05-13

    Polymyxins B and E (i.e., colistin) are a family of naturally occurring lipopeptide antibiotics that are our last line of defense against multidrug resistant (MDR) Gram-negative pathogens. Unfortunately, nephrotoxicity is a dose-limiting factor for polymyxins that limits their clinical utility. Our recent studies demonstrate that polymyxin-induced nephrotoxicity is a result of their extensive accumulation in renal tubular cells. The design and development of safer, novel polymyxin lipopeptides is hampered by our limited understanding of their complex structure-nephrotoxicity relationships. This is the first study to employ a novel targeted chemical biology approach to map the polymyxin recognition epitope of a commercially available polymyxin mAb and demonstrate its utility for mapping the kidney distribution of a novel, less nephrotoxic polymyxin lipopeptide. Eighteen novel polymyxin lipopeptide analogues were synthesized with modifications in the polymyxin core domains, namely, the N-terminal fatty acyl region, tripeptide linear segment, and cyclic heptapeptide. Surface plasmon resonance epitope mapping revealed that the monoclonal antibody (mAb) recognition epitope consisted of the hydrophobic domain (N-terminal fatty acyl and position 6/7) and diaminobutyric acid (Dab) residues at positions 3, 5, 8, and 9 of the polymyxin molecule. Structural diversity within the hydrophobic domains and Dab 3 position are tolerated. Enlightened with an understating of the structure-binding relationships between the polymyxin mAb and the core polymyxin scaffold, we can now rationally employ the mAb to probe the kidney distribution of novel polymyxin lipopeptides. This information will be vital in the design of novel, safer polymyxins through chemical tailoring of the core scaffold and exploration of the elusive/complex polymyxin structure-nephrotoxicity relationships. PMID:27627202

  6. The marine lipopeptide somocystinamide A triggers apoptosis via caspase 8

    PubMed Central

    Wrasidlo, Wolf; Mielgo, Ainhoa; Torres, Vicente A.; Barbero, Simone; Stoletov, Konstantin; Suyama, Takashi L.; Klemke, Richard L.; Gerwick, William H.; Carson, Dennis A.; Stupack, Dwayne G.

    2008-01-01

    Screening for novel anticancer drugs in chemical libraries isolated from marine organisms, we identified the lipopeptide somocystinamide A (ScA) as a pluripotent inhibitor of angiogenesis and tumor cell proliferation. The antiproliferative activity was largely attributable to induction of programmed cell death. Sensitivity to ScA was significantly increased among cells expressing caspase 8, whereas siRNA knockdown of caspase 8 increased survival after exposure to ScA. ScA rapidly and efficiently partitioned into liposomes while retaining full antiproliferative activity. Consistent with the induction of apoptosis via the lipid compartment, we noted accumulation and aggregation of ceramide in treated cells and subsequent colocalization with caspase 8. Angiogenic endothelial cells were extremely sensitive to ScA. Picomolar concentrations of ScA disrupted proliferation and endothelial tubule formation in vitro. Systemic treatment of zebrafish or local treatment of the chick chorioallantoic membrane with ScA resulted in dose-dependent inhibition of angiogenesis, whereas topical treatment blocked tumor growth among caspase-8-expressing tumors. Together, the results reveal an unexpected mechanism of action for this unique lipopeptide and suggest future development of this and similar agents as antiangiogenesis and anticancer drugs. PMID:18268346

  7. Lipopeptides in microbial infection control: scope and reality for industry.

    PubMed

    Mandal, Santi M; Barbosa, Aulus E A D; Franco, Octavio L

    2013-01-01

    Lipopeptides are compounds that are formed by cyclic or short linear peptides linked with a lipid tail or other lipophilic molecules. Recently, several lipopeptides were characterized, showing surfactant, antimicrobial and cytotoxic activities. The properties of lipopeptides may lead to applications in diverse industrial fields including the pharmaceutical industry as conventional antibiotics; the cosmetic industry for dermatological product development due to surfactant and anti-wrinkle properties; in food production acting as emulsifiers in various foodstuffs; and also in the field of biotechnology as biosurfactants. Some lipopeptides have reached a commercial antibiotic status, such as daptomycin, caspofungin, micafungin, and anidulafungin. This will be the focus of this review. Moreover, the review presented here will focus on the biotechnological utilization of lipopeptides in different fields as well as the functional-structure relation, connecting recent aspects of synthesis and structure diversity. PMID:23318669

  8. Cyclic Lipopeptide Surfactant Production by Pseudomonas fluorescens SS101 Is Not Required for Suppression of Complex Pythium spp. Populations.

    PubMed

    Mazzola, M; Zhao, X; Cohen, M F; Raaijmakers, J M

    2007-10-01

    ABSTRACT Previously, the zoosporicidal activity and control of Pythium root rot of flower bulbs by Pseudomonas fluorescens SS101 was attributed, in part, to the production of the cyclic lipopeptide surfactant massetolide A. The capacity of strain SS101 and its surfactant-deficient massA mutant 10.24 to suppress populations and root infection by complex Pythium spp. communities resident in orchard soils was assessed on apple and wheat seedlings and on apple rootstocks. Both strains initially became established in soil and persisted in the rhizosphere at similar population densities; however, massA mutant 10.24 typically was detected at higher populations in the wheat rhizosphere and soil at the end of each experiment. Both strains effectively suppressed resident Pythium populations to an equivalent level in the presence or absence of plant roots, and ultimately suppressed Pythium root infection to the same degree on all host plants. When split-root plant assays were employed, neither strain suppressed Pythium spp. infection of the component of the root system physically separated from the bacterium, suggesting that induced systemic resistance did not play a role in Pythium control. Strain SS101 only marginally suppressed in vitro growth of Pythium spp. and growth was not inhibited in the presence of mutant 10.24. When incorporated into the growth medium, the cyclic lipopeptide massetolide A significantly slowed the rate of hyphal expansion for all Pythium spp. examined. Differences in sensitivity were observed among species, with Pythium heterothallicum, P. rostratum, and P. ultimum var. ultimum exhibiting significantly greater tolerance. Pythium spp. populations indigenous to the two soils employed were composed primarily of P. irregulare, P. sylvaticum, and P. ultimum var. ultimum. These Pythium spp. either do not or rarely produce zoospores, which could account for the observation that both SS101 and mutant 10.24 were equally effective in disease control

  9. Lipopeptide surfactants: Production, recovery and pore forming capacity.

    PubMed

    Inès, Mnif; Dhouha, Ghribi

    2015-09-01

    Lipopeptides are microbial surface active compounds produced by a wide variety of bacteria, fungi and yeast. They are characterized by highly structural diversity and have the ability to decrease the surface and interfacial tension at the surface and interface, respectively. Surfactin, iturin and fengycin of Bacillus subtilis are among the most studied lipopeptides. This review will present the main factors encountering lipopeptides production along with the techniques developed for their extraction and purification. Moreover, we will discuss their ability to form pores and destabilize biological membrane permitting their use as antimicrobial, hemolytic and antitumor agents. These open great potential applications in biomediacal, pharmaceutic and agriculture fields. PMID:26189973

  10. Cell-free biosynthesis of surfactin, a cyclic lipopeptide produced by Bacillus subtilis.

    PubMed

    Ullrich, C; Kluge, B; Palacz, Z; Vater, J

    1991-07-01

    The lipopeptide antibiotic surfactin is a potent extracellular biosurfactant produced by various Bacillus subtilis strains. Biosynthesis of surfactin was studied in a cell-free system prepared from B. subtilis ATCC 21332 and OKB 105, which is a transformant producing surfactin in high yield [Nakano, M. M., Marahiel, M. A., & Zuber, P. (1988) J. Bacteriol. 170, 5662-5668]. Cell material was disintegrated by treatment with lysozyme and French press. A cell-free extract was prepared by ammonium sulfate fractionation, which catalyzed the formation of surfactin at the expense of ATP. Lipopeptide biosynthesis required the L-amino acid components of surfactin and D-3-hydroxytetradecanoyl-coenzyme A thioester. D-Leucine which is present in surfactin was not utilized but inhibited the biosynthetic process. The structure of surfactin, synthesized enzymatically in vitro, was confirmed by chromatographic comparison with the authentic compound and by amino acid analyses. An enzyme fraction was prepared by gel permeation chromatography which catalyzed ATP/pyrophosphate exchange reactions dependent on the component amino acids of surfactin. This enzyme fraction was capable of binding substrate amino acids covalently, probably via thioester linkages. The formation of these intermediates was inhibited by various thiol blocking reagents and phenylmethanesulfonyl fluoride. De novo synthesis of the lipopeptide was not observed with this partially purified enzyme fraction most likely due to the lack of an acyltransferase activity required for linking the beta-hydroxy fatty acid to the peptide moiety. PMID:1905154

  11. Sustained Release of Antibacterial Lipopeptides from Biodegradable Polymers against Oral Pathogens.

    PubMed

    Eckhard, Lea H; Houri-Haddad, Yael; Sol, Asaf; Zeharia, Rotem; Shai, Yechiel; Beyth, Shaul; Domb, Abraham J; Bachrach, Gilad; Beyth, Nurit

    2016-01-01

    The development of antibacterial drugs to overcome various pathogenic species, which inhabit the oral cavity, faces several challenges, such as salivary flow and enzymatic activity that restrict dosage retention. Owing to their amphipathic nature, antimicrobial peptides (AMPs) serve as the first line of defense of the innate immune system. The ability to synthesize different types of AMPs enables exploitation of their advantages as alternatives to antibiotics. Sustained release of AMPs incorporated in biodegradable polymers can be advantageous in maintaining high levels of the peptides. In this study, four potent ultra-short lipopeptides, conjugated to an aliphatic acid chain (16C) were incorporated in two different biodegradable polymers: poly (lactic acid co castor oil) (PLACO) and ricinoleic acid-based poly (ester-anhydride) (P(SA-RA)) for sustained release. The lipopeptide and polymer formulations were tested for antibacterial activity during one week, by turbidometric measurements of bacterial outgrowth, anti-biofilm activity by live/dead staining, biocompatibility by hemolysis and XTT colorimetric assays, mode of action by fluorescence-activated cell sorting (FACS) and release profile by a fluorometric assay. The results show that an antibacterial and anti-biofilm effect, as well as membrane disruption, can be achieved by the use of a formulation of lipopeptide incorporated in biodegradable polymer. PMID:27606830

  12. Human filarial Wolbachia lipopeptide directly activates human neutrophils in vitro.

    PubMed

    Tamarozzi, F; Wright, H L; Johnston, K L; Edwards, S W; Turner, J D; Taylor, M J

    2014-10-01

    The host inflammatory response to the Onchocerca volvulus endosymbiont, Wolbachia, is a major contributing factor in the development of chronic pathology in humans (onchocerciasis/river blindness). Recently, the toll-like pattern recognition receptor motif of the major inflammatory ligands of filarial Wolbachia, membrane-associated diacylated lipoproteins, was functionally defined in murine models of pathology, including mediation of neutrophil recruitment to the cornea. However, the extent to which human neutrophils can be activated in response to this Wolbachia pattern recognition motif is not known. Therefore, the responses of purified peripheral blood human neutrophils to a synthetic N-terminal diacylated lipopeptide (WoLP) of filarial Wolbachia peptidoglycan-associated lipoprotein (PAL) were characterized. WoLP exposure led to a dose-dependent activation of healthy, human neutrophils that included gross morphological alterations and modulation of surface expressed integrins involved in tethering, rolling and extravasation. WoLP exposure induced chemotaxis but not chemokinesis of neutrophils, and secretion of the major neutrophil chemokine, interleukin 8. WoLP also induced and primed the respiratory burst, and enhanced neutrophil survival by delay of apoptosis. These results indicate that the major inflammatory motif of filarial Wolbachia lipoproteins directly activates human neutrophils in vitro and promotes a molecular pathway by which human neutrophils are recruited to sites of Onchocerca parasitism. PMID:24909063

  13. Cyclic lipopeptides from Bacillus subtilis activate distinct patterns of defence responses in grapevine.

    PubMed

    Farace, Giovanni; Fernandez, Olivier; Jacquens, Lucile; Coutte, François; Krier, François; Jacques, Philippe; Clément, Christophe; Barka, Essaid Ait; Jacquard, Cédric; Dorey, Stéphan

    2015-02-01

    Non-self-recognition of microorganisms partly relies on the perception of microbe-associated molecular patterns (MAMPs) and leads to the activation of an innate immune response. Bacillus subtilis produces three main families of cyclic lipopeptides (LPs), namely surfactins, iturins and fengycins. Although LPs are involved in induced systemic resistance (ISR) activation, little is known about defence responses induced by these molecules and their involvement in local resistance to fungi. Here, we showed that purified surfactin, mycosubtilin (iturin family) and plipastatin (fengycin family) are perceived by grapevine plant cells. Although surfactin and mycosubtilin stimulated grapevine innate immune responses, they differentially activated early signalling pathways and defence gene expression. By contrast, plipastatin perception by grapevine cells only resulted in early signalling activation. Gene expression analysis suggested that mycosubtilin activated salicylic acid (SA) and jasmonic acid (JA) signalling pathways, whereas surfactin mainly induced an SA-regulated response. Although mycosubtilin and plipastatin displayed direct antifungal activity, only surfactin and mycosubtilin treatments resulted in a local long-lasting enhanced tolerance to the necrotrophic fungus Botrytis cinerea in grapevine leaves. Moreover, challenge with specific strains overproducing surfactin and mycosubtilin led to a slightly enhanced stimulation of the defence response compared with the LP-non-producing strain of B. subtilis. Altogether, our results provide the first comprehensive view of the involvement of LPs from B. subtilis in grapevine plant defence and local resistance against the necrotrophic pathogen Bo. cinerea. Moreover, this work is the first to highlight the ability of mycosubtilin to trigger an immune response in plants. PMID:25040001

  14. A novel rabies virus lipopeptide provides a better protection by improving the magnitude of DCs activation and T cell responses.

    PubMed

    Liu, Rui; Wang, Jingbo; Yang, Yan; Khan, Inamullah; Dong, Yue; Zhu, Naishuo

    2016-08-01

    Besides rabies virus neutralizing antibody, non-neutralizing antibody to internal vital proteins, interferon, and possibly cell-mediated immunity also have a critical role in preventing the infection by rabies virus (RV). We identified novel CTL and Th epitopes which could induce lymphocyte proliferation and IFN-γ, IL-4 production, and designed linear and branched lipopeptides with these selected CTL and Th epitopes. Compared to linear construct, branched lipopeptides, especially Lipo C, stimulate stronger phenotypic and functional maturation of DCs, as well as more efficient CD8(+) T cell responses, evaluating by using FACS, G333-341 tetramer staining and specific CTL assay. Lipo C could also assist rabies vaccine to induce an instant rabies virus neutralizing antibody production, and better protection against rabies virus challenge at early stage. These data reveal that Lipo C could be a promising component for developing novel rabies vaccines. PMID:27182006

  15. Epithelial and Stromal Cells of Bovine Endometrium Have Roles in Innate Immunity and Initiate Inflammatory Responses to Bacterial Lipopeptides In Vitro via Toll-Like Receptors TLR2, TLR1, and TLR6

    PubMed Central

    Turner, Matthew L.; Cronin, James G.; Healey, Gareth D.

    2014-01-01

    Bacteria often infect the endometrium of cattle to cause endometritis, uterine disease, and infertility. Lipopeptides are commonly found among bacteria and are detected by the Toll-like receptor (TLR) cell surface receptor TLR2 on immune cells. Heterodimers of TLR2 with TLR1 or TLR6 activate MAPK and nuclear factor-κB intracellular signaling pathways to stimulate inflammatory responses. In the endometrium, epithelial and stromal cells are the first to encounter invading bacteria, so the present study explored whether endometrial cells can also mount inflammatory responses to bacterial lipopeptides via TLRs. The supernatants of pure populations of primary bovine endometrial epithelial and stromal cells accumulated the cytokine IL-6 and the chemokine IL-8 in response to triacylated or diacylated bacterial lipopeptides. The accumulation of IL-6 and IL-8 in response to triacylated lipopeptides was reduced by small interfering RNA targeting TLR2 or TLR1 but not TLR6, whereas cellular responses to diacylated lipopeptide were reduced by small interfering RNA targeting TLR2, TLR1, or TLR6. Both lipopeptides induced rapid phosphorylation of ERK1/2, p38, and nuclear factor-κB in endometrial cells, and inhibitors of ERK1/2 or p38 limited the accumulation of IL-6. The ovarian steroids estradiol and progesterone had little impact on inflammatory responses to lipopeptides. The endometrial epithelial and stromal cell responses to lipopeptides via TLR2, TLR1, and TLR6 provide a mechanism linking a wide range of bacterial infections to inflammation of the endometrium. PMID:24437488

  16. Therapeutic cyclic lipopeptides mining from microbes: latest strides and hurdles.

    PubMed

    Patel, Seema; Ahmed, Shadab; Eswari, J Satya

    2015-08-01

    Infectious diseases impose serious public health burdens and often have devastating consequences. The cyclic lipopeptides elaborated by bacteria Bacillus, Paenibacillus, Pseudomonas, Streptomyces, Serratia, Propionibacterium and fungus Fusarium are very crucial in restraining the pathogens. Composed of a peptide and a fatty acyl moiety these amphiphilic metabolites exhibit broad spectrum antimicrobial effects. Among the plethora of cyclic lipopeptides, only selective few have emerged as robust antibiotics. For their functional vigor, polymyxin, daptomycin, surfactin, iturin, fengysin, paenibacterin and pseudofactin have been integrated in mainstream healthcare. Daptomycin has been a significant part of antimicrobial arsenal since the past decade. As the magnitude of drug resistance rises in unprecedented manner, the urgency of prospecting novel cyclic lipopeptides is being perceived. Intense research has revealed the implication of these bioactive compounds stretching beyond antibacterial and antifungal. Anticancer, immunomodulatory, prosthetic parts disinfection and vaccine adjuvancy are some of the validated prospects. This review discusses the emerging applications, mechanisms governing the biological actions, role of genomics in refining structure and function, semi-synthetic analog discovery, novel strain isolation, setbacks etc. Though its beyond the scope of the current topic, for holistic purpose, the role of lipopeptides in bioremediation and crop biotechnology has been briefly outlined. This updated critique is expected to galvanize innovations and diversify therapeutic recruitment of microbial lipopeptides. PMID:26041368

  17. Evaluation of a lipopeptide biosurfactant from Bacillus natto TK-1 as a potential source of anti-adhesive, antimicrobial and antitumor activities

    PubMed Central

    Cao, Xiao-Hong; Liao, Zhen-Yu; Wang, Chun-Ling; Yang, Wen-Yan; Lu, Mei-Fang

    2009-01-01

    A lipopeptide biosurfactant produced by Bacillus natto TK-1 has a strong surface activity. The biosurfactant was found to be an anti-adhesive agent against several bacterial strains, and also showed a broad spectrum of antimicrobial activity. The biosurfactant induced a significant reduction in tumor cells viability in a dose-dependent manner. PMID:24031375

  18. Mechanism of Action and Limited Cross-Resistance of New Lipopeptide MX-2401▿

    PubMed Central

    Rubinchik, E.; Schneider, T.; Elliott, M.; Scott, W. R. P.; Pan, J.; Anklin, C.; Yang, H.; Dugourd, D.; Müller, A.; Gries, K.; Straus, S. K.; Sahl, H. G.; Hancock, R. E. W.

    2011-01-01

    MX-2401 is a semisynthetic calcium-dependent lipopeptide antibiotic (analogue of amphomycin) in preclinical development for the treatment of serious Gram-positive infections. In vitro and in vivo, MX-2401 demonstrates broad-spectrum bactericidal activity against Gram-positive organisms, including antibiotic-resistant strains. The objective of this study was to investigate the mechanism of action of MX-2401 and compare it with that of the lipopeptide daptomycin. The results indicated that although both daptomycin and MX-2401 are in the structural class of Ca2+-dependent lipopeptide antibiotics, the latter has a different mechanism of action. Specifically, MX-2401 inhibits peptidoglycan synthesis by binding to the substrate undecaprenylphosphate (C55-P), the universal carbohydrate carrier involved in several biosynthetic pathways. This interaction resulted in inhibition, in a dose-dependent manner, of the biosynthesis of the cell wall precursors lipids I and II and the wall teichoic acid precursor lipid III, while daptomycin had no significant effect on these processes. MX-2401 induced very slow membrane depolarization that was observed only at high concentrations. Unlike daptomycin, membrane depolarization by MX-2401 did not correlate with its bactericidal activity and did not affect general membrane permeability. In contrast to daptomycin, MX-2401 had no effect on lipid flip-flop, calcein release, or membrane fusion with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)/1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1′-rac-glycerol) (sodium salt) (POPG) liposomes. MX-2401 adopts a more defined structure than daptomycin, presumably to facilitate interaction with C55-P. Mutants resistant to MX-2401 demonstrated low cross-resistance to other antibiotics. Overall, these results provided strong evidence that the mode of action of MX-2401 is unique and different from that of any of the approved antibiotics, including daptomycin. PMID:21464247

  19. Enhanced production of antifungal lipopeptides by Bacillus amyloliquefaciens for biocontrol of postharvest disease.

    PubMed

    Pretorius, D; van Rooyen, J; Clarke, K G

    2015-03-25

    Food security to sustain increasing populations is a global concern. A major factor threatening food security is crop spoilage during postharvest storage. Reduction of postharvest spoilage has mainly been addressed by the application of synthetic chemicals. Bacillus lipopeptides, specifically lipopeptide homologues exhibiting antifungal efficacy, offer an alternative environmentally benign protocol for reduction of postharvest phytopathogens. This work is directed towards Bacillus lipopeptide production for biocontrol of postharvest phytopathogens in general and fungal phytopathogens in particular. Bacillus amyloliquefaciens DSM 23117 was identified as an organism with superior potential for lipopeptide production, via screening of 4 Bacillus candidates, in terms of antifungal lipopeptide concentration, yield, productivity and preferred homologue ratio. Efficacy of B. amyloliquefaciens lipopeptides against Botrytis cinerea substantiated appropriateness of this Bacillus species. Subsequent process modification of B. amyloliquefaciens cultures demonstrated that the concentration and ratio of the lipopeptides were significantly influenced by process conditions and further, distinguished nitrate and oxygen availability as key parameters defining optimal lipopeptide production. Discrete B. amyloliquefaciens cultures supplied with 4, 8, 10 and 12 g/L NH4NO3 demonstrated optimal lipopeptide concentration, yield and productivity, with respect to both total and antifungal lipopeptides, in the culture containing 8 g/L NH4NO3. Enhancement of total and antifungal lipopeptide kinetics similar to those quantified on increasing the nitrate from 4 to 8 g/L NH4NO3 were exhibited in B. amyloliquefaciens cultures when the oxygen in the sparge gas was increased from 21 to 30 mol%. The enhancement of lipopeptide production under conditions of increased nitrate and increased oxygen supply is explained in terms of increased availability of nitrogen for synthesis. This work has

  20. Morphological effects of lipopeptides against Aspergillus fumigatus correlate with activities against (1,3)-beta-D-glucan synthase.

    PubMed Central

    Kurtz, M B; Heath, I B; Marrinan, J; Dreikorn, S; Onishi, J; Douglas, C

    1994-01-01

    The lipopeptide antifungal agents, echinocandins, papulacandins, and pneumocandins, kill Candida albicans by inhibiting glucan synthesis. For this fungus, there is a good correlation of in vitro enzyme inhibition with in vitro assays of MICs. Semisynthetic lipopeptides such as cilofungin, LY303366, L-693,989, and L-733,560 have activity in vivo against Aspergillus infections but appear to be inactive in broth dilution in vitro tests (MICs, > 128 micrograms/ml). To understand how compounds which lack activity in vitro can have good in vivo activity, we monitored the effect of pneumocandins on the morphology of Aspergillus fumigatus and A, flavus strains by light microscopy and electron microscopy and related the changes in growth to inhibition of glucan synthesis. Pneumocandin B0 caused profound changes in hyphal growth; light micrographs showed abnormally swollen germ tubes, highly branched hyphal tips, and many cells with distended balloon shapes. Aspergillus electron micrographs confirmed that lipopeptides produce changes in cell walls; drug-treated germlings showed very stubby growth with thick walls and a conspicuous dark outer layer which was much thicker in the subapical regions. The rest of the hyphal tip ultrastructure was unaffected by the drug, indicating considerable specificity for the primary target. The drug-induced growth alteration produced very compact clumps in broth dilution wells, making it possible to score the morphological effect macroscopically. The morphological changes could be assayed quantitatively by using conventional broth microdilution susceptibility assay conditions. We defined the endpoint as the lowest concentration required to produce the morphological effect and called it the minimum effective concentration to distinguish it from the no-growth endpoints used in MIC determinations. The minimum effective concentration assay was related to inhibition of glucan synthase activity in vitro and may provide a starting point for

  1. The Antimicrobial Compound Xantholysin Defines a New Group of Pseudomonas Cyclic Lipopeptides

    PubMed Central

    Li, Wen; Rokni-Zadeh, Hassan; De Vleeschouwer, Matthias; Ghequire, Maarten G. K.; Sinnaeve, Davy; Xie, Guan-Lin; Rozenski, Jef; Madder, Annemieke; Martins, José C.; De Mot, René

    2013-01-01

    The rhizosphere isolate Pseudomonas putida BW11M1 produces a mixture of cyclic lipopeptide congeners, designated xantholysins. Properties of the major compound xantholysin A, shared with several other Pseudomonas lipopeptides, include antifungal activity and toxicity to Gram-positive bacteria, a supportive role in biofilm formation, and facilitation of surface colonization through swarming. Atypical is the lipopeptide’s capacity to inhibit some Gram-negative bacteria, including several xanthomonads. The lipotetradecadepsipeptides are assembled by XtlA, XtlB and XtlC, three co-linearly operating non-ribosomal peptide synthetases (NRPSs) displaying similarity in modular architecture with the entolysin-producing enzymes of the entomopathogenic Pseudomonas entomophila L48. A shifted serine-incorporating unit in the eight-module enzyme XtlB elongating the central peptide moiety not only generates an amino acid sequence differing at several equivalent positions from entolysin, but also directs xantholysin’s macrocyclization into an octacyclic structure, distinct from the pentacyclic closure in entolysin. Relaxed fatty acid specificity during lipoinitiation by XtlA (acylation with 3-hydroxydodec-5-enoate instead of 3-hydroxydecanoate) and for incorporation of the ultimate amino acid by XtlC (valine instead of isoleucine) account for the production of the minor structural variants xantholysin C and B, respectively. Remarkably, the genetic backbones of the xantholysin and entolysin NRPS systems also bear pronounced phylogenetic similarity to those of the P. putida strains PCL1445 and RW10S2, albeit generating the seemingly structurally unrelated cyclic lipopeptides putisolvin (undecapeptide containing a cyclotetrapeptide) and WLIP (nonapeptide containing a cycloheptapeptide), respectively. This similarity includes the linked genes encoding the cognate LuxR-family regulator and tripartite export system components in addition to individual modules of the NRPS enzymes, and

  2. HIV preventive vaccine research at the ANRS: the lipopeptide vaccine approach.

    PubMed

    Gahery, Hanne; Choppin, Jeannine; Bourgault, Isabelle; Fischer, Elizabeth; Maillère, Bernard; Guillet, Jean-Gèrard

    2005-01-01

    The HIV (human immunodeficiency virus)/AIDS epidemic is of unprecedented gravity and is spreading rapidly, notably in the most disadvantaged regions of the world. The search for a preventive vaccine is thus an absolute priority. For over 10 years the ANRS (Agence Nationale de Recherches sur le SIDA) has been committed to an original programme combining basic science and clinical research. The HIV preventive vaccine research programme includes upstream research for the definition of immunogens, animal models, and clinical research to evaluate candidate vaccines. In 2004, most researchers believed that it should be possible to obtain partial vaccine protection through the induction of a strong and multiepitopic cellular response. Since 1992, 15 phase I and II clinical trials have been established with the aim of evaluating the safety of candidate vaccines and their capacity to induce cellular immune responses. The candidate vaccines tested were recombinant canarypox viruses (ALVAC) containing sequences coding for certain viral proteins, utilised alone or combined with other immunogens (whole or truncated envelope proteins). An original strategy, based on the use of lipopeptides, is also under development. These vaccines comprise synthetic fragments of HIV proteins associated with lipids that facilitate the induction of a cellular immune response. These approaches have within a short time allowed the assessment of a prime-boost strategy combining a viral vector and lipopeptides. PMID:16128266

  3. Short cationic lipopeptides as effective antibacterial agents: Design, physicochemical properties and biological evaluation.

    PubMed

    Azmi, Fazren; Elliott, Alysha G; Marasini, Nirmal; Ramu, Soumya; Ziora, Zyta; Kavanagh, Angela M; Blaskovich, Mark A T; Cooper, Matthew A; Skwarczynski, Mariusz; Toth, Istvan

    2016-05-15

    The spread of drug-resistant bacteria has imparted a sense of urgency in the search for new antibiotics. In an effort to develop a new generation of antibacterial agents, we have designed de novo charged lipopeptides inspired by natural antimicrobial peptides. These short lipopeptides are composed of cationic lysine and hydrophobic lipoamino acids that replicate the amphiphilic properties of natural antimicrobial peptides. The resultant lipopeptides were found to self-assemble into nanoparticles. Some were effective against a variety of Gram-positive bacteria, including strains resistant to methicillin, daptomycin and/or vancomycin. The lipopeptides were not toxic to human kidney and liver cell lines and were highly resistant to tryptic degradation. Transmission electron microscopy analysis of bacteria cells treated with lipopeptide showed membrane-damage and lysis with extrusion of cytosolic contents. With such properties in mind, these lipopeptides have the potential to be developed as new antibacterial agents against drug-resistant Gram-positive bacteria. PMID:27048775

  4. Induction of resistance in wheat by bacterial cyclic lipopeptides.

    PubMed

    Khong, N G; Randoux, B; Deravel, J; Tisserant, B; Tayeh, Ch; Coutte, F; Bourdon, N; Jacques, Ph; Reignault, Ph

    2013-01-01

    Three families of lipopeptides (LPs), surfactin, iturin (including mycosutilin) and fengycin, produced by the rhizabacterium Bacillus subtilis have received considerable attention for their antimicrobial, cytotoxic, antitumor, immunosuppressant and surfactant properties. Among them, iturins and fengycins generally display a strong in vitro antifungal activity. In addition, surfactins are powerful bio surfactants, and although they don't show any direct fungitoxicity, they exhibit some synergistic effect with the antifungal activity of iturins. The aim of our work is to characterize mycosubtilin, surfactin and fengycin, for their ability to protect wheat against two pathogens, Blumeria graminis f.sp. tritici (Bgt), an obligate parasitic fungus responsible for powdery mildew and Mycosphaerella graminicola (Mg), an hemibiotrophic fungus causing Septoria leaf blotch, two of the most important diseases of this crop. In a first step, we measured the protection efficacy of a preventive treatment with LPs against powdery mildew on wheat leaves. At least 41% and 44% protection levels were obtained when surfactin and mycosubtilin, respectively, were sprayed on wheat leaves at doses corresponding to 4g.ha(-1) in the field. We also tested in vitro the impact of LPs on germination of spores. No direct antifungal effect of LPs was observed on Bgt conidia germination, irrespective of the tested concentrations. However, fengycin strongly decreased the germination of Mg conidia and also considerably delayed its growth. Mycasubtilin completely inhibited conidial germination and therefore also its growth while surfactin did not remarkably affect either germination or growth of this fungus. In a second step, RT-qPCR was used to investigate elicitor and priming effects of surfactin and mycosubtilin on the expression levels of defence-related genes. In non-infectious conditions, both surfactin and mycosubtilin induced the expression of two peroxidase encoding genes (POX2, POX381

  5. Comparison of the Immunostimulatory and Proinflammatory Activities of Candidate Gram-Positive Endotoxins, Lipoteichoic Acid, Peptidoglycan, and Lipopeptides in Murine and Human Cells

    PubMed Central

    Kimbrell, Matthew R.; Warshakoon, Hemamali; Cromer, Jens R.; Malladi, Subbalakshmi; Hood, Jennifer D.; Balakrishna, Rajalakshmi; Scholdberg, Tandace A.; David, Sunil A.

    2008-01-01

    1. Summary The role of lipopolysaccharide (LPS) in the pathogenesis of Gram-negative septic shock is well established. The corresponding proinflammatory and immunostimulatory molecule(s) on the Gram-positive bacteria is less well understood, and their identification and characterization would be a key prerequisite in designing specific sequestrants of the Gram-positive endotoxin(s). We report in this paper the comparison of NF-κB-, cytokine- and chemokine-inducing activities of the TLR2 ligands, lipoteichoic acid (LTA), peptidoglycan (PGN), and lipopeptides, to LPS, a prototype TLR4 agonist, in murine macrophage cell-lines as well as in human blood. In murine cells, di- and triacyl liopopeptides are equipotent in their NF-κB inducing activity relative to LPS, but elicit much lower proinflammatory cytokines. However, both LPS and the lipopeptides potently induce the secretion of a pattern of chemokines that is suggestive of the engagement of a TLR4-independent TRIF pathway. In human blood, although the lipopeptides induce p38 MAP kinase phosphorylation and CD11b upregulation in granulocytes at ng/ml concentrations, they do not elicit proinflammatory cytokine production even at very high doses; LTA, however, activates neutrophils and induces cytokine secretion, although its potency is considerably less than that of LPS, presumably due to its binding to plasma proteins. We conclude that, in human blood, the pattern of immunostimulation and proinflammatory mediator production elicited by LTA parallels that of LPS. PMID:18468694

  6. The Hoiamides, Structurally Intriguing Neurotoxic Lipopeptides from Papua New Guinea Marine Cyanobacteria

    PubMed Central

    Choi, Hyukjae; Pereira, Alban R.; Cao, Zhengyu; Shuman, Cynthia F.; Engene, Niclas; Byrum, Tara; Matainaho, Teatulohi; Murray, Thomas F.; Mangoni, Alfonso; Gerwick, William H.

    2011-01-01

    Two related peptide metabolites, one a cyclic depsipeptide, hoiamide B (2), and the other a linear lipopeptide, hoiamide C (3), were isolated from two different collections of marine cyanobacteria obtained in Papua New Guinea. Their structures were elucidated by combining various techniques in spectroscopy, chromatography and synthetic chemistry. Both metabolites belong to the unique hoiamide structural class, characterized by possessing an acetate extended and S-adenosyl methionine modified isoleucine unit, a central triheterocyclic system comprised of two α-methylated thiazolines and one thiazole, as well as a highly oxygenated and methylated C-15 polyketide unit. In neocortical neurons, the cyclic depsipeptide 2 stimulated sodium influx and suppressed spontaneous Ca2+ oscillations with EC50 values of 3.9 μM and 79.8 nM, respectively, while 3 had no significant effects in these assays. PMID:20687534

  7. The bacterial lipopeptide iturins induce Verticillium dahliae cell death by affecting fungal signalling pathways and mediate plant defence responses involved in pathogen-associated molecular pattern-triggered immunity.

    PubMed

    Han, Qin; Wu, Fengli; Wang, Xiaonan; Qi, Hong; Shi, Liang; Ren, Ang; Liu, Qinghai; Zhao, Mingwen; Tang, Canming

    2015-04-01

    Verticillium wilt in cotton caused by Verticillium dahliae is one of the most serious plant diseases worldwide. Because no known fungicides or cotton cultivars provide sufficient protection against this pathogen, V. dahliae causes major crop yield losses. Here, an isolated cotton endophytic bacterium, designated Bacillus amyloliquefaciens 41B-1, exhibited greater than 50% biocontrol efficacy against V. dahliae in cotton plants under greenhouse conditions. Through high-performance liquid chromatography and mass analysis of the filtrate, we found that the antifungal compounds present in the strain 41B-1 culture filtrate were a series of isoforms of iturins. The purified iturins suppressed V. dahliae microsclerotial germination in the absence or presence of cotton. Treatment with the iturins induced reactive oxygen species bursts, Hog1 mitogen-activated protein kinase (MAPK) activation and defects in cell wall integrity. The oxidative stress response and high-osmolarity glycerol pathway contribute to iturins resistance in V. dahliae. In contrast, the Slt2 MAPK pathway may be involved in iturins sensitivity in this fungus. In addition to antagonism, iturins could induce plant defence responses as activators and mediate pathogen-associated molecular pattern-triggered immunity. These findings suggest that iturins may affect fungal signalling pathways and mediate plant defence responses against V. dahliae. PMID:24934960

  8. Isolation and characterization of diverse antimicrobial lipopeptides produced by Citrobacter and Enterobacter

    PubMed Central

    2013-01-01

    Background Increasing multidrug-resistance in bacteria resulted in a greater need to find alternative antimicrobial substances that can be used for clinical applications or preservation of food and dairy products. Research on antimicrobial peptides including lipopeptides exhibiting both narrow and broad spectrum inhibition activities is increasing in the recent past. Therefore, the present study was aimed at isolation and characterization of antimicrobial lipopeptide producing bacterial strains from fecal contaminated soil sample. Results The phenotypic and 16S rRNA gene sequence analysis of all isolates identified them as different species of Gram-negative genera Citrobacter and Enterobacter. They exhibited common phenotypic traits like citrate utilization, oxidase negative and facultative anaerobic growth. The HPLC analysis of solvent extracts obtained from cell free fermented broth revealed the presence of multiple antimicrobial lipopeptides. The comprehensive mass spectral analysis (MALDI-TOF MS and GC-MS) of HPLC purified fractions of different isolates revealed that the lipopeptides varied in their molecular weight between (m/z) 607.21 to 1536.16 Da. Isomers of mass ion m/z 984/985 Da was produced by all strains. The 1495 Da lipopeptides produced by strains S-3 and S-11 were fengycin analogues and most active against all strains. While amino acid analysis of lipopeptides suggested most of them had similar composition as in iturins, fengycins, kurstakins and surfactins, differences in their β-hydroxy fatty acid content proposed them to be isoforms of these lipopeptides. Conclusion Although antimicrobial producing strains can be used as biocontrol agents in food preservation, strains with ability to produce multiple antimicrobial lipopeptides have potential applications in biotechnology sectors such as pharmaceutical and cosmetic industry. This is the first report on antibacterial lipopeptides production by strains of Citrobacter and Enterobacter. PMID

  9. Induced Seismicity Monitoring System

    NASA Astrophysics Data System (ADS)

    Taylor, S. R.; Jarpe, S.; Harben, P.

    2014-12-01

    There are many seismological aspects associated with monitoring of permanent storage of carbon dioxide (CO2) in geologic formations. Many of these include monitoring underground gas migration through detailed tomographic studies of rock properties, integrity of the cap rock and micro seismicity with time. These types of studies require expensive deployments of surface and borehole sensors in the vicinity of the CO2 injection wells. Another problem that may exist in CO2 sequestration fields is the potential for damaging induced seismicity associated with fluid injection into the geologic reservoir. Seismic hazard monitoring in CO2 sequestration fields requires a seismic network over a spatially larger region possibly having stations in remote settings. Expensive observatory-grade seismic systems are not necessary for seismic hazard deployments or small-scale tomographic studies. Hazard monitoring requires accurate location of induced seismicity to magnitude levels only slightly less than that which can be felt at the surface (e.g. magnitude 1), and the frequencies of interest for tomographic analysis are ~1 Hz and greater. We have developed a seismo/acoustic smart sensor system that can achieve the goals necessary for induced seismicity monitoring in CO2 sequestration fields. The unit is inexpensive, lightweight, easy to deploy, can operate remotely under harsh conditions and features 9 channels of recording (currently 3C 4.5 Hz geophone, MEMS accelerometer and microphone). An on-board processor allows for satellite transmission of parameter data to a processing center. Continuous or event-detected data is kept on two removable flash SD cards of up to 64+ Gbytes each. If available, data can be transmitted via cell phone modem or picked up via site visits. Low-power consumption allows for autonomous operation using only a 10 watt solar panel and a gel-cell battery. The system has been successfully tested for long-term (> 6 months) remote operations over a wide range

  10. Soluble human TLR2 ectodomain binds diacylglycerol from microbial lipopeptides and glycolipids

    PubMed Central

    Jiménez-Dalmaroni, Maximiliano J; Radcliffe, Catherine M; Harvey, David J; Wormald, Mark R; Verdino, Petra; Ainge, Gary D; Larsen, David S; Painter, Gavin F; Ulevitch, Richard; Beutler, Bruce; Rudd, Pauline M; Dwek, Raymond A; Wilson, Ian A

    2015-01-01

    Toll-like receptors (TLRs) are key innate immune receptors that recognize conserved features of biological molecules that are found in microbes. In particular, TLR2 has been reported to be activated by different kinds of microbial ligands. To advance our understanding of the interaction of TLR2 with its ligands, the recombinant human TLR2 ectodomain (hTLR2ED) was expressed using a baculovirus/insect cell expression system, and its biochemical as well as ligand binding properties were investigated. The hTLR2ED binds synthetic bacterial and mycoplasmal lipopeptides, lipoteichoic acid (LTA) from Staphylococcus aureus, and synthetic lipoarabinomannan precursors from Mycobacterium at extracellular physiological conditions, in the absence of its co-receptors TLR1 and TLR6. We also determined that lipopeptides and glycolipids cannot bind simultaneously to hTLR2ED and that the phosphatidyl inositol mannoside 2 (Pim2) is the minimal lipoarabinomannan structure for binding to hTLR2ED. Binding of hTLR2ED to Pim4, which contains a diacylglycerol group with one of its acyl chain containing 19 carbon atoms, indicates that hTLR2ED can bind ligands with acyl chains longer than 16 carbon atoms. In summary, our data indicate that diacylglycerol is the ligand moiety of microbial glycolipids and lipoproteins that bind to hTLR2ED and that both types of ligands bind to the same binding site of hTLR2ED. The design of novel inhibitors of TLR2, based on their ability to bind to TLR2 but not activate the TLR2 signaling pathway, may lead to the development of novel treatments for septic shock caused by Gram- positive bacteria. PMID:24591200

  11. Impact of Antimicrobial Lipopeptides from Bacillus sp. on Suppression of Fusarium Yellows of Tatsoi

    PubMed Central

    Yokota, Kenji; Hayakawa, Hiroshige

    2015-01-01

    Iturin A and surfactin are antimicrobial lipopeptides produced by antagonistic Bacillus spp. We herein demonstrated that both lipopeptides amended the soil-mediated suppression of the soil-borne disease, Fusarium yellows of tatsoi (Brassica rapa var. rosularis). Significant disease suppression was conferred by the amendments of purified iturin A or surfactin to soil. However, an excess amount of iturin A or surfactin to soil resulted in the loss of disease suppression activity. PMID:26118972

  12. Impact of Antimicrobial Lipopeptides from Bacillus sp. on Suppression of Fusarium Yellows of Tatsoi.

    PubMed

    Yokota, Kenji; Hayakawa, Hiroshige

    2015-01-01

    Iturin A and surfactin are antimicrobial lipopeptides produced by antagonistic Bacillus spp. We herein demonstrated that both lipopeptides amended the soil-mediated suppression of the soil-borne disease, Fusarium yellows of tatsoi (Brassica rapa var. rosularis). Significant disease suppression was conferred by the amendments of purified iturin A or surfactin to soil. However, an excess amount of iturin A or surfactin to soil resulted in the loss of disease suppression activity. PMID:26118972

  13. Daptomycin: a novel lipopeptide antibiotic against Gram-positive pathogens

    PubMed Central

    Beiras-Fernandez, Andres; Vogt, Ferdinand; Sodian, Ralf; Weis, Florian

    2010-01-01

    The aim of this review is to summarize the historical background of drug resistance of Gram-positive pathogens as well as to describe in detail the novel lipopeptide antibiotic daptomycin. Pharmacological and pharmacokinetic aspects are reviewed and the current clinical use of daptomycin is presented. Daptomycin seems to be a reliable drug in the treatment of complicated skin and skin structure infections, infective right-sided endocarditis, and bacteremia caused by Gram-positive agents. Its unique mechanism of action and its low resistance profile, together with its rapid bactericidal action make it a favorable alternative to vancomycin in multi-drug resistant cocci. The role of daptomycin in the treatment of prosthetic material infections, osteomyelitis, and urogenital infections needs to be evaluated in randomized clinical trials. PMID:21694898

  14. Cyclic LIPopeptides from Bacillus subtilis ABS-S14 elicit defense-related gene expression in citrus fruit.

    PubMed

    Waewthongrak, Waewruedee; Leelasuphakul, Wichitra; McCollum, Greg

    2014-01-01

    Effects of cyclic lipopeptides (CLPs) obtained from Bacillus subtilis ABS-S14 on eliciting defense-related gene transcription and activity of defense-related enzymes; glucanase (GLU), chitinase (CHI), peroxidase (POX) and lipoxygenase (LOX) in Citrus sinensis cv. Valencia fruit were determined. The maximum level of GLU transcripts induced in fruit treated with fengycin was significantly greatest among treatments at 48 h. Surfactin enhanced the LOX and POX transcripts. In parallel, corresponding enzyme activities were correlated with changes in gene expression observed in fruit inoculated with Penicillium digitatum following treatment with individual CLPs. Synergistic effects of fengycin and iturin A, fengycin and surfactin were shown in gene transcript of GLU and CHI, respectively, and surfactin induced POX and LOX gene expression of citrus flavedo without pathogen infection. These results suggest that fengycin and surfactin act as elicitors of defense-related gene expression in "Valencia" fruit following infection. PMID:25329301

  15. Cyclic Lipopeptides from Bacillus subtilis ABS–S14 Elicit Defense-Related Gene Expression in Citrus Fruit

    PubMed Central

    Waewthongrak, Waewruedee; Leelasuphakul, Wichitra; McCollum, Greg

    2014-01-01

    Effects of cyclic lipopeptides (CLPs) obtained from Bacillus subtilis ABS-S14 on eliciting defense-related gene transcription and activity of defense-related enzymes; glucanase (GLU), chitinase (CHI), peroxidase (POX) and lipoxygenase (LOX) in Citrus sinensis cv. Valencia fruit were determined. The maximum level of GLU transcripts induced in fruit treated with fengycin was significantly greatest among treatments at 48 h. Surfactin enhanced the LOX and POX transcripts. In parallel, corresponding enzyme activities were correlated with changes in gene expression observed in fruit inoculated with Penicillium digitatum following treatment with individual CLPs. Synergistic effects of fengycin and iturin A, fengycin and surfactin were shown in gene transcript of GLU and CHI, respectively, and surfactin induced POX and LOX gene expression of citrus flavedo without pathogen infection. These results suggest that fengycin and surfactin act as elicitors of defense-related gene expression in “Valencia” fruit following infection. PMID:25329301

  16. Structural Analysis of the Lipopeptide Produced by the Bacillus subtilis Mutant R2-104 with Mutagenesis.

    PubMed

    Meng, Yong; Zhao, Wei; You, Jia; Gang, Hong-Ze; Liu, Jin-Feng; Yang, Shi-Zhong; Ye, Ru-Qiang; Mu, Bo-Zhong

    2016-07-01

    The lipopeptide and its homologues are a kind of the five major biosurfactants with prominent interfacial and biological activities. A suite of mutagenesis method was adopted to expose a wild lipopeptide-producing strain Bacillus subtilis HSO121 to improve lipopeptide yield, and a stable mutant named R2-104 with a 2.0-fold production of lipopeptide was obtained. Compared to that of the wild strain HSO121, the lipopeptide produced by R2-104 showed a similar surface activity, but the course profiles of lipopeptide production during cultivation were different, with the peak yield of 500 mg at about 9 h by R2-104, and 400 mg at about 5 h by HSO121. The constituent abundance of the lipopeptide homologues produced by R2-104 was also different from that by HSO121. Combined methods of ESI-MS, GC-MS and MS-MS were applied for structural characterization of lipopeptide homologues, and it showed that the lipopeptides produced by R2-104 and HSO121 were attributed to a surfactin family with different constituents. The dominant constituent of the surfactin family produced by R2-104 was anteiso C15-surfactin with a relative content of 43.8 %, while the dominant one produced by HSO121was iso C14-surfactin with a relative content of 33.1 %. PMID:27020566

  17. Characterization of a potent antimicrobial lipopeptide via coarse-grained molecular dynamics

    PubMed Central

    Horn, Joshua N.; Sengillo, Jesse D.; Lin, Dejun; Romo, Tod D.; Grossfield, Alan

    2013-01-01

    The prevalence of antibiotic-resistant pathogens is a major medical concern, prompting increased interest in the development of novel antimicrobial compounds. One such set of naturally occurring compounds, known as antimicrobial peptides (AMPs), have broad-spectrum activity, but come with many limitations for clinical use. Recent work has resulted in a set of antimicrobial lipopeptides (AMLPs) with micromolar minimum inhibitory concentrations and excellent selectivity for bacterial membranes. To characterize a potent, synthetic lipopeptide, C16-KGGK, we used multi-microsecond coarse-grained simulations with the MARTINI forcefield, with a total simulation time of nearly 46 microseconds. These simulations show rapid binding of C16-KGGK, which forms micelles in solution, to model bacterial lipid bilayers. Furthermore, upon binding to the surface of the bilayer, these lipopeptides alter the local lipid organization by recruiting negatively charged POPG lipids to the site of binding. It is likely that this drastic reorganization of the bilayer has major effects on bilayer dynamics and cellular processes that depend on specific bilayer compositions. By contrast, the simulations revealed no association between the lipopeptides and model mammalian bilayers. These simulations provide biophysical insights into lipopeptide selectivity and suggest a possible mechanism for antimicrobial action. PMID:21819964

  18. A natural lipopeptide of surfactin for oral delivery of insulin.

    PubMed

    Zhang, Li; Gao, Zhenqiu; Zhao, Xiuyun; Qi, Gaofu

    2016-07-01

    Surfactin, a natural lipopeptide produced by Bacillus, is gaining attention for potentially biomedical and pharmaceutical applications. Here, surfactin was assayed for oral delivery of insulin (INS) by its ability to bind to and promote protein to penetrate through the cell membrane. Analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, surfactin was found to form co-precipitates with INS to protect it from acidic and enzymatic attack in the gastrointestinal tract. Further analysis by non-reductive electrophoresis showed surfactin could bind to INS forming heteropolymers. Analysis with circular dichroism, we found this binding significantly influenced the INS structure with decreased rigid α-helix and β-turn, but with increased flexible β-sheet and random coil. The change with more flexible structure was favorable for INS to penetrate through the cell membrane. Fluorescence spectra analysis also showed surfactin could lead Phe and Tyr in the inner of INS exposed outside, further promoting INS permeabilization by improving the hydrophobic-lipophilic interactions between INS and cell membrane. As a result, the effective permeability (Peff) of INS plus surfactin was 4.3 times of that of INS alone. In vivo assay showed oral INS with surfactin displayed excellent hypoglycemic effects with a relative bioavailability of 12.48% and 5.97% in diabetic mice and non-diabetic dogs, respectively. Summary, surfactin is potential for oral delivery of INS by its role as an effective protease inhibitor and permeability enhancer. PMID:26982158

  19. Probing DNA-lipid membrane interactions with a lipopeptide nanopore.

    PubMed

    Bessonov, Andrey; Takemoto, Jon Y; Simmel, Friedrich C

    2012-04-24

    Association of DNA molecules with lipid bilayer membranes is of considerable interest for a large variety of applications in biotechnology. Here we introduce syringomycin E (SRE), a small pore-forming lipopeptide produced by the bacterium Pseudomonas syringae, as a facile sensor for the detection of DNA interactions with lipid membranes. SRE forms highly reproducible pores in cellular and artificial membranes. The pore structure involves bilayer lipids, which have a pronounced influence on open channel conductance and gating. SRE channels act as ionic diodes that serve as current rectifiers sensitive to the charge of the bilayer. We employ this intrinsic property to electronically monitor the association of DNA molecules with the membrane in a variety of different settings. We show that SRE can be used for quantitatively probing electrostatic interactions of DNA and DNA-cholesterol conjugates with a lipid membrane. Furthermore, we demonstrate that SRE channels allow monitoring of hybridization reactions between lipid-anchored probe strands and complementary strands in solution. In the presence of double-stranded DNA, SRE channels display a particularly high degree of rectification. Finally, the formation of multilayered structures assembled from poly-(L)-lysine and DNA oligonucleotides on the membrane was precisely monitored with SRE. PMID:22424398

  20. Prevention and Mitigation of Acute Radiation Syndrome in Mice by Synthetic Lipopeptide Agonists of Toll-Like Receptor 2 (TLR2)

    PubMed Central

    Shakhov, Alexander N.; Singh, Vijay K.; Bone, Frederick; Cheney, Alec; Kononov, Yevgeniy; Krasnov, Peter; Bratanova-Toshkova, Troitza K.; Shakhova, Vera V.; Young, Jason; Weil, Michael M.; Panoskaltsis-Mortari, Angela; Orschell, Christie M.; Baker, Patricia S.; Gudkov, Andrei; Feinstein, Elena

    2012-01-01

    Bacterial lipoproteins (BLP) induce innate immune responses in mammals by activating heterodimeric receptor complexes containing Toll-like receptor 2 (TLR2). TLR2 signaling results in nuclear factor-kappaB (NF-κB)-dependent upregulation of anti-apoptotic factors, anti-oxidants and cytokines, all of which have been implicated in radiation protection. Here we demonstrate that synthetic lipopeptides (sLP) that mimic the structure of naturally occurring mycoplasmal BLP significantly increase mouse survival following lethal total body irradiation (TBI) when administered between 48 hours before and 24 hours after irradiation. The TBI dose ranges against which sLP are effective indicate that sLP primarily impact the hematopoietic (HP) component of acute radiation syndrome. Indeed, sLP treatment accelerated recovery of bone marrow (BM) and spleen cellularity and ameliorated thrombocytopenia of irradiated mice. sLP did not improve survival of irradiated TLR2-knockout mice, confirming that sLP-mediated radioprotection requires TLR2. However, sLP was radioprotective in chimeric mice containing TLR2-null BM on a wild type background, indicating that radioprotection of the HP system by sLP is, at least in part, indirect and initiated in non-BM cells. sLP injection resulted in strong transient induction of multiple cytokines with known roles in hematopoiesis, including granulocyte colony-stimulating factor (G-CSF), keratinocyte chemoattractant (KC) and interleukin-6 (IL-6). sLP-induced cytokines, particularly G-CSF, are likely mediators of the radioprotective/mitigative activity of sLP. This study illustrates the strong potential of LP-based TLR2 agonists for anti-radiation prophylaxis and therapy in defense and medical scenarios. PMID:22479357

  1. Semisynthetic Lipopeptides Derived from Nisin Display Antibacterial Activity and Lipid II Binding on Par with That of the Parent Compound.

    PubMed

    Koopmans, Timo; Wood, Thomas M; 't Hart, Peter; Kleijn, Laurens H J; Hendrickx, Antoni P A; Willems, Rob J L; Breukink, Eefjan; Martin, Nathaniel I

    2015-07-29

    The lipid II-binding N-terminus of nisin, comprising the so-called A/B ring system, was synthetically modified to provide antibacterially active and proteolytically stable derivatives. A variety of lipids were coupled to the C-terminus of the nisin A/B ring system to generate semisynthetic constructs that display potent inhibition of bacterial growth, with activities approaching that of nisin itself. Most notable was the activity observed against clinically relevant bacterial strains including MRSA and VRE. Experiments with membrane models indicate that these constructs operate via a lipid II-mediated mode of action without causing pore formation. A lipid II-dependent mechanism of action is further supported by antagonization assays wherein the addition of lipid II was found to effectively block the antibacterial activity of the nisin-derived lipopeptides. PMID:26122963

  2. Additive and Synergistic Membrane Permeabilization by Antimicrobial (Lipo)Peptides and Detergents

    PubMed Central

    Patel, Hiren; Huynh, Quang; Bärlehner, Dominik; Heerklotz, Heiko

    2014-01-01

    Certain antibiotic peptides are thought to permeabilize membranes of pathogens by effects that are also observed for simple detergents, such as membrane thinning and disordering, asymmetric bilayer expansion, toroidal pore formation, and micellization. Here we test the hypothesis that such peptides act additively with detergents when applied in parallel. Additivity is defined analogously to a fractional inhibitory concentration index of unity, and the extent and mechanism of leakage is measured by the fluorescence lifetime-based vesicle leakage assay using calcein-loaded vesicles. Good additivity was found for the concerted action of magainin 2, the fungicidal lipopeptide class of surfactins from Bacillus subtilis QST713, and the detergent octyl glucoside, respectively, with the detergent C12EO8. Synergistic or superadditive action was observed for fengycins from B. subtilis, as well as the detergent CHAPS, when combined with C12EO8. The results illustrate two mechanisms of synergistic action: First, maximal leakage requires an optimum degree of heterogeneity in the system that may be achieved by mixing a graded with an all-or-none permeabilizer. (The optimal perturbation should be focused to certain defect structures, yet not to the extent that some vesicles are not affected at all.) Second, a cosurfactant may enhance the bioavailability of a poorly soluble peptide. The results are important for understanding the concerted action of membrane-permeabilizing compounds in biology as well as for optimizing formulations of such antimicrobials for medical applications or crop protection. PMID:24853740

  3. Lipopeptide nanoparticles for potent and selective siRNA delivery in rodents and nonhuman primates

    PubMed Central

    Dong, Yizhou; Love, Kevin T.; Dorkin, J. Robert; Sirirungruang, Sasilada; Zhang, Yunlong; Chen, Delai; Bogorad, Roman L.; Yin, Hao; Chen, Yi; Vegas, Arturo J.; Alabi, Christopher A.; Sahay, Gaurav; Olejnik, Karsten T.; Wang, Weiheng; Schroeder, Avi; Lytton-Jean, Abigail K. R.; Siegwart, Daniel J.; Akinc, Akin; Barnes, Carmen; Barros, Scott A.; Carioto, Mary; Fitzgerald, Kevin; Hettinger, Julia; Kumar, Varun; Novobrantseva, Tatiana I.; Qin, June; Querbes, William; Koteliansky, Victor; Langer, Robert; Anderson, Daniel G.

    2014-01-01

    siRNA therapeutics have promise for the treatment of a wide range of genetic disorders. Motivated by lipoproteins, we report lipopeptide nanoparticles as potent and selective siRNA carriers with a wide therapeutic index. Lead material cKK-E12 showed potent silencing effects in mice (ED50 ∼ 0.002 mg/kg), rats (ED50 < 0.01 mg/kg), and nonhuman primates (over 95% silencing at 0.3 mg/kg). Apolipoprotein E plays a significant role in the potency of cKK-E12 both in vitro and in vivo. cKK-E12 was highly selective toward liver parenchymal cell in vivo, with orders of magnitude lower doses needed to silence in hepatocytes compared with endothelial cells and immune cells in different organs. Toxicity studies showed that cKK-E12 was well tolerated in rats at a dose of 1 mg/kg (over 100-fold higher than the ED50). To our knowledge, this is the most efficacious and selective nonviral siRNA delivery system for gene silencing in hepatocytes reported to date. PMID:24516150

  4. Induction of cytotoxic T-cell activity by the protective antigen of Schistosoma mansoni Sm28GST or its derived C-terminal lipopeptide.

    PubMed

    Pancré, V; Gras-Masse, H; Delanoye, A; Herno, J; Capron, A; Auriault, C

    1996-11-01

    In a previous work the authors demonstrated that immunization with Schistosoma mansoni 28-kDa glutathione-S-transferase (Sm28GST) was able to reduce hepatic damage in infected mice and that the adoptive transfer of Sm28GST-specific T cells reproduced the protective effect obtained with the recombinant molecule. In the present paper, the authors show that Sm28GST is also able to stimulate an antigen-specific, cytotoxic T-cell response against Sm28GST-pulsed P815 target cells in normal mice and that effector cells induced in vivo were classical Class I MHC-restricted CD8+ lymphocytes. The authors found no spontaneous CTL activity against Sm28GST-pulsed target cells during the course of the infection by S. mansoni although Sm28GST is expressed at different developmental stages of the parasite. It was observed, however, that immunization with Sm28GST is sufficient to elicit a significant level of CTL response for 6 weeks in infected mice. The role of these Class I MHC-restricted CD8+ lymphocytes in the protection observed precisely at the same period in immunized mice remains to be elucidated. The authors also observe that immunization with the lipopeptide form of the C-terminal peptide of the molecule (190-211 peptide) led to a CTL activation comparable to that observed after immunization with the whole molecule demonstrating the feasibility of using a synthetic lipopeptide as immunogen for a CTL response against Sm28GST epitopes. Moreover, like Sm28GST-specific CTLs, 190-211 lipopeptide-specific cells were also Class I MHC-restricted lymphocytes. PMID:8947600

  5. Quantification of the antifungal lipopeptide iturin A by high performance liquid chromatography coupled with aqueous two-phase extraction.

    PubMed

    Yuan, Jun; Raza, Waseem; Huang, Qiwei; Shen, Qirong

    2011-09-15

    Iturin A, a powerful antifungal surfactant, is a kind of bacterial lipopeptide produced by Bacillus strains. This study addresses the use of an aqueous two-phase system (ATPS) using ethanol/ammonium sulfate to extract iturin A from Bacillus amyloliquefaciens NJN-6 fermentation broth and the quantification of iturin A by HPLC. Baseline separation of iturin A homologues was performed using an RP-C(18) column with a mixture of water and acetonitrile. The results showed that the correlation coefficient between integral area and concentration was 0.9961 within the range of 20-140 mg/l. The RSD of the retention time and the peak area were 1.29% and 1.45%, respectively. The effects of some operating parameters in ATPS, e.g., pH, temperature and centrifugation time, were also studied. This method can be successfully used for the rapid quantification of iturin A. PMID:21872538

  6. Design and evaluation of a PEGylated lipopeptide equipped with drug-interactive motifs as an improved drug carrier.

    PubMed

    Zhang, Peng; Lu, Jianqin; Huang, Yixian; Zhao, Wenchen; Zhang, Yifei; Zhang, Xiaolan; Li, Jiang; Venkataramanan, Raman; Gao, Xiang; Li, Song

    2014-01-01

    Micelles are attractive delivery systems for hydrophobic drugs due to their small size and the ease of application. However, the limited drug loading capacity and the intrinsic poor stability of drug-loaded formulations represent two major issues for some micellar systems. In this study, we designed and synthesized a micelle-forming PEG-lipopeptide conjugate with two Fmoc groups located at the interfacial region, and two oleoyl chains as the hydrophobic core. The significance of Fmoc groups as a broadly applicable drug-interactive motif that enhances the carrier-drug interaction was examined using eight model drugs of diverse structures. Compared with an analogue without carrying a Fmoc motif, PEG5000-(Fmoc-OA)₂ demonstrated a lower value of critical micelle concentration and three-fold increases of loading capacity for paclitaxel (PTX). These micelles showed tubular structures and small particle sizes (∼70 nm), which can be lyophilized and readily reconstituted with water without significant changes in particle sizes. Fluorescence quenching study illustrated the Fmoc/PTX π-π stacking contributes to the carrier/PTX interaction, and drug-release study demonstrated a much slower kinetics than Taxol, a clinically used PTX formulation. PTX/PEG5000-(Fmoc-OA)₂ mixed micelles exhibited higher levels of cytotoxicity than Taxol in several cancer cell lines and more potent inhibitory effects on tumor growth than Taxol in a syngeneic murine breast cancer model (4T1.2). We have further shown that seven other drugs can be effectively formulated in PEG5000-(Fmoc-OA)₂ micelles. Our study suggests that micelle-forming PEG-lipopeptide surfactants with interfacial Fmoc motifs may represent a promising formulation platform for a broad range of drugs with diverse structures. PMID:24281690

  7. Cyclic lipopeptide profile of three Bacillus subtilus strains; antagonists of Fusarium head blight

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The cyclic lipopeptide profile of three Bacillus subtilis strains (AS 43.3, AS 43.4, and OH 131.1) was determined using mass spectroscopy. The strains are antagonists of Gibberella zeae and have been shown to be effective in reducing Fusarium head blight in wheat. Strains AS 43.3 and AS 43.4 produ...

  8. Biophysical characterization of V3-lipopeptide liposomes influencing HIV-1 infectivity

    SciTech Connect

    Rizos, Apostolos K. . E-mail: Rizos@iesl.forth.gr; Baritaki, Stavroula; Tsikalas, Ioannis; Doetschman, David C.; Spandidos, Demetrios A.; Krambovitis, Elias; E-mail: krambo@imbb.forth.gr

    2007-04-20

    The V3-loop of the HIV-1 gp120 alters host cell immune function and modulates infectivity. We investigated biophysical parameters of liposome constructs with embedded lipopeptides from the principle neutralizing domain of the V3-loop and their influence on viral infectivity. Dynamic light scattering measurements showed liposome supramolecular structures with hydrodynamic radius of the order of 900 and 1300 nm for plain and V3-lipopeptide liposomes. Electron paramagnetic resonance measurements showed almost identical local microenvironment. The difference in liposome hydrodynamic radius was attributed to the fluctuating ionic environment of the V3-lipopeptide liposomes. In vitro HIV-1 infectivity assays showed that plain liposomes reduced virus production in all cell cultures, probably due to the hydrophobic nature of the aggregates. Liposomes carrying V3-lipopeptides with different cationic potentials restored and even enhanced infectivity (p < 0.05). These results highlight the need for elucidation of the involvement of lipid bilayers as dynamic components in supramolecular structures and in HIV-1 fusion mechanisms.

  9. Mass Spectrometric Analysis of Lipopeptide from Bacillus Strains Isolated from Diverse Geographical Locations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Matrix-assisted laser desorption/ionization time-of flight mass spectrometry (MALDI-TOF MS) has been applied to characterize lipopeptide biomarkers from 54 different strains of Bacillis from most taxa within the B. subtilis - B. licheniformis clade, isolated from 7 different geographic locations on ...

  10. Crystal structure of the N-myristoylated lipopeptide-bound MHC class I complex

    PubMed Central

    Morita, Daisuke; Yamamoto, Yukie; Mizutani, Tatsuaki; Ishikawa, Takeshi; Suzuki, Juri; Igarashi, Tatsuhiko; Mori, Naoki; Shiina, Takashi; Inoko, Hidetoshi; Fujita, Hiroaki; Iwai, Kazuhiro; Tanaka, Yoshimasa; Mikami, Bunzo; Sugita, Masahiko

    2016-01-01

    The covalent conjugation of a 14-carbon saturated fatty acid (myristic acid) to the amino-terminal glycine residue is critical for some viral proteins to function. This protein lipidation modification, termed N-myristoylation, is targeted by host cytotoxic T lymphocytes (CTLs) that specifically recognize N-myristoylated short peptides; however, the molecular mechanisms underlying lipopeptide antigen (Ag) presentation remain elusive. Here we show that a primate major histocompatibility complex (MHC) class I-encoded protein is capable of binding N-myristoylated 5-mer peptides and presenting them to specific CTLs. A high-resolution X-ray crystallographic analysis of the MHC class I:lipopeptide complex reveals an Ag-binding groove that is elaborately constructed to bind N-myristoylated short peptides rather than prototypic 9-mer peptides. The identification of lipopeptide-specific, MHC class I-restricted CTLs indicates that the widely accepted concept of MHC class I-mediated presentation of long peptides to CTLs may need some modifications to incorporate a novel MHC class I function of lipopeptide Ag presentation. PMID:26758274

  11. Crystal structure of the N-myristoylated lipopeptide-bound MHC class I complex.

    PubMed

    Morita, Daisuke; Yamamoto, Yukie; Mizutani, Tatsuaki; Ishikawa, Takeshi; Suzuki, Juri; Igarashi, Tatsuhiko; Mori, Naoki; Shiina, Takashi; Inoko, Hidetoshi; Fujita, Hiroaki; Iwai, Kazuhiro; Tanaka, Yoshimasa; Mikami, Bunzo; Sugita, Masahiko

    2016-01-01

    The covalent conjugation of a 14-carbon saturated fatty acid (myristic acid) to the amino-terminal glycine residue is critical for some viral proteins to function. This protein lipidation modification, termed N-myristoylation, is targeted by host cytotoxic T lymphocytes (CTLs) that specifically recognize N-myristoylated short peptides; however, the molecular mechanisms underlying lipopeptide antigen (Ag) presentation remain elusive. Here we show that a primate major histocompatibility complex (MHC) class I-encoded protein is capable of binding N-myristoylated 5-mer peptides and presenting them to specific CTLs. A high-resolution X-ray crystallographic analysis of the MHC class I:lipopeptide complex reveals an Ag-binding groove that is elaborately constructed to bind N-myristoylated short peptides rather than prototypic 9-mer peptides. The identification of lipopeptide-specific, MHC class I-restricted CTLs indicates that the widely accepted concept of MHC class I-mediated presentation of long peptides to CTLs may need some modifications to incorporate a novel MHC class I function of lipopeptide Ag presentation. PMID:26758274

  12. Mulundocandin, a new lipopeptide antibiotic. I. Taxonomy, fermentation, isolation and characterization.

    PubMed

    Roy, K; Mukhopadhyay, T; Reddy, G C; Desikan, K R; Ganguli, B N

    1987-03-01

    Mulundocandin, a new lipopeptide antibiotic, was isolated from the culture broth of a strain of Aspergillus sydowi No. Y-30462. The antibiotic, obtained as a colorless amorphous powder having the molecular formula C48H77N7O16, is an antifungal antibiotic active against yeasts and filamentous fungi. PMID:3570979

  13. Cyclic lipopeptide profile of three Bacillus subtilis strains; antagonists of Fusarium head blight.

    PubMed

    Dunlap, Christopher A; Schisler, David A; Price, Neil P; Vaughn, Steven F

    2011-08-01

    The objective of the study was to identify the lipopetides associated with three Bacillus subtilis strains. The strains are antagonists of Gibberella zeae, and have been shown to be effective in reducing Fusarium head blight in wheat. The lipopeptide profile of three B. subtilis strains (AS43.3, AS43.4, and OH131.1) was determined using mass spectroscopy. Strains AS43.3 and AS43.4 produced the anti-fungal lipopeptides from the iturin and fengycin family during the stationary growth phase. All three strains produced the lipopeptide surfactin at different growth times. Strain OH131.1 only produced surfactin under these conditions. The antifungal activity of the culture supernatant and individual lipopeptides was determined by the inhibition of G. zeae. Cell-free supernatant from strains AS43.3 and AS43.4 demonstrated strong antibiosis of G. zeae, while strain OH131.1 had no antibiosis activity. These results suggest a different mechanism of antagonism for strain OH131.1, relative to AS43.3 and AS43.4. PMID:21887643

  14. Review lipopeptides biosurfactants: Mean classes and new insights for industrial, biomedical, and environmental applications.

    PubMed

    Mnif, Inès; Ghribi, Dhouha

    2015-05-01

    Lipopeptides are microbial surface active compounds produced by a wide variety of bacteria, fungi, and yeast. They are characterized by high structural diversity and have the ability to decrease the surface and interfacial tension at the surface and interface, respectively. Surfactin, iturin, and fengycin of Bacillus subtilis are among the most popular lipopeptides. Lipopepetides can be applied in diverse domains as food and cosmetic industries for their emulsification/de-emulsification capacity, dispersing, foaming, moisturizing, and dispersing properties. Also, they are qualified as viscosity reducers, hydrocarbon solubilizing and mobilizing agents, and metal sequestering candidates for application in environment and bioremediation. Moreover, their ability to form pores and destabilize biological membrane permits their use as antimicrobial, hemolytic, antiviral, antitumor, and insecticide agents. Furthermore, lipopeptides can act at the surface and can modulate enzymes activity permitting the enhancement of the activity of certain enzymes ameliorating microbial process or the inhibition of certain other enzymes permitting their use as antifungal agents. This article will present a detailed classification of lipopeptides biosurfactant along with their producing strain and biological activities and will discuss their functional properties and related applications. PMID:25808118

  15. A comparative analysis of cytokine production and tolerance induction by bacterial lipopeptides, lipopolysaccharides and Staphyloccous aureus in human monocytes.

    PubMed Central

    Kreutz, M; Ackermann, U; Hauschildt, S; Krause, S W; Riedel, D; Bessler, W; Andreesen, R

    1997-01-01

    Monocytes (MO) and macrophages (MAC) are important producers of cytokines involved in the pathophysiology of bacterial sepsis. Most studies concentrate on the effects of bacterial lipopolysaccharides (LPS) regarding the induction of cytokine gene expression and secretion in MO/MAC. Here we report that besides LPS, the synthetic lipoprotein analogue lipopeptide N-palmitoyl-S-(2,3-bis(palmitoyl)-(2RS)-propyl)-(R)-cysteinyl-alanyl- glycine (Pam3-Cys-Ala-Gly), another component of the outer membrane of Gram-negative bacteria, as well as heat-killed Staphyloccocus aureus (S. aureus/SAC) are potent stimuli for cytokines in human MO. For all three investigated stimuli we found an individual pattern of cytokine induction: LPS was most potent in inducing interleukin-6 (IL-6) synthesis, whereas for tumour necrosis factor-alpha (TNF-alpha) secretion SAC was the best stimulus. Comparable amounts of IL-8 were induced by either LPS or Pam3-Cys-Ala-Gly, with SAC being less effective even at higher concentrations. The addition of serum led to an increase in LPS-, SAC- and Pam3-Cys-Ala-Gly-stimulated TNF-alpha secretion, indicating that the presence of serum is critical not just for LPS stimulation. Furthermore, as is known for LPS, Pam3-Cys-Ala-Gly and SAC rendered MO refractory to a second bacterial stimulus. Pam3-Cys-Ala-Gly and SAC induced tolerance for itself, but LPS could partially overcome this effect. As the CD14 molecule is discussed as a common receptor for different bacterial components, we investigated whether the TNF-alpha response of MO could be blocked by anti-CD14 antibodies. MY4, a CD14 antibody, selectively blocked the TNF-alpha secretion induced by LPS but not by Pam3-Cys-Ala-Gly or SAC. In summary, we conclude that besides LPS, lipopeptide Pam3-Cys-Ala-Gly and SAC are potent stimuli for human MO, while the mechanisms of activation seem to be partially different from LPS. Images Figure 2 PMID:9486114

  16. [Construction and evaluation of an engineered bacterial strain for producing lipopeptide under anoxic conditions].

    PubMed

    Liang, Xiao-long; Zhao, Feng; Shi, Rong-jiu; Ban, Yun-he; Zhou, Ji-dong; Han, Si-qin; Zhang, Ying

    2015-08-01

    Biosurfactant-facilitated oil recovery is one of the most important aspects of microbial enhanced oil recovery (MEOR). However, the biosurfactant production by biosurfactant-producing microorganisms, most of which are aerobes, is severely suppressed due to the in-situ anoxic conditions within oil reservoirs. In this research, we successfully engineered a strain JD-3, which could grow rapidly and produce lipopeptide under anoxic conditions, by protoplast confusion using a Bacillus amyloliquefaciens strain BQ-2 which produces biosurfactant aerobically, and a facultative anaerobic Pseudomonas stutzeri strain DQ-1 as parent strains. The alignment of 16S rDNA sequence (99% similarity) and comparisons of cell colony morphology showed that fusant JD-3 was closer to the parental strain B. amyloliquefaciens BQ-2. The surface tension of culture broth of fusant JD-3, after 36-hour cultivation under anaerobic conditions, decreased from initially 63.0 to 32.5 mN · m(-1). The results of thin layer chromatography and infrared spectrum analysis demonstrated that the biosurfactant produced by JD-3 was lipopeptide. The surface-active lipopeptide had a low critical micelle concentration (CMC) of 90 mg · L(-1) and presented a good ability to emulsify various hydrocarbons such as crude oil, liquid paraffin, and kerosene. Strain JD-3 could utilize peptone as nitrogen source and sucrose, glucose, glycerin or other common organics as carbon sources for anaerobic lipopeptide synthesis. The subculture of fusant JD-3 showed a stable lipopeptide-producing ability even after ten serial passages. All these results indicated that fusant JD-3 holds a great potential to microbially enhance oil recovery under anoxic conditions. PMID:26685621

  17. Influence of serum on the immune recognition of a synthetic lipopeptide mimetic of the 19-kDa lipoprotein from Mycobacterium tuberculosis.

    PubMed

    Schromm, Andra B; Reiling, Norbert; Howe, Jörg; Wiesmüller, Karl-Heinz; Roessle, Manfred; Brandenburg, Klaus

    2010-08-01

    The innate immune response provides a critical first-line defense against Mycobacterium tuberculosis, an intracellular pathogen that represents a major health threat world-wide. A synthetic lipopeptide (LP) mimicking the lipid moiety of the cell-wall associated 19-kDa lipoprotein from M. tuberculosis has recently been assigned an important role in the induction of an antibacterial immune response in host macrophages. Here, we present experimental data on the biological activities and the biophysical mechanisms underlying cell activation by synthetic 19-kDa M. tuberculosis-derived lipopeptide (Mtb-LP). Investigation of the geometry of the LP (i.e. the molecular conformation and supramolecular aggregate structure) and the preference for membrane intercalation provide an explanation for the biological activities of the mycobacterial LP. Cell activation by low concentrations of Mtb-LP was enhanced by the lipopolysaccharide-binding protein and CD14. However, surprisingly, we found that activation of human macrophages to induce pro- as well as antiinflammatory mediators (tumor necrosis factor(TNF)-alpha, Interleukin(IL)-6, IL-8, and IL-10) in response to the Mtb-LP is strongly reduced in the presence of serum. This observation could be confirmed for the immune response of murine macrophages which showed a strongly enhanced TNF-alpha release in the absence of serum, suggesting that the molecular mechanisms of immune recognition of the Mtb-LP are tailored to the ambient conditions of the lung. PMID:19710101

  18. A liquid chromatography-mass spectrometric method for the detection of cyclic β-amino fatty acid lipopeptides.

    PubMed

    Urajová, Petra; Hájek, Jan; Wahlsten, Matti; Jokela, Jouni; Galica, Tomáš; Fewer, David P; Kust, Andreja; Zapomělová-Kozlíková, Eliška; Delawská, Kateřina; Sivonen, Kaarina; Kopecký, Jiří; Hrouzek, Pavel

    2016-03-18

    Bacterial lipopeptides, which contain β-amino fatty acids, are an abundant group of bacterial secondary metabolites exhibiting antifungal and/or cytotoxic properties. Here we have developed an LC-HRMS/MS method for the selective detection of β-amino fatty acid containing cyclic lipopeptides. The method was optimized using the lipopeptides iturin A and puwainaphycin F, which contain fatty acids of similar length but differ in the amino acid composition of the peptide cycle. Fragmentation energies of 10-55eV were used to obtain the amino acid composition of the peptide macrocycle. However, fragmentation energies of 90-130eV were used to obtain an intense fragment specific for the β-amino fatty acid (CnH2n+2N(+)). The method allowed the number of carbons and consequently the length of the β-amino fatty acid to be estimated. We identified 21 puwainaphycin variants differing in fatty acid chain in the crude extract of cyanobacterium Cylindrospermum alatosporum using this method. Analogously 11 iturin A variants were detected. The retention time of the lipopeptide variants showed a near perfect linear dependence (R(2)=0.9995) on the length of the fatty acid chain in linear separation gradient which simplified the detection of minor variants. We used the method to screen 240 cyanobacterial strains and identified lipopeptides from 8 strains. The HPLC-HRMS/MS method developed here provides a rapid and easy way to detecting novel variants of cyclic lipopeptides. PMID:26893022

  19. New Aspercryptins, Lipopeptide Natural Products, Revealed by HDAC Inhibition in Aspergillus nidulans.

    PubMed

    Henke, Matthew T; Soukup, Alexandra A; Goering, Anthony W; McClure, Ryan A; Thomson, Regan J; Keller, Nancy P; Kelleher, Neil L

    2016-08-19

    Unlocking the biochemical stores of fungi is key for developing future pharmaceuticals. Through reduced expression of a critical histone deacetylase in Aspergillus nidulans, increases of up to 100-fold were observed in the levels of 15 new aspercryptins, recently described lipopeptides with two noncanonical amino acids derived from octanoic and dodecanoic acids. In addition to two NMR-verified structures, MS/MS networking helped uncover an additional 13 aspercryptins. The aspercryptins break the conventional structural orientation of lipopeptides and appear "backward" when compared to known compounds of this class. We have also confirmed the 14-gene aspercryptin biosynthetic gene cluster, which encodes two fatty acid synthases and several enzymes to convert saturated octanoic and dodecanoic acid to α-amino acids. PMID:27310134

  20. Wastewater treatment enhancement by applying a lipopeptide biosurfactant to a lignocellulosic biocomposite.

    PubMed

    Perez-Ameneiro, M; Vecino, X; Cruz, J M; Moldes, A B

    2015-10-20

    In this work, a natural lipopeptide biosurfactant obtained from corn steep liquor was included in the formulation of a lignocellulosic biocomposite used for the treatment of wastewater. The results obtained indicate that the dye sorption capacity of the hydrogel containing hydrolysed vineyard pruning waste can be significantly promoted via surfactant modification using natural detergents. The elimination of dye compounds and the removal of sulphates were increased around 10% and 62%, respectively, when the biocomposite modified with biosurfactant was used. This outcome can be intrinsically related to the rougher, rounder, more compact and better-emulsified sphere achieved after the addition of the lipopeptide biosurfactant. The bioadsorption process followed a pseudo-second order kinetic model and both intraparticle diffusion and liquid film diffusion were involved in the bioadsorption mechanism. Therefore, the utilisation of biosurfactants shows great potential in the formulation of eco-friendly adsorbents for environmental application. PMID:26256175

  1. Assessment of mosquito larvicidal potency of cyclic lipopeptides produced by Bacillus subtilis strains.

    PubMed

    Das, Kishore; Mukherjee, Ashis K

    2006-02-01

    In this study, mosquito larvicidal potency of cyclic lipopeptides (CLPs) secreted by two Bacillus subtilis strains were determined. LC50 of the crude CLPs secreted by B. subtilis DM-03 and DM-04 strains against third instar larvae of Culex quinquefasciatus was 120.0+/-5.0 and 300.0+/-8.0mg/l respectively post 24 h of treatment. Physico-chemical factors such as pH of water, incubation temperature, heating and exposure to sunlight hardly influenced the larvicidal potency of these CLPs. Present study provided the evidence that B. subtilis lipopeptides were safe to Indian major carp Labeo rohita, a non-target aquatic organism. These properties of B. subtilis CLPs can be exploited for the formulation of a safer, novel biopesticide for effective control of mosquito larvae. PMID:16316617

  2. Draft Whole-Genome Sequence of Bacillus sonorensis Strain L12, a Source of Nonribosomal Lipopeptides.

    PubMed

    Adimpong, David B; Sørensen, Kim I; Nielsen, Dennis S; Thorsen, Line; Rasmussen, Thomas B; Derkx, Patrick M F; Jespersen, Lene

    2013-01-01

    The Bacillus sonorensis L12 draft genome sequence is approximately 4,647,754 bp in size with a G+C content of 45.2%. Over 86% of the genome contains protein-encoding genes, including several gene clusters for de novo biosynthesis of the nonribosomal lipopeptides iturin, bacitracin, and fengycin, which could mean that the strain exhibits antifungal effects. PMID:23538904

  3. The Tunisian oasis ecosystem is a source of antagonistic Bacillus spp. producing diverse antifungal lipopeptides.

    PubMed

    El Arbi, Amel; Rochex, Alice; Chataigné, Gabrielle; Béchet, Max; Lecouturier, Didier; Arnauld, Ségolène; Gharsallah, Néji; Jacques, Philippe

    2016-01-01

    The use of microbial products has become a promising alternative approach to controlling plant diseases caused by phytopathogenic fungi. Bacteria isolated from the date palm tree rhizosphere of the Tunisian oasis ecosystem could provide new biocontrol microorganisms adapted to extreme conditions, such as drought, salinity and high temperature. The aim of this study was to screen bacteria isolated from the rhizosphere of the date palm tree for their ability to inhibit phytopathogenic fungi, and to identify molecules responsible for their antifungal activity. Screening for antifungal activity was performed on twenty-eight isolates. Five antagonistic isolates were selected and identified as different species of Bacillus using phenotypical methods and a molecular approach. The five antagonistic Bacillus isolated showed tolerance to abiotic stresses (high temperature, salinity, drought). Their ability to produce lipopeptides was investigated using a combination of two techniques: PCR amplification and MALDI-ToF mass spectrometry. Analyses revealed that the antagonistic isolates produced a high diversity of lipopeptides that belonged to surfactin, fengycin, iturin and kurstakin families. Their antagonistic activity, related to their capacity for producing diverse antifungal lipopeptides and their tolerance to abiotic stresses, highlighted Bacillus strains isolated from the rhizosphere of the date palm tree as potential biocontrol agents for combatting plant diseases in extreme environments. PMID:26428248

  4. Characterization of a multi-lipopeptides mixture used as an HIV-1 vaccine candidate.

    PubMed

    Klinguer, C; David, D; Kouach, M; Wieruszeski, J M; Tartar, A; Marzin, D; Levy, J P; Gras-Masse, H

    1999-09-01

    A multi-component vaccine has been defined, which contains six different synthetic 24- to 32-amino acid lipopeptides derived from the sequence of HIV-1 proteins. The physicochemical properties of the lipopeptide components were compatible with multi-dimensional analysis, using RP-HPLC, Edman sequencing, electrospray mass spectrometry, and 2D-NMR. Detailed analysis of the impurity profiles led to the detection and evaluation of the relative proportions of most by-products: several contaminants resulted from the formation of acetylated fragments, transpeptidation reactions with succinimide or piperidide formation, or methionine and/or tryptophan mono-oxidations. The first batch to be produced underwent extensive pharmacotoxicological testings to confirm its safety; this vaccine candidate has now been used in phase I clinical trials. Despite the complexity of such multi-lipopeptide vaccines, our findings suggest the possibility of preparing a clear and precise assignment of by-products to toxicologically qualified impurities in the eventuality of a future production of several successive batches. PMID:10506650

  5. Lipopeptides as the antifungal and antibacterial agents: applications in food safety and therapeutics.

    PubMed

    Meena, Khem Raj; Kanwar, Shamsher S

    2015-01-01

    A lot of crops are destroyed by the phytopathogens such as fungi, bacteria, and yeast leading to economic losses to the farmers. Members of the Bacillus genus are considered as the factories for the production of biologically active molecules that are potential inhibitors of growth of phytopathogens. Plant diseases constitute an emerging threat to global food security. Many of the currently available antimicrobial agents for agriculture are highly toxic and nonbiodegradable and thus cause extended environmental pollution. Moreover, an increasing number of phytopathogens have developed resistance to antimicrobial agents. The lipopeptides have been tried as potent versatile weapons to deal with a variety of phytopathogens. All the three families of Bacillus lipopeptides, namely, Surfactins, Iturins and Fengycins, have been explored for their antagonistic activities towards a wide range of phytopathogens including bacteria, fungi, and oomycetes. Iturin and Fengycin have antifungal activities, while Surfactin has broad range of potent antibacterial activities and this has also been used as larvicidal agent. Interestingly, lipopeptides being the molecules of biological origin are environmentally acceptable. PMID:25632392

  6. Structure-Activity Relationships in Toll-like Receptor-2 agonistic Diacylthioglycerol Lipopeptides

    PubMed Central

    Wu, Wenyan; Li, Rongti; Malladi, Subbalakshmi S.; Warshakoon, Hemamali J.; Kimbrell, Matthew R.; Amolins, Michael W.; Ukani, Rehman; Datta, Apurba; David, Sunil A.

    2010-01-01

    The N-termini of bacterial lipoproteins are acylated with a (S)-(2,3-bisacyloxypropyl)cysteinyl residue. Lipopeptides derived from lipoproteins activate innate immune responses by engaging Toll-like receptor 2 (TLR2), and are highly immunostimulatory and yet without apparent toxicity in animal models. The lipopeptides may therefore be useful as potential immunotherapeutic agents. Previous structure-activity relationships in such lipopeptides have largely been obtained using murine cells and it is now clear that significant species-specific differences exist between human and murine TLR responses. We have examined in detail the role of the highly conserved Cys residue as well as the geometry and stereochemistry of the Cys-Ser dipeptide unit. (R)-diacylthioglycerol analogues are maximally active in reporter gene assays using human TLR2. The Cys-Ser dipeptide unit represents the minimal part-structure, but its stereochemistry was found not to be a critical determinant of activity. The thioether bridge between the diacyl and dipeptide units is crucial, and replacement by an oxoether bridge results in a dramatic decrease in activity. PMID:20302301

  7. Lipopeptides as the Antifungal and Antibacterial Agents: Applications in Food Safety and Therapeutics

    PubMed Central

    Meena, Khem Raj; Kanwar, Shamsher S.

    2015-01-01

    A lot of crops are destroyed by the phytopathogens such as fungi, bacteria, and yeast leading to economic losses to the farmers. Members of the Bacillus genus are considered as the factories for the production of biologically active molecules that are potential inhibitors of growth of phytopathogens. Plant diseases constitute an emerging threat to global food security. Many of the currently available antimicrobial agents for agriculture are highly toxic and nonbiodegradable and thus cause extended environmental pollution. Moreover, an increasing number of phytopathogens have developed resistance to antimicrobial agents. The lipopeptides have been tried as potent versatile weapons to deal with a variety of phytopathogens. All the three families of Bacillus lipopeptides, namely, Surfactins, Iturins and Fengycins, have been explored for their antagonistic activities towards a wide range of phytopathogens including bacteria, fungi, and oomycetes. Iturin and Fengycin have antifungal activities, while Surfactin has broad range of potent antibacterial activities and this has also been used as larvicidal agent. Interestingly, lipopeptides being the molecules of biological origin are environmentally acceptable. PMID:25632392

  8. Probing the Penetration of Antimicrobial Polymyxin Lipopeptides into Gram-Negative Bacteria

    PubMed Central

    2015-01-01

    The dry antibiotic development pipeline coupled with the emergence of multidrug resistant Gram-negative ‘superbugs’ has driven the revival of the polymyxin lipopeptide antibiotics. Polymyxin resistance implies a total lack of antibiotics for the treatment of life-threatening infections. The lack of molecular imaging probes that possess native polymyxin-like antibacterial activity is a barrier to understanding the resistance mechanisms and the development of a new generation of polymyxin lipopeptides. Here we report the regioselective modification of the polymyxin B core scaffold at the N-terminus with the dansyl fluorophore to generate an active probe that mimics polymyxin B pharmacologically. Time-lapse laser scanning confocal microscopy imaging of the penetration of probe (1) into Gram-negative bacterial cells revealed that the probe initially accumulates in the outer membrane and subsequently penetrates into the inner membrane and finally the cytoplasm. The implementation of this polymyxin-mimetic probe will advance the development of platforms for the discovery of novel polymyxin lipopeptides with efficacy against polymyxin-resistant strains. PMID:24635310

  9. Purification and characterization of a novel lipopeptide from Streptomyces amritsarensis sp. nov. active against methicillin-resistant Staphylococcus aureus

    PubMed Central

    2014-01-01

    Nowadays antimicrobial lipopeptides are being widely exploited for developing potential therapeutic agents for treating bacterial infections. In the present study, we have purified and characterized an antimicrobial lipopeptide produced by Streptomyces amritsarensis sp. nov. (= MTCC 11845T = JCM 19660T). The lipopeptide was purified using silica gel chromatography, size exclusion chromatography and reverse phase- HPLC. The MS/MS analysis of the lipopeptide revealed that it has amino acid sequence as Ala-Thr-Gly-Ser-His-Gln and a long chain fatty acid tail with six times repeated the molecular mass of 161 Da which is corresponding to -C12H19. Based on the molecular mass (878.5 Da) and amino acid composition, the lipopeptide was identified as a novel lipopeptide. The MIC values of purified lipopeptide against Bacillus subtilis (MTCC 619), Staphylococcus epidermidis (MTCC 435), Mycobacterium smegmatis (MTCC 6) and clinical strain, Methicillin Resistant Staphylococcus aureus (MRSA) were found to be 10, 15, 25 and 45 μg/ml, respectively. It was completely stable at 70°C for 1 h and retained 81.8% activity after autoclaving (121°C for 15 min). It did not show any change in its activity profile between pH 5.0 - 9.0 and is stable to trypsin, proteinase K and lipase enzymes. It was found to be non-mutagenic against Salmonella typhimurium (TA98) and did not show cytotoxicity when checked against Chinese hamster ovary (CHO) cell line. In addition to antibacterial activity it also exhibits biosurfactant activity. PMID:25006539

  10. Activation of human monocytic cells by Treponema pallidum and Borrelia burgdorferi lipoproteins and synthetic lipopeptides proceeds via a pathway distinct from that of lipopolysaccharide but involves the transcriptional activator NF-kappa B.

    PubMed Central

    Norgard, M V; Arndt, L L; Akins, D R; Curetty, L L; Harrich, D A; Radolf, J D

    1996-01-01

    There is increasing evidence that lipoproteins of Treponema pallidum and Borrelia burgdorferi are key inflammatory mediators during syphilis and Lyme disease. A principal objective of the present study was to identify more precisely similarities and divergences among lipopolysaccharide (LPS)- and lipoprotein-lipopeptide-induced immune cell signaling events. Like LPS, purified native B. burgdorferi OspA and synthetic analogs of OspA, OspB, and two T. pallidum lipoproteins (Tpp47 and Tpp17) all induced NF-kappa B translocation in THP-1 human monocytoid cells. Acylation of OspA and the synthetic peptides was requisite for cell activation. Polymyxin B abrogated only the response to LPS. By using 70Z/3-derived pre-B-cell lines either lacking or expressing human CD14 (the LPS receptor), it was observed that expression of human CD14 imparted responsiveness to LPS but not to OspA or spirochetal lipopeptides (assessed by induction of NF-kappa B and expression of surface immunoglobulin M). Finally, the biological relevance of the observation that T. pallidum lipoproteins-lipopeptides induce both NF-kappa B and cytokine production in monocytes was supported by the ability of the synthetic analogs to promote human immunodeficiency virus replication in chronically infected U1 monocytoid cells; these observations also suggest a potential mechanism whereby a syphilitic chancre can serve as a cofactor for human immunodeficiency virus transmission. The combined data lend additional support to the proposal that spirochetal lipoproteins and LPS initiate monocyte activation via different cell surface events but that the signaling pathways ultimately converge to produce qualitatively similar cellular responses. PMID:8751937

  11. In Vitro and In Vivo Characterization of CB-183,315, a Novel Lipopeptide Antibiotic for Treatment of Clostridium difficile

    PubMed Central

    Mortin, Lawrence I.; Howland, Karen T.; Van Praagh, Andrew D. G.; Zhang, Shuxin; Arya, Anu; Chuong, Cun Lan; Kang, Chunfeng; Li, Tongchuan; Silverman, Jared A.

    2012-01-01

    CB-183,315 is a novel lipopeptide antibiotic structurally related to daptomycin currently in phase 3 clinical development for Clostridium difficile-associated diarrhea (CDAD). We report here the in vitro mechanism of action, spontaneous resistance incidence, resistance by serial passage, time-kill kinetics, postantibiotic effect, and efficacy of CB-183,315 in a hamster model of lethal infection. In vitro data showed that CB-183,315 dissipated the membrane potential of Staphylococcus aureus without inducing changes in membrane permeability to small molecules. The rate of spontaneous resistance to CB-183,315 at 8× the MIC was below the limit of detection in C. difficile. Under selective pressure by serial passage with CB-183,315 against C. difficile, the susceptibility of the bacteria changed no more than 2-fold during 15 days of serial passages. At 16× the MIC, CB-183,315 produced a ≥3-log reduction of C. difficile in the time-kill assay. The postantibiotic effect of CB-183,315 at 8× the MIC was 0.9 h. At 80× the MIC the postantibiotic effect was more than 6 h. In the hamster model of CDAD, CB-183,315 and vancomycin both demonstrated potent efficacy in resolving initial disease onset, even at very low doses. After the conclusion of dosing, CB-183,315 and vancomycin showed a similar dose- and time-dependent pattern with respect to rates of CDAD recurrence. PMID:22802252

  12. Synthesis and characterisation of self-assembled and self-adjuvanting asymmetric multi-epitope lipopeptides of ovalbumin.

    PubMed

    Eskandari, Sharareh; Stephenson, Rachel J; Fuaad, Abdullah Ahmad; Apte, Simon H; Doolan, Denise L; Toth, Istvan

    2015-01-12

    Designing a lipopeptide (LP) vaccine with a specific asymmetric arrangement of epitopes may result in an improved display of antigens, increasing host-cell recognition and immunogenicity. This study aimed to synthesise and characterise the physicochemical properties of a library of asymmetric LP-based vaccine candidates that contained multiple CD4(+) and CD8(+) T-cell epitopes from the model protein antigen, ovalbumin. These fully synthetic vaccine candidates were prepared by microwave-assisted solid phase peptide synthesis. The C12 or C16 lipoamino acids were coupled to the N or C terminus of the OVA CD4 peptide epitope. The OVA CD4 LPs and OVA CD8 peptide constructs were then conjugated using azide-alkyne Huisgen cycloaddition to give multivalent synthetic vaccines. Physiochemical characterisation of these vaccines showed a tendency to self-assemble in aqueous media. Changes in lipid length and position induced self-assembly with significant changes to their morphology and secondary structure as shown by transmission electron microscopy and circular dichroism. PMID:25399845

  13. The lipopeptide 6-2 produced by Bacillus amyloliquefaciens anti-CA has potent activity against the biofilm-forming organisms.

    PubMed

    Song, Bo; Wang, Yu-Zhen; Wang, Guang-Yuan; Liu, Guang-Lei; Li, Wan-Zhong; Yan, Fang

    2016-07-15

    Both the whole cells and protoplasts of Pseudomonas aeruginosa PAO1 and Bacillus cereus, two biofilm-forming bacteria, were disrupted by the lipopeptide 6-2 produced by Bacillus amyloliquefaciens anti-CA. The lipopeptide 6-2 could also effectively inhibit the formation of biofilms and disperse pre-formed biofilms. Live/dead staining of the biofilms grown in the absence or presence of the lipopeptide 6-2 showed that more dead bacterial cells in the presence of the lipopeptide than those in the absence of the lipopeptide and biofilm formation was greatly reduced by the lipopeptide 6-2. Expression of the PslC gene related to exopolysaccharides in P. aeruginosa PAO1 was also inhibited. All these results demonstrated that the lipopeptide 6-2 produced by B. amyloliquefaciens anti-CA had a high activity against biofilm-forming bacteria. The lipopeptide 6-2 also killed the larvae of Balanus amphitrite and inhibit the germination of Laminaria japonica spore and growth of protozoa, all of which were the fouling organisms in marine environments. PMID:27184127

  14. SEU induced errors observed in microprocessor systems

    SciTech Connect

    Asenek, V.; Underwood, C.; Oldfield, M.; Velazco, R.; Rezgui, S.; Cheynet, P.; Ecoffet, R.

    1998-12-01

    In this paper, the authors present software tools for predicting the rate and nature of observable SEU induced errors in microprocessor systems. These tools are built around a commercial microprocessor simulator and are used to analyze real satellite application systems. Results obtained from simulating the nature of SEU induced errors are shown to correlate with ground-based radiation test data.

  15. Production of biosurfactant lipopeptides Iturin A, fengycin and surfactin A from Bacillus subtilis CMB32 for control of Colletotrichum gloeosporioides.

    PubMed

    Kim, Pyoung Il; Ryu, Jaewon; Kim, Young Hwan; Chi, Youn-Tae

    2010-01-01

    A bacterial strain isolated from soil for its potential to control the anthracnose disease caused by Colletotrichum gloeosporioides was identified as a Bacillus subtilis. Bacillus subtilis CMB32 produced antifungal agents on M9 broth at 30degreesC. Biosurfactant lipopeptides produced by Bacillus subtilis CMB32 were precipitated by adjusting to pH 2 and extracting using chloroform/methanol, and then were purified using column chromatography and reverse-phase HPLC. Molecular masses of the lipopeptides were estimated by MALDI-TOF mass spectrometry as (a) 1080, (b) 1486, and (c) 1044 Da, respectively. They had cyclic structures and amino acid compositions of (a) Pro, Asx, Ser, Tyr, Glx, (b) Glx, Tyr, Thr, Ala, Pro, Ile, and (c) Glx, Leu, Val, Asx, respectively. Further analysis revealed that Bacillus subtilis CMB32 produced three antifungal lipopeptides: (a) iturin A, (b) fengycin, and (c) surfactin A. PMID:20134245

  16. Purification and identification of Bacillus subtilis SPB1 lipopeptide biosurfactant exhibiting antifungal activity against Rhizoctonia bataticola and Rhizoctonia solani.

    PubMed

    Mnif, Inès; Grau-Campistany, Ariadna; Coronel-León, Jonathan; Hammami, Inès; Triki, Mohamed Ali; Manresa, Angeles; Ghribi, Dhouha

    2016-04-01

    This study reports the potential of a soil bacterium, Bacillus subtilis strain SPB1, to produce lipopeptide biosurfactants. Firstly, the crude lipopeptide mixture was tested for its inhibitory activity against phytopathogenic fungi. A minimal inhibitory concentration (MIC), an inhibitory concentration at 50% (IC50%), and an inhibitory concentration at 90% (IC90%) values were determined to be 0.04, 0.012, and 0.02 mg/ml, respectively, for Rhizoctonia bataticola with a fungistatic mode of action. For Rhizoctonia solani, a MIC, an IC50%, and IC90% values were determined to be 4, 0.25, and 3.3 mg/ml, respectively, with a fungicidal mode of action. For both of the fungi, a loss of sclerotial integrity, granulation and fragmentation of hyphal mycelia, followed by hyphal shriveling and cell lysis were observed with the treatment with SPB1 biosurfactant fraction. After extraction, separation, and purification, different lipopeptide compounds were identified in the culture filtrate of strain SPB1. Mass spectroscopic analysis confirmed the presence of different lipopeptide compounds consisting of surfactin isoforms with molecular weights of 1007, 1021, and 1035 Da; iturin isoforms with molecular weights of 1028, 1042, and 1056 Da; and fengycin isoforms with molecular weights of 1432 and 1446 Da. Two new clusters of lipopeptide isoforms with molecular weights of 1410 and 1424 Da and 973 and 987 Da, respectively, were also detected. This study reported the ability of a B. subtilis strain to co-produce lipopeptide isoforms with potential use as antifungal compounds. PMID:26645234

  17. Synthesis of thiol-reactive lipopeptide adjuvants. Incorporation into liposomes and study of their mitogenic effect on mouse splenocytes.

    PubMed

    Roth, Audrey; Espuelas, Socorro; Thumann, Christine; Frisch, Benoît; Schuber, Francis

    2004-01-01

    Synthetic analogues of triacylated and diacylated lipopeptides derived from the N-terminal domain of respectively bacterial and mycoplasmal lipoproteins are highly potent immunoadjuvants when administered either in combination with protein antigens or covalently linked to small peptide epitopes. Because of their amphipathic properties, lipopeptides, such as S-[2,3-bis(palmitoyloxy)-(2RS)-propyl]-N-palmitoyl-(R)-cysteinyl-alanyl-glycine (Pam(3)CAG), can be conveniently incorporated into liposomes and serve as anchors for antigens that are linked to them. To design vaccination constructs based on synthetic peptides and liposomes as vectors. we have accordingly synthesized a series of lipopeptides that differ by the number (Pam(3)C vs Pam(2)C) and nature of the acyl chains (palmitoyl vs oleoyl) and by the presence at their C-terminus of thiol-reactive functions, such as maleimide or bromoacetyl. When incorporated into liposomes, these latter functionalized lipopeptides allow, in aqueous media, a well controlled chemoselective conjugation of HS-peptides to the surface of the vesicles. Using a BALB/c mice splenocyte proliferation assay ([(3)H]thymidine incorporation), we have measured the lymphocyte activation potency of the different lipopeptides. We found that, compared to their free (emulsified) forms, the liposomal lipopeptides were endowed with enhanced mitogenic activities; i.e., up to 2 orders of magnitude for Pam(3)CAG which was more potent than Pam(2)CAG. The impact of functionalization on the cellular activity of Pam(3)CAG was dependent on the thiol-reactive group introduced: whereas the bromoacetyl derivative retained its full activity, the presence of a maleimide group virtually abolished the lymphocyte activation of the lipopeptide. Finally, the substitution of saturated palmitoyl chains by unsaturated oleoyl chains was inhibitory. Thus, thiol-reactive Ol(3)CAG derivatives were the least active mitogens in our assay. Taken together, our findings are of

  18. Parguerene and Precarriebowmide, Two Classes of Lipopeptides from the Marine Cyanobacterium Moorea producens

    PubMed Central

    Mevers, Emily; Byrum, Tara; Gerwick, William H.

    2014-01-01

    Two new marine cyanobacterial natural products, parguerene (1) and precarriebowmide (2), were isolated from a collection of Moorea producens obtained from La Parguera, Puerto Rico. The planar structures of both were deduced by 2D NMR spectroscopy and mass spectrometry. Parguerene is an modified acyl amide with some structural similarity to the bacterial metabolite, stipiamide (3), whereas precarriebowmide is a lipopeptide and represents a minor modification compared to two other known metabolites, carriebowmide (4) and carriebowmide sulfone (5). The identification of 2 led to an investigation into whether carriebowmide and carriebowmide sulfone were true secondary metabolites or isolation artifacts. PMID:24044577

  19. Peptidolipins B-F, Antibacterial Lipopeptides from an Ascidian-derived Nocardia sp

    PubMed Central

    Wyche, Thomas P.; Hou, Yanpeng; Vazquez-Rivera, Emmanuel; Braun, Doug; Bugni, Tim S.

    2012-01-01

    A marine Nocardia sp. isolated from the ascidian Trididemnum orbiculatum was found to produce five new lipopeptides, peptidolipins B-F (1–5), which show distinct similarities to the previously reported L-Val(6) analog of peptidolipin NA. Synthetic modification of peptidolipin E (4) was used to determine the location of an olefin within the lipid chain. Advanced Marfey’s method was used to determine the absolute configurations of the amino acids. Peptidolipins B (1) and E (4) demonstrated moderate antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-sensitive Staphylococcus aureus (MSSA). PMID:22482367

  20. Structure, biosynthesis, and properties of kurstakins, nonribosomal lipopeptides from Bacillus spp.

    PubMed

    Béchet, Max; Caradec, Thibault; Hussein, Walaa; Abderrahmani, Ahmed; Chollet, Marlène; Leclère, Valérie; Dubois, Thomas; Lereclus, Didier; Pupin, Maude; Jacques, Philippe

    2012-08-01

    A new family of lipopeptides produced by Bacillus thuringiensis, the kurstakins, was discovered in 2000 and considered as a biomarker of this species. Kurstakins are lipoheptapeptides displaying antifungal activities against Stachybotrys charatum. Recently, the biosynthesis mechanism, the regulation of this biosynthesis and the potential new properties of kurstakins were described in the literature. In addition, kurstakins were also detected in other species belonging to Bacillus genus such as Bacillus cereus. This mini-review gathers all the information about these promising bioactive molecules. PMID:22678024

  1. Interaction of antimicrobial cyclic lipopeptides from Bacillus subtilis influences their effect on spore germination and membrane permeability in fungal plant pathogens.

    PubMed

    Liu, Jiajie; Hagberg, Ingrid; Novitsky, Laura; Hadj-Moussa, Hanane; Avis, Tyler J

    2014-11-01

    Bacillus subtilis cyclic lipopeptides are known to have various antimicrobial effects including different types of interactions with the cell membranes of plant pathogenic fungi. The various spectra of activities of the three main lipopeptide families (fengycins, iturins, and surfactins) seem to be linked to their respective mechanisms of action on the fungal biomembrane. Few studies have shown the combined effect of more than one family of lipopeptides on fungal plant pathogens. In an effort to understand the effect of producing multiple lipopeptide families, sensitivity and membrane permeability of spores from four fungal plant pathogens (Alternaria solani, Fusarium sambucinum, Rhizopus stolonifer, and Verticillium dahliae) were assayed in response to lipopeptides, both individually and as combined treatments. Results showed that inhibition of spores was highly variable depending on the tested fungus-lipopeptide treatment. Results also showed that inhibition of the spores was closely associated with SYTOX stain absorption suggesting effects of efficient treatments on membrane permeability. Combined lipopeptide treatments revealed additive, synergistic or sometimes mutual inhibition of beneficial effects. PMID:25442289

  2. Induced topological pressure for topological dynamical systems

    SciTech Connect

    Xing, Zhitao; Chen, Ercai

    2015-02-15

    In this paper, inspired by the article [J. Jaerisch et al., Stochastics Dyn. 14, 1350016, pp. 1-30 (2014)], we introduce the induced topological pressure for a topological dynamical system. In particular, we prove a variational principle for the induced topological pressure.

  3. Induced murine models of systemic lupus erythematosus.

    PubMed

    Xu, Yuan; Zeumer, Leilani; Reeves, Westley H; Morel, Laurence

    2014-01-01

    Induced mouse models of systemic lupus erythematosus (SLE) have been developed to complement the spontaneous models. This chapter describes the methods used in the pristane-induced model and the chronic graft-versus-host disease (cGVHD) model, both of which have been extensively used. We will also outline the specific mechanisms of systemic autoimmunity that can be best characterized using each of these models. PMID:24497358

  4. Paenilarvins: Iturin family lipopeptides from the honey bee pathogen Paenibacillus larvae.

    PubMed

    Sood, Sakshi; Steinmetz, Heinrich; Beims, Hannes; Mohr, Kathrin I; Stadler, Marc; Djukic, Marvin; von der Ohe, Werner; Steinert, Michael; Daniel, Rolf; Müller, Rolf

    2014-09-01

    The bacterium Paenibacillus larvae has been extensively studied as it is an appalling honey bee pathogen. In the present work, we screened crude extracts derived from fermentations of P. larvae genotypes ERIC I and II for antimicrobial activity, following the detection of four putative secondary metabolite gene clusters that show high sequence homology to known biosynthetic gene clusters for the biosynthesis of antibiotics. Low molecular weight metabolites produced by P. larvae have recently been shown to have toxic effects on honey bee larvae. Moreover, a novel tripeptide, sevadicin, was recently characterized from laboratory cultures of P. larvae. In this study, paenilarvins, which are iturinic lipopeptides exhibiting strong antifungal activities, were obtained by bioassay-guided fractionation from cultures of P. larvae, genotype ERIC II. Their molecular structures were determined by extensive 2D NMR spectroscopy, high resolution mass spectrometry, and other methods. Paenilarvins are the first antifungal secondary metabolites to be identified from P. larvae. In preliminary experiments, these lipopeptides also affected honey bee larvae and might thus play a role in P. larvae survival and pathogenesis. However, further studies are needed to investigate their function. PMID:25069424

  5. Lipopeptides from Bacillus strain AR2 inhibits biofilm formation by Candida albicans.

    PubMed

    Rautela, Ria; Singh, Anil Kumar; Shukla, Abha; Cameotra, Swaranjit Singh

    2014-05-01

    The ability of the human fungal pathogen Candida albicans to reversibly switch between different morphological forms and establish biofilms is crucial for establishing infection. Targeting phenotypic plasticity and biofilm formation in C. albicans represents a new concept for antifungal drug discovery. The present study evaluated the influence of cyclic lipopeptide biosurfactant produced by Bacillus amyloliquefaciens strain AR2 on C. albicans biofilms. The biosurfactant was characterized as a mixture of iturin and fengycin by MALDI-TOF and amino acid analysis. The biosurfactant exhibited concentration dependent growth inhibition and fungicidal activity. The biosurfactant at sub-minimum growth inhibition concentration decreased cell surface hydrophobicity, hindered germ tube formation and reduced the mRNA expression of hyphae-specific gene HWP1 and ALS3 without exhibiting significant growth inhibition. The biosurfactants inhibited biofilm formation in the range of 46-100 % depending upon the concentration and Candida strains. The biosurfactant treatment dislodged 25-100 % of preformed biofilm from polystyrene plates. The biosurfactant retained its antifungal and antibiofilm activity even after exposure to extreme temperature. By virtue of the ability to inhibit germ tube and biofilm formation, two important traits of C. albicans involved in establishing infection, lipopeptides from strain AR2 may represent a potential candidate for developing heat stable anti-Candida drugs. PMID:24623107

  6. ATP binding by NLRP7 is required for inflammasome activation in response to bacterial lipopeptides.

    PubMed

    Radian, Alexander D; Khare, Sonal; Chu, Lan H; Dorfleutner, Andrea; Stehlik, Christian

    2015-10-01

    Nucleotide-binding oligimerization domain (NOD)-like receptors (NLRs) are pattern recognition receptors (PRRs) involved in innate immune responses. NLRs encode a central nucleotide-binding domain (NBD) consisting of the NAIP, CIITA, HET-E and TP1 (NACHT) domain and the NACHT associated domain (NAD), which facilitates receptor oligomerization and downstream inflammasome signaling. The NBD contains highly conserved regions, known as Walker motifs, that are required for nucleotide binding and hydrolysis. The NLR containing a PYRIN domain (PYD) 7 (NLRP7) has been recently shown to assemble an ASC and caspase-1-containing high molecular weight inflammasome complex in response to microbial acylated lipopeptides and Staphylococcus aureus infection. However, the molecular mechanism responsible for NLRP7 inflammasome activation is still elusive. Here we demonstrate that the NBD of NLRP7 is an ATP binding domain and has ATPase activity. We further show that an intact nucleotide-binding Walker A motif is required for NBD-mediated nucleotide binding and hydrolysis, oligomerization, and NLRP7 inflammasome formation and activity. Accordingly, THP-1 cells expressing a mutated Walker A motif display defective NLRP7 inflammasome activation, interleukin (IL)-1β release and pyroptosis in response to acylated lipopeptides and S. aureus infection. Taken together, our results provide novel insights into the mechanism of NLRP7 inflammasome assembly. PMID:26143398

  7. Production of lipopeptides among Bacillus strains showing growth inhibition of phytopathogenic fungi.

    PubMed

    Velho, R V; Medina, L F C; Segalin, J; Brandelli, A

    2011-07-01

    The biological activity and the presence of genes sfp and ituD (surfactin and iturin A) among Bacillus strains isolated from the Amazon basin were determined. Bacillus spp. were tested for hemolytic activity and inhibition of fungal growth by agar plate assays in parallel with PCR for identification of sfp and ituD genes. All strains tested produced surface-active compounds, giving evidence by lysis of erythrocytes and emulsifying activity on mineral oil and soybean oil. These strains of Bacillus caused growth inhibition of several phytopathogenic fungi, including Fusarium spp., Aspergillus spp., and Bipolaris sorokiniana. The presence of genes ituD and sfp was confirmed by PCR and sequence analysis. The only exception was Bacillus sp. P34 that lacks sfp gene. Lipopeptides were isolated from culture supernatants and analyzed by mass spectrometry. Characteristic m/z peaks for surfactin and iturin were observed, and some strains also produced fengycin and bacillomycin. The remarkable antifungal activity showed by the strains could be associated with the co-production of three or more lipopeptide antibiotics. Screening for novel bacteria producing useful biosurfactants or biocontrol agents for agriculture is a topic of greatest importance to eliminate chemical pollutants. PMID:21818610

  8. CD1c bypasses lysosomes to present a lipopeptide antigen with 12 amino acids

    PubMed Central

    Young, David C.; De Jong, Annemieke; Vazquez, Jenny; Cheng, Tan-Yun; Talekar, Rahul; Barral, Duarte C.; León, Luis; Brenner, Michael B.; Katz, Joel T.; Riese, Richard; Ruprecht, Ruth M.; O'Connor, Peter B.; Costello, Catherine E.; Porcelli, Steven A.; Briken, Volker

    2009-01-01

    The recent discovery of dideoxymycobactin (DDM) as a ligand for CD1a demonstrates how a nonribosomal lipopeptide antigen is presented to T cells. DDM contains an unusual acylation motif and a peptide sequence present only in mycobacteria, but its discovery raises the possibility that ribosomally produced viral or mammalian proteins that commonly undergo lipidation might also function as antigens. To test this, we measured T cell responses to synthetic acylpeptides that mimic lipoproteins produced by cells and viruses. CD1c presented an N-acyl glycine dodecamer peptide (lipo-12) to human T cells, and the response was specific for the acyl linkage as well as the peptide length and sequence. Thus, CD1c represents the second member of the CD1 family to present lipopeptides. lipo-12 was efficiently recognized when presented by intact cells, and unlike DDM, it was inactivated by proteases and augmented by protease inhibitors. Although lysosomes often promote antigen presentation by CD1, rerouting CD1c to lysosomes by mutating CD1 tail sequences caused reduction in lipo-12 presentation. Thus, although certain antigens require antigen processing in lysosomes, others are destroyed there, providing a hypothesis for the evolutionary conservation of large CD1 families containing isoforms that survey early endosomal pathways. PMID:19468063

  9. Structure-Activity Relationships in Toll-like Receptor 2-Agonists Leading to Simplified Monoacyl Lipopeptides

    PubMed Central

    Agnihotri, Geetanjali; Crall, Breanna M.; Lewis, Tyler C.; Day, Timothy P.; Balakrishna, Rajalakshmi; Warshakoon, Hemamali J.; Malladi, Subbalakshmi S.; David, Sunil A.

    2011-01-01

    Toll-like receptor 2-agonistic lipopeptides typified by S-[2,3-bis(palmitoyloxy)-(2RS)-propyl]-R-cysteinyl-S-serine (PAM2CS) compounds are potential vaccine adjuvants. In continuation of previously reported structure-activity relationships on this chemotype, we have determined that at least one acyl group of optimal length (C16) and an appropriately orientated ester carbonyl group is essential for TLR2-agonistic activity. The spacing between one of the palmitoyl ester carbonyl and the thioether is crucial to allow for an important H-bond, which observed in the crystal structure of the lipopeptide:TLR2 complex; consequently, activity is lost in homologated compounds. Penicillamine-derived analogues are also inactive, likely due to unfavorable steric interactions with the carbonyl of Ser 12 in TLR2. The thioether in this chemotype can be replaced with a selenoether. Importantly, the thioglycerol motif can be dispensed with altogether, and can be replaced with a thioethanol bridge. These results have led to a structurally simpler, synthetically more accessible, and water-soluble analogue possessing strong TLR2-agonistic activities in human blood. PMID:22007676

  10. Structure and mode of action of cyclic lipopeptide pseudofactin II with divalent metal ions.

    PubMed

    Janek, Tomasz; Rodrigues, Lígia R; Gudiña, Eduardo J; Czyżnikowska, Żaneta

    2016-10-01

    The interaction of natural lipopeptide pseudofactin II with a series of doubly charged metal cations was examined by matrix-assisted laser-desorption ionization-time of flight (MALDI-TOF) mass spectrometry and molecular modelling. The molecular modelling for metal-pseudofactin II provides information on the metal-peptide binding sites. Overall, Mg(2+), Ca(2+) and Zn(2+) favor the association with oxygen atoms spanning the peptide backbone, whereas Cu(2+) is coordinated by three nitrogens. Circular dichroism (CD) results confirmed that Zn(2+) and Cu(2+) can disrupt the secondary structure of pseudofactin II at high concentrations, while Ca(2+) and Mg(2+) did not essentially affect the structure of the lipopeptide. Interestingly, our results showed that the addition of Zn(2+) and Cu(2+) helped smaller micelles to form larger micellar aggregates. Since pseudofactin II binds metals, we tested whether this phenomena was somehow related to its antimicrobial activity against Staphylococcus epidermidis and Proteus mirabilis. We found that the antimicrobial effect of pseudofactin II was increased by supplementation of culture media with all tested divalent metal ions. Finally, by using Gram-positive and Gram-negative bacteria we showed that the higher antimicrobial activity of metal complexes of pseudofactin II is attributed to the disruption of the cytoplasmic membrane. PMID:27416562

  11. Abiogenic Syntheses of Lipoamino Acids and Lipopeptides and their Prebiotic Significance.

    PubMed

    Sproul, Gordon

    2015-12-01

    Researchers have formed peptide bonds under a variety of presumed prebiotic conditions. Here it is proposed that these same conditions would have also formed amide bonds between fatty acids and amino acids, producing phosphate-free amphipathic lipoamino acids and lipopeptides. These compounds are known to form vesicles and are ubiquitous in living organisms. They could represent molecules that provided protection by membranes as well as possibilities for proto-life metabolism . It is here demonstrated that when a fatty acid is heated with various amino acids, optimally in the presence of suitable salts or minerals, lipoamino acids are formed. Magnesium and potassium carbonates as well as iron (II) sulfide are found to be particularly useful in these reactions. In this manner N-lauroylglycine, N-lauroylalanine, N-stearoylalanine and several other lipoamino acids have been synthesized. Similarly, when glycylglycine was heated with lauric acid in the presence of magnesium carbonate, the lipopeptide N-lauroylglycylglycine was formed. Such compounds are proposed to have been critical precursors to the development of life. PMID:26248658

  12. Abiogenic Syntheses of Lipoamino Acids and Lipopeptides and their Prebiotic Significance

    NASA Astrophysics Data System (ADS)

    Sproul, Gordon

    2015-12-01

    Researchers have formed peptide bonds under a variety of presumed prebiotic conditions. Here it is proposed that these same conditions would have also formed amide bonds between fatty acids and amino acids, producing phosphate-free amphipathic lipoamino acids and lipopeptides. These compounds are known to form vesicles and are ubiquitous in living organisms. They could represent molecules that provided protection by membranes as well as possibilities for proto-life metabolism . It is here demonstrated that when a fatty acid is heated with various amino acids, optimally in the presence of suitable salts or minerals, lipoamino acids are formed. Magnesium and potassium carbonates as well as iron (II) sulfide are found to be particularly useful in these reactions. In this manner N-lauroylglycine, N-lauroylalanine, N-stearoylalanine and several other lipoamino acids have been synthesized. Similarly, when glycylglycine was heated with lauric acid in the presence of magnesium carbonate, the lipopeptide N-lauroylglycylglycine was formed. Such compounds are proposed to have been critical precursors to the development of life.

  13. Interactions between lipid-free apolipoprotein-AI and a lipopeptide incorporating the RGDS cell adhesion motif

    NASA Astrophysics Data System (ADS)

    Castelletto, V.; Hamley, I. W.; Reza, M.; Ruokolainen, J.

    2014-11-01

    The interaction of a designed bioactive lipopeptide C16-GGGRGDS, comprising a hexadecyl lipid chain attached to a functional heptapeptide, with the lipid-free apoliprotein, Apo-AI, is examined. This apolipoprotein is a major component of high density lipoprotein and it is involved in lipid metabolism and may serve as a biomarker for cardiovascular disease and Alzheimers' disease. We find via isothermal titration calorimetry that binding between the lipopeptide and Apo-AI occurs up to a saturation condition, just above equimolar for a 10.7 μM concentration of Apo-AI. A similar value is obtained from circular dichroism spectroscopy, which probes the reduction in α-helical secondary structure of Apo-AI upon addition of C16-GGGRGDS. Electron microscopy images show a persistence of fibrillar structures due to self-assembly of C16-GGGRGDS in mixtures with Apo-AI above the saturation binding condition. A small fraction of spheroidal or possibly ``nanodisc'' structures was observed. Small-angle X-ray scattering (SAXS) data for Apo-AI can be fitted using a published crystal structure of the Apo-AI dimer. The SAXS data for the lipopeptide/Apo-AI mixtures above the saturation binding conditions can be fitted to the contribution from fibrillar structures coexisting with flat discs corresponding to Apo-AI/lipopeptide aggregates.

  14. Cyclic lipopeptide surfactant production by Pseudomonas fluorescens SS101 is not required for suppression of complex Pythium spp. populations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previously, zoosporicidal activity and control of Pythium intermedium by Pseudomonas fluorescens strain SS101 was attributed, in part, to the production of the cyclic lipopeptide surfactant massetolide A. In the current study, capacity of SS101 and its surfactant-deficient mutant strain 10.24 to sup...

  15. Self-Assembly of the Cyclic Lipopeptide Daptomycin: Spherical Micelle Formation Does Not Depend on the Presence of Calcium Chloride.

    PubMed

    Kirkham, Steven; Castelletto, Valeria; Hamley, Ian William; Inoue, Katsuaki; Rambo, Robert; Reza, Mehedi; Ruokolainen, Janne

    2016-07-18

    The cyclic lipopeptide Daptomycin, used as a treatment for infections where antimicrobial resistance is observed, is shown to self-assemble into spherical micelles above a critical aggregation concentration. Micelles are observed either in the absence or presence of CaCl2 , in contrast to claims in the literature that CaCl2 is required for micellization. PMID:27043447

  16. Multi-scale modeling of mycosubtilin lipopeptides at the air/water interface: structure and optical second harmonic generation.

    PubMed

    Loison, Claire; Nasir, Mehmet Nail; Benichou, Emmanuel; Besson, Françoise; Brevet, Pierre-François

    2014-02-01

    Monolayers of the lipopeptide mycosubtilin are studied at the air/water interface. Their structure is investigated using molecular dynamics simulations. All-atom models suggest that the lipopeptide is flexible and aggregates at the interface. To achieve simulation times of several microseconds, a coarse-grained (CG) model based on the MARTINI force field was also used. These CG simulations describe the formation of half-micelles at the interface for surface densities up to 1 lipopeptide per nm(2). In these aggregates, the tyrosine side chain orientation is found to be constrained: on average, its main axis, as defined along the C-OH bond, aligns along the interface normal and points towards the air side. The origin of the optical second harmonic generation (SHG) from mycosubtilin monolayers at the air/water interface is also investigated. The molecular hyperpolarizability of the lipopeptide is obtained from quantum chemistry calculations. The tyrosine side chain contribution to the hyperpolarizability is found to be dominant. The orientation distribution of tyrosine, associated with a dominant hyperpolarizability component along the C-OH bond of the tyrosine, yields a ratio of the susceptibility elements χ((2))(ZZZ)/χ((2))(ZXX) consistent with the experimental measurements recently reported by M. N. Nasir et al. [Phys. Chem. Chem. Phys., 2013, 15, 19919]. PMID:24346061

  17. Biological control of Rhizoctonia root rot on bean by phenazine- and cyclic lipopeptide-producing Pseudomonas CMR12a

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pseudomonas CMR12a was previously selected as an efficient biocontrol strain producing phenazines and cyclic lipopeptides (CLPs). In this study, biocontrol capacity of Pseudomonas CMR12a against Rhizoctonia root rot of bean and the involvement of phenazines and CLPs in this ability were tested. Two ...

  18. Cyclic lipopeptides from Bacillus subtilis ABS-S14 elicit defense-related gene expression in citrus fruit

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Effects of cyclic lipopeptides obtained from B. subtilis ABS-S14 on eliciting defense-related gene transcription and activity of defense-related enzymes glucanase (GLU), chitinase (CHI), peroxidase (POX) and lipoxygenase (LOX) in Citrus sinensis cv. Valencia fruit were determined. The maximum level ...

  19. Solid-phase Synthesis of Fusaricidin/LI-F Class of Cyclic Lipopeptides: Guanidinylation of Resin-bound Peptidyl Amines

    PubMed Central

    Bionda, Nina; Pitteloud, Jean-Philippe; Cudic, Predrag

    2013-01-01

    Fusaricidins/LI-Fs and related cyclic lipopeptides represent an interesting new class of antibacterial peptides with the potential to meet the challenge of antibiotic resistance in bacteria. Our previous study (N. Bionda et al. ChemMedChem 2012, 7, 871-882) revealed the significance of the guanidinium group located at the termini of the lipidic tails of these cyclic lipopeptides for their antibacterial activities. Therefore, devising a synthetic strategy that will allow incorporation of guanidinium functionality into their structure is of particular practical importance. Since appropriately protected guanidino fatty acid building blocks are not commercially available, our strategy toward guanidinylated fusaricidin/LI-F analogs include solid-phase synthesis of a cyclic lipopeptide precursor possessing a lipidic tail with a terminal amino group followed by its conversion into corresponding guanidine. To find the optimal method for this conversion, we have examined commonly used guanidinylation reagents under the conditions compatible with standard solid-phase peptide synthesis. Described experimental results demonstrated superiority of N,N′-di-Boc-N″-triflylguanidine in solid-phase preparation of fusaricidin/LI-F class of cyclic lipopeptides. The triflylguanidine reagent gave a single monoguanidinylated product in excellent yield independently of the type of solid-support. PMID:23436339

  20. Marine lipopeptide Iturin A inhibits Akt mediated GSK3β and FoxO3a signaling and triggers apoptosis in breast cancer

    PubMed Central

    Dey, Goutam; Bharti, Rashmi; Dhanarajan, Gunaseelan; Das, Subhasis; Dey, Kaushik Kumar; Kumar, B N Prashanth; Sen, Ramkrishna; Mandal, Mahitosh

    2015-01-01

    Akt kinase is a critical component of the PI3K/Akt signaling pathway, which is frequently over expressed in human cancers including breast. Therapeutic regimens for inhibiting breast cancer with aberrant Akt activity are essential. Here, we evaluated antitumor effect of a marine bacteria derived lipopeptide ‘Iturin A’ on human breast cancer in vitro and in vivo through disrupting Akt pathway. Proliferation of MDA-MB-231 and MCF-7 breast cancer cells were significantly inhibited by Iturin A and it induced apoptosis as confirmed by increased Sub G1 populations, DNA fragmentation, morphological changes and western blot analysis. Furthermore, Iturin A inhibited EGF induced Akt phosphorylation (Ser473 and Thr308) and its downstream targets GSK3β and FoxO3a. Iturin A inactivated MAPK as well as Akt kinase leading to the translocation of FoxO3a to the nucleus. Gene silencing of Akt in MDA-MB-231 and MCF-7 cells reduced the sensitivity of cancer cells to Iturin A. Interestingly, overexpression of Akt with Akt plasmid in cancer cells caused highly susceptible to induce apoptosis by Iturin A treatment. In a xenograft model, Iturin A inhibited tumor growth with reduced expressions of Ki-67, CD-31, P-Akt, P-GSK3β, P-FoxO3a and P-MAPK. Collectively, these findings imply that Iturin A has potential anticancer effect on breast cancer. PMID:25974307

  1. Marine lipopeptide Iturin A inhibits Akt mediated GSK3β and FoxO3a signaling and triggers apoptosis in breast cancer.

    PubMed

    Dey, Goutam; Bharti, Rashmi; Dhanarajan, Gunaseelan; Das, Subhasis; Dey, Kaushik Kumar; Kumar, B N Prashanth; Sen, Ramkrishna; Mandal, Mahitosh

    2015-01-01

    Akt kinase is a critical component of the PI3K/Akt signaling pathway, which is frequently over expressed in human cancers including breast. Therapeutic regimens for inhibiting breast cancer with aberrant Akt activity are essential. Here, we evaluated antitumor effect of a marine bacteria derived lipopeptide 'Iturin A' on human breast cancer in vitro and in vivo through disrupting Akt pathway. Proliferation of MDA-MB-231 and MCF-7 breast cancer cells were significantly inhibited by Iturin A and it induced apoptosis as confirmed by increased Sub G1 populations, DNA fragmentation, morphological changes and western blot analysis. Furthermore, Iturin A inhibited EGF induced Akt phosphorylation (Ser473 and Thr308) and its downstream targets GSK3β and FoxO3a. Iturin A inactivated MAPK as well as Akt kinase leading to the translocation of FoxO3a to the nucleus. Gene silencing of Akt in MDA-MB-231 and MCF-7 cells reduced the sensitivity of cancer cells to Iturin A. Interestingly, overexpression of Akt with Akt plasmid in cancer cells caused highly susceptible to induce apoptosis by Iturin A treatment. In a xenograft model, Iturin A inhibited tumor growth with reduced expressions of Ki-67, CD-31, P-Akt, P-GSK3β, P-FoxO3a and P-MAPK. Collectively, these findings imply that Iturin A has potential anticancer effect on breast cancer. PMID:25974307

  2. Inducing amnesia through systemic suppression.

    PubMed

    Hulbert, Justin C; Henson, Richard N; Anderson, Michael C

    2016-01-01

    Hippocampal damage profoundly disrupts the ability to store new memories of life events. Amnesic windows might also occur in healthy people due to disturbed hippocampal function arising during mental processes that systemically reduce hippocampal activity. Intentionally suppressing memory retrieval (retrieval stopping) reduces hippocampal activity via control mechanisms mediated by the lateral prefrontal cortex. Here we show that when people suppress retrieval given a reminder of an unwanted memory, they are considerably more likely to forget unrelated experiences from periods surrounding suppression. This amnesic shadow follows a dose-response function, becomes more pronounced after practice suppressing retrieval, exhibits characteristics indicating disturbed hippocampal function, and is predicted by reduced hippocampal activity. These findings indicate that stopping retrieval engages a suppression mechanism that broadly compromises hippocampal processes and that hippocampal stabilization processes can be interrupted strategically. Cognitively triggered amnesia constitutes an unrecognized forgetting process that may account for otherwise unexplained memory lapses following trauma. PMID:26977589

  3. Inducing amnesia through systemic suppression

    PubMed Central

    Hulbert, Justin C.; Henson, Richard N.; Anderson, Michael C.

    2016-01-01

    Hippocampal damage profoundly disrupts the ability to store new memories of life events. Amnesic windows might also occur in healthy people due to disturbed hippocampal function arising during mental processes that systemically reduce hippocampal activity. Intentionally suppressing memory retrieval (retrieval stopping) reduces hippocampal activity via control mechanisms mediated by the lateral prefrontal cortex. Here we show that when people suppress retrieval given a reminder of an unwanted memory, they are considerably more likely to forget unrelated experiences from periods surrounding suppression. This amnesic shadow follows a dose-response function, becomes more pronounced after practice suppressing retrieval, exhibits characteristics indicating disturbed hippocampal function, and is predicted by reduced hippocampal activity. These findings indicate that stopping retrieval engages a suppression mechanism that broadly compromises hippocampal processes and that hippocampal stabilization processes can be interrupted strategically. Cognitively triggered amnesia constitutes an unrecognized forgetting process that may account for otherwise unexplained memory lapses following trauma. PMID:26977589

  4. Lipopeptide Nanoparticles: Development of Vaccines against Hookworm Parasite.

    PubMed

    Fuaad, Abdullah A H Ahmad; Pearson, Mark S; Pickering, Darren A; Becker, Luke; Zhao, Guangzu; Loukas, Alex C; Skwarczynski, Mariusz; Toth, Istvan

    2015-10-01

    Necator americanus (hookworm) infects over half a billion people worldwide. Anthelminthic drugs are commonly used to treat the infection; however, vaccination is a more favorable strategy to combat this parasite. We designed new B-cell peptide epitopes based on the aspartic protease of N. americanus (Na-APR-1). The peptides were conjugated to self-adjuvanting lipid core peptide (LCP) systems via stepwise solid-phase peptide synthesis (SPPS) and copper catalyst azide-alkyne cycloaddition (CuAAC) reactions. The LCP vaccine candidates were able to self-assemble into nanoparticles, were administered to mice without the use of additional adjuvant, and generated antibodies that recognized the parent epitope. However, only one LCP derivative was able to produce a high titer of antibodies specific to Na-APR-1; circular dichroism analyses of this compound showed a β-sheet conformation for the incorporated epitope. This study provides important insight in epitope and delivery system design for the development of a vaccine against hookworm infections. PMID:26269385

  5. Production and characterization of Iturinic lipopeptides as antifungal agents and biosurfactants produced by a marine pinctada martensii-derived Bacillus mojavensis B0621A.

    PubMed

    Ma, Zongwang; Hu, Jiangchun

    2014-06-01

    Bacillus mojavensis B0621A was isolated from a pearl oyster Pinctada martensii collected from South China Sea. While screening for cyclic lipopeptides potentially useful as lead compounds for biological control against soil-bone fungal plant pathogens, three lipopeptides were isolated and purified from the fermentation broth of B. mojavensis B0621A via vacuum flash chromatography coupled with reversed-phase high performance liquid chromatography (RP-HPLC). The structural characterization and identification of these cyclic lipopeptides were performed by tandem mass spectrometry (MS/MS) combined with gas chromatography-mass spectrometry (GC-MS) analysis as well as chemical degradation. These lipopeptides were finally characterized as homologues of mojavensins, which contained identical amino acids back bones of asparagine1, tyrosine2, asparagine3, glutamine4, proline5, asparagine6, and asparagine7 and differed from each other by their saturated β-amino fatty acid chain residues, namely, iso-C14 mojavensin, iso-C16 mojavensin, and anteiso-C17 mojavensin, respectively. All lipopeptide isomers, especially iso-C16 mojavensin and anteiso-C17 mojavensin, displayed moderate antagonism and dose-dependent activity against several formae speciales of Fusarium oxysporum and presented surface tension activities. These properties demonstrated that the lipopeptides produced by B. mojavensis B0621A may be useful as biological control agent to fungal plant pathogens. PMID:24699814

  6. Cyclic Lipopeptides with Herbicidal and Insecticidal Activities Produced by Bacillus clausii DTM1.

    PubMed

    Guo, Da-Le; Wan, Bo; Xiao, Shi-Ji; Allen, Sarah; Gu, Yu-Cheng; Ding, Li-Sheng; Zhoua, Yan

    2015-12-01

    Seven cyclic lipopeptide biosurfactants (1-7) were isolated for the first time from the fermentation broth of endophytic Bacillus clausii DTM1 and were identified as anteisoC13[Val7] surfactin-(L-Glu)-O-methyl-ester (1), anteisoC12[Val7] surfactin (2), anteisoC15[Val7] surfactin (3), isoC14[Leu7] surfactin (4), anteisoC12[Leu7] surfactin (5), nC13[Leu7] surfactin (6), and anteisoC14[Leu7] surfactin-(L-Glu)-O-methyl-ester (7); 1 has not been isolated before as a natural product from any source. Plate-based herbicide and insecticide bioassays showed that all compounds exhibited interesting insecticidal and herbicidal activities. PMID:26882688

  7. Application of lipopeptide biosurfactant isolated from a halophile: Bacillus tequilensis CH for inhibition of biofilm.

    PubMed

    Pradhan, Arun Kumar; Pradhan, Nilotpala; Mall, Gangotri; Panda, Himadri Tanaya; Sukla, Lala Behari; Panda, Prasanna Kumar; Mishra, Barada Kanta

    2013-11-01

    Biosurfactants are amphiphilic molecules having hydrophobic and hydrophilic moieties produced by various microorganisms. These molecules trigger the reduction of surface tension or interfacial tension in liquids. A biosurfactant-producing halophile was isolated from Lake Chilika, a brackish water lake of Odisha, India (19°41'39″N, 85°18'24″E). The halophile was identified as Bacillus tequilensis CH by biochemical tests and 16S rRNA gene sequencing and assigned accession no. KC851857 by GenBank. The biosurfactant produced by B. tequilensis CH was partially characterized as a lipopeptide using thin-layer chromatography, Fourier transform infrared spectroscopy, and nuclear magnetic resonance techniques. The minimum effective concentration of a biosurfactant for inhibition of pathogenic biofilm (Escherichia coli and Streptococcus mutans) on hydrophilic and hydrophobic surfaces was found to be 50 μg ml(-1). This finding has potential for a variety of applications. PMID:23955294

  8. Novel fluorinated lipopeptides from Bacillus sp. CS93 via precursor-directed biosynthesis.

    PubMed

    O'Connor, Neil K; Hudson, Alex S; Cobb, Steven L; O'Neil, Deborah; Robertson, Jennifer; Duncan, Vanessa; Murphy, Cormac D

    2014-12-01

    While attempting to improve production of fluoro-iturin A in Bacillus sp. CS93 new mono- and di-fluorinated fengycins were detected in culture supernatants by (19)F NMR and tandem mass spectrometry, after incubation of the bacterium with 3-fluoro-L-tyrosine. The fluorinated amino acid was presumably incorporated in place of one or both of the tyrosyl residues in fengycin. Investigations to generate additional new fluorinated derivatives were undertaken using commercially available fluorinated phenylalanines and 2-fluoro- and 2,3-difluoro-tyrosine that were synthesised by Negishi cross-coupling of iodoalanine and fluorinated bromo-phenols. The anti-fungal activity of the fluorinated lipopeptides was assayed against Trichophyton rubrum and found to be similar to that of the non-fluorinated metabolites. PMID:25193167

  9. Improvement of production of lipopeptide antibiotic iturin A using fish protein.

    PubMed

    Zohora, Umme Salma; Rahman, Mohammad Shahedur; Khan, Abdul Wahab; Okanami, Masahiro; Ano, Takashi

    2013-12-01

    To enhance the production of lipopeptide antibiotic iturin A, nutrient contents of the culture mediums were investigated in both submerged and biofilm fermentations. As a carbon source maltose and as nitrogen source, fish protein was used. In submerged fermentation maltose uptake was found lower (12%) compared to biofilm fermentation (15%) that was associated with higher cellular growth in biofilm. However, requirement of nitrogen (fish protein) concentration was found similar in both submerged and biofilm fermentations. Production of iturin A in submerged fermentation with 12% maltose and 5% fish protein was 4450 mg/L, and in biofilm fermentation it was 5050 mg/L when 15% maltose and 5% fish protein was used. PMID:25078830

  10. Crystal structure of a self-assembling lipopeptide detergent at 1.20 Å

    SciTech Connect

    Ho, Dona N.; Pomroy, Neil C.; Cuesta-Seijo, Jose A.; Prive, Gilbert G.

    2008-10-21

    Lipopeptide detergents (LPDs) are a new class of amphiphile designed specifically for the structural study of integral membrane proteins. The LPD monomer consists of a 25-residue peptide with fatty acyl chains linked to side chains located at positions 2 and 24 of the peptide. LPDs are designed to form {alpha}-helices that self-assemble into cylindrical micelles, providing a more natural interior acyl chain packing environment relative to traditional detergents. We have determined the crystal structure of LPD-12, an LPD coupled to two dodecanoic acids, to a resolution of 1.20 {angstrom}. The LPD-12 monomers adopt the target conformation and associate into cylindrical octamers as expected. Pairs of helices are strongly associated as Alacoil-type antiparallel dimers, and four of these dimers interact through much looser contacts into assemblies with approximate D{sub 2} symmetry. The aligned helices form a cylindrical shell with a hydrophilic exterior that protects an interior hydrophobic cavity containing the 16 LPD acyl chains. Over 90% of the methylene/methyl groups from the acylated side chains are visible in the micelle interiors, and {approx}90% of these adopt trans dihedral angle conformations. Dodecylmaltoside (DDM) was required for the crystallization of LPD-12, and we find 10-24 ordered DDM molecules associated with each LPD assembly, resulting in an overall micelle molecular weight of {approx}30 kDa. The structures confirm the major design objectives of the LPD framework, and reveal unexpected features that will be helpful in the engineering additional versions of lipopeptide amphiphiles.

  11. Antimicrobial, antiadhesive and antibiofilm potential of lipopeptides synthesised by Bacillus subtilis, on uropathogenic bacteria.

    PubMed

    Moryl, Magdalena; Spętana, Magdalena; Dziubek, Klaudia; Paraszkiewicz, Katarzyna; Różalska, Sylwia; Płaza, Grażyna A; Różalski, Antoni

    2015-01-01

    The aim of this study was to investigate the antimicrobial effect of lipopeptide biosurfactants from surfactin, iturin and fengycin families, synthesised by the Bacillus subtilis I'1a strain, on uropathogenic bacteria, including the effects on planktonic growth, processes of biofilm formation and dislodging. Antimicrobial activity was tested against 32 uropathogenic strains belonging to 12 different species of Gram-negative and Gram-positive bacteria. The sensitivity of 25 tested bacterial strains to the B. subtilis I'1a filtrate was confirmed by an agar diffusion assay. None of the strains seemed to be sensitive to pure surfactin at concentrations ranging from 0.1 mg × ml(-1) to 0.4 mg ml(-1). After the treatment of uropathogens with B. subtilis lipopeptides, the metabolic activity of planktonic cells was inhibited by 88.05±3.96% in the case of 21 studied uropathogens, the process of biofilm formation was reduced by 88.15±4.77% in the case of 24 uropathogens and mature biofilms of 18 strains were dislodged by about 81.20±4.72%. Ten strains of uropathogenic bacteria were selected to study the antimicrobial activity of surfactin (concentrations 0.1, 0.2 and 0.4 mg × ml(-1)). Surfactin had no influence on the metabolic activity of planktonic forms of uropathogens, however, biofilms of 5 tested strains were reduced by 64.77±9.05% in the presence of this biosurfactant at the concentration 0.1 mg × ml(-1). The negative effect of the compound on the biofilm formation process was observed at all concentrations used. The above-described results were fully confirmed by CLSM. It could suggest that synergistic application of biosurfactants could be efficient in uropathogen eradication. PMID:26505130

  12. Gageostatins A–C, Antimicrobial Linear Lipopeptides from a Marine Bacillus subtilis

    PubMed Central

    Tareq, Fakir Shahidullah; Lee, Min Ah; Lee, Hyi-Seung; Lee, Jong-Seok; Lee, Yeon-Ju; Shin, Hee Jae

    2014-01-01

    Concerning the requirements of effective drug candidates to combat against high rising multidrug resistant pathogens, we isolated three new linear lipopeptides, gageostatins A–C (1–3), consisting of hepta-peptides and new 3-β-hydroxy fatty acids from the fermentation broth of a marine-derived bacterium Bacillus subtilis. Their structures were elucidated by analyzing a combination of extensive 1D, 2D NMR spectroscopic data and high resolution ESIMS data. Fatty acids, namely 3-β-hydroxy-11-methyltridecanoic and 3-β-hydroxy-9,11-dimethyltridecanoic acids were characterized in lipopeptides 1 and 2, respectively, whereas an unsaturated fatty acid (E)-7,9-dimethylundec-2-enoic acid was assigned in 3. The 3R configuration of the stereocenter of 3-β-hydroxy fatty acids in 1 and 2 was established by Mosher’s MTPA method. The absolute stereochemistry of amino acid residues in 1–3 was ascertained by acid hydrolysis followed by Marfey’s derivatization studies. Gageostatins 1–3 exhibited good antifungal activities with MICs values of 4–32 µg/mL when tested against pathogenic fungi (R. solani, B. cinerea and C. acutatum) and moderate antibacterial activity against bacteria (B. subtilis, S. aeureus, S. typhi and P. aeruginosa) with MICs values of 8–64 µg/mL. Futhermore, gageostatins 1–3 displayed cytotoxicity against six human cancer cell lines with GI50 values of 4.6–19.6 µg/mL. It is also noteworthy that mixed compounds 1+2 displayed better antifungal and cytotoxic activities than individuals. PMID:24492520

  13. Evaluation of the effect of Sm28GST-derived peptides in murine hepatosplenic schistosomiasis: interest of the lipopeptidic form of the C-terminal peptide.

    PubMed

    Pancré, V; Wolowczuk, I; Bossus, M; Gras-Masse, H; Guerret, S; Delanoye, A; Capron, A; Auriault, C

    1994-11-01

    Among the synthetic peptides derived from the 28-kDa Schistosoma mansoni glutathione S-transferase (Sm28GST), immunization with the C-terminal peptide comprising amino acid residues 190-211 induced a reduction in splenomegaly, in the number of hepatic eggs and in hepatic fibrosis in mice infected by Schistosoma mansoni. The absence of antibodies specific for the Sm28GST or for the 190-211 peptide observed in our conditions of immunization with this peptide argued in favour of the involvement of cellular-dependent mechanisms in the reduction in hepatic pathology. This was confirmed by the passive transfer of 190-211 peptide-specific T-cell enriched spleen cells which reproduced the protective effect conferred by immunization with the 190-211 peptide. These 190-211 peptide-specific cells produced little IL4 and high levels of IFN-gamma, a potent inhibitor of collagen synthesis. Furthermore, the use of a lipopeptidic form of the 190-211 peptide significantly improved the reduction in hepatic pathology obtained with the uncoupled peptide and induced a durable protective response. These results provide encouraging information for the possible use of synthetic peptides in the immunoprophylaxis of Schistosomiasis. PMID:7969186

  14. Induced Systemic Resistance by Beneficial Microbes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Beneficial microbes in the microbiome of plant roots improve plant health. Induced systemic esistance (ISR) emerged as an important mechanism by which selected plant growth–promoting bacteria and fungi in the rhizosphere prime the whole plant body for enhanced defense against a broad range of pathog...

  15. Systems Biology of HBOC-Induced Vasoconstriction

    PubMed Central

    Hai, Chi-Ming

    2011-01-01

    Vasoconstriction is a major adverse effect of HBOCs. The use of a single drug for attenuating HBOC-induced vasoconstriction has been tried with limited success. Since HBOC causes disruptions at multiple levels of organization in the vascular system, a systems approach is helpful to explore avenues to counteract the effects of HBOC at multiple levels by targeting multiple sites in the system. A multi-target approach is especially appropriate for HBOC-induced vasoconstriction, because HBOC disrupts the cascade of amplification by NO-cGMP signaling and protein phosphorylation, ultimately resulting in vasoconstriction. Targeting multiple steps in the cascade may alter the overall gain of amplification, thereby limiting the propagation of disruptive effects through the cascade. As a result, targeting multiple sites may accomplish a relatively high overall efficacy at submaximal drug doses. Identifying targets and doses for developing a multi-target combination HBOC regimen for oxygen therapeutics requires a detailed understanding of the systems biology and phenotypic heterogeneity of the vascular system at multiple layers of organization, which can be accomplished by successive iterations between experimental studies and mathematical modeling at multiple levels of vascular systems and organ systems. Towards this goal, this article addresses the following topics: a) NO-scavenging by HBOC, b) HBOC autoxidation-induced reactive oxygen species generation and endothelial barrier dysfunction, c) NO- cGMP signaling in vascular smooth muscle cells, d) NO and cGMP-dependent regulation of contractile filaments in vascular smooth muscle cells, e) phenotypic heterogeneity of vascular systems, f) systems biology as an approach to developing a multi-target HBOC regimen. PMID:21726185

  16. Cytotoxic Lipopeptide Muscotoxin A, Isolated from Soil Cyanobacterium Desmonostoc muscorum, Permeabilizes Phospholipid Membranes by Reducing Their Fluidity.

    PubMed

    Tomek, Petr; Hrouzek, Pavel; Kuzma, Marek; Sýkora, Jan; Fiser, Radovan; Cerný, Jan; Novák, Petr; Bártová, Simona; Simek, Petr; Hof, Martin; Kavan, Daniel; Kopecký, Jirí

    2015-02-16

    There is mounting evidence that cyanobacterial lipopeptides can kill mammalian cells, presenting a hazard to human health. Unfortunately, their mechanism of toxicity is poorly understood. We have isolated new cyclic undecalipopeptides muscotoxin A and B containing unique lipophilicresidue 3-amino-2,5-dihydroxydecanoic acid (5-OH Ahdoa). Muscotoxin B was not used for biological studies due to its poor yield. Muscotoxin A was cytotoxic to YAC-1, Sp/2, and HeLa cancer cell lines (LC(50) ranged from 9.9 to 13.2 μM after 24 h of exposure), causing membrane damage and influx of calcium ions. Subsequently, we studied this lytic mechanism using synthetic liposomes with encapsulated fluorescent probes. Muscotoxin A permeabilized liposomes composed exclusively of phospholipids, demonstrating that no proteins or carbohydrates present in biomembranes are essential for its activity. Paradoxically, the permeabilization activity of muscotoxin A was mediated by a significant reduction in membrane surface fluidity (stiffening), the opposite of that caused by synthetic detergents and cytolytic lipopeptide puwainaphycin F. At 25 °C, muscotoxin A disrupted liposomes with and without cholesterol/sphingomyelin; however, at 37 °C, it was selective against liposomes with cholesterol/sphingomyelin. It appears that both membrane fluidity and organization can affect the lytic activity of muscotoxin A. Our findings strengthen the evidence that cyanobacterial lipopeptides specifically disrupt mammalian cell membranes and bring new insights into the mechanism of this effect. PMID:25621379

  17. Influence of the tyrosine environment on the second harmonic generation of iturinic antimicrobial lipopeptides at the air-water interface.

    PubMed

    Nasir, Mehmet Nail; Benichou, Emmanuel; Loison, Claire; Russier-Antoine, Isabelle; Besson, Françoise; Brevet, Pierre-François

    2013-12-01

    The second harmonic generation (SHG) response at the air-water interface from the tyrosine-containing natural iturinic cyclo-lipopeptides mycosubtilin, iturin A and bacillomycin D is reported. It is shown that this response is dominated by the single tyrosine residue present in these molecules owing to the large first hyperpolarizability arising from the non-centrosymmetric aromatic ring structure of this amino acid. The SHG response of these iturinic antibiotics is also compared to the response of surfactin, a cyclo-lipopeptide with a similar l,d-amino acid sequence but lacking a tyrosine residue, and PalmATA, a synthetic linear lipopeptide possessing a single tyrosine residue but lacking the amino acid sequence structuring the cycle of the iturinic antibiotics. From the light polarization analysis of the SHG response, it is shown that the tyrosine local environment is critical in defining the SHG response of these peptides at the air-water interface. Our results demonstrate that tyrosine, similar to tryptophan, can be used as an endogenous molecular probe of peptides and proteins for SHG at the air-water interface, paving the way for SHG studies of other tyrosine-containing bioactive molecules. PMID:24149982

  18. Mass spectrometry identification of antifungal lipopeptides from Bacillus sp. BCLRB2 against Rhizoctonia solani and Sclerotinia sclerotiorum.

    PubMed

    Elkahoui, S; Djébali, N; Karkouch, I; Ibrahim, A Hadj; Kalai, L; Bachkovel, S; Tabbene, O; Limam, F

    2014-01-01

    This work aims to characterize the bioactive molecules produced by an antagonistic Bacillus sp. strain BCLRB2 isolated from healthy leaves of olive tree against Rhizoctonia solani and Sclerotinia sclerotiorum. The bacterial strain isolated showed a high and persistent antifungal activity against the two pathogens. The free-cell supernatant showed also a high antifungal activity against R. solani and at a lower extent against S. sclerotiorum. The partial purification of the antifungal substances with methanol gradient applied to C18 column binding the Bacillus BCLRB2 culture supernatant showed that the 20% and 60% methanol fractions had a high and specific activity against S. sclerotiorum and R. solani, respectively. The mass spectrometry identification of the compounds in the fraction specifically active against S. sclerotiorum revealed the presence of bacillomycin D C16 as a major lipopeptide. The fraction specifically active against R. solani contained bacillomycin D C15 and 2 unknown lipopeptides. The 80% methanol fraction had a moderate and a broad spectrum activity against the two pathogens and consisted from two iturin D (C13 and C14) as a major lipopeptides. PMID:25272736

  19. Antifungal efficiency of a lipopeptide biosurfactant derived from Bacillus subtilis SPB1 versus the phytopathogenic fungus, Fusarium solani.

    PubMed

    Mnif, Ines; Hammami, Ines; Triki, Mohamed Ali; Azabou, Manel Cheffi; Ellouze-Chaabouni, Semia; Ghribi, Dhouha

    2015-11-01

    Bacillus subtilis SPB1 lipopeptides were evaluated as a natural antifungal agent against Fusarium solani infestation. In vitro antifungal assay showed a minimal inhibitory concentration of about 3 mg/ml with a fungicidal mode of action. In fact, treatment of F. solani by SPB1 lipopeptides generated excessive lyses of the mycelium and caused polynucleation and destruction of the related spores together with a total inhibition of spore production. Furthermore, an inhibition of germination potency accompanied with a high spore blowing was observed. Moreover, in order to be applied in agricultural field, in vivo antifungal activity was proved against the dry rot potato tubers caused by F. solani. Preventive treatment appeared as the most promising as after 20 days of fungi inoculation, rot invasion was reduced by almost 78%, in comparison to that of non-treated one. When treating infected tomato plants, disease symptoms were reduced by almost 100% when applying the curative method. Results of this study are very promising as it enables the use of the crude lipopeptide preparation of B. subtilis SPB1 as a potent natural fungicide that could effectively control the infection of F. solani in tomato and potato tubers at a concentration similar to the commercial fungicide hymexazol and therefore prevent the damage of olive tree. PMID:26178831

  20. Identification and Characterization of Lipopeptides from Bacillus subtilis B1 Against Sapstain Fungus of Rubberwood Through MALDI-TOF-MS and RT-PCR.

    PubMed

    Sajitha, K L; Dev, Suma Arun; Maria Florence, E J

    2016-07-01

    Bacillus subtilis is a potent biocontrol agent producing a wide array of antifungal lipopeptides for the inhibition of fungal growth. B. subtilis B1 isolated from market-available compost provided an efficient control of rubberwood sapstain fungus, Lasiodiplodia theobromae. The current study is aimed to identify and characterize the lipopeptides responsible for the biocontrol of rubberwood sapstain fungus by Bacillus subtilis B1. The bacterial whole-cell surface extract from the dual culture of B. subtilis B1 and sapstain fungus (L. theobromae) was analysed using MALDI-TOF-MS. The protonated as well as sodium, potassium adducts of homologues of iturin C, surfactin, bacillomycin D and fengycin A and B were identified and expression of the lipopeptide biosynthetic genes could be confirmed through RT-PCR. This is the first report of mycobacillin and trimethylsilyl derivative of bacilysin during antagonism through MALDI-TOF-MS. MALDI-TOF-MS with RT-PCR offered easy platforms to characterize the antifungal lipopeptides. The identification of antifungal lipopeptides can lead to the formulation of prospective biocontrol by-products which have wide-scale utility. PMID:27004481

  1. Induced seismicity associated with enhanced geothermal system

    SciTech Connect

    Majer, Ernest; Majer, Ernest L.; Baria, Roy; Stark, Mitch; Oates, Stephen; Bommer, Julian; Smith, Bill; Asanuma, Hiroshi

    2006-09-26

    Enhanced Geothermal Systems (EGS) offer the potential to significantly add to the world energy inventory. As with any development of new technology, some aspects of the technology has been accepted by the general public, but some have not yet been accepted and await further clarification before such acceptance is possible. One of the issues associated with EGS is the role of microseismicity during the creation of the underground reservoir and the subsequent extraction of the energy. The primary objectives of this white paper are to present an up-to-date review of the state of knowledge about induced seismicity during the creation and operation of enhanced geothermal systems, and to point out the gaps in knowledge that if addressed will allow an improved understanding of the mechanisms generating the events as well as serve as a basis to develop successful protocols for monitoring and addressing community issues associated with such induced seismicity. The information was collected though literature searches as well as convening three workshops to gather information from a wide audience. Although microseismicity has been associated with the development of production and injection operations in a variety of geothermal regions, there have been no or few adverse physical effects on the operations or on surrounding communities. Still, there is public concern over the possible amount and magnitude of the seismicity associated with current and future EGS operations. It is pointed out that microseismicity has been successfully dealt with in a variety of non-geothermal as well as geothermal environments. Several case histories are also presented to illustrate a variety of technical and public acceptance issues. It is concluded that EGS Induced seismicity need not pose any threat to the development of geothermal resources if community issues are properly handled. In fact, induced seismicity provides benefits because it can be used as a monitoring tool to understand the

  2. Systemic immunotoxicity reactions induced by adjuvanted vaccines.

    PubMed

    Batista-Duharte, Alexander; Portuondo, Deivys; Pérez, O; Carlos, Iracilda Zeppone

    2014-05-01

    Vaccine safety is a topic of concern for the treated individual, the family, the health care personnel, and the others involved in vaccination programs as recipients or providers. Adjuvants are necessary components to warrant the efficacy of vaccines, however the overstimulation of the immune system is also associated with adverse effects. Local reactions are the most frequent manifestation of toxicity induced by adjuvanted vaccines and, with the exception of the acute phase response (APR), much less is known about the systemic reactions that follow vaccination. Their low frequency or subclinical expression meant that this matter has been neglected. In this review, various systemic reactions associated with immune stimulation will be addressed, including: APR, hypersensitivity, induction or worsening of autoimmune diseases, modification of hepatic metabolism and vascular leak syndrome (VLS), with an emphasis on the mechanism involved. Finally, the authors analyze the current focus of discussion about vaccine safety and opportunities to improve the design of new adjuvanted vaccines in the future. PMID:24607449

  3. Inducible genetic system for the axolotl

    PubMed Central

    Whited, Jessica L.; Lehoczky, Jessica A.; Tabin, Clifford J.

    2012-01-01

    Transgenesis promises a powerful means for assessing gene function during amphibian limb regeneration. This approach is complicated, however, by the need for embryonic appendage development to proceed unimpeded despite the genetic alterations one wishes to test later in the context of regeneration. Achieving conditional gene regulation in this amphibian has not proved to be as straightforward as in many other systems. In this report we describe a unique method for obtaining temporal control over exogenous gene expression in the axolotl. Based on technology derived from the Escherichia coli Lac operon, uninduced transgenes are kept in a repressed state by the binding of constitutively expressed Lac repressor protein (LacI) to operator sequences within the expression construct. Addition of a lactose analog, IPTG, to the swimming water of the axolotl is sufficient for the sugar to be taken up by cells, where it binds the LacI protein, thereby inducing expression of the repressed gene. We use this system to demonstrate an in vivo role for thrombospondin-4 in limb regeneration. This inducible system will allow for systematic analysis of phenotypes at defined developmental or regenerative time points. The tight regulation and robustness of gene induction combined with the simplicity of this strategy will prove invaluable for studying many aspects of axolotl biology. PMID:22869739

  4. Inducible genetic system for the axolotl.

    PubMed

    Whited, Jessica L; Lehoczky, Jessica A; Tabin, Clifford J

    2012-08-21

    Transgenesis promises a powerful means for assessing gene function during amphibian limb regeneration. This approach is complicated, however, by the need for embryonic appendage development to proceed unimpeded despite the genetic alterations one wishes to test later in the context of regeneration. Achieving conditional gene regulation in this amphibian has not proved to be as straightforward as in many other systems. In this report we describe a unique method for obtaining temporal control over exogenous gene expression in the axolotl. Based on technology derived from the Escherichia coli Lac operon, uninduced transgenes are kept in a repressed state by the binding of constitutively expressed Lac repressor protein (LacI) to operator sequences within the expression construct. Addition of a lactose analog, IPTG, to the swimming water of the axolotl is sufficient for the sugar to be taken up by cells, where it binds the LacI protein, thereby inducing expression of the repressed gene. We use this system to demonstrate an in vivo role for thrombospondin-4 in limb regeneration. This inducible system will allow for systematic analysis of phenotypes at defined developmental or regenerative time points. The tight regulation and robustness of gene induction combined with the simplicity of this strategy will prove invaluable for studying many aspects of axolotl biology. PMID:22869739

  5. Electromagnetically induced gain in molecular systems

    NASA Astrophysics Data System (ADS)

    Mukherjee, Nandini; Patel, C. Kumar N.

    2009-12-01

    We report electromagnetically induced gain in a highly degenerate two-level rotational vibrational molecular system. Using two photon (Raman-type) interaction with right and left circularly polarized pump and probe waves, the Zeeman coherence is established within the manifold of degenerate sublevels belonging to a rotational vibrational eigenstate. We analytically and numerically calculate the third-order nonlinear optical susceptibility for a Doppler-broadened molecular transition for an arbitrary high rotational angular momentum (J≥20) . It is shown that for a Q -type open transition, a weak probe will experience an electromagnetically induced gain in presence of a strong copropagating pump wave. The inversionless gain originates due to cancellation of absorption from the interference of the coupled Λ - and V-type excitation channels in an N -type configuration. A detailed analysis of the optical susceptibility as a function of Doppler detuning explains how the gain bands are generated in a narrow transparency window from the overlapping contributions of different velocity groups. It is shown that the orientation dependent coherent interaction in presence of a strong pump induces narrow resonances for the probe susceptibility. The locations, intensity, and sign (positive or negative susceptibility) of these resonances are decided by the frequency detuning of the Doppler group and the strength of the coupling field. The availability of high power tunable quantum cascade lasers covering a spectral region from about 4 to 12μm opens up the possibility of investigating the molecular vibrational rotational transitions for a variety of coherent effects.

  6. Direct cloning and refactoring of a silent lipopeptide biosynthetic gene cluster yields the antibiotic taromycin A.

    PubMed

    Yamanaka, Kazuya; Reynolds, Kirk A; Kersten, Roland D; Ryan, Katherine S; Gonzalez, David J; Nizet, Victor; Dorrestein, Pieter C; Moore, Bradley S

    2014-02-01

    Recent developments in next-generation sequencing technologies have brought recognition of microbial genomes as a rich resource for novel natural product discovery. However, owing to the scarcity of efficient procedures to connect genes to molecules, only a small fraction of secondary metabolomes have been investigated to date. Transformation-associated recombination (TAR) cloning takes advantage of the natural in vivo homologous recombination of Saccharomyces cerevisiae to directly capture large genomic loci. Here we report a TAR-based genetic platform that allows us to directly clone, refactor, and heterologously express a silent biosynthetic pathway to yield a new antibiotic. With this method, which involves regulatory gene remodeling, we successfully expressed a 67-kb nonribosomal peptide synthetase biosynthetic gene cluster from the marine actinomycete Saccharomonospora sp. CNQ-490 and produced the dichlorinated lipopeptide antibiotic taromycin A in the model expression host Streptomyces coelicolor. The taromycin gene cluster (tar) is highly similar to the clinically approved antibiotic daptomycin from Streptomyces roseosporus, but has notable structural differences in three amino acid residues and the lipid side chain. With the activation of the tar gene cluster and production of taromycin A, this study highlights a unique "plug-and-play" approach to efficiently gaining access to orphan pathways that may open avenues for novel natural product discoveries and drug development. PMID:24449899

  7. Genome mining: Prediction of lipopeptides and polyketides from Bacillus and related Firmicutes.

    PubMed

    Aleti, Gajender; Sessitsch, Angela; Brader, Günter

    2015-01-01

    Bacillus and related genera in the Bacillales within the Firmicutes harbor a variety of secondary metabolite gene clusters encoding polyketide synthases and non-ribosomal peptide synthetases responsible for remarkable diverse number of polyketides (PKs) and lipopeptides (LPs). These compounds may be utilized for medical and agricultural applications. Here, we summarize the knowledge on structural diversity and underlying gene clusters of LPs and PKs in the Bacillales. Moreover, we evaluate by using published prediction tools the potential metabolic capacity of these bacteria to produce type I PKs or LPs. The huge sequence repository of bacterial genomes and metagenomes provides the basis for such genome-mining to reveal the potential for novel structurally diverse secondary metabolites. The otherwise cumbersome task to isolate often unstable PKs and deduce their structure can be streamlined. Using web based prediction tools, we identified here several novel clusters of PKs and LPs from genomes deposited in the database. Our analysis suggests that a substantial fraction of predicted LPs and type I PKs are uncharacterized, and their functions remain to be studied. Known and predicted LPs and PKs occurred in the majority of the plant associated genera, predominantly in Bacillus and Paenibacillus. Surprisingly, many genera from other environments contain no or few of such compounds indicating the role of these secondary metabolites in plant-associated niches. PMID:25893081

  8. Super short membrane-active lipopeptides inhibiting the entry of influenza A virus.

    PubMed

    Wu, Wenjiao; Wang, Jingyu; Lin, Dongguo; Chen, Linqing; Xie, Xiangkun; Shen, Xintian; Yang, Qingqing; Wu, Qiuyi; Yang, Jie; He, Jian; Liu, Shuwen

    2015-10-01

    Influenza A viruses (IAV) are significant pathogens that result in millions of human infections and impose a substantial health and economic burdens worldwide. Due to the limited anti-influenza A therapeutics available and the emergence of drug resistant viral strains, it is imperative to develop potent anti-IAV agents with different mode of action. In this study, by applying a pseudovirus based screening approach, two super short membrane-active lipopeptides of C12-KKWK and C12-OOWO were identified as effective anti-IAV agents with IC50 value of 7.30±1.57 and 8.48±0.74 mg/L against A/Puerto Rico/8/34 strain, and 6.14±1.45 and 7.22±0.67 mg/L against A/Aichi/2/68 strain, respectively. The mechanism study indicated that the anti-IAV activity of these peptides would result from the inhibition of virus entry by interacting with HA2 subunit of hemagglutinin (HA). Thus, these peptides may have potentials as lead peptides for the development of new anti-IAV therapeutics to block the entry of virus into host cells. PMID:26092189

  9. Genome mining: Prediction of lipopeptides and polyketides from Bacillus and related Firmicutes

    PubMed Central

    Aleti, Gajender; Sessitsch, Angela; Brader, Günter

    2015-01-01

    Bacillus and related genera in the Bacillales within the Firmicutes harbor a variety of secondary metabolite gene clusters encoding polyketide synthases and non-ribosomal peptide synthetases responsible for remarkable diverse number of polyketides (PKs) and lipopeptides (LPs). These compounds may be utilized for medical and agricultural applications. Here, we summarize the knowledge on structural diversity and underlying gene clusters of LPs and PKs in the Bacillales. Moreover, we evaluate by using published prediction tools the potential metabolic capacity of these bacteria to produce type I PKs or LPs. The huge sequence repository of bacterial genomes and metagenomes provides the basis for such genome-mining to reveal the potential for novel structurally diverse secondary metabolites. The otherwise cumbersome task to isolate often unstable PKs and deduce their structure can be streamlined. Using web based prediction tools, we identified here several novel clusters of PKs and LPs from genomes deposited in the database. Our analysis suggests that a substantial fraction of predicted LPs and type I PKs are uncharacterized, and their functions remain to be studied. Known and predicted LPs and PKs occurred in the majority of the plant associated genera, predominantly in Bacillus and Paenibacillus. Surprisingly, many genera from other environments contain no or few of such compounds indicating the role of these secondary metabolites in plant-associated niches. PMID:25893081

  10. Nonribosomal peptide synthase gene clusters for lipopeptide biosynthesis in Bacillus subtilis 916 and their phenotypic functions.

    PubMed

    Luo, Chuping; Liu, Xuehui; Zhou, Huafei; Wang, Xiaoyu; Chen, Zhiyi

    2015-01-01

    Bacillus cyclic lipopeptides (LPs) have been well studied for their phytopathogen-antagonistic activities. Recently, research has shown that these LPs also contribute to the phenotypic features of Bacillus strains, such as hemolytic activity, swarming motility, biofilm formation, and colony morphology. Bacillus subtilis 916 not only coproduces the three families of well-known LPs, i.e., surfactins, bacillomycin Ls (iturin family), and fengycins, but also produces a new family of LP called locillomycins. The genome of B. subtilis 916 contains four nonribosomal peptide synthase (NRPS) gene clusters, srf, bmy, fen, and loc, which are responsible for the biosynthesis of surfactins, bacillomycin Ls, fengycins, and locillomycins, respectively. By studying B. subtilis 916 mutants lacking production of one, two, or three LPs, we attempted to unveil the connections between LPs and phenotypic features. We demonstrated that bacillomycin Ls and fengycins contribute mainly to antifungal activity. Although surfactins have weak antifungal activity in vitro, the strain mutated in srfAA had significantly decreased antifungal activity. This may be due to the impaired productions of fengycins and bacillomycin Ls. We also found that the disruption of any LP gene cluster other than fen resulted in a change in colony morphology. While surfactins and bacillomycin Ls play very important roles in hemolytic activity, swarming motility, and biofilm formation, the fengycins and locillomycins had little influence on these phenotypic features. In conclusion, B. subtilis 916 coproduces four families of LPs which contribute to the phenotypic features of B. subtilis 916 in an intricate way. PMID:25362061

  11. All-or-none membrane permeabilization by fengycin-type lipopeptides from Bacillus subtilis QST713.

    PubMed

    Patel, Hiren; Tscheka, Clemens; Edwards, Katarina; Karlsson, Göran; Heerklotz, Heiko

    2011-08-01

    The fungicidal activity of Bacillus subtilis QST713 has been utilized for the highly effective and environmentally safe protection of crops against a variety of pathogens. It is based mainly on the production of cyclic lipopeptides of the fengycin (FEs), surfactin, and iturin families. The mixed population of native FEs forms micelles which solubilize individual FEs such as agrastatin 1 (AS1) that are otherwise rather insoluble on their own. Fluorescence lifetime-based calcein efflux measurements and cryo transmission electron microscopy show that these FEs show a unique scenario of membrane permeabilization. Poor miscibility of FEs with lipid probably promotes the formation of pores in 10% of the vesicles at only≈1μM free FE and in 15% of the vesicles at 10 μM. We explain why this limited, all-or-none leakage could nevertheless account for the killing of virtually all fungi whereas the same extent of graded vesicle leakage may be biologically irrelevant. Then, crystallization of AS1 and micellization of plipastatins cause a cut-off in leakage at 15% that might regulate the biological activity of FEs, protecting Bacillus and plant membranes. The fact that FE micelles solubilize only about 10 mol-% fluid lipid resembles the behavior of detergent resistance. PMID:21545788

  12. Nonribosomal Peptide Synthase Gene Clusters for Lipopeptide Biosynthesis in Bacillus subtilis 916 and Their Phenotypic Functions

    PubMed Central

    Liu, Xuehui; Zhou, Huafei; Wang, Xiaoyu

    2014-01-01

    Bacillus cyclic lipopeptides (LPs) have been well studied for their phytopathogen-antagonistic activities. Recently, research has shown that these LPs also contribute to the phenotypic features of Bacillus strains, such as hemolytic activity, swarming motility, biofilm formation, and colony morphology. Bacillus subtilis 916 not only coproduces the three families of well-known LPs, i.e., surfactins, bacillomycin Ls (iturin family), and fengycins, but also produces a new family of LP called locillomycins. The genome of B. subtilis 916 contains four nonribosomal peptide synthase (NRPS) gene clusters, srf, bmy, fen, and loc, which are responsible for the biosynthesis of surfactins, bacillomycin Ls, fengycins, and locillomycins, respectively. By studying B. subtilis 916 mutants lacking production of one, two, or three LPs, we attempted to unveil the connections between LPs and phenotypic features. We demonstrated that bacillomycin Ls and fengycins contribute mainly to antifungal activity. Although surfactins have weak antifungal activity in vitro, the strain mutated in srfAA had significantly decreased antifungal activity. This may be due to the impaired productions of fengycins and bacillomycin Ls. We also found that the disruption of any LP gene cluster other than fen resulted in a change in colony morphology. While surfactins and bacillomycin Ls play very important roles in hemolytic activity, swarming motility, and biofilm formation, the fengycins and locillomycins had little influence on these phenotypic features. In conclusion, B. subtilis 916 coproduces four families of LPs which contribute to the phenotypic features of B. subtilis 916 in an intricate way. PMID:25362061

  13. Synergistic fungicidal activity of the lipopeptide bacillomycin D with amphotericin B against pathogenic Candida species.

    PubMed

    Tabbene, Olfa; Di Grazia, Antonio; Azaiez, Sana; Ben Slimene, Imen; Elkahoui, Salem; Alfeddy, Mohamed Najib; Casciaro, Bruno; Luca, Vincenzo; Limam, Ferid; Mangoni, Maria Luisa

    2015-06-01

    In the present study, the synergism of the lipopeptide bacillomycin D in combination with the polyene amphotericin B against pathogenic Candida species is described along with their potential cytotoxicity against mammalian cells. Bacillomycin D inhibited the growth of various Candida species at minimal concentrations from 12.5 to 25 μg ml(-1). Furthermore, it showed a synergistic effect with the antifungal drug amphotericin B in inhibiting the growth of Candida strains, with fractional inhibitory concentration indices ranging from 0.28 to 0.5. Time killing studies revealed a >2-log reduction in the viability of Candida albicans ATCC 10231 cells after 3 h incubation with the combination amphotericin B plus bacillomycin D, at their subinhibitory concentration. Interestingly, when the two drugs were used together at those dosages displaying a synergism in the anti-Candida activity, no cytotoxic effect was observed against mammalian cells. Therefore, the combination bacillomycin D/amphotericin B may represent a valid alternative to conventional antifungals for topical treatment of C. albicans infections. To the best of our knowledge, this is the first report describing the in vitro interaction between the antifungal drug amphotericin B and bacillomycin D against pathogenic Candida species. PMID:25956541

  14. Lipopeptides as main ingredients for inhibition of fungal phytopathogens by Bacillus subtilis/amyloliquefaciens.

    PubMed

    Cawoy, Hélène; Debois, Delphine; Franzil, Laurent; De Pauw, Edwin; Thonart, Philippe; Ongena, Marc

    2015-03-01

    Some isolates of the Bacillus subtilis/amyloliquefaciens species are known for their plant protective activity against fungal phytopathogens. It is notably due to their genetic potential to form an impressive array of antibiotics including non-ribosomal lipopeptides (LPs). In the work presented here, we wanted to gain further insights into the relative role of these LPs in the global antifungal activity of B. subtilis/amyloliquefaciens. To that end, a comparative study was conducted involving multiple strains that were tested against four different phytopathogens. We combined various approaches to further exemplify that secretion of those LPs is a crucial trait in direct pathogen ward off and this can actually be generalized to all members of these species. Our data illustrate that for each LP family, the fungitoxic activity varies in function of the target species and that the production of iturins and fengycins is modulated by the presence of pathogens. Our data on the relative involvement of these LPs in the biocontrol activity and modulation of their production are discussed in the context of natural conditions in the rhizosphere. PMID:25529983

  15. Isolation and characterization of an antimicrobial lipopeptide produced by Paenibacillus ehimensis MA2012.

    PubMed

    Naing, Kyaw Wai; Lee, Yong Seong; Nguyen, Xuan Hoa; Jeong, Min Hae; Anees, Muhammad; Oh, Byeong Seok; Cho, Jeong Yong; Moon, Jae Hak; Kim, Kil Yong

    2015-07-01

    In this study, a novel lipopeptide antibiotic was isolated from the culture supernatant of Paenibacillus ehimensis strain MA2012. After analyses by mass spectrometry (MS), nuclear magnetic resonance (NMR), and high resolution mass spectrometry (HR-MS/MS) the compound was identified to be polypeptin C consisting of 3-hydroxy-4-methyl-hexanoic acid moiety and nine amino acids as peptide body. It has the same molecular mass (1115 Da) with that of polypeptin A and B but the amino acid positions differ. A relatively low concentration (125 ppm) of polypeptin C lowered the surface tension of water from 72.2 to 36.4 mN/m. It showed antimicrobial activity against several plant pathogenic bacteria and fungi. When the polypeptin C was applied to the ripe pepper fruits previously inoculated with conidia of Colletotrichum gloeosporioides, the hyphal growth on the fruit was significantly suppressed. Moreover, the hyphal morphology of C. gloeosporioides was greatly affected by the purified compound. All these data suggest the great potential of P. ehimensis MA2012 to control plant fungal and bacterial diseases. PMID:25588946

  16. Sequencing and Analysis of the Biosynthetic Gene Cluster of the Lipopeptide Antibiotic Friulimicin in Actinoplanes friuliensis▿

    PubMed Central

    Müller, C.; Nolden, S.; Gebhardt, P.; Heinzelmann, E.; Lange, C.; Puk, O.; Welzel, K.; Wohlleben, W.; Schwartz, D.

    2007-01-01

    Actinoplanes friuliensis produces the lipopeptide antibiotic friulimicin, which is a cyclic peptide with one exocyclic amino acid linked to a branched-chain fatty acid acyl residue. The structural relationship to daptomycin and the excellent antibacterial performance of friulimicin make the antibiotic an attractive drug candidate. The complete friulimicin biosynthetic gene cluster of 24 open reading frames from A. friuliensis was sequenced and analyzed. In addition to genes for regulation, self-resistance, and transport, the cluster contains genes encoding peptide synthetases, proteins involved in the synthesis and linkage of the fatty acid component of the antibiotic, and proteins involved in the synthesis of the nonproteinogenic amino acids pipecolinic acid, methylaspartic acid, and 2,3-diaminobutyric acid. By using heterologous gene expression in Escherichia coli, we provide biochemical evidence for the stereoselective synthesis of l-pipecolinic acid by the deduced protein of the lysine cyclodeaminase gene pip. Furthermore, we show the involvement of the dabA and dabB genes in the biosynthesis of 2,3-diaminobutyric acid by gene inactivation and subsequent feeding experiments. PMID:17220414

  17. Lipopeptides as main ingredients for inhibition of fungal phytopathogens by Bacillus subtilis/amyloliquefaciens

    PubMed Central

    Cawoy, Hélène; Debois, Delphine; Franzil, Laurent; De Pauw, Edwin; Thonart, Philippe; Ongena, Marc

    2015-01-01

    Some isolates of the Bacillus subtilis/amyloliquefaciens species are known for their plant protective activity against fungal phytopathogens. It is notably due to their genetic potential to form an impressive array of antibiotics including non-ribosomal lipopeptides (LPs). In the work presented here, we wanted to gain further insights into the relative role of these LPs in the global antifungal activity of B. subtilis/amyloliquefaciens. To that end, a comparative study was conducted involving multiple strains that were tested against four different phytopathogens. We combined various approaches to further exemplify that secretion of those LPs is a crucial trait in direct pathogen ward off and this can actually be generalized to all members of these species. Our data illustrate that for each LP family, the fungitoxic activity varies in function of the target species and that the production of iturins and fengycins is modulated by the presence of pathogens. Our data on the relative involvement of these LPs in the biocontrol activity and modulation of their production are discussed in the context of natural conditions in the rhizosphere. PMID:25529983

  18. Identification of S-(2,3-dihydroxypropyl)cystein in a macrophage-activating lipopeptide from Mycoplasma fermentans.

    PubMed

    Mühlradt, P F; Meyer, H; Jansen, R

    1996-06-18

    Mycoplasmas are capable of stimulating monocytes and macrophages to release cytokines, prostaglandins, and nitric oxide. The aim of this study was to characterize the chemical nature of the previously isolated [Mühlradt, P. F., & Frisch, M. (1994) Infect. Immun. 62, 3801-3807] macrophage-stimulating material "MDHM" from Mycoplasma fermentans. Mycoplasmas were delipidated, and MDHM activity was extracted with octyl glucoside and further purified by reversed-phase HPLC. Macrophage-stimulating activity was monitored by nitric oxide release from peritoneal macrophages from C3H/HeJ endotoxin low responder mice. HPLC-purified MDHM was rechromatographed on an analytic scale RP 18 column before and after proteinase K treatment. Proteinase treatment did not diminish biological activity but shifted MDHM elution toward higher lipophilicity, suggesting that the macrophage-stimulating activity might reside in the lipopeptide moiety of a lipoprotein. Proteinase K-treated MDHM was hydrolyzed, amino groups were dansylated, and the dansylated material was isolated by HPLC. Dansylated S-(2,3-dihydroxypropyl)cystein (glycerylcystein thioether), typical for Braun's murein lipoprotein, and Dns-Gly and Dns-Thr were identified by tandem mass spectrometry. These amino acids were isolated from biologically active but not from the neighboring inactive HPLC fractions. IR spectra from proteinase K-treated, HPLC-purified MDHM and those from the synthetic lipopeptide [2,3-bis(palmitoyloxy)-(2-RS)-propyl]-N-palmitoyl-(R)-CysSerSer AsnAla were very similar. The data, taken together, indicate that lipoproteins of a nature previously detected in eubacteria are expressed in M. fermentans and that at least one of these lipoproteins and a lipopeptide derived from it constitute the macrophage-activating principle MDHM from these mycoplasmas. PMID:8672478

  19. Nail toxicities induced by systemic anticancer treatments.

    PubMed

    Robert, Caroline; Sibaud, Vincent; Mateus, Christina; Verschoore, Michèle; Charles, Cécile; Lanoy, Emilie; Baran, Robert

    2015-04-01

    Patients treated with systemic anticancer drugs often show changes to their nails, which are usually well tolerated and disappear on cessation of treatment. However, some nail toxicities can cause pain and functional impairment and thus substantially affect a patient's quality of life, especially if they are given taxanes or EGFR inhibitors. These nail toxicities can affect both the nail plate and bed, and might present as melanonychia, leukonychia, onycholysis, onychomadesis, Beau's lines, or onychorrhexis, as frequently noted with conventional chemotherapies. Additionally, the periungual area (perionychium) of the nail might be affected by paronychia or pyogenic granuloma, especially in patients treated with drugs targeting EGFR or MEK. We review the nail changes induced by conventional chemotherapies and those associated with the use of targeted anticancer drugs and discuss preventive or curative options. PMID:25846098

  20. Learning-induced autonomy of sensorimotor systems.

    PubMed

    Bassett, Danielle S; Yang, Muzhi; Wymbs, Nicholas F; Grafton, Scott T

    2015-05-01

    Distributed networks of brain areas interact with one another in a time-varying fashion to enable complex cognitive and sensorimotor functions. Here we used new network-analysis algorithms to test the recruitment and integration of large-scale functional neural circuitry during learning. Using functional magnetic resonance imaging data acquired from healthy human participants, we investigated changes in the architecture of functional connectivity patterns that promote learning from initial training through mastery of a simple motor skill. Our results show that learning induces an autonomy of sensorimotor systems and that the release of cognitive control hubs in frontal and cingulate cortices predicts individual differences in the rate of learning on other days of practice. Our general statistical approach is applicable across other cognitive domains and provides a key to understanding time-resolved interactions between distributed neural circuits that enable task performance. PMID:25849989

  1. Optimization of antifungal lipopeptide production from Bacillus sp. BH072 by response surface methodology.

    PubMed

    Zhao, Xin; Han, Ye; Tan, Xi-qian; Wang, Jin; Zhou, Zhi-jiang

    2014-04-01

    Antifungal lipopeptide produced by Bacillus sp. BH072 was extracted from fermentation liquor and determined as iturin A by liquid chromatography-mass spectrometry (LC-MS). For industrial-scale production, the yield of iturin A was improved by optimizing medium components and fermentation conditions. A one-factor test was conducted; fermentation conditions were then optimized by response surface methodology (RSM) to obtain the following: temperature, 29.5°C; pH 6.45; inoculation quantity, 6.7%; loading volume, 100 ml (in 500 ml flasks); and rotary speed, 150 rpm. Under these conditions, the mass concentration of iturin A was increased from 45.30 mg/ml to 47.87 mg/ml. The following components of the medium were determined: carbon sources (glucose, fructose, sucrose, xylose, rhamnose, and soluble starch); nitrogen sources (peptone, soybean meal, NH4Cl, urea, and ammonium citrate); and metal ions (Zn(2+), Fe(3+), Mg(2+), Mn(2+), Ca(2+), and K(+)). The effects of these components on iturin A production were observed in LB medium. We selected sucrose, soybean meal, and Mg(2+) for RSM to optimize the conditions because of several advantages, including maximum iturin A production, high antifungal activity, and low cost. The optimum concentrations of these components were 0.98% sucrose, 0.94% soybean meal, and 0.93% Mg(2+). After iturin A production was optimized by RSM, the mass concentration reached 52.21 mg/ml. The antifungal specific activity was enhanced from 350.11 AU/mg to 513.92 AU/mg, which was 46.8% higher than the previous result. The present study provides an important experimental basis for the industrial-scale production of iturin A and the agricultural applications of Bacillus sp. BH072. PMID:24535741

  2. Biochemical, Genetic, and Zoosporicidal Properties of Cyclic Lipopeptide Surfactants Produced by Pseudomonas fluorescens

    PubMed Central

    de Souza, Jorge T.; de Boer, Marjan; de Waard, Pieter; van Beek, Teris A.; Raaijmakers, Jos M.

    2003-01-01

    Zoospores play an important role in the infection of plant and animal hosts by oomycetes and other zoosporic fungi. In this study, six fluorescent Pseudomonas isolates with zoosporicidal activities were obtained from the wheat rhizosphere. Zoospores of multiple oomycetes, including Pythium species, Albugo candida, and Phytophthora infestans, were rendered immotile within 30 s of exposure to cell suspensions or cell culture supernatants of the six isolates, and subsequent lysis occurred within 60 s. The representative strain SS101, identified as Pseudomonas fluorescens biovar II, reduced the surface tension of water from 73 to 30 mN m−1. The application of cell suspensions of strain SS101 to soil or hyacinth bulbs provided significant protection against root rot caused by Pythium intermedium. Five Tn5 mutants of strain SS101lacked the abilities to reduce the surface tension of water and to cause lysis of zoospores. Genetic characterization of two surfactant-deficient mutants showed that the transposons had integrated into condensation domains of peptide synthetases. A partially purified extract from strain SS101 reduced the surface tension of water to 30 mN m−1 and reached the critical micelle concentration at 25 μg ml−1. Reverse-phase high-performance liquid chromatography yielded eight different fractions, five of which had surface activity and caused lysis of zoospores. Mass spectrometry and nuclear magnetic resonance analyses allowed the identification of the main constituent as a cyclic lipopeptide (1,139 Da) containing nine amino acids and a 10-carbon hydroxy fatty acid. The other four zoosporicidal fractions were closely related to the main constituent, with molecular massesranging from 1,111 to 1,169 Da. PMID:14660362

  3. Antipneumocystis activity of water-soluble lipopeptide L-693,989 in rats.

    PubMed Central

    Schmatz, D M; Powles, M A; McFadden, D C; Pittarelli, L; Balkovec, J; Hammond, M; Zambias, R; Liberator, P; Anderson, J

    1992-01-01

    Water-soluble lipopeptide L-693,989 was evaluated for its antipneumocystis activity in rats. Rats from colonies with latent Pneumocystis carinii infections were immunosuppressed with dexamethasone for 6 weeks to facilitate the development of acute P. carinii pneumonia (PCP). After 6 weeks, the rats were maintained on dexamethasone and were treated twice daily for 4 days with various concentrations of L-693,989. At a dose of 0.15 mg/kg of body weight, the compound effectively eliminated 90% of the cysts in 4 days. Trophozoite forms of P. carinii were still present in these animals, as determined by using a P. carinii-specific DNA probe. A 3-week therapy study showed that the trophozoite load did not expand during treatment and that the trophozoites already present at the initiation of therapy appeared to persist. This may be a consequence of the stage specificity of the compound for cyst development and the severe immunosuppressive effects of dexamethasone on rats. When evaluated as a daily parenteral prophylactic agent, L-693,989 was effective in preventing the development of both P. carinii cysts and trophozoites, demonstrating its potential for use in prophylaxis and implying that the cyst stage of P. carinii is an obligatory step in trophozoite multiplication. The foamy exudate commonly associated with P. carinii infections was absent in the lungs of rats on prophylaxis. The compound was also evaluated via oral administration and was found to have a 90% effective dose of 32 mg/kg for therapy of acute infections and 5 mg/kg for daily prophylaxis. Images PMID:1416888

  4. Biochemical, genetic, and zoosporicidal properties of cyclic lipopeptide surfactants produced by Pseudomonas fluorescens.

    PubMed

    De Souza, Jorge T; De Boer, Marjan; De Waard, Pieter; Van Beek, Teris A; Raaijmakers, Jos M

    2003-12-01

    Zoospores play an important role in the infection of plant and animal hosts by oomycetes and other zoosporic fungi. In this study, six fluorescent Pseudomonas isolates with zoosporicidal activities were obtained from the wheat rhizosphere. Zoospores of multiple oomycetes, including Pythium species, Albugo candida, and Phytophthora infestans, were rendered immotile within 30 s of exposure to cell suspensions or cell culture supernatants of the six isolates, and subsequent lysis occurred within 60 s. The representative strain SS101, identified as Pseudomonas fluorescens biovar II, reduced the surface tension of water from 73 to 30 mN m-1. The application of cell suspensions of strain SS101 to soil or hyacinth bulbs provided significant protection against root rot caused by Pythium intermedium. Five Tn5 mutants of strain SS101lacked the abilities to reduce the surface tension of water and to cause lysis of zoospores. Genetic characterization of two surfactant-deficient mutants showed that the transposons had integrated into condensation domains of peptide synthetases. A partially purified extract from strain SS101 reduced the surface tension of water to 30 mN m-1 and reached the critical micelle concentration at 25 micrograms ml-1. Reverse-phase high-performance liquid chromatography yielded eight different fractions, five of which had surface activity and caused lysis of zoospores. Mass spectrometry and nuclear magnetic resonance analyses allowed the identification of the main constituent as a cyclic lipopeptide (1,139 Da) containing nine amino acids and a 10-carbon hydroxy fatty acid. The other four zoosporicidal fractions were closely related to the main constituent, with molecular massesranging from 1,111 to 1,169 Da. PMID:14660362

  5. Isolation and partial characterization of cyclic lipopeptide antibiotics produced by Paenibacillus ehimensis B7

    PubMed Central

    2013-01-01

    Background The prevalence of drug-resistant bacteria has encouraged the search for novel antimicrobial compounds. Food-associated microorganisms, as a source of new antibiotics, have recently received considerable attention. The objective of this study was to find novel antimicrobial agents produced by food microorganisms. Results A bacterial strain B7, which has potent antimicrobial activity, was isolated from a sample of dairy waste. This strain was identified as Paenibacillus ehimensis based on the 16S rRNA gene sequence analysis, physiological and biochemical characterization. Two active compounds (PE1 and PE2) were obtained from P. ehimensis B7. Mass spectrometry (MS) analysis showed that the molecular masses of PE1 and PE2 were 1,114 and 1,100 Da, respectively. The tandem MS and amino acid analysis indicated that PE1 and PE2 were analogs of polypeptin, and PE2 was characterized as a new member of this family. Both compounds were active against all tested bacterial pathogens, including methicillin resistant Staphylococcus aureus, Escherichia coli, and pan-drug resistant Pseudomonas aeruginosa clinical isolate. Time-kill assays demonstrated that at 4 × MIC (minimum inhibitory concentration), PE1 and PE2 rapidly reduced the number of viable cells by at least 3-orders of magnitude, indicating that they were bactericidal antibiotics. Conclusions In the present work, two cationic lipopeptide antibiotics (PE1 and PE2) were isolated from P. ehimensis B7 and characterized. These two peptides showed broad antimicrobial activity against all tested human pathogens and are worthy of further study. PMID:23594351

  6. Impact of Residual Inducer on Titratable Expression Systems

    PubMed Central

    Afroz, Taliman; Luo, Michelle L.; Beisel, Chase L.

    2015-01-01

    Inducible expression systems are widely employed for the titratable control of gene expression, yet molecules inadvertently present in the growth medium or synthesized by the host cells can alter the response profile of some of these systems. Here, we explored the quantitative impact of these residual inducers on the apparent response properties of inducible systems. Using a simple mathematical model, we found that the presence of residual inducer shrinks the apparent dynamic range and causes the apparent Hill coefficient to converge to one. We also found that activating systems were more sensitive than repressing systems to the presence of residual inducer and the response parameters were most heavily dependent on the original Hill coefficient. Experimental interrogation of common titratable systems based on an L-arabinose inducible promoter or a thiamine pyrophosphate-repressing riboswitch in Escherichia coli confirmed the predicted trends. We finally found that residual inducer had a distinct effect on “all-or-none” systems, which exhibited increased sensitivity to the added inducer until becoming fully induced. Our findings indicate that residual inducer or repressor alters the quantitative response properties of titratable systems, impacting their utility for scientific discovery and pathway engineering. PMID:26348036

  7. Impact of Residual Inducer on Titratable Expression Systems.

    PubMed

    Afroz, Taliman; Luo, Michelle L; Beisel, Chase L

    2015-01-01

    Inducible expression systems are widely employed for the titratable control of gene expression, yet molecules inadvertently present in the growth medium or synthesized by the host cells can alter the response profile of some of these systems. Here, we explored the quantitative impact of these residual inducers on the apparent response properties of inducible systems. Using a simple mathematical model, we found that the presence of residual inducer shrinks the apparent dynamic range and causes the apparent Hill coefficient to converge to one. We also found that activating systems were more sensitive than repressing systems to the presence of residual inducer and the response parameters were most heavily dependent on the original Hill coefficient. Experimental interrogation of common titratable systems based on an L-arabinose inducible promoter or a thiamine pyrophosphate-repressing riboswitch in Escherichia coli confirmed the predicted trends. We finally found that residual inducer had a distinct effect on "all-or-none" systems, which exhibited increased sensitivity to the added inducer until becoming fully induced. Our findings indicate that residual inducer or repressor alters the quantitative response properties of titratable systems, impacting their utility for scientific discovery and pathway engineering. PMID:26348036

  8. Insight into the Modification of Polymeric Micellar and Liposomal Nanocarriers by Fluorescein-Labeled Lipids and Uptake-Mediating Lipopeptides.

    PubMed

    Draffehn, Sören; Eichhorst, Jenny; Wiesner, Burkhard; Kumke, Michael U

    2016-07-12

    Encapsulation of diagnostic and therapeutic compounds in transporters improves their delivery to the point of need. An even more efficient treatment of diseases can be achieved using carriers with targeting or protecting moieties. In the present work, we investigated micellar and liposomal nanocarriers modified with fluorescein, peptides, and polymers that are covalently bound to fatty acids or phospholipids to ensure a self-driven incorporation into the micelles or liposomes. First, we characterized the photophysics of the fluorescent probes in the absence and in the presence of nanocarriers. Changes in the fluorescence decay time, quantum yield, and intensity of a fluorescein-labeled fatty acid (fluorescein-labeled palmitic acid [fPA]) and a fluorescein-labeled lipopeptide (P2fA2) were found. By exploiting these changes, we investigated a lipopeptide (P2A2 as an uptake-mediating unit) in combination with different nanocarriers (micelles and liposomes) and determined the corresponding association constant Kass values, which were found to be very high. In addition, the mobility of fPA was exploited using fluorescence correlation spectroscopy (FCS) and fluorescence depolarization (FD) experiments to characterize the nanocarriers. Cellular uptake experiments with mouse brain endothelial cells provided information on the uptake behavior of liposomes modified by uptake-mediating P2A2 and revealed differences in the uptake behavior between pH-sensitive and pH-insensitive liposomes. PMID:27295095

  9. Characterization of antimicrobial lipopeptides produced by Bacillus sp. LM7 isolated from chungkookjang, a Korean traditional fermented soybean food.

    PubMed

    Lee, Mi-Hwa; Lee, Jiyeon; Nam, Young-Do; Lee, Jong Suk; Seo, Myung-Ji; Yi, Sung-Hun

    2016-03-16

    A wild-type microorganism exhibiting antimicrobial activities was isolated from the Korean traditional fermented soybean food Chungkookjang and identified as Bacillus sp. LM7. During its stationary growth phase, the microorganism secreted an antimicrobial substance, which we partially purified using a simple two-step procedure involving ammonium sulfate precipitation and heat treatment. The partially purified antimicrobial substance, Anti-LM7, was stable over a broad pH range (4.0-9.0) and at temperatures up to 80 °C for 30 min, and was resistant to most proteolytic enzymes and maintained its activity in 30% (v/v) organic solvents. Anti-LM7 inhibited the growth of a broad range of Gram-positive bacteria, including Bacillus cereus and Listeria monocytogenes, but it did not inhibit lactic acid bacteria such as Lactobacillus plantarum and Lactococcus lactis subsp. Lactis. Moreover, unlike commercially available nisin and polymyxin B, Anti-LM7 inhibited certain fungal strains. Lastly, liquid chromatography-mass spectrometry analysis of Anti-LM7 revealed that it contained eight lipopeptides belonging to two families: four bacillomycin D and four surfactin analogs. These Bacillus sp. LM7-produced heterogeneous lipopeptides exhibiting extremely high stability and a broad antimicrobial spectrum are likely to be closely related to the antimicrobial activity of Chungkookjang, and their identification presents an opportunity for application of the peptides in environmental bioremediation, pharmaceutical, cosmetic, and food industries. PMID:26803269

  10. Impact of rhizosphere factors on cyclic lipopeptide signature from the plant beneficial strain Bacillus amyloliquefaciens S499.

    PubMed

    Nihorimbere, Venant; Cawoy, Hélène; Seyer, Alexandre; Brunelle, Alain; Thonart, Philippe; Ongena, Marc

    2012-01-01

    Cyclic lipopeptides (cLPs) of the surfactin, iturin and fengycin families synthesized by plant-associated Bacilli represent an important class of antibiotics as they may be tightly involved in the protective effect of selected strains against phytopathogens. However, their production by Bacillus cells developing on roots under rhizosphere conditions is still poorly understood. In this work, we combined electrospray and imaging mass spectrometry-based approaches to determine the detailed pattern of surfactins, iturins and fengycins produced in planta by Bacillus amyloliquefaciens S499. Very different production rates were observed for the three cLPs families. Whereas surfactin accumulated in significant amounts, much lower quantities of iturins and fengycins were detected in the environment of colonized roots in comparison with laboratory medium. In addition, the surfactin pattern produced by strain S499 evolving on roots is enriched in homologues with long fatty acid chains (C15) compared with the chains typically secreted under in vitro conditions. Additional experiments revealed that lipopeptide production by root-associated S499 cells is qualitatively and quantitatively dictated by the specific nutritional context of the rhizosphere (exudates enriched in organic acids, oxygen limitation) but also by the formation of biofilm-related structures around root hairs. As surfactins, iturins and fengycins retain specific functions and bioactivities, the biological relevance of their differential production observed in planta is discussed in the context of biocontrol of plant diseases. PMID:22029651

  11. The Lipopeptide Antibiotic Paenibacterin Binds to the Bacterial Outer Membrane and Exerts Bactericidal Activity through Cytoplasmic Membrane Damage

    PubMed Central

    Huang, En

    2014-01-01

    Paenibacterin is a broad-spectrum lipopeptide antimicrobial agent produced by Paenibacillus thiaminolyticus OSY-SE. The compound consists of a cyclic 13-residue peptide and an N-terminal C15 fatty acyl chain. The mechanism of action of paenibacterin against Escherichia coli and Staphylococcus aureus was investigated in this study. The cationic lipopeptide paenibacterin showed a strong affinity for the negatively charged lipopolysaccharides (LPS) from the outer membrane of Gram-negative bacteria. Addition of LPS (100 μg/ml) completely eliminated the antimicrobial activity of paenibacterin against E. coli. The electrostatic interaction between paenibacterin and LPS may have displaced the divalent cations on the LPS network and thus facilitated the uptake of antibiotic into Gram-negative cells. Paenibacterin also damaged the bacterial cytoplasmic membrane, as evidenced by the depolarization of membrane potential and leakage of intracellular potassium ions from cells of E. coli and S. aureus. Therefore, the bactericidal activity of paenibacterin is attributed to disruption of the outer membrane of Gram-negative bacteria and damage of the cytoplasmic membrane of both Gram-negative and Gram-positive bacteria. Despite the evidence of membrane damage, this study does not rule out additional bactericidal mechanisms potentially exerted by paenibacterin. PMID:24561581

  12. In Situ Analysis of Bacterial Lipopeptide Antibiotics by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging.

    PubMed

    Debois, Delphine; Ongena, Marc; Cawoy, Hélène; De Pauw, Edwin

    2016-01-01

    Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) is a technique developed in the late 1990s enabling the two-dimensional mapping of a broad variety of biomolecules present at the surface of a sample. In many applications including pharmaceutical studies or biomarker discovery, the distribution of proteins, lipids or drugs, and metabolites may be visualized within tissue sections. More recently, MALDI MSI has become increasingly applied in microbiology where the versatility of the technique is perfectly suited to monitor the metabolic dynamics of bacterial colonies. The work described here is focused on the application of MALDI MSI to map secondary metabolites produced by Bacilli, especially lipopeptides, produced by bacterial cells during their interaction with their environment (bacteria, fungi, plant roots, etc.). This chapter addresses the advantages and challenges that the implementation of MALDI MSI to microbiological samples entails, including detailed protocols on sample preparation (from both microbiologist and mass spectrometrist points of view), matrix deposition, and data acquisition and interpretation. Lipopeptide images recorded from confrontation plates are also presented. PMID:26831708

  13. Activation of superoxide formation and lysozyme release in human neutrophils by the synthetic lipopeptide Pam3Cys-Ser-(Lys)4. Involvement of guanine-nucleotide-binding proteins and synergism with chemotactic peptides.

    PubMed Central

    Seifert, R; Schultz, G; Richter-Freund, M; Metzger, J; Wiesmüller, K H; Jung, G; Bessler, W G; Hauschildt, S

    1990-01-01

    Upon exposure to the bacterial chemotactic peptide fMet-Leu-Phe, human neutrophils release lysozyme and generate superoxide anions (O2.-). The synthetic lipoamino acid N-palmitoyl-S-[2,3-bis(palmitoyloxy)-(2RS)-propyl]-(R)-cysteine (Pam3Cys), which is derived from the N-terminus of bacterial lipoprotein, when attached to Ser-(Lys)4 [giving Pam3Cys-Ser-(Lys)4], activated O2.- formation and lysozyme release in human neutrophils with an effectiveness amounting to about 15% of that of fMet-Leu-Phe. Palmitic acid, muramyl dipeptide, lipopolysaccharide and the lipopeptides Pam3Cys-Ala-Gly, Pam3Cys-Ser-Gly, Pam3Cys-Ser, Pam3Cys-OMe and Pam3Cys-OH did not activate O2.- formation. Pertussis toxin, which ADP-ribosylates guanine-nucleotide-binding proteins (G-proteins) and functionally uncouples formyl peptide receptors from G-proteins, prevented activation of O2.- formation by fMet-Leu-Phe and inhibited Pam3Cys-Ser-(Lys)4-induced O2.- formation by 85%. Lipopeptide-induced exocytosis was pertussis-toxin-insensitive. O2.- formation induced by Pam3Cys-Ser-(Lys)4 and fMet-Leu-Phe was enhanced by cytochalasin B, by a phorbol ester and by a diacylglycerol kinase inhibitor. Addition of activators of adenylate cyclase and removal of extracellular Ca2+ inhibited O2.- formation by fMet-Leu-Phe and Pam3Cys-Ser-(Lys)4 to different extents. Pam3Cys-Ser-(Lys)4 synergistically enhanced fMet-Leu-Phe-induced O2.- formation and primed neutrophils to respond to the chemotactic peptide at non-stimulatory concentrations. Our data suggest the following. (1) Pam3Cys-Ser-(Lys)4 activates neutrophils through G-proteins, involving pertussis-toxin-sensitive and -insensitive processes. (2) The signal transduction pathways activated by fMet-Leu-Phe and Pam3Cys-Ser-(Lys)4 are similar but not identical. (3) In inflammatory processes, bacterial lipoproteins and chemotactic peptides may interact synergistically to activate O2.- formation, leading to enhanced bactericidal activity. PMID:2160237

  14. Flow Induced Electrification of Liquid Insulated Systems.

    NASA Astrophysics Data System (ADS)

    Washabaugh, Andrew Patrick

    1995-01-01

    The transport or motion of semi-insulating liquids has led to flow induced static electrification and catastrophic failures in several industries. While techniques for reducing the hazard have been developed, the roles of seemingly important parameters are poorly understood. The objective of this thesis was to measure and understand the fundamental parameters of the flow electrification process that, together with the laws of electroquasistatics and physicochemical hydrodynamics, can be used to predict the performance of complex flow systems, with particular attention to transformer applications. A rotating cylindrical electrode apparatus, which provided cylindrical Couette flow, was used to simulate flow electrification in an electric power transformer. The apparatus had Shell Diala A transformer oil filling the annulus between coaxial cylindrical stainless steel electrodes that were either bare metal, or covered by a thin copper sheet and/or EHV-Weidmann HiVal pressboard insulation. Extensive experiments characterized the time transient and steady state behavior of the electrification through measurements of the volume charge density, the terminal voltage, and the terminal current as the system was driven out of equilibrium by changes in the flow rate (inner cylinder rotation rates of 100-1400 rpm, Reynolds numbers of 5 times 10^3-5 times 10^5), temperature (15-70 ^circ), insulation moisture content (0.5-20 ppm in the oil), applied voltage (0-2 kV DC), and concentration of the non-ionizable anti-static additive 1,2,3 benzotriazole (BTA, 0-60 ppm). Generally, the electrification increased with flow rate and temperature but the BTA appeared to cause competing effects: it decreased the volume charge density on the liquid side of the interface (by a factor of 4), which reduces the electrification, but also decreased the oil conductivity (by a factor of 10), which enhances the electrification. A critical oil BTA concentration of 5 -8 ppm minimized the electrification

  15. Optimization and characterization of a new lipopeptide biosurfactant produced by marine Brevibacterium aureum MSA13 in solid state culture.

    PubMed

    Seghal Kiran, G; Anto Thomas, T; Selvin, Joseph; Sabarathnam, B; Lipton, A P

    2010-04-01

    The biosurfactant production of a marine actinobacterium Brevibacterium aureum MSA13 was optimized using industrial and agro-industrial solid waste residues as substrates in solid state culture (SSC). Based on the optimization experiments, the biosurfactant production by MSA13 was increased to threefold over the original isolate under SSC conditions with pre-treated molasses as substrate and olive oil, acrylamide, FeCl(3) and inoculums size as critical control factors. The strain B. aureum MSA13 produced a new lipopeptide biosurfactant with a hydrophobic moiety of octadecanoic acid methyl ester and a peptide part predicted as a short sequence of four amino acids including pro-leu-gly-gly. The biosurfactant produced by the marine actinobacterium MSA13 can be used for the microbially enhanced oil recovery processes in the marine environments. PMID:19959354

  16. New Cyclic Lipopeptides of the Iturin Class Produced by Saltern-Derived Bacillus sp. KCB14S006.

    PubMed

    Son, Sangkeun; Ko, Sung-Kyun; Jang, Mina; Kim, Jong Won; Kim, Gil Soo; Lee, Jae Kyoung; Jeon, Eun Soo; Futamura, Yushi; Ryoo, In-Ja; Lee, Jung-Sook; Oh, Hyuncheol; Hong, Young-Soo; Kim, Bo Yeon; Takahashi, Shunji; Osada, Hiroyuki; Jang, Jae-Hyuk; Ahn, Jong Seog

    2016-04-01

    Salterns, one of the most extreme natural hypersaline environments, are a rich source of halophilic and halotolerant microorganisms, but they remain largely underexplored ecological niches in the discovery of bioactive secondary metabolites. In continued efforts to investigate the metabolic potential of microbial populations from chemically underexplored sites, three new lipopeptides named iturin F₁, iturin F₂ and iturin A₉ (1-3), along with iturin A₈ (4), were isolated from Bacillus sp. KCB14S006 derived from a saltern. The structures of the isolated compounds were established by 1D-, 2D-NMR and HR-ESIMS, and their absolute configurations were determined by applying advanced Marfey's method and CD spectroscopy. All isolates exhibited significant antifungal activities against various pathogenic fungi and moderate cytotoxic activities toward HeLa and src(ts)-NRK cell lines. Moreover, in an in vitro enzymatic assay, compound 4 showed a significant inhibitory activity against indoleamine 2,3-dioxygenase. PMID:27049393

  17. Stereospecific enzymatic transformation of alpha-ketoglutarate to (2S,3R)-3-methyl glutamate during acidic lipopeptide biosynthesis.

    PubMed

    Mahlert, Christoph; Kopp, Florian; Thirlway, Jenny; Micklefield, Jason; Marahiel, Mohamed A

    2007-10-01

    The acidic lipopeptides, including the calcium-dependent antibiotics (CDA), daptomycin, and A54145, are important macrocyclic peptide natural products produced by Streptomyces species. All three compounds contain a 3-methyl glutamate (3-MeGlu) as the penultimate C-terminal residue, which is important for bioactivity. Here, biochemical in vitro reconstitution of the 3-MeGlu biosynthetic pathway is presented, using exclusively enzymes from the CDA producer Streptomyces coelicolor. It is shown that the predicted 3-MeGlu methyltransferase GlmT and its homologues DptI from the daptomycin producer Streptomyces roseosporus and LptI from the A54145 producer Streptomyces fradiae do not methylate free glutamic acid, PCP-bound glutamate, or Glu-containing CDA in vitro. Instead, GlmT, DptI, and LptI are S-adenosyl methionine (SAM)-dependent alpha-ketoglutarate methyltransferases that catalyze the stereospecific methylation of alpha-ketoglutarate (alphaKG) leading to (3R)-3-methyl-2-oxoglutarate. Subsequent enzyme screening identified the branched chain amino acid transaminase IlvE (SCO5523) as an efficient catalyst for the transformation of (3R)-3-methyl-2-oxoglutarate into (2S,3R)-3-MeGlu. Comparison of reversed-phase HPLC retention time of dabsylated 3-MeGlu generated by the coupled enzymatic reaction with dabsylated synthetic standards confirmed complete stereocontrol during enzymatic catalysis. This stereospecific two-step conversion of alphaKG to (2S,3R)-3-MeGlu completes our understanding of the biosynthesis and incorporation of beta-methylated amino acids into the nonribosomal lipopeptides. Finally, understanding this pathway may provide new possibilities for the production of modified peptides in engineered microbes. PMID:17784761

  18. Optimization of the dynamic inducer wind turbine system

    NASA Astrophysics Data System (ADS)

    Lissaman, P. B. S.; Zalay, A. D.; Hibbs, B.

    The dynamic inducer, essentially a horizontal axis wind turbine (HAWT) rotor with small vanes at the tips is a promising, advanced technology wind turbine concept. By adding small vanes to the tip of the conventional rotor, significant increases in power can be obtained with the dynamic inducer system. The development of the system is reviewed, including past theoretical and experimental programs. Recent tow tests and wind tunnel tests established the predicted augmentation power. A new optimization program is outlined, based on advanced theory back by extensive wind tunnel testing, aimed at developing an advanced dynamic inducer system for a state-of-the art high performance, two-bladed rotor system. It is estimated that the dynamic inducer rotor is about 20% more cost-effective than a conventional system.

  19. Railgun system using a laser-induced plasma armature

    SciTech Connect

    Onozuka, M.; Oda, Y.; Azuma, K.

    1996-05-01

    Development of an electromagnetic railgun system that utilizes a laser-induced plasma armature formation has been conducted to investigate the application of the railgun system for high-speed pellet injection into fusion plasmas. Using the laser-induced plasma formation technique, the required breakdown voltage was reduced by one-tenth compared with that for the spark-discharged plasma. The railgun system successfully accelerated the laser-induced plasma armature by an electromagnetic force that accelerated the pellet. The highest velocity of the solid hydrogen pellets, obtained so far, was 2.6 km/sec using a 2m-long railgun. {copyright} {ital 1996 American Institute of Physics.}

  20. CALCIUM-INDUCED SUPRAMOLECULAR STRUCTURES IN THE CALCIUM CASEINATE SYSTEM

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The molecular details deciphering the spontaneous calcium-induced protein aggregation process in the calcium caseinate system remain obscure. Understanding this complex process could lead to potential new applications of this important food ingredient. In this work, we studied calcium-induced supra...

  1. Discreteness-induced transitions in multibody reaction systems.

    PubMed

    Saito, Yohei; Sughiyama, Yuki; Kaneko, Kunihiko; Kobayashi, Tetsuya J

    2016-08-01

    A decrease in system size can induce qualitatively different behavior compared to the macroscopic behavior of the corresponding large-size system. The mechanisms of this transition, which is known as the small-size transition, can be attributed to either a relative increase in the noise intensity or to the discreteness of the state space due to the small system size. The former mechanism has been intensively investigated using several toy and realistic models. However, the latter has rarely been analyzed and is sometimes confused with the former, because a toy model that extracts the essence of the discreteness-induced transition mechanism is lacking. In this work, we propose a one- and three-body reaction system as a minimal model of the discreteness-induced transition and derive the conditions under which this transition occurs in more complex systems. This work enriches our understanding of the influence of small system size on system behavior. PMID:27627279

  2. Supramolecular gels from lipopeptide gelators: template improvement and strategies for the in-situ preparation of inorganic nanomaterials and for the dispersion of carbon nanomaterials.

    PubMed

    Delbecq, Frederic

    2014-07-01

    Lipopeptide amphiphiles are an important class of biobased and biomimetic surfactants that are easily prepared from the cheapest organic reagents, such as natural fatty and amino acids, and in many cases, the resulting compounds are able to harden not only common organic solvents but also waxes, water and ionic liquids. Well-tailored, these gelators can be selective for one variety of liquid, which leads to the formation of a robust gel that is able to incorporate various different elements. In this review, we attempted to provide our opinion regarding the molecular design of the lipopeptide gelator candidates. In addition, we summarized each type of element that is necessary for creating potent supramolecular gel templates that are useful for inorganic nano- and micro-material preparation. This review is not only limited to recent papers found in the literature; a portion of our unpublished results are also provided as a supplement to illustrate our point of view regarding this subject. PMID:24630345

  3. Acoustically induced structural fatigue of piping systems

    SciTech Connect

    Eisinger, F.L.; Francis, J.T.

    1999-11-01

    Piping systems handling high-pressure and high-velocity steam and various process and hydrocarbon gases through a pressure-reducing device can produce severe acoustic vibration and metal fatigue in the system. It has been previously shown that the acoustic fatigue of the piping system is governed by the relationship between fluid pressure drop and downstream Mach number, and the dimensionless pipe diameter/wall thickness geometry parameter. In this paper, the devised relationship is extended to cover acoustic fatigue considerations of medium and smaller-diameter piping systems.

  4. Systemically induced plant volatiles emitted at the time of "danger".

    PubMed

    Mattiacci, L; Rocca, B A; Scascighini, N; D'Alessandro, M; Hern, A; Dorn, S

    2001-11-01

    Feeding by Pieris brassicae caterpillars on the lower leaves of Brussels sprouts (Brassica oleracea var. gemmifera) plants triggers the release of volatiles from upper leaves. The volatiles are attractive for a natural antagonist of the herbivore, the parasitoid Cotesia glomerata. Parasitoids are attracted only if additional damage is inflicted on the systemically induced upper leaves and only after at least three days of herbivore feeding on the lower leaves. Upon termination of caterpillar feeding, the systemic signal is emitted for a maximum of one more day. Systemic induction did not occur at low levels of herbivore infestation. Systemically induced leaves emitted green leaf volatiles, cyclic monoterpenoids, and sesquiterpenes. GC-MS profiles of systemically induced and herbivore-infested leaves did not differ for most compounds, although herbivore infested plants did emit higher amounts of green leaf volatiles. Emission of systemically induced volatiles in Brussels sprouts might function as an induced defense that is activated only when needed, i.e., at the time of caterpillar attack. This way, plants may adopt a flexible management of inducible defensive resources to minimize costs of defense and to maximize fitness in response to unpredictable herbivore attack. PMID:11817078

  5. Isolation and Structural Elucidation of Brevibacillin, an Antimicrobial Lipopeptide from Brevibacillus laterosporus That Combats Drug-Resistant Gram-Positive Bacteria.

    PubMed

    Yang, Xu; Huang, En; Yuan, Chunhua; Zhang, Liwen; Yousef, Ahmed E

    2016-05-01

    A new environmental bacterial strain exhibited strong antimicrobial characteristics against methicillin-resistantStaphylococcus aureus, vancomycin-resistant strains ofEnterococcus faecalisandLactobacillus plantarum, and other Gram-positive bacteria. The producer strain, designated OSY-I1, was determined to beBrevibacillus laterosporusvia morphological, biochemical, and genetic analyses. The antimicrobial agent was extracted from cells of OSY-I1with isopropanol, purified by high-performance liquid chromatography, and structurally analyzed using mass spectrometry (MS) and nuclear magnetic resonance (NMR). The MS and NMR results, taken together, uncovered a linear lipopeptide consisting of 13 amino acids and an N-terminal C6fatty acid (FA) chain, 2-hydroxy-3-methylpentanoic acid. The lipopeptide (FA-Dhb-Leu-Orn-Ile-Ile-Val-Lys-Val-Val-Lys-Tyr-Leu-valinol, where Dhb is α,β-didehydrobutyric acid and valinol is 2-amino-3-methyl-1-butanol) has a molecular mass of 1,583.0794 Da and contains three modified amino acid residues: α,β-didehydrobutyric acid, ornithine, and valinol. The compound, designated brevibacillin, was determined to be a member of a cationic lipopeptide antibiotic family. In addition to its potency against drug-resistant bacteria, brevibacillin also exhibited low MICs (1 to 8 μg/ml) against selected foodborne pathogenic and spoilage bacteria, such asListeria monocytogenes,Bacillus cereus, andAlicyclobacillus acidoterrestris Purified brevibacillin showed no sign of degradation when it was held at 80°C for 60 min, and it retained at least 50% of its antimicrobial activity when it was held for 22 h under acidic or alkaline conditions. On the basis of these findings, brevibacillin is a potent antimicrobial lipopeptide which is potentially useful to combat drug-resistant bacterial pathogens and foodborne pathogenic and spoilage bacteria. PMID:26921428

  6. Isolation and structural analysis of bamylocin A, novel lipopeptide from Bacillus amyloliquefaciens LP03 having antagonistic and crude oil-emulsifying activity.

    PubMed

    Lee, Sang-Cheol; Kim, Sun-Hee; Park, In-Hye; Chung, Soo-Yeol; Choi, Yong-Lark

    2007-10-01

    Bacillus amyloliquefaciens strain LP03 isolated from soil, produced an antagonistic compound that strongly inhibited the growth of plant-pathogenic fungi and a lipopeptide biosurfactant. Also, isolated strain LP03 had a marked crude oil-emulsifying activity as it developed a clear zone around the colony after incubation for 24 h at 37 degrees C. LP03 was identified as Bacillus amyloliquefaciens by analysis of partial 16 S rRNA gene and partial gyrA gene sequence. The lipopeptide was purified by acid precipitation of cell-free culture broth, extraction of the precipitates with methanol, silica gel column chromatography, and reverse-phase, high-pressure liquid chromatography. The purified biosurfactant was analyzed biochemical structure by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF) and electrospray ionization mass spectrometry/mass spectrometry (ESI-MS/MS). The masses of the two peaks were observed by HPLC chromatography. Their masses were determined to be 1,044 and 1,058 m/z with MALDI-TOF mass spectrometry. As constituents of the peptide and lipophilic part of the m/z 1,022.6, seven amino acids (Glu-Leu-Met-Leu-Pro-Leu-Leu) and beta-hydroxy-C13 fatty acid were determined by ESI-MS/MS. The lipopeptide of 1,022.6 Da differed from surfactins in the substitution of leucine, valine and aspartic acid in positions 3, 4, and 5 by methionine, leucine, and proline, respectively. Novel lipopeptide was designated as bamylocin A. PMID:17530228

  7. Burkholderia genome mining for nonribosomal peptide synthetases reveals a great potential for novel siderophores and lipopeptides synthesis.

    PubMed

    Esmaeel, Qassim; Pupin, Maude; Kieu, Nam Phuong; Chataigné, Gabrielle; Béchet, Max; Deravel, Jovana; Krier, François; Höfte, Monica; Jacques, Philippe; Leclère, Valérie

    2016-06-01

    Burkholderia is an important genus encompassing a variety of species, including pathogenic strains as well as strains that promote plant growth. We have carried out a global strategy, which combined two complementary approaches. The first one is genome guided with deep analysis of genome sequences and the second one is assay guided with experiments to support the predictions obtained in silico. This efficient screening for new secondary metabolites, performed on 48 gapless genomes of Burkholderia species, revealed a total of 161 clusters containing nonribosomal peptide synthetases (NRPSs), with the potential to synthesize at least 11 novel products. Most of them are siderophores or lipopeptides, two classes of products with potential application in biocontrol. The strategy led to the identification, for the first time, of the cluster for cepaciachelin biosynthesis in the genome of Burkholderia ambifaria AMMD and a cluster corresponding to a new malleobactin-like siderophore, called phymabactin, was identified in Burkholderia phymatum STM815 genome. In both cases, the siderophore was produced when the strain was grown in iron-limited conditions. Elsewhere, the cluster for the antifungal burkholdin was detected in the genome of B. ambifaria AMMD and also Burkholderia sp. KJ006. Burkholderia pseudomallei strains harbor the genetic potential to produce a novel lipopeptide called burkhomycin, containing a peptidyl moiety of 12 monomers. A mixture of lipopeptides produced by Burkholderia rhizoxinica lowered the surface tension of the supernatant from 70 to 27 mN·m(-1) . The production of nonribosomal secondary metabolites seems related to the three phylogenetic groups obtained from 16S rRNA sequences. Moreover, the genome-mining approach gave new insights into the nonribosomal synthesis exemplified by the identification of dual C/E domains in lipopeptide NRPSs, up to now essentially found in Pseudomonas strains. PMID:27060604

  8. The self-assembly of a cyclic lipopeptides mixture secreted by a B. megaterium strain and its implications on activity against a sensitive Bacillus species.

    PubMed

    Pueyo, Manuel T; Mutafci, Bruna A; Soto-Arriaza, Marco A; Di Mascio, Paolo; Carmona-Ribeiro, Ana M

    2014-01-01

    Cyclic lipopeptides are produced by a soil Bacillus megaterium strain and several other Bacillus species. In this work, they are detected both in the Bacillus intact cells and the cells culture medium by MALDI-TOF mass spectrometry. The cyclic lipopeptides self-assemble in water media producing negatively charged and large aggregates (300-800 nm of mean hydrodynamic radius) as evaluated by dynamic light scattering and zeta-potential analysis. The aggregate size depends on pH and ionic strength. However, it is not affected by changes in the osmolarity of the outer medium suggesting the absence of an internal aqueous compartment despite the occurrence of low molecular weight phospholipids in their composition as determined from inorganic phosphorus analysis. The activity against a sensitive Bacillus cereus strain was evaluated from inhibition halos and B. cereus lysis. Essential features determining the antibiotic activity on susceptible Bacillus cereus cells are the preserved cyclic moiety conferring cyclic lipopeptides resistance to proteases and the medium pH. The aggregates are inactive per se at the pH of the culture medium which is around 6 or below. The knock out of the sensitive cells only takes place when the aggregates are disassembled due to a high negative charge at pH above 6. PMID:24816927

  9. Conformational analyses of bacillomycin D, a natural antimicrobial lipopeptide, alone or in interaction with lipid monolayers at the air-water interface.

    PubMed

    Nasir, Mehmet Nail; Besson, Françoise

    2012-12-01

    Bacillomycin D is a natural antimicrobial lipopeptide belonging to the iturin family. It is produced by Bacillus subtilis strains. Bacillomycin D is characterized by its strong antifungal and hemolytic properties, due to its interaction with the plasma membrane of sensitive cells. Until now, only few limited analyses were conducted to understand the biological activities of bacillomycin D at the molecular level. Our purpose was to analyze the conformation of bacillomycin D using IR spectroscopy and to model its interactions with cytoplasmic membranes using Langmuir interfacial monolayers. Our findings indicate that bacillomycin D contains turns and allow to model its three-dimensional structure. Bacillomycin D formed a monolayer film at the air-water interface and kept its turn conformation, as shown by polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS). To identify the membrane lipid target of bacillomycin D, its interactions with pure lipid monolayers were analyzed and an original behavior of the lipopeptide toward cholesterol-containing monolayers was shown. This original behavior was lost when bacillomycin D was interacting with pure cholesteryl acetate monolayers, suggesting the involvement of the alcohol group of cholesterol in the lipopeptide-cholesterol interaction. PMID:22967349

  10. The iturin-like lipopeptides are essential components in the biological control arsenal of Bacillus subtilis against bacterial diseases of cucurbits.

    PubMed

    Zeriouh, Houda; Romero, Diego; Garcia-Gutierrez, Laura; Cazorla, Francisco M; de Vicente, Antonio; Perez-Garcia, Alejandro

    2011-12-01

    The antibacterial potential of four strains of Bacillus subtilis, UMAF6614, UMAF6619, UMAF6639, and UMAF8561, previously selected on the basis of their antifungal activity and efficacy against cucurbit powdery mildew, was examined. Among these strains, UMAF6614 and UMAF6639 showed the highest antibacterial activity in vitro, especially against Xanthomonas campestris pv. cucurbitae and Pectobacterium carotovorum subsp. carotovorum. These strains produced the three families of lipopeptide antibiotics known in Bacillus spp.: surfactins, iturins, and fengycins. Using thin-layer chromatography analysis and direct bioautography, the antibacterial activity could be associated with iturin lipopeptides. This result was confirmed by mutagenesis analysis using lipopeptide-defective mutants. The antibacterial activity was practically abolished in iturin-deficient mutants, whereas the fengycin mutants retained certain inhibitory capabilities. Analyses by fluorescence and transmission electron microscopy revealed the cytotoxic effect of these compounds at the bacterial plasma membrane level. Finally, biological control assays on detached melon leaves demonstrated the ability of UMAF6614 and UMAF6639 to suppress bacterial leaf spot and soft rot; accordingly, the biocontrol activity was practically abolished in mutants deficient in iturin biosynthesis. Taken together, our results highlight the potential of these B. subtilis strains as biocontrol agents against fungal and bacterial diseases of cucurbits and the versatility of iturins as antifungal and antibacterial compounds. PMID:22066902

  11. Migration-induced architectures of planetary systems.

    PubMed

    Szuszkiewicz, Ewa; Podlewska-Gaca, Edyta

    2012-06-01

    The recent increase in number of known multi-planet systems gives a unique opportunity to study the processes responsible for planetary formation and evolution. Special attention is given to the occurrence of mean-motion resonances, because they carry important information about the history of the planetary systems. At the early stages of the evolution, when planets are still embedded in a gaseous disc, the tidal interactions between the disc and planets cause the planetary orbital migration. The convergent differential migration of two planets embedded in a gaseous disc may result in the capture into a mean-motion resonance. The orbital migration taking place during the early phases of the planetary system formation may play an important role in shaping stable planetary configurations. An understanding of this stage of the evolution will provide insight on the most frequently formed architectures, which in turn are relevant for determining the planet habitability. The aim of this paper is to present the observational properties of these planetary systems which contain confirmed or suspected resonant configurations. A complete list of known systems with such configurations is given. This list will be kept by us updated from now on and it will be a valuable reference for studying the dynamics of extrasolar systems and testing theoretical predictions concerned with the origin and the evolution of planets, which are the most plausible places for existence and development of life. PMID:22684330

  12. Macrophage-activating lipopeptide-2 downregulates the expression of ATP-binding cassette transporter A1 by activating the TLR2/NF-кB/ZNF202 pathway in THP-1 macrophages.

    PubMed

    Peng, Liangjie; Zhang, Zizhen; Zhang, Min; Yu, Xiaohua; Yao, Feng; Tan, Yulin; Liu, Dan; Gong, Duo; Chong, Huang; Liu, Xiaoyan; Zheng, Xilong; Tian, Guoping; Tang, Chaoke

    2016-04-01

    Macrophage-activating lipopeptide-2 (MALP-2) has been shown to promote the development of atherosclerosis. ATP-binding cassette transporter A1 (ABCA1), a transmembrane protein, plays a critical role in mediating cholesterol export from macrophages to apolipoprotein A-I (apoA-I). However, whether MALP-2 can regulate the expression of ABCA1 is still largely unknown. The aim of this study was to explore the effects of MALP-2 on ABCA1 expression in THP-1 macrophages and the underlying mechanisms. Our results showed that the treatment of cells with MALP-2 decreased ABCA1 level and suppressed cholesterol efflux in both concentration- and time-dependent manners. The contents of intracellular cholesterol were significantly increased in the presence of MALP-2. Moreover, MALP-2-mediated inhibition of ABCA1 expression was abolished by siRNA of either Toll-like receptor 2 (TLR2) or nuclear factor κB (NF-κB). A similar effect was produced by treatment with the NF-κB inhibitor pyrrolidine dithiocarbamate. In addition, MALP-2-induced activation of NF-κB markedly increased zinc finger protein 202 (ZNF202) level, and ZNF202 siRNA impaired the effects of MALP-2 on ABCA1 expression. Taken together, these results suggest that MALP-2 can decrease ABCA1 expression and subsequent cholesterol efflux through activation of the TLR2/NF-κB/ZNF202 signaling pathway in THP-1 macrophages. PMID:26922321

  13. Minocycline suppresses morphine-induced respiratory depression, suppresses morphine-induced reward, and enhances systemic morphine-induced analgesia

    PubMed Central

    Hutchinson, Mark R.; Northcutt, Alexis L.; Chao, Lindsey W.; Kearney, Jeffrey J.; Zhang, Yingning; Berkelhammer, Debra L.; Loram, Lisa C.; Rozeske, Robert R.; Bland, Sondra T.; Maier, Steven F.; Gleeson, Todd T.; Watkins, Linda R.

    2008-01-01

    Recent data suggest that opioids can activate immune-like cells of the central nervous system (glia). This opioid-induced glial activation is associated with decreased analgesia, owing to the release of proinflammatory mediators. Here we examine in rats whether the putative microglial inhibitor, minocycline, may affect morphine-induced respiratory depression and/or morphine-induced reward (conditioned place preference). Systemic co-administration of minocycline significantly attenuated morphine-induced reductions in tidal volume, minute volume, inspiratory force and expiratory force, but did not affect morphine-induced reductions in respiratory rate. Minocycline attenuation of respiratory depression was also paralleled with significant attenuation by minocycline of morphine-induced reductions in blood oxygen saturation. Minocycline also attenuated morphine conditioned place preference. Minocycline did not simply reduce all actions of morphine, as morphine analgesia was significantly potentiated by minocycline co-administration. Lastly, morphine dose-dependently increased cyclooxygenase-1 gene expression in a rat microglial cell line, an effect that was dose-dependently blocked by minocycline. Together, these data support that morphine can directly activate microglia in a minocycline-suppressible manner and suggest a pivotal role for minocycline-sensitive processes in the mechanisms of morphine-induced respiration depression, reward, and pain modulation. PMID:18706994

  14. Biological Therapy-Induced Systemic Vasculitis.

    PubMed

    Gutiérrez-González, Luis Arturo

    2016-07-01

    The use of biologics has been associated with the paradoxical development of biologics-induced autoimmune diseases. The purpose of this review was to describe the key immunopathogenic mechanisms involved in the development of these conditions, and to discuss the clinical and laboratory characteristics usually described in the medical literature, reviewing case reports as well as records on national biologic therapies (BIOGEAS, RABBIT, BSRBR-RA, BIOBADAVEN). More than 200 cases have so far been reported, all of them diagnosed on the basis of the histopathology or meeting the ACR/Chapel Hill criteria. Over 75 % of the cases were females with a mean age of 48 ± 5 years. More than 50 % had rheumatoid arthritis. Most of the biologics-associated vasculitis developed in 90 ± 31 days. Complete resolution in almost 75 % of the cases was observed upon treatment discontinuation; however, steroid therapy was indicated for all patients and one death was recorded. The use of cyclophosphamide, rituximab or plasma exchange was reserved for the most severe cases. PMID:27165496

  15. Bicarbonate trigger for inducing lipid accumulation in algal systems

    SciTech Connect

    Gardner, Robert; Peyton, Brent; Cooksey, Keith E.

    2015-08-04

    The present invention provides bicarbonate containing and/or bicarbonate-producing compositions and methods to induce lipid accumulation in an algae growth system, wherein the algae growth system is under light-dark cycling condition. By adding said compositions at a specific growth stage, said methods lead to much higher lipid accumulation and/or significantly reduced total time required for accumulating lipid in the algae growth system.

  16. Optical communication system performance with tracking error induced signal fading.

    NASA Technical Reports Server (NTRS)

    Tycz, M.; Fitzmaurice, M. W.; Premo, D. A.

    1973-01-01

    System performance is determined for an optical communication system using noncoherent detection in the presence of tracking error induced signal fading assuming (1) binary on-off modulation (OOK) with both fixed and adaptive threshold receivers, and (2) binary polarization modulation (BPM). BPM is shown to maintain its inherent 2- to 3-dB advantage over OOK when adaptive thresholding is used, and to have a substantially greater advantage when the OOK system is restricted to a fixed decision threshold.

  17. Electromagnetically induced absorption in a three-resonator metasurface system

    PubMed Central

    Zhang, Xueqian; Xu, Ningning; Qu, Kenan; Tian, Zhen; Singh, Ranjan; Han, Jiaguang; Agarwal, Girish S.; Zhang, Weili

    2015-01-01

    Mimicking the quantum phenomena in metamaterials through coupled classical resonators has attracted enormous interest. Metamaterial analogs of electromagnetically induced transparency (EIT) enable promising applications in telecommunications, light storage, slow light and sensing. Although the EIT effect has been studied extensively in coupled metamaterial systems, excitation of electromagnetically induced absorption (EIA) through near-field coupling in these systems has only been sparsely explored. Here we present the observation of the EIA analog due to constructive interference in a vertically coupled three-resonator metamaterial system that consists of two bright and one dark resonator. The absorption resonance is one of the collective modes of the tripartite unit cell. Theoretical analysis shows that the absorption arises from a magnetic resonance induced by the near-field coupling of the three resonators within the unit cell. A classical analog of EIA opens up opportunities for designing novel photonic devices for narrow-band filtering, absorptive switching, optical modulation, and absorber applications. PMID:26023061

  18. Electromagnetically induced absorption in a three-resonator metasurface system.

    PubMed

    Zhang, Xueqian; Xu, Ningning; Qu, Kenan; Tian, Zhen; Singh, Ranjan; Han, Jiaguang; Agarwal, Girish S; Zhang, Weili

    2015-01-01

    Mimicking the quantum phenomena in metamaterials through coupled classical resonators has attracted enormous interest. Metamaterial analogs of electromagnetically induced transparency (EIT) enable promising applications in telecommunications, light storage, slow light and sensing. Although the EIT effect has been studied extensively in coupled metamaterial systems, excitation of electromagnetically induced absorption (EIA) through near-field coupling in these systems has only been sparsely explored. Here we present the observation of the EIA analog due to constructive interference in a vertically coupled three-resonator metamaterial system that consists of two bright and one dark resonator. The absorption resonance is one of the collective modes of the tripartite unit cell. Theoretical analysis shows that the absorption arises from a magnetic resonance induced by the near-field coupling of the three resonators within the unit cell. A classical analog of EIA opens up opportunities for designing novel photonic devices for narrow-band filtering, absorptive switching, optical modulation, and absorber applications. PMID:26023061

  19. Rectal ulcers induced by systemic lupus erythematosus

    PubMed Central

    Yau, Alan Hoi Lun; Chu, Karen; Yang, Hui Min; Ko, Hin Hin

    2014-01-01

    A 28-year-old woman presented with diarrhoea, haematochezia, tenesmus and rectal pain for 2 months. She was diagnosed with systemic lupus erythematosus (SLE) 8 years ago and remained on prednisone, azathioprine and hydroxychloroquine. Blood work revealed a positive ANA (antinuclear antibody test), anti-dsDNA 749 IU/mL (0–300 IU/mL), C3 0.22 g/L (0.65–1.65 g/L) and C4 0.05 g/L (0.16–0.60 g/L). Stool studies were unremarkable. MRI of the pelvis showed a rectum with eccentric wall thickening. Flexible sigmoidoscopy showed severe proctitis with multiple deep ulcers and diffuse submucosal haemorrhage. Rectal biopsy revealed crypt architectural distortion and reactive fibrosis in the lamina propria. The patient was given mesalamine suppository for 2 weeks with minimal improvement. Repeat flexible sigmoidoscopy showed a coalesced 3×4 cm full-thickness rectal ulcer. Therefore, the patient was given intravenous methylprednisolone for 3 days, followed by intravenous cyclophosphamide for 2 weeks. Her symptoms resolved and repeat flexible sigmoidoscopy showed fibrotic healing of the rectal ulcers. PMID:25150239

  20. 2D induced gravity from the canonically gauged WZNW system

    NASA Astrophysics Data System (ADS)

    Blagojević, M.; Popović, D. S.; Sazdović, B.

    1999-02-01

    Starting from the Kac-Moody structure of the WZNW model for SL(2,R) and using the general canonical formalism, we formulate a gauge theory invariant under local SL(2,R)×SL(2,R) and diffeomorphisms. This theory represents a gauge extension of the WZNW system, defined by a difference of two simple WZNW actions. By performing a partial gauge fixing and integrating out some dynamical variables, we prove that the resulting effective theory coincides with the induced gravity in 2D. The geometric properties of the induced gravity are obtained out of the gauge properties of the WZNW system with the help of the Dirac brackets formalism.

  1. Cyclic Lipopeptides of Bacillus amyloliquefaciens subsp. plantarum Colonizing the Lettuce Rhizosphere Enhance Plant Defense Responses Toward the Bottom Rot Pathogen Rhizoctonia solani.

    PubMed

    Chowdhury, Soumitra Paul; Uhl, Jenny; Grosch, Rita; Alquéres, Sylvia; Pittroff, Sabrina; Dietel, Kristin; Schmitt-Kopplin, Philippe; Borriss, Rainer; Hartmann, Anton

    2015-09-01

    The commercially available inoculant Bacillus amyloliquefaciens FZB42 is able to considerably reduce lettuce bottom rot caused by Rhizoctonia solani. To understand the interaction between FZB42 and R. solani in the rhizosphere of lettuce, we used an axenic system with lettuce bacterized with FZB42 and inoculated with R. solani. Confocal laser scanning microscopy showed that FZB42 could delay the initial establishment of R. solani on the plants. To show which secondary metabolites of FZB42 are produced under these in-situ conditions, we developed an ultra-high performance liquid chromatography coupled to time of flight mass spectrometry-based method and identified surfactin, fengycin, and bacillomycin D in the lettuce rhizosphere. We hypothesized that lipopeptides and polyketides play a role in enhancing the plant defense responses in addition to the direct antagonistic effect toward R. solani and used a quantitative real-time polymerase chain reaction-based assay for marker genes involved in defense signaling pathways in lettuce. A significant higher expression of PDF 1.2 observed in the bacterized plants in response to subsequent pathogen challenge showed that FZB42 could enhance the lettuce defense response toward the fungal pathogen. To identify if surfactin or other nonribosomally synthesized secondary metabolites could elicit the observed enhanced defense gene expression, we examined two mutants of FZB42 deficient in production of surfactin and the lipopetides and polyketides, by expression analysis and pot experiments. In the absence of surfactin and other nonribosomally synthesized secondary metabolites, there was no enhanced PDF 1.2-mediated response to the pathogen challenge. Pot experiment results showed that the mutants failed to reduce disease incidence in lettuce as compared with the FZB42 wild type, indicating, that surfactin as well as other nonribosomally synthesized secondary metabolites play a role in the actual disease suppression and on lettuce

  2. Tunable electromagnetically induced transparency in a composite superconducting system

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Li, Hong-rong; Chen, Dong-xu; Liu, Wen-xiao; Li, Fu-li

    2016-05-01

    We theoretically propose an efficient method to realize electromagnetically induced transparency (EIT) in the microwave regime through a coupled system consisting of a flux qubit and a superconducting LC resonator. Driven by two appropriate microwave fields, the system will be trapped in the dark states. In our proposal, the control field of EIT is played by a second-order transfer rather than by a direct strong-pump field. In particular, we obtained conditions for electromagnetically induced transparency and Autler-Townes splitting in this composite system. Both theoretical and numerical results show that this EIT system benefits from the relatively long coherent time of the resonator. Since this whole system is artificial and tunable, our scheme may have potential applications in various domains.

  3. A novel extracellular cyclic lipopeptide which promotes flagellum-dependent and -independent spreading growth of Serratia marcescens.

    PubMed

    Matsuyama, T; Kaneda, K; Nakagawa, Y; Isa, K; Hara-Hotta, H; Yano, I

    1992-03-01

    Serrawettin W2, a surface-active exolipid produced by nonpigmented Serratia marcescens NS 25, was examined for its chemical structure and physiological functions. The chemical structure was determined by degradation analyses, infrared spectroscopy, mass spectrometry, and proton magnetic resonance spectroscopy. Serrawettin W2 was shown to be a novel cyclodepsipeptide containing a fatty acid (3-hydroxydecanoic acid) and five amino acids. The peptide was proposed to be D-leucine (N-bonded to the carboxylate of the fatty acid)-L-serine-L-threonine-D-phenylalanine-L-isoleucine (bonded to the 3-hydroxyl group). By examining the effects of isolated serrawettin W2 on serrawettinless mutants, this lipopeptide was shown to be active in the promotion of flagellum-independent spreading growth of the bacteria on a hard agar surface. The parent strain NS 25 formed a giant colony with a self-similar characteristic after incubation for a relatively long time (1 to 2 weeks), similar to other fractal colony-producing strains of S. marcescens (producers of the different serrawettins W1 and W3). On a semisolid medium that permitted flagellum-dependent spreading growth, an external supply of serrawettin W2 accelerated surface translocation of a serrawettinless mutant during a short period (12 h) of observation. In contrast, bacterial translocation in the subsurface space of the semisolid agar was not enhanced by serrawettins. Thus, the extracellular lipids seem to contribute specifically to the surface translocation of the bacteria by exhibiting surfactant activity. PMID:1548227

  4. Production and properties of a surface-active lipopeptide produced by a new marine Brevibacterium luteolum strain.

    PubMed

    Vilela, W F D; Fonseca, S G; Fantinatti-Garboggini, F; Oliveira, V M; Nitschke, M

    2014-11-01

    Microbial-derived surfactants are molecules of great interest due to their environmentally friendly nature and low toxicity; however, their production cost is not competitive when compared to synthetics. Marine microorganisms are exposed to extremes of pressure, temperature, and salinity; hence, they can produce stable compounds under such conditions that are useful for industrial applications. A screening program to select marine bacteria able to produce biosurfactant using low-cost substrates (mineral oil, sucrose, soybean oil, and glycerol) was conducted. The selected bacterial strain showed potential to synthesize biosurfactants using mineral oil as carbon source and was identified as Brevibacterium luteolum. The surface-active compound reduced the surface tension of water to 27 mN m(-1) and the interfacial tension (water/hexadecane) to 0.84 mN m(-1) and showed a critical micelle concentration of 40 mg L(-1). The biosurfactant was stable over a range of temperature, pH, and salt concentration and the emulsification index (E24) with different hydrocarbons ranging from 60 to 79 %. Structural characterization revealed that the biosurfactant has a lipopeptide nature. Sand washing removed 83 % of crude oil demonstrating the potential of the biosurfactants (BS) for bioremediation purposes. The new marine B. luteolum strain showed potential to produce high surface-active and stable molecule using a low-cost substrate. PMID:25173677

  5. Lipid composition in a strain of Bacillus subtilis, a producer of iturin A lipopeptides that are active against uropathogenic bacteria.

    PubMed

    Bernat, Przemysław; Paraszkiewicz, Katarzyna; Siewiera, Paulina; Moryl, Magdalena; Płaza, Grażyna; Chojniak, Joanna

    2016-10-01

    Urinary tract infections are a common disease in humans. Therefore, new methods are needed to destroy biofilms that are formed by uropathogens. Iturin A lipopeptides (LPs) C14 and C15 are potent biosurfactants synthetized by the Bacillus subtilis I'1a strain. The biological activity of extracted LPs was confirmed by examining extracts from I'1a cultures against uropathogenic bacteria that had been isolated from biofilms on urinary catheters. Compared with cultures of DSM 3257, which produce surfactin at a relatively low level, the extract obtained from strain I'1a exhibited a greater inhibitory effect against both planktonic and sessile forms of Escherichia coli, Serratia marcescens, Enterobacter cloacae, Proteus mirabilis, Citrobacter freundii and Enterococcus faecalis. Moreover, cyclic LP biosurfactants may disturb the integrity of cytoplasmic membranes; therefore, we investigated the effects of synthetized LPs on fatty acids and phospholipids of B. subtilis. LPs and lipids were analyzed using GC-MS, LC-MS/MS and MALDI-TOF/TOF techniques. Compared with B. subtilis DSM 3257, membranes of the I'1a strain were characterized by an increased amount of anteiso fatty acids and a ten-fold higher ratio of phosphatidylglycerol (PG)-to-phosphatidylethanolamine (PE). Interestingly, in cultures of B. subtilis DSM 3257 supplemented with LP extracts of the I'1a strain, the PG-to-PE ratio was fourfold higher, and the amount of anteiso fatty acids was also increased. PMID:27550437

  6. New insights into membrane-active action in plasma membrane of fungal hyphae by the lipopeptide antibiotic bacillomycin L.

    PubMed

    Zhang, Bao; Dong, Chunjuan; Shang, Qingmao; Han, Yuzhu; Li, Pinglan

    2013-09-01

    Bacillomycin L, a natural iturinic lipopeptide produced by Bacillus amyloliquefaciens, is characterized by strong antifungal activities against a variety of agronomically important filamentous fungi including Rhizoctonia solani Kühn. Prior to this study, the role of membrane permeabilization in the antimicrobial activity of bacillomycin L against plant pathogenic fungi had not been investigated. To shed light on the mechanism of this antifungal activity, the permeabilization of R. solani hyphae by bacillomycin L was investigated and compared with that by amphotericin B, a polyene antibiotic which is thought to act primarily through membrane disruption. Our results derived from electron microscopy, various fluorescent techniques and gel retardation experiments revealed that the antifungal activity of bacillomycin L may be not solely a consequence of fungal membrane permeabilization, but related to the interaction of it with intracellular targets. Our findings provide more insights into the mode of action of bacillomycin L and other iturins, which could in turn help to develop new or improved antifungal formulations or result in novel strategies to prevent fungal spoilage. PMID:23756779

  7. Effects of macrophage-activating lipopeptide-2 (MALP-2) on the vascularisation of implanted polyurethane scaffolds seeded with microvascular fragments.

    PubMed

    Grässer, C; Scheuer, C; Parakenings, J; Tschernig, T; Eglin, D; Menger, M D; Laschke, M W

    2016-01-01

    The seeding of scaffolds with adipose tissue-derived microvascular fragments represents a promising strategy to establish a sufficient blood supply in tissue constructs. Herein, we analysed whether a single application of macrophage-activating lipopeptide-2 (MALP-2) at the implantation site further improves the early vascularisation of such microvessel-seeded constructs. Microvascular fragments were isolated from epididymal fat pads of C57BL/6 mice. The fragments were seeded on polyurethane scaffolds, which were implanted into mouse dorsal skinfold chambers exposed to MALP-2 or vehicle (control). The inflammatory host tissue response and the vascularisation of the scaffolds were analysed using intravital fluorescence microscopy, histology and immunohistochemistry. We found that the numbers of microvascular adherent leukocytes were significantly increased in MALP-2-treated chambers during the first 3 days after scaffold implantation when compared to controls. This temporary inflammation resulted in an improved vascularisation of the host tissue surrounding the implants, as indicated by a higher density of CD31-positive microvessels at day 14. However, the MALP-2-exposed scaffolds themselves presented with a lower functional microvessel density in their centre. In addition, in vitro analyses revealed that MALP-2 promotes apoptotic cell death of endothelial and perivascular cells in isolated microvascular fragments. Hence, despite the beneficial pro-angiogenic properties of MALP-2 at the implantation site, the herein evaluated approach may not be recommended to improve the vascularisation capacity of microvascular fragments in tissue engineering applications. PMID:27386841

  8. A novel cell wall lipopeptide is important for biofilm formation and pathogenicity of Mycobacterium avium subspecies paratuberculosis.

    PubMed

    Wu, Chia-wei; Schmoller, Shelly K; Bannantine, John P; Eckstein, Torsten M; Inamine, Julia M; Livesey, Michael; Albrecht, Ralph; Talaat, Adel M

    2009-04-01

    Biofilm formation by pathogenic bacteria plays a key role in their pathogenesis. Previously, the pstA gene was shown to be involved in the virulence of Mycobacterium avium subspecies paratuberculosis (M. ap), the causative agent of Johne's disease in cattle and a potential risk factor for Crohn's disease. Scanning electron microscopy and colonization levels of the M. ap mutant indicated that the pstA gene significantly contributes to the ability of M. ap to form biofilms. Digital measurements taken during electron microscopy identified a unique morphology for the DeltapstA mutant, which consisted of significantly shorter bacilli than the wild type. Analysis of the lipid profiles of the mycobacterial strains identified a novel lipopeptide that was present in the cell wall extracts of wild-type M. ap, but missing from the DeltapstA mutant. Interestingly, the calf infection model suggested that pstA contributes to intestinal invasion of M. ap. Furthermore, immunoblot analysis of peptides encoded by pstA identified a specific and significant level of immunogenicity. Taken together, our analysis revealed a novel cell wall component that could contribute to biofilm formation and to the virulence and immunogenicity of M. ap. Molecular tools to better control M. ap infections could be developed utilizing the presented findings. PMID:19490829

  9. Identification and structural characterization of serobactins, a suite of lipopeptide siderophores produced by the grass endophyte Herbaspirillum seropedicae.

    PubMed

    Rosconi, Federico; Davyt, Danilo; Martínez, Verónica; Martínez, Marcela; Abin-Carriquiry, Juan Andrés; Zane, Hannah; Butler, Alison; de Souza, Emanuel M; Fabiano, Elena

    2013-03-01

    Herbaspirillum seropedicae Z67 is a diazotrophic endophyte able to colonize the interior of many economically relevant crops such as rice, wheat, corn and sorghum. Structures of siderophores produced by bacterial endophytes have not yet been elucidated. The aim of this work was to identify and characterize the siderophores produced by this bacterium. In a screening for mutants unable to produce siderophores we found a mutant that had a transposon insertion in a non-ribosomal peptide synthase (NRPS) gene coding for a putative siderophore biosynthetic enzyme. The chemical structure of the siderophore was predicted using computational genomic tools. The predicted structure was confirmed by chemical analysis. We found that siderophores produced by H. seropedicae Z67 are a suite of amphiphilic lipopeptides, named serobactin A, B and C, which vary by the length of the fatty acid chain. We also demonstrated the biological activity of serobactins as nutritional iron sources for H. seropedicae. These are the first structurally described siderophores produced by endophytic bacteria. PMID:23320867

  10. New Cyclic Lipopeptides of the Iturin Class Produced by Saltern-Derived Bacillus sp. KCB14S006

    PubMed Central

    Son, Sangkeun; Ko, Sung-Kyun; Jang, Mina; Kim, Jong Won; Kim, Gil Soo; Lee, Jae Kyoung; Jeon, Eun Soo; Futamura, Yushi; Ryoo, In-Ja; Lee, Jung-Sook; Oh, Hyuncheol; Hong, Young-Soo; Kim, Bo Yeon; Takahashi, Shunji; Osada, Hiroyuki; Jang, Jae-Hyuk; Ahn, Jong Seog

    2016-01-01

    Salterns, one of the most extreme natural hypersaline environments, are a rich source of halophilic and halotolerant microorganisms, but they remain largely underexplored ecological niches in the discovery of bioactive secondary metabolites. In continued efforts to investigate the metabolic potential of microbial populations from chemically underexplored sites, three new lipopeptides named iturin F1, iturin F2 and iturin A9 (1–3), along with iturin A8 (4), were isolated from Bacillus sp. KCB14S006 derived from a saltern. The structures of the isolated compounds were established by 1D-, 2D-NMR and HR-ESIMS, and their absolute configurations were determined by applying advanced Marfey’s method and CD spectroscopy. All isolates exhibited significant antifungal activities against various pathogenic fungi and moderate cytotoxic activities toward HeLa and srcts-NRK cell lines. Moreover, in an in vitro enzymatic assay, compound 4 showed a significant inhibitory activity against indoleamine 2,3-dioxygenase. PMID:27049393

  11. Evaluation of screening methods for demulsifying bacteria and characterization of lipopeptide bio-demulsifier produced by Alcaligenes sp.

    PubMed

    Huang, Xiang-Feng; Liu, Jia; Lu, Li-Jun; Wen, Yue; Xu, Jing-Cheng; Yang, Dian-Hai; Zhou, Qi

    2009-02-01

    In this paper, surface tension measurement, oil-spreading test and blood-plate hemolysis test were attempted in the screening of demulsifying bacteria. After the comparison to the screening results obtained in demulsification test, 50 mN/m of surface tension of culture was proposed as a preliminary screening standard for potential demulsifying bacteria. For the identification of efficient demulsifying strains, surface tension level was set at 40 mN/m. The detected strains were further verified in demulsification test. Compared to using demulsification test alone as screening method, the proposed screening protocol would be more efficient. From the screening, a highly efficient demulsifying stain, S-XJ-1, was isolated from petroleum-contaminated soil and identified as Alcaligenes sp. by 16S rRNA gene and physiological test. It achieved 96.5% and 49.8% of emulsion breaking ratio in W/O and O/W kerosene emulsion within 24h, respectively, and also showed 95% of water separation ratio in oilfield petroleum emulsion within 2h. The bio-demulsifier was found to be cell-wall combined. After soxhlet extraction and purification through silicon-gel column, the bio-demulsifier was then identified as lipopeptide biosurfactant by TLC and FT-IR. PMID:18799309

  12. Lipopeptides from the Banyan Endophyte, Bacillus subtilis K1: Mass Spectrometric Characterization of a Library of Fengycins

    NASA Astrophysics Data System (ADS)

    Pathak, Khyati V.; Keharia, Haresh; Gupta, Kallol; Thakur, Suman S.; Balaram, Padmanabhan

    2012-10-01

    Mass spectrometric analysis of a banyan endophyte, Bacillus subtilis K1, extract showing broad spectrum antifungal activity revealed a complex mixture of lipopeptides, iturins, surfactins, and fengycins. Fractionation by reversed-phase high performance liquid chromatography (HPLC) facilitated a detailed analysis of fengycin microheterogeneity. Matrix assisted laser desorption ionization (MALDI) and electrospray ionization (ESI) mass spectrometric studies permitted the identification of several new fengycin variants. Four major sites of heterogeneity are identified: (1) N-terminus β-hydroxy fatty acid moiety, where chain length variation and the presence of unsaturation occur, (2) position 6 (Ala/Val/Ile/Leu), (3) position 10 (Val/Ile) within the macrocyclic ring, and (4) Gln to Glu replacement at position 8, resulting in fengycin variants that differ in mass by 1 Da. Diagnostic fragment ions provide a quick method for localizing the sites of variation in the macrocycle or the linear segment. Subsequent establishment of the sequences is achieved by MS/MS analysis of linear fengycin species produced by hydrolysis of the macrocyclic lactone. Unsaturation in the fatty acid chain and the presence of linear precursors in the B. subtilis K1 extract are also established by mass spectrometry. The anomalous distribution of intensities within isotopic multiplets is a diagnostic for Gln/Glu replacements. High resolution mass spectrometry facilitates the identification of fengycin species differing by 1 Da by localizing the variable position (Gln8/Glu8) in the fengycin variants.

  13. BIOCONAID System (Bionic Control of Acceleration Induced Dimming). Final Report.

    ERIC Educational Resources Information Center

    Rogers, Dana B.; And Others

    The system described represents a new technique for enhancing the fidelity of flight simulators during high acceleration maneuvers. This technique forces the simulator pilot into active participation and energy expenditure similar to the aircraft pilot undergoing actual accelerations. The Bionic Control of Acceleration Induced Dimming (BIOCONAID)…

  14. Data acquisition system used in radiation induced electrical degradation experiments

    SciTech Connect

    White, D.P.

    1995-04-01

    Radiation induced electrical degradation (RIED) of ceramic materials has recently been reported and is the topic of much research at the present time. The object of this report is to describe the data acquisition system for an experiment designed to study RIED at the High Flux Beam Reactor (HFBR) at Brookhaven National Laboratory.

  15. Lipopeptide antagonists of growth hormone-releasing hormone with improved antitumor activities.

    PubMed

    Zarandi, Marta; Varga, Jozsef L; Schally, Andrew V; Horvath, Judit E; Toller, Gabor L; Kovacs, Magdolna; Letsch, Markus; Groot, Kate; Armatis, Patricia; Halmos, Gabor

    2006-03-21

    Antagonists of growth hormone-releasing hormone (GHRH) synthesized previously inhibit proliferation of various human cancers, but derivatisation with fatty acids could enhance their clinical efficacy. We synthesized a series of antagonists of GHRH(1-29)NH(2) acylated at the N terminus with monocarboxylic or alpha,omega-dicarboxylic acids containing six to sixteen carbon atoms. These peptides are analogs of prior potent antagonists JV-1-36, JV-1-38, and JV-1-65 with phenylacetyl group at their N terminus. Several new analogs, including MZ-J-7-46 and MZ-J-7-30, more effectively inhibited GHRH-induced GH release in vitro in a superfused rat pituitary system than their parent compound JV-1-36 and had increased binding affinities to rat pituitary GHRH receptors, but they showed weaker inhibition of GH release in vivo than JV-1-36. All antagonists acylated with fatty acids containing 8-14 carbon atoms inhibited the proliferation of MiaPaCa-2 human pancreatic cancer cells in vitro better than JV-1-36 or JV-1-65. GHRH antagonist MZ-J-7-114 (5 mug/day) significantly suppressed the growth of PC-3 human androgen-independent prostate cancers xenografted into nude mice and reduced serum IGF-I levels, whereas antagonist JV-1-38 had no effect at the dose of 10 mug/day. GHRH antagonists including MZ-J-7-46 and MZ-J-7-114 acylated with octanoic acid and MZ-J-7-30 and MZ-J-7-110 acylated with 1,12-dodecanedicarboxylic acid represent relevant improvements over earlier antagonists. These and previous results suggest that this class of GHRH antagonists might be effective in the treatment of various cancers. PMID:16537407

  16. Lipopeptide antagonists of growth hormone-releasing hormone with improved antitumor activities

    PubMed Central

    Zarandi, Marta; Varga, Jozsef L.; Schally, Andrew V.; Horvath, Judit E.; Toller, Gabor L.; Kovacs, Magdolna; Letsch, Markus; Groot, Kate; Armatis, Patricia; Halmos, Gabor

    2006-01-01

    Antagonists of growth hormone-releasing hormone (GHRH) synthesized previously inhibit proliferation of various human cancers, but derivatisation with fatty acids could enhance their clinical efficacy. We synthesized a series of antagonists of GHRH(1-29)NH2 acylated at the N terminus with monocarboxylic or α,ω-dicarboxylic acids containing six to sixteen carbon atoms. These peptides are analogs of prior potent antagonists JV-1-36, JV-1-38, and JV-1-65 with phenylacetyl group at their N terminus. Several new analogs, including MZ-J-7-46 and MZ-J-7-30, more effectively inhibited GHRH-induced GH release in vitro in a superfused rat pituitary system than their parent compound JV-1-36 and had increased binding affinities to rat pituitary GHRH receptors, but they showed weaker inhibition of GH release in vivo than JV-1-36. All antagonists acylated with fatty acids containing 8–14 carbon atoms inhibited the proliferation of MiaPaCa-2 human pancreatic cancer cells in vitro better than JV-1-36 or JV-1-65. GHRH antagonist MZ-J-7-114 (5 μg/day) significantly suppressed the growth of PC-3 human androgen-independent prostate cancers xenografted into nude mice and reduced serum IGF-I levels, whereas antagonist JV-1-38 had no effect at the dose of 10 μg/day. GHRH antagonists including MZ-J-7-46 and MZ-J-7-114 acylated with octanoic acid and MZ-J-7-30 and MZ-J-7-110 acylated with 1,12-dodecanedicarboxylic acid represent relevant improvements over earlier antagonists. These and previous results suggest that this class of GHRH antagonists might be effective in the treatment of various cancers. PMID:16537407

  17. Inducible RNAi system and its application in novel therapeutics.

    PubMed

    Liao, Yi; Tang, Liling

    2016-08-01

    RNA interference (RNAi) was discovered as a cellular defense mechanism more than decade ago. It has been exploited as a powerful tool for genetic manipulation. Characterized with specifically silencing target gene expression, it has great potential application for disease treatment. Currently, there are human clinical trials in progress or planned. Despite the excitement regarding this prominent technology, there are many obstacles and concerns that prevent RNAi from being widely used in the therapeutic field. Among them, the non-spatial and non-temporal control is the most difficult challenge, as well as off-target effects and triggering type I immune responses. Inducible RNAi technology can effectively regulate target genes by inducer-mediated small hairpin RNA expression. Combination with inducible regulation systems this makes RNAi technology more sophisticated and may provide a wider application field. This review discusses approaches of inducible RNAi systems, the potential problem areas and solutions and their therapeutic applications. Given the limitations discussed herein being resolved, we believe that inducible RNAi will be a major therapeutic modality within the next several years. PMID:25697568

  18. Tunable Optomechanically Induced Absorption in a Hybrid Optomechanical System

    NASA Astrophysics Data System (ADS)

    Wang, Qiong; Zhao, Yun-Hui; He, Zhi; Yao, Chun-Mei

    2016-03-01

    We study the tunable optomechanically induced absorption (OMIA) with the quantized field in the system, which consists of a driven cavity and a mechanical resonator with a super-conducting charge qubit via Jaynes-Cummings interaction. Such a OMIA can be achieved by controlling the strength of the Jaynes-Cummings interaction. Moreover, our work shows this OMIA for the quantized fields can be robust against cavity decay in somehow. With the combination of optomechanically induced transparency (OMIT), our proposal may have paved a new avenue towards quantum photon router.

  19. Electromagnetically induced grating in a crystal of molecular magnets system

    NASA Astrophysics Data System (ADS)

    Liu, Jibing; Liu, Na; Shan, Chuanjia; Liu, Tangkun; Li, Hong; Zheng, Anshou; Xie, Xiao-Tao

    2016-07-01

    We investigate the response of the molecular system to the magnetic field modulation. Molecular magnets are subjected to a strong standing ac magnetic field and a weak probe magnetic field. The transmission and absorption of the weak probe magnetic field can be changed due to quantum coherence and the spatially modulating of the standing field. And a electromagnetically induced grating is formed in the crystal of molecular magnets via electromagnetically induced transparency (EIT). The diffraction efficiency of the grating can be adjusted efficiently by tuning the intensity of the standing wave field and the single photon detuning.

  20. Dephasing-Induced Control of Interference Nature in Three-Level Electromagnetically Induced Tansparency Systems

    PubMed Central

    Sun, Yong; Yang, Yaping; Chen, Hong; Zhu, Shiyao

    2015-01-01

    The influence of the dephasing on interference is investigated theoretically and experimentally in three-level electromagnetically induced transparency systems. The nature of the interference, constructive, no interference or destructive, can be controlled by adjusting the dephasing rates. This new phenomenon is experimentally observed in meta-atoms. The physics behind the dephasing-induced control of interference nature is the competing between stimulated emission and spontaneous emission. The random phase fluctuation due to the dephasing will result in the correlation and anti-correlation between the two dressed states, which will enhance and reduce the stimulated emission, respectively. PMID:26567708

  1. Noise-induced switching and extinction in systems with delay

    NASA Astrophysics Data System (ADS)

    Schwartz, Ira B.; Billings, Lora; Carr, Thomas W.; Dykman, M. I.

    2015-01-01

    We consider the rates of noise-induced switching between the stable states of dissipative dynamical systems with delay and also the rates of noise-induced extinction, where such systems model population dynamics. We study a class of systems where the evolution depends on the dynamical variables at a preceding time with a fixed time delay, which we call hard delay. For weak noise, the rates of interattractor switching and extinction are exponentially small. Finding these rates to logarithmic accuracy is reduced to variational problems. The solutions of the variational problems give the most probable paths followed in switching or extinction. We show that the equations for the most probable paths are acausal and formulate the appropriate boundary conditions. Explicit results are obtained for small delay compared to the relaxation rate. We also develop a direct variational method to find the rates. We find that the analytical results agree well with the numerical simulations for both switching and extinction rates.

  2. Identification of lipopeptide isoforms by MALDI-TOF-MS/MS based on the simultaneous purification of iturin, fengycin, and surfactin by RP-HPLC.

    PubMed

    Yang, Huan; Li, Xu; Li, Xue; Yu, Huimin; Shen, Zhongyao

    2015-03-01

    A three-stage linear gradient strategy using reverse-phase high-performance liquid chromatography (HPLC) was optimized for rapid, high-quality, and simultaneous purification of the lipopeptide isoforms of iturin, fengycin, and surfactin, which may differ in composition by only a single amino acid and/or the fatty acid residue. Matrix-assisted laser desorption ionization time-of-flight tandem mass spectrometry (MALDI-TOF-MS/MS) was applied to detect the lipopeptides harvested from each reversed-phase HPLC peak. Amino acid analysis based on phenyl isothiocyanate derivatization was further used for confirmation of the amino acid species and molar ratio in a certain HPLC fraction. By this MALDI-TOF-MS/MS coupled with amino acid analysis, it was revealed that iturin at m/z 1,043 consists of a circular Asn-Tyr-Asn-Gln-Pro-Asn-Ser peptide and C14 β-OH fatty acid. Surfactin homologs from Bacillus subtilis THY-7 at m/z 1,030, 1,044, 1,058, and 1,072 possess a circular Glu-Leu-Leu-Val-Asp-Leu-Leu peptide and the β-OH fatty acid with a different length (C13-C16). Fengycin species at m/z 1,463 and 1,477 are homologs possessing the circular peptide Glu-Orn-Tyr-Thr-Glu-Ala-Pro-Gln-Tyr-Ile linked to a C16 or C17 γ-OH fatty acid, whereas fengycin at m/z 1,505 contains a Glu-Orn-Tyr-Thr-Glu-Val-Pro-Gln-Tyr-Ile sequence with a Val instead of Ala at position 6. The method developed in this work provided an efficient approach for characterization of diverse lipopeptide isoforms from the iturin, fengycin, and surfactin families. PMID:25662934

  3. Fungal colonization of an Ordovician impact-induced hydrothermal system

    NASA Astrophysics Data System (ADS)

    Ivarsson, Magnus; Broman, Curt; Sturkell, Erik; Ormö, Jens; Siljeström, Sandra; van Zuilen, Mark; Bengtson, Stefan

    2013-12-01

    Impacts are common geologic features on the terrestrial planets throughout the solar system, and on at least Earth and Mars impacts have induced hydrothermal convection. Impact-generated hydrothermal systems have been suggested to possess the same life supporting capability as hydrothermal systems associated with volcanic activity. However, evidence of fossil microbial colonization in impact-generated hydrothermal systems is scarce in the literature. Here we report of fossilized microorganisms in association with cavity-grown hydrothermal minerals from the 458 Ma Lockne impact structure, Sweden. Based on morphological characteristics the fossilized microorganisms are interpreted as fungi. We further infer the kerogenization of the microfossils, and thus the life span of the fungi, to be contemporaneous with the hydrothermal activity and migration of hydrocarbons in the system. Our results from the Lockne impact structure show that hydrothermal systems associated with impact structures can support colonization by microbial life.

  4. Fungal colonization of an Ordovician impact-induced hydrothermal system.

    PubMed

    Ivarsson, Magnus; Broman, Curt; Sturkell, Erik; Ormö, Jens; Siljeström, Sandra; van Zuilen, Mark; Bengtson, Stefan

    2013-01-01

    Impacts are common geologic features on the terrestrial planets throughout the solar system, and on at least Earth and Mars impacts have induced hydrothermal convection. Impact-generated hydrothermal systems have been suggested to possess the same life supporting capability as hydrothermal systems associated with volcanic activity. However, evidence of fossil microbial colonization in impact-generated hydrothermal systems is scarce in the literature. Here we report of fossilized microorganisms in association with cavity-grown hydrothermal minerals from the 458 Ma Lockne impact structure, Sweden. Based on morphological characteristics the fossilized microorganisms are interpreted as fungi. We further infer the kerogenization of the microfossils, and thus the life span of the fungi, to be contemporaneous with the hydrothermal activity and migration of hydrocarbons in the system. Our results from the Lockne impact structure show that hydrothermal systems associated with impact structures can support colonization by microbial life. PMID:24336641

  5. Code System to Calculate Tornado-Induced Flow Material Transport.

    SciTech Connect

    ANDRAE, R. W.

    1999-11-18

    Version: 00 TORAC models tornado-induced flows, pressures, and material transport within structures. Its use is directed toward nuclear fuel cycle facilities and their primary release pathway, the ventilation system. However, it is applicable to other structures and can model other airflow pathways within a facility. In a nuclear facility, this network system could include process cells, canyons, laboratory offices, corridors, and offgas systems. TORAC predicts flow through a network system that also includes ventilation system components such as filters, dampers, ducts, and blowers. These ventilation system components are connected to the rooms and corridors of the facility to form a complete network for moving air through the structure and, perhaps, maintaining pressure levels in certain areas. The material transport capability in TORAC is very basic and includes convection, depletion, entrainment, and filtration of material.

  6. Fungal colonization of an Ordovician impact-induced hydrothermal system

    PubMed Central

    Ivarsson, Magnus; Broman, Curt; Sturkell, Erik; Ormö, Jens; Siljeström, Sandra; van Zuilen, Mark; Bengtson, Stefan

    2013-01-01

    Impacts are common geologic features on the terrestrial planets throughout the solar system, and on at least Earth and Mars impacts have induced hydrothermal convection. Impact-generated hydrothermal systems have been suggested to possess the same life supporting capability as hydrothermal systems associated with volcanic activity. However, evidence of fossil microbial colonization in impact-generated hydrothermal systems is scarce in the literature. Here we report of fossilized microorganisms in association with cavity-grown hydrothermal minerals from the 458 Ma Lockne impact structure, Sweden. Based on morphological characteristics the fossilized microorganisms are interpreted as fungi. We further infer the kerogenization of the microfossils, and thus the life span of the fungi, to be contemporaneous with the hydrothermal activity and migration of hydrocarbons in the system. Our results from the Lockne impact structure show that hydrothermal systems associated with impact structures can support colonization by microbial life. PMID:24336641

  7. Non-linear system identification in flow-induced vibration

    SciTech Connect

    Spanos, P.D.; Zeldin, B.A.; Lu, R.

    1996-12-31

    The paper introduces a method of identification of non-linear systems encountered in marine engineering applications. The non-linearity is accounted for by a combination of linear subsystems and known zero-memory non-linear transformations; an equivalent linear multi-input-single-output (MISO) system is developed for the identification problem. The unknown transfer functions of the MISO system are identified by assembling a system of linear equations in the frequency domain. This system is solved by performing the Cholesky decomposition of a related matrix. It is shown that the proposed identification method can be interpreted as a {open_quotes}Gram-Schmidt{close_quotes} type of orthogonal decomposition of the input-output quantities of the equivalent MISO system. A numerical example involving the identification of unknown parameters of flow (ocean wave) induced forces on offshore structures elucidates the applicability of the proposed method.

  8. Biosynthesis, Chemical Structure, and Structure-Activity Relationship of Orfamide Lipopeptides Produced by Pseudomonas protegens and Related Species.

    PubMed

    Ma, Zongwang; Geudens, Niels; Kieu, Nam P; Sinnaeve, Davy; Ongena, Marc; Martins, José C; Höfte, Monica

    2016-01-01

    Orfamide-type cyclic lipopeptides (CLPs) are biosurfactants produced by Pseudomonas and involved in lysis of oomycete zoospores, biocontrol of Rhizoctonia and insecticidal activity against aphids. In this study, we compared the biosynthesis, structural diversity, in vitro and in planta activities of orfamides produced by rhizosphere-derived Pseudomonas protegens and related Pseudomonas species. Genetic characterization together with chemical identification revealed that the main orfamide compound produced by the P. protegens group is orfamide A, while the related strains Pseudomonas sp. CMR5c and CMR12a produce orfamide B. Comparison of orfamide fingerprints led to the discovery of two new orfamide homologs (orfamide F and orfamide G) in Pseudomonas sp. CMR5c. The structures of these two CLPs were determined by nuclear magnetic resonance (NMR) and mass spectrometry (MS) analysis. Mutagenesis and complementation showed that orfamides determine the swarming motility of parental Pseudomonas sp. strain CMR5c and their production was regulated by luxR type regulators. Orfamide A and orfamide B differ only in the identity of a single amino acid, while orfamide B and orfamide G share the same amino acid sequence but differ in length of the fatty acid part. The biological activities of orfamide A, orfamide B, and orfamide G were compared in further bioassays. The three compounds were equally active against Magnaporthe oryzae on rice, against Rhizoctonia solani AG 4-HGI in in vitro assays, and caused zoospore lysis of Phytophthora and Pythium. Furthermore, we could show that orfamides decrease blast severity in rice plants by blocking appressorium formation in M. oryzae. Taken all together, our study shows that orfamides produced by P. protegens and related species have potential in biological control of a broad spectrum of fungal plant pathogens. PMID:27065956

  9. Biosynthesis, Chemical Structure, and Structure-Activity Relationship of Orfamide Lipopeptides Produced by Pseudomonas protegens and Related Species

    PubMed Central

    Ma, Zongwang; Geudens, Niels; Kieu, Nam P.; Sinnaeve, Davy; Ongena, Marc; Martins, José C.; Höfte, Monica

    2016-01-01

    Orfamide-type cyclic lipopeptides (CLPs) are biosurfactants produced by Pseudomonas and involved in lysis of oomycete zoospores, biocontrol of Rhizoctonia and insecticidal activity against aphids. In this study, we compared the biosynthesis, structural diversity, in vitro and in planta activities of orfamides produced by rhizosphere-derived Pseudomonas protegens and related Pseudomonas species. Genetic characterization together with chemical identification revealed that the main orfamide compound produced by the P. protegens group is orfamide A, while the related strains Pseudomonas sp. CMR5c and CMR12a produce orfamide B. Comparison of orfamide fingerprints led to the discovery of two new orfamide homologs (orfamide F and orfamide G) in Pseudomonas sp. CMR5c. The structures of these two CLPs were determined by nuclear magnetic resonance (NMR) and mass spectrometry (MS) analysis. Mutagenesis and complementation showed that orfamides determine the swarming motility of parental Pseudomonas sp. strain CMR5c and their production was regulated by luxR type regulators. Orfamide A and orfamide B differ only in the identity of a single amino acid, while orfamide B and orfamide G share the same amino acid sequence but differ in length of the fatty acid part. The biological activities of orfamide A, orfamide B, and orfamide G were compared in further bioassays. The three compounds were equally active against Magnaporthe oryzae on rice, against Rhizoctonia solani AG 4-HGI in in vitro assays, and caused zoospore lysis of Phytophthora and Pythium. Furthermore, we could show that orfamides decrease blast severity in rice plants by blocking appressorium formation in M. oryzae. Taken all together, our study shows that orfamides produced by P. protegens and related species have potential in biological control of a broad spectrum of fungal plant pathogens. PMID:27065956

  10. Imaging of Drug-induced Complications in the Gastrointestinal System.

    PubMed

    McGettigan, Melissa J; Menias, Christine O; Gao, Zhenqiang J; Mellnick, Vincent M; Hara, Amy K

    2016-01-01

    Drug-induced injury commonly affects the gastrointestinal and hepatobiliary systems because of the mechanisms of absorption and metabolism. In pill esophagitis, injury is frequently related to direct contact with the esophageal mucosa, resulting in small superficial ulcers in the mid esophagus. Nonsteroidal anti-inflammatory drugs can lead to gastrointestinal tract ulcers and small bowel mucosal diaphragms (thin weblike strictures). Injury to the pancreatic and hepatobiliary systems can manifest as pancreatitis, acute or chronic hepatitis, cholestasis, or steatosis and steatohepatitis (which may progress to cirrhosis). Various drugs may also insult the hepatic vasculature, resulting in Budd-Chiari and sinusoidal obstructive syndromes. Focal lesions such as hepatic adenomas may develop after use of oral contraceptives or anabolic steroids. Ultrasonography, computed tomography, and magnetic resonance imaging can aid in diagnosis of drug-induced injuries and often are necessary to exclude other causes. PMID:26761532

  11. Code System to Calculate Tornado-Induced Flow Material Transport.

    Energy Science and Technology Software Center (ESTSC)

    1999-11-18

    Version: 00 TORAC models tornado-induced flows, pressures, and material transport within structures. Its use is directed toward nuclear fuel cycle facilities and their primary release pathway, the ventilation system. However, it is applicable to other structures and can model other airflow pathways within a facility. In a nuclear facility, this network system could include process cells, canyons, laboratory offices, corridors, and offgas systems. TORAC predicts flow through a network system that also includes ventilation systemmore » components such as filters, dampers, ducts, and blowers. These ventilation system components are connected to the rooms and corridors of the facility to form a complete network for moving air through the structure and, perhaps, maintaining pressure levels in certain areas. The material transport capability in TORAC is very basic and includes convection, depletion, entrainment, and filtration of material.« less

  12. Lactose-Inducible System for Metabolic Engineering of Clostridium ljungdahlii

    SciTech Connect

    Banerjee, A; Leang, C; Ueki, T; Nevin, KP; Lovley, DR

    2014-03-25

    The development of tools for genetic manipulation of Clostridium ljungdahlii has increased its attractiveness as a chassis for autotrophic production of organic commodities and biofuels from syngas and microbial electrosynthesis and established it as a model organism for the study of the basic physiology of acetogenesis. In an attempt to expand the genetic toolbox for C. ljungdahlii, the possibility of adapting a lactose-inducible system for gene expression, previously reported for Clostridium perfringens, was investigated. The plasmid pAH2, originally developed for C. perfringens with a gusA reporter gene, functioned as an effective lactose-inducible system in C. ljungdahlii. Lactose induction of C. ljungdahlii containing pB1, in which the gene for the aldehyde/alcohol dehydrogenase AdhE1 was downstream of the lactose-inducible promoter, increased expression of adhE1 30-fold over the wild-type level, increasing ethanol production 1.5-fold, with a corresponding decrease in acetate production. Lactose-inducible expression of adhE1 in a strain in which adhE1 and the adhE1 homolog adhE2 had been deleted from the chromosome restored ethanol production to levels comparable to those in the wild-type strain. Inducing expression of adhE2 similarly failed to restore ethanol production, suggesting that adhE1 is the homolog responsible for ethanol production. Lactose-inducible expression of the four heterologous genes necessary to convert acetyl coenzyme A (acetyl-CoA) to acetone diverted ca. 60% of carbon flow to acetone production during growth on fructose, and 25% of carbon flow went to acetone when carbon monoxide was the electron donor. These studies demonstrate that the lactose-inducible system described here will be useful for redirecting carbon and electron flow for the biosynthesis of products more valuable than acetate. Furthermore, this tool should aid in optimizing microbial electrosynthesis and for basic studies on the physiology of acetogenesis.

  13. Lactose-Inducible System for Metabolic Engineering of Clostridium ljungdahlii

    PubMed Central

    Ueki, Toshiyuki; Nevin, Kelly P.; Lovley, Derek R.

    2014-01-01

    The development of tools for genetic manipulation of Clostridium ljungdahlii has increased its attractiveness as a chassis for autotrophic production of organic commodities and biofuels from syngas and microbial electrosynthesis and established it as a model organism for the study of the basic physiology of acetogenesis. In an attempt to expand the genetic toolbox for C. ljungdahlii, the possibility of adapting a lactose-inducible system for gene expression, previously reported for Clostridium perfringens, was investigated. The plasmid pAH2, originally developed for C. perfringens with a gusA reporter gene, functioned as an effective lactose-inducible system in C. ljungdahlii. Lactose induction of C. ljungdahlii containing pB1, in which the gene for the aldehyde/alcohol dehydrogenase AdhE1 was downstream of the lactose-inducible promoter, increased expression of adhE1 30-fold over the wild-type level, increasing ethanol production 1.5-fold, with a corresponding decrease in acetate production. Lactose-inducible expression of adhE1 in a strain in which adhE1 and the adhE1 homolog adhE2 had been deleted from the chromosome restored ethanol production to levels comparable to those in the wild-type strain. Inducing expression of adhE2 similarly failed to restore ethanol production, suggesting that adhE1 is the homolog responsible for ethanol production. Lactose-inducible expression of the four heterologous genes necessary to convert acetyl coenzyme A (acetyl-CoA) to acetone diverted ca. 60% of carbon flow to acetone production during growth on fructose, and 25% of carbon flow went to acetone when carbon monoxide was the electron donor. These studies demonstrate that the lactose-inducible system described here will be useful for redirecting carbon and electron flow for the biosynthesis of products more valuable than acetate. Furthermore, this tool should aid in optimizing microbial electrosynthesis and for basic studies on the physiology of acetogenesis. PMID:24509933

  14. Nevirapine-induced rash with eosinophilia and systemic symptoms (DRESS).

    PubMed

    Gill, Shaman; Sagar, Amitabh; Shankar, S; Nair, Velu

    2013-01-01

    Drug rash with eosinophilia and systemic symptoms (DRESS) syndrome is an adverse reaction commonly occurring with antiepileptic agents. It was earlier referred to by various names such as dilantin hypersensitivity syndrome and anticonvulsant hypersensitivity syndrome. It is characterized by the triad of fever, skin eruption, and systemic involvement. DRESS syndrome has also been reported with a number of other drugs including allopurinol, minocycline, terbinafine, sulfonamides, azathioprine, dapsone, and antiretroviral agents such as abacavir and nevirapine. We describe a rare case of nevirapine-induced hypersensitivity syndrome that was successfully treated with oral steroids. PMID:24014920

  15. Towards the Understanding of Induced Seismicity in Enhanced Geothermal Systems

    SciTech Connect

    Gritto, Roland; Dreger, Douglas; Heidbach, Oliver

    2014-08-29

    This DOE funded project was a collaborative effort between Array Information Technology (AIT), the University of California at Berkeley (UCB), the Helmholtz Centre Potsdam - German Research Center for Geosciences (GFZ) and the Lawrence Berkeley National Laboratory (LBNL). It was also part of the European research project “GEISER”, an international collaboration with 11 European partners from six countries including universities, research centers and industry, with the goal to address and mitigate the problems associated with induced seismicity in Enhanced Geothermal Systems (EGS). The goal of the current project was to develop a combination of techniques, which evaluate the relationship between enhanced geothermal operations and the induced stress changes and associated earthquakes throughout the reservoir and the surrounding country rock. The project addressed the following questions: how enhanced geothermal activity changes the local and regional stress field; whether these activities can induce medium sized seismicity M > 3; (if so) how these events are correlated to geothermal activity in space and time; what is the largest possible event and strongest ground motion, and hence the potential hazard associated with these activities. The development of appropriate technology to thoroughly investigate and address these questions required a number of datasets to provide the different physical measurements distributed in space and time. Because such a dataset did not yet exist for an EGS system in the United State, we used current and past data from The Geysers geothermal field in northern California, which has been in operation since the 1960s. The research addressed the need to understand the causal mechanisms of induced seismicity, and demonstrated the advantage of imaging the physical properties and temporal changes of the reservoir. The work helped to model the relationship between injection and production and medium sized magnitude events that have

  16. Systemic inflammation enhances surgery-induced cognitive dysfunction in mice.

    PubMed

    Fidalgo, António Rei; Cibelli, Mario; White, John P M; Nagy, Istvan; Maze, Mervyn; Ma, Daqing

    2011-07-01

    The activation of the immune system, by either lipopolysaccharide (LPS) administration or surgical trauma, has been shown to be capable of affecting hippocampal function, causing memory impairment. Here, we examined the extent to which LPS-induced infection may aggravate impairment of memory function following orthopaedic surgery. Hippocampal memory function impairment was assessed using fear-conditioning tasks, while IL-1β levels in plasma and hippocampus were measured using ELISA. LPS-induced inflammation disrupted hippocampal memory consolidation as evidenced by reduced contextual freezing time exhibited by infected mice. Likewise, surgery caused hippocampal-dependent memory impairment, which was associated with increased levels of IL-1β both in plasma and hippocampus. However, a sub-pyrogenic dose of LPS alone failed to impair memory function. This dose of LPS, when administered prior to surgery, exacerbated surgery-induced cognitive dysfunction as evidenced by further reduction of contextual freezing time. Also, it caused a concomitant additional increase in the levels of IL-1β in both plasma and hippocampus of those animals. Our data suggest that sub-clinical infection may sensitise the immune system augmenting the severity of post-operative cognitive dysfunction. PMID:21575676

  17. Systemic administration of ciliary neurotrophic factor induces cachexia in rodents.

    PubMed Central

    Henderson, J T; Seniuk, N A; Richardson, P M; Gauldie, J; Roder, J C

    1994-01-01

    Ciliary neurotrophic factor (CNTF) has previously been shown to promote the survival of several classes of neurons and glial. We report here that in addition to its effects on the nervous system, CNTF can induce potent effects in extra-neural tissues. Implantation of C6 glioma cells engineered to secrete CNTF either subcutaneously or into the peritoneal cavity of adult mice, or systemic injections of purified rat or human recombinant CNTF, resulted in a rapid syndrome of weight loss resulting in death over a period of 7-10 d. This weight loss could not be explained by a reduction in food intake and involved losses of both fat and skeletal muscle. CNTF also induced the synthesis of acute phase proteins such as haptoglobin. Implantation of C6 lines expressing a nonsecreted form of CNTF, or the parental C6 line itself, did not result in wasting effects. Analysis of this CNTF-induced wasting indicates similarities with the previously described cachectins, tumor necrosis factor, interleukin 6, and leukemia inhibitory factor, but does not involve the induction of these cytokines. Images PMID:8201002

  18. Systemic toxicity in mice induced by localized porphyrin photodynamic therapy.

    PubMed

    Ferrario, A; Gomer, C J

    1990-02-01

    An unexpected high level of acute lethality has been documented following Photofrin II-mediated photodynamic therapy (PDT) treatments which were localized to the hind leg of normal and tumor-bearing mice. Doses of PDT which induced lethality (10 mg/kg Photofrin II, 200-500 J/cm2) were in the range of doses required to obtain murine tumor cures. The percentage of lethality was proportional to the total light dose but was inversely proportional to the dose rate of delivered light. Comparable levels of acute toxicity were observed in four pigmented mouse strains (C57BL/6J, C3H/HeJ, DBA/1, and DBA/2) and in two albino mouse strains (BALB/c and Swiss Webster). Decreased sensitivity to PDT-induced lethality was observed in two pigmented mouse strains (B10D2/OSN and B10D2/NSN). The administration of warfarin, aspirin, indomethacin, or antihistamine had significant protective effects in terms of decreasing PDT-induced lethality. However, injection of cobra venom factor (to deplete C3 and C5 of the complement system) did not alter the lethality mediated by PDT. Histological profiles obtained 24 h following PDT demonstrated vascular congestion in the liver, kidney, lung, and spleen. Significant decreases in removable blood volume, core temperature, and spleen weight were also observed within 24 h of localized PDT treatment. These results indicate that PDT-induced lethality is consistent with a traumatic shock syndrome and suggest that endogenous vasoactive mediators of shock such as prostaglandins, thromboxanes, and histamine are associated with the lethality induced by localized PDT in mice. PMID:2137023

  19. Hepatotoxicants induce cytokine imbalance in response to innate immune system.

    PubMed

    Goto, Shima; Deguchi, Jiro; Nishio, Naoki; Nomura, Naruaki; Funabashi, Hitoshi

    2015-06-01

    In recent years, attention has been paid to innate immune systems as mechanisms to initiate or promote drug-induced liver injury (DILI). Kupffer cells are hepatic resident macrophages and might be involved in the pathogenesis of DILI by release of pro- and anti-inflammatory mediators such as cytokines, chemokines, reactive oxygen species, and/or nitric oxides. The purpose of this study was to investigate alterations in mediator levels induced by hepatotoxic compounds in isolated Kupffer cells and discuss the relation between balance of each cytokine or chemokine and potential of innate immune-mediated DILI. Primary cultured rat Kupffer cells were treated with hepatotoxic (acetaminophen, troglitazone, trovafloxacin) or non-hepatotoxic (pioglitazone, levofloxacin) compounds with or without lipopolysaccharide (LPS). After 24 hr treatment, cell supernatants were collected and various levels of mediators released by Kupffer cells were examined. Although hepatotoxicants had no effect on the LPS-induced tumor necrosis factor-alpha (TNF-α) secretion, they enhanced the release of pro-inflammatory cytokine interleukin-1 beta (IL-1β) and suppressed the anti-inflammatory cytokines interleukin-6 (IL-6) and interleukin-10 (IL-10) induced by LPS. These cytokine shifts were not associated with switching the phenotypes of M1 and M2 macrophages in Kupffer cells. In conclusion, the present study suggested that the levels of some specific cytokines are affected by DILI-related drugs with LPS stimulation, and imbalance between pro- and anti-inflammatory cytokines, induced by the up-regulation of IL-1β and the down-regulation of IL-6 or IL-10, plays a key role in innate immune-mediated DILI. PMID:25972199

  20. Reducing Technology-Induced Errors: Organizational and Health Systems Approaches.

    PubMed

    Borycki, Elizabeth M; Senthriajah, Yalini; Kushniruk, Andre W; Palojoki, Sari; Saranto, Kaija; Takeda, Hiroshi

    2016-01-01

    Technology-induced errors are a growing concern for health care organizations. Such errors arise from the interaction between healthcare and information technology deployed in complex settings and contexts. As the number of health information technologies that are used to provide patient care rises so will the need to develop ways to improve the quality and safety of the technology that we use. The objective of the panel is to describe varying approaches to improving software safety from and organizational and health systems perspective. We define what a technology-induced error is. Then, we discuss how software design and testing can be used to improve health information technologies. This discussion is followed by work in the area of monitoring and reporting at a health district and national level. Lastly, we draw on the quality, safety and resilience literature. The target audience for this work are nursing and health informatics researchers, practitioners, administrators, policy makers and students. PMID:27332325

  1. Organ pipe resonance induced vibration in piping system

    SciTech Connect

    Wang, T.

    1996-12-01

    Acoustic-induced vibration is a fluid-structure interaction phenomenon. The feedback mechanism between the acoustic pressure pulsation and the structure movements determines the excited acoustic modes which, in turn, amplify the structure response when confidence frequency and mode shape matching occurs. The acoustic modes are not determined from the acoustic boundary conditions alone, structure feedback is as responsible for determining the acoustic modes and shaping the resulting forcing functions. Acoustic-induced piping vibration, when excited, does not attenuate much with distance. Pressure pulsation can be transmitted throughout the piping system and its branch connections. It is this property that makes vibration monitoring difficult, because vibration can surface at locations far away from the acoustic source when resonance occurs. For a large piping system with interconnected branches, the monitoring task can be formidable, particularly when there is no indication what the real source is. In organ pipe resonance induced vibration, the initiating acoustic source may be inconspicuous or unavoidable during operation. In these situations, the forcing function approach can offer an optimal tool for vibration assessment. The forcing function approach was used in the evaluation of a standby steam piping vibration problem. Monitoring locations and instrument specifications were determined from the acoustic eigenfunction profiles. Measured data confirmed the presence of coherent vibrations in the large bore piping. The developed forcing function permits design evaluation of the piping system, which leads to remedial actions and enables fatigue life determination, thus providing confidence to system operation. The forcing function approach is shown to be useful in finding potential vibration area and verifying the integrity of weak structure links. Application is to steam lines at BWR plants.

  2. An IPTG Inducible Conditional Expression System for Mycobacteria

    PubMed Central

    Ravishankar, Sudha; Ambady, Anisha; Ramu, Haripriya; Mudugal, Naina Vinay; Tunduguru, Ragadeepthi; Anbarasu, Anand; Sharma, Umender K.; Sambandamurthy, Vasan K.; Ramaiah, Sudha

    2015-01-01

    Conditional expression strains serve as a valuable tool to study the essentiality and to establish the vulnerability of a target under investigation in a drug discovery program. While essentiality implies an absolute requirement of a target function, vulnerability provides valuable information on the extent to which a target function needs to be depleted to achieve bacterial growth inhibition followed by cell death. The critical feature of an ideal conditional expression system is its ability to tightly regulate gene expression to achieve the full spectrum spanning from a high level of expression in order to support growth and near zero level of expression to mimic conditions of gene knockout. A number of bacterial conditional expression systems have been reported for use in mycobacteria. The utility of an isopropylthiogalactoside (IPTG) inducible system in mycobacteria has been reported for protein overexpression and anti-sense gene expression from a replicating multi-copy plasmid. Herein, we report the development of a versatile set of non-replicating IPTG inducible vectors for mycobacteria which can be used for generation of conditional expression strains through homologous recombination. The role of a single lac operator versus a double lac operator to regulate gene expression was evaluated by monitoring the expression levels of β-galactosidase in Mycobacterium smegmatis. These studies indicated a significant level of leaky expression from the vector with a single lac operator but none from the vector with double lac operator. The significance of the double lac operator vector for target validation was established by monitoring the growth kinetics of an inhA, a rpoB and a ftsZ conditional expression strain grown in the presence of different concentrations of IPTG. The utility of this inducible system in identifying target specific inhibitors was established by screening a focussed library of small molecules using an inhA and a rpoB conditional expression

  3. An IPTG Inducible Conditional Expression System for Mycobacteria.

    PubMed

    Ravishankar, Sudha; Ambady, Anisha; Ramu, Haripriya; Mudugal, Naina Vinay; Tunduguru, Ragadeepthi; Anbarasu, Anand; Sharma, Umender K; Sambandamurthy, Vasan K; Ramaiah, Sudha

    2015-01-01

    Conditional expression strains serve as a valuable tool to study the essentiality and to establish the vulnerability of a target under investigation in a drug discovery program. While essentiality implies an absolute requirement of a target function, vulnerability provides valuable information on the extent to which a target function needs to be depleted to achieve bacterial growth inhibition followed by cell death. The critical feature of an ideal conditional expression system is its ability to tightly regulate gene expression to achieve the full spectrum spanning from a high level of expression in order to support growth and near zero level of expression to mimic conditions of gene knockout. A number of bacterial conditional expression systems have been reported for use in mycobacteria. The utility of an isopropylthiogalactoside (IPTG) inducible system in mycobacteria has been reported for protein overexpression and anti-sense gene expression from a replicating multi-copy plasmid. Herein, we report the development of a versatile set of non-replicating IPTG inducible vectors for mycobacteria which can be used for generation of conditional expression strains through homologous recombination. The role of a single lac operator versus a double lac operator to regulate gene expression was evaluated by monitoring the expression levels of β-galactosidase in Mycobacterium smegmatis. These studies indicated a significant level of leaky expression from the vector with a single lac operator but none from the vector with double lac operator. The significance of the double lac operator vector for target validation was established by monitoring the growth kinetics of an inhA, a rpoB and a ftsZ conditional expression strain grown in the presence of different concentrations of IPTG. The utility of this inducible system in identifying target specific inhibitors was established by screening a focussed library of small molecules using an inhA and a rpoB conditional expression

  4. Electrically induced spontaneous emission in open electronic system

    NASA Astrophysics Data System (ADS)

    Wang, Rulin; Zhang, Yu; Yam, Chiyung; Computation Algorithms Division (CSRC) Team; Theoretical; Computational Chemistry (HKU) Collaboration

    A quantum mechanical approach is formulated for simulation of electroluminescence process in open electronic system. Based on nonequilibrium Green's function quantum transport equations and combining with photon-electron interaction, this method is used to describe electrically induced spontaneous emission caused by electron-hole recombination. The accuracy and reliability of simulation depends critically on correct description of the electronic band structure and the electron occupancy in the system. In this work, instead of considering electron-hole recombination in discrete states in the previous work, we take continuous states into account to simulate the spontaneous emission in open electronic system, and discover that the polarization of emitted photon is closely related to its propagation direction. Numerical studies have been performed to silicon nanowire-based P-N junction with different bias voltage.

  5. Rank-3 root systems induce root systems of rank 4 via a new Clifford spinor construction

    NASA Astrophysics Data System (ADS)

    Dechant, Pierre-Philippe

    2015-04-01

    In this paper, we show that via a novel construction every rank-3 root system induces a root system of rank 4. Via the Cartan-Dieudonné theorem, an even number of successive Coxeter reflections yields rotations that in a Clifford algebra framework are described by spinors. In three dimensions these spinors themselves have a natural four-dimensional Euclidean structure, and discrete spinor groups can therefore be interpreted as 4D polytopes. In fact, we show that these polytopes have to be root systems, thereby inducing Coxeter groups of rank 4, and that their automorphism groups include two factors of the respective discrete spinor groups trivially acting on the left and on the right by spinor multiplication. Special cases of this general theorem include the exceptional 4D groups D4, F4 and H4, which therefore opens up a new understanding of applications of these structures in terms of spinorial geometry. In particular, 4D groups are ubiquitous in high energy physics. For the corresponding case in two dimensions, the groups I2(n) are shown to be self-dual, whilst via a similar construction in terms of octonions each rank-3 root system induces a root system in dimension 8; this root system is in fact the direct sum of two copies of the corresponding induced 4D root system.

  6. Salmonella enterica induces and subverts the plant immune system

    PubMed Central

    García, Ana V.; Hirt, Heribert

    2014-01-01

    Infections with Salmonella enterica belong to the most prominent causes of food poisoning and infected fruits and vegetables represent important vectors for salmonellosis. Although it was shown that plants raise defense responses against Salmonella, these bacteria persist and proliferate in various plant tissues. Recent reports shed light into the molecular interaction between plants and Salmonella, highlighting the defense pathways induced and the means used by the bacteria to escape the plant immune system and accomplish colonization. It was recently shown that plants detect Salmonella pathogen-associated molecular patterns (PAMPs), such as the flagellin peptide flg22, and activate hallmarks of the defense program known as PAMP-triggered immunity (PTI). Interestingly, certain Salmonella strains carry mutations in the flg22 domain triggering PTI, suggesting that a strategy of Salmonella is to escape plant detection by mutating PAMP motifs. Another strategy may rely on the type III secretion system (T3SS) as T3SS mutants were found to induce stronger plant defense responses than wild type bacteria. Although Salmonella effector delivery into plant cells has not been shown, expression of Salmonella effectors in plant tissues shows that these bacteria also possess powerful means to manipulate the plant immune system. Altogether, these data suggest that Salmonella triggers PTI in plants and evolved strategies to avoid or subvert plant immunity. PMID:24772109

  7. Inducible repair system in Haemophilus influenzae unaccompanied by mutation. [uv

    SciTech Connect

    Notani, N.K.; Setlow, J.K.

    1980-07-01

    Weigle reactivation of ultraviolet-irradiated HPlc1 phage was observed after ultraviolet or mitomycin C treatment of Haemophilus influenzae cells. The amount of reactivation was considerably increased when the treated cells were incubated in growth medium before infection. The presence of chloramphenicol during this incubation abolished the reactivation. No mutation of this phage accompanied the reactivation. When cells were treated so as to produce a maximal reactivation of phage, neither reactivation nor mutation of cells was observed. It is concluded that H. influenzae has an inducible repair system that is not accompanied by mutation.

  8. Cyclic Lipopeptide Biosynthetic Genes and Products, and Inhibitory Activity of Plant-Associated Bacillus against Phytopathogenic Bacteria

    PubMed Central

    Mora, Isabel; Cabrefiga, Jordi; Montesinos, Emilio

    2015-01-01

    The antibacterial activity against bacterial plant pathogens and its relationships with the presence of the cyclic lipopeptide (cLP) biosynthetic genes ituC (iturin), bmyB (bacillomycin), fenD (fengycin) and srfAA (surfactin), and their corresponding antimicrobial peptide products have been studied in a collection of 64 strains of Bacillus spp. isolated from plant environments. The most frequent antimicrobial peptide (AMP) genes were bmyB, srfAA and fenD (34-50% of isolates). Most isolates (98.4%) produced surfactin isoforms, 90.6% iturins and 79.7% fengycins. The antibacterial activity was very frequent and generally intense among the collection of strains because 75% of the isolates were active against at least 6 of the 8 bacterial plant pathogens tested. Hierarchical and correspondence analysis confirmed the presence of two clearly differentiated groups. One group consisted of Bacillus strains that showed a strong antibacterial activity, presented several cLPs genes and produced several isoforms of cLPs simultaneously, mainly composed of B. subtilis and B. amyloliquefaciens, although the last one was exclusive to this group. Another group was characterized by strains with very low or none antibacterial activity, that showed one or none of the cLP genes and produced a few or none of the corresponding cLPs, and was the most heterogenous group including B. subtilis, B. licheniformis, B. megaterium, B. pumilus, B. cereus and B. thuringiensis, although the last two were exclusive to this group. This work demonstrated that the antagonistic capacity of plant-associated Bacillus against plant pathogenic bacteria is related to the presence of cLP genes and to the production of the corresponding cLPs, and it is mainly associated to the species B. subtilis and B. amyloliquefaciens. Our findings would help to increase the yield and efficiency of screening methods to obtain candidate strains to biocontrol agents with a mechanism of action relaying on the production of

  9. Cyclic Lipopeptide Biosynthetic Genes and Products, and Inhibitory Activity of Plant-Associated Bacillus against Phytopathogenic Bacteria.

    PubMed

    Mora, Isabel; Cabrefiga, Jordi; Montesinos, Emilio

    2015-01-01

    The antibacterial activity against bacterial plant pathogens and its relationships with the presence of the cyclic lipopeptide (cLP) biosynthetic genes ituC (iturin), bmyB (bacillomycin), fenD (fengycin) and srfAA (surfactin), and their corresponding antimicrobial peptide products have been studied in a collection of 64 strains of Bacillus spp. isolated from plant environments. The most frequent antimicrobial peptide (AMP) genes were bmyB, srfAA and fenD (34-50% of isolates). Most isolates (98.4%) produced surfactin isoforms, 90.6% iturins and 79.7% fengycins. The antibacterial activity was very frequent and generally intense among the collection of strains because 75% of the isolates were active against at least 6 of the 8 bacterial plant pathogens tested. Hierarchical and correspondence analysis confirmed the presence of two clearly differentiated groups. One group consisted of Bacillus strains that showed a strong antibacterial activity, presented several cLPs genes and produced several isoforms of cLPs simultaneously, mainly composed of B. subtilis and B. amyloliquefaciens, although the last one was exclusive to this group. Another group was characterized by strains with very low or none antibacterial activity, that showed one or none of the cLP genes and produced a few or none of the corresponding cLPs, and was the most heterogenous group including B. subtilis, B. licheniformis, B. megaterium, B. pumilus, B. cereus and B. thuringiensis, although the last two were exclusive to this group. This work demonstrated that the antagonistic capacity of plant-associated Bacillus against plant pathogenic bacteria is related to the presence of cLP genes and to the production of the corresponding cLPs, and it is mainly associated to the species B. subtilis and B. amyloliquefaciens. Our findings would help to increase the yield and efficiency of screening methods to obtain candidate strains to biocontrol agents with a mechanism of action relaying on the production of

  10. Biomedical Implications of Heavy Metals Induced Imbalances in Redox Systems

    PubMed Central

    Singh, Shweta; Siddiqi, Nikhat J.

    2014-01-01

    Several workers have extensively worked out the metal induced toxicity and have reported the toxic and carcinogenic effects of metals in human and animals. It is well known that these metals play a crucial role in facilitating normal biological functions of cells as well. One of the major mechanisms associated with heavy metal toxicity has been attributed to generation of reactive oxygen and nitrogen species, which develops imbalance between the prooxidant elements and the antioxidants (reducing elements) in the body. In this process, a shift to the former is termed as oxidative stress. The oxidative stress mediated toxicity of heavy metals involves damage primarily to liver (hepatotoxicity), central nervous system (neurotoxicity), DNA (genotoxicity), and kidney (nephrotoxicity) in animals and humans. Heavy metals are reported to impact signaling cascade and associated factors leading to apoptosis. The present review illustrates an account of the current knowledge about the effects of heavy metals (mainly arsenic, lead, mercury, and cadmium) induced oxidative stress as well as the possible remedies of metal(s) toxicity through natural/synthetic antioxidants, which may render their effects by reducing the concentration of toxic metal(s). This paper primarily concerns the clinicopathological and biomedical implications of heavy metals induced oxidative stress and their toxicity management in mammals. PMID:25184144