Science.gov

Sample records for liposomal geiv phthalocyanine

  1. Photodynamic therapy disinfection of carious tissue mediated by aluminum-chloride-phthalocyanine entrapped in cationic liposomes: an in vitro and clinical study.

    PubMed

    Longo, João Paulo F; Leal, Soraya C; Simioni, Andreza R; de Fátima Menezes Almeida-Santos, Maria; Tedesco, Antônio C; Azevedo, Ricardo B

    2012-05-01

    Photodynamic therapy (PDT) is a technique employed in the treatment of several superficial infections, such as caries. PDT uses a non-toxic drug termed photosensitizer (PS) followed by light irradiation. The cytotoxic effects of the therapy are related to the production of reactive species produced after light activation of a photosensitizer, which reacts with surrounding molecules and disrupts several of the cell's functions. Within this context, this study aimed to develop a clinical protocol involving PDT application mediated by aluminum-chloride-phthalocyanine (AlClPc) entrapped in cationic liposomes against cariogenic bacteria in caries lesions. Cationic liposomes were used to delivery AlClPc preferentially to bacterial cells due to the strong anionic superficial charges of these cell types. The results are represented in two fundamental steps: (1) in vitro evaluation of AlClPc delivery to cariogenic bacteria and pulp cells, as well as its potential phototoxicity; (2) a clinical study involving volunteer patients that were treated with the PDT protocol mediated by AlClPc-cationic liposome. The main results showed that the AlClPc-cationic liposome was preferentially absorbed by bacterial cells compared to eukaryotic dental pulp cells, and it was efficient in the reduction of microbial load from bacterial cultures. In addition, the clinical study showed a mean reduction of 82% of total bacterial in the treated cavities after PDT application. Taken together, the results presented in this study showed that the antimicrobial PDT protocol mediated by cationic liposomes containing AlClPc is safety for clinical application and is efficient in the reduction of bacterial load in caries lesions. PMID:21809069

  2. Liposomes.

    PubMed

    Posner, Robert

    2002-09-01

    Robert Posner has 40 years of experience in skin care bench chemistry, product development, and sales and marketing. Working closely with dermatologists and plastic surgeons, Posner is a former member of the NY State Hospital Pharmacists Association, the American Pharmaceutical Association, and the American Association of Hospital Pharmacists. Currently, Posner sits on the Board of Directors of EMDA (Esthetic Manufacturers and Distributors Association). Posner has written numerous articles for Les Nouvelles Esthetiques Magazine, is presently a consultant for Day Spa Magazine, and had been one of only two non-dermatologists on a consultant basis with Cosmetic Dermatology Journal. Posner's company--ABBE Cosmetic Group International in Farmingdale, NY--formulates and manufactures skin care products for many well-known companies in the beauty industry. For many years, both the bench chemist and the dermatologist have been concerned with developing an ideal base for deliverance of 'actives' to the human epidermis. As is common knowledge, the skin is a protective organ which allows very few materials to penetrate. Some bases are unable to work effectively because of their relative inability to penetrate the stratum corneum; for example, some notable actives such as collagen and elastin are molecules too large to penetrate effectively. With the liposome at our command however, we can carry and then release an active into several layers of epidermis. We can release both oil- and water-soluble actives, and at the same time control the feel and effectiveness of a topical application. This article will examine the liposome: what it is, how it works, and how products made with liposomes can benefit dermatology. PMID:12847740

  3. Phthalocyanine polymers

    NASA Technical Reports Server (NTRS)

    Achar, B. N.; Fohlen, G. M.; Parker, J. A. (inventors)

    1985-01-01

    A method of forming 4,4',4'',4''' -tetraamino phthalocyanines involves reducing 4,4',4'',4''' -tetranitro phthalocyanines, polymerizing the metal tetraamino phthalocyanines with a tetracarboxylic dianhydride (preferably aromatic) or copolymerizing with a tetracarboxylic dianhydride and a diamine (preferably also aromatic) to produce amic acids which are then dehydrocyclized to imides. Thermally and oxidatively stable polymers result which form tough, flexible films, varnishes, adhesives, and fibers.

  4. Glycosylated Metal Phthalocyanines.

    PubMed

    Hanack, Michael

    2015-01-01

    In the first part; the syntheses of mono-; di-; and tetra-glycosylated phthalonitriles is described; which are the most used starting materials for the preparation of the corresponding glycosylated metal (mostly zinc) phthalocyanines. In the second section; the preparation of symmetric and unsymmetric mono-; tetra-; and octa- glycosylated zinc phthalocyanines are reviewed; in which the sugar is attached to the phthalocyanine macrocycle; either anomerically or via another one of its OH-groups. PMID:26569201

  5. Liposomal chemotherapeutics.

    PubMed

    Gentile, Emanuela; Cilurzo, Felisa; Di Marzio, Luisa; Carafa, Maria; Ventura, Cinzia Anna; Wolfram, Joy; Paolino, Donatella; Celia, Christian

    2013-12-01

    Currently, six liposomal chemotherapeutics have received clinical approval and many more are in clinical trials or undergoing preclinical evaluation. Liposomes exhibit low toxicity and improve the biopharmaceutical features and therapeutic index of drugs, thereby increasing efficacy and reducing side effects. In this review we discuss the advantages of using liposomes for the delivery of chemotherapeutics. Gemcitabine and paclitaxel have been chosen as examples to illustrate how the performance of a metabolically unstable or poorly water-soluble drug can be greatly improved by liposomal incorporation. We look at the beneficial effects of liposomes in a variety of solid and blood-borne tumors, including thyroid cancer, pancreatic cancer, breast cancer and multiple myeloma. PMID:24295415

  6. Synthesis and cellular studies of nonaggregated water-soluble phthalocyanines.

    PubMed

    Liu, Wei; Jensen, Timothy J; Fronczek, Frank R; Hammer, Robert P; Smith, Kevin M; Vicente, M Graça H

    2005-02-24

    Water-soluble phthalocyanines are promising photosensitizers for application in cancer therapy and in the photoinactivation of viruses. The water-soluble zinc(II) phthalocyanines 5 and 6 were synthesized by converting the corresponding ester derivative 4 into the sodium carboxylate and carboxylic acid species. Compound 5 can be solubilized in water as a monomeric species, as demonstrated by UV/vis and fluorescence spectroscopy. These compounds were characterized by analytical and spectroscopic methods and, in the case of 4, by X-ray crystallography. The water-soluble phthalocyanines were found to have low dark cytotoxicity toward V79 hamster fibroblasts and human HEp2 cells, to be phototoxic at low light and drug doses, to be taken up by cells in culture, and to localize intracellularly, mainly in the cell lysosomes. Conjugation of the anionic phthalocyanines with positively charged LipoGen liposomes resulted in effective delivery of these compounds into the nuclei of cells. It is concluded that these highly water-soluble phthalocyanines are promising sensitizers for the photodynamic therapy of tumors. PMID:15715471

  7. Doped colorimetric assay liposomes

    DOEpatents

    Charych, Deborah (Albany, CA); Stevens, Raymond C. (Albany, CA)

    2001-01-01

    The present invention provides compositions comprising colorimetric assay liposomes. The present invention also provides methods for producing colorimetric liposomes and calorimetric liposome assay systems. In preferred embodiments, these calorimetric liposome systems provide high levels of sensitivity through the use of dopant molecules. As these dopants allow the controlled destabilization of the liposome structure, upon exposure of the doped liposomes to analyte(s) of interest, the indicator color change is facilitated and more easily recognized.

  8. Metal phthalocyanine polymers

    NASA Technical Reports Server (NTRS)

    Achar, B. N.; Fohlen, G. M.; Parker, J. A. (inventors)

    1984-01-01

    Metal 4, 4', 4", 4"'=tetracarboxylic phthalocyanines (MPTC) are prepared by reaction of trimellitic anhydride, a salt or hydroxide of the desired metal (or the metal in powdered form), urea and a catalyst. A purer form of MPTC is prepared than heretofore. These tetracarboxylic acids are then polymerized by heat to sheet polymers which have superior heat and oxidation resistance. The metal is preferably a divalent metal having an atomic radius close to 1.35A.

  9. Method of solubilizing phthalocyanines and metallophthalocyanines

    DOEpatents

    Rathke, Jerome W.; Chen, Michael J.; Fendrick, Carol M.

    1997-11-04

    A one-step method of manufacturing soluble phthalocyanines and metallophthalocyanines, like zinc phthalocyanine, by converting a phthalocyanine or a metallophthalocyanine to a trialkylsilyl-substituted derivative is disclosed. The phthalocyanine or metallophthalocyanine is converted to a soluble trialkylsilyl-substituted derivative by interacting the phthalocyanine or metallophthalocyanine with an active metal amide, like lithium 2,2,6,6-tetramethylpiperidide, and a halotrialkylsilane, like chlorotrimethylsilane, to provide a phthalocyanine compound, like phthalocyanine monomers, dimers or polymers, metalated or unmetalated, that are soluble in organic media.

  10. Method of solubilizing phthalocyanines and metallophthalocyanines

    DOEpatents

    Rathke, Jerome W. (Bolingbrook, IL); Chen, Michael J. (Darien, IL); Fendrick, Carol M. (Downers Grove, IL)

    1997-01-01

    A one-step method of manufacturing soluble phthalocyanines and metallophthalocyanines, like zinc phthalocyanine, by converting a phthalocyanine or a metallophthalocyanine to a trialkylsilyl-substituted derivative is disclosed. The phthalocyanine or metallophthalocyanine is converted to a soluble trialkylsilyl-substituted derivative by interacting the phthalocyanine or metallophthalocyanine with an active metal amide, like lithium 2,2,6,6-tetramethylpiperidide, and a halotrialkylsilane, like chlorotrimethylsilane, to provide a phthalocyanine compound, like phthalocyanine monomers, dimers or polymers, metalated or unmetalated, that are soluble in organic media.

  11. New Directions in Phthalocyanine Pigments

    NASA Technical Reports Server (NTRS)

    Vandemark, Michael R.

    1992-01-01

    The objectives were the following: (1) investigation of the synthesis of new phthalocyanines; (2) characterization of the new phthalocyanines synthesized; (3) investigate the properties of the newly synthesized phthalocyanines with emphasis on UV protection of plastics and coatings; and (4) utilize quantum mechanics to evaluate the structural relationships with possible properties and synthetic approaches. The proposed research targeted the synthesis of phthalocyanines containing an aromatic bridge between two phthalocyanine rings. The goal was to synthesize pigments which would protect plastics when exposed to the photodegradation effects of the sun in space. The stability and extended conjugation of the phthalocyanines offer a unique opportunity for energy absorption and numerous radiative and non-radiative energy loss mechanisms. Although the original targeted phthalocyanines were changed early in the project, several new and unique phthalocyanine compounds were prepared. The basic goals of this work were met and some unique and unexpected outcomes of the work were the result of the integral use of quantum mechanics and molecular modeling with the synthetic effort.

  12. Phthalocyanine-Containing Supramolecular Arrays

    NASA Astrophysics Data System (ADS)

    Liu, Jian-Yong; Lo, Pui-Chi; Ng, Dennis K. P.

    Phthalocyanines represent a versatile class of functional dyes which have found applications in various disciplines ranging from materials science, catalysis, nanotechnology to medicine. The intrinsic properties of the macrocycles as well as their molecular arrangements, both in solution and in the condensed phase, can be altered through rational chemical modification. Conjugation of other functional units to phthalocyanines can also complement the characteristics of the macrocycles. All these approaches can improve the performance of these macrocyclic compounds as advanced functional materials. The purpose of this article is to provide an up-to-date review of the current research status of phthalocyanine-containing supramolecular systems. The formation, structures, and properties of self-assembled phthalocyanines as well as the non-covalent hetero-arrays containing phthalocyanines and other functional units are reviewed herein.

  13. -Complexes of Phthalocyanines and Metallophthalocyanines

    E-print Network

    Rauchfuss, Thomas B.

    of the phthalocyanines can be varied by changing the metal and the substituents on the heterocycle.5 For example, not the heterocyclic subunit.17 In contrast, in the aforemen- tioned -porphyrin complexes the metals were attached

  14. New directions in phthalocyanine pigments

    NASA Technical Reports Server (NTRS)

    Trinh, Diep VO

    1994-01-01

    Phthalocyanines have been used as a pigment in coatings and related applications for many years. These pigments are some of the most stable organic pigments known. The phthalo blue and green pigments have been known to be ultraviolet (UV) stable and thermally stable to over 400 C. These phthalocyanines are both a semiconductor and photoconductor, exhibiting catalytic activity and photostabilization capability of polymers. Many metal free and metallic phthalocyanine derivatives have been prepared. Development of the new classes of phthalocyanine pigment could be used as coating on NASA spacecraft material such as glass to decrease the optical degradation from UV light, the outside of the space station modules for UV protection, and coating on solar cells to increase lifetime and efficiency.

  15. Liposome technology. Volume I: Preparation of liposomes

    SciTech Connect

    Gregoriadis, G.

    1984-01-01

    These three volumes cover liposome technology in pharmacology and medicine. Contributors emphasize methodology used in their own laboratories, and include a brief introduction, coverage of relevant literature, applications and critical evaluations for the methods they describe. Volume I examine methods for the preparation of liposomes and auxiliary techniques.

  16. Gold liposomes

    SciTech Connect

    Hainfeld, J.F.

    1996-12-31

    Lipids are an important class of molecules, being found in membranes, HDL, LDL, and other natural structures, serving essential roles in structure and with varied functions such as compartmentalization and transport. Synthetic liposomes are also widely used as delivery and release vehicles for drugs, cosmetics, and other chemicals; soap is made from lipids. Lipids may form bilayer or multilammellar vesicles, micelles, sheets, tubes, and other structures. Lipid molecules may be linked to proteins, carbohydrates, or other moieties. EM study of this essential ingredient of life has lagged, due to lack of direct methods to visualize lipids without extensive alteration. OsO4 reacts with double bonds in membrane phospholipids, forming crossbridges. This has been the method of choice to both fix and stain membranes, thus far. An earlier work described the use of tungstate clusters (W{sub 11}) attached to lipid moieties to form lipid structures and lipid probes. With the development of gold clusters, it is now possible to covalently and specifically link a dense gold sphere to a lipid molecule; for example, reacting a mono-N-hydroxysuccinimide Nanogold cluster with the amino group on phosphatidyl ethanolaminine. Examples of a gold-fatty acid and a gold-phospholipid are shown.

  17. Liposomes as nanomedical devices

    PubMed Central

    Bozzuto, Giuseppina; Molinari, Agnese

    2015-01-01

    Since their discovery in the 1960s, liposomes have been studied in depth, and they continue to constitute a field of intense research. Liposomes are valued for their biological and technological advantages, and are considered to be the most successful drug-carrier system known to date. Notable progress has been made, and several biomedical applications of liposomes are either in clinical trials, are about to be put on the market, or have already been approved for public use. In this review, we briefly analyze how the efficacy of liposomes depends on the nature of their components and their size, surface charge, and lipidic organization. Moreover, we discuss the influence of the physicochemical properties of liposomes on their interaction with cells, half-life, ability to enter tissues, and final fate in vivo. Finally, we describe some strategies developed to overcome limitations of the “first-generation” liposomes, and liposome-based drugs on the market and in clinical trials. PMID:25678787

  18. Multi-liposomal containers.

    PubMed

    Yaroslavov, A A; Sybachin, A V; Zaborova, O V; Zezin, A B; Talmon, Y; Ballauff, M; Menger, F M

    2015-12-01

    Small unilamellar liposomes, 40-60nm in diameter, composed of anionic diphosphatidylglycerol (cardiolipin, CL(2-)) or phosphatidylcerine (PS(1-)) and zwitter-ionic egg yolk lecithin (EL) or dipalmitoylphosphatidylcholine (DPPC), electrostatically complex with polystyrene microspheres, ca. 100nm in diameter, grafted by polycationic chains ("spherical polycationic brushes", SPBs). Polymer/liposome binding studies were carried out using electrophoretic mobility (EPM), dynamic light scattering (DLS), fluorescence, conductometry, differential scanning calorimetry (DSC), and cryogenic transmission electron microscopy (cryo-TEM) as the main analytical tools. By these means a remarkably detailed picture emerges of molecular events inside a membrane. The following are among the most important conclusions that arose from the experiments: (a) binding of liposomes to SPBs is accompanied by flip-flop of anionic lipids from the inner to the outer leaflet of the liposomal membrane along with lateral lipid segregation into "islands". (b) The SPB-induced structural reorganization of the liposomal membrane, together with the geometry of anionic lipid molecules, determines the maximum molar fraction of anionic lipid (a key parameter designated as ?) that ensures the structural integrity of liposomes upon complexation: ?=0.3 for liposomes with conically-shaped CL(2-) and ?=0.5 for liposomes with anionic cylindrically-shaped PS(1-). (c) The number of intact liposomes per SPB particle varies from 40 for (?=0.1) to 13 (?=0.5). (d) By using a mixture of liposomes with variety of encapsulated substances, multi-liposomal complexes can be prepared with a high loading capacity and a controlled ratio of the contents. (e) In order to make the mixed anionic liposomes pH-sensitive, they are additionally modified by 30mol% of a morpholinocyclohexanol-based lipid that undergoes a conformational flip when changing pH. Being complexed with SPBs, such liposomes rapidly release their contents when the pH is reduced from 7.0 to 5.0. The results allow loaded liposomes to be concentrated within a rather small volume and, thereby, the preparation of multi-liposomal containers of promise in the drug delivery field. PMID:26372095

  19. Fused liposome and acid induced method for liposome fusion

    SciTech Connect

    Huang, L.; Connor, J.

    1988-12-06

    This patent describes a method of fusing liposomes. It comprises: preparing a suspension of liposomes containing at least one lipid which has a tendency to form the inverted hexagonal phase and at least 20 mol percent of palmitoylhomocysteine; and in the absence of externally added divalent cations, proteins or other macromolecules, acidifying the liposome suspension to reduce the pH of the liposomes to below pH 7, such that at least about 20% of the liposomes fuse to one another.

  20. Protein expression in liposomes.

    PubMed

    Oberholzer, T; Nierhaus, K H; Luisi, P L

    1999-08-01

    Compartmentalization is one of the key steps in the evolution of cellular structures and, so far, only few attempts have been made to model this kind of "compartmentalized chemistry" using liposomes. The present work shows that even such complex reactions as the ribosomal synthesis of polypeptides can be carried out in liposomes. A method is described for incorporating into 1-palmitoyl-2-oleoyl-sn-3-phosphocholine (POPC) liposomes the ribosomal complex together with the other components necessary for protein expression. Synthesis of poly(Phe) in the liposomes is monitored by trichloroacetic acid of the (14)C-labelled products. Control experiments carried out in the absence of one of the ribosomal subunits show by contrast no significant polypeptide expression. This methodology opens up the possibility of using liposomes as minimal cell bioreactors with growing degree of synthetic complexity, which may be relevant for the field of origin of life as well as for biotechnological applications. PMID:10425171

  1. Phthalocyanine Blends Improve Bulk Heterojunction Solar Cells

    PubMed Central

    Varotto, Alessandro; Nam, Chang-Yong; Radivojevic, Ivana; Tomé, Joao; Cavaleiro, José A.S.; Black, Charles T.; Drain, Charles Michael

    2010-01-01

    A core phthalocyanine platform allows engineering the solubility properties the band gap; shifting the maximum absorption toward the red. A simple method to increase the efficiency of heterojunction solar cells uses a self-organized blend of the phthalocyanine chromophores fabricated by solution processing. PMID:20136126

  2. 21 CFR 73.3124 - Phthalocyanine green.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Phthalocyanine green. 73.3124 Section 73.3124 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Medical Devices § 73.3124 Phthalocyanine green. (a)...

  3. 21 CFR 73.3124 - Phthalocyanine green.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Phthalocyanine green. 73.3124 Section 73.3124 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Medical Devices § 73.3124 Phthalocyanine green. (a)...

  4. Viscoelasticity measurements inside liposomes

    NASA Astrophysics Data System (ADS)

    Zhang, Shu; Gibson, Lachlan; Preece, Daryl; Nieminen, Timo A.; Rubinsztein-Dunlop, Halina

    2014-09-01

    Microrheology, the study of the behavior of fluids on the microscopic scale, has been and continues to be one of the most important subjects that can be applied to characterize the behavior of biological fluids. It is extremely difficult to make rapid measurement of the viscoelastic properties of the interior of living cells. Liposomes are widely used as model system for studying different aspects of cell biology. We propose to develop a microrheometer, based on real-time control of optical tweezers, in order to investigate the viscoelastic properties of the fluid inside liposomes. This will give greater understanding of the viscoelastic properties of the fluids inside cells. In our experiment, the liposomes are prepared by different methods to find out both a better way to make GUVs and achieve efficient encapsulation of particle. By rotating the vaterite inside a liposome via spin angular momentum, the optical torque can be measured by measuring the change of polarization of the transmitted light, which allows the direct measurement of viscous drag torque since the optical torque is balanced by the viscous drag. We present an initial feasibility demonstration of trapping and manipulation of a microscopic vaterite inside the liposome. The applied method is simple and can be extended to sensing within the living cells.

  5. Hexacoordinate bonding and aromaticity in silicon phthalocyanine.

    PubMed

    Yang, Yang

    2010-12-23

    Si-E bondings in hexacoordinate silicon phthalocyanine were analyzed using bond order (BO), energy partition, atoms in molecules (AIM), electron localization function (ELF), and localized orbital locator (LOL). Bond models were proposed to explain differences between hexacoordinate and tetracoordinate Si-E bondings. Aromaticity of silicon phthalocyanine was investigated using nucleus-independent chemical shift (NICS), harmonic oscillator model of aromaticity (HOMA), conceptual density functional theory (DFT), ring critical point (RCP) descriptors, and delocalization index (DI). Structure, energy, bonding, and aromaticity of tetracoordinate silicon phthalocyanine were studied and compared with hexacoordinate one. PMID:21105726

  6. Binding to and photo-oxidation of cardiolipin by the phthalocyanine photosensitizer Pc 4

    NASA Astrophysics Data System (ADS)

    Rodriguez, Myriam E.; Kim, Junhwan; Delos Santos, Grace B.; Azizuddin, Kashif; Berlin, Jeffrey; Anderson, Vernon E.; Kenney, Malcolm E.; Oleinick, Nancy L.

    2010-09-01

    Cardiolipin is a unique phospholipid of the mitochondrial inner membrane. Its peroxidation correlates with release of cytochrome c and induction of apoptosis. The phthalocyanine photosensitizer Pc 4 binds preferentially to the mitochondria and endoplasmic reticulum. Earlier Förster resonance energy transfer studies showed colocalization of Pc 4 and cardiolipin, which suggests cardiolipin as a target of photodynamic therapy (PDT) with Pc 4. Using liposomes as membrane models, we find that Pc 4 binds to cardiolipin-containing liposomes similarly to those that do not contain cardiolipin. Pc 4 binding is also studied in MCF-7c3 cells and those whose cardiolipin content was reduced by treatment with palmitate. Decreased levels of cardiolipin are quantified by thin-layer chromatography. The similar level of binding of Pc 4 to cells, irrespective of palmitate treatment, supports the lack of specificity of Pc 4 binding. Thus, factors other than cardiolipin are likely responsible for the preferential localization of Pc 4 in mitochondria. Nonetheless, cardiolipin within liposomes is readily oxidized by Pc 4 and light, yielding apparently mono- and dihydroperoxidized cardiolipin. If similar products result from exposure of cells to Pc 4-PDT, they could be part of the early events leading to apoptosis following Pc 4-PDT.

  7. Adsorption of ammonia on multilayer iron phthalocyanine

    SciTech Connect

    Isvoranu, Cristina; Knudsen, Jan; Ataman, Evren; Andersen, Jesper N.; Schnadt, Joachim; Schulte, Karina; Wang Bin; Bocquet, Marie-Laure

    2011-03-21

    The adsorption of ammonia on multilayers of well-ordered, flat-lying iron phthalocyanine (FePc) molecules on a Au(111) support was investigated by x-ray photoelectron spectroscopy. We find that the electron-donating ammonia molecules coordinate to the metal centers of iron phthlalocyanine. The coordination of ammonia induces changes of the electronic structure of the iron phthalocyanine layer, which, in particular, lead to a modification of the FePc valence electron spin.

  8. Boronated liposome development and evaluation

    SciTech Connect

    Hawthorne, M.F.

    1995-11-01

    The boronated liposome development and evaluation effort consists of two separate tasks. The first is the development of new boron compounds and the synthesis of known boron species with BNCT potential. These compounds are then encapsulated within liposomes for the second task, biodistribution testing in tumor-bearing mice, which examines the potential for the liposomes and their contents to concentrate boron in cancerous tissues.

  9. Liposome: classification, preparation, and applications

    PubMed Central

    2013-01-01

    Liposomes, sphere-shaped vesicles consisting of one or more phospholipid bilayers, were first described in the mid-60s. Today, they are a very useful reproduction, reagent, and tool in various scientific disciplines, including mathematics and theoretical physics, biophysics, chemistry, colloid science, biochemistry, and biology. Since then, liposomes have made their way to the market. Among several talented new drug delivery systems, liposomes characterize an advanced technology to deliver active molecules to the site of action, and at present, several formulations are in clinical use. Research on liposome technology has progressed from conventional vesicles to ‘second-generation liposomes’, in which long-circulating liposomes are obtained by modulating the lipid composition, size, and charge of the vesicle. Liposomes with modified surfaces have also been developed using several molecules, such as glycolipids or sialic acid. This paper summarizes exclusively scalable techniques and focuses on strengths, respectively, limitations in respect to industrial applicability and regulatory requirements concerning liposomal drug formulations based on FDA and EMEA documents. PMID:23432972

  10. Liposome: classification, preparation, and applications

    NASA Astrophysics Data System (ADS)

    Akbarzadeh, Abolfazl; Rezaei-Sadabady, Rogaie; Davaran, Soodabeh; Joo, Sang Woo; Zarghami, Nosratollah; Hanifehpour, Younes; Samiei, Mohammad; Kouhi, Mohammad; Nejati-Koshki, Kazem

    2013-02-01

    Liposomes, sphere-shaped vesicles consisting of one or more phospholipid bilayers, were first described in the mid-60s. Today, they are a very useful reproduction, reagent, and tool in various scientific disciplines, including mathematics and theoretical physics, biophysics, chemistry, colloid science, biochemistry, and biology. Since then, liposomes have made their way to the market. Among several talented new drug delivery systems, liposomes characterize an advanced technology to deliver active molecules to the site of action, and at present, several formulations are in clinical use. Research on liposome technology has progressed from conventional vesicles to `second-generation liposomes', in which long-circulating liposomes are obtained by modulating the lipid composition, size, and charge of the vesicle. Liposomes with modified surfaces have also been developed using several molecules, such as glycolipids or sialic acid. This paper summarizes exclusively scalable techniques and focuses on strengths, respectively, limitations in respect to industrial applicability and regulatory requirements concerning liposomal drug formulations based on FDA and EMEA documents.

  11. 40 CFR 721.9674 - Sulfonated-copper phthalocyanine salt of a triarylmethane dye (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...false Sulfonated-copper phthalocyanine salt of a triarylmethane dye (generic...9674 Sulfonated-copper phthalocyanine salt of a triarylmethane dye (generic...generically as sulfonated-copper phthalocyanine salt of a triarylmethane dye (PMN...

  12. 40 CFR 721.9674 - Sulfonated-copper phthalocyanine salt of a triarylmethane dye (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 2011-07-01 false Sulfonated-copper phthalocyanine salt of a triarylmethane...Substances § 721.9674 Sulfonated-copper phthalocyanine salt of a triarylmethane...identified generically as sulfonated-copper phthalocyanine salt of a...

  13. 40 CFR 721.9674 - Sulfonated-copper phthalocyanine salt of a triarylmethane dye (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 2013-07-01 false Sulfonated-copper phthalocyanine salt of a triarylmethane...Substances § 721.9674 Sulfonated-copper phthalocyanine salt of a triarylmethane...identified generically as sulfonated-copper phthalocyanine salt of a...

  14. 40 CFR 721.9674 - Sulfonated-copper phthalocyanine salt of a triarylmethane dye (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 2014-07-01 false Sulfonated-copper phthalocyanine salt of a triarylmethane...Substances § 721.9674 Sulfonated-copper phthalocyanine salt of a triarylmethane...identified generically as sulfonated-copper phthalocyanine salt of a...

  15. 40 CFR 721.9674 - Sulfonated-copper phthalocyanine salt of a triarylmethane dye (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 2012-07-01 false Sulfonated-copper phthalocyanine salt of a triarylmethane...Substances § 721.9674 Sulfonated-copper phthalocyanine salt of a triarylmethane...identified generically as sulfonated-copper phthalocyanine salt of a...

  16. Propulsion of liposomes using bacterial motors

    NASA Astrophysics Data System (ADS)

    Zhang, Zhenhai; Li, Zhifei; Yu, Wei; Li, Kejie; Xie, Zhihong; Shi, Zhiguo

    2013-05-01

    Here we describe the utilization of flagellated bacteria as actuators to propel spherical liposomes by attaching bacteria to the liposome surface. Bacteria were stably attached to liposomes using a cross-linking antibody. The effect of the number of attached bacteria on propulsion speed was experimentally determined. The effects of bacterial propulsion on the bacteria-antibody-liposome complex were stochastic. We demonstrated that liposomal mobility increased when bacteria were attached, and the propulsion speed correlated with the number of bacteria.

  17. 99m tc labeled liposomes

    SciTech Connect

    Phillips, W.T.; Klipper, R.W.; Timmons, J.H.; Rudolph, A.S.

    1992-10-27

    This patent describes a method of preparing stable gamma-emitting radionuclide-labeled alkyleneamine oxime, the incubating being for a period of time sufficient to form labeled liposome-encapsulated protein.

  18. Rupture of a liposomal vesicle

    E-print Network

    Marco A. Idiart; Yan Levin

    2004-04-23

    We discuss pore dynamics in osmotically stressed vesicles. A set of equations which govern the liposomal size, internal solute concentration, and pore diameter is solved numerically. We find that dependent on the internal solute concentration and vesicle size, liposomes can stay pore-free, nucleate a short lived pore, or nucleate a long-lived pore. The phase diagram of pore stability is constructed, and the different scaling regimes are deduced analytically.

  19. Structural studies of aliphatic substituted phthalocyanine-lipid multilayers.

    PubMed

    Zarbakhsh, Ali; Campana, Mario; Mills, David; Webster, John R P

    2010-10-01

    A Langmuir-Blodgett film of aliphatic substituted phthalocyanines on a C18 silane supporting layer coupled onto a silicon substrate has been investigated using neutron reflectometry. This multilayer structure is seen as a possible candidate for phthalocyanine-lipid biosensor devices. The results show the suitability of the C18 ligands as an anchoring layer for the phthalocyanines. The scattering length density profiles demonstrate the effectiveness of a lipid monolayer in partitioning the composition of phthalocyanine layers from that of the bulk liquid. The effectiveness of this barrier is a critical factor in the efficiency of such devices. PMID:20831252

  20. Phospholipid liposomes functionalized by protein

    NASA Astrophysics Data System (ADS)

    Glukhova, O. E.; Savostyanov, G. V.; Grishina, O. A.

    2015-03-01

    Finding new ways to deliver neurotrophic drugs to the brain in newborns is one of the contemporary problems of medicine and pharmaceutical industry. Modern researches in this field indicate the promising prospects of supramolecular transport systems for targeted drug delivery to the brain which can overcome the blood-brain barrier (BBB). Thus, the solution of this problem is actual not only for medicine, but also for society as a whole because it determines the health of future generations. Phospholipid liposomes due to combination of lipo- and hydrophilic properties are considered as the main future objects in medicine for drug delivery through the BBB as well as increasing their bioavailability and toxicity. Liposomes functionalized by various proteins were used as transport systems for ease of liposomes use. Designing of modification oligosaccharide of liposomes surface is promising in the last decade because it enables the delivery of liposomes to specific receptor of human cells by selecting ligand and it is widely used in pharmacology for the treatment of several diseases. The purpose of this work is creation of a coarse-grained model of bilayer of phospholipid liposomes, functionalized by specific to the structural elements of the BBB proteins, as well as prediction of the most favorable orientation and position of the molecules in the generated complex by methods of molecular docking for the formation of the structure. Investigation of activity of the ligand molecule to protein receptor of human cells by the methods of molecular dynamics was carried out.

  1. Porphyrin-phospholipid liposomes with tunable leakiness.

    PubMed

    Luo, Dandan; Carter, Kevin A; Razi, Aida; Geng, Jumin; Shao, Shuai; Lin, Cuiyan; Ortega, Joaquin; Lovell, Jonathan F

    2015-12-28

    Drug bioavailability is a key consideration for drug delivery systems. When loaded with doxorubicin, liposomes containing 5 molar % porphyrin-phospholipid (HPPH liposomes) exhibited in vitro and in vivo serum stability that could be fine-tuned by varying the drug-to-lipid ratio. A higher drug loading ratio destabilized the liposomes, in contrast to standard liposomes which displayed an opposite and less pronounced trend. Following systemic administration of HPPH liposomes, near infrared laser irradiation induced vascular photodynamic damage, resulting in enhanced liposomal doxorubicin accumulation in tumors. In laser-irradiated tumors, the use of leaky HPPH liposomes resulted in improved doxorubicin bioavailability compared to stable standard liposomes. Using this approach, a single photo-treatment with 10mg/kg doxorubicin rapidly eradicated tumors in athymic nude mice bearing KB or MIA Paca-2 xenografts. PMID:26578438

  2. Phthalocyanine photodynamic therapy of experimental iris neovascularization.

    PubMed

    Miller, J W; Stinson, W G; Gregory, W A; el-Koumy, H A; Puliafito, C A

    1991-11-01

    Photodynamic therapy using chloroaluminum sulfonated phthalocyanine (CASPc) effectively closed experimental iris neovascularization induced in 6 eyes of cynomolgus monkeys by argon laser retinal vein occlusion. Neovascularization was followed by iris photography, fluorescein angiography, and histopathologic examination by light and electron microscopy. Intravenous injection of CASPc followed by irradiation with 675 nm light damaged endothelial cells and pericytes, leading to exposure of the basal lamina and thrombotic occlusion of the blood vessels. Surrounding tissue appeared preserved without evidence of thermal damage. Resorption of occluded vessels by macrophages began 2 to 3 days after photodynamic therapy. Neovascularization reappeared 7 days after photodynamic therapy, probably representing growth of new vessels. Photodynamic therapy with CASPc may be a useful adjunct in the treatment of iris neovascularization. The model is useful in elucidating the ultrastructural changes observed after photodynamic therapy using phthalocyanines. PMID:1724793

  3. Surface chemistry of porphyrins and phthalocyanines

    NASA Astrophysics Data System (ADS)

    Gottfried, J. Michael

    2015-11-01

    This review covers the surface chemistry of porphyrins, phthalocyanines, their metal complexes, and related compounds, with particular focus on chemical reactions at solid/vacuum interfaces. Porphyrins are not only important biomolecules, they also find, together with the artificial phthalocyanines, numerous technological and scientific applications, which often involve surface and interface related aspects. After a brief summary of fundamental properties of these molecules in the context of surface science, the following topics will be discussed: (1) Aspects of geometric structure, including self-assembly, conformation, mobility and manipulation of the adsorbed molecules. (2) Surface-related changes of the electronic structure and the magnetic properties. (3) The role of the metal center in the surface chemical bond. (4) On-surface coordination reactions, such as direct metalation and coordination of axial ligands. (5) The influence of axial ligands on the surface chemical bond and the magnetic properties.

  4. How to Stabilize Phospholipid Liposomes (Using Nanoparticles)

    E-print Network

    Granick, Steve

    How to Stabilize Phospholipid Liposomes (Using Nanoparticles) Liangfang Zhang and Steve Granick The simple strategy of mixing phospholipid liposomes with charged nanoparticles and using sonication to mix them at low volume fraction produces particle-stabilized liposomes that repel one another and do

  5. Structural Thermodynamics of Cationic Liposome DNA System

    E-print Network

    Hernández Contreras, Martín

    Structural Thermodynamics of Cationic Liposome DNA System O. González-Amezcua and M. Hernández.P. 14-740, México Distrito Federal, Mexico Abstract. Cationic liposomes serve as useful vehicles form two dimen- sional crystalline arrays in the carrier liposome interior. One expects that a precise

  6. Preparation and characterization of gemcitabine liposome injections.

    PubMed

    Zhou, Qinmei; Liu, Liucheng; Zhang, Dengshan; Fan, Xingfeng

    2012-10-01

    Gemcitabine liposome injection (stealth liposomes) has facilitated the targeting of gemcitabine for cancer treatment. We systemically review liposome-based drug-delivery systems, which can improve pharmacokinetics, reduce side effects and potentially increase tumor uptake, for pancreatic cancer therapy. A novel liposomal formulation, which allows for higher tumor targeting efficiencies and can be used in current clinical trials to treat this challenging disease, has gained great popularity and attention. In this study, since extrusion technology was used to make sterile preparation of liposomes, the process included aseptic production process and sterile filtration. During the preparation, it has been found that the lipid concentration, emulsification speed and time, the homogenization times and pattern, the lipid solution temperature are all critical parameters for the character of the gemcitabine liposome injection. The particle size method and zeta potential method to characterize a PEGylated liposomal drug formulation of the anti-cancer agent gemcitabine was developed. The methods are specific, precise, reproducible and sensitive, therefore they are suitable for the determination of particle size and zeta potential of gemcitabine liposome injection. Negative staining technology of transmission electron microscopy revealed that gemcitabine liposome injection has a typical morphology, which enables liposomal surfaces could be seen so additional visual information on the stealth liposome can be routinely obtained in a fast and reliable manner. Moreover, the above three methods are simple, fast and would be used for continuous quality control of gemcitabine liposome injection when it moves to cGMP production scale. PMID:23136718

  7. The first genuine observation of fluorescent mononuclear phthalocyanine aggregates.

    PubMed

    Farren, Christopher; FitzGerald, Simon; Beeby, Andrew; Bryce, Martin R

    2002-03-21

    An initial photophysical study of a tetra-solketal-substituted zinc phthalocyanine is reported; at low temperature this compound exhibits very strong aggregation, and a new red shifted emission peak is observed, lambda max approximately 750 nm, attributed to a fluorescent phthalocyanine dimer. PMID:12120128

  8. Raman spectroscopy of phthalocyanines and their sulfonated derivatives

    NASA Astrophysics Data System (ADS)

    Bro?ek-P?uska, B.; Szymczyk, I.; Abramczyk, H.

    2005-06-01

    The aggregation and photochemistry of the copper (II) 3, 4?, 4?, 4?-tetrasulfonated phthalocyanine, free base phthalocyanine and copper (II) phthalocyanine have been studied by UV-VIS absorption spectroscopy and resonance Raman spectroscopy (RRS). The vibrational mode ?3 of (Cu(tsPc) 4- has been used as a probe in RRS measurements. The photochemistry of monomers and dimers of (Cu(tsPc) 4- has been studied in liquid solutions of H 2O and DMSO as well as in frozen matrices. Low temperature Raman measurements in a broad temperature range have been carried out for free base phthalocyanine and copper (II) phthalocyanine in DMSO to identify the nature of emissive bands observed in the Raman spectra. It has been shown that the dimerization equilibrium constant K for tetrasulfonated phthalocyanine Cu(tsPc) 4- is strongly shifted towards monomeric form in DMSO solutions and in human blood compared to aqueous systems. The emission band at around 682 nm in DMSO and aqueous solutions observed at 77 K for tetrasulfonated salt of copper(II) phthalocyanine in concentrated solutions has been assigned to the radical transient species generated during the photoinduced dissociation with the electron transfer between the molecules of phthalocyanines. The emission at 527 nm in DMSO and at 556 nm in water has been preliminarily assigned to the fluorescence from the higher excited triplet state T n?T 1.

  9. Room temperature ferromagnetism in a phthalocyanine based carbon material

    SciTech Connect

    Honda, Z. Sato, K.; Sakai, M.; Fukuda, T.; Kamata, N.; Hagiwara, M.; Kida, T.

    2014-02-07

    We report on a simple method to fabricate a magnetic carbon material that contains nitrogen-coordinated transition metals and has a large magnetic moment. Highly chlorinated iron phthalocyanine was used as building blocks and potassium as a coupling reagent to uniformly disperse nitrogen-coordinated iron atoms on the phthalocyanine based carbon material. The iron phthalocyanine based carbon material exhibits ferromagnetic properties at room temperature and the ferromagnetic phase transition occurs at T{sub c}?=?490?±?10?K. Transmission electron microscopy observation, X-ray diffraction analysis, and the temperature dependence of magnetization suggest that the phthalocyanine molecules form three-dimensional random networks in the iron phthalocyanine based carbon material.

  10. Ordered growth of vanadyl phthalocyanine (VOPc) on an iron phthalocyanine (FePc) monolayer.

    PubMed

    Rochford, Luke A; Ramadan, Alexandra J; Woodruff, D Phil; Heutz, Sandrine; Jones, Tim S

    2015-11-28

    The growth and characterisation of a non-planar phthalocyanine (vanadyl phthalocyanine, VOPc) on a complete monolayer (ML) of a planar phthalocyanine (Iron(ii) phthalocyanine, FePc) on an Au(111) surface, has been investigated using ultra-high vacuum (UHV) scanning tunnelling microscopy (STM) and low energy electron diffraction (LEED). The surface mesh of the initial FePc monolayer has been determined and shown to correspond to an incommensurate overlayer, not commensurate as previously reported. Ordered islands of VOPc, with (1 × 1) epitaxy, grow on the FePc layer at submonolayer coverages. The individual VOPc molecules occupy sites directly atop the underlying FePc molecules, indicating that significant intermolecular bonding must occur. It is proposed that this interaction implies that the V[double bond, length as m-dash]O points down into the surface, allowing a Fe-O bond to form. The detailed appearance of the STM images of the VOPc molecules is consistent with previous studies in other VOPc growth studies in which this molecular orientation has been proposed. PMID:26477586

  11. Liposome-like Nanostructures for Drug Delivery

    PubMed Central

    Gao, Weiwei; Hu, Che-Ming J.; Fang, Ronnie H.; Zhang, Liangfang

    2013-01-01

    Liposomes are a class of well-established drug carriers that have found numerous therapeutic applications. The success of liposomes, together with recent advancements in nanotechnology, has motivated the development of various novel liposome-like nanostructures with improved drug delivery performance. These nanostructures can be categorized into five major varieties, namely: (1) polymer-stabilized liposomes, (2) nanoparticle-stabilized liposomes, (3) core-shell lipid-polymer hybrid nanoparticles, (4) natural membrane-derived vesicles, and (5) natural membrane coated nanoparticles. They have received significant attention and have become popular drug delivery platforms. Herein, we discuss the unique strengths of these liposome-like platforms in drug delivery, with a particular emphasis on how liposome-inspired novel designs have led to improved therapeutic efficacy, and review recent progress made by each platform in advancing healthcare. PMID:24392221

  12. Controlling Growth Orientation of Phthalocyanine Films by Electrical Fields

    NASA Technical Reports Server (NTRS)

    Zhu, S.; Banks, C. E.; Frazier, D. O.; Ila, D.; Muntele, I.; Penn, B. G.; Sharma, A.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Organic Phthalocyanine films have many applications ranging from data storage to various non-linear optical devices whose quality is affected by the growth orientation of Phthalocyanine films. Due to the structural and electrical properties of Phthalocyanine molecules, the film growth orientation depends strongly on the substrate surface states. In this presentation, an electrical field up to 4000 V/cm is introduced during film growth. The Phthalocyanine films are synthesized on quartz substrates using thermal evaporation. An intermediate layer is deposited on some substrates for introducing the electrical field. Scanning electron microscopy, x-ray diffraction, and Fourier transform infrared spectroscopy are used for measuring surface morphology, film structure, and optical properties, respectively. The comparison of Phthalocyanine films grown with and without the electrical field reveals different morphology, film density, and growth orientation, which eventually change optical properties of these films. These results suggest that the growth method in the electrical field can be used to synthesized Phthalocyanine films with a preferred crystal orientation as well as propose an interaction mechanism between the substrate surface and the depositing molecules. The details of growth conditions and of the growth model of how the Phthalocyanine molecules grow in the electrical field will be discussed.

  13. Capacious and programmable multi-liposomal carriers

    NASA Astrophysics Data System (ADS)

    Yaroslavov, Alexander A.; Sybachin, Andrey V.; Zaborova, Olga V.; Migulin, Vasiliy A.; Samoshin, Vyacheslav V.; Ballauff, Matthias; Kesselman, Ellina; Schmidt, Judith; Talmon, Yeshayahu; Menger, Fredric M.

    2015-01-01

    Spherical polycationic brushes (SPBs) were synthesized by grafting polycationic chains onto 100 nm polystyrene particles. These particles were exposed to unilamellar egg-lecithin (EL) liposomes with a mean diameter of 40 nm that had been rendered anionic via the presence of 10 molar% of phosphatidylserine (PS1-). The liposomes also contained 30 mole% of a morpholinocyclohexanol-based lipid (MOCH) that undergoes a conformational flip when the pH is decreased from 7.0 to 5.0. Mixtures of SPBs and liposomes at pH 7 gave an electrostatically-driven complex possessing, on average, about 40 liposomes for each SPB particle. It was found that the bound liposomes rapidly release much of their contents when the pH is reduced from 7.0 to 5.0 owing mostly to a MOCH conformational change that creates defects in the bilayer membrane. The drop in pH does not, however, induce a separation of the liposomes from the SPBs. Around 50-60% of the liposome contents escape before, it is reasoned, lateral and transmembrane motion of the membrane components heals the defects and prevents further release. Remarkably, the liposomes complexed with SPB release their cargo much faster than the identical but non-complexed liposomes.Spherical polycationic brushes (SPBs) were synthesized by grafting polycationic chains onto 100 nm polystyrene particles. These particles were exposed to unilamellar egg-lecithin (EL) liposomes with a mean diameter of 40 nm that had been rendered anionic via the presence of 10 molar% of phosphatidylserine (PS1-). The liposomes also contained 30 mole% of a morpholinocyclohexanol-based lipid (MOCH) that undergoes a conformational flip when the pH is decreased from 7.0 to 5.0. Mixtures of SPBs and liposomes at pH 7 gave an electrostatically-driven complex possessing, on average, about 40 liposomes for each SPB particle. It was found that the bound liposomes rapidly release much of their contents when the pH is reduced from 7.0 to 5.0 owing mostly to a MOCH conformational change that creates defects in the bilayer membrane. The drop in pH does not, however, induce a separation of the liposomes from the SPBs. Around 50-60% of the liposome contents escape before, it is reasoned, lateral and transmembrane motion of the membrane components heals the defects and prevents further release. Remarkably, the liposomes complexed with SPB release their cargo much faster than the identical but non-complexed liposomes. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr06037g

  14. Optical nonlinearity measurements of copper phthalocyanine film

    NASA Astrophysics Data System (ADS)

    Luo, Li-hao; Fang, Yu; Chu, Xiang-yong; Wu, Xing-zhi; Yang, Junyi; Song, Ying-lin

    2013-09-01

    The nonlinear refractive response of a copper phthalocyanine film fabricated by the electro-deposition is investigated by a modified top-hat Z-scan with 19 picoseconds pulse at wavelength of 532 nm. Compared to the top-hat Z-scan, the curve of modified top-hat Z-scan for the nonlinear refraction shows a single peak rather than a peek-valley curve. Furthermore, the sensitivity of this new technique can be more than two orders of magnitude enhanced. The results show that the film has obvious response of nonlinear refraction. The theoretical simulation fit well with experimental results.

  15. One-dimensional magnetism in copper phthalocyanine

    NASA Astrophysics Data System (ADS)

    Lee, S.; Yudkowsky, M.; Halperin, W. P.; Ogawa, M. Y.; Hoffman, B. M.

    1987-04-01

    Measurements of the proton spin-lattice relaxation rate, T-11, reveal that the organic insulator copper phthalocyanine Cu(PC) is a highly one-dimensional Heisenberg system. T-11 diverges as ?-1/2 down to 11.4 MHz without evidence of cutoff. It was found that ||J/kB||=0.286 K with the ratio ||J/J'||>=6×103, where J and J' are the intrachain and interchain exchange interactions, indicating that Cu(PC) is an excellent model one-dimensional Heisenberg magnet.

  16. Essential oils encapsulated in liposomes: a review.

    PubMed

    Sherry, Mirna; Charcosset, Catherine; Fessi, Hatem; Greige-Gerges, Hélène

    2013-12-01

    In the recent years there has been an increased interest toward the biological activities of essential oils. However, essential oils are unstable and susceptible to degradation in the presence of oxygen, light and temperature. So, attempts have been made to preserve them through encapsulation in various colloidal systems such as microcapsules, microspheres, nanoemulsions and liposomes. This review focuses specifically on encapsulation of essential oils into liposomes. First, we present the techniques used to prepare liposomes encapsulating essential oils. The effects of essential oils and other factors on liposome characteristics such as size, encapsulation efficiency and thermal behavior of lipid bilayers are then discussed. The composition of lipid vesicles membrane, especially the type of phospholipids, cholesterol content, the molar ratio of essential oils to lipids, the preparation method and the kind of essential oil may affect the liposome size and the encapsulation efficiency. Several essential oils can decrease the size of liposomes, homogenize the liposomal dispersions, increase the fluidity and reduce the oxidation of the lipid bilayer. Moreover, liposomes can protect the fluidity of essential oils and are stable at 4-5?°C for 6 months at least. The applications of liposomes incorporating essential oils are also summarized in this review. Liposomes encapsulating essential oils are promising agents that can be used to increase the anti-microbial activity of the essential oils, to study the effect of essential oils on cell membranes, and to provide alternative therapeutic agents to treat several diseases. PMID:23879218

  17. Photoinduced electron transfer between the dendritic zinc phthalocyanines and anthraquinone

    NASA Astrophysics Data System (ADS)

    Chen, Kuizhi; Wen, Junri; Liu, Jiangsheng; Chen, Zhenzhen; Pan, Sujuan; Huang, Zheng; Peng, Yiru

    2015-03-01

    The intermolecular electron transfer between the novel dendritic zinc (II) phthalocyanines (G1-DPcB and G2-DPcB) and anthraquinone (AQ) was studied by steady-state fluorescence and UV/Vis absorption spectroscopic methods. The effect of dendron generation on intermolecular electron transfer was investigated. The results showed that the fluorescence emission of these dendritic phthalocyanines could be greatly quenched by AQ upon excitation at 610 nm. The Stern- Volmer constant (KSV) of electron transfer was decreased with increasing the dendron generations. Our study suggested that these novel dendritic phthalocyanines were effective new electron donors and transmission complexes and could be used as a potential artifical photosysthesis system.

  18. Topology of Multivesicular Liposomes, a Model Biliquid Foam

    E-print Network

    Zasadzinski, Joseph A.

    Topology of Multivesicular Liposomes, a Model Biliquid Foam M. S. Spector and J. A. Zasadzinski was used to characterize the microstructure of a novel multivesicular liposome (MVL) currently under drugs in conventional liposomes allows forlong-termreleaseofdrugsattherapeuticdosages,while avoiding

  19. Uranyl phthalocyanines show promise in the treatment of brain tumors

    NASA Technical Reports Server (NTRS)

    Frigerio, N. A.

    1967-01-01

    Processes synthesize sulfonated and nonsulfonated uranyl phthalocyanines for application in neutron therapy of brain tumors. Tests indicate that the compounds are advantageous over the previously used boron and lithium compounds.

  20. Molecular aggregation in soluble phthalocyanines - Chemical interactions vs. ?-stacking

    NASA Astrophysics Data System (ADS)

    Palewska, Krystyna; Sworakowski, Juliusz; Lipi?ski, Józef

    2012-08-01

    Aggregation of soluble sulfonated phthalocyanines (Pcs) containing di- and trivalent central atoms in binary water-alcohol solvents has been studied. The equilibrium constants of dimerization in solutions of Pcs with divalent central atoms (Zn, Cu) were found dependent on the electrical permittivity of the solvent and on the degree of sulfonation (i.e., on the charge on the phthalocyanine anions). Our results show that in Pcs with the trivalent central atom (Al(OH)) the dimerization occurs preferentially by formation of oxygen bridges or hydrogen bonds. Disulfonated aluminum phthalocyanine anions dissolved in water-rich binary solvents seem to form both ?-stacked dimers and chemical dimers, due to a decrease in the Coulombic repulsive energy. The experiments reported in the paper indicate that the aggregation of soluble phthalocyanines can be controlled by the choice of a suitable electric permittivity of the solvent.

  1. Syntheses of Octasubstituted Metal Phthalocyanines for Nonlinear Optics

    NASA Technical Reports Server (NTRS)

    Guo, Huaisong; Townsend, Cheryl; Sanghadasa, Mohan; Amai, Robert L. S.; Clark, Ronald D.; Penn, Benjamin

    1998-01-01

    Many organic materials can be used as nonlinear optical media. Phthalocyanines are of special interest because they show an unusually large third order nonlinear response, they are thermally and photochemically stable and they can be formed into oriented thin films (Langmuir-Blodgett films). They also can be easily complexed by a large variety of metals, which place them at the interface between organics and organometallics, and allows for fine tuning of the macro cycle electronic properties by the coordinated metal and substituent groups. A series of 1,4,8,11,15,18,22,25-octaalkoxy metal-free and metal phthalocyanines and 2,3,9,10,16,17,23,24-octaalkoxy metal phthalocyanines has been synthesized. Their nonlinear optical properties have been measured. The physical properties of all the phthalocyanines synthesized in this work are subject to both acid and solvent effects.

  2. Modelling copper-phthalocyanine/cobalt-phthalocyanine chains: towards magnetic quantum metamaterials.

    PubMed

    Wu, Wei

    2014-07-23

    The magnetic properties of a theoretically designed molecular chain structure CuCoPc2, in which copper-phthalocyanine (CuPc) and cobalt-phthalocyanine (CoPc) alternate, have been investigated across a range of chain structures. The computed exchange interaction for the ?-phase CuCoPc2 is ? 5 K (ferromagnetic), in strong contrast to the anti-ferromagnetic interaction recently observed in CuPc and CoPc. The computed exchange interactions are strongly dependent on the stacking angle but weakly on the sliding angle, and peak at 20 K (ferromagnetic). These ferromagnetic interactions are expected to arise from direct exchange with the strong suppression of super-exchange interaction. These first-principles calculations show that ?-conjugated molecules, such as phthalocyanine, could be used as building blocks for the design of magnetic materials. This therefore extends the concept of quantum metamaterials further into magnetism. The resulting new magnetic materials could find applications in the studies such as organic spintronics. PMID:24990182

  3. Photodynamic pathogen inactivation in red cell concentrates with the silicon phthalocyanine Pc 4

    NASA Astrophysics Data System (ADS)

    Ben-Hur, Ehud; Chan, Wai-Shun; Yim, Zachary; Zuk, Maria M.; Dayal, Vinay; Roth, Nathan; Heldman, Eli; Lazlo, A.; Valeri, C. R.; Horowitz, Bernard

    2000-03-01

    The silicon phthalocyanine Pc 4, a photosensitizer activated with red light, has been studied for pathogen inactivation in red blood cell concentrates (RBCC). Pc 4 targets the envelope of pathogenic viruses such as HIV. To protect RBC during the process two main approaches are used: 1) Inclusion of quenches of reactive oxygen species produced during treatment. Tocopherol succinate was found to be most effective for this purpose. 2) Formulation of Pc 4, a lipophilic compound, in liposomes that reduce its binding to RBC but not to viruses. As a light source we used a light emitting diode array emitting at 660-680 nm. An efficient mixing device ensures homogeneous light exposure during treatment of intact RBCC. Treatment of RBCC with 5 (mu) M Pc 4 a d light results in the inactivation of >= 5.5 log10 HIV, >= 6.6 log10 VSV, and >= 5 log10 of PRV and BVDV. Parasites that can be transmitted by blood transfusion are even more sensitive than viruses. Following treatment, RBCC can be stored for 28 days at 4 degrees C with hemolysis below 1 percent. Baboon RBC circulate with an acceptable 24 hour recovery and half-life. Genetic toxicological studies of Pc 4 with or without light exposure are negative. We conclude that a process using Pc 4 and red light can potentially reduce the risk of transmitting pathogens in RBCC used for transfusion.

  4. Serum albumin as a vehicle for zinc phthalocyanine: photodynamic activities in solid tumour models.

    PubMed Central

    Larroque, C.; Pelegrin, A.; Van Lier, J. E.

    1996-01-01

    Zinc phthalocyanine (ZnPc) is a second-generation photosensitiser for the photodynamic therapy (PDT) of cancer. Unsubstituted ZnPc is, however, highly insoluble in most common solvents, and for clinical applications the material needs to be incorporated in liposomes. We report a simple, alternative procedure to formulate ZnPc through non-covalent binding to bovine serum albumin (BSA). Intravenous administration of ZnPc-BSA preparations, at a molar ratio of 11:1 and at a ZnPc dose equivalent to 0.5 mol kg-1, to tumour-bearing mice followed 24 h later by PDT was shown to provide tumour control in two different models, the EMT-6 tumour in Balb/c mice and the human colon T380 carcinoma in nude mice. Analysis of serum fractions from treated animals showed that ZnPc readily redistributes over the serum high-density lipoprotein (HDL) fraction. We also demonstrated the absence of hepatic toxicity of the ZnPc-BSA preparation by monitoring the hepatic cytochrome P450 activity in treated animals and the viability of human cultured hepatocytes. PMID:8980386

  5. Liposome adhesion generates traction stress

    NASA Astrophysics Data System (ADS)

    Murrell, Michael P.; Voituriez, Raphaël; Joanny, Jean-François; Nassoy, Pierre; Sykes, Cécile; Gardel, Margaret L.

    2014-02-01

    Mechanical forces generated by cells modulate global shape changes required for essential life processes, such as polarization, division and spreading. Although the contribution of the cytoskeleton to cellular force generation is widely recognized, the role of the membrane is considered to be restricted to passively transmitting forces. Therefore, the mechanisms by which the membrane can directly contribute to cell tension are overlooked and poorly understood. To address this, we directly measure the stresses generated during liposome adhesion. We find that liposome spreading generates large traction stresses on compliant substrates. These stresses can be understood as the equilibration of internal, hydrostatic pressures generated by the enhanced membrane tension built up during adhesion. These results underscore the role of membranes in the generation of mechanical stresses on cellular length scales and that the modulation of hydrostatic pressure due to membrane tension and adhesion can be channelled to perform mechanical work on the environment.

  6. Gas Sensing Mechanism in Chemiresistive Cobalt and Metal-Free Phthalocyanine Thin Films

    E-print Network

    Kummel, Andrew C.

    Gas Sensing Mechanism in Chemiresistive Cobalt and Metal-Free Phthalocyanine Thin Films Forest I@ucsd.edu; wtrogler@ucsd.edu Abstract: The gas sensing behaviors of cobalt phthalocyanine (CoPc) and metal

  7. Intramolecular aggregation and optical limiting properties of triazine-linked mono-, bis- and tris-phthalocyanines.

    PubMed

    Chen, Jun; Zhang, Tao; Wang, Shuangqing; Hu, Rui; Li, Shayu; Ma, Jin Shi; Yang, Guoqiang

    2015-10-01

    A series of triazine-linked mono-, bis- and tris-phthalocyanines are synthesized, intramolecular aggregation is found in bis- and tris-phthalocyanines via ?-? stacking interaction. Theoretical and experimental studies reveal the formation of the intramolecular aggregation. The spectrographic, photophysical and nonlinear optical properties of these compounds are adjusted for the formation of the intramolecular aggregation. The bis-phthalocyanine dimer presents smaller fluorescence quantum yield, lower triplet formation yield and the triplet-minus-ground state extinction coefficient, which causes poorer optical limiting performance. It is interesting that the tris-phthalocyanine is composed of a mono-phthalocyanine part and a bis-phthalocyanine part, the optical limiting property of the tris-phthalocyanine is similar to that of mono-phthalocyanine. PMID:25974676

  8. Photophysical studies of newly derivatized mono substituted phthalocyanines grafted onto silica nanoparticles via click chemistry.

    PubMed

    Fashina, Adedayo; Amuhaya, Edith; Nyokong, Tebello

    2015-04-01

    This work reports on the synthesis, characterization and photophysical studies of newly derived phthalocyanine complexes and the phthalocyanine-silica nanoparticles conjugates. The derived phthalocyanine complexes have one terminal alkyne group. The derived phthalocyanine complexes showed improved photophysical properties (?F, ?T, ?? and ?T) compared to the respective phthalocyanine complexes from which they were derived. The derived phthalocyanine complexes were conjugated to the surface of an azide functionalized silica nanoparticles via copper (1) catalyzed cyclo-addition reaction. All the conjugates showed lower triplet quantum yields ranging from 0.37 to 0.44 compared to the free phthalocyanine complexes. The triplet lifetimes ranged from 352 to 484 ?s for the conjugates and from 341 to 366 ?s for the free phthalocyanine complexes. PMID:25615674

  9. Nanoparticle Stabilized Liposomes for Acne Therapy

    NASA Astrophysics Data System (ADS)

    Fu, Victoria

    Acne vulgaris is a common skin disease that affects over 40 million people in the United States alone. The main cause of acne vulgaris is Propionibacterium acnes (P. acnes), resides deep in the pores and follicles of the skin in order to feed on oil produced by the sebaceous glands. The liposome is a lipid based nanoparticle with numerous advantages over free drug molecules as an acne treatment alternative. Bare liposomes loaded with lauric acid (LipoLA) were found to show strong antimicrobial activity against P. acnes while generating minimal toxicity. However, the platform is limited by the spontaneous tendency of liposomes to fuse with each other. Attaching nanoparticles to the surface of liposomes can overcome this challenge by providing steric repulsion and reduce surface tension. Thus, carboxyl-functionalized gold nanoparticles (AuC) were attached to the surface of liposomes (AuC-liposomes) loaded with doxycycline, a general tetracycline antibiotic. These particles were found to have a diameter of 120 nm and a zeta potential of 20.0 mV. Both fluorescent and antimicrobial studies demonstrated that based on electrostatic interaction, negatively charged AuC attached to the liposome's positively charged surface and stabilized liposomes in a neutral pH environment (pH = 7.4). Upon entering the skin's acidic environment (pH = 4), AuC detached from the liposome's surface and liposomes could fuse with P. acnes residing in the pores. Furthermore, toxicity studies showed that AuC-liposomes did not induce any significant toxicity, while two of the leading over-the-counter therapies, benzoyl peroxide and salicylic acid, generated substantial skin irritation.

  10. Development of the Liposomes Entrapped Ultrasound Imaging Gas (``Bubble Liposomes'') as Novel Gene Delivery Carriers

    NASA Astrophysics Data System (ADS)

    Suzuki, Ryo; Tanaka, Kumiko; Sawamura, Kaori; Takizawa, Tomoko; Utoguchi, Naoki; Negishi, Yoichi; Hagisawa, Kohsuke; Nishioka, Toshihiko; Maruyama, Kazuo

    2006-05-01

    Recently, microbubbles and ultrasound have been investigated with a view to improving the transfection efficiency of nonviral delivery systems for gene by cavitation. However, microbubbles had some problems in terms of stability and targeting ability. To solve these problems, we paid attention to liposomes that had many advantages such as stable and safe in vivo and easy to modify targeting ligand. Previously, we have represented that liposomes are good drug and gene delivery carriers. In addition, we developed that the liposomes ("Bubble liposomes") were entrapped with perfluoropropane known as ultrasound imaging gas. In this study, we assessed about feasibility of "Bubble liposomes" as gene delivery tool utilized cavitation by ultrasound irradiation. "Bubble liposomes" could effectively deliver plasmid DNA to cells by combination of ultrasound irradiation without cyototoxicity. This result suggested that "Bubble liposomes" might be a new class of tool for gene delivery.

  11. Potential Tuning of Nanoarchitectures Based on Phthalocyanine Nanopillars: Construction of Effective Photocurrent Generation Systems.

    PubMed

    Kawaguchi, Takuya; Okamura, Shota; Togashi, Takanari; Harada, Wataru; Hirahara, Mana; Miyake, Ryosuke; Haga, Masa-aki; Ishida, Takao; Kurihara, Masato; Kanaizuka, Katsuhiko

    2015-09-01

    Nanopillars composed of a photoresponsive phthalocyanine derivative have been conveniently fabricated using a continuous silane coupling reaction on a substrate. The chemical potentials of phthalocyanine nanopillars (PNs) are precisely controlled by changing the number of phthalocyanine derivatives on the substrate. In addition, photocurrent generation efficiencies have been strongly influenced by the number of phthalocyanine derivatives. High photocurrent conversion cells in a solid state have been obtained by the combination of PNs and a fullerene derivative. PMID:26288161

  12. Introducing copper phthalocyanine as a qubit

    NASA Astrophysics Data System (ADS)

    Warner, Marc; Din, Salahud; Gardener, Jules; Morley, Gavin W.; Wu, Wei; Stoneham, Marshall; Fisher, Andrew J.; Heutz, Sandrine; Kay, Christopher W. M.; Aeppli, Gabriel

    2012-02-01

    Quantum information processing (QIP) has been shown to solve certain useful problems faster than its classical counterpart. However finding a physical system upon which to execute these algorithms is a challenging task. One promising implementation is to use an electron spin in a magnetic field as the information bearing quantum system. Numerous options have been proposed along these lines. Here I discuss a new candidate qubit, copper phthalocyanine. The copper atom at the centre of the molecule carries an unpaired electron. Pulsed electron paramagnetic resonance measurements of relaxation times reveal that it has potential for QIP. We measure the spin-lattice and spin-spin relaxation times of this electron and demonstrate single qubit manipulations. Solid-state electronic devices can be built with this low cost material, which is optically active, and offers great opportunities for chemical and physical modification, leading to significant control of magnetic and other properties.

  13. The protein corona of circulating PEGylated liposomes.

    PubMed

    Palchetti, Sara; Colapicchioni, Valentina; Digiacomo, Luca; Caracciolo, Giulio; Pozzi, Daniela; Capriotti, Anna Laura; La Barbera, Giorgia; Laganà, Aldo

    2016-02-01

    Following systemic administration, liposomes are covered by a 'corona' of proteins, and preserving the surface functionality is challenging. Coating the liposome surface with polyethylene glycol (PEG) is the most widely used anti-opsonization strategy, but it cannot fully preclude protein adsorption. To date, protein binding has been studied following in vitro incubation to predict the fate of liposomes in vivo, while dynamic incubation mimicking in vivo conditions remains largely unexplored. The main aim of this investigation was to determine whether shear stress, produced by physiologically relevant dynamic flow, could influence the liposome-protein corona. The corona of circulating PEGylated liposome was thoroughly compared with that formed by incubation in vitro. Systematic comparison in terms of size, surface charge and quantitative composition was made by dynamic light scattering, microelectrophoresis and nano-liquid chromatography tandem mass spectrometry (nanoLC-MS/MS). Size of coronas formed under static vs. dynamic incubation did not appreciably differ from each other. On the other side, the corona of circulating liposomes was more negatively charged than its static counterpart. Of note, the variety of protein species in the corona formed in a dynamic flow was significantly wider. Collectively, these results demonstrated that the corona of circulating PEGylated liposomes can be considerably different from that formed in a static fluid. This seems to be a key factor to predict the biological activity of a liposomal formulation in a physiological environment. PMID:26607013

  14. Possible Side Effects of Liposomal Doxorubicin

    Cancer.gov

    Page of 1Possible Side Effects of Liposomal Doxorubicin (Table Version Date: October 24, 2013) COMMON, SOME MAY BE SERIOUS In 100 people receiving Liposomal Doxorubicin, more than 20 and up to 100 may have: Hair loss Vomiting, nausea Sores in mouth and

  15. Structure of DNA-liposome complexes

    SciTech Connect

    Lasic, D.D.; Strey, H.; Podgornik, R.; Stuart, M.C.A.; Frederik, P.M.

    1997-01-29

    Despite numerous studies and commericially available liposome kits, however, the structure of DNA-cationic liposome complexes is still not yet well understood. We have investigated the structure of these complexes using high-resolution cryo electron microscopy (EM) and small angle X-ray scattering (SAXS). 14 refs., 3 figs.

  16. Methods for using redox liposome biosensors

    SciTech Connect

    Cheng, Quan; Stevens, Raymond C.

    2002-01-01

    The present invention provides methods and compositions for detecting the presence of biologically-important analytes by using redox liposome biosensors. In particular, the present invention provides liposome/sol-gel electrodes suitable for the detection of a wide variety of organic molecules, including but not limited to bacterial toxins.

  17. 40 CFR 721.9674 - Sulfonated-copper phthalocyanine salt of a triarylmethane dye (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Sulfonated-copper phthalocyanine salt... Significant New Uses for Specific Chemical Substances § 721.9674 Sulfonated-copper phthalocyanine salt of a... chemical substance identified generically as sulfonated-copper phthalocyanine salt of a triarylmethane...

  18. Continuous wasteless ecologically safe technology of propylenecarbonate production in presence of phthalocyanine catalysts

    DOEpatents

    Afanasiev, Vladimir Vasilievich (Moscow, RU); Zefirov, Nikolai Serafimovich (Moscow, RU); Zalepugin, Dmitry Yurievich (Moscow, RU); Polyakov, Victor Stanislavovich (Moscow, RU); Tilkunova,Nataliya Alexandrovna (Moscow, RU); Tomilova, Larisa Godvigovna (Moscow, RU)

    2009-09-08

    A continuous method of producing propylenecarbonate includes carboxylation of propylene oxide with carbon dioxide in presence of phthalocyanine catalyst on an inert carrier, using as the phthalocyanine catalyst at least one catalyst selected from the group consisting of not-substituted, methyl, ethyl, butyl, and tret butyl-substituted phthalocyanines of metals, including those containing counterions, and using as the carrier a hydrophobic carrier.

  19. Optical properties and recording characteristics of phthalocyanine-derivative LB films

    NASA Astrophysics Data System (ADS)

    Gan, Fuxi; Luo, Tao

    1993-08-01

    Langmuir-Blodgett (LB) films of tetra-neopentoxy phthalocyanine zinc and tetra-nonyl phthalocyanine copper are prepared. Their structures, optical properties, and temperature dependencies are investigated. Static optical recording tests by He-Ne laser are done in these LB films and the experimental results demonstrate that phthalocyanine derivates are useful for phase change type erasable data storage media.

  20. Neuronal chemotaxis by optically manipulated liposomes

    NASA Astrophysics Data System (ADS)

    Pinato, G.; Lien, L. T.; D'Este, E.; Torre, V.; Cojoc, D.

    2011-08-01

    We probe chemotaxis of single neurons, induced by signalling molecules which were optically delivered from liposomes in the neighbourhood of the cells. We implemented an optical tweezers setup combined with a micro-dissection system on an inverted microscope platform. Molecules of Netrin-1 protein were encapsulated into micron-sized liposomes and manipulated to micrometric distances from a specific growth cone of a hippocampal neuron by the IR optical tweezers. The molecules were then released by breaking the liposomes with UV laser pulses. Chemotaxis induced by the delivered molecules was confirmed by the migration of the growth cone toward the liposome position. Since the delivery can be manipulated with high temporal and spatial resolution and the number of molecules released can be controlled quite precisely by tuning the liposome size and the solution concentration, this technique opens new opportunities to investigate the effect of physiological active compounds as Netrin-1 to neuronal signalling and guidance, which represents an important issue in neurobiology.

  1. Phthalocyanine-assisted photodynamic inactivation of pathogenic microorganisms

    NASA Astrophysics Data System (ADS)

    Mantareva, Vanya; Angelov, Ivan; Borissova, Ekaterina; Avramov, Latchezar; Kussovski, Vesselin

    2007-03-01

    The phthalocyanine zinc(II) and aluminum (III) complexes were studied to photoinactivate the bacterial strains, Staphylococcus aureus, methacillin-sensitive and methacillin-resistant, Pseudomonas aeruginosa and one yeast Candida albicans. The binding of phthalocyanines to bacteria and fungi cells was evaluated by the means of laserinduced fluorescence technique. The fluorescent spectra of dyes (650 - 800 nm) after direct excitation (635 nm) were measured as follows: 1. for the aqua supernatants obtained after 10 min cell incubation with the respected phthalocyanines (1.6 ?mol.l -1), 2. for the washed from the unbound dye cells, and 3. for the organic extracts from the three times washed cells. Fluorescent intensities at the emission maximum (~690 nm) were compared to the spectra of the phthalocyanines in organic solutions. The phthalocyanines uptake data for bacteria and fungi were determined at different cell densities. Nevertheless the better fluorescence properties of AlPc (fluorescent quantum yield of 0.4 towards 0.3 for ZnPcs) the lower drug accumulation in microorganisms was obtained. PDI results indicated an intensive lowering of the bacterial survival of both strains of S. aureus treated with cationic ZnPcMe followed by the anionic ZnPcS, at irradiance of 100 mW cm -2 and fluence rate of 60 J cm -2. More resistant to phototreatment P. aeruginosa and morphologically complicated yeast C. albicans were successfully inactivated only with cationic ZnPcMe. These data indicate the promising future application of cationic phthalocyanine in photodynamic inactivation of pathogenic microorganisms.

  2. Controllable fabrication of copper phthalocyanine nanostructure crystals

    NASA Astrophysics Data System (ADS)

    Liu, Fangmei; Sun, Jia; Xiao, Si; Huang, Wenglong; Tao, Shaohua; Zhang, Yi; Gao, Yongli; Yang, Junliang

    2015-06-01

    Copper phthalocyanine (CuPc) nanostructure crystals, including nanoflower, nanoribbon, and nanowire, were controllably fabricated by temperature gradient physical vapor deposition (TG-PVD) through controlling the growth parameters. In a controllable growth system with carrier gas N2, nanoflower, nanoribbon, and nanowire crystals were formed in a high-temperature zone, medium-temperature zone, and low-temperature zone, respectively. They were proved to be ?-phase, coexist of ?-phase and ?-phase, and ?-phase respectively based on x-ray diffraction results. Furthermore, ultralong CuPc nanowires up to several millimeters could be fabricated by TG-PVD without carrier gas, and they were well-aligned to form large-area CuPc nanowire crystal arrays by the Langmuir-Blodgett method. The nanostructure crystals showed unusual optical absorption spectra from the ultraviolet-visible to near-infrared range, which was explained by the diffraction and scattering caused by the wavelength-sized nanostructures. These CuPc nanostructure crystals show potential applications in organic electronic and optoelectronic devices.

  3. Controllable fabrication of copper phthalocyanine nanostructure crystals.

    PubMed

    Liu, Fangmei; Sun, Jia; Xiao, Si; Huang, Wenglong; Tao, Shaohua; Zhang, Yi; Gao, Yongli; Yang, Junliang

    2015-06-01

    Copper phthalocyanine (CuPc) nanostructure crystals, including nanoflower, nanoribbon, and nanowire, were controllably fabricated by temperature gradient physical vapor deposition (TG-PVD) through controlling the growth parameters. In a controllable growth system with carrier gas N2, nanoflower, nanoribbon, and nanowire crystals were formed in a high-temperature zone, medium-temperature zone, and low-temperature zone, respectively. They were proved to be ?-phase, coexist of ?-phase and ?-phase, and ?-phase respectively based on x-ray diffraction results. Furthermore, ultralong CuPc nanowires up to several millimeters could be fabricated by TG-PVD without carrier gas, and they were well-aligned to form large-area CuPc nanowire crystal arrays by the Langmuir-Blodgett method. The nanostructure crystals showed unusual optical absorption spectra from the ultraviolet-visible to near-infrared range, which was explained by the diffraction and scattering caused by the wavelength-sized nanostructures. These CuPc nanostructure crystals show potential applications in organic electronic and optoelectronic devices. PMID:25961155

  4. Interpretation of STM images: copper-phthalocyanine on copper

    NASA Astrophysics Data System (ADS)

    Sautet, P.; Joachim, C.

    An interpretation of the constant-current STM image of a Cu-phthalocyanine molecule adsorbed on a Cu(100) surface is proposed based on an extension of the elastic scattering quantum chemistry (ESQC) technique to simulate STM images. After a brief description of the method, the dependence of the Cu-phthalocyanine image on the tip structure and the Fermi level is presented. The way in which atom positions of an adsorbate can be extracted from an experimental STM image using the STM-ESQC technique is also discussed.

  5. Sc-phthalocyanine sheet: Promising material for hydrogen storage

    NASA Astrophysics Data System (ADS)

    Lü, Kun; Zhou, Jian; Zhou, Le; Wang, Qian; Sun, Qiang; Jena, Puru

    2011-10-01

    It has been a long-standing dream to have high surface area materials with isolated and exposed transition-metal ions for hydrogen storage. The flexible synthesis procedure proposed recently by M. Abel, et al. [J. Am. Chem. Soc. 133, 1203 (2011)] and A. Sperl et al. [J. Am. Chem. Soc. 133, 11007 (2011)] provides a different pathway to achieve this goal. Using first-principles theory and grand canonical Monte Carlo simulation, we carry out a systematic study of 3d transition metals (Sc to Zn)-phthalocyanine porous sheets and find that Sc-phthalocyanine can store 4.6 wt. % hydrogen at 298 K and 100 bar.

  6. Colon Targeted Liposomal Systems (CTLS): Theranostic Potential.

    PubMed

    Jain, A; Jain, S K

    2015-01-01

    Colon targeted liposomal systems (CTLS) for the delivery of bioactives have been well addressed in therapeutic manifestations of colonic ailments. Number of approaches using various drug delivery systems for colon targeting has been worked out but CTLS are first time being lime lighted in this review. Although liposomes are not supposed to be suitable for colon targeting via oral route this review explicitly provides advances of CTLS using exploitable ligands such as peptides or proteins (e.g. RGD, NGR, fibronectin mimetic peptide, and transferrin), Sialyl Lewis X (SLX), low molecular weight ligand like folate, monoclonal antibodies, endostatin gene and sulfatide etc. Moreover, it is bringing forth the diagnostic (or imaging) potential of CTLS using (188)Re, (99)mTc, and (111)In, etc. This review presents nanotechnology based advances for liposome researchers engaged in design and development of colon targeted liposomes for theranostic exploration. PMID:26321756

  7. Liposomes as delivery systems for antineoplastic drugs

    NASA Astrophysics Data System (ADS)

    Medina, Luis Alberto

    2014-11-01

    Liposome drug formulations are defined as pharmaceutical products containing active drug substances encapsulated within the lipid bilayer or in the interior aqueous space of the liposomes. The main importance of this drug delivery system is based on its drastic reduction in systemic dose and concomitant systemic toxicity that in comparison with the free drug, results in an improvement of patient compliance and in a more effective treatment. There are several therapeutic drugs that are potential candidates to be encapsulated into liposomes; particular interest has been focused in therapeutic and antineoplastic drugs, which are characterized for its low therapeutic index and high systemic toxicity. The use of liposomes as drug carriers has been extensively justified and the importance of the development of different formulations or techniques to encapsulate therapeutic drugs has an enormous value in benefit of patients affected by neoplastic diseases.

  8. Plasmon resonant liposomes for controlled drug delivery

    NASA Astrophysics Data System (ADS)

    Knights-Mitchell, Shellie S.; Romanowski, Marek

    2015-03-01

    Nanotechnology use in drug delivery promotes a reduction in systemic toxicity, improved pharmacokinetics, and better drug bioavailability. Liposomes continue to be extensively researched as drug delivery systems (DDS) with formulations such as Doxil® and Ambisome® approved by FDA and successfully marketed in the United States. However, the limited ability to precisely control release of active ingredients from these vesicles continues to challenge the broad implementation of this technology. Moreover, the full potential of the carrier to sequester drugs until it can reach its intended target has yet to be realized. Here, we describe a liposomal DDS that releases therapeutic doses of an anticancer drug in response to external stimulus. Earlier, we introduced degradable plasmon resonant liposomes. These constructs, obtained by reducing gold on the liposome surface, facilitate spatial and temporal release of drugs upon laser light illumination that ultimately induces an increase in temperature. In this work, plasmon resonant liposomes have been developed to stably encapsulate and retain doxorubicin at physiological conditions represented by isotonic saline at 37o C and pH 7.4. Subsequently, they are stimulated to release contents either by a 5o C increase in temperature or by laser illumination (760 nm and 88 mW/cm2 power density). Successful development of degradable plasmon resonant liposomes responsive to near-infrared light or moderate hyperthermia can provide a new delivery method for multiple lipophilic and hydrophilic drugs with pharmacokinetic profiles that limit clinical utility.

  9. Selective Detection of Vapor Phase Hydrogen Peroxide with Phthalocyanine Chemiresistors

    E-print Network

    Kummel, Andrew C.

    Selective Detection of Vapor Phase Hydrogen Peroxide with Phthalocyanine Chemiresistors Forest I and toxicity (OSHA PEL ) 1 ppm), vapor phase monitoring of hydrogen peroxide (H2O2) is also an important, California 92093 Received November 14, 2007; E-mail: wtrogler@ucsd.edu Vapor phase monitoring of peroxides

  10. Strong antiferromagnetic exchange between manganese phthalocyanine and ferromagnetic europium oxide.

    PubMed

    Wäckerlin, Christian; Donati, Fabio; Singha, Aparajita; Baltic, Romana; Uldry, Anne-Christine; Delley, Bernard; Rusponi, Stefano; Dreiser, Jan

    2015-08-21

    We report on the antiferromagnetic exchange coupling between a submonolayer of Mn(II)-phthalocyanine molecules and a ferromagnetic Eu(II)-oxide thin film. The exchange energy is larger by nearly two orders of magnitude compared to previous studies involving oxidic substrates. PMID:26171839

  11. Excited-State Deactivation of Branched Phthalocyanine Compounds.

    PubMed

    Zhu, Huaning; Li, Yang; Chen, Jun; Zhou, Meng; Niu, Yingli; Zhang, Xinxing; Guo, Qianjin; Wang, Shuangqing; Yang, Guoqiang; Xia, Andong

    2015-12-01

    The excited-state relaxation dynamics and chromophore interactions in two phthalocyanine compounds (bis- and trisphthalocyanines) are studied by using steady-state and femtosecond transient absorption spectral measurements, where the excited-state energy-transfer mechanism is explored. By exciting phthalocyanine compounds to their second electronically excited states and probing the subsequent relaxation dynamics, a multitude of deactivation pathways are identified. The transient absorption spectra show the relaxation pathway from the exciton state to excimer state and then back to the ground state in bisphthalocyanine (bis-Pc). In trisphthalocyanine (tris-Pc), the monomeric and dimeric subunits are excited and the excitation energy transfers from the monomeric vibrationally hot S1 state to the exciton state of a pre-associated dimer, with subsequent relaxation to the ground state through the excimer state. The theoretical calculations and steady-state spectra also show a face-to-face conformation in bis-Pc, whereas in tris-Pc, two of the three phthalocyanine branches form a pre-associated face-to-face dimeric conformation with the third one acting as a monomeric unit; this is consistent with the results of the transient absorption experiments from the perspective of molecular structure. The detailed structure-property relationships in phthalocyanine compounds is useful for exploring the function of molecular aggregates in energy migration of natural photosynthesis systems. PMID:26436829

  12. Entrapment of nucleic acids in liposomes.

    PubMed

    Monnard, P A; Oberholzer, T; Luisi, P

    1997-10-01

    The entrapment efficiency of three main methods used in the literature for the encapsulation of nucleic acids in liposomes were studied using 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) liposomes. In particular the reverse phase method, the dehydration/rehydration method, and the freeze/thawing method were compared to each other under standardised conditions, i.e. using in every case the same concentration of guest molecules (DNA, tRNA and ATP as low molecular weight analogue) and equally extruded liposomes. The percentage of entrapment strictly referred to the material localized inside the liposomes, i.e. particular care was devoted to ruling out the contribution of the nucleic acid material bound to the outer surface of the liposomes: this was eliminated by extensive enzymatic digestion prior to column chromatography. Depending on the conditions used, the percentage of the entrapped material varied between 10 and 54% of the initial amount. Further, the encapsulation efficiency was markedly affected by the salt concentration, by the size of liposomes, but to a lower degree by the molecular weight of the guest molecules. In general, we observed that the freeze/thawing encapsulation procedure was the most efficient one. In a second part of the work the freeze/thawing method was applied to encapsulate DNA (369 bp and 3368 bp, respectively) using liposomes obtained from POPC mixed with 1-10% charged cosurfactant, i.e. phosphatidylserine (PS) or didodecyldimethylammonium bromide (DDAB), respectively. Whereas PS had no significant effect, the entrapment efficiency went up to 60% in POPC/DDAB (97.5:2.5) liposomes. The large entrapment efficiency of DNA permits spectroscopic investigations of the DNA encapsulated in the water pool of the liposomes. UV absorption and circular dichroism spectra were practically the same as in water, indicating no appreciable perturbation of the electronic transitions or of the conformation of the entrapped biopolymer. This was in contrast to the DNA bound externally to the POPC/DDAB liposomes which showed significant spectral changes with respect to DNA dissolved in water. PMID:9370243

  13. A Review on Composite Liposomal Technologies for Specialized Drug Delivery

    PubMed Central

    Mufamadi, Maluta S.; Pillay, Viness; Choonara, Yahya E.; Du Toit, Lisa C.; Modi, Girish; Naidoo, Dinesh; Ndesendo, Valence M. K.

    2011-01-01

    The combination of liposomes with polymeric scaffolds could revolutionize the current state of drug delivery technology. Although liposomes have been extensively studied as a promising drug delivery model for bioactive compounds, there still remain major drawbacks for widespread pharmaceutical application. Two approaches for overcoming the factors related to the suboptimal efficacy of liposomes in drug delivery have been suggested. The first entails modifying the liposome surface with functional moieties, while the second involves integration of pre-encapsulated drug-loaded liposomes within depot polymeric scaffolds. This attempts to provide ingenious solutions to the limitations of conventional liposomes such as short plasma half-lives, toxicity, stability, and poor control of drug release over prolonged periods. This review delineates the key advances in composite technologies that merge the concepts of depot polymeric scaffolds with liposome technology to overcome the limitations of conventional liposomes for pharmaceutical applications. PMID:21490759

  14. Anaphylaxis to Pegylated Liposomal Doxorubicin: A Case Report

    PubMed Central

    Sharma, LR; Subedi, A; Shah, BK

    2014-01-01

    Liposomal doxorubicin is used for the treatment of various cancers like epithelial ovarian cancers, multiple myeloma and sarcomas. We report the first case of anaphylaxis to pegylated liposomal doxorubicin. PMID:25429486

  15. Thermally Triggered Calcium Phosphate Formation from Calcium-Loaded Liposomes

    E-print Network

    Thermally Triggered Calcium Phosphate Formation from Calcium-Loaded Liposomes Phillip B 15, 1997X A thermally triggered liposome-based mineralization system is described that is metastable liposome suspension whose bulk ionic concentration was highly supersaturated with respect to hydroxyapatite

  16. Surface Potential of Charged Liposomes Determined by Second Harmonic Generation

    E-print Network

    Eisenthal, Kenneth B.

    Articles Surface Potential of Charged Liposomes Determined by Second Harmonic Generation Yan Liu that the surface potential of charged liposomes can be determined by second harmonic generation. The Gouy charge density and the surface potential of liposomes consisting of the negatively charged phospholipid

  17. Liposome technology. Volume III: Targeted drug delivery and biological interaction

    SciTech Connect

    Gregoriadis, G.

    1984-01-01

    These three volumes cover liposome technology in pharmacology and medicine. Contributors emphasize methodology used in their own laboratories, and include a brief introduction, coverage of relevant literature, applications and critical evaluations for the methods they describe. In Volume III, the growing variety of techniques yielding targeted liposomes and approaches of studying liposomal behavior both in vitro and in vivo are discussed.

  18. Biomolecular Science of Liposome-Nanoparticle , Stephen M. Anthony2

    E-print Network

    Granick, Steve

    Biomolecular Science of Liposome-Nanoparticle Constructs Yan Yu1 , Stephen M. Anthony2 , Sung Chul by allowing nanoparticles to adsorb to the outer leaflet of liposomes, are found to be stabilized against with colloids of the conventional type. At the single- liposome level, the distribution of diffusion

  19. Liposome division by a simple bacterial division machinery

    E-print Network

    Erickson, Harold P.

    Liposome division by a simple bacterial division machinery Masaki Osawa ()1 and Harold P. Erickson not divide the thick-walled liposomes. Here we developed a unique system to observe Z rings in unilamellar that produced concave distortions when viewed at the equator of the liposome. When viewed en face at the top

  20. Formation of Fibrinogen-Based Hydrogels Using Phototriggerable Diplasmalogen Liposomes

    E-print Network

    Formation of Fibrinogen-Based Hydrogels Using Phototriggerable Diplasmalogen Liposomes Zhi-Yi Zhang Manuscript Received December 4, 2001 We report the triggered release of Ca2+ from liposomal compartments to induce rapid gelation of protein-based hydrogels. Phototriggerable liposomes were designed by entrapping

  1. Liposomes Physically Coated with Peptides: Preparation and Characterization

    E-print Network

    Huang, Yanyi

    Liposomes Physically Coated with Peptides: Preparation and Characterization Cuicui Su, Yuqiong Xia), Peking University, Beijing 100871, China *S Supporting Information ABSTRACT: Physically coating liposomesR3), Ac-WWGGGGGNNN-NH2(W2G3)and studied their coat- ing ability on negatively charged liposomes

  2. Investigation of the Qx -Qy Equilibrium in a Metal-Free Phthalocyanine.

    PubMed

    Baeten, Yannick; Fron, Eduard; Ruzié, Christian; Geerts, Yves Henri; Van Der Auweraer, Mark

    2015-12-01

    Phthalocyanines (Pcs) have attracted a lot of interest as small molecules for organic electronics. However, some excited-state properties of metal-free phthalocyanines, as for example, the dynamics of the transition between the nondegenerate Qx and Qy states in a metal-free phthalocyanine, have not been fully established. This effect results in a blue-shifted shoulder with low intensity in the Pc fluorescence spectrum. This shoulder was suggested to be related to emission from the more energetic Qy state. By using ultrafast femtosecond transient absorption, we have found a clear equilibrium between the Qx and Qy state of metal-free phthalocyanines in solution. PMID:26346288

  3. Surface Engineering of Liposomes for Stealth Behavior

    PubMed Central

    Nag, Okhil K.; Awasthi, Vibhudutta

    2013-01-01

    Liposomes are used as a delivery vehicle for drug molecules and imaging agents. The major impetus in their biomedical applications comes from the ability to prolong their circulation half-life after administration. Conventional liposomes are easily recognized by the mononuclear phagocyte system and are rapidly cleared from the blood stream. Modification of the liposomal surface with hydrophilic polymers delays the elimination process by endowing them with stealth properties. In recent times, the development of various materials for surface engineering of liposomes and other nanomaterials has made remarkable progress. Poly(ethylene glycol)-linked phospholipids (PEG-PLs) are the best representatives of such materials. Although PEG-PLs have served the formulation scientists amazingly well, closer scrutiny has uncovered a few shortcomings, especially pertaining to immunogenicity and pharmaceutical characteristics (drug loading, targeting, etc.) of PEG. On the other hand, researchers have also begun questioning the biological behavior of the phospholipid portion in PEG-PLs. Consequently, stealth lipopolymers consisting of non-phospholipids and PEG-alternatives are being developed. These novel lipopolymers offer the potential advantages of structural versatility, reduced complement activation, greater stability, flexible handling and storage procedures and low cost. In this article, we review the materials available as alternatives to PEG and PEG-lipopolymers for effective surface modification of liposomes. PMID:24300562

  4. Liposomal Encapsulated Rhodomyrtone: A Novel Antiacne Drug

    PubMed Central

    Chorachoo, Julalak; Amnuaikit, Thanaporn; Voravuthikunchai, Supayang P.

    2013-01-01

    Rhodomyrtone isolated from the leaves of Rhodomyrtus tomentosa possesses antibacterial, anti-inflammatory, and anti-oxidant activities. Since rhodomyrtone is insoluble in water, it is rather difficult to get to the target sites in human body. Liposome exhibited ability to entrap both hydrophilic and hydrophobic compounds and easily penetrate to the target site. The present study aimed to develop a novel liposomal encapsulated rhodomyrtone formulations. In addition, characterization of liposome, stability profiles, and their antiacne activity were performed. Three different formulations of total lipid concentrations 60, 80, and 100??mol/mL were used. Formulation with 60??mol/mL total lipid (phosphatidylcholine from soybean and cholesterol from lanolin in 4?:?1, w/w) exhibited the highest rhodomyrtone encapsulation efficacy (65.47 ± 1.7%), average particle size (209.56 ± 4.8?nm), and ?-potential (–41.19 ± 1.3?mV). All formulations demonstrated good stability when stored for 2 months in dark at 4°C as well as room temperature. Minimal inhibitory concentration and minimal bactericidal concentration values of liposomal formulation against 11 clinical bacterial isolates and reference strains ranged from 1 to 4 and from 4 to 64??g/mL, respectively, while those of rhodomyrtone were 0.25–1 and 0.5–2??g/mL, respectively. The MIC and MBC values of liposome formulation were more effective than topical drugs against Staphylococcus aureus and Staphylococcus epidermidis. PMID:23762104

  5. Magnetic nanoparticles for "smart liposomes".

    PubMed

    Nakayama, Yoshitaka; Mustapi?, Mislav; Ebrahimian, Haleh; Wagner, Pawel; Kim, Jung Ho; Hossain, Md Shahriar Al; Horvat, Joseph; Martinac, Boris

    2015-12-01

    Liposomal drug delivery systems (LDDSs) are promising tools used for the treatment of diseases where highly toxic pharmacological agents are administered. Currently, destabilising LDDSs by a specific stimulus at a target site remains a major challenge. The bacterial mechanosensitive channel of large conductance (MscL) presents an excellent candidate biomolecule that could be employed as a remotely controlled pore-forming nanovalve for triggered drug release from LDDSs. In this study, we developed superparamagnetic nanoparticles for activation of the MscL nanovalves by magnetic field. Synthesised CoFe2O4 nanoparticles with the radius less than 10 nm were labelled by SH groups for attachment to MscL. Activation of MscL by magnetic field with the nanoparticles attached was examined by the patch clamp technique showing that the number of activated channels under ramp pressure increased upon application of the magnetic field. In addition, we have not observed any cytotoxicity of the nanoparticles in human cultured cells. Our study suggests the possibility of using magnetic nanoparticles as a specific trigger for activation of MscL nanovalves for drug release in LDDSs. PMID:26184724

  6. Dehydration resistance of liposomes containing trehalose glycolipids

    NASA Astrophysics Data System (ADS)

    Nyberg, Kendra; Goulding, Morgan; Parthasarathy, Raghuveer

    2010-03-01

    The pathogen, Mycobacterium tuberculosis, has an unusual outer membrane containing trehalose glycolipids that may contribute to its ability to survive freezing and dehydration. Based on our recent discovery that trehalose glycolipids confer dehydration resistance to supported lipid monolayers (Biophys. J. 94: 4718-4724 (2008); Langmuir 25: 5193-5198, (2009)), we hypothesized that liposomes containing synthetic trehalose glycolipids may be dehydration-resistant as well. To test this, we measured the leakage of encapsulated fluorophores and larger macromolecular cargo from such liposomes subject to freeze drying. Both leakage assays and size measurements show that the liposomes are dehydration-resistant. In addition to demonstrating a possibly technologically useful encapsulation platform, our results corroborate the view that encapsulation in a trehalose-glycolipid-rich membrane is a biophysically viable route to protection of mycobacteria from environmental stresses.

  7. Radiation induced lipid peroxidation in liposomes

    NASA Astrophysics Data System (ADS)

    Kale, R. K.; Sitasawad, Sandhya L.

    Liposomes prepared from L-?-lecithin were irradiated to different doses of radiation (0-660 Gy) at the dose rate 1.109 Gy s -1. Lipid peroxidation was found to increase with radiation dose up to 330 Gy and decrease with dose beyond 330 Gy. This suggests that in low dose region (0-330 Gy) most of the energy deposited into liposomes is translated into damage. On the other hand energy deposited in higher dose region (396-660 Gy) may not have completely translated into damage and some part of it might have dissipated to recombination process of free radicals resulting into formation of relatively stable and unreactive molecular products. Observation with different concentrations of liposomes, inhibition of peroxidation by catalase, enhancement by Fe 2+-ions and inverse dose rate effect indicate indirectly the occurence of recombination processes. The decrease in lipid peroxidation might also be due to the avoidance of propagation step.

  8. Mechanical properties of a giant liposome studied using optical tweezers

    NASA Astrophysics Data System (ADS)

    Shitamichi, Yoko; Ichikawa, Masatoshi; Kimura, Yasuyuki

    2009-09-01

    The mechanical properties of a micrometer-sized giant liposome are studied by deforming it from the inside using dual-beam optical tweezers. As the liposome is extended, its shape changes from a sphere to a lemon shape, and finally, a tubular part is generated. The surface tension ? and the bending rigidity ? of the lipid membrane are obtained from the measured force-extension curve. In a one-phase liposome, it was found that ? increases as the charged component increases but ? remains approximately constant. In a two-phase liposome, the characteristic deformation and the force-extension curve differ from those observed for the one-phase liposome.

  9. Application of liposomes in drug development — focus on gastroenterological targets

    PubMed Central

    Zhang, Jian-Xin; Wang, Kun; Mao, Zheng-Fa; Fan, Xin; Jiang, De-Li; Chen, Min; Cui, Lei; Sun, Kang; Dang, Sheng-Chun

    2013-01-01

    Over the past decade, liposomes became a focal point in developing drug delivery systems. New liposomes, with novel lipid molecules or conjugates, and new formulations opened possibilities for safely and efficiently treating many diseases including cancers. New types of liposomes can prolong circulation time or specifically deliver drugs to therapeutic targets. This article concentrates on current developments in liposome based drug delivery systems for treating diseases of the gastrointestinal tract. We will review different types and uses of liposomes in the development of therapeutics for gastrointestinal diseases including inflammatory bowel diseases and colorectal cancer. PMID:23630417

  10. Accumulation, internalization and therapeutic efficacy of neuropilin-1-targeted liposomes

    PubMed Central

    Paoli, Eric E.; Ingham, Elizabeth S.; Zhang, Hua; Mahakian, Lisa M.; Fite, Brett Z.; Gagnon, M. Karen; Tam, Sarah; Kheirolomoom, Azadeh; Cardiff, Robert D.; Ferrara, Katherine W.

    2014-01-01

    Advancements in liposomal drug delivery have produced long circulating and very stable drug formulations. These formulations minimize systemic exposure; however, unfortunately, therapeutic efficacy has remained limited due to the slow diffusion of liposomal particles within the tumor and limited release or uptake of the encapsulated drug. Here, the carboxyl-terminated CRPPR peptide, with affinity for the receptor neuropilin-1 (NRP), which is expressed on both endothelial and cancer cells, was conjugated to liposomes to enhance the tumor accumulation. Using a pH sensitive probe, liposomes were optimized for specific NRP binding and subsequent cellular internalization using in vitro cellular assays. Liposomes conjugated with the carboxyl-terminated CRPPR peptide (termed C-LPP liposomes) bound to the NRP-positive primary prostatic carcinoma cell line (PPC-1) but did not bind to the NRP-negative PC-3 cell line, and binding was observed with liposomal peptide concentrations as low as 0.16 mol%. Binding of the C-LPP liposomes was receptor-limited, with saturation observed at high liposome concentrations. The identical peptide sequence bearing an amide terminus did not bind specifically, accumulating only with a high (2.5 mol%) peptide concentration and adhering equally to NRP positive and negative cell lines. The binding of C-LPP liposomes conjugated with 0.63 mol% of the peptide was 83-fold greater than liposomes conjugated with the amide version of the peptide. Cellular internalization was also enhanced with C-LPP liposomes, with 80% internalized following 3hr incubation. Additionally, fluorescence in the blood pool (~40% of the injected dose) was similar for liposomes conjugated with 0.63 mol% of carboxyl-terminated peptide and non-targeted liposomes at 24 hr after injection, indicating stable circulation. Prior to doxorubicin treatment, in vivo tumor accumulation and vascular targeting were increased for peptide-conjugated liposomes compared to non-targeted liposomes based on confocal imaging of a fluorescent cargo, and the availability of the vascular receptor was confirmed with ultrasound molecular imaging. Finally, over a 4-week course of therapy, tumor knockdown resulting from doxorubicin-loaded, C-LPP liposomes was similar to non-targeted liposomes in syngeneic tumor-bearing FVB mice and C-LPP liposomes reduced doxorubicin accumulation in the skin and heart and eliminated skin toxicity. Taken together, our results demonstrate that a carboxyl-terminated RXXR peptide sequence, conjugated to liposomes at a concentration of 0.63 mol%, retains long circulation but enhances binding and internalization, and reduces toxicity. PMID:24434424

  11. Recent trends of polymer mediated liposomal gene delivery system.

    PubMed

    Kundu, Shyamal Kumar; Sharma, Ashish Ranjan; Lee, Sang-Soo; Sharma, Garima; Doss, C George Priya; Yagihara, Shin; Kim, Do-Young; Nam, Ju-Suk; Chakraborty, Chiranjib

    2014-01-01

    Advancement in the gene delivery system have resulted in clinical successes in gene therapy for patients with several genetic diseases, such as immunodeficiency diseases, X-linked adrenoleukodystrophy (X-ALD) blindness, thalassemia, and many more. Among various delivery systems, liposomal mediated gene delivery route is offering great promises for gene therapy. This review is an attempt to depict a portrait about the polymer based liposomal gene delivery systems and their future applications. Herein, we have discussed in detail the characteristics of liposome, importance of polymer for liposome formulation, gene delivery, and future direction of liposome based gene delivery as a whole. PMID:25250340

  12. Recent Trends of Polymer Mediated Liposomal Gene Delivery System

    PubMed Central

    Lee, Sang-Soo; George Priya Doss, C.; Yagihara, Shin; Kim, Do-Young

    2014-01-01

    Advancement in the gene delivery system have resulted in clinical successes in gene therapy for patients with several genetic diseases, such as immunodeficiency diseases, X-linked adrenoleukodystrophy (X-ALD) blindness, thalassemia, and many more. Among various delivery systems, liposomal mediated gene delivery route is offering great promises for gene therapy. This review is an attempt to depict a portrait about the polymer based liposomal gene delivery systems and their future applications. Herein, we have discussed in detail the characteristics of liposome, importance of polymer for liposome formulation, gene delivery, and future direction of liposome based gene delivery as a whole. PMID:25250340

  13. Therapeutic gas delivery via microbubbles and liposomes.

    PubMed

    Fix, Samantha M; Borden, Mark A; Dayton, Paul A

    2015-07-10

    Gaseous molecules including nitric oxide, hydrogen sulfide, carbon monoxide and oxygen mediate numerous cell signaling pathways and have important physiological roles. Several noble gasses have been shown to elicit biological responses. These bioactive gasses hold great therapeutic potential, however, their controlled delivery remains a significant challenge. Recently, researchers have begun using microbubbles and liposomes to encapsulate such gasses for parenteral delivery. The resultant particles are acoustically active, and ultrasound can be used to stimulate and/or image gas release in a targeted region. This review provides a summary of recent advances in therapeutic gas delivery using microbubbles and liposomes. PMID:25913365

  14. Liposomal contrast agents in brain tumor imaging.

    PubMed

    Ghaghada, Ketan B; Colen, Rivka R; Hawley, Catherine R; Patel, Neil; Mukundan, Srinivasan

    2010-08-01

    Treatment of glioblastoma multiforme remains a major challenge despite advances in standard therapy, including surgery, radiation, and chemotherapy. The field of nanomedicine is expected to have a major impact on the treatment and management of brain tumors. Over the past decade, significant efforts have been made in using nanoparticles for diagnosis and treatment of brain tumors. One class of nanoparticles, liposomes, have received considerable attention for use as nanocarriers for delivery of therapeutics and contrast agents. The purpose of this article is to present the advances in the design and functional characteristics of liposomes for applications in brain tumor imaging. PMID:20708552

  15. Overcoming cellular and tissue barriers to improve liposomal drug delivery

    NASA Astrophysics Data System (ADS)

    Kohli, Aditya G.

    Forty years of liposome research have demonstrated that the anti-tumor efficacy of liposomal therapies is, in part, driven by three parameters: 1) liposome formulation and lipid biophysics, 2) accumulation and distribution in the tumor, and 3) release of the payload at the site of interest. This thesis outlines three studies that improve on each of these delivery steps. In the first study, we engineer a novel class of zwitterlipids with an inverted headgroup architecture that have remarkable biophysical properties and may be useful for drug delivery applications. After intravenous administration, liposomes accumulate in the tumor by the enhanced permeability and retention effect. However, the tumor stroma often limits liposome efficacy by preventing distribution into the tumor. In the second study, we demonstrate that depletion of hyaluronan in the tumor stroma improves the distribution and efficacy of DoxilRTM in murine 4T1 tumors. Once a liposome has distributed to the therapeutic site, it must release its payload over the correct timescale. Few facile methods exist to quantify the release of liposome therapeutics in vivo. In the third study, we outline and validate a simple, robust, and quantitative method for tracking the rate and extent of release of liposome contents in vivo. This tool should facilitate a better understanding of the pharmacodynamics of liposome-encapsulated drugs in animals. This work highlights aspects of liposome behavior that have prevented successful clinical translation and proposes alternative approaches to improve liposome drug delivery.

  16. Liposomes of terbutaline sulphate: in vitro and in vivo studies.

    PubMed

    Joshi, M R; Misra, A N

    1999-09-01

    In vitro studies were conducted to understand the comparative drug diffusion pattern, across artificial membrane, of the drug and of the prepared liposomes of different liposomal membrane composition. In vivo studies were carried out to determine the extent and time-course of pulmonary tissue uptake of administered liposomes containing terbutaline sulphate(TER) on rat lungs. In vitro studies revealed that the drug released from the prepared liposomes obeys Higuchi's diffusion controlled model. Different loading doses and release patterns of drug from the liposomes can be obtained by altering the PC:CHOL ratio and incorporation of cholesterol was found to reduce permeability of the membrane. Similarly drug absorption in vivo in rat's lung following intratracheal instillation, prolonged over 12 hr by liposomal entrapment of TER. The findings of present investigation indicated that liposomally encapsulated TER can be used for pulmonary delivery for maximizing the therapeutic efficacy and reducing undesirable side effects. PMID:10687283

  17. Spin Exchange Interaction in Substituted Copper Phthalocyanine Crystalline Thin Films

    NASA Astrophysics Data System (ADS)

    Rawat, Naveen; Pan, Zhenwen; Lamarche, Cody J.; Wetherby, Anthony; Waterman, Rory; Tokumoto, Takahisa; Cherian, Judy G.; Headrick, Randall L.; McGill, Stephen A.; Furis, Madalina I.

    2015-11-01

    The origins of spin exchange in crystalline thin films of Copper Octabutoxy Phthalocyanine (Cu-OBPc) are investigated using Magnetic Circular Dichroism (MCD) spectroscopy. These studies are made possible by a solution deposition technique which produces highly ordered films with macroscopic grain sizes suitable for optical studies. For temperatures lower than 2?K, the contribution of a specific state in the valence band manifold originating from the hybridized lone pair in nitrogen orbitals of the Phthalocyanine ring, bears the Brillouin-like signature of an exchange interaction with the localized d-shell Cu spins. A comprehensive MCD spectral analysis coupled with a molecular field model of a ?????d exchange analogous to sp-d interactions in Diluted Magnetic Semiconductors (DMS) renders an enhanced Zeeman splitting and a modified g-factor of ?4 for the electrons that mediate the interaction. These studies define an experimental tool for identifying electronic states involved in spin-dependent exchange interactions in organic materials.

  18. Spin Exchange Interaction in Substituted Copper Phthalocyanine Crystalline Thin Films.

    PubMed

    Rawat, Naveen; Pan, Zhenwen; Lamarche, Cody J; Wetherby, Anthony; Waterman, Rory; Tokumoto, Takahisa; Cherian, Judy G; Headrick, Randall L; McGill, Stephen A; Furis, Madalina I

    2015-01-01

    The origins of spin exchange in crystalline thin films of Copper Octabutoxy Phthalocyanine (Cu-OBPc) are investigated using Magnetic Circular Dichroism (MCD) spectroscopy. These studies are made possible by a solution deposition technique which produces highly ordered films with macroscopic grain sizes suitable for optical studies. For temperatures lower than 2?K, the contribution of a specific state in the valence band manifold originating from the hybridized lone pair in nitrogen orbitals of the Phthalocyanine ring, bears the Brillouin-like signature of an exchange interaction with the localized d-shell Cu spins. A comprehensive MCD spectral analysis coupled with a molecular field model of a ???-?d exchange analogous to sp-d interactions in Diluted Magnetic Semiconductors (DMS) renders an enhanced Zeeman splitting and a modified g-factor of -4 for the electrons that mediate the interaction. These studies define an experimental tool for identifying electronic states involved in spin-dependent exchange interactions in organic materials. PMID:26559337

  19. Spin Exchange Interaction in Substituted Copper Phthalocyanine Crystalline Thin Films

    PubMed Central

    Rawat, Naveen; Pan, Zhenwen; Lamarche, Cody J.; Wetherby, Anthony; Waterman, Rory; Tokumoto, Takahisa; Cherian, Judy G.; Headrick, Randall L.; McGill, Stephen A.; Furis, Madalina I.

    2015-01-01

    The origins of spin exchange in crystalline thin films of Copper Octabutoxy Phthalocyanine (Cu-OBPc) are investigated using Magnetic Circular Dichroism (MCD) spectroscopy. These studies are made possible by a solution deposition technique which produces highly ordered films with macroscopic grain sizes suitable for optical studies. For temperatures lower than 2?K, the contribution of a specific state in the valence band manifold originating from the hybridized lone pair in nitrogen orbitals of the Phthalocyanine ring, bears the Brillouin-like signature of an exchange interaction with the localized d-shell Cu spins. A comprehensive MCD spectral analysis coupled with a molecular field model of a ?????d exchange analogous to sp-d interactions in Diluted Magnetic Semiconductors (DMS) renders an enhanced Zeeman splitting and a modified g-factor of ?4 for the electrons that mediate the interaction. These studies define an experimental tool for identifying electronic states involved in spin-dependent exchange interactions in organic materials. PMID:26559337

  20. Origin of electronic transport of lithium phthalocyanine iodine crystal

    SciTech Connect

    Koike, Noritake; Oda, Masato; Shinozuka, Yuzo

    2013-12-04

    The electronic structures of Lithium Phthalocyanine Iodine are investigated using density functional theory. Comparing the band structures of several model crystals, the metallic conductivity of highly doped LiPcI{sub x} can be explained by the band of doped iodine. These results reveal that there is a new mechanism for electronic transport of doped organic semiconductors that the dopant band plays the main role.

  1. Metal phthalocyanine intermediates for the preparation of polymers

    NASA Technical Reports Server (NTRS)

    Achar, B. N.; Fohlen, G. M.; Parker, J. A.

    1985-01-01

    Metal 4, 4', 4"",-tetracarboxylic phthalocyanines (MPTC) are prepared by reaction of trimellitic anhydride, a salt or hydroxide of the desired metal (or the metal in powdered form), urea and a catalyst. A purer form of MPTC is prepared than heretofore. These tetracarboxylic acids are then polymerized by heat to sheet polymers which have superior heat and oxidation resistance. The metal is preferably a divalent metal having an atomic radius close to 1.35A.

  2. Decorating graphene nanosheets with electron accepting pyridyl-phthalocyanines

    NASA Astrophysics Data System (ADS)

    Wibmer, Leonie; Lourenço, Leandro M. O.; Roth, Alexandra; Katsukis, Georgios; Neves, Maria G. P. M. S.; Cavaleiro, José A. S.; Tomé, João P. C.; Torres, Tomás; Guldi, Dirk M.

    2015-03-01

    We describe herein the preparation of novel exfoliated graphene-phthalocyanine nanohybrids, and the investigation of their photophysical properties. Pyridyl-phthalocyanines (Pcs) 1-3 are presented as novel electron accepting building blocks of variable strengths with great potential for the exfoliation of graphite via their immobilization onto the basal plane of graphene in dimethylformamide (DMF) affording single layered and turbostratic graphene based G1-G3. G1-G3 were fully characterized (AFM, TEM, Raman, steady-state and pump probe transient absorption spectroscopy) and were studied in terms of electron donor-acceptor interactions in the ground and excited states. In this context, electron transfer upon photoexcitation from graphene to the electron accepting Pcs with dynamics, for example, in G2 of <1 and 330 +/- 50 ps for charge separation and charge recombination, respectively, was corroborated in a series of steady-state and time-resolved spectroscopy experiments.We describe herein the preparation of novel exfoliated graphene-phthalocyanine nanohybrids, and the investigation of their photophysical properties. Pyridyl-phthalocyanines (Pcs) 1-3 are presented as novel electron accepting building blocks of variable strengths with great potential for the exfoliation of graphite via their immobilization onto the basal plane of graphene in dimethylformamide (DMF) affording single layered and turbostratic graphene based G1-G3. G1-G3 were fully characterized (AFM, TEM, Raman, steady-state and pump probe transient absorption spectroscopy) and were studied in terms of electron donor-acceptor interactions in the ground and excited states. In this context, electron transfer upon photoexcitation from graphene to the electron accepting Pcs with dynamics, for example, in G2 of <1 and 330 +/- 50 ps for charge separation and charge recombination, respectively, was corroborated in a series of steady-state and time-resolved spectroscopy experiments. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr05719h

  3. The production of copper phthalocyanine and/or its derivatives

    NASA Technical Reports Server (NTRS)

    Segawa, T.; Matsuzaki, K.; Sawada, H.; Ninomiya, R.; Suyama, M.

    1984-01-01

    This document discusses the production of copper phthalocyanine and/or its derivatives, which are useful for dye pigments. The method described uses urea, a copper compound and/or a catalyst which have been suspended in an inert reaction medium. The copper compound, catalyst and urea fused and the reaction is performed by using the obtained fusion. The advantages of the invention are listed.

  4. PUBLISHED ONLINE: 19 JANUARY 2014 | DOI: 10.1038/NPHYS2855 Liposome adhesion generates traction stress

    E-print Network

    Gardel, Margaret

    ARTICLES PUBLISHED ONLINE: 19 JANUARY 2014 | DOI: 10.1038/NPHYS2855 Liposome adhesion generates. To address this, we directly measure the stresses generated during liposome adhesion. We find that liposome-sized liposomes as a simple model system to probe the extent to which liposome adhesion facilitates changes

  5. Inverted methoxypyridinium phthalocyanines for PDI of pathogenic bacteria.

    PubMed

    Lourenço, Leandro M O; Sousa, Andreina; Gomes, Maria C; Faustino, Maria A F; Almeida, Adelaide; Silva, Artur M S; Neves, Maria G P M S; Cavaleiro, José A S; Cunha, Ângela; Tomé, João P C

    2015-10-01

    Phthalocyanines (Pc) are photoactive molecules that can absorb and emit light in a large range of the UV-Vis spectrum with recognized potential for medical applications. Considering the biomedical applications an important limitation of these compounds is their low solubility in water. The use of suitable pyridinium groups on Pc is a good strategy to solve this drawback and to make them more effective to photoinactivate Gram-negative bacteria via a photodynamic inactivation (PDI) approach. Herein, an easy synthetic access to obtain inverted tetra- and octa-methoxypyridinium phthalocyanines (compounds 5 and 6) and also their efficiency to photoinactivate a recombinant bioluminescent strain of Escherichia coli is described. The obtained results were compared with the ones obtained when more conventional thiopyridinium phthalocyanines (compounds 7 and 8) were used. This innovative study comparing thiopyridinium and inverted methoxypyridinium moieties on cationic Pc is reported for the first time taking into account the efficiency of singlet oxygen ((1)O2) generation, water solubility and uptake properties. PMID:26214144

  6. Phthalocyanines And Their Sulfonated Derivatives As Photosensitizers In Photodynamic Therapy.

    NASA Astrophysics Data System (ADS)

    Riesz, Peter; Krishna, C. Murali

    1988-02-01

    Photodynamic therapy (PDT) of human tumors with hematoporphyrin derivative (HpD) has achieved encouraging results. However, HpD is a complex mixture whose composition varies in different preparations and with time of storage. The future promise of PDT for cancer treatment depends on the development of new chemically defined sensitizers which absorb more strongly than HpD in the 600-800 nm region. A shift to higher wavelengths is desirable since it allows increased light penetration in human tissues. In vivo, these sensitizers should be non-toxic, localize selectively in tumors and generate cytotoxic species upon illumination with a high quantum yield. These damaging species may be singlet oxygen (1O2) produced by the transfer of energy from the triplet state of the sensitizer to oxygen (Type II) or superoxide anion radicals formed by electron transfer to oxygen or substrate radicals generated by electron or hydrogen transfer directly from the sensitizer (Type I). The recent work of several groups indicating that phthalocyanines and their water soluble derivatives are promising candidates for PDT is reviewed. The photophysics, photochemistry, photosensitized killing of cultured mammalian cells and the use for in vivo photodynamic therapy of phthalocyanines is outlined. Our studies of the post-illumination photohemolysis of human red blood cells as a model system for membrane photomodification sensitized by phthalocyanine sulfonates are consistent with the predominant role of 1O2 as the damaging species.

  7. Copper phthalocyanine-based CMPs with various internal structures and functionalities.

    PubMed

    Ding, Xuesong; Han, Bao-Hang

    2015-08-18

    Several kinds of copper phthalocyanine-based conjugated microporous polymers have been synthesized, which present enhanced long-wavelength photon absorption capability and high efficiency for singlet oxygen generation under low energy light irradiation. This strategy opens a facile avenue towards expanding the scope of phthalocyanine-based porous materials with various internal structures and functionalities. PMID:26166552

  8. Selective adsorption of metal-phthalocyanine on Au(111) surface with hydrogen atoms

    E-print Network

    Gao, Hongjun

    Selective adsorption of metal-phthalocyanine on Au(111) surface with hydrogen atoms L. W. Liu, K adsorption of metal-phthalocyanine on Au(111) surface with hydrogen atoms L. W. Liu, K. Yang, W. D. Xiao, Y to the change of the molecules' selective adsorption from fcc to hcp regions at low coverage. The two

  9. Properties of liposomal membranes containing lysolecithin.

    PubMed

    Kitagawa, T; Inoue, K; Nojima, S

    1976-06-01

    Liposomes have been prepared with lysolecithin (1-acyl-sn-3-glycerylphosphorylcholine), egg lecithin (3-sn-phosphatidylcholine), dicetyl phosphate, and cholesterol. The ability to function as a barrier to the diffusion of glucose marker and the sensitivities of the liposomes to hypotonic treatment and other reagents which modified the permeability were examined. Generally, lysolecithin incorporation decreased the effectiveness of the membranes as a barrier to glucose and made the membranes more "osmotically fragile." Cholesterol incorporation counteracted the effect of incorporated lysolecithin. The more cholesterol incorporated into liposomes, the more lysolecthin could be incorporated into the membrane without loss of function as a barrier. With more than 50 mole% of colesterol, lysolecithin alone could form membranes which were practically impermeable to glucose. The hemolytic activity of lysolecithin was affected by mixing with various lecithins or cholesterol. Liposomes containing lysolecithin, which have the ability to trap glucose marker, showed poor hemolytic activity, while lipid micelles with lysolecithin (which could trap little glucose) showed almost the same hemolytic activity as lysolecithin itself. There seems to be a close correlation between hemolytic activity and barrier function of lipid micelles. PMID:986392

  10. Liposome disposition in vivo. VI: Delivery to the lung

    SciTech Connect

    Abra, R.M.; Hunt, C.A.; Lau, D.T.

    1984-02-01

    The effect of negatively charged liposome components and vesicle size on the time course and dose dependency of liposome disposition in mice was studied with a view to optimizing liposome delivery to the lung. The disposition of large multilamellar liposomes was followed using 125I-labeled p-hydroxybenzamidine phosphatidyl ethanolamine. Of the three negatively charged liposome compositions studied (phosphatidyl choline-X-cholesterol-alpha-tocopherol, molar ratio: 4:1:5:0.1; X . phosphatidyl serine, dipalmitoyl phosphatidic acid, or phosphatidyl glycerol), phosphatidyl serine liposomes resulted in the greatest accumulation in lungs. Lung levels decreased up to 95 h postdose, at which time 6% of the liposome dose present at 2 h still remained. The disposition of phosphatidyl serine-containing liposomes was independent of dose for the range 0.04-21 mumol/animal. When liposomes containing phosphatidyl choline were prepared using a variety of extrusion and dialysis conditions, a strong link between liposome size and lung accumulation was revealed. A maximum lung accumulation of 30.9% of the administered dose was achieved with no detectable gross pathological lung lesions up to 24 h postdose.

  11. Transformation of actin-encapsulating liposomes induced by cytochalasin D.

    PubMed Central

    Miyata, H; Kinosita, K

    1994-01-01

    Liposomes encapsulating actin filaments were prepared by swelling at 0 degrees C lipid film consisting of a mixture of dimyristoyl phosphatidylcholine and cardiolipin (equal amounts by weight) in 100 microM rabbit skeletal muscle actin and 0.5 mM CaCl2 followed by polymerization of actin at 30 degrees C. Liposomes initially assumed either disk or dumbbell shape, but when cytochalasin D was added to the medium surrounding the liposomes, they were found to become spindle shaped. Liposomes containing bovine serum albumin that were given cytochalasin D and actin-containing liposomes that were given dimethylformamide, the solvent for cytochalasin D, did not transform. These results indicated actin-cytochalasin interaction is involved in the transformation process. Falling-ball viscometry and sedimentation analysis of actin solution indicated that cytochalasin cleaved actin filaments and caused depolymerization. The observation of polarized fluorescence of encapsulated actin labeled with acrylodan indicated that the actin filaments in the transformed liposomes aligned along the long axis of the liposomes. Because the actin filaments in the disk- or dumbbell-shaped liposomes formed bundles running along the liposome contour, the transformation was likely to be accompanied by the change in the actin filament arrangement in the liposomes, which was induced by actin-cytochalasin interaction. Images FIGURE 1 FIGURE 2 FIGURE 3 PMID:7948706

  12. Evaluation of percutaneous absorption of naproxen from different liposomal formulations.

    PubMed

    Puglia, Carmelo; Bonina, Francesco; Rizza, Luisa; Cortesi, Rita; Merlotti, Elena; Drechsler, Markus; Mariani, Paolo; Contado, Catia; Ravani, Laura; Esposito, Elisabetta

    2010-06-01

    The present study concerns the percutaneous absorption of naproxen (NPX), as model anti-inflammatory drug, included in liposome formulations constituted of different lipids: stratum corneum lipids (SCL) and phosphatidylcholine/cholesterol (PC/CHOL). Liposome dispersions were produced using two different methods: reverse-phase evaporation (REV) and thin layer evaporation (TLE). Morphology and dimensions of the disperse phase were characterized by cryo-transmission electron microscopy (cryo-TEM) and photon correlation spectroscopy, respectively. X-ray diffraction was employed to determine the structural organization of the vesicles. In vitro diffusion was studied by Franz cell on liposome dispersions viscosized by carbomer. Tape stripping was performed to investigate in vivo the performance of differently composed liposomes as NPX delivery system. Cryo-TEM showed spherical vesicles and bigger irregular elongated nanoparticles for TLE SCL liposomes. REV resulted in spherical and elongated multilamellar vesicles. Also X-ray diffraction evidenced L alpha or L beta multilamellar vesicles for PC/CHOL and SCL liposome respectively. The in vitro study showed a lower NPX flux for SCL with respect to PC/CHOL liposome. Tape stripping corroborate the in vitro findings regarding SCL, suggesting that liposomes create a drug reservoir mixing with SC lipids, whilst PC/CHOL liposome promoted NPX permeation through the skin. Liposome lipid composition seems to affect NPX permeation through the skin. PMID:20039387

  13. Metalloporphyrin intercalation in liposome membranes: ESR study.

    PubMed

    Man, Dariusz; S?ota, Rudolf; Broda, Ma?gorzata A; Mele, Giuseppe; Li, Jun

    2011-01-01

    Liposomes characterized by membranes featuring diverse fluidity (liquid-crystalline and/or gel phase), prepared from egg yolk lecithin (EYL) and dipalmitoylphosphatidylcholine (DPPC), were doped with selected metalloporphyrins and the time-related structural and dynamic changes within the lipid double layer were investigated. Porphyrin complexes of Mg(II), Mn(III), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), and the metal-free base were embedded into the particular liposome systems and tested for 350 h at 24°C using the electron spin resonance (ESR) spin probe technique. 5-DOXYL, 12-DOXYL, and 16-DOXYL stearic acid methyl ester spin labels were applied to explore the interior of the lipid bilayer. Only the 16-DOXYL spin probe detected evident structural changes inside the lipid system due to porphyrin intercalation. Fluidity of the lipid system and the type of the porphyrin complex introduced significantly affected the intermolecular interactions, which in certain cases may result in self-assembly of metalloporphyrin molecules within the liposome membrane, reflected in the presence of new lines in the relevant ESR spectra. The most pronounced time-related effects were demonstrated by the EYL liposomes (liquid-crystalline phase) when doped with Mg and Co porphyrins, whereas practically no spectral changes were revealed for the metal-free base and both the Ni and Zn dopants. ESR spectra of the porphyrin-doped gel phase of DPPC liposomes did not show any extra lines; however, they indicated the formation of a more rigid lipid medium. Electronic configuration of the porphyrin's metal center appeared crucial to the degree of molecular reorganization within the phospholipid bilayer system. PMID:20963616

  14. Metalloporphyrin intercalation in liposome membranes: ESR study

    PubMed Central

    Man, Dariusz; Broda, Ma?gorzata A.; Mele, Giuseppe; Li, Jun

    2010-01-01

    Liposomes characterized by membranes featuring diverse fluidity (liquid-crystalline and/or gel phase), prepared from egg yolk lecithin (EYL) and dipalmitoylphosphatidylcholine (DPPC), were doped with selected metalloporphyrins and the time-related structural and dynamic changes within the lipid double layer were investigated. Porphyrin complexes of Mg(II), Mn(III), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), and the metal-free base were embedded into the particular liposome systems and tested for 350 h at 24°C using the electron spin resonance (ESR) spin probe technique. 5-DOXYL, 12-DOXYL, and 16-DOXYL stearic acid methyl ester spin labels were applied to explore the interior of the lipid bilayer. Only the 16-DOXYL spin probe detected evident structural changes inside the lipid system due to porphyrin intercalation. Fluidity of the lipid system and the type of the porphyrin complex introduced significantly affected the intermolecular interactions, which in certain cases may result in self-assembly of metalloporphyrin molecules within the liposome membrane, reflected in the presence of new lines in the relevant ESR spectra. The most pronounced time-related effects were demonstrated by the EYL liposomes (liquid-crystalline phase) when doped with Mg and Co porphyrins, whereas practically no spectral changes were revealed for the metal-free base and both the Ni and Zn dopants. ESR spectra of the porphyrin-doped gel phase of DPPC liposomes did not show any extra lines; however, they indicated the formation of a more rigid lipid medium. Electronic configuration of the porphyrin’s metal center appeared crucial to the degree of molecular reorganization within the phospholipid bilayer system. Electronic supplementary material The online version of this article (doi:10.1007/s00775-010-0715-1) contains supplementary material, which is available to authorized users. PMID:20963616

  15. Characterization of Polymerized Liposomes Using a Combination of dc and Cyclical Electrical Field-Flow Fractionation

    E-print Network

    Utah, University of

    Characterization of Polymerized Liposomes Using a Combination of dc and Cyclical Electrical Field Information ABSTRACT: Characterization of polymerized liposomes (PolyPIPosomes) was carried out using polymerized liposomes are used to demonstrate the applicability of the system to biomedical samples

  16. Non-aggregated axially disubstituted silicon phthalocyanines bearing electropolymerizable ligands and their aggregation, electropolymerizaton and thermal properties.

    PubMed

    Biyiklioglu, Zekeriya; Bas, Huseyin; Alp, Hakan

    2015-08-21

    A novel series of axially disubstituted silicon(iv) phthalocyanines bearing electropolymerizable ligands were designed and synthesized for the first time. The silicon(iv) phthalocyanines were characterized by various spectroscopic techniques as well as elemental analysis. The aggregation behavior of the SiPcs were examined in different solvents and at different concentrations in chloroform. In all the studied solvents and concentrations, the SiPcs were non-aggregated. The thermal behavior of the silicon(iv) phthalocyanines was also studied. The electropolymerization properties of the silicon(iv) phthalocyanines were investigated by cyclic and square wave voltammetry. This study is the first example of the electropolymerization of axially disubstituted silicon phthalocyanines. The type of axial ligand on the phthalocyanine ring did not show any effect on the absorption and thermal properties but influenced the electropolymerization of the phthalocyanines. PMID:26167769

  17. Investigating the Stability of eLiposomes at Elevated Temperatures.

    PubMed

    Husseini, Ghaleb A; Pitt, William G; Javadi, Marjan

    2015-08-01

    eLiposomes encapsulate a perfluorocarbon nanoemulsion droplet inside a liposome. Ultrasound is then used as a trigger mechanism to vaporize the perfluorocarbon, break the liposome, and release the desired drug to the tumor tissue. The purpose of this research is to show that eLiposomes synthesized using perfluoropentane are stable above the normal boiling point of the perfluoropentane and at body temperature and thus has potential for use in vivo. Experiments involving the release of fluorescent calcein molecules were performed on eLiposomes to measure the release of calcein at various temperatures in the absence of ultrasound. Results showed that eLiposomes are stable at body temperatures and that as the temperature increases above 40°C, calcein release from these novel nanocarriers increases. PMID:25261070

  18. Advances and Challenges of Liposome Assisted Drug Delivery

    PubMed Central

    Sercombe, Lisa; Veerati, Tejaswi; Moheimani, Fatemeh; Wu, Sherry Y.; Sood, Anil K.; Hua, Susan

    2015-01-01

    The application of liposomes to assist drug delivery has already had a major impact on many biomedical areas. They have been shown to be beneficial for stabilizing therapeutic compounds, overcoming obstacles to cellular and tissue uptake, and improving biodistribution of compounds to target sites in vivo. This enables effective delivery of encapsulated compounds to target sites while minimizing systemic toxicity. Liposomes present as an attractive delivery system due to their flexible physicochemical and biophysical properties, which allow easy manipulation to address different delivery considerations. Despite considerable research in the last 50 years and the plethora of positive results in preclinical studies, the clinical translation of liposome assisted drug delivery platforms has progressed incrementally. In this review, we will discuss the advances in liposome assisted drug delivery, biological challenges that still remain, and current clinical and experimental use of liposomes for biomedical applications. The translational obstacles of liposomal technology will also be presented. PMID:26648870

  19. Polymorphism of DNAanionic liposome complexes reveals hierarchy of ion-mediated interactions

    E-print Network

    Harries, Daniel

    Polymorphism of DNA­anionic liposome complexes reveals hierarchy of ion-mediated interactions). Although synthetic nonviral systems such as cationic liposomes generally transfect less efficiently than

  20. Modifying the release properties of liposomes toward personalized medicine.

    PubMed

    Cipolla, David; Wu, Huiying; Gonda, Igor; Eastman, Simon; Redelmeier, Tom; Chan, Hak-Kim

    2014-06-01

    Surfactant-liposome interactions have historically been investigated as a simplified model of solubilization and breakdown of biological membranes by surfactants. In contrast, our goal was to utilize surfactants to modify the encapsulation and release properties of liposomes. The ability to manufacture one liposomal formulation, which could be modified by the addition of a surfactant to support a wide range of release profiles, would provide greater flexibility than manufacturing multiple batches of liposomes, each differing in composition and with its own specific release profile. A liposomal ciprofloxacin formulation was modified by the addition of various surfactants. These formulations were characterized in terms of liposome structure by cryo-TEM imaging, vesicle size by dynamic light scattering, drug encapsulation by centrifugation-filtration, and in vitro release (IVR) performance. The addition of polysorbate 20 or polysorbate 80 to liposomal ciprofloxacin, in a hypotonic environment, resulted in a concentration-dependent loss of encapsulated drug, and above 0.4% polysorbate 20, or 0.2% polysorbate 80, a modified IVR profile as well. This study demonstrates that the encapsulation and release properties of a liposomal formulation can be modified postmanufacture by the addition of judiciously chosen surfactants in combination with osmotic swelling of the liposomes and may support a personalized approach to treating patients. PMID:24715635

  1. Current trends in the use of liposomes for tumor targeting

    PubMed Central

    Deshpande, Pranali P; Biswas, Swati; Torchilin, Vladimir P

    2013-01-01

    The use of liposomes for drug delivery began early in the history of pharmaceutical nanocarriers. These nanosized, lipid bilayered vesicles have become popular as drug delivery systems owing to their efficiency, biocompatibility, nonimmunogenicity, enhanced solubility of chemotherapeutic agents and their ability to encapsulate a wide array of drugs. Passive and ligand-mediated active targeting promote tumor specificity with diminished adverse off-target effects. The current field of liposomes focuses on both clinical and diagnostic applications. Recent efforts have concentrated on the development of multifunctional liposomes that target cells and cellular organelles with a single delivery system. This review discusses the recent advances in liposome research in tumor targeting. PMID:23914966

  2. FDA Approves Irinotecan Liposome to Treat Pancreatic Cancer

    Cancer.gov

    Patients with metastatic pancreatic cancer that has progressed after receiving gemcitabine-based chemotherapy now have a new treatment option: irinotecan liposome in combination with fluorouracil and leucovorin.

  3. Analyzing Protein-Phosphoinositide Interactions with Liposome Flotation Assays.

    PubMed

    Busse, Ricarda A; Scacioc, Andreea; Schalk, Amanda M; Krick, Roswitha; Thumm, Michael; Kühnel, Karin

    2016-01-01

    Liposome flotation assays are a convenient tool to study protein-phosphoinositide interactions. Working with liposomes resembles physiological conditions more than protein-lipid overlay assays, which makes this method less prone to detect false positive interactions. However, liposome lipid composition must be well-considered in order to prevent nonspecific binding of the protein through electrostatic interactions with negatively charged lipids like phosphatidylserine. In this protocol we use the PROPPIN Hsv2 (homologous with swollen vacuole phenotype 2) as an example to demonstrate the influence of liposome lipid composition on binding and show how phosphoinositide binding specificities of a protein can be characterized with this method. PMID:26552682

  4. pH-Triggered Echogenicity and Contents Release from Liposomes

    PubMed Central

    2015-01-01

    Liposomes are representative lipid nanoparticles widely used for delivering anticancer drugs, DNA fragments, or siRNA to cancer cells. Upon targeting, various internal and external triggers have been used to increase the rate for contents release from the liposomes. Among the internal triggers, decreased pH within the cellular lysosomes has been successfully used to enhance the rate for releasing contents. However, imparting pH sensitivity to liposomes requires the synthesis of specialized lipids with structures that are substantially modified at a reduced pH. Herein, we report an alternative strategy to render liposomes pH sensitive by encapsulating a precursor which generates gas bubbles in situ in response to acidic pH. The disturbance created by the escaping gas bubbles leads to the rapid release of the encapsulated contents from the liposomes. Atomic force microscopic studies indicate that the liposomal structure is destroyed at a reduced pH. The gas bubbles also render the liposomes echogenic, allowing ultrasound imaging. To demonstrate the applicability of this strategy, we have successfully targeted doxorubicin-encapsulated liposomes to the pancreatic ductal carcinoma cells that overexpress the folate receptor on the surface. In response to the decreased pH in the lysosomes, the encapsulated anticancer drug is efficiently released. Contents released from these liposomes are further enhanced by the application of continuous wave ultrasound (1 MHz), resulting in substantially reduced viability for the pancreatic cancer cells (14%). PMID:25271780

  5. Increased Liposome Extravasation in Selected Tissues: Effect of Substance P

    NASA Astrophysics Data System (ADS)

    Rosenecker, Joseph; Zhang, Weiming; Hong, Keelung; Lausier, James; Geppetti, Pierangelo; Yoshihara, Shigemi; Papahadjopoulos, Demetrios; Nadel, Jay A.

    1996-07-01

    We have used a pharmacologic mediator to open intercellular connections in selected vessels to allow liposomes to escape from the blood stream and to extravasate into tissues that have appropriate receptors. We have examined the effects of substance P (SP), a peptide known to increase vascular permeability in selected tissues, such as trachea, esophagus, and urinary bladder in rats. We used quantitative fluorescence analysis of tissues to measure two fluorescent markers, one attached to the lipid (rhodamine-phosphatidylethanolamine) and another, doxorubicin (an antitumor drug), encapsulated within the aqueous interior. We have also examined the deposition of liposomes microscopically by the use of encapsulated colloidal gold and silver enhancement. Analysis of the biochemical and morphological observations indicate the following: (i) Injection of SP produces a striking increase in both liposome labels, but only in tissues that possess receptors for SP in postcapillary venules; (ii) liposome material in these tissues has extravasated and is found extracellularly near a variety of cells beyond the endothelial layer over the first few hours; (iii) 24 h following injection of liposomes and SP, liposome material is found in these tissues, localized intracellularly in both endothelial cells and macrophages. We propose that appropriate application of tissue-specific mediators can result in liposome extravasation deep within tissues that normally do not take up significant amounts of liposomes from the blood. Such liposomes are able to carry a variety of pharmacological agents that can be released locally within selected target tissues for therapeutic purposes.

  6. Liposomal nanoparticles encapsulating iloprost exhibit enhanced vasodilation in pulmonary arteries

    PubMed Central

    Jain, Pritesh P; Leber, Regina; Nagaraj, Chandran; Leitinger, Gerd; Lehofer, Bernhard; Olschewski, Horst; Olschewski, Andrea; Prassl, Ruth; Marsh, Leigh M

    2014-01-01

    Prostacyclin analogues are standard therapeutic options for vasoconstrictive diseases, including pulmonary hypertension and Raynaud’s phenomenon. Although effective, these treatment strategies are expensive and have several side effects. To improve drug efficiency, we tested liposomal nanoparticles as carrier systems. In this study, we synthesized liposomal nanoparticles tailored for the prostacyclin analogue iloprost and evaluated their pharmacologic efficacy on mouse intrapulmonary arteries, using a wire myograph. The use of cationic lipids, stearylamine, or 1,2-di-(9Z-octadecenoyl)-3-trimethylammonium-propane (DOTAP) in liposomes promoted iloprost encapsulation to at least 50%. The addition of cholesterol modestly reduced iloprost encapsulation. The liposomal nanoparticle formulations were tested for toxicity and pharmacologic efficacy in vivo and ex vivo, respectively. The liposomes did not affect the viability of human pulmonary artery smooth muscle cells. Compared with an equivalent concentration of free iloprost, four out of the six polymer-coated liposomal formulations exhibited significantly enhanced vasodilation of mouse pulmonary arteries. Iloprost that was encapsulated in liposomes containing the polymer polyethylene glycol exhibited concentration-dependent relaxation of arteries. Strikingly, half the concentration of iloprost in liposomes elicited similar pharmacologic efficacy as nonencapsulated iloprost. Cationic liposomes can encapsulate iloprost with high efficacy and can serve as potential iloprost carriers to improve its therapeutic efficacy. PMID:25045260

  7. Water-soluble platinum phthalocyanines as potential antitumor agents.

    PubMed

    Bologna, Giuseppina; Lanuti, Paola; D'Ambrosio, Primiano; Tonucci, Lucia; Pierdomenico, Laura; D'Emilio, Carlo; Celli, Nicola; Marchisio, Marco; d'Alessandro, Nicola; Santavenere, Eugenio; Bressan, Mario; Miscia, Sebastiano

    2014-06-01

    Breast cancer represents the second cause of death in the European female population. The lack of specific therapies together with its high invasive potential are the major problems associated to such a tumor. In the last three decades platinum-based drugs have been considered essential constituents of many therapeutic strategies, even though with side effects and frequent generation of drug resistance. These drugs have been the guide for the research, in last years, of novel platinum and ruthenium based compounds, able to overcome these limitations. In this work, ruthenium and platinum based phthalocyanines were synthesized through conventional techniques and their antiproliferative and/or cytotoxic actions were tested. Normal mammary gland (MCF10A) and several models of mammarian carcinoma at different degrees of invasiveness (BT474, MCF-7 and MDA-MB-231) were used. Cells were treated with different concentrations (5-100 ?M) of the above reported compounds, to evaluate toxic concentration and to underline possible dose-response effects. The study included growth curves made by trypan blue exclusion test and scratch assay to study cellular motility and its possible negative modulation by phthalocyanine. Moreover, we investigated cell cycle and apoptosis through flow cytometry and AMNIS Image Stream cytometer. Among all the tested drugs, tetrasulfonated phthalocyanine of platinum resulted to be the molecule with the best cytostatic action on neoplastic cell lines at the concentration of 30 ?M. Interestingly, platinum tetrasulfophtalocyanine, at low doses, had no antiproliferative effects on normal cells. Therefore, such platinum complex, appears to be a promising drug for mammarian carcinoma treatment. PMID:24699848

  8. Liposomes in tissue engineering and regenerative medicine

    PubMed Central

    Monteiro, Nelson; Martins, Albino; Reis, Rui L.; Neves, Nuno M.

    2014-01-01

    Liposomes are vesicular structures made of lipids that are formed in aqueous solutions. Structurally, they resemble the lipid membrane of living cells. Therefore, they have been widely investigated, since the 1960s, as models to study the cell membrane, and as carriers for protection and/or delivery of bioactive agents. They have been used in different areas of research including vaccines, imaging, applications in cosmetics and tissue engineering. Tissue engineering is defined as a strategy for promoting the regeneration of tissues for the human body. This strategy may involve the coordinated application of defined cell types with structured biomaterial scaffolds to produce living structures. To create a new tissue, based on this strategy, a controlled stimulation of cultured cells is needed, through a systematic combination of bioactive agents and mechanical signals. In this review, we highlight the potential role of liposomes as a platform for the sustained and local delivery of bioactive agents for tissue engineering and regenerative medicine approaches. PMID:25401172

  9. Structural study of monolayer cobalt phthalocyanine adsorbed on graphite

    E-print Network

    Scheffler, M; Baumann, D; Schlegel, R; Hänke, T; Toader, M; Büchner, B; Hietschold, M; Hess, C

    2014-01-01

    We present microscopic investigations on the two-dimensional arrangement of cobalt phthalocyanine molecules on a graphite (HOPG) substrate in the low coverage regime. The initial growth and ordering of molecular layers is revealed in high resolution scanning tunneling microscopy (STM). On low coverages single molecules orient mostly along one of the substrate lattice directions, while they form chains at slightly higher coverage. Structures with two different unit cells can be found from the first monolayer on. A theoretical model based on potential energy calculations is presented, which relates the two phases to the driving ordering forces.

  10. Magnetic interaction in oxygenated alpha Fe-phthalocyanines

    SciTech Connect

    Kuzmann, Ern? Homonnay, Zoltán; Horváth, Attila; Pechousek, Jiri; Cuda, Jan; Machala, Libor; Zoppellaro, Giorgio; Zboril, Radek; Klencsár, Zoltán; Kubuki, Shiro; Nath, Amar

    2014-10-27

    Alpha iron phthalocyanines (?-FePc) oxygenated at low temperatures were investigated with the help of {sup 57}Fe Mössbauer spectroscopy, magnetization measurements (SQUID) and X-ray diffractometry (XRD). Mössbauer spectroscopy revealed that upon oxygenation of ?-FePc, new species were formed which could be associated with Fe{sup III}Pc oxygen adducts. Unexpectedly, magnetically split spectrum of oxygenated ?-FePc was observed below 20 K. In-field Mössbauer spectra in a 5 T external magnetic field at 5K and magnetization measurements indicate antiferromagnetic coupling in oxygenated ?-FePc.

  11. Origin of the band dispersion in a metal phthalocyanine crystal

    NASA Astrophysics Data System (ADS)

    Yanagisawa, Susumu; Yamauchi, Kunihiko; Inaoka, Takeshi; Oguchi, Tamio; Hamada, Ikutaro

    2014-12-01

    Understanding the crystal structure and electronic states of the organic semiconductor is of fundamental importance for developing the materials for the organic electronics. However, the theoretical treatment of organic semiconductors remains challenging, as the semilocal density functional theory fails to describe the dispersion forces accurately. We use van der Waals inclusive density functionals to study the zinc phthalocyanine polymorphs. It is found that the structure and energetics are well described with the van der Waals density functional, and as a result, the electronic band structure is nicely reproduced. Furthermore, we reveal that the distance between the molecules and the molecule tilt angle are important factors that determine the electronic band dispersion.

  12. Measurements of Large Dielectric Constants in Phthalocyanine Tetramers

    NASA Astrophysics Data System (ADS)

    Hamam, Khalil; Burns, C. A.; Mezei, G.; Al-Amer, M.

    2011-04-01

    Understanding the dielectric constant of organic materials is important for applications including organic transistors and photovoltaics. We have measured the dielectric constant and dissipation factor of oligomer metal-phthalocyanine (MePcs) pellets. Zn and Cu based tetramers (MeC30H10N8O8)4 are water soluble materials with high dielectric constant. We investigated these materials in the frequency range 20--10^6 Hz and at temperatures up to 110 C. Both the dielectric constant and dissipation factor were found to increase strongly with temperature and to decrease with frequency.

  13. Polymeric gated organic field effect transistor using magnesium phthalocyanine

    NASA Astrophysics Data System (ADS)

    Rajesh, K. R.; Menon, C. S.

    2014-10-01

    An organic thin film transistor has been fabricated using evaporated Magnesium Phthalocyanine as active layer. Parylene film prepared by chemical vapour deposition has been used as the organic gate insulator. Annealing of the samples is performed at 120 °C for 3 hrs. At room temperature, these transistors exhibit the p-type conductivity with field-effect mobility ranging from 0.009 - 0.021 cm2/Vs and ( I on/I off) ratio ~103. The effect of annealing on the transistor characteristics is discussed.

  14. Effect of liposomal fluidity on skin permeation of sodium fluorescein entrapped in liposomes

    PubMed Central

    Subongkot, Thirapit; Ngawhirunpat, Tanasait

    2015-01-01

    The purpose of this study was to investigate the effect of ultradeformable liposome components, Tween 20 and terpenes, on vesicle fluidity. The fluidity was evaluated by electron spin resonance spectroscopy using 5-doxyl stearic acid and 16-doxyl stearic acid as spin labels for phospholipid bilayer fluidity at the C5 atom of the acyl chain near the polar head group (hydrophilic region) and the C16 atom of the acyl chain (lipophilic region), respectively. The electron spin resonance study revealed that Tween 20 increased the fluidity at the C5 atom of the acyl chain, whereas terpenes increased the fluidity at the C16 atom of the acyl chain of the phospholipid bilayer. The increase in liposomal fluidity resulted in the increased skin penetration of sodium fluorescein. Confocal laser scanning microscopy showed that ultradeformable liposomes with terpenes increase the skin penetration of sodium fluorescein by enhancing hair follicle penetration. PMID:26229462

  15. Effect of lipid composition and liposome size on toxicity and in vitro fungicidal activity of liposome-intercalated amphotericin B.

    PubMed Central

    Szoka, F C; Milholland, D; Barza, M

    1987-01-01

    Intercalation of amphotericin B into liposomes at a 10 mol% drug/lipid ratio decreased its cytotoxicity by 3- to 90-fold in cultured murine cells and reduced its lethality by 2- to 8-fold in a median lethal dose (LD50) test in mice when compared with the commercial deoxycholate-solubilized drug (LD50 = 2.3 mg/kg). The cytotoxicity and lethality of the liposomal preparations were a function of their lipid composition and diameter. There was no correlation between the reduction of toxicity in the tissue culture assay and the reduction of lethality in the LD50 test. The rank order of reduction of lethality was sterol-containing liposomes greater than solid liposomes greater than fluid liposomes. In general, small sterol-containing vesicles were less lethal than large vesicles of the same composition. Intercalation of amphotericin B in sterol or solid liposomes increased not only the LD50 but also the time to death. The organ distribution of amphotericin B 24 h after intravenous administration was similar whether the drug was given as the commercial deoxycholate preparation or in liposomes. Finally, there were no differences among any of the formulations in their fungicidal activity against Candida tropicalis and Saccharomyces cerevisiae in vitro. The lesser and slower lethality of the liposomal and detergent-solubilized drug suggests that the mechanism by which liposomes reduce the lethality of amphotericin B is by slowing its rate of transfer to a sensitive cellular target. PMID:3579259

  16. Unprecedented Phthalocyanines Bearing Eight Di-butylamino Peripheral Substituents: Synthesis, Spectroscopy, and Structure.

    PubMed

    Chen, Yuxiang; Cao, Wei; Wang, Kang; Jiang, Jianzhuang

    2015-10-19

    Unprecedented 2,3,9,10,16,17,23,24-octakis(di-butylamino)phthalocyanine compounds M{Pc[N(C4H9)2]8} (M = 2H, Mg, Cu, Zn) (1-4) were prepared and structurally characterized on the basis of single-crystal X-ray diffraction analysis, representing the first structurally characterized alkylamino-substituted phthalocyanine examples. These novel phthalocyanine derivatives have also been characterized by a wide range of spectroscopic methods including MALDI-TOF mass spectra, NMR, electronic absorption, and IR spectroscopy in addition to elemental analysis. Their electrochemistry was also studied by cyclic voltammetry. PMID:26436994

  17. Titanium and Ruthenium Phthalocyanines for NO2 Sensors: A Mini-Review

    PubMed Central

    Paoletti, Anna Maria; Pennesi, Giovanna; Rossi, Gentilina; Generosi, Amanda; Paci, Barbara; Albertini, Valerio Rossi

    2009-01-01

    This review presents studies devoted to the description and comprehension of phenomena connected with the sensing behaviour towards NO2 of films of two phthalocyanines, titanium bis-phthalocyanine and ruthenium phthalocyanine. Spectroscopic, conductometric, and morphological features recorded during exposure to the gas are explained and the mechanisms of gas-molecule interaction are also elucidated. The review also shows how X-ray reflectivity can be a useful tool for monitoring morphological parameters such as thickness and roughness that are demonstrated to be sensitive variables for monitoring the exposure of thin films of sensor materials to NO2 gas. PMID:22346697

  18. Phototriggerable Liposomes: Current Research and Future Perspectives

    PubMed Central

    Puri, Anu

    2013-01-01

    The field of cancer nanomedicine is considered a promising area for improved delivery of bioactive molecules including drugs, pharmaceutical agents and nucleic acids. Among these, drug delivery technology has made discernible progress in recent years and the areas that warrant further focus and consideration towards technological developments have also been recognized. Development of viable methods for on-demand spatial and temporal release of entrapped drugs from the nanocarriers is an arena that is likely to enhance the clinical suitability of drug-loaded nanocarriers. One such approach, which utilizes light as the external stimulus to disrupt and/or destabilize drug-loaded nanoparticles, will be the discussion platform of this article. Although several phototriggerable nanocarriers are currently under development, I will limit this review to the phototriggerable liposomes that have demonstrated promise in the cell culture systems at least (but not the last). The topics covered in this review include (i) a brief summary of various phototriggerable nanocarriers; (ii) an overview of the application of liposomes to deliver payload of photosensitizers and associated technologies; (iii) the design considerations of photoactivable lipid molecules and the chemical considerations and mechanisms of phototriggering of liposomal lipids; (iv) limitations and future directions for in vivo, clinically viable triggered drug delivery approaches and potential novel photoactivation strategies will be discussed. PMID:24662363

  19. Liposomes as lubricants: beyond drug delivery.

    PubMed

    Goldberg, Ronit; Klein, Jacob

    2012-05-01

    In this paper we review recent work (Goldberg et al., 2011a,b) on a new use for phosphatidylcholine liposomes: as ultra-efficient boundary lubricants at up to the highest physiological pressures. Using a surface force balance, we have measured the normal and shear interactions as a function of surface separation between layers of hydrogenated soy phophatidylcholine (HSPC) small unilamellar vesicles (SUVs) adsorbed from dispersion, at both pure water and physiologically high salt concentrations of 0.15 M NaNO(3). Cryo-Scanning Electron Microscopy shows each surface to be coated by a close-packed HSPC-SUV layer with an over-layer of liposomes on top. The shear forces reveal strikingly low friction coefficients down to 2×10(-5) in pure water system or 6×10(-4) in the 150 mM salt system, up to contact pressures of at least 12 MPa (pure water) or 6 MPa (high salt), comparable with those in the major joints. This low friction is attributed to the hydration lubrication mechanism arising from rubbing of the highly hydrated phosphocholine-headgroup layers exposed at the outer surface of each liposome, and provides support for the conjecture that phospholipids may play a significant role in biological lubrication. PMID:22119851

  20. Liposomal nanoparticles as a drug delivery vehicle against osteosarcoma

    NASA Astrophysics Data System (ADS)

    Dhule, Santosh Subhashrao

    The delivery of curcumin, a broad-spectrum anticancer drug, has been explored in the form of liposomal nanoparticles to treat osteosarcoma (OS). Curcumin is water insoluble and an effective delivery route is through encapsulation in cyclodextrins followed by a second encapsulation in liposomes. Liposomal curcumin's potential was evaluated against cancer models of mesenchymal (OS) and epithelial origin (breast cancer). The resulting 2-Hydroxypropyl-gamma-cyclodextrin/curcumin - liposome complex shows promising anticancer potential both in vitro and in vivo against KHOS OS cell line and MCF-7 breast cancer cell line. An interesting aspect is that liposomal curcumin initiates the caspase cascade that leads to apoptotic cell death in vitro in comparison with DMSO-curcumin induced autophagic cell death. In addition, the efficiency of the liposomal curcumin formulation was confirmed in vivo using a xenograft OS model. Curcumin-loaded gamma-cyclodextrin liposomes indicate significant potential as delivery vehicles for the treatment of cancers of different tissue origin. The second part of this study examines the anti-tumor potential of curcumin and C6 ceramide (C6) against osteosarcoma cell lines when both are encapsulated in the bilayer of liposomal nanoparticles. Curcumin in combination with C6 showed 1.5 times enhanced cytotoxic effect in the case of MG-63 and KHOS OS cell lines, in comparison with systems with curcumin alone. Interestingly, C6-curcumin liposomes were found to be less toxic on untransformed human cells in comparison to OS cell lines. In addition, cell cycle assays on a KHOS cell line after treatment revealed that curcumin only liposomes induced G 2/M arrest by upregulation of cyclin B1, while C6 only liposomes induced G1 arrest by downregulation of cyclin D1. C6-curcumin liposomes induced G2/M arrest and showed a combined effect in the expression levels of cyclin D1 and cyclin B1. Using pegylated liposomes to increase the plasma half-life and tagging with folate for targeted delivery in vivo, a significant reduction in tumor size was observed with C6-curcumin-folate liposomes. The encapsulation of two water insoluble drugs, curcumin and C6, in the lipid bilayer of liposomes enhances the cytotoxic effect and validates the potential of combined drug therapy.

  1. Technetium-99m labelled liposomes to image experimental arthritis

    PubMed Central

    Boerman, O.; Oyen, W.; Storm, G.; Corvo, M; van Bloois, L.; van der Meer, J. W M; Corstens, F.

    1997-01-01

    OBJECTIVES—Liposomes sterically stabilised with polyethylene glycol (PEG) labelled with technetium-99m were tested for their ability to image adjuvant arthritis in a rat model.?METHODS—Adjuvant arthritis was induced in the ankle joint of the left hind foot by injection of Mycobacterium butyricum in Freund's incomplete adjuvant in the foot pad. Seven days later animals received the following radiopharmaceuticals labelled with 99mTc (a) non-PEG-liposomes, (b) PEG-liposomes or (c) non-specific human polyclonal IgG. For each of the radiopharmaceuticals the in vivo distribution of the radiolabel was monitored both scintigraphically as well as by counting the dissected tissues at two, eight, and 24 hours after injection.?RESULTS—The pharmacokinetics of the radiopharmaceuticals differed considerably (half life in the blood: PEG-liposomes (18 hours) > 99mTc-IgG (3 hours) > non-PEG liposomes (1 hour)). The inflamed focus was visualised with each of the agents. The uptake of each of the radiopharmaceuticals in the inflamed ankle region correlated with their residence time in the blood (inflamed joint uptake: PEG liposomes (1.15% injected dose (ID)/g)>99mTc-IgG (0.35% ID/g)>non-PEG-liposomes (0.05% ID/g)). Quantitative analysis of the images showed that the inflamed ankle to background ratio was highest with the PEG-liposomes (7.5 at 24 hours after injection), while with the other two agents this ratio did not exceed 4.?CONCLUSION—This study shows that 99mTc-labelled PEG-liposomes may be an excellent agent to visualise arthritis. Increased label uptake in the inflamed joint and increased target to background ratios can be obtained with PEG-liposomes because of their long circulating properties. In addition to their use as vehicles for scintigraphic imaging of arthritis PEG-liposomes might also be used for the site specific delivery of antirheumatic drugs.?? PMID:9227166

  2. Liposomes remain intact when complexed with polycationic brushes.

    PubMed

    Yaroslavov, Alexander A; Sybachin, Andrei V; Schrinner, Marc; Ballauff, Matthias; Tsarkova, Larisa; Kesselman, Ellina; Schmidt, Judith; Talmon, Yeshayahu; Menger, Fredric M

    2010-05-01

    Anionic liposomes adsorb onto the surface of spherical polymer particles bearing grafted linear cationic macromolecules. The size, shape, and encapsulation ability of the liposomes remain unchanged upon adsorption, thus providing immobilized self-organizing containers that have potential applications in the biomedical field. PMID:20387892

  3. Formulation and stabilization of riboflavin in liposomal preparations.

    PubMed

    Ahmad, Iqbal; Arsalan, Adeel; Ali, Syed Abid; Sheraz, Muhammad Ali; Ahmed, Sofia; Anwar, Zubair; Munir, Iqra; Shah, Muhammad Raza

    2015-12-01

    A study of the formulation of liposomal preparations of riboflavin (RF) with compositional variations in the content of phosphatidylcholine (PC) and their entrapment efficiency (26-42%) have been conducted. Light transmission characteristics of the liposomal preparations have been determined to evaluate their effect on the amount of light passing through the system to initiate a photochemical reaction. Dynamic light scattering (DLS) and atomic force microscopy (AFM) have been used to study the physical characteristics of liposomes. The liposomal preparations of RF have been subjected to photolysis using visible light and the apparent first- order rate constant, kobs, for the degradation of RF have been determined. The values of kobs (1.73-2.29×10(-3)min(-1)) have been found to decrease linearly with an increase in PC concentration in the range of 12.15 to 14.85mM. Thus, an increase in PC concentration of liposomes leads to an increase in the stability of RF. RF and its main photoproduct, lumichrome (LC), formed in liposomes have been assayed by a two-component spectrometric method at 356 and 445nm using an irrelevant absorption correction to compensate for the interference of liposomal components. The fluorescence measurements of RF in liposomes indicate excited singlet state quenching and the formation of a charge-transfer complex between RF and PC. It results in electron transfer from PC to RF to cause photoreduction and stabilization of RF. PMID:26546920

  4. Exploring Polymer and Liposomal Carriers for Optimized Drug Delivery

    E-print Network

    Ferguson, Heidi M

    2012-01-01

    Composed of a phospholipid bilayer, the structuralBilayer stability is an important parameter in the design of effective liposomes. Sterol modified phospholipidsphospholipids can be used to make relatively non-toxic and non-immunogenic liposomes, while the incorporation of PEGylated lipids stabilizes the bilayer,

  5. Recent advances in liposomal nanohybrid cerasomes as promising drug nanocarriers.

    PubMed

    Yue, Xiuli; Dai, Zhifei

    2014-05-01

    Liposomes have been extensively investigated as possible carriers for diagnostic or therapeutic agents due to their unique properties. However, liposomes still have not attained their full potential as drug and gene delivery vehicles because of their insufficient morphological stability. Recently, a super-stable and freestanding hybrid liposomal cerasome (partially ceramic- or silica-coated liposome) has drawn much attention as a novel drug delivery system because its atomic layer of polyorganosiloxane surface imparts higher morphological stability than conventional liposomes and its liposomal bilayer structure reduces the overall rigidity and density greatly compared to silica nanoparticles. Cerasomes are more biocompatible than silica nanoparticles due to the incorporation of the liposomal architecture into cerasomes. Cerasomes combine the advantages of both liposomes and silica nanoparticles but overcome their disadvantages so cerasomes are ideal drug delivery systems. The present review will first highlights some of the key advances of the past decade in the technology of cerasome production and then review current biomedical applications of cerasomes, with a view to stimulating further research in this area of study. PMID:24368133

  6. Synthesis, spectral and magnetic susceptibility studies on tetrachloro metal(II)phthalocyanines

    NASA Astrophysics Data System (ADS)

    Somashekarappa, M. P.; Venugopala Reddy, K. R.; Harish, M. N. K.; Keshavayya, J.

    2005-10-01

    The present paper describes a simple method for the synthesis of symmetrically substituted 1,8,15,22-tetrachloro phthalocyanines of copper, cobalt, nickel and zinc. The title complexes are synthesized from the corresponding tetraamino metal phthalocyanines by modified Sandmeyers method and in turn the tetraamino metal phthalocyanines are prepared from 3-nitrophthalic acid. The bluish-green coloured tetrachloro metal phthalocyanine complexes are characterized by elemental, electronic, IR, magnetic susceptibility and X-ray powder diffraction studies to check the purity and the structural integrity. The magnetic susceptibility studies revealed that, the experimental values are higher than that of the spin only value magnetic moment, and the presence of intermolecular co-operative effects.

  7. Thin films prepared by simultaneous deposition of copper and free-base phthalocyanine

    NASA Astrophysics Data System (ADS)

    Fejfar, A.; Takaoka, G.; Yamada, I.

    1993-09-01

    Composite films of metals and dielectrics attracted considerable attention in the past for their novel optical and mechanical properties which can be tailored precisely by changing their structure and composition. In this work we present a probe into a related but hitherto unexplored field of composites where metal is combined with molecular semiconductor. As model materials we chose free-base phthalocyanine and copper. Films were prepared by simultaneous deposition of copper and free-base phthalocyanine in the dual ICB system. An answer to two basic questions was sought after: 1) does the copper combine with freebase phthalocyanine to form a copper phthalocyanine complex, 2) what is the structure of the films if there is non-stoichiometric surplus of copper in the films? We report results of structural study by a transmission electron microscope. Optical behaviour of the composite was characterized by optical reflectance and transmittance measurement in UV/VIS/NIR range and complemented by FT IR spectra.

  8. Comparative semiempirical study of oxygen binding to model iron complexes of phthalocyanine and porphyrin

    SciTech Connect

    Sabelli, N.H.; Melendres, C.A.

    1982-10-28

    Molecular electronic structures of the danions and iron complexes of phthalocyanine and related macrocyclic compounds (i.e., tetrabenzoporphyrin, tetraazaporphyrin, and porphyrin) which are of interest in electrocatalysis have been calculated with semiempirical all-valence electron methods. Significant differences are found between the electron distributions in phthalocyanine and porphyrin dianions due mainly to the nature of the atom bridging the indole or pyrrole ligands. Iron complexes of both macrocyclics also show significant electronic differences, with the iron atom in an intermediate spin state in phthalocyanine and a high spin state in porphyrin. Oxygen binding to the iron center in model compounds of both complexes was also studied. The side-on configuration appears to be preferred in the oxygen-phthalocyanine system and end-on bonding in the oxygen-porphyrin complex.

  9. Heteroleptic naphthalo-phthalocyaninates of lutetium: synthesis and spectral and conductivity properties.

    PubMed

    Dubinina, Tatiana V; Kosov, Anton D; Petrusevich, Elizaveta F; Maklakov, Sergey S; Borisova, Nataliya E; Tomilova, Larisa G; Zefirov, Nikolay S

    2015-05-01

    Novel heteroleptic naphthalo-phthalocyaninates of lutetium possessing a symmetrical substituted naphthalocyanine deck were synthesized on the basis of two preformed synthetic blocks: naphthalocyanine ligand and lutetium phthalocyaninates. The compounds obtained were characterized by (1)H NMR and high-resolution MALDI-TOF/TOF mass spectrometry. The correlation between the nature of the substituents and the spectral properties of the target complexes was determined by the introduction of electron-donating (aryl-, aryloxy-) or electron-withdrawing (chloro-) substituents into the phthalocyanine deck. In addition, the nature of peripheral substituents was shown not to affect drastically the phthalocyanine conductivity and activation energy. Conductivity properties depend on thin film morphology which, in turn, relies on intermolecular ?-? interactions. PMID:25826576

  10. Photo-induced electron transfer between a dendritic zinc(II) phthalocyanine and methyl viologen

    NASA Astrophysics Data System (ADS)

    Wang, Yuhua; Chen, Jiangxu; Huang, Lishan; Xie, Shusen; Yang, Hongqin; Peng, Yiru

    2013-01-01

    The intermolecular electron transfer between the carboxylic dendritic zinc(II) phthalocyanines [G1-ZnPc( and G2-ZnPc(] and methyl viologen (MV) is studied by steady-state fluorescence and UV/Vis absorption spectroscopic method. The effect of dendron generation of this series of dendritic phthalocyanines on intermolecular electron transfer is investigated. The results show that the fluorescence emission of these dendritic phthalocyanines could be greatly quenched by MV upon excitation at 610 nm. The Stern-Volmer constant (KSV) of electron transfer is decreased with increasing dendron generations. Our study suggests that these dendritic phthalocyanines are an effective new electron donor and transmission complex and could be used as a potential artificial photosynthesis system.

  11. Influence of different peripheral substituents on the nonlinear optical properties of cobalt phthalocyanine core

    SciTech Connect

    Derkowska, B.; Wojdyla, M.; Bala, W.; Jaworowicz, K.; Karpierz, M.; Grote, James G.; Krupka, O.; Kajzar, F.; Sahraoui, B.

    2007-04-15

    In this article, we show how the substituting different peripheral substituents around the cobalt phthalocyanine core correlate with nonlinear optical properties. We present the results on nonlinear optical properties of solution of cobalt phthalocyanine (CoPc), cobalt phthalocyanine with DNA-CTMA surfactant complex (CoPc-DNA-CTMA), and cobalt phthalocyanine with liquid crystal (CoPc-LC) measured by degenerate four-wave mixing (DFWM) method at the 532 nm wavelength region. We found that the values of third-order nonlinear optical susceptibility ({chi}{sup <3>}) of CoPc-LC and CoPc-DNA-CTMA increase in comparison with the value of the third-order nonlinear optical susceptibilities of CoPc. We supposed that this is caused by increase of the charge-transfer effects and of the dipole moments of the molecule with the increase of the chain length.

  12. Ligandreceptor binding on nanoparticle-stabilized liposome surfaces Liangfang Zhang,a

    E-print Network

    Granick, Steve

    Ligand­receptor binding on nanoparticle-stabilized liposome surfaces Liangfang Zhang,a Kevin the access of receptor (streptavidin) to liposome- immobilized ligand (biotin) in cases where the liposomes over that range of nanoparticle surface coverage where liposome fusion and large- scale aggregation

  13. Fourier Transformed Spectral Bio-imaging for Studying the Intracellular Fate of Liposomes

    E-print Network

    van Vliet, Lucas J.

    Fourier Transformed Spectral Bio-imaging for Studying the Intracellular Fate of Liposomes Ulrich of liposomal drug targeting systems, it is necessary to understand the mechanism of liposome uptake by the cell and to follow the intracellular fate of internalized liposomes and their contents. Methods: We applied multiple

  14. The Structure of DNA-Liposome Complexes Danilo D. Lasic,*, Helmut Strey, Mark C. A. Stuart,

    E-print Network

    Podgornik, Rudolf

    The Structure of DNA-Liposome Complexes Danilo D. Lasic,*, Helmut Strey, Mark C. A. Stuart,§ Rudolf cells in ViVo seems to be the main obstacle in successful medical applications.1 Cationic liposomes were liposome kits, however, the structure of DNA-cationic liposome complexes is still not yet well understood

  15. Use of Adaptive Focused Acoustics™ ultrasound in controlling liposome formation.

    PubMed

    Shen, Katherine C; Kakumanu, Srikanth; Beckett, Carl D; Laugharn, James A

    2015-11-01

    Many techniques for producing large unilamellar vesicles (LUVs) or small unilamellar vesicles (SUVs) have drawbacks, including exposure of sensitive biological materials to harsh organic solvents or high temperatures. Here we describe the use of controlled focused ultrasound, Adaptive Focused Acoustics™ (AFA), to make LUV or SUV at low temperature without organic solvents and at a consistent, chosen size. We studied the effects of peak incident power (PIP), cycles per burst (CPB), duty factor (DF), temperature, and lipid composition (natural or synthetic), on liposome size distribution. We found that an increase in PIP, DF, CPB, or temperature decreased liposome size. When processed under the same conditions as the natural lipid composition [Phospholipon 90 G], the synthetic lipid composition [HSPC, DSPE-PEG-2000, Chol] generally produced larger liposomes, although extending processing time reduced liposomes to similar size. In combination with AFA, these trends can help pinpoint parameter values that achieve a desired liposome size distribution. PMID:25935594

  16. Multimodal targeted high relaxivity thermosensitive liposome for in vivo imaging

    PubMed Central

    Kuijten, Maayke M. P.; Hannah Degeling, M.; Chen, John W.; Wojtkiewicz, Gregory; Waterman, Peter; Weissleder, Ralph; Azzi, Jamil; Nicolay, Klaas; Tannous, Bakhos A.

    2015-01-01

    Liposomes are spherical, self-closed structures formed by lipid bilayers that can encapsulate drugs and/or imaging agents in their hydrophilic core or within their membrane moiety, making them suitable delivery vehicles. We have synthesized a new liposome containing gadolinium-DOTA lipid bilayer, as a targeting multimodal molecular imaging agent for magnetic resonance and optical imaging. We showed that this liposome has a much higher molar relaxivities r1 and r2 compared to a more conventional liposome containing gadolinium-DTPA-BSA lipid. By incorporating both gadolinium and rhodamine in the lipid bilayer as well as biotin on its surface, we used this agent for multimodal imaging and targeting of tumors through the strong biotin-streptavidin interaction. Since this new liposome is thermosensitive, it can be used for ultrasound-mediated drug delivery at specific sites, such as tumors, and can be guided by magnetic resonance imaging. PMID:26610702

  17. Microfabrication of three-dimensional filters for liposome extrusion

    NASA Astrophysics Data System (ADS)

    Baldacchini, Tommaso; Nuñez, Vicente; LaFratta, Christopher N.; Grech, Joseph S.; Vullev, Valentine I.; Zadoyan, Ruben

    2015-03-01

    Liposomes play a relevant role in the biomedical field of drug delivery. The ability of these lipid vesicles to encapsulate and transport a variety of bioactive molecules has fostered their use in several therapeutic applications, from cancer treatments to the administration of drugs with antiviral activities. Size and uniformity are key parameters to take into consideration when preparing liposomes; these factors greatly influence their effectiveness in both in vitro and in vivo experiments. A popular technique employed to achieve the optimal liposome dimension (around 100 nm in diameter) and uniform size distribution is repetitive extrusion through a polycarbonate filter. We investigated two femtosecond laser direct writing techniques for the fabrication of three-dimensional filters within a microfluidics chip for liposomes extrusion. The miniaturization of the extrusion process in a microfluidic system is the first step toward a complete solution for lab-on-a-chip preparation of liposomes from vesicles self-assembly to optical characterization.

  18. Multimodal targeted high relaxivity thermosensitive liposome for in vivo imaging.

    PubMed

    Kuijten, Maayke M P; Hannah Degeling, M; Chen, John W; Wojtkiewicz, Gregory; Waterman, Peter; Weissleder, Ralph; Azzi, Jamil; Nicolay, Klaas; Tannous, Bakhos A

    2015-01-01

    Liposomes are spherical, self-closed structures formed by lipid bilayers that can encapsulate drugs and/or imaging agents in their hydrophilic core or within their membrane moiety, making them suitable delivery vehicles. We have synthesized a new liposome containing gadolinium-DOTA lipid bilayer, as a targeting multimodal molecular imaging agent for magnetic resonance and optical imaging. We showed that this liposome has a much higher molar relaxivities r1 and r2 compared to a more conventional liposome containing gadolinium-DTPA-BSA lipid. By incorporating both gadolinium and rhodamine in the lipid bilayer as well as biotin on its surface, we used this agent for multimodal imaging and targeting of tumors through the strong biotin-streptavidin interaction. Since this new liposome is thermosensitive, it can be used for ultrasound-mediated drug delivery at specific sites, such as tumors, and can be guided by magnetic resonance imaging. PMID:26610702

  19. Preparation and characterization of clove essential oil-loaded liposomes.

    PubMed

    Sebaaly, Carine; Jraij, Alia; Fessi, Hatem; Charcosset, Catherine; Greige-Gerges, Hélène

    2015-07-01

    In this study, suitable formulations of natural soybean phospholipid vesicles were developed to improve the stability of clove essential oil and its main component, eugenol. Using an ethanol injection method, saturated (Phospholipon 80H, Phospholipon 90H) and unsaturated soybean (Lipoid S100) phospholipids, in combination with cholesterol, were used to prepare liposomes at various eugenol and clove essential oil concentrations. Liposomal batches were characterized and compared for their size, polydispersity index, Zeta potential, loading rate, encapsulation efficiency and morphology. The liposomes were tested for their stability after storing them for 2 months at 4°C by monitoring changes in their mean size, polydispersity index and encapsulation efficiency (EE) values. It was found that liposomes exhibited nanometric oligolamellar and spherical shaped vesicles and protected eugenol from degradation induced by UV exposure; they also maintained the DPPH-scavenging activity of free eugenol. Liposomes constitute a suitable system for encapsulation of volatile unstable essential oil constituents. PMID:25704683

  20. Electromagnetic field triggered drug and chemical delivery via liposomes

    DOEpatents

    Liburdy, Robert P. (1820 Mountain View Rd., Tiburon, CA 94920)

    1993-01-01

    The present invention relates to a system and to a method of delivering a drug to a preselected target body site of a patient, comprising the steps of encapsulating the chemical agent within liposomes, essentially temperature insensitive, i.e. not having a specific predetermined phase transition temperature within the specific temperature range of drug administration; administering the liposomes to the target body site; and subjecting the target body site to nonionizing electromagnetic fields in an area of the preselected target body in order to release said chemical agent from the liposomes at a temperature of between about +10 and 65.degree. C. The invention further relates to the use of said liposomes to bind to the surface of or to enter target tissue or an organ in a living system, and, when subjected to a nonionizing field, to release a drug from the liposomes into the target site.

  1. Electromagnetic field triggered drug and chemical delivery via liposomes

    DOEpatents

    Liburdy, R.P.

    1993-03-02

    The present invention relates to a system and to a method of delivering a drug to a preselected target body site of a patient, comprising the steps of encapsulating the chemical agent within liposomes, essentially temperature insensitive, i.e. not having a specific predetermined phase transition temperature within the specific temperature range of drug administration; administering the liposomes to the target body site; and subjecting the target body site to nonionizing electromagnetic fields in an area of the preselected target body in order to release the chemical agent from the liposomes at a temperature of between about +10 and 65 C. The invention further relates to the use of the liposomes to bind to the surface of or to enter target tissue or an organ in a living system, and, when subjected to a nonionizing field, to release a drug from the liposomes into the target site.

  2. Shrinkage of pegylated and non-pegylated liposomes in serum.

    PubMed

    Wolfram, Joy; Suri, Krishna; Yang, Yong; Shen, Jianliang; Celia, Christian; Fresta, Massimo; Zhao, Yuliang; Shen, Haifa; Ferrari, Mauro

    2014-02-01

    An essential requisite for the design of nanodelivery systems is the ability to characterize the size, homogeneity and zeta potential of nanoparticles. Such properties can be tailored in order to create the most efficient drug delivery platforms. An important question is whether these characteristics change upon systemic injection. Here, we have studied the behavior of phosphatidylcholine/cholesterol liposomes exposed to serum proteins. The results reveal a serum-induced reduction in the size and homogeneity of both pegylated and non-pegylated liposomes, implicating the possible role of osmotic forces. In addition, changes to zeta-potential were observed upon exposing liposomes to serum. The liposomes with polyethylene glycol expressed different characteristics than their non-polymeric counterparts, suggesting the potential formation of a denser protein corona around the non-pegylated liposomes. PMID:24216620

  3. Shrinkage of pegylated and non-pegylated liposomes in serum

    PubMed Central

    Wolfram, Joy; Suri, Krishna; Yang, Yong; Shen, Jianliang; Celia, Christian; Fresta, Massimo; Zhao, Yuliang; Shen, Haifa; Ferrari, Mauro

    2013-01-01

    An essential requisite for the design of nanodelivery systems is the ability to characterize the size, homogeneity and zeta potential of nanoparticles. Such properties can be tailored in order to create the most efficient drug delivery platforms. An important question is whether these characteristics change upon systemic injection. Here, we have studied the behavior of phosphatidylcholine/cholesterol liposomes exposed to serum proteins. The results reveal a serum-induced reduction in the size and homogeneity of both pegylated and non-pegylated liposomes, implicating the possible role of osmotic forces. In addition, changes to zeta-potential were observed upon exposing liposomes to serum. The liposomes with polyethylene glycol expressed different characteristics than their non-polymeric counterparts, suggesting the potential formation of a denser protein corona around the non-pegylated liposomes. PMID:24216620

  4. Ultrasound triggered drug delivery with liposomal nested microbubbles.

    PubMed

    Wallace, N; Wrenn, S P

    2015-12-01

    When ultrasound contrast agent microbubbles are nested within a liposome, damage to the liposome membrane caused by both stable and inertial cavitation of the microbubble allows for release of the aqueous core of the liposome. Triggered release was not accomplished unless microbubbles were present within the liposome. Leakage was tested using fluorescence assays developed specifically for this drug delivery vehicle and qualitative measurements using an optical microscope. These studies were done using a 1 MHz focused ultrasound transducer while varying parameters including peak negative ultrasound pressure, average liposome diameter, and microbubble concentration. Two regimes exist for membrane disruption caused by cavitating microbubbles. A faster release rate, as well as permanent membrane damage are seen for samples exposed to high pressure (2.1-3.7 MPa). A slower release rate and dilation/temporary poration are characteristic of stable cavitation for low pressure studies (0.54-1.7 MPa). PMID:26152887

  5. Recent Developments in Liposome-Based Veterinary Therapeutics

    PubMed Central

    2013-01-01

    Recent advances in nanomedicine have been studied in the veterinary field and have found a wide variety of applications. The past decade has witnessed a massive surge of research interest in liposomes for delivery of therapeutic substances in animals. Liposomes are nanosized phospholipid vesicles that can serve as delivery platforms for a wide range of substances. Liposomes are easily formulated, highly modifiable, and easily administered delivery platforms. They are biodegradable and nontoxic and have long in vivo circulation time. This review focuses on recent and ongoing research that may have relevance for veterinary medicine. By examining the recent developments in liposome-based therapeutics in animal cancers, vaccines, and analgesia, this review depicts the current significance and future directions of liposome-based delivery in veterinary medicine. PMID:24222862

  6. Ligand-targeted liposome design: challenges and fundamental considerations.

    PubMed

    Noble, Gavin T; Stefanick, Jared F; Ashley, Jonathan D; Kiziltepe, Tanyel; Bilgicer, Basar

    2014-01-01

    Nanomedicine, particularly liposomal drug delivery, has expanded considerably over the past few decades, and several liposomal drugs are already providing improved clinical outcomes. Liposomes have now progressed beyond simple, inert drug carriers and can be designed to be highly responsive in vivo, with active targeting, increased stealth, and controlled drug-release properties. Ligand-targeted liposomes (LTLs) have the potential to revolutionize the treatment of cancer. However, these highly engineered liposomes generate new problems, such as accelerated clearance from circulation, compromised targeting owing to non-specific serum protein binding, and hindered tumor penetration. This article highlights recent challenges facing LTL strategies and describes the advanced design elements used to circumvent them. PMID:24210498

  7. Enzymatic reactions in liposomes using the detergent-induced liposome loading method.

    PubMed

    Oberholzer, T; Meyer, E; Amato, I; Lustig, A; Monnard, P A

    1999-01-12

    Microcompartmentalization is a crucial step in the origin of life. More than 30 years ago, Oparin et al. proposed models based on biochemical reactions taking place in so-called coacervates. Their intention was to develop systems with which semipermeable microcompartments could be established. In the present work we follow their intuition, but we use well-characterized bilayer structures instead of the poorly characterized coacervates. Liposomes from phospholipids can be used as microreactors but they exhibit only a modest permeability and, therefore, chemical reactions occurring inside these structures are depleted after a relatively short period. Here it is shown that even highly stable liposomes from 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) can be used as semipermeable microreactors when treated with sodium cholate. Using this kind of mixed liposomes, we describe a biochemical reaction occurring inside the liposomes while the same reaction is prevented in the external medium. In addition, we show that this cholate-induced permeability of POPC bilayers can even be used to load macromolecules such as enzymes from the outside. PMID:9889319

  8. A Bottom-up Synthesis of Antiaromatic Expanded Phthalocyanines: Pentabenzotriazasmaragdyrins, i.e. Norcorroles of Superphthalocyanines.

    PubMed

    Furuyama, Taniyuki; Sato, Takehito; Kobayashi, Nagao

    2015-11-01

    The first example of an antiaromatic expanded phthalocyanine, classified as a norcorrole of a superphthalocyanine has been prepared and fully characterized. The newly developed phthalonitrile dimerization reaction was a crucial step, which allowed for the bottom-up synthesis of expanded phthalocyanines. Their structure was confirmed by single crystal X-ray diffraction analysis. The 20 ? antiaromaticity of the macrocycles was suggested by optical and theoretical calculations. PMID:26471859

  9. Communication: Influence of graphene interlayers on the interaction between cobalt phthalocyanine and Ni(111)

    SciTech Connect

    Uihlein, Johannes; Peisert, Heiko; Glaser, Mathias; Polek, Malgorzata; Adler, Hilmar; Petraki, Fotini; Chasse, Thomas; Ovsyannikov, Ruslan; Bauer, Maximilian

    2013-02-28

    The influence of graphene interlayers on electronic interface properties of cobalt phthalocyanine on Ni(111) is studied using both photoemission and X-ray absorption spectroscopy. A charge transfer associated with a redistribution of the d-electrons at the Co-atom of the phthalocyanine occurs at the interface to Ni(111). Even a graphene buffer layer cannot prevent the charge transfer at the interface to Ni(111); however, the detailed electronic situation is different.

  10. Clearance and localization of intravitreal liposomes in the aphakic vitrectomized eye

    SciTech Connect

    Stern, W.H.; Heath, T.D.; Lewis, G.P.; Guerin, C.J.; Erickson, P.A.; Lopez, N.G.; Hong, K.L.

    1987-05-01

    The authors have examined the fate of intravitreally injected liposomes in the aphakic, vitrectomized eye of the rabbit. Liposomes labelled with /sup 125/(I)-p-hydroxybenzimidylphosphatidylethanolamine were eliminated rapidly from the intraocular fluid. Nonetheless, a significant fraction of these liposomes were found to bind to various ocular tissues including the retina, iris, sclera, and cornea. Ultrastructural studies with gold colloid-loaded liposomes revealed that retinal bound liposomes were attached to the inner limiting lamina but did not penetrate to the internal cells of the retina. Epiretinal cells bound and internalized gold colloid-loaded liposomes suggesting that these cells may be very sensitive to liposome mediated drug delivery.

  11. Liposomes tethered to a biopolymer film through the hydrophobic effect create a highly effective lubricating surface.

    PubMed

    Zheng, R; Arora, J; Boonkaew, B; Raghavan, S R; Kaplan, D L; He, J; Pesika, N S; John, V T

    2014-12-14

    Liposomal coatings are formed on films of a biopolymer, hydrophobically modified chitosan (hm-chitosan), containing dodecyl groups as hydrophobes along the polymer backbone. The alkyl groups insert themselves into the liposome bilayer through hydrophobic interactions and thus tether liposomes, leading to a densely packed liposome layer on the film surface. Such liposomal surfaces exhibit effective lubrication properties due to their high degree of hydration, and reduce the coefficient of friction to the biologically-relevant range. The compliancy and robustness of these tethered liposomes allow retention on the film surface upon repeated applications of shear. Such liposome coated films have potential applications in biolubrication. PMID:25315119

  12. Theranostic liposomes for cancer diagnosis and treatment: current development and pre-clinical success.

    PubMed

    Muthu, Madaswamy S; Feng, Si-Shen

    2013-02-01

    Liposomes are one of the effective drug delivery systems that are developed based on the nanotechnology concept. Liposomal formulation is the first nanomedicine approved by the US FDA for clinical application. Recently, the marketed liposomes and stealth liposomes have made impact for cancer therapy. In addition, a few receptor-targeted liposome products have been in different phases of clinical trials, which are yet to be marketed. In the present editorial, the advantages of vitamin E TPGS-coated liposomes over the currently available PEG-coated liposomes will be described and their great potentials for nanotheranostics for cancer imaging and therapy will be covered. PMID:23061654

  13. Interaction kinetics of serum proteins with liposomes and their effect on phospholipase-induced liposomal drug release.

    PubMed

    Shibata, Hiroko; Yoshida, Hiroyuki; Izutsu, Ken-Ichi; Haishima, Yuji; Kawanishi, Toru; Okuda, Haruhiro; Goda, Yukihiro

    2015-11-30

    We used surface plasmon resonance (SPR) to measure the affinity and kinetics of the interaction between serum proteins and both conventional and PEGylated liposomes. The effect of the interactions on secretory phospholipase A2 (sPLA2)-induced release of a model drug from liposomes was also assessed. SPR analysis of 12 serum proteins revealed that the mode of interaction between serum proteins and liposomes greatly varies depending on the type of protein. For example, albumin bound to liposomes at slower association/dissociation rates with higher affinity and prevented sPLA2-induced drug release from PEGylated liposomes. Conversely, fibronectin bound at faster association/dissociation rates with lower affinity and demonstrated little impact on the drug release. These results indicate that the effect of serum proteins on sPLA2 phospholipid hydrolysis varies with the mode of interaction between proteins and liposomes. Understanding how the proteins interact with liposomes and impact sPLA2 phospholipid hydrolysis should aid the rational design of therapeutic liposomal formulations. PMID:26410758

  14. Light induced cytosolic drug delivery from liposomes with gold nanoparticles.

    PubMed

    Lajunen, Tatu; Viitala, Lauri; Kontturi, Leena-Stiina; Laaksonen, Timo; Liang, Huamin; Vuorimaa-Laukkanen, Elina; Viitala, Tapani; Le Guével, Xavier; Yliperttula, Marjo; Murtomäki, Lasse; Urtti, Arto

    2015-04-10

    Externally triggered drug release at defined targets allows site- and time-controlled drug treatment regimens. We have developed liposomal drug carriers with encapsulated gold nanoparticles for triggered drug release. Light energy is converted to heat in the gold nanoparticles and released to the lipid bilayers. Localized temperature increase renders liposomal bilayers to be leaky and triggers drug release. The aim of this study was to develop a drug releasing system capable of releasing its cargo to cell cytosol upon triggering with visible and near infrared light signals. The liposomes were formulated using either heat-sensitive or heat- and pH-sensitive lipid compositions with star or rod shaped gold nanoparticles. Encapsulated fluorescent probe, calcein, was released from the liposomes after exposure to the light. In addition, the pH-sensitive formulations showed a faster drug release in acidic conditions than in neutral conditions. The liposomes were internalized into human retinal pigment epithelial cells (ARPE-19) and human umbilical vein endothelial cells (HUVECs) and did not show any cellular toxicity. The light induced cytosolic delivery of calcein from the gold nanoparticle containing liposomes was shown, whereas no cytosolic release was seen without light induction or without gold nanoparticles in the liposomes. The light activated liposome formulations showed a controlled content release to the cellular cytosol at a specific location and time. Triggering with visual and near infrared light allows good tissue penetration and safety, and the pH-sensitive liposomes may enable selective drug release in the intracellular acidic compartments (endosomes, lysosomes). Thus, light activated liposomes with gold nanoparticles are an attractive option for time- and site-specific drug delivery into the target cells. PMID:25701610

  15. Development of Liposomal Bubbles with Perfluoropropane Gas as Gene Delivery Carriers

    NASA Astrophysics Data System (ADS)

    Maruyama, Kazuo; Suzuki, Ryo; Sawamura, Kaori; Takizawa, Tomoko; Utoguchi, Naoki; Negishi, Yoichi

    2007-05-01

    Liposomes have some advantages as drug, antigen and gene delivery carriers. Their size can be easily controlled and they can be modified to add a targeting function. Based on liposome technology, we developed novel liposomal bubbles (Bubble liposomes) containing the ultrasound imaging gas, perfluoropropane. We assessed the feasibility of Bubble liposomes as carriers for gene delivery after cavitation induced by ultrasound. At first, we investigated their ability to deliver genes with Bubble liposomes and ultrasound to various types of cells such as mouse sarcoma cells, mouse melanoma cells, human T cell line and human umbilical vein endothelial cells. The results showed that the Bubble liposomes could deliver plasmid DNA to many cell types without cytotoxicity. In addition, we found that Bubble liposomes could effectively deliver plasmid DNA into mouse femoral artery in vivo. The gene transduction with Bubble liposomes was more effectively than conventional lipofection. We conclude that Bubble liposomes are unique and efficient gene delivery carriers in vitro and in vivo.

  16. Photodynamic therapy of melanoma using new, synthetic porphyrins and phthalocyanines as photosensitisers – a comparative study

    PubMed Central

    BALDEA, IOANA; ION, RODICA-MARIANA; OLTEANU, DIANA ELENA; NENU, IULIANA; TUDOR, DIANA; FILIP, ADRIANA GABRIELA

    2015-01-01

    Melanoma, a cancer that arises from melanocytes, is one of the most unresponsive cancers to known therapies and has a tendency to produce early metastases. Several studies showed encouraging results of the efficacy of photodynamic therapy (PDT) in melanoma, in different experimental settings in vitro and in vivo, as well as several clinical reports. Aims Our study focuses on testing the antimelanoma efficacy of several new, synthetic photosensitisers (PS), from two different chemical classes, respectively four porphyrins and six phthalocyanines. Methods These PS were tested in terms of cell toxicity and phototoxicity against a radial growth phase melanoma cell line (WM35), in vitro. Cells were exposed to different concentrations of the PS for 24h, washed, then irradiatied with red light (630 nm) 75 mJ/cm2 for the porphyrins and 1 J/cm2 for the phthalocyanines. Viability was measured using the MTS method. Results Two of the synthetic porphyrins, TTP and THNP, were active photosensitizers against WM35 melanoma in vitro. Phthalocyanines were effective in producing a dose dependent PDT-induced decrease in viability in a dose-dependent manner. The most efficient was Indium (III) Phthalocyanine chloride, a metal substituted phthalocyanine. Conclusions The most efficient photosensitizers for PDT in melanoma cells were the phthalocyanines in terms of tumor cell photokilling and decreased dark toxicity. PMID:26528068

  17. Phthalocyanine photosensitizers as contrast agents for in vivo photoacoustic tumor imaging

    PubMed Central

    Attia, Amalina Bte Ebrahim; Balasundaram, Ghayathri; Driessen, Wouter; Ntziachristos, Vasilis; Olivo, Malini

    2015-01-01

    There is a need for contrast agents for non-invasive diagnostic imaging of tumors. Herein, Multispectral Optoacoustic Tomography (MSOT) was employed to evaluate phthalocyanines commonly used in photodynamic therapy as photoacoustic contrast agents. We studied the photoacoustic activity of three water-soluble phthalocyanine photosensitizers: phthalocyanine tetrasulfonic acid (PcS4), Zn(II) phthalocyanine tetrasulfonic acid (ZnPcS4) and Al(III) phthalocyanine chloride tetrasulfonic acid (AlPcS4) in phantom and in tumor-bearing mice to investigate the biodistribution and fate of the phthalocyanines in the biological tissues. PcS4 was observed to grant good contrast between the different reticuloendothelial organs and accumulate in the tumor within an hour of post-administration. ZnPcS4 and AlPcS4 offered little contrast in photoacoustic signals between the organs. PcS4 is a promising photoacoustic contrast agent and can be exploited as a photodiagnostic agent. PMID:25780748

  18. The quest for biocompatible phthalocyanines for molecular imaging: Photophysics, relaxometry and cytotoxicity studies.

    PubMed

    Pinto, Sara M A; Tomé, Vanessa A; Calvete, Mário J F; Pereira, Mariette M; Burrows, Hugh D; Cardoso, Ana M S; Pallier, Agnès; C A Castro, M Margarida; Tóth, Éva; Geraldes, Carlos F G C

    2016-01-01

    Water soluble phthalocyanines bearing either four PEG500 or four choline substituents in the macrocyclic structure, as well as their Zn(II) and Mn(III) complexes were synthesized. The metal-free and Zn(II) complexes present relatively high fluorescence quantum yields (up to 0.30), while the Mn(III) complexes show no fluorescence as a consequence of rapid non-radiative deactivation of the Mn(III) phthalocyanine excited states through low-lying metal based or charge-transfer states. The effect of DMSO on the aggregation of the phthalocyanines was studied. It was not possible to obtain the Mn(II) complexes by reduction of the corresponding Mn(III) complexes due to the presence of electron donating substituents at the periphery of the phthalocyanines. The (1)H NMRD plots of the PEG500 and choline substituted Mn(III)-phthalocyanine complexes are typical of self-aggregated Mn(III) systems with r1 relaxivities of 4.0 and 5.7mM(-1)s(-1) at 20MHz and 25°C. The Mn(III)-phthalocyanine-PEG4 complex shows no significant cytotoxicity to HeLa cell cultures after 2h of incubation up to 2mM concentration. After 24h of cell exposure to the compound, significant toxicity was observed for all the concentrations tested with IC50 of 1.105mM. PMID:26583704

  19. Photophysical property of a polymeric nanoparticle loaded with an aryl benzyl ester silicon (IV) phthalocyanine

    NASA Astrophysics Data System (ADS)

    Pan, Sujuan; Ma, Dongdong; Chen, Xiuqin; Wang, Yuhua; Yang, Hongqin; Peng, Yiru

    2014-09-01

    Because of their excellent near-infrared (NIR) optical properties, phthalocyanines (Pcs) have been regarded as promising therapy agents for fluorescence image-guided drug delivery and noninvasive treatment of tumors by photodynamic therapy (PDT). Nevertheless, phthalocyanines are substantially limited in clinical applications owing to their poor solubility, aggregation and insufficient selectivity for cancer cells. To address these issues, we have developed a novel dendrimer-based theranostic nanoparticle for tumor-targeted delivery of phthalocyanine. The preparation procedure involved the modification of the silicon (IV) phthalocyanine molecule with a dendritic axially substitution, which significantly enhances their photophysical property. In order to improve biocompatibility and tumor-targeted delivery, the hydrophobic dendritic phthalocyanine was encapsulated by diblock amphiphilic copolymer poly (ethylene glycol)-poly (Epsilon-caprolactone) (MPEG-PCL) to form a polymeric nanoparticle. The polymeric nanoparticle is spherical with a diameter at about 90 nm. The photophysical property of the polymeric nanoparticle was studied by UV/Vis and fluorescence spectroscopic methods. Compared with the free dendritic phthalocyanine, the Q band of the polymeric nanoparticle was red-shifted, and the fluorescence intensity decreased. Furthermore, the polymeric nanoparticle has a relatively high loading amount and encapsulation rate. Therefore, the polymeric nanoparticle would be a promising third-generation photosensitizer (PS) for PDT.

  20. Interaction of Phosphatidylserine-Phosphatidylcholine Liposomes with Sickle Erythrocytes

    PubMed Central

    Schwartz, Robert S.; Düzgüne?, Nejat; Chiu, Danny Tsun-Yee; Lubin, Bertram

    1983-01-01

    The sickle erythrocyte (RBC) is a pathologic RBC that contains multiple membrane abnormalities. Some of these abnormalities have been implicated in the pathophysiology of vasoocclusive crises characteristic of sickle cell disease; others have yet to be defined in terms of their clinical significance. Recent information has shown that sickle RBC adhere abnormally to cultured endothelial cells yet little is known about the ways in which sickle cells interact with model membranes of defined size and lipid composition. We investigated this phenomenon by interacting sickle RBC with artificial lipid vesicles (liposomes) containing acidic phospholipids. Our results demonstrate that sickle disease (hemoglobin SS) RBC bind more of these liposomes than do normal or sickle trait (hemoglobin AS) RBC and that these differences are accentuated by hypoxia-induced sickling. Binding of liposome phospholipid to sickled RBC was not attributable to phospholipid exchange between liposomes and RBC and was consistent with a mechanism involving both membrane fusion and a stable reversible adhesion of liposomes to the RBC membrane. Investigations into the mechanism(s) underlying increased liposome binding to sickled RBC suggested that the known reversible translocation of aminophospholipids, phosphatidylserine (PS) and phosphatidyl-ethanolamine (PE), from the inner to the outer leaflet of the reversibly sickled RBC (RSC) plasma membrane during sickling may be a component of increased liposome binding to RSC. This idea was supported from results of experiments in which normal RBC were treated with diamide resulting in the expression of outer leaflet PE and PS and a stimulation of liposome binding to these cells. However, sickle RBC separated according to cell density on stractan gradients showed that irreversibly sickled RBC (ISC) were less capable of liposome binding than were discoid RSC. Since ISC are known to contain elevated levels of outer leaflet aminophospholipids, such a result suggests that other changes in the plasma membrane of sickle cells, in addition to phospholipid reorganization, are probably involved in enhanced liposome binding to these cells. In other experiments, we showed that liposomes containing l-phenylalanine were capable of delivering this antisickling agent into intact sickle RBC as demonstrated by the partial inhibition of hypoxia-induced sickling in vitro. Our results suggest that liposomes can be used as sensitive probes for investigating changes in RBC membrane properties, especially those that affect intermembrane interactions, and that liposomal transport systems may have significant implications in the therapy of sickle cell disease. PMID:6408122

  1. Rapid Spontaneous Assembly of Single Component Liposomes

    E-print Network

    P. Sunthar; Sopan M. Phapal

    2015-05-08

    We present a mechanism and show two variants of a method where the average diameter of spontaneously (barrier-free) assembled single component unilamellar liposomes is intrinsic, in agreement with Helfrich's theory. It depends only on the temperature and the lipid type, eliminating kinetic effects or external forcing normally observed. This provides the first pure system to study the self-assembly of vesicle forming components, and with a natural length scale it may have an implication for vesicle size selection under pre-biotic conditions.

  2. Analysis of individual lipoproteins and liposomes

    SciTech Connect

    Robbins, D.L.; Keller, R.A.; Nolan, J.P.

    1997-08-01

    We describe the application of single molecule detection (SMD) technologies for the analysis of natural (serum lipoproteins) and synthetic (liposomes) transport systems. The need for advanced analytical procedures of these complex and important systems is presented with the specific enhancements afforded by SMD with flowing sample streams. In contrast to bulk measurements which yield only average values, measurement of individual species allows creation of population histograms from heterogeneous samples. The data are acquired in minutes and the analysis requires relatively small sample quantities. Preliminary data are presented from the analysis of low density lipoprotein, and multilamellar and unilamellar vesicles.

  3. Spectroscopic studies of alpha tocopherol interaction with a model liposome and its influence on oxidation dynamics

    NASA Astrophysics Data System (ADS)

    Krilov, Dubravka; Kosovi?, Marin; Serec, Kristina

    2014-08-01

    The influence of ?-tocopherol on the surface conformation of liposome, as a model component of lipoproteins, and its role in oxidation process were studied. FT-IR spectra from suspensions of neat liposome, mixtures of liposome and ?-tocopherol and liposome with incorporated ?-tocopherol were analyzed. When ?-tocopherol was incorporated into liposome, intensities of some bands were decreased or increased in comparison with the spectra of liposome and ?-tocopherol mixture. These changes reflect the different localization of ?-tocopherol in two types of liposome suspensions. The oxidation of liposome suspensions was initiated by addition of cupric ions. After prolonged oxidation, the differences in FT-IR spectra of oxidized samples were recorded. Differences were observed in comparison with spectra of native and oxidized liposomes were analyzed. The rate of oxidation was measured by EPR oximetry. Oxidation was generally very slow, but faster in liposome without ?-tocopherol, indicating the protective role of ?-tocopherol against liposome oxidation. On the other hand, liposome suspensions with EDTA in the buffer were not oxidized at all, while those with ?-tocopherol and liposome mixture were only slightly oxidized. In this case the consumption of oxygen was the result of liposome oxidation supported by ?-tocopherol. These results reflect the ambivalent role of ?-tocopherol in liposome oxidation, similarly to findings in studies of lipoprotein oxidation.

  4. Giant ferromagnetic ? -d interaction in a phthalocyanine molecule

    NASA Astrophysics Data System (ADS)

    Murakawa, H.; Kanda, A.; Ikeda, M.; Matsuda, M.; Hanasaki, N.

    2015-08-01

    We experimentally demonstrate that the ferromagnetic intramolecular ? -d interaction works between an itinerant ? -electron spin and a localized d -electron's magnetic moment in the iron-phthalocyanine (Pc) molecular compound. The evaluation of the hidden ? -d coupling is achieved by preparing the isolated Fe(Pc )(CN ) 2 molecular solution with unpaired ? - and d -electron spins, which is generated through the oxidization by iodine bromide (IBr). The monotonic increase of the magnetization with IBr addition and the saturation value of the Curie constant indicate the ferromagnetic ? -d coupling. Furthermore, through the magnetization measurements of the single crystals of neutral ? radical Fe(Pc )(CN ) 2.2 CHCl3 , we reveal that the on-site ? -d interaction in Fe(Pc )(CN ) 2 is extremely large (J? d/kB>500 K ) among those in other molecular materials.

  5. Anomalous photoelectric emission from Ag on zinc-phthalocyanine film

    SciTech Connect

    Tanaka, Senku; Otani, Tomohiro; Fukuzawa, Ken; Hiromitsu, Ichiro; Ogawa, Koji; Azuma, Junpei; Yamamoto, Isamu; Takahashi, Kazutoshi; Kamada, Masao

    2014-05-12

    Photoelectric emission from organic and metal thin films is generally observed with irradiation of photon energy larger than 4?eV. In this paper, however, we report photoelectric emission from Ag on a zinc-phthalocyanine (ZnPc) layer at a photon energy of 3.4?eV. The threshold energy for this photoelectric emission is much smaller than the work function of Ag estimated by conventional photoelectron spectroscopy. The photoelectric emission by low-energy photons is significant for Ag thicknesses of less than 1?nm. Photoelectron spectroscopy and morphological study of the Ag/ZnPc suggest that the anomalous photoelectric emission from the Ag surface is caused by a vacuum level shift at the Ag/ZnPc interface and by surface plasmons of the Ag nanoparticles.

  6. Correlation dependences in infrared spectra of metal phthalocyanines

    SciTech Connect

    Ziminov, A. V. Ramsh, S. M.; Terukov, E. I.; Trapeznikova, I. N.; Shamanin, V. V.; Yurre, T. A.

    2006-10-15

    Metal-phthalocyanine (MPc) complexes CoPc, CuPc, CuPcCl{sub 15-16}, CuPc(4-NO{sub 2}-5-OPh){sub 4}, CuPc(4-CH{sub 2}-phthalimide){sub 4}, CuPc(4-NO{sub 2}-5-NHPhBr){sub 4}, PdPc, MgPc, PbPc, EuOAcPc, SmOAcPc, SmPc{sub 2}, and YOAcPc were obtained and studied using IR spectroscopy. The correlation between the shift of the absorption band maximum in the range of 1100-1600 cm{sup -1} and the atomic radius of template metal is found. It is shown that the planarity of the macrocycle of peripherally substituted CuPc can be estimated from the characteristics of the IR spectra.

  7. Phthalocyanines, porphycenes, and corroles: nonlinear optical properties and ultrafast dynamics

    NASA Astrophysics Data System (ADS)

    Venugopal Rao, S.

    2012-06-01

    Phthalocyanines, Porphycenes, and Corroles are macromolecules with large number of delocalized ? electrons. The magnitude of response of these loosely bound electrons to short laser pulses determines their applicability in various applications such as optical limiting, optical single processing etc. A meticulous understanding of their performance using different pulses and at various wavelengths is indispensable to extract their accurate potential. Herein, we try to compare and contrast the nonlinear optical performance of these molecules in the ns, ps, and fs time domains. The nonlinear optical coefficients and figure of merits were estimated from the Z-scan data using different pulses over a range of input wavelengths. Ultrafast excited state dynamics of these molecules were studied using the pump-probe and degenerate four wave mixing techniques. A review of all the results obtained is presented.

  8. Dissociation of cerium(III) and neodymium(III) phthalocyanines

    NASA Astrophysics Data System (ADS)

    Lomova, T. N.

    2015-07-01

    The kinetics of dissociation of phthalocyanine complexes with cerium(III) and neodymium(III) (X)LnPc (X = Cl-, Br-, AcO-) under the action of acetic acid in ethanol with isolation of the macrocyclic ligand depending on the temperature was studied. The kinetic equations with the numerical values of rate constants, activation parameters, and the stoichiometric mechanisms with the limiting simple reaction between the nonionized AcOH molecule and (phthalocyaninato)lanthanide(III) in the axially coordinated ((X)LnPc, cerium complexes) or axially ionized ([(AcOH)LnPc]+X-, neodymium complexes) state were derived by solving the direct and inverse problems. As shown by a comparative analysis of quantitative kinetic data, the state is determined by the electronic structure of the metal cation and the mutual effect of the axial and equatorial ligands in the first coordination sphere.

  9. Complexation of anionic liposomes with spherical polycationic brushes.

    PubMed

    Sybachin, Andrey V; Ballauff, Matthias; Kesselman, Ellina; Schmidt, Judith; Talmon, Yeshayahu; Tsarkova, Larisa; Menger, Fredric M; Yaroslavov, Alexander A

    2011-05-01

    Spherical polycationic brushes, consisting of polystyrene particles with linear cationic macromolecules grafted onto their surfaces, were electrostatically complexed with small unilamellar anionic liposomes. Complexation was monitored using a multimethod approach that included laser electrophoresis, dynamic light scattering, fluorescence, cryogenic transmission electron microscopy, and conductivity. Liposomes adsorb onto the outer edges of the brushes rather than penetrate into their dense polycationic layer. The integrity of the liposomes remains unaltered when the liposomes reside on the polycationic brushes. The resulting complexes (roughly 40 liposomes per brush) do not dissociate into their components upon exposure to physiological solutions. The system is potentially useful in that liposomes are gathered into well-defined clusters with a high encapsulating potential. Multicomponent constructs can be easily prepared if polycationic brushes are allowed to bind to a mixture of liposomes that encapsulate different guests. This work provides an example of "systems chemistry" whereby as many as eight components, each with its own particular location and function (i.e., polystyrene core, polycationic graft, egg lecithin, cardiolipin, two fluorescent dyes, water, and buffer), collectively self-assemble. PMID:21449568

  10. Inhalation Treatment of Pulmonary Fibrosis by Liposomal Prostaglandin E2

    PubMed Central

    Ivanova, Vera; Garbuzenko, Olga B.; Reuhl, Kenneth R.; Reimer, David C.; Pozharov, Vitaly P.; Minko, Tamara

    2013-01-01

    Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and often fatal form of interstitial lung disease. We hypothesized that the local pulmonary delivery of prostaglandin E2 (PGE2) by liposomes can be used for the effective treatment of IPF. To test this hypothesis, we used a murine model of bleomycin-induced IPF to evaluate liposomes which carries PGE2 topically to the lungs. Animal survival, body weight, hydroxyproline content in the lungs, lung histology, mRNA and protein expression were studied. After inhalation delivery, liposomes accumulated predominately in the lungs. In contrast, intravenous administration led to the accumulation of liposomes mainly in kidney, liver, and spleen. Liposomal PGE2 prevented the disturbances in the expression of many genes associated with the development of IPF, substantially restricted inflammation and fibrotic injury in the lung tissues, prevented decrease in body weight, limited hydroxyproline accumulation in the lungs and virtually eliminated mortality of animals after intratracheal instillation of bleomycin. In summary, our data provide evidence that pulmonary fibrosis can be effectively treated by the inhalation administration of liposomal form of PGE2 into the lungs. The results of the present investigations make the liposomal form of PGE2 an attractive drug for the effective inhalation treatment of idiopathic pulmonary fibrosis. PMID:23228437

  11. HPLC analysis as a tool for assessing targeted liposome composition.

    PubMed

    Oswald, Mira; Platscher, Michael; Geissler, Simon; Goepferich, Achim

    2016-01-30

    Functionalized phospholipids are indispensable materials for the design of targeted liposomes. Control over the quality and quantity of phospholipids is thereby key in the successful development and manufacture of such formulations. This was also the case for a complex liposomal preparation composed of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), Cholesterol (CHO), 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethylene glycol)-2000] (DSPE-PEG2000). To this end, an RP-HPLC method was developed. Detection was done via evaporative light scattering (ELS) for liposomal components. The method was validated for linearity, precision, accuracy, sensitivity and robustness. The liposomal compounds had a non-linear quadratic response in the concentration range of 0.012-0.42mg/ml with a correlation coefficient greater than 0.99 with an accuracy of method confirmed 95-105% of the theoretical concentration. Furthermore, degradation products from the liposomal formulation could be identified. The presented method was successfully implemented as a control tool during the preparation of functionalized liposomes. It underlined the benefit of HPLC analysis of phospholipids during liposome preparation as an easy and rapid control method for the functionalized lipid at each preparation step as well as for the quantification of all components. PMID:26570988

  12. Liposome/water lipophilicity: methods, information content, and pharmaceutical applications.

    PubMed

    van Balen, Georgette Plemper; Martinet, Catherine a Marca; Caron, Giulia; Bouchard, Géraldine; Reist, Marianne; Carrupt, Pierre-Alain; Fruttero, Roberta; Gasco, Alberto; Testa, Bernard

    2004-05-01

    This review discusses liposome/water lipophilicity in terms of the structure of liposomes, experimental methods, and information content. In a first part, the structural properties of the hydrophobic core and polar surface of liposomes are examined in the light of potential interactions with solute molecules. Particular emphasis is placed on the physicochemical properties of polar headgroups of lipids in liposomes. A second part is dedicated to three useful methods to study liposome/water partitioning, namely potentiometry, equilibrium dialysis, and (1)H-NMR relaxation rates. In each case, the principle and limitations of the method are discussed. The next part presents the structural information encoded in liposome/water lipophilicity, in other words the solutes' structural and physicochemical properties that determine their behavior and hence their partitioning in such systems. This presentation is based on a comparison between isotropic (i.e., solvent/water) and anisotropic (e.g., liposome/water) systems. An important factor to be considered is whether the anisotropic lipid phase is ionized or not. Three examples taken from the authors' laboratories are discussed to illustrate the factors or combinations thereof that govern liposome/water lipophilicity, namely (a) hydrophobic interactions alone, (b) hydrophobic and polar interactions, and (c) conformational effects plus hydrophobic and ionic interactions. The next part presents two studies taken from the field of QSAR to exemplify the use of liposome/water lipophilicity in structure-disposition and structure-activity relationships. In the conclusion, we summarize the interests and limitations of this technology and point to promising developments. PMID:14994366

  13. Giant Liposome Preparation for Imaging and Patch-Clamp Electrophysiology

    PubMed Central

    Collins, Marcus D.; Gordon, Sharona E.

    2013-01-01

    The reconstitution of ion channels into chemically defined lipid membranes for electrophysiological recording has been a powerful technique to identify and explore the function of these important proteins. However, classical preparations, such as planar bilayers, limit the manipulations and experiments that can be performed on the reconstituted channel and its membrane environment. The more cell-like structure of giant liposomes permits traditional patch-clamp experiments without sacrificing control of the lipid environment. Electroformation is an efficient mean to produce giant liposomes >10 ?m in diameter which relies on the application of alternating voltage to a thin, ordered lipid film deposited on an electrode surface. However, since the classical protocol calls for the lipids to be deposited from organic solvents, it is not compatible with less robust membrane proteins like ion channels and must be modified. Recently, protocols have been developed to electroform giant liposomes from partially dehydrated small liposomes, which we have adapted to protein-containing liposomes in our laboratory. We present here the background, equipment, techniques, and pitfalls of electroformation of giant liposomes from small liposome dispersions. We begin with the classic protocol, which should be mastered first before attempting the more challenging protocols that follow. We demonstrate the process of controlled partial dehydration of small liposomes using vapor equilibrium with saturated salt solutions. Finally, we demonstrate the process of electroformation itself. We will describe simple, inexpensive equipment that can be made in-house to produce high-quality liposomes, and describe visual inspection of the preparation at each stage to ensure the best results. PMID:23851612

  14. Enzymatic action of phospholipase A? on liposomal drug delivery systems.

    PubMed

    Hansen, Anders H; Mouritsen, Ole G; Arouri, Ahmad

    2015-08-01

    The overexpression of secretory phospholipase A2 (sPLA2) in tumors has opened new avenues for enzyme-triggered active unloading of liposomal antitumor drug carriers selectively at the target tumor. However, the effects of the liposome composition, drug encapsulation, and tumor microenvironment on the activity of sPLA2 are still not well understood. We carried out a physico-chemical study to characterize the sPLA2-assisted breakdown of liposomes using dye-release assays in the context of drug delivery and under physiologically relevant conditions. The influence of temperature, lipid concentration, enzyme concentration, and drug loading on the hydrolysis of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC, Tm=42°C) liposomes with snake venom sPLA2 was investigated. The sensitivity of human sPLA2 to the liposome composition was checked using binary lipid mixtures of phosphatidylcholine (PC) and phosphatidylglycerol (PG) phospholipids with C14 and C16 acyl chains. Increasing temperature (36-41°C) was found to mainly shorten the enzyme lag-time, whereas the effect on lipid hydrolysis rate was modest. The enzyme lag-time was also found to be inversely dependent on the lipid-to-enzyme ratio. Drug encapsulation can alter the hydrolysis profile of the carrier liposomes. The activity of human sPLA2 was highly sensitive to the phospholipid acyl-chain length and negative surface charge density of the liposomes. We believe our work will prove useful for the optimization of sPLA2-susceptible liposomal formulations as well as will provide a solid ground for predicting the hydrolysis profile of the liposomes in vivo at the target site. PMID:26056930

  15. Biological Hydrogels Formed by Swollen Multilamellar Liposomes.

    PubMed

    Cheng, Chih-Yang; Wang, Ting-Yu; Tung, Shih-Huang

    2015-12-15

    The self-assembly of lecithin-bile salt mixtures in solutions has long been an important research topic, not only because they are both biosurfactants closely relevant to physiological functions but also for the potential biomedical applications. In this paper, we report an unusual biological hydrogel formed by mixing bile salts and lecithin at low bile salt/lecithin molar ratios (B0) in water. The gel can be prepared at a total lipid concentration as low as ?15 wt %, and the solidlike property of the solutions was confirmed by dynamic rheological measurements. We used cryo-TEM and SAXS/SANS techniques to probe the self-assembled structure and clearly evidence that the gel is made up of jammed swollen multilamellar vesicles (liposomes), instead of typical fibrous networks found in conventional gels. A mechanism-based on the strong repulsion between bilayers due to the incorporation of negatively charged bile salts is proposed to explain the swelling of the liposomes. In addition to gel, a series of phases, including viscoelastic, gel-like, and low-viscosity fluids, can be created by increasing B0. Such a variety of phase behaviors are caused by the transformation of bilayers into cylindrical and spheroidal micelles upon the change of the effective molecular geometry with B0. PMID:26574777

  16. Droplet-Based Production of Liposomes

    NASA Technical Reports Server (NTRS)

    Ackley, Donald E.; Forster, Anita

    2009-01-01

    A process for making monodisperse liposomes having lipid bilayer membranes involves fewer, simpler process steps than do related prior methods. First, a microfluidic, cross junction droplet generator is used to produce vesicles comprising aqueous solution droplets contained in single layer lipid membranes. The vesicles are collected in a lipid-solvent mix that is at most partially soluble in water and is less dense than is water. A layer of water is dispensed on top of the solvent. By virtue of the difference in densities, the water sinks to the bottom and the solvent floats to the top. The vesicles, which have almost the same density as that of water, become exchanged into the water instead of floating to the top. As there are excess lipids in the solvent solution, in order for the vesicles to remain in the water, the addition of a second lipid layer to each vesicle is energetically favored. The resulting lipid bilayers present the hydrophilic ends of the lipid molecules to both the inner and outer membrane surfaces. If lipids of a second kind are dissolved in the solvent in sufficient excess before use, then asymmetric liposomes may be formed.

  17. Studies on precellular evolution - The encapsulation of polyribonucleotides by liposomes

    NASA Technical Reports Server (NTRS)

    Baeza, I.; Ibanez, M.; Santiago, J. C.; Wong, C.; Lazcano, A.

    1986-01-01

    Liposomes have been suggested as possible models of precellular systems formed in the early Archean earth from lipids of nonenzymatic origin. Since it is generally accepted that RNA molecules preceded double-stranded DNA molecules as genetic material, the encapsulation of polyribonucleotides within liposomes (made from dipalmitoyl phosphatidylcholine and from egg yolk phosphatidylcholine) was studied. Quantitative determinations show that approximately 50 percent of the available lipids form liposomes, and that up to 5 percent of the polyribonucleotides can be entrapped by them. Also studied was the encapsulation of polyribonucleotides in the presence of urea and cyanamide and of Zn(2+) and Pb(2+).

  18. Liposomal Drug Products: A Quality by Design Approach

    NASA Astrophysics Data System (ADS)

    Xu, Xiaoming

    Quality by Design (QbD) principles has been applied to the development of two liposomal formulations, containing a hydrophilic small molecule therapeutic (Tenofovir) and a protein therapeutic (superoxide dismutase). The goal of the research is to provide critical information on 1) how to reduce the preparation variability in liposome formulations, and 2) how to increase drug encapsulation inside liposomes to reduce manufacturing cost. Most notably, an improved liposome preparation method was developed which increased the encapsulation efficiency of hydrophilic molecules. In particular, this method allows for very high encapsulation efficiency. For example, encapsulation efficiencies of up to 50% have been achieved, whereas previously only 20% or less have been reported. Another significant outcome from this research is a first principle mathematical model to predict the encapsulation efficiency of hydrophilic drugs in unilamellar liposomes. This mathematical model will be useful in: formulation development to rapidly achieve optimized formulations; comparison of drug encapsulation efficiencies of liposomes prepared using different methods; and assisting in the development of suitable process analytical technologies to achieve real-time monitoring and control of drug encapsulation during manufacturing. A novel two-stage reverse dialysis in vitro release testing method has also been developed for passively targeted liposomes, which uses the first stage to mimic the circulation of liposomes in the body and the second stage to imitate the drug release process at the target. The developed in vitro release testing method can be used to distinguish formulations with varied compositions for quality control testing purposes. This developed method may pave the way to the development of more biorelevant quality control testing methods for liposomal drug products in the future. The QbD case studies performed in this research are examples of how this approach can be used to obtain design space for liposome products to achieve the desired in vivo product performance criteria. From an industrial perspective, this study provides an in-depth understanding of the parameters (risks) involved in liposome formulation and processing. From a regulatory perspective, the development of QbD principles for liposomal drug products will facilitate their regulation assuring safety and efficacy of these complex delivery systems.

  19. In vivo and in vitro evaluation of octyl methoxycinnamate liposomes

    PubMed Central

    Varjão Mota, Aline de Carvalho; Faria de Freitas, Zaida Maria; Júnior, Eduardo Ricci; Dellamora-Ortiz, Gisela Maria; Santos-Oliveira, Ralph; Ozzetti, Rafael Antonio; Vergnanini, André Luiz; Ribeiro, Vanessa Lira; Silva, Ronald Santos; dos Santos, Elisabete Pereira

    2013-01-01

    Solar radiation causes damage to human skin, and photoprotection is the main way to prevent these harmful effects. The development of sunscreen formulations containing nanosystems is of great interest in the pharmaceutical and cosmetic industries because of the many potential benefits. This study aimed to develop and evaluate an octyl methoxycinnamate (OMC) liposomal nanosystem (liposome/OMC) to obtain a sunscreen formulation with improved safety and efficacy by retaining OMC for longer on the stratum corneum. Methods The liposome/OMC nanostructure obtained was tested for enzymatic hydrolysis with lipase from Rhizomucor miehei and biodistribution with liposomes labeled with technetium-99m. The liposome/OMC formulation was then incorporated in a gel formulation and tested for ocular irritation using the hen’s egg test-chorio-allantoic membrane (HET-CAM) assay, in vitro and in vivo sun protection factor, in vitro release profile, skin biometrics, and in vivo tape stripping. Results The liposome/OMC nanosystem was not hydrolyzed from R. miehei by lipase. In the biodistribution assay, the liposome/OMC formulation labeled with technetium-99m had mainly deposited in the skin, while for OMC the main organ was the liver, showing that the liposome had higher affinity for the skin than OMC. The liposome/OMC formulation was classified as nonirritating in the HET-CAM test, indicating good histocompatibility. The formulation containing liposome/OMC had a higher in vivo solar photoprotection factor, but did not show increased water resistance. Inclusion in liposomes was able to slow down the release of OMC from the formulation, with a lower steady-state flux (3.9 ± 0.33 ?g/cm2/hour) compared with the conventional formulation (6.3 ± 1.21 ?g/cm2/hour). The stripping method showed increased uptake of OMC in the stratum corneum, giving an amount of 22.64 ± 7.55 ?g/cm2 of OMC, which was higher than the amount found for the conventional formulation (14.57 ± 2.30 ?g/cm2). Conclusion These results indicate that liposomes are superior carriers for OMC, and confer greater safety and efficacy to sunscreen formulations. PMID:24376350

  20. External beam radiotherapy synergizes ¹??Re-liposome against human esophageal cancer xenograft and modulates ¹??Re-liposome pharmacokinetics.

    PubMed

    Chang, Chih-Hsien; Liu, Shin-Yi; Chi, Chih-Wen; Yu, Hsiang-Lin; Chang, Tsui-Jung; Tsai, Tung-Hu; Lee, Te-Wei; Chen, Yu-Jen

    2015-01-01

    External beam radiotherapy (EBRT) treats gross tumors and local microscopic diseases. Radionuclide therapy by radioisotopes can eradicate tumors systemically. Rhenium 188 ((188)Re)-liposome, a nanoparticle undergoing clinical trials, emits gamma rays for imaging validation and beta rays for therapy, with biodistribution profiles preferential to tumors. We designed a combinatory treatment and examined its effects on human esophageal cancer xenografts, a malignancy with potential treatment resistance and poor prognosis. Human esophageal cancer cell lines BE-3 (adenocarcinoma) and CE81T/VGH (squamous cell carcinoma) were implanted and compared. The radiochemical purity of (188)Re-liposome exceeded 95%. Molecular imaging by NanoSPECT/CT showed that BE-3, but not CE81T/VGH, xenografts could uptake the (188)Re-liposome. The combination of EBRT and (188)Re-liposome inhibited tumor regrowth greater than each treatment alone, as the tumor growth inhibition rate was 30% with EBRT, 25% with (188)Re-liposome, and 53% with the combination treatment at 21 days postinjection. Combinatory treatment had no additive adverse effects and significant biological toxicities on white blood cell counts, body weight, or liver and renal functions. EBRT significantly enhanced the excretion of (188)Re-liposome into feces and urine. In conclusion, the combination of EBRT with (188)Re-liposome might be a potential treatment modality for esophageal cancer. PMID:26056445

  1. External beam radiotherapy synergizes 188Re-liposome against human esophageal cancer xenograft and modulates 188Re-liposome pharmacokinetics

    PubMed Central

    Chang, Chih-Hsien; Liu, Shin-Yi; Chi, Chih-Wen; Yu, Hsiang-Lin; Chang, Tsui-Jung; Tsai, Tung-Hu; Lee, Te-Wei; Chen, Yu-Jen

    2015-01-01

    External beam radiotherapy (EBRT) treats gross tumors and local microscopic diseases. Radionuclide therapy by radioisotopes can eradicate tumors systemically. Rhenium 188 (188Re)-liposome, a nanoparticle undergoing clinical trials, emits gamma rays for imaging validation and beta rays for therapy, with biodistribution profiles preferential to tumors. We designed a combinatory treatment and examined its effects on human esophageal cancer xenografts, a malignancy with potential treatment resistance and poor prognosis. Human esophageal cancer cell lines BE-3 (adenocarcinoma) and CE81T/VGH (squamous cell carcinoma) were implanted and compared. The radiochemical purity of 188Re-liposome exceeded 95%. Molecular imaging by NanoSPECT/CT showed that BE-3, but not CE81T/VGH, xenografts could uptake the 188Re-liposome. The combination of EBRT and 188Re-liposome inhibited tumor regrowth greater than each treatment alone, as the tumor growth inhibition rate was 30% with EBRT, 25% with 188Re-liposome, and 53% with the combination treatment at 21 days postinjection. Combinatory treatment had no additive adverse effects and significant biological toxicities on white blood cell counts, body weight, or liver and renal functions. EBRT significantly enhanced the excretion of 188Re-liposome into feces and urine. In conclusion, the combination of EBRT with 188Re-liposome might be a potential treatment modality for esophageal cancer. PMID:26056445

  2. Electronic structure at transition metal phthalocyanine-transition metal oxide interfaces: Cobalt phthalocyanine on epitaxial MnO films

    SciTech Connect

    Glaser, Mathias; Peisert, Heiko Adler, Hilmar; Aygül, Umut; Ivanovic, Milutin; Chassé, Thomas; Nagel, Peter; Merz, Michael; Schuppler, Stefan

    2015-03-14

    The electronic structure of the interface between cobalt phthalocyanine (CoPc) and epitaxially grown manganese oxide (MnO) thin films is studied by means of photoemission (PES) and X-ray absorption spectroscopy (XAS). Our results reveal a flat-lying adsorption geometry of the molecules on the oxide surface which allows a maximal interaction between the ?-system and the substrate. A charge transfer from MnO, in particular, to the central metal atom of CoPc is observed by both PES and XAS. The change of the shape of N-K XAS spectra at the interface points, however, to the involvement of the Pc macrocycle in the charge transfer process. As a consequence of the charge transfer, energetic shifts of MnO related core levels were observed, which are discussed in terms of a Fermi level shift in the semiconducting MnO films due to interface charge redistribution.

  3. Thermal and photic stimuli-responsive polydiacetylene liposomes with reversible fluorescence

    NASA Astrophysics Data System (ADS)

    Yan, Xiaojuan; An, Xueqin

    2013-06-01

    A novel reversible fluorescent switch of a polydiacetylene liposome (PDA liposome) was realized by alternating heating and UV irradiation processes. The reversible fluorescence switching of the PDA liposome was mainly caused by the microstructural changes of the PDA backbone in the PDA liposomes under the alternating conditions of heating and UV irradiation.A novel reversible fluorescent switch of a polydiacetylene liposome (PDA liposome) was realized by alternating heating and UV irradiation processes. The reversible fluorescence switching of the PDA liposome was mainly caused by the microstructural changes of the PDA backbone in the PDA liposomes under the alternating conditions of heating and UV irradiation. Electronic supplementary information (ESI) available: The preparation method, cytotoxicity and biocompatibility assays and HREM images of PDA liposomes. See DOI: 10.1039/c3nr00954h

  4. Platelets directed liposomes for the delivery of streptokinase: development and characterization.

    PubMed

    Vaidya, Bhuvaneshwar; Agrawal, G P; Vyas, Suresh P

    2011-12-18

    The present study was aimed to study the effect of RGD peptide conjugation on the bio-distribution behaviour of long circulatory liposomes in the thrombosed rat model. Further, thrombolysis study was also performed to evaluate the therapeutic activity of the prepared liposomes. Liposomes were prepared by film hydration method and peptide was subsequently conjugated on the preformed liposomes using carbodiimide chemistry. Prepared liposomes were characterized for size and size distribution, entrapment efficiency and in vitro drug release. In vitro targeting ability of the liposomes was determined by platelets binding assay. In vivo studies were performed in the rat model containing human blood clot inoculated in the carotid artery. Results of the study showed that RGD peptide conjugated liposomes significantly accumulated to the site of blood clot and higher thrombolytic activity was observed with peptide modified liposomes as compared to plain streptokinase solution and long circulatory liposomes. PMID:22009110

  5. Effect of surface properties on liposomal siRNA delivery.

    PubMed

    Xia, Yuqiong; Tian, Jie; Chen, Xiaoyuan

    2016-02-01

    Liposomes are one of the most widely investigated carriers for siRNA delivery. The surface properties of liposomal carriers, including the surface charge, PEGylation, and ligand modification can significantly affect the gene silencing efficiency. Three barriers of systemic siRNA delivery (long blood circulation, efficient tumor penetration and efficient cellular uptake/endosomal escape) are analyzed on liposomal carriers with different surface charges, PEGylations and ligand modifications. Cationic formulations dominate siRNA delivery and neutral formulations also have good performance while anionic formulations are generally not proper for siRNA delivery. The PEG dilemma (prolonged blood circulation vs. reduced cellular uptake/endosomal escape) and the side effect of repeated PEGylated formulation (accelerated blood clearance) were discussed. Effects of ligand modification on cationic and neutral formulations were analyzed. Finally, we summarized the achievements in liposomal siRNA delivery, outlined existing problems and provided some future perspectives. PMID:26695117

  6. Atmospheric-pressure guided streamers for liposomal membrane disruption

    SciTech Connect

    Svarnas, P.; Aleiferis, Sp.; Matrali, S. H.; Gazeli, K.; Clement, F.; Antimisiaris, S. G.

    2012-12-24

    The potential to use liposomes (LIPs) as a cellular model in order to study interactions of cold atmospheric-pressure plasma with cells is herein investigated. Cold atmospheric-pressure plasma is formed by a dielectric-barrier discharge reactor. Large multilamellar vesicle liposomes, consisted of phosphatidylcholine and cholesterol, are prepared by the thin film hydration technique, to encapsulate a small hydrophilic dye, i.e., calcein. The plasma-induced release of calcein from liposomes is then used as a measure of liposome membrane integrity and, consequently, interaction between the cold atmospheric plasma and lipid bilayers. Physical mechanisms leading to membrane disruption are suggested, based on the plasma characterization including gas temperature calculation.

  7. Bioreactor droplets from liposome-stabilized all-aqueous emulsions

    NASA Astrophysics Data System (ADS)

    Dewey, Daniel C.; Strulson, Christopher A.; Cacace, David N.; Bevilacqua, Philip C.; Keating, Christine D.

    2014-08-01

    Artificial bioreactors are desirable for in vitro biochemical studies and as protocells. A key challenge is maintaining a favourable internal environment while allowing substrate entry and product departure. We show that semipermeable, size-controlled bioreactors with aqueous, macromolecularly crowded interiors can be assembled by liposome stabilization of an all-aqueous emulsion. Dextran-rich aqueous droplets are dispersed in a continuous polyethylene glycol (PEG)-rich aqueous phase, with coalescence inhibited by adsorbed ~130-nm diameter liposomes. Fluorescence recovery after photobleaching and dynamic light scattering data indicate that the liposomes, which are PEGylated and negatively charged, remain intact at the interface for extended time. Inter-droplet repulsion provides electrostatic stabilization of the emulsion, with droplet coalescence prevented even for submonolayer interfacial coatings. RNA and DNA can enter and exit aqueous droplets by diffusion, with final concentrations dictated by partitioning. The capacity to serve as microscale bioreactors is established by demonstrating a ribozyme cleavage reaction within the liposome-coated droplets.

  8. Liposomes with polyribonucleotides as model of precellular systems

    NASA Technical Reports Server (NTRS)

    Baeza, Isabel; Ibanez, Miguel; Santiago, Carlos; Lazcano, Antonio; Arguello, Carlos

    1987-01-01

    Three types of liposomes were prepared under anoxic conditions: from dipalmitoyl phosphatidyl choline (DPPC), from egg yolk phosphatidyl choline (PC), and from PC with cholesterol (PC:Chol). These were used for encapsulation of poly(U) and poly(C). It was found that 36 to 70 percent of the available liposome lipids and 2 to 5 percent of the polyribonucleotides could be entrapped. An enhanced encapsulation of poly(U) and poly(C) by all three types of liposomes was observed in the presence of 0.001 to 0.01 M Zn(2+), with the effect being greatest with DPPC. The presence of 1.0 M urea inhibited the formation of PC liposomes.

  9. Antibacterial effect of cationic porphyrazines and anionic phthalocyanine and their interaction with plasmid DNA

    NASA Astrophysics Data System (ADS)

    Hassani, Leila; Hakimian, Fatemeh; Safaei, Elham; Fazeli, Zahra

    2013-11-01

    Resistance to antibiotics is a public health issue and identification of new antibacterial agents is one of the most important goals of pharmacological research. Among the novel developed antibacterial agents, porphyrin complexes and their derivatives are ideal candidates for use in medical applications. Phthalocyanines differ from porphyrins by having nitrogen atoms link the individual pyrrol units. The aza analogues of the phthalocyanines (azaPcs) such as tetramethylmetalloporphyrazines are heterocyclic Pc analogues. In this investigation, interaction of an anionic phthalocyanine (Cu(PcTs)) and two cationic tetrapyridinoporphyrazines including [Cu(2,3-tmtppa)]4+ and [Cu(3,4-tmtppa)]4+ complexes with plasmid DNA was studied using spectroscopic and gel electrophoresis methods. In addition, antibacterial effect of the complexes against Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria was investigated using dilution test method. The results indicated that both porphyrazines have significant antibacterial properties, but Cu(PcTs) has weak antibacterial effect. Compairing the binding of the phthalocyanine and the porphyrazines to DNA demonstrated that the interaction of cationic porphyrazines is stronger than the anionic phthalocyanine remarkably. The extent of hypochromicity and red shift of absorption spectra indicated preferential intercalation of the two porphyrazine into the base pairs of DNA helix. Gel electrophoresis result implied Cu(2,3-tmtppa) and Cu(3,4-tmtppa) are able to perform cleavage of the plasmid DNA. Consequently, DNA binding and cleavage might be one of the antibacterial mechanisms of the complexes.

  10. Technology of Liposomal Tiosens, Cifelin and Lysomustin for Industrial Purposes

    NASA Astrophysics Data System (ADS)

    Sanarova, E. V.; Kotova, E. A.; Lantsova, A. V.

    2012-02-01

    This work is devoted to the development of national antineoplastic drug (Tiosens, Cifelin, Lysomustin) liposomal dosage form (LDF) circuit technology and their manufacturing technology. In modern oncology liposomes, which are hollow phospholipid vesicles, are used as delivery systems protected drugs from biodegradation, and healthy cells from the toxic effect of chemotherapeutic agents. The technology of their production is stretching and multistage. It is also necessary to give consideration a lot of factors that influence on the finished product quality.

  11. Photosensitive liposomes as potential drug delivery vehicles for photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Morgan, Christopher G.; Mitchell, A. C.; Chowdhary, R. K.

    1991-11-01

    Light-sensitive liposomes incorporating a photochromic phospholipid (Bis-Azo PC) have been developed which exhibit light-activated release of entrapped contents and intervesicular fusion. The trapping and light-induced release of inorganic ions, fluorescent market dyes, and the antitumor drug methotrexate have been demonstrated. These results are discussed together with some of the potential therapeutic applications of light-sensitive liposomes.

  12. Protection of liposomal lipids against radiation induced oxidative damage.

    PubMed

    Konings, A W; Damen, J; Trieling, W B

    1979-04-01

    Liposomes were prepared from phospholipids extracted from biological membranes. A comparison was made between the peroxidation rate in handshake liposomes and in sonicated liposomes. The smaller sonicated liposomes were more vulnerable to peroxidation, probably because of the smaller radius of curvature, which results in a less dense packing of lipid molecules in the bilayer and a facilitated action of water radicals produced by the X-irradiation. High oxygen enhancement ratios were obtained, especially at low dose rates, suggesting the operation of slowly progressing chain reactions initiated by ionizing radiation. Three compounds were tested for their ability to protect the liposomal membranes against lipid peroxidation. The naturally occurring compounds reduced glutathione (GSH) and vitamin E(alpha-T) and the powerful radiation protector cysteamine (MEA). All three molecules could protect the liposomes against peroxidation. The membrane-soluble compound vitamin E was by far the most powerful. About 50 per cent protection was achieved by using 5 X 10(-6) M alpha-T, 10(-4) M GSH and 5 X 10(-4) M MEA. The fatty acid composition of the lipids altered drastically as a result of the irradiation. Arachidonic acid and docosahexanoic acid were the most vulnerable of the fatty acids. Very efficient protection of these polyunsaturated fatty acids could be obtained with relatively low concentrations of vitamin E built into the membranes. PMID:312791

  13. Peptide Anchor for Folate-Targeted Liposomal Delivery.

    PubMed

    Nogueira, Eugénia; Mangialavori, Irene C; Loureiro, Ana; Azoia, Nuno G; Sárria, Marisa P; Nogueira, Patrícia; Freitas, Jaime; Härmark, Johan; Shimanovich, Ulyana; Rollett, Alexandra; Lacroix, Ghislaine; Bernardes, Gonçalo J L; Guebitz, Georg; Hebert, Hans; Moreira, Alexandra; Carmo, Alexandre M; Rossi, Juan Pablo F C; Gomes, Andreia C; Preto, Ana; Cavaco-Paulo, Artur

    2015-09-14

    Specific folate receptors are abundantly overexpressed in chronically activated macrophages and in most cancer cells. Directed folate receptor targeting using liposomes is usually achieved using folate linked to a phospholipid or cholesterol anchor. This link is formed using a large spacer like polyethylene glycol. Here, we report an innovative strategy for targeted liposome delivery that uses a hydrophobic fragment of surfactant protein D linked to folate. Our proposed spacer is a small 4 amino acid residue linker. The peptide conjugate inserts deeply into the lipid bilayer without affecting liposomal integrity, with high stability and specificity. To compare the drug delivery potential of both liposomal targeting systems, we encapsulated the nuclear dye Hoechst 34580. The eventual increase in blue fluorescence would only be detectable upon liposome disruption, leading to specific binding of this dye to DNA. Our delivery system was proven to be more efficient (2-fold) in Caco-2 cells than classic systems where the folate moiety is linked to liposomes by polyethylene glycol. PMID:26241560

  14. Liposome distribution after intravenous and selective intraarterial infusion in dogs

    SciTech Connect

    Wright, K.C.; Kasi, L.P.; Jahns, M.S.; Hashimoto, S.; Wallace, S. )

    1990-09-01

    In an effort to improve hepatic uptake of liposomes for drug delivery, empty vesicles were administered by means of selective arterial infusion. Negatively charged, multilamellar liposomes were labeled with technetium-99m and infused into healthy adult dogs. Each dog received 100 mg/m2 of lipid over 10 minutes at 2 mL/min. Liposomes were administered via the common hepatic artery after proximal occlusion of the gastroduodenal artery, via the cranial mesenteric artery, and via the cephalic vein. Distribution (liver, spleen, and lungs) was determined by computer-assisted external imaging techniques. On the average, after arterial infusion, 69.2% of the total activity was located in the liver, 3.6% in the spleen, 3.2% in the lungs, and 3.5% in the general circulation. Following venous injection, 50.7% of the radioactivity was found in the liver, 9.1% in the spleen, 8.6% in the lungs, and 6.7% in the peripheral blood. Once the liposomes entered the systemic circulation, they were cleared at the same rate (half-life beta = 21.5 hours) independent of their route of administration. Increased hepatic liposome uptake should translate into higher local and lower systemic liposomal drug levels.

  15. Synthesis of phthalocyanine doped sol-gel materials

    NASA Technical Reports Server (NTRS)

    Dunn, Bruce

    1993-01-01

    The synthesis of sol-gel silica materials doped with three different types of metallophthalocyanines has been studied. Homogeneous materials of good optical quality were prepared and the first optical limiting measurements of dyes in sol-gel hosts were carried out. The properties of these solid state limiters are similar to limiters based on phthalocyanine (Pc) in solution. Sol-gel silica materials containing copper, tin and germanium phthalocyanines were investigated. The initial step in all cases was to prepare silica sols by the sonogel method using tetramethoxy silane (TMOS), HCl and distilled water. Thereafter, the synthesis depended upon the specific Pc and its solubility characteristics. Copper phthalocyanine tetrasulfonic acid tetra sodium salt (CuPc4S) is soluble in water and various doping levels (1 x 10 (exp -4) M to 1 x 10 (exp -5) M) were added to the sol. The group IV Pc's, SnPc(OSi(n-hexyl)3)2 and GePc(OSi(n-hexyl)3)2, are insoluble in water and the process was changed accordingly. In these cases, the compounds were dissolved in THF and then added to the sol. The Pc concentration in the sol was 2 x 10(exp -5)M. The samples were then aged and dried in the standard method of making xerogel monoliths. Comparative nanosecond optical limiting experiments were performed on silica xerogels that were doped with the different metallophthalocyanines. The ratio of the net excited state absorption cross section (sigma(sub e)) to the ground state cross section (sigma(sub g)) is an important figure of merit that is used to characterize these materials. By this standard the SnPc sample exhibits the best limiting for the Pc doped sol-gel materials. Its cross section ratio of 19 compares favorably with the value of 22 that was measured in toluene. The GePc materials appear to not be as useful as those containing SnPc. The GePc doped solids exhibit a higher onset energy (2.5 mj and lower cross section ratio, 7. The CuPc4S sol-gel material has a still lower cross section ratio, 4, however, the tetrasulfonate groups make the dye soluble in water which greatly facilitates its incorporation into the sol-gel matrix. The nonlinear transmission of CuPc4S in a pH 2 buffer solution and in a silica xerogel were compared. It is evident that the CuPc4S preserves its optical limiting behavior in the sol-gel matrix, indicating that the fundamental excited state absorption process is essentially the same for a molecule in solution or in the solid state. Although the spectroscopic details of energy level lifetimes are unknown, the significance is that passive optical limiting has been achieved in the solid state via incorporation of a dye into an inorganic host. The only compromise occurs at the extremely high energy regime where photobleaching is observed. This is a result of the limited mobility of the dye molecules in the solid silica host relative to a liquid host. The effects of photodegradation in the xerogel are additive, whereas the solution provides a supply of fresh molecules that are free to enter the active volume between pulses.

  16. Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential

    PubMed Central

    Immordino, Maria Laura; Dosio, Franco; Cattel, Luigi

    2006-01-01

    Among several promising new drug-delivery systems, liposomes represent an advanced technology to deliver active molecules to the site of action, and at present several formulations are in clinical use. Research on liposome technology has progressed from conventional vesicles (“first-generation liposomes”) to “second-generation liposomes”, in which long-circulating liposomes are obtained by modulating the lipid composition, size, and charge of the vesicle. Liposomes with modified surfaces have also been developed using several molecules, such as glycolipids or sialic acid. A significant step in the development of long-circulating liposomes came with inclusion of the synthetic polymer poly-(ethylene glycol) (PEG) in liposome composition. The presence of PEG on the surface of the liposomal carrier has been shown to extend blood-circulation time while reducing mononuclear phagocyte system uptake (stealth liposomes). This technology has resulted in a large number of liposome formulations encapsulating active molecules, with high target efficiency and activity. Further, by synthetic modification of the terminal PEG molecule, stealth liposomes can be actively targeted with monoclonal antibodies or ligands. This review focuses on stealth technology and summarizes pre-clinical and clinical data relating to the principal liposome formulations; it also discusses emerging trends of this promising technology. PMID:17717971

  17. Ultrafast dynamics of excited state of phenoxy-phthalocyanines in solution

    NASA Astrophysics Data System (ADS)

    Yao, Cheng-Bao; Yan, Xiao-Yan; Sun, Da-Wei; Sui, Yan-Li; Li, Jin; Sun, Wen-Jun; Li, Qiang-Hua; Yang, Shou-Bin

    2016-01-01

    Ultrafast dynamics of the excited state of 2,9,16,23-phenoxy-phthalocyanine (Pc1) and 2,9,16,23-phenoxy-phthalocyanine-zinc (Pc2) has been investigated using femtosecond transient absorption (TA) and time-resolved fluorescence (TRFL) techniques. The observed dynamics of femtosecond TA and TRFL experiments are similar, which demonstrated the intrinsic properties of the excitation and the relaxation processes in both kinds of phthalocyanines with two decay components. A multi level model has been proposed to explain the photophysical processes after Soret-band excitation. The results show that the fast decay component dynamics comes from the intramolecular vibrational relaxation, the slower ones from the internal conversion. The samples are expected to be a potential candidate for optical applications and photodynamic therapy.

  18. Highly ordered phthalocyanine thin films on a technically relevant polymer substrate

    NASA Astrophysics Data System (ADS)

    Peisert, H.; Liu, X.; Olligs, D.; Petr, A.; Dunsch, L.; Schmidt, T.; Chassé, T.; Knupfer, M.

    2004-10-01

    We have studied the molecular orientation of well-known representatives of organic semiconductors from the family of the phthalocyanines [copper phthalocyanine (CuPc) and its perfluorinated relative (CuPcF16)] on a conducting polymer thin film using polarization-dependent x-ray absorption spectroscopy. As a polymer substrate PEDOT:PSS [a mixture of poly-3,4-ethylenedioxy-thiophene (PEDOT) and polystyrenesulfonate (PSS), which is often applied as an electrode material in (all-)organic semiconductor devices] was spin coated onto indium-tin-oxide substrates. Even if the interfaces themselves are relatively ill defined (we found recently a mixing of the two organic materials and charge-transfer processes), a very high degree of molecular ordering is observed in the 20-50nm thick phthalocyanine films.

  19. Synthesis and Spectroscopic Evaluation of Two Novel Glycosylated Zinc(II)-Phthalocyanines.

    PubMed

    Bächle, Felix; Hanack, Michael; Ziegler, Thomas

    2015-01-01

    In continuation of our work on glycoconjugated phthalocyanines, two new water soluble, non-ionic zinc(II) phthalocyanines have been prepared and fully characterized by means of ¹H-NMR, (13)C-NMR, MALDI-TOF, ESI-TOF, UV-Vis spectroscopy, emission spectroscopy and fluorescence lifetime measurements. The carbohydrate-containing phthalonitrile precursors were synthesized through a copper-catalyzed azide-alkyne cycloaddition (CuAAC). The 2-methoxyethoxymethyl protecting group (MEM) was used to protect the carbohydrate moieties. It resisted the harsh basic cyclotetramerization conditions and could be easily cleaved under mild acidic conditions. The glycoconjugated zinc(II) phthalocyanines described here have molar extinction coefficents ?max > 10? m(-1) cm(-1) and absorption maxima ? > 680 nm, which make them attractive photosensitizers for photo-dynamic therapy. PMID:26473808

  20. [Quantum chemical study of ultraviolet and visible spectra of four amino cobalt phthalocyanin].

    PubMed

    Xue, Juan-Qin; Bi, Qiang; Zhao, Xiao; Ma, Jing; Yu, Li-Hua; Zhang, Jie

    2014-01-01

    Four amino cobalt phthalocyanine is well known as a promising photosensitizer. In order to enrich and complete the theoretical system of structural properties and reactivity, four amino cobalt phthalocyanine was synthesized and its ultraviolet-visible spectrum was obtained by experimental research. Then the experimental spectrum was compared with that obtained from theoretical calculation by quantum chemistry. The experimental results show that there are two obvious absorption peaks at 324.98 and 709.94 nm respectively in the ultraviolet-visible spectrum of four amino cobalt phthalocyanine. The density functional B3LYP/3-21G* method was used in simulating ultraviolet-visible absorption spectra of four amino cobalt phthalocyanine. The calculation results show that there should be two absorption peaks at 321.41 and 709.92 nm respectively. The simulation results agree well with the experimental values, which demonstrates that the density functional theory is valid and reliable in the theoretical research on four amino cobalt phthalocyanine. The contribution rate of various electron transitions in every absorption peak was determined by quantum computation. The contribution rate of various electron transition in every absorption peak was determined by quantum computation. The absorption peak at 326.22 nm is mainly resulted from electronic transition from 152 to 163 LUMO orbit, the absorption peak at 314.42 nm is due to electronic transition from 149 to 164 LUMO+1 orbit, the absorption peak at 747.57 nm is mainly caused by electronic transition from 162 to 163 LUMO orbit, and the absorption peak at 676. 01 nm is mainly caused by electronic transition from 162 to 164 LUMO+1 orbit. These data provide great theoretical complement to experimental study. The quantum chemical study for four amino cobalt phthalocyanine ultraviolet-visible spectrum has very important theoretical significance for experimental research in the future. PMID:24783549

  1. Etoposide Incorporated into Camel Milk Phospholipids Liposomes Shows Increased Activity against Fibrosarcoma in a Mouse Model

    PubMed Central

    Maswadeh, Hamzah M.; Aljarbou, Ahmad N.; Alorainy, Mohammed S.; Alsharidah, Mansour S.; Khan, Masood A.

    2015-01-01

    Phospholipids were isolated from camel milk and identified by using high performance liquid chromatography and gas chromatography-mass spectrometry (GC/MS). Anticancer drug etoposide (ETP) was entrapped in liposomes, prepared from camel milk phospholipids, to determine its activity against fibrosarcoma in a murine model. Fibrosarcoma was induced in mice by injecting benzopyrene (BAP) and tumor-bearing mice were treated with various formulations of etoposide, including etoposide entrapped camel milk phospholipids liposomes (ETP-Cam-liposomes) and etoposide-loaded DPPC-liposomes (ETP-DPPC-liposomes). The tumor-bearing mice treated with ETP-Cam-liposomes showed slow progression of tumors and increased survival compared to free ETP or ETP-DPPC-liposomes. These results suggest that ETP-Cam-liposomes may prove to be a better drug delivery system for anticancer drugs. PMID:25821817

  2. Enhanced combination therapy effect on paclitaxel-resistant carcinoma by chloroquine co-delivery via liposomes

    PubMed Central

    Gao, Menghua; Xu, Yuzhen; Qiu, Liyan

    2015-01-01

    A novel composite liposomal system co-encapsulating paclitaxel (PTX) with chloroquine phosphate (CQ) was designed for treating PTX-resistant carcinoma. It was confirmed that liposomal CQ can sensitize PTX by means of autophagy inhibition and competitively binding with multidrug-resistance transporters. Furthermore, according to the in vitro cytotoxicity and apoptosis assay, real-time observation of cellular uptake, and in vivo tissue distribution study, co-encapsulation of PTX and CQ in liposomes was validated as superior to the mixture of PTX liposome plus CQ liposome due to the simultaneous delivery and synergetic effect of the two drugs. Consequently, this composite liposome achieved significantly stronger anticancer efficacy in vivo than the PTX liposome plus CQ liposome mixture. This study helps to guide and enlighten ongoing and future clinical trials about the optimal administration modes for drug combination therapy. PMID:26543365

  3. Phthalocyanine-peptide conjugates for epidermal growth factor receptor targeting.

    PubMed

    Ongarora, Benson G; Fontenot, Krystal R; Hu, Xiaoke; Sehgal, Inder; Satyanarayana-Jois, Seetharama D; Vicente, M Graça H

    2012-04-26

    Four phthalocyanine (Pc)-peptide conjugates designed to target the epidermal growth factor receptor (EGFR) were synthesized and evaluated in vitro using four cell lines: human carcinoma A431 and HEp2, human colorectal HT-29, and kidney Vero (negative control) cells. Two peptide ligands for EGFR were investigated: EGFR-L1 and -L2, bearing 6 and 13 amino acid residues, respectively. The peptides and Pc-conjugates were shown to bind to EGFR using both theoretical (Autodock) and experimental (SPR) investigations. The Pc-EGFR-L1 conjugates 5a and 5b efficiently targeted EGFR and were internalized, in part due to their cationic charge, whereas the uncharged Pc-EGFR-L2 conjugates 4b and 6a poorly targeted EGFR maybe due to their low aqueous solubility. All conjugates were nontoxic (IC(50) > 100 ?M) to HT-29 cells, both in the dark and upon light activation (1 J/cm(2)). Intravenous (iv) administration of conjugate 5b into nude mice bearing A431 and HT-29 human tumor xenografts resulted in a near-IR fluorescence signal at ca. 700 nm, 24 h after administration. Our studies show that Pc-EGFR-L1 conjugates are promising near-IR fluorescent contrast agents for CRC and potentially other EGFR overexpressing cancers. PMID:22468711

  4. Electrochemical and spectroelectrochemical properties of thiadiazole substituted metallo-phthalocyanines

    NASA Astrophysics Data System (ADS)

    Demirba?, Ümit; Akyüz, Duygu; Barut, Burak; Bayrak, R?za; Koca, At?f; Kantekin, Halit

    2016-01-01

    4-Thiadiazole substituted phthalonitrile and peripherally tetra-substituted phthalocyanine Cu(II), Fe(II) and Ti(IV)O complexes have been synthesized for the first time. Electrochemical properties of these complexes were determined with voltammetric and in situ spectroelectrochemical measurements. CuPc has redox inactive Cu2 + center, therefore it gave three Pc based reduction and two Pc based oxidation processes. TiOPc and FePc complexes gave metal based redox processes in addition to Pc based redox reactions due to the redox activity of Ti4 +O and Fe2 + metal centers. Although FePc also gave three reduction and two oxidation reactions, peak potentials of these processes are different than those of CuPc due to the different assignments of the redox reactions. TiOPc went to five reduction and one oxidation reactions. Assignments of the redox processes were carried out with in situ spectroelectrochemical measurements. Spectra and color of the electrogenerated redox species of the complexes were also determined with in situ spectroelectrochemical and in situ electrocolorimetric measurements. Distinct color differences between the electrogenerated redox species were observed, which indicated their possible electrochromic usages.

  5. Electrochemical and spectroelectrochemical properties of thiadiazole substituted metallo-phthalocyanines.

    PubMed

    Demirba?, Ümit; Akyüz, Duygu; Barut, Burak; Bayrak, R?za; Koca, At?f; Kantekin, Halit

    2016-01-15

    4-Thiadiazole substituted phthalonitrile and peripherally tetra-substituted phthalocyanine Cu(II), Fe(II) and Ti(IV)O complexes have been synthesized for the first time. Electrochemical properties of these complexes were determined with voltammetric and in situ spectroelectrochemical measurements. CuPc has redox inactive Cu(2+) center, therefore it gave three Pc based reduction and two Pc based oxidation processes. TiOPc and FePc complexes gave metal based redox processes in addition to Pc based redox reactions due to the redox activity of Ti(4+)O and Fe(2+) metal centers. Although FePc also gave three reduction and two oxidation reactions, peak potentials of these processes are different than those of CuPc due to the different assignments of the redox reactions. TiOPc went to five reduction and one oxidation reactions. Assignments of the redox processes were carried out with in situ spectroelectrochemical measurements. Spectra and color of the electrogenerated redox species of the complexes were also determined with in situ spectroelectrochemical and in situ electrocolorimetric measurements. Distinct color differences between the electrogenerated redox species were observed, which indicated their possible electrochromic usages. PMID:26291672

  6. High rectification in organic diodes based on liquid crystalline phthalocyanines.

    PubMed

    Apostol, Petru; Eccher, Juliana; Dotto, Marta Elisa Rosso; Costa, Cassiano Batesttin; Cazati, Thiago; Hillard, Elizabeth A; Bock, Harald; Bechtold, Ivan H

    2015-12-28

    The optical and electrical properties of mesogenic metal-free and metalated phthalocyanines (PCs) with a moderately sized and regioregular alkyl periphery were investigated. In solution, the individualized molecules show fluorescence lifetimes of 4-6 ns in THF. When deposited as solid thin films the materials exhibit significantly shorter fluorescence lifetimes with bi-exponential decay (1.4-1.8 ns; 0.2-0.4 ns) that testify to the formation of aggregates via?-? intermolecular interactions. In diode structures, their pronounced columnar order outbalances the unfavorable planar alignment and leads to excellent rectification behavior. Field-dependent charge carrier mobilities are obtained from the J-V curves in the trap-limited space-charge-limited current regime and demonstrate that the metalated PCs display an improved electrical response with respect to the metal-free homologue. The excited-state lifetime characterization suggest that the ?-? intermolecular interactions are stronger for the metal-free PC, confirming that the metallic centre plays an important role in the charge transport inside these materials. PMID:26585027

  7. Commensurism at electronically weakly interacting phthalocyanine/PTCDA heterointerfaces

    NASA Astrophysics Data System (ADS)

    Gruenewald, Marco; Sauer, Christoph; Peuker, Julia; Meissner, Matthias; Sojka, Falko; Schöll, Achim; Reinert, Friedrich; Forker, Roman; Fritz, Torsten

    2015-04-01

    Interfaces in multilayered electronic devices are of paramount importance, especially for layer thicknesses in the nanometer range. Among the interfacial processes are charge injection or extraction and excitonic dissociation, the latter being particularly relevant if molecular components are involved. Highly ordered superstructures are preferable to prevent undesired losses of charge carriers and/or excitons. Epitaxial organic-inorganic systems have already received eminent attention, but only few studies have dealt with organic-organic heterointerfaces so far. Here, we focus on the adsorption of metal-phthalocyanines (MePc, Me = Sn or Cu) on 3,4,9,10-perylene-tetracarboxylic-dianhydride (PTCDA) in the form of stacked monolayers (ML) on Ag(111). Using scanning tunneling microscopy and low-energy electron diffraction we reveal an initial nonordered growth for dilute SnPc submonolayers and consecutively three condensed phases at coverages ranging up to 1 ML —each possessing a distinct commensurate registry with the underlying PTCDA. By applying in situ optical differential reflectance spectroscopy and photoelectron spectroscopy we find that neither the SnPc nor the CuPc phases exhibit significant electronic or optical coupling with the PTCDA interlayer. Therefore, our results demonstrate that commensurism does not necessarily imply chemisorption, as stated previously in the literature, but that physisorption may be accompanied by commensurate superstructures.

  8. Preclinical evaluation of zinc phthalocyanine tetrasulfonate-based PDT

    NASA Astrophysics Data System (ADS)

    Borgatti-Jeffreys, Antonella; Hooser, Stephen B.; Miller, Margaret A.; Thomas, Rose M.; deGortari, Amalia; Lucroy, Michael D.

    2005-04-01

    Photodynamic therapy (PDT) involves the light activation of a drug within a tumor causing selective tumor cell death. Unfortunately, some photosensitizing drugs have been associated with adverse reactions in veterinary patients. Zinc phthalocyanine tetrasulfonate (ZnPcS4) is a promising second-generation photosensitizer for use in veterinary medicine, however, it cannot be applied clinically until safety and efficacy data are available. ZnPcS4 was given to Swiss Webster mice to assess acute toxicity. Doses >100 mg/kg were associated with acute toxicity and mortality, and doses >100 mg/kg resulted in renal tubular nephrosis, suggesting that the minimum toxic dose is approximately 100 mg/kg. Based on these data, a Phase I clinical trial of ZnPcS4-based PDT in tumor-bearing dogs is underway, with ZnPcS4 doses up to 2 mg/kg producing no apparent toxicity. Tumor response has been observed after ZnPcS4-based PDT using doses as low as 0.25 mg/kg, suggesting that conventional phase I clinical trials may not be appropriate for PDT protocols.

  9. Structural transitions in different monolayers of cobalt phthalocyanine film grown on Bi(1?1?1)

    NASA Astrophysics Data System (ADS)

    Tao, Min-Long; Tu, Yu-Bing; Sun, Kai; Zhang, Yao; Zhang, Xin; Li, Zhao-Bing; Hao, Shao-Jie; Xiao, Hua-Fang; Ye, Juan; Wang, Jun-Zhong

    2016-01-01

    The structural evolution of cobalt phthalocyanine (CoPc) thin films grown on a Bi(1?1?1) surface from the sub-monolayer to the third layer has been investigated with low-temperature scanning tunneling microscopy (STM). Two crucial transitions have been identified during the film epitaxial growth: one is the structural transition from zigzag chains to linear dimerized chains in the monolayer regime; the other is the molecular orientational transition from a flat-lying to a standing-up configuration in the multilayer regime. These results are helpful in understanding the growth mechanism of transition-metal phthalocyanine films on semi-metallic surfaces.

  10. Liposomes Labeled with Biotin and Horseradish Peroxidase: A Probe for the Enhanced

    E-print Network

    Singh, Anup

    Liposomes Labeled with Biotin and Horseradish Peroxidase: A Probe for the Enhanced Amplification National Laboratories, Livermore, California 94550 Liposomes labeled with biotin and the enzyme horseradG-antibody (Fc-specific) is linked to the antigen-DNP- Ab complex, and the biotin-labeled HRP-liposomes associate

  11. Anionic Saccharides Activate Liposomes Containing Phospholipids Bearing a Boronic Acid for

    E-print Network

    Smith, Bradley D.

    Anionic Saccharides Activate Liposomes Containing Phospholipids Bearing a Boronic Acid for Ca2 Here we describe a functional mimic of that general scheme, where liposomes coated with a synthetic. Protons and divalent metal cations such as Ca2+ are often used to promote the fusion of liposomes

  12. Enhanced localization of anticancer drug in tumor tissue using polyethylenimine-conjugated cationic liposomes

    NASA Astrophysics Data System (ADS)

    Han, Hee Dong; Byeon, Yeongseon; Jeon, Hat Nim; Shin, Byung Cheol

    2014-05-01

    Liposome-based drug delivery systems hold great potential for cancer therapy. However, to enhance the localization of payloads, an efficient method of systemic delivery of liposomes to tumor tissues is required. In this study, we developed cationic liposomes composed of polyethylenimine (PEI)-conjugated distearoylglycerophosphoethanolamine (DSPE) as an enhanced local drug delivery system. The particle size of DSPE-PEI liposomes was 130 ± 10 nm and the zeta potential of liposomes was increased from -25 to 30 mV by the incorporation of cationic PEI onto the liposomal membrane. Intracellular uptake of DSPE-PEI liposomes by tumor cells was 14-fold higher than that of DSPE liposomes. After intratumoral injection of liposomes into tumor-bearing mice, DSPE-PEI liposomes showed higher and sustained localization in tumor tissue compared to DSPE liposomes. Taken together, our findings suggest that DSPE-PEI liposomes have the potential to be used as effective drug carriers for enhanced intracellular uptake and localization of anticancer drugs in tumor tissue through intratumoral injection.

  13. Giant liposomes in physiological buffer using electroformation in a flow chamber

    E-print Network

    Mayer, Michael

    Giant liposomes in physiological buffer using electroformation in a flow chamber Daniel J. Estes April 2005 Abstract We describe a method to obtain giant liposomes (diameter 10­100 Am) in solutions electroformation on ITO electrodes, we formed surface-attached giant liposomes in solutions of glycerol in a flow

  14. Investigations of a new, highly negative liposome with improved biodistribution for imaging

    SciTech Connect

    Hnatowich, D.J.; Clancy, B.

    1980-07-01

    An attractive feature of liposomes is the wide range of lipid composition that can lead to liposome formation, coupled with the observation that liposome biodistribution may be altered by varying lipid composition. For instance, adding charged lipids to neutral lecithin will alter the biodistribution of the resulting charged liposomes. We have prepared highly negative liposomes by replacing lecithin with negatively charged cardiolipin. The liposomes have been labeled in the lipid phase with Ga-67 and Tc-99m oxine and their properties evaluated. The expected high negative charge of the resulting liposomes was confirmed by an ion-exchange chromatographic technique. Using paper chromatography, the stability of the label was determined during incubation in saline and serum. Finally, biodistributions were determined at 2 h in mice, and the results compared with those for negative lecithin liposomes. Accumulated activities in liver and spleen were reduced by factors of five and 20, respectively, over lecithin liposomes. Since preferential accumulation of activity in these organs constitutes the biggest limitation to the use of lecithin liposomes, cardiolipin liposomes may prove to be more useful carriers of radioactivity in imaging applications. More importantly, however, these results illustrate the value of studying novel liposome types as potential radiopharmaceuticals.

  15. Association of hydrophobically-modified poly(ethylene glycol) with fusogenic liposomes

    E-print Network

    Auguste, Debra T.

    Association of hydrophobically-modified poly(ethylene glycol) with fusogenic liposomes Debra T interactions to shield liposomes by incorporating multiple hydrophobic anchoring sites on polyethylene glycol. Fusogenic liposomes prepared from N-C12-DOPE:DOPC 7:3 (mol:mol) were equilibrated with HMPEGs. Affinity

  16. Biopolymer-Connected Liposome Networks as Injectable Biomaterials Capable of Sustained Local Drug Delivery

    E-print Network

    Raghavan, Srinivasa

    Biopolymer-Connected Liposome Networks as Injectable Biomaterials Capable of Sustained Local Drug hydrophobic side-chains, such as hydrophobically modified chitosan (hmC), can connect liposomes into a gel network via hydrophobic interactions. In this paper, we show that such liposome gels possess an attractive

  17. Rupture of a liposomal vesicle Marco A. Idiart and Yan Levin

    E-print Network

    Levin, Yan

    Rupture of a liposomal vesicle Marco A. Idiart and Yan Levin Instituto de Física, UFRGS, Caixa the liposomal size, internal solute concentration, and pore diameter is solved numerically. We find that dependent on the internal solute concentration and vesicle size, liposomes can stay pore free, nucleate

  18. Docking of Liposomes to Planar Surfaces Mediated by trans-SNARE Complexes

    E-print Network

    Texas at Austin. University of

    Docking of Liposomes to Planar Surfaces Mediated by trans-SNARE Complexes Olga Vites,* Ernst here that liposomes containing synaptobrevin firmly attach to planar surfaces containing immobilized stability and is capable of substituting in liposome fusion assays. Vesicle attachment is initiated by SNARE

  19. Sarcolipin, the Shorter Homologue of Phospholamban, Forms Oligomeric Structures in Detergent Micelles and in Liposomes*

    E-print Network

    Thomas, David D.

    Micelles and in Liposomes* Received for publication, March 20, 2001, and in revised form, June 11, 2001-linking showed that also in liposomes SLN has the ability to self-associate to oli- gomers. PLB-(24­52) specifically oligomerized to pentam- ers in the presence of octylpolyoxyethylene as well as in liposomes at low

  20. A liposome-based ion release impedance sensor for biological detection

    E-print Network

    Bashir, Rashid

    A liposome-based ion release impedance sensor for biological detection Gregory L. Damhorst-on-a-chip strategy for biological detection based on liposome tagging and ion-release impedance spectroscopy. Ion-immobilized antigens. We demonstrate the quanti- fication of these liposomes by real-time impedance measure- ments

  1. Curved FtsZ protofilaments generate bending forces on liposome membranes

    E-print Network

    Erickson, Harold P.

    Curved FtsZ protofilaments generate bending forces on liposome membranes Masaki Osawa*, David E concave depres- sions, bending the membrane in the same direction as the Z ring inside liposomes is approximately 180 degrees from the C-terminal tether. When mts-FtsZ-YFP was applied to the outside of liposomes

  2. Rhodopsin self-associates in asolectin liposomes Steven E. Mansoor*, Krzysztof Palczewski

    E-print Network

    Palczewski, Krzysztof

    Rhodopsin self-associates in asolectin liposomes Steven E. Mansoor*, Krzysztof Palczewski molecules reconstituted into asolectin liposomes. The low receptor density used in the measurements ensured) techniques to assess the apparent distance between Rh mole- cules reconstituted in asolectin liposomes at low

  3. Preparation of Calcium-Loaded Liposomes and Their Use in Calcium Phosphate Formation

    E-print Network

    Preparation of Calcium-Loaded Liposomes and Their Use in Calcium Phosphate Formation Phillip B Received October 15, 1997X Liposome encapsulation technology has been used to entrap aqueous calcium salts of unencapsulated calcium by ion exchange resulted in calcium-loaded liposome suspensions with calcium concentration

  4. Pros and cons of the liposome platform in cancer drug targeting.

    PubMed

    Gabizon, Alberto A; Shmeeda, Hilary; Zalipsky, Samuel

    2006-01-01

    Coating of liposomes with polyethylene-glycol (PEG) by incorporation in the liposome bilayer of PEG-derivatized lipids results in inhibition of liposome uptake by the reticulo-endothelial system and significant prolongation of liposome residence time in the blood stream. Parallel developments in drug loading technology have improved the efficiency and stability of drug entrapment in liposomes, particularly with regard to cationic amphiphiles such as anthracyclines. An example of this new generation of liposomes is a formulation of pegylated liposomal doxorubicin known as Doxil or Caelyx, whose clinical pharmacokinetic profile is characterized by slow plasma clearance and small volume of distribution. A hallmark of these long-circulating liposomal drug carriers is their enhanced accumulation in tumors. The mechanism underlying this passive targeting effect is the phenomenon known as enhanced permeability and retention (EPR) which has been described in a broad variety of experimental tumor types. Further to the passive targeting effect, the liposome drug delivery platform offers the possibility of grafting tumor-specific ligands on the liposome membrane for active targeting to tumor cells, and potentially intracellular drug delivery. The pros and cons of the liposome platform in cancer targeting are discussed vis-à-vis nontargeted drugs, using as an example a liposome drug delivery system targeted to the folate receptor. PMID:16952872

  5. Structure of drug delivery DPPA and DPPC liposomes with ligands and their permeability through cells.

    PubMed

    Khvedelidze, Mariam; Mdzinarashvili, Tamaz; Shekiladze, Eka; Schneider, Marc; Moersdorf, Daniel; Bernhardt, Ingolf

    2015-03-01

    Dipalmitoylphosphatidylcholine (DPPC) and 1,2-palmitoyl-phosphatidic acid (DPPA) liposomes, prepared by conventional rotary evaporation method, have similar structural organization, though they have significant differences. The similarity is that both types of lipids create standard bilayer liposomes with strong hydrophobic forces between lipids tails and with homogeneous bonds of hydrogen and electrostatic nature between hydrophilic lipids heads. By the calorimetric method, it has been shown that hydrophobic bonds break but liposomes' destruction does not occur by heating till 150?°C. As for bonds between lipid heads in liposomes, their cooperative destruction takes place at 41?°C for DPPC and 66?°C for DPPA liposomes. In the case of thermal distraction of DPPC liposomes, two so-called pre transitions peaks were observed before the main transition peak, which indicates that DPPC liposomes' structure is multilamellar. DPPA liposomes have one cooperative heat absorption peak, which points to a unilamellar structure of such liposomes. Substances of hydrophobic/hydrophilic nature, incorporated into the liposomes, are placed in hydrophobic or hydrophilic parts of liposomes, which lead to a change in calorimetric peak shapes and thermodynamic parameters. It has been shown that gold nanoparticles, incorporated into the DPPC liposomes, are able to enter Caco-2 cells. In contrast, these nanoparticles do not enter red blood cells. PMID:24766638

  6. Light- and temperature-responsive liposomes incorporating cinnamoyl Pluronic F127.

    PubMed

    Wang, MinHui; Kim, Jin-Chul

    2014-07-01

    Light- and temperature-responsive liposomes were prepared by immobilizing cinnamoyl Pluronic F127 (CP F127) on the surface of egg phosphatidylcholine liposomes. CP F127 was prepared by a condensation reaction, and the molar ratio of cinnamoyl group to Pluronic F127 was calculated to be 1:1.4 on (1)H NMR spectrum. The cinnamoyl group of CP F127 was readily dimerized under the irradiation of a UV light (254 nm, 6 W). CP F127 decreased the absolute value of the zeta potential of liposome possibly because it can shift the hydrodynamic plane away from the liposome surface. The size of liposome decorated with CP F127, measured on a dynamic light scattering machine and observed on a TEM, was larger than that of bare liposome. The liposome bearing CP F127 seemed to fuse and aggregate each other. The liposome released calcein, a fluorescence dye, in response to a UV irradiation, possibly because the photo-dimerization of cinnamoyl group perturbs the liposomal membrane. Moreover, the liposome released the dye in response to a temperature change, possible due to the phase transition of Pluronic F127 layer on the liposomal surface or the hydrophobic interaction of the polymer with liposomal membrane. PMID:24709213

  7. Doxorubicin physical state in solution and inside liposomes loaded via a pH gradient

    E-print Network

    Gruner, Sol M.

    Doxorubicin physical state in solution and inside liposomes loaded via a pH gradient Xingong Li/cholesterol liposomes that were loaded via a transmembrane pH gradient. Using cryogenic electron microscopy (cryo-EM) we at either pH 4 or 5. The doxorubicin fibers were also present in citrate liposomes loaded with only one

  8. C H A P T E R O N E Tubular Liposomes with Variable

    E-print Network

    Erickson, Harold P.

    C H A P T E R O N E Tubular Liposomes with Variable Permeability for Reconstitution of FtsZ Rings. Permeability of the Multilamellar Liposomes 9 8. Z-ring Formation in Liposomes 11 9. A Crude Flow Chamber the characterization of the multilamellar lipo- somes in terms of the permeability or leakiness for a small fluorescent

  9. Application of Liposomes in Treatment of Rheumatoid Arthritis: Quo Vadis

    PubMed Central

    Singh, Sachin Kumar; Gulati, Monica

    2014-01-01

    The most common treatments for rheumatoid arthritis include nonsteroidal anti-inflammatory drugs (NSAIDs), corticosteroids, disease modifying antirheumatic drugs (DMARDs), and some biological agents. However, none of the treatments available is able to achieve the ultimate goal of treatment, that is, drug-free remission. This limitation has shifted the focus of treatment to delivery strategies with an ability to deliver the drugs into the synovial cavity in the proper dosage while mitigating side effects to other tissues. A number of approaches like microemulsions, microspheres, liposomes, microballoons, cocrystals, nanoemulsions, dendrimers, microsponges, and so forth, have been used for intrasynovial delivery of these drugs. Amongst these, liposomes have proven to be very effective for retaining the drug in the synovial cavity by virtue of their size and chemical composition. The fast clearance of intra-synovially administered drugs can be overcome by use of liposomes leading to increased uptake of drugs by the target synovial cells, which in turn reduces the exposure of nontarget sites and eliminates most of the undesirable effects associated with therapy. This review focuses on the use of liposomes in treatment of rheumatoid arthritis and summarizes data relating to the liposome formulations of various drugs. It also discusses emerging trends of this promising technology. PMID:24688450

  10. Crosslinked multilamellar liposomes for controlled delivery of anticancer drugs.

    PubMed

    Joo, Kye-Il; Xiao, Liang; Liu, Shuanglong; Liu, Yarong; Lee, Chi-Lin; Conti, Peter S; Wong, Michael K; Li, Zibo; Wang, Pin

    2013-04-01

    Liposomes constitute one of the most popular nanocarriers for the delivery of cancer therapeutics. However, since their potency is limited by incomplete drug release and inherent instability in the presence of serum components, their poor delivery occurs in certain circumstances. In this study, we address these shortcomings and demonstrate an alternative liposomal formulation, termed crosslinked multilamellar liposome (CML). With its properties of improved sustainable drug release kinetics and enhanced vesicle stability, CML can achieve controlled delivery of cancer therapeutics. CML stably encapsulated the anticancer drug doxorubicin (Dox) in the vesicle and exhibited a remarkably controlled rate of release compared to that of the unilamellar liposome (UL) with the same lipid composition or Doxil-like liposome (DLL). Our imaging study demonstrated that the CMLs were mainly internalized through a caveolin-dependent pathway and were further trafficked through the endosome-lysosome compartments. Furthermore, in vivo experiments showed that the CML-Dox formulation reduced systemic toxicity and significantly improved therapeutic activity in inhibiting tumor growth compared to that of UL-Dox or DLL-Dox. This drug packaging technology may therefore provide a new treatment option to better manage cancer and other diseases. PMID:23375392

  11. Synthesis of mesogenic phthalocyanine-C60 donor–acceptor dyads designed for molecular heterojunction photovoltaic devices

    PubMed Central

    Debever, Olivier; Amato, Claire

    2009-01-01

    Summary A series of phthalocyanine-C60 dyads 2a–d was synthesized. Key steps in their synthesis are preparation of the low symmetry phthalocyanine intermediate by the statistical condensation of two phthalonitriles, and the final esterification of the fullerene derivative bearing a free COOH group. Structural characterization of the molecules in solution was performed by NMR spectroscopy, UV–vis spectroscopy and cyclic voltammetry. Preliminary studies suggest formation of liquid crystalline (LC) mesophases for some of the prepared dyads. To the best of our knowledge, this is the first example of LC phthalocyanine-C60 dyads. PMID:19936269

  12. Interaction of Poloxamers with Liposomes: An Isothermal Titration Calorimetry Study Guohui Wu and Ka Yee C. Lee*

    E-print Network

    Lee, Ka Yee C.

    Interaction of Poloxamers with Liposomes: An Isothermal Titration Calorimetry Study Guohui Wu, the partitioning of poloxamers into fluid-phase liposomes increases with temperature, owing to the enhancement into a lipid bilayer without disrupting liposomes and above which they instead disintegrate liposomes

  13. Evaluation of polyethylene glycol coated liposomes labeled with Tc-99m as a blood pool agent

    SciTech Connect

    Phillips, W.T.; Klipper, R.; Goins, B.

    1994-05-01

    This investigation evaluated Tc-99m liposomes coated with polyethylene glycol (PEG) as a blood pool agent in comparison with Tc-99m liposomes carrying no surface charge (Neutral) and with Tc-99m autologous red cells. Liposomes (135 nm diameter) encapsulating glutathione were labeled with Tc-99m using the lipophilic chelator, HMPAO as previously described. Autologous red cells were labeled using an Ultratag kit. Labeling efficiencies averaged 66%, 52%, and 97% for the PEG liposomes. Neutral liposomes, and red cells, respectively. Rabbits (3-3.5 Kg) were injected IV via ear vein with 2.0 mls of PEG liposomes (2 mCi, 17 mg phospholipid/Kg body weight, n=5). Neutral liposomes (1.3 mCi, 17 mg phospholipid/Kg body weight, n=4), or red cells (2.6 mCi, n=2). Gamma camera images were acquired at 5,22, and 45 minutes, and 2,20,and 44 hours post-injection. Blood samples were obtained at each time point to determine clearance kinetics. Circulation half lives of both Tc-99m liposome formulations were longer than Tc-99m red cells (8 hrs), with the half life of PEG liposomes (35 hrs) 1.6 times longer than Neutral liposomes (22 hrs). In vivo stability of the Tc-99m label was excellent for the liposomes with only 3.5-4% bladder activity at 45 minutes compared to 12% bladder activity for the red cells. Excellent blood pool images were obtained for the PEG liposomes in the rabbit. Heart/liver ratios calculated from region of interest analysis of 45 minutes images were 1.9, 1.5, and 1.7 for PEG liposomes, Neutral liposomes and red cells. This study demonstrates the feasibility of using Tc-99m PEG liposomes to perform gated cardiac blood pool and rapid gastrointestinal bleeding studies.

  14. Physicochemical properties and antioxidant activity of gamma-oryzanol-loaded liposome formulations for topical use.

    PubMed

    Viriyaroj, Amornrat; Ngawhirunpat, Tanasait; Sukma, Monrudee; Akkaramongkolporn, Prasert; Ruktanonchai, Uracha; Opanasopit, Praneet

    2009-01-01

    The objective of this study is to prepare the gamma-oryzanol-loaded liposomes and investigate their physicochemical properties and antioxidant activity intended for cosmetic applications. Liposomes, Composing phosphatidylCholine (PC) and Cholesterol (Chol), CHAPS or sodium taurocholate (NaTC) were prepared by sonication method. Gamma-oryzanol-loaded liposomes were prepared by using 3, 5 and 10% gamma-oryzanol as an initial concentration. The formulation factors in a particular type and composition of lipid and initial drug loading on the physicochemical properties (i.e., particle size, zeta potential, entrapment efficiency, drug release) and antioxidant activity were studied. The particle sizes of bare liposomes were in nanometer range. The gamma-oryzanol-loaded liposomes in formulations of PC/CHAPS and PC/NaTC liposomes were smaller than PC/Chol liposomes. The incorporation efficiency of 10% gamma-oryzanol-loaded PC/Chol liposomes was less than gamma-oryzanol-loaded PC/CHAPS liposomes and PC/NaTC liposomes allowing higher in vitro release rate due to higher free gamma-oryzanol in buffer solution. The antioxidant activity of gamma-oryzanol-loaded liposomes was not different from pure gamma-oryzanol. Both gamma-oryzanol-loaded PC/CHAPS liposomes and PC/NaTC liposomes were showed to enhance the antioxidant activity in NHF cells. gamma-oryzanol-loaded PC/Chol liposomes demonstrated the lowest cytotoxicity in NHF cells. It was conceivably concluded that liposomes prepared in this study are suitable for gamma-oryzanol incorporation without loss of antioxidant activity. PMID:19883256

  15. Domain fracture and recovery process of metal phthalocyanine monolayers via NO2 and H2O

    E-print Network

    Kummel, Andrew C.

    Domain fracture and recovery process of metal phthalocyanine monolayers via NO2 and H2O Jun Hong. After dosing NO2 (10 ppm for 5 min) onto CuPc monolayers under ambient conditions, domain fracture with dissociative O adsorption between CuPc molecules and Au(111). Conversely, after exposing H2O onto a fractured

  16. Fabrication and characterization of organic solar cells using metal complex of phthalocyanines

    NASA Astrophysics Data System (ADS)

    Kida, Tomoyasu; Suzuki, Atsushi; Akiyama, Tsuyoshi; Oku, Takeo

    2015-02-01

    Fabrication and characterization of organic solar cells using shuttle-cock-type phthalocyanines were carried out. Photovoltaic properties of the solar cells with inverted structures were investigated by current density-voltage characteristics. Effects of phase transition between H and J aggregates on the photovoltaic and optical properties were investigated. The photovoltaic mechanisms, energy levels and band gap of active layers were discussed.

  17. Fabrication and characterization of organic solar cells using metal complex of phthalocyanines

    SciTech Connect

    Kida, Tomoyasu Suzuki, Atsushi Akiyama, Tsuyoshi Oku, Takeo

    2015-02-27

    Fabrication and characterization of organic solar cells using shuttle-cock-type phthalocyanines were carried out. Photovoltaic properties of the solar cells with inverted structures were investigated by current density-voltage characteristics. Effects of phase transition between H and J aggregates on the photovoltaic and optical properties were investigated. The photovoltaic mechanisms, energy levels and band gap of active layers were discussed.

  18. Stability of benzotriazolyl-substituted phthalocyanines with respect to thermal oxidative decomposition

    NASA Astrophysics Data System (ADS)

    Znoiko, S. A.; Maizlish, V. E.; Shaposhnikov, G. P.; Lebedeva, N. Sh.; Mal'kova, E. A.

    2013-03-01

    The thermal oxidative decomposition of benzotriazolyl-substituted phthalocyanines and their copper complexes is investigated by means of thermogravimetric, elemental, and spectroscopic analysis. It is shown that the nature of peripheral substituents exerts the greatest effect on the thermal stability of the compounds.

  19. Reverse optical changing and rewrite recording properties of Langmuir-Blodgett films of phthalocyanine copper

    NASA Astrophysics Data System (ADS)

    Gan, Fuxi; Luo, Tao

    1994-01-01

    Langmuir-Blodgett (LB) films of tetra-nonyl phthalocyanine copper (TNPcCu) were prepared and annealed at different temperatures. Their optical spectra and optical constants were measured, the structural changes of the films were studied by x-ray diffraction. Optical recording properties were measured at a static optical recording tester.

  20. Towards Clarifying the Role of O2 during the Phthalocyanine Synthesis.

    PubMed

    Wang, Kang; Pan, Houhe; Jiang, Jianzhuang

    2015-12-01

    The role of O2 within the synthesis of phthalocyanines (Pcs) has remained unclear in the past century. Here, we demonstrate that O2 , in cooperation with the solvent n-pentanol, participates in the cyclic tetramerization of phthalonitriles over the half-sandwich complex template [Lu(Pc)(acac)] (acac=acetylacetonate) and terminates the reaction at the stage of uncyclized isoindole oligomeric derivatives rather than the phthalocyanine chromophores, resulting in the isolation of the heteroleptic (phthalocyaninato)(triisoindole-1-one) lutetium double-decker complexes [(Pc)Lu(TIO-I)] (TIO-I=3,4,7,8,11,12-sexi(2,6-diisopropylphenoxy)-15-[4,5-di(2,6-diisopropylphenoxy)-2-cyanobenzimidamido]triisoindole-1-one) and [(Pc)Lu(TIO-II)] (TIO-II=3,4,7,8,11,12-sexi(2,6-dimethylphenoxy)-15-[4,5-di(2,6-dimethylphenoxy)-2-cyanobenzimidamido]triisoindole-1-one) with the help of bulky substituents at the phthalonitrile periphery and an unsubstituted phthalocyanine ligand in the double-decker skeleton. Nevertheless, the cyclic tetramerization of the phthalonitriles was revealed to be sensitive to O2 with the reaction progression also depending on the oxygen concentration/content, leading to the O2 -senstive and -dependent nature for the isolation of phthalocyanine derivatives. PMID:26526528

  1. WASTES FROM MANUFACTURE OF DYES AND PIGMENTS. VOLUME 8. PHTHALOCYANINE DYES AND PIGMENTS

    EPA Science Inventory

    A preliminary study of the manufacture of phthalocyanine dyes and pigments was conducted to determine if process waste streams might contain hazardous material. The study first identifies the dyes and pigments that belong to this segment of the industry, the amounts produced, and...

  2. Spectroscopic fingerprints of work-function-controlled phthalocyanine charging on metal surfaces.

    PubMed

    Borghetti, Patrizia; El-Sayed, Afaf; Goiri, Elizabeth; Rogero, Celia; Lobo-Checa, Jorge; Floreano, Luca; Ortega, Jose Enrique; de Oteyza, Dimas G

    2014-12-23

    The electronic character of a ?-conjugated molecular overlayer on a metal surface can change from semiconducting to metallic, depending on how molecular orbitals arrange with respect to the electrode's Fermi level. Molecular level alignment is thus a key property that strongly influences the performance of organic-based devices. In this work, we report how the electronic level alignment of copper phthalocyanines on metal surfaces can be tailored by controlling the substrate work function. We even show the way to finely tune it for one fixed phthalocyanine-metal combination without the need to intercalate substrate-functionalizing buffer layers. Instead, the work function is trimmed by appropriate design of the phthalocyanine's supramolecular environment, such that charge transfer into empty molecular levels can be triggered across the metal-organic interface. These intriguing observations are the outcome of a powerful combination of surface-sensitive electron spectroscopies, which further reveal a number of characteristic spectroscopic fingerprints of a lifted LUMO degeneracy associated with the partial phthalocyanine charging. PMID:25426520

  3. Intrinsic dielectric properties and charge transport in oligomers of organic semiconductor copper phthalocyanine

    E-print Network

    Bobnar, Vid

    Intrinsic dielectric properties and charge transport in oligomers of organic semiconductor copper in the experimentally detected dielectric response of organic semi- conductor copper phthalocyanine. While a giant these compounds are among the most interesting organic semiconductors, mainly due to their high chemical stability

  4. Photophysical efficiency-boost of aqueous aluminium phthalocyanine by hybrid formation with nano-clays.

    PubMed

    Staniford, Mark C; Lezhnina, Marina M; Gruener, Malte; Stegemann, Linda; Kuczius, Rauni; Bleicher, Vera; Strassert, Cristian A; Kynast, Ulrich H

    2015-09-11

    Novel organic-inorganic hybrid materials comprising nanoscaled layered silicates and native aluminium hydroxide phthalocyanine (Al(OH)Pc) allowed for the first time the exploitation of their unique photophysical properties in aqueous ambience. In particular, we were able to observe the efficient emission of Al(OH)Pc-nanoclay hybrids and generation of singlet oxygen in aqueous solution. PMID:26221639

  5. The organ distribution of liposome-encapsulated and free cobalt in rats. Liposomes decrease the cardiac uptake of the metal

    SciTech Connect

    Garcia, R.; Eskelson, C.D.; Chvapil, M. ); Szebeni, J. National Institute of Food Hygiene and Nutrition, Budapest )

    1989-01-01

    Rats were administered intravenously liposome-encapsulated or free cobalt, and the organ distribution of the metal was explored using Co{sup 57} tracer. Two hours after administration, the cobalt level in the heart was about 40 % of the control when given in sphingomyelin (SM)/cholesterol (CH) (1:1 mole ratio) liposomes. These vesicles also tended to decrease the uptake of cobalt in the kidney and the carcass, and to increase it in the spleen and the bones. Liposomes prepared from soybean phosphatidylcholine (SPC)/CH (1:1) had no effect on the uptake of cobalt in the heart, whereas increased its level in the spleen, liver and lung. The time-course of cobalt deposition in the organs displayed substantial variation with the different preparations. Most importantly, no buildup of cobalt level was observed in the heart when the metal was administered in SM/CH vesicles. While confirming known effects of liposomes on the organ-distribution of entrapped drugs, our findings suggest that administration of cobalt in SM/CH liposome-encapsulated form may result in decreased cardiotoxicity and thus increased safety of cobalt-treatment in some anemias.

  6. Phthalocyanine-labeled LDL for tumor imaging and photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Li, Hui; Marotta, Diane; Kim, Soungkyoo; Chance, Britton; Glickson, Jerry D.; Busch, Theresa M.; Zheng, Gang

    2005-01-01

    Current limitation of both near-infrared (NIR) tumor imaging and photodynamic therapy (PDT) is their lack of sufficient tumor-to-tissue contrast due to the relatively non-specific nature of delivering dye to the tumor, which has led to false negatives for NIR imaging and inadequate therapeutic ratio for PDT. Hence, agents targeting "cancer signatures", i.e. molecules that accumulate selectively in cancer cells, are particular attractive. One of these signatures is low-density-lipoprotein receptor (LDLR), which is overexpressed in many tumors. We have developed pyropheophorbide cholesterol oleate reconstituted LDL as a LDLR-targeting photosensitizer (PS) and demonstrated its LDLR-mediated uptake in vitro and in vivo. To improve the labeling efficiency for achieving high probe/protein ratio, tetra-t-butyl silicon phthalocyanine bearing two oleate moieties at its axial positions, (tBu)4SiPcBOA, was designed and synthesized. This compound was designed to 1) prevent the PS aggregation; 2) improve the PS solubility in non-polar solvent; and 3) maximize the PS binding to LDL phospholipid monolayer. Using this novel strategy, (tBu)4SiPcBOA was reconstituted into LDL (r-SiPcBOA-LDL) with a very high payload (500:1 molar ratio). In addition, (tBu)4SiPcBOA reconstituted acetylated LDL (r-SiPcBOA)-AcLDL with similar payload was also prepared. Since Ac-LDL cannot bind to LDLR, (r-SiPcBOA)-AcLDL can serve as the negative control to evaluate LDLR targeting specificity. For biological evaluation of these new agents, confocal microscopy and in vitro PDT protocols were performed using LDLR-overexpressing human hepatoblastoma G2 (HepG2) tumor model. These studies suggest that LDL serves as a delivery vehicle to bring large amount of the NIR/PDT agents selectively to tumor cells overexpressing LDLR.

  7. Hybrid phthalocyanine/lead sulphide nanocomposite for bistable memory switches

    NASA Astrophysics Data System (ADS)

    Khozaee, Zahra; Sosa-Vargas, Lydia; Cammidge, Andrew N.; Cook, Michael J.; Ray, Asim K.

    2015-09-01

    A simple, one-step method is employed to produce, at room temperature, a single layer of an organic-inorganic nanocomposite containing non-aggregated lead sulphide (PbS) quantum dots (QDs) embedded in a 130 nm thick solution processed film of the organic semiconductor 6PcH2 (metal-free, non-peripherally substituted octahexyl phthalocyanine) on indium tin oxide. The mean size of PbS QDs is found from x-ray diffraction and transmission electron microscopy techniques to be much smaller than the Bohr radius. Further evidence of the quantum confinement effect is provided by a blue shift in the absorption spectrum and the increased band gap of 1.95 eV with respect to bulk PbS. The current-voltage characteristics of the hybrid and pristine 6PcH2 films, both in a sandwich configuration with the aluminium top electrode, exhibit bistable switching type hysteresis. The on-off ratio of the nanocomposite device is at least three orders of magnitude higher than that for 6PcH2 organic films, while both devices operate at a very low bias voltage of 0.5 V. The inclusion of the PbS QDs into the 6PcH2 film enhances the conductivity by nearly two orders of magnitude over that of a comparable pristine 6PcH2 film due to the formation of a charge transfer complex with PbS QDs and 6PcH2 acting as acceptors and donors of electrons, respectively.

  8. Recent Trends in Multifunctional Liposomal Nanocarriers for Enhanced Tumor Targeting

    PubMed Central

    Perche, Federico; Torchilin, Vladimir P.

    2013-01-01

    Liposomes are delivery systems that have been used to formulate a vast variety of therapeutic and imaging agents for the past several decades. They have significant advantages over their free forms in terms of pharmacokinetics, sensitivity for cancer diagnosis and therapeutic efficacy. The multifactorial nature of cancer and the complex physiology of the tumor microenvironment require the development of multifunctional nanocarriers. Multifunctional liposomal nanocarriers should combine long blood circulation to improve pharmacokinetics of the loaded agent and selective distribution to the tumor lesion relative to healthy tissues, remote-controlled or tumor stimuli-sensitive extravasation from blood at the tumor's vicinity, internalization motifs to move from tumor bounds and/or tumor intercellular space to the cytoplasm of cancer cells for effective tumor cell killing. This review will focus on current strategies used for cancer detection and therapy using liposomes with special attention to combination therapies. PMID:23533772

  9. Ultraviolet- and sunlight-induced lipid peroxidation in liposomal membrane

    SciTech Connect

    Mandal, T.K.; Chatterjee, S.N.

    1980-08-01

    Ultraviolet radiation and sunlight caused lipid peroxidation in the liposomal membrane (as detected by measurement of the oxidation index, A/sub 233//A/sub 215/, and the amount of malondialdehyde formed) and made the membrane leaky (as revealed by the release of the trapped chromate anions). The oxidation index and the formation of malondialdehyde increased linearly with increasing dose of radiation and depended significantly on the dose rate. The effects were smaller in liposomes derived from Vibrio cholerae phospholipid than in those derived from egg lecithin. The effects of the radiation dose and dose rate on hemolysis and peroxidation (MDA formation) of the erythrocyte membrane followed a similar pattern. A direct correlation between the percentage leakage of chromate (Y) and the oxidation index (X) of the liposomal system was obtained as Y = 236.5 x X.

  10. Liposomes as a potential ocular delivery system of distamycin A.

    PubMed

    Chetoni, Patrizia; Monti, Daniela; Tampucci, Silvia; Matteoli, Barbara; Ceccherini-Nelli, Luca; Subissi, Alessando; Burgalassi, Susi

    2015-08-15

    Liposomes containing Distamycin A (DA) may be clinically useful in the treatment of ocular HSV infections, especially in acyclovir-resistant HSV keratitis. This study evaluated the in vitro and in vivo performance of a topical controlled release liposomal formulation containing DA (DA-Lipo) aimed at reducing the toxicity of the encapsulated active agent and improving drug uptake by ocular tissues. The bioavailability of DA in the tear fluid and the DA uptake into the cornea were increased after instillation of DA-Lipo in rabbits, reaching the DA corneal concentration corresponding to IC50 values against HSV without any sign of transcorneal permeation of drug. DA-Lipo was definitely less cytotoxic then plain DA in rabbit corneal epithelial cells. These results provide new insights into the correlation between the in vitro data and the drug kinetics following ocular applications of liposomal vesicles. PMID:26183332

  11. Liposomal corticosteroids for the treatment of inflammatory disorders and cancer.

    PubMed

    Ozbakir, Burcin; Crielaard, Bart J; Metselaar, Josbert M; Storm, Gert; Lammers, Twan

    2014-09-28

    Glucocorticoids (GC) are known for their potent immunosuppressive and anti-inflammatory properties. As a consequence, they have been extensively used for the treatment of many different diseases. Prolonged and/or high-dose GC therapy, however, generally comes with severe side effects, resulting not only from their very diverse mechanism(s) of action, but also from their relatively poor biodistribution. Drug delivery systems, and in particular liposomes, have been extensively used to enhance the biodistribution and the target site accumulation of GC, and to thereby improve the balance between their efficacy and their toxicity. Many different types of liposomes have been employed, and both local and systemic treatments have been evaluated. We here summarize the progress made in the use of liposomal GC formulations for the treatment of asthma, rheumatoid arthritis, multiple sclerosis and cancer, and we show that the targeted delivery of GC to pathological sites holds significant clinical potential. PMID:24878183

  12. Amyloid ?-peptide insertion in liposomes containing GM1-cholesterol domains.

    PubMed

    Nicastro, Maria Carmela; Spigolon, Dario; Librizzi, Fabio; Moran, Oscar; Ortore, Maria Grazia; Bulone, Donatella; Biagio, Pier Luigi San; Carrotta, Rita

    2016-01-01

    Neuronal membrane damage is related to the early impairments appearing in Alzheimer's disease due to the interaction of the amyloid ?-peptide (A?) with the phospholipid bilayer. In particular, the ganglioside GM1, present with cholesterol in lipid rafts, seems to be able to initiate A? aggregation on membrane. We studied the thermodynamic and structural effects of the presence of GM1 on the interaction between A? and liposomes, a good membrane model system. Isothermal Titration Calorimetry highlighted the importance of the presence of GM1 in recruiting monomeric A? toward the lipid bilayer. Light and Small Angle X-ray Scattering revealed a different pattern for GM1 containing liposomes, both before and after interaction with A?. The results suggest that the interaction with GM1 brings to insertion of A? in the bilayer, producing a structural perturbation down to the internal layers of the liposome, as demonstrated by the obtained electron density profiles. PMID:26259785

  13. Tumor-specific liposomal drug release mediated by liposomase.

    PubMed

    Cheong, Ian; Zhou, Shibin

    2009-01-01

    Despite the large arsenal of anticancer agents currently available and recent efforts in developing molecularly targeted therapies, the prognosis for many solid cancers remains dismal. A major obstacle to successful cancer therapy is the limited specificity of most anticancer agents. One approach to this problem is to construct drug carriers that preferentially accumulate at the cancer site, thus targeting otherwise nonselective cytotoxic chemotherapeutic agents to cancer cells. Liposomes stand out in this regard as the most successful drug carrier that has been approved for clinical use. Currently, most clinical liposomal formulations involve the use of PEGylated phospholipids that help prolong their residence time in the systemic circulation. Paradoxically, the robustness of these long-circulating formulations also obstructs the release of their payloads at the cancer site. This chapter describes a recently discovered bacterial protein capable of targeted liposome disruption within tumors. PMID:19913171

  14. Activity-Based Protein Profiling of Rhomboid Proteases in Liposomes.

    PubMed

    Wolf, Eliane V; Seybold, Martin; Hadravová, Romana; Strisovsky, Kvido; Verhelst, Steven H L

    2015-07-27

    Although activity-based protein profiling (ABPP) has been used to study a variety of enzyme classes, its application to intramembrane proteases is still in its infancy. Intramembrane proteolysis is an important biochemical mechanism for activating proteins residing within the membrane in a dormant state. Rhomboid proteases (intramembrane serine proteases) are embedded in the lipid bilayers of membranes and occur in all phylogenetic domains. The study of purified rhomboid proteases has mainly been performed in detergent micelle environments. Here we report on the reconstitution of rhomboids in liposomes. Using ABPP, we have been able to detect active rhomboids in large and giant unilamellar vesicles. We have found that the inhibitor profiles of rhomboids in micelles and liposomes are similar, thus validating previous inhibitor screenings. Moreover, fluorescence microscopy experiments on the liposomes constitute the first steps towards activity-based imaging of rhomboid proteases in membrane environments. PMID:26032951

  15. Bilayer permeability-based substrate selectivity of an enzyme in liposomes.

    PubMed

    Walde, P; Marzetta, B

    1998-01-20

    Liposomes were prepared from 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), which contained the water soluble proteinase alpha-chymotrypsin. This liposome entrapped enzyme showed selectivity for externally added substrates in that only small substrates (benzoyl-l-Tyr-p-nitroanilide or acetyl-l-Phe-p-nitro-anilide)-for which the liposome bilayer was permeable-were transformed into products. Large substrates (succinyl-l-Ala-l-Ala-l-Pro-l-Phe-p-nitroanilide or casein) could not penetrate from the external aqueous phase into the liposomes, and were not hydrolyzed. This substrate selectivity is entirely based on the compartimentation and permeability properties of the liposome microreactor. PMID:10099196

  16. Effect of Dibucaine on Phase Behavior of Ternary Liposome

    E-print Network

    Kazunari Yoshida; Akito Takashima; Izumi Nishio

    2015-01-08

    We investigated the effect of Dibucaine hydrochloride (DC$\\cdot$HCl), one of the local anesthetics, on phase behavior of ternary liposome composed of dioleoylphosphatidylcholine (DOPC), dipalmitoylphosphatidylcholine (DPPC), and cholesterol (Chol). The large DOPC/DPPC/Chol liposome, that is directly observable by optical microscope, is commonly known to be laterally separated into liquid-ordered (Lo) phase (raft-like domain) and liquid-disordered (Ld) phase under certain conditions and is useful for study of lipid-raft-like domains as a simple model system. In order to confirm the effect of DC$\\cdot$HCl on a miscibility transition temperature, $T_{\\rm c}$, of the ternary liposome, we observed the liposomes with three concentrations, 0, 0.05, and 0.2~mM, of DC$\\cdot$HCl at various temperatures. In addition, we calculated the angle-averaged two-dimensional autocorrelation (2D-AC) functions in order to quantify the phase behavior. The results of these observations and calculations revealed that the DC$\\cdot$HCl molecules induce the reduction of $T_{\\rm c}$ of the ternary liposome. Furthermore, we calculated the circularity of Lo domain in order to confirm the change in the line tension of the Lo/Ld phase boundary and revealed that the insertion of the DC molecules induces the reduction of line tension. In terms of the critical phenomena, we conclude that the insertion of the DC molecules induces the reduction of the $T_{\\rm c}$ of the ternary liposome due to reduction of line tension. This suggests that the DC molecules may disturb function of ion channels via affecting the lipid bilayers which surround ion channels.

  17. Liposome functionalization with copper-free "click chemistry".

    PubMed

    Oude Blenke, Erik; Klaasse, Gruson; Merten, Hannes; Plückthun, Andreas; Mastrobattista, Enrico; Martin, Nathaniel I

    2015-03-28

    The modification of liposomal surfaces is of interest for many different applications and a variety of chemistries are available that makes this possible. A major disadvantage of commonly used coupling chemistries (e.g. maleimide-thiol coupling) is the limited control over the site of conjugation in cases where multiple reactive functionalities are present, leading to heterogeneous products and in some cases dysfunctional conjugates. Bioorthogonal coupling approaches such as the well-established copper-catalyzed azide-alkyne cycloaddition (CuAAC) "click" reaction are attractive alternatives as the reaction kinetics are favorable and azide-containing reagents are widely available. In the work described here, we prepared lipids containing a reactive cyclooctyne group and, after incorporation into liposomes, demonstrated successful conjugation of both a small molecule dye (5'-TAMRA-azide) as well as a larger azide-containing model protein based upon a designed ankyrin repeat protein (azido-DARPin). By applying the strain-promoted azido-alkyne cycloaddition (SPAAC) the use of Cu(I) as a catalyst is avoided, an important advantage considering the known deleterious effects associated with copper in cell and protein studies. We demonstrate complete control over the number of ligands coupled per liposome when using a small molecule azide with conjugation occurring at a reasonable reaction rate. By comparison, the conjugation of a larger azide-modified protein occurs more slowly, however the number of protein ligands coupled was found to be sufficient for liposome targeting to cells. Importantly, these results provide a strong proof of concept for the site-specific conjugation of protein ligands to liposomal surfaces via SPAAC. Unlike conventional approaches, this strategy provides for the homogeneous coupling of proteins bearing a single site-specific azide modification and eliminates the chance of forming dysfunctional ligands on the liposome. Furthermore, the absence of copper in the reaction process should also make this approach much more compatible with cell-based and in vivo applications. PMID:25626085

  18. Octadecyl ferulate behavior in 1,2-Dioleoylphosphocholine liposomes.

    PubMed

    Evans, Kervin O; Compton, David L; Whitman, Nathan A; Laszlo, Joseph A; Appell, Michael; Vermillion, Karl E; Kim, Sanghoon

    2016-01-15

    Octadecyl ferulate was prepared using solid acid catalyst, monitored using Supercritical Fluid Chromatography and purified to a 42% yield. Differential scanning calorimetry measurements determined octadecyl ferulate to have melting/solidification phase transitions at 67 and 39°C, respectively. AFM imaging shows that 5-mol% present in a lipid bilayer induced domains to form. Phase behavior measurements confirmed that octadecyl ferulate increased transition temperature of phospholipids. Fluorescence measurements demonstrated that octadecyl ferulate stabilized liposomes against leakage, maintained antioxidant capacity within liposomes, and oriented such that the feruloyl moiety remained in the hydrophilic region of the bilayer. Molecular modeling calculation indicated that antioxidant activity was mostly influenced by interactions within the bilayer. PMID:26332862

  19. Octadecyl ferulate behavior in 1,2-Dioleoylphosphocholine liposomes

    NASA Astrophysics Data System (ADS)

    Evans, Kervin O.; Compton, David L.; Whitman, Nathan A.; Laszlo, Joseph A.; Appell, Michael; Vermillion, Karl E.; Kim, Sanghoon

    2016-01-01

    Octadecyl ferulate was prepared using solid acid catalyst, monitored using Supercritical Fluid Chromatography and purified to a 42% yield. Differential scanning calorimetry measurements determined octadecyl ferulate to have melting/solidification phase transitions at 67 and 39 °C, respectively. AFM imaging shows that 5-mol% present in a lipid bilayer induced domains to form. Phase behavior measurements confirmed that octadecyl ferulate increased transition temperature of phospholipids. Fluorescence measurements demonstrated that octadecyl ferulate stabilized liposomes against leakage, maintained antioxidant capacity within liposomes, and oriented such that the feruloyl moiety remained in the hydrophilic region of the bilayer. Molecular modeling calculation indicated that antioxidant activity was mostly influenced by interactions within the bilayer.

  20. Partitioning and thermodynamics of dipyridamole in the n-octanol/buffer and liposome systems.

    PubMed

    Betageri, G V; Dipali, S R

    1993-10-01

    The thermodynamics of partitioning (K) of dipyridamole has been determined in n-octanol/buffer and liposome-buffer systems at pH 7.4. Dimyristoylphosphatidylcholine (DMPC) and dipalmitoylphosphatidylcholine (DPPC) were used to prepare multilamellar liposomes. Partitioning of dipyridamole did not depend on the amount of n-octanol employed, however, partitioning was dependent upon the quantity of DMPC employed to prepare liposomes. Plots of log K vs 1/T were linear in the n-octanol and liposome systems. Partitioning was generally greater in liposomes than in the n-octanol/buffer system. Among liposomes, the partitioning was greater in DMPC liposomes at all temperatures. The values of enthalpy (delta H) and entropy (delta S) were positive in both the n-octanol and liposome systems. These values were lower in DMPC liposomes and were comparable in the n-octanol and DPPC liposomes. Thus, the interaction of dipyridamole depends on the rigidity of lipid bilayers and liposomes constitute a more selective partitioning system than the n-octanol/buffer system. PMID:7904639

  1. Quantum Dot-Loaded Liposomes to Evaluate the Behavior of Drug Carriers after Oral Administration

    PubMed Central

    Tahara, Kohei; Fujimoto, Shiho; Fujii, Fumihiko; Tozuka, Yuichi; Jin, Takashi; Takeuchi, Hirofumi

    2013-01-01

    We have developed submicron-sized liposomes modified with a mucoadhesive polymer to enhance peptide drug absorption after oral administration. Liposomal behavior in the gastrointestinal tract is a critical factor for effective peptide drug delivery. The purpose of this study was to prepare quantum dot- (QD-) loaded submicron-sized liposomes and examine liposomal behavior in the body after oral administration using in vivo fluorescence imaging. Two types of CdSe/CdZnS QDs with different surface properties were used: hydrophobic (unmodified) QDs and hydrophilic QDs with glutathione (GSH) surface modifications. QD- and GSH-QD-loaded liposomes were prepared by a thin film hydration method. Transmission electron microscopy revealed that QDs were embedded in the liposomal lipid bilayer. Conversely, GSH-QDs were present in the inner aqueous phase. Some of the GSH-QDs were electrostatically associated with the lipid membrane of stearylamine-bearing cationic liposomes. QD-loaded liposomes were detected in Caco-2 cells after exposure to the liposomes, and these liposomes were not toxic to the Caco-2 cells. Furthermore, we evaluated the in vivo bioadhesion and intestinal penetration of orally administered QD-loaded liposomes by observing the intestinal segment using confocal laser scanning microscopy. PMID:26555997

  2. Quantitative Analysis of the Lamellarity of Giant Liposomes Prepared by the Inverted Emulsion Method

    PubMed Central

    Chiba, Masataka; Miyazaki, Makito; Ishiwata, Shin’ichi

    2014-01-01

    The inverted emulsion method is used to prepare giant liposomes by pushing water-in-oil droplets through the oil/water interface into an aqueous medium. Due to the high encapsulation efficiency of proteins under physiological conditions and the simplicity of the protocol, it has been widely used to prepare various cell models. However, the lamellarity of liposomes prepared by this method has not been evaluated quantitatively. Here, we prepared liposomes that were partially stained with a fluorescent dye, and analyzed their fluorescence intensity under an epifluorescence microscope. The fluorescence intensities of the membranes of individual liposomes were plotted against their diameter. The plots showed discrete distributions, which were classified into several groups. The group with the lowest fluorescence intensity was determined to be unilamellar by monitoring the exchangeability of the inner and the outer solutions of the liposomes in the presence of the pore-forming toxin ?-hemolysin. Increasing the lipid concentration dissolved in oil increased the number of liposomes ?100 times. However, almost all the liposomes were unilamellar even at saturating lipid concentrations. We also investigated the effects of lipid composition and liposome content, such as highly concentrated actin filaments and Xenopus egg extracts, on the lamellarity of the liposomes. Remarkably, over 90% of the liposomes were unilamellar under all conditions examined. We conclude that the inverted emulsion method can be used to efficiently prepare giant unilamellar liposomes and is useful for designing cell models. PMID:25028876

  3. Trapping of dextran-coated colloids in liposomes by transient binding to aminophospholipid: preparation of ferrosomes.

    PubMed

    Bogdanov, A A; Martin, C; Weissleder, R; Brady, T J

    1994-07-13

    A procedure is described that allows to increase the efficiency of the loading of liposomes with dextran-stabilized iron oxides (MION). The method produces a preparation of liposomes (REVs) with high iron oxide content as a result of transient binding of oxidized dextran with amino groups of aminophospholipids. Phosphatidylethanolamine (PE)-containing lipid mixtures (PC/DOPE/CH or SM/DOPE/CH, 9:2:9 molar ratio) in organic phase were combined with oxidized MION at pH 8. Liposomes then were obtained by reversed-phase evaporation. Liposomes, 263 +/- 89 nm in diameter, contained up to 11.8 mol Fe/mol phospholipid (encapsulation yield 49%). 10.2% of liposome-associated iron was dissociated from liposomes upon changing the pH to 4.5. When lipid compositions of extracts prepared from liposomes incubated at pH 4.5 and pH 8.0 were compared, an increase of relative PE-content in extracts of liposomes incubated at lowered pH was detected. This indicates a dissociation of imine bonds between aldehydes on the MION surface and PE. The accessibility of liposomal PE for acylation was demonstrated by modification with an activated ester of methoxy poly(ethylene glycol) succinate. Control liposomes, containing no aminophospholipid, or PE-containing liposomes obtained in the presence of non-oxidized MION, were 3.5-5-fold less effective for MION encapsulation and showed extensive aggregation. PMID:7518693

  4. Mixture of cholesterol end-capped polyethylene glycol with DSPC liposomal

    NASA Astrophysics Data System (ADS)

    Sharifi, Soheil

    2015-07-01

    The dynamic of network of self-assembled liposome by end-capped polymer was investigated using dynamic light scattering. The liposome network, physically cross-linked by mixed liposome solutions with three different length scale of cholesterol end-capped polyethylene glycol. The network of liposome is dependent on both the polymer concentration and length scale. In the pure liposome, one motion at low time scale is observed by DLS. In the higher concentration of polymer in liposome, several motion is observed that the fast motion is alpha relaxation and other two slow motion are beta and gamma relaxations. The distance between diffusion coefficient of fast and slow relaxation is increased with increase of length scale of endcapped polymers. The SAXS data is fitted with a Percus-Yevick hard sphere model and it shows that the size of liposome increasing with increase of polymer length scale in the mixture system.

  5. Fluorescence Behaviour of an Aluminium Octacarboxy Phthalocyanine--NaYGdF4:Yb/Er Nanoparticle Conjugate.

    PubMed

    Taylor, Jessica; Litwinski, Christian; Nyokong, Tebello; Antunes, Edith

    2015-05-01

    Using a methanol assisted thermal decomposition approach, sphere shaped NaYGdF4:Yb/Er upconversion nanoparticles (UCNPs) were successfully synthesized. The chemical, spectroscopic and fluorescence properties of the UCNPs were fully characterized. Characteristic upconversion fluorescence emissions were produced by the NPs in the green, red and NIR regions and the NPs were also shown to possess paramagnetic properties. The influence of the UCNPs on the spectroscopic and fluorescence properties of an aluminium octacarboxy phthalocyanine AlOCPc was investigated. Covalent conjugation to an AlOCPc resulted in a large blue shift of the phthalocyanine's Q band, which was accompanied by a decrease in the Pc's fluorescence lifetime in DMSO. By combining the phthalocyanine and upconversion nanoparticle, we present a system capable of multimodal imaging, using both the upconversion nanoparticle's and phthalocyanine's emission, and magnetic resonance imaging (as a result of doping the upconversion nanoparticles with Gd(3+) ions). PMID:25744527

  6. Regioisomer-Free C 4h ?-Tetrakis(tert-butyl)metallo-phthalocyanines: Regioselective Synthesis and Spectral Investigations.

    PubMed

    Iida, Norihito; Tanaka, Kenta; Tokunaga, Etsuko; Takahashi, Hiromi; Shibata, Norio

    2015-04-01

    Metal ?-tetrakis(tert-butyl)phthalocyanines are the most commonly used phthalocyanines due to their high solubility, stability, and accessibility. They are commonly used as a mixture of four regioisomers, which arise due to the tert-butyl substituent on the ?-position, and to the best of our knowledge, their regioselective synthesis has yet to be reported. Herein, the C 4h -selective synthesis of ?-tetrakis(tert-butyl)metallophthalocyanines is disclosed. Using tetramerization of ?-trialkylsilyl phthalonitriles with metal salts following acid-mediated desilylation, the desired metallophthalocyanines were obtained in good yields. Upon investigation of regioisomer-free zinc ?-tetrakis(tert-butyl)phthalocyanine using spectroscopy, the C 4h single isomer described here was found to be distinct in the solid state to zinc ?-tetrakis(tert-butyl)phthalocyanine obtained by a conventional method. PMID:25969805

  7. Liposomes as vaccine delivery systems: a review of the recent advances

    PubMed Central

    2014-01-01

    Liposomes and liposome-derived nanovesicles such as archaeosomes and virosomes have become important carrier systems in vaccine development and the interest for liposome-based vaccines has markedly increased. A key advantage of liposomes, archaeosomes and virosomes in general, and liposome-based vaccine delivery systems in particular, is their versatility and plasticity. Liposome composition and preparation can be chosen to achieve desired features such as selection of lipid, charge, size, size distribution, entrapment and location of antigens or adjuvants. Depending on the chemical properties, water-soluble antigens (proteins, peptides, nucleic acids, carbohydrates, haptens) are entrapped within the aqueous inner space of liposomes, whereas lipophilic compounds (lipopeptides, antigens, adjuvants, linker molecules) are intercalated into the lipid bilayer and antigens or adjuvants can be attached to the liposome surface either by adsorption or stable chemical linking. Coformulations containing different types of antigens or adjuvants can be combined with the parameters mentioned to tailor liposomal vaccines for individual applications. Special emphasis is given in this review to cationic adjuvant liposome vaccine formulations. Examples of vaccines made with CAF01, an adjuvant composed of the synthetic immune-stimulating mycobacterial cordfactor glycolipid trehalose dibehenate as immunomodulator and the cationic membrane forming molecule dimethyl dioctadecylammonium are presented. Other vaccines such as cationic liposome–DNA complexes (CLDCs) and other adjuvants like muramyl dipeptide, monophosphoryl lipid A and listeriolysin O are mentioned as well. The field of liposomes and liposome-based vaccines is vast. Therefore, this review concentrates on recent and relevant studies emphasizing current reports dealing with the most studied antigens and adjuvants, and pertinent examples of vaccines. Studies on liposome-based veterinary vaccines and experimental therapeutic cancer vaccines are also summarized. PMID:25364509

  8. Features of the spectral dependences of transmittance of organic semiconductors based on tert-butyl substituted lutetium phthalocyanine molecules

    SciTech Connect

    Belogorokhov, I. A.; Tikhonov, E. V.; Dronov, M. A.; Belogorokhova, L. I.; Ryabchikov, Yu. V.; Tomilova, L. G.; Khokhlov, D. R.

    2011-11-15

    Vibronic properties of organic semiconductors based on tert-butyl substituted phthalocyanine lutetium diphthalocyanine molecules are studied by IR and Raman spectroscopy. It is shown that substitution of several carbon atoms in initial phthalocyanine (Pc) ligands with {sup 13}C isotope atoms causes a spectral shift in the main absorption lines attributed to benzene, isoindol, and peripheral C-H groups. A comparison of spectral characteristics showed that the shift can vary from 3 to 1 cm{sup -1}.

  9. Electronic structure differences between H2-, Fe-, Co-, and Cu-phthalocyanine highly oriented thin films observed using NEXAFS spectroscopy

    NASA Astrophysics Data System (ADS)

    Willey, T. M.; Bagge-Hansen, M.; Lee, J. R. I.; Call, R.; Landt, L.; van Buuren, T.; Colesniuc, C.; Monton, C.; Valmianski, I.; Schuller, Ivan K.

    2013-07-01

    Phthalocyanines, a class of macrocyclic, square planar molecules, are extensively studied as semiconductor materials for chemical sensors, dye-sensitized solar cells, and other applications. In this study, we use angular dependent near-edge x-ray absorption fine structure (NEXAFS) spectroscopy as a quantitative probe of the orientation and electronic structure of H2-, Fe-, Co-, and Cu-phthalocyanine molecular thin films. NEXAFS measurements at both the carbon and nitrogen K-edges reveal that phthalocyanine films deposited on sapphire have upright molecular orientations, while films up to 50 nm thick deposited on gold substrates contain prostrate molecules. Although great similarity is observed in the carbon and nitrogen K-edge NEXAFS spectra recorded for the films composed of prostrate molecules, the H2-phthalocyanine exhibits the cleanest angular dependence due to its purely out-of-plane ?* resonances at the absorption onset. In contrast, organometallic-phthalocyanine nitrogen K-edges have a small in-plane resonance superimposed on this ?* region that is due to a transition into molecular orbitals interacting with the 3dx2-y2 empty state. NEXAFS spectra recorded at the metal L-edges for the prostrate films reveal dramatic variations in the angular dependence of specific resonances for the Cu-phthalocyanines compared with the Fe-, and Co-phthalocyanines. The Cu L3,2 edge exhibits a strong in-plane resonance, attributed to its b1g empty state with dx2-y2 character at the Cu center. Conversely, the Fe- and Co- phthalocyanine L3,2 edges have strong out-of-plane resonances; these are attributed to transitions into not only b1g (dz2) but also eg states with dxz and dyz character at the metal center.

  10. Kinetic of the Intracellular Incorporation of New Phthalocyanines Synthesized in mexico and Its Potential as Photosensibilizers in the Photodynamic Therapy

    SciTech Connect

    Aragon-Aguilar, Hector; Ramon-Gallegos, Eva; Arenas-Huertero, Francisco Jesus; Cruz-Orea, Alfredo; Sosa-Sanchez, Jose Luis; Garcia Miranda, Maribel

    2008-08-11

    The search of more specific and efficient photosensitizer in low oxygen tensions is a need in the Photodynamic Therapy (PDT). Phthalocyanines have demonstrated to have the above mentioned activity. The aim of this work was to determine the efficiency of PDT using two phthalocyanines synthesized in Mexico to eliminate melanoma cells. B16F0 melanoma mouse cells were exposed to concentrations from 8.95x10{sup -5} to 0.733 m/mL of F16VoPc and F16NbPcC13 during 24h, afterwards cellular mortality was measured. One kinetic was realized to determine the intracellular incorporation of phthalocyanines by confocal microscopy at 1, 2, 4, 8, 16 and 24 h of exposition. The PDT was applied exposing the cells to innocuous concentration (that does not provoke cellular death with out irradiation) and irradiating with an argon laser at 100 J/cm{sup 2}. For each phthalocyanine a control group was used; one group was not treated neither with light nor with phthalocyanine, the other group it was only irradiated. 24 h after treatment the citotoxicity was measured by Alamar blue assay. The innocuous concentration found for the phthalocyanines F16VoPc and F16NbPcC13 were 4.58x10-2 and 2.29xl0{sup -2} mg/mL, respectively. The time of maximum intracellular accumulation for both phthalocyanines was 24 h. Only the F16VoPc had anticancerous activity and induced 31.7% of cellular death. The PDT might offer a potential alternative to the treatment of this cancer when is used the phthalocyanine F16VoPc.

  11. The use of liposomes for constructing cell models.

    PubMed

    Oberholzer, T; Luisi, P L

    2002-12-01

    We illustrate here in a form of a short review some of the work developed in our and other groups aiming at performing inside liposomes enzymatic reactions relevant for the origin of life. The work on giant vesicles will not be considered here. The long-range goal of our work with SUVs or LUVs (small unilamellar vesicles or large unilamellar vesicles) is the construction of a model minimal cell. By this we mean a cell-like system containing the minimal and sufficient number of macromolecular components for expressingsome of the basic functions of a living cell- such as protein biosynthesis, growth and self-reproduction, homeostasis based on a primitive metabolism. We begin describing a POPC liposomal system containing some of the enzymes of the salvage cycle for the synthesis of lecithin; then vesicles containing the nucleotide phosphorylase enzyme for the polymerisation of ADP into poly(A); an oleate self-reproducing vesicular system which hosts Q? replicase for the replication of a RNA template; a POPC systems (POPC = 1-palmitoyl-2-oleoyl-sn-phosphatidylcholine) hosting the elements for a polymerase chain reaction; and finally the attempts to organize inside liposomes the ribosomal system capable of the synthesis of poly(phenylalanine). This analysis of published work will be followed by the description of novel work aimed at expressing a protein (green fluorescent protein) inside liposomes. The possible development of this work and its limits will be discussed. PMID:23345810

  12. Unidirectional incorporation of a bacterial mechanosensitive channel into liposomal membranes.

    PubMed

    Nomura, Takeshi; Cox, Charles D; Bavi, Navid; Sokabe, Masahiro; Martinac, Boris

    2015-10-01

    The bacterial mechanosensitive channel of small conductance (MscS) plays a crucial role in the protection of bacterial cells against hypo-osmotic shock. The functional characteristics of MscS have been extensively studied using liposomal reconstitution. This is a widely used experimental paradigm and is particularly important for mechanosensitive channels as channel activity can be probed free from cytoskeletal influence. A perpetual issue encountered using this paradigm is unknown channel orientation. Here we examine the orientation of MscS in liposomes formed using 2 ion channel reconstitution methods employing the powerful combination of patch clamp electrophysiology, confocal microscopy, and continuum mechanics simulation. Using the previously determined electrophysiological and pharmacological properties of MscS, we were able to determine that in liposomes, independent of lipid composition, MscS adopts the same orientation seen in native membranes. These results strongly support the idea that these specific methods result in uniform incorporation of membrane ion channels and caution against making assumptions about mechanosensitive channel orientation using the stimulus type alone.-Nomura, T., Cox, C. D., Bavi, N., Sokabe, M., Martinac, B. Unidirectional incorporation of a bacterial mechanosensitive channel into liposomal membranes. PMID:26116700

  13. Fluorescent Liposome Flow Markers for Microscale Particle-Image Velocimetry

    E-print Network

    Singh, Anup

    Fluorescent Liposome Flow Markers for Microscale Particle-Image Velocimetry Anup K. Singh,* Eric B,7 and caged dyes8 have been explored for examining flow fields in capillaries. Particle-image velocimetry (PIV-to-noise ratio. A novel computational scheme that is particularly suitable for analyzing particle-image

  14. LeciPlex, invasomes, and liposomes: A skin penetration study.

    PubMed

    Shah, Sanket M; Ashtikar, Mukul; Jain, Ankitkumar S; Makhija, Dinesh T; Nikam, Yuvraj; Gude, Rajiv P; Steiniger, Frank; Jagtap, Aarti A; Nagarsenker, Mangal S; Fahr, Alfred

    2015-07-25

    The present study compares three vesicular systems, cationic LeciPlex, invasomes, and conventional liposomes for their ability to deliver drugs deep into the skin. Skin penetration ability of the three vesicular systems was studied for two drugs namely idebenone (antioxidant/anticancer) and azelaic acid (antiacne). All systems showed sizes in nanometer range with small polydispersity indices. Vesicular systems were characterized by CryoTEM studies to understand the differences in morphology of the vesicular systems. Ex vivo human skin penetration studies suggested a pattern in penetration of drugs in different layers of the skin: LeciPlex showed higher penetration for idebenone whereas invasomes showed higher penetration of azelaic acid. Ex vivo study using a fluorescent dye (DiI) was performed to understand the differences in the penetration behavior of the three vesicular systems on excised human skin. In vitro cytotoxicity studies on B16F10 melanoma cell lines revealed, when loaded with idebenone, LeciPlex formulations had the superior activity followed by invasomes and liposomes. In vitro antimicrobial study of azelaic acid loaded systems on Propionibacterium acne revealed high antimicrobial activity for DDAB leciplex followed by almost equal activity for invasomes and CTAB LeciPlex followed by liposomes. Whereas antiacne efficacy study in rats for azelaic acid loaded systems, invasomes exhibited the best antiacne efficacy followed by liposomes and LeciPlex. PMID:26002568

  15. Liposomal bupivacaine: a review of a new bupivacaine formulation

    PubMed Central

    Chahar, Praveen; Cummings, Kenneth C

    2012-01-01

    Many attempts have been made to increase the duration of local anesthetic action. One avenue of investigation has focused on encapsulating local anesthetics within carrier molecules to increase their residence time at the site of action. This article aims to review the literature surrounding the recently approved formulation of bupivacaine, which consists of bupivacaine loaded in multivesicular liposomes. This preparation increases the duration of local anesthetic action by slow release from the liposome and delays the peak plasma concentration when compared to plain bupivacaine administration. Liposomal bupivacaine has been approved by the US Food and Drug Administration for local infiltration for pain relief after bunionectomy and hemorrhoidectomy. Studies have shown it to be an effective tool for postoperative pain relief with opioid sparing effects and it has also been found to have an acceptable adverse effect profile. Its kinetics are favorable even in patients with moderate hepatic impairment, and it has been found not to delay wound healing after orthopedic surgery. More studies are needed to establish its safety and efficacy for use via intrathecal, epidural, or perineural routes. In conclusion, liposomal bupivacaine is effective for treating postoperative pain when used via local infiltration when compared to placebo with a prolonged duration of action, predictable kinetics, and an acceptable side effect profile. However, more adequately powered trials are needed to establish its superiority over plain bupivacaine. PMID:23049275

  16. Enhancing Methotrexate Tolerance with Folate Tagged Liposomes in Arthritic Mice.

    PubMed

    Nogueira, Eugénia; Lager, Franck; Le Roux, Delphine; Nogueira, Patrícia; Freitas, Jaime; Charvet, Celine; Renault, Gilles; Loureiro, Ana; Almeida, Catarina R; Ohradanova-Repic, Anna; Machacek, Christian; Bernardes, Gonçalo J L; Moreira, Alexandra; Stockinger, Hannes; Burnet, Michael; Carmo, Alexandre M; Gomes, Andreia C; Preto, Ana; Bismuth, Georges; Cavaco-Paulo, Artur

    2015-12-01

    Methotrexate is the first line of treatment of rheumatoid arthritis. Since many patients become unresponsive to methotrexate treatment, only very expensive biological therapies are effective and increased methotrexate tolerance strategies need to be identified. Here we propose the encapsulation of methotrexate in a new liposomal formulation using a hydrophobic fragment of surfactant protein conjugated to a linker and folate to enhance their tolerance and efficacy. In this study we aim to evaluate the efficiency of this system to treat rheumatoid arthritis, by targeting folate receptor ? present at the surface of activated macrophages, key effector cells in this pathology. The specificity of our liposomal formulation to target folate receptor ? was investigated both in vitro as in vivo using a mouse model of arthritis (collagen-induced arthritis in DBA/1J mice strain). In both systems, the liposomal constructs were shown to be highly specific and efficient in targeting folate receptor ?. These liposomal formulations also significantly increase the clinical benefit of the encapsulated methotrexate in vivo in arthritic mice, together with reduced expression of CD39 and CD73 ectonucleotidases by joint-infiltrating macrophages. Thus, our formulation might be a promising cost effective way to treat rheumatoid arthritis and delay or reduce methotrexate intolerance. PMID:26510317

  17. Porphyrin-phospholipid liposomes permeabilized by near-infrared light

    NASA Astrophysics Data System (ADS)

    Carter, Kevin A.; Shao, Shuai; Hoopes, Matthew I.; Luo, Dandan; Ahsan, Bilal; Grigoryants, Vladimir M.; Song, Wentao; Huang, Haoyuan; Zhang, Guojian; Pandey, Ravindra K.; Geng, Jumin; Pfeifer, Blaine A.; Scholes, Charles P.; Ortega, Joaquin; Karttunen, Mikko; Lovell, Jonathan F.

    2014-04-01

    The delivery of therapeutic compounds to target tissues is a central challenge in treating disease. Externally controlled drug release systems hold potential to selectively enhance localized delivery. Here we describe liposomes doped with porphyrin-phospholipid that are permeabilized directly by near-infrared light. Molecular dynamics simulations identified a novel light-absorbing monomer esterified from clinically approved components predicted and experimentally demonstrated to give rise to a more stable porphyrin bilayer. Light-induced membrane permeabilization is enabled with liposomal inclusion of 10 molar % porphyrin-phospholipid and occurs in the absence of bulk or nanoscale heating. Liposomes reseal following laser exposure and permeability is modulated by varying porphyrin-phospholipid doping, irradiation intensity or irradiation duration. Porphyrin-phospholipid liposomes demonstrate spatial control of release of entrapped gentamicin and temporal control of release of entrapped fluorophores following intratumoral injection. Following systemic administration, laser irradiation enhances deposition of actively loaded doxorubicin in mouse xenografts, enabling an effective single-treatment antitumour therapy.

  18. Nanoengineered Structures for Holding and Manipulating Liposomes and Cells

    E-print Network

    Zare, Richard N.

    liposomes undocked intact. Manipulation and measurement of individual cells1-5 and organelles6-9 have lead previously been assumed that among such populations of cells1 and organelles6,7 the contents were uniform-scale organelles by micropipets was performed by Sweedler and co-workers, in which Stanford University. Go

  19. pH-sensitive liposomes: characterization and application

    SciTech Connect

    Connor, J.

    1986-01-01

    It has been demonstrated that liposomes composed of dioleoylphosphatidylethanolamine (DOPE) and palmitoylhomocysteine (PHC) have the ability to fuse with adjacent membranes upon exposure to mildly acid pH. The ability of liposomes to fuse is absolutely dependent on the presence of DOPE and a weakly acidic amphiphile. The acid induced fusion event is a leaky process, but the leakage can be reduced by 50%, with only a small loss of fusion ability, by the inclusion of 40 mole percent cholesterol. Using an established monoclonal antibody targeting system. pH-sensitive immunoliposomes were prepared which successfully delivered entrapped calcein to the cytoplasm of target cells. The addition of chloroquine, which raises the internal pH of cellular vacuoles, blocks the cytoplasmic delivery of the pH-sensitive immunoliposomes. pH-insensitive immunoliposomes delivered calcein only to the endosome/lysosome system and not the cytoplasm. /sup 31/P-NMR and light scattering of DOPE:OA liposomes under acidic conditions demonstrate that the effect of the protons and the divalent cations is to force the DOPE to revert to the hexagonal II configuration. In vivo experiments with DOPE:OA immunoliposomes indicate that the liposomes rapidly aggregate and release their contents upon exposure to plasma. These results indicate that pH-sensitive immunoliposomes are an effective tool for in vitro cytoplasmic delivery but are ineffective for in vivo delivery at this point in development.

  20. Functionalization of liposomes: microscopical methods for preformulative screening.

    PubMed

    Belletti, Daniela; Vandelli, Maria Angela; Tonelli, Massimo; Zapparoli, Mauro; Forni, Flavio; Tosi, Giovanni; Ruozi, Barbara

    2015-01-01

    The development of smart delivery systems able to deliver and target a drug to the site of action is one of the major challenges in the field of pharmaceutical technology. The surface modification of nanocarriers, such as liposomes, is widely investigated either for increasing the blood circulation time (by pegylation) or for interacting with specific tissues or cells (by conjugation of a selective ligand as a monoclonal antibody, mAb). Microscopical analysis thereby is a useful approach to evaluate the morphology and the size owing to resolution and versatility in defining either surface modification or the architecture and the internal structure of liposomes. This contribution aims to connect the outputs obtained by transmission electron (TEM) and atomic force (AFM) microscopical techniques for identifying the modifications on the liposomal surface. To reach this objective, we prepared liposomes applying two different pegylation technologies and further modifying the surface by mAb conjugation. This work demonstrates the feasibility to apply the combined approach (TEM and AFM analysis) in the evaluation of the efficacy of a surface engineering process. PMID:25203607

  1. Stability of a liposomal formulation containing lipoyl or dihydrolipoyl acylglycerides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The acylglycerides of lipoic and dihydrolipoic acids may serve as slow-release sources for cutaneous delivery of these antioxidants when formulated in a liposomal vehicle. Testing was conducted to determine the storage stability of the lipoic derivatives and of the soybean phospholipids in which the...

  2. Association between cationic liposomes and low molecular weight hyaluronic acid.

    PubMed

    Gasperini, Antonio A M; Puentes-Martinez, Ximena E; Balbino, Tiago Albertini; Rigoletto, Thais de Paula; Corrêa, Gabriela de Sá Cavalcanti; Cassago, Alexandre; Portugal, Rodrigo Villares; de La Torre, Lucimara Gaziola; Cavalcanti, Leide P

    2015-03-24

    This work presents a study of the association between low molecular weight hyaluronic acid (16 kDa HA) and cationic liposomes composed of egg phosphatidylcholine (EPC), 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), and 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP). The cationic liposome/HA complexes were evaluated to determine their mesoscopic structure, average size, zeta potential, and morphology as a function of the amount of HA in the system. Small angle X-ray scattering results revealed that neighboring cationic liposomes either stick together after a partial coating of low concentration HA or disperse completely in excess of HA, but they never assemble as multilamellar vesicles. Cryo-transmission electron microscopy images confirm the existence of unilamellar vesicles and large aggregates of unilamellar vesicles for HA fractions up to 80% (w/w). High concentrations of HA (> 20% w/w) proved to be efficient for coating extruded liposomes, leading to particle complexes with sizes in the nanoscale range and a negative zeta potential. PMID:25730494

  3. Improved Photodynamic Efficacy of Zn(II) Phthalocyanines via Glycerol Substitution

    PubMed Central

    Chin, Yunni; Lim, Siang Hui; Zorlu, Yunus; Ahsen, Vefa; Kiew, Lik Voon; Chung, Lip Yong; Dumoulin, Fabienne; Lee, Hong Boon

    2014-01-01

    Phthalocyanines are excellent photosensitizers for photodynamic therapy as they have strong absorbance in the near infra-red region which is most relevant for in vivo activation in deeper tissular regions. However, most phthalocyanines present two major challenges, ie, a strong tendency to aggregate and low water-solubility, limiting their effective usage clinically. In the present study, we evaluated the potential enhancement capability of glycerol substitution on the photodynamic properties of zinc (II) phthalocyanines (ZnPc). Three glycerol substituted ZnPc, 1–3, (tetra peripherally, tetra non-peripherally and mono iodinated tri non-peripherally respectively) were evaluated in terms of their spectroscopic properties, rate of singlet oxygen generation, partition coefficient (log P), intracellular uptake, photo-induced cytotoxicity and vascular occlusion efficiency. Tetrasulfonated ZnPc (ZnPcS4) was included as a reference compound. Here, we showed that 1–3 exhibited 10–100 nm red-shifted absorption peaks with higher molar absorptivity, and at least two-fold greater singlet oxygen generation rates compared to ZnPcS4. Meanwhile, phthalocyanines 1 and 2 showed more hydrophilic log P values than 3 consistent with the number of glycerol attachments but 3 was most readily taken up by cells compared to the rest. Both phthalocyanines 2 and 3 exhibited potent phototoxicity against MCF-7, HCT-116 and HSC-2 cancer cell-lines with IC50 ranging 2.8–3.2 µM and 0.04–0.06 µM respectively, while 1 and ZnPcS4 (up to 100 µM) failed to yield determinable IC50 values. In terms of vascular occlusion efficiency, phthalocyanine 3 showed better effects than 2 by causing total occlusion of vessels with diameter <70 µm of the chorioallantoic membrane. Meanwhile, no detectable vascular occlusion was observed for ZnPcS4 with treatment under similar experimental conditions. These findings provide evidence that glycerol substitution, in particular in structures 2 and 3, is able to improve the photodynamic properties of ZnPc. PMID:24840576

  4. Doxorubicin liposomes as an investigative model to study the skin permeation of nanocarriers.

    PubMed

    Boakye, Cedar H A; Patel, Ketan; Singh, Mandip

    2015-07-15

    The objectives of this study were to develop an innovative investigative model using doxorubicin as a fluorophore to evaluate the skin permeation of nanocarriers and the impact of size and surface characteristics on their permeability. Different doxorubicin-loaded liposomes with mean particle size <130 nm and different surface chemistry were prepared by ammonium acetate gradient method using DPPC, DOPE, Cholesterol, DSPE-PEG 2000 and 1,1-Di-((Z)-octadec-9-en-1-yl) pyrrolidin-1-ium chloride (CY5)/DOTAP/1,2-dioleoyl-sn-glycero-3-phosphate (DOPA) as the charge modifier. There was minimal release of doxorubicin from the liposomes up to 8h; indicating that fluorescence observed within the skin layers was due to the intact liposomes. Liposomes with particle sizes >600 nm were restricted within the stratum corneum. DOTAP (p<0.01) and CY5 (p<0.05) liposomes demonstrated significant permeation into the skin than DOPA and PEG liposomes. Tape stripping significantly (p<0.01) enhanced the skin permeation of doxorubicin liposomes but TAT-decorated doxorubicin liposomes permeated better (p<0.005). Blockage of the hair follicles resulted in significant reduction in the extent and intensity of fluorescence observed within the skin layers. Overall, doxorubicin liposomes proved to be an ideal fluorophore-based model. The hair follicles were the major route utilized by the liposomes to permeate skin. Surface charge and particle size played vital roles in the extent of permeation. PMID:25910414

  5. Stability and pharmacokinetic studies of O-palmitoyl amylopectin anchored dipyridamole liposomes.

    PubMed

    Cheng, Ji; Zhu, Jia-bi; Wen, Na; Xiong, Fei

    2006-04-26

    Modified polysaccharides have been used widely to increase physico-chemical stability of liposomes. However, the stability and pharmacokinetic studies on the polysaccharides modified anchored liposomes containing hydrophobic drugs which exist in lipid bilayer membranes were insufficient as compared with the liposomes carrying hydrophilic or ionic drugs in inner aqueous phase. In the present study, a hydrophobic drug, dipyridamole (DIP), was entrapped into liposomes through film hydration. Amylopectin was palmitoylated and anchored on the surface of plain DIP liposomes. Subsequently, the stabilities of DIP ethanol solution, plain DIP liposomes (PDL) and anchored DIP liposomes (ODL) against irradiation, disperse medium, biofluid, long-term storage were determined and compared. The concentrations of DIP in plasma of rats and its pharmacokinetic behaviors after intravenous administration of DIP injection, PDL and ODL were studied by RP-HPLC. The pharmacokinetic parameters were computed by software 3p97 programme. The results showed that ODL could increase stabilities more of DIP in vitro as compared with PDL. The plasma concentration-time curves of DIP after intravenous administration of DIP injection, PDL and ODL were all in accordance with open two-compartment model. Pharmacokinetic parameters of DIP injection, PDL and ODL in rats were significantly different. The present findings suggest that anchored liposomes could increase stabilities of DIP in vitro as compared with plain liposomes. Furthermore, the difference of pharmacokinetic profiles was due to the targetability of anchored liposomes. PMID:16540271

  6. Lymph node localization of non-specific antibody-coated liposomes

    SciTech Connect

    Mangat, S.; Patel, H.M.

    1985-05-20

    Subcutaneously injected small unilamellar liposomes are drained into the lymphatics and localized in the regional lymph nodes, and thus they can be used for the detection of metastatic spread in breast cancer patients and for delivery of drugs to diseased lymph nodes. An aqueous phase marker, (/sup 125/I)-polyvinylpyrrolidone, and a lipid phase marker, (/sup 3/H)-cholesterol, were used to study the lymph node localization of IgG-coated liposomes injected subcutaneously into mouse and rat footpads. The results show that human immunoglobulin G (IgG) coated liposomes are rapidly removed from the site of injection and are localized in the regional lymph nodes to a greater extent than control liposomes (i.e. liposomes without IgG). Free IgG was found to inhibit the uptake of IgG-coated liposomes by the lymph nodes. The localization of IgG-coated liposomes in the regional lymph nodes is influenced by charge of the liposomes. The results presented here suggest that antibody-coated liposomes may provide a more efficient way of delivering therapeutic agents to the lymph nodes in the treatment of diseases such as breast cancer with lymph node involvement. Similarly, monoclonal antibody-coated liposomes containing lymphoscintigraphic material may improve the detection of lymph node metastases. 26 references, 3 figures, 3 tables.

  7. Pirfenidone-loaded liposomes for lung targeting: preparation and in vitro/in vivo evaluation

    PubMed Central

    Meng, Hui; Xu, Yong

    2015-01-01

    Background The purpose of this study was to develop novel pirfenidone (PFD)-loaded liposomes for targeting to the lung. Methods The liposomes were prepared by the film hydration method, and their in vitro/vivo characteristics were evaluated. Results The PFD liposomes appeared visually as green to yellowish suspensions and were spherical in shape. The particle size was 582.3±21.6 nm and the entrapment efficiency was relatively high (87.2%±5.7%). The liposomes showed typical sustained and prolonged drug-release behavior in vitro and fitted well with the Weibull distribution equation. The relatively slower time taken to reach a minimal plasma PFD concentration in vivo suggests that PFD liposomes have a sustained-release profile, which is consistent with the results of the in vitro release study. The PFD liposomes showed the largest area under the curve for the lung. The high distribution of PFD achieved in the lungs using this liposomal formulation may be explained by physical entrapment of the liposomes in the vascular network of the lung. Histopathological results indicated that liposomal PFD could alleviate pathological injury in lung tissue. Conclusion This liposomal formulation can enable sustained release of PFD and increase targeting to the lung. PMID:26185416

  8. Antibiotic delivery by liposomes from prokaryotic microorganisms: Similia cum similis works better.

    PubMed

    Colzi, Ilaria; Troyan, Anna N; Perito, Brunella; Casalone, Enrico; Romoli, Riccardo; Pieraccini, Giuseppe; Škalko-Basnet, Nataša; Adessi, Alessandra; Rossi, Federico; Gonnelli, Cristina; Ristori, Sandra

    2015-08-01

    To date the effectiveness of antibiotics is undermined by microbial resistance, threatening public health worldwide. Enhancing the efficacy of the current antibiotic arsenal is an alternative strategy. The administration of antimicrobials encapsulated in nanocarriers, such as liposomes, is considered a viable option, though with some drawbacks related to limited affinity between conventional liposomes and bacterial membranes. Here we propose a novel "top-down" procedure to prepare unconventional liposomes from the membranes of prokaryotes (PD-liposomes). These vectors, being obtained from bacteria with limited growth requirements, also represent low-cost systems for scalable biotechnology production. In depth physico-chemical characterization, carried out with dynamic light scattering (DLS) and Small Angle X-ray Scattering (SAXS), indicated that PD-liposomes can be suitable for the employment as antibiotic vectors. Specifically, DLS showed that the mean diameter of loaded liposomes was ?200-300nm, while SAXS showed that the structure was similar to conventional liposomes, thus allowing a direct comparison with more standard liposomal formulations. Compared to free penicillin G, PD-liposomes loaded with penicillin G showed minimal inhibitory concentrations against E. coli that were up to 16-times lower. Noteworthy, the extent of the bacterial growth inhibition was found to depend on the microorganisms from which liposomes were derived. PMID:26117185

  9. Lead Ions Encapsulated in Liposomes and Their Effect on Staphylococcus aureus

    PubMed Central

    Kensova, Renata; Blazkova, Iva; Konecna, Marie; Kopel, Pavel; Chudobova, Dagmar; Zitka, Ondrej; Vaculovicova, Marketa; Hynek, David; Adam, Vojtech; Beklova, Miroslava; Kizek, Rene

    2013-01-01

    The aim of the study was the preparation of a liposome complex with encapsulated lead ions, which were electrochemically detected. In particular, experiments were focused on the potential of using an electrochemical method for the determination of free and liposome-encapsulated lead and determination of the encapsulation efficiency preventing the lead toxicity. Primarily, encapsulation of lead ions in liposomes and confirmation of successful encapsulation by electrochemical methods was done. Further, the reduction effect of the liposome matrix on the detected electrochemical signal was monitored. Besides encapsulation itself, comparison of toxicity of free lead ions and lead ions encapsulated in liposome was tested. The calculated IC50 values for evaluating the lead cytotoxicity showed significant differences between the lead enclosed in liposomes (28 µM) and free lead ions (237 µM). From the cytotoxicity studies on the bacterial strain of S. aureus it was observed that the free lead ions are less toxic in comparison with lead encapsulated in liposomes. Liposomes appear to be a suitable carrier of various substances through the inner cavity. Due to the liposome structure the lead enclosed in the liposome is more easily accepted into the cell structure and the toxicity of the enclosed lead is higher in comparison to free lead ions. PMID:24317385

  10. A targeting drug-delivery model via interactions among cells and liposomes under ultrasonic excitation

    NASA Astrophysics Data System (ADS)

    Xi, Xiaoyu; Yang, Fang; Chen, Di; Luo, Yi; Zhang, Dong; Gu, Ning; Wu, Junru

    2008-06-01

    In our previous work, it was found that acoustic cavitation might play a role in improving the cell permeability to microparticles when liposomes were used in an in vitro experiment. The purpose of this project is to expand our study and to learn other possible mechanisms by which cells may interact with liposomes under ultrasound (US) excitation and become transiently permeable to microparticles. It is further hypothesized that two possible scenarios may be involved in in vitro experiments: (1) drug-carrying liposomes transiently overcome the cell membrane barrier and enter into a cell while the cell is still viable; (2) the liposomes incorporate with a cell at its membrane through a fusing process. To prove this hypothesis, liposomes of two different structures were synthesized: one has fluorescent molecules encapsulated into liposomes and the other has fluorescent markers incorporated into the shells of liposomes. Liposomes of each kind were mixed with human breast cancer cells (MCF7-cell line) in a suspension at 5 (liposomes) : 1 (cell) ratio and were then exposed to a focused 1 MHz ultrasound beam at its focal region for 40 s. The US signal contained 20 cycles per tone-burst at a pulse-repetition-frequency of 10 kHz; the spatial peak acoustic pressure amplitude was 0.25 MPa. It was found that the possible mechanisms might include the acoustic cavitation, the endocytosis and cell-fusion. Acoustic radiation force might make liposomes collide with cells effectively and facilitate the delivery process.

  11. Cellular fusion and whitening effect of a chitosan derivative coated liposome.

    PubMed

    Wang, Yang-Wei; Jou, Chi-Hsiung; Hung, Chia-Chun; Yang, Ming-Chien

    2012-02-01

    In this study, a derivative of chitosan, N-(2-hydroxyl) propyl-3-trimethyl ammonium chitosan chloride (HTCC), was coated onto the liposomes made of cholesterol and 1,2-palmitoyl-sn-glycero-3-phosphatidylcholine (DPPC). These coated liposomes were loaded with kojic acid for skin whitening. The appearance of liposome was examined using transmission electron microscope (TEM), and the coating of HTCC to the liposome was confirmed by infrared spectroscopy. By labeling with Dil, the fusion of liposome with the cell membrane of L929 fibroblast and B16-F10 melanoma was improved by the coating of HTCC. Based on the results of Franz cell experiment, the penetration of kojic acid (KA) through skin was improved by using HTCC-coating liposomes. Furthermore, the cell proliferation of L929 was not affected by HTCC-coating liposomes, while that of B16-F10 was reduced slightly with the increase of the concentration of HTCC-loading liposome. The degree of skin whitening was determined based on the melanin content in B-16-F10 cells. The results showed that the level of melanin synthesis was lower when KA was delivered using HTCC-coating liposome instead of traditional liposome. PMID:22056083

  12. Characterization and immobilization of liposome-bound cellulase for hydrolysis of insoluble cellulose.

    PubMed

    Li, Chengzhou; Yoshimoto, Makoto; Fukunaga, Kimitoshi; Nakao, Katsumi

    2007-05-01

    The liposome-bound cellulase was prepared by covalently coupling cellulase with the enzyme-free liposomes bearing aldehyde groups so that cellulase was located solely on the outer membrane of liposomes. The modified cellulase possessed the higher activity efficiency and lipid-based specific activity than the cellulase-containing liposomes reported previously. The enzyme-free liposomes bearing aldehyde groups were covalently immobilized with the chitosan gel beads and the free cellulase was coupled with the treated gel beads to prepare the immobilized liposome-bound cellulase. The activity efficiency of the immobilized liposome-bound cellulase was much higher than that of the conventionally immobilized cellulase. The results on reusability of the immobilized liposome-bound cellulase in the hydrolysis of either soluble or insoluble cellulose showed that the immobilized liposome-bound cellulase had the higher remaining cellulase activity and reusability than the conventionally immobilized cellulase for the hydrolysis of either type of cellulose. The liposomal membrane was suggested to be efficient in maintaining the cellulase activity during the hydrolysis. PMID:16822673

  13. Influence of curcumin-loaded cationic liposome on anticancer activity for cervical cancer therapy.

    PubMed

    Saengkrit, Nattika; Saesoo, Somsak; Srinuanchai, Wanwisa; Phunpee, Sarunya; Ruktanonchai, Uracha Rungsardthong

    2014-02-01

    The delivery of curcumin has been explored in the form of liposomal nanoparticles to treat various cancer cells. Since curcumin is water insoluble and an effective delivery route is through encapsulation in liposomes, which were modified with three components of DDAB, cholesterol and non-ionic surfactant. The purpose of this study was to establish a critical role of DDAB in liposomes containing curcumin at cellular response against two types of cell lines (HeLa and SiHa). Here, we demonstrate that DDAB is a potent inducer of cell uptake and cell death in both cell lines. The enhanced cell uptake was found on DDAB-containing liposome, but not on DDAB-free liposome. However, the cytotoxicity of DDAB-containing liposomes was high and needs to be optimized. The cytotoxicity of liposomal curcumin was more pronounced than free curcumin in both cells, suggesting the benefits of using nanocarrier. In addition, the anticancer efficiency and apoptosis effect of the liposomal curcumin formulations with DDAB was higher than those of DDAB-free liposomes. Therefore curcumin loaded liposomes indicate significant potential as delivery vehicles for the treatment of cervical cancers. PMID:24246195

  14. Parenteral emulsions and liposomes to treat drug overdose.

    PubMed

    Damitz, Robert; Chauhan, Anuj

    2015-08-01

    Drug overdoses from both pharmaceutical and recreational drugs are a major public health concern. Although some overdoses may be treated with specific antidotes, the most common treatment involves providing supportive care to allow the body to metabolize and excrete the toxicant. In many cases, supportive care is limiting, ineffective, and expensive. There is a clear medical need to improve the effectiveness of detoxification, in particular by developing more specific therapies or antidotes for these overdoses. Intravenous lipid emulsions (ILEs) have been investigated as a potential treatment for overdoses of local anesthetics and other hydrophobic drugs. While ILE therapy has been successful in several cases, its use beyond local anesthetic systemic toxicity is controversial and its mechanism of detoxification remains a subject of debate. ILEs were not originally developed to treat overdose, but clarifying the mechanisms of detoxification observed with ILE may allow us to design more effective future treatments. Liposomes are highly biocompatible and versatile formulations, thus it was a natural step to explore their use for drug overdose therapy as well. Several researchers have designed liposomes using a variety of approaches including surface charge, pH gradients, and inclusion of enzymes in the liposome core to optimize the formulations for detoxification of a specific drug or toxicant. The in vitro results for drug sequestration by liposomes are very promising and animal trials have in some cases shown comparable performance to ILE at reduced lipid dosing. This narrative review summarizes the current status and advances in the use of emulsions and liposomes for detoxification and also suggests several areas in which studies are needed for developing future therapies. PMID:26086091

  15. The biological activity of a liposomal complete core lipopolysaccharide vaccine.

    PubMed

    Erridge, Clett; Stewart, John; Bennett-Guerrero, Elliott; McIntosh, Thomas J; Poxton, Ian R

    2002-01-01

    A vaccine that induces humoral immunity to lipopolysaccharide (LPS), while remaining non-pyrogenic should be beneficial, as high levels of antibodies against LPS are associated with a reduced risk of adverse outcome. However, pure LPS or bacteria expressing LPS are generally considered too toxic to be used as vaccines. Recently, a novel, immunogenic complete core lipopolysaccharide vaccine has been described, which has been designed to prevent endotoxin-related inflammatory reactions in surgical and high-risk hospitalized patients. In vivo studies have shown that while administration of the vaccine to rabbits results in no toxicity over 7 days, it does induce significantly enhanced antibody responses towards a broad range of clinically relevant Gram-negative LPSs. Here we show that encapsulation of the four complete core LPS types Escherichia coli K12, Escherichia coli R1, Bacteroides fragilis and Pseudomonas aeruginosa into liposomes greatly reduces the ability of a given amount of LPS to induce TNF-alpha production in vitro from human monocytes. In contrast to previous studies of liposomal LPS, we demonstrate a reduction in activity of approximately 100,000-fold; a reduction approximately 100-1,000-fold more than that previously described. The signalling by the liposomal LPS appears to be entirely dependent on serum factors, though this can be partially restored by soluble CD14 or, to a lesser extent, by lipopolysaccharide binding protein. Time-course experiments reveal that liposomal LPS signalling shows similar kinetics to pure LPS signalling. Therefore, as well as inducing specific antibody responses, liposomal LPS demonstrates characteristics suitable for use as a vaccine to be used in human beings. PMID:11981444

  16. Focused ultrasound influence on calcein-loaded thermosensitive stealth liposomes.

    PubMed

    Novell, Anthony; Al Sabbagh, Chantal; Escoffre, Jean-Michel; Gaillard, Cédric; Tsapis, Nicolas; Fattal, Elias; Bouakaz, Ayache

    2015-06-01

    Focused ultrasound (FUS) is a versatile technology for non-invasive thermal therapies in oncology. Indeed, this technology has great potential for local heat-mediated drug delivery from thermosensitive liposomes (TSLs), thus improving therapeutic efficacy and reducing toxicity profiles. In the present study we evaluated the influence of FUS parameters on the release of calcein from TSLs used to model a hydrophilic drug. Quantitative calcein release from TSLs (DPPC/CHOL/DSPE-PEG2000: 90/5/5) and non-thermosensitive liposomes (NTSLs) (DPPC/CHOL/DSPE-PEG2000: 65/30/5) was measured by spectrofluorimetry after both water bath and FUS-induced in vitro heating. The heating of TSLs at 42?°C in a water bath resulted in a maximum calcein release of 45%. No additional calcein release was observed at temperatures above 42?°C. A similar percentage of calcein release was achieved when TSLs were exposed to 1?MHz sinusoidal waves at peak negative pressure of 1.5?MPa, 40% duty cycle, for 10?min (i.e. above 42?°C). No release was detected when NTSLs were heated in a water bath. For both TSLs and NTSLs, the calcein release was increased by more than 10% for acoustic pressures ranging from 1.5?MPa to 2?MPa. This additional release was attributed to the mechanical stress generated by FUS, which was sufficient to disrupt the liposomal membrane. Furthermore, analysis of cryo-TEM images showed a significant decrease in liposome size (14%) induced by the thermal effect, whereas the liposome diameter remained unaffected by the FUS-triggered non-thermal effects. PMID:25677841

  17. Transient cerebral hypoperfusion assisted intraarterial cationic liposome delivery to brain tissue

    PubMed Central

    Joshi, Shailendra; Singh-Moon, Rajinder P.; Wang, Mei; Chaudhuri, Durba B.; Holcomb, Mark; Straubinger, Ninfa L.; Bruce, Jeffrey N.; Bigio, Irving J.; Straubinger, Robert M.

    2014-01-01

    Object Transient cerebral hypoperfusion (TCH) has empirically been used to assist intraarterial (IA) drug delivery to brain tumors. Transient (< 3 min) reduction of cerebral blood flow (CBF) occurs during many neuro- and cardiovascular interventions and has recently been used to better target IA drugs to brain tumors. In the present experiments, we assessed whether the effectiveness of IA delivery of cationic liposomes could be improved by TCH. Methods Cationic liposomes composed of 1:1 DOTAP:PC (dioleoyl-trimethylammonium-propane:phosphatidylcholine) were administered to three groups of Sprague Dawley rats. In the first group, we tested the effect of blood flow reduction on IA delivery of cationic liposomes. In the second group, we compared TCH-assisted IA liposomal delivery vs. intravenous (IV) administration of the same dose. In the third group, we assessed retention of cationic liposomes in brain four hours after TCH assisted delivery. The liposomes contained a near infrared dye, DilC18(7), whose concentration could be measured in vivo by diffuse reflectance spectroscopy. Results IA injections of cationic liposomes during TCH increased their delivery approximately four-fold compared to injections during normal blood flow. Optical pharmacokinetic measurements revealed that relative to IV injections, IA injection of cationic liposomes during TCH produced tissue concentrations that were 100-fold greater. The cationic liposomes were retained in the brain tissue four hours after a single IA injection. There was no gross impairment of neurological functions in surviving animals. Conclusions Transient reduction in CBF significantly increased IA delivery of cationic liposomes in the brain. High concentrations of liposomes could be delivered to brain tissue after IA injections with concurrent TCH while none could be detected after IV injection. IA-TCH injections were well tolerated and cationic liposomes were retained for at least 4 hours after IA administration. These results should encourage development of cationic liposomal formulations of chemotherapeutic drugs and their IA delivery during TCH. PMID:24664370

  18. Liposomes as an ocular delivery system for acetazolamide: in vitro and in vivo studies.

    PubMed

    Hathout, Rania M; Mansour, Samar; Mortada, Nahed D; Guinedi, Ahmed S

    2007-01-01

    The purpose of this study was to formulate topically effective controlled release ophthalmic acetazolamide liposomal formulations. Reverse-phase evaporation and lipid film hydration methods were used for the preparation of reverse-phase evaporation (REVs) and multilamellar (MLVs) acetazolamide liposomes consisting of egg phosphatidylcholine (PC) and cholesterol (CH) in the molar ratios of (7:2), (7:4), (7:6), and (7:7) with or without stearylamine (SA) or dicetyl phosphate (DP) as positive and negative charge inducers, respectively. The prepared liposomes were evaluated for their entrapment efficiency and in vitro release. Multilamellar liposomes entrapped greater amounts of drug than REVs liposomes. Drug loading was increased by increasing CH content as well as by inclusion of SA. Drug release rate showed an order of negatively charged > neutral > positively charged liposomes, which is the reverse of the data of drug loading efficiency. Physical stability study indicated that approximately 89%, 77%, and 69% of acetazolamide was retained in positive, negative, and neutral MLVs liposomal formulations up to a period of 3 months at 4 degrees C. The intraocular pressure (IOP)-lowering activity of selected acetazolamide liposomal formulations was determined and compared with that of plain liposomes and acetazolamide solution. Multilamellar acetazolamide liposomes revealed more prolonged effect than REVs liposomes. The positively charged and neutral liposomes exhibited greater lowering in IOP and a more prolonged effect than the negatively charged ones. The positive multilamellar liposomes composed of PC:CH:SA (7:4:1) molar ratio showed the maximal response, which reached a value of -7.8 +/- 1.04 mmHg after 3 hours of topical administration. PMID:17408209

  19. Cryogenic transmission electron microscopy of recombinant tuberculosis vaccine antigen with anionic liposomes reveals formation of flattened liposomes

    PubMed Central

    Fox, Christopher B; Mulligan, Sean K; Sung, Joyce; Dowling, Quinton M; Fung, H W Millie; Vedvick, Thomas S; Coler, Rhea N

    2014-01-01

    Development of lipid-based adjuvant formulations to enhance the immunogenicity of recombinant vaccine antigens is a focus of modern vaccine research. Characterizing interactions between vaccine antigens and formulation excipients is important for establishing compatibility between the different components and optimizing vaccine stability and potency. Cryogenic transmission electron microscopy (TEM) is a highly informative analytical technique that may elucidate various aspects of protein- and lipid-based structures, including morphology, size, shape, and phase structure, while avoiding artifacts associated with staining-based TEM. In this work, cryogenic TEM is employed to characterize a recombinant tuberculosis vaccine antigen, an anionic liposome formulation, and antigen–liposome interactions. By performing three-dimensional tomographic reconstruction analysis, the formation of a population of protein-containing flattened liposomes, not present in the control samples, was detected. It is shown that cryogenic TEM provides unique information regarding antigen–liposome interactions not detectable by light-scattering-based methods. Employing a suite of complementary analytical techniques is important to fully characterize interactions between vaccine components. PMID:24648734

  20. Computer-aided design of liposomal drugs: In silico prediction and experimental validation of drug candidates for liposomal remote loading.

    PubMed

    Cern, Ahuva; Barenholz, Yechezkel; Tropsha, Alexander; Goldblum, Amiram

    2014-01-10

    Previously we have developed and statistically validated Quantitative Structure Property Relationship (QSPR) models that correlate drugs' structural, physical and chemical properties as well as experimental conditions with the relative efficiency of remote loading of drugs into liposomes (Cern et al., J. Control. Release 160 (2012) 147-157). Herein, these models have been used to virtually screen a large drug database to identify novel candidate molecules for liposomal drug delivery. Computational hits were considered for experimental validation based on their predicted remote loading efficiency as well as additional considerations such as availability, recommended dose and relevance to the disease. Three compounds were selected for experimental testing which were confirmed to be correctly classified by our previously reported QSPR models developed with Iterative Stochastic Elimination (ISE) and k-Nearest Neighbors (kNN) approaches. In addition, 10 new molecules with known liposome remote loading efficiency that were not used by us in QSPR model development were identified in the published literature and employed as an additional model validation set. The external accuracy of the models was found to be as high as 82% or 92%, depending on the model. This study presents the first successful application of QSPR models for the computer-model-driven design of liposomal drugs. PMID:24184343

  1. The PEGylated liposomal doxorubicin improves the delivery and therapeutic efficiency of 188Re-Liposome by modulating phagocytosis in C26 murine colon carcinoma tumor model.

    PubMed

    Hsu, Wei-Hsin; Liu, Si-Yen; Chang, Ya-Jen; Chang, Chih-Hsien; Ting, Gann; Lee, Te-Wei

    2014-10-01

    Liposome in delivering radionuclide for cancer therapy has been expansively studied; however, liposome itself can be deliberately entrapped and destroyed by the reticuloendothelial system, causing an insufficiency of the drug delivery, which in turn would restrict the effectiveness of the drug. In this study, mice with subcutaneous implantation of C26 murine colon cancer received an experimental treatment regimen in which mice took delivery of PEGylated liposomal doxorubicin (LipoDox) first, after a three-day interval, of Rhenium-188 encapsulated into PEGylated liposome ((188)Re-Liposome) subsequently and by which suppressed the functioning of reticuloendothelial system for the short term. The data showed that based upon the biodistribution assay and the evaluation of the therapeutic efficacy, (188)Re-Liposome was more sufficiently delivered to tumor sites in mice with this treatment regimen than mice without the regimen, and that cancer mortalities in mice with the treatment regimen were much lower than the mortalities in mice without the regimen. Taken together, a new strategy proposed in this study significantly improved both the (188)Re-Liposome delivery and the effectiveness of (188)Re-Liposome, suggesting that the strategy can be an ideal treatment for cancer. PMID:25027866

  2. Structural Properties of Tetra-tert-butyl Zinc(II) Phthalocyanine Isomers on a Au(111) Z. T. Deng, H. M. Guo, W. Guo, L. Gao, Z. H. Cheng, D. X. Shi, and H.-J. Gao*

    E-print Network

    Gao, Hongjun

    Structural Properties of Tetra-tert-butyl Zinc(II) Phthalocyanine Isomers on a Au(111) Surface Z. T-assembly behavior of the mixture of tetra-tert-butyl zinc(II) phthalocyanine (TB-ZnPc) isomers on a Au(111) surface are added to four peripheral benzene rings of zinc(II) phthalocyanine, which gives the planar molecules

  3. Molecular arrangement investigation of copper phthalocyanine grown on hydrogen passivated Si(1 1 1) surfaces

    NASA Astrophysics Data System (ADS)

    Arbi, I.; Ben Hamada, B.; Souissi, A.; Menzli, S.; Ben Azzouz, C.; Laribi, A.; Akremi, A.; Chefi, C.

    2014-06-01

    Chemical, electronic and structural properties of ultra thin films of copper phthalocyanine (CuPc) grown on hydrogen passivated silicon (1 1 1) surfaces were investigated in situ by X-ray photoelectron spectroscopy (XPS), ultraviolet photoemission spectroscopy (UPS), X-ray photoelectron diffraction (XPD) and electron diffraction (LEED). The early stages of copper phthalocyanine adsorption (1-2) were characterized by the saturation of surface defects and by a flat lying disposition on the surface. Upon further CuPc coverage, the passivation of Si surfaces resulted in the molecule taking a standing position in films. The molecular packing deduced from these studies appears very close to the one in the bulk ? phase of CuPc. The work function of the films was found to be decreasing during the growth and was correlated with the molecular orientation.

  4. In-situ spectro-microscopy on organic films: Mn-Phthalocyanine on Ag(100)

    SciTech Connect

    Al-Mahboob A.; Vescovo, E.; Sadowski, J.T.

    2013-08-18

    Metal phthalocyanines are attracting significant attention, owing to their potential for applications in chemical sensors, solar cells and organic magnets. As the electronic properties of molecular films are determined by their crystallinity and molecular packing, the optimization of film quality is important for improving the performance of organic devices. Here, we present the results of in situ low-energy electron microscopy / photoemission electron microscopy (LEEM/PEEM) studies of incorporation-limited growth [1] of manganese-phthalocyanine (MnPc) on Ag(100) surfaces. MnPc thin films were grown on both, bulk Ag(100) surface and thin Ag(100)/Fe(100) films, where substrate spin-polarized electronic states can be modified through tuning the thickness of the Ag film [2]. We also discuss the electronic structure and magnetic ordering in MnPc thin films, investigated by angle- and spin-resolved photoemission spectroscopy.

  5. Phthalocyanine identification in paintings by reflectance spectroscopy. A laboratory and in situ study

    NASA Astrophysics Data System (ADS)

    Poldi, G.; Caglio, S.

    2013-06-01

    The importance of identifying pigments using non invasive (n.i.) analyses has gained increasing importance in the field of spectroscopy applied to art conservation and art studies. Among the large set of pigments synthesized and marketed during 20th century, surely phthalocyanine blue and green pigments occupy an important role in the field of painting (including restoration) and printing, thanks to their characteristics like brightness and fastness. This research focused on the most used phthalocyanine blue (PB15:1 and PB15:3) and green pigments (PG7), and on the possibility to identify these organic compounds using a methodology like reflectance spectroscopy in the UV, visible and near IR range (UV-vis-NIR RS), performed easily through portable instruments. Laboratory tests and three examples carried out on real paintings are discussed.

  6. Near-infrared organic light emitting diodes based on heavy metal phthalocyanines

    NASA Astrophysics Data System (ADS)

    Rosenow, Thomas Conrad; Walzer, Karsten; Leo, Karl

    2008-02-01

    We demonstrate near-infrared (NIR) organic light-emitting diodes containing the phthalocyanines of copper (CuPc), palladium (PdPc), and platinum (PtPc) as emitting material. The devices show NIR emission from the triplet excitonic states of those phthalocyanines at 1095, 1025, and 966nm, respectively. A yellow singlet emitter serves as host for the emitter materials, reducing triplet exciton quenching and improving energy transfer to the emitter. Using the emitter PtPc as guest and the yellow singlet emitter as host, an external quantum efficiency of 0.3% is achieved for infrared light emission at 966nm. Due to the use of electrically doped charge transport layers, operation at voltages significantly below 3V is possible. Light output reaches 80?W/cm2 at a current density of 140mA/cm2.

  7. Surface Modification of Boron-Doped Diamond with Microcrystalline Copper Phthalocyanine: Oxygen Reduction Catalysis.

    PubMed

    Gan, Patrick; Foord, John S; Compton, Richard G

    2015-10-01

    Surface modification of boron-doped diamond (BDD) with copper phthalocyanine was achieved using a simple and convenient dropcast deposition, giving rise to a microcrystalline structure. Both unmodified and modified BDD electrodes of different surface terminations (namely hydrogen and oxygen) were compared via the electrochemical reduction of oxygen in aqueous solution. A significant lowering of the cathodic overpotential by about 500?mV was observed after modification of hydrogen-terminated (hydrophobic) diamond, while no voltammetric peak was seen on modified oxidised (hydrophilic) diamond, signifying greater interaction between copper phthalocyanine and the hydrogen-terminated BDD. Oxygen reduction was found to undergo a two-electron process on the modified hydrogen-terminated diamond, which was shown to be also active for the reduction of hydrogen peroxide. The lack of a further conversion of the peroxide was attributed to its rapid diffusion away from the triple phase boundary at which the reaction is expected to exclusively occur. PMID:26491640

  8. Photophysical properties of zinc phthalocyanine-uridine single walled carbon nanotube--conjugates.

    PubMed

    Ogbodu, Racheal O; Amuhaya, Edith K; Mashazi, Philani; Nyokong, Tebello

    2015-10-01

    The photophysical properties of the conjugate of uridine and zinc mono carboxy phenoxy phthalocyanine (ZnMCPPc-uridine, 4) are reported in this work. The conjugate was also adsorbed onto single walled carbon nanotubes (ZnMCPPc-uridine-SWCNT, 5). The X-ray photoelectron spectroscopy of 4 showed three N 1s peaks while that of 5 showed four N 1s peak, a new peak at 399.4 eV of 5 was assigned to pyrrolidonic nitrogen, due to the interaction of the pyrrolic nitrogen of 4 with the oxygen moiety of SWCNT-COOH in 5. The triplet lifetime, triplet and singlet oxygen quantum yields of the zinc mono carboxy phenoxy phthalocyanine increased by over 40% in the presence of uridine. SWCNTs resulted in only a small quenching of the triplet state parameters of 4. PMID:25965170

  9. Graphene-enhanced intermolecular interaction at interface between copper- and cobalt-phthalocyanines.

    PubMed

    Dou, Wei-Dong; Huang, Shu-Ping; Lee, Chun-Sing

    2015-10-01

    Interfacial electronic structures of copper-phthalocyanine (CuPc), cobalt-phthalocyanine (CoPc), and graphene were investigated experimentally by using photoelectron spectroscopy. While the CuPc/graphene interface shows flat band structure and negligible interfacial dipole indicating quite weak molecule-substrate interaction, the CuPc/CoPc/graphene interface shows a large interfacial dipole and obvious energy level bending. Controlled experiments ruled out possible influences from the change in film structure of CuPc and pure ?-? interaction between CoPc and CuPc. Analysis based on X-ray photoelectron spectroscopy and density functional theory reveals that the decrease in the work function for the CuPc/CoPc/graphene system is induced by the intermolecular interaction between CuPc and CoPc which is enhanced owning to the peculiar electronic properties at the CoPc-graphene interface. PMID:26450327

  10. Surface Modification of Boron-Doped Diamond with Microcrystalline Copper Phthalocyanine: Oxygen Reduction Catalysis

    PubMed Central

    Gan, Patrick; Foord, John S; Compton, Richard G

    2015-01-01

    Surface modification of boron-doped diamond (BDD) with copper phthalocyanine was achieved using a simple and convenient dropcast deposition, giving rise to a microcrystalline structure. Both unmodified and modified BDD electrodes of different surface terminations (namely hydrogen and oxygen) were compared via the electrochemical reduction of oxygen in aqueous solution. A significant lowering of the cathodic overpotential by about 500?mV was observed after modification of hydrogen-terminated (hydrophobic) diamond, while no voltammetric peak was seen on modified oxidised (hydrophilic) diamond, signifying greater interaction between copper phthalocyanine and the hydrogen-terminated BDD. Oxygen reduction was found to undergo a two-electron process on the modified hydrogen-terminated diamond, which was shown to be also active for the reduction of hydrogen peroxide. The lack of a further conversion of the peroxide was attributed to its rapid diffusion away from the triple phase boundary at which the reaction is expected to exclusively occur. PMID:26491640

  11. Development and Evaluation of Nanoemulsions Containing Phthalocyanines for Use in Photodynamic Cancer Therapy.

    PubMed

    Senna, Juliana P; Ricci-Júnior, Eduardo; Mansur, Claudia R E

    2015-06-01

    This work reports the development of oil in water (o/w) nanoemulsions containing poly(ethylene oxide)-poly(propylene oxide) block copolymer surfactant for the formulation of a delivery system for endovenous zinc and chloroaluminum phthalocyanines. A solubility study suggested clove oil and its combination with ethanol as the best candidates for the oil phase composition. The nanoemulsions were obtained using a high-pressure homogenizer and analyzed for droplet size to determine their short- and long-term stability. Formulations containing 7 and 10% oil phase and 12% surfactant presented higher stability and allowed the incorporation of a bigger amount of phthalocyanines in the formulation. Rheological analyses showed the prevailing Newtonian behavior of the nanoemulsions. Studies of toxicity and phototoxicity determined that the nanoemulsions produced were capable of inhibiting the growth of adenocarcinoma tumor cells. The nanoemulsions proved to be a good alternative for use in photodynamic therapy. PMID:26369031

  12. Enhanced Reverse Saturable Absorption and Optical Limiting in Heavy-Atom Substituted Phthalocyanines

    NASA Technical Reports Server (NTRS)

    Perry, J. W.; Mansour, K.; Marder, S. R.; Alvarez, D., Jr.; Perry, K. J.; Choong, I.

    1994-01-01

    The reverse saturable absorption and optical limiting response of metal phthalocyaninies can be enhanced by using the heavy-atom effect. Phthalocyanines containing heavy metal atoms, such as In, Sn, and Pb show nearly a factor of two enhancement in the ratio of effective excited-state to ground-state absorption cross sections compared to those containing lighter atoms, such as Al and Si. In an f/8 optical geometry, homogeneous solutions of heavy metal phthalocyanines, at 30% linear transmission, limit 8-ns, 532-nm laser pulses to less than or equal to 3 (micro)J (the energy for 50% probability of eye damage) for incident pulses up to 800 (micro)J.

  13. Metallophthalocyanin-ocenes: scandium phthalocyanines with an ?(5)-bound Cp ring.

    PubMed

    Platel, Rachel H; Teixeira Tasso, Thiago; Zhou, Wen; Furuyama, Taniyuki; Kobayashi, Nagao; Leznoff, Daniel B

    2015-04-01

    A series of new scandium complexes supported by the phthalocyanine (Pc) ligand have been prepared and structurally characterized. Reaction of ScCl3 with phthalonitrile affords a mixture of PcScCl (1) and unreacted ScCl3, which upon addition of LiCH(SiMe3)2 yields THF-soluble PcSc(?-Cl2)Li(THF)2 (2). Metathesis with NaCp or LiCp* generates PcSc(?(5)-C5H5) and PcSc(?(5)-C5Me5), respectively, which represent the first examples of ?(5)-Cp metal phthalocyanines where the Cp fragment sandwiches the metal centre. PMID:25735598

  14. Electronic properties and morphology of Cu-phthalocyanine—C{sub 60} composite mixtures

    SciTech Connect

    Roth, Friedrich; Arion, Tiberiu; Darlatt, Erik; Gottwald, Alexander; Eberhardt, Wolfgang

    2014-01-21

    Phthalocyanines in combination with C{sub 60} are benchmark materials for organic solar cells. Here, we have studied the morphology and electronic properties of co-deposited mixtures (blends) of these materials forming a bulk heterojunction as a function of the concentration of the two constituents. For a concentration of 1:1 of Cu-Phthalocyanine (CuPc):C{sub 60}, a phase separation into about 100?nm size domains is observed, which results in electronic properties similar to layered systems. For low C{sub 60} concentrations (10:1 CuPc:C{sub 60}), the morphology, as indicated by Low-Energy Electron Microscopy images, suggests a growth mode characterized by (amorphous) domains of CuPC, whereby the domain boundaries are decorated with C{sub 60}. Despite of these markedly different growth modes, the electronic properties of the heterojunction films are essentially unchanged.

  15. Photophysical properties of zinc phthalocyanine-uridine single walled carbon nanotube - conjugates

    NASA Astrophysics Data System (ADS)

    Ogbodu, Racheal O.; Amuhaya, Edith K.; Mashazi, Philani; Nyokong, Tebello

    2015-10-01

    The photophysical properties of the conjugate of uridine and zinc mono carboxy phenoxy phthalocyanine (ZnMCPPc-uridine, 4) are reported in this work. The conjugate was also adsorbed onto single walled carbon nanotubes (ZnMCPPc-uridine-SWCNT, 5). The X-ray photoelectron spectroscopy of 4 showed three N 1s peaks while that of 5 showed four N 1s peak, a new peak at 399.4 eV of 5 was assigned to pyrrolidonic nitrogen, due to the interaction of the pyrrolic nitrogen of 4 with the oxygen moiety of SWCNT-COOH in 5. The triplet lifetime, triplet and singlet oxygen quantum yields of the zinc mono carboxy phenoxy phthalocyanine increased by over 40% in the presence of uridine. SWCNTs resulted in only a small quenching of the triplet state parameters of 4.

  16. Mechanism of Charge Transport in Cobalt and Iron Phthalocyanine Thin Films Grown by Molecular Beam Epitaxy

    SciTech Connect

    Kumar, Arvind; Samanta, Soumen; Singh, Ajay; Debnath, A. K.; Aswal, D. K.; Gupta, S. K.

    2011-12-12

    Cobalt phthalocyanine (CoPc), iron phthalocyanine (FePc) and their composite (CoPc-FePc) films have been grown by molecular beam epitaxy (MBE). Grazing incidence X-ray diffraction (GIXRD) and scanning electron microscope (SEM) studies showed that composite films has better structural ordering compared to individual CoPc and FePc films. The temperature dependence of resistivity (in the temperature range 25 K- 100 K) showed that composite films are metallic, while individual CoPc and FePc films are in the critical regime of metal-to-insulator (M-I) transition The composite films show very high mobility of 110 cm{sup 2} V{sup -1} s{sup -1} at room temperature i.e. nearly two order of magnitude higher compared to pure CoPc and FePc films.

  17. Novel axially carborane-cage substituted silicon phthalocyanine photosensitizer; synthesis, characterization and photophysicochemical properties

    NASA Astrophysics Data System (ADS)

    Atmaca, Göknur Ya?a; Dizman, Cemil; Eren, Tar?k; Erdo?mu?, Ali

    2015-02-01

    The novel axially dicarborane substituted silicon (IV) (SiPc-DC) phthalocyanine was synthesized by treating silicon phthalocyanine dichloride SiPc(Cl)2 (SiPc) with o-Carborane monool. The compound was characterized by mass spectrometry, UV-Vis, FT-IR, 1H and 11B Nuclear Magnetic Resonance Spectroscopy (NMR). Spectral, photophysical (fluorescence quantum yield) and photochemical (singlet oxygen (??) and photodegradation quantum yield (?d)) properties of the complex were reported in different solutions (Dimethyl sulfoxide (DMSO), Dimethylformamide (DMF) and Toluene). The results of spectral measurements showed that both SiPc and carborane cage can have potential to be used as sensitizers in photodynamic therapy (PDT) and boron neutron capture therapy (BNCT) by their singlet oxygen efficiencies (?? = 0.41, 0.39).

  18. Phthalocyanine/chitosan-TiO2 photocatalysts: Characterization and photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Hamdi, A.; Boufi, S.; Bouattour, S.

    2015-06-01

    Chitosan (CS) was used as a template to prepare a hybrid chitosan-phthalocyanine-TiO2 (PC/CS-TiO2) photocatalyst at room temperature without any calcination treatment. The as-prepared hybrid photocatalyst (PC/CS-TiO2) was characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and UV-vis diffuse reflectance spectroscopy (DRS). The results of the photodegradation of aniline, used as a model pollutant, revealed that the hybrid photocatalyst (PC/CS-TiO2) exhibited a photocatalytic activity under visible-light irradiation. The enhanced activity of the hybrid catalyst is attributed to the cooperative role of the three components of the photocatalyst; chitosan as a template for the immobilization crystalline TiO2 nanoparticles, phthalocyanine that promote the light absorption in the visible range and TiO2 acting as an acceptor of electrons generated by the photons absorption to produce superoxide radicals.

  19. ZnO and cobalt phthalocyanine hybridized graphene: efficient photocatalysts for degradation of rhodamine B

    PubMed Central

    Neelgund, Gururaj M.; Oki, Aderemi; Luo, Zhiping

    2014-01-01

    A novel method has been developed to synthesize graphene-ZnO composite as a highly efficient catalyst by reduction of graphite oxide and in-situ deposition of ZnO nanoparticles by chemical reduction reaction. The graphene-ZnO catalyst is capable of complete degradation of rhodamine B under exposure to natural sunlight. Further, the catalytic efficiency of graphene-ZnO catalyst was enhanced by sensitizing with cobalt phthalocyanine. The formation of graphene-ZnO pcatalyst and its further sensitization with cobalt phthalocyanine was characterized using UV-vis, ATR-IR and Raman spectroscopy, powder XRD and thermogravimetric analysis. The morphology of both graphene-ZnO and graphene-ZnO-CoPC catalysts was analyzed using scanning and transmission electron microscopes. PMID:24972296

  20. First generation and trapping of a dehydrometallophthalocyanine starting from triazole-functionalized zinc phthalocyanine.

    PubMed

    Vagin, Sergei I; Frickenschmidt, Antje; Kammerer, Bernd; Hanack, Michael

    2005-11-01

    Direct 1N-amination of the triazole-fused zinc phthalocyanine 2 and oxidation of the formed amino derivative 3 resulted in the generation of the very reactive intermediate, the dehydrometallophthalocyanine 4, which was not known previously. The latter was trapped in situ with different dienes, for example, furan, tetraphenylcyclopentadienone, and anthracene to form the corresponding Diels-Alder adducts. The products were characterized by 1H and 13C-dept135 NMR, and UV/Vis spectroscopy, MALDI-TOF mass spectrometry, and elemental analysis, which are fully in agreement with their structure. The developed synthetic procedure opens a simple and versatile pathway towards unsymmetrical peripheral modification of phthalocyanines, which is readily applicable to the micromol scale and is important for the design of new interesting Pc-based systems. PMID:16106461

  1. Second- and third-order nonlinear properties of chiral phthalocyanine films

    NASA Astrophysics Data System (ADS)

    Muto, Tsuyoshi; Sassa, Takafumi; Aoyama, Tetsuya; Kimura, Mutsumi; Shirai, Hirofusa; Wada, Tatsuo

    2004-10-01

    Vanadyl phthalocyanine derivatives having optically active side chains and the corresponding racemic isomers were synthesized and examined as nonlinear optical materials. These dyes were soluble in organic solvents and gave uniform thin films using spin coating. The thin films (neat or polymer doped) of each phthalocyanines showed the second- and third-order nonlinear optical responses under appropriate experimental conditions. The nonlinear optical susceptibilities of the optically active derivatives are larger than those of the corresponding racemic isomers. To clarify this enhancement phenomenon, we measured the electronic absorption- and circular dichloic spectra, and X-ray diffraction of the thin films. These results suggested that the optically active dyes forms one-dimensional columnar aggregates with one-handed helical sense and the columns further aligned into honeycomb-like chiral superstructures. It was surmised from the experimental results that the chiral superstructures enhance the nonlinear optical responses relative to the racemic analogues.

  2. Peripheral Substitution of a Near-IR-Absorbing Soluble Phthalocyanine Using "Click" Chemistry

    SciTech Connect

    Mayukh, Mayank; Lu, Chin-Wei; Hernandez, Edgardo; McGrath, Dominic V.

    2011-06-10

    A series of near-IR-absorbing soluble phthalocyanines (Pcs) with eight alkyne moieties as side chains of the chromophore have been synthesized. One of these Pcs has been used as a scaffold for functional group modification using alkyne–azide click chemistry with various azides. This led to a small library of Pcs with photo and thermal crosslinkable, dendritic, and hydrophilic moieties starting from a single Pc molecule. A patterned thin film was fabricated by photocrosslinking one of these Pc derivatives.

  3. Single-crystal field-effect transistors based on copper phthalocyanine

    NASA Astrophysics Data System (ADS)

    Zeis, R.; Siegrist, T.; Kloc, Ch.

    2005-01-01

    Copper phthalocyanine (Cu-Pc) single crystals were grown by physical vapor transport and field-effect transistors (FETs) on the surface of these crystals were prepared. These FETs function as p-channel accumulation-mode devices. Charge carrier mobilities of up to 1cm2/Vs combined with a low field-effect threshold were obtained. These remarkable FET characteristics, along with the highly stable chemical nature of Cu-Pc, make it an attractive candidate for device applications.

  4. Direct observation of molecular images of lanthanide phthalocyanines: III. Structural defects.

    PubMed

    Zhang, W P; Kuo, K H; Dorset, D L; Hou, Y F; Ni, J Z

    1989-04-01

    The crystal imperfections in thin films of lanthanide phthalocyanines (LnPc2H, Ln = Nd, Tb, Er, Tm, Yb, and Lu) grown expitaxially on KCl have been observed by molecular imaging. Grain and twin boundaries, stacking faults, point defects, vacancies, mosaic structures, and sometimes even some amorphous islands exist in the well-crystallized specimens. Combined with the results reported earlier, the packing characteristics of planar LnPc2H molecules can be well understood. PMID:2723815

  5. Biodistribution of ascorbyl palmitate loaded doxorubicin pegylated liposomes in solid tumor bearing mice.

    PubMed

    Jukanti, Raju; Devraj, Gopinath; Shashank, Apte S; Devraj, Rambhau

    2011-01-01

    The aim of this study is to develop ascorbyl palmitate (ASP) loaded doxorubicin (DOX) pegylated liposomes and to evaluate their targeting potential to tumor. We have prepared conventional (DL), pegylated DOX liposomes with (SDL) and without ascorbyl palmitate (SDL-A). The vesicle size in all the formulations was within the range 105-120 nm and in vitro release studies in serum confirmed the stability of the liposomes. Biodistribution studies carried out in Ehrlich ascites tumor bearing mice indicate higher area under the curve for SDL and SDL-A liposomes compared to DL and plain drug solution. Drug targeting index assessed from tumor-to-serum concentration ratio and therapeutic availability of DOX in tumor tissue was also significantly higher for pegylated liposomes. In conclusion, biodistribution study reveals that the presence of ascorbyl palmitate alters the distribution pattern of liposomes and paves way for better drug targeting. PMID:21265713

  6. Cardanol as a replacement for cholesterol into the lipid bilayer of POPC liposomes.

    PubMed

    De Maria, Paolo; Filippone, Paolino; Fontana, Antonella; Gasbarri, Carla; Siani, Gabriella; Velluto, Diana

    2005-01-15

    Large unilamellar liposomes were prepared by hydration of 1-palmitoyl-2-oleylphosphatydilcholine (POPC) films and subsequent extrusion of the obtained liposomal suspension. Inclusion of cholesterol and cardanol brings about a stabilization of the membranes of the liposomes, as determined by their rates of release of entrapped 5(6)-carboxyfluorescein. The liposome breakdown was promoted by a non-ionic surfactant (Triton X-100) and the kinetic measurements were carried out by fluorimetry in water at 25 degrees C. Morphological analyses of giant POPC liposomes in the presence and in the absence of both guests were also performed. The results obtained suggest the use of cardanol (an easy available natural product) as a replacement for cholesterol as a new possibility for stabilizing liposomes in drug targetting. PMID:15620834

  7. Understanding domain symmetry in vanadium oxide phthalocyanine monolayers on Au (111)

    NASA Astrophysics Data System (ADS)

    Rochford, L. A.; Hancox, I.; Jones, T. S.

    2014-10-01

    Understanding the growth of organic semiconductors on solid surfaces is of key importance for the field of organic electronics. Non planar phthalocyanines have shown great promise in organic photovoltaic (OPV) applications, but little of the fundamental surface characterization to understand their structure and properties has been performed. Acquiring a deeper understanding of the molecule/substrate interaction in small molecule systems is a vital step in controlling structure/property relationships. Here we characterize the vanadium oxide phthalocyanine (VOPc)/Au (111) surface using a combination of low energy electron diffraction (LEED) and scanning tunneling microscopy (STM), obtaining complex diffraction patterns which can be understood using two dimensional fast Fourier transform (2D-FFT) analysis of STM images. These measurements reveal coexistence of three symmetrically equivalent in-plane orientations with respect to the substrate, each of which is imaged simultaneously within a single area. Combining scanning probe and diffraction measurements allows symmetrically related domains to be visualized and structurally analyzed, providing fundamental information useful for the structural engineering of non-planar phthalocyanine interfaces.

  8. Reversible phase transition and third-order nonlinearity of phthalocyanine derivatives

    NASA Astrophysics Data System (ADS)

    Suda, Yasumasa; Shigehara, Kiyotaka; Yamada, Akira; Matsuda, Hiro; Okada, Shuji; Masaki, Atsushi; Nakanishi, Hachiro

    1991-12-01

    Two different liquid crystalline phases and the reversible phase transition between them have been found for the spin coated thin film of tetrakis(octylthio)phthalocyanines both with and without copper (II): Phase 1 of as-prepared films changed with time lapse at room temperature into phase 2 which had a new absorption maximum at the longer wavelength and the longer spacing of crystalline lattice, and the phase 2 returned to the phase 1 when heated up to 100 degree(s)C and cooled down to room temperature. The phase 2 gave several times larger (chi) (3) values than the phase 1 by THG measurements at the same resonant wavelengths. On the other hand, tetrakis(alkylthio)phthalocyanine with the alkylchain shorter than butyl and octakis(octylthio)phthalocyaninato copper (II) with symmetric molecular structure were found not to give the phase 2 and their (chi) (3) values were small, i.e., in the order of 10-12 esu. Thus, phthalocyanines that do not form a tight inclined stack but a loose dimeric aggregation due to permanent dipole and flexible alkyl chains are estimated to be better candidates for third-order nonlinear optics.

  9. Enhanced Charge Separation Efficiency in Pyridine-Anchored Phthalocyanine-Sensitized Solar Cells by Linker Elongation.

    PubMed

    Ikeuchi, Takuro; Agrawal, Saurabh; Ezoe, Masayuki; Mori, Shogo; Kimura, Mutsumi

    2015-11-01

    A series of zinc phthalocyanine sensitizers (PcS22-24) having a pyridine anchoring group are designed and synthesized to investigate the structural dependence on performance in dye-sensitized solar cells. The pyridine-anchor zinc phthalocyanine sensitizer PcS23 shows 79?% incident-photon to current-conversion efficiency (IPCE) and 6.1?% energy conversion efficiency, which are comparable with similar phthalocyanine dyes having a carboxylic acid anchoring group. Based on DFT calculations, the high IPCE is attributed with the mixture of an excited-state molecular orbital of the sensitizer and the orbitals of TiO2 . Between pyridine and carboxylic acid anchor dyes, opposite trends are observed in the linker-length dependence of the IPCE. The red-absorbing PcS23 is applied for co-sensitization with a carboxyl-anchor organic dye D131 that has a complementary spectral response. The site-selective adsorption of PcS23 and D131 on the TiO2 surface results in a panchromatic photocurrent response for the whole visible-light region of sun light. PMID:26222758

  10. An Electrochemical Quartz Crystal Microbalance Multisensor System Based on Phthalocyanine Nanostructured Films: Discrimination of Musts.

    PubMed

    Garcia-Hernandez, Celia; Medina-Plaza, Cristina; Garcia-Cabezon, Cristina; Martin-Pedrosa, Fernando; Del Valle, Isabel; de Saja, Jose Antonio; Rodríguez-Méndez, Maria Luz

    2015-01-01

    An array of electrochemical quartz crystal electrodes (EQCM) modified with nanostructured films based on phthalocyanines was developed and used to discriminate musts prepared from different varieties of grapes. Nanostructured films of iron, nickel and copper phthalocyanines were deposited on Pt/quartz crystals through the Layer by Layer technique by alternating layers of the corresponding phthalocyanine and poly-allylamine hydrochloride. Simultaneous electrochemical and mass measurements were used to study the mass changes accompanying the oxidation of electroactive species present in must samples obtained from six Spanish varieties of grapes (Juan García, Prieto Picudo, Mencía Regadío, Cabernet Sauvignon, Garnacha and Tempranillo). The mass and voltammetric outputs were processed using three-way models. Parallel Factor Analysis (PARAFAC) was successfully used to discriminate the must samples according to their variety. Multi-way partial least squares (N-PLS) evidenced the correlations existing between the voltammetric data and the polyphenolic content measured by chemical methods. Similarly, N-PLS showed a correlation between mass outputs and parameters related to the sugar content. These results demonstrated that electronic tongues based on arrays of EQCM sensors can offer advantages over arrays of mass or voltammetric sensors used separately. PMID:26610494

  11. NIR photocleavage of the Si-C bond in axial Si-phthalocyanines.

    PubMed

    Doane, Tennyson; Cheng, Yu; Sodhi, Nipun; Burda, Clemens

    2014-11-13

    The use of light-triggered photolysis provides a powerful tool for unique syntheses and for applications that require remote operation such as drug delivery or molecular switches. Here, we describe the photochemistry of a recently developed alkylsilicon phthalocyanine Pc 227, which undergoes an exchange of the alkyl ligand for a ligand derived from the solvent when the axial Si-C bond is photolyzed in a solvent with low-energy visible light. In this work with methanol as the solvent, we investigate the formation of the methoxy analogue of the therapeutic drug Pc 4, (termed Pc 233) upon irradiation. Using steady-state spectroscopy and characterization of the photoproducts, the competing pathways between direct ligand exchange on the central silicon atom and delocalization of the radical produced by homolysis on the phthalocyanine ring is observed. The delocalized radical intermediate is quite long-lived. At long times this intermediate decomposes without significant formation of Pc 233. The results of this investigation provide insights into recent work utilizing Pc 227 for drug delivery applications and for future work on the use of phthalocyanines as long-wavelength phototriggers. PMID:25153643

  12. Metal-phthalocyanine ordered layers on Au(110): Metal-dependent adsorption energy

    SciTech Connect

    Massimi, Lorenzo Angelucci, Marco; Gargiani, Pierluigi; Betti, Maria Grazia; Montoro, Silvia; Mariani, Carlo

    2014-06-28

    Iron-phthalocyanine and cobalt-phthalocyanine chains, assembled along the Au(110)-(1×2) reconstructed channels, present a strong interaction with the Au metallic states, via the central metal ion. X-ray photoemission spectroscopy from the metal-2p core-levels and valence band high-resolution ultraviolet photoelectron spectroscopy bring to light signatures of the interaction of the metal-phthalocyanine single-layer with gold. The charge transfer from Au to the molecule causes the emerging of a metal-2p core level component at lower binding energy with respect to that measured in the molecular thin films, while the core-levels associated to the organic macrocycle (C and N 1s) are less influenced by the adsorption, and the macrocycles stabilize the interaction, inducing a strong interface dipole. Temperature Programmed Desorption experiments and photoemission as a function of temperature allow to estimate the adsorption energy for the thin-films, mainly due to the molecule-molecule van der Waals interaction, while the FePc and CoPc single-layers remain adsorbed on the Au surface up to at least 820 K.

  13. In situ metalation of free base phthalocyanine covalently bonded to silicon surfaces

    PubMed Central

    Lupo, Fabio; Tudisco, Cristina; Bertani, Federico; Dalcanale, Enrico

    2014-01-01

    Summary Free 4-undecenoxyphthalocyanine molecules were covalently bonded to Si(100) and porous silicon through thermic hydrosilylation of the terminal double bonds of the undecenyl chains. The success of the anchoring strategy on both surfaces was demonstrated by the combination of X-ray photoelectron spectroscopy with control experiments performed adopting the commercially available 2,3,9,10,16,17,23,24-octakis(octyloxy)-29H,31H-phthalocyanine, which is not suited for silicon anchoring. Moreover, the study of the shape of the XPS N 1s band gave relevant information on the interactions occurring between the anchored molecules and the substrates. The spectra suggest that the phthalocyanine ring interacts significantly with the flat Si surface, whilst ring–surface interactions are less relevant on porous Si. The surface-bonded molecules were then metalated in situ with Co by using wet chemistry. The efficiency of the metalation process was evaluated by XPS measurements and, in particular, on porous silicon, the complexation of cobalt was confirmed by the disappearance in the FTIR spectra of the band at 3290 cm?1 due to –NH stretches. Finally, XPS results revealed that the different surface–phthalocyanine interactions observed for flat and porous substrates affect the efficiency of the in situ metalation process. PMID:25551050

  14. Liposome uptake into human colon adenocarcinoma cells in monlayer, spinner, and trypsinized cultures

    SciTech Connect

    Tom, B.H.; Macek, C.M.; Raphael, L.; Sengupta, J.; Cerny, E.A.; Jonah, M.M.; Rahman, Y.E.

    1983-01-01

    The nature of liposome interactions with colon tumor cells was investigated. Thus, experiments were performed to study the uptake and incorporation of multilamellar and of reverse-phase evaporation liposomes of neutral charge into monolayers, suspended spinner cultures, and trypsinized cells of a human colon adenocarcinoma cell line, LS174T. The results showed that the same tumor cells cultured under each condition exhibited a distinct pattern of vesicle uptake as determined at 0, 15, 30, 60, and 120 min. In monolayer cultures of LS174T cells, the uptake of liposomes bearing (/sup 3/H)actinomycin D in the lipid bilayers was linear throughout the incubation period. In contrast, in trypsinized and spinner suspension cultures, uptake of liposomes was biphasic. There was a proportional uptake of both liposome (labeled with (/sup 3/H)phosphantidylcholine or (/sup 14/C)cholesterol) and of actinomycin D (trace labeled with /sup 3/H) into the cells under all culture conditions, indicating quantitative delivery of the drug with the intact lipid vesicle. Although the amount of actinomycin D presented to tumor cells by the two liposomes was equivalent, reverse-phase evaporation liposomes were more effectve than multilamellar vesicles in inhibiting uridine uptake. In the presence of excess liposomes (10 times the uptake studies), saturation of the tumor cell surface occurred by 120 min. However, the liposomes remained accessible to enzymatic removal for 60 min. Liposome-saturated tumor cells remained refractory to further binding of liposomes for at least 2 hr. The results thus revealed that differences in cell uptake were due to the state of the target cells and not the liposome types, or their differential leakage of labels.

  15. Distribution of technetium-99m PEG-liposomes during oligofructose-induced laminitis development in horses.

    PubMed

    Underwood, Claire; Pollitt, Christopher C; Metselaar, Josbert M; Laverman, Peter; van Bloois, Louis; van den Hoven, Jolanda M; Storm, Gert; van Eps, Andrew W

    2015-11-01

    Liposomes are phospholipid nanoparticles used for targeted drug delivery. This study aimed to determine whether intravenous liposomes accumulate in lamellar tissue during laminitis development in horses so as to assess their potential for targeted lamellar drug delivery. Polyethylene-glycol (PEG) coated liposomes were prepared according to the film hydration method and labelled using (99m)Tc-hexamethyl-propylene-amine-oxime. Six horses received 10?g/kg oligofructose via nasogastric tube to induce laminitis, and four control horses received water via nasogastric tube. All horses received 300?µmol (99m)Tc-PEG-liposomes (5.5?GBq) plus 5.5?µmol/kg PEG-liposomes by slow intravenous infusion. Scintigraphic imaging was performed at 0, 6 and 12?h post-infusion. Technetium-99m liposome uptake was measured in regions of interest over the hoof, fetlock and metacarpus. At the study end-point horses were euthanased, tissue samples collected and tissue liposome levels were calculated as the percentage of the injected dose of (99m)Tc-liposomes per kilogram of tissue. Data were analysed non-parametrically. All horses receiving oligofructose developed clinical and histological signs of laminitis. Technetium-99m liposome uptake in the hoof increased with time in laminitis horses (P?=?0.04), but decreased with time in control horses (P?=?0.01). Technetium-99m liposome levels in lamellar tissue from laminitis horses were 3.2-fold higher than controls (P?=?0.02) and were also higher in laminitis vs. control skin, muscle, jejunum, colon, and kidney (P?Liposomes accumulated in lamellar tissue during oligofructose-induced laminitis development and demonstrated potential for targeted lamellar drug delivery in acute laminitis. This study provides further evidence that lamellar inflammation occurs during laminitis development. Liposome accumulation also occurred in the skin, muscle, jejunum, colon and kidneys, suggesting systemic inflammation in this model. PMID:26403954

  16. Preparation of phthalocyanine and octacyanophthalocyanine films by CVD on metal surfaces, and in SITU observation of the molecular processes by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Ishii, Kikujiro; Mitsumura, Satoshi; Hibino, Yukinobu; Hagiwara, Ryoji; Nakayama, Hideyuki

    1988-09-01

    Copper phthalocyanine and copper octacyanophthalocyanine films were prepared by direct thermal reactions of phthalonitrile or tetracyanobenzene vapors on copper surfaces. Although the reaction rates were very slow, homogeneous films of phthalocyanines were obtained. Raman spectra were measured during the reactions, and intermediate molecular states were found to exist during the process of film formation.

  17. Electropolymerizable peripherally tetra-{2-[3-(diethylamino)phenoxy]ethoxy} substituted as well as axially (4-phenylpiperazin-1-yl)propanoxy-disubstituted silicon phthalocyanines and their electrochemistry.

    PubMed

    Biyiklioglu, Zekeriya; Alp, Hakan

    2015-10-27

    A novel type of peripherally tetra-substituted as well as axially disubstituted silicon(iv) phthalocyanine containing electropolymerizable ligands was designed and synthesized for the first time. Axial bis-hydroxy silicon phthalocyanine was prepared from 2(3),9(10),16(17),23(24)-tetrakis-{2-[3-(diethylamino)phenoxy]ethoxy}phthalocyanine in dichloromethane by using 1.8-diazabicyclo[5.4.0]undec-7-ene (DBU) and trichlorosilane. Peripherally tetra and axially di-substituted silicon phthalocyanine was synthesized from 2(3),9(10),16(17),23(24)-tetrakis-{2-[3-(diethylamino)phenoxy]ethoxy}silicon(iv)phthalocyanine dihydroxide with 1-(3-chloropropyl)-4-phenylpiperazine in toluene in the presence of NaH at 120 °C. These complexes were fully characterized by various spectroscopy techniques such as (1)H-NMR, (13)C-NMR, IR, UV-Vis, and MALDI-TOF spectroscopy and elemental analysis as well. Electropolymerization properties of silicon(iv) phthalocyanine complexes were investigated by cyclic and square wave voltammetry. Electrochemical studies reveal that silicon(iv) phthalocyanine complexes were electropolymerized on the working electrode during the anodic potential scan. This study is the first example of electropolymerization of both peripherally tetra and axially di-substituted silicon phthalocyanines on the same molecule. PMID:26478450

  18. Liposome-associated retinoic acid. Increased in vitro antiproliferative effects on neoplastic cells.

    PubMed

    Nastruzzi, C; Walde, P; Menegatti, E; Gambari, R

    1990-01-01

    The activity of liposome-associated retinoic acid was analyzed on in vitro cultured tumor cell lines and compared to the antiproliferative effects of free retinoic acid. It was found that liposome-associated retinoic acid is about 300 times more active than free retinoic acid in inhibiting in vitro cell growth of leukemic and melanoma cell lines. An increased activity of retinoic acid (10-20 times) was also obtained after premixing of this compound with empty liposomes, demonstrating that the retinoic acid efficiently interacts with liposomes which may facilitate solubility and cell uptake of retinoids. PMID:2294018

  19. Glutathione PEGylated liposomes: pharmacokinetics and delivery of cargo across the blood-brain barrier in rats.

    PubMed

    Rip, Jaap; Chen, Linda; Hartman, Robin; van den Heuvel, Angelique; Reijerkerk, Arie; van Kregten, Joan; van der Boom, Burt; Appeldoorn, Chantal; de Boer, Marco; Maussang, David; de Lange, Elizabeth C M; Gaillard, Pieter J

    2014-06-01

    Partly due to poor blood-brain barrier drug penetration the treatment options for many brain diseases are limited. To safely enhance drug delivery to the brain, glutathione PEGylated liposomes (G-Technology®) were developed. In this study, in rats, we compared the pharmacokinetics and organ distribution of GSH-PEG liposomes using an autoquenched fluorescent tracer after intraperitoneal administration and intravenous administration. Although the appearance of liposomes in the circulation was much slower after intraperitoneal administration, comparable maximum levels of long circulating liposomes were found between 4 and 24?h after injection. Furthermore, 24?h after injection a similar tissue distribution was found. To investigate the effect of GSH coating on brain delivery in vitro uptake studies in rat brain endothelial cells (RBE4) and an in vivo brain microdialysis study in rats were used. Significantly more fluorescent tracer was found in RBE4 cell homogenates incubated with GSH-PEG liposomes compared to non-targeted PEG liposomes (1.8-fold, p?liposomes compared with PEG control liposomes. The results support further investigation into the versatility of GSH-PEG liposomes for enhanced drug delivery to the brain within a tolerable therapeutic window. PMID:24524555

  20. Transfer of phosphatidic acid from liposomes to cells is collision dependent

    SciTech Connect

    Longmuir, K.J.; Malinick, L.A.

    1989-03-01

    The kinetics of lipid transfer from unilamellar liposomes to cells in monolayer culture were determined for a fluorescent phosphatidic acid, 1-palmitoyl-2-(6-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)aminocaproyl) -sn-glycerol 3-phosphate (C6-NBD-PA), and for the analogous phosphatidic acid without the fluorescent NBD group, 1-palmitoyl-2-caproyl-sn-(U-14C) glycerol 3-phosphate (C6-(14C)PA). Initial rates of liposome-to-cell transfer were measured at 2 degrees C under conditions in which the concentration of diffusible monomer in the aqueous medium was constant during the course of an experiment and was independent of total liposome concentration. Rates were similar for C6-NBD-PA and C6-(14C)PA, indicating that the NBD group does not significantly alter the transfer kinetics. It was found that liposome-to-cell transfer was dependent on 1) the mole fraction of diffusible lipid in the liposomes, 2) the liposome concentration, and 3) the cell density. The dependence of rate on the liposome concentration (observed under conditions in which aqueous monomer concentration remained constant) cannot be explained by a liposome-to-cell transfer mechanism involving the free diffusion of monomers through the aqueous medium. Instead, the data are consistent with a collision-dependent mechanism of monomer transfer that occurs when liposome and cell membranes come into contact but do not fuse.

  1. pH-responsive gold nanoparticles-in-liposome hybrid nanostructures for enhanced systemic tumor delivery

    NASA Astrophysics Data System (ADS)

    Nam, Jutaek; Ha, Yeong Su; Hwang, Sekyu; Lee, Woonghee; Song, Jaejung; Yoo, Jeongsoo; Kim, Sungjee

    2013-10-01

    We report a pH-responsive gold nanoparticles-in-liposome hybrid nanostructure, which effectively combines the pH-responsive assembly and surface plasmon property changes of `smart' gold nanoparticles and enhanced systemic circulation and tumor accumulation of the PEG-grafted liposomes.We report a pH-responsive gold nanoparticles-in-liposome hybrid nanostructure, which effectively combines the pH-responsive assembly and surface plasmon property changes of `smart' gold nanoparticles and enhanced systemic circulation and tumor accumulation of the PEG-grafted liposomes. Electronic supplementary information (ESI) available: Experimental details and supporting figures. See DOI: 10.1039/c3nr03698g

  2. Mechanistic Studies on the Triggered Release of Liposomal Contents by Matrix Metalloproteinase-9

    PubMed Central

    Elegbede, Adekunle I.; Banerjee, Jayati; Hanson, Andrea J.; Tobwala, Shakila; Ganguli, Bratati; Wang, Rongying; Lu, Xiaoning; Srivastava, D. K.; Mallik, Sanku

    2009-01-01

    Matrix metalloproteinases (MMPs) are a class of extracellular matrix degrading enzymes over-expressed in many cancers and contribute to the metastatic ability of the cancer cells. We have recently demonstrated that liposomal contents can be released when triggered by the enzyme MMP-9. Herein, we report our results on the mechanistic studies of the MMP-9 triggered release of the liposomal contents. We synthesized peptides containing the cleavage site for MMP-9 and conjugated them with fatty acids to prepare the corresponding lipopeptides. By employing Circular Dichroism spectroscopy, we demonstrate that the lipopeptides, when incorporated in liposomes, are de-mixed in the lipid bilayers and generate triple helical structures. MMP-9 cleaves the triple helical peptides, leading to the release of the liposomal contents. Other MMPs, which cannot hydrolyze triple helical peptides, failed to release the contents from the liposomes. We also observed that the rate and the extent of release of the liposomal contents depend on the mismatch between acyl chains of the synthesized lipopeptide and phospholipid components of the liposomes. Circular Dichroism spectroscopic studies imply that the observed differences in the release reflect the ability of the liposomal membrane to anneal the defects following the enzymatic cleavage of the liposome-incorporated lipopeptides. PMID:18642903

  3. Investigation of Fatty Acid Ketohydrazone Modified Liposome's Properties as a Drug Carrier

    PubMed Central

    Hayashi, Keita; Kiriishi, Madoka; Suga, Keishi; Okamoto, Yukihiro; Umakoshi, Hiroshi

    2015-01-01

    pH-responsive liposomes were prepared by modifying the liposome with acid-cleaving amphiphiles. Palmitic ketohydrazone (P-KH) or stearic ketohydrazone (S-KH), composed of hydrophilic sugar headgroup and hydrophobic acyl chain, was used as a modifier of the DMPC liposome. Because the ketohydrazone group of P-KH or S-KH was cleaved at low pH conditions (liposomes was observed probably via an endocytic pathway. The membrane properties of these liposomes were characterized, focusing on the variation of both polarity (measured by Laurdan) and membrane fluidity (measured by DPH) at low pH condition. The interface of the P-KH modified liposome at acidic pH was found to become more hydrophobic and less fluidic as compared with that at neutral pH; that is, P-KH modified liposome became more rigid structure. Therefore, it seems that the P-KH modified liposome could protect encapsulated drugs from the enzymes in the lysosome. This study shows the novel approach about design of pH-responsive liposomes based on the membrane properties. PMID:26649201

  4. Distribution and Inhibition of Liposomes on Staphylococcus aureus and Pseudomonas aeruginosa Biofilm

    PubMed Central

    Dong, Dong; Thomas, Nicky; Thierry, Benjamin; Vreugde, Sarah; Prestidge, Clive A.; Wormald, Peter-John

    2015-01-01

    Background Staphylococcus aureus and Pseudomonas aeruginosa are major pathogens in chronic rhinosinusitis (CRS) and their biofilms have been associated with poorer postsurgical outcomes. This study investigated the distribution and anti-biofilm effect of cationic (+) and anionic (-) phospholipid liposomes with different sizes (unilamellar and multilamellar vesicle, ULV and MLV respectively) on S. aureus and P. aeruginosa biofilms. Method Specific biofilm models for S. aureus ATCC 25923 and P. aeruginosa ATCC 15692 were established. Liposomal distribution was determined by observing SYTO9 stained biofilm exposed to DiI labeled liposomes using confocal scanning laser microscopy, followed by quantitative image analysis. The anti-biofilm efficacy study was carried out by using the alamarBlue assay to test the relative viability of biofilm treated with various liposomes for 24 hours and five minutes. Results The smaller ULVs penetrated better than larger MLVs in both S. aureus and P. aeruginosa biofilm. Except that +ULV and –ULV displayed similar distribution in S. aureus biofilm, the cationic liposomes adhered better than their anionic counterparts. Biofilm growth was inhibited at 24-hour and five-minute exposure time, although the decrease of viability for P. aeruginosa biofilm after liposomal treatment did not reach statistical significance. Conclusion The distribution and anti-biofilm effects of cationic and anionic liposomes of different sizes differed in S. aureus and P. aeruginosa biofilms. Reducing the liposome size and formulating liposomes as positively charged enhanced the penetration and inhibition of S. aureus and P. aeruginosa biofilms. PMID:26125555

  5. Hemocompatibility of liposomes loaded with lipophilic prodrugs of methotrexate and melphalan in the lipid bilayer.

    PubMed

    Kuznetsova, Natalia R; Sevrin, Chantal; Lespineux, David; Bovin, Nicolai V; Vodovozova, Elena L; Mészáros, Tamás; Szebeni, Janos; Grandfils, Christian

    2012-06-10

    A panel of in vitro tests intended for evaluation of the nano-sized drug delivery systems' compliance with human blood was applied to liposomal formulations of anticancer lipophilic prodrugs incorporated into the lipid bilayer. Liposomes on the basis of natural phosphatidylcholine (PC) and phosphatidylinositol (PI), 8:1 (mol) were loaded with 10 mol% of either methotrexate or melphalan 1,2-dioleoylglyceride esters (MTX-DOG and Mlph-DOG respectively) and either decorated with 2 mol% of sialyl Lewis X/A (SiaLe(X/A)) tetrasaccharide ligand or not. Hemolysis rate, red blood cells and platelets integrity and size distribution, complement (C) activation, and coagulation cascade functioning were analyzed upon the material incubation with whole blood. Both formulations were negatively charged with the zeta potential value being higher in the case of MTX-DOG liposomes, which also were larger than Mlph-DOG liposomes and more prone to aggregation. Accordingly, in hemocompatibility tests Mlph-DOG liposomes did not provoke any undesirable effects, while MTX-DOG liposomes induced significant C activation and abnormal coagulation times in a concentration-dependent manner. Reactivity of the liposome surface was not affected by the presence of SiaLe(X/A) or PI. Decrease in liposome loading with MTX-DOG from 10 to 2.5% resulted in lower surface charge density, smaller liposome size and considerably reduced impact on C activation and coagulation cascades. PMID:22210161

  6. Optimization on Preparation Conditions of Salidroside Liposome and Its Immunological Activity on PCV-2 in Mice

    PubMed Central

    Feng, Yibo; Zhao, Xiaojuan; Lv, Fang; Zhang, Jinqiu; Deng, Bihua; Zhao, Yanhong; Hu, Yuanliang; Wang, Deyun; Liu, Jiaguo; Lu, Yu; Bo, Ruonan; Liu, Zhenguang

    2015-01-01

    The aim of this study was to optimize the preparation conditions of salidroside liposome with high encapsulation efficiency (EE) and to study the immunological enhancement activity of salidroside liposome as porcine circovirus type 2 virus (PCV-2) vaccine adjuvant. Response surface methodology (RSM) was selected to optimize the conditions for the preparation of salidroside liposome using Design-Expert V8.0.6 software. Three kinds of salidroside liposome adjuvants were prepared to study their adjuvant activity. BALB/c mice were immunized with PCV-2 encapsulated in different kinds of salidroside liposome adjuvants. The PCV-2-specific IgG in immunized mice serum was determined with ELISA. The results showed that when the concentration of ammonium sulfate was 0.26?mol·L?1, ethanol volume 6.5?mL, temperature 43°C, ethanol injection rate 3?mL·min?1, and salidroside liposome could be prepared with high encapsulation efficiency of 94.527%. Salidroside liposome as adjuvant could rapidly induce the production of PCV-2-specific IgG and salidroside liposome I adjuvant proved to provide the best effect among the three kinds of salidroside liposome adjuvants. PMID:25878712

  7. Liposome-enhanced immunomigration strips for field screening of toxic chemicals

    SciTech Connect

    Roberts, M.A.; Reeves, S.G.; Siebert, S.T.; Durst, R.A.

    1995-12-31

    The use of liposomes containing encapsulated dye to provide instantaneous enhancement of signals generated in competitive immunoassays is described for two model analytes of environmental concern, alachlor and PCBs. The application of this strategy to field assays is demonstrated utilizing two complementary assay designs based on immunomigration along a nitrocellulose test strip. The liposome immunocompetition (LIC) assay involves immobilizing antibodies onto a strip and allowing the sample and analyte-tagged, dye-containing liposomes to migrate through this zone. Liposomes passing through without binding, as a result of competition from the sample analyte, are totally bound in an upper collection region, and the degree of color in this region is proportional to the analyte concentration. The liposome immunoaggregation (LIA) assay detects antibody-liposome association in a homogeneous incubation solution into which a test strip is subsequently placed. Antibody-bound aggregates of liposomes are trapped on the porous nitrocellulose test strip at the level of the meniscus, due to mechanisms that will be discussed. However, sample analyte competitively inhibits antibody-liposome association and, therefore, a proportional amount of unbound liposomes will escape entrapment on the nitrocellulose and can then be collected and quantitated in a measurement zone. This latter technique shows enhanced sensitivity, but involves an extra incubation step. Therefore these two techniques may be used interchangeably depending on the sensitivity and time requirements of a particular project. Prototype assay designs are demonstrated here and emerging detection strategies are discussed.

  8. Interaction of Colistin and Colistin Methanesulfonate with Liposomes: Colloidal Aspects and Implications for Formulation

    PubMed Central

    WALLACE, STEPHANIE J.; LI, JIAN; NATION, ROGER L.; PRANKERD, RICHARD J.; BOYD, BEN J.

    2012-01-01

    Interaction of colistin and colistin methanesulfonate (CMS) with liposomes has been studied with the view to understanding the limitations to the use of liposomes as a more effective delivery system for pulmonary inhalation of this important class of antibiotic. Thus, in this study, liposomes containing colistin or CMS were prepared and characterized with respect to colloidal behavior and drug encapsulation and release. Association of anionic CMS with liposomes induced negative charge on the particles. However, degradation of the CMS to form cationic colistin over time was directly correlated with charge reversal and particle aggregation. The rate of degradation of CMS was significantly more rapid when associated with the liposome bilayer than when compared with the same concentration in aqueous solution. Colistin liposomes carried positive charge and were stable. Encapsulation efficiency for colistin was approximately 50%, decreasing with increasing concentration of colistin. Colistin was rapidly released from liposomes on dilution. Although the studies indicate limited utility of colistin or CMS liposomes for long duration controlled-release applications, colistin liposomes were highly stable and may present a potential opportunity for coformulation of colistin with a second antibiotic to colocalize the two drugs after pulmonary delivery. PMID:22623044

  9. Ultrasound-mediated drug delivery using liposomes modified with a thermosensitive polymer.

    PubMed

    Ninomiya, Kazuaki; Kawabata, Shinya; Tashita, Hiroyuki; Shimizu, Nobuaki

    2014-01-01

    Ultrasound-mediated drug delivery was established using liposomes that were modified with the thermosensitive polymer (TSP) poly(NIPMAM-co-NIPAM), which sensitized the liposomes to high temperatures. TSP-modified liposomes (TSP liposomes) released encapsulated calcein under 1 MHz ultrasound irradiation at 0.5 W/cm(2) for 120 s as well as the case under incubation at 42 °C for 15 min. In addition, uptake of the drug released from TSP liposomes by cancer cells was enhanced by ultrasound irradiation. In a cell injury assay using doxorubicin (DOX)-loaded TSP liposomes and ultrasound irradiation, cell viability of HepG2 cells at 6 h after ultrasound irradiation (1 MHz, 0.5 W/cm(2) for 30 s) with DOX-loaded TSP liposomes (TSP/lipid ratio=1) was 60%, which was significantly lower than that of the control conditions such as DOX-loaded TSP liposomes alone and DOX-loaded intact liposomes under ultrasound irradiation. PMID:23948493

  10. Liposomal mitoxantrone for the local treatment of peritoneal carcinomatosis induced by colon cancer cells in mice.

    PubMed

    Genne, P; Olsson, N O; Gutierrez, G; Duchamp, O; Chauffert, B

    1994-04-01

    Since liposomes are slowly resorbed from serous cavities, they may constitute a valuable tool for the treatment of peritoneal carcinomatosis. We prepared mitoxantrone (MXN)-liposomes with various lipid compositions and checked their antitumoral activity on a peritoneal carcinomatosis induced by a colon cancer cell injection (1 x 10(5) C51 cells) in BALB/c mice. MXN entrapment in liposomes was rapid and stable due to its high lipophilicity. MXN carried in phosphatidylcholine: cholesterol (2:1; G-liposomes) displayed a reduced toxicity in mice compared to the free drug. When tested at a non-toxic dose (2 mg/kg), MXN entrapped in G-liposomes proved to be as efficient as the free drug. At a higher MXN dose (3 mg/kg), both G-liposomes and phosphatidylcholine:cholesterol:dipalmitoylphosphatidylethanolamine (7:2:1) liposomes, loaded with MXN, significantly increased the life span of mice compared to the free drug and six other liposome formulations. Increase in the MXN therapeutic index, when used in the liposomal form, could then merit further clinical investigations in regard to patients with malignancies confined to serous cavities. PMID:8166930

  11. Multifunctional liposomes for nasal delivery of the anti-Alzheimer drug tacrine hydrochloride.

    PubMed

    Corace, Giuseppe; Angeloni, Cristina; Malaguti, Marco; Hrelia, Silvana; Stein, Paul C; Brandl, Martin; Gotti, Roberto; Luppi, Barbara

    2014-12-01

    The purpose of this study was the development of multifunctional liposomes for nasal administration of tacrine hydrochloride. Liposomes were prepared using traditional excipients (cholesterol and phosphatidylcholine), partly enriched with ?-tocopherol and/or Omega3 fatty acids. This approach was chosen in order to obtain at the same time two positive results: an enhanced drug permeation through nasal mucosa and a concomitant neuroprotective effect. Several liposome formulations were prepared using the Reverse Phase Evaporation technique followed by membrane filter extrusion. In particular, liposome capacity to enhance drug permeation was evaluated by means of membrane permeation and cellular uptake studies. Furthermore, liposome effect on neuronal viability and intracellular ROS production was evaluated as well as their cytoprotective effect against oxidative stress. All liposome formulations showed a mean diameter in the range of 175 nm to 219 nm with polydispersity index lower than 0.22, a lightly negative zeta potential and excellent encapsulation efficiency. Moreover, along with good mucoadhesive properties, multifunctional liposomes showed a markedly increase in tacrine permeability, which can be related to liposome fusion with cellular membrane, a hypothesis, which was also supported by cellular uptake studies. Finally, the addition of ?-tocopherol without Omega3 fatty acids, was found to increase the neuroprotective activity and antioxidant properties of liposomes. PMID:24807822

  12. Glutathione PEGylated liposomes: pharmacokinetics and delivery of cargo across the blood–brain barrier in rats

    PubMed Central

    Chen, Linda; Hartman, Robin; van den Heuvel, Angelique; Reijerkerk, Arie; van Kregten, Joan; van der Boom, Burt; Appeldoorn, Chantal; de Boer, Marco; Maussang, David; de Lange, Elizabeth C. M.; Gaillard, Pieter J.

    2014-01-01

    Partly due to poor blood–brain barrier drug penetration the treatment options for many brain diseases are limited. To safely enhance drug delivery to the brain, glutathione PEGylated liposomes (G-Technology®) were developed. In this study, in rats, we compared the pharmacokinetics and organ distribution of GSH-PEG liposomes using an autoquenched fluorescent tracer after intraperitoneal administration and intravenous administration. Although the appearance of liposomes in the circulation was much slower after intraperitoneal administration, comparable maximum levels of long circulating liposomes were found between 4 and 24?h after injection. Furthermore, 24?h after injection a similar tissue distribution was found. To investigate the effect of GSH coating on brain delivery in vitro uptake studies in rat brain endothelial cells (RBE4) and an in vivo brain microdialysis study in rats were used. Significantly more fluorescent tracer was found in RBE4 cell homogenates incubated with GSH-PEG liposomes compared to non-targeted PEG liposomes (1.8-fold, p?liposomes compared with PEG control liposomes. The results support further investigation into the versatility of GSH-PEG liposomes for enhanced drug delivery to the brain within a tolerable therapeutic window. PMID:24524555

  13. Morphological Observations on the Cellular and Subcellular Destination of Intravenously Administered Liposomes

    PubMed Central

    Segal, A. W.; Wills, E. J.; Richmond, J. E.; Slavin, G.; Black, C. D. V.; Gregoriadis, G.

    1974-01-01

    The cellular and subcellular fate of intravenously administered liposomes was traced by light and electron microscopy, using nitroblue tetrazolium (NBT) as a marker. Liposomes were found almost exclusively within phagocytic vacuoles of cells of the reticuloendothelial system. Fusion of lysosomes with phagocytic vacuoles and liposomal degradation were clearly visible. Liposomes may find wide application in the study and treatment of metabolic, infectious and neoplastic disease of phagocytic cells. ImagesFig. 10Fig. 11Fig. 9Fig. 3Fig. 4Fig. 5Figs. 7-8Fig. 6Fig. 1Fig. 2 PMID:4433467

  14. Gold nanoparticles decorated liposomes and their SERS performance in tumor cells

    NASA Astrophysics Data System (ADS)

    Zhu, D.; Wang, Z. Y.; Zong, S. F.; Chen, H.; Chen, P.; Li, M. Y.; Wu, L.; Cui, Y. P.

    2015-05-01

    Due to their unique properties, liposomes have been widely used as drug nanocarriers. Herein a liposome-Au nanohybrid has been demonstrated as a SERS active intracellular drug nanocarrier. In this study, cationic Raman reporter tagged gold nanoparticles (Au@4MBA@PAH) were anchored onto the surfaces of anionic liposomes via electrostatic interactions. Using SKBR3 cells as model cells, we revealed that the hybrid formulation can be effectively taken up by tumor cells and tracked by the SERS signals. Collectively, the liposome-Au nanohybrids hold great promise in biomedical applications.

  15. Cetuximab-oxaliplatin-liposomes for epidermal growth factor receptor targeted chemotherapy of colorectal cancer.

    PubMed

    Zalba, Sara; Contreras, Ana M; Haeri, Azadeh; Ten Hagen, Timo L M; Navarro, Iñigo; Koning, Gerben; Garrido, María J

    2015-07-28

    Oxaliplatin (L-OH), a platinum derivative with good tolerability is currently combined with Cetuximab (CTX), a monoclonal antibody (mAb), for the treatment of certain (wild-type KRAS) metastatic colorectal cancer (CRC) expressing epidermal growth factor receptor (EGFR). Improvement of L-OH pharmacokinetics (PK) can be provided by its encapsulation into liposomes, allowing a more selective accumulation and delivery to the tumor. Here, we aim to associate both agents in a novel liposomal targeted therapy by linking CTX to the drug-loaded liposomes. These EGFR-targeted liposomes potentially combine the therapeutic activity and selectivity of CTX with tumor-cell delivery of L-OH in a single therapeutic approach. L-OH liposomes carrying whole CTX or CTX-Fab' fragments on their surface were designed and characterized. Their functionality was tested in vitro using four human CRC cell lines, expressing different levels of EGFR to investigate the role of CTX-EGFR interactions in the cellular binding and uptake of the nanocarriers and encapsulated drug. Next, those formulations were evaluated in vivo in a colorectal cancer xenograft model with regard to tumor drug accumulation, toxicity and therapeutic activity. In EGFR-overexpressing cell lines, intracellular drug delivery by targeted liposomes increased with receptor density reaching up to 3-fold higher levels than with non-targeted liposomes. Receptor specific uptake was demonstrated by competition with free CTX, which reduced internalization to levels similar to non-targeted liposomes. In a CRC xenograft model, drug delivery was strongly enhanced upon treatment with targeted formulations. Liposomes conjugated with monovalent CTX-Fab' fragments showed superior drug accumulation in tumor tissue (2916.0±507.84ng/g) compared to CTX liposomes (1546.02±362.41ng/g) or non-targeted liposomes (891.06±155.1ng/g). Concomitantly, CTX-Fab' targeted L-OH liposomes outperformed CTX-liposomes, which on its turn was still more efficacious than non-targeted liposomes and free drug treatment in CRC bearing mice. These results show that site-directed conjugation of monovalent CTX-Fab' provides targeted L-OH liposomes that display an increased tumor drug delivery and efficacy over a formulation with CTX and non-targeted liposomes. PMID:25998052

  16. Growth of phthalocyanine doped and undoped nanotubes using mild synthesis conditions for development of novel oxygen reduction catalysts.

    PubMed

    Arechederra, Robert L; Artyushkova, Kateryna; Atanassov, Plamen; Minteer, Shelley D

    2010-11-01

    Precious metal alloys have been the predominant electrocatalyst used for oxygen reduction in fuel cells since the 1960s. Although performance of these catalysts is high, they do have drawbacks. The two main problems with precious metal alloys are catalyst passivation and cost. This is why new novel catalysts are being developed and employed for oxygen reduction. This paper details the low temperature solvothermal synthesis and characterization of carbon nanotubes that have been doped with both iron and cobalt centered phthalocyanine. The synthesis is a novel low-temperature, supercritical solvent synthesis that reduces halocarbons to form a metal chloride byproduct and carbon nanotubes. Perchlorinated phthalocyanine was added to the nanotube synthesis to incorporate the phthalocyanine structure into the graphene sheets of the nanotubes to produce doped nanotubes that have the catalytic oxygen reduction capabilities of the metallo-phthalocyanine and the advantageous material qualities of carbon nanotubes. The cobalt phthalocyanine doped carbon nanotubes showed a half wave oxygen reduction potential of -0.050 ± 0.005 V vs Hg\\HgO, in comparison to platinum's half wave oxygen reduction potential of -0.197 ± 0.002 V vs Hg\\HgO. PMID:21043456

  17. Multifunctional liposomes for enhanced anti-cancer therapy

    NASA Astrophysics Data System (ADS)

    Falcao, Claudio Borges

    2011-12-01

    Macromolecular drugs have great promises for cancer treatment, such as the pro-apoptotic peptide D-(KLAKLAK)2 and the bcl-2 antisense oligodeoxynucleotide G3139. However, these macromolecules require efficient drug carriers, like liposomes, to deliver them inside cells. Also, if these macromolecules can be combined in a single liposome, the cancer cell killing will be greater than using just one. With this possibility in mind, cationic liposomes (CLs) were elaborated to encapsulate both macromolecules and deliver them inside cells. Later, surface modification of CLs was investigated through the addition of polyethylene glycol (PEG) to obtain long-circulating liposomes. CLs were prepared through charge alternation among D-(KLAKLAK)2 , G3139 and DOTAP. These liposomes were characterized with particle size and zeta-potential measurements, antisense entrapment and peptide loading efficiency. The in vitro effects of CL formulations were tested with B16(F10) cells through viability studies, uptake assay and detection of apoptosis. CL formulations were also applied in vivo in B16(F10) tumor-bearing mice through intratumoral injections, and tumor growth inhibition and detection of apoptosis were evaluated. Next, the mechanism of action of the CL formulations was investigated by Western blotting. Later, PEG was incorporated at increasing amounts to the liposomes to determine which concentration can better prevent interactions between PEG-cationic liposomes (PCL) and B16(F10) cells. Next, pH-cleavable PEG was prepared and then added to the liposomes in the same amount that PEG in PCL could decrease interaction with cells. Finally, cell viability studies were performed with CL, PCL and pH-sensitive PCL (pH-PCL) formulations after pre-incubation at pH 7.4 or at pH 5.0. Positively charged CL particles were obtained after encapsulation of negatively charged D-(KLAKLAK)2/G3139 complexes. In vitro , CLs containing D-(KLAKLAK)2/G3139 complexes could reduce B16(F10) cell viability with half of the concentration needed for G3139 alone in CL to reduce the cell viability by 40%. Also, it was found greater apoptotic signal in cells treated with CLs containing D-(KLAKLAK)2/G3139 complexes than CLs with G3139 only. In vivo, D-(KLAKLAK) 2/G3139 complexes in CL significantly inhibited tumor growth compared to the saline treated group, through apoptosis induction. However, the mechanism involved in cell death by apoptosis seems to be independent of reduction of bcl-2 protein levels. PEG2000 at 1% mol could significantly reduce activity of PCL formulation towards B16(F10) cells compared to CLs. After pre-incubation at pH 7.4, PCL and pH-PCL had decreased activity compared to CL towards B16(F10) cells. After pre-incubation at pH 5.0, while CL and PCL had the same activity with the cells as in neutral pH, pH-PCL formulation had its PEG cleaved and its cytotoxicity was restored against the melanoma cells. Thus, D-(KLAKLAK)2/G3139 complexes in CL had enhanced anti-cancer therapy, through apoptosis, than G3139 alone in CL in vitro and in vivo. In vitro, PCL and pH-PCL particles obtained can have a prolonged blood residence time, and, once a tumor tissue is reached, pH-PCL can have its cytotoxicity restored because of hydrolysis of cleavable PEG at a lowered pH.

  18. Tumor cell growth inhibition by liposome-encapsulated aromatic polyamidines.

    PubMed

    Nastruzzi, C; Gambari, R; Menegatti, E; Walde, P; Luisi, P L

    1990-08-01

    Apart from its antiproteinase activity, the aromatic polyamidine TAPP-Br [the bromo derivative of 1,3-di-(p-amidinophenoxy)-2,2-bis-(p-amidinophenoxymethyl)propane (TAPP-H)] is able to inhibit the in vitro growth of a variety of tumor cell lines, including human melanoma, and breast and kidney carcinoma. We have now shown that TAPP-Br can efficiently be encapsulated into egg phosphatidylcholine vesicles. When incorporated into these liposomes, the inhibitory effect of TAPP-Br is significantly enhanced compared with that of the free drug. Based on these promising results, a proposal is made for the delivery of this antiproliferative agent to tumor cells by using liposomes as the vehicle. PMID:2231328

  19. Recurrent Candida albicans Ventriculitis Treated with Intraventricular Liposomal Amphotericin B

    PubMed Central

    Toprak, Demet; Öcal Demir, Sevliya; Kadayifci, Eda Kepenekli; Türel, Özden; Soysal, Ahmet; Bakir, Mustafa

    2015-01-01

    Central nervous system (CNS) infection with Candida is rare but significant because of its high morbidity and mortality. When present, it is commonly seen among immunocompromised and hospitalized patients. Herein, we describe a case of a four-year-old boy with acute lymphoblastic leukemia (ALL) who experienced recurrent Candida albicans meningitis. The patient was treated successfully with intravenous liposomal amphotericin B at first attack, but 25 days after discharge he was readmitted to hospital with symptoms of meningitis. Candida albicans was grown in CFS culture again and cranial magnetic resonance imaging (MRI) showed ventriculitis. We administered liposomal amphotericin B both intravenously and intraventricularly and favorable result was achieved without any adverse effects. Intraventricular amphotericin B may be considered for the treatment of recurrent CNS Candida infections in addition to intravenous administration. PMID:26558119

  20. Reconstitution of an Actin Cortex Inside a Liposome

    PubMed Central

    Pontani, Léa-Laetitia; van der Gucht, Jasper; Salbreux, Guillaume; Heuvingh, Julien; Joanny, Jean-François; Sykes, Cécile

    2009-01-01

    Abstract The composite and versatile structure of the cytoskeleton confers complex mechanical properties on cells. Actin filaments sustain the cell membrane and their dynamics insure cell shape changes. For example, the lamellipodium moves by actin polymerization, a mechanism that has been studied using simplified experimental systems. Much less is known about the actin cortex, a shell-like structure underneath the membrane that contracts for cell movement. We have designed an experimental system that mimicks the cell cortex by allowing actin polymerization to nucleate and assemble at the inner membrane of a liposome. Actin shell growth can be triggered inside the liposome, which offers a useful system for a controlled study. The observed actin shell thickness and estimated mesh size of the actin structure are in good agreement with cellular data. Such a system paves the way for a thorough characterization of cortical dynamics and mechanics. PMID:19134475

  1. Assaying P-Type ATPases Reconstituted in Liposomes.

    PubMed

    Apell, Hans-Jürgen; Damnjanovic, Bojana

    2016-01-01

    Reconstitution of P-type ATPases in unilamellar liposomes is a useful technique to study functional properties of these active ion transporters. Experiments with such liposomes provide an easy access to substrate-binding affinities of the ion pumps as well as to the lipid and temperature dependence of the pump current. Here, we describe two reconstitution methods by dialysis and the use of potential-sensitive fluorescence dyes to study transport properties of two P-type ATPases, the Na,K-ATPase from rabbit kidney and the K(+)-transporting KdpFABC complex from E. coli. Several techniques are introduced how the measured fluorescence signals may be analyzed to gain information on properties of the ion pumps. PMID:26695029

  2. Targeted delivery of doxorubicin using stealth liposomes modified with transferrin.

    PubMed

    Li, XueMing; Ding, Liyan; Xu, Yuanlong; Wang, Yonglu; Ping, QiNeng

    2009-05-21

    Site-specific delivery of drugs and therapeutics can significantly reduce drug toxicity and increase the therapeutic effect. Transferrin (Tf) is one suitable ligand to be conjugated to drug delivery systems to achieve site-specific targeting, due to its specific binding to transferrin receptors (TfR), highly expressed on the surfaces of tumor cells. Stealth liposomes are effective vehicles for drugs, genes and vaccines and can be easily modified with proteins, antibodies, and other appropriate ligands, resulting in attractive formulations for targeted drug delivery. In this study, we prepared doxorubicin-loaded stealth liposomes (Tf-SL-DOX) by film dispersion followed by ammonium sulphate gradient method, then conjugated Tf to the liposome surface by an amide bound between DSPE-PEG(2000)-COOH and Tf. The results of the intracellular uptake study indicated that Tf-modified SL was able to enhance the intracellular uptake of the entrapped DOX by HepG2 cells compared to SL-DOX. We studied tissue distribution and therapeutic effects of Free DOX, SL-DOX and Tf-SL-DOX in tumor-bearing mice and pharmacokinetics in rats. The pharmacokinetic behavior of Tf-SL-DOX in the plasma was closed to SL-DOX. Administration of Tf-SL-DOX to tumor-bearing mice could be used to deliver DOX effectively to the targeted site, significantly increasing DOX concentration in tumor and decreasing DOX concentration in heart and kidney. In summary, our study indicated that the Tf-coupled PEG liposomes (Tf-SL) could be as the targeted carriers to facilitate the delivery of the encapsulated anticancer drugs into tumor cells by receptor-mediated way. PMID:19429296

  3. Liposomal voriconazole (VOR) formulation for improved ocular delivery.

    PubMed

    de Sá, Fernando Augusto Pires; Taveira, Stephânia Fleury; Gelfuso, Guilherme Martins; Lima, Eliana Martins; Gratieri, Taís

    2015-09-01

    Treating infectious eye diseases topically requires a drug delivery system capable of overcoming the eye's defense mechanisms, which efficiently reduce the drug residence time right after its administration, therefore reducing absorption. In order to try to surpass such administration issues and improve life quality for patients with fungal keratitis, liposomal voriconazol (VOR) formulations were prepared. Formulations were composed of soy phosphatidylcholine (PC) containing or not 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) and cholesterol. Liposomes were characterized by their drug entrapment efficiency (EE), drug recovery (DR), average diameter (size) and polydispersivity index (PdI). In vitro mucosal interaction and irritancy levels, ex vivo permeation, as well as the short-term stability were also assessed. Liposomal VOR formulation produced with 7.2:40mM VOR:PC showed to be the most promising formulation: mean size of 116.6±5.9nm, narrow PdI (0.17±0.06), negative zeta potential (?-7mV) and over 80% of EE and yield, remaining stable for at least 30 days in solution and 90 days after lyophilization. This formulation was classified as 'non-irritant' after HET-CAM's test and was able to deliver about 47.85±5.72?g/cm(2) of VOR into porcine cornea after 30min of permeation test. Such drug levels are higher than the minimal inhibitory concentrations (MIC) of several fungi species isolated from clinical cases of corneal keratitis. Overall results suggest VOR can be effectively incorporated in liposomes for potential topical treatment of fungal keratitis. PMID:26123854

  4. In vivo hypertensive arterial wall uptake of radiolabeled liposomes

    SciTech Connect

    Hodis, H.N.; Amartey, J.K.; Crawford, D.W.; Wickham, E.; Blankenhorn, D.H. )

    1990-06-01

    Using five sham-operated and seven aortic coarctation-induced hypertensive New Zealand White rabbits intravenously injected with neutral small unilamellar vesicles loaded with (111In)nitrilotriacetic acid, we demonstrated in vivo that the normal aortic arterial wall participates in liposome uptake and that this uptake is increased in the hypertensive aortic wall by approximately threefold (p less than or equal to 0.0001). Among the three regions examined, aortic arch, thoracic aorta, and lower abdominal aorta, the difference in uptake between the normotensive and hypertensive arterial walls was significantly different, p less than or equal to 0.05, p less than or equal to 0.0001, and p less than 0.05, respectively. The uptake by the different regions of the hypertensive arterial wall is consistent with the pathological changes present in these areas. Furthermore, the extent of liposome uptake by the aortic wall is strongly correlated with the height of the blood pressure (r = 0.85, p = 0.001, n = 11). We conclude that neutral small unilamellar liposomes can be used to carry agents into the arterial wall in vivo in the study of hypertensive vascular disease and could be especially useful for the delivery of pharmacologically or biologically active agents that would otherwise be inactivated within the circulation or are impermeable to the arterial wall.

  5. Conformationally changed cytochrome c-mediated fusion of enzyme- and substrate-containing liposomes.

    PubMed

    Yoshimoto, M; Walde, P; Umakoshi, H; Kuboi, R

    1999-01-01

    The fusion between enzyme-containing liposomes and substrate-containing liposomes was studied, utilizing conformationally altered cytochrome c as fusion mediator under stress conditions. The liposomes were composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), and liposome aggregation and subsequent liposome fusion were induced by the addition of cytochrome c, which was partially denatured by 0.5 M guanidinium hydrochloride (GuHCl). In the presence of 0.5 M GuHCl, cytochrome c was found to have a significantly large local hydrophobicity which was determined with the aqueous two-phase partitioning method. Under these conditions, cytochrome c could efficiently bind to POPC bilayer membranes as quantitatively evaluated by immobilized liposome chromatography (ILC). The retardation of cytochrome c treated with 0, 0.5, and 1 M GuHCl on ILC could be correlated with the corresponding local hydrophobicity of cytochrome c. The enzymatic reaction triggered by liposome fusion involved the proteolytic enzyme alpha-chymotrypsin and its substrate succinyl-L-Ala-L-Ala-L-Pro-L-Phe-p-nitroanilide (Suc-AAPF-pNA), which were separately trapped in POPC liposomes. Addition of partially denatured cytochrome c (most likely in the molten globule state) to the mixture of enzyme- and substrate-containing liposomes resulted in the release of one of the hydrolysis products, p-nitroaniline, to the outer phase of the fused liposomes, indicating that the enzymatic reaction occurred during the liposome fusion process. Such a coupled fusion-reaction system may have specific advantages over the conventional fusion analysis and may find application as drug delivery system. PMID:10441360

  6. Liposome uptake into human colon adenocarcinoma cells in monolayer, spinner, and trypsinized cultures

    SciTech Connect

    Tom, B.H.; Macek, C.M.; Raphael, L.; Sengupta, J.; Cerny, E.A.; Jonah, M.M.; Rahman, Y.E.

    1983-01-01

    Experiments were performed to study the uptake and incorporation of multilamellar and of reverse-phase evaporation liposomes of neutral charge into monolayers, suspended spinner cultures, and trypsinized cells of a human colon adenocarcinoma cell line, LS174T. The results showed that the same tumor cells cultured under each condition exhibited a distinct pattern of vesicle uptake as determined at 0, 15, 30, 60, and 120 min. In monolayer cultures of LS174T cells, the uptake of liposomes bearing (/sup 3/H)actinomycin D in the lipid bilayers was linear throughout the incubation period. In contrast, in trypsinized and spinner suspension cultures, uptake of liposomes was biphasic. There was a proportional uptake of both liposome (labeled with (/sup 3/H)phosphatidylcholine or (/sup 14/C)cholesterol) and of actinomycin D (trace labeled with /sup 3/H) into the cells under all culture conditions, indicating quantitative delivery of the drug with the intact lipid vesicle. Although the amount of actinomycin D presented to tumor cells by the two liposomes was equivalent, reverse-phase evaporation liposomes were more effective than multilamellar vesicles in inhibiting uridine uptake. In the presence of excess liposomes (10 times the uptake studies), saturation of the tumor cell surface occurred by 120 min. However, the liposomes remained accessible to enzymatic removal for 60 min. Liposome-saturated tumor cells remained refractory to further binding of liposomes for at least 2 hr. The results thus revealed that differences in cell uptake were due to the state of the target cells and not the liposome types, or their differential leakage of labels.

  7. Peptide-coated liposomal fasudil enhances site specific vasodilation in pulmonary arterial hypertension.

    PubMed

    Nahar, Kamrun; Absar, Shahriar; Gupta, Nilesh; Kotamraju, Venkata Ramana; McMurtry, Ivan F; Oka, Masahiko; Komatsu, Masanobu; Nozik-Grayck, Eva; Ahsan, Fakhrul

    2014-12-01

    This study sought to develop a liposomal delivery system of fasudil--an investigational drug for the treatment of pulmonary arterial hypertension (PAH)--that will preferentially accumulate in the PAH lungs. Liposomal fasudil was prepared by film-hydration method, and the drug was encapsulated by active loading. The liposome surface was coated with a targeting moiety, CARSKNKDC, a cyclic peptide; the liposomes were characterized for size, polydispersity index, zeta potential, and storage and nebulization stability. The in vitro drug release profiles and uptake by TGF-? activated pulmonary arterial smooth muscle cells (PASMC) and alveolar macrophages were evaluated. The pharmacokinetics were monitored in male Sprague-Dawley rats, and the pulmonary hemodynamics were studied in acute and chronic PAH rats. The size, polydispersity index (PDI), and zeta potential of the liposomes were 206-216 nm, 0.058-0.084, and -20-42.7 mV, respectively. The formulations showed minimal changes in structural integrity when nebulized with a commercial microsprayer. The optimized formulation was stable for >4 weeks when stored at 4 °C. Fasudil was released in a continuous fashion over 120 h with a cumulative release of 76%. Peptide-linked liposomes were taken up at a higher degree by TGF-? activated PASMCs; but alveolar macrophages could not engulf peptide-coated liposomes. The formulations did not injure the lungs; the half-life of liposomal fasudil was 34-fold higher than that of plain fasudil after intravenous administration. Peptide-linked liposomal fasudil, as opposed to plain liposomes, reduced the mean pulmonary arterial pressure by 35-40%, without influencing the mean systemic arterial pressure. This study establishes that CAR-conjugated inhalable liposomal fasudil offers favorable pharmacokinetics and produces pulmonary vasculature specific dilatation. PMID:25333706

  8. Phthalocyanine-Aggregated Polymeric Nanoparticles as Tumor-Homing Near-Infrared Absorbers for Photothermal Therapy of Cancer

    PubMed Central

    Lim, Chang-Keun; Shin, Jiyoung; Lee, Yong-Deok; Kim, Jungahn; Oh, Keun Sang; Yuk, Soon Hong; Jeong, Seo Young; Kwon, Ick Chan; Kim, Sehoon

    2012-01-01

    Phthalocyanine-aggregated Pluronic nanoparticles were constructed as a novel type of near-infrared (NIR) absorber for photothermal therapy. Tiny nanoparticles (~ 60 nm, FPc NPs) were prepared by aqueous dispersion of phthalocyanine-aggregated self-assembled nanodomains that were phase-separated from the melt mixture with Pluronic. Under NIR laser irradiation, FPc NPs manifested robust heat generation capability, superior to an individual cyanine dye and cyanine-aggregated nanoparticles. Micro- and macroscopic imaging experiments showed that FPc NPs are capable of internalization into live cancer cells as well as tumor accumulation when intravenously administered into living mice. It is shown here that continuous NIR irradiation of the tumor-targeted FPc NPs can cause phototherapeutic effects in vitro and in vivo through excessive local heating, demonstrating potential of phthalocyanine-aggregated nanoparticles as an all-organic NIR nanoabsorber for hyperthermia. PMID:23082099

  9. Ammonia adsorption on iron phthalocyanine on Au(111): Influence on adsorbate-substrate coupling and molecular spin

    SciTech Connect

    Isvoranu, Cristina; Ataman, Evren; Knudsen, Jan; Andersen, Jesper N.; Schnadt, Joachim; Wang Bin; Bocquet, Marie-Laure; Schulte, Karina

    2011-03-21

    The adsorption of ammonia on Au(111)-supported monolayers of iron phthalocyanine has been investigated by x-ray photoelectron spectroscopy, x-ray absorption spectroscopy, and density functional theory calculations. The ammonia-induced changes of the x-ray photoemission lines show that a dative bond is formed between ammonia and the iron center of the phthalocyanine molecules, and that the local spin on the iron atom is quenched. This is confirmed by density functional theory, which also shows that the bond between the iron center of the metalorganic complex and the Au(111) substrate is weakened upon adsorption of ammonia. The experimental results further show that additional adsorption sites exist for ammonia on the iron phthalocyanine monolayer.

  10. Spectroscopic investigation of different concentrations of the vapour deposited copper phthalocyanine as a "guest" in polyimide matrix.

    PubMed

    Georgiev, Anton; Yordanov, Dancho; Dimov, Dean; Assa, Jacob; Spassova, Erinche; Danev, Gencho

    2015-04-01

    Nanocomposite layers 250 nm copper phthalocyanine/polyimide prepared by simultaneous vapour deposition of three different sources were studied. Different concentrations of copper phthalocyanine as a "guest" in polyimide matrix as a function of conditions of the preparation have been determined by FTIR (Fourier Transform Infrared) and UV-VIS (Ultraviolet-Visible) spectroscopies. The aim was to estimate the possibility of the spectroscopic methods for quantitative determination of the "guest" and compare with the quality of the polyimide thin films in relation to the "guest" concentration. The band at 1334 cm(-1) has been used for quantitative estimation of "guest" in polyimide matrix. The concentrations of the copper phthalocyanine less than 20% require curve fitting techniques with Fourier self deconvolution. The relationship between "guest" concentrations and degree of imidization, as well as the electronic UV-VIS spectra are discussed in relation to the composition, imidization degree and the two crystallographic modification of the embedded chromophore. PMID:25638427

  11. New metal phthalocyanines/metal simple hydroxide multilayers: experimental evidence of dipolar field-driven magnetic behavior.

    PubMed

    Bourzami, Riadh; Eyele-Mezui, Séraphin; Delahaye, Emilie; Drillon, Marc; Rabu, Pierre; Parizel, Nathalie; Choua, Sylvie; Turek, Philippe; Rogez, Guillaume

    2014-01-21

    A series of new hybrid multilayers has been synthesized by insertion-grafting of transition metal (Cu(II), Co(II), Ni(II), and Zn(II)) tetrasulfonato phthalocyanines between layers of Cu(II) and Co(II) simple hydroxides. The structural and spectroscopic investigations confirm the formation of new layered hybrid materials in which the phthalocyanines act as pillars between the inorganic layers. The magnetic investigations show that all copper hydroxide-based compounds behave similarly, presenting an overall antiferromagnetic behavior with no ordering down to 1.8 K. On the contrary, the cobalt hydroxide-based compounds present a ferrimagnetic ordering around 6 K, regardless of the nature of the metal phthalocyanine between the inorganic layers. The latter observation points to strictly dipolar interactions between the inorganic layers. The amplitude of the dipolar field has been evaluated from X-band and Q-band EPR spectroscopy investigation (Bdipolar ? 30 mT). PMID:24400974

  12. Spectroscopic investigation of different concentrations of the vapour deposited copper phthalocyanine as a "guest" in polyimide matrix

    NASA Astrophysics Data System (ADS)

    Georgiev, Anton; Yordanov, Dancho; Dimov, Dean; Assa, Jacob; Spassova, Erinche; Danev, Gencho

    2015-04-01

    Nanocomposite layers 250 nm copper phthalocyanine/polyimide prepared by simultaneous vapour deposition of three different sources were studied. Different concentrations of copper phthalocyanine as a "guest" in polyimide matrix as a function of conditions of the preparation have been determined by FTIR (Fourier Transform Infrared) and UV-VIS (Ultraviolet-Visible) spectroscopies. The aim was to estimate the possibility of the spectroscopic methods for quantitative determination of the "guest" and compare with the quality of the polyimide thin films in relation to the "guest" concentration. The band at 1334 cm-1 has been used for quantitative estimation of "guest" in polyimide matrix. The concentrations of the copper phthalocyanine less than 20% require curve fitting techniques with Fourier self deconvolution. The relationship between "guest" concentrations and degree of imidization, as well as the electronic UV-VIS spectra are discussed in relation to the composition, imidization degree and the two crystallographic modification of the embedded chromophore.

  13. Modulated release from liposomes entrapped in chitosan/gelatin hydrogels.

    PubMed

    Ciobanu, Bogdan C; Cadinoiu, Anca N; Popa, Marcel; Desbrières, Jacques; Peptu, C?t?lina A

    2014-10-01

    The paper describes the preparation of chitosan/gelatin hydrogels, obtained by double crosslinking with glutaraldehyde and sodium sulphate/sodium tripolyphosphate that may be used as matrices for the inclusion of drug loaded liposomes composed of phosphatidylcholine. The main objective was to create a protective layer to stabilize the liposomal surface and to prolong/control the release of drugs from such systems. Therefore, complex systems capable of prolonged drug release and controlled release kinetics were obtained. Samples consisting of different chitosan/gelatin ratios and type/amount of ionic crosslinker have been prepared and characterized. The present study shows that calcein (used as a model hydrophilic drug) release from polymeric hydrogels has been retarded from several days to weeks after calcein inclusion in small unilamellar vesicles (SUVs) and multilamellar vesicles (MLVs) entrapped subsequently in hydrogels with variable composition. The calcein release kinetics of complex systems were compared to simple systems (control hydrogels) and important changes were observed thus proving that the mechanism of the process increases in complexity. Also, it is demonstrated that liposomes' stability can be greatly improved by inclusion in polymeric matrices. Multilamellar liposomes showed a better release behaviour, which indicates that these calcein loaded vesicles remained intact to some extent after release from the matrix, due to their improved stability provided by the multiple layers. When small unilamellar liposomes were tested, calcein have been released from hydrogels predominantly in a free form (due to their unilamellarity related instability even inside the hydrogel) but in a sustained and controllable manner. The main applications of the systems obtained are in the area of drug release for tissue engineering/tissue repair (topical administration of drugs for wound therapy - burns, for example). Hydrogels capable of delivering drugs over prolonged periods of time represent a step forward in wound management and many diseases that request long term and sustained delivery of drugs. These hydrogels could be used as tissue replacement or injectable depot systems in many high risk diseases including cancer. PMID:25175227

  14. 2624 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 60, NO. 9, SEPTEMBER 2013 Electroporation of Intracellular Liposomes Using

    E-print Network

    Ljubljana, University of

    of Intracellular Liposomes Using Nanosecond Electric Pulses--A Theoretical Study Lea Retelj, Gorazd Pucihar for controlled intracellular release of a content of small internalized artificial lipid vesicles (liposomes). To estimate the pulse parame- ters needed to selectively electroporate liposomes while keeping the plasma

  15. Enhanced retention and anti-tumor efficacy of liposomes by changing their cellular uptake and pharmacokinetics behavior.

    PubMed

    Li, Yan; Liu, Ruiyuan; Yang, Jun; Shi, Yuanjie; Ma, Guanghui; Zhang, Zhenzhong; Zhang, Xin

    2015-02-01

    Although PEGylated liposome-based drug delivery systems hold great promising applications for cancer therapy due to their prolonged blood circulation time, PEGylation significantly reduces their cellular uptake, which markedly impairs the in vivo tumor retention and antitumor efficiency of drug-loaded liposomes. Most importantly, it has been proved that repeated injections of PEGylated liposomes with cell cycle specific drug such as topotecan (TPT) in the same animal at certain time intervals will induce "accelerated blood clearance" (ABC) phenomenon, which decreases the tumor accumulation of drug-loaded liposomes and presents a tremendous challenge to the clinical use of liposome-based drug delivery systems. Herein, we developed a zwitterionic poly(carboxybetaine) (PCB) modified liposome-based drug delivery system. The presence of PCB could avoid protein adsorption and enhance the stability of liposomes as that for PEG. Quite different from the PEGylated liposomes, the pH-sensitive PCBylated liposomes were internalized into cells via endocytosis with excellent cellular uptake and drug release ability. Furthermore, the PCBylated liposomes would avoid ABC phenomenon, which promoted the tumor accumulation of drug-loaded liposomes in vivo. With higher tumor accumulation and cellular uptake, the PCBylated drug-loaded liposomes significantly inhibited tumor growth and provided a promising approach for cancer therapy. PMID:25522960

  16. The role of surface charge density in cationic liposome-promoted dendritic cell maturation and vaccine-induced immune responses

    NASA Astrophysics Data System (ADS)

    Ma, Yifan; Zhuang, Yan; Xie, Xiaofang; Wang, Ce; Wang, Fei; Zhou, Dongmei; Zeng, Jianqiang; Cai, Lintao

    2011-05-01

    Cationic liposomes have emerged as a novel adjuvant and antigen delivery system to enhance vaccine efficacy. However, the role of surface charge density in cationic liposome-regulated immune responses has not yet been elucidated. In the present study, we prepared a series of DOTAP/DOPC cationic liposomes with different surface densities by incorporating varying amounts of DOPC (a neutral lipid) into DOTAP (a cationic lipid). The results showed that DOTAP/DOPC cationic liposome-regulated immune responses relied on the surface charge density, and might occur through ROS signaling. The liposomes with a relatively high charge density, such as DOTAP/DOPC 5 : 0 and 4 : 1 liposomes, potently enhanced dendritic cell maturation, ROS generaion, antigen uptake, as well as the production of OVA-specific IgG2a and IFN-?. In contrast, low-charge liposomes, such as DOTAP/DOPC 1 : 4 liposome, failed to promote immune responses even at high concentrations, confirming that the immunoregulatory effect of cationic liposomes is mostly attributable to their surface charge density. Moreover, the DOTAP/DOPC 1 : 4 liposome suppressed anti-OVA antibody responses in vivo. Overall, maintaining an appropriate surface charge is crucial for optimizing the adjuvant effect of cationic liposomes and enhancing the efficacy of liposome-based vaccines.

  17. Antimicrobial Efficacy of Liposome Encapsulated Nisin and Nisin's Inhibition Against Listeria monocytogenes in Fluid Milk at Different Storage Temperatures 

    E-print Network

    Schmidt, Shannon E.

    2010-10-12

    Liposomes in Gene Therapy .................................................................29 Liposomes in Cosmetics .......................................................................30 Liposomes in Food Industry... versatility and ability to act as targeted release-on-demand carrier systems for water and oil-soluble compounds, they have been used in a number of industrial applications including drug delivery, gene therapy, cosmetics, ecological preservation, and food...

  18. Linear DNA Low Efficiency Transfection by Liposome Can Be Improved by the Use of Cationic Lipid as Charge Neutralizer

    E-print Network

    Barbosa, Marcia C. B.

    Linear DNA Low Efficiency Transfection by Liposome Can Be Improved by the Use of Cationic Lipid the efficiency of a liposome-mediated transfection by circular and linear DNA. The results obtained showed a low rate of transfection by linear DNA:liposome complexes. To explore whether the structure

  19. Safety Science Article HER2-targeted liposomal doxorubicin displays enhanced anti-tumorigenic effects

    E-print Network

    Zandstra, Peter W.

    Safety Science Article HER2-targeted liposomal doxorubicin displays enhanced anti, Ontario M5S 3E1, Canada a b s t r a c ta r t i c l e i n f o Article history: Received 22 November 2011-derived cardiomyocytes Doxorubicin Preclinical safety HER2-targeted liposomal doxorubicin Cardiotoxicity Safety sciences

  20. Liposome technology. Volume II: Incorporation of drugs, proteins and genetic material

    SciTech Connect

    Gregoriadis, G.

    1984-01-01

    These three volumes cover liposome technology in pharmacology and medicine. Contributors emphasize methodology used in their own laboratories, and include a brief introduction, coverage of relevant literature, applications and critical evaluations for the methods they describe. Volume II presents procedures for the entrapment of a number of drugs, including genetic material, into selected types of liposomes.

  1. Liposome-containing polymer films and colloidal assemblies towards biomedical applications

    NASA Astrophysics Data System (ADS)

    Teo, Boon M.; Hosta-Rigau, Leticia; Lynge, Martin E.; Städler, Brigitte

    2014-05-01

    Liposomes are important components for biomedical applications. Their unique architecture and versatile nature have made them useful carriers for the delivery of therapeutic cargo. The scope of this minireview is to highlight recent developments of biomimetic liposome-based multicompartmentalized assemblies of polymer thin films and colloidal carriers, and to outline a selection of recent applications of these materials in bionanotechnology.

  2. Ag@4ATP-coated liposomes: SERS traceable delivery vehicles for living cells

    NASA Astrophysics Data System (ADS)

    Zhu, Dan; Wang, Zhuyuan; Zong, Shenfei; Chen, Hui; Wu, Xin; Pei, Yuwei; Chen, Peng; Ma, Xueqin; Cui, Yiping

    2014-06-01

    A liposome-Ag nanohybrid has been demonstrated as a SERS traceable intracellular drug nanocarrier. Liposomes have been introduced for their special qualities in drug delivery systems. In essence, 4-aminothiophenol (4ATP) tagged Ag nanoparticles (Ag@4ATP) were adsorbed onto the surfaces of liposomes via electrostatic interactions, in which 4ATP was used as a SERS reporter. In such a nanohybrid, the locations of the carrier can be tracked by SERS signals while those of the drugs can be monitored through their fluorescence, allowing the simultaneous investigation of the intracellular distribution of both the carriers and the drugs. Our experimental results suggest that the reported liposomal system has substantial potential for intracellular drug delivery.A liposome-Ag nanohybrid has been demonstrated as a SERS traceable intracellular drug nanocarrier. Liposomes have been introduced for their special qualities in drug delivery systems. In essence, 4-aminothiophenol (4ATP) tagged Ag nanoparticles (Ag@4ATP) were adsorbed onto the surfaces of liposomes via electrostatic interactions, in which 4ATP was used as a SERS reporter. In such a nanohybrid, the locations of the carrier can be tracked by SERS signals while those of the drugs can be monitored through their fluorescence, allowing the simultaneous investigation of the intracellular distribution of both the carriers and the drugs. Our experimental results suggest that the reported liposomal system has substantial potential for intracellular drug delivery. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr00557k

  3. Endothelial targeting of liposomes encapsulating SOD/catalase mimetic EUK-134 alleviates acute pulmonary inflammation.

    PubMed

    Howard, Melissa D; Greineder, Colin F; Hood, Elizabeth D; Muzykantov, Vladimir R

    2014-03-10

    Production of excessive levels of reactive oxygen species (ROS) in the vascular endothelium is a common pathogenic pathway in many dangerous conditions, including acute lung injury, ischemia-reperfusion, and inflammation. Ineffective delivery of antioxidants to the endothelium limits their utility for management of these conditions. In this study, we devised a novel translational antioxidant intervention targeted to the vascular endothelium using PEG-liposomes loaded with EUK-134 (EUK), a potent superoxide dismutase/catalase mimetic. EUK loaded into antibody-coated liposomes (size 197.8±4.5 nm diameter, PDI 0.179±0.066) exerted partial activity in the intact carrier, while full activity was recovered upon liposome disruption. For targeting we used antibodies (Abs) to platelet-endothelial cell adhesion molecule (PECAM-1). Both streptavidin-biotin and SATA/SMCC conjugation chemistries provided binding of 125-150 Ab molecules per liposome. Ab/EUK/liposomes, but not IgG/EUK/liposomes: i) bound to endothelial cells and inhibited cytokine-induced inflammatory activation in vitro; and, ii) accumulated in lungs after intravascular injection, providing >60% protection against pulmonary edema in endotoxin-challenged mice (vs <6% protection afforded by IgG/liposome/EUK counterpart). Since the design elements of this drug delivery system are already in clinical use (PEG-liposomes, antibodies, SATA/SMCC conjugation), it is an attractive candidate for translational interventions using antioxidant molecules such as EUK and other clinically acceptable drugs. PMID:24412573

  4. Kinetics of Bile Salt Binding to Liposomes Revealed by Carboxyfluorescein Release and

    E-print Network

    Hinow, Peter

    Kinetics of Bile Salt Binding to Liposomes Revealed by Carboxyfluorescein Release and Mathematical by the binding of different bile salts to the leaflets of the lipid bilayer. We find that the permeability of the liposomal bilayer depends on the difference in the concentrations of bile salt in the inner and outer

  5. Theranostic liposomes loaded with quantum dots and apomorphine for brain targeting and bioimaging

    PubMed Central

    Wen, Chih-Jen; Zhang, Li-Wen; Al-Suwayeh, Saleh A; Yen, Tzu-Chen; Fang, Jia-You

    2012-01-01

    Quantum dots (QDs) and apomorphine were incorporated into liposomes to eliminate uptake by the liver and enhance brain targeting. We describe the preparation, physicochemical characterization, in vivo bioimaging, and brain endothelial cell uptake of the theranostic liposomes. QDs and the drug were mainly located in the bilayer membrane and inner core of the liposomes, respectively. Spherical vesicles with a mean diameter of ~140 nm were formed. QDs were completely encapsulated by the vesicles. Nearly 80% encapsulation percentage was achieved for apomorphine. A greater fluorescence intensity was observed in mouse brains treated with liposomes compared to free QDs. This result was further confirmed by ex vivo imaging of the organs. QD uptake by the heart and liver was reduced by liposomal incorporation. Apomorphine accumulation in the brain increased by 2.4-fold after this incorporation. According to a hyperspectral imaging analysis, multifunctional liposomes but not the aqueous solution carried QDs into the brain. Liposomes were observed to have been efficiently endocytosed into bEND3 cells. The mechanisms involved in the cellular uptake were clathrin- and caveola-mediated endocytosis, which were energy-dependent. To the best of our knowledge, our group is the first to develop liposomes with a QD-drug hybrid for the aim of imaging and treating brain disorders. PMID:22619515

  6. Theranostic liposomes loaded with quantum dots and apomorphine for brain targeting and bioimaging.

    PubMed

    Wen, Chih-Jen; Zhang, Li-Wen; Al-Suwayeh, Saleh A; Yen, Tzu-Chen; Fang, Jia-You

    2012-01-01

    Quantum dots (QDs) and apomorphine were incorporated into liposomes to eliminate uptake by the liver and enhance brain targeting. We describe the preparation, physicochemical characterization, in vivo bioimaging, and brain endothelial cell uptake of the theranostic liposomes. QDs and the drug were mainly located in the bilayer membrane and inner core of the liposomes, respectively. Spherical vesicles with a mean diameter of ~140 nm were formed. QDs were completely encapsulated by the vesicles. Nearly 80% encapsulation percentage was achieved for apomorphine. A greater fluorescence intensity was observed in mouse brains treated with liposomes compared to free QDs. This result was further confirmed by ex vivo imaging of the organs. QD uptake by the heart and liver was reduced by liposomal incorporation. Apomorphine accumulation in the brain increased by 2.4-fold after this incorporation. According to a hyperspectral imaging analysis, multifunctional liposomes but not the aqueous solution carried QDs into the brain. Liposomes were observed to have been efficiently endocytosed into bEND3 cells. The mechanisms involved in the cellular uptake were clathrin- and caveola-mediated endocytosis, which were energy-dependent. To the best of our knowledge, our group is the first to develop liposomes with a QD-drug hybrid for the aim of imaging and treating brain disorders. PMID:22619515

  7. Glioma targeting and blood-brain barrier penetration by dual-targeting doxorubincin liposomes.

    PubMed

    Gao, Jian-Qing; Lv, Qing; Li, Li-Ming; Tang, Xin-Jiang; Li, Fan-Zhu; Hu, Yu-Lan; Han, Min

    2013-07-01

    Effective chemotherapy for glioblastoma requires a carrier that can penetrate the blood-brain barrier (BBB) and subsequently target the glioma cells. Dual-targeting doxorubincin (Dox) liposomes were produced by conjugating liposomes with both folate (F) and transferrin (Tf), which were proven effective in penetrating the BBB and targeting tumors, respectively. The liposome was characterized by particle size, Dox entrapment efficiency, and in vitro release profile. Drug accumulation in cells, P-glycoprotein (P-gp) expression, and drug transport across the BBB in the dual-targeting liposome group were examined by using bEnd3 BBB models. In vivo studies demonstrated that the dual-targeting Dox liposomes could transport across the BBB and mainly distribute in the brain glioma. The anti-tumor effect of the dual-targeting liposome was also demonstrated by the increased survival time, decreased tumor volume, and results of both hematoxylin-eosin staining and terminal deoxynucleotidyl transferase dUTP nick end labeling analysis. The dual-targeting Dox liposome could improve the therapeutic efficacy of brain glioma and were less toxic than the Dox solution, showing a dual-targeting effect. These results indicate that this dual-targeting liposome can be used as a potential carrier for glioma chemotherapy. PMID:23628475

  8. The Immunological Enhancement Activity of Propolis Flavonoids Liposome In Vitro and In Vivo

    PubMed Central

    Tao, Yang; Wang, Deqing; Hu, Yuanliang; Huang, Yee; Yu, Yun; Wang, Deyun

    2014-01-01

    The aim of this study was to investigate and assess the effects of propolis flavonoids liposome imposed on the immune system by comparing it to propolis flavonoids and blank liposome. In vitro, the effects of the above drugs on macrophages were assessed by measuring the phagocytic function and cytokine production. In vivo, the immunological adjuvant activity of propolis flavonoids liposome was compared with those of propolis flavonoids and blank liposome. The results showed that in vitro propolis flavonoids liposome can significantly enhance the phagocytic function of macrophages and the release of IL-1?, IL-6, and IFN-?. In addition, subcutaneous administration of propolis flavonoids liposome with ovalbumin to mice could effectively activate the cellular and humoral immune response, including inducing higher level concentrations of IgG, IL-4, and IFN-? in serum and the proliferation rates of splenic lymphocytes. These findings provided valuable information regarding the immune modulatory function of propolis flavonoids liposome and indicated the possibility of use of propolis flavonoids liposome as a potential adjuvant. PMID:25383082

  9. Distance dependence of electron transfer from liposome-embedded (alkanephosphocholine-porphinato) zinc

    SciTech Connect

    Tsuchida, E.; Kaneko, M.; Nishide, H.; Hoshino, M.

    1986-05-22

    (Alkanephosphocholine-porphinato)zinc forms a geometrically well-defined bilayer liposome with phospholipid. Electron transfer from the liposome-embedded (porphinato)zincs with different alkyl chain lengths to methylviologen present in the outer bulk solution is measured by laser flash photolysis: the intermolecular electron transfer was observed only when the porphyrin plane is located within 12 A from the surface.

  10. Polyunsaturated liposomes are antiviral against hepatitis B and C viruses and HIV by decreasing

    E-print Network

    Polyunsaturated liposomes are antiviral against hepatitis B and C viruses and HIV by decreasing the infected cell is one promising target for a large number of viral systems, including hepatitis C virus (HCV), hepatitis B virus (HBV) and HIV. Liposomes developed for intracellular, endoplasmic reticulum (ER

  11. Decorated Magnetoliposomes: An Attractive Idea for Multifunctional Therapeutics Liposomes, particles composed of a thin

    E-print Network

    Lin, Zhiqun

    in reforming ethanol into hydrogen gas suitable for fuel cells. A com- mon technique in this area is oxidative as a poten- tial biomedical tool for diagnostic or thera- peutic use. Hybridizing liposomes with bound this idea, Chen et al. (p 3215) looked to decorated magnetoliposomes (dMLs), a type of hybrid liposome

  12. Surface functionalization of liposomes with proteins and carbohydrates for use in anti-cancer applications

    NASA Astrophysics Data System (ADS)

    Platt, Virginia M.

    Liposomes can be used to exploit the altered biology of cancer thereby increasing delivery of liposome-associated anti-cancer drugs. In this dissertation, I explore methods that utilize the unique cancer expression of the polymeric glycosaminoglycan hyaluronan (HA) and the HA receptor CD44 to target liposomes to tumors, using liposomes functionalized with proteins or oligosaccharides on their surface. To make it easier to prepare protein-functionalized liposomes, a non-covalent protein/liposome association method based upon metal chelation/his 6 interaction was devised and characterized. I evaluated non-covalent attachment of the prodrug converting enzyme yeast cytosine deaminase, the far-red fluorescent protein mKate, two antigens ovalbumin and the membrane proximal region of an HIV GAG and hyaluronidase, a HA-degrading enzyme. In Chapter 2, I describe the synthesis of hyaluronan-oligosaccharide (HA-O) lipid conjugates and their incorporation into liposomes to target CD44-overexpressing cancer cells. HA-O ligands of defined-length, up to 10 monosaccharides, were attached to lipids via various linkers by reductive amination. The HA-lipids were easily incorporated into liposomes but did not mediate binding of liposomes to CD44 overexpressing cells. In Chapter 3, I evaluate the capacity of tris-NTA-Ni-lipids incorporated within a liposome bilayer to associate with his6-tagged proteins. Tris-NTA-lipids of differing structures and avidities were used to associate yeast cytosine deaminase and mKate to the surface of liposomes. Two tris-NTA-lipids and a mono-NTA lipid associated his-tagged proteins to a 1:1 molar ratio in solution. The proteins remained active while associated with the liposome surface. When challenged in vitro with fetal calf serum, tris-NTA-containing liposomes retained his-tagged proteins longer than mono-NTA. However, the tris-NTA/his6 interaction was found to be in a dynamic state; free yeast cytosine deaminase rapidly competed with pre-bound mKate for NTA occupancy. In the circulation of mice, his-tagged proteins associated with NTA-liposomes were cleared as rapidly as free protein. In Chapter 4, I study the effect of NTA/his-tag avidity on immune response when NTA-containing liposomes are used as non-covalent, particulate adjuvants. Two his-tagged antigens, ovalbumin and the membrane proximal portion of HIV Gag, were associated with NTA-liposomes containing either mono-NTA or tris-NTA lipids. The immune response to each antigen was compared to control adjuvant formulations in which antigens were admixed with or covalently-conjugated to liposomes. The weaker antigen, the HIV Gag peptide, induced a stronger immune response when associated with NTA-containing liposomes than when admixed with liposomes. Ovalbumin preparations in which the protein was admixed with particles or non-covalently associated with NTA-liposomes elicited a higher immune response than free ovalbumin or ovalbumin admixed with the control adjuvant alum. For both antigens, NTA-liposome responses were less than the response to antigens covalently linked to the liposome. In Chapter 5, I evaluate the potential for hyaluronidase to target conjugated liposomes to tumors or improve liposome motility within hyaluronan-rich tumors. Ovine hyaluronidase was modified using iminothiolane to introduce sulfhydryl groups into the enzyme. The enzyme was attached to liposomes via maleimide lipids or to maleimidehis10 in order to engineer non-covalent NTA-liposome association. Enzyme activity was retained after sulfhydryl addition and after attachment to liposomes. Liposome-conjugated hyaluronidase degraded an HA-gel at the same rate as admixed liposomes. When hyaluronidase-liposomes were injected intravenously in mice, the hyaluronidase conjugated-liposomes experienced faster clearance than control liposomes but slower clearance than free hyaluronidase. As a whole, these studies may help develop universal methods for a range of protein therapeutics and anti-cancer targeting agents.

  13. In vitro synthesis and stabilization of amorphous calcium carbonate (ACC) nanoparticles within liposomes

    SciTech Connect

    Tester, Chantel C.; Brock, Ryan E.; Wu, Ching-Hsuan; Krejci, Minna R.; Weigand, Steven; Joester, Derk

    2012-02-07

    We show that amorphous calcium carbonate (ACC) can be synthesized in phospholipid bilayer vesicles (liposomes). Liposome-encapsulated ACC nanoparticles are stable against aggregation, do not crystallize for at least 20 h, and are ideally suited to investigate the influence of lipid chemistry, particle size, and soluble additives on ACC in situ.

  14. Enhanced cell binding using liposomes containing an artificial carbohydrate-binding receptor

    E-print Network

    Smith, Bradley D.

    Enhanced cell binding using liposomes containing an artificial carbohydrate-binding receptor Yvonne-bind- ing boronic acid group exhibit enhanced binding to erythro- cyte cells. There is a need to develop liposomes that selectively self- assemble,1 or interact with specific cell-types,2 as this will likely lead

  15. Selective delivery of an anticancer drug with aptamer-functionalized liposomes to breast

    E-print Network

    Cheng, Jianjun

    Selective delivery of an anticancer drug with aptamer-functionalized liposomes to breast cancer, their effectiveness has rarely been established in vivo. Here we report the development of a liposomal drug delivery overexpressed on MCF-7 cell surface, and therefore enable drug delivery with high specificity. Introduction

  16. Cross-Linkable Liposomes Stabilize a Magnetic Resonance Contrast-Enhancing Polymeric Fastener

    PubMed Central

    2015-01-01

    Liposomes are commonly used to deliver drugs and contrast agents to their target site in a controlled manner. One of the greatest obstacles in the performance of such delivery vehicles is their stability in the presence of serum. Here, we demonstrate a method to stabilize a class of liposomes that load gadolinium, a magnetic resonance (MR) contrast agent, as a model cargo on their surfaces. We hypothesized that the sequential adsorption of a gadolinium-binding chitosan fastener on the liposome surface followed by covalent cross-linking of the lipid bilayer would provide enhanced stability and improved MR signal in the presence of human serum. To investigate this hypothesis, liposomes composed of diyne-containing lipids were assembled and functionalized via chitosan conjugated with a hydrophobic anchor and diethylenetriaminepentaacetic acid (DTPA). This postadsorption cross-linking strategy served to stabilize the thermodynamically favorable association between liposome and polymeric fastener. Furthermore, the chitosan-coated, cross-linked liposomes proved more effective as delivery vehicles of gadolinium than uncross-linked liposomes due to the reduced liposome degradation and chitosan desorption. Overall, this study demonstrates a useful method to stabilize a broad class of particles used for systemic delivery of various molecular payloads. PMID:24635565

  17. Gold conjugate-based liposomes with hybrid cluster bomb structure for liver cancer therapy.

    PubMed

    Zhang, Ning; Chen, Huan; Liu, Ai-Yun; Shen, Jia-Jia; Shah, Vishva; Zhang, Can; Hong, Jin; Ding, Ya

    2016-01-01

    Hybrid drug delivery system containing both organic and inorganic nanocarriers is expected to achieve its complementary advantages for the aim of improving the performance of antineoplastic drugs in tumor therapy. Here we report the use of liposomes and gold nanoparticles to construct a liposome with a hybrid Cluster Bomb structure and discuss its unique multi-order drug release property for liver tumor treatment. A very simple method is used for the hybrid liposome preparation and involves mixing two solutions containing liposomes loaded with either non-covalent or covalent Paclitaxel (PTX, namely free PTX or PTX-conjugated GNPs, respectively) by different ratio of volume (25:75, 50:50, 25:75, v/v). Various mixed liposomes were tested to determine the optimal conditions for maximum drug delivery. The optimized liposome was then tested using xenograft Heps tumor-bearing mice and showed the best efficacy for chemotherapeutic inhibition of tumor at PTX liposome: PTX-conjugated GNP liposome of 25:75 ratio (v/v). This system allows for simple and easy preparation while providing a more accurate site- and time-release mode for tumor treatment using antitumor drugs. PMID:26461120

  18. Nonlinear grating behavior of phthalocyanine Langmuir--Blodgett films. [NiC d4H d4NH

    SciTech Connect

    Neuman, R.D.; Shah, P.; Akki, U. )

    1992-06-01

    Optical second-harmonic generation was observed from nickel tetracumylphenoxy phthalocyanine films deposited on quartz by the Langmuir--Blodgett (L-B) technique. The L-B films consist of microcrystallites, i.e., phthalocyanine aggregates, which have a preferred in-plane orientation with respect to the deposition direction. The L-B films also display characteristics of a nonlinear grating with the same periodicity and groove depth over the entire surface. This is to our knowledge the first time that such nonlinear grating behavior has been observed from an organometallic multilayer film.

  19. Novel planar binuclear zinc phthalocyanine sensitizer for dye-sensitized solar cells: Synthesis and spectral, electrochemical, and photovoltaic properties

    NASA Astrophysics Data System (ADS)

    Zhu, Baiqing; Zhang, Xuejun; Han, Mingliang; Deng, Pengfei; Li, Qiaoling

    2015-01-01

    A planar binuclear zinc phthalocyanine was newly synthesized for use in dye-sensitized solar cells, based on Schiff base and asymmetric amino zinc phthalocyanine. The novel compounds were characterized using FTIR, UV-Vis, 1H NMR, cyclic voltammetry and elemental analysis. From the reduction and oxidation behavior, it is proved that APC and bi-NPC have negative LUMO levels and positive HOMO levels, satisfying the energy gap rule, and can be employed as sensitizers for dye-sensitized solar cells (DSSCs) applications.

  20. FUNDAMENTAL AREAS OF PHENOMENOLOGY (INCLUDING APPLICATIONS): Large Third-Order Optical Nonlinearity of a Novel Copper Phthalocyanine Ferrocene Dyad

    NASA Astrophysics Data System (ADS)

    Bin, Yue-Jing; Xu, Song; Li, Zhong-Yu; Huang, Lei; Zhang, Zhi; Zhang, Fu-Shi

    2008-09-01

    Third-order optical nonlinearity of a novel copper phthalocyanine-ferrocene dyad is measured by femtosecond forward degenerate four-wave mixing (DFWM) technique at 800 nm. The second-order hyperpolarizability of the novel copper phthalocyanine-ferrocene dyad is measured to be 1.74 × 10-30 esu. This large and ultrafast third-order optical nonlinear response is mainly enhanced by the formation of intramolecular charge-transfer which can enhance the delocalized movements of the large ?-electrons in the molecules.

  1. Nonlinear absorption of laser radiation by zinc and lead phthalocyanines and zinc porphyrin in a nanoporous-glass/polymer composite

    SciTech Connect

    Dolotov, S M; Koldunov, L M; Koldunov, M F; Petukhov, A V; Sizyukhin, A V

    2012-01-31

    We have studied the nonlinear absorption of nanosecond 532-nm laser pulses by zinc phthalocyanine (PcZn), lead phthalocyanine (PcPb) and zinc porphyrin (PrZn) incorporated into a nanoporous-glass/polymer composite and determined the basic nonlinear absorption characteristics of these compounds in the composite host. The composite is shown to be suitable for designing nonlinear optical elements activated with organic compounds. The correlation between the characteristics of the three compounds in the composite host and liquid solvents is analysed.

  2. Cationic Nanoparticles Stabilize Zwitterionic Liposomes Better than Anionic Ones Yan Yu, Stephen M. Anthony, Liangfang Zhang, Sung Chul Bae, and Steve Granick*

    E-print Network

    Granick, Steve

    Cationic Nanoparticles Stabilize Zwitterionic Liposomes Better than Anionic Ones Yan Yu, Stephen M Building upon the finding that zwitterionic liposomes can be stabilized against fusion up to very high the mobility of individual liposomes. The distribution of diffusion coefficients between different liposomes

  3. Encapsulation of active cytoskeletal protein networks in cell-sized liposomes.

    PubMed

    Tsai, Feng-Ching; Stuhrmann, Björn; Koenderink, Gijsje H

    2011-08-16

    We demonstrate that cytoskeletal actin-myosin networks can be encapsulated with high efficiency in giant liposomes by hydration of lipids in an agarose hydrogel. The liposomes have cell-sized diameters of 10-20 ?m and a uniform actin content. We show by measurements of membrane fluorescence intensity and bending rigidity that the majority of liposomes are unilamellar. We further demonstrate that the actin network can be specifically anchored to the membrane by biotin-streptavidin linkages. These protein-filled liposomes are useful model systems for quantitative studies of the physical mechanisms by which the cytoskeleton actively controls cell shape and mechanics. In a broader context, this new preparation method should be widely applicable to encapsulation of proteins and polymers, for instance, to create polymer-reinforced liposomes for drug delivery. PMID:21707043

  4. Monoconal anitbody covalently coupled with fatty acid; a reagent for in vitro liposome targeting

    SciTech Connect

    Huang, A.; Huang, L.; Kennel, S.J.

    1980-09-10

    Monoclonal antibody to the mouse histocompatibility antigen, H-2/sup k/, was derivatized with palmitic acid using an activated ester of N-hydroxysuccinimide. About 70% of the resulting amphipathic antibody could be incorporated into liposomes by a detergent-dialysis method. These liposomes showed specific binding affinity to mouse L-929 cells (H-2/sup k/), but not to A-31 cells (H-2/sup d/), whereas native liposomes showed no detectable binding to either cell type. The specific binding of anti-H-2/sup k/-bound liposomes to L-929 cells could be blocked by a preincubation of cells with an excess of free, underivatized anti-H-2/sup k/ antibody but not by normal mouse IgG. These results clearly demonstrated the effectiveness of the monoclonal anitbody for liposome targeting.

  5. Luminescence stability improvement in liposome-based homogeneous luminescence resonance energy transfer.

    PubMed

    Pihlasalo, Sari; Granberg, Jenny; Hänninen, Pekka; Peltonen, Jouko; Härmä, Harri

    2013-09-01

    A stable liposome-based time-resolved luminescence resonance energy transfer (TR-LRET) assay was developed based on the interaction of biotinylated lipids and streptavidin. Eu(3+) ion chelated to 4,4,4-trifluoro-1-(2-naphthalenyl)-1,3-butanedione and trioctylphosphine oxide was incorporated into liposomes. Acceptor-labeled streptavidin bound to biotinylated lipids of the liposomes enables TR-LRET. A stable assay performance was achieved by optimization. High Eu(3+) signal and stability, low variation, and sensitivity below 100 pM for free biotin was achieved by incorporating the chelate into liposomes containing cholesterol in a carbonate buffer. Potentially, the stable assay compared with the assay without cholesterol offers an improved platform to liposome-based detection systems. PMID:23702341

  6. Aptamer-Modified Temperature-Sensitive Liposomal Contrast Agent for Magnetic Resonance Imaging.

    PubMed

    Zhang, Kunchi; Liu, Min; Tong, Xiaoyan; Sun, Na; Zhou, Lu; Cao, Yi; Wang, Jine; Zhang, Hailu; Pei, Renjun

    2015-09-14

    A novel aptamer modified thermosensitive liposome was designed as an efficient magnetic resonance imaging probe. In this paper, Gd-DTPA was encapsulated into an optimized thermosensitive liposome (TSL) formulation, followed by conjugation with AS1411 for specific targeting against tumor cells that overexpress nucleolin receptors. The resulting liposomes were extensively characterized in vitro as a contrast agent. As-prepared TSLs-AS1411 had a diameter about 136.1 nm. No obvious cytotoxicity was observed from MTT assay, which illustrated that the liposomes exhibited excellent biocompatibility. Compared to the control incubation at 37 °C, the liposomes modified with AS1411 exhibited much higher T1 relaxivity in MCF-7 cells incubated at 42 °C. These data indicate that the Gd-encapsulated TSLs-AS1411 may be a promising tool in early cancer diagnosis. PMID:26212580

  7. Evaluation of anticancer activity of celastrol liposomes in prostate cancer cells

    PubMed Central

    Wolfram, Joy; Suri, Krishna; Huang, Yi; Molinaro, Roberto; Borsoi, Carlotta; Scott, Bronwyn; Boom, Kathryn; Paolino, Donatella; Fresta, Massimo; Wang, Jianghua; Ferrari, Mauro

    2014-01-01

    Context Celastrol, a natural compound derived from the herb Tripterygium wilfordii, is known to have anticancer activity, but is not soluble in water. Objective Formation of celastrol liposomes, to avoid the use of toxic solubilizing agents. Materials and methods Two different formulations of pegylated celastrol liposomes were fabricated. Liposomal characteristics and serum stability were determined using dynamic light scattering. Drug entrapment efficacy and drug release were measured spectrophotometrically. Cellular internalization and anticancer activity was measured in prostate cancer cells. Results Liposomal celastrol displayed efficient serum stability, cellular internalization and anticancer activity, comparable to that of the free drug reconstituted in dimethyl sulfoxide. Discussion and conclusion Liposomal celastrol can decrease the viability of prostate cancer cells, while eliminating the need for toxic solubilizing agents. PMID:24654943

  8. An investigation of some of the factors influencing the jet nebulisation of liposomes.

    PubMed

    Bridges, P A; Taylor, K M

    2000-08-25

    Multilamellar egg phosphatidylcholine liposomes with or without cholesterol have been aerosolised using four jet nebulisers. The size of aerosols generated from liposome suspensions, as measured by laser diffraction, was independent of liposome size and bilayer composition. However, increasing the phospholipid concentration caused an increase in the median size of the secondary aerosol size, although the extent of this effect was dependent on the design on the nebuliser. The total mass output of liposomal aerosols was similar for the Pari-LC and Sidestream nebulisers, though the rate of output was higher for the Sidestream. In both cases, increasing lipid concentration produced a reduced rate of aerosol output. For all the nebulisers studied, a size selective process was found, resulting in the retention of the largest liposomes. PMID:11011988

  9. Prolonged hypoglycemic effect in diabetic dogs due to subcutaneous administration of insulin in liposomes

    SciTech Connect

    Stevenson, R.W.; Patel, H.M.; Parsons, J.A.; Ryman, B.E.

    1982-06-01

    The biologic action of insulin entrapped in liposomes (phospholipid vesicles) has been investigated following subcutaneous injection to dogs made diabetic with a combination of alloxan and streptozotocin. The fate of the liposomally entrapped material was determined by injecting rats subcutaneously with either /sup 125/I-insulin or the labeled polysaccharide /sup 14/C-inulin, incorporated in liposomes labeled with /sup 3/H-cholesterol. Injection of liposome insulin (0.75 U/kg) to five diabetic dogs resulted in a mean (+/- SEM) blood glucose fall from 16.4 +/- 0.8 to 2.9 +/- 0.4 mmol/L. The glucose level had still not returned to baseline after 24 h and, correspondingly, immunoreactive insulin (IRI) could still be detected in frozen and thawed plasma 24 h after injection. In contrast, the hypoglycemic effect of the same dose of free insulin with or without empty liposomes virtually ended within 8 h and IRI levels returned to baseline by 3 h after injection. In experiments on rats with liposomally entrapped /sup 125/I-insulin or /sup 14/C-inulin the proportion of the injected dose of tracer recoverable by excision of the injection site remained constant after about 1 h and 70% of the dose was still fixed in subcutaneous tissue for at least 5 h thereafter. When the plasma collected 3 h after subcutaneous injection of labeled liposomes containing /sup 125/I-insulin was passed through a column of Sepharose 6B, 50-75% of the /sup 125/I-activity was found in the fractions associated with intact liposomes. One possibility for the persistence of the hypoglycemic effect and of measurable IRI following injection of liposome insulin could be the presence of intact liposomes in the circulation for many hours after adsorption had ceased.

  10. Spontaneous entrapment of polynucleotides upon electrostatic interaction with ethanol-destabilized cationic liposomes.

    PubMed Central

    Maurer, N; Wong, K F; Stark, H; Louie, L; McIntosh, D; Wong, T; Scherrer, P; Semple, S C; Cullis, P R

    2001-01-01

    This study describes the effect of ethanol and the presence of poly(ethylene) glycol (PEG) lipids on the interaction of nucleotide-based polyelectrolytes with cationic liposomes. It is shown that preformed large unilamellar vesicles (LUVs) containing a cationic lipid and a PEG coating can be induced to entrap polynucleotides such as antisense oligonucleotides and plasmid DNA in the presence of ethanol. The interaction of the cationic liposomes with the polynucleotides leads to the formation of multilamellar liposomes ranging in size from 70 to 120 nm, only slightly bigger than the parent LUVs from which they originated. The degree of lamellarity as well as the size and polydispersity of the liposomes formed increases with increasing polynucleotide-to-lipid ratio. A direct correlation between the entrapment efficiency and the membrane-destabilizing effect of ethanol was observed. Although the morphology of the liposomes is still preserved at the ethanol concentrations used for entrapment (25-40%, v/v), entrapped low-molecular-weight solutes leak rapidly. In addition, lipids can flip-flop across the membrane and exchange rapidly between liposomes. Furthermore, there are indications that the interaction of the polynucleotides with the cationic liposomes in ethanol leads to formation of polynucleotide-cationic lipid domains, which act as adhesion points between liposomes. It is suggested that the spreading of this contact area leads to expulsion of PEG-ceramide and triggers processes that result in the formation of multilamellar systems with internalized polynucleotides. The high entrapment efficiencies achieved at high polyelectrolyte-to-lipid ratios and the small size and neutral character of these novel liposomal systems are of utility for liposomal delivery of macromolecular drugs. PMID:11325732

  11. Efficacy and Safety of Liposomal Clarithromycin and Its Effect on Pseudomonas aeruginosa Virulence Factors

    PubMed Central

    Alhajlan, Mai; Alhariri, Moayad

    2013-01-01

    We investigated the efficacy and safety of liposomal clarithromycin formulations with different surface charges against clinical isolates of Pseudomonas aeruginosa from the lungs of cystic fibrosis (CF) patients. The liposomal clarithromycin formulations were prepared by the dehydration-rehydration method, and their sizes were measured using the dynamic-light-scattering technique. Encapsulation efficiency was determined by microbiological assay, and the stabilities of the formulations in biological fluid were evaluated for a period of 48 h. The MICs and minimum bactericidal concentrations (MBCs) of free and liposomal formulations were determined with P. aeruginosa strains isolated from CF patients. Liposomal clarithromycin activity against biofilm-forming P. aeruginosa was compared to that of free antibiotic using the Calgary Biofilm Device (CBD). The effects of subinhibitory concentrations of free and liposomal clarithromycin on bacterial virulence factors and motility on agar were investigated on clinical isolates of P. aeruginosa. The cytotoxicities of the liposome preparations and free drug were evaluated on a pulmonary epithelial cell line (A549). The average diameter of the formulations was >222 nm, with encapsulation efficiencies ranging from 5.7% to 30.4%. The liposomes retained more than 70% of their drug content during the 48-h time period. The highly resistant strains of P. aeruginosa became susceptible to liposome-encapsulated clarithromycin (MIC, 256 mg/liter versus 8 mg/liter; P < 0.001). Liposomal clarithromycin reduced the bacterial growth within the biofilm by 3 to 4 log units (P < 0.001), significantly attenuated virulence factor production, and reduced bacterial twitching, swarming, and swimming motilities. The clarithromycin-entrapped liposomes were less cytotoxic than the free drug (P < 0.001). These data indicate that our novel formulations could be a useful strategy to enhance the efficacy of clarithromycin against resistant P. aeruginosa strains that commonly affect individuals with cystic fibrosis. PMID:23545534

  12. Silymarin loaded liposomes for hepatic targeting: in vitro evaluation and HepG2 drug uptake.

    PubMed

    Elmowafy, Mohammed; Viitala, Tapani; Ibrahim, Hany M; Abu-Elyazid, Sherif K; Samy, Ahmed; Kassem, Alaa; Yliperttula, Marjo

    2013-10-01

    Silymarin has hepatoprotective properties and is used in treatment of various liver diseases, but its bioavailability from oral products is very poor. In order to overcome its poor oral bioavailability we have prepared silymarin loaded hepatic targeting liposomes suitable for parenteral administration. The liposomal formulations were composed of hydrogenated soy phosphatidylcholine and cholesterol with or without distearoylphosphoethanolamine-(polyethyleneglycol)-2000 and various amounts of ?-sitosterol ?-D-glucoside (Sito-G) as the hepatic targeting moiety. Increasing the amount of Sito-G in the liposomes gradually decreased drug encapsulation efficiencies from ?70% to ?60%; still showing promising drug encapsulation efficiencies. Addition of Sito-G to non-PEGylated liposomes clearly affected their drug release profiles and plasma protein interactions, whereas no effect on these was seen for the PEGylated liposomes. Non-PEGylated liposomes with 0.17 M ratio of Sito-G exhibited the highest cellular drug uptake of 37.5% for all of the studied liposome formulations. The highest cellular drug uptake in the case of PEGylated liposomes was 18%, which was achieved with 0.17 and 0.33 M ratio of added Sito-G. The liposome formulations with the highest drug delivery efficacy in this study showed hemolytic activities around 12.7% and were stable for at least 2 months upon storage in 20 mM HEPES buffer (pH 7.4) containing 1.5% Polysorbate 80 at 4 °C and room temperature. These results suggest that the Sito-G containing liposomes prepared in this work have hepatic targeting capability and that they are promising candidates for delivering silymarin to the liver. PMID:23851081

  13. Preparation, characterization, and assessment of the antiglioma effects of liposomal celastrol.

    PubMed

    Huang, Yulun; Zhou, Dai; Hang, Taijun; Wu, Zhenghong; Liu, Jiangang; Xu, Qinan; Xie, Xuesun; Zuo, Jianling; Wang, Zhong; Zhou, Youxin

    2012-06-01

    The role of celastrol in the treatment of cancer has been an area of growing interest. To circumvent the issues of low solubility, poor bioavailability, and systemic toxicity of celastrol, we prepared liposomal celastrol using the thin-film dispersion method. We characterized particle size, encapsulation efficiency, and pharmacological parameters of liposomal celastrol. The drug concentration in plasma and tissues was measured using LC-MS/MS. In addition, the sulforhodamine B assay was used to determine the 50% inhibiting concentration. We assessed the effects of the compound in SHG-44 glioma subcutaneous xenografts in BALB/c nude mice. To compare the toxic effects of liposomal and free celastrol, the weight as well as hematologic, heart, liver, and kidney parameters were measured weekly and the morphology of organ tissues was observed pathologically. We found that liposomal celastrol had high encapsulation efficiency (71.67%) and liposomal celastrol had a higher C(max) and area under the curve, longer t(1/2), and better biodistribution than free celastrol. A cytotoxicity assay indicated that free celastrol had lower 50% inhibiting concentration values than the liposomal celastrol; however, treatment of subcutaneous xenografts with 1 mg/kg of liposomal celastrol induced greater antitumor activity than free celastrol at an equimolar concentration. In addition, a 4 mg/kg dose of liposomal celastrol had fewer severe side effects than free celastrol at the same dose. In this study, we found that the use of liposomes as a carrier of celastrol increased the bioavailability and reduced the side effects of the compound. Our findings suggest that liposomal celastrol should be further investigated in the clinical setting. PMID:22343423

  14. Liposomal curcumin inhibits Lewis lung cancer growth primarily through inhibition of angiogenesis

    PubMed Central

    WANG, LIQIANG; ZHANG, JING; CAI, LULU; WEN, JING; SHI, HUASHAN; LI, DAN; GUO, FUCHUN; WANG, YONGSHENG

    2012-01-01

    Curcumin has been proven to effectively inhibit tumor growth by both targeting tumor cells and angiogenesis; however, poor water solubility limits further clinical application. In the present study, we prepared water-soluble liposomal curcumin to investigate its anti-tumor effects and the underlying mechanism. The MTT assay was used to test the anti-proliferative activities for the MS1 murine endothelial and LL/2 Lewis lung cancer cell lines. Apoptosis and cell cycle arrest induced by liposomal curcumin were analysed by flow cytometry. Anti-angiogenic agents and the resulting anti-tumor effects were investigated in a murine lung cancer model. Zebrafish were used to investigate the anti-angiogenic effect of liposomal curcumin in the development of embryos. In vitro, liposomal curcumin inhibited the proliferation of MS1 cells and induced cell cycle arrest and apoptosis. Notably, LL/2 cells showed less sensitivity to the liposomal curcumin in vitro. In vivo, the systemic administration of liposomal curcumin resulted in significant inhibition of tumor growth. CD31 immunohistochemical analysis and alginate encapsulation assay revealed that angiogenesis was decreased by liposomal curcumin treatment. Angiogenesis was also suppressed in the development of zebrafish. Liposomal curcumin showed potent inhibitory activity against murine endothelial cells but not lung cancer cells. Liposomal curcumin treatment is capable of significantly inhibiting tumor growth in vivo, a process that may depend primarily on its anti-angiogenic effects. Our study also indicates that liposomal curcumin may be developed not only for cancer therapy, but also for the treatment of other angiogenesis-related diseases.

  15. Interactions of antitumour Sialyl Lewis X liposomes with vascular endothelial cells.

    PubMed

    Alekseeva, Anna; Kapkaeva, Marina; Shcheglovitova, Olga; Boldyrev, Ivan; Pazynina, Galina; Bovin, Nicolai; Vodovozova, Elena

    2015-05-01

    Recently, we showed that tetrasaccharide selectin ligand SiaLeX provided targeted delivery of liposomes loaded in the bilayer with melphalan lipophilic prodrug to tumour endothelium followed by severe injury of tumour vessels in a Lewis lung carcinoma model. Here, we study the impact of SiaLeX ligand on the interactions of liposomes with human umbilical vein endothelial cells (HUVEC) using flow cytometry, spectrofluorimetry and confocal microscopy. Liposomes composed of egg phosphatidylcholine/yeast phosphatidylinositol/1,2-dioleoyl glycerol ester of melphalan, 8:1:1, by mol, and varying percentages of lipophilic SiaLeX conjugate were labelled with BODIPY-phosphatidylcholine. The increase in SiaLeX content in liposomes led to a proportional increase in their uptake by cytokine-activated cells as opposed to non-activated HUVEC: for 10% SiaLeX liposomes, binding avidity and overall accumulation increased 14- and 6-fold, respectively. The early stages of intracellular traffic of targeted liposomes in the activated cells were monitored by co-localisation with the trackers of organelles. Endocytosis of SiaLeX liposomes occurred mostly via clathrin-independent pathways, which does not contradict the available literature data on E-selectin localisation in the plasma membrane. Using dual fluorescence labelling, with rhodamine-labelled phospholipid and calcein encapsulated at self-quenching concentrations, we found that SiaLeX liposomes undergo rapid (within minutes) internalisation by activated HUVEC accompanied by the disruption of liposomes; non-activated cells consumed a negligible dose of liposomes during at least 1.5h. Our data evidence the selective effect of SiaLeX formulations on activated endothelial cells and indicate their potential for intracellular delivery of melphalan lipophilic prodrug. PMID:25646577

  16. Targeting liposomes loaded with melphalan prodrug to tumour vasculature via the Sialyl Lewis X selectin ligand.

    PubMed

    Kuznetsova, Natalia R; Stepanova, Eugenia V; Peretolchina, Nina M; Khochenkov, Dmitry A; Boldyrev, Ivan A; Bovin, Nicolai V; Vodovozova, Elena L

    2013-12-01

    Abstract Earlier we showed that liposome formulation of DL-melphalan lipophilic prodrug bearing tetrasaccharide Sialyl Lewis X (SiaLe(X)) caused prolonged therapeutic effect on mammary cancer in mice. Here, we compare antivascular effect of SiaLe(X)-liposomes loaded with diglyceride ester of melphalan (Mlph) against SiaLe(X)-free formulation in Lewis lung carcinoma model. Methods: Liposomes of egg phosphatidylcholine/yeast phosphatidylinositol/1,2-dioleoyl glycerol (DOG) conjugate of Mlph/±SiaLe(X)-PEG8-15-DOG, 8:1:1:0.2 by mol, were prepared by standard extrusion. After two intravenous injections with Mlph or liposomes under either standard or delayed treatment protocols, vascular-disrupting effects of the preparations were evaluated basing on tumour section histomorphology, lectin perfusion assay and immunohistochemistry (anti-CD31 staining) data. Also, untreated mice were administered with fluorescently-labelled liposomes to assess their distribution in tumour sections with confocal laser scanning microscopy. Results: Two injections of SiaLe(X)-liposomes reproducibly caused severe injuries of tumour vessels. SiaLe(X)-liposomes co-localized with CD31 marker on vascular endothelium while the non-targeted formulation extravasated into tumour. Discussion: Cytotoxic SiaLe(X)-liposomes exhibit superior vascular-disrupting properties compared to non-targeted liposomes, yet the effect starts to transform into gain in tumour growth inhibition only under delayed treatment regimen. Conclusion: SiaLe(X)-ligand provides targeting of cytotoxic liposomes to tumour endothelium and subsequent antivascular effect. PMID:24313904

  17. Palmitoyl derivatives of L-cysteine, cysteamine, L-cystine, cystamine and their incorporation into the bilayers of unilamellar liposomes.

    PubMed

    Schott, H; Seeling, R; Hengartner, H; Schwendener, R A

    1988-05-01

    The amino groups of the amino acids L-cysteine and L-cystine as well as their biogene amines cysteamine and cystamine were derivatized with palmitoyl residues. The obtained lipophilic R-SH and R-S-S-R components were incorporated into the bilayers of unilamellar liposomes. The resulting liposomes carrying about 2000 functional groups each remained stable and homogeneous during 60 days after incorporation of N-palmitoyl cysteamine and N,N'-dipalmitoyl cystamine. The incorporation of the lipophilic amino acid derivatives, however, destabilized the resulting liposomes. Via the thiol residues of the functionalized liposomes activated molecules can be linked to the liposomal surface by disulfide bonds. PMID:3365427

  18. Single molecule tunneling spectroscopy investigation of reversibly switched dipolar vanadyl phthalocyanine on graphite

    SciTech Connect

    Zhang, Jialin; Wang, Zhunzhun; Li, Zhenyu E-mail: phycw@nus.edu.sg; Niu, Tianchao; Chen, Wei E-mail: phycw@nus.edu.sg

    2014-03-17

    We report a spatially resolved scanning tunneling spectroscopy (STS) investigation of reversibly switchable dipolar vanadyl phthalocyanine (VOPc) on graphite by using low temperature scanning tunneling microscopy. VOPc molecule can be switched between O-up and O-down configurations by changing the polarity of the pulse voltage applied to the tip, actuated by the inelastic tunneling electrons. The spatially resolved STS measurements allow the identification of the electronic structures of VOPc with different dipole orientation. The present approach provides geometry images and electronic characterization of a molecular switch on surface spontaneously.

  19. Reversible response to NO of copper phthalocyanine-based sensor at low temperature

    SciTech Connect

    Emelyanov, Yu.L.; Khatko, V.V.; Tomchenko, A.A.

    1996-12-31

    Recently, it have been reported that the NO{sub x} adsorption resulted in marked in the semiconducting properties of copper tetra-tert-butyl phthalocyanine Langmuir-Blodgett films (CuTTBPc LB films). However, the recovery time of these chemiresistors after NO{sub x} exposure was very long at room temperature. Because of this, the heating up to 150{degrees}C was needed for reasons of a reversibility. In the present paper, the authors report on the development of CuTTBPc-based sensor reversibly operating at low temperature (<50{degrees}C).

  20. Direct measurements of nonlinear absorption and refraction in solutions of phthalocyanines

    NASA Technical Reports Server (NTRS)

    Wei, T. H.; Hagan, D. J.; Sence, M. J.; Van Stryland, E. W.; Perry, J. W.; Coulter, D. R.

    1992-01-01

    Direct measurements are reported of the excited singlet-state absorption cross section and the associated nonlinear refractive cross section using picosecond pulses at 532 nm in solutions of phthalocyanine and naphthalocyanine dyes. By monitoring the transmittance and far-field spatial beam distortion for different pulsewidths in the picosecond regime, it is shown that both the nonlinear absorption and refraction are fluence (energy-per-unit-area) rather than irradiance dependent. Thus, excited-state absorption is the dominant nonlinear absorption process, and the observed nonlinear refraction is also due to real population excitation.

  1. Oscillating spin-density pattern in gold metallocene and phthalocyanine molecules

    NASA Astrophysics Data System (ADS)

    Carrascal, Diego; Fernández-Seivane, Lucas; Ferrer, Jaime

    2009-11-01

    We present a theoretical study of the magnetic properties of the spin-1/2 dicyclopentadienyl metallocene (MCp2) and phthalocyanine molecules that contain the transition-metal atoms M=Co , Cu, and Au. We find that the spin-density pattern of gold molecules shows a fully delocalized and oscillating behavior. This spin pattern is to be contrasted with the well-known cases of cobalt or iron molecules, where the magnetic moment is strongly localized at the transition-metal ion.

  2. Growth of Metal Phthalocyanine on Deactivated Semiconducting Surfaces Steered by Selective Orbital Coupling

    NASA Astrophysics Data System (ADS)

    Wagner, Sean R.; Huang, Bing; Park, Changwon; Feng, Jiagui; Yoon, Mina; Zhang, Pengpeng

    2015-08-01

    Using scanning tunneling microscopy and density functional theory, we show that the molecular ordering and orientation of metal phthalocyanine molecules on the deactivated Si surface display a strong dependency on the central transition-metal ion, driven by the degree of orbital hybridization at the heterointerface via selective p -d orbital coupling. This Letter identifies a selective mechanism for modifying the molecule-substrate interaction which impacts the growth behavior of transition-metal-incorporated organic molecules on a technologically relevant substrate for silicon-based devices.

  3. Growth of Metal Phthalocyanine on Deactivated Semiconducting Surfaces Steered by Selective Orbital Coupling.

    PubMed

    Wagner, Sean R; Huang, Bing; Park, Changwon; Feng, Jiagui; Yoon, Mina; Zhang, Pengpeng

    2015-08-28

    Using scanning tunneling microscopy and density functional theory, we show that the molecular ordering and orientation of metal phthalocyanine molecules on the deactivated Si surface display a strong dependency on the central transition-metal ion, driven by the degree of orbital hybridization at the heterointerface via selective p-d orbital coupling. This Letter identifies a selective mechanism for modifying the molecule-substrate interaction which impacts the growth behavior of transition-metal-incorporated organic molecules on a technologically relevant substrate for silicon-based devices. PMID:26371664

  4. Organic field-effect transistors with high mobility based on copper phthalocyanine

    NASA Astrophysics Data System (ADS)

    Bao, Zhenan; Lovinger, Andrew J.; Dodabalapur, Ananth

    1996-11-01

    Organic field-effect transistors that employ copper phthalocyanine (Cu-Pc) as the semiconducting layer can function as p-channel accumulation-mode devices. The charge carrier mobility of such devices is strongly dependent on the morphology of the semiconducting thin film. When the substrate temperature for deposition of Cu-Pc is 125 °C, a mobility of 0.02 cm2/V s and on/off ratio of 4×105 can be obtained. These features along with the highly stable chemical nature of Cu-Pc make it an attractive candidate for device applications.

  5. Schottky energy barrier and charge injection in metal/copper-phthalocyanine/metal structures

    NASA Astrophysics Data System (ADS)

    Mahapatro, Ajit Kumar; Ghosh, Subhasis

    2002-06-01

    We present experimental results on current injection from different metal electrodes into copper-phthalocyanine (Cu-Pc). The current-voltage (J-V) characteristics and current injected at the contact are investigated as a function of Schottky energy barrier, thickness of organic semiconductor, and temperature. These results are interpreted using a consistent description of J-V characteristics through the injection limited current in the case of high Schottky energy barriers and space charge limited current in the case of low Schottky energy barrier.

  6. Nature of the bias-dependent symmetry reduction of iron phthalocyanine on Cu(111)

    NASA Astrophysics Data System (ADS)

    Snezhkova, Olesia; Lüder, Johann; Wiengarten, Alissa; Burema, Shiri R.; Bischoff, Felix; He, Yuanqin; Rusz, Jan; Knudsen, Jan; Bocquet, Marie-Laure; Seufert, Knud; Barth, Johannes V.; Auwärter, Willi; Brena, Barbara; Schnadt, Joachim

    2015-08-01

    Subtle changes in the geometric and electronic properties of supported molecules, with a potential impact on the functioning of molecular devices, can typically be imaged by scanning probe microscopy, but their exact origin and nature often remain unclear. Here we show explicitly that the symmetry reduction of iron phthalocyanine upon adsorption on Cu(111) can be observed not only in scanning tunneling microscopy, but also in core-level spectroscopy, and that it is related to nonisotropic charge transfer into the two principal molecular axes, but in combination with topographic influences.

  7. Interfacial electronic structure of copper phthalocyanine and copper hexadecafluorophthalocyanine studied by photoemission

    NASA Astrophysics Data System (ADS)

    Lau, K. M.; Tang, J. X.; Sun, H. Y.; Lee, C. S.; Lee, S. T.; Yan, Donghang

    2006-04-01

    Electronic structures of the heterojunction between copper phthalocyanine (CuPc) and copper hexadecafluorophthalocyanine (F16CuPc) were studied with ultraviolet photoemission spectroscopy. Band bending and an interface dipole were observed at the interface due to the formation of an electron accumulation layer and a depletion layer in F16CuPc and CuPc, respectively. Such an energy level alignment leads to interesting ambipolar characteristics for application of the CuPc /F16CuPc junction in organic field-effect transistors.

  8. Visible light detoxification by 2,9,16,23-tetracarboxyl phthalocyanine copper modified amorphous titania

    NASA Astrophysics Data System (ADS)

    Chen, Feng; Deng, Zhigang; Li, Xiaopei; Zhang, Jinlong; Zhao, Jincai

    2005-10-01

    Visible light detoxification of methyl orange (MO) was achieved with a photo-stable 2,9,16,23-tetracarboxyl phthalocyanine (TcPc)/amorphous TiO 2 hybrid photocatalyst. TcPc/amorphous TiO 2 exhibits an excellent photocatalytic activity under visible irradiation ( ? > 550 nm). Besides the active oxygen species, sensitizer radical cation, TcPc + rad , was also found to react with MO directly and induce the photodegradation of MO significantly for the first time in dye sensitized photocatalytic system.

  9. L shell X-ray fluorescence parameters of Pb in phthalocyanine complexes.

    PubMed

    Do?an, M; Cengiz, E; Nas, A; T?ra?o?lu, E; Kantekin, H; Ayl?kc?, V

    2015-10-01

    The L shell X-ray intensity ratios Li/L? (i=l, ? and ?), the production cross-sections ?(Li) (i=l, ?, ? and ?) and the L3 subshell fluorescence yields ?(L3) have been investigated for the element Pb in the phthalocyanine complexes. The measurements have been performed using an (241)Am annular radioactive source and an Ultra-LEGe detector with a resolution of 150 eV at 5.9 keV. The experimental values have been compared with the theoretical values of pure Pb element. PMID:26141294

  10. Pressure-tuning micro-Raman spectra of artists' pigments: ?- and ?-copper phthalocyanine polymorphs.

    PubMed

    Beaulieu-Houle, Guillaume; Gilson, Denis F R; Butler, Ian S

    2014-01-01

    The two polymorphs of copper phthalocyanine, ?- and ?-CuPc, have been examined by micro-Raman spectroscopy at pressures approaching 5.0 GPa. The metastable ?-polymorph does not exhibit any structural changes, while the more thermodynamically stable ?-polymorph does exhibit a reversible phase transition at 2.0 GPa. The pressure dependences (d?/dP) for a selected number of vibrational modes are reported. Two regions of the Raman spectra, 800-900 cm(-1) and 1100-1200 cm(-1), are sensitive to pressure such that they can be used as indicators of the polymorphic form. PMID:23981415

  11. Fabrication of organic copper phthalocyanine nanowire arrays via a simple AAO template-based electrophoretic deposition

    NASA Astrophysics Data System (ADS)

    Xu, Hua-Bing; Chen, Hong-Zheng; Xu, Wen-Jun; Wang, Mang

    2005-09-01

    Copper phthalocyanine (CuPc) nanowire arrays were fabricated for the first time by the electrophoretic deposition (EPD) method using a porous anodic aluminum oxide (AAO) template. The barrier layer between the aluminum substrate and the AAO membrane was first removed by progressively reducing the applied anodizing voltage. The AAO template was then employed directly to fabricate CuPc nanowire arrays by direct current EPD. The morphology of the CuPc nanowires was characterized by transmission electronic microscopy and field emission scanning electronic microscopy. The nanowires exhibited smooth surfaces and uniform diameters of about 40 nm. The photoconductivity of the CuPc nanowire arrays was investigated as well.

  12. Synthesis of a novel water-soluble zinc phthalocyanine and its CT DNA-damaging studies

    NASA Astrophysics Data System (ADS)

    Wang, Tianhui; Wang, Ao; Zhou, Lin; Lu, Shan; Jiang, Weiwei; Lin, Yun; Zhou, Jiahong; Wei, Shaohua

    2013-11-01

    A novel 3-(4-methoxybenzylamino) propanoic acid substituted water-soluble zinc phthalocyanine (CNPcZn) was synthesized. The interaction between CNPcZn with calf thymus DNA (CT DNA) was studied using spectroscopic methods. The studies indicated that CNPcZn has strong affinity to CT DNA, and furthermore, CNZnPc showed excellent photodamaging activity to CT DNA. Above results indicated that such CNPcZn has great potential to be used as an effective photosensitizer in the field of photodynamic therapy.

  13. Study of aging of nuclear detector based on n-silicon/copper phthalocyanine heterojunction

    SciTech Connect

    Ray, A.; Gupta, S. K.

    2013-02-05

    Nuclear detectors based on n-silicon/copper-phthalocyanine (CuPc) heterojunction were fabricated using thermally evaporated CuPc thin film. These detectors exhibited stable electrical and {alpha}-particle characteristics for prolonged periods of time under ordinary laboratory conditions and also exposing to {alpha}- particles (during {alpha}- spectroscopic measurements). The electrical and alpha particle characteristics of these detectors were studied after a long gap of 3 - 5 years and the best result obtained from one detector (five year old) is reported here. Degradation in electrical and alpha particle characteristics were not found to be very significant over the period.

  14. Tunneling electron induced chemisorption of copper phthalocyanine molecules on the Cu(111) surface

    SciTech Connect

    Stock, T.; Nogami, J.

    2014-02-17

    The adsorption of up to one monolayer (ML) of copper phthalocyanine (CuPc) molecules on a room temperature Cu(111) surface has been studied using scanning tunneling microscopy (STM). Below 1 ML the molecules are in a fluid state and are highly mobile on the surface. At 1 ML coverage the molecules coalesce into a highly ordered 2D crystal phase. At sub-ML coverages, chemisorption of individual CuPc molecules can be induced through exposure to tunneling electrons at a tunneling bias voltage exceeding a threshold value. This tunneling electron induced effect has been exploited to perform molecular STM lithography.

  15. Nonlinear absorption and excited state dynamics of porphyrin and phthalocyanine in the presence of explosive molecules

    NASA Astrophysics Data System (ADS)

    Anusha, P. T.; Thomas, A. R.; Philip, R.; Rao, S. Venugopal

    2015-11-01

    Nonlinear absorption (NLA) properties and excited state dynamics of a porphyrin and phthalocyanine in the presence of explosive molecules were investigated using the nanosecond Z-scan and femtosecond pump-probe techniques, respectively. The NLA coefficients Is and ? increased in the presence of explosive molecules. The change in first excited state decay time was evaluated through degenerate pump-probe measurements near 700 nm and it was observed that decay time decreased in the presence of explosive molecules. The reduction in decay time and increase in NLA coefficients varied with different molecules according to their absorption, emission properties and affinity towards the explosive molecule.

  16. Iron phthalocyanine modified mesoporous titania nanoparticles for photocatalytic activity and CO2 capture applications.

    PubMed

    Ramacharyulu, P V R K; Muhammad, Raeesh; Praveen Kumar, J; Prasad, G K; Mohanty, Paritosh

    2015-10-21

    An iron(II)phthalocyanine (Fepc) modified mesoporous titania (Fepc-TiO2) nanocatalyst with a specific surface area of 215 m(2) g(-1) has been synthesized by a hydrothermal method. Fepc-TiO2 degrades one of the highly toxic chemical warfare agents, sulfur mustard (SM), photocatalytically under sunlight with an exposure time of as low as 70 min. Furthermore, the mesoporous Fepc-TiO2 also captured 2.1 mmol g(-1) of CO2 at 273 K and 1 atm. PMID:26393761

  17. Fabrication and characterization of inverted organic solar cells using shuttle cock-type metal phthalocyanine and PCBM:P3HT

    SciTech Connect

    Suzuki, Atsushi Furukawa, Ryo Akiyama, Tsuyoshi Oku, Takeo

    2015-02-27

    Inverted organic solar cells using shuttle cock-type phthalocyanine, semiconducting polymer and fullerenes were fabricated and characterized. Photovoltaic and optical properties of the solar cells with inverted structures were investigated by optical absorption, current density-voltage characteristics. The photovoltaic properties of the tandem organic solar cell using titanyl phthalocyanine, vanadyl phthalocyanine, poly(3-hexylthiophene) (P3HT) and [6, 6]-phenyl C{sub 61}-butyric acid methyl ester (PCBM) were improved. Effect of annealing and solvent treatment on surface morphologies of the active layer was investigated. The photovoltaic mechanisms, energy levels and band gap of active layers were discussed for improvement of the photovoltaic performance.

  18. Fabrication and characterization of inverted organic solar cells using shuttle cock-type metal phthalocyanine and PCBM:P3HT

    NASA Astrophysics Data System (ADS)

    Suzuki, Atsushi; Furukawa, Ryo; Akiyama, Tsuyoshi; Oku, Takeo

    2015-02-01

    Inverted organic solar cells using shuttle cock-type phthalocyanine, semiconducting polymer and fullerenes were fabricated and characterized. Photovoltaic and optical properties of the solar cells with inverted structures were investigated by optical absorption, current density-voltage characteristics. The photovoltaic properties of the tandem organic solar cell using titanyl phthalocyanine, vanadyl phthalocyanine, poly(3-hexylthiophene) (P3HT) and [6, 6]-phenyl C61-butyric acid methyl ester (PCBM) were improved. Effect of annealing and solvent treatment on surface morphologies of the active layer was investigated. The photovoltaic mechanisms, energy levels and band gap of active layers were discussed for improvement of the photovoltaic performance.

  19. A novel glycyrrhetinic acid-modified oxaliplatin liposome for liver-targeting and in vitro/vivo evaluation

    PubMed Central

    Chen, Jingde; Jiang, Hong; Wu, Yin; Li, Yandong; Gao, Yong

    2015-01-01

    In this study, oxaliplatin (OX) liposomes surface-modified with glycyrrhetinic acid (GA) were developed by the film-dispersion method. Their morphology, physical and chemical properties, and in vitro release performance were investigated. The transmission electron microscope (TEM) image showed that most liposomes were spherical particles with similar size and uniform dispersion. Both OX-liposomes and GA-OX-liposomes had an average size of 90 nm. They were negatively charged, with zeta potentials of ?20.6 and ?21.3 mV, respectively, and the entrapment efficiency values of both were higher than 94%. In vitro data showed that the application of liposomes could prolong the OX release. The relatively high correlation coefficient values obtained from analyzing the amount of drug released versus the square root of time depicted that release followed the Weibull model. No significant changes were observed after the addition of GA to the liposomes. In vivo, the relatively long time to reach the maximum plasma concentration of OX-liposomes suggested a sustained-release profile of liposomes, which was consistent with the results of the in vitro release study. The increased area under the curve and maximum plasma concentration of OX-liposomes and GA-OX-liposomes demonstrated an increased absorption. The drug concentration in tissues indicated that the GA-modified liposomes delivered OX mainly to liver after intravenous administration. In addition, no severe signs, such as appearance of epithelial necrosis or sloughing of epithelial cells, were detected in histology studies. PMID:25945038

  20. Application of galactose-modified liposomes as a potent antigen presenting cell targeted carrier for intranasal immunization.

    PubMed

    Wang, Hsiao-Wen; Jiang, Ping-Lun; Lin, Shen-Fu; Lin, Hung-Jun; Ou, Keng-Liang; Deng, Win-Ping; Lee, Lin-Wen; Huang, Yi-You; Liang, Pi-Hui; Liu, Der-Zen

    2013-03-01

    The mucosal immune system produces secretory IgA (sIgA) as the first line of defense against invasion by foreign pathogens. Our aim was to develop a galactose-modified liposome as a targeted carrier which can be specifically recognized by macrophage, one of the most important antigen presenting cells. First, galactose was covalently conjugated with 1,2-didodecanoyl-sn-glycero-3-phosphoethanolamine (DLPE) to give a targeted ligand, a galactosyl lipid. The galactosyl lipid was then incorporated into a liposomal bilayer to form a galactosylated liposome carrier. Further, the ovalbumin (OVA) was encapsulated into the galactosylated liposome carriers and mice were intranasally immunized. Confocal laser scanning microscopy and flow cytometry analysis showed that the targeted galactosylated liposome carrier had a higher uptake rate than unmodified liposomes. The targeted galactosylated liposome induced higher levels of tumor necrosis factor-? and interleukin-6 production than unmodified liposomes (P<0.05). Furthermore, 6-week-old BALB/c female mice immunized with the OVA-encapsulated targeted galactosylated liposome had significantly higher OVA-specific s-IgA levels in the nasal and lung wash fluid (P<0.05). In addition, the targeted galactosylated liposome simultaneously augmented the serum IgG antibody response. In summary, the OVA-encapsulated targeted galactosylated liposome induced significantly higher mucosal IgA and systemic IgG antibody titers and is a potential antigen delivery carrier for further clinical applications. PMID:23159567

  1. A novel glycyrrhetinic acid-modified oxaliplatin liposome for liver-targeting and in vitro/vivo evaluation.

    PubMed

    Chen, Jingde; Jiang, Hong; Wu, Yin; Li, Yandong; Gao, Yong

    2015-01-01

    In this study, oxaliplatin (OX) liposomes surface-modified with glycyrrhetinic acid (GA) were developed by the film-dispersion method. Their morphology, physical and chemical properties, and in vitro release performance were investigated. The transmission electron microscope (TEM) image showed that most liposomes were spherical particles with similar size and uniform dispersion. Both OX-liposomes and GA-OX-liposomes had an average size of 90 nm. They were negatively charged, with zeta potentials of -20.6 and -21.3 mV, respectively, and the entrapment efficiency values of both were higher than 94%. In vitro data showed that the application of liposomes could prolong the OX release. The relatively high correlation coefficient values obtained from analyzing the amount of drug released versus the square root of time depicted that release followed the Weibull model. No significant changes were observed after the addition of GA to the liposomes. In vivo, the relatively long time to reach the maximum plasma concentration of OX-liposomes suggested a sustained-release profile of liposomes, which was consistent with the results of the in vitro release study. The increased area under the curve and maximum plasma concentration of OX-liposomes and GA-OX-liposomes demonstrated an increased absorption. The drug concentration in tissues indicated that the GA-modified liposomes delivered OX mainly to liver after intravenous administration. In addition, no severe signs, such as appearance of epithelial necrosis or sloughing of epithelial cells, were detected in histology studies. PMID:25945038

  2. Hyperthermia-mediated local drug delivery by a bubble-generating liposomal system for tumor-specific chemotherapy.

    PubMed

    Chen, Ko-Jie; Chaung, Er-Yuan; Wey, Shiaw-Pyng; Lin, Kun-Ju; Cheng, Felice; Lin, Chia-Chen; Liu, Hao-Li; Tseng, Hsiang-Wen; Liu, Chih-Peng; Wei, Ming-Cheng; Liu, Chun-Min; Sung, Hsing-Wen

    2014-05-27

    As is widely suspected, lysolipid dissociation from liposomes contributes to the intravenous instability of ThermoDox (lysolipid liposomes), thereby impeding its antitumor efficacy. This work evaluates the feasibility of a thermoresponsive bubble-generating liposomal system without lysolipids for tumor-specific chemotherapy. The key component in this liposomal formulation is its encapsulated ammonium bicarbonate (ABC), which is used to actively load doxorubicin (DOX) into liposomes and trigger a drug release when heated locally. Incubating ABC liposomes with whole blood results in a significantly smaller decrease in the retention of encapsulated DOX than that by lysolipid liposomes, indicating superior plasma stability. Biodistribution analysis results indicate that the ABC formulation circulates longer than its lysolipid counterpart. Following the injection of ABC liposome suspension into mice with tumors heated locally, decomposition of the ABC encapsulated in liposomes facilitates the immediate thermal activation of CO2 bubble generation, subsequently increasing the intratumoral DOX accumulation. Consequently, the antitumor efficacy of the ABC liposomes is superior to that of their lysolipid counterparts. Results of this study demonstrate that this thermoresponsive bubble-generating liposomal system is a highly promising carrier for tumor-specific chemotherapy, especially for local drug delivery mediated at hyperthermic temperatures. PMID:24742221

  3. Chitosan coated vancomycin hydrochloride liposomes: Characterizations and evaluation.

    PubMed

    Yang, Zhenlei; Liu, Junli; Gao, Jinhua; Chen, Shilei; Huang, Guihua

    2015-11-10

    The present work evaluated the feasibility of chitosan coated liposomes (c-Lips) for the intravenous delivery of vancomycin hydrochloride (VANH), a water-soluble antibiotic for the treatment of gram-positive bacterial infections like osteomyelitis, arthritis, endocarditis, pneumonia, etc. The objective of this research was to develop a suitable drug delivery system in vivo which could improve therapeutic efficacy and decrease side effects especially nephrotoxicity. Firstly, the vancomycin hydrochloride liposomes (VANH-Lips) were prepared by modified reverse phase evaporation method, then the chitosan wrapped vancomycin hydrochloride liposomes (c-VANH-Lips) nanosuspension was formulated by the method of electrostatic deposition. Based on the optimized results of single-factor screening experiment, the c-VANH-Lips were found to be relatively uniform in size (220.40±3.56nm) with a narrow polydispersity index (PI) (0.21±0.03) and a positive zeta potential (25.7±1.12mV). The average drug entrapment efficiency (EE) and drug loading (DL) were 32.65±0.59% and 2.18±0.04%, respectively. The in vitro release profile of c-VANH-Lips possessed a sustained release Characterization and the release behavior was in accordance with the Weibull equation. Hemolysis experiments showed that its intravenous injection had preliminary safety. In vivo, after intravenous injection to mice, c-VANH-Lips showed a longer retention time and higher AUC values compared with the VANH injection (VANH-Inj) and VANH-Lips. In addition, biodistribution results clearly demonstrated that c-VANH-Lips preferentially decreased the drug distribution in kidney of mice after intravenous injection. These results revealed that injectable c-VANH-Lips may serve as a promising carrier for VANH to increase therapeutic efficacy on gram-positive bacterial infections and reduce nephrotoxicity, which provides significantly clinical value for long-term use of VANH. PMID:26325316

  4. Mechanics of Biomimetic Liposomes Encapsulating an Actin Shell.

    PubMed

    Guevorkian, Karine; Manzi, John; Pontani, Léa-Lætitia; Brochard-Wyart, Françoise; Sykes, Cécile

    2015-12-15

    Cell-shape changes are insured by a thin, dynamic, cortical layer of cytoskeleton underneath the plasma membrane. How this thin cortical structure impacts the mechanical properties of the whole cell is not fully understood. Here, we study the mechanics of liposomes or giant unilamellar vesicles, when a biomimetic actin cortex is grown at the inner layer of the lipid membrane via actin-nucleation-promoting factors. Using a hydrodynamic tube-pulling technique, we show that tube dynamics is clearly affected by the presence of an actin shell anchored to the lipid bilayer. The same force pulls much shorter tubes in the presence of the actin shell compared to bare membranes. However, in both cases, we observe that the dynamics of tube extrusion has two distinct features characteristic of viscoelastic materials: rapid elastic elongation, followed by a slower elongation phase at a constant rate. We interpret the initial elastic regime by an increase of membrane tension due to the loss of lipids into the tube. Tube length is considerably shorter for cortex liposomes at comparable pulling forces, resulting in a higher spring constant. The presence of the actin shell seems to restrict lipid mobility, as is observed in the corral effect in cells. The viscous regime for bare liposomes corresponds to a leakout of the internal liquid at constant membrane tension. The presence of the actin shell leads to a larger friction coefficient. As the tube is pulled from a patchy surface, membrane tension increases locally, leading to a Marangoni flow of lipids. As a conclusion, the presence of an actin shell is revealed by its action that alters membrane mechanics. PMID:26682806

  5. Domain Growth Kinetics in a Cell-sized Liposome

    E-print Network

    Daisuke Saeki; Tsutomu Hamada; Kenichi Yoshikawa

    2005-10-07

    We investigated the kinetics of domain growth on liposomes consisting of a ternary mixture (unsaturated phospholipid, saturated phospholipid, and cholesterol) by temperature jump. The domain growth process was monitored by fluorescence microscopy, where the growth was mediated by the fusion of domains through the collision. It was found that an average domain size r develops with time t as r ~ t^0.15, indicating that the power is around a half of the theoretical expectation deduced from a model of Brownian motion on a 2-dimensional membrane. We discuss the mechanism of the experimental scaling behavior by considering the elasticity of the membrane.

  6. Aerosol Performance and Stability of Liposomes Containing Ciprofloxacin Nanocrystals

    PubMed Central

    Wu, Huiying; Gonda, Igor; Chan, Hak-Kim

    2015-01-01

    Abstract Background: Previously we showed that the release properties of a liposomal ciprofloxacin (CFI) formulation could be attenuated by incorporation of drug nanocrystals within the vesicles. Rather than forming these drug nanocrystals during drug loading, they were created post manufacture simply by freezing and thawing the formulation. The addition of surfactant to CFI, either polysorbate 20 or Brij 30, provided an additional means to modify the release profile or incorporate an immediate-release or ‘burst’ component as well. The goal of this study was to develop a CFI formulation that retained its nanocrystalline morphology and attenuated release profile after delivery as an inhaled aerosol. Methods: Preparations of 12.5?mg/mL CFI containing 90?mg/mL sucrose and 0.1% polysorbate 20 were formulated between pH 4.6 to 5.9, stored frozen, and thawed prior to use. These thawed formulations, before and after mesh nebulization, and after subsequent refrigerated storage for up to 6 weeks, were characterized in terms of liposome structure by cryogenic transmission electron microscopy (cryo-TEM) imaging, vesicle size by dynamic light scattering, pH, drug encapsulation by centrifugation-filtration, and in vitro release (IVR) performance. Results: Within the narrower pH range of 4.9 to 5.3, these 12.5?mg/mL liposomal ciprofloxacin formulations containing 90?mg/mL sucrose and 0.1% polysorbate 20 retained their physicochemical stability for an additional 3 months refrigerated storage post freeze-thaw, were robust to mesh nebulization maintaining their vesicular form containing nanocrystalline drug and an associated slower release profile, and formed respirable aerosols with a mass median aerodynamic diameter (MMAD) of ?3.9??m and a geometric standard deviation (GSD) of ?1.5. Conclusions: This study demonstrates that an attenuated release liposomal ciprofloxacin formulation can be created through incorporation of drug nanocrystals in response to freeze-thaw, and the formulation retains its physicochemical properties after aerosolization by mesh nebulizer. PMID:26469306

  7. Dynamics of liposomes gene vectors studied by anelastic spectroscopy

    NASA Astrophysics Data System (ADS)

    Castellano, C.; Pozzi, D.; Caracciolo, G.; Cantelli, R.

    2003-09-01

    The anelastic spectra of synthetic liposomes interesting for gene transfection have been measured in a wide temperature range; in particular, we have studied the cationic/neutral lipid mixture di-oleoyl trimethylammonium propane/di-oleoyl phosphatidylethanolamine at different molar ratios. This technique has been applied on thin films of biological samples deposited on a solid substrate like Si <100>. We have evidenced the presence of two relaxation processes around and below 200 K, likely connected with a cooperative dynamics of the water plus membrane system. In particular, the process centered at 198 K results to be clearly a favorite by the presence of two different lipidic species.

  8. Targeted and ultrasound-triggered cancer cell injury using perfluorocarbon emulsion-loaded liposomes endowed with cancer cell-targeting and fusogenic capabilities.

    PubMed

    Ninomiya, Kazuaki; Yamashita, Takahiro; Tanabe, Yamato; Imai, Miki; Takahashi, Kenji; Shimizu, Nobuaki

    2016-01-01

    This study investigated the targeting and ultrasound-triggered injury of cancer cells using anticancer drug-free liposomes that contained an emulsion of perfluoropentane (ePFC5) and were co-modified with avidin as a targeting ligand for cancer cells and the hemagglutinating virus of Japan (HVJ) envelope to promote liposome fusion with the cells. These liposomes are designated as ePFC5-loaded avidin/HVJ liposomes. ePFC5-loaded liposomes were sensitized to ultrasound irradiation. Liposomes modified with avidin alone (avidin liposomes) showed binding to MCF-7 human breast cancer cells, and liposomes modified with HVJ envelope alone (HVJ liposomes) were found to fuse with MCF-7 cells. The irradiation of MCF-7 cells with 1 MHz ultrasound (30s, 1.2 W/cm(2), duty ratio 30%) combined with ePFC5-loaded avidin/HVJ liposomes resulted in a decrease in cell viability at 1h after irradiation to 43% of that of controls without ultrasound irradiation or liposomes. The cell viability was lower than that of cells treated with ultrasound irradiation with ePFC5-loaded avidin liposomes or ePFC5-loaded HVJ liposomes. This indicates that co-modification of liposome with avidin and HVJ envelope could enhance ultrasound-induced cell injury in the presence of ePFC5-loaded liposomes. PMID:26384883

  9. Dual functionality of phosphonic-acid-appended phthalocyanines: inhibitors of urokinase plasminogen activator and anticancer photodynamic agents.

    PubMed

    Venkatramaiah, N; Pereira, Patrícia M R; Almeida Paz, Filipe A; Ribeiro, Carlos A F; Fernandes, Rosa; Tomé, João P C

    2015-11-01

    Phthalocyanines (Pcs) bearing phosphonic acid groups at the periphery exhibit a potential photodynamic effect to induce phototoxicity on human bladder cancer epithelial cells (UM-UC-3). In vitro photophysical and biological studies show high intrinsic ability to inhibit the activity of urokinase plasminogen activator (uPA) and matrix metalloproteinase-9 (MMP-9). PMID:26352730

  10. Face-on stacking and enhanced out-of-plane hole mobility in graphene-templated copper phthalocyanine.

    PubMed

    Mativetsky, Jeffrey M; Wang, He; Lee, Stephanie S; Whittaker-Brooks, Luisa; Loo, Yueh-Lin

    2014-05-25

    Efficient out-of-plane charge transport is required in vertical device architectures, such as organic solar cells and organic light emitting diodes. Here, we show that graphene, transferred onto different technologically-relevant substrates, can be used to induce face-on molecular stacking and improve out-of-plane hole transport in copper phthalocyanine thin films. PMID:24178059

  11. Hybrid Zinc Phthalocyanine/Zinc Oxide System for Photovoltaic De-vices: a DFT and TDDFPT Theoretical Investigation

    E-print Network

    Giannozzi, Paolo

    Hybrid Zinc Phthalocyanine/Zinc Oxide System for Photovoltaic De- vices: a DFT and TDDFPT whose major effect is the appearance of a new unoccupied electronic level, deriving from an intimate in the functioning of hybrid photovoltaic devices. The molecule-surface interactions are also characterized

  12. Combination of hyperthermia and photodynamic therapy on mesenchymal stem cell line treated with chloroaluminum phthalocyanine magnetic-nanoemulsion

    NASA Astrophysics Data System (ADS)

    de Paula, Leonardo B.; Primo, Fernando L.; Pinto, Marcelo R.; Morais, Paulo C.; Tedesco, Antonio C.

    2015-04-01

    The present study reports on the preparation and the cell viability assay of two nanoemulsions loaded with magnetic nanoparticle and chloroaluminum phthalocyanine. The preparations contain equal amount of chloroaluminum phthalocyanine (0.05 mg/mL) but different contents of magnetic nanoparticle (0.15×1013 or 1.50×1013 particle/mL). The human bone marrow mesenchymal stem cell line was used as the model to assess the cell viability and this type of cell can be used as a model to mimic cancer stem cells. The cell viability assays were performed in isolated as well as under combined magnetic hyperthermia and photodynamic therapy treatments. We found from the cell viability assay that under the hyperthermia treatment (1 MHz and 40 Oe magnetic field amplitude) the cell viability reduction was about 10%, regardless the magnetic nanoparticle content within the magnetic nanoparticle/chloroaluminum phthalocyanine formulation. However, cell viability reduction of about 50% and 60% were found while applying the photodynamic therapy treatment using the magnetic nanoparticle/chloroaluminum phthalocyanine formulation containing 0.15×1013 or 1.50×1013 magnetic particle/mL, respectively. Finally, an average reduction in cell viability of about 66% was found while combining the hyperthermia and photodynamic therapy treatments.

  13. Magneto-optical nanomaterials: a SPIO-phthalocyanine scaffold built step-by-step towards bimodal imaging.

    PubMed

    Boudon, Julien; Paris, Jérémy; Bernhard, Yann; Popova, Elena; Decréau, Richard A; Millot, Nadine

    2013-08-28

    A SPIO-phthalocyanine nanohybrid is developed as a bimodal contrast agent for Optical and Magnetic Resonance Imaging. The organic coating was covalently attached onto SPIO in a step-by-step approach. Each coated-SPIO was thoroughly characterized. The hydrodynamic size of the SPIO-Pc is ca. 60 nm with a coverage of ca. 690 Pc/SPIO. PMID:23857541

  14. Cathodic reduction of oxygen and hydrogen peroxide at cobalt and iron crowned phthalocyanines adsorbed on highly oriented pyrolytic graphite electrodes

    SciTech Connect

    Kobayashi, N.; Janda, P.; Lever, A.B.P. )

    1992-12-09

    The surface electrochemistry of iron and cobalt crowned phthalocyanine (Fe[sup II]CRPc(-2) and Co[sup II]CRPc(-2)) adsorbed on a highly oriented pyrolytic graphite (HOPG) electrode has been explored under an argon atmosphere. The redox processes of surface bound Co[sup II]CRPc(-2)/[Co[sup I]CRPc(-2)][sup [minus

  15. Enhanced brain delivery of liposomal methylprednisolone improved therapeutic efficacy in a model of neuroinflammation.

    PubMed

    Gaillard, Pieter J; Appeldoorn, Chantal C M; Rip, Jaap; Dorland, Rick; van der Pol, Susanne M A; Kooij, Gijs; de Vries, Helga E; Reijerkerk, Arie

    2012-12-28

    Neuroinflammation contributes to a wide range of disorders of the central nervous system (CNS). Of the available anti-inflammatory drugs, only glucocorticoids have shown central efficacy in CNS-related disorders, such as multiple sclerosis (MS). However, their side effects are dose limiting. To optimally improve the therapeutic window of methylprednisolone, we enhanced its CNS delivery by using pegylated liposomes conjugated to the brain-targeting ligand glutathione. In healthy rats, plasma circulation and brain uptake were significantly increased after encapsulating methylprednisolone in glutathione pegylated (GSH-PEG) liposomes. Furthermore, the efficacy of GSH-PEG liposomal methylprednisolone was investigated in rats with acute experimental autoimmune encephalomyelitis (EAE), an animal model of MS; rats received treatment (10mg/kg; i.v. injection), before disease onset, at disease onset, or at the peak of disease. Free methylprednisolone and non-targeted pegylated (PEG) liposomal methylprednisolone served as control treatments. When treatment was initiated at disease onset, free methylprednisolone showed no effect, while GSH-PEG liposomal methylprednisolone significantly reduced the clinical signs to 42±6.4% of saline control. Moreover, treatment using GSH-PEG liposomes was significantly more effective compared to PEG liposomes. Our findings hold promise for MS treatment and warrant further investigations into this brain delivery system for the treatment of neuroinflammation. PMID:22732475

  16. Differential uptake of gallium-67-labeled liposomes between tumors and inflammatory lesions in rats

    SciTech Connect

    Ogihara, I.; Kojima, S.; Jay, M.

    1986-08-01

    The differential gallium-67 (/sup 67/Ga) accumulation in tumors and inflammatory lesions in rats after i.v. injection of liposome encapsulated /sup 67/Ga ((/sup 67/Ga)liposomes) was studied. The /sup 67/Ga accumulation in the tumor was much greater than that in the granulation tissue regardless of the surface charge of liposomes; however, the difference between the two tissues was the greatest when using positive charged liposomes. Gallium-67 delivery to tumors by liposomes was greater than that to granulation tissue in all stages of growth. After i.v. injection, the accumulation of /sup 67/Ga in the tumor reached a maximum at 12 hr, whereas in the granulation tissue it was delayed to 24 hr postinjection. In the study of tissue distribution of /sup 67/Ga in rats bearing both tumor and granulation tissue, positively charged liposomes preferentially delivered /sup 67/Ga to the tumor than to the granulation tissue. These results suggest that (/sup 67/Ga)liposomes are able to discriminate between the tumor and the inflammatory lesion.

  17. Biophysical characterization of V3-lipopeptide liposomes influencing HIV-1 infectivity

    SciTech Connect

    Rizos, Apostolos K. . E-mail: Rizos@iesl.forth.gr; Baritaki, Stavroula; Tsikalas, Ioannis; Doetschman, David C.; Spandidos, Demetrios A.; Krambovitis, Elias; E-mail: krambo@imbb.forth.gr

    2007-04-20

    The V3-loop of the HIV-1 gp120 alters host cell immune function and modulates infectivity. We investigated biophysical parameters of liposome constructs with embedded lipopeptides from the principle neutralizing domain of the V3-loop and their influence on viral infectivity. Dynamic light scattering measurements showed liposome supramolecular structures with hydrodynamic radius of the order of 900 and 1300 nm for plain and V3-lipopeptide liposomes. Electron paramagnetic resonance measurements showed almost identical local microenvironment. The difference in liposome hydrodynamic radius was attributed to the fluctuating ionic environment of the V3-lipopeptide liposomes. In vitro HIV-1 infectivity assays showed that plain liposomes reduced virus production in all cell cultures, probably due to the hydrophobic nature of the aggregates. Liposomes carrying V3-lipopeptides with different cationic potentials restored and even enhanced infectivity (p < 0.05). These results highlight the need for elucidation of the involvement of lipid bilayers as dynamic components in supramolecular structures and in HIV-1 fusion mechanisms.

  18. Intravital fluorescence microscopic study of the behavior of long-circulating liposomes during microvascular thrombosis

    NASA Astrophysics Data System (ADS)

    Dvoisselle, Jean-Marie; Begu, Sylvie; Tourne-Peteilh, Corine; Buys, Bruno; Mordon, Serge R.

    2002-06-01

    Treatment of thrombosis depends on the selectivity of thrombolytic agents to the clot. It has been already demonstrated that liposomes can provide a better selectivity of such agents to the clot site. We have recently shown that intravital fluorescence microscopy is a powerful tool to image in situ and in real time the labeling of leukocytes by long circulating liposomes. The aim of this study was to monitor the in vivo behavior of such liposomes in a clot site. Carboxyfluorescein-loaded long circulating liposomes were prepared and characterized in term of size and permeability. The liposomes suspension was injected intravenously to golden hamsters. The skin microcirculation was observed using a dorsal skin-fold chamber by fluorescence microscopy. Thrombosis were obtained as the consequence of the inflammatory response due to the surgery. Using this model, fluorescent dots were observed at the site of the clot. Liposomes accumulate at the clot site whatever the mechanism (passive deposition or uptake). There is a period of latency and 30 seconds after the blood flow stop, fluorescence increases very rapidly and a bright fluorescent spot is observed at the site of the clot. Further studies are needed to determine the exact localization of liposomes in the clot and the mechanism of interaction.

  19. DOTAP/DOPE ratio and cell type determine transfection efficiency with DOTAP-liposomes.

    PubMed

    Kim, Bieong-Kil; Hwang, Guen-Bae; Seu, Young-Bae; Choi, Jong-Soo; Jin, Kyeong Sik; Doh, Kyung-Oh

    2015-10-01

    The effects of lipid compositions on their physicochemical properties and transfection efficiencies were investigated. Four liposome formulations with different 1,2-dioleoyl-3-trimethylammoniumpropane (DOTAP) to dioleoylphosphatidylethanolamine (DOPE) weight ratios were investigated, that is, weight ratios 1:0 (T1P0), 3:1 (T3P1), 1:1 (T1P1), and 1:3 (T1P3). Mean sizes of liposomes were influenced by their lipid composition and the preparation concentration at the time of sonication. Zeta potentials of liposomes were inversely correlated with their liposome sizes. However, neither liposome sizes nor zeta potentials were correlated with transfection efficiency. The optimum composition of liposomes was cell-line dependent (T1P0 and T3P1 for Huh7 and AGS, T3P1 and T1P1 for COS7, and T1P1 and T1P3 for A549). The shape of lipoplexes was changed from lamellar to inverted hexagonal structure according to the increased ratio of DOPE, but there was no definite advantage of specific structure in transfection efficiency throughout all used cell lines. However, cellular internalization was consistently faster in T1P0, T3P1, T1P1 compared to T1P3 in all cell lines, suggesting the importance of endosomal escape. Our findings show that the transfection efficiency of DOTAP liposomes is mainly influenced by lipid composition and cell type, and not by size or zeta potential. PMID:26112463

  20. Theoretical Analysis of Shape Transformations of Liposomes Caused by Microtubule Assembly

    NASA Astrophysics Data System (ADS)

    Umeda, Tamiki; Nakajima, Hisao; Hotani, Hirokazu

    1998-02-01

    When a cytoskeletal protein, tubulin, is enclosed inside a liposome and the tubulin molecules assemble to form microtubules, a spherical liposome transforms into a rugby-ball shape due to the mechanical force generated by the microtubule assembly. Tubular projections of membrane then grow from both ends of the rugby-ball liposome, and finally the liposome transforms into a characteristic shape consisting of a central ellipsoid and straight tubes. Here we investigate mechanical aspects of the shape transformation of liposomes caused by microtubule assembly. We calculate the liposome shape using a mathematical model based on the notion of the minimum bending energy of the liposome membrane. The force generated by the microtubule assembly is incorporated in the model by considering the local force balance of the membrane. Numerical analysis of the model gives a series of shapes which are similar to the shapes observed in experiments. The force-transformation relationship obtained in our model predicts the existence of a critical force for the formation of tubular projections. The force exerted by microtubules is calculated using experimental data.