Science.gov

Sample records for liposome gene therapy

  1. Anti-tumor mechanism in IL-12 Gene therapy using liposomal bubbles and ultrasound

    NASA Astrophysics Data System (ADS)

    Suzuki, Ryo; Oda, Yusuke; Koshima, Risa; Hirata, Keiichi; Nomura, Tetsuya; Negishi, Yoichi; Utoguchi, Naoki; Nakagawa, Shinsaku; Maruyama, Kazuo

    2011-09-01

    Sonoporation combined with nano/microbubbles is an attractive technique for developing non-invasive and non-viral gene delivery systems. Previously, we developed novel ultrasound sensitive liposomes (Bubble liposomes) which contain the ultrasound imaging gas perfluoropropane. IL-12 corded plasmid DNA delivery into tumor tissue by sonoporation combined with Bubble liposomes was found to suppress tumor growth. In this study, we examined the mechanism of the anti-tumor effect in this IL-12 gene delivery. This therapeutic effect was T-cell dependent, requiring mainly CD8+ T lymphocytes in the effector phase, as confirmed by a mouse in vivo depletion assay. In addition, migration of CD8+ T cells was observed in the mice. These results suggest that CD8+ T lymphocytes play an important role in the anti-tumor effects of this IL-12 gene therapy.

  2. Targeting of small molecule anticancer drugs to the tumour and its vasculature using cationic liposomes: lessons from gene therapy

    PubMed Central

    Dass, Crispin R; Choong, Peter FM

    2006-01-01

    Cationic (positively charged) liposomes have been tested in various gene therapy clinical trials for neoplastic and other diseases. They have demonstrated selectivity for tumour vascular endothelial cells raising hopes for both antiangiogenic and antivascular therapies. They are also capable of being selectively delivered to the lungs and liver when administered intravenously. These vesicles are being targeted to the tumour in various parts of the body by using advanced liposomal systems such as ligand-receptor and antibody-antigen combinations. At present, the transferrin receptor is commonly used for cancer-targeted drug delivery systems including cationic liposomes. This review looks at the growing utility of these vesicles for delivery of small molecule anticancer drugs. PMID:16792817

  3. Aerosol delivery of DNA/liposomes to the lung for cystic fibrosis gene therapy.

    PubMed

    Davies, Lee A; Nunez-Alonso, Graciela A; McLachlan, Gerry; Hyde, Stephen C; Gill, Deborah R

    2014-06-01

    Abstract Lung gene therapy is being evaluated for a range of acute and chronic diseases, including cystic fibrosis (CF). As these therapies approach clinical realization, it is becoming increasingly clear that the ability to efficiently deliver gene transfer agents (GTAs) to target cell populations within the lung may prove just as critical as the gene therapy formulation itself in terms of generating positive clinical outcomes. Key to the success of any aerosol gene therapy is the interaction between the GTA and nebulization device. We evaluated the effects of aerosolization on our preferred formulation, plasmid DNA (pDNA) complexed with the cationic liposome GL67A (pDNA/GL67A) using commercially available nebulizer devices. The relatively high viscosity (6.3±0.1 cP) and particulate nature of pDNA/GL67A formulations hindered stable aerosol generation in ultrasonic and vibrating mesh nebulizers but was not problematic in the jet nebulizers tested. Aerosol size characteristics varied significantly between devices, but the AeroEclipse II nebulizer operating at 50 psi generated stable pDNA/GL67A aerosols suitable for delivery to the CF lung (mass median aerodynamic diameter 3.4±0.1 μm). Importantly, biological function of pDNA/GL67A formulations was retained after nebulization, and although aerosol delivery rate was lower than that of other devices (0.17±0.01 ml/min), the breath-actuated AeroEclipse II nebulizer generated aerosol only during the inspiratory phase and as such was more efficient than other devices with 83±3% of generated aerosol available for patient inhalation. On the basis of these results, we have selected the AeroEclipse II nebulizer for the delivery of pDNA/GL67A formulations to the lungs of CF patients as part of phase IIa/b clinical studies. PMID:24865497

  4. Aerosol delivery of DNA/liposomes to the lung for cystic fibrosis gene therapy.

    PubMed

    Davies, Lee Adrian; Nunez-Alonso, Graciela A; McLachlan, Gerry; Hyde, Stephen C; Gill, Deborah Rebecca

    2014-04-29

    Lung gene therapy is being evaluated for a range of acute and chronic diseases including cystic fibrosis (CF). As these therapies approach clinical realisation it is becoming increasingly clear that the ability to efficiently deliver gene transfer agents (GTAs) to target cell populations within the lung may prove just as critical as the gene therapy formulation itself in terms of generating positive clinical outcomes. Key to the success of any aerosol gene therapy is the interaction between the GTA and nebulisation device. We evaluated the effects of aerosolisation on our preferred formulation, plasmid DNA (pDNA) complexed with the cationic liposome GL67A (pDNA/GL67A) using commercially available nebuliser devices. The relatively high viscosity (6.3 ± 0.1 cP) and particulate nature of pDNA/GL67A formulations hindered stable aerosol generation in ultrasonic and vibrating mesh nebulisers, but was not problematic in the jet nebulisers tested. Aerosol size characteristics varied significantly between devices but the AeroEclipse II nebuliser operating at 50 psi generated stable pDNA/GL67A aerosols suitable for delivery to the CF lung (MMAD 3.4 ± 0.1 µm). Importantly, biological function of pDNA/GL67A formulations was retained following nebulisation and although aerosol delivery rate was lower than other devices (0.17 ± 0.01 ml/min) the breath-actuated AeroEclipse II nebuliser generated aerosol only during the inspiratory phase and as such was more efficient than other devices with 83 ± 3% of generated aerosol available for patient inhalation. Based on these results we have selected the AeroEclipse II nebuliser for the delivery of pDNA/GL67A formulations to the lungs of CF patients as part of Phase IIa/b clinical studies. PMID:24773062

  5. Recent Trends of Polymer Mediated Liposomal Gene Delivery System

    PubMed Central

    Lee, Sang-Soo; George Priya Doss, C.; Yagihara, Shin; Kim, Do-Young

    2014-01-01

    Advancement in the gene delivery system have resulted in clinical successes in gene therapy for patients with several genetic diseases, such as immunodeficiency diseases, X-linked adrenoleukodystrophy (X-ALD) blindness, thalassemia, and many more. Among various delivery systems, liposomal mediated gene delivery route is offering great promises for gene therapy. This review is an attempt to depict a portrait about the polymer based liposomal gene delivery systems and their future applications. Herein, we have discussed in detail the characteristics of liposome, importance of polymer for liposome formulation, gene delivery, and future direction of liposome based gene delivery as a whole. PMID:25250340

  6. Modulation of Total Body Irradiation Induced Life Shortening by Systemic Intravenous MnSOD-Plasmid Liposome Gene Therapy

    PubMed Central

    Epperly, Michael W.; Smith, Tracy; Wang, Hong; Schlesselman, James; Franicola, Darcy; Greenberger, Joel S.

    2008-01-01

    To determine whether systemic administration of MnSOD-PL protected mice from the acute hematopoietic syndrome as well as delayed death following total body irradiation (TBI), C57BL/6J mice received intravenously 100μl liposomes containing 100μg of human MnSOD-transgene plasmid 24 hours prior to 9.5 Gy or 1.0 Gy. The dose of 9.5 Gy was lethal to 42% of irradiated control female and 74% of irradiated control male mice respectively at 30 days with bone marrow hypocellularity consistent with the hematopoietic syndrome. A statistically significant increase in survival was detected in MnSOD-PL treated compared to 9.5 Gy irradiated control female mice out to 400 days, and in male mice out to 340 days. The incidence of tumors was similar between surviving groups. Between 350 to 600 days, outcome was similar for both MnSOD-PL treated and control irradiated groups consistent with aging with no difference in gross or microscopic pathologic evidence of tumors. Male and female mice receiving 1.0 Gy TBI showed irradiation induced life shortening after 120 days that was decreased by MnSOD-PL administration, and was associated with no increase in rate of tumor associated death. Therefore, systemic MnSOD-PL radioprotective gene therapy is not associated with a detectably higher incidence of late carcinogenesis. PMID:19024650

  7. Nanoparticle Stabilized Liposomes for Acne Therapy

    NASA Astrophysics Data System (ADS)

    Fu, Victoria

    Acne vulgaris is a common skin disease that affects over 40 million people in the United States alone. The main cause of acne vulgaris is Propionibacterium acnes (P. acnes), resides deep in the pores and follicles of the skin in order to feed on oil produced by the sebaceous glands. The liposome is a lipid based nanoparticle with numerous advantages over free drug molecules as an acne treatment alternative. Bare liposomes loaded with lauric acid (LipoLA) were found to show strong antimicrobial activity against P. acnes while generating minimal toxicity. However, the platform is limited by the spontaneous tendency of liposomes to fuse with each other. Attaching nanoparticles to the surface of liposomes can overcome this challenge by providing steric repulsion and reduce surface tension. Thus, carboxyl-functionalized gold nanoparticles (AuC) were attached to the surface of liposomes (AuC-liposomes) loaded with doxycycline, a general tetracycline antibiotic. These particles were found to have a diameter of 120 nm and a zeta potential of 20.0 mV. Both fluorescent and antimicrobial studies demonstrated that based on electrostatic interaction, negatively charged AuC attached to the liposome's positively charged surface and stabilized liposomes in a neutral pH environment (pH = 7.4). Upon entering the skin's acidic environment (pH = 4), AuC detached from the liposome's surface and liposomes could fuse with P. acnes residing in the pores. Furthermore, toxicity studies showed that AuC-liposomes did not induce any significant toxicity, while two of the leading over-the-counter therapies, benzoyl peroxide and salicylic acid, generated substantial skin irritation.

  8. Modulation of In Utero Total Body Irradiation Induced Newborn Mouse Growth Retardation by Maternal Manganese Superoxide Dismutase-Plasmid Liposome (MnSOD-PL) Gene Therapy

    PubMed Central

    Epperly, Michael W.; Smith, Tracy; Zhang, Xichen; Greenberger, Benjamin; Komanduri, Paavani; Wang, Hong; Greenberger, Joel S.

    2010-01-01

    To determine the effects of Manganese superoxide dismutase (MnSOD) plasmid liposome (PL) maternal radioprotection on fetal mice, timed pregnant female mice (E14 gestation) were irradiated to 3.0 Gy total body irradiation (TBI) dose, and the number, weight, and growth and development over 6 months after birth of newborn mice was quantitated compared to irradiated controls. Maternal MnSOD-PL treatment at E13 improved pup survival at birth (5.4 ± 0.9/litter compared to irradiated 3.0 Gy controls 4.9 ± 1.1. There was no statistically significant difference in newborn abnormalities, male to female ratio in newborn litters, or other evidence of teratogenesis in surviving newborn mice from MnSOD-PL treated compared to irradiated controls. However, E13 3Gy irradiated pups from gene therapy treated mothers showed a significant increase in both growth and overall survival over 6 months after birth (p = 0.0022). To determine if transgene product crossed the placenta pregnant E13 mice were injected I.V. with hemagglutinin-epitope-tagged MnSOD (100 μgm plasmid in 100 μl liposomes), then 24 hours later fetal mice, placentas, and maternal tissues were removed and tested by both immunohistochemistry and RTPCR for transgene and product. There was no evidence of transgene or product in placenta or any fetal tissue while maternal liver was positive by both assays. The data provide evidence for fetal radioprotection by maternal MnSOD-PL gene therapy before irradiation which is mediated by an indirect bystander effect and is associated with a significant improvement in both survival at birth and growth and development of newborn mice. PMID:21248791

  9. Modulation of in utero total body irradiation induced newborn mouse growth retardation by maternal manganese superoxide dismutase-plasmid liposome (MnSOD-PL) gene therapy.

    PubMed

    Epperly, M W; Smith, T; Zhang, X; Goff, J P; Franicola, D; Greenberger, B; Komanduri, P; Wang, H; Greenberger, J S

    2011-06-01

    To determine the effects of manganese superoxide dismutase (MnSOD) plasmid liposome (PL) maternal radioprotection on fetal mice, timed pregnant female mice (E14 gestation) were irradiated to 3.0 Gy total body irradiation (TBI) dose, and the number, weight and growth and development over 6 months after birth of newborn mice was quantitated compared with irradiated controls. Maternal MnSOD-PL treatment at E13 improved pup survival at birth (5.4±0.9 per litter) compared with non-irradiated 3.0 Gy controls 4.9±1.1. There was no statistically significant difference in newborn abnormalities, male to female ratio in newborn litters, or other evidence of teratogenesis in surviving newborn mice from MnSOD-PL treated compared with irradiated controls. However, E14 3 Gy irradiated pups from gene therapy-treated mothers showed a significant increase in both growth and overall survival over 6 months after birth (P=0.0022). To determine if transgene product crossed the placenta pregnant E13 mice were injected intravenously with hemagglutinin-epitope-tagged MnSOD (100 μg plasmid in 100 μl liposomes), then after 24 h, fetal mice, placentas and maternal tissues were removed and tested by both immunohistochemistry and reverse transcriptase-PCR for transgene and product. There was no evidence of transgene or product in placenta or any fetal tissue while maternal liver was positive by both assays. The data provide evidence for fetal radioprotection by maternal MnSOD-PL gene therapy before irradiation, which is mediated by an indirect bystander effect and is associated with a significant improvement in both survival at birth and growth and development of newborn mice. PMID:21248791

  10. Development of the Liposomes Entrapped Ultrasound Imaging Gas (``Bubble Liposomes'') as Novel Gene Delivery Carriers

    NASA Astrophysics Data System (ADS)

    Suzuki, Ryo; Tanaka, Kumiko; Sawamura, Kaori; Takizawa, Tomoko; Utoguchi, Naoki; Negishi, Yoichi; Hagisawa, Kohsuke; Nishioka, Toshihiko; Maruyama, Kazuo

    2006-05-01

    Recently, microbubbles and ultrasound have been investigated with a view to improving the transfection efficiency of nonviral delivery systems for gene by cavitation. However, microbubbles had some problems in terms of stability and targeting ability. To solve these problems, we paid attention to liposomes that had many advantages such as stable and safe in vivo and easy to modify targeting ligand. Previously, we have represented that liposomes are good drug and gene delivery carriers. In addition, we developed that the liposomes ("Bubble liposomes") were entrapped with perfluoropropane known as ultrasound imaging gas. In this study, we assessed about feasibility of "Bubble liposomes" as gene delivery tool utilized cavitation by ultrasound irradiation. "Bubble liposomes" could effectively deliver plasmid DNA to cells by combination of ultrasound irradiation without cyototoxicity. This result suggested that "Bubble liposomes" might be a new class of tool for gene delivery.

  11. Liposomes for Use in Gene Delivery

    PubMed Central

    Balazs, Daniel A.; Godbey, WT.

    2011-01-01

    Liposomes have a wide array of uses that have been continuously expanded and improved upon since first being observed to self-assemble into vesicular structures. These arrangements can be found in many shapes and sizes depending on lipid composition. Liposomes are often used to deliver a molecular cargo such as DNA for therapeutic benefit. The lipids used to form such lipoplexes can be cationic, anionic, neutral, or a mixture thereof. Herein physical packing parameters and specific lipids used for gene delivery will be discussed, with lipids classified according to overall charge. PMID:21490748

  12. A novel cationic liposome formulation for efficient gene delivery via a pulmonary route

    NASA Astrophysics Data System (ADS)

    Li, Peng; Liu, Donghua; Sun, Xiaoli; Liu, Chunxi; Liu, Yongjun; Zhang, Na

    2011-06-01

    The clinical success of gene therapy for lung cancer is not only dependent on efficient gene carriers but also on a suitable delivery route. A pulmonary delivery route can directly deliver gene vectors to the lung which is more efficient than a systemic delivery route. For gene carriers, cationic liposomes have recently emerged as leading non-viral vectors in worldwide gene therapy clinical trials. However, cytotoxic effects or apoptosis are often observed which is mostly dependent on the cationic lipid used. Therefore, an efficient and safe cationic lipid, 6-lauroxyhexyl lysinate (LHLN), previously synthesized by our group was first used to prepare cationic liposomes. Physicochemical and biological properties of LHLN-liposomes were investigated. LHLN-liposome/DNA complexes showed positive surface charge, spherical morphology, a relatively narrow particle size distribution and strong DNA binding capability. Compared with Lipofectamine2000, the new cationic liposome formulation using LHLN exhibited not only lower cytotoxicity (P < 0.05) but also similar transfection efficiency in A549 and HepG2 lung cancer cells for in vitro tests. When administered by intratracheal instillation into rat lungs for in vivo evaluation, LHLN-liposome/DNA complexes exhibited higher pulmonary gene transfection efficiency than Lipofectamine2000/DNA complexes (P < 0.05). These results suggested that LHLN-liposomes may have great potential for efficient pulmonary gene delivery.

  13. Genes and Gene Therapy

    MedlinePlus

    ... correctly, a child can have a genetic disorder. Gene therapy is an experimental technique that uses genes to ... or prevent disease. The most common form of gene therapy involves inserting a normal gene to replace an ...

  14. Genes and Gene Therapy

    MedlinePlus

    ... a child can have a genetic disorder. Gene therapy is an experimental technique that uses genes to ... prevent disease. The most common form of gene therapy involves inserting a normal gene to replace an ...

  15. Application of long-circulating liposomes to cancer photodynamic therapy.

    PubMed

    Oku, N; Saito, N; Namba, Y; Tsukada, H; Dolphin, D; Okada, S

    1997-06-01

    Photodynamic therapy (PDT) as a cancer treatment is notable for its quite low side effects in comparison with those of chemotherapy and radiotherapy. However, the accumulation of porphyrin derivatives used in PDT into tumor tissues is rather low. Since long-circulating liposomes are known to accumulate passively into tumor tissues, we liposomalized a porphyrin derivative, benzoporphyrin derivative monoacid ring A (BPD-MA), and used these liposomes to investigate the usefulness of PDT for tumor-bearing mice. BPD-MA was liposomalized into glucuronate-modified liposomes, which are known to be long-circulating. These liposomes were injected i.v. into Balb/c mice bearing Meth A sarcoma, and tumor regression and survival time were monitored after irradiation with laser light. Tumor regression and complete curing of tumor (80% cure rate by the treatment with 6 mg/kg BPD-MA) were observed when long circulating liposomalized BPD-MA was injected and laser-irradiated. In contrast, only a 20% cure rate was obtained when the animals were treated with BPD-MA solution or BPD-MA entrapped in conventional liposomes. These results suggest that a long-circulating liposomal formulation of photo-sensitive agents is useful for PDT. PMID:9212988

  16. Gene Therapy

    PubMed Central

    Baum, Bruce J

    2014-01-01

    Applications of gene therapy have been evaluated in virtually every oral tissue, and many of these have proved successful at least in animal models. While gene therapy will not be used routinely in the next decade, practitioners of oral medicine should be aware of the potential of this novel type of treatment that doubtless will benefit many patients with oral diseases. PMID:24372817

  17. Pulmonary irradiation-induced expression of VCAM-I and ICAM-I is decreased by manganese superoxide dismutase-plasmid/liposome (MnSOD-PL) gene therapy.

    PubMed

    Epperly, Michael W; Sikora, Christine A; DeFilippi, Stacy J; Gretton, Joan E; Bar-Sagi, Dafna; Archer, Herbert; Carlos, Timothy; Guo, HongLiang; Greenberger, Joel S

    2002-01-01

    Pulmonary toxicity is a major complication of total body irradiation used in preparation of patients for bone marrow transplantation. The mechanism of the late pulmonary damage manifested by fibrosis is unknown. In C57BL/6NHsd mice, manganese superoxide dismutase-plasmid/liposome (MnSOD-PL) intratracheal injection 24 hours prior to 20 Gy single-fraction irradiation to both lungs significantly reduced late irradiation damage. Single intratracheal injections of MnSOD-PL, at concentrations as low as 250 microg of plasmid DNA, in a constant volume of 78 microL of liposomes, reduced late damage. To determine whether a slowly proliferating population of cells in the lung was responsible for initiation of fibrosis and was altered by MnSOD-PL therapy, 20 Gy total lung-irradiated mice were examined at serial time points for bromodeoxyuridine (BrdU) uptake in sites of cell division. There was low-level, but nonsignificant, increased cell proliferation detected at 80 days, with a significant increase at 100 days, 120 days, and at the time of death. Immunohistochemical assay for up-regulation of adhesion molecules associated with recruitment, transendothelial migration, and proliferation of bronchoalveolar macrophages revealed significant up-regulation of vascular cell adhesion molecule-1 (VCAM-1) and intracellular adhesion molecule-1 (ICAM-1) at 100 days with further increases up to the time of death. Increases were first detected in endothelin-positive endothelial cells. MnSOD-PL administration prior to irradiation decreased both BrdU incorporation and delayed expression of VCAM-1 and ICAM-1. The data indicate that the appearance of late irradiation-induced pulmonary fibrosis is associated with the up-regulation of adhesion molecules and suggest that potential targets for intervention may focus on the pulmonary vascular endothelium. PMID:12014807

  18. Anti-angiogenic therapy via cationic liposome-mediated systemic siRNA delivery.

    PubMed

    Tagami, Tatsuaki; Suzuki, Takuya; Matsunaga, Mariko; Nakamura, Kazuya; Moriyoshi, Naoto; Ishida, Tatsuhiro; Kiwada, Hiroshi

    2012-01-17

    siRNA has been touted as a therapeutic molecule against genetic diseases, which include cancers. But several challenging issues remain in order to achieve efficient systemic siRNA delivery and a sufficient therapeutic effect for siRNA in vivo. Cationic liposome shows promise as a carrier for nucleic acids, as it can selectively bind to angiogenic tumor blood vessels. In this way, anti-angiogenic therapy via cationic liposome-mediated systemic siRNA delivery could be achieved in cancer therapy. In the present study, we proved our assumption by preparing various kinds of polyethylene glycol (PEG)-coated siRNA/cationic liposome complexes (siRNA-lipoplexes) and screening the avidity of these siRNA-lipoplexes upon angiogenic tumor blood vessels by means of a murine dorsal air sac (DAS) model. The lipoplex, having a lipid composition of DC-6-14/POPC/CHOL/DOPE/mPEG(2000)-DSPE=20/30/30/20/5 (molar ratio) and a charge ratio of cationic liposome and siRNA=3.81 (+/-), showed a higher binding index to newly formed blood vessels. Systemic injection with the lipoplex containing siRNA for the Argonaute2 gene (apoptosis-inducible siRNA) resulted in significant anti-tumor effect without severe side effects in mice with Lewis lung carcinoma. Our results indicate that the PEGylated cationic liposome-mediated systemic delivery of cytotoxic siRNA achieves anti-angiogenesis, resulting in the suppression of tumor growth. PMID:22101286

  19. Antifungal Lock Therapy with Liposomal Amphotericin B: A Prospective Trial.

    PubMed

    McGhee, William; Michaels, Marian G; Martin, Judith M; Mazariegos, George V; Green, Michael

    2016-03-01

    We conducted a prospective pilot study to evaluate the potential role of combined systemic antifungal and liposomal amphotericin B lock therapy in children with intestinal insufficiency with fungal catheter-related bloodstream infections whose central venous catheters had not been removed. Our results provide supportive evidence for the conduct of larger clinical trials to confirm the efficacy and safety of this approach. PMID:26908494

  20. Intramuscular Injection of Angiogenic Gene with Bubble Liposomes Followed by Ultrasound Exposure to Improve Angiogenesis

    NASA Astrophysics Data System (ADS)

    Negishi, Yoichi; Matsuo, Keiko; Endo-Takahashi, Yoko; Suzuki, Kentaro; Matsuki, Yuuki; Takagi, Norio; Suzuki, Ryo; Maruyama, Kazuo; Aramaki, Yukihiko

    2011-09-01

    Ultrasound (US) in combination with microbubbles has recently engendered much attention as a safe method of gene delivery. Previously, we have developed polyethyleneglycol (PEG)-modified liposomes entrapping echo-contrast gas. We have called the liposomes "Bubble liposomes" (BLs). In this study, to assess the feasibility and the effectiveness of BLs for angiogenic gene delivery in clinical use, we tried to deliver bFGF (an angiogenic factor) expressing plasmid DNA into a mouse hindlimb ischemia model by the combination of BLs and US exposure. After femoral artery ligation, the hindlimb of ischemic mice were treated with BLs and US-mediated intramuscular gene transfer of bFGF expressing plasmid DNA. After the treatment, blood flow was determined over 2 weeks using laser doppler blood flow meter. As a result, the blood flow in the treated groups with BLs and US-mediated the gene transfer was quickly measured, and compared to other treatment groups (non-treated, bFGF alone, or bFGF+US). Furthermore, the number of CD31 positive cells was higher in the treatment groups with BLs and US-mediated the gene transfer than in other treatment groups. These results suggest that intramuscular injection of bFGF as an angiogenic gene with Bubble liposomes followed by ultrasound exposure improved angiogenesis in the ischemic muscle. Thus, gene transfer into the ischemic muscle by the combination of BLs and US exposure is an effective means of angiogenic gene therapy.

  1. Biosurfactant MEL-A enhances cellular association and gene transfection by cationic liposome.

    PubMed

    Igarashi, Saki; Hattori, Yoshiyuki; Maitani, Yoshie

    2006-05-30

    Mannnosylerythritol lipid A (MEL-A), a biosurfactant produced by microorganisms, has many biological activities. To enhance the gene transfection efficiency of a cationic liposome, we prepared a MEL-liposome (MEL-L) composed of 3beta-[N-(N',N'-dimethylaminoethane)-carbamoyl] cholesterol (DC-Chol), dioleoyl phosphatidylethanolamine (DOPE) and MEL-A, and investigated its transfection efficiency in human cervix carcinoma Hela cells. MEL-L was about 40 nm in size, and the MEL-L/plasmid DNA complex (MEL-lipoplex) remained an injectable size (169 nm). MEL-A induced a significantly higher level of gene expression, compared to commercially available Tfx20 and the liposome without MEL-A (Cont-L). Analysis of flow cytometric profiles clearly indicated that the amount of DNA associated with the cells was rapidly increased and sustained by addition of MEL-A to the liposome. Confocal microscopic observation indicated that the MEL-lipoplex distributed widely in the cytoplasm, and the DNA was detected strongly in the cytoplasm and around the nucleus, compared with Cont-L. These results suggested that MEL-A increased gene expression by enhancing the association of the lipoplexes with the cells in serum. MEL-L might prove a remarkable non-viral vector for gene transfection and gene therapy. PMID:16624437

  2. Self-assembled liposomal nanoparticles in photodynamic therapy

    PubMed Central

    Sadasivam, Magesh; Avci, Pinar; Gupta, Gaurav K.; Lakshmanan, Shanmugamurthy; Chandran, Rakkiyappan; Huang, Ying-Ying; Kumar, Raj; Hamblin, Michael R.

    2013-01-01

    Photodynamic therapy (PDT) employs the combination of non-toxic photosensitizers (PS) together with harmless visible light of the appropriate wavelength to produce reactive oxygen species that kill unwanted cells. Because many PS are hydrophobic molecules prone to aggregation, numerous drug delivery vehicles have been tested to solubilize these molecules, render them biocompatible and enhance the ease of administration after intravenous injection. The recent rise in nanotechnology has markedly expanded the range of these nanoparticulate delivery vehicles beyond the well-established liposomes and micelles. Self-assembled nanoparticles are formed by judicious choice of monomer building blocks that spontaneously form a well-oriented 3-dimensional structure that incorporates the PS when subjected to the appropriate conditions. This self-assembly process is governed by a subtle interplay of forces on the molecular level. This review will cover the state of the art in the preparation and use of self-assembled liposomal nanoparticles within the context of PDT. PMID:24348377

  3. Sucrose ester based cationic liposomes as effective non-viral gene vectors for gene delivery.

    PubMed

    Zhao, Yinan; Zhu, Jie; Zhou, Hengjun; Guo, Xin; Tian, Tian; Cui, Shaohui; Zhen, Yuhong; Zhang, Shubiao; Xu, Yuhong

    2016-09-01

    As sucrose esters (SEs) are natural and biodegradable excipients with excellent drug dissolution and drug absorption/permeation in controlled release systems, we firstly incorporated SE into liposomes for gene delivery in this article. A peptide-based lipid (CDO14), Gemini-based quaternary ammonium-based lipid (CTA14), and mono-head quaternary ammonium lipid (CPA14), and SE as helper lipid, were prepared into liposomes which could enhance the interactions between liposomes and pDNA. Most importantly, the liposomes with helper lipid SE showed higher transfection and lower cytotoxicity than those without SE in Hela and A549 cells. It was also found that the transfection efficiency increased with the increase of SE content. The selected liposome, CDO14/SE, was able to deliver siRNA against luciferase for silencing gene in lung tumors of mice, with little in vivo toxicity. The results convincingly demonstrated SEs could be highly desirable candidates for gene delivery systems. PMID:27232309

  4. Multifunctional liposomes for enhanced anti-cancer therapy

    NASA Astrophysics Data System (ADS)

    Falcao, Claudio Borges

    2011-12-01

    Macromolecular drugs have great promises for cancer treatment, such as the pro-apoptotic peptide D-(KLAKLAK)2 and the bcl-2 antisense oligodeoxynucleotide G3139. However, these macromolecules require efficient drug carriers, like liposomes, to deliver them inside cells. Also, if these macromolecules can be combined in a single liposome, the cancer cell killing will be greater than using just one. With this possibility in mind, cationic liposomes (CLs) were elaborated to encapsulate both macromolecules and deliver them inside cells. Later, surface modification of CLs was investigated through the addition of polyethylene glycol (PEG) to obtain long-circulating liposomes. CLs were prepared through charge alternation among D-(KLAKLAK)2 , G3139 and DOTAP. These liposomes were characterized with particle size and zeta-potential measurements, antisense entrapment and peptide loading efficiency. The in vitro effects of CL formulations were tested with B16(F10) cells through viability studies, uptake assay and detection of apoptosis. CL formulations were also applied in vivo in B16(F10) tumor-bearing mice through intratumoral injections, and tumor growth inhibition and detection of apoptosis were evaluated. Next, the mechanism of action of the CL formulations was investigated by Western blotting. Later, PEG was incorporated at increasing amounts to the liposomes to determine which concentration can better prevent interactions between PEG-cationic liposomes (PCL) and B16(F10) cells. Next, pH-cleavable PEG was prepared and then added to the liposomes in the same amount that PEG in PCL could decrease interaction with cells. Finally, cell viability studies were performed with CL, PCL and pH-sensitive PCL (pH-PCL) formulations after pre-incubation at pH 7.4 or at pH 5.0. Positively charged CL particles were obtained after encapsulation of negatively charged D-(KLAKLAK)2/G3139 complexes. In vitro , CLs containing D-(KLAKLAK)2/G3139 complexes could reduce B16(F10) cell viability

  5. Characterization of biosurfactant-containing liposomes and their efficiency for gene transfection.

    PubMed

    Ueno, Yoshinobu; Hirashima, Naohide; Inoh, Yoshikazu; Furuno, Tadahide; Nakanishi, Mamoru

    2007-01-01

    Recently we showed significance of biosurfactants in the field of non-viral vectors for gene transfection. There, a biosurfactant, mannosylerythritol lipid A (MEL-A), especially increased the efficiency of gene transfection mediated with cationic liposomes. However, the molecular mechanism has not been well-understood yet. Here, through the examination of the ability of cationic liposomes containing an MEL (MEL-A, MEL-B or MEL-C) for important transfectional processes of the DNA capsulation and the membrane fusion with anionic liposomes, we found that MEL-A-containing liposomes increased both processes, but that MEL-B and MEL-C-containing liposomes just increased either of them. The results indicated that these kinds of the physicochemical properties in MEL-A-containing liposomes are able to increase the efficiency of liposome-mediated gene transfection. PMID:17202680

  6. Effectiveness of Combined Modality Radiotherapy of Orthotopic Human Squamous Cell Carcinomas in Nu/Nu Mice Using Cetuximab, Tirapazamine and MnSOD-Plasmid Liposome Gene Therapy

    PubMed Central

    EPPERLY, MICHAEL W.; LAI, STEPHEN Y.; KANAI, ANTHONY J.; MASON, NEAL; LOPRESI, BRIAN; DIXON, TRACEY; FRANICOLA, DARCY; NIU, YUNYUN; WILSON, WILLIAM R.; GREENBERGER, JOEL S.

    2010-01-01

    Hypoxic regions limit the radiocontrollability of head and neck carcinomas. Whether or not combinations of plasmid/liposome mediated overexpression of normal tissue protective manganese superoxide dismutase (MnSOD), cetuximab (C225), and the hypoxic cytotoxin tirapazamine (TPZ) enhanced radiotherapeutic effects was tested in a CAL-33 orthotopic mouse cheek tumor model. The tumor volume continued to increase in the control (untreated) mice, with a ninefold increase by 10 days when the tumors exceeded 2 cm3. The mice receiving 14 Gy only showed reduced tumor growth to 3.1±0.1 fold at day 10. The mice receiving MnSOD-PL, C225, TPZ plus 14 Gy had the best outcome with 0.7±0.1 fold increase in tumor volume by 10 days (p=0.015) compared to irradiation only. The addition of MnSOD-PL, TPZ, and C225 to irradiation optimized the therapeutic ratio for the local control of hypoxic region-containing CAL-33 orthotopic tumors. PMID:20133969

  7. Effectiveness of combined modality radiotherapy of orthotopic human squamous cell carcinomas in Nu/Nu mice using cetuximab, tirapazamine and MnSOD-plasmid liposome gene therapy.

    PubMed

    Epperly, Michael W; Lai, Stephen Y; Kanai, Anthony J; Mason, Neal; Lopresi, Brian; Dixon, Tracey; Franicola, Darcy; Niu, Yunyun; Wilson, William R; Greenberger, Joel S

    2010-01-01

    Hypoxic regions limit the radiocontrollability of head and neck carcinomas. Whether or not combinations of plasmid/liposome mediated overexpression of normal tissue protective manganese superoxide dismutase (MnSOD), cetuximab (C225), and the hypoxic cytotoxin tirapazamine (TPZ) enhanced radiotherapeutic effects was tested in a CAL-33 orthotopic mouse cheek tumor model. The tumor volume continued to increase in the control (untreated) mice, with a ninefold increase by 10 days when the tumors exceeded 2 cm(3). The mice receiving 14 Gy only showed reduced tumor growth to 3.1+/-0.1 fold at day 10. The mice receiving MnSOD-PL, C225, TPZ plus 14 Gy had the best outcome with 0.7+/-0.1 fold increase in tumor volume by 10 days (p=0.015) compared to irradiation only. The addition of MnSOD-PL, TPZ, and C225 to irradiation optimized the therapeutic ratio for the local control of hypoxic region-containing CAL-33 orthotopic tumors. PMID:20133969

  8. Liposomes.

    PubMed

    Posner, Robert

    2002-09-01

    Robert Posner has 40 years of experience in skin care bench chemistry, product development, and sales and marketing. Working closely with dermatologists and plastic surgeons, Posner is a former member of the NY State Hospital Pharmacists Association, the American Pharmaceutical Association, and the American Association of Hospital Pharmacists. Currently, Posner sits on the Board of Directors of EMDA (Esthetic Manufacturers and Distributors Association). Posner has written numerous articles for Les Nouvelles Esthetiques Magazine, is presently a consultant for Day Spa Magazine, and had been one of only two non-dermatologists on a consultant basis with Cosmetic Dermatology Journal. Posner's company--ABBE Cosmetic Group International in Farmingdale, NY--formulates and manufactures skin care products for many well-known companies in the beauty industry. For many years, both the bench chemist and the dermatologist have been concerned with developing an ideal base for deliverance of 'actives' to the human epidermis. As is common knowledge, the skin is a protective organ which allows very few materials to penetrate. Some bases are unable to work effectively because of their relative inability to penetrate the stratum corneum; for example, some notable actives such as collagen and elastin are molecules too large to penetrate effectively. With the liposome at our command however, we can carry and then release an active into several layers of epidermis. We can release both oil- and water-soluble actives, and at the same time control the feel and effectiveness of a topical application. This article will examine the liposome: what it is, how it works, and how products made with liposomes can benefit dermatology. PMID:12847740

  9. Development and evaluation of oxaliplatin and irinotecan co-loaded liposomes for enhanced colorectal cancer therapy.

    PubMed

    Zhang, Bo; Wang, Tianqi; Yang, Shaomei; Xiao, Yanan; Song, Yunmei; Zhang, Na; Garg, Sanjay

    2016-09-28

    Drug combinations are widely employed in chemotherapy for colorectal cancer treatment. However, traditional cocktail combination in clinic causes the uncertainty of the treatment, owing to varying pharmacokinetics of different drugs. The aim of this study was to design co-loaded liposomes to achieve the synchronised delivery and release. Oxaliplatin and irinotecan hydrochloride, as one of recommended combination schemes for the treatment of colorectal cancer in clinic, were co-loaded into the liposomes. The particle sizes of the liposomes were <200nm with uniform size distribution. In vitro release study showed that both drugs could be synchronously released from the liposomes, which means the optimized synergistic ratio of two drugs could be achieved. In vitro cellular uptake revealed that co-loaded liposomes could efficiently deliver different drugs into the same cells, indicating their potential as carriers for enhancing the cancer therapy. CLSM images of cryo-sections for in vivo co-delivery study also revealed that co-loaded liposomes had superior ability to co-deliver both the cargoes into the same tumor cells. Besides, in vivo NIRF imaging indicated that the liposomes could increase the drug accumulation in tumor compared with free drug. In vitro cytotoxicity evaluation demonstrated that co-loaded liposomes exhibited higher cytotoxicity than the mixture of single loaded liposomes in both CT-26 and HCT-116 cells. Furthermore, co-loaded liposomes also presented superior anti-tumor activity in CT-26 bearing BALB/c mice. In vivo safety assessment demonstrated that liposomes had lower toxicities than their solution formulations. These results indicated that oxaliplatin and irinotecan hydrochloride co-loaded liposomes would be an efficient formulation for improving colorectal cancer therapy with potential clinical applications. PMID:27432750

  10. Experiments on gene transferring to primary hematopoietic cells by liposome.

    PubMed

    Hu, L; Zhang, B

    2000-01-01

    Liposomes have showed many advantages in mediating exogenous gene into many cell types in vitro and in vivo. But few data are available concerning gene transfer into hematopoietic cells. In this report, we described two-marker genes (Neo R and Lac Z) co-transferred into hematopoietic cells of human and mouse by using liposome in vitro. The efficiency of gene transfer was tested by X-gal staining and observation of colony formation. The X-gal blue staining rate of transduced cells was about (13.33 +/- 2.68)% in human and about (16.28 +/- 2.95)% in mouse without G418 selection. After G418 selection, the blue cell rate was (46.06 +/- 3.47)% in human and (43.45 +/- 4.1)% in mouse, which were markedly higher than those before selection, suggesting that high-efficiency gene transfer and expression could be attained in primary hematopoietic cells using this easy and harmless transduction protocol. At the same time, this protocol provided experimental data for clinicians to investigate the biology of marrow reconstitution and trace the origin of relapse after autologous bone marrow transplantation for the patients with leukemia. PMID:12840913

  11. Gold conjugate-based liposomes with hybrid cluster bomb structure for liver cancer therapy.

    PubMed

    Zhang, Ning; Chen, Huan; Liu, Ai-Yun; Shen, Jia-Jia; Shah, Vishva; Zhang, Can; Hong, Jin; Ding, Ya

    2016-01-01

    Hybrid drug delivery system containing both organic and inorganic nanocarriers is expected to achieve its complementary advantages for the aim of improving the performance of antineoplastic drugs in tumor therapy. Here we report the use of liposomes and gold nanoparticles to construct a liposome with a hybrid Cluster Bomb structure and discuss its unique multi-order drug release property for liver tumor treatment. A very simple method is used for the hybrid liposome preparation and involves mixing two solutions containing liposomes loaded with either non-covalent or covalent Paclitaxel (PTX, namely free PTX or PTX-conjugated GNPs, respectively) by different ratio of volume (25:75, 50:50, 25:75, v/v). Various mixed liposomes were tested to determine the optimal conditions for maximum drug delivery. The optimized liposome was then tested using xenograft Heps tumor-bearing mice and showed the best efficacy for chemotherapeutic inhibition of tumor at PTX liposome: PTX-conjugated GNP liposome of 25:75 ratio (v/v). This system allows for simple and easy preparation while providing a more accurate site- and time-release mode for tumor treatment using antitumor drugs. PMID:26461120

  12. Long-circulating gadolinium-encapsulated liposomes for potential application in tumor neutron capture therapy.

    PubMed

    Le, Uyen M; Cui, Zhengrong

    2006-04-01

    Gadolinium neutron capture therapy (Gd-NCT) is a promising cancer therapy modality. One of the key factors for a successful Gd-NCT is to deliver and maintain a sufficient amount of Gd in tumor tissues during neutron irradiation. We proposed to prepare a Gd delivery system by complexing a Gd-containing compound, diethylenetriaminepentaacetic acid (Gd-DTPA), with a polycationic peptide, poly-L-lysine (pLL), and then encapsulate the complexed Gd-DTPA into PEGylated liposomes. Complexation of Gd-DTPA with pLL not only enhanced the encapsulation efficiency of Gd-DTPA in liposomes, but also significantly limited the release of Gd-DTPA from the liposomes. A Gd-DTPA-encapsulated liposome formulation that contained 6.8+/-0.3 mg/mL of pure encapsulated Gd was prepared. The blood half-life of the Gd encapsulated into the liposome formulation was estimated to be about 24 h in healthy tumor-free mice. About 12 h after the Gd-encapsulated liposomes were intravenously injected into mice with pre-established model tumors, the Gd content in the tumors reached an average of 159 microg/g of wet tumor tissue. This Gd-DTPA encapsulated liposome may be used to deliver Gd into solid tumors for NCT and tumor imaging. PMID:16457973

  13. Photosensitive liposomes as potential drug delivery vehicles for photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Morgan, Christopher G.; Mitchell, A. C.; Chowdhary, R. K.

    1991-11-01

    Light-sensitive liposomes incorporating a photochromic phospholipid (Bis-Azo PC) have been developed which exhibit light-activated release of entrapped contents and intervesicular fusion. The trapping and light-induced release of inorganic ions, fluorescent market dyes, and the antitumor drug methotrexate have been demonstrated. These results are discussed together with some of the potential therapeutic applications of light-sensitive liposomes.

  14. Characterization and Insights Into the Nano Liposomal Magnetic Gene Vector Used for Cell Co-Transfection.

    PubMed

    Chen, Wenjie; Cui, Haixin; Zhao, Xiang; Cui, Jinhui; Wang, Yan; Sun, Chaojiao; Cui, Bo; Lei, Feng

    2015-08-01

    The development of magnetofection technology has brought a promising method for gene delivery. Here, we develop a novel liposomal magnetofection system, consisted of magnetic nanoparticle and liposome through molecular assembly, was applied to introduce double genes into porcin somatic cells with high co-transfection efficiency. The performace of liposomal magnetic gene nanovectors has been evaluated by involving the micro morphology, diameters distribution, zeta potentials and the capacity of loading DNA molecules. The assembly way among magnetic gene nanovectors and DNA molecules was investigated by atomic force microscopy. Liposomal nano magnetic gene vectors complexes displayed nanoscale assembly and formed compact "fishing-net structure" after combining with plasmid DNA, which is favorable to enhance the loading capacity of DNA molecules. PMID:26369113

  15. In Vitro and In Vivo Effective Gene Delivery with Novel Liposomal Bubbles

    NASA Astrophysics Data System (ADS)

    Nishiie, Norihito; Suzuki, Ryo; Oda, Yusuke; Hirata, Keiichi; Taira, Yuichiro; Utoguchi, Naoki; Negishi, Yoichi; Maruyama, Kazuo

    2010-03-01

    Microbubbles, which were ultrasound contrast agents, could improve the transfection efficiency by cavitation with ultrasound exposure. However, conventional microbubbles had some problems regarding size and targeting ability. To solve these problems, we paid attention to liposomes that had many advantages as drug, antigen and gene delivery carriers. Because they can easily be controlled their size and added a targeting function. And we succeeded to prepare novel liposomal bubbles (Bubble liposomes) entrapping perfluoropropane which was utilized for contrast enhancement in ultrasonography. In this study, we assessed the feasibility of Bubble liposomes as gene delivery tools utilized cavitation by ultrasound exposure. In vitro gene delivery, Bubble liposomes could deliver plasmid DNA to many cell types such as tumor cells, T cell line and endothelial cells without cytotoxicity. In vivo gene delivery, Bubble liposomes could effectively deliver plasmid DNA into mouse femoral artery. This method was more effectively than conventional lipofection. We conclude that Bubble liposomes are unique and efficient gene delivery tools in vitro and in vivo.

  16. Development of a successive targeting liposome with multi-ligand for efficient targeting gene delivery

    PubMed Central

    Ma, Kun; Shen, Haijun; Shen, Song; Xie, Men; Mao, Chuanbin; Qiu, Liyan; Jin, Yi

    2012-01-01

    Background A successful gene delivery system needs to breakthrough several barriers to allow efficient transgenic expression. In the present study, successive targeting liposomes (STL) were constructed by integrating various targeting groups into a nanoparticle to address this issue. Methods Polyethylenimine (PEI) 1800-triamcinolone acetonide (TA) with nuclear targeting capability was synthesized by a two-step reaction. Lactobionic acid was connected with cholesterol to obtain a compound of [(2-lactoylamido) ethylamino]formic acid cholesterol ester (CHEDLA) with hepatocyte-targeting capability. The liposome was modified with PEI 1800-TA and CHEDLA to prepare successive targeting liposome (STL). Its physicochemical properties and transfection efficiency were investigated both in vitro and in vivo. Results The diameter of STL was approximately 100 nm with 20 mV of potential. The confocal microscopy observation and potential assay verified that lipid bilayer of STL was decorated with PEI 1800-TA. Cytotoxicity of STL was significantly lower than that of PEI 1800-TA and PEI 25K. The transfection efficiency of 10% CHEDLA STL in HepG2 cells was the higher than of the latter two with serum. Its transfection efficiency was greatly reduced with excessive free galactose, indicating that STL was absorbed via galactose receptor-mediated endocytosis. The in vivo study in mice showed that 10% CHEDLA STL had better transgenic expression in liver than the other carriers. Conclusions STL with multi-ligand was able to overcome the various barriers to target nucleus and special cells and present distinctive transgenic expression. Therefore, it has a great potential for gene therapy as a nonviral carrier. PMID:21574214

  17. History of gene therapy.

    PubMed

    Wirth, Thomas; Parker, Nigel; Ylä-Herttuala, Seppo

    2013-08-10

    Two decades after the initial gene therapy trials and more than 1700 approved clinical trials worldwide we not only have gained much new information and knowledge regarding gene therapy in general, but also learned to understand the concern that has persisted in society. Despite the setbacks gene therapy has faced, success stories have increasingly emerged. Examples for these are the positive recommendation for a gene therapy product (Glybera) by the EMA for approval in the European Union and the positive trials for the treatment of ADA deficiency, SCID-X1 and adrenoleukodystrophy. Nevertheless, our knowledge continues to grow and during the course of time more safety data has become available that helps us to develop better gene therapy approaches. Also, with the increased understanding of molecular medicine, we have been able to develop more specific and efficient gene transfer vectors which are now producing clinical results. In this review, we will take a historical view and highlight some of the milestones that had an important impact on the development of gene therapy. We will also discuss briefly the safety and ethical aspects of gene therapy and address some concerns that have been connected with gene therapy as an important therapeutic modality. PMID:23618815

  18. The physiology of cardiovascular disease and innovative liposomal platforms for therapy

    PubMed Central

    Ruiz-Esparza, Guillermo U; Flores-Arredondo, Jose H; Segura-Ibarra, Victor; Torre-Amione, Guillermo; Ferrari, Mauro; Blanco, Elvin; Serda, Rita E

    2013-01-01

    Heart disease remains the major cause of death in males and females, emphasizing the need for novel strategies to improve patient treatment and survival. A therapeutic approach, still in its infancy, is the development of site-specific drug-delivery systems. Nanoparticle-based delivery systems, such as liposomes, have evolved into robust platforms for site-specific delivery of therapeutics. In this review, the clinical impact of cardiovascular disease and the pathophysiology of different subsets of the disease are described. Potential pathological targets for therapy are introduced, and promising advances in nanotherapeutic cardiovascular applications involving liposomal platforms are presented. PMID:23413209

  19. Study on liposomalization of zinc-coproporphyrin I as a novel drug in photodynamic therapy.

    PubMed

    Sadzuka, Yasuyuki; Iwasaki, Fumiaki; Sugiyama, Ikumi; Horiuchi, Kentaro; Hirano, Toru; Ozawa, Hidechika; Kanayama, Naohiro; Sonobe, Takashi

    2007-06-29

    Photodynamic therapy (PDT) with a photosensitizer and laser irradiation has been shown to have potential effects in cancer chemotherapy. However, the commercial drug clinically gave many problems due to the poor solubility of the photosensitizer in water and the photosensitivity as an adverse reaction of PDT. We have examined best condition on the liposomalization of Zn-complexed coproporphyrin I (ZnCPI) as novel photosensitizer. The difference of pH in buffer significantly changed the ZnCPI entrapped ratio. The entrapped ratio of ZnCPI in PBS(-) buffer was 10.8+/-0.3%, whereas, these levels in some lactate buffer (below pH 5.0) increased. The change between the molecular form<=>ionic form of ZnCPI was occurred due to the change of the pH of buffer, and the amount of ZnCPI in the liposomal membrane changed. The difference of this level was considered to be contributed by the change of zeta potentials. Next, we examined the effect of the different pH of the buffer in liposomal preparation on the ZnCPI distribution in each tissue after each liposome administration. At 2 and 6h post-injection of ZnCPI liposome (pH 4.6), the ZnCPI concentration in the plasma of Ehrlich ascites carcinoma bearing mice was shown to be higher compared to that in other groups. The ZnCPI concentrations in the tumor after 2 and 6h of ZnCPI liposome (pH 4.6) treatment were shown to be higher than that in other groups. In conclusion, it is considered that the ZnCPI liposome (pH 4.6) had the effective antitumor activity with laser irradiation without the adverse reactions. PMID:17349754

  20. siRNA-loaded cationic liposomes for cancer therapy: Development, characterization and efficacy evaluation

    NASA Astrophysics Data System (ADS)

    Ying, Bo

    Cancer is a major health problem in the United States and many other parts of the world. However, cancer treatment is severely limited by the lack of highly effective cytotoxic agents and selective delivery methods which can serve as the "magic bullet" (first raised by Dr. Paul Ehrlich, the goal of targeting a specific location without causing harm to surrounding tissues or to more distant regions in the body). The revolutionary finding that tumors cannot grow beyond a microscopic size without dedicated blood supply provided a highly effective alternative for the treatment of cancer. Currently, anti-angiogenic therapy and the discovery of RNA interference makes it possible to treat some conditions by silencing disorder-causing genes of targeting cells which are otherwise difficult to eradicate with more conventional therapies. However, before siRNA technology could be widely used as a therapeutic approach, the construct must be efficiently and safely delivered to target cells. Strategies used for siRNA delivery should minimize uptake by phagocytes, enzymatic degradation by nucleases and should be taken up preferentially, if not specifically, by the intended cell population. Kinesin spindle proteins (KSP) are the motor proteins which play critical roles during mitosis. Different from tubulins which are also present in post-mitotic cells, such as axons, KSP is exclusively expressed in mitotic cells, which makes them the ideal target for anti-mitotics. In the present study, we intend to develop, characterize and evaluate a liposome-based delivery system which can deliver KSP siRNA selectively to the tumor vasculature (thus inhibiting angiogenesis, destroying tumor vasculature and eventually, eradicating tumor growth). We first developed ten different liposome preparation types with different compositions of lipids. Next, the capacity for loading siRNA and efficiency of targeting the tumor vascular supply was evaluated using relevant cellular and tumor models

  1. Preparation of novel apigenin-enriched, liposomal and non-liposomal, antiinflammatory topical formulations as substitutes for corticosteroid therapy.

    PubMed

    Arsić, Ivana; Tadić, Vanja; Vlaović, Djordje; Homšek, Irena; Vesić, Sonja; Isailović, Gorana; Vuleta, Gordana

    2011-02-01

    Two oil-in-water formulations, containing equal amounts of apigenin-enriched chamomile flower extracts, for potential use as topical antiinflammatory agents, were prepared and their physicochemical properties evaluated. A pilot clinical study was then carried out to assess patient acceptability and efficacy. The creams were either non-liposomal or liposomal. The liposomal formulations were more viscous, thus producing superior release characteristics in vitro. The clinical study also showed that the liposomal creams were, as antiinflammatory agents, slightly more effective in vivo than the non-liposomal formulations. These results suggest that there is scope for the further development of even more effective and safer alternatives to corticosteroids. PMID:20641055

  2. Systemic anti-tumour effects of local thermally sensitive liposome therapy

    PubMed Central

    Viglianti, Benjamin L.; Dewhirst, Mark W.; Boruta, R.J.; Park, Ji-Young; Landon, Chelsea; Fontanella, Andrew N.; Guo, Jing; Manzoor, Ashley; Hofmann, Christina L.; Palmer, Gregory M.

    2015-01-01

    Purpose There were two primary objectives of this study: (1) to determine whether treatment of a tumour site with systemically administered thermally sensitive liposomes and local hyperthermia (HT) for triggered release would have dual anti-tumour effect on the primary heated tumour as well as an unheated secondary tumour in a distant site, and (2) to determine the ability of non-invasive optical spectroscopy to predict treatment outcome. The optical end points studied included drug levels, metabolic markers flavin adenine dinucleotide (FAD), nicotinamide adenine dinucleotide phosphate (NAD(P)H), and physiological markers (total haemoglobin (Hb) and Hb oxygen saturation) before and after treatment. Materials and methods Mice were inoculated with SKOV3 human ovarian carcinoma in both hind legs. One tumour was selected for local hyperthermia and subsequent systemic treatment. There were four treatment groups: control, DOXIL® (non-thermally sensitive liposomes containing doxorubicin), and two different thermally sensitive liposome formulations containing doxorubicin. Optical spectroscopy was performed prior to therapy, immediately after treatment, and 6, 12, and 24 h post therapy. Results Tumour growth delay was seen with DOXIL and the thermally sensitive liposomes in the tumours that were heated, similar to previous studies. Tumour growth delay was also seen in the opposing tumour in the thermally sensitive liposome-treated groups. Optical spectroscopy demonstrated correlation between growth delay, doxorubicin (DOX) levels, and changes of NAD(P)H from baseline levels. Hb and Hb saturation were not correlated with growth delay. Discussion The study demonstrated that thermally sensitive liposomes affect the primary heated tumour as well as systemic efficacy. Non-invasive optical spectroscopy methods were shown to be useful in predicting efficacy at early time points post-treatment. PMID:25164143

  3. Vaginal gene therapy.

    PubMed

    Rodríguez-Gascón, Alicia; Del Pozo-Rodríguez, Ana; Isla, Arantxazu; Solinís, María Angeles

    2015-09-15

    In the last years, vaginal gene therapy has gained increasing attention mainly for the treatment and control of sexually transmitted infections. DNA delivery has been also suggested to improve reproductive outcomes for women with deficiencies in the female reproductive tract. Although no product has reached clinical phase, preclinical investigations reveal the potential of the vaginal tract as an effective administration route for gene delivery. This review focuses on the main advantages and challenges of vaginal gene therapy, and on the most used nucleic acid delivery systems, including viral and non-viral vectors. Additionally, the advances in the application of vaginal gene therapy for the treatment and/or prevention of infectious diseases such as the human immunodeficiency virus (HIV), the human papillomavirus (HPV) or the herpes simplex virus (HSV) are presented. PMID:26189799

  4. Gene therapy in epilepsy

    PubMed Central

    Riban, Véronique; Fitzsimons, Helen L.; During, Matthew J.

    2009-01-01

    SUMMARY Results from animal models suggest gene therapy is a promising new approach for the treatment of epilepsy. Several candidate genes such as neuropeptide Y and galanin have been demonstrated in preclinical studies to have a positive effect on seizure activity. For a successful gene therapy-based treatment, efficient delivery of a transgene to target neurons is also essential. To this end, advances have been made in the areas of cell transplantation and in the development of recombinant viral vectors for gene delivery. Recombinant adeno-associated viral (rAAV) vectors in particular show promise for gene therapy of neurological disorders due to their neuronal tropism, lack of toxicity, and stable persistence in neurons, which results in robust, long-term expression of the transgene. rAAV vectors have been recently used in phase I clinical trials of Parkinson’s disease with an excellent safety profile. Prior to commencement of phase I trials for gene therapy of epilepsy, further preclinical studies are ongoing including evaluation of the therapeutic benefit in chronicmodels of epileptogenesis, as well as assessment of safety intoxicological studies. PMID:18717707

  5. MRI-visible liposome nanovehicles for potential tumor-targeted delivery of multimodal therapies

    NASA Astrophysics Data System (ADS)

    Ren, Lili; Chen, Shizhen; Li, Haidong; Zhang, Zhiying; Ye, Chaohui; Liu, Maili; Zhou, Xin

    2015-07-01

    Real-time diagnosis and monitoring of disease development, and therapeutic responses to treatment, are possible by theranostic magnetic resonance imaging (MRI). Here we report the synthesis of a multifunctional liposome, which contains Gd-DOTA (an MRI probe), paclitaxel and c(RGDyk) (a targeted peptide). This nanoparticle overcame the insolubility of paclitaxel, reduced the side effects of FDA-approved formulation of PTX-Cre (Taxol®) and improved drug delivery efficiency to the tumor. c(RGDyk) modification greatly enhanced the cytotoxicity of the drug in tumor cells A549. The T1 relaxivity in tumor cells treated with the targeted liposome formulation was increased 16-fold when compared with the non-targeted group. In vivo, the tumors in mice were visualized using T1-weighted imaging after administration of the liposome. Also the tumor growth could be inhibited well after the treatment. Fluorescence images in vitro and ex vivo also showed the targeting effect of this liposome in tumor cells, indicating that this nanovehicle could limit the off-target side effects of anticancer drugs and contrast agents. These findings lay the foundation for further tumor inhibition study and application of this delivery vehicle in cancer therapy settings.

  6. Comparison of 5-aminolevulinic acid-encapsulated liposome versus ethosome for skin delivery for photodynamic therapy.

    PubMed

    Fang, Yi-Ping; Tsai, Yi-Hung; Wu, Pao-Chu; Huang, Yaw-Bin

    2008-05-22

    Topical photodynamic therapy (PDT) with 5-aminolevulinic acid (ALA) is an alternative therapy for many non-melanoma skin cancers. The major limitation of this therapy, however, is the low permeability of ALA through the stratum corneum (SC) of the skin. The objective of the present work was to characterize ethosomes containing ALA and to enhance the skin production of protoporphyrin IX (PpIX), compared to traditional liposomes. Results showed that the average particle sizes of the ethosomes were less than those of liposomes. Moreover, the entrapment efficiency of ALA in the ethosome formulations was 8-66% depending on the surfactant added. The particle size of the ethosomes was still approximately <200 nm after 32 days of storage. An in vivo animal study observed the presence of PpIX in the skin by confocal laser scanning microscopy (CLSM). The results indicated that the penetration ability of ethosomes was greater than that of liposomes. The enhancements of all the formulations were ranging from 11- to 15-fold in contrast to that of control (ALA in an aqueous solution) in terms of PpIX intensity. In addition, colorimetry detected no erythema in the irradiated skin. The results demonstrated that the enhancement ratio of ethosome formulations did not significantly differ between the non-irradiated and irradiated groups except for PE/CH/SS, which may have been due to a photobleaching effect of the PDT-irradiation process. PMID:18325699

  7. Site-specific conjugation of single domain antibodies to liposomes enhances photosensitizer uptake and photodynamic therapy efficacy

    NASA Astrophysics Data System (ADS)

    Broekgaarden, M.; van Vught, R.; Oliveira, S.; Roovers, R. C.; van Bergen En Henegouwen, P. M. P.; Pieters, R. J.; van Gulik, T. M.; Breukink, E.; Heger, M.

    2016-03-01

    Photodynamic therapy for therapy-resistant cancers will greatly benefit from targeted delivery of tumor photosensitizing agents. In this study, a strategy for the site-specific conjugation of single domain antibodies onto liposomes containing the photosensitizer zinc phthalocyanine was developed and tested.Photodynamic therapy for therapy-resistant cancers will greatly benefit from targeted delivery of tumor photosensitizing agents. In this study, a strategy for the site-specific conjugation of single domain antibodies onto liposomes containing the photosensitizer zinc phthalocyanine was developed and tested. Electronic supplementary information (ESI) available: Materials and methods. See DOI: 10.1039/c6nr00014b

  8. Carborane derivatives loaded into liposomes as efficient delivery systems for boron neutron capture therapy.

    PubMed

    Altieri, S; Balzi, M; Bortolussi, S; Bruschi, P; Ciani, L; Clerici, A M; Faraoni, P; Ferrari, C; Gadan, M A; Panza, L; Pietrangeli, D; Ricciardi, G; Ristori, S

    2009-12-10

    Boron neutron capture therapy (BNCT) is an anticancer therapy based on the incorporation of (10)B in tumors, followed by neutron irradiation. Recently, the synthesis and delivery of new boronated compounds have been recognized as some of the main challenges in BNCT application. Here, we report on the use of liposomes as carriers for BNCT active compounds. Two carborane derivatives, i.e., o-closocarboranyl beta-lactoside (LCOB) and 1-methyl-o-closocarboranyl-2-hexylthioporphyrazine (H(2)PzCOB), were loaded into liposomes bearing different surface charges. The efficacy of these formulations was tested on model cell cultures, that is, DHD/K12/TRb rat colon carcinoma and B16-F10 murine melanoma. These induce liver and lung metastases, respectively, and are used to study the uptake of standard BNCT drugs, including borophenylalanine (BPA). Boron concentration in treated cells was measured by alpha spectrometry at the TRIGA mark II reactor (University of Pavia). Results showed high performance of the proposed formulations. In particular, the use of cationic liposomes increased the cellular concentration of (10)B by at least 30 times more than that achieved by BPA. PMID:19954249

  9. Multi-functional liposomes showing radiofrequency-triggered release and magnetic resonance imaging for tumor multi-mechanism therapy

    NASA Astrophysics Data System (ADS)

    Du, Bin; Han, Shuping; Li, Hongyan; Zhao, Feifei; Su, Xiangjie; Cao, Xiaohui; Zhang, Zhenzhong

    2015-03-01

    Recently, nanoplatforms with multiple functions, such as tumor-targeting drug carriers, MRI, optical imaging, thermal therapy etc., have become popular in the field of cancer research. The present study reports a novel multi-functional liposome for cancer theranostics. A dual targeted drug delivery with radiofrequency-triggered drug release and imaging based on the magnetic field influence was used advantageously for tumor multi-mechanism therapy. In this system, the surface of fullerene (C60) was decorated with iron oxide nanoparticles, and PEGylation formed a hybrid nanosystem (C60-Fe3O4-PEG2000). Thermosensitive liposomes (dipalmitoylphosphatidylcholine, DPPC) with DSPE-PEG2000-folate wrapped up the hybrid nanosystem and docetaxel (DTX), which were designed to combine features of biological and physical (magnetic) drug targeting for fullerene radiofrequency-triggered drug release. The magnetic liposomes not only served as powerful tumor diagnostic magnetic resonance imaging (MRI) contrast agents, but also as powerful agents for photothermal ablation of tumors. Furthermore, a remarkable thermal therapy combined chemotherapy multi-functional liposome nanoplatform converted radiofrequency energy into thermal energy to release drugs from thermosensitive liposomes, which was also observed during both in vitro and in vivo treatment. The multi-functional liposomes also could selectively kill cancer cells in highly localized regions via their excellent active tumor targeting and magnetic targeted abilities.

  10. Antimycotic therapy with liposomal amphotericin-B for patients undergoing bone marrow or peripheral blood stem cell transplantation.

    PubMed

    Krüger, W; Stockschläder, M; Sobottka, I; Betker, R; De Wit, M; Kröger, N; Grimm, J; Arland, M; Fiedler, W; Erttmann, R; Zander, A R

    1997-02-01

    Suspected deep or systemic mycosis in patients undergoing high-dose therapy and autologous or allogeneic bone marrow transplantation (BMT) requires an immediate systemic antimycotic therapy. Intravenous therapy with the standard drug conventional amphotericin-B is associated with severe adverse effects like nephrotoxicity and chills. Furthermore, BMT patients often receive other potential nephrotoxic drugs such as CsA or virustatics. In this study, we report 74 BMT-patients treated with liposomal amphotericin-B for culture-documented aspergillosis (n = 5) or candidiasis (n = 6), or for serologically (n = 35) or clinically suspected mycosis or as prophylaxis (n = 2). Therapy was initiated with a median dose of 2.8 (0.64-5.09) mg/kg body-weight and continued for 13 (1-55) days. The drug was excellently tolerated and only in one was therapy stopped due to severe chills and fever. Severe organ impairment was not observed under therapy with liposomal amphotericin-B. Creatinine decreased in five patients after an increase under preceding therapy with the conventional formulation. Influence of liposomal amphotericin-B on bilirubin and transaminases was difficult to evaluate due to therapy-related toxicity, veno-occlusive disease (VOD), and graft-versus-host disease (GvHD). 10/11 culture-positive patients died from aspergillosis (5/5) or candidiasis (5/6), but in 9/11 of these subjects the immunity was additionally compromised by GvHD, steroid therapy, and VOD. Liposomal amphotericin-B was effective in preventing relapse of systemic mycosis in 10/12 patients with a history of aspergillosis (n = 11) or candidiasis (n = 1). We conclude, that favourable toxicity of liposomal amphotericin-B should encourage dose escalation studies of liposomal amphotericin-B randomised against the conventional formulation and that the comparison of patients undergoing BMT with patients under standard chemotherapy might be difficult because of additional risk factors of the BMT-patients. PMID

  11. Direct intratumoral infusion of liposome encapsulated rhenium radionuclides for cancer therapy: Effects of nonuniform intratumoral dose distribution

    SciTech Connect

    Hrycushko, Brian A.; Li Shihong; Goins, Beth; Otto, Randal A.; Bao, Ande

    2011-03-15

    Purpose: Focused radiation therapy by direct intratumoral infusion of lipid nanoparticle (liposome)-carried beta-emitting radionuclides has shown promising results in animal model studies; however, little is known about the impact the intratumoral liposomal radionuclide distribution may have on tumor control. The primary objective of this work was to investigate the effects the intratumoral absorbed dose distributions from this cancer therapy modality have on tumor control and treatment planning by combining dosimetric and radiobiological modeling with in vivo imaging data. Methods: {sup 99m}Tc-encapsulated liposomes were intratumorally infused with a single injection location to human head and neck squamous cell carcinoma xenografts in nude rats. High resolution in vivo planar imaging was performed at various time points for quantifying intratumoral retention following infusion. The intratumoral liposomal radioactivity distribution was obtained from 1 mm resolution pinhole collimator SPECT imaging coregistered with CT imaging of excised tumors at 20 h postinfusion. Coregistered images were used for intratumoral dosimetric and radiobiological modeling at a voxel level following extrapolation to the therapeutic analogs, {sup 186}Re/{sup 188}Re liposomes. Effective uniform dose (EUD) and tumor control probability (TCP) were used to assess therapy effectiveness and possible methods of improving upon tumor control with this radiation therapy modality. Results: Dosimetric analysis showed that average tumor absorbed doses of 8.6 Gy/MBq (318.2 Gy/mCi) and 5.7 Gy/MBq (209.1 Gy/mCi) could be delivered with this protocol of radiation delivery for {sup 186}Re/{sup 188}Re liposomes, respectively, and 37-92 MBq (1-2.5 mCi)/g tumor administered activity; however, large intratumoral absorbed dose heterogeneity, as seen in dose-volume histograms, resulted in insignificant values of EUD and TCP for achieving tumor control. It is indicated that the use of liposomes encapsulating

  12. Boron-Containing Compounds for Liposome-Mediated Tumor Localization and Application to Neutron Capture Therapy

    SciTech Connect

    Hawthorne, M. Frederick

    2005-04-07

    Medical application of boron neutron capture therapy (BNCT) has been significantly hindered by the slow development of boron drug-targeting methodologies for the selective delivery of high boron concentration sto malignant cells. We have successfully sought to fill this need by creating liposomes suitable as in vivo boron delivery vehicles for BNCT. Delivery of therapeutic quantities of boron to tumors in murine models has been achieved with small unilamellar boron-rich liposomes. Subsequently, attempts have been made to improve delivery efficiency of liposomes encapsulating boron-containing water-soluble species into their hollow core by incorporating lipophilic boron compounds as addenda to the liposome bilayer, incorporating boron compounds as structural components of the bilayer (which however, poses the risk of sacrificing some stability), and combinations thereof. Regardless of the method, approximately 90% of the total liposome mass remains therapeutically inactive and comprised of the vehicle's construction materials, while less than 5% is boron for neutron targeting. Following this laboratory's intensive study, the observed tumor specificity of certain liposomes has been attributed to their diminutive size of these liposomes (30-150 nm), which enables these small vesicles to pass through the porous, immature vasculature of rapidly growing tumor tissue. We surmised that any amphiphilic nanoparticle of suitable size could possess some tumor selectivity. Consequently, the discovery of a very boron-rich nanoparticle delivery agent with biodistribution performance similar to unilamellar liposomes became one of our goals. Closomers, a new class of polyhedral borane derivatives, attracted us as an alternative BNCT drug-delivery system. We specifically envisioned dodeca (nido-carboranyl)-substituted closomers as possibly having a great potential role in BNCT drug delivery. They could function as extraordinarily boron-rich BNCT drugs since they are amphiphilic

  13. Site-specific conjugation of single domain antibodies to liposomes enhances photosensitizer uptake and photodynamic therapy efficacy.

    PubMed

    Broekgaarden, M; van Vught, R; Oliveira, S; Roovers, R C; van Bergen En Henegouwen, P M P; Pieters, R J; Van Gulik, T M; Breukink, E; Heger, M

    2016-03-17

    Photodynamic therapy for therapy-resistant cancers will greatly benefit from targeted delivery of tumor photosensitizing agents. In this study, a strategy for the site-specific conjugation of single domain antibodies onto liposomes containing the photosensitizer zinc phthalocyanine was developed and tested. PMID:26954515

  14. Gene therapy in pancreatic cancer

    PubMed Central

    Liu, Si-Xue; Xia, Zhong-Sheng; Zhong, Ying-Qiang

    2014-01-01

    Pancreatic cancer (PC) is a highly lethal disease and notoriously difficult to treat. Only a small proportion of PC patients are eligible for surgical resection, whilst conventional chemoradiotherapy only has a modest effect with substantial toxicity. Gene therapy has become a new widely investigated therapeutic approach for PC. This article reviews the basic rationale, gene delivery methods, therapeutic targets and developments of laboratory research and clinical trials in gene therapy of PC by searching the literature published in English using the PubMed database and analyzing clinical trials registered on the Gene Therapy Clinical Trials Worldwide website (http://www. wiley.co.uk/genmed/ clinical). Viral vectors are main gene delivery tools in gene therapy of cancer, and especially, oncolytic virus shows brighter prospect due to its tumor-targeting property. Efficient therapeutic targets for gene therapy include tumor suppressor gene p53, mutant oncogene K-ras, anti-angiogenesis gene VEGFR, suicide gene HSK-TK, cytosine deaminase and cytochrome p450, multiple cytokine genes and so on. Combining different targets or combination strategies with traditional chemoradiotherapy may be a more effective approach to improve the efficacy of cancer gene therapy. Cancer gene therapy is not yet applied in clinical practice, but basic and clinical studies have demonstrated its safety and clinical benefits. Gene therapy will be a new and promising field for the treatment of PC. PMID:25309069

  15. Suicide Gene Therapy for Cancer - Current Strategies.

    PubMed

    Zarogoulidis, Paul; Darwiche, Kaid; Sakkas, Antonios; Yarmus, Lonny; Huang, Haidong; Li, Qiang; Freitag, Lutz; Zarogoulidis, Konstantinos; Malecki, Marek

    2013-08-01

    Current cancer treatments may create profound iatrogenic outcomes. The adverse effects of these treatments still remain, as the serious problems that practicing physicians have to cope with in clinical practice. Although, non-specific cytotoxic agents constitute an effective treatment modality against cancer cells, they also tend to kill normal, quickly dividing cells. On the other hand, therapies targeting the genome of the tumors are both under investigation, and some others are already streamlined to clinical practice. Several approaches have been investigated in order to find a treatment targeting the cancer cells, while not affecting the normal cells. Suicide gene therapy is a therapeutic strategy, in which cell suicide inducing transgenes are introduced into cancer cells. The two major suicide gene therapeutic strategies currently pursued are: cytosine deaminase/5-fluorocytosine and the herpes simplex virus/ganciclovir. The novel strategies include silencing gene expression, expression of intracellular antibodies blocking cells' vital pathways, and transgenic expression of caspases and DNases. We analyze various elements of cancer cells' suicide inducing strategies including: targets, vectors, and mechanisms. These strategies have been extensively investigated in various types of cancers, while exploring multiple delivery routes including viruses, non-viral vectors, liposomes, nanoparticles, and stem cells. We discuss various stages of streamlining of the suicide gene therapy into clinical oncology as applied to different types of cancer. Moreover, suicide gene therapy is in the center of attention as a strategy preventing cancer from developing in patients participating in the clinical trials of regenerative medicine. In oncology, these clinical trials are aimed at regenerating, with the aid of stem cells, of the patients' organs damaged by pathologic and/or iatrogenic factors. However, the stem cells carry the risk of neoplasmic transformation. We discuss

  16. nanosheets for gene therapy

    NASA Astrophysics Data System (ADS)

    Kou, Zhongyang; Wang, Xin; Yuan, Renshun; Chen, Huabin; Zhi, Qiaoming; Gao, Ling; Wang, Bin; Guo, Zhaoji; Xue, Xiaofeng; Cao, Wei; Guo, Liang

    2014-10-01

    A new class of two-dimensional (2D) nanomaterial, transition metal dichalcogenides (TMDCs) such as MoS2, MoSe2, WS2, and WSe2 which have fantastic physical and chemical properties, has drawn tremendous attention in different fields recently. Herein, we for the first time take advantage of the great potential of MoS2 with well-engineered surface as a novel type of 2D nanocarriers for gene delivery and therapy of cancer. In our system, positively charged MoS2-PEG-PEI is synthesized with lipoic acid-modified polyethylene glycol (LA-PEG) and branched polyethylenimine (PEI). The amino end of positively charged nanomaterials can bind to the negatively charged small interfering RNA (siRNA). After detection of physical and chemical characteristics of the nanomaterial, cell toxicity was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Polo-like kinase 1 (PLK1) was investigated as a well-known oncogene, which was a critical regulator of cell cycle transmission at multiple levels. Through knockdown of PLK1 with siRNA carried by novel nanovector, qPCR and Western blot were used to measure the interfering efficiency; apoptosis assay was used to detect the transfection effect of PLK1. All results showed that the novel nanocarrier revealed good biocompatibility, reduced cytotoxicity, as well as high gene-carrying ability without serum interference, thus would have great potential for gene delivery and therapy.

  17. Saporin suicide gene therapy.

    PubMed

    Zarovni, Natasa; Vago, Riccardo; Fabbrini, Maria Serena

    2009-01-01

    New genes useful in suicide gene therapy are those encoding toxins such as plant ribosome-inactivating proteins (RIPs), which can irreversibly block protein synthesis, triggering apoptotic cell death. Plasmids expressing a cytosolic saporin (SAP) gene from common soapwort (Saponaria officinalis) are generated by placing the region encoding the mature plant toxin under the control of strong viral promoters and may be placed under tumor-specific promoters. The ability of the resulting constructs to inhibit protein synthesis is tested in cultured tumor cells co-transfected with a luciferase reporter gene. SAP expression driven by the cytomegalovirus (CMV) promoter (pCI-SAP) demonstrates that only 10 ng ofplasmid DNA per 1.6 x 10(4) B16 melanoma cells drastically reduces luciferase reporter activity to 18% of that in control cells (1). Direct intratumoral injections are performed in an aggressive melanoma model. B16 melanoma-bearing mice injected with pCI-SAP complexed with lipofectamine or N-(2,3-dioleoyloxy-1-propyl) trimethylammonium methyl sulfate (DOTAP) show a noteworthy attenuation in tumor growth, and this effect is significantly augmented by repeated administrations of the DNA complexes. Here, we describe in detail this cost-effective and safe suicide gene approach. PMID:19565907

  18. Co-Delivery of Doxorubicin and SATB1 shRNA by Thermosensitive Magnetic Cationic Liposomes for Gastric Cancer Therapy

    PubMed Central

    Fang, Erhu; Lu, Xiaoming; Wang, Guobin; Tong, Qiang

    2014-01-01

    In previous a study, we had developed a novel thermosensitive magnetic delivery system based on liposomes. This study aimed to evaluate the efficiency of this system for the co-delivery of both drugs and genes to the same cell and its anti-tumor effects on gastric cancer. Doxorubicin (DOX) and SATB1 shRNA vector were loaded into the co-delivery system, and in vitro DOX thermosensitive release activity, targeted gene silencing efficiency, targeted cellular uptake, in vitro cytotoxicity, as well as in vivo anti-tumor activity were determined. The results showed that this co-delivery system had desirable targeted delivery efficacy, DOX thermosensitive release and SATB1 gene silencing. Moreover, the co-delivery of DOX and SATB1 shRNA exhibited enhanced activity to inhibit gastric cancer cell growth in vitro and in vivo, compared to single delivery. In conclusion, the novel thermosensitive magnetic drug and gene co-delivery system has promising application in combined chemotherapy and gene therapy for gastric cancer. PMID:24675979

  19. Brain tumor-targeted delivery and therapy by focused ultrasound introduced doxorubicin-loaded cationic liposomes.

    PubMed

    Lin, Qian; Mao, Kai-Li; Tian, Fu-Rong; Yang, Jing-Jing; Chen, Pian-Pian; Xu, Jie; Fan, Zi-Liang; Zhao, Ya-Ping; Li, Wen-Feng; Zheng, Lei; Zhao, Ying-Zheng; Lu, Cui-Tao

    2016-02-01

    Brain tumor lacks effective delivery system for treatment. Focused ultrasound (FUS) can reversibly open BBB without impacts on normal tissues. As a potential drug carrier, cationic liposomes (CLs) have the ability to passively accumulate in tumor tissues for their positive charge. In this study, FUS introduced doxorubicin-loaded cationic liposomes (DOX-CLs) were applied to improve the efficiency of glioma-targeted delivery. Doxorubicin-loaded CLs (DOX-CLs) and quantum dot-loaded cationic liposomes (QD-CLs) were prepared using extrusion technology, and their characterizations were evaluated. With the advantage of QDs in tracing images, the glioma-targeted accumulation of FUS + CLs was evaluated by fluorescence imaging and flow cytometer. Cell survival rate, tumor volume, animal survival time, and brain histology in C6 glioma model were investigated to evaluate the glioma-targeted delivery of FUS + DOX-CLs. DOX-CLs and QD-CLs had suitable nanoscale sizes and high entrapment efficiency. The combined strategy of FUS introduced CLs significantly increased the glioma-targeted accumulation for load drugs. FUS + DOX-CLs showed the strongest inhibition on glioma based on glioma cell in vitro and glioma model in vivo experiments. From MRI and histological analysis, FUS + DOX-CLs group strongly suppressed the glioma progression and extended the animal survival time to 81.2 days. Among all the DOX treatment groups, FUS + DOX-CLs group showed the best cell viability and highest level of tumor apoptosis and necrosis. Combining the advantages of BBB reversible opening by FUS and glioma-targeted binding by CLs, ultrasound introduced cationic liposomes could achieve glioma-targeted delivery, which might be developed as a potential strategy for future brain tumor therapy. PMID:26666650

  20. Cardiac Gene Therapy

    PubMed Central

    Chaanine, Antoine H.; Kalman, Jill; Hajjar, Roger J.

    2010-01-01

    Heart failure is a chronic progressive disorder where frequent and recurrent hospitalizations are associated with high mortality and morbidity. The incidence and the prevalence of this disease will increase with the increase in the number of the aging population of the United States. Understanding the molecular pathology and pathophysiology of this disease will uncover novel targets and therapies that can restore the function or attenuate the damage of malfunctioning cardiomyocytes by gene therapy that becomes an interesting and a promising field for the treatment of heart failure as well as other diseases in the future. Of equal importance is developing vectors and delivery methods that can efficiently transduce the majority of the cardiomyocytes, that can offer a long term expression and that can escape the host immune response. Recombinant adeno-associated virus vectors have the potential to become a promising novel therapeutic vehicles for molecular medicine in the future. PMID:21092890

  1. Gene therapy in keratoconus

    PubMed Central

    Farjadnia, Mahgol; Naderan, Mohammad; Mohammadpour, Mehrdad

    2015-01-01

    Keratoconus (KC) is the most common ectasia of the cornea and is a common reason for corneal transplant. Therapeutic strategies that can arrest the progression of this disease and modify the underlying pathogenesis are getting more and more popularity among scientists. Cumulating data represent strong evidence of a genetic role in the pathogenesis of KC. Different loci have been identified, and certain mutations have also been mapped for this disease. Moreover, Biophysical properties of the cornea create an appropriate candidate of this tissue for gene therapy. Immune privilege, transparency and ex vivo stability are among these properties. Recent advantage in vectors, besides the ability to modulate the corneal milieu for accepting the target gene for a longer period and fruitful translation, make a big hope for stupendous results reasonable. PMID:25709266

  2. Prospects for gene therapy.

    PubMed

    Ali, Robin R

    2004-01-01

    Inherited retinal disease, which includes conditions such as retinitis pigmentosa (RP), affects about 1/3000 of the population in the Western world. It is characterized by gradual loss of vision and results from mutations in any one of 60 or so different genes. There are currently no effective treatments, but many of the genes have now been identified and their functions elucidated, providing a major impetus to develop gene-based treatments. Many of the disease genes are photoreceptor- or retinal pigment epithelium (RPE) cell specific. Since adeno-associated viral (AAV) vectors can be used for efficient gene transfer to these two cell types, we are developing AAV-mediated gene therapy approaches for inherited retinal degeneration using animal models that have defects in these cells. The retinal degeneration slow (rds or Prph2Rd2/Rd) mouse, a model of recessive RP, lacks a functional gene encoding peripherin 2, which is a photoreceptor-specific protein required for the formation of outer segment discs. We have previously demonstrated restoration of photoreceptor ultrastructure and function by AAV-mediated gene transfer of peripherin 2. We have now extended our assessment to central visual neuronal responses in order to show an improvement of central visual function. The Royal College of Surgeons (RCS) rat, provides another model of recessive RP. Here the defect is due to a defect in Mertk, a gene that is expressed in the RPE and encodes a receptor tyrosine kinase that is thought to be involved in the recognition and binding of outer segment debris. The gene defect results in the inability of the RPE to phagocytose the shed outer segments from photoreceptor cells. The resulting accumulation of debris between the RPE and the neuroretina leads to progressive loss of photoreceptor cells. AAV-mediated delivery of Mertk to the RPE results in reduction of debris indicating that the phagocytosing function of the RPE is restored and delays the degeneration of the

  3. Human Gene Therapy: Genes without Frontiers?

    ERIC Educational Resources Information Center

    Simon, Eric J.

    2002-01-01

    Describes the latest advancements and setbacks in human gene therapy to provide reference material for biology teachers to use in their science classes. Focuses on basic concepts such as recombinant DNA technology, and provides examples of human gene therapy such as severe combined immunodeficiency syndrome, familial hypercholesterolemia, and…

  4. Cationic liposome-nucleic acid nanoparticle assemblies with applications in gene delivery and gene silencing.

    PubMed

    Majzoub, Ramsey N; Ewert, Kai K; Safinya, Cyrus R

    2016-07-28

    Cationic liposomes (CLs) are synthetic carriers of nucleic acids in gene delivery and gene silencing therapeutics. The introduction will describe the structures of distinct liquid crystalline phases of CL-nucleic acid complexes, which were revealed in earlier synchrotron small-angle X-ray scattering experiments. When mixed with plasmid DNA, CLs containing lipids with distinct shapes spontaneously undergo topological transitions into self-assembled lamellar, inverse hexagonal, and hexagonal CL-DNA phases. CLs containing cubic phase lipids are observed to readily mix with short interfering RNA (siRNA) molecules creating double gyroid CL-siRNA phases for gene silencing. Custom synthesis of multivalent lipids and a range of novel polyethylene glycol (PEG)-lipids with attached targeting ligands and hydrolysable moieties have led to functionalized equilibrium nanoparticles (NPs) optimized for cell targeting, uptake or endosomal escape. Very recent experiments are described with surface-functionalized PEGylated CL-DNA NPs, including fluorescence microscopy colocalization with members of the Rab family of GTPases, which directly reveal interactions with cell membranes and NP pathways. In vitro optimization of CL-DNA and CL-siRNA NPs with relevant primary cancer cells is expected to impact nucleic acid therapeutics in vivo. This article is part of the themed issue 'Soft interfacial materials: from fundamentals to formulation'. PMID:27298431

  5. Extravasation and transcytosis of liposomes in Kaposi's sarcoma-like dermal lesions of transgenic mice bearing the HIV tat gene.

    PubMed Central

    Huang, S. K.; Martin, F. J.; Jay, G.; Vogel, J.; Papahadjopoulos, D.; Friend, D. S.

    1993-01-01

    Transgenic mice bearing the HIV tat gene develop dermal lesions resembling a common malignant tumor in AIDS, Kaposi's sarcoma (KS). To evaluate the permeability characteristics of these lesions and the therapeutic potential of drug-carrying liposomes, we have studied the localization of sterically stabilized liposomes, which show long circulation time in blood and increased accumulation in tumors. Liposomes encapsulating colloidal gold were injected intravenously into transgenic mice bearing KS lesions, and tissues were processed 24 hours later for both electron microscopy and for light microscopy with silver enhancement. Liposomes and silver marker were detected predominantly in the dermis surrounding the early and mature KS lesions, which were characterized by a proliferation of fibroblast-like spindle cells and abnormal blood vessels close to the epidermis. The silver-enhanced gold marker often surrounded vascular channels and scattered erythrocytes. As determined by electron microscopy, some spindle cells and macrophages had ingested intact liposomes. Transendothelial transport of liposomes was observed both through open channels between endothelial cells and also through endothelial cells lining intact vessels. Both extravasation and transcytosis of liposomes through irregular endothelium were much higher in KS lesions than in the adjacent normal skin. The high accumulation of sterically stabilized liposomes in KS lesions and their intracellular uptake by some spindle cells enhances their potential as carriers of chemotherapeutic agents against this neoplasm. Images Figure 1 Figure 2 PMID:8317543

  6. Extravasation and transcytosis of liposomes in Kaposi's sarcoma-like dermal lesions of transgenic mice bearing the HIV tat gene.

    PubMed

    Huang, S K; Martin, F J; Jay, G; Vogel, J; Papahadjopoulos, D; Friend, D S

    1993-07-01

    Transgenic mice bearing the HIV tat gene develop dermal lesions resembling a common malignant tumor in AIDS, Kaposi's sarcoma (KS). To evaluate the permeability characteristics of these lesions and the therapeutic potential of drug-carrying liposomes, we have studied the localization of sterically stabilized liposomes, which show long circulation time in blood and increased accumulation in tumors. Liposomes encapsulating colloidal gold were injected intravenously into transgenic mice bearing KS lesions, and tissues were processed 24 hours later for both electron microscopy and for light microscopy with silver enhancement. Liposomes and silver marker were detected predominantly in the dermis surrounding the early and mature KS lesions, which were characterized by a proliferation of fibroblast-like spindle cells and abnormal blood vessels close to the epidermis. The silver-enhanced gold marker often surrounded vascular channels and scattered erythrocytes. As determined by electron microscopy, some spindle cells and macrophages had ingested intact liposomes. Transendothelial transport of liposomes was observed both through open channels between endothelial cells and also through endothelial cells lining intact vessels. Both extravasation and transcytosis of liposomes through irregular endothelium were much higher in KS lesions than in the adjacent normal skin. The high accumulation of sterically stabilized liposomes in KS lesions and their intracellular uptake by some spindle cells enhances their potential as carriers of chemotherapeutic agents against this neoplasm. PMID:8317543

  7. Adenovirus Vectors for Gene Therapy, Vaccination and Cancer Gene Therapy

    PubMed Central

    Wold, William S.M.; Toth, Karoly

    2015-01-01

    Adenovirus vectors are the most commonly employed vector for cancer gene therapy. They are also used for gene therapy and as vaccines to express foreign antigens. Adenovirus vectors can be replication-defective; certain essential viral genes are deleted and replaced by a cassette that expresses a foreign therapeutic gene. Such vectors are used for gene therapy, as vaccines, and for cancer therapy. Replication-competent (oncolytic) vectors are employed for cancer gene therapy. Oncolytic vectors are engineered to replicate preferentially in cancer cells and to destroy cancer cells through the natural process of lytic virus replication. Many clinical trials indicate that replication-defective and replication-competent adenovirus vectors are safe and have therapeutic activity. PMID:24279313

  8. Characterization and Investigation of Redox-Sensitive Liposomes for Gene Delivery.

    PubMed

    Pezzoli, Daniele; Tallarita, Elena; Rosini, Elena; Candiani, Gabriele

    2016-01-01

    A number of smart nonviral gene delivery vectors relying on bioresponsiveness have been introduced in the past few years to overcome the limits of the first generation of gene carriers. Among them, redox-sensitive lipidic and polymeric vectors exploit the presence of disulfide bonds in their structure to take advantage of the highly reductive intracellular milieu and to promote complex unpacking and nucleic acids release after cellular uptake (disulfide linker strategy). Glutathione (GSH) has been often identified as the leading actor in the intracellular reduction of bioreducible vectors but their actual mechanisms of action have been rarely investigated in depth and doubts about the real effectiveness of the disulfide linker strategy have been raised. Herein, we outline a simple protocol for the preparation and investigation of nano-sized reducible cationic liposomes, focusing on their thorough characterization and optimization as gene delivery vectors. In addition, we carefully describe the techniques and procedures necessary for the assessment of the bioreducibility of the vectors and to demonstrate that the GSH-mediated intracellular cleavage of disulfide bonds is a pivotal step in their transfection process. Liposomes composed of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), 1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine (DOPE), and of the reducible cationic lipid SS14 are reported as a practical example but the proposed protocol can be easily shifted to other formulations of reducible lipids/liposomes and to reducible polymers. PMID:27436322

  9. Current progress in suicide gene therapy for cancer.

    PubMed

    Yazawa, Kazuyuki; Fisher, William E; Brunicardi, F Charles

    2002-07-01

    Standard chemotherapeutic agents and ionizing radiation destroy dividing cells. Because tumor cells divide more rapidly than normal cells, there is a therapeutic index in which damage to the cancer cells is maximized while keeping the toxicity to the normal host cells acceptable. Suicide gene therapy strives to deliver genes to the cancer cells, which convert nontoxic prodrugs into active chemotherapeutic agents. With this strategy, the systemically administered prodrug is converted to the active chemotherapeutic agent only in cancer cells, thereby allowing a maximal therapeutic effect while limiting systemic toxicity. A literature search was conducted using the MEDLINE database from 1990 to 2001 to identify articles related to suicide gene therapy for cancer. A number of suicide gene systems have been identified, including the herpes simplex virus thymidine kinase gene, the cytosine deaminase gene, the varicella-zoster virus thymidine kinase gene, the nitroreductase gene, the Escherichia coli gpt gene, and the E. coli Deo gene. Various vectors, including liposomes, retroviruses, and adenoviruses, have been used to transfer these suicide genes to tumor cells. These strategies have been effective in cell culture experiments, laboratory animals, and some early clinical trials. Advances in tissue- and cell-specific delivery of suicide genes using specific promoters will improve the clinical utility of suicide gene therapy. PMID:11948367

  10. Gene therapy progress and prospects: gene therapy for diabetes mellitus.

    PubMed

    Yechoor, V; Chan, L

    2005-01-01

    Diabetes mellitus has long been targeted, as yet unsuccessfully, as being curable with gene therapy. The main hurdles have not only been vector-related toxicity but also the lack of physiological regulation of the expressed insulin. Recent advances in understanding the developmental biology of beta-cells and the transcriptional cascade that drives it have enabled both in vivo and ex vivo gene therapy combined with cell therapy to be used in animal models of diabetes with success. The associated developments in the stem cell biology and immunology have opened up further opportunities for gene therapy to be applied to target autoimmune diabetes. PMID:15496957

  11. Liposome-mediated in vivo E1A gene transfer suppressed dissemination of ovarian cancer cells that overexpress HER-2/neu.

    PubMed

    Yu, D; Matin, A; Xia, W; Sorgi, F; Huang, L; Hung, M C

    1995-10-01

    The HER-2/neu proto-oncogene is frequently amplified or overexpressed in many different types of human cancers, a phenomenon that has been shown to correlate with shorter survival time and lower survival rate in ovarian cancer patients. We previously reported that increased HER-2/neu expression led to more severe malignancy and increased metastatic potential in animal models and that the adenovirus 5 E1A gene repressed HER-2/neu gene expression at transcriptional level and was able to suppress tumor growth when stably transfected into human ovarian cancer SKOV-3 cells which overexpress HER-2/neu. To investigate whether the E1A gene may be used as a therapeutic agent for HER-2/neu-overexpressing human cancers in living hosts, we first developed tumor-bearing mice by injecting SKOV-3 cells that overexpress HER-2/neu intraperitonealy into female nu/nu mice. Five days later, we used cationic liposomes to directly deliver the E1A gene into adenocarcinomas that developed in the peritoneal cavity and on the mesentery of the mice that received the SKOV-3 cell injection. We found that liposome-mediated E1A gene transfer significantly inhibited growth and dissemination of ovarian cancer cells that overexpress HER-2/neu in the treated mice; about 70% of these mice survived at least 365 days, whereas all the control mice that did not receive the gene therapy developed severe tumor symptoms and died within 160 days. The results suggest that liposome-mediated E1A gene transfer may serve as an effective therapy for human ovarian cancers that overexpress HER-2/neu by directly targeting the HER-2/neu oncogene. PMID:7478560

  12. Quantitative Evaluation of DNA Dissociation from Liposome Carriers and DNA Escape from Endosomes During Lipid-Mediated Gene Delivery

    PubMed Central

    Magalhães, Salomé; Duarte, Sofia; Monteiro, Gabriel A.

    2014-01-01

    Abstract Nonviral vectors are highly attractive for gene therapy from a clinical point of view, and cationic lipid nanoparticles in particular have generated considerable interest. However, despite considerable recent advances, problems associated with low transfection efficiencies remain to be resolved to fully meet the potential of these vectors. The trafficking of plasmid DNA (pDNA) from the extracellular space up to the nucleus is prevented by several barriers, including liposome/pDNA dissociation within the endosome and pDNA escape into the cytosol. The aim of this work was to develop and optimize a tool that could offer simultaneous quantitative information both on the intracellular dissociation of oligonucleotides from lipid nanoparticles, and on the DNA escape from endocytic compartments. The ability to follow in real time both of these processes simultaneously (in a quantitative manner) is expected to be of high value in the rationalization and conception of new lipid nanoparticle vectors for gene delivery for therapeutic purposes. To this effect, a combination of Förster resonance energy transfer (FRET) and colocalization microscopy was employed. We show that it is possible to distinguish between liposome/pDNA dissociation and depletion of DNA within endosomes, providing resolution for the detection of intermediate species between endocytic particles with intact lipoplexes and endosomes devoid of DNA because of DNA escape or degradation. We demonstrate that after endocytosis, exceptionally few endocytic particles are found to exhibit simultaneously DNA/lipid colocalization and low FRET (DNA/lipid dissociation). These results clearly point to an extremely short-lived state for free plasmid within endosomes, which either escapes at once to the cytosol or is degraded within the endocytic compartment (because of exposure of DNA). It is possible that this limitation greatly contributes to reduction in probability of successful gene delivery through cationic

  13. The Effectiveness of Raloxifene-Loaded Liposomes and Cochleates in Breast Cancer Therapy.

    PubMed

    Ağardan, N Başaran Mutlu; Değim, Zelihagül; Yılmaz, Şükran; Altıntaş, Levent; Topal, Turgut

    2016-08-01

    Liposome (spherical vesicles) and cochleate (multilayer crystalline, spiral structure) formulations containing raloxifene have been developed having dimethyl-β-cyclodextrin (DM-β-CD) or sodium taurocholate (NaTC). Raloxifene was approved initially for the treatment of osteoporosis but it is also effective on breast tissue and endometrial cells. Raloxifene inhibits matrix metalloproteinase-2 (MMP-2) enzyme, which is known to be responsible for tumor invasion and the initiation of angiogenesis during the tumor growth. Therefore, raloxifene was selected as a model drug. A series of raloxifene-loaded liposome and cochleate formulations were prepared. In vitro release studies and in vivo tests were performed. Breast cancer cell lines (MCF-7) were also used to find the most effective formulation. Highest antitumor activity was observed, and MMP-2 enzyme was also found to be inhibited with raloxifene-loaded cochleates containing DM-β-CD. These developed formulations can be helpful for further treatment alternatives and new strategies for cancer therapy. PMID:26729527

  14. Enhanced loading efficiency and retention of 225Ac in rigid liposomes for potential targeted therapy of micrometastases.

    PubMed

    Chang, Min-Yuan; Seideman, Jonathan; Sofou, Stavroula

    2008-06-01

    Targeted alpha-particle emitters are promising therapeutics for micrometastatic disease. Actinium-225 has a 10-day half-life and generates a total of four alpha-particles per parent decay rendering (225)Ac an attractive candidate for alpha-therapy. For cancer cells with low surface expression levels of molecular targets, targeting strategies of (225)Ac using radiolabeled carriers of low specific radioactivities (such as antibodies) may not deliver enough alpha-particle emitters at the targeted cancer cells to result in killing. We previously proposed and showed using passive (225)Ac entrapment that liposomes can stably retain encapsulated (225)Ac for long time periods, and that antibody-conjugated liposomes (immunoliposomes) with encapsulated (225)Ac can specifically target and become internalized by cancer cells. However, to enable therapeutic use of (225)Ac-containing liposomes, high activities of (225)Ac need to be stably encapsulated into liposomes. In this study, various conditions for active loading of (225)Ac in preformed liposomes (ionophore-type, encapsulated buffer solution, and loading time) were evaluated, and liposomes with up to 73 +/- 9% of the initial activity of (225)Ac (0.2-200 microCi) were developed. Retention of radioactive contents by liposomes was evaluated at 37 degrees C in phosphate buffer and in serum-supplemented media. The main fraction of released (225)Ac from liposomes occurs within the first two hours of incubation. Beyond this two hour point, the encapsulated radioactivity is released from liposomes slowly with an approximate half-life of the order of several days. In some cases, after 30 days, (225)Ac retention as high as 81 +/- 7% of the initially encapsulated radioactivity was achieved. The (225)Ac loading protocol was also applied to immunoliposome loading without significant loss of targeting efficacy. Liposomes with surface-conjugated antibodies that are loaded with (225)Ac overcome the limitations of low specific activity for

  15. Novel molecular approaches to cystic fibrosis gene therapy

    PubMed Central

    Lee, Tim W. R.; Matthews, David A.; Blair, G. Eric

    2005-01-01

    Gene therapy holds promise for the treatment of a range of inherited diseases, such as cystic fibrosis. However, efficient delivery and expression of the therapeutic transgene at levels sufficient to result in phenotypic correction of cystic fibrosis pulmonary disease has proved elusive. There are many reasons for this lack of progress, both macroscopically in terms of airway defence mechanisms and at the molecular level with regard to effective cDNA delivery. This review of approaches to cystic fibrosis gene therapy covers these areas in detail and highlights recent progress in the field. For gene therapy to be effective in patients with cystic fibrosis, the cDNA encoding the cystic fibrosis transmembrane conductance regulator protein must be delivered effectively to the nucleus of the epithelial cells lining the bronchial tree within the lungs. Expression of the transgene must be maintained at adequate levels for the lifetime of the patient, either by repeat dosage of the vector or by targeting airway stem cells. Clinical trials of gene therapy for cystic fibrosis have demonstrated proof of principle, but gene expression has been limited to 30 days at best. Results suggest that viral vectors such as adenovirus and adeno-associated virus are unsuited to repeat dosing, as the immune response reduces the effectiveness of each subsequent dose. Nonviral approaches, such as cationic liposomes, appear more suited to repeat dosing, but have been less effective. Current work regarding non-viral gene delivery is now focused on understanding the mechanisms involved in cell entry, endosomal escape and nuclear import of the transgene. There is now increasing evidence to suggest that additional ligands that facilitate endosomal escape or contain a nuclear localization signal may enhance liposome-mediated gene delivery. Much progress in this area has been informed by advances in our understanding of the mechanisms by which viruses deliver their genomes to the nuclei of host

  16. Gene therapy: progress and predictions

    PubMed Central

    Collins, Mary; Thrasher, Adrian

    2015-01-01

    The first clinical gene delivery, which involved insertion of a marker gene into lymphocytes from cancer patients, was published 25 years ago. In this review, we describe progress since then in gene therapy. Patients with some inherited single-gene defects can now be treated with their own bone marrow stem cells that have been engineered with a viral vector carrying the missing gene. Patients with inherited retinopathies and haemophilia B can also be treated by local or systemic injection of viral vectors. There are also a number of promising gene therapy approaches for cancer and infectious disease. We predict that the next 25 years will see improvements in safety, efficacy and manufacture of gene delivery vectors and introduction of gene-editing technologies to the clinic. Gene delivery may also prove a cost-effective method for the delivery of biological medicines. PMID:26702034

  17. Gene Therapy for Retinal Diseases

    PubMed Central

    Samiy, Nasrollah

    2014-01-01

    Gene therapy has a growing research potential particularly in the field of ophthalmic and retinal diseases owing to three main characteristics of the eye; accessibility in terms of injections and surgical interventions, its immune-privileged status facilitating the accommodation to the antigenicity of a viral vector, and tight blood-ocular barriers which save other organs from unwanted contamination. Gene therapy has tremendous potential for different ocular diseases. In fact, the perspective of gene therapy in the field of eye research does not confine to exclusive monogenic ophthalmic problems and it has the potential to include gene based pharmacotherapies for non-monogenic problems such as age related macular disease and diabetic retinopathy. The present article has focused on how gene transfer into the eye has been developed and used to treat retinal disorders with no available therapy at present. PMID:25709778

  18. Gene Therapy for Lung Cancer.

    PubMed

    Lara-Guerra, Humberto; Roth, Jack A

    2016-01-01

    Gene therapy was originally conceived to treat monogenic diseases. The replacement of a defective gene with a functional gene can theoretically cure the disease. In cancer, multiple genetic defects are present and the molecular profile changes during the course of the disease, making the replacement of all defective genes impossible. To overcome these difficulties, various gene therapy strategies have been adopted, including immune stimulation, transfer of suicide genes, inhibition of driver oncogenes, replacement of tumor-suppressor genes that could mediate apoptosis or anti-angiogenesis, and transfer of genes that enhance conventional treatments such as radiotherapy and chemotherapy. Some of these strategies have been tested successfully in non-small-cell lung cancer patients and the results of laboratory studies and clinical trials are reviewed herein. PMID:27481008

  19. Efficient in vivo gene delivery by the negatively charged complexes of cationic liposomes and plasmid DNA.

    PubMed

    Son, K K; Tkach, D; Hall, K J

    2000-09-29

    We examined changes in zeta potential (the surface charge density, zeta) of the complexes of liposome (nmol)/DNA (microg) (L/D) formed in water at three different ratios (L/D=1, 10 and 20) by changing the ionic strength or pH to find an optimum formulation for in vivo gene delivery. At high DNA concentrations, zeta of the complexes formed in water at L/D=10 was significantly lowered by adding NaCl (zeta=+8.44+/-3.1 to -27.6+/-3.5 mV) or increasing pH from 5 (zeta=+15.3+/-1.0) to 9 (zeta=-22.5+/-2.5 mV). However, the positively charged complexes formed at L/D=20 (zeta=+6.2+/-3.5 mV) became negative as NaCl was added at alkaline pH as observed in medium (zeta=-19.7+/-9.9 mV). Thus, the complexes formed in water under the optimum condition were stable and largely negatively charged at L/D=1 (zeta=-58.1+/-3.9 mV), unstable and slightly positively charged at L/D=10 (zeta=+8.44+/-3.7 mV), and unstable and largely positively charged at L/D=20 (zeta=+24.3+/-3.6 mV). The negatively charged complexes efficiently delivered DNA into both solid and ascitic tumor cells. However, the positively charged complexes were very poor in delivering DNA into solid tumors, yet were efficient in delivering DNA into ascitic tumors grown in the peritoneum regardless of complex size. This slightly lower gene transfer efficiency of the negatively charged complexes can be as efficient as the positively charged ones when an injection is repeated (at least two injections), which is the most common case for therapy regimes. The results indicate that optimum in vivo lipofection may depend on the site of tumor growth. PMID:11018645

  20. Image guidance, treatment planning and evaluation of cancer interstitial focal therapy using liposomal radionuclides

    NASA Astrophysics Data System (ADS)

    Ware, Steve William

    Focally ablative therapy of cancer has gained significant interest recently. Improvements in diagnostic techniques have created possibilities for treatment which were once clinically unfeasible. Imaging must be capable of allowing accurate diagnosis, staging and planning upon initiation of therapy. Recent improvements in MRI and molecular imaging techniques have made it possible to accurately localize lesions and in so doing, improve the accuracy of proposed focal treatments. Using multimodality imaging it is now possible to target, plan and evaluate interstitial focal treatment using liposome encapsulated beta emitting radionuclides in a variety of cancer types. Since most absorbed dose is deposited early and heterogeneously in beta-radionuclide therapy, investigation of the resultant molecular and cellular events during this time is important for evaluating treatment efficacy. Additionally, investigating a multifocal entity such as prostate cancer is helpful for determining whether MRI is capable of discriminating the proper lesion for therapy. Correlation of MRI findings with histopathology can further improve the accuracy of interstitial focal radionuclide therapy by providing non-invasive surrogates for tissue compartment sizes. In the application of such therapies, compartmental sizes are known to heavily influence the distribution of injected agents. This has clear dosimetric implications with the potential to significantly alter the efficacy of treatment. The hypothesis of this project was that multimodality imaging with magnetic resonance imaging (MRI), autoradiography (AR), and single photon emission computed tomography (SPECT) could be used to target, plan, and evaluate interstitial focal therapy with non-sealed source, liposome-encapsulated 186Re beta emitting radionuclides. The specific aims of this project were to 1) Identify suitable targets for interstitial focal therapy. This was done by retrospectively analyzing MRI data to characterize the tumor

  1. 17β-estradiol-containing liposomes as a novel delivery system for the antisense therapy of ER-positive breast cancer: An in vitro study on the MCF-7 cell line.

    PubMed

    Heger, Zbynek; Gumulec, Jaromir; Cernei, Natalia; Tmejova, Katerina; Kopel, Pavel; Balvan, Jan; Masarik, Michal; Zitka, Ondrej; Beklova, Miroslava; Adam, Vojtech; Kizek, Rene

    2015-02-01

    The present study suggests and describes the application of a delivery system for antisense oligonucleotides against mRNA encoding estrogen receptor proteins α and β. The delivery system is composed of a cationic liposome envelope containing 17β-estradiol (E2) in its structure. Cationic liposomes protect cargo against the extracellular matrix, and E2 can increase its shuttling efficiency into cells. Using MCF-7 cells derived from estrogen receptor-positive ductal carcinoma, treatment with liposomes against ERα was found to decrease MCF-7 proliferation, and importantly the application of both the antisense against ERα and β exhibited an antiproliferative effect expressed as cell viability. Using qRT-PCR, it was shown that MT1A, NF-κB1 and K-ras genes, but not TFF1, were downregulated using E2-based liposomes (evaluated at P=0.05). Further indicators of oxidative stress were employed to assess the effect on treatment efficiency. Glutathione (GSH/GSSG redox ratio), metallothionein (MT) and malondialdehyde (MDA) confirmed a positive effect of antisense therapy resulting in their decreased levels in the MCF-7 cells. Based on these data, we suggest that E2-based liposomes offer sufficient transfer efficiency and moreover, due to the effect on NF-κB1, MT and GSH, tumor cells can be chemosensitized to increase treatment effectiveness. PMID:25434399

  2. Gene therapy on the move

    PubMed Central

    Kaufmann, Kerstin B; Büning, Hildegard; Galy, Anne; Schambach, Axel; Grez, Manuel

    2013-01-01

    The first gene therapy clinical trials were initiated more than two decades ago. In the early days, gene therapy shared the fate of many experimental medicine approaches and was impeded by the occurrence of severe side effects in a few treated patients. The understanding of the molecular and cellular mechanisms leading to treatment- and/or vector-associated setbacks has resulted in the development of highly sophisticated gene transfer tools with improved safety and therapeutic efficacy. Employing these advanced tools, a series of Phase I/II trials were started in the past few years with excellent clinical results and no side effects reported so far. Moreover, highly efficient gene targeting strategies and site-directed gene editing technologies have been developed and applied clinically. With more than 1900 clinical trials to date, gene therapy has moved from a vision to clinical reality. This review focuses on the application of gene therapy for the correction of inherited diseases, the limitations and drawbacks encountered in some of the early clinical trials and the revival of gene therapy as a powerful treatment option for the correction of monogenic disorders. PMID:24106209

  3. Plasmid DNA transfection using magnetite cationic liposomes for construction of multilayered gene-engineered cell sheet.

    PubMed

    Ino, Kosuke; Kawasumi, Tamayo; Ito, Akira; Honda, Hiroyuki

    2008-05-01

    Modification of cellular functions by overexpression of genes is being increasingly practiced for tissue engineering. In the present study, we investigated whether transfection efficiency could be enhanced by magnetofection that involves the use of plasmid DNA (pDNA)/magnetite cationic liposomes (MCLs) complexes (pDNA/MCL) and magnetic force. The transfection efficiencies of the magnetofection technique by pDNA/MCL in fibroblasts and keratinocytes using reporter genes were 36- and 10-fold higher, respectively, than those of a lipofection technique by cationic liposomes. Moreover, in vitro construction of three-dimensional (3D) tissues is an important challenge. We recently proposed a novel technique termed "magnetic force-based tissue engineering" (Mag-TE) to produce 3D tissues. Since the fibroblasts after magnetofection incorporated both magnetite nanoparticles and pDNA, we investigated whether multilayered heterotypic cell sheets expressing transgene could be fabricated by Mag-TE. First, the fibroblasts were seeded onto an ultra-low attachment culture plate. When a magnet was placed under the plate, the cells accumulated at the bottom of the culture plate. After 24 h of culture, the transgene-expressing cells formed a multilayered cell sheet-like structure. These results indicated that MCLs are a potent biomanipulation tool for both gene transfer and 3D tissue construction, suggesting that these techniques are useful for tissue engineering. PMID:18078300

  4. Cationic Polyene Phospholipids as DNA Carriers for Ocular Gene Therapy

    PubMed Central

    Machado, Susana; Calado, Sofia; Bitoque, Diogo; Oliveira, Ana Vanessa; Øpstad, Christer L.; Zeeshan, Muhammad; Sliwka, Hans-Richard; Partali, Vassilia; Pungente, Michael D.; Silva, Gabriela A.

    2014-01-01

    Recent success in the treatment of congenital blindness demonstrates the potential of ocular gene therapy as a therapeutic approach. The eye is a good target due to its small size, minimal diffusion of therapeutic agent to the systemic circulation, and low immune and inflammatory responses. Currently, most approaches are based on viral vectors, but efforts continue towards the synthesis and evaluation of new nonviral carriers to improve nucleic acid delivery. Our objective is to evaluate the efficiency of novel cationic retinoic and carotenoic glycol phospholipids, designated C20-18, C20-20, and C30-20, to deliver DNA to human retinal pigmented epithelium (RPE) cells. Liposomes were produced by solvent evaporation of ethanolic mixtures of the polyene compounds and coformulated with 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) or cholesterol (Chol). Addition of DNA to the liposomes formed lipoplexes, which were characterized for binding, size, biocompatibility, and transgene efficiency. Lipoplex formulations of suitable size and biocompatibility were assayed for DNA delivery, both qualitatively and quantitatively, using RPE cells and a GFP-encoding plasmid. The retinoic lipoplex formulation with DOPE revealed a transfection efficiency comparable to the known lipid references 3β-[N-(N′,N′-dimethylaminoethane)-carbamoyl]-cholesterol (DC-Chol) and 1,2-dioleoyl-sn-glycero-3-ethylphosphocholine (EPC) and GeneJuice. The results demonstrate that cationic polyene phospholipids have potential as DNA carriers for ocular gene therapy. PMID:25147812

  5. Recent Developments of Liposomes as Nanocarriers for Theranostic Applications

    PubMed Central

    Xing, Hang; Hwang, Kevin; Lu, Yi

    2016-01-01

    Liposomes are nanocarriers comprised of lipid bilayers encapsulating an aqueous core. The ability of liposomes to encapsulate a wide variety of diagnostic and therapeutic agents has led to significant interest in utilizing liposomes as nanocarriers for theranostic applications. In this review, we highlight recent progress in developing liposomes as nanocarriers for a) diagnostic applications to detect proteins, DNA, and small molecule targets using fluorescence, magnetic resonance, ultrasound, and nuclear imaging; b) therapeutic applications based on small molecule-based therapy, gene therapy and immunotherapy; and c) theranostic applications for simultaneous detection and treatment of heavy metal toxicity and cancers. In addition, we summarize recent studies towards understanding of interactions between liposomes and biological components. Finally, perspectives on future directions in advancing the field for clinical translations are also discussed. PMID:27375783

  6. Vectors for cancer gene therapy.

    PubMed

    Zhang, J; Russell, S J

    1996-09-01

    Many viral and non-viral vector systems have now been developed for gene therapy applications. In this article, the pros and cons of these vector systems are discussed in relation to the different cancer gene therapy strategies. The protocols used in cancer gene therapy can be broadly divided into six categories including gene transfer to explanted cells for use as cell-based cancer vaccines; gene transfer to a small number of tumour cells in situ to achieve a vaccine effect; gene transfer to vascular endothelial cells (VECs) lining the blood vessels of the tumour to interfere with tumour angiogenesis; gene transfer to T lymphocytes to enhance their antitumour effector capability; gene transfer to haemopoietic stem cells (HSCs) to enhance their resistance to cytotoxic drugs and gene transfer to a large number of tumour cells in situ to achieve nonimmune tumour reduction with or without bystander effect. Each of the six strategies makes unique demands on the vector system and these are discussed with reference to currently available vectors. Aspects of vector biology that are in need of further development are discussed in some detail. The final section points to the potential use of replicating viruses as delivery vehicles for efficient in vivo gene transfer to disseminated cancers. PMID:9034598

  7. Gene Therapy for Cartilage Repair

    PubMed Central

    Madry, Henning; Orth, Patrick; Cucchiarini, Magali

    2011-01-01

    The concept of using gene transfer strategies for cartilage repair originates from the idea of transferring genes encoding therapeutic factors into the repair tissue, resulting in a temporarily and spatially defined delivery of therapeutic molecules to sites of cartilage damage. This review focuses on the potential benefits of using gene therapy approaches for the repair of articular cartilage and meniscal fibrocartilage, including articular cartilage defects resulting from acute trauma, osteochondritis dissecans, osteonecrosis, and osteoarthritis. Possible applications for meniscal repair comprise meniscal lesions, meniscal sutures, and meniscal transplantation. Recent studies in both small and large animal models have demonstrated the applicability of gene-based approaches for cartilage repair. Chondrogenic pathways were stimulated in the repair tissue and in osteoarthritic cartilage using genes for polypeptide growth factors and transcription factors. Although encouraging data have been generated, a successful translation of gene therapy for cartilage repair will require an ongoing combined effort of orthopedic surgeons and of basic scientists. PMID:26069580

  8. Gene Therapy in Heart Failure

    PubMed Central

    Vinge, Leif Erik; Raake, Philip W.; Koch, Walter J.

    2008-01-01

    With increasing knowledge of basic molecular mechanisms governing the development of heart failure (HF), the possibility of specifically targeting key pathological players is evolving. Technology allowing for efficient in vivo transduction of myocardial tissue with long-term expression of a transgene enables translation of basic mechanistic knowledge into potential gene therapy approaches. Gene therapy in HF is in its infancy clinically with the predominant amount of experience being from animal models. Nevertheless, this challenging and promising field is gaining momentum as recent preclinical studies in larger animals have been carried out and, importantly, there are 2 newly initiated phase I clinical trials for HF gene therapy. To put it simply, 2 parameters are needed for achieving success with HF gene therapy: (1) clearly identified detrimental/beneficial molecular targets; and (2) the means to manipulate these targets at a molecular level in a sufficient number of cardiac cells. However, several obstacles do exist on our way to efficient and safe gene transfer to human myocardium. Some of these obstacles are discussed in this review; however, it primarily focuses on the molecular target systems that have been subjected to intense investigation over the last decade in an attempt to make gene therapy for human HF a reality. PMID:18566312

  9. Gene Therapy for Cardiovascular Disease

    PubMed Central

    2003-01-01

    The last decade has seen substantial advances in the development of gene therapy strategies and vector technology for the treatment of a diverse number of diseases, with a view to translating the successes observed in animal models into the clinic. Perhaps the overwhelming drive for the increase in vascular gene transfer studies is the current lack of successful long-term pharmacological treatments for complex cardiovascular diseases. The increase in cardiovascular disease to epidemic proportions has also led many to conclude that drug therapy may have reached a plateau in its efficacy and that gene therapy may represent a realistic solution to a long-term problem. Here, we discuss gene delivery approaches and target diseases. PMID:12721517

  10. The potential of transferrin-pendant-type polyethyleneglycol liposomes encapsulating decahydrodecaborate-{sup 1}B (GB-10) as {sup 1}B-carriers for boron neutron capture therapy

    SciTech Connect

    Masunaga, Shin-ichiro . E-mail: smasuna@rri.kyoto-u.ac.jp; Kasaoka, Satoshi; Maruyama, Kazuo; Nigg, David; Sakurai, Yoshinori; Nagata, Kenji; Suzuki, Minoru; Kinashi, Yuko; Maruhashi, Akira; Ono, Koji

    2006-12-01

    Purpose: To evaluate GB-10-encapsulating transferrin (TF)-pendant-type polyethyleneglycol (PEG) liposomes as tumor-targeting {sup 1}B-carriers for boron neutron capture therapy. Methods and Materials: A free mercaptoundecahydrododecaborate-{sup 1}B (BSH) or decahydrodecaborate-{sup 1}B (GB-10) solution, bare liposomes, PEG liposomes, or TF-PEG liposomes were injected into SCC VII tumor-bearing mice, and {sup 1}B concentrations in the tumors and normal tissues were measured by {gamma}-ray spectrometry. Meanwhile, tumor-bearing mice were continuously given 5-bromo-2'-deoxyuridine (BrdU) to label all intratumor proliferating cells, then injected with these {sup 1}B-carriers containing BSH or GB-10 in the same manner. Right after thermal neutron irradiation, the response of quiescent (Q) cells was assessed in terms of the micronucleus frequency using immunofluorescence staining for BrdU. The frequency in the total tumor cells was determined from the BrdU nontreated tumors. Results: Transferrin-PEG liposomes showed a prolonged retention in blood circulation, low uptake by reticuloendothelial system, and the most enhanced accumulation of {sup 1}B in solid tumors. In general, the enhancing effects were significantly greater in total cells than Q cells. In both cells, the enhancing effects of GB-10-containing {sup 1}B-carriers were significantly greater than BSH-containing {sup 1}B-carriers, whether loaded in free solution or liposomes. In both cells, whether BSH or GB-10 was employed, the greatest enhancing effect was observed with TF-PEG liposomes followed in decreasing order by PEG liposomes, bare liposomes, and free BSH or GB-10 solution. In Q cells, the decrease was remarkable between PEG and bare liposomes. Conclusions: In terms of biodistribution characteristics and tumor cell-killing effect as a whole, including Q cells, GB-10 TF-PEG liposomes were regarded as promising {sup 1}B-carriers.

  11. Gene therapy for lung inflammatory diseases: not so far away?

    PubMed Central

    Sallenave, J. M.; Porteous, D. J.; Haslett, C.

    1997-01-01

    The lung is a readily accessible target organ for gene therapy. To date, therapeutic gene delivery has largely focused on introducing functional, corrective genes in lung diseases arising from single gene defects such as cystic fibrosis. More recently interest has centred on gene therapy as a potential therapeutic tool in modulating complex pathological processes such as pulmonary inflammation. Genetic modification of critical components of the inflammatory process may be beneficial-for example, overexpressing anti-elastase genes may circumvent elastase mediated lung damage in emphysema. With the development of improved viral and liposome vectors and the evolution of effective adjuvant immunosuppression to obviate host immune responses-- for example, using selective cytokines and blockers of T cell surface activation--the potential exists to target therapeutic doses of transgene to deficient or dysregulated cells. Furthermore, increased understanding of tissue-specific promoter regions and of mechanisms controlling regulation of gene expression offer the potential for close control of therapeutic gene expression within the lung. Continuing refinements in these technologies will provide new therapeutic strategies in inflammatory lung disease. 


 PMID:9337837

  12. Gene therapy for lung inflammatory diseases: not so far away?

    PubMed

    Sallenave, J M; Porteous, D J; Haslett, C

    1997-08-01

    The lung is a readily accessible target organ for gene therapy. To date, therapeutic gene delivery has largely focused on introducing functional, corrective genes in lung diseases arising from single gene defects such as cystic fibrosis. More recently interest has centred on gene therapy as a potential therapeutic tool in modulating complex pathological processes such as pulmonary inflammation. Genetic modification of critical components of the inflammatory process may be beneficial-for example, overexpressing anti-elastase genes may circumvent elastase mediated lung damage in emphysema. With the development of improved viral and liposome vectors and the evolution of effective adjuvant immunosuppression to obviate host immune responses--for example, using selective cytokines and blockers of T cell surface activation--the potential exists to target therapeutic doses of transgene to deficient or dysregulated cells. Furthermore, increased understanding of tissue-specific promoter regions and of mechanisms controlling regulation of gene expression offer the potential for close control of therapeutic gene expression within the lung. Continuing refinements in these technologies will provide new therapeutic strategies in inflammatory lung disease. PMID:9337837

  13. Gene Therapy in Corneal Transplantation

    PubMed Central

    Qazi, Yureeda; Hamrah, Pedram

    2014-01-01

    Corneal transplantation is the most commonly performed organ transplantation. Immune privilege of the cornea is widely recognized, partly because of the relatively favorable outcome of corneal grafts. The first-time recipient of corneal allografts in an avascular, low-risk setting can expect a 90% success rate without systemic immunosuppressive agents and histocompatibility matching. However, immunologic rejection remains the major cause of graft failure, particularly in patients with a high risk for rejection. Corticosteroids remain the first-line therapy for the prevention and treatment of immune rejection. However, current pharmacological measures are limited in their side-effect profiles, repeated application, lack of targeted response, and short duration of action. Experimental ocular gene therapy may thus present new horizons in immunomodulation. From efficient viral vectors to sustainable alternative splicing, we discuss the progress of gene therapy in promoting graft survival and postulate further avenues for gene-mediated prevention of allogeneic graft rejection. PMID:24138037

  14. Physics Applied to Biological Systems: Theory and Experiments for a Gene Therapy Model

    NASA Astrophysics Data System (ADS)

    Barbosa, Marcia C.; Levin, Yan; Ravazzolo, Ana Paula; von Groll, Andrea

    2005-10-01

    Efficient transfection of eukaryotic cells is an essential step of optimizing gene expression for genetic therapy and for stimulating the immune response induced by the DNA vaccination. The DNA topology and the vehicle used to deliver it are the two aspects explored in this work. A plasmid expressing the ?-galactosidase enzyme was used to transfect Vero cells in order to evaluate liposome-mediated transfection of circular and linear DNA. The results showed a low efficiency of linear DNA:liposome complexes in transfecting the cells, probably due to an impaired association between the two components. Atomic force microscopy has confirmed the difference in the complex size: circular topology leads to larger complexes than the linear one. Based on an analytic theory, low concentrations of amphiphilic molecules were used to neutralize the linearized plasmid. We were able to obtain an increased transgene expression without the toxicity observed with the usual linear DNA liposome delivery methods.

  15. Synergistic effects of co-administration of suicide gene expressing mesenchymal stem cells and prodrug-encapsulated liposome on aggressive lung melanoma metastases in mice.

    PubMed

    Zhang, Tian-Yuan; Huang, Bing; Wu, Hai-Bin; Wu, Jia-He; Li, Li-Ming; Li, Yan-Xin; Hu, Yu-Lan; Han, Min; Shen, You-Qing; Tabata, Yasuhiko; Gao, Jian-Qing

    2015-07-10

    The success of conventional suicide gene therapy for cancer treatment is still limited because of lack of efficient delivery methods, as well as poor penetration into tumor tissues. Mesenchymal stem cells (MSCs) have recently emerged as potential vehicles in improving delivery issues. However, these stem cells are usually genetically modified using viral gene vectors for suicide gene overexpression to induce sufficient therapeutic efficacy. This approach may result in safety risks for clinical translation. Therefore, we designed a novel strategy that uses non-viral gene vector in modifying MSCs with suicide genes to reduce risks. In addition, these cells were co-administrated with prodrug-encapsulated liposomes for synergistic anti-tumor effects. Results demonstrate that this strategy is effective for gene and prodrug delivery, which co-target tumor tissues, to achieve a significant decrease in tumor colonization and a subsequent increase in survival in a murine melanoma lung metastasis model. Moreover, for the first time, we demonstrated the permeability of MSCs within tumor nests by using an in vitro 3D tumor spheroid model. Thus, the present study provides a new strategy to improve the delivery problem in conventional suicide gene therapy and enhance the therapeutic efficacy. Furthermore, this study also presents new findings to improve our understanding of MSCs in tumor-targeted gene delivery. PMID:25966361

  16. Gene therapy for Parkinson's disease.

    PubMed

    Lawlor, Patricia A; During, Matthew J

    2004-03-01

    Parkinson's disease (PD) is a debilitating neurodegenerative disorder arising from loss of dopaminergic neurons in the substantia nigra pars compacta and subsequent depletion of striatal dopamine levels, which results in distressing motor symptoms. The current standard pharmacological treatment for PD is direct replacement of dopamine by treatment with its precursor, levodopa (L-dopa). However, this does not significantly alter disease progression and might contribute to the ongoing pathology. Several features of PD make this disease one of the most promising targets for clinical gene therapy of any neurological disease. The confinement of the major pathology to a compact, localised neuronal population and the anatomy of the basal ganglia circuitry mean that global gene transfer is not required and there are well-defined sites for gene transfer. The multifactorial aetiology of idiopathic PD means that it is unlikely any single gene will cure the disease, and as a result at least three separate gene-transfer strategies are currently being pursued: transfer of genes for enzymes involved in dopamine production; transfer of genes for growth factors involved in dopaminergic cell survival and regeneration; and transfer of genes to reset neuronal circuitry by switching cellular phenotype. The merits of these strategies are discussed here, along with remaining hurdles that might impede transfer of gene therapy technology to the clinic as a treatment for PD. PMID:15000692

  17. Targeted Therapy for Acute Autoimmune Myocarditis with Nano-Sized Liposomal FK506 in Rats

    PubMed Central

    Matsuzaki, Takashi; Araki, Ryo; Tsuchida, Shota; Thanikachalam, Punniyakoti V.; Fukuta, Tatsuya; Asai, Tomohiro; Yamato, Masaki; Sanada, Shoji; Asanuma, Hiroshi; Asano, Yoshihiro; Asakura, Masanori; Hanawa, Haruo; Hao, Hiroyuki; Oku, Naoto; Takashima, Seiji; Kitakaze, Masafumi; Sakata, Yasushi; Minamino, Tetsuo

    2016-01-01

    Immunosuppressive agents are used for the treatment of immune-mediated myocarditis; however, the need to develop a more effective therapeutic approach remains. Nano-sized liposomes may accumulate in and selectively deliver drugs to an inflammatory lesion with enhanced vascular permeability. The aims of this study were to investigate the distribution of liposomal FK506, an immunosuppressive drug encapsulated within liposomes, and the drug’s effects on cardiac function in a rat experimental autoimmune myocarditis (EAM) model. We prepared polyethylene glycol-modified liposomal FK506 (mean diameter: 109.5 ± 4.4 nm). We induced EAM by immunization with porcine myosin and assessed the tissue distribution of the nano-sized beads and liposomal FK506 in this model. After liposomal or free FK506 was administered on days 14 and 17 after immunization, the cytokine expression in the rat hearts along with the histological findings and hemodynamic parameters were determined on day 21. Ex vivo fluorescent imaging revealed that intravenously administered fluorescent-labeled nano-sized beads had accumulated in myocarditic but not normal hearts on day 14 after immunization and thereafter. Compared to the administration of free FK506, FK506 levels were increased in both the plasma and hearts of EAM rats when liposomal FK506 was administered. The administration of liposomal FK506 markedly suppressed the expression of cytokines, such as interferon-γ and tumor necrosis factor-α, and reduced inflammation and fibrosis in the myocardium on day 21 compared to free FK506. The administration of liposomal FK506 also markedly ameliorated cardiac dysfunction on day 21 compared to free FK506. Nano-sized liposomes may be a promising drug delivery system for targeting myocarditic hearts with cardioprotective agents. PMID:27501378

  18. [Review of cancer gene therapy].

    PubMed

    Tani, K

    2000-09-01

    Since the first introduction of gene-marking technology to the clinical field in 1989 by Rosenberg et al, more than 4,000 patients have participated gene therapy clinical trials worldwide. Most of those patients had malignancies. Nearly 90% of clinical trials, however, are still in phase I-II stage, and only 3 protocols are in the phase III stage in early 2000. As current clinical gene therapy protocols are intended essentially to examine the safety and feasibility of the new strategy, more careful and steady steps may be required before these clinical trials really produce clinical benefits. Focused on cancer gene therapy, direct and indirect approaches are undertaken. In the direct approach, HSV-TK, HLA-B7, or p53 tumor suppressor gene therapies are the three major approaches historically. In for the indirect approach, cytokine or adhesion molecule gene-transferred tumor cells or immunocompetent cells are considered to be promising to enhance patients' antitumor immunity. In particular, we have concentrated on developing immuno gene therapy using GM-CSF-transduced autologous tumor cells. We have already recruited three patients with stage IV renal cell cancer. In all patients, peripheral blood T cells were mobilized after vaccination with GM-CSF-transduced tumor cells, and two of the three patients showed the persistence of cytotoxic T cells against autologous tumor cells. Clinically, one patient has been followed up with stable disease for more than one year since the start of vaccination. Further clinical studies are required to obtain conclusive results. PMID:11022677

  19. Therapeutic success and efficacy of nonviral liposomal cDNA gene transfer to the skin in vivo is dose dependent.

    PubMed

    Jeschke, M G; Richter, G; Herndon, D N; Geissler, E K; Hartl, M; Hofstätter, F; Jauch, K W; Perez-Polo, J R

    2001-12-01

    It is well documented that responses to growth factor treatment typically display bell-shaped dose responses that can significantly affect efficacy. Here we tested the hypothesis that nonviral liposomal gene delivery also displays this characteristic. We chose two different growth factors, keratinocyte growth factor (KGF) and insulin-like growth factor-I (IGF-I) CMV-driven transfecting constructs at three different concentrations and assessed efficacy on several physiological parameters that are descriptive of wound healing progress in a burn-wound healing model. Rats were given a 60% TBSA scald burn and randomly divided into one of seven groups to receive weekly subcutaneous injections of liposomes containing the cDNA for KGF (0.2 microg, 2.2 microg, or 22.2 microg), or liposomes containing the cDNA for IGF-I (0.2 microg, 2.2 microg, or 22.2 microg) at various concentrations, but constant liposome:DNA ratios and a LacZ gene (0.2 microg) CMV-driven construct for beta-galactosidase as vehicle and marker gene. Transfection was confirmed by histology for beta-galactosidase. Physiological efficacy was evaluated by measuring the wound healing parameters that define dermal and epidermal regeneration. Transfection products were found in the cytoplasm of rapidly dividing cells of the granulation tissue. Different doses of the nonviral cDNA gene transfer coding for KGF or IGF-I resulted in different outcomes for dermal and epidermal regeneration. There was a dose-dependent response to both growth factor gene transfers that was not dissimilar from that typically displayed by treatment with growth factor proteins. Both concentrations below and above the optimal concentration of DNA:liposomal preparations did not yield the results observed at the optimal concentration. PMID:11803397

  20. Gene therapy for paediatric leukaemia.

    PubMed

    Rousseau, R F; Bollard, C M; Heslop, H E

    2001-07-01

    Improvements in the chemotherapeutic and transplant regimens have had a significant impact in improving survival rates for paediatric leukaemia. However, there are still important problems to address including what options are available for patients with chemoresistant disease and what strategies are available to avoid the concerns regarding the toxicity associated with highly cytotoxic treatment regimens. Gene therapy and immunotherapy protocols hold great promise. Using gene transfer of a marker gene, a number of biological issues in the therapy of leukaemia have been addressed. For example, by gene marking autologous bone marrow grafts it has been possible to demonstrate that infused marrow contributes to relapse in acute and chronic myeloid leukaemias. In the allogeneic transplant setting, genetically modified T-cells have proven valuable for the prophylaxis and treatment of viral diseases and may have an important role in preventing or treating disease relapse. Gene transfer is also being used to modify tumour function, enhance immunogenicity, and confer drug-resistance to normal haematopoietic stem cells. With the continued scientific advancements in this field, gene therapy will almost certainly have a major impact on the treatment of paediatric leukaemia in the future. PMID:11727502

  1. CXCR4-antagonist Peptide R-liposomes for combined therapy against lung metastasis.

    PubMed

    Ieranò, Caterina; Portella, Luigi; Lusa, Sara; Salzano, Giuseppina; D'Alterio, Crescenzo; Napolitano, Maria; Buoncervello, Maria; Macchia, Daniele; Spada, Massimo; Barbieri, Antonio; Luciano, Antonio; Barone, Maria Vittoria; Gabriele, Lucia; Caraglia, Michele; Arra, Claudio; De Rosa, Giuseppe; Scala, Stefania

    2016-03-31

    The chemokine CXCL12 activates CXCR4, initiating multiple pathways that control immune cell trafficking, angiogenesis and embryogenesis; CXCR4 is also overexpressed in multiple tumors affecting metastatic dissemination. While there has been great enthusiasm for exploiting the CXCR4-CXCL12 axis as a target in cancer therapy, to date the promise has yet to be fulfilled. A new class of CXCR4-antagonist cyclic peptides was recently developed and the compound named Peptide R was identified as the most active. With the intent to improve the efficacy and biodistribution of Peptide R, stealth liposomes decorated with Peptide R were developed (PL-Peptide R). In vitro PL-Peptide R efficiently inhibited CXCR4-dependent migration and in vivo it significantly reduced lung metastases and increased overall survival in B16-CXCR4 injected C57BL/6 mice. To evaluate if PL-Peptide R could also be a drug delivery system for CXCR4 expressing tumors, the PL-Peptide R was loaded with doxorubicin (DOX) (PL-Peptide R-DOX). PL-Peptide R-DOX efficiently delivered DOX to CXCR4 expressing cell lines with a consequent decrease in the DOX IC50 efficient dose. In vivo, B16-CXCR4 injected C57BL/6 mice treated with PL-Peptide R-DOX developed fewer lung metastases compared to PL-DOX treated mice. This work provides the proof-of-concept to prevent metastasis by using combined nanomedicine. PMID:26983756

  2. Cationic liposomes modified with non-ionic surfactants as effective non-viral carrier for gene transfer.

    PubMed

    Huang, Yong-Zhuo; Gao, Jian-Qing; Chen, Jin-Liang; Liang, Wen-Quan

    2006-05-01

    A defined change in formulation components affects the physical and chemical characteristics of cationic liposomes (CLs) carriers in many ways. Therefore, a great degree of control can be exercised over the structure by modifying the CLs with various materials, leading to new innovations for carrier improvement. In the present study, surface modifications of cationic liposomes with non-ionic surfactants--sorbitan monoesters serials (Span 85, 80, 40 and 20) were carried out for developing a new gene transfer carrier. Span modified cationic liposomes (Sp-CLs) were prepared by reverse phase evaporation method (RPV) and self-assemble complexes of antisense oligonucleotides/surfactant modifying cationic liposomes were prepared by auto-coacervation through electrostatic effect. Characterization of Sp-CLs and the self-assembled complex was performed by electron microscope, particle size, zeta potential, turbidity and agarose electrophoresis. Furthermore, in vitro cellular uptake experiment showed that Span plays a role in enhancing the cellular uptake of encapsulated oligonucleotides mediated by Sp-CLs by the endocytosis-dependent route. CLs modified with Span 40 significantly facilitated the cellular uptake by COS-7 cells and HeLa cells; also showed some positive effect on gene expression. That suggests it is a potential non-viral carrier for efficient gene transfer. PMID:16626948

  3. Thermolabile liposomes: a controlled release delivery tool in diagnosis/therapy in experimental pulmonary ɶdema.

    PubMed

    Santos, A C; Matos, C M; Oliveiros, B; Almeida, T; Gano, L; Neves, M; Ferreira, N

    2012-04-01

    Liposomes, usually assembled from organic/synthetic lipidic compounds, are biocompatible, biodegradable, non-toxic, and do not induce immune response. Due to their structural versatility in terms of size, composition, surface charge, bilayer fluidity and ability to encapsulate drugs regardless of their solubility, liposomes enable the production of a vast number and type of formulations with potential clinical use. They can be administered through several routes of administration (e.g. i.v., i.m., oral, nasal, etc.). The use of liposomes enables the variation and control retention of drugs in biologic fluids, enhancing blood circulation and specific compartments residence. They can be tailored to target specific tissues and cells. They can play a very important role for imaging diagnosis and/or therapy. After an extensive literature review of the subject, we selected a particular area of potential clinical application: pulmonary ɶdema. This clinical entity has a variety of possible etiologies, conducing to two main types of edema: cardiogenic and non-cardiogenic. At the moment a dedicated technique for the early diagnosis/therapy of this pathology is lacking. We propose a new methodology using a specially designed GUV formulation, encapsulating chosen radiotracers labeled with 99mTc. The aim of the work has been successfully achieved in an experimental animal model of cardiogenic pulmonary oedema. Experiments using an animal model of non-cardiogenic pulmonary oedema are in course (simultaneous study with two different drugs), using the same GUV methodology. Preliminary results are very promising. PMID:22280109

  4. The potential of liposome-encapsulated ciprofloxacin as a tularemia therapy.

    PubMed

    Hamblin, Karleigh A; Wong, Jonathan P; Blanchard, James D; Atkins, Helen S

    2014-01-01

    Liposome-encapsulation has been suggested as method to improve the efficacy of ciprofloxacin against the intracellular pathogen, Francisella tularensis. Early work with a prototype formulation, evaluated for use against the F. tularensis live vaccine strain, showed that a single dose of liposomal ciprofloxacin given by the intranasal or inhalational route could provide protection in a mouse model of pneumonic tularemia. Liposomal ciprofloxacin offered better protection than ciprofloxacin given by the same routes. Liposomal ciprofloxacin has been further developed by Aradigm Corporation for Pseudomonas aeruginosa infections in patients with cystic fibrosis and non-cystic fibrosis bronchiectasis. This advanced development formulation is safe, effective and well tolerated in human clinical trials. Further evaluation of the advanced liposomal ciprofloxacin formulation against the highly virulent F. tularensis Schu S4 strain has shown that aerosolized CFI (Ciprofloxacin encapsulated in liposomes for inhalation) provides significantly better protection than oral ciprofloxacin. Thus, liposomal ciprofloxacin is a promising treatment for tularemia and further research with the aim of enabling licensure under the animal rule is warranted. PMID:24995163

  5. Multifunctional gold coated thermo-sensitive liposomes for multimodal imaging and photo-thermal therapy of breast cancer cells

    NASA Astrophysics Data System (ADS)

    Rengan, Aravind Kumar; Jagtap, Madhura; de, Abhijit; Banerjee, Rinti; Srivastava, Rohit

    2013-12-01

    Plasmon resonant gold nanoparticles of various sizes and shapes have been extensively researched for their applications in imaging, drug delivery and photothermal therapy (PTT). However, their ability to degrade after performing the required function is essential for their application in healthcare. When combined with biodegradable liposomes, they appear to have better degradation capabilities. They degrade into smaller particles of around 5 nm that are eligible candidates for renal clearance. Distearoyl phosphatidyl choline : cholesterol (DSPC : CHOL, 8 : 2 wt%) liposomes have been synthesized and coated with gold by in situ reduction of chloro-auric acid. These particles of size 150-200 nm are analyzed for their stability, degradation capacity, model drug-release profile, biocompatibility and photothermal effects on cancer cells. It is observed that when these particles are subjected to low power continuous wave near infra-red (NIR) laser for more than 10 min, they degrade into small gold nanoparticles of size 5 nm. Also, the gold coated liposomes appear to have excellent biocompatibility and high efficiency to kill cancer cells through photothermal transduction. These novel materials are also useful in imaging using specific NIR dyes, thus exhibiting multifunctional properties for theranostics of cancer.Plasmon resonant gold nanoparticles of various sizes and shapes have been extensively researched for their applications in imaging, drug delivery and photothermal therapy (PTT). However, their ability to degrade after performing the required function is essential for their application in healthcare. When combined with biodegradable liposomes, they appear to have better degradation capabilities. They degrade into smaller particles of around 5 nm that are eligible candidates for renal clearance. Distearoyl phosphatidyl choline : cholesterol (DSPC : CHOL, 8 : 2 wt%) liposomes have been synthesized and coated with gold by in situ reduction of chloro-auric acid. These

  6. Experimental therapies: gene therapies and oncolytic viruses.

    PubMed

    Hulou, M Maher; Cho, Choi-Fong; Chiocca, E Antonio; Bjerkvig, Rolf

    2016-01-01

    Glioblastoma is the most common and aggressive primary brain tumor in adults. Over the past three decades, the overall survival time has only improved by a few months, therefore novel alternative treatment modalities are needed to improve clinical management strategies. Such strategies should ultimately extend patient survival. At present, the extensive insight into the molecular biology of gliomas, as well as into genetic engineering techniques, has led to better decision processes when it comes to modifying the genome to accommodate suicide genes, cytokine genes, and tumor suppressor genes that may kill cancer cells, and boost the host defensive immune system against neoantigenic cytoplasmic and nuclear targets. Both nonreplicative viral vectors and replicating oncolytic viruses have been developed for brain cancer treatment. Stem cells, microRNAs, nanoparticles, and viruses have also been designed. These have been armed with transgenes or peptides, and have been used both in laboratory-based experiments as well as in clinical trials, with the aim of improving selective killing of malignant glioma cells while sparing normal brain tissue. This chapter reviews the current status of gene therapies for malignant gliomas and highlights the most promising viral and cell-based strategies under development. PMID:26948355

  7. Ethics of Gene Therapy Debated.

    ERIC Educational Resources Information Center

    Borman, Stu

    1991-01-01

    Presented are the highlights of a press conference featuring biomedical ethicist LeRoy Walters of Georgetown University and attorney Andrew Kimbrell of the Foundation on Economic Trends. The opposing points of view of these two speakers serve to outline the pros and cons of the gene therapy issue. (CW)

  8. Inhibition of B16BL6 tumor progression by coadministration of recombinant angiostatin K1-3 and endostatin genes with cationic liposomes.

    PubMed

    Kim, Keun Sik; Kim, Hong Sung; Park, Jin Seu; Kwon, Young Guen; Park, Yong Serk

    2004-06-01

    Transfection of the antiangiogenic angiostatin and endostatin genes was shown to be an alternative to high-dose administration of angiostatin or endostatin proteins for cancer therapy. We have systematically investigated whether coadministration of the mouse angiostatin kringle 1-3 gene (pFLAG-AngioK1/3) and the endostatin gene (pFLAG-Endo) complexed with cationic liposomes exhibits enhanced therapeutic efficacy. In vitro, the coexpressed mixture of angiostatin K1-3 and endostatin more effectively reduced angiogenesis in chorioallantoic membranes than either angiostatin K1-3 or endostatin alone. In vivo, subcutaneous co-administration of pFLAG-AngioK1/3 and pFLAG-Endo lipoplexes more effectively inhibited vascularization in Matrigel plugs implanted in mice than either one alone. Additionally, subcutaneous administration of these genes inhibited the growth and formation of pulmonary metastases of B16BL6 melanoma cells in mice. Compared to treatment with an empty vector, treatment with pFLAG-AngioK1/3 plus pFLAG-Endo inhibited 81% of tumor growth, while treatment with pFLAG-AngioK1/3 or pFLAG-Endo inhibited tumor growth 70 and 69%, respectively. Cotreatment with the two plasmids after primary tumor excision induced a 90% inhibition of pulmonary metastases versus 79% for pFLAG-AngioK1/3 or 80% for pFLAG-Endo individually. These results suggest that combined administration of angiostatin K1-3 and endostatin genes complexed with cationic liposomes may be an innovated antiangiogenic strategy for cancer therapy. PMID:15118757

  9. [Gene therapy for osteoarticular disorders].

    PubMed

    Gouze, Jean-Noël; Evans, Christopher H; Ghivizzani, Steven C; Gouze, Elvire

    2007-03-01

    Osteoarticular disorders are the major cause of disability in Europe and North America. It is estimated that rheumatoid arthritis affects 1 % of the population and that more than two third of people over age 55 develop osteoarthritis. Because there are no satisfactory treatments, gene therapy offers a new therapeutic approach. The delivery of cDNA encoding anti-arthritic proteins to articular cells has shown therapeutic efficacy in numerous animal models in vivo. Through the development and the experimental progresses that have been made for both rheumatoid arthritis and osteoarthritis, this review discusses the different gene therapy strategies available today and the safety issues with which they may be associated. Among the different vectors available today, adeno-associated virus seems the best candidate for a direct in vivo gene delivery approach for the treatment of joint disorders. PMID:17349293

  10. Gene Therapy for Coagulation Disorders.

    PubMed

    Swystun, Laura L; Lillicrap, David

    2016-04-29

    Molecular genetic details of the human coagulation system were among the first successes of the genetic revolution in the 1980s. This information led to new molecular diagnostic strategies for inherited disorders of hemostasis and the development of recombinant clotting factors for the treatment of the common inherited bleeding disorders. A longer term goal of this knowledge has been the establishment of gene transfer to provide continuing access to missing or defective hemostatic proteins. Because of the relative infrequency of inherited coagulation factor disorders and the availability of safe and effective alternative means of management, the application of gene therapy for these conditions has been slow to realize clinical application. Nevertheless, the tools for effective and safe gene transfer are now much improved, and we have started to see examples of clinical gene therapy successes. Leading the way has been the use of adeno-associated virus-based strategies for factor IX gene transfer in hemophilia B. Several small phase 1/2 clinical studies using this approach have shown prolonged expression of therapeutically beneficial levels of factor IX. Nevertheless, before the application of gene therapy for coagulation disorders becomes widespread, several obstacles need to be overcome. Immunologic responses to the vector and transgenic protein need to be mitigated, and production strategies for clinical grade vectors require enhancements. There is little doubt that with the development of more efficient and facile strategies for genome editing and the application of other nucleic acid-based approaches to influence the coagulation system, the future of genetic therapies for hemostasis is bright. PMID:27126652

  11. Non-ionic surfactant modified cationic liposomes mediated gene transfection in vitro and in the mouse lung.

    PubMed

    Ding, Wuxiao; Izumisawa, Tomohiro; Hattori, Yoshiyuki; Qi, Xianrong; Kitamoto, Dai; Maitani, Yoshie

    2009-02-01

    As reported previously, cationic liposomes formulated with dioleoylphosphatidylethanolamine (DOPE) and N,N-methyl hydroxyethyl aminopropane carbamoyl cholesterol (MHAPC-liposomes) achieved efficient gene transfection in the mouse lung following intratracheal injection. We have studied here the role of surfactants, mannosylerythritol lipid-A (MEL-A) and polysorbate 80 (Tween 80), in affecting gene transfection of MHAPC-lipoplexes (complex with pCMV-luc DNA) in A549 cells and in the mouse lung. MEL-A increased gene transfection of MHAPC-lipoplexes significantly in vitro and slightly in the mouse lung, while Tween 80 decreased it both in vitro and in vivo. As assessed by confocal laser scanning microscopy and fluorescence imaging, MEL-A might faciliate gene dissociation from MHAPC-lipoplexes with fluorescein-labeled oligodeoxynucleotide (FITC-ODN) after internalization into the cells and retained the lipoplexes in the mouse lung for prolonged time, while Tween 80 was inefficient to deliver foreign gene into target cells and in the lung. These results demonstrated that MEL-A is advantageous to Tween 80 in the modification of cationic liposomes as gene delivery vectors in the lung. PMID:19182397

  12. Architectonics of phage-liposome nanowebs as optimized photosensitizer vehicles for photodynamic cancer therapy

    PubMed Central

    Sreeram, Kalarical Janardhanan; Narayan, Shoba; Gopal, Abbineni; Hayhurst, Andrew; Mao, Chuanbin

    2010-01-01

    Filamentous M13 phage can be engineered to display cancer cell-targeting or tumor-homing peptides through phage display. It would be highly desirable if the tumor targeting phage can also carry anti-cancer drugs to deliver them to the cancer cells. We studied the evolution of structures of the complexes between anionic filamentous M13 phage and cationic serum-stable liposomes which encapsulate the monomeric photosensitizer, zinc naphthalocyanine. At specific phage-liposome ratios, multiple phage nanofibers and liposomes are interwoven into a “nanoweb”. The chemical and biological properties of the phage-liposome nanoweb were evaluated for possible application in drug delivery. This study highlights the ability of phageliposome nanowebs to serve as efficient carriers to transport photosensitizers to cancer cells. PMID:20807781

  13. Central nervous system toxicity associated with liposomal amphotericin B therapy for cutaneous leishmaniasis.

    PubMed

    Glasser, Jessie S; Murray, Clinton K

    2011-04-01

    AmBisome (liposomal amphotericin B) is used for prophylaxis and treatment of fungal infections, treatment of visceral leishmaniasis, and more recently, treatment of cutaneous leishmaniasis. Although the package insert cites neurologic toxicities in up to 20% of cases, review of the literature did not reveal any specific cases describing this side effect, particularly in a patient without comorbidities. We describe a healthy 38-year-old male treated with liposomal amphotericin B for cutaneous leishmaniasis acquired during military duties in Iraq. Shortly after completion of his treatment course, he reported memory difficulties and confusion. Further evaluation revealed no other source, and his cognitive issues were attributed to liposomal amphotericin B toxicity. These issues resolved over a few weeks, which is consistent with data about the drug's tissue penetration and metabolism available in the literature. This is a potential side effect of liposomal amphotericin B that can be observed in otherwise healthy patients. PMID:21460011

  14. Gene Therapy and Children (For Parents)

    MedlinePlus

    ... screenings or other regular exams. previous continue The Future of Gene Therapy To cure genetic diseases, scientists ... Gene therapy's potential to revolutionize medicine in the future is exciting, and hopes are high for its ...

  15. [Realities and hopes of gene therapy].

    PubMed

    Zdanov, R I; Semenova, N V; Archakov, A I

    2000-01-01

    The work represents an introduction article of editors of special issue of the magazine devoted to gene therapy and therapeutics. The main results of clinical gene therapy in the past decade are critically considered in connection with a changes of paradigms of the field. They are: 1) change of the main target of genetic therapy--correction of defects in chromosomes--onto expression and/or output of target genes for gene therapy; 2) transfer from gene transplantation to cell transplantation; 3) tendency for the use of safe/non-viral vectors instead of viral ones.; and 4) conflict of interests in gene therapy. Outlooks in the field are discussed. PMID:11033881

  16. Nanoformulation of Geranylgeranyltransferase-I Inhibitors for Cancer Therapy: Liposomal Encapsulation and pH-Dependent Delivery to Cancer Cells

    PubMed Central

    Lu, Jie; Yoshimura, Kohei; Goto, Koichi; Lee, Craig; Hamura, Ken; Kwon, Ohyun; Tamanoi, Fuyuhiko

    2015-01-01

    Small molecule inhibitors against protein geranylgeranyltransferase-I such as P61A6 have been shown to inhibit proliferation of a variety of human cancer cells and exhibit antitumor activity in mouse models. Development of these inhibitors could be dramatically accelerated by conferring tumor targeting and controlled release capability. As a first step towards this goal, we have encapsulated P61A6 into a new type of liposomes that open and release cargos only under low pH condition. These low pH-release type liposomes were prepared by adjusting the ratio of two types of phospholipid derivatives. Loading of geranylgeranyltransferase-I inhibitor (GGTI) generated liposomes with average diameter of 50–100 nm. GGTI release in solution was sharply dependent on pH values, only showing release at pH lower than 6. Release of cargos in a pH-dependent manner inside the cell was demonstrated by the use of a proton pump inhibitor Bafilomycin A1 that Increased lysosomal pH and inhibited the release of a dye carried in the pH-liposome. Delivery of GGTI to human pancreatic cancer cells was demonstrated by the inhibition of protein geranylgeranylation inside the cell and this effect was blocked by Bafilomycin A1. In addition, GGTI delivered by pH-liposomes induced proliferation inhibition, G1 cell cycle arrest that is associated with the expression of cell cycle regulator p21CIP1/WAF1. Proliferation inhibition was also observed with various lung cancer cell lines. Availability of nanoformulated GGTI opens up the possibility to combine with other types of inhibitors. To demonstrate this point, we combined the liposomal-GGTI with farnesyltransferase inhibitor (FTI) to inhibit K-Ras signaling in pancreatic cancer cells. Our results show that the activated K-Ras signaling in these cells can be effectively inhibited and that synergistic effect of the two drugs is observed. Our results suggest a new direction in the use of GGTI for cancer therapy. PMID:26352258

  17. Design of multifunctional magnetic iron oxide nanoparticles/mitoxantrone-loaded liposomes for both magnetic resonance imaging and targeted cancer therapy

    PubMed Central

    He, Yingna; Zhang, Linhua; Zhu, Dunwan; Song, Cunxian

    2014-01-01

    Tumor-targeting multifunctional liposomes simultaneously loaded with magnetic iron oxide nanoparticles (MIONs) as a magnetic resonance imaging (MRI) contrast agent and anticancer drug, mitoxantrone (Mit), were developed for targeted cancer therapy and ultrasensitive MRI. The gonadorelin-functionalized MION/Mit-loaded liposome (Mit-GML) showed significantly increased uptake in luteinizing hormone–releasing hormone (LHRH) receptor overexpressing MCF-7 (Michigan Cancer Foundation-7) breast cancer cells over a gonadorelin-free MION/Mit-loaded liposome (Mit-ML) control, as well as in an LHRH receptor low-expressing Sloan-Kettering HER2 3+ Ovarian Cancer (SK-OV-3) cell control, thereby leading to high cytotoxicity against the MCF-7 human breast tumor cell line. The Mit-GML formulation was more effective and less toxic than equimolar doses of free Mit or Mit-ML in the treatment of LHRH receptors overexpressing MCF-7 breast cancer xenografts in mice. Furthermore, the Mit-GML demonstrated much higher T2 enhancement than did Mit-ML controls in vivo. Collectively, the study indicates that the integrated diagnostic and therapeutic design of Mit-GML nanomedicine potentially allows for the image-guided, target-specific treatment of cancer. PMID:25187709

  18. CXCR4-antagonist Peptide R-liposomes for combined therapy against lung metastasis

    NASA Astrophysics Data System (ADS)

    Ieranò, Caterina; Portella, Luigi; Lusa, Sara; Salzano, Giuseppina; D'Alterio, Crescenzo; Napolitano, Maria; Buoncervello, Maria; Macchia, Daniele; Spada, Massimo; Barbieri, Antonio; Luciano, Antonio; Barone, Maria Vittoria; Gabriele, Lucia; Caraglia, Michele; Arra, Claudio; De Rosa, Giuseppe; Scala, Stefania

    2016-03-01

    The chemokine CXCL12 activates CXCR4, initiating multiple pathways that control immune cell trafficking, angiogenesis and embryogenesis; CXCR4 is also overexpressed in multiple tumors affecting metastatic dissemination. While there has been great enthusiasm for exploiting the CXCR4-CXCL12 axis as a target in cancer therapy, to date the promise has yet to be fulfilled. A new class of CXCR4-antagonist cyclic peptides was recently developed and the compound named Peptide R was identified as the most active. With the intent to improve the efficacy and biodistribution of Peptide R, stealth liposomes decorated with Peptide R were developed (PL-Peptide R). In vitro PL-Peptide R efficiently inhibited CXCR4-dependent migration and in vivo it significantly reduced lung metastases and increased overall survival in B16-CXCR4 injected C57BL/6 mice. To evaluate if PL-Peptide R could also be a drug delivery system for CXCR4 expressing tumors, the PL-Peptide R was loaded with doxorubicin (DOX) (PL-Peptide R-DOX). PL-Peptide R-DOX efficiently delivered DOX to CXCR4 expressing cell lines with a consequent decrease in the DOX IC50 efficient dose. In vivo, B16-CXCR4 injected C57BL/6 mice treated with PL-Peptide R-DOX developed fewer lung metastases compared to PL-DOX treated mice. This work provides the proof-of-concept to prevent metastasis by using combined nanomedicine.The chemokine CXCL12 activates CXCR4, initiating multiple pathways that control immune cell trafficking, angiogenesis and embryogenesis; CXCR4 is also overexpressed in multiple tumors affecting metastatic dissemination. While there has been great enthusiasm for exploiting the CXCR4-CXCL12 axis as a target in cancer therapy, to date the promise has yet to be fulfilled. A new class of CXCR4-antagonist cyclic peptides was recently developed and the compound named Peptide R was identified as the most active. With the intent to improve the efficacy and biodistribution of Peptide R, stealth liposomes decorated with Peptide

  19. Muscle Gene Therapy for Hemophilia

    PubMed Central

    Sabatino, Denise E.; Arruda, Valder R.

    2013-01-01

    Muscle-directed gene therapy for hemophilia is an attractive strategy for expression of therapeutic levels of clotting factor as evident from preclinical studies and an early phase clinical trial. Notably, local FIX expression by AAV-mediated direct intramuscular injection to skeletal muscle persists for years. Development of intravascular delivery of AAV vector approaches to skeletal muscle resulted in vector in widespread areas of the limb and increased expression of FIX in hemophilia B dogs. The use of FIX variants with improved biological activity may provide the opportunity to increase the efficacy of these approaches. Studies for hemophilia A are less developed at this point, but utilizing transgenes that improve hemostasis independent of FIX and FVIII has potential therapeutic application for both hemophilia A and B. Continuous monitoring of humoral and T cell responses to the transgene and AAV capsid in human trials will be critical for the translation of these promising approaches for muscle gene therapy for hemophilia. PMID:24883231

  20. Bioreducible Liposomes for Gene Delivery: From the Formulation to the Mechanism of Action

    PubMed Central

    Candiani, Gabriele; Pezzoli, Daniele; Ciani, Laura; Chiesa, Roberto; Ristori, Sandra

    2010-01-01

    Background A promising strategy to create stimuli-responsive gene delivery systems is to exploit the redox gradient between the oxidizing extracellular milieu and the reducing cytoplasm in order to disassemble DNA/cationic lipid complexes (lipoplexes). On these premises, we previously described the synthesis of SS14 redox-sensitive gemini surfactant for gene delivery. Although others have attributed the beneficial effects of intracellular reducing environment to reduced glutathione (GSH), these observations cannot rule out the possible implication of the redox milieu in its whole on transfection efficiency of bioreducible transfectants leaving the determinants of DNA release largely undefined. Methodology/Principal Findings With the aim of addressing this issue, SS14 was here formulated into binary and ternary 100 nm-extruded liposomes and the effects of the helper lipid composition and of the SS14/helper lipids molar ratio on chemical-physical and structural parameters defining transfection effectiveness were investigated. Among all formulations tested, DOPC/DOPE/SS14 at 25∶50∶25 molar ratio was the most effective in transfection studies owing to the presence of dioleoyl chains and phosphatidylethanolamine head groups in co-lipids. The increase in SS14 content up to 50% along DOPC/DOPE/SS14 liposome series yielded enhanced transfection, up to 2.7-fold higher than that of the benchmark Lipofectamine 2000, without altering cytotoxicity of the corresponding lipoplexes at charge ratio 5. Secondly, we specifically investigated the redox-dependent mechanisms of gene delivery into cells through tailored protocols of transfection in GSH-depleted and repleted vs. increased oxidative stress conditions. Importantly, GSH specifically induced DNA release in batch and in vitro. Conclusions/Significance The presence of helper lipids carrying unsaturated dioleoyl chains and phosphatidylethanolamine head groups significantly improved transfection efficiencies of DOPC/DOPE/SS14

  1. Tumor growth suppression by gadolinium-neutron capture therapy using gadolinium-entrapped liposome as gadolinium delivery agent.

    PubMed

    Dewi, Novriana; Yanagie, Hironobu; Zhu, Haito; Demachi, Kazuyuki; Shinohara, Atsuko; Yokoyama, Kazuhito; Sekino, Masaki; Sakurai, Yuriko; Morishita, Yasuyuki; Iyomoto, Naoko; Nagasaki, Takeshi; Horiguchi, Yukichi; Nagasaki, Yukio; Nakajima, Jun; Ono, Minoru; Kakimi, Kazuhiro; Takahashi, Hiroyuki

    2013-07-01

    Neutron capture therapy (NCT) is a promising non-invasive cancer therapy approach and some recent NCT research has focused on using compounds containing gadolinium as an alternative to currently used boron-10 considering several advantages that gadolinium offers compared to those of boron. In this study, we evaluated gadolinium-entrapped liposome compound as neutron capture therapy agent by in vivo experiment on colon-26 tumor-bearing mice. Gadolinium compound were injected intravenously via tail vein and allowed to accumulate into tumor site. Tumor samples were taken for quantitative analysis by ICP-MS at 2, 12, and 24 h after gadolinium compound injection. Highest gadolinium concentration was observed at about 2 h after gadolinium compound injection with an average of 40.3 μg/g of wet tumor tissue. We performed neutron irradiation at JRR-4 reactor facility of Japan Atomic Energy Research Institute in Tokaimura with average neutron fluence of 2×10¹² n/cm². The experimental results showed that the tumor growth suppression of gadolinium-injected irradiated group was revealed until about four times higher compared to the control group, and no significant weight loss were observed after treatment suggesting low systemic toxicity of this compound. The gadolinium-entrapped liposome will become one of the candidates for Gd delivery system on NCT. PMID:23743325

  2. Gene therapy on demand: site specific regulation of gene therapy.

    PubMed

    Jazwa, Agnieszka; Florczyk, Urszula; Jozkowicz, Alicja; Dulak, Jozef

    2013-08-10

    Since 1990 when the first clinical gene therapy trial was conducted, much attention and considerable promise have been given to this form of treatment. Gene therapy has been used with success in patients suffering from severe combined immunodeficiency syndromes (X-SCID and ADA-deficiency), Leber's congenital amaurosis, hemophilia, β-thalassemia and adrenoleukodystrophy. Last year, the first therapeutic vector (Glybera) for treatment of lipoprotein lipase deficiency has been registered in the European Union. Nevertheless, there are still several numerous issues that need to be improved to make this technique more safe, effective and easily accessible for patients. Introduction of the therapeutic gene to the given cells should provide the level of expression which will restore the production of therapeutic protein to normal values or will provide therapeutic efficacy despite not fully physiological expression. However, in numerous diseases the expression of therapeutic genes has to be kept at certain level for some time, and then might be required to be switched off to be activated again when worsening of the symptoms may aggravate the risk of disease relapse. In such cases the promoters which are regulated by local conditions may be more required. In this article the special emphasis is to discuss the strategies of regulation of gene expression by endogenous stimuli. Particularly, the hypoxia- or miRNA-regulated vectors offer the possibilities of tight but, at the same time, condition-dependent and cell-specific expression. Such means have been already tested in certain pathophysiological conditions. This creates the chance for the translational approaches required for development of effective treatments of so far incurable diseases. PMID:23566848

  3. Nonviral gene delivery systems by the combination of bubble liposomes and ultrasound.

    PubMed

    Omata, Daiki; Negishi, Yoichi; Suzuki, Ryo; Oda, Yusuke; Endo-Takahashi, Yoko; Maruyama, Kazuo

    2015-01-01

    The combination of therapeutic ultrasound (US) and nano/microbubbles is an important system for establishing a novel and noninvasive gene delivery system. Genes are delivered more efficiently using this system compared with a conventional nonviral vector system such as the lipofection method, resulting in higher gene expression. This higher efficiency is due to the gene being delivered into the cytosol and bypassing the endocytosis pathway. Many in vivo studies have demonstrated US-mediated gene delivery with nano/microbubbles, and several gene therapy feasibility studies for various diseases have been reported. In addition, nano/microbubbles can deliver genes site specifically by the control of US exposure site. In the present review, we summarize the gene delivery systems by the combination of nano/microbubbles and US, describe their properties, and assess applications and challenges of US theranostics. PMID:25620007

  4. The effect of cholesterol domains on PEGylated liposomal gene delivery in vitro

    PubMed Central

    Xu, Long; Wempe, Michael F; Anchordoquy, Thomas J

    2011-01-01

    Aim PEGylated components have been widely used to reduce particle aggregation in serum and extend circulation lifetime for lipid- and polymer-based gene-delivery systems. However, PEGylation is known to interfere with cell interaction and intracellular trafficking, resulting in decreased biological activity. In the present study, the effect of cholesterol domains on PEGylated liposome-mediated gene delivery was evaluated by PEGylating formulations with and without a cholesterol domain, and also by altering the location of PEG on the particle surface (i.e., within or excluded from the domain). Materials and methods Lipoplexes formulated with PEG–cholesterol or PEG–diacyl lipid were used to transfect various cell lines, including human and mouse cancer cells. Cellular uptake of lipoplexes was also quantified and compared with the transfection results. Results Our findings are consistent with previous work demonstrating that PEGylation reduces transfection rates; however, formulations in which PEG was incorporated into the cholesterol domain did not exhibit this detrimental effect. In some cell lines, the incorporation of PEG into the domain actually increased transfection rates, despite no enhancement of cellular uptake. Discussion These results suggest that the adverse alterations in intracellular trafficking that are a consequence of PEGylation may be avoided by utilizing delivery vehicles that allow PEG to partition into a cholesterol domain. PMID:22428082

  5. Suicide Gene Therapy for Cancer – Current Strategies

    PubMed Central

    Zarogoulidis, Paul; Darwiche, Kaid; Sakkas, Antonios; Yarmus, Lonny; Huang, Haidong; Li, Qiang; Freitag, Lutz; Zarogoulidis, Konstantinos; Malecki, Marek

    2013-01-01

    Current cancer treatments may create profound iatrogenic outcomes. The adverse effects of these treatments still remain, as the serious problems that practicing physicians have to cope with in clinical practice. Although, non-specific cytotoxic agents constitute an effective treatment modality against cancer cells, they also tend to kill normal, quickly dividing cells. On the other hand, therapies targeting the genome of the tumors are both under investigation, and some others are already streamlined to clinical practice. Several approaches have been investigated in order to find a treatment targeting the cancer cells, while not affecting the normal cells. Suicide gene therapy is a therapeutic strategy, in which cell suicide inducing transgenes are introduced into cancer cells. The two major suicide gene therapeutic strategies currently pursued are: cytosine deaminase/5-fluorocytosine and the herpes simplex virus/ganciclovir. The novel strategies include silencing gene expression, expression of intracellular antibodies blocking cells’ vital pathways, and transgenic expression of caspases and DNases. We analyze various elements of cancer cells’ suicide inducing strategies including: targets, vectors, and mechanisms. These strategies have been extensively investigated in various types of cancers, while exploring multiple delivery routes including viruses, non-viral vectors, liposomes, nanoparticles, and stem cells. We discuss various stages of streamlining of the suicide gene therapy into clinical oncology as applied to different types of cancer. Moreover, suicide gene therapy is in the center of attention as a strategy preventing cancer from developing in patients participating in the clinical trials of regenerative medicine. In oncology, these clinical trials are aimed at regenerating, with the aid of stem cells, of the patients’ organs damaged by pathologic and/or iatrogenic factors. However, the stem cells carry the risk of neoplasmic transformation. We

  6. pH-sensitive polymer-liposome-based antigen delivery systems potentiated with interferon-γ gene lipoplex for efficient cancer immunotherapy.

    PubMed

    Yuba, Eiji; Kanda, Yuhei; Yoshizaki, Yuta; Teranishi, Ryoma; Harada, Atsushi; Sugiura, Kikuya; Izawa, Takeshi; Yamate, Jyoji; Sakaguchi, Naoki; Koiwai, Kazunori; Kono, Kenji

    2015-10-01

    Potentiation of pH-sensitive liposome-based antigen carriers with IFN-γ gene lipoplexes was attempted to achieve efficient induction of tumor-specific immunity. 3-Methylglutarylated poly(glycidol) (MGluPG)-modified liposomes and cationic liposomes were used, respectively, for the delivery of antigenic protein ovalbumin (OVA) and IFN-γ-encoding plasmid DNA (pDNA). The MGluPG-modified liposomes and the cationic liposome-pDNA complexes (lipoplexes) formed hybrid complexes via electrostatic interactions after their mixing in aqueous solutions. The hybrid complexes co-delivered OVA and IFN-γ-encoding pDNA into DC2.4 cells, a murine dendritic cell line, as was the case of MGluPG-modified liposomes for OVA or the lipoplexes for pDNA. Both the lipoplexes and the hybrid complexes transfected DC2.4 cells and induced IFN-γ protein production, but transfection activities of the hybrid complexes were lower than those of the parent lipoplexes. Subcutaneous administration of hybrid complexes to mice bearing E.G7-OVA tumor reduced tumor volumes, which might result from the induction of OVA-specific cytotoxic T lymphocytes (CTLs). However, the hybrid complex-induced antitumor effect was the same level of the MGluPG-modified liposome-mediated antitumor immunity. In contrast, an extremely strong antitumor immune response was derived when these liposomes and lipoplexes without complexation were injected subcutaneously at the same site of tumor-bearing mice. Immunohistochemical analysis of tumor sections revealed that immunization through the liposome-lipoplex combination promoted the infiltration of CTLs to tumors at an early stage of treatment compared with liposomes, resulting in strong therapeutic effects. PMID:26222284

  7. Gene Therapy in the Cornea: 2005-present

    PubMed Central

    Mohan, Rajiv R.; Tovey, Jonathan C.K.; Sharma, Ajay; Tandon, Ashish

    2011-01-01

    Successful restoration of vision in human patients with gene therapy affirmed its promise to cure ocular diseases and disorders. The efficacy of gene therapy is contingent upon vector and mode of therapeutic DNA introduction into targeted cells/tissues. The cornea is an ideal tissue for gene therapy due to its ease of access and relative immune-privilege. Considerable progress has been made in the field of corneal gene therapy in last 5 years. Several new gene transfer vectors, techniques and approaches have evolved. Although corneal gene therapy is still in its early stages of development, the potential of gene-based interventions to treat corneal abnormalities have begun to surface. Identification of next generation viral and nanoparticle vectors, characterization of delivered gene levels, localization, and duration in the cornea, and significant success in controlling corneal disorders, particularly fibrosis and angiogenesis, in experimental animal disease models, with no major side effects have propelled gene therapy a step closer towards establishing gene-based therapies for corneal blindness. Recently, researchers have assessed the delivery of therapeutic genes for corneal diseases and disorders due to trauma, infections, chemical, mechanical, and surgical injury, and/or abnormal wound healing. This review provides an update on the developments in gene therapy for corneal diseases and discusses the barriers that hinder its utilization for delivering genes in the cornea. PMID:21967960

  8. Gene therapy for prostate cancer.

    PubMed

    Tangney, Mark; Ahmad, Sarfraz; Collins, Sara A; O'Sullivan, Gerald C

    2010-05-01

    Cancer remains a leading cause of morbidity and mortality. Despite advances in understanding, detection, and treatment, it accounts for almost one-fourth of all deaths per year in Western countries. Prostate cancer is currently the most commonly diagnosed noncutaneous cancer in men in Europe and the United States, accounting for 15% of all cancers in men. As life expectancy of individuals increases, it is expected that there will also be an increase in the incidence and mortality of prostate cancer. Prostate cancer may be inoperable at initial presentation, unresponsive to chemotherapy and radiotherapy, or recur following appropriate treatment. At the time of presentation, patients may already have metastases in their tissues. Preventing tumor recurrence requires systemic therapy; however, current modalities are limited by toxicity or lack of efficacy. For patients with such metastatic cancers, the development of alternative therapies is essential. Gene therapy is a realistic prospect for the treatment of prostate and other cancers, and involves the delivery of genetic information to the patient to facilitate the production of therapeutic proteins. Therapeutics can act directly (eg, by inducing tumor cells to produce cytotoxic agents) or indirectly by upregulating the immune system to efficiently target tumor cells or by destroying the tumor's vasculature. However, technological difficulties must be addressed before an efficient and safe gene medicine is achieved (primarily by developing a means of delivering genes to the target cells or tissue safely and efficiently). A wealth of research has been carried out over the past 20 years, involving various strategies for the treatment of prostate cancer at preclinical and clinical trial levels. The therapeutic efficacy observed with many of these approaches in patients indicates that these treatment modalities will serve as an important component of urological malignancy treatment in the clinic, either in isolation or

  9. Magnetic liposomes for colorectal cancer cells therapy by high-frequency magnetic field treatment

    PubMed Central

    2014-01-01

    In this study, we developed the cancer treatment through the combination of chemotherapy and thermotherapy using doxorubicin-loaded magnetic liposomes. The citric acid-coated magnetic nanoparticles (CAMNP, ca. 10 nm) and doxorubicin were encapsulated into the liposome (HSPC/DSPE/cholesterol = 12.5:1:8.25) by rotary evaporation and ultrasonication process. The resultant magnetic liposomes (ca. 90 to 130 nm) were subject to characterization including transmission electron microscopy (TEM), dynamic light scattering (DLS), X-ray diffraction (XRD), zeta potential, Fourier transform infrared (FTIR) spectrophotometer, and fluorescence microscope. In vitro cytotoxicity of the drug carrier platform was investigated through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay using L-929 cells, as the mammalian cell model. In vitro cytotoxicity and hyperthermia (inductive heating) studies were evaluated against colorectal cancer (CT-26 cells) with high-frequency magnetic field (HFMF) exposure. MTT assay revealed that these drug carriers exhibited no cytotoxicity against L-929 cells, suggesting excellent biocompatibility. When the magnetic liposomes with 1 μM doxorubicin was used to treat CT-26 cells in combination with HFMF exposure, approximately 56% cells were killed and found to be more effective than either hyperthermia or chemotherapy treatment individually. Therefore, these results show that the synergistic effects between chemotherapy (drug-controlled release) and hyperthermia increase the capability to kill cancer cells. PMID:25246875

  10. Development of synthetic of peptide-functionalized liposome for enhanced targeted ovarian carcinoma therapy

    PubMed Central

    Wu, Hong; Yao, Li; Mei, Jiazhuan; Li, Feng

    2015-01-01

    In this study, we report an active targeting liposomal formulation directed by a novel peptide (T7) that specifically binds to the transferrin receptor (TfR) overexpressed on ovarian carcinoma cells. The objectives of this study were to evaluate the in vitro and in vivo tumor drug targeting delivery of T7-anchored liposomes on A2780 cells. T7 conjugated to the distal end of DSPE-PEG2000-maleimide was incorporated into the liposomes via a post-insertion method, the liposome could keep stability in 50% FBS for more than 24 h. The uptake efficiency of T7-LP was 3.7 times higher than that of LP on A2780 cells. The anti-proliferative activity of T7-LP-PTX against A2780 cells was much stronger compared to that of LP-PTX and free PTX, respectively. The homing specificity and anticancer efficacy of T7-LP-PTX were also evaluated on the tumor spheroids, which revealed that T7-LP-PTX was more efficaciously internalized into tumor cells than LP. Compared to LP, T7-LP-PTX showed the highest accumulation capability into tumor spheroids, and the greatest tumor growth inhibitory effect in vitro. In the in vivo study, the T7-LP-PTX showed the best inhibition effect of the tumor growth for the A2780-bearing mice and tumor accumulation. In brief, the T7-LP may be an efficient targeting drug delivery system for ovarian carcinoma. PMID:25755707

  11. Development of synthetic of peptide-functionalized liposome for enhanced targeted ovarian carcinoma therapy

    PubMed Central

    Wu, Hong; Yao, Li; Mei, Jiazhuan; Li, Feng

    2014-01-01

    In this study, we report an active targeting liposomal formulation directed by a novel peptide (T7) that specifically binds to the transferrin receptor (TfR) overexpressed on ovarian carcinoma cells. The objectives of this study were to evaluate the in vitro and in vivo tumor drug targeting delivery of T7-anchored liposomes on A2780 cells. T7 conjugated to the distal end of DSPE-PEG2000-maleimide was incorporated into the liposomes via a post-insertion method, the liposome could keep stability in 50% FBS for more than 24 h. The uptake efficiency of T7-LP was 3.7 times higher than that of LP on A2780 cells. The anti-proliferative activity of T7-LP-PTX against A2780 cells was much stronger compared to that of LP-PTX and free PTX, respectively. The homing specificity and anticancer efficacy of T7-LP-PTX were also evaluated on the tumor spheroids, which revealed that T7-LP-PTX was more efficaciously internalized into tumor cells than LP. Compared to LP, T7-LP-PTX showed the highest accumulation capability into tumor spheroids, and the greatest tumor growth inhibitory effect in vitro. In the in vivo study, the T7-LP-PTX showed the best inhibition effect of the tumor growth for the A2780-bearing mice and tumor accumulation. In brief, the T7-LP may be an efficient targeting drug delivery system for ovarian carcinoma. PMID:25663977

  12. Magnetic liposomes for colorectal cancer cells therapy by high-frequency magnetic field treatment

    NASA Astrophysics Data System (ADS)

    Hardiansyah, Andri; Huang, Li-Ying; Yang, Ming-Chien; Liu, Ting-Yu; Tsai, Sung-Chen; Yang, Chih-Yung; Kuo, Chih-Yu; Chan, Tzu-Yi; Zou, Hui-Ming; Lian, Wei-Nan; Lin, Chi-Hung

    2014-09-01

    In this study, we developed the cancer treatment through the combination of chemotherapy and thermotherapy using doxorubicin-loaded magnetic liposomes. The citric acid-coated magnetic nanoparticles (CAMNP, ca. 10 nm) and doxorubicin were encapsulated into the liposome (HSPC/DSPE/cholesterol = 12.5:1:8.25) by rotary evaporation and ultrasonication process. The resultant magnetic liposomes ( ca. 90 to 130 nm) were subject to characterization including transmission electron microscopy (TEM), dynamic light scattering (DLS), X-ray diffraction (XRD), zeta potential, Fourier transform infrared (FTIR) spectrophotometer, and fluorescence microscope. In vitro cytotoxicity of the drug carrier platform was investigated through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay using L-929 cells, as the mammalian cell model. In vitro cytotoxicity and hyperthermia (inductive heating) studies were evaluated against colorectal cancer (CT-26 cells) with high-frequency magnetic field (HFMF) exposure. MTT assay revealed that these drug carriers exhibited no cytotoxicity against L-929 cells, suggesting excellent biocompatibility. When the magnetic liposomes with 1 μM doxorubicin was used to treat CT-26 cells in combination with HFMF exposure, approximately 56% cells were killed and found to be more effective than either hyperthermia or chemotherapy treatment individually. Therefore, these results show that the synergistic effects between chemotherapy (drug-controlled release) and hyperthermia increase the capability to kill cancer cells.

  13. Ultrasound-Mediated Gene and Drug Delivery Using a Microbubble-Liposome Particle System

    PubMed Central

    Yoon, Young Il; Kwon, Yong-Su; Cho, Hee-Sang; Heo, Sun-Hee; Park, Kyeong Soon; Park, Sang Gyu; Lee, Soo-Hong; Hwang, Seung Il; Kim, Young Il; Jae, Hwan Jun; Ahn, Gook-Jun; Cho, Young-Seok; Lee, Hakho; Lee, Hak Jong; Yoon, Tae-Jong

    2014-01-01

    Theranostic agents present a promising clinical approach for cancer detection and treatment. We herein introduce a microbubble and liposome complex (MB-Lipo) developed for ultrasound (US) imaging and activation. The MB-Lipo particles have a hybrid structure consisting of a MB complexed with multiple Lipos. The MB components are used to generate high echo signals in US imaging, while the Lipos serve as a versatile carrier of therapeutic materials. MB-Lipo allows high contrast US imaging of tumor sites. More importantly, the application of high acoustic pressure bursts MBs, which releases therapeutic Lipos and further enhances their intracellular delivery through sonoporation effect. Both imaging and drug release could thus be achieved by a single US modality, enabling in situ treatment guided by real-time imaging. The MB-Lipo system was applied to specifically deliver anti-cancer drug and genes to tumor cells, which showed enhanced therapeutic effect. We also demonstrate the clinical potential of MB-Lipo by imaging and treating tumor in vivo. PMID:25250094

  14. Gene therapy for bone healing

    PubMed Central

    Evans, Christopher H.

    2015-01-01

    Clinical problems in bone healing include large segmental defects, nonunion and delayed union of fractures, and spinal fusions. Gene-transfer technologies have the potential to aid healing by permitting the local delivery and sustained expression of osteogenic gene products within osseous lesions. Key questions for such an approach include the choice of transgene, vector and gene-transfer strategy. Most experimental data have been obtained using cDNAs encoding osteogenic growth factors such as bone morphogenetic protein-2 (BMP-2), BMP-4 and BMP-7, in conjunction with both nonviral and viral vectors using in vivo and ex vivo delivery strategies. Proof of principle has been convincingly demonstrated in small-animal models. Relatively few studies have used large animals, but the results so far are encouraging. Once a reliable method has been developed, it will be necessary to perform detailed pharmacological and toxicological studies, as well as satisfy other demands of the regulatory bodies, before human clinical trials can be initiated. Such studies are very expensive and often protracted. Thus, progress in developing a clinically useful gene therapy for bone healing is determined not only by scientific considerations, but also by financial constraints and the ambient regulatory environment. PMID:20569532

  15. Targeting Herpetic Keratitis by Gene Therapy

    PubMed Central

    Elbadawy, Hossein Mostafa; Gailledrat, Marine; Desseaux, Carole; Ponzin, Diego; Ferrari, Stefano

    2012-01-01

    Ocular gene therapy is rapidly becoming a reality. By November 2012, approximately 28 clinical trials were approved to assess novel gene therapy agents. Viral infections such as herpetic keratitis caused by herpes simplex virus 1 (HSV-1) can cause serious complications that may lead to blindness. Recurrence of the disease is likely and cornea transplantation, therefore, might not be the ideal therapeutic solution. This paper will focus on the current situation of ocular gene therapy research against herpetic keratitis, including the use of viral and nonviral vectors, routes of delivery of therapeutic genes, new techniques, and key research strategies. Whereas the correction of inherited diseases was the initial goal of the field of gene therapy, here we discuss transgene expression, gene replacement, silencing, or clipping. Gene therapy of herpetic keratitis previously reported in the literature is screened emphasizing candidate gene therapy targets. Commonly adopted strategies are discussed to assess the relative advantages of the protective therapy using antiviral drugs and the common gene therapy against long-term HSV-1 ocular infections signs, inflammation and neovascularization. Successful gene therapy can provide innovative physiological and pharmaceutical solutions against herpetic keratitis. PMID:23326647

  16. Immunomodulatory gene therapy in lysosomal storage disorders

    PubMed Central

    Koeberl, D.D.; Kishnani, P.S.

    2010-01-01

    Significant advances in therapy for lysosomal storage disorders have occurred with an accelerating pace over the past decade. Although enzyme replacement therapy has improved the outcome of lysosomal storage disorders, antibody responses have occurred and sometimes prevented efficacy, especially in cross-reacting immune material negative patients with Pompe disease. Preclinical gene therapy experiments have revealed the relevance of immune responses to long-term efficacy. The choice of regulatory cassette played a critical role in evading humoral and cellular immune responses to gene therapy in knockout mouse models, at least in adult animals. Liver-specific regulatory cassettes prevented antibody formation and enhanced the efficacy of gene therapy. Regulatory T cells prevented transgene directed immune responses, as shown by adoptive transfer of antigen-specific immune tolerance to enzyme therapy. Immunomodulatory gene therapy with a very low vector dose could enhance the efficacy of enzyme therapy in Pompe disease and other lysosomal storage disorders. PMID:19807648

  17. Immunomodulatory gene therapy in lysosomal storage disorders.

    PubMed

    Koeberl, Dwight D; Kishnani, Priya S

    2009-12-01

    Significant advances in therapy for lysosomal storage disorders have occurred with an accelerating pace over the past decade. Although enzyme replacement therapy has improved the outcome of lysosomal storage disorders, antibody responses have occurred and sometimes prevented efficacy, especially in cross-reacting immune material negative patients with Pompe disease. Preclinical gene therapy experiments have revealed the relevance of immune responses to long-term efficacy. The choice of regulatory cassette played a critical role in evading humoral and cellular immune responses to gene therapy in knockout mouse models, at least in adult animals. Liver-specific regulatory cassettes prevented antibody formation and enhanced the efficacy of gene therapy. Regulatory T cells prevented transgene directed immune responses, as shown by adoptive transfer of antigen-specific immune tolerance to enzyme therapy. Immunomodulatory gene therapy with a very low vector dose could enhance the efficacy of enzyme therapy in Pompe disease and other lysosomal storage disorders. PMID:19807648

  18. Cardiac gene therapy: are we there yet?

    PubMed

    Matkar, P N; Leong-Poi, H; Singh, K K

    2016-08-01

    The incidence of cardiovascular disease (CVD) is increasing throughout the world and is associated with elevated morbidity and mortality. Gene therapy to treat cardiac dysfunction is gaining importance because of the limited therapeutic benefit offered by pharmacotherapies. The growing knowledge of the complex signaling pathways and the development of sophisticated vectors and delivery systems, are facilitating identification and targeting of specific molecular candidates involved in initiation and progression of CVDs. Several preclinical and clinical studies have shown the therapeutic efficiency of gene therapy in different disease models and patients. Hence, gene therapy might plausibly become an unconventional treatment modality for CVD patients. In this review, we summarize the gene delivery carriers, modes of delivery, recent preclinical/clinical studies and potential therapeutic targets. We also briefly discuss the existing limitations of gene therapy, technical challenges surrounding gene carriers and delivery systems, and some approaches to overcome these limitations for bringing CVD gene therapy one step closer to reality. PMID:27128687

  19. Co-liposomes having anisamide tagged lipid and cholesteryl tryptophan trigger enhanced gene transfection in sigma receptor positive cells.

    PubMed

    Misra, Santosh K; Moitra, Parikshit; Kondaiah, Paturu; Bhattacharya, Santanu

    2016-06-01

    Selective gene transfection could be strategy of interest for reducing off-target gene expression and toxicity. In this respect, sigma receptors are found to be over-expressed in many human tumors and liposomal formulations with ability to target these sigma receptors may improve the transfection efficiency to a significant level. To this direction, six novel lipids have been synthesized with different hydrophobic segments such as a long hydrophobic chain or a cholesteryl group and L-tryptophan as the head group. Three of them, Lipid 1, 3 and 5 possessed cationic Me3N(+) moiety at the distal end. In contrast each of the other three Lipid 2, 4 and 6 possessed sigma receptor targeting anisamide group with no cationic charge. Mixing of cationic and anisamide counterparts of the same lipid in a molar ratio of 1:1 produced co-liposomes L-M-1 (Lipid 1+2), L-M-2 (Lipid 3+4) and L-M-3 (Lipid 5+6). These co-liposomes, while keeping the sigma targeting anisamide tag intact, showed good DNA binding and release which were optimized from EB intercalation and gel electrophoresis assays. Inclusion of a zwitterionic, fusogenic natural lipid, DOPE, into the co-liposomes further improved the binding efficiencies of the lipid mixtures with DNA. These co-liposomes having cationic and anisamide lipids and DOPE were highly selective toward sigma positive HEK293 and HEK293T cells compared to the sigma negative HeLa cells. As evidenced from both FACS and luciferase assay, a lipid mixture comprising Lipid 3, 4 and DOPE in a molar ratio of 1:1:1 (L-M-2D1) was the best for transfection of reporter pEGFP-C3 and functional pCEP4-p53 gene plasmids. Anisamide mediated sigma receptor selectivity was further probed by pre-incubating the transfecting cells with lipids possessing anisamide and by quantification of the un-transfected plasmid DNA. Also each formulation was highly non-toxic in the cell lines examined. PMID:26945165

  20. The role of helper lipids in cationic liposome-mediated gene transfer.

    PubMed Central

    Hui, S W; Langner, M; Zhao, Y L; Ross, P; Hurley, E; Chan, K

    1996-01-01

    In the procedure for cationic liposome-mediated transfection, the cationic lipid is usually mixed with a "helper lipid" to increase its transfection potency. The importance of helper lipids, including dioleoylphosphatidylcholine (DOPC) and phosphatidylethanolamine (dioleoyl PE), DO was examined. Freeze-fracture electron microscopy of DNA:cationic complexes containing the pSV-beta-GAL plasmid DNA, the cationic lipid dioleoyl trimethylammonium propane, and these helper lipids showed that the most efficient mixtures were aggregates of ensheathed DNA and fused liposomes. PE-containing complexes aggregated rapidly when added to culture media containing polyanions, whereas PC-containing complexes did not. However, more granules of PC-containing complexes were formed on cell surfaces after the complexes were added to Chinese hamster ovary (CHO) cells in transfection media. Pronase treatment inhibited transfection, whereas dilute poly-L-lysine enhanced transfection, indicating that the attachment of DNA:liposome complexes to cell surfaces was mediated by electrostatic interaction. Fluorescence spectroscopy studies confirmed that more PC-containing complexes than PE-containing complexes were associated with CHO cells, and that more PC-containing complexes were located in a low pH environment (likely to be within endosomes) with time. Cytochalasin-B had a stronger inhibitory effect on PC-containing liposome-mediated than on PE-containing liposome-mediated transfection. Confocal microscopic recording of the fluorescently label lipid and DNA uptake process indicated that many granules of DNA:cationic liposome complexes were internalized as a whole, whereas some DNA aggregates were left out on the cell surfaces after liposomes of the complexes fused with the plasma membranes. For CHO cells, endocytosis seems to be the main uptake pathway of DNA:cationic liposome complexes. More PC-containing granules than PE-containing granules were formed on cell surfaces by cytoskeleton

  1. Liposome-Encapsulated Bacteriophages for Enhanced Oral Phage Therapy against Salmonella spp.

    PubMed

    Colom, Joan; Cano-Sarabia, Mary; Otero, Jennifer; Cortés, Pilar; Maspoch, Daniel; Llagostera, Montserrat

    2015-07-01

    Bacteriophages UAB_Phi20, UAB_Phi78, and UAB_Phi87 were encapsulated in liposomes, and their efficacy in reducing Salmonella in poultry was then studied. The encapsulated phages had a mean diameter of 309 to 326 nm and a positive charge between +31.6 and +35.1 mV (pH 6.1). In simulated gastric fluid (pH 2.8), the titer of nonencapsulated phages decreased by 5.7 to 7.8 log units, whereas encapsulated phages were significantly more stable, with losses of 3.7 to 5.4 log units. The liposome coating also improved the retention of bacteriophages in the chicken intestinal tract. When cocktails of the encapsulated and nonencapsulated phages were administered to broilers, after 72 h the encapsulated phages were detected in 38.1% of the animals, whereas the nonencapsulated phages were present in only 9.5%. The difference was significant. In addition, in an in vitro experiment, the cecal contents of broilers promoted the release of the phages from the liposomes. In broilers experimentally infected with Salmonella, the daily administration of the two cocktails for 6 days postinfection conferred similar levels of protection against Salmonella colonization. However, once treatment was stopped, protection by the nonencapsulated phages disappeared, whereas that provided by the encapsulated phages persisted for at least 1 week, showing the enhanced efficacy of the encapsulated phages in protecting poultry against Salmonella over time. The methodology described here allows the liposome encapsulation of phages of different morphologies. The preparations can be stored for at least 3 months at 4°C and could be added to the drinking water and feed of animals. PMID:25956778

  2. Liposome-Encapsulated Bacteriophages for Enhanced Oral Phage Therapy against Salmonella spp.

    PubMed Central

    Colom, Joan; Cano-Sarabia, Mary; Otero, Jennifer; Cortés, Pilar

    2015-01-01

    Bacteriophages UAB_Phi20, UAB_Phi78, and UAB_Phi87 were encapsulated in liposomes, and their efficacy in reducing Salmonella in poultry was then studied. The encapsulated phages had a mean diameter of 309 to 326 nm and a positive charge between +31.6 and +35.1 mV (pH 6.1). In simulated gastric fluid (pH 2.8), the titer of nonencapsulated phages decreased by 5.7 to 7.8 log units, whereas encapsulated phages were significantly more stable, with losses of 3.7 to 5.4 log units. The liposome coating also improved the retention of bacteriophages in the chicken intestinal tract. When cocktails of the encapsulated and nonencapsulated phages were administered to broilers, after 72 h the encapsulated phages were detected in 38.1% of the animals, whereas the nonencapsulated phages were present in only 9.5%. The difference was significant. In addition, in an in vitro experiment, the cecal contents of broilers promoted the release of the phages from the liposomes. In broilers experimentally infected with Salmonella, the daily administration of the two cocktails for 6 days postinfection conferred similar levels of protection against Salmonella colonization. However, once treatment was stopped, protection by the nonencapsulated phages disappeared, whereas that provided by the encapsulated phages persisted for at least 1 week, showing the enhanced efficacy of the encapsulated phages in protecting poultry against Salmonella over time. The methodology described here allows the liposome encapsulation of phages of different morphologies. The preparations can be stored for at least 3 months at 4°C and could be added to the drinking water and feed of animals. PMID:25956778

  3. Nanoparticle-based Technologies for Retinal Gene Therapy

    PubMed Central

    Adijanto, Jeffrey; Naash, Muna I

    2015-01-01

    For patients with hereditary retinal diseases, retinal gene therapy offers significant promise for the prevention of retinal degeneration. While adeno-associated virus (AAV)-based systems remain the most popular gene delivery method due to their high efficiency and successful clinical results, other delivery systems, such as non-viral nanoparticles (NPs) are being developed as additional therapeutic options. NP technologies come in several categories (e.g., polymer, liposomes, peptide compacted DNA), several of which have been tested in mouse models of retinal disease. Here, we discuss the key biochemical features of the different NPs that influence how they are internalized into cells, escape from endosomes, and are delivered into the nucleus. We review the primary mechanism of NP uptake by retinal cells and highlight various NPs that have been successfully used for in vivo gene delivery to the retina and RPE. Finally, we consider the various strategies that can be implemented in the plasmid DNA to generate persistent, high levels of gene expression. PMID:25592325

  4. Comparison of ethosomes and liposomes for skin delivery of psoralen for psoriasis therapy.

    PubMed

    Zhang, Yong-Tai; Shen, Li-Na; Wu, Zhong-Hua; Zhao, Ji-Hui; Feng, Nian-Ping

    2014-08-25

    Recent reports have indicated that psoriasis may be caused by malfunctioning dermal immune cells, and psoralen ultraviolet A (PUVA) is an effective treatment for this chronic disease. However, conventional topical formulations achieve poor drug delivery across patches of psoriasis to their target sites. The present study describes the development of a novel psoralen transdermal delivery system employing ethosomes, flexible vesicles that can penetrate the stratum corneum and target deep skin layers. An in vitro skin permeation study showed that the permeability of psoralen-loaded ethosomes was superior to that of liposomes. Using ethosomes, psoralen transdermal flux and skin deposition were 38.89±0.32 μg/cm(2)/h and 3.87±1.74 μg/cm(2), respectively, 3.50 and 2.15 times those achieved using liposomes, respectively. The ethosomes and liposomes were found to be safe following daily application to rat skin in vivo, for 7 days. The ethosomes showed better biocompatibility with human embryonic skin fibroblasts than did an equivalent ethanol solution, indicating that the phosphatidylcholine present in ethosome vesicles improved their biocompatibility. These findings indicated that ethosomes could potentially improve the dermal and transdermal delivery of psoralen and possibly of other drugs requiring deep skin delivery. PMID:24907596

  5. Photodynamic therapy of human bladder carcinoma cells in vitro with liposomes as a carrier for protoporphyrindisodiumsalt

    NASA Astrophysics Data System (ADS)

    Schmidt, Karina; Wenderoth, Ulrich K.; Reich, Ella D.; Hautmann, Richard E.

    1995-01-01

    In vitro experiments were performed on human bladder carcinoma cells to evaluate the efficiency of photodynamic activity of protoporphyrindisodiumsalt encapsulated within liposomes. The bladder carcinoma cell line EJ 28, (Tumorba-nk Heidelberg) was grown on DMEM + 10% FCS + 2% Glutamine + 1% Penicillin/Streptomycin as a monolayer culture. In the log phase, cells were trypsinized, counted and inoculated into 35 mm-diameter multiwells at 105 cells/well and allowed to grow for 24 h. The cells were incubated for 1 h with 5, 10, 20 (mu) g/ml protoporphyrindisodiumsalt in liposomes. (DPPC/Cholesterol 7:3). After incubation cells were refed with complete medium and irradiated with 3 and 6 J/cm2. After irradiation, the cells were incubated for 2 days at 37 degree(s)C, then fixed, stained, counted and compared to the control group. Mean survival rates of 7.21%, 2.99%, 1.33% after irradiation with 3 J/cm2 and 4.3%, 1.48% and 0.88% after irradiation with 6 J/cm2 were found. By using a fluorescence microscope, we evaluated the intracellular uptake of protoporphyrindisodiumsalt in liposomes. The vesicular fluorescence pattern exhibited a concentration of photosensitizer in the nuclear membrane and adjacent parts of the cytoplasm as well as in the plasma membrane. By transmission electron microscopy marked changes were observed at the mitochondria with dissolution of the cristae and development of vacuols.

  6. Gene therapy in monogenic congenital myopathies.

    PubMed

    Guan, Xuan; Goddard, Melissa A; Mack, David L; Childers, Martin K

    2016-04-15

    Current treatment options for patients with monogenetic congenital myopathies (MCM) ameliorate the symptoms of the disorder without resolving the underlying cause. However, gene therapies are being developed where the mutated or deficient gene target is replaced. Preclinical findings in animal models appear promising, as illustrated by gene replacement for X-linked myotubular myopathy (XLMTM) in canine and murine models. Prospective applications and approaches to gene replacement therapy, using these disorders as examples, are discussed in this review. PMID:26454198

  7. Effect of Interleukin-8 Gene Silencing With Liposome-Encapsulated Small Interfering RNA on Ovarian Cancer Cell Growth

    PubMed Central

    Merritt, William M.; Lin, Yvonne G.; Spannuth, Whitney A.; Fletcher, Mavis S.; Kamat, Aparna A.; Han, Liz Y.; Landen, Charles N.; Jennings, Nicholas; De Geest, Koen; Langley, Robert R.; Villares, Gabriel; Sanguino, Angela; Lutgendorf, Susan K.; Lopez-Berestein, Gabriel; Bar-Eli, Menashe M.; Sood, Anil K.

    2009-01-01

    Background Interleukin-8 (IL-8) is a proangiogenic cytokine that is overexpressed in many human cancers. We investigated the clinical and biologic significance of IL-8 in ovarian carcinoma using human samples and orthotopic mouse models. Methods Tumor expression of IL-8 was assessed by immunohistochemistry among ovarian cancer patients (n = 102) with available clinical and survival data. We examined the effect of IL-8 gene silencing with small interfering RNAs incorporated into neutral liposomes (siRNA-DOPCs), alone and in combination with docetaxel, on in vivo tumor growth, angiogenesis (microvessel density), and tumor cell proliferation in mice (n = 10 per treatment group) bearing orthotopic taxane-sensitive (HeyA8 and SKOV3ip1) and taxane-resistant (SKOV3ip2.TR) ovarian tumors. All statistical tests were two-sided. Results Of the 102 cancer specimens, 43 (42%) had high IL-8 expression and 59 (58%) had low or no IL-8 expression; high IL-8 expression was associated with advanced tumor stage (P = .019), high tumor grade (P = .031), and worse survival (median survival for patients with high vs low IL-8 expression: 1.62 vs 3.79 years; P < .001). Compared with empty liposomes, IL-8 siRNA-DOPC reduced the mean tumor weight by 32% (95% confidence interval [CI] = 14% to 50%; P = .03) and 52% (95% CI = 27% to 78%; P = .03) in the HeyA8 and SKOV3ip1 mouse models, respectively. In all three mouse models, treatment with IL-8 siRNA-DOPC plus the taxane docetaxel reduced tumor growth the most compared with empty liposomes (77% to 98% reduction in tumor growth; P < .01 for all). In the HeyA8 and SKOV3ip1 models, tumors from mice treated with IL-8 siRNA-DOPC alone had lower microvessel density than tumors from mice treated with empty liposomes (HeyA8: 34% lower, 95% CI = 32% to 36% lower [P = .002]; SKOV3ip1: 39% lower, 95% CI = 34% to 44% lower [P = .007]). Compared with empty liposomes, IL-8 siRNA-DOPC plus docetaxel reduced tumor cell proliferation by 35% (95% CI = 25% to 44

  8. Association with Amino Acids Does Not Enhance Efficacy of Polymerized Liposomes As a System for Lung Gene Delivery.

    PubMed

    Bandeira, Elga; Lopes-Pacheco, Miquéias; Chiaramoni, Nadia; Ferreira, Débora; Fernandez-Ruocco, Maria J; Prieto, Maria J; Maron-Gutierrez, Tatiana; Perrotta, Ramiro M; de Castro-Faria-Neto, Hugo C; Rocco, Patricia R M; Alonso, Silvia Del Valle; Morales, Marcelo M

    2016-01-01

    Development of improved drug and gene delivery systems directly into the lungs is highly desirable given the important burden of respiratory diseases. We aimed to evaluate the safety and efficacy of liposomes composed of photopolymerized lipids [1,2-bis-(tricosa-10,12-diynoyl)-sn-glycero-3-phosphocholine] associated with amino acids as vectors for gene delivery into the lungs of healthy animals. Lipopolymer vesicles, in particular, are more stable than other types of liposomes. In this study, lipopolymers were associated with l-arginine, l-tryptophan, or l-cysteine. We hypothesized that the addition of these amino acids would enhance the efficacy of gene delivery to the lungs by the lipopolymers. l-Arginine showed the highest association efficiency due to its positive charge and better surface interactions. None of the formulations caused inflammation or altered lung mechanics, suggesting that these lipopolymers can be safely administered as aerosols. All formulations were able to induce eGFP mRNA expression in lung tissue, but the addition of amino acids reduced delivery efficacy when compared with the simple lipopolymer particle. These results indicate that this system could be further explored for gene or drug delivery targeting lung diseases. PMID:27199766

  9. Association with Amino Acids Does Not Enhance Efficacy of Polymerized Liposomes As a System for Lung Gene Delivery

    PubMed Central

    Bandeira, Elga; Lopes-Pacheco, Miquéias; Chiaramoni, Nadia; Ferreira, Débora; Fernandez-Ruocco, Maria J.; Prieto, Maria J.; Maron-Gutierrez, Tatiana; Perrotta, Ramiro M.; de Castro-Faria-Neto, Hugo C.; Rocco, Patricia R. M.; Alonso, Silvia del Valle; Morales, Marcelo M.

    2016-01-01

    Development of improved drug and gene delivery systems directly into the lungs is highly desirable given the important burden of respiratory diseases. We aimed to evaluate the safety and efficacy of liposomes composed of photopolymerized lipids [1,2-bis-(tricosa-10,12-diynoyl)-sn-glycero-3-phosphocholine] associated with amino acids as vectors for gene delivery into the lungs of healthy animals. Lipopolymer vesicles, in particular, are more stable than other types of liposomes. In this study, lipopolymers were associated with l-arginine, l-tryptophan, or l-cysteine. We hypothesized that the addition of these amino acids would enhance the efficacy of gene delivery to the lungs by the lipopolymers. l-Arginine showed the highest association efficiency due to its positive charge and better surface interactions. None of the formulations caused inflammation or altered lung mechanics, suggesting that these lipopolymers can be safely administered as aerosols. All formulations were able to induce eGFP mRNA expression in lung tissue, but the addition of amino acids reduced delivery efficacy when compared with the simple lipopolymer particle. These results indicate that this system could be further explored for gene or drug delivery targeting lung diseases. PMID:27199766

  10. Gene therapy oversight: lessons for nanobiotechnology.

    PubMed

    Wolf, Susan M; Gupta, Rishi; Kohlhepp, Peter

    2009-01-01

    Oversight of human gene transfer research ("gene therapy") presents an important model with potential application to oversight of nanobiology research on human participants. Gene therapy oversight adds centralized federal review at the National Institutes of Health's Office of Biotechnology Activities and its Recombinant DNA Advisory Committee to standard oversight of human subjects research at the researcher's institution (by the Institutional Review Board and, for some research, the Institutional Biosafety Committee) and at the federal level by the Office for Human Research Protections. The Food and Drug Administration's Center for Biologics Evaluation and Research oversees human gene transfer research in parallel, including approval of protocols and regulation of products. This article traces the evolution of this dual oversight system; describes how the system is already addressing nanobiotechnology in gene transfer: evaluates gene therapy oversight based on public opinion, the literature, and preliminary expert elicitation; and offers lessons of the gene therapy oversight experience for oversight of nanobiotechnology. PMID:20122108

  11. Gene therapy for primary immunodeficiencies.

    PubMed

    Fischer, A; Hacein-Bey Abina, S; Touzot, F; Cavazzana, M

    2015-12-01

    Gene therapy has effectively entered Medicine via the field of primary immunodeficiencies (PID). Because hematopoietic stem cells are accessible and because it was understood that genetic correction of lymphocyte progenitor cells carrying a genetic defect impairing differentiation, could result in the production of long-lived T lymphocytes, it was reasoned that ex vivo gene transfer in hematopoietic cells could lead to disease phenotype correction. Retroviral vectors were designed to ex vivo transduce such cells. This has indeed been shown to lead to sustained correction of the T cell immunodeficiency associated with two forms of severe combined immunodeficiencies (SCID) for now more than ten years. Occurrence in some patients of genotoxicity related to retroviral vectors integration close to and transactivation of oncogenes has led to the development of retroviral vectors devoid of its enhancer element. Results of recent trials performed for several forms of PID indeed suggest that their use is both safe and efficacious. It is thus anticipated that their application to the treatment of many more life threatening PID will be developed over the coming years. PMID:25708106

  12. Gene therapy of metachromatic leukodystrophy.

    PubMed

    Matzner, Ulrich; Gieselmann, Volkmar

    2005-01-01

    Metachromatic leukodystrophy (MLD) is a lysosomal storage disease that is caused by a deficiency of arylsulfatase A (ASA). The deficiency results in the intralysosomal accumulation of the acidic sphingolipid 3-O-sulfogalactosyl-ceramide (sulfatide). Patients suffer from progressive demyelination and die from multiple neurological deficits. Curative treatment is not available. ASA bears mannose 6-phosphate residues which function as recognition markers in endosome/lysosome-specific targeting pathways. The endocytic targeting route can be exploited to deliver exogenous ASA to the lysosomes of ASA-deficient cells. ASA knockout mice, which develop a disorder related to MLD, have therefore been treated by ex vivo and in vivo gene therapy. Following transplantation of bone marrow cells overexpressing ASA from a retroviral vector, donor-type cells secrete ASA, which is endocytosed by recipient cells. The enzyme transfer results in the metabolic cross-correction of recipient cells and the improvement of biochemical, histological and clinical parameters. For the transfer of the ASA cDNA to non-dividing cells, adenovirus, adeno-associated virus and lentivirus vectors have been constructed. Such vectors might be particularly advantageous for direct ASA gene delivery to the brain, which is the main site of disease in MLD. PMID:15709909

  13. Gene Therapy For Ischemic Heart Disease

    PubMed Central

    Lavu, Madhav; Gundewar, Susheel; Lefer, David J.

    2010-01-01

    Current pharmacologic therapy for ischemic heart disease suffers multiple limitations such as compliance issues and side effects of medications. Revascularization procedures often end with need for repeat procedures. Patients remain symptomatic despite maximal medical therapy. Gene therapy offers an attractive alternative to current pharmacologic therapies and may be beneficial in refractory disease. Gene therapy with isoforms of growth factors such as VEGF, FGF and HGF induces angiogenesis, decreases apoptosis and leads to protection in the ischemic heart. Stem cell therapy augmented with gene therapy used for myogenesis has proven to be beneficial in numerous animal models of myocardial ischemia. Gene therapy coding for antioxidants, eNOS, HSP, mitogen-activated protein kinase and numerous other anti apoptotic proteins have demonstrated significant cardioprotection in animal models. Clinical trials have demonstrated safety in humans apart from symptomatic and objective improvements in cardiac function. Current research efforts are aimed at refining various gene transfection techniques and regulation of gene expression in vivo in the heart and circulation to improve clinical outcomes in patients that suffer from ischemic heart disease. In this review article we will attempt to summarize the current state of both preclinical and clinical studies of gene therapy to combat myocardial ischemic disease. PMID:20600100

  14. Gene therapy for high-grade glioma

    PubMed Central

    Natsume, Atsushi

    2008-01-01

    The treatment of high-grade gliomas remains difficult despite recent advances in surgery, radiotherapy and chemotherapy. True advances may emerge from the increasing understanding in molecular biology and discovery of novel mechanisms for the delivery of tumoricidal agents. In an attempt to overcome this formidable neoplasm, molecular approaches using gene therapy have been investigated clinically since 1992. The clinical trials have mainly been classified into three approaches: suicide gene therapy, immune gene therapy and oncolytic viral therapy. In this article, we review these approaches, which have been studied in previous and ongoing clinical trials. PMID:19262115

  15. Randomized trial of radiation-free central nervous system prophylaxis comparing intrathecal triple therapy with liposomal cytarabine in acute lymphoblastic leukemia

    PubMed Central

    Bassan, Renato; Masciulli, Arianna; Intermesoli, Tamara; Audisio, Ernesta; Rossi, Giuseppe; Pogliani, Enrico Maria; Cassibba, Vincenzo; Mattei, Daniele; Romani, Claudio; Cortelezzi, Agostino; Corti, Consuelo; Scattolin, Anna Maria; Spinelli, Orietta; Tosi, Manuela; Parolini, Margherita; Marmont, Filippo; Borlenghi, Erika; Fumagalli, Monica; Cortelazzo, Sergio; Gallamini, Andrea; Marfisi, Rosa Maria; Oldani, Elena; Rambaldi, Alessandro

    2015-01-01

    Developing optimal radiation-free central nervous system prophylaxis is a desirable goal in acute lymphoblastic leukemia, to avoid the long-term toxicity associated with cranial irradiation. In a randomized, phase II trial enrolling 145 adult patients, we compared intrathecal liposomal cytarabine (50 mg: 6/8 injections in B-/T-cell subsets, respectively) with intrathecal triple therapy (methotrexate/cytarabine/prednisone: 12 injections). Systemic therapy included methotrexate plus cytarabine or L-asparaginase courses, with methotrexate augmented to 2.5 and 5 g/m2 in Philadelphia-negative B- and T-cell disease, respectively. The primary study objective was the comparative assessment of the risk/benefit ratio, combining the analysis of feasibility, toxicity and efficacy. In the liposomal cytarabine arm 17/71 patients (24%) developed grade 3–4 neurotoxicity compared to 2/74 (3%) in the triple therapy arm (P=0.0002), the median number of episodes of neurotoxicity of any grade was one per patient compared to zero, respectively (P=0.0001), and even though no permanent disabilities or deaths were registered, four patients (6%) discontinued intrathecal prophylaxis on account of these toxic side effects (P=0.06). Neurotoxicity worsened with liposomal cytarabine every 14 days (T-cell disease), and was improved by the adjunct of intrathecal dexamethasone. Two patients in the liposomal cytarabine arm suffered from a meningeal relapse (none with T-cell disease, only one after high-dose chemotherapy) compared to four in the triple therapy arm (1 with T-cell disease). While intrathecal liposomal cytarabine could contribute to improved, radiation-free central nervous system prophylaxis, the toxicity reported in this trial does not support its use at 50 mg and prompts the investigation of a lower dosage. (clinicaltrials.gov identifier: NCT-00795756). PMID:25749825

  16. Treatment of Near-Infrared Photodynamic Therapy Using a Liposomally Formulated Indocyanine Green Derivative for Squamous Cell Carcinoma

    PubMed Central

    Maruyama, Tetsuro; Akutsu, Yasunori; Suganami, Akiko; Tamura, Yutaka; Fujito, Hiromichi; Ouchi, Tomoki; Akanuma, Naoki; Isozaki, Yuka; Takeshita, Nobuyoshi; Hoshino, Isamu; Uesato, Masaya; Toyota, Taro; Hayashi, Hideki; Matsubara, Hisahiro

    2015-01-01

    Introduction Photodynamic therapy (PDT) is a less invasive option for cancer treatment that has evolved through recent developments in nanotechnology. We have designed and synthesized a novel liposome system that includes an indocyanine green (ICG) derivative, ICG-C18, in its bilayer. In addition to its use as an optical imager to visualize blood, lymphatic, and bile flow, ICG has also been used as an optical sensitizer. In the present report, we evaluate the use of our novel liposome system, LP-ICG-C18, in PDT for squamous cell carcinoma in an autologous murine model. Materials and Methods An excitation pulse beam (300 μJ/pulse) of a single band (800 nm) was used for sensitization. The cytotoxicity of the photodynamic therapy was evaluated in terms of cellular morphology changes, methyl thiazolyl tetrazolium (MTT) assay results, and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-biotin nick end labeling (TUNEL) staining. We tested the enhanced permeability and retention effect of LP-ICG-C18 in tumor-bearing C3H/He mice using a near-infrared fluorescence imaging system and fluorescence microscopy. We also examined the antitumor effect of PDT by measuring tumor volume in tumor-bearing mice. Results Cell death and apoptosis were only observed in the PDT group receiving LP-ICG-C18. LP-ICG-C18 itself had no cytotoxic activity and showed good biocompatibility. LP-ICG-C18 accumulated on the tumor 24 hours after injection and was retained for approximately 3 weeks. Tumor cell apoptosis following PDT with LP-ICG-C18 was also observed under optical microscopy, MTT assay, and TUNEL staining. Conclusion These findings suggest that LP-ICG-C18 may be an effective intervening material in PDT for malignant disease. PMID:25850029

  17. [Gene therapy with cytokines against cervical cancer].

    PubMed

    Bermúdez-Morales, Victor Hugo; Peralta-Zaragoza, Oscar; Madrid-Marina, Vicente

    2005-01-01

    Gene therapy is an excellent alternative for treatment of many diseases. Capacity to manipulate the DNA has allowed direct the gene therapy to correct the function of an altered gene, to increase the expression of a gene and to favour the activation of the immune response. This way, it can intend the use of the DNA like medication able to control, to correct or to cure many diseases. Gene therapy against cancer has an enormous potential, and actually the use of the DNA has increased to control diverse cancer in animal models, with very encouraging results that have allowed its applications in experimental protocols in human. This work concentrates a review of the foundations of the gene therapy and its application on cervical cancer, from the point of view of the alterations of the immune system focused on the tumour micro-environment, and the use of the cytokines as immunomodulators. PMID:16983992

  18. Anti-Inflammatory Effects of Modified Adenoviral Vectors for Gene Therapy: A View through Animal Models Tested.

    PubMed

    Castañeda-Lopez, M E; Garza-Veloz, I; Lopez-Hernandez, Y; Barbosa-Cisneros, O Y; Martinez-Fierro, M L

    2016-07-01

    The central dogma of gene therapy relies on the application of novel therapeutic genes to treat or prevent diseases. The main types of vectors used for gene transfer are adenovirus, retrovirus, lentivirus, liposome, and adeno-associated virus vectors. Gene therapy has emerged as a promising alternative for the treatment of inflammatory diseases. The main targets are cytokines, co-stimulatory molecules, and different types of cells from hematological and mesenchymal sources. In this review, we focus on molecules with anti-inflammatory effects used for in vivo gene therapy mediated by adenoviral gene transfer in the treatment of immune-mediated inflammatory diseases, with particular emphasis on autoinflammatory and autoimmune diseases. PMID:27245510

  19. Adenoviral Vectors for Hemophilia Gene Therapy

    PubMed Central

    Brunetti-Pierri, N; Ng, Philip

    2013-01-01

    Hemophilia is an inherited blood clotting disorder resulting from deficiency of blood coagulation factors. Current standard of care for hemophilia patients is frequent intravenous infusions of the missing coagulation factor. Gene therapy for hemophilia involves the introduction of a normal copy of the deficient coagulation factor gene thereby potentially offering a definitive cure for the bleeding disorder. A variety of approaches have been pursued for hemophilia gene therapy and this review article focuses on those that use adenoviral vectors. PMID:24883229

  20. Combination Therapy using Co-encapsulated Resveratrol and Paclitaxel in Liposomes for Drug Resistance Reversal in Breast Cancer Cells in vivo

    PubMed Central

    Meng, Jie; Guo, Fangqin; Xu, Haiyan; Liang, Wei; Wang, Chen; Yang, Xian-Da

    2016-01-01

    Multidrug resistance (MDR) is a major impediment to cancer treatment. A promising strategy for treating MDR is the joint delivery of combined anticancer agents to tumor cells in a single nanocarrier. Here, for the first time, Resveratrol (Res) was co-encapsulated with paclitaxel (PTX) in a PEGylated liposome to construct a carrier-delivered form of combination therapy for drug-resistant tumors. The composite liposome had an average diameter of 50 nm with encapsulated efficiencies of above 50%. The studies demonstrated that the composite liposome could generate potent cytotoxicity against the drug-resistant MCF-7/Adr tumor cells in vitro and enhance the bioavailability and the tumor-retention of the drugs in vivo. Moreover, systemic therapy with the composite liposome effectively inhibited drug-resistant tumor in mice (p < 0.01), without any notable increase in the toxicity. These results suggested that the co-delivery of Res and a cytotoxic agent in a nanocarrier may potentially improve the treatment of drug-resistant tumors. PMID:26947928

  1. Combination Therapy using Co-encapsulated Resveratrol and Paclitaxel in Liposomes for Drug Resistance Reversal in Breast Cancer Cells in vivo.

    PubMed

    Meng, Jie; Guo, Fangqin; Xu, Haiyan; Liang, Wei; Wang, Chen; Yang, Xian-Da

    2016-01-01

    Multidrug resistance (MDR) is a major impediment to cancer treatment. A promising strategy for treating MDR is the joint delivery of combined anticancer agents to tumor cells in a single nanocarrier. Here, for the first time, Resveratrol (Res) was co-encapsulated with paclitaxel (PTX) in a PEGylated liposome to construct a carrier-delivered form of combination therapy for drug-resistant tumors. The composite liposome had an average diameter of 50 nm with encapsulated efficiencies of above 50%. The studies demonstrated that the composite liposome could generate potent cytotoxicity against the drug-resistant MCF-7/Adr tumor cells in vitro and enhance the bioavailability and the tumor-retention of the drugs in vivo. Moreover, systemic therapy with the composite liposome effectively inhibited drug-resistant tumor in mice (p < 0.01), without any notable increase in the toxicity. These results suggested that the co-delivery of Res and a cytotoxic agent in a nanocarrier may potentially improve the treatment of drug-resistant tumors. PMID:26947928

  2. Site-specific antibody-liposome conjugation through copper-free click chemistry: a molecular biology approach for targeted photodynamic therapy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Obaid, Girgis; Wang, Yucheng; Kuriakose, Jerrin; Broekgaarden, Mans; Alkhateeb, Ahmed; Bulin, Anne-Laure; Hui, James; Tsourkas, Andrew; Hasan, Tayyaba

    2016-03-01

    Nanocarriers, such as liposomes, have the ability to potentiate photodynamic therapy (PDT) treatment regimens by the encapsulation of high payloads of photosensitizers and enhance their passive delivery to tumors through the enhanced permeability and retention effect. By conjugating targeting moieties to the surface of the liposomal nanoconstructs, cellular selectivity is imparted on them and PDT-based therapies can be performed with significantly higher dose tolerances, as off-target toxicity is simultaneously reduced.1 However, the maximal benefits of conventional targeted nanocarriers, including liposomes, are hindered by practical limitations including chemical instability, non-selective conjugation chemistry, poor control over ligand orientation, and loss of ligand functionality following conjugation, amongst others.2 We have developed a robust, physically and chemically stable liposomal nanoplatform containing benzoporphyrin derivative photosensitizer molecules within the phospholipid bilayer and an optimized surface density of strained cyclooctyne moieties for `click' conjugation to azido-functionalized antibodies.3 The clinical chimeric anti-EGFR antibody Cetuximab is site-specifically photocrosslinked to a recombinant bioengineered that recognizes the antibody's Fc region, containing a terminal azide.4 The copper-free click conjugation of the bioengineered Cetuximab derivative to the optimized photosensitizing liposome provides exceptional control over the antibody's optimal orientation for cellular antigen binding. Importantly, the reaction occurs rapidly under physiological conditions, bioorthogonally (selectively in the presence of other biomolecules) and without the need for toxic copper catalysis.3 Such state-of-the-art conjugation strategies push the boundaries of targeted photodynamic therapy beyond the limitations of traditional chemical coupling techniques to produce more robust and effective targeted therapeutics with applications beyond

  3. Boron neutron capture therapy demonstrated in mice bearing EMT6 tumors following selective delivery of boron by rationally designed liposomes

    PubMed Central

    Kueffer, Peter J.; Maitz, Charles A.; Khan, Aslam A.; Schuster, Seth A.; Shlyakhtina, Natalia I.; Jalisatgi, Satish S.; Brockman, John D.; Nigg, David W.; Hawthorne, M. Frederick

    2013-01-01

    The application of boron neutron capture therapy (BNCT) following liposomal delivery of a 10B-enriched polyhedral borane and a carborane against mouse mammary adenocarcinoma solid tumors was investigated. Unilamellar liposomes with a mean diameter of 134 nm or less, composed of an equimolar mixture of cholesterol and 1,2-distearoyl-sn-glycero-3-phosphocholine and incorporating Na3[1-(2′-B10H9)-2-NH3B10H8] in the aqueous interior and K[nido-7-CH3(CH2)15-7,8-C2B9H11] in the bilayer, were injected into the tail veins of female BALB/c mice bearing right flank EMT6 tumors. Biodistribution studies indicated that two identical injections given 24 h apart resulted in tumor boron levels exceeding 67 µg/g tumor at 54 h—with tumor/blood boron ratios being greatest at 96 h (5.68:1; 43 µg boron/g tumor)—following the initial injection. For BNCT experiments, tumor-bearing mice were irradiated 54 h after the initial injection for 30 min with thermal neutrons, resulting in a total fluence of 1.6 × 1012 neutrons per cm2 (±7%). Significant suppression of tumor growth was observed in mice given BNCT vs. control mice (only 424% increase in tumor volume at 14 d post irradiation vs. 1551% in untreated controls). In a separate experiment in which mice were given a second injection/irradiation treatment 7 d after the first, the tumor growth was vastly diminished (186% tumor volume increase at 14 d). A similar response was obtained for mice irradiated for 60 min (169% increase at 14 d), suggesting that neutron fluence was the limiting factor controlling BNCT efficacy in this study. PMID:23536304

  4. Targeted Gene Therapies: Tools, Applications, Optimization

    PubMed Central

    Humbert, Olivier; Davis, Luther; Maizels, Nancy

    2012-01-01

    Many devastating human diseases are caused by mutations in a single gene that prevent a somatic cell from carrying out its essential functions, or by genetic changes acquired as a result of infectious disease or in the course of cell transformation. Targeted gene therapies have emerged as potential strategies for treatment of such diseases. These therapies depend upon rare-cutting endonucleases to cleave at specific sites in or near disease genes. Targeted gene correction provides a template for homology-directed repair, enabling the cell's own repair pathways to erase the mutation and replace it with the correct sequence. Targeted gene disruption ablates the disease gene, disabling its function. Gene targeting can also promote other kinds of genome engineering, including mutation, insertion, or gene deletion. Targeted gene therapies present significant advantages compared to approaches to gene therapy that depend upon delivery of stably expressing transgenes. Recent progress has been fueled by advances in nuclease discovery and design, and by new strategies that maximize efficiency of targeting and minimize off-target damage. Future progress will build on deeper mechanistic understanding of critical factors and pathways. PMID:22530743

  5. Photodynamic therapy disinfection of carious tissue mediated by aluminum-chloride-phthalocyanine entrapped in cationic liposomes: an in vitro and clinical study.

    PubMed

    Longo, João Paulo F; Leal, Soraya C; Simioni, Andreza R; de Fátima Menezes Almeida-Santos, Maria; Tedesco, Antônio C; Azevedo, Ricardo B

    2012-05-01

    Photodynamic therapy (PDT) is a technique employed in the treatment of several superficial infections, such as caries. PDT uses a non-toxic drug termed photosensitizer (PS) followed by light irradiation. The cytotoxic effects of the therapy are related to the production of reactive species produced after light activation of a photosensitizer, which reacts with surrounding molecules and disrupts several of the cell's functions. Within this context, this study aimed to develop a clinical protocol involving PDT application mediated by aluminum-chloride-phthalocyanine (AlClPc) entrapped in cationic liposomes against cariogenic bacteria in caries lesions. Cationic liposomes were used to delivery AlClPc preferentially to bacterial cells due to the strong anionic superficial charges of these cell types. The results are represented in two fundamental steps: (1) in vitro evaluation of AlClPc delivery to cariogenic bacteria and pulp cells, as well as its potential phototoxicity; (2) a clinical study involving volunteer patients that were treated with the PDT protocol mediated by AlClPc-cationic liposome. The main results showed that the AlClPc-cationic liposome was preferentially absorbed by bacterial cells compared to eukaryotic dental pulp cells, and it was efficient in the reduction of microbial load from bacterial cultures. In addition, the clinical study showed a mean reduction of 82% of total bacterial in the treated cavities after PDT application. Taken together, the results presented in this study showed that the antimicrobial PDT protocol mediated by cationic liposomes containing AlClPc is safety for clinical application and is efficient in the reduction of bacterial load in caries lesions. PMID:21809069

  6. Getting arthritis gene therapy into the clinic

    PubMed Central

    Evans, Christopher H.; Ghivizzani, Steven C.; Robbins, Paul D.

    2012-01-01

    Gene transfer technologies enable the controlled, targeted and sustained expression of gene products at precise anatomical locations, such as the joint. In this way, they offer the potential for more-effective, less-expensive treatments of joint diseases with fewer extra-articular adverse effects. A large body of preclinical data confirms the utility of intra-articular gene therapy in animal models of rheumatoid arthritis and osteoarthritis. However, relatively few clinical trials have been conducted, only one of which has completed phase II. This article summarizes the status in 2010 of the clinical development of gene therapy for arthritis, identifies certain constraints to progress and suggests possible solutions. PMID:21135882

  7. Convergence of gene and cell therapy.

    PubMed

    Bersenev, Alexey; Levine, Bruce L

    2012-11-01

    Gene therapy and cell therapy have followed similar roller coaster paths of rising public expectations and disappointment over the past two decades. There is now reason to believe that momentum in the field has reached the point where the successes will be more frequent. The use of gene-modified cells has opened new avenues for engineering desired cell properties, for the use of cells as vehicles for gene delivery, and for tracking cells and controlling cell persistence after transplantation. Some notable recent clinical developments in cellular engineering by gene transfer offer lessons on how the field has emerged, and hint at additional future clinical applications. PMID:23210811

  8. Liposomes: Technologies and Analytical Applications

    NASA Astrophysics Data System (ADS)

    Jesorka, Aldo; Orwar, Owe

    2008-07-01

    Liposomes are structurally and functionally some of the most versatile supramolecular assemblies in existence. Since the beginning of active research on lipid vesicles in 1965, the field has progressed enormously and applications are well established in several areas, such as drug and gene delivery. In the analytical sciences, liposomes serve a dual purpose: Either they are analytes, typically in quality-assessment procedures of liposome preparations, or they are functional components in a variety of new analytical systems. Liposome immunoassays, for example, benefit greatly from the amplification provided by encapsulated markers, and nanotube-interconnected liposome networks have emerged as ultrasmall-scale analytical devices. This review provides information about new developments in some of the most actively researched liposome-related topics.

  9. Gene Therapy for Diseases and Genetic Disorders

    MedlinePlus

    ... notable advancements are the following: Gene Therapy for Genetic Disorders Severe Combined Immune Deficiency (ADA-SCID) ADA- ... in preclinical animal models of this disease. Other genetic disorders After many years of laboratory and preclinical ...

  10. European attitudes to gene therapy and pharmacogenetics.

    PubMed

    Hudson, John; Orviska, Marta

    2011-10-01

    Views on pharmacogenetics and gene therapy systematically differ across European countries. But despite a complex regulatory regime there is a balance of support, albeit laced with considerable uncertainty. PMID:21745587

  11. Gene therapy for CNS diseases - Krabbe disease.

    PubMed

    Rafi, Mohammad A

    2016-01-01

    This is a brief report of the 19th Annual Meeting of the American Society of Gene and Cell Therapy that took place from May 4th through May 7th, 2016 in Washington, DC, USA. While the meeting provided many symposiums, lectures, and scientific sessions this report mainly focuses on one of the sessions on the "Gene Therapy for central nervous system (CNS) Diseases" and specifically on the "Gene Therapy for the globoid cell leukodystrophy or Krabbe disease. Two presentations focused on this subject utilizing two animal models of this disease: mice and dog models. Different serotypes of adeno-associate viral vectors (AAV) alone or in combination with bone marrow transplantations were used in these research projects. The Meeting of the ASGCT reflected continuous growth in the fields of gene and cell therapy and brighter forecast for efficient treatment options for variety of human diseases. PMID:27525222

  12. Enhanced gene delivery efficiency of cationic liposomes coated with PEGylated hyaluronic acid for anti P-glycoprotein siRNA: a potential candidate for overcoming multi-drug resistance.

    PubMed

    Ran, Rui; Liu, Yayuan; Gao, Huile; Kuang, Qifang; Zhang, Qianyu; Tang, Jie; Huang, Kai; Chen, Xiaoxiao; Zhang, Zhirong; He, Qin

    2014-12-30

    RNA interference is an effective method to achieve highly specific gene regulation. However, the commonly used cationic liposomes have poor biocompatibility, which may lead to systematic siRNA delivery of no avail. PEGylation is a good strategy in shielding the positive charge of cationic liposomes, but the enhanced serum stability is often in company with compromised cellular uptake and endosome escape. In this study, PEG was covalently linked to negatively charged hyaluronic acid and it was used to coat the liposome-siRNA nanoparticles. The resulting PEG-HA-NP complex had a diameter of 188.6 ± 10.8 nm and a dramatically declined zeta-potential from +34.9 ± 4.0 mV to -18.2 ± 2.2 mV. Owing to the reversed surface charge, PEG-HA-NP could remain stable in fetal bovine serum (FBS) to up to 24h. In contrast with normal PEGylation, hyaluronic acid and PEG co-modified PEG-HA-NP provided comparable cellular uptake and P-glycoprotein downregulation efficacy in MCF-7/ADR cells compared with Lipofectamine RNAiMAX and naked NP regardless of its anionic charged surface. Because of its good biocompatibility in serum, PEG-HA-NP possessed the best tumor accumulation, cellular uptake and subsequently the strongest P-glycoprotein silencing capability in tumor bearing mice compared with naked NP and HA-NP after i.v. injection, with a 34% P-glycoprotein downregulation. Therefore, PEG-HA coated liposomal complex was demonstrated to be a promising siRNA delivery system in adjusting solid tumor P-glycoprotein expression, which may become a potential carrier in reversing MDR for breast cancer therapy. PMID:25448564

  13. Antitumoral effect of IL-12 gene transfected via liposomes into B16F0 cells.

    PubMed

    Speroni, Lucía; Gasparri, Julieta; de los A Bustuoabad, Victoria; Chiaramoni, Nadia S; Smagur, Andrzej; Szala, Stanisław; Taira, María C; del V Alonso, Silvia

    2009-01-01

    Murine melanoma B16F0 cells were transfected with SA:DPPC:DOPE (2:1:1 molar ratio) liposomes associated with a plasmid encoding murine IL-12. Stearylamine, a cationic lipid, showed a greater transfection efficiency compared to DOTAP-containing liposomes. The lipid:DNA ratio was 2:1 (w/w). Control groups were mock transfected or transfected with an empty plasmid (pNeo). pNeo or IL-12 transfected cells and controls were inoculated intradermically into the dorsal region of the foot or the lateral flank of C57BL6 mice. Results showed that IL-12 expression had a marked effect on in vivo growth of B16 melanoma tumors developed in both anatomic sites, significantly retarding their growth and prolonging host survival. PMID:19421429

  14. Magnetic nanoparticles: Applications in gene delivery and gene therapy.

    PubMed

    Majidi, Sima; Zeinali Sehrig, Fatemeh; Samiei, Mohammad; Milani, Morteza; Abbasi, Elham; Dadashzadeh, Kianoosh; Akbarzadeh, Abolfazl

    2016-06-01

    Gene therapy is defined as the direct transfer of genetic material to tissues or cells for the treatment of inherited disorders and acquired diseases. For gene delivery, magnetic nanoparticles (MNPs) are typically combined with a delivery platform to encapsulate the gene, and promote cell uptake. Delivery technologies that have been used with MNPs contain polymeric, viral, as well as non-viral platforms. In this review, we focus on targeted gene delivery using MNPs. PMID:25727710

  15. Human Studies of Angiogenic Gene Therapy

    PubMed Central

    Gupta, Rajesh; Tongers, Jörn; Losordo, Douglas W.

    2009-01-01

    Despite significant advances in medical, interventional, and surgical therapy for coronary and peripheral arterial disease, the burden of these illnesses remains high. To address this unmet need, the science of therapeutic angiogenesis has been evolving for almost two decades. Early pre-clinical studies and phase I clinical trials achieved promising results with growth factors administered as recombinant proteins or as single-agent gene therapies, and data accumulated through 10 years of clinical trials indicate that gene therapy has an acceptable safety profile. However, more rigorous phase II and phase III clinical trials have failed to unequivocally demonstrate that angiogenic agents are beneficial under the conditions and in the patients studied to date. Investigators have worked to understand the biology of the vascular system and to incorporate their findings into new treatments for patients with ischemic disease. Recent gene- and cell-therapy trials have demonstrated the bioactivity of several new agents and treatment strategies. Collectively, these observations have renewed interest in the mechanisms of angiogenesis and deepened our understanding of the complexity of vascular regeneration. Gene therapy that incorporates multiple growth factors, approaches that combine cell and gene therapy, and the administration of "master switch" agents that activate numerous downstream pathways are among the credible and plausible steps forward. In this review, we will examine the clinical development of angiogenic therapy, summarize several of the lessons learned during the conduct of these trials, and suggest how this prior experience may guide the conduct of future preclinical investigations and clinical trials. PMID:19815827

  16. Strategies in Gene Therapy for Glioblastoma

    PubMed Central

    Kwiatkowska, Aneta; Nandhu, Mohan S.; Behera, Prajna; Chiocca, E. Antonio; Viapiano, Mariano S.

    2013-01-01

    Glioblastoma (GBM) is the most aggressive form of brain cancer, with a dismal prognosis and extremely low percentage of survivors. Novel therapies are in dire need to improve the clinical management of these tumors and extend patient survival. Genetic therapies for GBM have been postulated and attempted for the past twenty years, with variable degrees of success in pre-clinical models and clinical trials. Here we review the most common approaches to treat GBM by gene therapy, including strategies to deliver tumor-suppressor genes, suicide genes, immunomodulatory cytokines to improve immune response, and conditionally-replicating oncolytic viruses. The review focuses on the strategies used for gene delivery, including the most common and widely used vehicles (i.e., replicating and non-replicating viruses) as well as novel therapeutic approaches such as stem cell-mediated therapy and nanotechnologies used for gene delivery. We present an overview of these strategies, their targets, different advantages, and challenges for success. Finally, we discuss the potential of gene therapy-based strategies to effectively attack such a complex genetic target as GBM, alone or in combination with conventional therapy. PMID:24202446

  17. Gene therapy for primary immunodeficiencies: Part 1.

    PubMed

    Cavazzana-Calvo, Marina; Fischer, Alain; Hacein-Bey-Abina, Salima; Aiuti, Alessandro

    2012-10-01

    Over 60 patients affected by SCID due to IL2RG deficiency (SCID-X1) or adenosine deaminase (ADA)-SCID have received hematopoietic stem cell gene therapy in the past 15 years using gammaretroviral vectors, resulting in immune reconstitution and clinical benefit in the majority of them. However, the occurrence of insertional oncogenesis in the SCID-X1 trials has led to the development of new clinical trials based on integrating vectors with improved safety design as well as investigation on new technologies for highly efficient gene targeting and site-specific gene editing. Here we will present the experience and perspectives of gene therapy for SCID-X1 and ADA-SCID and discuss the pros and cons of gene therapy in comparison to allogeneic transplantation. PMID:22981681

  18. Gene Therapy Targeting Glaucoma: Where Are We?

    PubMed Central

    Liu, Xuyang; Rasmussen, Carol A.; Gabelt, B’Ann T.; Brandt, Curtis R.; Kaufman, Paul L.

    2010-01-01

    In a chronic disease such as glaucoma, a therapy that provides a long lasting local effect, with minimal systemic side effects, while circumventing the issue of patient compliance, is very attractive. The field of gene therapy is growing rapidly and ocular applications are expanding. Our understanding of the molecular pathogenesis of glaucoma is leading to greater specificity in ocular tissue targeting. Improvements in gene delivery techniques, refinement of vector construction methods, and development of better animal models combine to bring this potential therapy closer to reality. PMID:19539835

  19. Sterically stabilized superparamagnetic liposomes for MR imaging and cancer therapy: pharmacokinetics and biodistribution.

    PubMed

    Plassat, V; Martina, M S; Barratt, G; Ménager, C; Lesieur, S

    2007-11-01

    Pharmacokinetics of magnetic-fluid-loaded liposomes (MFLs) with mean hydrodynamic diameter of 200 nm sterically stabilized by poly(ethylene glycol) (PEG) and labelled by a fluorescent lipid probe, N-(lissamine rhodamine B sulfonyl) phosphatidylethanolamine (Rho-PE) was studied. The loading consisted in an aqueous suspension of maghemite nanocrystals close to 8 nm in size at 1.7 Fe(III)mol/mol total lipids ratio. Double tracking of MFL in blood was performed versus time after intravenous administration in mice. Lipids constituting vesicle membrane were followed by Rho-PE fluorescence spectroscopy while iron oxide was determined independently by relaxometry. MFLs circulating in the vascular compartment conserved their vesicle structure and content. The pharmacokinetic profile was characterized by two first-order kinetics of elimination with distinct plasmatic half-lives of 70 min and 12.5 h. Iron biodistribution and organ histology clearly highlighted preferential MFL accumulation within liver and spleen. The pathway in spleen supported that elimination was governed by the mononuclear phagocyte system (MPS). PEG coating was essential to prolong MFL circulation time whereas iron oxide loading tends to favour uptake by the MPS. Despite partial uptake in the earlier times after administration, MFLs exhibited long circulation behaviour over a 24-h period that, coupled to magnetic targeting, encourages further use in drug delivery. PMID:17583452

  20. Prospects for retinal gene replacement therapy.

    PubMed

    Smith, Alexander J; Bainbridge, James W; Ali, Robin R

    2009-04-01

    Inherited retinal degeneration, which includes conditions such as retinitis pigmentosa and Leber congenital amaurosis (LCA), affects approximately 1/3000 of the population in the Western world. It is characterized by loss of vision and results from mutations in any one of >100 different genes. There are currently no effective treatments, but many of the genes have now been identified and their functions elucidated, providing a major impetus to develop gene-based treatments. Preliminary results from three clinical trials indicate that the treatment of a form of LCA by gene therapy can be safe and effective. Here, we discuss the potential for treating other forms of retinal degeneration by gene therapy, focusing on the gene defects that are likely to be the most amenable to treatment. PMID:19303164

  1. Why commercialization of gene therapy stalled; examining the life cycles of gene therapy technologies.

    PubMed

    Ledley, F D; McNamee, L M; Uzdil, V; Morgan, I W

    2014-02-01

    This report examines the commercialization of gene therapy in the context of innovation theories that posit a relationship between the maturation of a technology through its life cycle and prospects for successful product development. We show that the field of gene therapy has matured steadily since the 1980s, with the congruent accumulation of >35 000 papers, >16 000 US patents, >1800 clinical trials and >$4.3 billion in capital investment in gene therapy companies. Gene therapy technologies comprise a series of dissimilar approaches for gene delivery, each of which has introduced a distinct product architecture. Using bibliometric methods, we quantify the maturation of each technology through a characteristic life cycle S-curve, from a Nascent stage, through a Growing stage of exponential advance, toward an Established stage and projected limit. Capital investment in gene therapy is shown to have occurred predominantly in Nascent stage technologies and to be negatively correlated with maturity. Gene therapy technologies are now achieving the level of maturity that innovation research and biotechnology experience suggest may be requisite for efficient product development. Asynchrony between the maturation of gene therapy technologies and capital investment in development-focused business models may have stalled the commercialization of gene therapy. PMID:24305420

  2. Gene replacement therapy for hereditary emphysema

    SciTech Connect

    Skolnick, A.

    1989-11-10

    Investigators suggest that human trials of gene therapy to correct a genetic disorder that usually leads to emphysema early in life may be only a few years away. Speaking at the American Lung Association's Second Annual Science Writers' Forum, R. G. Crystal, chief of the Pulmonary Branch of the National Heart, Lung, and Blood Institute offered an explanation of how hereditary emphysema may be more amenable to genetic therapy than other such diseases. In persons who lack a functioning gene for alpha{sup 1}-antitrypsin, a proteolytic enzyme, neutrophil elastase, attacks the walls of the lungs' alveoli, eventually leading to progressive pulmonary function loss. Two animal models of gene insertion are described.

  3. Design of liposomal formulations for cell targeting.

    PubMed

    Nogueira, Eugénia; Gomes, Andreia C; Preto, Ana; Cavaco-Paulo, Artur

    2015-12-01

    Liposomes have gained extensive attention as carriers for a wide range of drugs due to being both nontoxic and biodegradable as they are composed of substances naturally occurring in biological membranes. Active targeting for cells has explored specific modification of the liposome surface by functionalizing it with specific targeting ligands in order to increase accumulation and intracellular uptake into target cells. None of the Food and Drug Administration-licensed liposomes or lipid nanoparticles are coated with ligands or target moieties to delivery for homing drugs to target tissues, cells or subcellular organelles. Targeted therapies (with or without controlled drug release) are an emerging and relevant research area. Despite of the numerous liposomes reviews published in the last decades, this area is in constant development. Updates urgently needed to integrate new advances in targeted liposomes research. This review highlights the evolution of liposomes from passive to active targeting and challenges in the development of targeted liposomes for specific therapies. PMID:26454541

  4. Therapeutic efficacy of boron neutron capture therapy mediated by boron-rich liposomes for oral cancer in the hamster cheek pouch model.

    PubMed

    Heber, Elisa M; Hawthorne, M Frederick; Kueffer, Peter J; Garabalino, Marcela A; Thorp, Silvia I; Pozzi, Emiliano C C; Monti Hughes, Andrea; Maitz, Charles A; Jalisatgi, Satish S; Nigg, David W; Curotto, Paula; Trivillin, Verónica A; Schwint, Amanda E

    2014-11-11

    The application of boron neutron capture therapy (BNCT) mediated by liposomes containing (10)B-enriched polyhedral borane and carborane derivatives for the treatment of head and neck cancer in the hamster cheek pouch oral cancer model is presented. These liposomes are composed of an equimolar ratio of cholesterol and 1,2-distearoyl-sn-glycero-3-phosphocholine, incorporating K[nido-7-CH3(CH2)15-7,8-C2B9H11] (MAC) in the bilayer membrane while encapsulating the hydrophilic species Na3[ae-B20H17NH3] (TAC) in the aqueous core. Unilamellar liposomes with a mean diameter of 83 nm were administered i.v. in hamsters. After 48 h, the boron concentration in tumors was 67 ± 16 ppm whereas the precancerous tissue contained 11 ± 6 ppm, and the tumor/normal pouch tissue boron concentration ratio was 10:1. Neutron irradiation giving a 5-Gy dose to precancerous tissue (corresponding to 21 Gy in tumor) resulted in an overall tumor response (OR) of 70% after a 4-wk posttreatment period. In contrast, the beam-only protocol gave an OR rate of only 28%. Once-repeated BNCT treatment with readministration of liposomes at an interval of 4, 6, or 8 wk resulted in OR rates of 70-88%, of which the complete response ranged from 37% to 52%. Because of the good therapeutic outcome, it was possible to extend the follow-up of BNCT treatment groups to 16 wk after the first treatment. No radiotoxicity to normal tissue was observed. A salient advantage of these liposomes was that only mild mucositis was observed in dose-limiting precancerous tissue with a sustained tumor response of 70-88%. PMID:25349432

  5. Therapeutic efficacy of boron neutron capture therapy mediated by boron-rich liposomes for oral cancer in the hamster cheek pouch model

    PubMed Central

    Heber, Elisa M.; Hawthorne, M. Frederick; Kueffer, Peter J.; Garabalino, Marcela A.; Thorp, Silvia I.; Pozzi, Emiliano C. C.; Hughes, Andrea Monti; Maitz, Charles A.; Jalisatgi, Satish S.; Nigg, David W.; Curotto, Paula; Trivillin, Verónica A.; Schwint, Amanda E.

    2014-01-01

    The application of boron neutron capture therapy (BNCT) mediated by liposomes containing 10B-enriched polyhedral borane and carborane derivatives for the treatment of head and neck cancer in the hamster cheek pouch oral cancer model is presented. These liposomes are composed of an equimolar ratio of cholesterol and 1,2-distearoyl-sn-glycero-3-phosphocholine, incorporating K[nido-7-CH3(CH2)15-7,8-C2B9H11] (MAC) in the bilayer membrane while encapsulating the hydrophilic species Na3[ae-B20H17NH3] (TAC) in the aqueous core. Unilamellar liposomes with a mean diameter of 83 nm were administered i.v. in hamsters. After 48 h, the boron concentration in tumors was 67 ± 16 ppm whereas the precancerous tissue contained 11 ± 6 ppm, and the tumor/normal pouch tissue boron concentration ratio was 10:1. Neutron irradiation giving a 5-Gy dose to precancerous tissue (corresponding to 21 Gy in tumor) resulted in an overall tumor response (OR) of 70% after a 4-wk posttreatment period. In contrast, the beam-only protocol gave an OR rate of only 28%. Once-repeated BNCT treatment with readministration of liposomes at an interval of 4, 6, or 8 wk resulted in OR rates of 70–88%, of which the complete response ranged from 37% to 52%. Because of the good therapeutic outcome, it was possible to extend the follow-up of BNCT treatment groups to 16 wk after the first treatment. No radiotoxicity to normal tissue was observed. A salient advantage of these liposomes was that only mild mucositis was observed in dose-limiting precancerous tissue with a sustained tumor response of 70–88%. PMID:25349432

  6. Targeted polymeric nanoparticles for cancer gene therapy

    PubMed Central

    Kim, Jayoung; Wilson, David R.; Zamboni, Camila G.; Green, Jordan J.

    2015-01-01

    In this article, advances in designing polymeric nanoparticles for targeted cancer gene therapy are reviewed. Characterization and evaluation of biomaterials, targeting ligands, and transcriptional elements are each discussed. Advances in biomaterials have driven improvements to nanoparticle stability and tissue targeting, conjugation of ligands to the surface of polymeric nanoparticles enable binding to specific cancer cells, and the design of transcriptional elements has enabled selective DNA expression specific to the cancer cells. Together, these features have improved the performance of polymeric nanoparticles as targeted non-viral gene delivery vectors to treat cancer. As polymeric nanoparticles can be designed to be biodegradable, non-toxic, and to have reduced immunogenicity and tumorigenicity compared to viral platforms, they have significant potential for clinical use. Results of polymeric gene therapy in clinical trials and future directions for the engineering of nanoparticle systems for targeted cancer gene therapy are also presented. PMID:26061296

  7. What Is Next for Retinal Gene Therapy?

    PubMed Central

    Vandenberghe, Luk H.

    2015-01-01

    The field of gene therapy for retinal blinding disorders is experiencing incredible momentum, justified by hopeful results in early stage clinical trials for inherited retinal degenerations. The premise of the use of the gene as a drug has come a long way, and may have found its niche in the treatment of retinal disease. Indeed, with only limited treatment options available for retinal indications, gene therapy has been proven feasible, safe, and effective and may lead to durable effects following a single injection. Here, we aim at putting into context the promise and potential, the technical, clinical, and economic boundaries limiting its application and development, and speculate on a future in which gene therapy is an integral component of ophthalmic clinical care. PMID:25877395

  8. Rh-I-UEA-1 polymerized liposomes target and image adenomatous polyps in the APCMin/+ mouse using optical colonography

    PubMed Central

    Roney, Celeste A.; Xu, Biying; Xie, Jianwu; Yuan, Shuai; Wierwille, Jeremiah; Chen, Chao-Wei; Chen, Yu; Griffiths, Gary L.; Summers, Ronald M.

    2012-01-01

    Mutated adenomatous polyposis coli (APC) genes predispose transformations to neoplasia progressing to colorectal carcinoma (CRC). Early detection facilitates clinical management and therapy. Novel lectin-mediated polymerized targeted liposomes (Rh-I-UEA-1), with polyp specificity and incorporated imaging agents, were fabricated to locate and image adenomatous polyps in APCMin/+ mice. The biomarker α-L-fucose covalently joins liposomal conjugated lectin ulex euroapeus agglutinin (UEA-1), via glycosidic linkage to the polyp mucin layer. Multispectral optical imaging (MSI) corroborated a global perspective of specific binding (Rhodamine B 532 nm emission, 590–620 nm excitation) of targeted Rh-I-UEA-1 polymerized liposomes to polyps with 1.4× fold labeling efficiency. High-resolution co-registered optical coherence tomography (OCT) and fluorescence molecular imaging (FMI) reveal spatial correlation of contrast distribution and tissue morphology. Freshly excised APCMin bowels were incubated with targeted liposomes (UEA-1 lectin), control liposomes (no lectin), or Omnipaque and imaged by the three techniques. CT quantitative analyses did not confirm targeted liposomes more strongly bound polyps than nontargeted liposomes or Omnipaque alone. OCT, with anatomical depth capabilities, along with the co-registered FMI, substantiated Rh-I-UEA-1 liposome binding along the mucinous polyp surface. UEA-1 lectin denotes α-L-fucose biomarker carbohydrate expression at the mucin glycoprotein layer; Rh-I-UEA-1 polymerized liposomes target and image adenomatous polyps in APCMin mice. PMID:21521550

  9. Employment of Salmonella in Cancer Gene Therapy.

    PubMed

    Lee, Che-Hsin

    2016-01-01

    One of the primary limitations of cancer gene therapy is lack of selectivity of the therapeutic gene to tumor cells. Current efforts are focused on discovering and developing tumor-targeting vectors that selectively target only cancer cells but spare normal cells to improve the therapeutic index. The use of preferentially tumor-targeting bacteria as vectors is one of the innovative approaches for the treatment of cancer. This is based on the observation that some obligate or facultative-anaerobic bacteria are capable of multiplying selectively in tumors and inhibiting their growth. In this study, we exploited attenuated Salmonella as a tumoricidal agent and a vector to deliver genes for tumor-targeted gene therapy. Attenuated Salmonella, carrying a eukaryotic expression plasmid encoding an anti-angiogenic gene, was used to evaluate its' ability for tumor targeting and gene delivery in murine tumor models. We also investigated the use of a polymer to modify or shield Salmonella from the pre-existing immune response in the host in order to improve gene delivery to the tumor. These results suggest that tumor-targeted gene therapy using Salmonella carrying a therapeutic gene, which exerts tumoricidal and anti-angiogenic activities, represents a promising strategy for the treatment of tumors. PMID:26846804

  10. Disseminated Mucormycosis With Cerebral Involvement Owing to Rhizopus Microsporus in a Kidney Recipient Treated With Combined Liposomal Amphotericin B and Posaconazole Therapy.

    PubMed

    Ville, Simon; Talarmin, Jean Philippe; Gaultier-Lintia, Alina; Bouquié, Régis; Sagan, Christine; Le Pape, Patrice; Giral, Magali; Morio, Florent

    2016-02-01

    Three months after a kidney transplant, a man experienced an internuclear ophthalmoplegia. Magnetic resonance imaging found a punctuate hyperintensity of the brainstem. Afterwards, the patient presented with peripheral facial paralysis. A complete morphologic assessment showed an increase of the brainstem lesion, together with an excavated pulmonary nodule. Combination therapy with high-dose liposomal amphotericin B and voriconazole was begun for the putative aspergillosis. Owing to its atypical clinical presentation and negative detection of Aspergillus galactomannan antigen on sera, a biopsy specimen of the lung lesion was obtained. Histopathological and mycological investigations allowed the diagnosis of mucormycosis owing to Rhizopus microsporus. Accordingly, voriconazole was replaced with posaconazole. After 5 months, regression of the cerebral lesion was noted. Disseminated mucormycosis in solid-organ recipients is uncommon and mycological diagnosis is challenging. Mortality is high and is increased by diagnostic delay. Treating mucormycosis requires surgical debridement and appropriate antifungal therapy (usually intravenous liposomal amphotericin B). This report suggests that a combination of liposomal amphotericin B and posaconazole can be a therapeutic option in patients with a poor prognosis. PMID:25275881

  11. A multicentre Phase II study of non-pegylated liposomal doxorubicin in combination with trastuzumab and docetaxel as first-line therapy in metastatic breast cancer.

    PubMed

    Venturini, M; Bighin, C; Puglisi, F; Olmeo, N; Aitini, E; Colucci, G; Garrone, O; Paccagnella, A; Marini, G; Crinò, L; Mansutti, M; Baconnet, B; Barbato, A; Del Mastro, L

    2010-10-01

    To evaluate the cardiotoxicity, general toxicity, and activity of non-pegylated liposomal doxorubicin, in combination with docetaxel and trastuzumab, as first-line therapy in metastatic breast cancer. Thirty-one patients with metastatic human epidermal growth factor receptor 2-overexpressing breast cancer, who had not previously received chemotherapy for metastatic disease, received non-pegylated liposomal doxorubicin (50 mg/m(2)), docetaxel (75 mg/m(2)) and trastuzumab (2 mg/kg/week) for up to eight cycles, followed by trastuzumab alone for up to 52 weeks. Cardiotoxicity was defined as a decrease in left ventricular ejection fraction (LVEF) to below 45%, or a decrease in LVEF of at least 20% from baseline. Mean LVEF was maintained at baseline level also in the subset of patients who had received anthracycline previously. Cardiotoxicity developed in three patients during the treatment cycles, and in two further patients after the end of the study. The most common adverse events were haematological toxicity, alopecia, asthenia and fever. The best overall response rate was 65.5%. Median time to progression was 13.0 months. The combination of non-pegylated liposomal doxorubicin, docetaxel and trastuzumab combines acceptable cardiac and general toxicity and promising activity as first-line therapy in metastatic breast cancer. PMID:20185313

  12. Codelivery of paclitaxel and small interfering RNA by octadecyl quaternized carboxymethyl chitosan-modified cationic liposome for combined cancer therapy.

    PubMed

    Zhang, Ran; Wang, Shi-Bin; Chen, Ai-Zheng; Chen, Wei-Guang; Liu, Yuan-Gang; Wu, Wen-Guo; Kang, Yong-Qiang; Ye, Shi-Fu

    2015-09-01

    Conventional therapeutic approaches for cancer are limited by cancer cell resistance, which has impeded their clinical applications. The main goal of this work was to investigate the combined antitumor effect of paclitaxel with small interfering RNA modified by cationic liposome formed from modified octadecyl quaternized carboxymethyl chitosan. The cationic liposome was composed of 3β-[N-(N', N'-dimethylaminoethane)-carbamoyl]-cholesterol, dioleoylphosphatidylethanolamine, and octadecyl quaternized carboxymethyl chitosan. The cationic liposome properties were characterized by Fourier transform infrared spectroscopy, dynamic light scattering and zeta potential measurements, transmission electron microscopy, atomic force microscopy, and gel retardation assay. The cationic liposome exhibited good properties, such as a small particle size, a narrow particle size distribution, a good spherical shape, a smooth surface, and a good binding ability with small interfering RNA. Most importantly, when combined with paclitaxel and small interfering RNA, the composite cationic liposome induced a great enhancement in the antitumor activity, which showed a significantly higher in vitro cytotoxicity in Bcap-37 cells than liposomal paclitaxel or small interfering RNA alone. In conclusion, the results indicate that cationic liposome could be further developed as a codelivery system for chemotherapy drugs and therapeutic small interfering RNAs. PMID:25838353

  13. Gene Therapy for Neurologic Manifestations of Mucopolysaccharidoses

    PubMed Central

    Wolf, Daniel A.; Banerjee, Sharbani; Hackett, Perry B.; Whitley, Chester B.; McIvor, R. Scott; Low, Walter C.

    2015-01-01

    Introduction Mucopolysaccharidoses are a family of lysosomal disorders caused by mutations in genes that encode enzymes involved in the catabolism of glycoaminoglycans. These mutations affect multiple organ systems and can be particularly deleterious to the nervous system. At the present time, enzyme replacement therapy and hematopoietic stem-cell therapy are used to treat patients with different forms of these disorders. However, to a great extent the nervous system is not adequately responsive to current therapeutic approaches. Areas Covered Recent advances in gene therapy show great promise for treating mucopolysaccharidoses. This article reviews the current state of the art for routes of delivery in developing genetic therapies for treating the neurologic manifestations of mucopolysaccharidoses. Expert Opinion Gene therapy for treating neurological manifestations of mucopolysaccharidoses can be achieved by intraventricular, intrathecal, intranasal, and systemic administration. The intraventricular route of administration appears to provide the most wide-spread distribution of gene therapy vectors to the brain. The intrathecal route of delivery results in predominant distribution to the caudal areas of the brain while the intranasal route of delivery results in good distribution to the rostral areas of brain. The systemic route of delivery via intravenous delivery can also achieve wide spread delivery to the CNS, however, the distribution to the brain is greatly dependent on the vector system. Intravenous delivery using lentiviral vectors appear to be less effective than adeno-associated viral (AAV) vectors. Moreover, some subtypes of AAV vectors are more effective than others in crossing the blood-brain-barrier. In summary, the recent advances in gene vector technology and routes of delivery to the CNS will facilitate the clinical translation of gene therapy for the treatment of the neurological manifestations of mucopolysaccharidoses. PMID:25510418

  14. Gene therapy legislation in The Netherlands.

    PubMed

    Bleijs, D A; Haenen, I T W C; Bergmans, J E N

    2007-10-01

    Several regulatory organisations are involved in the assessment of clinical gene therapy trials involving genetically modified organisms (GMOs) in The Netherlands. Medical, ethical and scientific aspects are, for instance, evaluated by the Central Committee on Research Involving Human Subjects (CCMO). The Ministry of Housing, Spatial Planning and the Environment (VROM) is the competent authority for the environmental risk assessment according to the deliberate release Directive 2001/18/EC. A Gene Therapy Office has been established in order to streamline the different national review processes and to enable the official procedures to be completed as quickly as possible. Although the Gene Therapy Office improved the application process at the national level, there is a difference of opinion between the EU member states with respect to the EU Directive according to which gene therapy trials are assessed, that urges for harmonisation. This review summarises the gene therapy legislation in The Netherlands and in particular The Netherlands rationale to follow Directive 2001/18/EC for the environmental risk assessment. PMID:17721872

  15. International perceptions and approval of gene therapy.

    PubMed

    Macer, D R; Akiyama, S; Alora, A T; Asada, Y; Azariah, J; Azariah, H; Boost, M V; Chatwachirawong, P; Kato, Y; Kaushik, V

    1995-06-01

    Gene therapy is in clinical trials in a number of countries, raising the question of whether different ethical standards can be justified in different countries. One key issue is how divergent are the perceptions and bioethical reasoning of peoples around the world. An International Bioethics Survey with 150 questions, including 35 open ones, was developed to look at how people think about diseases, life, nature, and selected issues of science and technology, biotechnology, genetic engineering, genetic screening, and gene therapy. The mail response survey was conducted in 1993 among the public in Australia, India, Israel, Japan, New Zealand, Russia, and Thailand, and the same written survey was conducted among university students in Australia, Hong Kong, India, Japan, New Zealand, The Philippines, Russia, Singapore, and Thailand. Similar questions were included in an international high school education bioethics survey among high school teachers in Australia, Japan, and New Zealand. Further international comparisons to the United States and Europe are made. About three-quarters of all samples supported personal use of gene therapy, with higher support for children's use of gene therapy. The diversity of views was generally similar within each country. The major reasons given were to save life and increase the quality of life. About 5-7% rejected gene therapy, considering it to be playing God, or unnatural. There was very little concern about eugenics (0.5-2%), and more respondents gave supportive reasons like "improving genes," especially in Thailand and India. Support for specific applications was significantly less for "improving physical characters," "improving intelligence," or "making people more ethical" than for curing diseases like cancer or diabetes, but there was little difference between inheritable or noninheritable gene therapy. PMID:7548279

  16. NIH modifies gene therapy research guidelines.

    PubMed

    Levine, Carol

    1985-06-01

    In response to public comments on the first draft of its "Points to Consider in the Design and Submission of Human Somatic-Cell Gene Therapy Protocols," the Working Group on Human Gene Therapy of the National Institutes of Health has issued a revised set of guidelines for researchers. This second draft spells out the need for public review of gene therapy protocols, the Working Group's willingness to review selected protocols before the completion of animal studies, and requirements for informed consent to long-term follow-up and to autopsy in the event of death. The document also expresses the Working Group's concern that researchers and the public be kept fully informed of the results of such studies. PMID:11643786

  17. Moving forward: cystic fibrosis gene therapy.

    PubMed

    Griesenbach, Uta; Alton, Eric W F W

    2013-10-15

    Since cloning of the CFTR gene more than 20 years ago a large number of pre-clinical and clinical CF gene therapy studies have been performed and a vast amount of information and know-how has been generated. Here, we will review key studies with a particular emphasis on clinical findings. We have learnt that the lung is a more difficult target than originally anticipated, and we describe the strength and weaknesses of the most commonly used airway gene transfer agents (GTAs). In our view, one of the most significant developments in recent years is the generation of lentiviral vectors, which efficiently transduce lung tissue. However, focused and co-ordinated efforts assessing lentiviral vector safety and scaling up of production will be required to move this vector into clinical lung gene therapy studies. PMID:23918661

  18. Radiopharmaceutical and Gene Therapy Program

    SciTech Connect

    Buchsbaum, Donald J.

    2006-02-09

    The objective of our research program was to determine whether novel receptors can be induced in solid cancers as a target for therapy with radiolabeled unmodified peptides that bind to the receptors. The hypothesis was that induction of a high number of receptors on the surface of these cancer cells would result in an increased uptake of the radiolabeled monomeric peptides as compared to published results with radiolabeled antibodies or peptides to naturally expressed antigens or receptors, and therefore a better therapeutic outcome. The following is a summary of published results.

  19. TLR9 and IRF3 Cooperate to Induce a Systemic Inflammatory Response in Mice Injected With Liposome:DNA

    PubMed Central

    Walker, Wendy E; Booth, Carmen J; Goldstein, Daniel R

    2010-01-01

    Liposome:DNA is a promising gene therapy vector. However, this vector can elicit a systemic inflammatory response syndrome (SIRS). Prior reports indicate that liposome:DNA vectors activate Toll-like receptor (TLR)9. We hypothesized that liposome:DNA vectors also activate the cytosolic DNA-sensing pathway, which signals via interferon (IFN) regulatory factor (IRF)3. To test this, we treated dendritic cells (DCs) with liposome:DNA in vitro and found that IRF3 was phosphorylated independent of TLR9. To test the contribution of this pathway in vivo, we injected a liposome:DNA vector into wild-type (WT), TLR9-knockout (KO), IRF3-KO, and TLR9-IRF3-double-KO (DKO) mice. WT mice exhibited a systemic inflammatory response, evidenced by elevations in serum cytokines, serum enzyme changes indicating organ damage, hypothermia, and mortality. The cytokine response was reduced in TLR9-KO, IRF3-KO, and TLR9-IRF3-DKO mice and all three groups survived. We found that IFN-γ-KO mice that receive liposome:DNA had a reduced cytokine response and 100% survival. CD11c+ and NK1.1+ cells produced IFN-γ and depleting CD11c+ cells reduced the cytokine response in mice injected with liposome:DNA. These findings may facilitate the development of immunologically inert gene therapy vectors and may provide general insight into the mechanisms of SIRS. PMID:20145605

  20. [Gene therapy for inherited retinal dystrophies].

    PubMed

    Côco, Monique; Han, Sang Won; Sallum, Juliana Maria Ferraz

    2009-01-01

    The inherited retinal dystrophies comprise a large number of disorders characterized by a slow and progressive retinal degeneration. They are the result of mutations in genes that express in either the photoreceptor cells or the retinal pigment epithelium. The mode of inheritance can be autosomal dominant, autosomal recessive, X linked recessive, digenic or mitochondrial DNA inherited. At the moment, there is no treatment for these conditions and the patients can expect a progressive loss of vision. Accurate genetic counseling and support for rehabilitation are indicated. Research into the molecular and genetic basis of disease is continually expanding and improving the prospects for rational treatments. In this way, gene therapy, defined as the introduction of exogenous genetic material into human cells for therapeutic purposes, may ultimately offer the greatest treatment for the inherited retinal dystrophies. The eye is an attractive target for gene therapy because of its accessibility, immune privilege and translucent media. A number of retinal diseases affecting the eye have known gene defects. Besides, there is a well characterized animal model for many of these conditions. Proposals for clinical trials of gene therapy for inherited retinal degenerations owing to defects in the gene RPE65, have recently received ethical approval and the obtained preliminary results brought large prospects in the improvement on patient's quality of life. PMID:19820803

  1. Gene therapies for inherited skin disorders.

    PubMed

    Abdul-Wahab, Alya; Qasim, Waseem; McGrath, John A

    2014-06-01

    Skin is an amenable organ for gene replacement and gene editing therapeutics. Its accessibility makes it well-suited for direct topical gene delivery, grafting of genetically corrected cells, and monitoring of possible adverse events. Monogenic recessive disorders with a clinically severe or life-threatening phenotype provide the best candidate diseases for the introduction of a single normal copy of the gene into the target cell, usually keratinocytes. Preclinical studies have shown impressive results in terms of gene correction using both in vivo and ex vivo approaches. The clinical application of gene replacement or genomic editing as potential therapies for inherited skin disorders, however, has been held back by the inadequacy of delivery vectors and concerns from regulatory agencies regarding safety; thus translation to clinical trials has been slow. Over the past 15 years, cell culture and animal models have shown efficient gene correction techniques as preludes to treat inherited skin disorders such as junctional epidermolysis bullosa, dystrophic epidermolysis bullosa, xeroderma pigmentosum, lamellar ichthyosis and Netherton syndrome, but so far only one patient has been treated in a clinical trial. This article reviews the current status of gene therapies for patients with inherited skin diseases and explores future perspectives. PMID:25085667

  2. Developments in gene therapy for muscular dystrophy.

    PubMed

    Hartigan-O'Connor, D; Chamberlain, J S

    Gene therapy for muscular dystrophy (MD) presents significant challenges, including the large amount of muscle tissue in the body, the large size of many genes defective in different muscular dystrophies, and the possibility of a host immune response against the therapeutic gene. Overcoming these challenges requires the development and delivery of suitable gene transfer vectors. Encouraging progress has been made in modifying adenovirus (Ad) vectors to reduce immune response and increase capacity. Recently developed gutted Ad vectors can deliver full-length dystrophin cDNA expression vectors to muscle tissue. Using muscle-specific promoters to drive dystrophin expression, a strong immune response has not been observed in mdx mice. Adeno-associated virus (AAV) vectors can deliver small genes to muscle without provocation of a significant immune response, which should allow long-term expression of several MD genes. AAV vectors have also been used to deliver sarcoglycan genes to entire muscle groups. These advances and others reviewed here suggest that barriers to gene therapy for MD are surmountable. PMID:10679969

  3. A review of therapeutic prospects of non-viral gene therapy in the retinal pigment epithelium

    PubMed Central

    Koirala, Adarsha; Conley, Shannon M.; Naash, Muna I.

    2013-01-01

    Ocular gene therapy has been extensively explored in recent years as a therapeutic avenue to target diseases of the cornea, retina and retinal pigment epithelium (RPE). Adeno-associated virus (AAV)-mediated gene therapy has shown promise in several RPE clinical trials but AAVs have limited payload capacity and potential immunogenicity. Traditionally however, non-viral alternatives have been plagued by low transfection efficiency, short-term expression and low expression levels. Recently, these drawbacks have begun to be overcome by the use of specialty carriers such as polylysine, liposomes, or polyethyleneimines, and by inclusion of suitable DNA elements to enhance gene expression and longevity. Recent advancements in the field have yielded non-viral vectors that have favorable safety profiles, lack immunogenicity, exhibit long-term elevated gene expression, and show efficient transfection in the retina and RPE, making them poised to transition to clinical applications. Here we discuss the advancements in nanotechnology and vector engineering that have improved the prospects for clinical application of non-viral gene therapy in the RPE. PMID:23796578

  4. Fluorescence Characterization of Gold Modified Liposomes with Antisense N-myc DNA Bound to the Magnetisable Particles with Encapsulated Anticancer Drugs (Doxorubicin, Ellipticine and Etoposide)

    PubMed Central

    Skalickova, Sylvie; Nejdl, Lukas; Kudr, Jiri; Ruttkay-Nedecky, Branislav; Jimenez Jimenez, Ana Maria; Kopel, Pavel; Kremplova, Monika; Masarik, Michal; Stiborova, Marie; Eckschlager, Tomas; Adam, Vojtech; Kizek, Rene

    2016-01-01

    Liposome-based drug delivery systems hold great potential for cancer therapy. The aim of this study was to design a nanodevice for targeted anchoring of liposomes (with and without cholesterol) with encapsulated anticancer drugs and antisense N-myc gene oligonucleotide attached to its surface. To meet this main aim, liposomes with encapsulated doxorubicin, ellipticine and etoposide were prepared. They were further characterized by measuring their fluorescence intensity, whereas the encapsulation efficiency was estimated to be 16%. The hybridization process of individual oligonucleotides forming the nanoconstruct was investigated spectrophotometrically and electrochemically. The concentrations of ellipticine, doxorubicin and etoposide attached to the nanoconstruct in gold nanoparticle-modified liposomes were found to be 14, 5 and 2 µg·mL−1, respectively. The study succeeded in demonstrating that liposomes are suitable for the transport of anticancer drugs and the antisense oligonucleotide, which can block the expression of the N-myc gene. PMID:26927112

  5. Gene Insertion Into Genomic Safe Harbors for Human Gene Therapy.

    PubMed

    Papapetrou, Eirini P; Schambach, Axel

    2016-04-01

    Genomic safe harbors (GSHs) are sites in the genome able to accommodate the integration of new genetic material in a manner that ensures that the newly inserted genetic elements: (i) function predictably and (ii) do not cause alterations of the host genome posing a risk to the host cell or organism. GSHs are thus ideal sites for transgene insertion whose use can empower functional genetics studies in basic research and therapeutic applications in human gene therapy. Currently, no fully validated GSHs exist in the human genome. Here, we review our formerly proposed GSH criteria and discuss additional considerations on extending these criteria, on strategies for the identification and validation of GSHs, as well as future prospects on GSH targeting for therapeutic applications. In view of recent advances in genome biology, gene targeting technologies, and regenerative medicine, gene insertion into GSHs can potentially catalyze nearly all applications in human gene therapy. PMID:26867951

  6. Monodisperse Uni- and Multicompartment Liposomes.

    PubMed

    Deng, Nan-Nan; Yelleswarapu, Maaruthy; Huck, Wilhelm T S

    2016-06-22

    Liposomes are self-assembled phospholipid vesicles with great potential in fields ranging from targeted drug delivery to artificial cells. The formation of liposomes using microfluidic techniques has seen considerable progress, but the liposomes formation process itself has not been studied in great detail. As a result, high throughput, high-yielding routes to monodisperse liposomes with multiple compartments have not been demonstrated. Here, we report on a surfactant-assisted microfluidic route to uniform, single bilayer liposomes, ranging from 25 to 190 μm, and with or without multiple inner compartments. The key of our method is the precise control over the developing interfacial energies of complex W/O/W emulsion systems during liposome formation, which is achieved via an additional surfactant in the outer water phase. The liposomes consist of single bilayers, as demonstrated by nanopore formation experiments and confocal fluorescence microscopy, and they can act as compartments for cell-free gene expression. The microfluidic technique can be expanded to create liposomes with a multitude of coupled compartments, opening routes to networks of multistep microreactors. PMID:27243596

  7. ORTHOPAEDIC GENE THERAPY – LOST IN TRANSLATION?

    PubMed Central

    Evans, C.H.; Ghivizzani, S.C.; Robbins, P.D.

    2011-01-01

    Orthopaedic gene therapy has been the topic of considerable research for two decades. The preclinical data are impressive and many orthopaedic conditions are well suited to genetic therapies. But there have been few clinical trials and no FDA-approved product exists. This paper examines why this is so. The reasons are multifactorial. Clinical translation is expensive and difficult to fund by traditional academic routes. Because gene therapy is viewed as unsafe and risky, it does not attract major funding from the pharmaceutical industry. Start-up companies are burdened by the complex intellectual property environment and difficulties in dealing with the technology transfer offices of major universities. Successful translation requires close interactions between scientists, clinicians and experts in regulatory and compliance issues. It is difficult to create such a favourable translational environment. Other promising fields of biological therapy have contemplated similar frustrations approximately 20 years after their founding, so there seem to be more general constraints on translation that are difficult to define. Gene therapy has noted some major clinical successes in recent years, and a sense of optimism is returning to the field. We hope that orthopaedic applications will benefit collaterally from this upswing and move expeditiously into advanced clinical trials. PMID:21948071

  8. Photodynamic therapy of non melanoma skin cancer murine model by topical application of a novel mTHPC liposomal formulation

    NASA Astrophysics Data System (ADS)

    Alexandratou, E.; Kyriazi, M.; Trebst, T.; Gräfe, S.; Yova, D.

    2007-07-01

    Photodynamic therapy (PDT) has been used in the treatment of various skin diseases including non melanoma skin carcinomas (NMSC). However, until now there are no publications concerning the efficacy of PDT after topical application of mTHPC. Although topical photosensitizer application presents many advantages over systemic drug administration, ALA-induced protoporphyrin IX is the only sensitizer topically used so far. In the present study photodynamic efficacy of the highly potent sensitizer meso-tetra(hydroxyphenyl)chlorin (mTHPC), supplied in a novel liposome formulation is investigated after topical application in hairless SKH-HR1 mice, bearing non melanoma skin carcinomas. The drug was applied topically for drug - light interval of 4 hours. The fluence rates were 100 and 50 mW/cm2 and two total energy doses, 10 J/cm2 and 100 J/cm2 were studied in groups of 5 animals. Three PDT sessions were performed in each animal, once every 7 days. The final evaluation of PDT effects was performed 14 days after the 3rd PDT treatment by measuring the geometrical characteristics of tumors. The groups treated with 100 mW/cm2 presented a higher complete tumor remission than the group of 50 mW/cm2 but an unusual high mortality. In the group of 50 mW/cm2 and 100 J/cm2, although the complete tumor remission percentage is poor, the tumor growth rate was decreased. No lesion, papilloma, or tumor was observed in the treated area even six months after tumor remission. Furthermore tumours up to 7 mm were achieved to be treated, indicating that this novel mTHPC formulation could be used for deeper and not only superficial carcinomas or lesions.

  9. Gene Therapy and Targeted Toxins for Glioma

    PubMed Central

    Castro, Maria G.; Candolfi, Marianela; Kroeger, Kurt; King, Gwendalyn D.; Curtin, James F.; Yagiz, Kader; Mineharu, Yohei; Assi, Hikmat; Wibowo, Mia; Muhammad, AKM Ghulam; Foulad, David; Puntel, Mariana; Lowenstein, Pedro R.

    2011-01-01

    The most common primary brain tumor in adults is glioblastoma. These tumors are highly invasive and aggressive with a mean survival time of nine to twelve months from diagnosis to death. Current treatment modalities are unable to significantly prolong survival in patients diagnosed with glioblastoma. As such, glioma is an attractive target for developing novel therapeutic approaches utilizing gene therapy. This review will examine the available preclinical models for glioma including xenographs, syngeneic and genetic models. Several promising therapeutic targets are currently being pursued in pre-clinical investigations. These targets will be reviewed by mechanism of action, i.e., conditional cytotoxic, targeted toxins, oncolytic viruses, tumor suppressors/oncogenes, and immune stimulatory approaches. Preclinical gene therapy paradigms aim to determine which strategies will provide rapid tumor regression and long-term protection from recurrence. While a wide range of potential targets are being investigated preclinically, only the most efficacious are further transitioned into clinical trial paradigms. Clinical trials reported to date are summarized including results from conditionally cytotoxic, targeted toxins, oncolytic viruses and oncogene targeting approaches. Clinical trial results have not been as robust as preclinical models predicted; this could be due to the limitations of the GBM models employed. Once this is addressed, and we develop effective gene therapies in models that better replicate the clinical scenario, gene therapy will provide a powerful approach to treat and manage brain tumors. PMID:21453286

  10. Gene Therapy and Targeted Toxins for Glioma

    PubMed Central

    King, Gwendalyn D.; Curtin, James F.; Candolfi, Marianela; Kroeger, Kurt; Lowenstein, Pedro R.; Castro, Maria G.

    2006-01-01

    The most common primary brain tumor in adults is glioblastoma. These tumors are highly invasive and aggressive with a mean survival time of nine to twelve months from diagnosis to death. Current treatment modalities are unable to significantly prolong survival in patients diagnosed with glioblastoma. As such, glioma is an attractive target for developing novel therapeutic approaches utilizing gene therapy. This review will examine the available preclinical models for glioma including xenographs, syngeneic and genetic models. Several promising therapeutic targets are currently being pursued in pre-clinical investigations. These targets will be reviewed by mechanism of action, i.e., conditional cytotoxic, targeted toxins, oncolytic viruses, tumor suppressors/oncogenes, and immune stimulatory approaches. Preclinical gene therapy paradigms aim to determine which strategies will provide rapid tumor regression and long-term protection from recurrence. While a wide range of potential targets are being investigated preclinically, only the most efficacious are further transitioned into clinical trial paradigms. Clinical trials reported to date are summarized including results from conditionally cytotoxic, targeted toxins, oncolytic viruses and oncogene targeting approaches. Clinical trial results have not been as robust as preclinical models predicted, this could be due to the limitations of the GBM models employed. Once this is addressed, and we develop effective gene therapies in models that better replicate the clinical scenario, gene therapy will provide a powerful approach to treat and manage brain tumors. PMID:16457645

  11. Gene Therapy for "Bubble Boy" Disease.

    PubMed

    Hoggatt, Jonathan

    2016-07-14

    Adenosine deaminase (ADA) deficiency results in the accumulation of toxic metabolites that destroy the immune system, causing severe combined immunodeficiency (ADA-SCID), often referred to as the "bubble boy" disease. Strimvelis is a European Medicines Agency approved gene therapy for ADA-SCID patients without a suitable bone marrow donor. PMID:27419862

  12. Theranostic Imaging of Cancer Gene Therapy.

    PubMed

    Sekar, Thillai V; Paulmurugan, Ramasamy

    2016-01-01

    Gene-directed enzyme prodrug therapy (GDEPT) is a promising therapeutic approach for treating cancers of various phenotypes. This strategy is independent of various other chemotherapeutic drugs used for treating cancers where the drugs are mainly designed to target endogenous cellular mechanisms, which are different in various cancer subtypes. In GDEPT an external enzyme, which is different from the cellular proteins, is expressed to convert the injected prodrug in to a toxic metabolite, that normally kill cancer cells express this protein. Theranostic imaging is an approach used to directly monitor the expression of these gene therapy enzymes while evaluating therapeutic effect. We recently developed a dual-GDEPT system where we combined mutant human herpes simplex thymidine kinase (HSV1sr39TK) and E. coli nitroreductase (NTR) enzyme, to improve therapeutic efficiency of cancer gene therapy by simultaneously injecting two prodrugs at a lower dose. In this approach we use two different prodrugs such as ganciclovir (GCV) and CB1954 to target two different cellular mechanisms to kill cancer cells. The developed dual GDEPT system was highly efficacious than that of either of the system used independently. In this chapter, we describe the complete protocol involved for in vitro and in vivo imaging of therapeutic cancer gene therapy evaluation. PMID:27424910

  13. The gene therapy revolution in ophthalmology

    PubMed Central

    Al-Saikhan, Fahad I.

    2013-01-01

    The advances in gene therapy hold significant promise for the treatment of ophthalmic conditions. Several studies using animal models have been published. Animal models on retinitis pigmentosa, Leber’s Congenital Amaurosis (LCA), and Stargardt disease have involved the use of adeno-associated virus (AAV) to deliver functional genes into mice and canines. Mice models have been used to show that a mutation in cGMP phosphodiesterase that results in retinitis pigmentosa can be corrected using rAAV vectors. Additionally, rAAV vectors have been successfully used to deliver ribozyme into mice with a subsequent improvement in autosomal dominant retinitis pigmentosa. By using dog models, researchers have made progress in studying X-linked retinitis pigmentosa which results from a RPGR gene mutation. Mouse and canine models have also been used in the study of LCA. The widely studied form of LCA is LCA2, resulting from a mutation in the gene RPE65. Mice and canines that were injected with normal copies of RPE65 gene showed signs such as improved retinal pigment epithelium transduction, visual acuity, and functional recovery. Studies on Stargardt disease have shown that mutations in the ABCA4 gene can be corrected with AAV vectors, or nanoparticles. Gene therapy for the treatment of red–green color blindness was successful in squirrel monkeys. Plans are at an advanced stage to begin clinical trials. Researchers have also proved that CD59 can be used with AMD. Gene therapy is also able to treat primary open angle glaucoma (POAG) in animal models, and studies show it is economically viable. PMID:24227970

  14. Methods to improve cardiac gene therapy expression.

    PubMed

    Scimia, Maria Cecilia; Sydnes, Kate E; Zuppo, Daniel A; Koch, Walter J

    2014-11-01

    Gene therapy strategies are becoming a valuable approach for the treatment of heart failure. Some trials are ongoing and others are being organized. Vascular access in clinical experimentation is still the chosen modality of delivery, but many other approaches are in research and development. A successful gene therapy strategy involves not only the choice of the right vector and gene, but also the correct delivery strategy that allows for transduction of the highest percentage of cardiomyocytes, limited spilling of virus into other organs and the possibility to correlate the amount of injected virus to the rate of the expression within the cardiac tissue. The authors will first concentrate on clarifying what the barriers are that the virus has to overcome in order to reach the nuclei of the target organs and methodologies that have been tested to improve the range of expression. PMID:25340284

  15. Treating Immunodeficiency through HSC Gene Therapy.

    PubMed

    Booth, Claire; Gaspar, H Bobby; Thrasher, Adrian J

    2016-04-01

    Haematopoietic stem cell (HSC) gene therapy has been successfully employed as a therapeutic option to treat specific inherited immune deficiencies, including severe combined immune deficiencies (SCID) over the past two decades. Initial clinical trials using first-generation gamma-retroviral vectors to transfer corrective DNA demonstrated clinical benefit for patients, but were associated with leukemogenesis in a number of cases. Safer vectors have since been developed, affording comparable efficacy with an improved biosafety profile. These vectors are now in Phase I/II clinical trials for a number of immune disorders with more preclinical studies underway. Targeted gene editing allowing precise DNA correction via platforms such as ZFNs, TALENs and CRISPR/Cas9 may now offer promising strategies to improve the safety and efficacy of gene therapy in the future. PMID:26993219

  16. Gene and splicing therapies for neuromuscular diseases.

    PubMed

    Benchaouir, Rachid; Robin, Valerie; Goyenvalle, Aurelie

    2015-01-01

    Neuromuscular disorders (NMD) are heterogeneous group of genetic diseases characterized by muscle weakness and wasting. Duchenne Muscular dystrophy (DMD) and Spinal muscular atrophy (SMA) are two of the most common and severe forms in humans and although the molecular mechanisms of these diseases have been extensively investigated, there is currently no effective treatment. However, new gene-based therapies have recently emerged with particular noted advances in using conventional gene replacement strategies and RNA-based technology. Whilst proof of principle have been demonstrated in animal models, several clinical trials have recently been undertaken to investigate the feasibility of these strategies in patients. In particular, antisense mediated exon skipping has shown encouraging results and hold promise for the treatment of dystrophic muscle. In this review, we summarize the recent progress of therapeutic approaches to neuromuscular diseases, with an emphasis on gene therapy and splicing modulation for DMD and SMA, focusing on the advantages offered by these technologies but also their challenges. PMID:25961553

  17. Gene Therapy and Wound Healing

    PubMed Central

    Eming, Sabine A.; Krieg, Thomas; Davidson, Jeffrey M

    2007-01-01

    Wound repair involves the sequential interaction of various cell types, extracellular matrix molecules, and soluble mediators. During the past 10 years, much new information on signals controlling wound cell behavior has emerged. This knowledge has led to a number of novel_therapeutic strategies. In particular, the local delivery of pluripotent growth factor molecules to the injured tissue has been intensively investigated over the past decade. Limited success of clinical trails indicates that a crucial aspect of the growth factor wound-healing strategy is the effective delivery of these polypeptides to the wound site. A molecular approach in which genetically modified cells synthesize and deliver the desired growth factor in regulated fashion has been used to overcome the limitations associated with the (topical) application of recombinant growth factor proteins. We have summarized the molecular and cellular basis of repair mechanisms and their failure, and we give an overview of techniques and studies applied to gene transfer in tissue repair. PMID:17276205

  18. [Gene therapy in lysosomal diseases].

    PubMed

    Moullier, P; Salvetti, A; Bohl, D; Danos, O; Heard, J M

    1996-01-01

    The study of the mechanisms of secretion and recapture of lysosomal enzymes has lead to the proposal of a treatment of lysosomal diseases by enzyme replacement. Autologous implants of genetically modified cells which secrete enzymes ensure systemic distribution of the lacking enzyme. A procedure which permits reimplantation of genetically modified fibroblasts is described. The stable secretion of human glucuronidase by autologous fibroblasts was thus obtained in animal species. This approach should by applicable to the treatment of Hurler's syndrome by obtaining the production and distribution of alpha-L-iduronidase in patients lacking this enzyme by retroviral transfer of the human alpha-L-iduronidase gene to cultured fibroblasts and by preparation of implants. PMID:8881268

  19. Influence of lipid components on gene delivery by polycation liposomes: Transfection efficiency, intracellular kinetics and in vivo tumor inhibition.

    PubMed

    Chen, Jinliang; Sun, Xiaoyi; Yu, Zhenwei; Gao, Jianqing; Liang, Wenquan

    2012-01-17

    Transfection efficiency of non-viral gene vectors is influenced by many factors, including chemical makeup, cellular uptake pathway and intracellular delivery. To investigate the effect of lipid saturation on transfection efficiency of polycation liposomes (PCLs), a soybean phospholipids (SPL), egg phospholipids (EPL) and hydrogenated soybean phosphatidylcholine (HSPC) series was used to prepare PCLs. Testing these PCLs in a luciferase assay indicated that with increasing saturation (SPLgene expression decreased. The effect of protamine combined with these PCLs was also studied in different cell lines. Improved transfection because of protamine incorporation was dependent on lipid saturation and on the cell line tested. The kinetics of cellular uptake and intracellular distribution was studied using flow cytometry and laser scanning confocal microscope, which showed that naked oligonucleotide (ODN) and PCLs/ODN complexes became equilibrium after 4h incubation. PCLs containing SPL (PCLs-S) and 1,2-dieleoyl-sn-glycero-3-phosphoethanolamine (PCLs-D) increased uptake rates by 2.20- and 5.45-fold, respectively. Furthermore, pCMV-IL-12 transfection mediated by PCLs-D showed excellent tumor inhibition efficiency compared with control and naked pCMV-IL-12 treatments in vivo. PMID:22119962

  20. Aerosolized Medications for Gene and Peptide Therapy.

    PubMed

    Laube, Beth L

    2015-06-01

    Inhalation therapy has matured to include drugs that: (1) deliver nucleic acids that either lead to the restoration of a gene construct or protein coding sequence in a population of cells or suppress or disrupt production of an abnormal gene product (gene therapy); (2) deliver peptides that target lung diseases such as asthma, sarcoidosis, pulmonary hypertension, and cystic fibrosis; and (3) deliver peptides to treat diseases outside the lung whose target is the systemic circulation (systemic drug delivery). These newer applications for aerosol therapy are the focus of this paper, and I discuss the status of each and the challenges that remain to their successful development. Drugs that are highlighted include: small interfering ribonucleic acid to treat lung cancer and Mycobacterium tuberculosis; vectors carrying the normal alpha-1 antitrypsin gene to treat alpha-1 antitrypsin deficiency; vectors carrying the normal cystic fibrosis transmembrane conductance regulator gene to treat cystic fibrosis; vasoactive intestinal peptide to treat asthma, pulmonary hypertension, and sarcoidosis; glutathione to treat cystic fibrosis; granulocyte-macrophage colony-stimulating factor to treat pulmonary alveolar proteinosis; calcitonin for postmenopausal osteoporosis; and insulin to treat diabetes. The success of these new aerosol applications will depend on many factors, such as: (1) developing gene therapy formulations that are safe for acute and chronic administrations to the lung, (2) improving the delivery of the genetic material beyond the airway mucus barrier and cell membrane and transferring the material to the cell cytoplasm or the cell nucleus, (3) developing aerosol devices that efficiently deliver genetic material and peptides to their lung targets over a short period of time, (4) developing devices that increase aerosol delivery to the lungs of infants, (5) optimizing the bioavailability of systemically delivered peptides, and (6) developing peptide formulations for

  1. In vitro evaluation of inhalable isoniazid-loaded surfactant liposomes as an adjunct therapy in pulmonary tuberculosis.

    PubMed

    Chimote, G; Banerjee, R

    2010-07-01

    In this study, exogenous pulmonary surfactant was evaluated as an inhalable drug carrier for antitubercular drug isoniazid (INH). Isoniazid-entrapped liposomes of dipalmitoylphosphatidylcholine (DPPC) (the most abundant lipid of lung surfactant and exogenous surfactant) were developed and evaluated for size, drug entrapment, release, in vitro alveolar deposition, biocompatibility, antimycobacterial activity, and pulmonary surfactant action. Isoniazid-entrapped DPPC liposomes were about 750 nm in diameter and had entrapment efficiency of 36.7% +/- 1.8%. Sustained release of INH from DPPC liposomes was observed over 24 h. In vitro alveolar deposition efficiency using the twin impinger exhibited approximately 25-27% INH deposition in the alveolar chamber upon one minute nebulization using a jet nebulizer. At 37 degrees C, the formulation had better pulmonary surfactant function with quicker reduction of surface tension on adsorption (36.7 +/- 0.4 mN/m) than DPPC liposomes (44.7 +/- 0.6 mN/m) and 87% airway patency was exhibited by the formulation in a capillary surfactometer. The formulation was biocompatible and had antimycobacterial activity. The isoniazid-entrapped DPPC liposomes could fulfill the dual purpose of pulmonary drug delivery and alveolar stabilization due to antiatelectatic effect of the surfactant action which can improve the reach of antitubercular drug INH to the alveoli. PMID:20524179

  2. Progress in gene targeting and gene therapy for retinitis pigmentosa

    SciTech Connect

    Farrar, G.J.; Humphries, M.M.; Erven, A.

    1994-09-01

    Previously, we localized disease genes involved in retinitis pigmentosa (RP), an inherited retinal degeneration, close to the rhodopsin and peripherin genes on 3q and 6p. Subsequently, we and others identified mutations in these genes in RP patients. Currently animal models for human retinopathies are being generated using gene targeting by homologous recombination in embryonic stem (ES) cells. Genomic clones for retinal genes including rhodopsin and peripherin have been obtained from a phage library carrying mouse DNA isogenic with the ES cell line (CC1.2). The peripherin clone has been sequenced to establish the genomic structure of the mouse gene. Targeting vectors for rhodopsin and peripherin including a neomycin cassette for positive selection and thymidine kinase genes enabling selection against random intergrants are under construction. Progress in vector construction will be presented. Simultaneously we are developing systems for delivery of gene therapies to retinal tissues utilizing replication-deficient adenovirus (Ad5). Efficacy of infection subsequent to various methods of intraocular injection and with varying viral titers is being assayed using an adenovirus construct containing a CMV promoter LacZ fusion as reporter and the range of tissues infected and the level of duration of LacZ expression monitored. Viral constructs with the LacZ reporter gene under the control of retinal specific promoters such as rhodopsin and IRBP cloned into pXCJL.1 are under construction. An update on developments in photoreceptor cell-directed expression of virally delivered genes will be presented.

  3. Gene Tests May Improve Therapy for Endometrial Cancer

    MedlinePlus

    ... External link, please review our exit disclaimer . Subscribe Gene Tests May Improve Therapy for Endometrial Cancer By analyzing genes in hundreds of endometrial tumors, scientists identified details ...

  4. Noninvasive Tracking of Gene Transcript and Neuroprotection after Gene Therapy

    PubMed Central

    Ren, Jiaqian; Chen, Y. Iris; Liu, Christina H.; Chen, Po-Chih; Prentice, Howard; Wu, Jang-Yen; Liu, Philip K.

    2015-01-01

    Gene therapy holds exceptional potential for translational medicine by improving the products of defective genes in diseases and/or providing necessary biologics from endogenous sources during recovery processes. However, validating methods for the delivery, distribution and expression of the exogenous genes from such therapy can generally not be applicable to monitor effects over the long term because they are invasive. We report here that human granulocyte colony-stimulating factor (hG-CSF) cDNA encoded in scAAV-type 2 adeno-associated virus, as delivered through eye drops at multiple time points after cerebral ischemia using bilateral carotid occlusion for 60 min (BCAO-60) led to significant reduction in mortality rates, cerebral atrophy, and neurological deficits in C57black6 mice. Most importantly, we validated hG-CSF cDNA expression using translatable magnetic resonance imaging (MRI) in living brains. This noninvasive approach for monitoring exogenous gene expression in the brains has potential for great impact in the area of experimental gene therapy in animal models of heart attack, stroke, Alzheimer’s dementia, Parkinson’s disorder and amyotrophic lateral sclerosis, and the translation of such techniques to emergency medicine. PMID:26207935

  5. Noninvasive tracking of gene transcript and neuroprotection after gene therapy.

    PubMed

    Ren, J; Chen, Y I; Liu, C H; Chen, P-C; Prentice, H; Wu, J-Y; Liu, P K

    2016-01-01

    Gene therapy holds exceptional potential for translational medicine by improving the products of defective genes in diseases and/or providing necessary biologics from endogenous sources during recovery processes. However, validating methods for the delivery, distribution and expression of the exogenous genes from such therapy can generally not be applicable to monitor effects over the long term because they are invasive. We report here that human granulocyte colony-stimulating factor (hG-CSF) complimentary DNA (cDNA) encoded in self-complementary adeno-associated virus-type 2 adeno-associated virus, as delivered through eye drops at multiple time points after cerebral ischemia using bilateral carotid occlusion for 60 min (BCAO-60) led to significant reduction in mortality rates, cerebral atrophy and neurological deficits in C57black6 mice. Most importantly, we validated hG-CSF cDNA expression using translatable magnetic resonance imaging (MRI) in living brains. This noninvasive approach for monitoring exogenous gene expression in the brains has potential for great impact in the area of experimental gene therapy in animal models of heart attack, stroke, Alzheimer's dementia, Parkinson's disorder and amyotrophic lateral sclerosis, and the translation of such techniques to emergency medicine. PMID:26207935

  6. Newer Gene Editing Technologies toward HIV Gene Therapy

    PubMed Central

    Manjunath, N.; Yi, Guohua; Dang, Ying; Shankar, Premlata

    2013-01-01

    Despite the great success of highly active antiretroviral therapy (HAART) in ameliorating the course of HIV infection, alternative therapeutic approaches are being pursued because of practical problems associated with life-long therapy. The eradication of HIV in the so-called “Berlin patient” who received a bone marrow transplant from a CCR5-negative donor has rekindled interest in genome engineering strategies to achieve the same effect. Precise gene editing within the cells is now a realistic possibility with recent advances in understanding the DNA repair mechanisms, DNA interaction with transcription factors and bacterial defense mechanisms. Within the past few years, four novel technologies have emerged that can be engineered for recognition of specific DNA target sequences to enable site-specific gene editing: Homing Endonuclease, ZFN, TALEN, and CRISPR/Cas9 system. The most recent CRISPR/Cas9 system uses a short stretch of complementary RNA bound to Cas9 nuclease to recognize and cleave target DNA, as opposed to the previous technologies that use DNA binding motifs of either zinc finger proteins or transcription activator-like effector molecules fused to an endonuclease to mediate sequence-specific DNA cleavage. Unlike RNA interference, which requires the continued presence of effector moieties to maintain gene silencing, the newer technologies allow permanent disruption of the targeted gene after a single treatment. Here, we review the applications, limitations and future prospects of novel gene-editing strategies for use as HIV therapy. PMID:24284874

  7. Gene Therapy Shows Early Promise Against Heart Failure

    MedlinePlus

    ... nlm.nih.gov/medlineplus/news/fullstory_158046.html Gene Therapy Shows Early Promise Against Heart Failure Inserting new ... who suffer from heart failure: A trial using gene therapy appears to have boosted patients' cardiac function. "This ...

  8. Gene Therapy May Offer Hope for 'Bubble Boy' Disease

    MedlinePlus

    ... nlm.nih.gov/medlineplus/news/fullstory_158415.html Gene Therapy May Offer Hope for 'Bubble Boy' Disease ... WEDNESDAY, April 20, 2016 (HealthDay News) -- A new gene therapy shows preliminary promise against so-called "Bubble ...

  9. Polyethylene glycol (PEG)-dendron phospholipids as innovative constructs for the preparation of super stealth liposomes for anticancer therapy.

    PubMed

    Pasut, Gianfranco; Paolino, Donatella; Celia, Christian; Mero, Anna; Joseph, Adrian Steve; Wolfram, Joy; Cosco, Donato; Schiavon, Oddone; Shen, Haifa; Fresta, Massimo

    2015-02-10

    Pegylation of nanoparticles has been widely implemented in the field of drug delivery to prevent macrophage clearance and increase drug accumulation at a target site. However, the shielding effect of polyethylene glycol (PEG) is usually incomplete and transient, due to loss of nanoparticle integrity upon systemic injection. Here, we have synthesized unique PEG-dendron-phospholipid constructs that form super stealth liposomes (SSLs). A β-glutamic acid dendron anchor was used to attach a PEG chain to several distearoyl phosphoethanolamine lipids, thereby differing from conventional stealth liposomes where a PEG chain is attached to a single phospholipid. This composition was shown to increase liposomal stability, prolong the circulation half-life, improve the biodistribution profile and enhance the anticancer potency of a drug payload (doxorubicin hydrochloride). PMID:25499917

  10. Gene therapy for lysosomal disorders.

    PubMed

    Naffakh, N; Bohl, D; Salvetti, A; Moullier, P; Danos, O; Heard, J M

    1994-01-01

    Genetic defects of lysosomal hydrolases result in severe storage diseases and treatments based on enzyme replacement have been proposed. In mice lacking beta-glucuronidase, which develop a disease homologous to human mucopolysaccharidosis type VII (MPS VII, sly syndrome), we have used autologous implants of genetically-modified cells for the continuous in vivo production of the enzyme. A retroviral vector containing the human beta-glucuronidase cDNA under the control of the mouse phosphoglycerate kinase promoter was used to infect primary skin fibroblasts, bone marrow cells, or myoblasts from mutant MPS VII animals. The fibroblasts were embedded into collagen lattices and reimplanted into the peritoneal cavity of recipient MPS VII mice. All animals, when analysed 10 to 155 days later, expressed beta-glucuronidase from the vascularised neo-organs that developed after implantation, and accumulated the enzyme in their tissues. A complete disappearance of the lysosomal storage lesions was observed in their liver and spleen. This procedure has been scaled up for long term lysosomal enzyme delivery in dogs. The bone marrow cells were used for partial hematopoietic reconstruction of sublethally irradiated MPS VII mice. Five months after gene transfer, animals in which under 5% of genetically-modified hematopoietic cells were detected in the spleen showed a drastic reduction of lysosomal storage lesions in the liver and spleen. Genetically-modified myoblasts were transplanted into injured muscles, where they participated in the regeneration of a significant proportion of muscle fibers. Enzyme secretion and liver uptake were observed for at least one month.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8177709

  11. Gene and stem cell therapy for diabetes.

    PubMed

    Calne, Roy Y; Ghoneim, Mohamed A; Lee, K O; Uin, Gan Shu

    2013-01-01

    Gene and stem cell therapy has been on the scientific agenda in many laboratories for more than 20 years. The literature is enormous, but practical applications have been few. Recently advances in stem cell biology and gene therapy are clarifying some of the issues. I have made a few observations concerning our own studies on bone marrow mesenchymal stem cells cultured to produce a small percentage of insulin-producing cells and human insulin gene engineered into Lenti and AA viruses. The aim of clinical application would still seem to be several years away, if all goes well. The first step will be to produce enough insulin-secreting cells to be of potential value to patients. The next crucial question will be how to persuade the cells to respond to blood glucose levels swiftly and appropriately. With both stem cell and gene therapy, another important factor will be to ensure that any positive results will continue long enough to be preferable to insulin injections. PMID:25095498

  12. Gene Therapy for Duchenne muscular dystrophy

    PubMed Central

    Ramos, Julian; Chamberlain, Jeffrey S

    2015-01-01

    Introduction Duchenne muscular dystrophy (DMD) is a relatively common inherited disorder caused by defective expression of the protein dystrophin. The most direct approach to treating this disease would be to restore dystrophin production in muscle. Recent progress has greatly increased the prospects for successful gene therapy of DMD, and here we summarize the most promising developments. Areas Covered Gene transfer using vectors derived from adeno-associated virus (AAV) has emerged as a promising method to restore dystrophin production in muscles bodywide, and represents a treatment option applicable to all DMD patients. Using information gleaned from PubMed searches of the literature, attendance at scientific conferences and results from our own lab, we provide an overview of the potential for gene therapy of DMD using AAV vectors including a summary of promising developments and issues that need to be resolved prior to large-scale therapeutic implementation. Expert Opinion Of the many approaches being pursued to treat DMD and BMD, gene therapy based on AAV-mediated delivery of microdystrophin is the most direct and promising method to treat the cause of the disorder. The major challenges to this approach are ensuring that microdystrophin can be delivered safely and efficiently without eliciting an immune response. PMID:26594599

  13. Co-loaded paclitaxel/rapamycin liposomes: Development, characterization and in vitro and in vivo evaluation for breast cancer therapy.

    PubMed

    Eloy, Josimar O; Petrilli, Raquel; Topan, José Fernando; Antonio, Heriton Marcelo Ribeiro; Barcellos, Juliana Palma Abriata; Chesca, Deise L; Serafini, Luciano Neder; Tiezzi, Daniel G; Lee, Robert J; Marchetti, Juliana Maldonado

    2016-05-01

    Paclitaxel and rapamycin have been reported to act synergistically to treat breast cancer. Albeit paclitaxel is available for breast cancer treatment, the most commonly used formulation in the clinic presents side effects, limiting its use. Furthermore, both drugs present pharmacokinetics drawbacks limiting their in vivo efficacy and clinic combination. As an alternative, drug delivery systems, particularly liposomes, emerge as an option for drug combination, able to simultaneously deliver co-loaded drugs with improved therapeutic index. Therefore, the purpose of this study is to develop and characterize a co-loaded paclitaxel and rapamycin liposome and evaluate it for breast cancer efficacy both in vitro and in vivo. Results showed that a SPC/Chol/DSPE-PEG (2000) liposome was able to co-encapsulate paclitaxel and rapamycin with suitable encapsulation efficiency values, nanometric particle size, low polydispersity and neutral zeta potential. Taken together, FTIR and thermal analysis evidenced drug conversion to the more bioavailable molecular and amorphous forms, respectively, for paclitaxel and rapamycin. The pegylated liposome exhibited excellent colloidal stability and was able to retain drugs encapsulated, which were released in a slow and sustained fashion. Liposomes were more cytotoxic to 4T1 breast cancer cell line than the free drugs and drugs acted synergistically, particularly when co-loaded. Finally, in vivo therapeutic evaluation carried out in 4T1-tumor-bearing mice confirmed the in vitro results. The co-loaded paclitaxel/rapamycin pegylated liposome better controlled tumor growth compared to the solution. Therefore, we expect that the formulation developed herein might be a contribution for future studies focusing on the clinical combination of paclitaxel and rapamycin. PMID:26836480

  14. Co-loaded paclitaxel/rapamycin liposomes: Development, characterization and in vitro and in vivo evaluation for breast cancer therapy

    PubMed Central

    Eloy, Josimar O.; Petrilli, Raquel; Topan, José Fernando; Antonio, Heriton Marcelo Ribeiro; Barcellos, Juliana Palma Abriata; Chesca, Deise L.; Serafini, Luciano Neder; Tiezzi, Daniel G.; Lee, Robert J.; Marchetti, Juliana Maldonado

    2016-01-01

    Paclitaxel and rapamycin have been reported to act synergistically to treat breast cancer. Albeit paclitaxel is available for breast cancer treatment, the most commonly used formulation in the clinic presents side effects, limiting its use. Furthermore, both drugs present pharmacokinetics drawbacks limiting their in vivo efficacy and clinic combination. As an alternative, drug delivery systems, particularly liposomes, emerge as an option for drug combination, able to simultaneously deliver co-loaded drugs with improved therapeutic index. Therefore, the purpose of this study is to develop and characterize a co-loaded paclitaxel and rapamycin liposome and evaluate it for breast cancer efficacy both in vitro and in vivo. Results showed that a SPC/Chol/DSPE-PEG (2000) liposome was able to co-encapsulate paclitaxel and rapamycin with suitable encapsulation efficiency values, nanometric particle size, low polydispersity and neutral zeta potential. Taken together, FTIR and thermal analysis evidenced drug conversion to the more bioavailable molecular and amorphous forms, respectively, for paclitaxel and rapamycin. The pegylated liposome exhibited excellent colloidal stability and was able to retain drugs encapsulated, which were released in a slow and sustained fashion. Liposomes were more cytotoxic to 4T1 breast cancer cell line than the free drugs and drugs acted synergistically, particularly when co-loaded. Finally, in vivo therapeutic evaluation carried out in 4T1-tumor-bearing mice confirmed the in vitro results. The co-loaded paclitaxel/rapamycin pegylated liposome better controlled tumor growth compared to the solution. Therefore, we expect that the formulation developed herein might be a contribution for future studies focusing on the clinical combination of paclitaxel and rapamycin. PMID:26836480

  15. Rh-I-UEA-1 polymerized liposomes target and image adenomatous polyps in the APC(Min/+) mouse using optical colonography.

    PubMed

    Roney, Celeste A; Xu, Biying; Xie, Jianwu; Yuan, Shuai; Wierwille, Jeremiah; Chen, Chao-Wei; Chen, Yu; Griffiths, Gary L; Summers, Ronald M

    2011-08-01

    Mutated adenomatous polyposis coli (APC) genes predispose transformations to neoplasia, progressing to colorectal carcinoma. Early detection facilitates clinical management and therapy. Novel lectin-mediated polymerized targeted liposomes (Rh-I-UEA-1), with polyp specificity and incorporated imaging agents were fabricated to locate and image adenomatous polyps in APC(Min/+) mice. The biomarker α-L-fucose covalently joins the liposomal conjugated lectin Ulexeuropaeus agglutinin (UEA-1), via glycosidic linkage to the polyp mucin layer. Multispectral optical imaging (MSI) corroborated a global perspective of specific binding (rhodamine B 532 nm emission, 590-620 nm excitation) of targeted Rh-I-UEA-1 polymerized liposomes to polyps with 1.4-fold labeling efficiency. High-resolution coregistered optical coherence tomography (OCT) and fluorescence molecular imaging (FMI) reveal the spatial correlation of contrast distribution and tissue morphology. Freshly excised APC(Min) bowels were incubated with targeted liposomes (UEA-1 lectin), control liposomes (no lectin), or iohexol (Omnipaque) and imaged by the three techniques. Computed tomographic quantitative analyses did not confirm that targeted liposomes more strongly bound polyps than nontargeted liposomes or iohexol (Omnipaque) alone. OCT, with anatomic depth capabilities, along with the coregistered FMI, substantiated Rh-I-UEA-1 liposome binding along the mucinous polyp surface. UEA-1 lectin denotes α-l-fucose biomarker carbohydrate expression at the mucin glycoprotein layer; Rh-I-UEA-1 polymerized liposomes target and image adenomatous polyps in APC(Min) mice. PMID:21521550

  16. Ligand-targeted liposomes for cancer treatment.

    PubMed

    Sapra, Puja; Tyagi, Pradeep; Allen, Theresa M

    2005-10-01

    Selective targeting of ligand-targeted liposomes containing anticancer drugs or therapeutic genes to cell surface receptors expressed on cancer cells is a recognized strategy for improving the therapeutic effectiveness of conventional chemotherapeutics or gene therapeutics. Some recent advances in the field of ligand-targeted liposomes for the treatment of cancer are summarized including: selection criteria for the receptors to be targeted, choice of targeting ligands and choice of encapsulated therapeutics. Targeting of liposomes to solid tumors, versus angiogenic endothelial cells versus vascular targets is discussed. Ligand-targeted liposomes have shown considerable promise in preclinical xenograft models and are poised for clinical development. PMID:16305440

  17. New gene therapy strategies for hepatic fibrosis

    PubMed Central

    Salazar-Montes, Adriana M; Hernández-Ortega, Luis D; Lucano-Landeros, Martha S; Armendariz-Borunda, Juan

    2015-01-01

    The liver is the largest internal organ of the body, which may suffer acute or chronic injury induced by many factors, leading to cirrhosis and hepatocarcinoma. Cirrhosis is the irreversible end result of fibrous scarring and hepatocellular regeneration, characterized by diffuse disorganization of the normal hepatic structure, regenerative nodules and fibrotic tissue. Cirrhosis is associated with a high co-morbidity and mortality without effective treatment, and much research has been aimed at developing new therapeutic strategies to guarantee recovery. Liver-based gene therapy has been used to downregulate specific genes, to block the expression of deleterious genes, to delivery therapeutic genes, to prevent allograft rejection and to augment liver regeneration. Viral and non-viral vectors have been used, with viral vectors proving to be more efficient. This review provides an overview of the main strategies used in liver-gene therapy represented by non-viral vectors, viral vectors, novel administration methods like hydrodynamic injection, hybrids of two viral vectors and blocking molecules, with the hope of translating findings from the laboratory to the patient´s bed-side. PMID:25852266

  18. Advances of gene therapy for primary immunodeficiencies

    PubMed Central

    Candotti, Fabio

    2016-01-01

    In the recent past, the gene therapy field has witnessed a remarkable series of successes, many of which have involved primary immunodeficiency diseases, such as X-linked severe combined immunodeficiency, adenosine deaminase deficiency, chronic granulomatous disease, and Wiskott-Aldrich syndrome. While such progress has widened the choice of therapeutic options in some specific cases of primary immunodeficiency, much remains to be done to extend the geographical availability of such an advanced approach and to increase the number of diseases that can be targeted. At the same time, emerging technologies are stimulating intensive investigations that may lead to the application of precise genetic editing as the next form of gene therapy for these and other human genetic diseases. PMID:27508076

  19. Gene therapy: prospects for glycolipid storage diseases.

    PubMed Central

    Gieselmann, Volkmar; Matzner, Ulrich; Klein, Diana; Mansson, Jan Eric; D'Hooge, Rudi; DeDeyn, Peter D; Lüllmann Rauch, Renate; Hartmann, Dieter; Harzer, Klaus

    2003-01-01

    Lysosomal storage diseases comprise a group of about 40 disorders, which in most cases are due to the deficiency of a lysosomal enzyme. Since lysosomal enzymes are involved in the degradation of various compounds, the diseases can be further subdivided according to which pathway is affected. Thus, enzyme deficiencies in the degradation pathway of glycosaminoglycans cause mucopolysaccharidosis, and deficiencies affecting glycopeptides cause glycoproteinosis. In glycolipid storage diseases enzymes are deficient that are involved in the degradation of sphingolipids. Mouse models are available for most of these diseases, and some of these mouse models have been used to study the applicability of in vivo gene therapy. We review the rationale for gene therapy in lysosomal disorders and present data, in particular, about trials in an animal model of metachromatic leukodystrophy. The data of these trials are compared with those obtained with animal models of other lysosomal diseases. PMID:12803926

  20. Gene therapy: prospects for glycolipid storage diseases.

    PubMed

    Gieselmann, Volkmar; Matzner, Ulrich; Klein, Diana; Mansson, Jan Eric; D'Hooge, Rudi; DeDeyn, Peter D; Lüllmann Rauch, Renate; Hartmann, Dieter; Harzer, Klaus

    2003-05-29

    Lysosomal storage diseases comprise a group of about 40 disorders, which in most cases are due to the deficiency of a lysosomal enzyme. Since lysosomal enzymes are involved in the degradation of various compounds, the diseases can be further subdivided according to which pathway is affected. Thus, enzyme deficiencies in the degradation pathway of glycosaminoglycans cause mucopolysaccharidosis, and deficiencies affecting glycopeptides cause glycoproteinosis. In glycolipid storage diseases enzymes are deficient that are involved in the degradation of sphingolipids. Mouse models are available for most of these diseases, and some of these mouse models have been used to study the applicability of in vivo gene therapy. We review the rationale for gene therapy in lysosomal disorders and present data, in particular, about trials in an animal model of metachromatic leukodystrophy. The data of these trials are compared with those obtained with animal models of other lysosomal diseases. PMID:12803926

  1. Pluripotent Stem Cells and Gene Therapy

    PubMed Central

    Simara, Pavel; Motl, Jason A.; Kaufman, Dan S.

    2013-01-01

    Human pluripotent stem cells represent an accessible cell source for novel cell-based clinical research and therapies. With the realization of induced pluripotent stem cells (iPSCs), it is possible to produce almost any desired cell type from any patient's cells. Current developments in gene modification methods have opened the possibility for creating genetically corrected human iPSCs for certain genetic diseases that could be used later in autologous transplantation. Promising preclinical studies have demonstrated correction of disease-causing mutations in a number of hematological, neuronal and muscular disorders. This review aims to summarize these recent advances with a focus on iPSC generation techniques, as well as gene modification methods. We will then further discuss some of the main obstacles remaining to be overcome before successful application of human pluripotent stem cell-based therapy arrives in the clinic and what the future of stem cell research may look like. PMID:23353080

  2. Gene therapy approaches for spinal cord injury

    NASA Astrophysics Data System (ADS)

    Bright, Corinne

    As the biomedical engineering field expands, combination technologies are demonstrating enormous potential for treating human disease. In particular, intersections between the rapidly developing fields of gene therapy and tissue engineering hold promise to achieve tissue regeneration. Nonviral gene therapy uses plasmid DNA to deliver therapeutic proteins in vivo for extended periods of time. Tissue engineering employs biomedical materials, such as polymers, to support the regrowth of injured tissue. In this thesis, a combination strategy to deliver genes and drugs in a polymeric scaffold was applied to a spinal cord injury model. In order to develop a platform technology to treat spinal cord injury, several nonviral gene delivery systems and polymeric scaffolds were evaluated in vitro and in vivo. Nonviral vector trafficking was evaluated in primary neuronal culture to develop an understanding of the barriers to gene transfer in neurons and their supporting glia. Although the most efficient gene carrier in vitro differed from the optimal gene carrier in vivo, confocal and electron microscopy of these nonviral vectors provided insights into the interaction of these vectors with the nucleus. A novel pathway for delivering nanoparticles into the nuclei of neurons and Schwann cells via vesicle trafficking was observed in this study. Reporter gene expression levels were evaluated after direct and remote delivery to the spinal cord, and the optimal nonviral vector, dose, and delivery strategy were applied to deliver the gene encoding the basic fibroblast growth factor (bFGF) to the spinal cord. An injectable and biocompatible gel, composed of the amphiphillic polymer poly(ethylene glycol)-poly(epsilon-caprolactone)-poly(ethylene glycol) (PEG-PCL-PEG) was evaluated as a drug and gene delivery system in vitro, and combined with the optimized nonviral gene delivery system to treat spinal cord injury. Plasmid DNA encoding the bFGF gene and the therapeutic NEP1--40 peptide

  3. Cell transfection in vitro and in vivo with nontoxic TAT peptide-liposome-DNA complexes

    NASA Astrophysics Data System (ADS)

    Torchilin, Vladimir P.; Levchenko, Tatyana S.; Rammohan, Ram; Volodina, Natalia; Papahadjopoulos-Sternberg, Brigitte; D'Souza, Gerard G. M.

    2003-02-01

    Liposomes modified with TAT peptide (TATp-liposomes) showed fast and efficient translocation into the cell cytoplasm with subsequent migration into the perinuclear zone. TATp-liposomes containing a small quantity (10 mol %) of a cationic lipid formed firm noncovalent complexes with DNA. Here, we present results demonstrating both in vitro and in vivo transfection with TATp-liposome-DNA complexes. Mouse NIH/3T3 fibroblasts and rat H9C2 cardiomyocytes were transfected with such complexes in vitro. The transfection with the TATp-liposome-associated pEGFP-N1 plasmid encoding for the green fluorescent protein (GFP) was high, whereas the cytotoxicity was lower than that of commonly used cationic lipid-based gene-delivery systems. Intratumoral injection of TATp-liposome-DNA complexes into the Lewis lung carcinoma tumor of mice also resulted in an expression of GFP in tumor cells. This transfection system should be useful for various protocols of cell treatment in vitro or ex vivo as well as for localized in vivo gene therapy.

  4. Targeted Gene Therapy of Cancer: Second Amendment toward Holistic Therapy.

    PubMed

    Barar, Jaleh; Omidi, Yadollah

    2013-01-01

    It seems solid tumors are developing smart organs with specialized cells creating specified bio-territory, the so called "tumor microenvironment (TME)", in which there is reciprocal crosstalk among cancer cells, immune system cells and stromal cells. TME as an intricate milieu also consists of cancer stem cells (CSCs) that can resist against chemotherapies. In solid tumors, metabolism and vascularization appears to be aberrant and tumor interstitial fluid (TIF) functions as physiologic barrier. Thus, chemotherapy, immunotherapy and gene therapy often fail to provide cogent clinical outcomes. It looms that it is the time to accept the fact that initiation of cancer could be generation of another form of life that involves a cluster of thousands of genes, while we have failed to observe all aspects of it. Hence, the current treatment modalities need to be re-visited to cover all key aspects of disease using combination therapy based on the condition of patients. Perhaps personalized cluster of genes need to be simultaneously targeted. PMID:23878787

  5. [Cellular therapy and gene therapy: perspectives in neuromuscular pathology].

    PubMed

    Fardeau, M

    1993-10-01

    Identification of the gene coding for the protein (dystrophin) which is lacking or abnormal in Duchenne or Becker type human muscular dystrophies was a decisive turning point in neuro-muscular pathology. Since that time, a considerable number of gene abnormalities have been identified or at least localized. The severity of these diseases, their steady evolution and the absence of any efficient drug therapy, have lead to the development of new therapeutic approaches based on restoring the genetic capacities of the muscle cell. There are two possibilities for therapy. The first is based on the transfer of myogenic cells derived from the 'satellite' cells normally present at the periphery of muscle fibers. The results obtained from a murine model of Duchenne dystrophy ('mdx' mouse) were very promising. However, the results from application of the same techniques to the canine model (GRMDX) or to affected children are, at the present time, disappointing. A number of biological questions remain to be solved before this technique can be more extensively applied to humans. The second possibility is based on gene transfer, through a viral vector. The adenovirus is presently a possible vector. The first experimental results, on 'mdx' mice, are again very encouraging. Extension of these studies to the canine model is a necessary prerequisite for any human application. It should be noted that these two approaches are complementary. Their future applications may depend on the diffuse or selective nature of the skeletal muscle atrophy, and on whether cardiac and respiratory muscles are involved. PMID:8290312

  6. Gene therapy approaches to regenerating bone

    PubMed Central

    Bleich, Nadav Kimelman; Kallai, Ilan; Lieberman, Jay R.; Schwarz, Edward M.; Pelled, Gadi; Gazit, Dan

    2013-01-01

    Bone formation and regeneration therapies continue to require optimization and improvement because many skeletal disorders remain undertreated. Clinical solutions to nonunion fractures and osteoporotic vertebral compression fractures, for example, remain suboptimal and better therapeutic approaches must be created. The widespread use of recombinant human bone morphogenetic proteins (rhBMPs) for spine fusion was recently questioned by a series of reports in a special issue of The Spine Journal, which elucidated the side effects and complications of direct rhBMP treatments. Gene therapy—both direct (in vivo) and cell-mediated (ex vivo)—has long been studied extensively to provide much needed improvements in bone regeneration. In this article, we review recent advances in gene therapy research whose aims are in vivo or ex vivo bone regeneration or formation. We examine appropriate vectors, safety issues, and rates of bone formation. The use of animal models and their relevance for translation of research results to the clinical setting are also discussed in order to provide the reader with a critical view. Finally, we elucidate the main challenges and hurdles faced by gene therapy aimed at bone regeneration as well as expected future trends in this field. PMID:22429662

  7. Anionic Lipid, pH-Sensitive Liposome-Gold Nanoparticle Hybrids for Gene Delivery - Quantitative Research of the Mechanism.

    PubMed

    Du, Baoji; Tian, Li; Gu, Xiaoxiao; Li, Dan; Wang, Erkang; Wang, Jin

    2015-05-20

    Gene therapy is a potential method for treating a large range of diseases. Gene vectors are widely used in gene therapy for promoting the gene delivery efficiency to the target cells. Here, gold nanoparticles (AuNPs) coated with dimethyldioctadecylammonium bromide (DODAB)/dioleoylphosphatidylethanolamine (DOPE) are synthesized using a facile method for a new gene vector (DODAB/DOPE-AuNPs), which possess 3- and 1.5-fold higher transfection efficiency than those of DODAB-AuNPs and a commercial transfection agent, respectively. Meanwhile, it is nontoxic with concentrations required for effective gene delivery. Imaging and quantification studies of cellular uptake reveal that DOPE increases gene copies in cells, which may be attributed to the smaller size of AuNPs/DNA complexes. The dissociation efficiency of DNA from the endocytic pathway is quantified by incubating with different buffers and investigated directly in the cells. The results suggest that DOPE increases the internalization of AuNPs/DNA complexes and promotes DNA release from early endosomes for the vector is sensitive to the anionic lipid membrane and the decreasing pH along the endocytic pathway. The new vector contains the potential to be the new alternative as gene delivery vector for biomedical applications. PMID:25594807

  8. Creating a cardiac pacemaker by gene therapy.

    PubMed

    Anghel, Traian M; Pogwizd, Steven M

    2007-02-01

    While electronic cardiac pacing in its various modalities represents standard of care for treatment of symptomatic bradyarrhythmias and heart failure, it has limitations ranging from absent or rudimentary autonomic modulation to severe complications. This has prompted experimental studies to design and validate a biological pacemaker that could supplement or replace electronic pacemakers. Advances in cardiac gene therapy have resulted in a number of strategies focused on beta-adrenergic receptors as well as specific ion currents that contribute to pacemaker function. This article reviews basic pacemaker physiology, as well as studies in which gene transfer approaches to develop a biological pacemaker have been designed and validated in vivo. Additional requirements and refinements necessary for successful biopacemaker function by gene transfer are discussed. PMID:17139515

  9. Concepts in Gene Therapy for Cartilage Repair

    PubMed Central

    Steinert, Andre F.; Nöth, Ulrich; Tuan, Rocky S.

    2009-01-01

    Summary Once articular cartilage is injured, it has a very limited capacity for self-repair. Although current surgical therapeutic procedures to cartilage repair are clinically useful, they cannot restore a normal articular surface. Current research offers a growing number of bioactive reagents, including proteins and nucleic acids, that may be used to augment different aspects of the repair process. As these agents are difficult to administer effectively, gene transfer approaches are being developed to provide their sustained synthesis at sites of repair. To augment regeneration of articular cartilage, therapeutic genes can be delivered to the synovium, or directly to the cartilage lesion. Gene delivery to the cells of the synovial lining is generally considered more suitable for chondroprotective approaches, based on the expression of anti-inflammatory mediators. Gene transfer targeted to cartilage defects can be achieved by either direct vector administration to cells located at or surrounding the defects, or by transplantation of genetically modified chondrogenic cells into the defect. Several studies have shown that exogenous cDNAs encoding growth factors can be delivered locally to sites of cartilage damage, where they are expressed at therapeutically relevant levels. Furthermore, data is beginning to emerge indicating, that efficient delivery and expression of these genes is capable of influencing a repair response toward the synthesis of a more hyaline cartilage repair tissue in vivo. This review presents the current status of gene therapy for cartilage healing and highlights some of the remaining challenges. PMID:18313477

  10. Investigation of Particle Accumulation, Chemosensitivity and Thermosensitivity for Effective Solid Tumor Therapy Using Thermosensitive Liposomes and Hyperthermia

    PubMed Central

    Lokerse, Wouter J.M.; Bolkestein, Michiel; ten Hagen, Timo L.M.; de Jong, Marion; Eggermont, Alexander M.M.; Grüll, Holger; Koning, Gerben A.

    2016-01-01

    Doxorubicin (Dox) loaded thermosensitive liposomes (TSLs) have shown promising results for hyperthermia-induced local drug delivery to solid tumors. Typically, the tumor is heated to hyperthermic temperatures (41-42 °C), which induced intravascular drug release from TSLs within the tumor tissue leading to high local drug concentrations (1-step delivery protocol). Next to providing a trigger for drug release, hyperthermia (HT) has been shown to be cytotoxic to tumor tissue, to enhance chemosensitivity and to increase particle extravasation from the vasculature into the tumor interstitial space. The latter can be exploited for a 2-step delivery protocol, where HT is applied prior to i.v. TSL injection to enhance tumor uptake, and after 4 hours waiting time for a second time to induce drug release. In this study, we compare the 1- and 2-step delivery protocols and investigate which factors are of importance for a therapeutic response. In murine B16 melanoma and BFS-1 sarcoma cell lines, HT induced an enhanced Dox uptake in 2D and 3D models, resulting in enhanced chemosensitivity. In vivo, therapeutic efficacy studies were performed for both tumor models, showing a therapeutic response for only the 1-step delivery protocol. SPECT/CT imaging allowed quantification of the liposomal accumulation in both tumor models at physiological temperatures and after a HT treatment. A simple two compartment model was used to derive respective rates for liposomal uptake, washout and retention, showing that the B16 model has a twofold higher liposomal uptake compared to the BFS-1 tumor. HT increases uptake and retention of liposomes in both tumors models by the same factor of 1.66 maintaining the absolute differences between the two models. Histology showed that HT induced apoptosis, blood vessel integrity and interstitial structures are important factors for TSL accumulation in the investigated tumor types. However, modeling data indicated that the intraliposomal Dox fraction did not