Science.gov

Sample records for liquefaction fischer-tropsch synthesis

  1. Improved Fischer-Tropsch Synthesis catalysts for indirect coal liquefaction

    SciTech Connect

    Tong, G.T.; Wilson, R.B.; McCarty, J.G.

    1987-01-01

    The monoruthenium cluster catalyst with a molecular sieve support and the tetraruthenium cluster catalyst with a sodium-Y zeolite support have been examined for Fischer-Tropsch Synthesis (FTS) performance at high pressure (6.9 MPa) in a slurry reactor and compared with conventional ruthenium with an alumina support and clean fused iron catalysts. Of the four catalysts tested, only the conventional ruthenium catalyst exhibited a chain growth factor of 0.88 and a methane selectivity of 6.6%, which are typical of slurry reactor results reported for iron catalysts under similar conditions. The other three catalysts tested showed low chain growth factors (ranging from 0.44 to 0.57) and high methane selectivity (ranging from 20 to 32%). A cobalt catalyst with approximately 50% sulfur coverage was prepared and tested for FTS activity and selectivity at ambient pressure and compared with the FTS performance of the clean and fully sulfided cobalt catalysts. The introduction of sulfur caused a decrease in methane selectivity and an increase in olefin selectivity with only a moderate decline in activity. 1 ref., 2 tabs.

  2. Design of generic coal conversion facilities: Indirect coal liquefaction, Fischer-Tropsch synthesis

    SciTech Connect

    Not Available

    1991-10-01

    A comprehensive review of Fischer-Tropsch (F-T) technology, including fixed, fluidized, and bubble column reactors, was undertaken in order to develop an information base before initiating the design of the Fischer-Tropsch indirect liquefaction PDU as a part of the Generic Coal Conversion Facilities to be built at the Pittsburgh Energy Technology Center (PETC). The pilot plant will include a fixed bed and slurry bubble column reactor for the F-T mode of operation. The review encompasses current status of both these technologies, their key variables, catalyst development, future directions, and potential improvement areas. However, more emphasis has been placed on the slurry bubble column reactor since this route is likely to be the preferred technology for commercialization, offering process advantages and, therefore, better economics than fixed and fluidized bed approaches.

  3. Tailored fischer-tropsch synthesis product distribution

    DOEpatents

    Wang, Yong; Cao, Chunshe; Li, Xiaohong Shari; Elliott, Douglas C.

    2012-06-19

    Novel methods of Fischer-Tropsch synthesis are described. It has been discovered that conducting the Fischer-Tropsch synthesis over a catalyst with a catalytically active surface layer of 35 microns or less results in a liquid hydrocarbon product with a high ratio of C.sub.5-C.sub.20:C.sub.20+. Descriptions of novel Fischer-Tropsch catalysts and reactors are also provided. Novel hydrocarbon compositions with a high ratio of C.sub.5-C.sub.20:C.sub.20+ are also described.

  4. Moderated ruthenium fischer-tropsch synthesis catalyst

    DOEpatents

    Abrevaya, Hayim

    1991-01-01

    The subject Fischer-Tropsch catalyst comprises moderated ruthenium on an inorganic oxide support. The preferred moderator is silicon. Preferably the moderator is effectively positioned in relationship to ruthenium particles through simultaneous placement on the support using reverse micelle impregnation.

  5. Slurry-phase Fischer-Tropsch synthesis

    SciTech Connect

    Zarochak, M.F.; McDonald, M.A.

    1986-01-01

    Fischer-Tropsch synthesis in the slurry phase has attracted attention in recent years due to its numerous advantages. Among these advantages are the ability of the liquid phase to handle the large heats of reaction and thereby control reaction temperature, the ability to handle low H/sub 2//CO ratio synthesis gas without needing a preliminary water-gas shift step, and the relatively low capital and operating costs for slurry systems. Slurry-phase work at PETC has focused on understanding effects of catalyst preparation and pretreatment, of reaction conditions (T, P, H/sub 2//CO), and of operating conditions (space velocity, methods of wax removal) on catalyst synthesis behavior (activity, selectivity, and maintenance of activity and selectivity). Better understanding of the effects of these factors on F-T synthesis leads to improvements in process technology. This work focuses on the effects of catalyst pretreatment on synthesis behavior. Developing an effective F-T catalyst pretreatment procedure is a problem limited almost exclusively to iron catalysts. This paper reports some recent results on the effects of pretreatment. Synthesis runs were made using one of two different pretreatments given a potassium-promoted precipitated iron catalyst. Besides these reaction experiments, catalyst samples were periodically withdrawn from the stirred autoclave for characterization by means of Moessbauer spectroscopy.

  6. Fischer-Tropsch synthesis in supercritical reaction media

    SciTech Connect

    Subramaniam, B.; Bochniak, D.; Snavely, K.

    1993-01-01

    Our goals for this quarter were to complete construction of the reactor and analytical units for carrying out Fischer-Tropsch (F-T) synthesis in liquid (n-hexadecane) and in supercritical n-hexane phases. Progress during this quarter was slower than expected.

  7. Alternative Fuel Research in Fischer-Tropsch Synthesis

    NASA Technical Reports Server (NTRS)

    Surgenor, Angela D.; Klettlinger, Jennifer L.; Yen, Chia H.; Nakley, Leah M.

    2011-01-01

    NASA Glenn Research Center has recently constructed an Alternative Fuels Laboratory which is solely being used to perform Fischer-Tropsch (F-T) reactor studies, novel catalyst development and thermal stability experiments. Facility systems have demonstrated reliability and consistency for continuous and safe operations in Fischer-Tropsch synthesis. The purpose of this test facility is to conduct bench scale Fischer-Tropsch (F-T) catalyst screening experiments while focusing on reducing energy inputs, reducing CO2 emissions and increasing product yields within the F-T process. Fischer-Tropsch synthesis is considered a gas to liquid process which reacts syn-gas (a gaseous mixture of hydrogen and carbon monoxide), over the surface of a catalyst material which is then converted into liquids of various hydrocarbon chain length and product distributions1. These hydrocarbons can then be further processed into higher quality liquid fuels such as gasoline and diesel. The experiments performed in this laboratory will enable the investigation of F-T reaction kinetics to focus on newly formulated catalysts, improved process conditions and enhanced catalyst activation methods. Currently the facility has the capability of performing three simultaneous reactor screening tests, along with a fourth fixed-bed reactor used solely for cobalt catalyst activation.

  8. Fischer-Tropsch synthesis of hydrocarbons

    SciTech Connect

    Lampert, A.; Erickson, J.; Smiley, B.; Vaughan, C.

    1983-09-01

    The performance of an iron-copper Fischer-Tropsch catalyst was studied in a slurry CSTR at 227/sup 0/C and 790 kPa (100 psig). Catalyst performance was similar to other iron-based catalysts studied previously with respect to conversion of CO, conversion of CO + H/sub 2/, and to the product distribution. CO conversion increased with decreasing space velocity, ranging from approximately 60% at 1570 h/sup -1/ to over 90% at 488 h/sup -1/. The H/sub 2/ to CO usage ratio was approximately 0.7, indicating that the catalyst is a good water-gas shift catalyst as well as a Fischer-Tropsch catalyst. Reaction products could be described by a Flory distribution with a chain growth probability (..cap alpha..) of 0.67, which is in the gasoline range. In some runs, methanol was added continuously to the reactor feed, but instead of being incorporated into the reaction, the methanol oxidized and deactivated the catalyst. 31 references, 12 figures, 10 tables.

  9. Fischer-Tropsch synthesis with coal derived syngas

    SciTech Connect

    Raje, A.; O`Brien, R.J.; Davis, B.H.

    1998-12-31

    The effect of potassium on catalyst activity, kinetic parameters and selectivity has been investigated for a precipitated iron catalyst with low H{sub 2}/CO ratio synthesis gas. A wide range of synthesis gas conversions have been obtained by varying space velocities over catalysts with various potassium loadings. Differing trends in catalyst activity with potassium loading were observed depending on the space velocity or synthesis gas conversion. As potassium loading increased, the catalyst activity either decreased (low conversions), passed through a maximum (intermediate conversions) or increased (high conversions). This is shown to be a result of the increasing dependency of the Fischer-Tropsch synthesis on the hydrogen formed by the water-gas shift reaction with increasing synthesis gas conversions. Both the rate constant and the adsorption parameter in a common two-parameter Fischer-Tropsch rate expression decreased with potassium loading; therefore, observed maxima in Fischer-Tropsch rate with potassium loading can be due to the opposing influences of these parameters.

  10. The role of zeolite in the Fischer-Tropsch synthesis over cobalt-zeolite catalysts

    NASA Astrophysics Data System (ADS)

    Sineva, L. V.; Asalieva, E. Yu; Mordkovich, V. Z.

    2015-11-01

    The review deals with the specifics of the Fischer-Tropsch synthesis for the one-stage syncrude production from CO and H2 in the presence of cobalt-zeolite catalytic systems. Different types of bifunctional catalysts (hybrid, composite) combining a Fischer-Tropsch catalyst and zeolite are reviewed. Special attention focuses on the mechanisms of transformations of hydrocarbons produced in the Fischer-Tropsch process on zeolite acid sites under the synthesis conditions. The bibliography includes 142 references.

  11. Improved Fischer-Tropsch catalysts for indirect coal liquefaction

    SciTech Connect

    Wilson, R.B. Jr.; Tong, G.T.; Chan, Y.W.; Huang, H.W.; McCarty, J.G.

    1989-02-01

    The Fischer-Tropsch synthesis (FTS)reaction is the established technology for the production of liquid fuels from coal by an indirect route using coal-derived syngas (CO + H{sub 2}). Modern FTS catalysts are potassium- and copper-promoted iron preparations. These catalysts exhibit moderate activity with carbon monoxide-rich feedstocks such as the syngas produced by advanced coal gasification processes. However, the relatively large yields of by-product methane and high-molecular-weight hydrocarbon waxes detract from the production of desired liquid products in the C{sub 5}-C{sub 16} range needed for motor and aviation fuel. The goal of this program is to decrease undesirable portions of the FTS hydrocarbon yield by altering the Schultz-Flory polymerization product distribution through design and formulation of improved catalysts. Two approaches were taken: (1) reducing the yield of high-molecular-weight hydrocarbon waxes by using highly dispersed catalysts produced from surface-confined multiatomic clusters on acid supports and (2) suppressing methane production by uniformly pretreating active, selective conventional FTS catalysts with submonolayer levels of sulfur.

  12. Synthesis of octane enhancers during slurry-phase Fischer Tropsch

    SciTech Connect

    Marcelin, G.

    1991-02-28

    The objective of this project is to investigate three possible routes to the formation of ethers, in particular methyl tert-butyl ether (MTBE), during slurry phase Fischer-Tropsch (FT) reaction. The three routes to be investigated are: addition of isobutylene during the formation of methanol and/or higher alcohols directly from CO and H{sub 2} during slurry-phase Fischer-Tropsch; addition of isobutylene to FT liquid products including alcohols in a slurry-phase reactor containing an MTBE or other acid catalyst; and addition of methanol to slurry phase FT synthesis making iso-olefins. Work conducted during the first quarter has concentrated in the design of a laboratory-scale bubble column slurry reactor (BCSR) capable of operating at suitable temperatures and pressures for each of the three routes defined above. For design purposes the reactor has been configured as a one-inch diameter bubble column reactor for conversion of synthesis gas and operating with a wax paraffin (C{sub 30}{sup +}) liquid medium. This design has been finalized, thereby reaching milestone M1. The paper discusses the important design parameters (hydrodynamics, mass transfer, kinetics, and heat transfer) as well as the relationship of lab scale to industrial scale BCSR, parameter estimations, and the design of the bench-scale BCSR. 23 refs., 3 figs., 3 tabs.

  13. Catalyst structure and method of Fischer-Tropsch synthesis

    DOEpatents

    Wang, Yong; Vanderwiel, David P.; Tonkovich, Anna Lee Y.; Gao, Yufei; Baker, Eddie G.

    2004-06-15

    The present invention includes Fischer-Tropsch catalysts, reactions using Fischer-Tropsch catalysts, methods of making Fischer-Tropsch catalysts, processes of hydrogenating carbon monoxide, and fuels made using these processes. The invention provides the ability to hydrogenate carbon monoxide with low contact times, good conversion rates and low methane selectivities. In a preferred method, the catalyst is made using a metal foam support.

  14. Catalyst structure and method of fischer-tropsch synthesis

    DOEpatents

    Wang, Yong [Richland, WA; Vanderwiel, David P [Richland, WA; Tonkovich, Anna Lee Y [Pasco, WA; Gao, Yufei [Kennewick, WA; Baker, Eddie G [Pasco, WA

    2002-12-10

    The present invention includes Fischer-Tropsch catalysts, reactions using Fischer-Tropsch catalysts, methods of making Fischer-Tropsch catalysts, processes of hydrogenating carbon monoxide, and fuels made using these processes. The invention provides the ability to hydrogenate carbon monoxide with low contact times, good conversion rates and low methane selectivities. In a preferred method, the catalyst is made using a metal foam support.

  15. Fischer-Tropsch synthesis for clean transportation fuels

    SciTech Connect

    Xu, L.; Bao, S.; O`Brien, R.J.; Raje, A.; Davis, B.H.

    1997-12-31

    The products from the Fischer-Tropsch synthesis and the rates of conversion of the reactants (H{sub 2} and CO) have been determined for a range of flow rates. Based upon conversion rates, an iron catalyst should be utilized at lower CO conversion levels. The fraction of CO converted to hydrocarbons decreases with increasing CO conversion. Thus, it is suggested that a F-T process employing recycle or multiple reactors is more appropriate for an iron catalyst than operating a single reactor at high (> 95%) CO conversion levels. The data indicate that an iron catalyst is preferred over a cobalt catalyst for some process conditions (e.g., high space velocity, high total pressure).

  16. Fischer-Tropsch synthesis in supercritical reaction media

    SciTech Connect

    Subramaniam, B.

    1995-05-01

    The goal of the proposed research is to develop novel reactor operating strategies for the catalytic conversion of syngas to transportation grade fuels and oxygenates using near-critical (nc) fluids as reaction media. This will be achieved through systematic investigations aimed at a better fundamental understanding of the physical and chemical rate processes underlying catalytic syngas conversion in nc reaction media. Syngas conversion to fuels and fuel additives on Fe catalysts (Fischer-Tropsch synthesis) was investigated. Specific objectives are to investigate the effects of various nc media, their flow rates and operating pressure on syngas conversion, reactor temperature profiles, product selectivity and catalyst activity in trickle-bed reactors. Solvents that exhibit gas to liquid-like densities with relatively moderate pressure changes (from 25 to 60 bars) at typical syngas conversion temperatures (in the 220-280{degree}C range) will be chosen as reaction media.

  17. Process simulation model for indirect coal liquefaction using slurry reactor Fischer-Tropsch technology

    SciTech Connect

    Choi, G.N.; Tam, S.S.

    1994-12-31

    A detailed baseline design for indirect coal liquefaction using advanced Fischer-Tropsch (F-T) technology has been developed for Illinois No. 6 coal. This design forms the basis for an ASPEN process flowsheet simulation (PFS) model which can simulate the entire liquefaction plant and predict the effects of key process variables on the overall plant performance. A linear programming (I-P) model based on a typical PADD II refinery was developed for product valuation and a discounted cash flow (DCF) spreadsheet model was developed for economic analysis. These closely coupled models constitute a research tool which the DOE can use to plan, guide and evaluate its ongoing and future research programs for the manufacture of synthetic liquid fuels by indirect coal liquefaction. This paper covers the use of the ASPEN process simulation model and DCF spreadsheet model to look at the sensitivity of the economics to certain global process variables such as coal feed rate, synthesis gas conversion per pass and wax yield, together with certain specific reactor operating variables such as temperature, superficial velocity, slurry concentration, catalyst activity and catalyst life. Results are reported in terms of investment cost, yields and operating costs, which are then combined to determine a crude oil equivalent (COE) price. The COE is a hypothetical breakeven crude oil price at which a typical PADD II refinery could buy either crude oil or the coal liquefaction products. It is a present day value and is defined assuming constant deltas between crude oil and its products (i.e. constant refinery processing costs and margins).

  18. Intensified Fischer-Tropsch Synthesis Process with Microchannel Catalytic Reactors

    SciTech Connect

    Cao, Chunshe; Hu, Jianli; Li, Shari; Wilcox, Wayne A.; Wang, Yong

    2009-02-28

    A microchannel catalytic reactor with improved heat and mass transport has been used for Fischer-Tropsch synthesis to produce fuels and chemicals. This type of novel reactor takes advantages of highly active and selective catalysts with increased site density so that the FT synthesis process can be intensified. It was demonstrated that this microchannel reactor based process can be carried out at gas hourly space velocity (GHSV) as high as 60,000 hr-1 to achieve greater than 60% of one-pass CO conversion while maintaining low methane selectivity (<10%) and high chain growth probability(>0.9). Such superior FT synthesis performance has not ever been reported in the prior open literatures. The overall productivity to heavy hydrocarbons has been significantly improved over the conventional reactor technology. In this study, performance data were obtained in a wide range of pressure (10atm-35atm) and hydrogen to carbon monoxide ratio (1-2.5). The catalytic system was characterized by BET, scanning electron microcopy (SEM), transmission electron microcopy(TEM), and H2 chemisorption. A three dimensional pseudo-homogeneous model were used to simulate temperature profiles in the exothermic reaction system in order to optimize the reactor design and intensify the synthesis process. Intraparticle non-isothermal characteristics are also analyzed for the FT synthesis catalyst.

  19. Fischer-Tropsch indirect coal liquefaction design/economics-mild hydrocracking vs. fluid catalytic cracking

    SciTech Connect

    Choi, G.N.; Kramer, S.J.; Tam, S.S.; Reagan, W.J.

    1996-12-31

    In order to evaluate the economics of Fischer-Tropsch (F-T) indirect coal liquefaction, conceptual plant designs and detailed cost estimates were developed for plants producing environmentally acceptable, high-quality, liquid transportation fuels meeting the Clean Air Act requirements. The designs incorporate the latest developments in coal gasification technology and advanced (F-T) slurry reactor design. In addition, an ASPEN Plus process simulation model was developed to predict plant material and energy balances, utility requirements, operating and capital costs at varying design conditions. This paper compares mild hydrocracking and fluid catalytic cracking as alternative methods for upgrading the F-T wax.

  20. Synthesis gas solubility in Fischer-Tropsch slurry: Final report

    SciTech Connect

    Chao, K.C.; Lin, H.M.

    1988-01-01

    The objective is to investigate the phase equilibrium behavior of synthesis gases and products in a Fischer-Tropsch slurry reactor. A semi-flow apparatus has been designed and constructed for this purpose. Measurements have been made for hydrogen, cabon monoxide, methane, ethane, ethylene, and carbon dioxide in a heavy n-paraffin at temperatures from 100 to 300)degree)C and pressures 10 to 50 atm. Three n-paraffin waxes: n-eicosane (n-C/sub 20/), n-octacosane )n-C/sub 28/), and n-hexatriacontane (n-C/sub 36/), were studied to model the industrial wax. Solubility of synthesis gas mixtures of H/sub 2/ and CO in n-C/sub 28/ was also determined at two temperatures (200 and 300)degree)C) for each of three gas compositions (40.01, 50.01, and 66.64 mol%) of hydrogen). Measurements were extended to investigate the gas solubility in two industrial Fischer-Tropsch waxes: Mobilwax and SASOL wax. Observed solubility increases in the order: H/sub 2/, CO, CH/sub 4/, CO/sub 2/, C/sub 2/H/sub 4/, C/sub 2/H/sub 6/, at a given temperature pressure, and in the same solvent. Solubility increases with increasing pressure for all the gases. Lighter gases H/sub 2/ and CO show increased solubility with increasing temperature, while the heavier gases CO/sub 2/, ethane, and ethylene show decreased solubility with increasing temperature. The solubility of methane, the intermediate gas, changes little with temperature, and shows a shallow minimum at about 200)degrees)C or somewhat above. Henry's constant and partial molal volume of the gas solute at infinite dilution are determinedfrom the gas solubility data. A correlation is developed from the experimental data in the form on an equation of state. A computer program has been prepared to implement the correlation. 19 refs., 66 figs., 39 tabs.

  1. Process for upgrading wax from Fischer-Tropsch synthesis

    SciTech Connect

    Derr, W.R. Jr.; Garwood, W.E.; Kuo, J.C.; Leib, T.M.; Nace, D.M.; Tabak, S.A.

    1987-08-04

    A processor is described for converting synthesis gas to liquid hydrocarbons comprising the steps of: (a) charging the synthesis gas to a Fischer-Tropsch synthesis conversion zone containing a catalyst providing CO reducing characteristics to produce a waxy hydrocarbon liquid; (b) separating hydrocarbon wax from the waxy liquid; (c) catalytically cracking the wax in a fluidized bed of acid crystalline zeolite at cracking temperature under process conditions requiring a supply of heat to effect cracking, producing olefinic liquid hydrocarbon crackate in the gasoline and distillate boiling range along with olefinic light gas; (d) recovering distillate range hydrocarbons from the liquid crackate; (e) further converting the olefinic gasoline range hydrocarbon crackate and olefinic light gas under oligomerization conditions in contact with a shape selective medium pore acid oligomerization catalyst to upgrade at least a portion of the olefinic crackate and olefinic light gas to distillate range hydrocarbon product and producing by-product light fuel gas; (f) separating the light fuel gas from step (e) and passing the light fuel gas to cracking step (c) to supply heat.

  2. Fischer-Tropsch synthesis in supercritical reaction media

    SciTech Connect

    Subramaniam, B.

    1992-10-01

    The goal of this research is to thoroughly investigate the feasibility of using supercritical fluid (SCF) solvent medium for carrying out Fischer-Tropsch (FT) synthesis. Research will address the systematic experimental investigations of FT synthesis over supported Fe and Co catalysts in a CSTR and in a fixed-bed reactor at typical synthesis temperatures (240-260[degrees]C). The SCF medium to be employed is n-Hexane (P[sub c] = 29.7 bar; [Tc] = 233.7[degrees]C), while n-Hexadecane will be employed as the liquid reaction medium. Overall conversion, product distribution and catalyst deactivation will be measured in each case for various feed H[sub 2]/CO ratios ranging from 0.5 to 2. Product analyses will be carried out using GC/TCD, GC/FID and GC/MS systems. The fresh and used catalysts will be characterized with respect to active metal dispersion, surface area and pore size distribution.

  3. KINETICS OF SLURRY PHASE FISCHER-TROPSCH SYNTHESIS

    SciTech Connect

    Dragomir B. Bukur; Gilbert F. Froment; Lech Nowicki; Jiang Wang; Wen-Ping Ma

    2003-09-29

    This report covers the first year of this three-year research grant under the University Coal Research program. The overall objective of this project is to develop a comprehensive kinetic model for slurry phase Fischer-Tropsch synthesis on iron catalysts. This model will be validated with experimental data obtained in a stirred tank slurry reactor (STSR) over a wide range of process conditions. The model will be able to predict concentrations of all reactants and major product species (H{sup 2}O, CO{sub 2}, linear 1- and 2-olefins, and linear paraffins) as a function of reaction conditions in the STSR. During the reporting period we have completed one STSR test with precipitated iron catalyst obtained from Ruhrchemie AG (Oberhausen-Holten, Germany). This catalyst was initially in commercial fixed bed reactors at Sasol in South Africa. The catalyst was tested at 13 different sets of process conditions, and had experienced a moderate deactivation during the first 500 h of testing (decrease in conversion from 56% to 50% at baseline process conditions). The second STSR test has been initiated and after 270 h on stream, the catalyst was tested at 6 different sets of process conditions.

  4. KINETICS OF SLURRY PHASE FISCHER-TROPSCH SYNTHESIS

    SciTech Connect

    Dragomir B. Bukur

    2004-09-29

    This report covers the second year of this three-year research grant under the University Coal Research program. The overall objective of this project is to develop a comprehensive kinetic model for slurry phase Fischer-Tropsch synthesis on iron catalysts. This model will be validated with experimental data obtained in a stirred tank slurry reactor (STSR) over a wide range of process conditions. The model will be able to predict concentrations of all reactants and major product species (H{sub 2}O, CO{sub 2}, linear 1- and 2-olefins, and linear paraffins) as a function of reaction conditions in the STSR. During the second year of the project we completed the STSR test SB-26203 (275-343 h on stream), which was initiated during the first year of the project, and another STSR test (SB-28603 lasting 341 h). Since the inception of the project we completed 3 STSR tests, and evaluated catalyst under 25 different sets of process conditions. A precipitated iron catalyst obtained from Ruhrchemie AG (Oberhausen-Holten, Germany) was used in all tests. This catalyst was used initially in commercial fixed bed reactors at Sasol in South Africa. Also, during the second year we performed a qualitative analysis of experimental data from all three STSR tests. Effects of process conditions (reaction temperature, pressure, feed composition and gas space velocity) on water-gas-shift (WGS) activity and hydrocarbon product distribution have been determined.

  5. Ultrafine particles of iron in Fischer-Tropsch synthesis

    SciTech Connect

    Mahajan, D.; Pandya, K.

    1994-12-31

    Though direct combustion of natural gas is the most efficient use of this abundant, inexpensive, and cleaner fossil fuel, its potential to replace existing less efficient feedstocks for downstream processes is enormous. Direct conversion of methane to useful products under mild conditions is an ongoing area of research, and a few reported successes include higher hydrocarbons (C{sub 2}-C{sub 6}) synthesis on Pt at 250{degrees}C, Hg-catalyzed synthesis of methanol at 180{degrees}C, and acetic acid synthesis catalyzed by aqueous RhCl{sub 3} at 100{degrees}C. Since these approaches are in early stages of development, improvements in other known routes are of interest. Fischer-Tropsch (F-T) synthesis is an indirect route to catalytic production of liquid fuels from synthesis gas derived from carbonaceous sources. The process is still uneconomical for widespread use due to low space-time-yield (STY), low product selectivity, and catalyst intolerance to sulfur. To address these aspects, a few reports describe the use of ultrafine particle (UFP) catalysts in slurry-phase F-T synthesis, We recently reported that a commercially available unsupported UFP FeZO{sub 3} material (NANOCAT{trademark}) (Mean particle diameter (MPD) = 3 nm; surface area (SA) - 255 m{sup 2}/g) slurried in a C{sub 30} hydrocarbon solvent, after reduction at 280{degrees}C under CO, catalyzed conversion of balanced synthesis gas (H{sub 2}/CO = 2/1) at {>=} 220{degrees}C and {<=} 3 MPa. Described below are additional runs carried out to further scrutinize the Fe UFP system.

  6. Process for upgrading wax from Fischer-Tropsch synthesis

    DOEpatents

    Derr, Jr., W. Rodman; Garwood, William E.; Kuo, James C.; Leib, Tiberiu M.; Nace, Donald M.; Tabak, Samuel A.

    1987-01-01

    The waxy liquid phase of an oil suspension of Fischer-Tropsch catalyst containing dissolved wax is separated out and the wax is converted by hydrocracking, dewaxing or by catalytic cracking with a low activity catalyst to provide a highly olefinic product which may be further converted to premium quality gasoline and/or distillate fuel.

  7. Process for upgrading wax from Fischer-Tropsch synthesis

    DOEpatents

    Derr, W.R. Jr.; Garwood, W.E.; Kuo, J.C.; Leib, T.M.; Nace, D.M.; Tabak, S.A.

    1987-08-04

    The waxy liquid phase of an oil suspension of Fischer-Tropsch catalyst containing dissolved wax is separated out and the wax is converted by hydrocracking, dewaxing or by catalytic cracking with a low activity catalyst to provide a highly olefinic product which may be further converted to premium quality gasoline and/or distillate fuel. 2 figs.

  8. Fischer-Tropsch synthesis process employing a moderated ruthenium catalyst

    DOEpatents

    Abrevaya, Hayim

    1990-01-01

    A Fischer-Tropsch type process produces hydrocarbons from carbon monoxide and hydrogen using a novel catalyst comprising moderated ruthenium on an inorganic oxide support. The preferred moderator is silicon. Preferably the moderator is effectively positioned in relationship to ruthenium particles through simultaneous placement on the support using reverse micelle impregnation.

  9. Fischer-Tropsch synthesis process employing a moderated ruthenium catalyst

    DOEpatents

    Abrevaya, H.

    1990-07-31

    A Fischer-Tropsch type process produces hydrocarbons from carbon monoxide and hydrogen using a novel catalyst comprising moderated ruthenium on an inorganic oxide support. The preferred moderator is silicon. Preferably the moderator is effectively positioned in relationship to ruthenium particles through simultaneous placement on the support using reverse micelle impregnation. 1 fig.

  10. Carbon Isotope Effects in the Fischer-Tropsch Synthesis

    NASA Astrophysics Data System (ADS)

    Taran, Y.; Kliger, G.; Sevastyanov, V.

    2006-05-01

    Carbon isotopic composition was measured in products of the Fischer-Tropsch synthesis in flow reactor on the modified by clays Fe-catalyst at 280-300C and 30 atm. The initial gas mixture (synthesis-gas, SG) consisted of 50 vol% of N2, 20% of CO and 30% of H2. Using the GS-MS technique we analyzed 13C/12C in CO, CO2, CH4, higher hydrocarbons until C4 and the oil fraction in the reaction products. Two catalysts with different modification were used: with high and low yield of olefins. Three of 70-hours runs for each catalyst were realized. Five gas samples were taken during each run: 10, 20, 30, 50 and 70 hours and one cumulative oil sample after each run. The 13C/12C distribution vs carbon number is time-dependent for the olefin-rich products. For the olefin-poor runs the stationary state is characterized by depletion in 13C of heavier than CH4 hydrocarbons, thus, showing the "synthetic" pattern, like in DesMarais et al. (1982) experiments or in Murchison meteorite. However, the olefin-rich runs demonstrate these patterns only in the non-stationary, initial (10 h, 20 h) time range. The steady-state (50-70h) distribution (high and stable conversion of CO) for olefin-rich runs shows almost no fractionation between CH4 and higher hydrocarbons. The concentration distribution of light hydrocarbons in our experiments was similar to that obtained by Hu et al. (1998), but with much higher conversion of CO (>95%).

  11. Fischer-Tropsch synthesis in supercritical fluids. Final report

    SciTech Connect

    Akgerman, A.; Bukur, D.B.

    1998-12-31

    The objective of this study was to investigate Fischer-Tropsch Synthesis (FTS) in the supercritical phase employing a commercial precipitated iron catalysts. As the supercritical fluid the authors used propane and n-hexane. The catalyst had a nominal composition of 100 Fe/5 Cu/4.2 K/25 SiO{sub 2} on mass basis and was used in a fixed bed reactor under both normal (conventional) and supercritical conditions. Experimental data were obtained at different temperatures (235 C, 250 C, and 260 C) and synthesis gas feed compositions (H{sub 2}/CO molar feed ratio of 0.67, 1.0 and 2.0) in both modes of operation under steady state conditions. The authors compared the performance of the precipitated iron catalyst in the supercritical phase, with the data obtained in gas phase (fixed bed reactor) and slurry phase (STS reactor). Comparisons were made in terms of bulk catalyst activity and various aspects of product selectivity (e.g. lumped hydrocarbon distribution and olefin content as a function of carbon number). In order to gain better understanding of the role of intraparticle mass transfer during FTS under conventional or supercritical conditions, the authors have measured diffusivities of representative hydrocarbon products in supercritical fluids, as well as their effective diffusion rates into the pores of catalyst at the reaction conditions. They constructed a Taylor dispersion apparatus to measure diffusion coefficients of hydrocarbon products of FTS in sub and supercritical ethane, propane, and hexane. In addition, they developed a tracer response technique to measure the effective diffusivities in the catalyst pores at the same conditions. Based on these results they have developed an equation for prediction of diffusion in supercritical fluids, which is based on the rough hard sphere theory.

  12. Effect of product upgrading on Fischer-Tropsch indirect coal liquefaction economics

    SciTech Connect

    Choi, G.N.; Kramer, S.J.; Tam, S.S.; Fox, J.M. III

    1995-12-31

    Conceptual plant designs with cost estimates for indirect coal liquefaction technology to produce environmentally acceptable transportation liquid fuels meeting the Clear Air Act requirements were developed for the US Department of Energy (DOE). The designs incorporate the latest development in coal gasification technology and advanced Fischer-Tropsch (F-T) slurry reactor design. ASPEN process simulation models were developed to provide detailed plant material and energy balances, utility requirements, operating and capital costs. A linear programming model based on a typical PADD II refinery was developed to assess the values of the produced F-T products. The results then were used in a discounted cash flow spreadsheet model to examine the effect of key process variables on the overall F-T economics. Different models were developed to investigate the various routes of upgrading the F-T products. The effects of incorporating a close-coupled ZSM-5 reactor to upgrade the vapor stream leaving the Fischer-Tropsch reactor have been reported previously. This paper compares two different schemes of F-T was upgrading, namely fluidized bed catalytic cracking verse mild hydrocracking.

  13. Process design and solvent recycle for the supercritical Fischer-Tropsch synthesis

    SciTech Connect

    Wensheng Linghu; Xiaohong Li; Kenji Asami; Kaoru Fujimoto

    2006-02-01

    A recycle reactor system for supercritical Fischer-Tropsch synthesis was successfully designed and tested. The new reactor system has these characteristics: (1) integration of supercritical Fischer-Tropsch reactions, natural separation of produced wax from liquid phase, and recycle of the solvent and (2) natural recycle of solvent driven by self-gravity. A 20% Co/SiO{sub 2} catalyst and n-hexane were used as a catalyst and supercritical fluid, respectively. The results show that the average CO conversion at the steady state was 45% with recycle and 58% without recycle. The lumped hydrocarbon products distribution did not have any obvious difference between with and without recycle operation; however, {alpha}-olefin content of products with recycle was lower than that without recycle. The XRD result indicates that most of the reduced cobalt remains in the metallic state during the Fischer-Tropsch reactions for both cases. 22 refs., 3 figs., 1 tab.

  14. Fischer-Tropsch Synthesis on ALD-synthesized Catalysts

    NASA Astrophysics Data System (ADS)

    Van Norman, Staci A.

    Cobalt catalysts were prepared on porous Al2O 3 and W/Al2O3 supports by atomic layer deposition (ALD) that used sequential reactions of cobaltocene (CoCp2) and H 2 at 483 to 523 K. This preparation method avoided formation of an intermediate oxide, so the catalysts could be activated at lower temperatures. Some of these catalysts had CO reaction rates per g of Co in Fischer-Tropsch synthesis (FTS) that were three times those reported for Co catalysts prepared by incipient wetness. The FTS reacts CO and H2 to form hydrocarbon liquids that can used as synthetic fuels. The rate of FTS depended on the number of ALD cycles, and catalysts prepared with one cycle had activities equivalent to incipient wetness Co catalysts; the highest reaction rate per g of catalyst was obtained for catalysts prepared using four ALD cycles. Two types of Co were observed on the alumina surface using TEM: Co particles with diameters between 0.6 and 1.8 nm (75% were smaller than 1 nm), and Co crystalline planes that were as large as 35 nm. Cobalt catalysts prepared by ALD retained adsorbed ligands that appeared to be stable for at least eight months at room temperature. Tungsten was deposited onto porous Al2O 3 by ALD to provide a catalyst support with higher thermal conductivity because the FTS reaction is highly exothermic. The W indeed increased thermal conductivity, and the resulting supports were used for Co ALD following deposition of an Al2O3 ALD layer. However, although Co deposits on ALD Al2O3, the Co had no activity for FTS, apparently because the ALD Al2O3 was amorphous. In contrast ALD Al 2O3 that was heat treated at high temperature was partially crystalline and served as a support for an active FTS catalyst.

  15. Synthesis of octane enhancer during slurry-phase Fischer-Tropsch

    SciTech Connect

    Marcelin, G.

    1991-12-15

    The objective of this project is to investigate three possible routes to the formation of ethers, in particular methyl tert-butyl ether (MTBE), during slurry phase Fischer-Tropsch reaction. The three reaction schemes to be investigated are: Addition of isobutylene during the formation of methanol and/or higher alcohols directly from CO and H{sub 2} during slurry-phase Fischer-Tropsch. Addition of isobutylene to FT liquid products including alcohols in a slurry-phase reactor containing an MTBE or other acid catalyst. Addition of methanol to slurry phase FT synthesis making iso-olefins.

  16. Synthesis of octane enhancers during slurry-phase Fischer-Tropsch

    SciTech Connect

    Marcelin, G.

    1992-06-10

    The objective of this project is to investigate three possible routes to the formation of ethers, in particular methyl tert-butyl ether (MTBE), during slurry phase Fischer-Tropsch reaction. The three reaction schemes to be investigated are: Addition of isobutylene during the formation of methanol and/or higher alcohols directly from CO and H{sub 2} during slurry-phase Fischer-Tropsch. Addition of isobutylene to FT liquid products including alcohols in a slurry-phase reactor containing an MTBE or other acid catalyst. Addition of methanol to slurry phase FT synthesis making iso-olefins.

  17. Synthesis of octane enhancers during slurry-phase Fischer-Tropsch

    SciTech Connect

    Marcelin, G.

    1991-10-15

    The objective of this project is to investigate three possible routes to the formation of ethers, in particular methyl tert-butytl ether (MTBE), during slurry phase Fischer-Tropsch reaction. The three reaction schemes to be investigated are: (1) Addition of isobutylene during the formation of methanol and/or higher alcohols directly from CO and H{sub 2} during slurry-phase Fischer-Tropsch; (2) addition of isobutylene to FT liquid products including alcohols in a slurry-phase reactor containing an MTBE or other acid catalyst; and, (3) addition of methanol to slurry phase FT synthesis making iso-olefins.

  18. Catalysts for Fischer-Tropsch

    SciTech Connect

    Srivastava, R.D. ); Rao, V.U.S.; Cinquegrane, G.; Stiegel, G.J. )

    1990-02-01

    The slurry-phase Fischer-Tropsch (F-T) process has attracted considerable attention recently. The process can make liquid fuels by reacting hydrogen-lean synthesis gas produced from modern energy-efficient gasifiers. continuing assessment of Fischer-Tropsch Synthesis (FTS) has a high priority within an indirect liquefaction program, a part of the liquid fuels program sponsored by the U.S. Department of Energy (DOE) and executed by the Pittsburgh Energy Technology Center (PETC). Funding for the indirect liquefaction program in 1990:0090 is anticipated to be about $8.5 million compared to $6.6 million in 1989 and a like amount in the year before. The studies within the program are conducted by industry, universities, national laboratories and in-house PETC research and development. This article reviews preparation and properties of iron-based catalysts, including recent patent activities and in-depth process analysis of slurry-phase FTS. The review provides an analysis of Fischer-Tropsch catalyst research and development trends and describes options to increase selectivity for iron-based catalysts in a slurry phase.

  19. Effect of potassium promotion on iron-based catalysts for Fischer-Tropsch synthesis

    SciTech Connect

    Raje, A.P.; O`Brien, R.J.; Davis, B.H.

    1998-11-15

    The effect of potassium on Fischer-Tropsch catalyst activity, kinetic parameters, and selectivity has been investigated for a precipitated iron catalyst that was employed with low H{sub 2}/CO ratio synthesis gas. A wide range of synthesis gas conversions have been obtained by varying space velocities over catalysts with various potassium loadings. Differing trends in catalyst activity with potassium loading were observed depending on the space velocity of synthesis gas conversion. As potassium loading increased, the catalyst activity either decreased (low conversion), passed through a maximum (intermediate conversion), or increased (high conversion). This is shown to be a result of the increasing dependency of the Fischer-Tropsch synthesis on the hydrogen formed by the water-gas shift reaction with increasing synthesis gas conversions. Both the rate constant and the adsorption parameter in a common two-parameter Fischer-Tropsch rate expression decreased with potassium loading; therefore, observed maxima in Fischer-Tropsch rate with potassium loading can be due to the opposing influences of these parameters. The effect of potassium on alkene selectivity was dependent on the number of carbon atoms of the hydrocarbons as well as the carbon monoxide conversion level. The extent of isomerization of 1-alkene product decreased with potassium loading, while the selectivity to methane decreased only slightly with increasing potassium content at CO conversions about 50% and higher.

  20. The facile fabrication of magnetite nanoparticles and their enhanced catalytic performance in Fischer-Tropsch synthesis.

    PubMed

    Zheng, Shenke; Sun, Jiaqiang; Song, Dechen; Chen, Zheng; Chen, Jiangang

    2015-07-14

    Uniform and crystalline magnetite nanoparticles are facilely fabricated and utilized as an efficient catalyst in Fischer-Tropsch synthesis (FTS). The catalyst exhibits a high and stable activity with low methane selectivity, attributed to its remarkable structural and chemical stability at the realistic conditions of FTS. PMID:26074335

  1. Fischer Tropsch synthesis in supercritical fluids. Quarterly technical progress report, January 1, 1995--March 31, 1995

    SciTech Connect

    Akgerman, A.; Bukur, D.B.

    1996-05-01

    Our objectives for this quarter were: (1) to install and test the temperature probe and the flammable gas detector: (2) to conduct Fischer-Tropsch synthesis experiments at baseline conditions and at a high pressure in order to test the newly constructed fixed bed reactor assembly.

  2. Fischer-Tropsch synthesis in supercritical reaction media. Progress report, October 1, 1992--December 31, 1992

    SciTech Connect

    Subramaniam, B.; Bochniak, D.; Snavely, K.

    1993-01-01

    Our goals for this quarter were to complete construction of the reactor and analytical units for carrying out Fischer-Tropsch (F-T) synthesis in liquid (n-hexadecane) and in supercritical n-hexane phases. Progress during this quarter was slower than expected.

  3. KINETICS OF SLURRY PHASE FISCHER-TROPSCH SYNTHESIS

    SciTech Connect

    Dragomir B. Bukur; Gilbert F. Froment; Tomasz Olewski

    2006-09-29

    This report covers the fourth year of a research project conducted under the University Coal Research Program. The overall objective of this project is to develop a comprehensive kinetic model for slurry-phase Fischer-Tropsch synthesis (FTS) employing iron-based catalysts. This model will be validated with experimental data obtained in a stirred-tank slurry reactor (STSR) over a wide range of process conditions. The model will be able to predict molar flow rates and concentrations of all reactants and major product species (water, carbon dioxide, linear 1- and 2-olefins, and linear paraffins) as a function of reaction conditions in the STSR. During the fourth year of the project, an analysis of experimental data collected during the second year of this project was performed. Kinetic parameters were estimated utilizing product distributions from 27 mass balances. During the reporting period two kinetic models were employed: a comprehensive kinetic model of Dr. Li and co-workers (Yang et al., 2003) and a hydrocarbon selectivity model of Van der Laan and Beenackers (1998, 1999) The kinetic model of Yang et al. (2003) has 24 parameters (20 parameters for hydrocarbon formation, and 4 parameters for the water-gas-shift (WGS) reaction). Kinetic parameters for the WGS reaction and FTS synthesis were estimated first separately, and then simultaneously. The estimation of these kinetic parameters employed the Levenberg-Marquardt (LM) method and the trust-region reflective Newton large-scale (LS) method. A genetic algorithm (GA) was incorporated into estimation of parameters for FTS reaction to provide initial estimates of model parameters. All reaction rate constants and activation energies were found to be positive, but at the 95% confidence level the intervals were large. Agreement between predicted and experimental reaction rates has been fair to good. Light hydrocarbons are predicted fairly accurately, whereas the model underpredicts values of higher molecular weight

  4. Fly ash zeolite catalyst support for Fischer-Tropsch synthesis

    NASA Astrophysics Data System (ADS)

    Campen, Adam

    This dissertation research aimed at evaluating a fly ash zeolite (FAZ) catalyst support for use in heterogeneous catalytic processes. Gas phase Fischer-Tropsch Synthesis (FTS) over a fixed-bed of the prepared catalyst/FAZ support was identified as an appropriate process for evaluation, by comparison with commercial catalyst supports (silica, alumina, and 13X). Fly ash, obtained from the Wabash River Generating Station, was first characterized using XRD, SEM/EDS, particle size, and nitrogen sorption techniques. Then, a parametric study of a two-step alkali fusion/hydrothermal treatment process for converting fly ash to zeolite frameworks was performed by varying the alkali fusion agent, agent:flyash ratio, fusion temperature, fused ash/water solution, aging time, and crystallization time. The optimal conditions for each were determined to be NaOH, 1.4 g NaOH: 1 g fly ash, 550 °C, 200 g/L, 12 hours, and 48 hours. This robust process was applied to the fly ash to obtain a faujasitic zeolite structure with increased crystallinity (40 %) and surface area (434 m2/g). Following the modification of fly ash to FAZ, ion exchange of H+ for Na+ and cobalt incipient wetness impregnation were used to prepare a FTS catalyst. FTS was performed on the catalysts at 250--300 °C, 300 psi, and with a syngas ratio H2:CO = 2. The HFAZ catalyst support loaded with 11 wt% cobalt resulted in a 75 % carbon selectivity for C5 -- C18 hydrocarbons, while methane and carbon dioxide were limited to 13 and 1 %, respectively. Catalyst characterization was performed by XRD, N2 sorption, TPR, and oxygen pulse titration to provide insight to the behavior of each catalyst. Overall, the HFAZ compared well with silica and 13X supports, and far exceeded the performance of the alumina support under the tested conditions. The successful completion of this research could add value to an underutilized waste product of coal combustion, in the form of catalyst supports in heterogeneous catalytic processes.

  5. Amino acids in a Fischer Tropsch type synthesis

    NASA Technical Reports Server (NTRS)

    Brown, D. L.; Lawless, J. G.

    1974-01-01

    One postulation is described for the presence of organic compounds in meteorites which states that they were formed during the condensation of the solar nebula. A viable laboratory simulation of these conditions can be modeled after the industrial Fischer Tropsch reaction, which is known to produce organic compounds called hydrocarbons. In this simulation, a mixture of carbon monoxide, hydrogen and ammonia is heated in the presence of iron meteorite. The reaction products for amino acids, a class of organic compounds important to life, were examined. A large number of these compounds is found in meteorites and other chemical evolution experiments, but only small quantities of a few amino acids were found in the present simulation work. These results are at odds with the existing literature in which many amino acids were reported.

  6. Fischer Tropsch synthesis in supercritical fluids. Quarterly technical progress report, January 1, 1994--March 31, 1994

    SciTech Connect

    Akgerman, A.; Bukur, D.B.

    1994-06-01

    We have successfully completed our first Fischer-Tropsch synthesis test with propane as the supercritical fluid. The catalyst activity and hydrocarbon product distribution under the SFT conditions were similar to those obtained during the normal Fischer-Tropsch synthesis, however, the use of supercritical fluid resulted in higher selectivity of the primary products. The use of a new trap with larger inside surface area, improved the collection of liquid products and thus enabling us to achieve better atomic and overall mass balance closures. This has also improved results from on-line GC analysis. However, further improvement are needed to achieve more stable and reproducible gas phase analysis, including the capability of the on-line analysis of the feed gas (mixture of hydrogen, carbon monoxide and propane).

  7. Incorporation of catalytic dehydrogenation into fischer-tropsch synthesis to significantly reduce carbon dioxide emissions

    DOEpatents

    Huffman, Gerald P.

    2012-11-13

    A new method of producing liquid transportation fuels from coal and other hydrocarbons that significantly reduces carbon dioxide emissions by combining Fischer-Tropsch synthesis with catalytic dehydrogenation is claimed. Catalytic dehydrogenation (CDH) of the gaseous products (C1-C4) of Fischer-Tropsch synthesis (FTS) can produce large quantities of hydrogen while converting the carbon to multi-walled carbon nanotubes (MWCNT). Incorporation of CDH into a FTS-CDH plant converting coal to liquid fuels can eliminate all or most of the CO.sub.2 emissions from the water-gas shift (WGS) reaction that is currently used to elevate the H.sub.2 level of coal-derived syngas for FTS. Additionally, the FTS-CDH process saves large amounts of water used by the WGS reaction and produces a valuable by-product, MWCNT.

  8. New ultrasonically prepared Co-based catalysts for Fischer-Tropsch synthesis.

    PubMed

    Bianchi, C L; Martini, F; Ragaini, V

    2001-04-01

    An extensive study of different preparation methods for Co/SiO2 catalysts is reported in this paper. In addition to the conventional impregnation, other more innovative methods are used including ultrasound. The prepared samples are fully characterized and tested in the CO hydrogenation (Fischer-Tropsch synthesis). The best catalytic performance, both as CO conversion and hydrocarbons selectivity, is shown by one of the sample prepared using ultrasound. PMID:11326608

  9. Processes and catalysts for conducting fischer-tropsch synthesis in a slurry bubble column reactor

    DOEpatents

    Singleton, Alan H.; Oukaci, Rachid; Goodwin, James G.

    1999-01-01

    Processes and catalysts for conducting Fischer-Tropsch synthesis in a slurry bubble column reactor (SBCR). One aspect of the invention involves the use of cobalt catalysts without noble metal promotion in an SBCR. Another aspect involves using palladium promoted cobalt catalysts in an SBCR. Methods for preparing noble metal promoted catalysts via totally aqueous impregnation and procedures for producing attrition resistant catalysts are also provided.

  10. Processes and catalysts for conducting Fischer-Tropsch synthesis in a slurry bubble column reactor

    DOEpatents

    Singleton, A.H.; Oukaci, R.; Goodwin, J.G.

    1999-08-17

    Processes and catalysts are disclosed for conducting Fischer-Tropsch synthesis in a slurry bubble column reactor (SBCR). One aspect of the invention involves the use of cobalt catalysts without noble metal promotion in an SBCR. Another aspect involves using palladium promoted cobalt catalysts in an SBCR. Methods for preparing noble metal promoted catalysts via totally aqueous impregnation and procedures for producing attrition resistant catalysts are also provided. 1 fig.

  11. Fischer-Tropsch process

    DOEpatents

    Dyer, Paul N.; Pierantozzi, Ronald; Withers, Howard P.

    1987-01-01

    A Fischer-Tropsch process utilizing a product selective and stable catalyst by which synthesis gas, particularly carbon-monoxide rich synthesis gas is selectively converted to higher hydrocarbons of relatively narrow carbon number range is disclosed. In general, the selective and notably stable catalyst, consist of an inert carrier first treated with a Group IV B metal compound (such as zirconium or titanium), preferably an alkoxide compound, and subsequently treated with an organic compound of a Fischer-Tropsch metal catalyst, such as cobalt, iron or ruthenium carbonyl. Reactions with air and water and calcination are specifically avoided in the catalyst preparation procedure.

  12. Kinetics of Slurry Phase Fischer-Tropsch Synthesis

    SciTech Connect

    Dragomir B. Bukur; Gilbert F. Froment; Tomasz Olewski; Lech Nowicki; Madhav Nayapati

    2006-12-31

    The overall objective of this project is to develop a comprehensive kinetic model for slurry-phase Fischer-Tropsch synthesis (FTS) employing iron-based catalysts. This model will be validated with experimental data obtained in a stirred-tank slurry reactor (STSR) over a wide range of process conditions. Three STSR tests of the Ruhrchemie LP 33/81 catalyst were conducted to collect data on catalyst activity and selectivity under 25 different sets of process conditions. The observed decrease in 1-olefin content and increase in 2-olefin and n-paraffin contents with the increase in conversion are consistent with a concept that 1-olefins participate in secondary reactions (e.g. 1-olefin hydrogenation, isomerization and readsorption), whereas 2-olefins and n-paraffins are formed in these reactions. Carbon number product distribution showed an increase in chain growth probability with increase in chain length. Vapor-liquid equilibrium calculations were made to check validity of the assumption that the gas and liquid phases are in equilibrium during FTS in the STSR. Calculated vapor phase compositions were in excellent agreement with experimental values from the STSR under reaction conditions. Discrepancies between the calculated and experimental values for the liquid-phase composition (for some of the experimental data) are ascribed to experimental errors in the amount of wax collected from the reactor, and the relative amounts of hydrocarbon wax and Durasyn 164 oil (start-up fluid) in the liquid samples. Kinetic parameters of four kinetic models (Lox and Froment, 1993b; Yang et al., 2003; Van der Laan and Beenackers, 1998, 1999; and an extended kinetic model of Van der Laan and Beenackers) were estimated from experimental data in the STSR tests. Two of these kinetic models (Lox and Froment, 1993b; Yang et al., 2003) can predict a complete product distribution (inorganic species and hydrocarbons), whereas the kinetic model of Van der Laan and Beenackers (1998, 1999) can

  13. Fischer-Tropsch slurry catalysts for selective transportation fuel production

    SciTech Connect

    Carroll, W.E.; Cilen, N.; Withers, H.P. Jr.

    1986-01-01

    The future use of coal as a source of conventional transportation fuel will depend on the development of an economical and energy efficient liquefaction process. Technologies that have been commercially proven or that are close to commercialization include the fixed- and fluidized-bed Fischer-Tropsch (FT) synthesis, methanol synthesis (fixed-bed and slurry-phase) and the Mobil methanol-to-gasoline process. Of these technologies, the Fischer-Tropsch hydrocarbon synthesis produces the widest slate of products and has been in operation for the longest period.

  14. [Determination of low-carbon alcohols, aldehydes and ketones in aqueous products of Fischer-Tropsch synthesis by gas chromatography].

    PubMed

    Gai, Qingqing; Wu, Peng; Shi, Yulin; Bai, Yu; Long, Yinhua

    2015-01-01

    A method for the determination of low-carbon (C1-C8) alcohols, aldehydes and ketones in aqueous products of Fischer-Tropsch synthesis was developed by gas chromatography. It included the optimization of separation conditions, the precision and accuracy of determination, and the use of correction factors of the analytes to ethanol for quantification. The aqueous products showed that the correlation coefficients for ethanol in different content ranges were above 0.99, which means it had good linear correlations. The spiked recoveries in the aqueous samples of Fischer-Tropsch synthesis were from 93.4% to 109.6%. The accuracy of the method can satisfy the requirement for the analysis of the aqueous samples of Fischer-Tropsch synthesis. The results showed that the total mass fractions of the major low-carbon alcohols, aldehydes, ketones in aqueous products of Fischer-Tropsch synthesis were about 3%-12%, and the contents of ethanol were the highest (about 1.7%-7.3%). The largest share of the total proportion was n-alcohols, followed by isomeric alcohols, aldehydes and ketones were the lowest. This method is simple, fast, and has great significance for the analysis of important components in aqueous products of Fischer-Tropsch synthesis. PMID:25958675

  15. Improved Fischer-Tropsch catalysts for indirect coal liquefaction. Final report

    SciTech Connect

    Wilson, R.B. Jr.; Tong, G.T.; Chan, Y.W.; Huang, H.W.; McCarty, J.G.

    1989-02-01

    The Fischer-Tropsch synthesis (FTS)reaction is the established technology for the production of liquid fuels from coal by an indirect route using coal-derived syngas (CO + H{sub 2}). Modern FTS catalysts are potassium- and copper-promoted iron preparations. These catalysts exhibit moderate activity with carbon monoxide-rich feedstocks such as the syngas produced by advanced coal gasification processes. However, the relatively large yields of by-product methane and high-molecular-weight hydrocarbon waxes detract from the production of desired liquid products in the C{sub 5}-C{sub 16} range needed for motor and aviation fuel. The goal of this program is to decrease undesirable portions of the FTS hydrocarbon yield by altering the Schultz-Flory polymerization product distribution through design and formulation of improved catalysts. Two approaches were taken: (1) reducing the yield of high-molecular-weight hydrocarbon waxes by using highly dispersed catalysts produced from surface-confined multiatomic clusters on acid supports and (2) suppressing methane production by uniformly pretreating active, selective conventional FTS catalysts with submonolayer levels of sulfur.

  16. Synthesis and catalytic properties of eggshell cobalt catalysts for the Fischer-Tropsch synthesis

    SciTech Connect

    Iglesia, E.; Soled, S.L.; Baumgartner, J.E.

    1995-04-15

    CO diffusional restrictions decrease the rate and C{sup +}{sub 5} selectivity in large (1-3 mm) catalyst pellets required for Fischer-Tropsch synthesis in packed bed reactors. Eggshell catalysts, in which the active Co component is preferentially located near the outer pellet surface, decrease these transport restrictions and increase Fischer-Tropsch synthesis rates and C{sup +}{sub 5} selectivity. Maximum C{sup +}{sub 5} selectivities occur on catalysts with intermediate shell thickness, because these catalysts avoid intrapellet CO concentration gradients but still restrict the diffusive removal of reactive olefin products, which can readsorb and continue to grow to higher molecular weight hydrocarbons. Eggshell catalysts were prepared by a novel impregnation technique using molten cobalt nitrate. The eggshell thickness is controlled by the melt viscosity and by the contact time between the melt and the support pellet. These impregnation procedures and the slow reduction of the impregnated nitrate salts lead to relatively high cobalt dispersions (0.05-0.07) even at the high Co concentrations (40-50 wt%) present within the shell region. 51 refs., 8 figs., 4 tabs.

  17. Performance testing with a gas-liquid-solid system in a mechanically-stirred reactor: The Fischer-Tropsch synthesis

    SciTech Connect

    Donnelly, T.J.; Satterfield, C.N.

    1987-01-01

    Careful attention to reactor operating procedures and methods of product trapping and analysis is required to obtain accurate and reliable data on selectivity and kinetics when a wide variety of products are formed. Useful methods are discussed in detail. The focus of attention is on use of iron-based Fischer-Tropsch catalysts studied in a well-mixed slurry reactor, but many of the findings apply to other catalysts and reactor systems used for Fischer-Tropsch synthesis or to other reactions in which a complex mixture of products is formed. Some apparent discrepancies in the literature regarding catalyst activity and selectivity in Fischer-Tropsch synthesis are explained by analysis of the pertinent experimental systems. 50 refs., 4 figs., 2 tabs.

  18. Reaction engineering of slurry phase Fischer-Tropsch synthesis with porous cobalt catalysts

    SciTech Connect

    Han, Y.H.; Li, F.; Fujimoto, Kaoru

    1997-12-31

    Fischer-Tropsch synthesis was conducted in the slurry phase using a stirred reactor and supported cobalt catalysts. Under well stirred conditions, neither the mass transfer between the gas-solid interface nor the liquid-solid interface was found to be the rate limiting step in the reaction sequence. The catalytic activity and product selectivity were markedly affected by the particle size for small pore (20 angstroms) catalyst while those of a large pore catalyst were not affected by the particle where the partial diameter is larger than 0.1 mm. The phenomena were well simulated by theoretical calculations.

  19. Fischer-Tropsch synthesis over MOF-supported cobalt catalysts (Co@MIL-53(Al)).

    PubMed

    Isaeva, V I; Eliseev, O L; Kazantsev, R V; Chernyshev, V V; Davydov, P E; Saifutdinov, B R; Lapidus, A L; Kustov, L M

    2016-07-26

    Novel nanohybrid materials were prepared by immobilizing Co nanoparticles on a microporous framework MIL-53(Al) as a porous host matrix. The synthesized cobalt-containing materials were characterized by XRD, STEM, and oxygen titration. The catalytic performance of Co@MIL-53(Al) nanohybrids was examined in Fischer-Tropsch synthesis (FTS) for the first time. A higher selectivity to C5+ hydrocarbons and lower selectivity to methane for Co@MIL-53(Al) as compared to conventional Co/Al2O3 were observed. PMID:27389315

  20. Effect of process conditions on olefin selectivity during conventional and supercritical Fischer-Tropsch synthesis

    SciTech Connect

    Bukur, D.B.; Lang, X.; Akgerman, A.; Feng, Z.

    1997-07-01

    A precipitated iron catalyst (100 Fe/5 Cu/4.2 K/25 SiO{sub 2} on mass basis) was tested in a fixed-bed reactor under a variety of process conditions during conventional Fischer-Tropsch synthesis (FTS) and supercritical Fischer-Tropsch synthesis (SFTS). In both modes of operation it was found that: total olefin content decreases whereas 2-olefin content increases with either increase in conversion or H{sub 2}/CO molar feed ratio. Total olefin and 2-olefin selectivities were essentially independent of reaction temperature. The effect of conversion was more pronounced during conventional FTS. Comparison of olefin selectivities in the two modes of operation reveals that total olefin content is greater while the 2-olefin content is smaller during SFTS. Also, both the decrease in total olefin content and the increase in 2-olefin content with increase in carbon number (i.e., molecular weight of hydrocarbon products) was significantly less pronounced during SFTS in comparison to the conventional FTS. The obtained results suggest that 1-olefins, and to a smaller extent n-paraffins, are the primary products of FTS. Secondary reactions (isomerization, hydrogenation, and readsorption) of high molecular weight {alpha}-olefins occur to a smaller extent during SFTS, due to higher diffusivities and desorption rates of {alpha}-olefins in the supercritical propane than in the liquid-filled catalyst pores (conventional FTS).

  1. Iron Aerogel and Xerogel Catalysts for Fischer-Tropsch Synthesis of Diesel Fuel

    SciTech Connect

    Bali, S.; Huggins, F; Huffman, G; Ernst, R; Pugmire, R; Eyring, E

    2009-01-01

    Iron aerogels, potassium-doped iron aerogels, and potassium-doped iron xerogels have been synthesized and characterized and their catalytic activity in the Fischer-Tropsch (F-T) reaction has been studied. Iron aerogels and xerogels were synthesized by polycondensation of an ethanolic solution of iron(III) chloride hexahydrate with propylene oxide which acts as a proton scavenger for the initiation of hydrolysis and polycondensation. Potassium was incorporated in the iron aerogel and iron xerogel by adding aqueous K{sub 2}CO{sub 3} to the ethanolic solutions of the Fe(III) precursor prior to addition of propylene oxide. Fischer-Tropsch activities of the catalysts were tested in a fixed bed reactor at a pressure of 100 psi with a H{sub 2}:CO ratio of 2:1. Iron aerogels were found to be active for F-T synthesis, and their F-T activities increased on addition of a K containing promoter. Moessbauer spectroscopic data are consistent with an open, nonrigid iron(III) aerogel structure progressing to an iron carbide/metallic iron catalyst via agglomeration as the F-T synthesis proceeds in the course of a 35 h fixed bed reaction test.

  2. Synthesis of octane enhancers during slurry-phase Fischer-Tropsch

    SciTech Connect

    Marcelin, G.

    1992-09-24

    The objective of this project is to investigate three possible routes to the formation of ethers, in particular methyl tert-butyl (MTBE), during slurry phase Fischer-Tropsch reaction. The three reaction schemes to be investigated are: addition of i-butylene during the formation of methanol and/or higher alcohols directly from CO and H[sub 2] during slurry-phase Fischer-Tropsch; addition of i-butylene to FT liquid products including alcohols in a slurry-phase reactor containing an MTBE or other acid catalyst; and addition of methanol to slurry phase FT synthesis making iso-olefins. During the seventh quarter we continued the shake down experiments for the SBCR and conducted an initial aborted run. We have also re-started experiments on Scheme 1, i.e., the addition of iso-butylene during CO hydrogenation. Using a dual bed arrangement, we have demonstrated the synthesis of MTBE from syngas and iso-butylene.

  3. State-of-the-art processes for manufacturing synthetic liquid fuels via the Fischer-Tropsch synthesis

    SciTech Connect

    A.Y. Krylova; E.A. Kozyukov

    2007-12-15

    Processes for manufacturing synthetic liquid fuels on the basis of the Fischer-Tropsch synthesis from alternative feedstock (natural gas, coal, biomass of various origins, etc.) are surveyed. State-of-the-art technology, companies that offer such processes, and the quality of products in comparison with their oil analogs, as well as economic features of the processes, are considered.

  4. Platinum-Modulated Cobalt Nanocatalysts for Low-Temperature Aqueous-Phase Fischer Tropsch Synthesis

    SciTech Connect

    Wang, Hang; Zhou, Wu; Liu, JinXun; Si, Rui; Sun, Geng; Zhong, Mengqi; Su, Haiyan; Zhao, Huabo; Rodrigues, Jose; Pennycook, Stephen J; Idrobo Tapia, Juan C; Li, Weixue; Kou, Yuan; Ma, Ding

    2013-01-01

    Fischer Tropsch synthesis (FTS) is an important catalytic process for liquid fuel generation, which converts coal/shale gas/biomass-derived syngas (a mixture of CO and H2) to oil. While FTS is thermodynamically favored at low temperature, it is desirable to develop a new catalytic system that could allow working at a relatively low reaction temperature. In this article, we present a one-step hydrogenation reduction route for the synthesis of Pt Co nanoparticles (NPs) which were found to be excellent catalysts for aqueous-phase FTS at 433 K. Coupling with atomic-resolution scanning transmission electron microscopy (STEM) and theoretical calculations, the outstanding activity is rationalized by the formation of Co overlayer structures on Pt NPs or Pt Co alloy NPs. The improved energetics and kinetics from the change of the transition states imposed by the lattice mismatch between the two metals are concluded to be the key factors responsible for the dramatically improved FTS performance.

  5. Fischer-Tropsch synthesis on hierarchically structured cobalt nanoparticle/carbon nanofiber/carbon felt composites.

    PubMed

    Zarubova, Sarka; Rane, Shreyas; Yang, Jia; Yu, Yingda; Zhu, Ye; Chen, De; Holmen, Anders

    2011-07-18

    The hierarchically structured carbon nanofibers (CNFs)/carbon felt composites, in which CNFs were directly grown on the surface of microfibers in carbon felt, forming a CNF layer on a micrometer range that completely covers the microfiber surfaces, were tested as a novel support material for cobalt nanoparticles in the highly exothermic Fischer-Tropsch (F-T) synthesis. A compact, fixed-bed reactor, made of disks of such composite materials, offered the advantages of improved heat and mass transfer, relatively low pressure drop, and safe handling of immobilized CNFs. An efficient 3-D thermal conductive network in the composite provided a relatively uniform temperature profile, whereas the open structure of the CNF layer afforded an almost 100 % effectiveness of Co nanoparticles in the F-T synthesis in the fixed bed. The greatly improved mass and heat transport makes the compact reactor attractive for applications in the conversion of biomass, coal, and natural gas to liquids. PMID:21563315

  6. Metal organic framework-mediated synthesis of highly active and stable Fischer-Tropsch catalysts.

    PubMed

    Santos, Vera P; Wezendonk, Tim A; Jaén, Juan José Delgado; Dugulan, A Iulian; Nasalevich, Maxim A; Islam, Husn-Ubayda; Chojecki, Adam; Sartipi, Sina; Sun, Xiaohui; Hakeem, Abrar A; Koeken, Ard C J; Ruitenbeek, Matthijs; Davidian, Thomas; Meima, Garry R; Sankar, Gopinathan; Kapteijn, Freek; Makkee, Michiel; Gascon, Jorge

    2015-01-01

    Depletion of crude oil resources and environmental concerns have driven a worldwide research on alternative processes for the production of commodity chemicals. Fischer-Tropsch synthesis is a process for flexible production of key chemicals from synthesis gas originating from non-petroleum-based sources. Although the use of iron-based catalysts would be preferred over the widely used cobalt, manufacturing methods that prevent their fast deactivation because of sintering, carbon deposition and phase changes have proven challenging. Here we present a strategy to produce highly dispersed iron carbides embedded in a matrix of porous carbon. Very high iron loadings (>40 wt %) are achieved while maintaining an optimal dispersion of the active iron carbide phase when a metal organic framework is used as catalyst precursor. The unique iron spatial confinement and the absence of large iron particles in the obtained solids minimize catalyst deactivation, resulting in high active and stable operation. PMID:25740709

  7. Metal organic framework-mediated synthesis of highly active and stable Fischer-Tropsch catalysts

    NASA Astrophysics Data System (ADS)

    Santos, Vera P.; Wezendonk, Tim A.; Jaén, Juan José Delgado; Dugulan, A. Iulian; Nasalevich, Maxim A.; Islam, Husn-Ubayda; Chojecki, Adam; Sartipi, Sina; Sun, Xiaohui; Hakeem, Abrar A.; Koeken, Ard C. J.; Ruitenbeek, Matthijs; Davidian, Thomas; Meima, Garry R.; Sankar, Gopinathan; Kapteijn, Freek; Makkee, Michiel; Gascon, Jorge

    2015-03-01

    Depletion of crude oil resources and environmental concerns have driven a worldwide research on alternative processes for the production of commodity chemicals. Fischer-Tropsch synthesis is a process for flexible production of key chemicals from synthesis gas originating from non-petroleum-based sources. Although the use of iron-based catalysts would be preferred over the widely used cobalt, manufacturing methods that prevent their fast deactivation because of sintering, carbon deposition and phase changes have proven challenging. Here we present a strategy to produce highly dispersed iron carbides embedded in a matrix of porous carbon. Very high iron loadings (>40 wt %) are achieved while maintaining an optimal dispersion of the active iron carbide phase when a metal organic framework is used as catalyst precursor. The unique iron spatial confinement and the absence of large iron particles in the obtained solids minimize catalyst deactivation, resulting in high active and stable operation.

  8. Slurry phase Fischer-Tropsch synthesis: Cobalt plus a water-gas shift catalyst

    SciTech Connect

    Chanenchuk, C.A.; Yates, I.C.; Satterfield, C.N.

    1990-01-01

    Experiments to study the cobalt-catalyzed and iron-catalyzed reactions of light 1-alkenes added to synthesis gas have been performed and analyzed. On cobalt, data have been obtained at 220{degrees}C, 0.45 to 1.48 MPA and a synthesis gas flow rate between 0.015 and 0.030 Nl/gcat/min with H{sub 2}/CO feeds of 1.45 to 2.25. On fused iron, data were collected at 248{degrees}C, 0.79 to 1.48 MPa and a synthesis gas flow rate between 0.005 and 0.030 Nl/gcat/min of H{sub 2}/CO feeds of 0.5 to 1.5 C{sub 2}H{sub 4}, C{sub 3}H{sub 6}, and 1-C{sub 4}H{sub 8} were added to the synthesis gas feed in concentrations ranging from 0.5 to 1.2 mol. % of total feed. 1-Alkenes incorporate into growing chains on the catalyst surface of both catalysts, probably by initiating and/or terminating the chain growth process. Only ethene is believed to propagate chain growth significantly. The propensity of the 1-alkenes to incorporate decreases with increasing carbon number of the 1-alkene. The double-{alpha} behavior which is exhibited by most Fischer-Tropsch catalysts can be explained as the sum of two growth processes, one stepwise single-carbon growth and the other 1-alkene incorporation. Both alkene addition study data and the effects of process variables on the selectivity of Fischer-Tropsch catalysts can be explained within the framework of this theory. 19 refs., 12 figs., 2 tabs.

  9. Isotopic tracer studies of Fischer-Tropsch Synthesis over Ru/TiO sub 2 catalysts

    SciTech Connect

    Krishna, K.R.

    1992-01-01

    Fischer-Tropsch synthesis is a process in which CO and H{sub 2} react to give predominantly liquid hydrocarbons. The reaction can be considered a special type of polymerization in which the monomer is produced in situ, and chain growth occurs by a sequence of independently repeated additions of the monomer to the growing chain. A investigation has been conducted to study the CO hydrogenation reaction in order to better understand catalyst deactivation and the elementary surface processes involved in chain growth. Isotopic tracers are used in conjunction with transient-response techniques in this study of Fischer-Tropsch synthesis over Ru/TiO{sub 2} catalysts. Experiments are conducted at a total pressure of 1 atmosphere, reaction temperatures of 453--498 K and D{sub 2}/CO (or H{sub 2}/CO) ratios of 2--5. Synthesis products are analyzed by gas chromatography or isotope-ratio gas chromatography-mass spectrometry. Rate constants for chain initiation, propagation and termination are evaluated under steady-state reaction conditions by using transients in isotopic composition. The activation energy for chain termination is much higher than that for propagation, accounting for the observed decrease in the chain growth parameter are also estimated. Coverages by reaction intermediates are also estimated. When small amounts of {sup 12}C-labelled ethylene are added to {sup 13}CO/H{sub 2} synthesis gas, ethylene acts as the sole chain initiator. Ethylene-derived carbon also accounts for 45% of the C{sub 1} monomer pool. 102 refs., 29 figs., 11 tabs.

  10. Isotopic tracer studies of Fischer-Tropsch Synthesis over Ru/TiO{sub 2} catalysts

    SciTech Connect

    Krishna, K.R.

    1992-01-01

    Fischer-Tropsch synthesis is a process in which CO and H{sub 2} react to give predominantly liquid hydrocarbons. The reaction can be considered a special type of polymerization in which the monomer is produced in situ, and chain growth occurs by a sequence of independently repeated additions of the monomer to the growing chain. A investigation has been conducted to study the CO hydrogenation reaction in order to better understand catalyst deactivation and the elementary surface processes involved in chain growth. Isotopic tracers are used in conjunction with transient-response techniques in this study of Fischer-Tropsch synthesis over Ru/TiO{sub 2} catalysts. Experiments are conducted at a total pressure of 1 atmosphere, reaction temperatures of 453--498 K and D{sub 2}/CO (or H{sub 2}/CO) ratios of 2--5. Synthesis products are analyzed by gas chromatography or isotope-ratio gas chromatography-mass spectrometry. Rate constants for chain initiation, propagation and termination are evaluated under steady-state reaction conditions by using transients in isotopic composition. The activation energy for chain termination is much higher than that for propagation, accounting for the observed decrease in the chain growth parameter are also estimated. Coverages by reaction intermediates are also estimated. When small amounts of {sup 12}C-labelled ethylene are added to {sup 13}CO/H{sub 2} synthesis gas, ethylene acts as the sole chain initiator. Ethylene-derived carbon also accounts for 45% of the C{sub 1} monomer pool. 102 refs., 29 figs., 11 tabs.

  11. Titania-supported bimetallic catalysts combined with HZSM-5 for Fischer-Tropsch synthesis

    SciTech Connect

    Jothimurugesan, K.; Gangwal, S.K.

    1998-04-01

    The Fischer-Tropsch synthesis (FTS) can convert coal or natural gas derived synthesis gas (CO + H{sub 2}) to liquid fuels and high-value chemicals. Fischer-Tropsch synthesis was studied in a fixed-bed reactor over single-metal and bimetallic alloy catalysts, selected from Co, Ni, and Fe, supported on TiO{sub 2} at a total metal loading of 10 wt%. The catalysts, prepared by incipient wetness impregnation using nitrate precursors, were tested as is and in combination with a HZSM-5 zeolite. The test conditions were 1 MPa, 250 C, H{sub 2}/CO = 1, and weight hourly space velocity (WHSV) = 0.77 h{sup {minus}1}. Alloying of metals resulted in a significant enhancement in CO conversion without an increase in methane selectivity. A 50:50 weight ratio Co-Ni catalyst physically mixed with HZSM-5 (5% Co-5% Ni/TiO{sub 2} + HZSM-5) gave the highest CO conversion (45.2%) at the conditions tested. This compares to conversion of 8.9% and 10.5% with Co-only and Ni-only catalysts, respectively. Mixing the Co-Ni catalyst with HZSM-5 resulted in a significant reduction in methane selectivity and a significant increase in C{sub 4}{sup +} selectivity. The aromatic fraction increased from 1.5 to 8.1 wt%, the C{sub 2}{sup +} olefins were nearly eliminated, and i-C{sub 4}H{sub 10} increased from 2.3 to 58.5 wt % in the C{sub 4} fraction.

  12. Techno-economic assessment of integrating methanol or Fischer-Tropsch synthesis in a South African sugar mill.

    PubMed

    Petersen, Abdul M; Farzad, Somayeh; Görgens, Johann F

    2015-05-01

    This study considered an average-sized sugar mill in South Africa that crushes 300 wet tonnes per hour of cane, as a host for integrating methanol and Fischer-Tropsch synthesis, through gasification of a combined flow of sugarcane trash and bagasse. Initially, it was shown that the conversion of biomass to syngas is preferably done by catalytic allothermal gasification instead of catalytic autothermal gasification. Thereafter, conventional and advanced synthesis routes for both Methanol and Fischer-Tropsch products were simulated with Aspen Plus® software and compared by technical and economic feasibility. Advanced FT synthesis satisfied the overall energy demands, but was not economically viable for a private investment. Advanced methanol synthesis is also not viable for private investment since the internal rate of return was 21.1%, because it could not provide the steam that the sugar mill required. The conventional synthesis routes had less viability than the corresponding advanced synthesis routes. PMID:25727762

  13. Kinetic model of product distribution over Fe catalyst for Fischer-Tropsch synthesis

    SciTech Connect

    Rongle Zhang; Jie Chang; Yuanyuan Xu; Liren Cao; Yongwang Li; Jinglai Zhou

    2009-09-15

    A new kinetic model of the Fischer-Tropsch synthesis (FTS) is proposed to describe the non-Anderson-Schulz-Flory (ASF) product distribution. The model is based on the double-polymerization monomers hypothesis, in which the surface C{sub 2}{asterisk} species acts as a chain-growth monomer in the light-product range, while C{sub 1}{asterisk} species acts as a chain-growth monomer in the heavy-product range. The detailed kinetic model in the Langmuir-Hinshelwood-Hougen-Watson type based on the elementary reactions is derived for FTS and the water-gas-shift reaction. Kinetic model candidates are evaluated by minimization of multiresponse objective functions with a genetic algorithm approach. The model of hydrocarbon product distribution is consistent with experimental data (

  14. ɛ-Iron carbide as a low-temperature Fischer-Tropsch synthesis catalyst

    NASA Astrophysics Data System (ADS)

    Xu, Ke; Sun, Bo; Lin, Jun; Wen, Wen; Pei, Yan; Yan, Shirun; Qiao, Minghua; Zhang, Xiaoxin; Zong, Baoning

    2014-12-01

    ɛ-Iron carbide has been predicted to be promising for low-temperature Fischer-Tropsch synthesis (LTFTS) targeting liquid fuel production. However, directional carbidation of metallic iron to ɛ-iron carbide is challenging due to kinetic hindrance. Here we show how rapidly quenched skeletal iron featuring nanocrystalline dimensions, low coordination number and an expanded lattice may solve this problem. We find that the carbidation of rapidly quenched skeletal iron occurs readily in situ during LTFTS at 423-473 K, giving an ɛ-iron carbide-dominant catalyst that exhibits superior activity to literature iron and cobalt catalysts, and comparable to more expensive noble ruthenium catalyst, coupled with high selectivity to liquid fuels and robustness without the aid of electronic or structural promoters. This finding may permit the development of an advanced energy-efficient and clean fuel-oriented FTS process on the basis of a cost-effective iron catalyst.

  15. Fischer-Tropsch Synthesis: Characterization and Reaction Testing of Cobalt Carbide

    SciTech Connect

    Khalid S.; Mohandas J.C.; Gnanamani M.K.; Jacobs G.; Ma W.; Ji Y.; Davis B.H.

    2011-08-15

    Hydrogenation of carbon monoxide was investigated for cobalt carbide synthesized from Co{sub 3}O{sub 4} by CO carburization in a fixed-bed reactor. The cobalt carbide synthesized was characterized by BET surface area, X-ray diffraction, scanning electron microscopy, X-ray absorption near edge spectroscopy, and extended X-ray absorption fine structure spectroscopy. The catalysts were tested in the slurry phase using a continuously stirred tank reactor at P = 2.0 MPa, H{sub 2}/CO = 2:1 in the temperature range of 493-523 K, and with space velocities varying from 1 to 3 Nl h{sup -1} g{sub cat}{sup -1}. The results strongly suggest that a fraction of cobalt converts to a form with greater metallic character under the conditions employed. This was more pronounced on a Fischer-Tropsch synthesis run conducted at a higher temperature (523 versus 493 K).

  16. Nitrided iron catalysts for the Fischer-Tropsch synthesis in the eighties

    SciTech Connect

    Anderson, R.B.

    1980-01-01

    A survey covers the preparation and structure of nitrided iron catalysts and their activity, selectivity, and stability for the reaction of synthesis gas in comparison with iron catalysts pretreated by various other methods, as measured in laboratory reactors; a comparison of product distributions obtained in fluidized-bed, slurry, and oil-circulation fixed bed pilot plants with nitrided catalysts and by the Kellogg entrained catalyst process SASOL, which uses a reduced iron catalyst; and possible methods for refining the Fischer-Tropsch products from nitrided iron catalysts for producing gasoline, including bauxite treatment, the Mobil process for converting oxygenates to high-octane gasoline and C/sub 3/-C/sub 4/ olefins, and an alkylation-polymerization process for converting the C/sub 3/-C/sub 4/ fraction to high-octane blending stocks.

  17. ε-Iron carbide as a low-temperature Fischer-Tropsch synthesis catalyst.

    PubMed

    Xu, Ke; Sun, Bo; Lin, Jun; Wen, Wen; Pei, Yan; Yan, Shirun; Qiao, Minghua; Zhang, Xiaoxin; Zong, Baoning

    2014-01-01

    ε-Iron carbide has been predicted to be promising for low-temperature Fischer-Tropsch synthesis (LTFTS) targeting liquid fuel production. However, directional carbidation of metallic iron to ε-iron carbide is challenging due to kinetic hindrance. Here we show how rapidly quenched skeletal iron featuring nanocrystalline dimensions, low coordination number and an expanded lattice may solve this problem. We find that the carbidation of rapidly quenched skeletal iron occurs readily in situ during LTFTS at 423-473 K, giving an ε-iron carbide-dominant catalyst that exhibits superior activity to literature iron and cobalt catalysts, and comparable to more expensive noble ruthenium catalyst, coupled with high selectivity to liquid fuels and robustness without the aid of electronic or structural promoters. This finding may permit the development of an advanced energy-efficient and clean fuel-oriented FTS process on the basis of a cost-effective iron catalyst. PMID:25503569

  18. Chain growth in the Fischer-Tropsch synthesis

    SciTech Connect

    Stockwell, D.M.

    1987-01-01

    Methanation and hydrocarbon synthesis from CO and H/sub 2/ was studied using 10 wt% Ni/Al/sub 2/O/sub 3/ and 10 wt% Fe/Al/sub 2/O/sub 3/ catalysts at 1 atm. Transient responses to the switches between various feed mixtures, especially isotopically labeled feeds, to a gradientless microreactor were used to obtain information on the amounts and reactivities of intermediates on and in the catalysts. On Ni/Al/sub 2/O/sub 3/, about 0.5 monolayer of adsorbed CO and smaller amounts of C are present during reaction. Infrared and CO/D/sub 2/ suggest that significant amounts of CH/sub x/ (x = 1-3) are not present. Chain growth experiments with /sup 13/CO/H/sub 2/ indicate that the hydrocarbons are formed primarily from C, but the results also indicate that the process is not fully understood. All steps in methanation and chain growth appear to be fast, except for the limiting steps CO ..-->.. C and C ..-->.. CH. On Fe/Al/sub 2/O/sub 3/, methanation and chain growth occur via CH, with all steps except the initial conversion of CH apparently being fast. Bulk iron carbides and an inactive form of carbon, different from C on Ni/Al/sub 2/O/sub 3/, do not participate significantly. The CH deactivates slowly with time on stream; only a small portion produces most of the products after 2 h on stream. Other work concerned H/sub 2/ chemisorption on various supported metal catalysts. Using TPD, an unusual spike was found after low temperature adsorption on Ru/SiO/sub 2/. The activated adsorption of H/sub 2/ on Fe/SiO/sub 2/, Fe/Al/sub 2/O/sub 3/, Ni/AlO/sub 3/, and Rh/TiO/sub 2/ was compared. It was suggested that, by analogy to titania-supported metals, the origin of the activation barrier may lie in a decoration phenomenon. It was proposed that SiO/sub x/ and AlO/sub x/ species may have been derived from small amounts of support which dissolved in the impregnating solution.

  19. Hydrodynamics of Fischer-Tropsch synthesis in slurry bubble column reactors: Final report

    SciTech Connect

    Bukur, D.B.; Daly, J.G.; Patel, S.A.; Raphael, M.L.; Tatterson, G.B.

    1987-06-01

    This report describes studies on hydrodynamics of bubble columns for Fischer-Tropsch synthesis. These studies were carried out in columns of 0.051 m and 0.229 m in diameter and 3 m tall to determine effects of operating conditions (temperature and gas flow rate), distributor type (sintered metal plate and single and multi-hole perforated plates) and liquid media (paraffin and reactor waxes) on gas hold-up and bubble size distribution. In experiments with the Fischer-Tropsch (F-T) derived paraffin wax (FT-300) for temperatures between 230 and 280/sup 0/C there is a range of gas velocities (transition region) where two values of gas hold-up (i.e., two flow regimes) are possible. Higher hold-ups were accompanied by the presence of foam (''foamy'' regime) whereas lower values were obtained in the absence of foam (''slug flow'' in the 0.051 m column, or ''churn-turbulent'' flow regime in the 0.229 m column). This type of behavior has been observed for the first time in a system with molten paraffin wax as the liquid medium. Several factors which have significant effect on foaming characteristics of this system were identified. Reactor waxes have much smaller tendency to foam and produce lower hold-ups due to the presence of larger bubbles. Finally, new correlations for prediction of the gas hold-up and the specific gas-liquid interfacial area were developed on the basis of results obtained in the present study. 49 refs., 99 figs., 19 tabs.

  20. Aspen Process Flowsheet Simulation Model of a Battelle Biomass-Based Gasification, Fischer-Tropsch Liquefaction and Combined-Cycle Power Plant

    SciTech Connect

    1998-10-30

    This study was done to support the research and development program of the National Renewable Energy Laboratory (NREL) in the thermochemical conversion of biomass to liquid transportation fuels using current state-of-the-art technology. The Mitretek study investigated the use of two biomass gasifiers; the RENUGAS gasifier being developed by the Institute of Gas Technology, and the indirectly heated gasifier being developed by Battelle Columbus. The Battelle Memorial Institute of Columbus, Ohio indirectly heated biomass gasifier was selected for this model development because the syngas produced by it is better suited for Fischer-Tropsch synthesis with an iron-based catalyst for which a large amount of experimental data are available. Bechtel with Amoco as a subcontractor developed a conceptual baseline design and several alternative designs for indirect coal liquefaction facilities. In addition, ASPEN Plus process flowsheet simulation models were developed for each of designs. These models were used to perform several parametric studies to investigate various alternatives for improving the economics of indirect coal liquefaction.

  1. Elementary steps in Fischer-Tropsch synthesis: CO bond scission, CO oxidation and surface carbiding on Co(0001)

    NASA Astrophysics Data System (ADS)

    Weststrate, C. J.; van Helden, P.; van de Loosdrecht, J.; Niemantsverdriet, J. W.

    2016-06-01

    Dissociation of CO on a Co(0001) surface is explored in the context of Fischer-Tropsch synthesis on cobalt catalysts. Experiments show that CO dissociation can occur on defect sites around 330 K, with an estimated barrier between 90 and 104 kJ mol- 1. Despite the ease of CO dissociation on defect sites, extensive carbon deposition onto the cobalt surface up to 0.33 ML requires a combination of high surface temperature and a relatively high CO pressure. Experimental data on the CO oxidation reaction indicate a high reaction barrier for the CO + O reaction, and it is argued that, due to the rather strong Co-O bond, (i) oxygen removal is the rate-limiting step during surface carbidization and (ii) in the context of Fischer-Tropsch synthesis, removal of surface oxygen rather than CO bond scission might be limiting the overall reaction rate.

  2. Preparation of a novel structured catalyst based on aligned carbon nanotube arrays for a microchannel Fischer-Tropsch synthesis reactor

    SciTech Connect

    Chin, Ya-Huei; Hu, Jianli; Cao, Chunshe; Gao, Yufei; Wang, Yong

    2005-12-15

    A novel catalyst microstructure based on aligned multiwall carbon nanotube arrays was synthesized. Its advanced heat and mass transport characteristics coupled with high surface area led to superior performances for Fischer-Tropsch synthesis in a microchannel chemical reactor. The fabrication of such a novel catalyst structure first involved metalorganic chemical vapor deposition (MOCVD) growth of a dense Al2O3 thin film over FeCrAlY foam substrate to enhance adhesion between catalyst layer and metal substrate. Aligned arrays of multiwall carbon nanotubes were grown over the substrate by catalytic decomposition of ethylene. These nanotube bundles were directly attached to the FeCrAlY substrate through a thin layer of oxide thin film. When the outer surfaces of nanobundles were coated with a catalyst layer, a unique hierarchical catalyst structure with nanoporous interstitials between the bundles was created. Thus, engineered catalysts based on such a novel hierarchical structure minimizes mass transfer encountered in the gas-liquid-solid three phase reactions. In addition, high thermal conductivity of carbon nanotube and the direct attachment of these nanobundles to the metal foam allow efficient heat removal from catalytic sites. The advanced heat and mass transfer on this novel structured catalyst was demonstrated in Fischer-Tropsch synthesis in a microchannel fixed bed reactor. The presence of carbon nanotube arrays improved dispersion of active metals and reduced mass transfer limitation, leading to a factor of four enhancement of Fischer-Tropsch synthesis activity. The improved temperature control with the carbon nanotube arrays also allows the Fischer-Tropsch synthesis being operated at temperatures as high as 265 C without reaction runaway favoring methane formation.

  3. Mechanistic role of water on the rate and selectivity of Fischer-Tropsch synthesis on ruthenium catalysts.

    PubMed

    Hibbitts, David D; Loveless, Brett T; Neurock, Matthew; Iglesia, Enrique

    2013-11-18

    Water increases Fischer-Tropsch synthesis (FTS) rates on Ru through H-shuttling processes. Chemisorbed hydrogen (H*) transfers its electron to the metal and protonates the O-atom of CO* to form COH*, which subsequently hydrogenates to *HCOH* in the kinetically relevant step. H2 O also increases the chain length of FTS products by mediating the H-transfer steps during reactions of alkyl groups with CO* to form longer-chain alkylidynes and OH*. PMID:24123803

  4. Silicon carbide coated with TiO2 with enhanced cobalt active phase dispersion for Fischer-Tropsch synthesis.

    PubMed

    Liu, Yuefeng; Florea, Ileana; Ersen, Ovidiu; Pham-Huu, Cuong; Meny, Christian

    2015-01-01

    The introduction of a thin layer of TiO2 on β-SiC allows a significant improvement of the cobalt dispersion. This catalyst exhibits an excellent and stable catalytic activity for the Fischer-Tropsch synthesis (FTS) with high C5+ selectivity, which contributes to the development of a new active catalyst family in the gas-to-liquid process. PMID:25387082

  5. Fischer-Tropsch synthesis in slurry-reactor systems. Quarterly report, August 1, 1981-October 31, 1981

    SciTech Connect

    Satterfield, C.N.; Bartos, T.; Huff, G.A. Jr.; Stenger, H.

    1981-01-01

    A large quantity of data were obtained with the fused iron catalyst under intrinsic kinetic conditions, covering for the first time 50 and 200 psi. These data are being analyzed for information about overall rates and product selectivity. Preliminary conclusions about a rate model are presented. Study of the effects of suspended solids on gas-liquid mass transfer was started. Most previous information is on aqueous systems, which is not readily translatable into predicted effects in organic liquids such as Fischer-Tropsch liquids. The most promising and useful method at present appears to be a chemical method based on absorption of CO/sub 2/ into an organic solution of an amine. A paper on a stirred-autoclave apparatus for studying the Fischer-Tropsch synthesis in a slurry bed in included.

  6. Gasoline range ether synthesis from light naphtha products of fluid catalytic cracking of Fischer-Tropsch wax

    SciTech Connect

    Reagan, W.J.

    1994-12-31

    The Fluid Catalytic Cracking of Fischer-Tropsch wax (C{sub 20}{sup +} paraffins) produces two to four time the concentration of reactive iso-olefins (isobutylene, isoamylenes, isohexenes) than observed from conventional gas oil feedstocks. Methanol reacts with these olefins to form the corresponding tertiary alkyl ethyl ethers: MTBE, TAME and MTHE`s. These etherification reactions are mildly exothermic and equilibrium limited. The reaction temperature and the olefin molecular structure are important variables for maximum ether yields. The base naphtha research octane number increases by 2-4 numbers after the etherification reaction. The presence of hydrogen has a detrimental affect on ether yields because of hydrogenation of reactive olefins to paraffins. The catalytic cracking of Fischer-Tropsch wax provides a non-conventional source of olefins for ether synthesis that can supplement existing and dwindling petroleum supplies.

  7. Lipid synthesis under hydrothermal conditions by Fischer-Tropsch-type reactions

    NASA Technical Reports Server (NTRS)

    McCollom, T. M.; Ritter, G.; Simoneit, B. R.

    1999-01-01

    Ever since their discovery in the late 1970's, mid-ocean-ridge hydrothermal systems have received a great deal of attention as a possible site for the origin of life on Earth (and environments analogous to mid-ocean-ridge hydrothermal systems are postulated to have been sites where life could have originated or Mars and elsewhere as well). Because no modern-day terrestrial hydrothermal systems are free from the influence of organic compounds derived from biologic processes, laboratory experiments provide the best opportunity for confirmation of the potential for organic synthesis in hydrothermal systems. Here we report on the formation of lipid compounds during Fischer-Tropsch-type synthesis from aqueous solutions of formic acid or oxalic acid. Optimum synthesis occurs in stainless steel vessels by heating at 175 degrees C for 2-3 days and produces lipid compounds ranging from C2 to > C35 which consist of n-alkanols, n-alkanoic acids, n-alkenes, n-alkanes and alkanones. The precursor carbon sources used are either formic acid or oxalic acid, which disproportionate to H2, CO2 and probably CO. Both carbon sources yield the same lipid classes with essentially the same ranges of compounds. The synthesis reactions were confirmed by using 13C labeled precursor acids.

  8. Highly active and stable iron Fischer-Tropsch catalyst for synthesis gas conversion to liquid fuels

    SciTech Connect

    Bukur, D.B.; Lang, X.

    1999-09-01

    A precipitated iron Fischer-Tropsch (F-T) catalyst (100 Fe/3 Cu/4 K/16 SiO{sub 2} on mass basis) was tested in a stirred tank slurry reactor under reaction conditions representative of industrial practice using CO-rich synthesis gas (260 C, 1.5--2.2 MPa, H{sub 2}/CO = 2/3). Repeatability of performance and reproducibility of catalyst preparation procedure were successfully demonstrated on a laboratory scale. Catalyst productivity was increased by operating at higher synthesis pressure while maintaining a constant contact time in the reactor and through the use of different catalyst pretreatment procedures. In one of the tests (run SA-2186), the catalyst productivity was 0.86 (g hydrocarbons/g Fe/h) at syngas conversion of 79%, methane selectivity of 3% (weight percent of total hydrocarbons produced), and C{sub 5}+ hydrocarbon selectivity of 83 wt %. This represents a substantial improvement in productivity in comparison to state-of-the-art iron F-T catalysts. This catalyst is ideally suited for production of high-quality diesel fuels and C{sub 2}-c{sub 4} olefins from a coal-derived synthesis gas.

  9. Researching Fe catalyst suitable for CO{sub 2}-containing syngas for Fischer-Tropsch synthesis

    SciTech Connect

    Wensheng Ning; Naoto Koizumi; Muneyoshi Yamada

    2009-09-15

    Fischer-Tropsch (FT) synthesis is a technology to produce liquid fuels from coal, natural gas, and biomass as an alternate to crude oil. However, the quantity of emitted CO{sub 2} from the FT process consisting of syngas preparation, FT synthesis, and product workup is one of the serious disadvantages of FT process. The conversion of CO{sub 2} into hydrocarbons is one of the promising methods to decrease CO{sub 2} emissions. Effects of promoter addition on the activity of precipitated Fe catalysts for the conversion of CO{sub 2} were studied using pure CO{sub 2} and CO{sub 2}-containing syngas feeds. The results suggested that CO{sub 2} can be activated by suitable promoter(s) for hydrocarbon synthesis at low temperature. Low K content is suitable for increasing hydrocarbon yield. The Fe catalysts promoted by equal Zn and Cu have higher CO and CO{sub 2} conversion and decreased CH{sub 4} selectivity. 36 refs., 7 figs., 3 tabs.

  10. Fischer-Tropsch synthesis in supercritical reaction media. Progress report, July 10, 1992--September 30, 1992

    SciTech Connect

    Subramaniam, B.

    1992-10-01

    The goal of this research is to thoroughly investigate the feasibility of using supercritical fluid (SCF) solvent medium for carrying out Fischer-Tropsch (FT) synthesis. Research will address the systematic experimental investigations of FT synthesis over supported Fe and Co catalysts in a CSTR and in a fixed-bed reactor at typical synthesis temperatures (240-260{degrees}C). The SCF medium to be employed is n-Hexane (P{sub c} = 29.7 bar; {Tc} = 233.7{degrees}C), while n-Hexadecane will be employed as the liquid reaction medium. Overall conversion, product distribution and catalyst deactivation will be measured in each case for various feed H{sub 2}/CO ratios ranging from 0.5 to 2. Product analyses will be carried out using GC/TCD, GC/FID and GC/MS systems. The fresh and used catalysts will be characterized with respect to active metal dispersion, surface area and pore size distribution.

  11. Pyrolysis-GCMS Analysis of Solid Organic Products from Catalytic Fischer-Tropsch Synthesis Experiments

    NASA Technical Reports Server (NTRS)

    Locke, Darren R.; Yazzie, Cyriah A.; Burton, Aaron S.; Niles, Paul B.; Johnson, Natasha M.

    2015-01-01

    Abiotic synthesis of complex organic compounds in the early solar nebula that formed our solar system is hypothesized to occur via a Fischer-Tropsch type (FTT) synthesis involving the reaction of hydrogen and carbon monoxide gases over metal and metal oxide catalysts. In general, at low temperatures (less than 200 C), FTT synthesis is expected to form abundant alkane compounds while at higher temperatures (greater than 200 C) it is expected to product lesser amounts of n-alkanes and greater amounts of alkene, alcohol, and polycyclic aromatic hydrocarbons (PAHs). Experiments utilizing a closed-gas circulation system to study the effects of FTT reaction temperature, catalysts, and number of experimental cycles on the resulting solid insoluble organic products are being performed in the laboratory at NASA Goddard Space Flight Center. These experiments aim to determine whether or not FTT reactions on grain surfaces in the protosolar nebula could be the source of the insoluble organic matter observed in meteorites. The resulting solid organic products are being analyzed at NASA Johnson Space Center by pyrolysis gas chromatography mass spectrometry (PY-GCMS). PY-GCMS yields the types and distribution of organic compounds released from the insoluble organic matter generated from the FTT reactions. Previously, exploratory work utilizing PY-GCMS to characterize the deposited organic materials from these reactions has been reported. Presented here are new organic analyses using magnetite catalyst to produce solid insoluble organic FTT products with varying reaction temperatures and number of experimental cycles.

  12. Research Opportunities for Fischer-Tropsch Technology

    SciTech Connect

    Jackson, Nancy B.

    1999-06-30

    Fischer-Tropsch synthesis was discovered in Germany in the 1920's and has been studied by every generation since that time. As technology and chemistry, in general, improved through the decades, new insights, catalysts, and technologies were added to the Fischer-Tropsch process, improving it and making it more economical with each advancement. Opportunities for improving the Fischer-Tropsch process and making it more economical still exist. This paper gives an overview of the present Fischer-Tropsch processes and offers suggestions for areas where a research investment could improve those processes. Gas-to-liquid technology, which utilizes the Fischer Tropsch process, consists of three principal steps: Production of synthesis gas (hydrogen and carbon monoxide) from natural gas, the production of liquid fuels from syngas using a Fischer-Tropsch process, and upgrading of Fischer-Tropsch fuels. Each step will be studied for opportunities for improvement and areas that are not likely to reap significant benefits without significant investment.

  13. Fischer-Tropsch synthesis in supercritical phase carbon dioxide: Recycle rates

    NASA Astrophysics Data System (ADS)

    Soti, Madhav

    With increasing oil prices and attention towards the reduction of anthropogenic CO2, the use of supercritical carbon dioxide for Fischer Tropsch Synthesis (FTS) is showing promise in fulfilling the demand of clean liquid fuels. The evidence of consumption of carbon dioxide means that it need not to be removed from the syngas feed to the Fischer Tropsch reactor after the gasification process. Over the last five years, research at SIUC have shown that FTS in supercritical CO2reduces the selectivities for methane, enhances conversion, reduces the net CO2produces in the coal to liquid fuels process and increase the life of the catalyst. The research has already evaluated the impact of various operating and feed conditions on the FTS for the once through process. We believe that the integration of unreacted feed recycle would enhance conversion, increase the yield and throughput of liquid fuels for the same reactor size. The proposed research aims at evaluating the impact of recycle of the unreacted feed gas along with associated product gases on the performance of supercritical CO2FTS. The previously identified conditions will be utilized and various recycle ratios will be evaluated in this research once the recycle pump and associated fittings have been integrated to the supercritical CO2FTS. In this research two different catalysts (Fe-Zn-K, Fe-Co-Zn-K) were analyzed under SC-FTS in different recycle rate at 350oC and 1200 psi. The use of recycle was found to improve conversion from 80% to close to 100% with both catalysts. The experiment recycle rate at 4.32 and 4.91 was clearly surpassing theoretical recycle curve. The steady state reaction rate constant was increased to 0.65 and 0.8 min-1 for recycle rate of 4.32 and 4.91 respectively. Carbon dioxide selectivity was decreased for both catalyst as it was converting to carbon monoxide. Carbon dioxide consumption was increased from 0.014 to 0.034 mole fraction. This concluded that CO2is being used in the system and

  14. Platinum-modulated cobalt nanocatalysts for low-temperature aqueous-phase Fischer-Tropsch synthesis.

    PubMed

    Wang, Hang; Zhou, Wu; Liu, Jin-Xun; Si, Rui; Sun, Geng; Zhong, Meng-Qi; Su, Hai-Yan; Zhao, Hua-Bo; Rodriguez, Jose A; Pennycook, Stephen J; Idrobo, Juan-Carlos; Li, Wei-Xue; Kou, Yuan; Ma, Ding

    2013-03-13

    Fischer-Tropsch synthesis (FTS) is an important catalytic process for liquid fuel generation, which converts coal/shale gas/biomass-derived syngas (a mixture of CO and H2) to oil. While FTS is thermodynamically favored at low temperature, it is desirable to develop a new catalytic system that could allow working at a relatively low reaction temperature. In this article, we present a one-step hydrogenation-reduction route for the synthesis of Pt-Co nanoparticles (NPs) which were found to be excellent catalysts for aqueous-phase FTS at 433 K. Coupling with atomic-resolution scanning transmission electron microscopy (STEM) and theoretical calculations, the outstanding activity is rationalized by the formation of Co overlayer structures on Pt NPs or Pt-Co alloy NPs. The improved energetics and kinetics from the change of the transition states imposed by the lattice mismatch between the two metals are concluded to be the key factors responsible for the dramatically improved FTS performance. PMID:23428163

  15. Manganese-oxide-supported iron Fischer-Tropsch synthesis catalysts: physical and catalytic characterization

    SciTech Connect

    Kreitman, K.M.; Baerns, M.; Butt, J.B.

    1987-06-01

    It has been claimed that catalysts containing iron and manganese are especially selective for production of low molecular weight olefins in the Fischer-Tropsch (FT) synthesis. In this study a new system, manganese-oxide-supported iron, Fe/MnO, was prepared, subjected to various calcination and reduction treatments, and then employed as a FT catalyst. Reaction studies were run with approximately 1/1: CO/H/sub 2/ feed at 515 and 540 K and 7.8 and 14.8 bar pressure. Although low conversions were employed, the synthesis rate decreased strongly with increasing conversion. Compared to conventional Fe catalysts, the Fe/MnO was more active for water-gas shift and less selective for methane and alcohols, especially at higher conversions, lower temperature, and higher pressure. Olefin selectivity was high, hydrogen chemisorption was depressed, and secondary hydrogenation was not apparent. In general it is concluded that the manganese-supported iron does promote FT selectivity for low molecular weight olefins, but at the expense of high CO/sub 2/ formation.

  16. Nanocrystalline Iron-Ore-Based Catalysts for Fischer-Tropsch Synthesis.

    PubMed

    Yong, Seok; Park, Ji Chan; Lee, Ho-Tae; Yang, Jung-Il; Hong, SungJun; Jung, Heon; Chun, Dong Hyun

    2016-02-01

    Nanocrystalline iron ore particles were fabricated by a wet-milling process using an Ultra Apex Mill, after which they were used as raw materials of iron-based catalysts for low-temperature Fischer-Tropsch synthesis (FTS) below 280 degrees C, which usually requires catalysts with a high surface area, a large pore volume, and a small crystallite size. The wet-milling process using the Ultra Apex Mill effectively destroyed the initial crystallite structure of the natural iron ores of several tens to hundreds of nanometers in size, resulting in the generation of nanocrystalline iron ore particles with a high surface area and a large pore volume. The iron-ore-based catalysts prepared from the nanocrystalline iron ore particles effectively catalyzed the low-temperature FTS, displaying a high CO conversion (about 90%) and good C5+ hydrocarbon productivity (about 0.22 g/g(cat)(-h)). This demonstrates the feasibility of using the iron-ore-based catalysts as inexpensive and disposable catalysts for the low-temperature FTS. PMID:27433720

  17. Insight into CH(4) formation in iron-catalyzed Fischer-Tropsch synthesis.

    PubMed

    Huo, Chun-Fang; Li, Yong-Wang; Wang, Jianguo; Jiao, Haijun

    2009-10-21

    Spin-polarized density functional theory calculations have been performed to investigate the carbon pathways and hydrogenation mechanism for CH(4) formation on Fe(2)C(011), Fe(5)C(2)(010), Fe(3)C(001), and Fe(4)C(100). We find that the surface C atom occupied sites are more active toward CH(4) formation. In Fischer-Tropsch synthesis (FTS), CO direct dissociation is very difficult on perfect Fe(x)C(y) surfaces, while surface C atom hydrogenation could occur easily. With the formation of vacancy sites by C atoms escaping from the Fe(x)C(y) surface, the CO dissociation barrier decreases largely. As a consequence, the active carburized surface is maintained. Based on the calculated reaction energies and effective barriers, CH(4) formation is more favorable on Fe(5)C(2)(010) and Fe(2)C(011), while Fe(4)C(100) and Fe(3)C(001) are inactive toward CH(4) formation. More importantly, it is revealed that the reaction energy and effective barrier of CH(4) formation have a linear relationship with the charge of the surface C atom and the d-band center of the surface, respectively. On the basis of these correlations, one can predict the reactivity of all active surfaces by analyzing their surface properties and further give guides for catalyst design in FTS. PMID:19780531

  18. Potential for Coal-to-Liquids Conversion in the United States-Fischer-Tropsch Synthesis

    SciTech Connect

    Patzek, Tad W. Croft, Gregory D.

    2009-09-15

    The United States has the world's largest coal reserves and Montana the highest potential for mega-mine development. Consequently, a large-scale effort to convert coal to liquids (CTL) has been proposed to create a major source of domestic transportation fuels from coal, and some prominent Montanans want to be at the center of that effort. We calculate that the energy efficiency of the best existing Fischer-Tropsch (FT) process applied to average coal in Montana is less than 1/2 of the corresponding efficiency of an average crude oil refining process. The resulting CO{sub 2} emissions are 20 times (2000%) higher for CTL than for conventional petroleum products. One barrel of the FT fuel requires roughly 800 kg of coal and 800 kg of water. The minimum energy cost of subsurface CO{sub 2} sequestration would be at least 40% of the FT fuel energy, essentially halving energy efficiency of the process. We argue therefore that CTL conversion is not the most valuable use for the coal, nor will it ever be, as long as it is economical to use natural gas for electric power generation. This finding results from the low efficiency inherent in FT synthesis, and is independent of the monumental FT plant construction costs, mine construction costs, acute lack of water, and the associated environmental impacts for Montana.

  19. Silylated Co/SBA-15 catalysts for Fischer-Tropsch synthesis

    SciTech Connect

    Jia Lihong; Jia Litao; Li Debao; Hou Bo; Wang Jungang; Sun Yuhan

    2011-03-15

    A series of silylated Co/SBA-15 catalysts were prepared via the reaction of surface Si-OH of SBA-15 with hexamethyldisilazane (HMDS) under anhydrous, vapor-phase conditions, and then characterized by FT-IR, N{sub 2} physisorption, TG, XRD, and TPR-MS. The results showed that organic modification led to a silylated SBA-15 surface composed of stable hydrophobic Si-(CH{sub 3}){sub 3} species even after calcinations and H{sub 2} reduction at 673 K. Furthermore, the hydrophobic surface strongly influenced both metal dispersion and reducibility. Compared with non-silylated Co/SBA, Co/S-SBA (impregnation after silylation) showed a high activity, due to the better cobalt reducibility on the hydrophobic support. However, S-Co/SBA (silylation after impregnation) had the lowest FT activity among all the catalysts, due to the lower cobalt reducibility along with the steric hindrance of grafted -Si(CH{sub 3}){sub 3} for the re-adsorption of {alpha}-olefins. -- Graphical abstract: The silylation of an SBA-15 before cobalt impregnation enhanced the reducibility of cobalt oxides on an SBA-15-supported cobalt catalyst and consequently increased the catalytic activity for Fischer-Tropsch synthesis. Display Omitted

  20. Fischer-Tropsch synthesis in near-critical n-hexane: Pressure-tuning effects

    SciTech Connect

    Bochniak, D.J.; Subramaniam, B.

    1998-08-01

    For Fe-catalyzed Fischer-Tropsch (FT) synthesis with near-critical n-hexane (P{sub c} = 29.7 bar; T{sub c} = 233.7 C) as the reaction medium, isothermal pressure tuning from 1.2--2.4 P{sub c} (for n-hexane) at the reaction temperature (240 C) significantly changes syngas conversion and product selectivity. For fixed feed rates of syngas (H{sub 2}/CO = 0.5; 50 std. cm{sup 3}/g catalyst) and n-hexane (1 mL/min), syngas conversion attains a steady state at all pressures, increasing roughly threefold in this pressure range. Effective rate constants, estimated assuming a first-order dependence of syngas conversion on hydrogen, reveal that the catalyst effectiveness increases with pressure implying the alleviation of pore-diffusion limitations. Pore accessibilities increase at higher pressures because the extraction of heavier hydrocarbons from the catalyst pores is enhanced by the liquid-like densities, yet better-than-liquid transport properties, of n-hexane. This explanation is consistent with the single {alpha} (= 0.78) Anderson-Schulz-Flory product distribution, the constant chain termination probability, and the higher primary product (1-olefin) selectivities ({approximately}80%) observed at the higher pressures. Results indicate that the pressure tunability of the density and transport properties of near-critical reaction media offers a powerful tool to optimize catalyst activity and product selectivity during FT reactions on supported catalysts.

  1. Nanocrystalline Ferrihydrite-Based Catalysts for Fischer-Tropsch Synthesis: Part I. Reduction and Carburization Behavior.

    PubMed

    Chun, Dong Hyun; Park, Ji Chan; Rhim, Geun Bae; Lee, Ho-Tae; Yang, Jung-Il; Jung, Heon

    2016-02-01

    Temperature-programmed reduction using H2 (H2-TPR) and CO (CO-TPR) was carried out to investigate the reduction and carburization behavior of nanocrystalline ferrihydrite-based Fe/Cu/K/SiO2 catalysts for use in Fischer-Tropsch synthesis (FTS). Unlike pure ferrihydrite, the ferrihydrite-based catalysts did not pass through the intermediate decomposition step of ferrihydrite (Fe9O2(OH)23) into hematite (a-Fe2O3) as they were reduced into magnetite (Fe3O4). This is attributed to the enhanced thermal stability induced by SiO2. For the ferrihydrite-based catalysts, the reduction of ferrihydrite into magnetite occurred in two stages because the reduction promoter, Cu, is not homogeneously distributed on the catalyst surfaces. The Cu-rich sites are likely to be reduced in the first stage, and the Cu-lean sites may be reduced in the second stage. After the ferrihydrite is reduced to magnetite, the reduction process of magnetite was similar to that for conventional hematite-based FTS catalysts: 'magnetite --> metallic iron' and 'magnetite --> wüstite (FeO) or fayalite (Fe2SiO4) --> metallic iron' in the H2 atmosphere; 'magnetite --> iron carbides' in the CO atmosphere. PMID:27433641

  2. Incorporation of catalytic dehydrogenation into Fischer-Tropsch synthesis to lower carbon dioxide emissions

    SciTech Connect

    Huffman, Gerald P

    2012-09-18

    A method for producing liquid fuels includes the steps of gasifying a starting material selected from a group consisting of coal, biomass, carbon nanotubes and mixtures thereof to produce a syngas, subjecting that syngas to Fischer-Tropsch synthesis (FTS) to produce a hyrdrocarbon product stream, separating that hydrocarbon product stream into C1-C4 hydrocarbons and C5+ hydrocarbons to be used as liquid fuels and subjecting the C1-C4 hydrocarbons to catalytic dehydrogenation (CDH) to produce hydrogen and carbon nanotubes. The hydrogen produced by CDH is recycled to be mixed with the syngas incident to the FTS reactor in order to raise the hydrogen to carbon monoxide ratio of the syngas to values of 2 or higher, which is required to produce liquid hydrocarbon fuels. This is accomplished with little or no production of carbon dioxide, a greenhouse gas. The carbon is captured in the form of a potentially valuable by-product, multi-walled carbon nanotubes (MWNT), while huge emissions of carbon dioxide are avoided and very large quantities of water employed for the water-gas shift in traditional FTS systems are saved.

  3. In situ reduction study of cobalt model Fischer-Tropsch synthesis catalysts.

    PubMed

    du Plessis, Hester Esna; Forbes, Roy Peter; Barnard, Werner; Erasmus, Willem Johannes; Steuwer, Axel

    2013-07-28

    Fischer-Tropsch (FT) synthesis is an important process to manufacture hydrocarbons and oxygenated hydrocarbons from mixtures of carbon monoxide and hydrogen (syngas). The catalysis process occurs on, for example, cobalt metal surfaces at elevated temperatures and pressures. A fundamental understanding of the reduction pathway of supported cobalt oxides, and the intermediate species present during the activation, can assist in developing improved industrial supported cobalt catalysts. Hard synchrotron X-rays have the unique ability to probe atomic processes both in terms of phases present as well as the crystallographic and local structure (using the pair distribution function approach) under realistic conditions. In this manuscript we present results from measurements during in situ hydrogen activation of a model Co/alumina catalyst using in situ synchrotron X-ray powder diffraction and pair-distribution function (PDF) analysis on beam line ID31 at the ESRF in Grenoble, France. The PDF analysis showed a substantially improved understanding of the reduction of cobalt oxides, as for the first time all cobalt could be accounted for by using total scattering analysis. PMID:23752408

  4. Utilization of cobalt catalyst for high temperature Fischer-Tropsch synthesis in a fluidized bed reactor

    NASA Astrophysics Data System (ADS)

    Mabry, James C.

    The research determined that the improved heat transfer characteristics of a fluidized bed reactor (FBR) will allow the use of cobalt catalyst for high temperature Fischer-Tropsch synthesis (HTFT). Cobalt was loaded onto a gamma alumina support, the catalyst was characterized using TPR, BET/BJH, XRD, and PSA to track changes in the catalyst morphology. The reactor was characterized to determine the minimum fluidization velocity and the maximum velocity prior to entering lean phase fluidization with pneumatic transport of the catalyst. The highest minimum fluidization velocity was found to be about 2800 sccm, there was no maximum velocity found for the reactor setup. Once characterized, the reactor was operated at pressures of 145, 217.6, and 290.1 psig, a syngas flow rate of 4000 sccm, and at temperatures of 330 and 350 °C. The optimal conditions found in this study were 330 °C and 217 psig. At these conditions CO conversion was 83.53 % for a single pass. Methane, CO2, and light gases (C2 -- C4) selectivities were at low rates of 31.43, 5.80, and 3.48 % respectively. Alcohol selectivity at these conditions was non-existent. The olefin and wax selectivities were the lowest of the data set at 7.05 and 3.18 % respectively. Liquid transportation fuels selectivity was the highest at 56.11 %.

  5. The renaissance of iron-based Fischer-Tropsch synthesis: on the multifaceted catalyst deactivation behaviour.

    PubMed

    de Smit, Emiel; Weckhuysen, Bert M

    2008-12-01

    Iron-based Fischer-Tropsch catalysts, which are applied in the conversion of CO and H2 into longer hydrocarbon chains, are historically amongst the most intensively studied systems in heterogeneous catalysis. Despite this, fundamental understanding of the complex and dynamic chemistry of the iron-carbon-oxygen system and its implications for the rapid deactivation of the iron-based catalysts is still a developing field. Fischer-Tropsch catalysis is characterized by its multidisciplinary nature and therefore deals with a wide variety of fundamental chemical and physical problems. This critical review will summarize the current state of knowledge of the underlying mechanisms for the activation and eventual deactivation of iron-based Fischer-Tropsch catalysts and suggest systematic approaches for relating chemical identity to performance in next generation iron-based catalyst systems (210 references). PMID:19020686

  6. Low nitrogen iron-containing Fischer-Tropsch catalyst and conversion of synthesis gas therewith

    SciTech Connect

    Bell, W.K.; Haag, W.O.; Kirker, G.W.; Klocke, D.J.

    1987-08-11

    This patent describes a process for converting syngas to hydrocarbons comprising: (a) contacting an iron-containing Fischer-Tropsch catalyst with a syngas stream under conditions effective to achieve high conversion of the syngas to substantial amounts of C/sub 3//sup +/ carbon compounds; (b) contacting the effluent stream from (a) with a shape selective crystalline zeolite having a Constraint Index of about 1 to 12; and (c) recovering from the effluent stream of (b) gasoline and distillate materials; the improvement which comprises preparing the iron-containing Fischer-Tropsch catalyst by a process which continuously precipitates an aqueous solution containing iron nitrate with aqueous ammonia at a pH of about 6.5 to 6.9 and a temperature ranging from about 70/sup 0/ to 100/sup 0/C and thereafter washing the resulting precipitate with an aqueous wash solution to produce a Fischer-Tropsch catalyst containing less than about 500 ppm nitrogen.

  7. Studying the fischer tropsch synthesis on alumina support cobalt base catalyst in fixed bed reactor

    NASA Astrophysics Data System (ADS)

    Oues, Adnan Khalil

    A Fischer-Tropsch catalyst composed of cobalt supported on alumina was prepared. This catalyst was cobalt/alumina (Co/AL2O3). The physical characterization of the catalyst was conducted using surface area analysis through the BET method, and particle size analysis. Fischer-Tropsch experiments were conducted in a fixed bed reactor. A flow rate of 100sml/min was selected based experimentally. Two temperatures were 330, and 350°C, and three different pressures as follows 145, 217.6, and 290 psig. The results were evaluated and studied based on conversion of hydrogen and carbon monoxide, in addition to selectivity of products.

  8. Role of CO{sub 2} in the initiation of chain growth during the Fischer-Tropsch synthesis

    SciTech Connect

    Davis, B.H.; Xu, L.; Bao, S.; Tau, L.M.; Chawla, B.; Dabbagh, H.

    1994-12-31

    Data are presented to show that alcohols produce hydrocarbons during the Fischer-Tropsch Synthesis (FTS) that are not consistent with a simple initiation mechanism. The data is believed to be consistent with accumulation of hydrocarbon products in the reactor during the synthesis CO{sub 2} is produced directly from the alcohol, and not by the reverse carbonylation reaction. CO{sub 2} also initiates chain growth in the FTS, and the initiation intermediate is presumed to be the same intermediate as in the water-gas-shift reaction.

  9. Ordered mesoporous carbon nanochannel reactors for high-performance Fischer-Tropsch synthesis.

    PubMed

    Ha, Kyoung-Su; Kwak, Geunjae; Jun, Ki-Won; Hwang, Jongkook; Lee, Jinwoo

    2013-06-01

    A hexagonally ordered mesoporous carbon, CMK-3, was utilized as a support for a Fischer-Tropsch catalyst. Each array of elongated pore structures with Co nanoparticles can be regarded as a nanochannel reactor. Due to the pore confinement and the hydrophobic nature of the support, this catalyst demonstrated excellent catalytic performance. PMID:23482917

  10. Activation studies with a precipitated iron catalyst for Fischer-Tropsch synthesis. II. Reaction studies

    SciTech Connect

    Bukur, D.B.; Nowicki, L.; Manne, R.K.; Lang, Xiaosu

    1995-09-01

    Effects of pretreatment conditions on catalyst performance (activity, selectivity, and stability with time) during Fischer-Tropsch (FT) synthesis were studied in a fixed-bed reactor using a commercial precipitated iron catalyst (100 Fe/5 Cu/4.2K/25 SiO{sub 2} on a mass basis). The catalyst activity increased slightly with time-on-stream after hydrogen reductions, which was accompanied with conversion of metallic iron and part of iron oxides to {epsilon}{prime}-carbide ({epsilon}{prime}-Fe{sub 22}C). Initial activity of the H{sub 2}-reduced catalyst at 280{degrees}C for 8 or 24 h was markedly lower than that obtained in other tests. This is attributed to slow carburization of large oxide particles and partial poisoning of catalyst sites by migration of sulfur from the bulk to the surface of the catalyst during the reduction. Pretreatments with carbon monoxide and syngas resulted in partial conversion of Fe{sub 2}O{sub 3} to {chi}-carbide ({chi}-Fe{sub 5}C{sub 2}). During FT synthesis the CO- and the syngas-pretreated catalyst deactivated slowly with time-on-stream, due to partial conversion of {chi}-carbide to less active iron oxide phases and buildup of carbonaceous deposits which block the active sites. The hydrogen-reduced catalyst at 280{degrees}C, for 1-24h, produced more methane and gaseous hydrocarbons than the CO- or the syngas-pretreated catalyst and favored secondary reactions (1-olefin hydrogenation, isomerization, and readsorption). 41 refs., 5 figs., 2 tabs.

  11. Exploring iron-based multifunctional catalysts for Fischer-Tropsch synthesis: a review.

    PubMed

    Abelló, Sònia; Montané, Daniel

    2011-11-18

    The continuous increase in oil prices together with an increase in carbon dioxide concentration in the atmosphere has prompted an increased interest in the production of liquid fuels from non-petroleum sources to ensure the continuation of our worldwide demands while maximizing CO(2) utilization. In this sense, the Fischer-Tropsch (FT) technology provides a feasible option to render high value-added hydrocarbons. Alternative sources, such as biomass or coal, offer a real possibility to realize these purposes by making use of H(2)-deficient or CO(2)-rich syngas feeds. The management of such feeds ideally relies on the use of iron catalysts, which exhibit the unique ability to adjust the H(2)/CO molar ratio to an optimum value for hydrocarbon synthesis through the water-gas-shift reaction. Taking advantage of the emerging attention to hybrid FT-synthesis catalysts based on cobalt and their associated benefits, an overview of the current state of literature in the field of iron-based multifunctional catalysts is presented. Of particular interest is the use of zeolites in combination with a FT catalyst in a one-stage operation, herein named multifunctional, which offer key opportunities in the modification of desired product distributions and selectivity, to eventually overcome the quality limitations of the fuels prepared under intrinsic FT conditions. This review focuses on promising research activities addressing the conversion of syngas to liquid fuels mediated by iron-based multifunctional materials, highlights their preparation and properties, and discusses their implication and challenges in the area of carbon utilization through H(2)/CO(+CO(2)) mixtures. PMID:22083868

  12. Mechanism and kinetics of Fischer-Tropsch synthesis over supported ruthenium catalysts

    SciTech Connect

    Kellner, C.S.

    1981-06-01

    A detailed study of the kinetics of the Fischer-Tropsch synthesis of hydrocarbons, methanol, and acetaldehyde, over alumina- and silica-supported ruthenium catalysts has been carried out over a broad range of reaction conditions. Based on these results and information taken from the literature, mechanisms for the formation of normal paraffins, ..cap alpha..-olefins, methanol, and acetaldehyde have been proposed. Rate data were obtained between 448 and 548K, 1 and 10 atm, and H/sub 2//CO ratios between 1 and 3, utilizing a micro flow reactor operated at very low conversions. In addition to the studies performed with H/sub 2//CO mixtures, a series of experiments were carried out utilizing D/sub 2//CO mixtures. These studies were used to help identify rate limited steps and steps that were at equilibrium. A complementary investigation, carried out by in situ infrared spectroscopy, was performed using a Fourier Transform spectrometer. The spectra obtained were used to identify the modes of CO adsorption, the CO coverage, and the relative reactivity of different forms of adsorbed CO. It was established that CO adsorbs on alumina-supported Ru in, at least, two forms: (i) Ru-CO and (ii) OC-Ru-CO. Only the first of these forms participates in CO hydrogenation. The coverage of this species is described by a simple Langmuir isotherm. A reaction mechanism is presented for interpreting the kinetics of hydrocarbon synthesis, the olefin to paraffin ratio for each product, and the probability of chain propagation. Rate expressions based on this mechanism are reasonably consistent with the experimental data. Acetaldehyde, obtained mainly over silica-supported Ru, appears to be formed by a mechanism related to that for hydroformulation of olefins. The effect of the dispersion of Ru/Al/sub 2/O/sub 3/ catalysts on their specific activity and selectivity was also investigated. The specific activity for all products decreased rapidly with increasing dispersions.

  13. [Analysis of oxygenates from fischer-Tropsch synthesis oil using column liquid chromatography and gas chromatography-mass spectrography].

    PubMed

    Fan, Gaixian; Xu, Yuanyuan; Li, Ying; Li, Ying; Xiang, Hongwei; Li, Yongwang

    2007-11-01

    A liquid chromatographic column filled with silica gel of 100 - 200 mesh was used to separate cold trap oil from Fischer-Tropsch synthesis with dimethylsulfoxide (DMSO) as eluent. With this pretreatment method, the cold trap oil was separated into two major classes, namely, hydrocarbons and oxygenates. Minor components were also enriched and determined, and small peaks adjacent to big peaks and tailings were also well solved. The oxygenates were then analyzed with gas chromatography-mass spectrometry (GC-MS), and 139 components were identified. PMID:18257312

  14. Wrong-way behavior of fixed-bed reactor in a Fischer-Tropsch synthesis

    SciTech Connect

    Liu Quansheng; Zhang Zhixin; Zhou Jinglai

    1997-12-31

    Fischer-Tropsch Synthesis is one important way to produce liquid fuel from coal-based or natural gas-based syngas. This reaction system is a highly exothermic reaction system, so usually it is finished in a multitubular catalytic fixed-bed reactor of the heat-exchanger type. The control of the reactor maximal temperature and the temperature profile is the key to this type reactor. Generally one can use a steady state model to analyze the temperature profile of a fixed-bed reactor. In the view of dynamics, one should use a dynamic model to analyze the dynamic features of the reactors. The wrong-way behavior is one of these features and is caused by the difference in the speeds of propagation of the concentration and temperature disturbances in the bed. The wrong-way behavior refers to a transient temperature rise in the bed induced by a sudden reduction in the feed temperature. The cold feed cools the upstream section of the bed, and decreases the reaction rate and the conversion in this region, the cold fluid with higher than usual concentration of unconverted reactant eventually contacts hot catalyst particles in downstream section of the bed. This leads to very rapid reaction and a vigorous rate of heat release, which causes a transient temperature rise. The wrong-way behavior may damage the catalyst and initiate undesired side reactions and may lead to unexpected pitfalls in the operation and control and even to a runaway. The goal of this work is to assess the wrong-way behavior of the F-T reactor and the impact of the water-gas shift side-reaction on the wrong-way behavior.

  15. Manganese oxide-supported iron Fischer-Tropsch synthesis catalysts: physical and catalytic characterization

    SciTech Connect

    Kreitman, K.M.

    1986-01-01

    In this study, manganese oxide-supported iron (Fe/MnO) was prepared by impregnation of powdered manganese (II) oxide with aqueous iron(III) nitrate and subjected to various calcination and reduction treatments. It was then employed as a catalyst for Fischer-Tropsch Synthesis (FTS) and its steady-state activity and selectivity behavior was observed. The FTS reaction studies were run with nearly equimolal carbon monoxide/hydrogen feed at 515 and 540 K, 7.9 and 14.8 bar pressure. Feed conversion level was kept low in order to avoid transport limitations, and was varied by adjusting space velocity. The FTS reaction rate decreased strongly with increasing conversion. Compared to unpromoted iron catalysts, the Fe/MnO catalysts were more active for the water-gas shift reaction and less selective for methane and alcohols, especially at higher conversion, lower temperature and higher pressure. The olefin selectivity was high and secondary hydrogenation was not apparent. Catalysts calcined at higher temperature exhibited stronger effects of promotion, and yielded unusually high selectivity for C/sub 2/ to C/sub 4/ hydrocarbons at low temperature and high pressure. The general conclusion is that manganese promotion or iron can promote FTS selectivity towards low molecular weight olefins, but at the expense of high carbon dioxide formation. The Fe/MnO was also physically examined using Moessbauer spectroscopy and X-ray diffraction. Iron and manganese were found to interact strongly in the calcined catalyst, though extensive phase separation occurred during reduction. The promoting effects are apparently due to partial surface coverage of iron with MnO, the extent of which is enhanced by wetter reducing conditions.

  16. Fischer-Tropsch synthesis in slurry reactor systems. Quarterly report, November 1, 1983-January 31, 1984

    SciTech Connect

    Satterfield, C.N.; Bartos, T.; Hanlon, R.; Matsumoto, D.; Stenger, H.

    1984-01-01

    We have now completed and partially analyzed a series of studies on the effects of the nature of the liquid present on activity and seletivity of the Fischer-Tropsch synthesis, and the effects of partial poisoning of the catalyst by H/sub 2/S or dibenzothiophene (DBT). We discovered that the presence of a small amount of DBT (97.8 mg S per g of Fe in the catalyst) cut methane formation nearly in half under a set of reaction conditions of commercial importance (263/sup 0/C, 1.48 MPa, H/sub 2//CO feed ratio = 0.69). The selectivity remained constant for at least 200 hours. This is a very important finding since reduction of methane formation is highly desirable. The catalyst activity simultaneously dropped ten-fold but it should be possible to compensate for this in other ways at least in part such as by operation at higher pressure and/or temperature. Alternately, it may develop that lesser levels of catalyst poisoning may be nearly as effective with less loss of activity. These effects are not observed with H/sub 2/S. As far as we know the effects caused by DBT are brand new and have not been observed before. We plan to exploit this lead in several ways, including optimization of DBT level and reaction conditions; study of other heterocyclic sulfur compounds, effects of activation procedures and correlation of methane selectivity with catalyst carbiding as determined by Mossbauer spectroscopy. Also of some importance was the observation that operation in the presence of an aromatic liquid (phenanthrene) increased the rate of reaction by a factor of 1.5 to 1.8, everything else being held constant.

  17. An innovative catalyst system for slurry-phase Fischer-Tropsch synthesis: Cobalt plus a water-gas-shift catalyst

    SciTech Connect

    Satterfield, C.N.; Yates, I.C.; Chanenchuk, C.

    1991-07-01

    The feasibility of using a mechanical mixture of a Co/MgO/SiO{sub 2} Fischer-Tropsch catalyst and a Cu-ZnO/Al{sub 2}O{sub 3} water-gas-shift (WGS) catalyst for hydrocarbon synthesis in a slurry reactor has been established. Such a mixture can combine the superior product distribution from cobalt with the high activity for the WGS reaction characteristic of iron. Weight ratios of Co/MgO/SiO{sub 2} to Cu-ZnO/Al{sub 2}O{sub 3} of 0.27 and 0.51 for the two catalysts were studied at 240{degrees}C, 0.79 MPa, and in situ H{sub 2}/CO ratios between 0.8 and 3.0. Each catalyst mixture showed stable Fischer-Tropsch activity for about 400 hours-on-stream at a level comparable to the cobalt catalyst operating alone. The Cu-ZnO/Al{sub 2}O{sub 3} catalyst exhibited a very slow loss of activity under these conditions, but when operated alone it was stable in a slurry reactor at 200--220{degrees}C, 0.79--1.48 MPa, and H{sub 2}/CO in situ ratios between 1.0 and 2.0. The presence of the water-gas-shift catalyst did not affect the long-term stability of the primary Fischer-Tropsch selectivity, but did increase the extent of secondary reactions, such as l-alkene hydrogenation and isomerization.

  18. Synthesis of octane enhancer during slurry-phase Fischer-Tropsch. Quarterly technical progress report No. 4, July 1, 1991--September 30, 1991

    SciTech Connect

    Marcelin, G.

    1991-12-15

    The objective of this project is to investigate three possible routes to the formation of ethers, in particular methyl tert-butyl ether (MTBE), during slurry phase Fischer-Tropsch reaction. The three reaction schemes to be investigated are: Addition of isobutylene during the formation of methanol and/or higher alcohols directly from CO and H{sub 2} during slurry-phase Fischer-Tropsch. Addition of isobutylene to FT liquid products including alcohols in a slurry-phase reactor containing an MTBE or other acid catalyst. Addition of methanol to slurry phase FT synthesis making iso-olefins.

  19. Closed system Fischer-Tropsch synthesis over meteoritic iron, iron ore and nickel-iron alloy. [deuterium-carbon monoxide reaction catalysis

    NASA Technical Reports Server (NTRS)

    Nooner, D. W.; Gibert, J. M.; Gelpi, E.; Oro, J.

    1976-01-01

    Experiments were performed in which meteoritic iron, iron ore and nickel-iron alloy were used to catalyze (in Fischer-Tropsch synthesis) the reaction of deuterium and carbon monoxide in a closed vessel. Normal alkanes and alkenes and their monomethyl substituted isomers and aromatic hydrocarbons were synthesized. Iron oxide and oxidized-reduced Canyon Diablo used as Fischer-Tropsch catalysts were found to produce aromatic hydrocarbons in distributions having many of the features of those observed in carbonaceous chondrites, but only at temperatures and reaction times well above 300 C and 6-8 h.

  20. Synthesis of octane enhancers during slurry-phase Fischer-Tropsch. Quarterly technical progress report No. 3, April 1, 1991--June 30, 1991

    SciTech Connect

    Marcelin, G.

    1991-10-15

    The objective of this project is to investigate three possible routes to the formation of ethers, in particular methyl tert-butytl ether (MTBE), during slurry phase Fischer-Tropsch reaction. The three reaction schemes to be investigated are: (1) Addition of isobutylene during the formation of methanol and/or higher alcohols directly from CO and H{sub 2} during slurry-phase Fischer-Tropsch; (2) addition of isobutylene to FT liquid products including alcohols in a slurry-phase reactor containing an MTBE or other acid catalyst; and, (3) addition of methanol to slurry phase FT synthesis making iso-olefins.

  1. Synthesis of octane enhancers during slurry-phase Fischer-Tropsch. Quarterly technical progress report No. 5, October 1, 1991--December 31, 1991

    SciTech Connect

    Marcelin, G.

    1992-06-10

    The objective of this project is to investigate three possible routes to the formation of ethers, in particular methyl tert-butyl ether (MTBE), during slurry phase Fischer-Tropsch reaction. The three reaction schemes to be investigated are: Addition of isobutylene during the formation of methanol and/or higher alcohols directly from CO and H{sub 2} during slurry-phase Fischer-Tropsch. Addition of isobutylene to FT liquid products including alcohols in a slurry-phase reactor containing an MTBE or other acid catalyst. Addition of methanol to slurry phase FT synthesis making iso-olefins.

  2. Effect of 1-olefin addition on supercritical phase Fischer-Tropsch synthesis over Co/SiO{sub 2} catalyst

    SciTech Connect

    Yan, S.R.; Zhang, Z.X.; Zhou, J.L.; Fan, L.; Fujimoto, Kaoru

    1997-12-31

    Hydrocarbon wax produced by Fischer-Tropsch Synthesis (FTS) has been used in many fields for its high quality, such as high melting point, high hardness value, low viscosity, being nitrogen sulfur and aromatics-free. Selective synthesis of FT wax has generated great interest, especially in the case of lower oil-prices. As a polymerization process, however, in conventional gas phase FTS, selectivity of wax is constrained by the Anderson-Schultz-Flory (ASF) kinetics. Supercritical phase Fischer-Tropsch synthesis co-fed with 1-tetradecene over Co/SiO{sub 2} catalysts has been carried out. It was found that added 1-tetradecene could reach the surface of the catalyst by the aid of a supercritical fluid, and participate in the chain growth process there, which was indistinguishable from the original chain propagation. Consequently, the yield of hydrocarbons larger than C{sub 14} increased significantly, while the selectivity of C{sub 1}-C{sub 13} decreased correspondingly, which made the carbon number distribution deviate from ASF kinetics drastically. In addition, the analytical results of wax showed that average molecular weight and degree of saturation of the wax increased, while the content of oxygenates in the wax decreased due to the addition of 1-tetradecene.

  3. Fischer Tropsch synthesis in supercritical fluids. Quarterly technical progress report, October 1, 1993--December 31, 1993

    SciTech Connect

    Akgerman, A.; Bukur, D.B.

    1993-12-31

    Objectives for the first quarter for Task A, Diffusion Coefficients of F-T Products in Supercritical Fluids, were to measure diffusion coefficients of 1-tetradecene in subcritical propane and the diffusion coefficients of 1-octene and 1-tetradecene in subcritical propane and the diffusion coefficients of 1-octene and 1-tetradecene in subcritical and supercritical ethane. We planned to use ethane as a solvent because its lower critical temperature enabled measurements without modification of the existing unit. Our objective was to investigate the behavior of the diffusion coefficients in crossing from subcritical to supercritical conditions. Objectives for Task B, Fischer Tropsch reaction related studies, were: (1) to install and test the temperature probe and the flammable gas detector: (2) to conduct Fischer-Tropsch experiments at baseline conditions and at a high pressure in order to test the newly constructed fixed bed reactor assembly. Accomplishments and problems, are presented.

  4. Slurry phase Fischer-Tropsch synthesis: Cobalt plus a water-gas shift catalyst

    SciTech Connect

    Yates, I.C.; Satterfield, C.N.

    1988-01-01

    This report details experiments performed on three different copper-based catalysts: Cu/Cr[sub 2]O[sub 3], Cu/MnO/Cr[sub 2]O[sub 3] and Cu/ZnO/Al[sub 2]O[sub 3]. Of these three catalysts, the Cu/ZnO/Al[sub 2]O[sub 3] exhibits the greatest stability when slurried in octacosane. More than 1000 hours-on-stream indicate that the catalyst activity is not detrimentally affected by high pressure, high H[sub 2]/CO ratio, or the presence of alkenes. All of these are necessary stability characteristics for the water-gas shift catalyst, if it is to be used in combination with a cobalt Fischer-Tropsch catalyst. A review of documented reduction procedures for cobalt-based Fischer-Tropsch catalysts is presented.

  5. Nitrogen isotope fractionations in the Fischer-Tropsch synthesis and in the Miller-Urey reaction

    NASA Technical Reports Server (NTRS)

    King, C.-C.; Clayton, R. N.; Hayatsu, R.; Studier, M. H.

    1979-01-01

    Nitrogen isotope fractionations have been measured in Fischer-Tropsch and Miller-Urey reactions in order to determine whether these processes can account for the large N-15/N-14 ratios found in organic matter in carbonaceous chondrites. Polymeric material formed in the Fischer-Tropsch reaction was enriched in N-15 by only 3 per mil relative to the starting material (NH3). The N-15 enrichment in polymers from the Miller-Urey reaction was 10-12 per mil. Both of these fractionations are small compared to the 80-90 per mil differences observed between enstatite chondrites and carbonaceous chondrites. These large differences are apparently due to temporal or spatial variations in the isotopic composition of nitrogen in the solar nebula, rather than to fractionation during the production of organic compounds.

  6. Phase transformation of iron-based catalysts for Fischer-Tropsch synthesis

    NASA Astrophysics Data System (ADS)

    Jin, Yaming

    Fischer-Tropsch (F-T) synthesis is used to convert syngas to liquid hydrocarbons using iron-based catalysts. However, the nature of the active phase and phase transformations during F-T synthesis are not well understood. In this work, the phase transformations of Fe catalysts both during F-T synthesis and controlled treatment conditions have been studied using cross-section transmission electron microscopy, x-ray diffraction and Mossbauer spectroscopy. Catalyst samples were obtained from F-T synthesis runs at medium pressure (1.48 MPa) with a H2:CO ratio of 0.7. Samples were analyzed without removal of the wax to preserve the catalyst microstructure intact and prevent oxidation due to air exposure. In all active Fe catalysts, a highly dispersed chi-carbide (Fe5C2) phase with an average particle size <10 nm was seen to be present along with larger sized particles of hexagonal Fe 7C3. On the other hand, the carbide phase whose XRD pattern resembles that obtained by the Barton and Gale was found to be associated with catalysts of low activity. All carbide particles are covered with amorphous carbonaceous layers as seen by electron energy loss spectroscopy (EELS). In a series of separate experiments, phase transformations that occur during catalyst activation at atmospheric pressure were studied. During direct CO carburization of iron oxide at 250°C, multiple nucleation sites lead to formation of smaller Fe carbide particles predominantly of the Barton-Gale carbide. However, starting from metallic Fe we obtain a chi-carbide phase without significant change in particle size. Treatment in syngas (H 2:CO = 0.7) results in less complete carburization and larger particle sizes for both the carbide and the magnetite phases. The presence of trace amounts of water vapor during reduction appears to cause formation of large faceted magnetite crystals, which are difficult to further transform to the active carbide phase. The silica support is effective at keeping the Fe phases

  7. Mössbauer investigations of the Fe-Cu-Mn catalysts for Fischer-Tropsch synthesis

    NASA Astrophysics Data System (ADS)

    Spânu, Viorica; Filoti, G.; Ilie, Ioana; Zamfirescu, Elena

    1990-07-01

    In the selective process of the syngas conversion to synthetic gasoline a bifunctional catalytic system has to be used. It was obtained by combination a Fischer-Tropsch catalyst with the HZSM-5 zeolite. The phase compositions of the precursor and the fresh catalyst were established as well as the optimum thermal treatment. The catalyst was reduced in pure H2 or in a H2+CO mixture. The influence of the reduction and reaction conditions on the catalyst structure was investigated.

  8. Ordered mesoporous CoMOx (M = Al or Zr) mixed oxides for Fischer-Tropsch synthesis.

    PubMed

    Ahn, Chang-Il; Lee, Yun Jo; Um, Soong Ho; Bae, Jong Wook

    2016-04-01

    A superior structural stability of the ordered mesoporous CoMOx synthesized by using the KIT-6 template was observed under Fischer-Tropsch reaction conditions. The enhanced stability was attributed to a strong interaction of the irreducible metal oxides with the mesoporous Co3O4 by forming Co3O4-ZrO2 (or Co3O4-Al2O3), which resulted in showing a stable activity. PMID:26963504

  9. Parametric study of Fischer-Tropsch synthesis in supercritical phase carbon dioxide

    NASA Astrophysics Data System (ADS)

    Gautam, Jitendra

    The results from studies on Fischer Tropsch synthesis wherein syngas was dissolved in CO2 are presented. The syngas generally used was typical of that obtained from coal gasification, i.e. CO:H2 of one. Under these conditions Co-based catalysts without any water gas shift catalyst does not perform well while Fe -- based catalysts have been found to be useful. However, the Fe based catalysts have a propensity towards CO2 selectivity via the primary FT reaction, Boudouard reaction and the water gas shift reaction. The use of CO2 as a solvent was found to suppress the CO2 and CH4 selectivity while enhancing the hydrocarbon selectivity and CO conversion when FT synthesis was conducted using coal derived syngas on Fe-Zn-K catalysts. The effects were found to be significantly pronounced at pressures higher than or equal to 1200 psig. It should be noted that CO2 is supercritical at pressures higher than 1070 psig and 31.4 °C. The effect of CO2 partial pressure, reactor pressure, reaction temperature, catalyst loading and H 2:CO ratio in syngas on the liquid product distribution was evaluated. Some of the notable findings include product tenability by varying temperature and pressure as well as varying the CO2 partial pressure and the syngas composition. Increasing the reactor pressure was found to favor longer chain growth. In addition, it was noted that the ratio between CO2:syngas in the reaction mixture is an important factor in the liquid product distribution. A higher value of the ratio is seen to favor hydrocarbon synthesis, while a lower value of the ratio favors oxygenate production particularly pentanols and butanols. In addition, the data on the once through fractionation of the products utilizing the solubilities in supercritical CO2 and pressure tuning were encouraging. It was found that the products can be easily fractionated into narrow carbon chain length distributions downstream of the reactor by simply reducing the pressures in each collection vessel. It

  10. Carbon isotope effects in the open-system Fischer Tropsch synthesis

    NASA Astrophysics Data System (ADS)

    Taran, Yuri A.; Kliger, George A.; Sevastianov, Vyacheslav S.

    2007-09-01

    Carbon isotopic composition was measured for products of the Fischer-Tropsch synthesis: catalytic reaction between CO and H 2 to produce CO, CO 2, light hydrocarbons C1-C4 and "oil" fraction. Hydrogen isotopes were also measured in the oil fraction and the produced water. Experimental runs were conducted in the flow-through reactor at 260-310 °C and 30 bar using the synthesis gas composed of 5N 2 + 3H 2 + 2CO, on Fe-catalyst mixed with ZSM-5 synthetic zeolite. In the two of seven runs a Fe + Co-catalyst was used that gives a lower yield of unsaturated hydrocarbons in reaction products. The isotopic effects depended on the conversion of the carbon monoxide. Under steady-state conditions (CO conversion more than 90%) a strong kinetic fractionation was observed between CO and CO 2 (˜-10‰) and CO and hydrocarbons (˜+38‰). At low conversion a clear "inverse" isotopic trend of the depletion in 13C of longer hydrocarbon chains was observed. On average, Δ 12 = δ 13C(CH 4) - δ 13C(C 2H 6) correlates well with the CO conversion: the C 2H 6 is ˜6‰ isotopically lighter than CH 4 at low conversion and ˜2‰ heavier at steady-state regime. Under steady-state conditions there almost no difference was observed in the isotopic composition of methane and ethane and higher hydrocarbons. The chemical composition of light hydrocarbons in the products of flow-through, dynamic FTS is different from that found in the static FTS-type experiments with Fe-catalyst, but isotopic effects are similar. Our results suggest that the isotopic distribution of carbon found in so-called "abiogenic" hydrocarbons from some natural gases (δ 13C1 > δ 13C2 > δ 13C3 >⋯) is somewhat similar to that at low conversion of CO, but do not resemble the distribution characteristic for the high conversion products, at least, on Fe-catalyst. Other processes (a simple mixing of two or more endmembers) or other P-T conditions of the carbon reduction could be responsible for the "inverse" isotopic

  11. Synthesis of octane enhancers during slurry-phase Fischer-Tropsch. [801Methyl tert-butyl ether

    SciTech Connect

    Marcelin, G.

    1992-06-24

    The objective of this project is to investigate three possible routes to the formation of ethers, in particular methyl tert-butyl ether (MTBE), during slurry phase Fischer-Tropsch reaction. The three reaction schemes to be investigated are: (1) Addition of isobutylene during the formation of methanol and/or higher alcohols directly from CO and H{sub 2} during slurry-phase Fischer-Tropsch. (2) Addition of isobutylene to FT liquid products including alcohols in a slurry-phase reactor containing an MTBE or other acid catalyst. (3) Addition of methanol to slurry phase FT synthesis making iso-olefins. During the sixth quarter we completed the construction of the slurry bubble column reactor (SBCR), conducted initial shake-down experiments in a cold-flow mode, and finalized the selection process of the acid catalysts for conversion of syngas-produced alcohols and isobutylene to MTBE (scheme 2). Tasks 3, 4, and 5 are awaiting complete implementation of the SBCR system.

  12. Potassium effects on activated-carbon-supported iron catalysts for Fischer-Tropsch synthesis

    SciTech Connect

    Wenping Ma; Edwin L. Kugler; Dady B. Dadyburjor

    2007-08-15

    The effect of potassium on the activity, selectivity, and distribution of products (hydrocarbons and oxygenates) was studied over iron catalysts supported on activated carbon (AC) for Fischer-Tropsch synthesis (FTS). This is part of a wider study on the incremental effects of components (including the support) of a multicomponent (Fe-Cu-Mo-K/AC) FTS catalyst. The range of potassium loading used was 0-2 wt%. A fixed-bed reactor was used under the conditions of 260-300{sup o}C, 300 psig, and 3 Nl/g cat/h, using syngas with a H{sub 2}/CO molar feed ratio of 0.9. Both FTS and water-gas shift activities increase after the addition of 0.9 wt % potassium, whereas an opposite trend is observed with the addition of 2 wt % potassium. This is shown to be the result of interaction between the decrease of both the activation energy (E{sub a}) and the pre-exponental factor (k{sub 0}) with the amount of potassium promoter added. Detectable hydrocarbons up to C{sub 34} and oxygenates up to C{sub 5} are formed on the Fe/AC catalysts with or without potassium. The potassium promoter significantly suppresses formation of methane and methanol and shifts selectivities to higher-molecular-weight hydrocarbons (C{sub 5+}) and alcohols (C{sub 2}-C{sub 5}). Meanwhile, the potassium promoter changes paraffin and olefin distributions. At least for carbon numbers of 25 or less, increasing the K level to 0.9 wt % greatly decreases the amount of n-paraffins and internal olefins (i.e., those with the double bond in other than the terminal positions) and dramatically increases branched paraffins and 1-olefins, but a further increase in the K level shows little additional improvement. The addition of potassium changes the effect of temperature on the selectivity to oxygenates. In the absence of K, oxygenate selectivity decreases with temperature. However, when K is present, the selectivity is almost independent of the temperature. 71 refs., 13 figs., 3 tabs.

  13. PROGRESS TOWARDS MODELING OF FISCHER TROPSCH SYNTHESIS IN A SLURRY BUBBLE COLUMN REACTOR

    SciTech Connect

    Donna Post Guillen; Tami Grimmett; Anastasia M. Gandrik; Steven P. Antal

    2010-11-01

    The Hybrid Energy Systems Testing (HYTEST) Laboratory is being established at the Idaho National Laboratory to develop and test hybrid energy systems with the principal objective to safeguard U.S. Energy Security by reducing dependence on foreign petroleum. A central component of the HYTEST is the slurry bubble column reactor (SBCR) in which the gas-to-liquid reactions will be performed to synthesize transportation fuels using the Fischer Tropsch (FT) process. SBCRs are cylindrical vessels in which gaseous reactants (for example, synthesis gas or syngas) is sparged into a slurry of liquid reaction products and finely dispersed catalyst particles. The catalyst particles are suspended in the slurry by the rising gas bubbles and serve to promote the chemical reaction that converts syngas to a spectrum of longer chain hydrocarbon products, which can be upgraded to gasoline, diesel or jet fuel. These SBCRs operate in the churn-turbulent flow regime which is characterized by complex hydrodynamics, coupled with reacting flow chemistry and heat transfer, that effect reactor performance. The purpose of this work is to develop a computational multiphase fluid dynamic (CMFD) model to aid in understanding the physico-chemical processes occurring in the SBCR. Our team is developing a robust methodology to couple reaction kinetics and mass transfer into a four-field model (consisting of the bulk liquid, small bubbles, large bubbles and solid catalyst particles) that includes twelve species: (1) CO reactant, (2) H2 reactant, (3) hydrocarbon product, and (4) H2O product in small bubbles, large bubbles, and the bulk fluid. Properties of the hydrocarbon product were specified by vapor liquid equilibrium calculations. The absorption and kinetic models, specifically changes in species concentrations, have been incorporated into the mass continuity equation. The reaction rate is determined based on the macrokinetic model for a cobalt catalyst developed by Yates and Satterfield [1]. The

  14. Role of CO{sub 2} in the initiation of chain growth during the Fischer-Tropsch Synthesis

    SciTech Connect

    Raje, A.P.; Davis, B.H.

    1996-10-01

    Data is presented to show that alcohols produce hydrocarbons during the Fischer-Tropsch Synthesis (FTS) that are not consistent with a simple initiation mechanism. The data is believed to be consistent with accumulation of hydrocarbon products in the reactor during the synthesis. CO{sub 2} is produced directly from the alcohol, and not by the reverse carbonylation reaction. CO{sub 2} also initiates chain growth in the FTS, and the initiation intermediate is presumed to be the same intermediate as in the water-gas-shift reaction. The data from the conversion with added {sup 14}CO{sub 2} are therefore inconsistent with the widely accepted carbide intermediate for FTS with an iron catalyst. The analysis of the heavier hydrocarbons indicate that it is likely that the chain growth involves two independent chains.

  15. Role of CO{sub 2} in the initiation of chain growth during the Fischer-Tropsch synthesis

    SciTech Connect

    DAvis, B.H.; Xu, L.; Bao, S.

    1995-12-01

    Data is presented to show that alcohols produce hydrocarbons during the Fischer-Tropsch Synthesis (FTS) that are not consistent with a simple initiation mechanism. The data is believed to be consistent with accumulation of hydrocarbon products in the reactor during the synthesis. CO{sub 2} is produced directly from the alcohol, and not by the reverse carbonylation reaction. CO{sub 2} also initiates chain growth in the FTS, and the initiation intermediate is presumed to be the same intermediate as in the water-gas-shift reaction. The data from the conversion with added {sup 14}CO{sub 2} are therefore inconsistent with the widely accepted carbide intermediate for FTS with an iron catalyst.

  16. Slurry phase Fischer-Tropsch synthesis: Cobalt plus a water-gas shift catalyst

    SciTech Connect

    Chanenchuk, C.A.; Yates, I.C.; Satterfield, C.N.

    1990-01-01

    A Co/MgO/SiO[sub 2] Fischer-Tropsch catalyst was operated simultaneously with a Cu/ZnO/Al[sub 2]O[sub 3] water-gas-shift catalyst in a slurry reactor for over 400 hours. The process conditions were held constant at a temperature of 240[degrees]C, a pressure of 0.79 MPa, and a 1.1 H[sub 2]/CO feed of 0.065 Nl/min-g.cat. The Fischer-Tropsch activity remained constant at the level predicted by the operation of the Co/MgO/SiO[sub 2] catalyst alone. The water-gas-shift reaction was near equilibrium. The hydrocarbon product distribution of the combined catalyst system was stable and matched that of the CO/MgO/SiO[sub 2] operating alone under similar conditions. The combined catalyst system exhibited a high selectivity to n-alkanes. Neither catalysts's operation appeared to have a detrimental effect on that of the other, showing promise for future option.

  17. Thermodynamic analysis of nanoparticle size effect on kinetics in Fischer-Tropsch synthesis by lanthanum promoted iron catalyst

    NASA Astrophysics Data System (ADS)

    Nakhaei Pour, Ali; Housaindokht, Mohammad Reza; Behroozsarand, Alireza; Khodagholi, Mohammad Ali

    2014-08-01

    The kinetic parameters of the Fischer-Tropsch synthesis (FTS) on iron catalyst are analyzed by size-dependent thermodynamic method. A Langmuir-Hinshelwood kinetic equation is considered for evaluation of catalytic activity of lanthanum promoted iron catalyst. A series of unsupported iron catalysts with different particle sizes were prepared via microemulsion method. The experimental results showed that catalyst activity pass from a maximum value by increasing the iron particle size. Also, data presented that iron particle size has considerable effects on adsorption parameters and FTS rates. The ratio of surface tension ( σ) to nanoparticle radius ( r) is important in FTS reaction on iron catalyst. Finally, the results showed that by increasing of iron particle size from 18 to 45 nm the activation energies of catalysts and heats of adsorption of catalysts as two main parameters of FTS reaction increased from 89 to 114 kJ/mol and from 51 to 71 kJ/mol, respectively.

  18. Enhanced Fischer-Tropsch synthesis performance of iron-based catalysts supported on nitric acid treated N-doped CNTs

    NASA Astrophysics Data System (ADS)

    Li, Zhenhua; Liu, Renjie; Xu, Yan; Ma, Xinbin

    2015-08-01

    Iron-based catalysts supported on N-doped CNTs (NCNTs) treated by various concentrations of nitric acid for Fischer-Tropsch synthesis (FTS) were investigated. An improved catalytic performance for the iron catalyst supported on acid treated NCNTs was obtained and the suitable nitric acid concentration was 10 M. The physiochemical properties of the NCNTs and the corresponding catalysts were characterized by BET, TEM, XRD, XPS, TGA and H2-TPR. The acid treatment removed the impurity and amorphous carbon, damaged the bamboo-like structure and increased the number of oxygen-containing functional groups and graphitization degree on the NCNTs. The more iron particles located inside the channels of NCNTs, the better catalytic FTS performance due to high dispersion and reducibility.

  19. Studies on the Role of Nitrogen in the Feed for Fischer-Tropsch Synthesis Under Fixed-Bed Reactor System.

    PubMed

    Hong, Gi Hoon; Jung, Jae-Sun; Kim, Na-Young; Lee, Sang Yong; Moon, Dong Ju

    2016-02-01

    In this study, Co/Al203 catalyst for Fischer-Tropsch synthesis was prepared via slurry impregnation method and the catalyst was characterized by various techniques such as TPR, XRD, TGA and N2 physisorption. To dissolve the wax, after-reaction catalyst was dewaxed using n-Hexane at 60 *C. The experiments were performed in a bench-scale fixed-bed reactor, under the reaction condition of 230 degrees C, 20 bar and feed volume ratio of H2:CO:N2 = 2:1:0.5-1.5. The methane selectivity and the ratio of olefin to paraffin among C2-C4 hydrocarbons were increased with higher contents of nitrogen in feed gas which result in higher partial pressure ratio of H2 to CO, and also affect methane selectivity which has a significant role in increased CO conversion. PMID:27433695

  20. Synthesis of adenine, guanine, cytosine, and other nitrogen organic compounds by a Fischer-Tropsch-like process.

    NASA Technical Reports Server (NTRS)

    Yang, C. C.; Oro, J.

    1971-01-01

    Study of the formation of purines, pyrimidines, and other bases from CO, H2, and NH3 under conditions similar to those used in the Fischer-Tropsch process. It is found that industrial nickel/iron alloy catalyzes the synthesis of adenine, guanine, cytosine, and other nitrogenous compounds from mixtures of CO, H2, and NH3 at temperatures of about 600 C. Sufficient sample was accumulated to isolate as solid products adenine, guanine, and cytosine, which were identified by infrared spectrophotometry. In the absence of nickel/iron catalyst, at 650 C, or in the presence of this catalyst, at 450 C, no purines or pyrimidines were synthesized. These results confirm and extend some of the work reported by Kayatsu et al. (1968).

  1. Trapping Planetary Noble Gases During the Fischer-Tropsch-Type Synthesis of Organic Materials

    NASA Technical Reports Server (NTRS)

    Nuth, Joseph A.; Johnson, N. M.; Meshik, A.

    2010-01-01

    When hydrogen, nitrogen and CO arc exposed to amorphous iron silicate surfaces at temperatures between 500 - 900K, a carbonaceous coating forms via Fischer-Tropsch type reactions!, Under normal circumstances such a catalytic coating would impede or stop further reaction. However, we find that this coating is a better catalyst than the amorphous iron silicates that initiate these rcactions:u . The formation of a self-perpetuating catalytic coating on grain surfaces could explain the rich deposits of macromolecular carbon found in primitive meteorites and would imply that protostellar nebulae should be rich in organic materiaL Many more experiments are needed to understand this chemical system and its application to protostellar nebulae.

  2. Reoxidation and deactivation of supported cobalt Fischer-Tropsch catalysts

    SciTech Connect

    Schanke, D.; Hilmen, A.M.; Bergene, E.

    1995-12-01

    The Fischer-Tropsch synthesis is an attractive possibility for conversion of natural gas into high quality liquid fuels. Due to its low water-gas shift activity, good activity/selectivity properties and relatively low price, cobalt is the choice of catalytic metal for natural gas conversion via Fischer-Tropsch synthesis. In the cobalt-catalyzed Fischer-Tropsch reaction, oxygen is mainly rejected as water. In this paper we describe the influence of water on supported cobalt catalysts. The deactivation of supported Co catalysts was studied in a fixed-bed reactor using synthesis gas feeds containing varying concentrations of water vapour.

  3. Slurry phase Fischer-Tropsch synthesis: Cobalt plus a water-gas shift catalyst. [Quarterly] report, October 1, 1989--December 31, 1989

    SciTech Connect

    Yates, I.C.; Satterfield, C.N.

    1989-12-31

    The rate of synthesis gas consumption over a cobalt FischerTropsch catalyst was measured in a well-mixed, continuous-flow, slurry reactor at 220 to 240{degrees}C, 0.5 to 1.5 MPa, H{sub 2}/CO feed ratios of 1.5 to 3.5 and conversions of 7 to 68% of hydrogen and 11 to 73% of carbon monoxide. The inhibiting effect of carbon monoxide was determined quantitatively and a Langmuir-Hinshelwood-type equation of the following form was found to best represent the results: -R{sub H{sub 2+Co}} = (a P{sub CO}P{sub H{sub 2}})/(1 + b P{sub CO}){sup 2}. The apparent activation energy was 93 to 95 kJ/mol. Data from previous studies on cobalt-based Fischer-Tropsch catalysts are also well correlated with this rate expression.

  4. Upgrading oxygenated Fischer-Tropsch derivatives and one-step direct synthesis of ethyl acetate from ethanol - examples of the desirability of research on simple chemical compounds transformations.

    PubMed

    Klimkiewicz, Roman

    2014-01-01

    Oxygenates formed as by-products of Fischer-Tropsch syntheses can be transformed into other Fischer-Tropsch derived oxygenates instead of treating them as unwanted chemicals. One-step direct synthesis of ethyl acetate from ethanol is feasible with the use of some heterogeneous catalysts. Despite their apparent simplicity, both transformations are discussed as targeted fields of research. Furthermore, the two concepts are justified due to the environmental protection. Arguments regarding the Fischer-Tropsch process are focused on the opportunities of the utilization of undesirable by-products. The effective striving for their utilization can make the oxygenates the targeted products of this process. Arguments regarding the one-step direct synthesis of ethyl acetate underline the environmental protection and sustainability as a less waste-generating method but, above all, highlight the possibility of reducing the glycerol overproduction problem. The production of ethyl acetate from bioethanol and then transesterification of fats and oils with the use of ethyl acetate allows managing all the renewable raw materials. Thus, the process enables the biosynthesis of biodiesel without glycerine by-product and potentially would result in the increase in the demand for ethyl acetate. Graphical Abstract. PMID:25648719

  5. Slurry-phase Fischer-Tropsch synthesis and kinetic studies over supported cobalt carbonyl derived catalysts

    SciTech Connect

    Withers, H.P. Jr.; Eliezer, K.F.; Mitchell, J.W. )

    1990-09-01

    This paper reports the preparation characterization, and performance of cobalt carbonyl cluster based catalysts for use in slurry-phase Fischer--Tropsch (FT) technology investigated. Using metal carbonyls as active metal precursors allows for the control of metal particle size on the support surface, thus offering the potential for better control of activity and selectivity of the FT reaction. Silica as the support provided the highest catalyst activities. A Co{sub 2}(CO){sub 8}/Zr(OPr){sub 4}/SiO{sub 2} catalyst (3.5% cobalt, 6.6% zirconium) was developed as the most active system in the FT slurry reactor and also gave the best liquid fuel selectivity. Selectivity patterns correlated to the Schulz--Flory prediction. These catalysts exhibited low water/gas shift activity. Diesel fuel product produced by this catalyst was high quality. A kinetic expression that took water inhibition into account was verified, yielding an activation energy of 97 kJ/mol for syngas conversion ranging from 34% to 71% at 240--280{degrees} C.

  6. Slurry phase Fischer-Tropsch synthesis: Cobalt plus a water-gas shift catalyst

    SciTech Connect

    Yates, I.C.; Satterfield, C.N.

    1988-01-01

    A cobalt Fischer-Tropsch catalyst (CO/MgO/silica) was reduced and slurried in combination with reduced Cu/ZnO/Al[sub 2]0[sub 3] water-gas-shift catalyst. Combined catalyst system was run at fixed process conditions for more than 400 hours. The system showed stable selectivity. The Cu/ZnO/Al[sub 2]0[sub 3] water-gas-shift catalyst remained reasonably active in the presence of the cobalt catalyst. Hydrocarbon selectivity of the cobalt and Cu/ZnO/Al[sub 2]0[sub 3] catalyst system compared favorably to selectivity of iron-based catalysts. Methane selectivity was slightly higher for the cobalt-based system, but C[sub 5][sup +] selectivity was essentially the same. The hydrocarbon product distribution appeared to exhibit a double-a behavior. a[sub 1] was near 0.80 which is higher than that of iron catalysts, while a[sub 2] was calculated to be 0.86 which is somewhat lower than would be typical for an iron-based catalyst.

  7. Shape and Size of Cobalt Nanoislands Formed Spontaneously on Cobalt Terraces during Fischer-Tropsch Synthesis.

    PubMed

    Banerjee, Arghya; Navarro, Violeta; Frenken, Joost W M; van Bavel, Alexander P; Kuipers, Herman P C E; Saeys, Mark

    2016-06-01

    Cobalt-based catalysts undergo a massive and spontaneous reconstruction to form uniform triangular nanoislands under Fischer-Tropsch (FT) conditions. This reconstruction is driven by the unusual and synergistic adsorption of square-planar carbon and CO at the 4-fold edge sites of the nanoislands, driving the formation of triangular islands. The size of the nanoislands is determined by the balance between energy gain from creating C/CO-covered edges and energy penalty to create C/CO-covered corners. For carbon chemical potentials corresponding to FT conditions, triangular Co islands with 45 Co atoms (about 2 nm) are the most stable surface structure. Decreasing the carbon chemical potential and hence the stability of square-planar carbon favors the formation of larger islands, until reconstruction becomes unfavorable and CO-covered terraces are thermodynamically the most stable. The predicted structure of the islands is consistent with in situ scanning tunneling microscopy images obtained for the first time under realistic FT reaction conditions on a Co(0001) surface. PMID:27176712

  8. Small-Scale Coal-Biomass to Liquids Production Using Highly Selective Fischer-Tropsch Synthesis

    SciTech Connect

    Gangwal, Santosh K.; McCabe, Kevin

    2015-04-30

    The research project advanced coal-to-liquids (CTL) and coal-biomass to liquids (CBTL) processes by testing and validating Chevron’s highly selective and active cobalt-zeolite hybrid Fischer-Tropsch (FT) catalyst to convert gasifier syngas predominantly to gasoline, jet fuel and diesel range hydrocarbon liquids, thereby eliminating expensive wax upgrading operations The National Carbon Capture Center (NCCC) operated by Southern Company (SC) at Wilsonville, Alabama served as the host site for the gasifier slip-stream testing/demonstration. Southern Research designed, installed and commissioned a bench scale skid mounted FT reactor system (SR-CBTL test rig) that was fully integrated with a slip stream from SC/NCCC’s transport integrated gasifier (TRIGTM). The test-rig was designed to receive up to 5 lb/h raw syngas augmented with bottled syngas to adjust the H2/CO molar ratio to 2, clean it to cobalt FT catalyst specifications, and produce liquid FT products at the design capacity of 2 to 4 L/day. It employed a 2-inch diameter boiling water jacketed fixed-bed heat-exchange FT reactor incorporating Chevron’s catalyst in Intramicron’s high thermal conductivity micro-fibrous entrapped catalyst (MFEC) packing to efficiently remove heat produced by the highly exothermic FT reaction.

  9. Proposal of a new product characterization model for the iron-based low-temperature Fischer-Tropsch synthesis

    SciTech Connect

    F. Gideon Botes

    2007-06-15

    A new product characterization model has been proposed for the iron-based low-temperature Fischer-Tropsch (Fe-LTFT) synthesis. The chain-length-dependent desorption model is based on the premise that the increase in chain-growth probability and decrease in the olefin/paraffin ratio with the carbon number in the Fe-LTFT synthesis is essentially a characteristic of the primary product spectrum. The model could successfully describe the olefin and paraffin distributions in the C{sub 3+} range. The ethylene/ethane ratio is overestimated by the model because of the high reactivity of ethylene for secondary hydrogenation. However, the total C{sub 2} formation rate was predicted almost perfectly, while the methane formation rate was described adequately, using parameter values that were obtained from the C{sub 3}-C{sub 10} product fraction. This is a true extrapolation, because the C{sub 1} and C{sub 2} data were not used at all for the estimation of the parameter values. This may be the first product characterization model that can successfully be extrapolated to the C{sub 1} and C{sub 2} components without introducing additional (unique) parameter values for these products. 26 refs., 6 figs., 1 tab.

  10. Study of the carburization of an iron catalyst during the Fischer-Tropsch synthesis: influence on its catalytic activity

    SciTech Connect

    Pijolat, M.; Perrichon, V.; Bussiere, P.

    1987-09-01

    The fast transformation of an ironalumina catalyst into Fe/sub 2+x/C during the H/sub 2/ + CO reaction was followed by in situ Moessbauer spectroscopy at 523 K and the behavior was compared with changes in catalytic activity for Fischer-Tropsch synthesis. After a few hours of synthesis, no metallic iron could be detected by either Moessbauer or IR spectroscopy, whereas the CO conversion was still half of that observed initially. The nature of the sites responsible for the remaining activity is discussed. The interpretation of the Moessbauer spectra has permitted the determination of the stoichiometry of the Fe/sub 2+x/C carbide (0 less than or equal to x less than or equal to 0.4), and hence the following of the change of x during the reaction. Thus, the activity in CO hydrogenation could be related to the number of carbon vacancies in the iron carbide, i.e., to the extent of the metallic character of this carbide. This concept of the variation of hydrogenating properties of the carbide with the carbon content has been supported by similar catalytic results obtained in the room temperature hydrogenation of ethylene performed on carbides of different stoichiometry

  11. Organic Analysis of Catalytic Fischer-Tropsch Type Synthesis Products: Are they Similar to Organics in Chondritic Meteorites?

    NASA Technical Reports Server (NTRS)

    Yazzie, Cyriah A.; Locke, Darren R.; Johnson, Natasha M.

    2014-01-01

    Fischer-Tropsch Type (FTT) synthesis of organic compounds has been hypothesized to occur in the early solar nebula that formed our Solar System. FTT is a collection of abiotic chemical reactions that convert a mixture of carbon monoxide and hydrogen over nano-catalysts into hydrocarbons and other more complex aromatic compounds. We hypothesized that FTT can generate similar organic compounds as those seen in chondritic meteorites; fragments of asteroids that are characteristic of the early solar system. Specific goals for this project included: 1) determining the effects of different FTT catalyst, reaction temperature, and cycles on organic compounds produced, 2) imaging of organic coatings found on the catalyst, and 3) comparison of organic compounds produced experimentally by FTT synthesis and those found in the ordinary chondrite LL5 Chelyabinsk meteorite. We used Pyrolysis Gas Chromatography Mass Spectrometry (PY-GCMS) to release organic compounds present in experimental FTT and meteorite samples, and Scanning Electron Microscopy (SEM) to take images of organic films on catalyst grains.

  12. Novel Attrition-Resistant Fischer Tropsch Catalyst

    SciTech Connect

    Weast, Logan, E.; Staats, William, R.

    2009-05-01

    There is a strong national interest in the Fischer-Tropsch synthesis process because it offers the possibility of making liquid hydrocarbon fuels from reformed natural gas or coal and biomass gasification products. This project explored a new approach that had been developed to produce active, attrition-resistant Fischer-Tropsch catalysts that are based on glass-ceramic materials and technology. This novel approach represented a promising solution to the problem of reducing or eliminating catalyst attrition and maximizing catalytic activity, thus reducing costs. The technical objective of the Phase I work was to demonstrate that glass-ceramic based catalytic materials for Fischer-Tropsch synthesis have resistance to catalytic deactivation and reduction of particle size superior to traditional supported Fischer-Tropsch catalyst materials. Additionally, these novel glass-ceramic-based materials were expected to exhibit catalytic activity similar to the traditional materials. If successfully developed, the attrition-resistant Fischer-Tropsch catalyst materials would be expected to result in significant technical, economic, and social benefits for both producers and public consumers of Fischer-Tropsch products such as liquid fuels from coal or biomass gasification. This program demonstrated the anticipated high attrition resistance of the glass-ceramic materials. However, the observed catalytic activity of the materials was not sufficient to justify further development at this time. Additional testing documented that a lack of pore volume in the glass-ceramic materials limited the amount of surface area available for catalysis and consequently limited catalytic activity. However, previous work on glass-ceramic catalysts to promote other reactions demonstrated that commercial levels of activity can be achieved, at least for those reactions. Therefore, we recommend that glass-ceramic materials be considered again as potential Fischer-Tropsch catalysts if it can be

  13. Fischer-Tropsch Wastewater Utilization

    DOEpatents

    Shah, Lalit S.

    2003-03-18

    The present invention is generally directed to handling the wastewater, or condensate, from a hydrocarbon synthesis reactor. More particularly, the present invention provides a process wherein the wastewater of a hydrocarbon synthesis reactor, such as a Fischer-Tropsch reactor, is sent to a gasifier and subsequently reacted with steam and oxygen at high temperatures and pressures so as to produce synthesis gas. The wastewater may also be recycled back to a slurry preparation stage, where solid combustible organic materials are pulverized and mixed with process water and the wastewater to form a slurry, after which the slurry fed to a gasifier where it is reacted with steam and oxygen at high temperatures and pressures so as to produce synthesis gas.

  14. Mathematical modeling of Fischer-Tropsch synthesis in an industrial slurry bubble column - article no. A 23

    SciTech Connect

    Nasim Hooshyar; Shohreh Fatemi; Mohammad Rahmani

    2009-07-01

    The increase in society's need for fuels and decrease in crude oil resources are important reasons to make more interest for both academic and industry in converting gas to liquids. Fischer-Tropsch synthesis is one of the most attractive methods of Gas-to-Liquids (GTL) processes and the reactor in which, this reaction occurs, is the heart of this process. This work deals with modeling of a commercial size slurry bubble column reactor by two different models, i.e. single bubble class model (SBCM) and double bubble class model (DBCM). The reactor is assumed to work in a churn-turbulent flow regime and the reaction kinetic is a Langmuir-Hinshelwood type. Cobalt-based catalyst is used for this study as it plays an important role in preparing heavy cuts and the higher yield of the liquid products. Parameter sensitivity analysis was carried out for different conditions such as catalyst concentration, superficial gas velocity, H{sub 2} over CO ratio, and column diameter. The results of the SBCM and DBCM revealed that there is no significant difference between single and double bubble class models in terms of temperature, concentration and conversion profiles in the reactor, so the simpler SBCM with less number of model parameters can be a good and reliable model of choice for analyzing the slurry bubble column reactors.

  15. The influence of particle size and structure on the Mossbauer spectra of iron carbides formed during Fischer-Tropsch synthesis

    SciTech Connect

    Gatte, R.R.; Phillips, J.

    1986-01-01

    Characterization of the active and stable phase of iron-based Fischer-Tropsch catalysts has been a topic of investigation for several years. Yet, a great deal of controversy still surrounds the identity of the phase(s) present during synthesis. This stems from the fact that neither X-ray nor Mossbauer studies have proven capable of unambiguously characterizing the metastable carbides formed. Investigations of the metastable, octahedral carbides (as they have been termed) have been going on for many years, dating back to at least 1949. The iron structure has been assigned as HCP (or 'nearly' HCP) with the carbon atoms occupying the octahedral holes. The most notable of these are the epsilon and epsilon' carbides. X-ray results have, however, been rather unsatisfactory for many reasons. For instance, the commercial catalysts studied contained many metallic additives and in most cases the small crystallite sizes gave rise to broad, poorly resolved lines. In recent years, emphasis has shifted toward the use of Mossbauer spectroscopy for in-situ studies of the carburization behavior. It is shown that if spectra are collected for a single sample over a range of temperatures, and if relaxation effects are properly accounted for, the Mossbauer results can give not only accurate identification of the phase(s) present but also quantitative particle size information and qualitative information regarding particle structure and the nature of particle/support interaction.

  16. On-line gas chromatographic analysis of Fischer-Tropsch synthesis products formed in a supercritical reaction medium

    SciTech Connect

    Snavely, K.; Subramaniam, B.

    1997-10-01

    C{sub 1}-C{sub 30} products from Fischer-Tropsch synthesis, conducted in a supercritical n-hexane medium over an Fe catalyst in a fixed-bed reactor, are analyzed using on-line gas chromatography. A Hewlett-Packard 5890 Series II gas chromatograph (GC) is modified to minimize the effects of condensation of the on-line sample in the transfer lines. The GC is configured with a Supelco Petrocol DH capillary column connected to a flame ionization detector (FID) and two 1.83 m {times} 3.18 mm stainless steel columns placed in series, packed with 80/100 mesh HayeSep D, connected to a thermal conductivity detector (TCD). It is shown that pressure and temperature affect the elution order of oxygenates relative to hydrocarbons in the nonpolar capillary column. This phenomenon is exploited for obtaining improved resolution; several distinct methods produce similar elution orders. Ar, added to the syngas feed, is used to calculate syngas conversion. All compounds eluting before hexane (C{sub 1}-C{sub 5}, other than 2-methylpropene/1-butene and propanal/propanone) and nearly all the major peaks eluting after hexane are resolved in the capillary column. H{sub 2}, Ar, CO, CH{sub 4}, CO{sub 2}, and H{sub 2}O are resolved in the packed columns. The method provides excellent quantitative measurement of component mole fractions that are within the range of calibration.

  17. Effect of Potassium Addition on Coprecipitated Iron Catalysts for Fischer-Tropsch Synthesis Using Bio-oil-syngas

    NASA Astrophysics Data System (ADS)

    Wang, Zhao-xiang; Dong, Ting; Kan, Tao; Li, Quan-xin

    2008-04-01

    The effects of potassium addition and the potassium content on the activity and selectivity of coprecipitated iron catalyst for Fischer-Tropsch synthesis (FTS) were studied in a fixed bed reactor at 1.5 MPa, 300°C, and contact time (W/F) of 12.5 gcath/mol using the model bio-oil-syngas of H2/CO/CO2/N2 (62/8/25/5, vol%). It was found that potassium addition increases the catalyst activity for FTS and the reverse water gas shift reaction. Moreover, potassium increases the average molecular weight (chain length) of the hydrocarbon products. With the increase of potassium content, it was found that CH4 selectivity decreases and the selectivity of liquid phase products (C5+) increases. The characteristics of FTS catalysts with different potassium content were also investigated by various characterization measurements including X-ray diffraction, X-ray photoelectron spectroscopy and Brunauer-Emmett-Teller surface area. Based on experimental results, 100Fe/6Cu/16Al/6K (weight ratio) was selected as the optimal catalyst for FTS from bio-oil-syngas. The results indicate that the 100Fe/6Cu/16Al/6K catalyst is one of the most promising candidates to directly synthesize liquid bio-fuel using bio-oil-syngas.

  18. Nanocrystalline Ferrihydrite-Based Catalysts for Fischer-Tropsch Synthesis: Part II. Effects of Activation Gases on the Catalytic Performance.

    PubMed

    Rhim, Geun Bae; Hong, Seok Yong; Park, Ji Chan; Jung, Heon; Rhee, Young Woo; Chun, Dong Hyun

    2016-02-01

    Fischer-Tropsch synthesis (FTS) was carried out over nanocrystalline ferrihydrite-based (Fe9O2(OH)23) catalysts activated by different reducing agents: syngas (H2+CO), CO, and H2. The syngas activation successfully changed the ferrihydrite-based catalysts into an active and stable catalytic structure with chi-carbide (Fe2.5 C) and epsilon'-carbide (Fe2.2 C). The crystal structure of the catalysts obtained by syngas activation was similar to the structure obtained by CO activation; this similarity was probably due to the peculiar reduction behavior of the ferrihydrite-based catalysts, which exhibit much greater reducibility in CO atmosphere than in H2 atmosphere. The performance of the catalysts activated by syngas was much higher than the performance of the catalysts activated by H2 and was comparable to the performance of the catalysts activated by CO. This strongly demonstrates that the ferrihydrite-based catalysts are advantageous for industrial FTS processes because syngas can be commonly used for both activation pre-treatment and subsequent reaction. PMID:27433672

  19. Reoxidation and deactivation of supported cobalt Fischer-Tropsch catalysts

    SciTech Connect

    Schanke, D.; Bergene, E.; Adnanes, E.

    1995-12-31

    As a result of the highly exothermic nature of the Fischer-Tropsch reaction, heat transfer considerations limit the maximum conversion per pass in fixed-bed processes, whereas slurry reactors can operate at higher conversions. During Fischer-Tropsch synthesis on cobalt catalysts, high conversions will generate high partial pressures of water at the reactor exit, due to the low water gas shift activity of cobalt. In addition, the extensive back-mixing in slurry reactors will give a relatively uniform concentration profile in the reactor, characterized by a high concentration of water and low reactant concentrations. From the commercial iron-catalyzed Fischer-Tropsch synthesis in fixed-bed (Arge) reactors it is known that the catalyst deactivates by oxidation of iron by CO{sub 2} and H{sub 2}O near the exit of the reactor. Although bulk oxidation of cobalt during Fischer-Tropsch synthesis is not thermodynamically favored, it was early speculated that surface oxidation of cobalt could occur during Fischer-Tropsch synthesis. The purpose of the present work is to describe the influence of water on the deactivation behavior of Al{sub 2}O{sub 3} supported cobalt catalysts. The possibility of cobalt oxidation during Fischer-Tropsch synthesis was investigated by model studies.

  20. A new synthesis of carbon encapsulated Fe5C2 nanoparticles for high-temperature Fischer-Tropsch synthesis.

    PubMed

    Hong, Seok Yong; Chun, Dong Hyun; Yang, Jung-Il; Jung, Heon; Lee, Ho-Tae; Hong, Sungjun; Jang, Sanha; Lim, Jung Tae; Kim, Chul Sung; Park, Ji Chan

    2015-10-28

    Using a simple thermal treatment under a CO flow, uniform micrometer-sized iron oxalate dihydrate cubes prepared by hydrothermal reaction were transformed into Fe5C2@C nanoparticles to form a mesoporous framework; the final structure was successfully applied to the high-temperature Fischer-Tropsch reaction and it showed high activity (CO conversion = 96%, FTY = 1.5 × 10(-4) molCO gFe(-1) s(-1)) and stability. PMID:26416550

  1. Study of Fischer-Tropsch synthesis over iron-based catalysts using a well-stirred slurry reactor

    SciTech Connect

    Dictor, R.A.

    1984-01-01

    Fischer-Tropsch synthesis over iron catalysts has been researched for well over 60 years, yet relatively few detailed investigations of the kinetics and selectivity of hydrocarbon synthesis have been done using unpromoted bulk iron-based catalysts. In this investigation, Fe/sub 2/O/sub 3/, potassium-promoted Fe/sub 2/O/sub 3/, fused iron, Fe/sub 3/C, and Fe were tested for their activity and selectivity for hydrocarbon synthesis, and comparisons were made between the catalysts. Experiments were done using a well-stirred slurry reaction which was free of temperature and concentration gradients. The effluent from the reactor was analyzed on line using a dual-column gas chromatograph. The compositions of fresh and used catalyst samples were determined using X-ray diffraction. The activity of fused iron catalyst increases with extent of reduction in H/sub 2/ - attributed to increases in surface area. Principal products are normal 1-olefins and paraffins, CO/sub 2/, H/sub 2/O; branched olefins, aldehydes and alcohols are also formed. The catalyst has very little hydrogenation or isomerization activity due to potassium promotion. Aldehydes reduce to alcohols; the water-gas-shift reaction occurs. The kinetics and selectivity observed using potassium-promoted Fe/sub 2/O/sub 3/ were nearly identical to those of fused iron. In the absence of promoter, the products are almost exclusively n-olefins, n-paraffins, CH/sub 3/OH, H/sub 2/O, CO/sub 2/. Fe/sub 2/O/sub 3/ is active for hydrogenation and isomerization.

  2. Fischer-Tropsch synthesis: kinetics and effect of water for a Co/SiO{sub 2} catalyst

    SciTech Connect

    Tapan K. Das; Whitney A. Conner; Jinlin Li; Gary Jacobs; Mark E. Dry; Burtron H. Davis

    2005-08-01

    The addition of water during Fischer-Tropsch synthesis over a 12.4 wt% Co/SiO{sub 2} catalyst led to a significant increase in CO conversion. A positive reversible impact of water on catalyst activity was observed at partial pressures of water of {lt}25 vol% added H{sub 2}O. The CO conversion recovered to the reference activity after the termination of water addition. Therefore, this enhanced reversible activity for Co/SiO{sub 2} catalysts seems to be due to a kinetic effect of water. The catalyst was characterized using different techniques, including temperature-programmed reduction (TPR), Brunauer-Emmett-Teller (BET) surface area analysis, and H{sub 2} chemisorption. The rate expression has been obtained over the catalyst, using a 1-L continuously stirred tank reactor (CSTR) that was operated at a temperature of 483 K, a pressure of 2.21 MPa (21.42 atm), H{sub 2}/CO feed ratios of 1.0-2.4, and 10%-70% CO conversion over a range of reactant partial pressures. The data of this study are fitted by a power-law expression of the form r{sub CO} = kP{sub CO}{sup -0.25}P{sub H{sub 2}}{sup -.5}/(1 + mP{sub H{sub 2}O}/P{sub H{sub 2}), where k = 0.89 mol h{sup -1} g{sub cat}{sup -1} and m = -0.155. 41 refs., 13 figs., 8 tabs.

  3. Evidence of highly active cobalt oxide catalyst for the Fischer-Tropsch synthesis and CO2 hydrogenation.

    PubMed

    Melaet, Gérôme; Ralston, Walter T; Li, Cheng-Shiuan; Alayoglu, Selim; An, Kwangjin; Musselwhite, Nathan; Kalkan, Bora; Somorjai, Gabor A

    2014-02-12

    Hydrogenations of CO or CO2 are important catalytic reactions as they are interesting alternatives to produce fine chemical feedstock hence avoiding the use of fossil sources. Using monodisperse nanoparticle (NP) catalysts, we have studied the CO/H2 (i.e., Fischer-Tropsch synthesis) and CO2/H2 reactions. Exploiting synchrotron based in situ characterization techniques such as XANES and XPS, we were able to demonstrate that 10 nm Co NPs cannot be reduced at 250 °C while supported on TiO2 or SiO2 and that the complete reduction of cobalt can only be achieved at 450 °C. Interestingly, cobalt oxide performs better than fully reduced cobalt when supported on TiO2. In fact, the catalytic results indicate an enhancement of 10-fold for the CO2/H2 reaction rate and 2-fold for the CO/H2 reaction rate for the Co/TiO2 treated at 250 °C in H2 versus Co/TiO2 treated at 450 °C. Inversely, the activity of cobalt supported on SiO2 has a higher turnover frequency when cobalt is metallic. The product distributions could be tuned depending on the support and the oxidation state of cobalt. For oxidized cobalt on TiO2, we observed an increase of methane production for the CO2/H2 reaction whereas it is more selective to unsaturated products for the CO/H2 reaction. In situ investigation of the catalysts indicated wetting of the TiO2 support by CoO(x) and partial encapsulation of metallic Co by TiO(2-x). PMID:24460136

  4. Iron oxide pillared clay with large gallery height: Synthesis and properties as a Fischer-Tropsch catalyst

    SciTech Connect

    Rightor, E.G.; Tsou, Mingshin; Pinnavaia, T.J. )

    1991-07-01

    New iron oxide pillared montmorillonites have been prepared by the reaction of Na{sup +} montmorillonite with base-hydrolyzed solutions of Fe{sup 3+} salts and subsequent thermal conversion of the intercalated polycations. Depending on the hydrolysis conditions used to generate the pillaring solutions, pillared products with basal spacings in the range 18 to 25 {angstrom} were obtained. Under optimum hydrolysis conditions (base/metal = 2.0 meq/mol, aging time = 23-147 hr) the pillared products contained 6.8-9.8 Fe{sup 3+} ions per O{sub 20}(OH){sub 4} unit cell and exhibited basal spacings of 25-29 {angstrom}. These latter spacings corresponded to exceptionally large gallery heights of 15-19 {angstrom}. Upon calcination at 300C, the spacings decreased to 23-27 {angstrom}. N{sub 2} BET surface areas after outgassing at 350C were in the range 270 to 350 m{sup 2}/g. The pillared products are active catalysts that have undergone Fischer-Tropsch synthesis of hydrocarbons at 275 C and 120 {minus}psi (CO:H{sub 2}=1:2). The hydrocarbon distribution in the C{sub 1}-C{sub 6} range (1.3% conversion) followed Anderson-Schulz-Flory statistics with a chain propagation probability of {alpha} = 0.49. X-ray energy dispersive analysis indicated that substantial amounts of the intercalated iron migrated to the edge sites of the clay particles under reaction conditions. The redistribution of iron resulted in a distribution of gallery heights sufficiently heterogeneous to preclude Bragg X-ray scattering along the 001 direction. Iron migration also occurred upon exposure of the pillared products to the ambient atmosphere for prolonged periods ({ge}3 months).

  5. Kinetically Relevant Steps and H2/D2 Isotope Effects in Fischer-Tropsch Synthesis on Fe and Co Catalysts

    SciTech Connect

    Ojeda, Manuel; Li, Anwu; Nabar, Rahul P.; Nilekar, Anand U.; Mavrikakis, Manos; Iglesia, Enrique

    2010-11-25

    H2/D2 isotope effects on Fischer-Tropsch synthesis (FTS) rate and selectivity are examined here by combining measured values on Fe and Co at conditions leading to high C5+ yields with theoretical estimates on model Fe(110) and Co(0001) surfaces with high coverages of chemisorbed CO (CO*). Inverse isotope effects (rH/rD < 1) are observed on Co and Fe catalysts as a result of compensating thermodynamic (H2 dissociation to H*; H* addition to CO* species to form HCO*) and kinetic (H* reaction with HCO*) isotope effects. These isotopic effects and their rigorous mechanistic interpretation confirm the prevalence of H-assisted CO dissociation routes on both Fe and Co catalysts, instead of unassisted pathways that would lead to similar rates with H2 and D2 reactants. The small contributions from unassisted pathways to CO conversion rates on Fe are indeed independent of the dihydrogen isotope, as is also the case for the rates of primary reactions that form CO2 as the sole oxygen rejection route in unassisted CO dissociation paths. Isotopic effects on the selectivity to C5+ and CH4 products are small, and D2 leads to a more paraffinic product than does H2, apparently because it leads to preference for chain termination via hydrogen addition over abstraction. These results are consistent with FTS pathways limited by H-assisted CO dissociation on both Fe and Co and illustrate the importance of thermodynamic contributions to inverse isotope effects for reactions involving quasi-equilibrated H2 dissociation and the subsequent addition of H* in hydrogenation catalysis, as illustrated here by theory and experiment for the specific case of CO hydrogenation.

  6. Diffusion limitations in Fischer-Tropsch catalysts

    SciTech Connect

    Post, M.F.M.; Van'tHoog, A.C.; Minderhoud, J.K.; Sie, S.T. . Lab.)

    1989-07-01

    The extent of diffusion limitations in the catalytic conversion of synthesis gas to hydrocarbons by the Fischer-Tropsch reaction has been established for a number of iron- and cobalt-based catalysts. The studies were performed in a fixed-bed microreactor system at temperatures in the range 473-523 {Kappa}. Variation of catalyst particle size in the range 0.2.-2.6 mm shows that the conversion of synthesis gas decreases considerably when the average particle size is increased. The effects of variation of particle size and pore diameter have been quantified with the Thiele model for diffusion limitations. Evidence has accumulated that the limited mobility of reactant molecules in the liquid-filled pores of Fischer-Tropsch catalysts is the main cause of retardation of the reaction rates. The experimentally determined reaction rates with various catalysts operated under different conditions show an excellent fit with the theoretical model.

  7. An innovative catalyst system for slurry-phase Fischer-Tropsch synthesis: Cobalt plus a water-gas-shift catalyst. Final technical report

    SciTech Connect

    Satterfield, C.N.; Yates, I.C.; Chanenchuk, C.

    1991-07-01

    The feasibility of using a mechanical mixture of a Co/MgO/SiO{sub 2} Fischer-Tropsch catalyst and a Cu-ZnO/Al{sub 2}O{sub 3} water-gas-shift (WGS) catalyst for hydrocarbon synthesis in a slurry reactor has been established. Such a mixture can combine the superior product distribution from cobalt with the high activity for the WGS reaction characteristic of iron. Weight ratios of Co/MgO/SiO{sub 2} to Cu-ZnO/Al{sub 2}O{sub 3} of 0.27 and 0.51 for the two catalysts were studied at 240{degrees}C, 0.79 MPa, and in situ H{sub 2}/CO ratios between 0.8 and 3.0. Each catalyst mixture showed stable Fischer-Tropsch activity for about 400 hours-on-stream at a level comparable to the cobalt catalyst operating alone. The Cu-ZnO/Al{sub 2}O{sub 3} catalyst exhibited a very slow loss of activity under these conditions, but when operated alone it was stable in a slurry reactor at 200--220{degrees}C, 0.79--1.48 MPa, and H{sub 2}/CO in situ ratios between 1.0 and 2.0. The presence of the water-gas-shift catalyst did not affect the long-term stability of the primary Fischer-Tropsch selectivity, but did increase the extent of secondary reactions, such as l-alkene hydrogenation and isomerization.

  8. Bulk and surface structure of a Ni Fe/Al2O3 catalyst for Fischer-Tropsch synthesis studied by Mössbauer, infrared spectroscopy and magnetic methods

    NASA Astrophysics Data System (ADS)

    Boellaard, E.; van der Kraan, A. M.; Geus, J. W.

    1992-04-01

    Deposition precipitation of a stoichiometric nickel-ironcyanide complex onto an alumina support and subsequent calcination and reduction has resulted in the formation of a homogeneous metallic alloy which exhibits activity for Fischer-Tropsch synthesis. During hydrocarbon synthesis conditions only a fraction of the metallic phase is converted in a phase which is most likely a thermally unstable (nickel-)iron carbide.

  9. Application of a novel TPR EXAFS/XANES method using a multi-sample holder to characterize promoted iron and cobalt fFischer-Tropsch synthesis catalysts.

    SciTech Connect

    Jacobs, G.; Sarkar, A.; Ji, Y.; Davis, B. H.; Cronauer, D.; Kropf, A. J.; Marshall, C. L.; Chemical Sciences and Engineering Division; Univ. of Kentucky

    2008-01-01

    Coal-to-liquids. Iron-based Fischer-Tropsch synthesis catalysts are not only used commercially for high temperature Fischer-Tropsch synthesis, but are increasingly becoming the focus for converting low H{sub 2}/CO ratio synthesis gas at lower temperature. Such low temperature processing yields hydrocarbon distributions with higher {alpha} values, and as a consequence, much less light hydrocarbon gas production (and especially, less methane). Another benefit to the use of iron-based catalysts is that the product slate is richer in {alpha}-olefinic products, which are more valuable than the paraffinic products produced using cobalt-based catalysts. Iron-based catalysts are often used to convert low H{sub 2}/CO ratio syngas, because the catalysts can intrinsically adjust the syngas ratio upward by converting a fraction of CO by reaction with H{sub 2}O to produce H{sub 2} and CO{sub 2} via the water-gas shift reaction.

  10. Low nitrogen iron-containing Fischer-Tropsch catalyst for conversion of synthesis gas and process for preparing the catalyst

    SciTech Connect

    Bell, W.K.; Haag, W.O.; Kirker, G.W.; Klocke, D.J.

    1986-10-14

    A process is described for preparing an iron-containing Fischer-Tropsch catalyst by continuously precipitating an aqueous solution containing iron nitrate with aqueous ammonia, to form a precipitate-containing product which is thereafter dried. In the improvement described here a catalyst containing less than 500 ppm nitrogen is produced which comprises maintaining a pH of about 6.5 to 6.9 and a temperature of about 70/sup 0/ to 100/sup 0/ C. during precipitation.

  11. Fischer-tropsch synthesis in supercritical fluids. Quarterly technical progress report, October 1, 1994--December 21, 1994

    SciTech Connect

    Akgerman, A.; Bukur, D.B.

    1995-01-31

    Progress reports are presented for the following two tasks: (1) diffusion coefficients of F-T products in supercritical fluids; and (2) Fischer-Tropsch reaction related studies. The objectives for this quarter for task 1 were to measure molecular diffusion coefficients and effective diffusivities at the same conditions. The objectives for task 2 were to conduct two additional tests with the Ruhrchemie catalyst and a catalyst synthesized in our laboratory under supercritical conditions.

  12. Synthesis of octane enhancers during slurry-phase Fischer-Tropsch. Quarterly technical progress report No. 7, April 1, 1992--June 30, 1992

    SciTech Connect

    Marcelin, G.

    1992-09-24

    The objective of this project is to investigate three possible routes to the formation of ethers, in particular methyl tert-butyl (MTBE), during slurry phase Fischer-Tropsch reaction. The three reaction schemes to be investigated are: addition of i-butylene during the formation of methanol and/or higher alcohols directly from CO and H{sub 2} during slurry-phase Fischer-Tropsch; addition of i-butylene to FT liquid products including alcohols in a slurry-phase reactor containing an MTBE or other acid catalyst; and addition of methanol to slurry phase FT synthesis making iso-olefins. During the seventh quarter we continued the shake down experiments for the SBCR and conducted an initial aborted run. We have also re-started experiments on Scheme 1, i.e., the addition of iso-butylene during CO hydrogenation. Using a dual bed arrangement, we have demonstrated the synthesis of MTBE from syngas and iso-butylene.

  13. Fe5C2 nanoparticles: a facile bromide-induced synthesis and as an active phase for Fischer-Tropsch synthesis.

    PubMed

    Yang, Ce; Zhao, Huabo; Hou, Yanglong; Ma, Ding

    2012-09-26

    Iron carbide nanoparticles have long been considered to have great potential in new energy conversion, nanomagnets, and nanomedicines. However, the conventional relatively harsh synthetic conditions of iron carbide hindered its wide applications. In this article, we present a facile wet-chemical route for the synthesis of Hägg iron carbide (Fe(5)C(2)) nanoparticles, in which bromide was found to be the key inducing agent for the conversion of Fe(CO)(5) to Fe(5)C(2) in the synthetic process. Furthermore, the as-synthesized Fe(5)C(2) nanoparticles were applied in the Fischer-Tropsch synthesis (FTS) and exhibited intrinsic catalytic activity in FTS, demonstrating that Fe(5)C(2) is an active phase for FTS. Compared with a conventional reduced-hematite catalyst, the Fe(5)C(2) nanoparticles showed enhanced catalytic performance in terms of CO conversion and product selectivity. PMID:22938192

  14. Recent developments in the application of nanomaterials to understanding molecular level processes in cobalt catalysed Fischer-Tropsch synthesis.

    PubMed

    Beaumont, S K

    2014-03-21

    This perspective offers an overview of using nanomaterials for understanding cobalt catalysed Fischer-Tropsch chemistry. Nanomaterials now afford unprecedented control of size, shape and structure at the nanometre scale. This makes them invaluable tools for studying heterogeneous catalysis. The Fischer-Tropsch reaction, especially using cobalt based catalysts, is a linchpin in many processes for utilising other feedstocks (via gasification) that have been envisaged as short/medium term replacements for crude oil. The underlying chemistry has therefore garnered considerable renewed interest. The current state of the art in mechanistic understanding is summarised and the application of nanomaterials to developing this further is explored. Several specific questions, to which nanomaterials have already contributed answers, are addressed: how do nanomaterials contribute to our understanding of cobalt particle size effects, reducibility, and the effect of support porosity and how do precious metal promoters operate in cobalt catalysed Fischer-Tropsch chemistry? Future possible uses for nanomaterials in studying this field are also identified. PMID:24487570

  15. BASELINE DESIGN/ECONOMICS FOR ADVANCED FISCHER-TROPSCH TECHNOLOGY

    SciTech Connect

    1998-04-01

    Bechtel, along with Amoco as the main subcontractor, developed a Baseline design, two alternative designs, and computer process simulation models for indirect coal liquefaction based on advanced Fischer-Tropsch (F-T) technology for the U. S. Department of Energy's (DOE's) Federal Energy Technology Center (FETC).

  16. A new synthesis of carbon encapsulated Fe5C2 nanoparticles for high-temperature Fischer-Tropsch synthesis

    NASA Astrophysics Data System (ADS)

    Hong, Seok Yong; Chun, Dong Hyun; Yang, Jung-Il; Jung, Heon; Lee, Ho-Tae; Hong, Sungjun; Jang, Sanha; Lim, Jung Tae; Kim, Chul Sung; Park, Ji Chan

    2015-10-01

    Using a simple thermal treatment under a CO flow, uniform micrometer-sized iron oxalate dihydrate cubes prepared by hydrothermal reaction were transformed into Fe5C2@C nanoparticles to form a mesoporous framework; the final structure was successfully applied to the high-temperature Fischer-Tropsch reaction and it showed high activity (CO conversion = 96%, FTY = 1.5 × 10-4 molCO gFe-1 s-1) and stability.Using a simple thermal treatment under a CO flow, uniform micrometer-sized iron oxalate dihydrate cubes prepared by hydrothermal reaction were transformed into Fe5C2@C nanoparticles to form a mesoporous framework; the final structure was successfully applied to the high-temperature Fischer-Tropsch reaction and it showed high activity (CO conversion = 96%, FTY = 1.5 × 10-4 molCO gFe-1 s-1) and stability. Electronic supplementary information (ESI) available: Details of experimental procedures, SEM images of FeNi and FeCo oxalate hydrate particles, particle size and pore size distributions, FT activity and selectivity, hydrocarbon product distribution, ASF plot, and Mössbauer parameters of the Fe5C2@C catalyst. See DOI: 10.1039/c5nr05787f

  17. Synthesis of octane enhancers during slurry-phase Fischer-Tropsch. Quarterly technical progress report No. 6, January 1, 1992--March 31, 1992

    SciTech Connect

    Marcelin, G.

    1992-06-24

    The objective of this project is to investigate three possible routes to the formation of ethers, in particular methyl tert-butyl ether (MTBE), during slurry phase Fischer-Tropsch reaction. The three reaction schemes to be investigated are: (1) Addition of isobutylene during the formation of methanol and/or higher alcohols directly from CO and H{sub 2} during slurry-phase Fischer-Tropsch. (2) Addition of isobutylene to FT liquid products including alcohols in a slurry-phase reactor containing an MTBE or other acid catalyst. (3) Addition of methanol to slurry phase FT synthesis making iso-olefins. During the sixth quarter we completed the construction of the slurry bubble column reactor (SBCR), conducted initial shake-down experiments in a cold-flow mode, and finalized the selection process of the acid catalysts for conversion of syngas-produced alcohols and isobutylene to MTBE (scheme 2). Tasks 3, 4, and 5 are awaiting complete implementation of the SBCR system.

  18. DEVELOPMENT OF A COMPUTATIONAL MULTIPHASE FLOW MODEL FOR FISCHER TROPSCH SYNTHESIS IN A SLURRY BUBBLE COLUMN REACTOR

    SciTech Connect

    Donna Post Guillen; Tami Grimmett; Anastasia M. Gribik; Steven P. Antal

    2010-09-01

    The Hybrid Energy Systems Testing (HYTEST) Laboratory is being established at the Idaho National Laboratory to develop and test hybrid energy systems with the principal objective to safeguard U.S. Energy Security by reducing dependence on foreign petroleum. A central component of the HYTEST is the slurry bubble column reactor (SBCR) in which the gas-to-liquid reactions will be performed to synthesize transportation fuels using the Fischer Tropsch (FT) process. SBCRs are cylindrical vessels in which gaseous reactants (for example, synthesis gas or syngas) is sparged into a slurry of liquid reaction products and finely dispersed catalyst particles. The catalyst particles are suspended in the slurry by the rising gas bubbles and serve to promote the chemical reaction that converts syngas to a spectrum of longer chain hydrocarbon products, which can be upgraded to gasoline, diesel or jet fuel. These SBCRs operate in the churn-turbulent flow regime which is characterized by complex hydrodynamics, coupled with reacting flow chemistry and heat transfer, that effect reactor performance. The purpose of this work is to develop a computational multiphase fluid dynamic (CMFD) model to aid in understanding the physico-chemical processes occurring in the SBCR. Our team is developing a robust methodology to couple reaction kinetics and mass transfer into a four-field model (consisting of the bulk liquid, small bubbles, large bubbles and solid catalyst particles) that includes twelve species: (1) CO reactant, (2) H2 reactant, (3) hydrocarbon product, and (4) H2O product in small bubbles, large bubbles, and the bulk fluid. Properties of the hydrocarbon product were specified by vapor liquid equilibrium calculations. The absorption and kinetic models, specifically changes in species concentrations, have been incorporated into the mass continuity equation. The reaction rate is determined based on the macrokinetic model for a cobalt catalyst developed by Yates and Satterfield [1]. The

  19. Indirect liquefaction of coal. [Coal gasification plus Fischer-Tropsch, methanol or Mobil M-gasoline process

    SciTech Connect

    1980-06-30

    The most important potential environmental problems uniquely associated with indirect liquefaction appear to be related to the protection of occupational personnel from the toxic and carcinogenic properties of process and waste stream constituents, the potential public health risks from process products, by-products and emissions and the management of potentially hazardous solid wastes. The seriousness of these potential problems is related partially to the severity of potential effects (i.e., human mortality and morbidity), but even more to the uncertainty regarding: (1) the probable chemical characteristics and quantities of process and waste streams; and (2) the effectiveness and efficiencies of control technologies not yet tested on a commercial scale. Based upon current information, it is highly improbable that these potential problems will actually be manifested or pose serious constraints to the development of indirect liquefaction technologies, although their potential severity warrants continued research and evaluation. The siting of indirect liquefaction facilities may be significantly affected by existing federal, state and local regulatory requirements. The possibility of future changes in environmental regulations also represents an area of uncertainty that may develop into constraints for the deployment of indirect liquefaction processes. Out of 20 environmental issues identified as likely candidates for future regulatory action, 13 were reported to have the potential to impact significantly the commercialization of coal synfuel technologies. These issues are listed.

  20. Microkinetic modelling of the formation of C 1 and C 2 products in the Fischer-Tropsch synthesis over cobalt catalysts

    NASA Astrophysics Data System (ADS)

    Storsæter, Sølvi; Chen, De; Holmen, Anders

    2006-05-01

    The heats of adsorption of different C 1 and C 2 molecules assumed to be present during the initial steps of the Fischer-Tropsch synthesis and activation energies for elementary steps envisioned to occur in the synthesis are calculated for Co by using the unity bond index-quadratic exponential potential (UBI-QEP) method. The preexponential factors for the elementary steps are calculated from transition-state theory, and the rate constants are calculated according to the Arrhenius equation. The activation barrier for hydrogenation of CO is found to be lower compared to hydrogen assisted dissociation of CO, which has a smaller activation barrier than direct dissociation of CO. The reaction steps with high activation barriers are eliminated. Based on this elimination two sets of elementary steps for formation of C 1 and C 2 alkenes and alkanes in the Fischer-Tropsch synthesis are established: one based on hydrogen assisted CO dissociation (carbide mechanism) and one based on CO hydrogenation (CO insertion mechanism). In addition, one mechanism of producing CO 2 from the water-gas shift reaction is proposed. The resulting mechanisms are combined and used in the microkinetic model, which are fitted to experimental results at methanation conditions ( T = 483 K or 493 K, p = 1.85 bar and H 2/CO = 10) over a Co/Al 2O 3 Fischer-Tropsch catalyst. A good tuning is obtained by adjusting the C-Co and H-Co binding strengths. The microkinetic modelling based on these assumptions indicates that CO is mainly converted through hydrogenation of CO and that C 2 compounds are mainly produced by insertion of CO into a metal-methyl bond. Thus, from the surface coverages and reaction rates predicted by the microkinetic modelling the mechanism can be further reduced to only include the CO insertion mechanism. Hydrogenation of CHO to CH 2O is found to be the rate determining initiation step, and insertion of CO into a metal-methyl bond is found to be the rate determining step for chain

  1. Cobalt catalysts for the conversion of methanol to hydrocarbons and for Fischer-Tropsch Synthesis

    SciTech Connect

    Mauldin, C.H.

    1986-02-04

    This patent describes a catalyst useful for the conversion at reaction conditions of methanol or synthesis gas to hydrocarbons by contact with a catalyst. The catalyst cobalt and thorium in catalytically active amounts, and rhenium, composited with an inorganic oxide support in weight ratio of rhenium:cobalt ranging from about 0.025:1 to about 0.10:1.

  2. Moessbauer spectroscopy study of iron-based catalysts used in Fischer-Tropsch synthesis

    SciTech Connect

    Rao, K.R.P.M.; Huggins, F.E.; Huffman, G.P.

    1995-12-01

    Mossbauer investigations of iron-based catalysts containing the promoters K, and Cu, and binders consisting of oxides of Al, Si and Zr were carried out. Catalysts subjected to pretreatment in gas atmospheres containing mixtures of CO, H{sub 2}, and He have been studied. It is shown that the nature of binders, promoters and pretreatment of a catalyst influence the iron-phases formed during pretreatment and FT synthesis. Activation of the catalysts in CO leads to rapid and almost complete formation of {chi}-Fe{sub 5}C{sub 2} during activation and gives rise to high (H{sub 2}+CO) conversion. On the other hand, activation of the catalysts in synthesis gas leads to slow and incomplete formation of carbides and low (H{sub 2}+CO) conversion.

  3. Simulation models and designs for advanced Fischer-Tropsch technology

    SciTech Connect

    Choi, G.N.; Kramer, S.J.; Tam, S.S.

    1995-12-31

    Process designs and economics were developed for three grass-roots indirect Fischer-Tropsch coal liquefaction facilities. A baseline and an alternate upgrading design were developed for a mine-mouth plant located in southern Illinois using Illinois No. 6 coal, and one for a mine-mouth plane located in Wyoming using Power River Basin coal. The alternate design used close-coupled ZSM-5 reactors to upgrade the vapor stream leaving the Fischer-Tropsch reactor. ASPEN process simulation models were developed for all three designs. These results have been reported previously. In this study, the ASPEN process simulation model was enhanced to improve the vapor/liquid equilibrium calculations for the products leaving the slurry bed Fischer-Tropsch reactors. This significantly improved the predictions for the alternate ZSM-5 upgrading design. Another model was developed for the Wyoming coal case using ZSM-5 upgrading of the Fischer-Tropsch reactor vapors. To date, this is the best indirect coal liquefaction case. Sensitivity studies showed that additional cost reductions are possible.

  4. Slurry phase Fischer-Tropsch synthesis: Cobalt plus a water-gas shift catalyst

    SciTech Connect

    Yates, I.C.; Satterfield, C.N.

    1990-01-01

    Experiments on cobalt-catalyzed reactions of light 1-alkenes added to synthesis gas were performed. Data have been collected at 220C, 0.45 to 1.48 MPa and a synthesis gas flow rate between 0.015 and 0.030 Nl/(gcat[center dot]min) with H[sub 2]/CO of 1.45 to 2.25. Ethylene, propene, and butene were added to synthesis gas feed from 0.5 to 1.2 mole% of total feed. For each material balance in which 1-alkenes were added, a material balance was performed at similar process conditions without 1-alkenes added, as base case''. Material balances without added 1-alkenes were also repeated to verify of catalyst selectivity stability. 49 material balances were performed during a single run lasting over 2,500 hours-on-stream. The hydrocarbon data have been completely analyzed; data correlations are still being made. Since C[sub 3]/C[sub 1] ratios by ethene addition, C[sub 4]/C[sub 1] ratios by propene addition, and C[sub 5]/C[sub 1] ratios by 1-butene addition, it appears that 1-alkenes may incorporate into growing chains on the surface of the catalyst. Further evidence for incorporation can be seen by comparing selectivity to n-alcohol one carbon number higher than added 1-alkene. Yield of this n-alcohol increases when alkenes are present. Sensitivity of hydrocarbon distribution to process variables seems to be greater on Co than on Fe catalysts.

  5. Cobalt catalysts for the conversion of methanol and for Fischer-tropsch synthesis to produce hydrocarbons

    SciTech Connect

    Mauldin, C.H.; Davis, S.M.; Arcuri, K.B.

    1987-05-05

    A regeneration stable catalyst is described for the conversion at reaction conditions of methanol or synthesis gas to liquid hydrocarbons which consists essentially of from about 2 percent to about 25 percent cobalt, based on the weight of the catalyst composition, composited with titania, or a titania-containing support, to which is added sufficient of a zirconium, hafnium, cerium, or uranium promoter to provide a weight ratio of the zirconium, hafnium, cerium, or uranium metal:cobalt greater than about 0.101:1.

  6. Titania-supported catalysts and their preparation for use in Fischer-Tropsch synthesis

    SciTech Connect

    Mauldin, C.H.; Riley, K.L.

    1991-02-12

    This patent describes a support composition for forming a catalyst useful for the conversion of synthesis gas to hydrocarbons. It comprises: titania in which there is incorporated from 0.1 to about 20 wt% of an inorganic oxide binder selected from the group consisting of alumina and zirconia based on the weight of the titania-binder support, to provide a titania-binder support having a pore volume ranging from about 0.2 cc/g to about 0.5 cc/g, and surface area ranging from about 8 m{sup 2}/g to about 70 m{sup 2}/g.

  7. Improved cobalt catalysts, and use thereof for Fischer-Tropsch synthesis

    SciTech Connect

    Mauldin, C.H.

    1987-06-02

    This patent describes a process useful for the conversion of synthesis gas feed comprised of hydrogen and carbon monoxide to hydrocarbons. The process comprises contacting the feed at reaction conditions with a catalyst which comprises cobalt, or cobalt and thoria in catalytically active amount composited with tatania or titania-containing support, to which is added sufficient rhenium to obtain, with a similar feed at corresponding process conditions, improved activity, as contrasted with a catalyst composition otherwise similar except that it does not contain rhenium.

  8. Reactions of selected 1-olefins and ethanol added during the Fischer-Tropsch synthesis: Topical report

    SciTech Connect

    Hanlon, R.T.; Satterfield, C.N.

    1987-10-30

    The effects of addition during synthesis of C/sub 2/, C/sub 4/, C/sub 6/, C/sub 10/ or C/sub 20/, normal 1-olefins, was studied in a continuous well-stirred liquid phase reactor. Studies were at 248/sup 0/C and 0.78 to 1.48 MPa, using a reduced fused magnetite catalyst containing potassium. Incorporation of these olefins into growing chains could be detected, but was relatively minor. Instead the olefin was hydrogenated to the corresponding paraffin or isomerized to the 2-olefin. Excluding ethylene, which is unusually reactive, the reactivity of the olefins increased with molecular weight. Disappearance of all added species was much less at low synthesis conversions than at high, attributed to competitive adsorption with CO. The reactions of added ethanol were also studied. Ethanol or ethylene decreased the hydrogenation capabilities of the catalyst as reflected in decreased formation of CH/sub 4/ and increased olefin/paraffin ratio of the products. Neither addition affected the chain growth probability, ..cap alpha... 21 refs., 11 figs., 5 tabs.

  9. Fischer Tropsch synthesis in supercritical fluids. Quarterly technical progress report, April 1, 1995--June 30, 1995

    SciTech Connect

    Akgerman, A.; Bukur, D.B.

    1996-05-01

    Our objective for this quarter was to study the effect of co-feeding a 1-olefin on the Ruhrchemie catalyst activity and selectivity, during-both conventional Fisher-Tropsch synthesis (FTS) and FTS under supercritical conditions. We used propane as the supercritical fluid and 1-dodecene (1-C{sub 12}H{sub 24}) in this test. Motivation for this study was the work of Fujimoto and co-workers who reported that suppression of methane and enhancement of high molecular weight hydrocarbons selectivities occurs with co-feeding of 1-olefins (1-heptene, 1-tetradecene, or 1-hexadecene) during FTS under supercritical conditions, but not during the conventional FTS (Co-La catalyst supported on silica in supercritical n-pentane).The diffusion coefficients of products in supercritical fluids is discussed.

  10. Diffusivities of synthesis gas and Fischer-Tropsch products in slurry media. Quarterly report, September-December 1984

    SciTech Connect

    Akgerman, A.

    1985-01-01

    The goal of this research is to develop a fast and accurate method for measuring liquid diffusion coefficients for the Fischer-Tropsch system at temperatures from ambient to 573 K and pressures from ambient to 7 MPa. The Taylor dispersion technique will be utilized for measuring the diffusivities of carbon monoxide, hydrogen, heptane, octane, nonane, decane, and decanol in molten Fischer-Tropsch wax. The theoretical criteria for measuring diffusivities by the Taylor dispersion method have been given. In addition, the practical departures from an ideal experiment have been discussed; correction for the non-ideal conditions are found in Appendix B (Alizadeh et al., 1980). The effect of varying viscosity on secondary flow effects has been pointed out; it appears that under typical laboratory space limitations, using commercially available tubing, and with diffusivities on the order of 10/sup -9/ m/sup 2//s, it will not be possible to completely eliminate these effects. An apparatus for measuring diffusivity at high temperatures and pressures, where data has heretofore been scarce, is presented. With this apparatus rapid measurements may be made, and with the aid of computer control the measurements may be repeated and large volumes of data generated with minimum requirements of the operator. We anticipate our accuracy being between 0.5 and 4%. 20 references, 4 figures.

  11. Fischer-Tropsch Synthesis. Reduction Behavior and Catalytic Activity of Fe-Ce Systems

    SciTech Connect

    Perez-Alonso, F.J.; Ojeda, M.; Herranz, T.; Fierro, J.L.G.

    2005-04-26

    Several Fe-Ce catalysts for FT synthesis were prepared following two different methods: coprecipitation from Fe and Ce nitrate solutions and a physical mixture of pure Fe and Ce precursors. The iron phases present in the activated catalysts were identified by XRD and Moessbauer spectroscopy. A good correlation between both techniques was found. The results revealed that the cerium oxide in the samples prepared by coprecipitation produces two effects: (i), stabilization of metastable species (Fe1-xO), and (ii), a decrease in the crystallite size of the iron species upon increasing Ce-contents, as inferred from an increase in superparamagnetic species. The catalysts were tested in CO hydrogenation in a flow reactor. It was found that selectivity towards light olefins increases for the coprecipitated Ce-containing catalysts, whereas CO conversion followed the opposite trend. Since the Fe1-xO phase was detected in these catalysts, it is suggested that the formation of the Fe1-xO phase would be responsible for the drop in catalytic activity.

  12. Fischer-Tropsch Synthesis. Reduction Behavior and Catalytic Activity of Fe-Ce Systems

    NASA Astrophysics Data System (ADS)

    Pérez-Alonso, F. J.; Ojeda, M.; Herranz, T.; Fierro, J. L. G.; Bengoa, J. F.; Marchetti, S. G.

    2005-04-01

    Several Fe-Ce catalysts for FT synthesis were prepared following two different methods: coprecipitation from Fe and Ce nitrate solutions and a physical mixture of pure Fe and Ce precursors. The iron phases present in the activated catalysts were identified by XRD and Mössbauer spectroscopy. A good correlation between both techniques was found. The results revealed that the cerium oxide in the samples prepared by coprecipitation produces two effects: (i), stabilization of metastable species (Fe1-xO), and (ii), a decrease in the crystallite size of the iron species upon increasing Ce-contents, as inferred from an increase in superparamagnetic species. The catalysts were tested in CO hydrogenation in a flow reactor. It was found that selectivity towards light olefins increases for the coprecipitated Ce-containing catalysts, whereas CO conversion followed the opposite trend. Since the Fe1-xO phase was detected in these catalysts, it is suggested that the formation of the Fe1-xO phase would be responsible for the drop in catalytic activity.

  13. Fischer-Tropsch synthesis in slurry reactor systems. Quarterly report, May 1, 1984-July 31, 1984

    SciTech Connect

    Satterfield, C.N.; Bartos, T.; Hanlon, R.; Huff, G.A. Jr.; Matsumoto, D.

    1984-01-01

    We suspect that a number of reports in the published literature of catalyst preparations that supposedly minimize wax formation are erroneous in that wax may actually have accumulated in catalyst pores and that insufficient time may have been allowed for the effluent to represent true intrinsic kinetics. Mathematical simulations show the effect of pressure, temperature, rate constant, feed composition, space velocity and Flory parameter ..cap alpha.., on time required for pores to fill, upon liquid product distribution and vapor composition leaving the reactor. The pore filling rate and condensed product composition vary with position through the reactor but not with time. The maximum filling rate does not occur at the same position in the bed as the maximum synthesis rate. For reaction conditions of industrial interest, the greatest effect is caused by the assumed carbon number distribution of the products. A rigorous parameter to generalize the results is not immediately evident. We reported studies of the effect of the nature of the liquid on the activity and selectivity of a reduced fused magnetite catalyst. For interpretation of such studies it is necessary to have data on solubilities of hydrogen and carbon monoxide in the liquids of interest. New data at elevated temperatures and pressure are reported for octacosane, phenanthreene and Fomblin, a perfluorinated polyether, and compared to previous literature on a variety of liquids. When hydrogen solubilities are reported on a volumetric basis, substances of a similar chemical nature have very similar solubilities.

  14. Fischer-Tropsch synthesis over iron-based catalysts in slurry reactors. Reaction rates, kinetics and implications for improving hydrocarbon productivity

    SciTech Connect

    Raje, A.P.; Davis, B.H.

    1996-10-01

    The Fischer-Tropsch (FT) synthesis is carried out over a high activity precipitated iron catalyst promoted with silica and potassium in a slurry reactor. Reaction rates (FTS and water gas shift) and partial pressures are evaluated over a wide range of CO conversions (10 to 90%) and space velocities at 270{degrees}C, 175 psig and a H{sub 2}/CO ratio of 0.67. The partial pressure of water exhibits a maximum at intermediate CO conversion. Both the fraction of CO converted to hydrocarbons and the hydrocarbon space time yield decrease with increasing CO conversion. This implies that it would be beneficial to have lower conversion per pass in the reactor with recycle to achieve a high overall conversion. The data as well as experiments with water and CO{sub 2} addition enable us to determine a kinetic expression for the catalyst which shows negligible inhibition of the reaction rate by water or CO{sub 2}.

  15. Promotional effects of Al{sub 2}O{sub 3} addition to Co/SiO{sub 2} catalysts for Fischer-Tropsch synthesis

    SciTech Connect

    Yi Zhang; Satoshi Nagamori; Sukamon Hinchiranan; Tharapong Vitidsant; Noritatsu Tsubaki

    2006-03-15

    The addition of a small amount of Al{sub 2}O{sub 3} to silica-supported cobalt catalysts significantly increased the dispersion of cobalt and Co-metallic surface area, resulting in the remarkable enhancement of the Fischer-Tropsch synthesis (FTS) activity in the slurry-phase reaction. The addition of Al{sub 2}O{sub 3} adjusted the interaction between cobalt and the silica support quite well, realizing the favored dispersion and reduction degree of supported cobalt and leading to high catalytic activity in FTS. The properties of various catalysts were characterized by in situ DRIFT, XRD, TPR, N{sub 2} physisorption, and H{sub 2} chemisorption. 16 refs., 3 figs., 2 tabs.

  16. Straightforward synthesis of bimetallic Co/Pt nanoparticles in ionic liquid: atomic rearrangement driven by reduction-sulfidation processes and Fischer-Tropsch catalysis

    NASA Astrophysics Data System (ADS)

    Silva, Dagoberto O.; Luza, Leandro; Gual, Aitor; Baptista, Daniel L.; Bernardi, Fabiano; Zapata, Maximiliano J. M.; Morais, Jonder; Dupont, Jairton

    2014-07-01

    Unsupported bimetallic Co/Pt nanoparticles (NPs) of 4.4 +/- 1.9 nm can be easily obtained by a simple reaction of [bis(cylopentadienyl)cobalt(ii)] and [tris(dibenzylideneacetone) bisplatinum(0)] complexes in 1-n-butyl-3-methylimidazolium hexafluorophosphate IL at 150 °C under hydrogen (10 bar) for 24 h. These bimetallic NPs display core-shell like structures in which mainly Pt composes the external shell and its concentration decreases in the inner-shells (CoPt3@Pt-like structure). XPS and EXAFS analyses show the restructuration of the metal composition at the NP surface when they are subjected to hydrogen and posterior H2S sulfidation, thus inducing the migration of Co atoms to the external shells of the bimetallic NPs. Furthermore, the isolated bimetallic NPs are active catalysts for the Fischer-Tropsch synthesis, with selectivity for naphtha products.

  17. Effect of H{sub 2}/CO ratio on Fischer-Tropsch synthesis in a slurry reactor with cobalt-based catalyst

    SciTech Connect

    Inga, J.R.; Morsi, B.I.

    1995-12-31

    The effect of syngas having different H{sub 2}/CO ratios on Fischer-Tropsch synthesis in a slurry bubble column reactor with a Cobalt-based catalyst was assessed using a simple reactor model. The data and catalyst used in this model were from Bechtel studies (1990). It was found that hydrogen is likely to become the rate limiting reactant, even at relatively low catalyst activities, not because of gas-liquid mass transfer, but due to the depletion of hydrogen in the gas phase. This will reduce the H{sub 2}/CO ratio in the liquid phase which will consequently decrease the reaction rate and affect the product selectivity. The increase of catalyst concentration appeared not to affect the reactor performance, when using a syngas with low H{sub 2}/CO ratios.

  18. Straightforward synthesis of bimetallic Co/Pt nanoparticles in ionic liquid: atomic rearrangement driven by reduction-sulfidation processes and Fischer-Tropsch catalysis.

    PubMed

    Silva, Dagoberto O; Luza, Leandro; Gual, Aitor; Baptista, Daniel L; Bernardi, Fabiano; Zapata, Maximiliano J M; Morais, Jonder; Dupont, Jairton

    2014-08-01

    Unsupported bimetallic Co/Pt nanoparticles (NPs) of 4.4 ± 1.9 nm can be easily obtained by a simple reaction of [bis(cylopentadienyl)cobalt(ii)] and [tris(dibenzylideneacetone) bisplatinum(0)] complexes in 1-n-butyl-3-methylimidazolium hexafluorophosphate IL at 150 °C under hydrogen (10 bar) for 24 h. These bimetallic NPs display core-shell like structures in which mainly Pt composes the external shell and its concentration decreases in the inner-shells (CoPt3@Pt-like structure). XPS and EXAFS analyses show the restructuration of the metal composition at the NP surface when they are subjected to hydrogen and posterior H2S sulfidation, thus inducing the migration of Co atoms to the external shells of the bimetallic NPs. Furthermore, the isolated bimetallic NPs are active catalysts for the Fischer-Tropsch synthesis, with selectivity for naphtha products. PMID:24975109

  19. Stability and reactivity of ϵ-χ-θ iron carbide catalyst phases in Fischer-Tropsch synthesis: controlling μ(C).

    PubMed

    de Smit, Emiel; Cinquini, Fabrizio; Beale, Andrew M; Safonova, Olga V; van Beek, Wouter; Sautet, Philippe; Weckhuysen, Bert M

    2010-10-27

    The stability and reactivity of ϵ, χ, and θ iron carbide phases in Fischer-Tropsch synthesis (FTS) catalysts as a function of relevant reaction conditions was investigated by a synergistic combination of experimental and theoretical methods. Combined in situ X-ray Absorption Fine Structure Spectroscopy/X-ray Diffraction/Raman Spectroscopy was applied to study Fe-based catalysts during pretreatment and, for the first time, at relevant high pressure Fischer-Tropsch synthesis conditions, while Density Functional Theory calculations formed a fundamental basis for understanding the influence of pretreatment and FTS conditions on the formation of bulk iron carbide phases. By combining theory and experiment, it was found that the formation of θ-Fe(3)C, χ-Fe(5)C(2), and ϵ-carbides can be explained by their relative thermodynamic stability as imposed by gas phase composition and temperature. Furthermore, it was shown that a significant part of the Fe phases was present as amorphous carbide phases during high pressure FTS, sometimes in an equivalent amount to the crystalline iron carbide fraction. A catalyst containing mainly crystalline χ-Fe(5)C(2) was highly susceptible to oxidation during FTS conditions, while a catalyst containing θ-Fe(3)C and amorphous carbide phases showed a lower activity and selectivity, mainly due to the buildup of carbonaceous deposits on the catalyst surface, suggesting that amorphous phases and the resulting textural properties play an important role in determining final catalyst performance. The findings further uncovered the thermodynamic and kinetic factors inducing the ϵ-χ-θ carbide transformation as a function of the carbon chemical potential μ(C). PMID:20925335

  20. Selective Fischer-Tropsch synthesis on metal powder catalysts prepared by the potassium reduction of halides in THF

    SciTech Connect

    Miyake, M.; Takebe, K.; Nomura, M.

    1987-06-01

    Metal powders such as Fe, Co, Ni, Fe-Co, and Fe-Ni prepared by reducing metal iodides or bromides with potassium metal in refluxing THF were used as catalysts for Fischer-Tropsch syntheses. These metal powders contained very small particles and have BET surface areas (28-36 m/sup 2//g). The metal powder catalysts, such as Fe and Fe-Co (80:20), gave 1-butene with more than 35 wt% selectivity at a rather high CO conversion of over 10 wt% at 533-553 K, while products on the Co catalyst obeyed conventional Schulz-Flory type distribution. The Ni catalyst showed little activity. Effects of reaction variables (temperature, H/sub 2//CO feed gas ratio, and composition of Fe-Co) were investigated.

  1. Fischer-Tropsch synthesis in slurry-reactor systems. Quarterly report, November 1, 1981 to January 31, 1982

    SciTech Connect

    Satterfield, C.N.; Bartos, T.; Huff, G.A. Jr.; Stenger, H.

    1982-01-01

    A detailed study of mass transfer effects with a reduced fused magnetite catalyst has now been completed and is summarized in an appended paper, Mass Transfer and Product Selectivity in a Mechanically-Stirred Fischer-Tropsch Slurry Reactor, by Charles N. Satterfield and George A. Huff, Jr. Analysis of our heavier hydrocarbon products indicates that they yield a value of ..cap alpha.. = 0.93 on a Flory plot, considerably higher than the values of ..cap alpha.. of about 0.7 found with lighter products. Iron catalysts may exhibit two kinds of sites with considerably different kinetic behavior. At the request of Drs. Sapienza and Sleigeir of the Brookhaven National Laboratory, we ran a sample of their SOSS catalyst in our reactor facility at 100 psig. Activity was low, but this may have been because this particular catalyst is possibly better suited for higher pressures.

  2. Comparative study of oil-slurry process to fixed-bed process in the Fischer-Tropsch synthesis

    SciTech Connect

    Sakai, T.; Kunugi, T.

    1982-01-01

    Differences between the oil-slurry process and the fixed-bed process on catalyst activity and C/sub 1/-C/sub 4/ product selectivity in the Fischer-Tropsch systhesis are described for a precipitated iron catalyst at reaction temperatures of 200 to 250/sup 0/C. Other reaction conditions used were those usually used for the two processes but were not the same for both processes. The data indicated that the catalyst activity is due to the presence of metallic iron suppresses the formation of CH/sub 4/ and favors the C/sub 3/ and C/sub 4/ hydrocarbon formation, and the experimental data preclude the formation of iron carbide for the oil-slurry process. An activation energy of 79.1kJ/mole was obtained at temperatures of 230 to 242/sup 0/C. (BLM)

  3. Investigation on the Fischer-Tropsch synthesis with nitrogen-containing syngas over CoPtZrO{sub 2}/Al{sub 2}O{sub 3} catalyst

    SciTech Connect

    Dongyan Xu; Hongmin Duan; Wenzhao Li; Hengyong Xu

    2006-05-15

    The Fischer-Tropsch synthesis with nitrogen-containing syngas derived from combined air partial oxidation and CO{sub 2} reforming of methane has been performed in a fixed-bed reactor. The effects of key factors including reaction temperature, pressure, and nitrogen content of the syngas on the performance of CoPtZrO{sub 2}/Al{sub 2}O{sub 3} catalyst were mainly investigated. The results indicate that the syngas containing a high content of nitrogen is suitable for Fischer-Tropsch synthesis and that a high initial catalytic activity can be achieved under typical operating conditions. The decreasing of catalytic activity with time on stream before reaching steady state was observed, which is mainly due to the blockage of catalyst pores by heavy hydrocarbons. 22 refs., 7 figs.

  4. Impact of Contaminants Present in Coal-Biomass Derived Synthesis Gas on Water-gas Shift and Fischer-Tropsch Synthesis Catalysts

    SciTech Connect

    Alptekin, Gokhan

    2013-02-15

    Co-gasification of biomass and coal in large-scale, Integrated Gasification Combined Cycle (IGCC) plants increases the efficiency and reduces the environmental impact of making synthesis gas ("syngas") that can be used in Coal-Biomass-to-Liquids (CBTL) processes for producing transportation fuels. However, the water-gas shift (WGS) and Fischer-Tropsch synthesis (FTS) catalysts used in these processes may be poisoned by multiple contaminants found in coal-biomass derived syngas; sulfur species, trace toxic metals, halides, nitrogen species, the vapors of alkali metals and their salts (e.g., KCl and NaCl), ammonia, and phosphorous. Thus, it is essential to develop a fundamental understanding of poisoning/inhibition mechanisms before investing in the development of any costly mitigation technologies. We therefore investigated the impact of potential contaminants (H2S, NH3, HCN, AsH3, PH3, HCl, NaCl, KCl, AS3, NH4NO3, NH4OH, KNO3, HBr, HF, and HNO3) on the performance and lifetime of commercially available and generic (prepared in-house) WGS and FT catalysts.

  5. Supported fischer-tropsch catalyst and method of making the catalyst

    DOEpatents

    Dyer, Paul N.; Pierantozzi, Ronald; Withers, Howard P.

    1987-01-01

    A Fischer-Tropsch catalyst and a method of making the catalyst for a Fischer-Tropsch process utilizing the catalyst by which synthesis gas, particularly carbon-monoxide rich synthesis gas, is selectively converted to higher hydrocarbons of relatively narrow carbon number range is disclosed. In general, the selective and notably stable catalyst, consist of an inert carrier first treated with a Group IV B metal compound (such as zirconium or titanium), preferably an alkoxide compound, and subsequently treated with an organic compound of a Fischer-Tropsch metal catalyst, such as cobalt, iron or ruthenium carbonyl. Reactions with air and water and calcination are specifically avoided in the catalyst preparation procedure.

  6. Segregation of Fischer-Tropsch reactants on cobalt nanoparticle surfaces.

    PubMed

    Lewis, E A; Le, D; Jewell, A D; Murphy, C J; Rahman, T S; Sykes, E C H

    2014-06-21

    Using scanning tunnelling microscopy, we have visualized the segregation of carbon monoxide and hydrogen, the two reactants in Fischer-Tropsch synthesis, on cobalt nanoparticles at catalytically relevant coverages. Density functional theory was used to interrogate the relevant energetics. PMID:24825772

  7. Separation of catalyst from Fischer-Tropsch slurry

    SciTech Connect

    White, C.M.; Quiring, M.S.; Jensen, K.L.; Hickey, R.F.; Gillham, L.D.

    1998-04-01

    This paper describes a process for the separation of catalysts used in Fischer-Tropsch synthesis. The separation is accomplished by extraction in which the organic compounds in the wax are dissolved and carried away from the insoluble inorganic catalyst particles that are primarily inorganic. The purified catalyst can be upgraded by various methods.

  8. Conversion of cellulosic wastes to liquid hydrocarbon fuels: Vol. 2, A kinetic study of the modified Fischer-Tropsch synthesis over an alumina-supported cobalt oxide catalyst: Final report

    SciTech Connect

    Kuester, J.L.

    1986-11-01

    A modified Fischer-Tropsch reaction with the incorporation of ethylene in the synthesis gas has been studied kinetically. The feed mixture was also comprised of methane and carbon dioxide in a proportion similar to a real pyrolysis gas composition. The feed gas was provided by a manifold of compressed gas cylinders. An alumina-supported cobalt oxide catalyst was prepared by an impregnation method and used in the experimentation.

  9. Impact of Hydrogenolysis on the Selectivity of the Fischer-Tropsch Synthesis: Diesel Fuel Production over Mesoporous Zeolite-Y-Supported Cobalt Nanoparticles.

    PubMed

    Peng, Xiaobo; Cheng, Kang; Kang, Jincan; Gu, Bang; Yu, Xiang; Zhang, Qinghong; Wang, Ye

    2015-04-01

    Selectivity control is a challenging goal in Fischer-Tropsch (FT) synthesis. Hydrogenolysis is known to occur during FT synthesis, but its impact on product selectivity has been overlooked. Demonstrated herein is that effective control of hydrogenolysis by using mesoporous zeolite Y-supported cobalt nanoparticles can enhance the diesel fuel selectivity while keeping methane selectivity low. The sizes of the cobalt particles and mesopores are key factors which determine the selectivity both in FT synthesis and in hydrogenolysis of n-hexadecane, a model compound of heavier hydrocarbons. The diesel fuel selectivity in FT synthesis can reach 60 % with a CH4 selectivity of 5 % over a Na-type mesoporous Y-supported cobalt catalyst with medium mean sizes of 8.4 nm (Co particles) and 15 nm (mesopores). These findings offer a new strategy to tune the product selectivity and possible interpretations of the effect of cobalt particle size and the effect of support pore size in FT synthesis. PMID:25683326

  10. Improved Sasol Fischer-Tropsch processes

    SciTech Connect

    Jager, B.

    1995-12-31

    Fischer-Tropsch (FT) processes can be used to produce either a light syncrude and light olefins or to produce heavy waxy hydrocarbons. The syncrude can be refined to environmentally friendly gasoline and diesel and the heavy hydrocarbons to specialty waxes or if hydrocracked, and/or isomerized, to produce excellent diesel, lube oils and a naphtha which is ideal feedstock for cracking. Over the last few years much better reactor systems have been developed for both high temperature FT (HTFT) and low temperature FT (LTFT). For HTFT the Sasol Advanced Synthol (SAS) reactor with solid-gas fluidization was developed. This gives very much the same product spectra as the CFB reactors, but does it much more effectively and cheaply. For LTFT, the Sasol Slurry Phase Distillate (SSPD) reactor, of the bubble column type, was developed which is a significant improvement on the tubular fixed bed (TFB) reactor used in the Arge process. The SSPD reactor can make products with the same carbon distribution as the TFB reactor with Schulz-Flory distribution alpha values 0,95 and higher. It has greater flexibility with respect to product distribution. The paper describes both reactors, and the integration of Fischer-Tropsch synthesis with coal gasification.

  11. Efficient utilization of greenhouse gases in a gas-to-liquids process combined with CO2/steam-mixed reforming and Fe-based Fischer-Tropsch synthesis.

    PubMed

    Zhang, Chundong; Jun, Ki-Won; Ha, Kyoung-Su; Lee, Yun-Jo; Kang, Seok Chang

    2014-07-15

    Two process models for carbon dioxide utilized gas-to-liquids (GTL) process (CUGP) mainly producing light olefins and Fischer-Tropsch (F-T) synthetic oils were developed by Aspen Plus software. Both models are mainly composed of a reforming unit, an F-T synthesis unit and a recycle unit, while the main difference is the feeding point of fresh CO2. In the reforming unit, CO2 reforming and steam reforming of methane are combined together to produce syngas in flexible composition. Meanwhile, CO2 hydrogenation is conducted via reverse water gas shift on the Fe-based catalysts in the F-T synthesis unit to produce hydrocarbons. After F-T synthesis, the unreacted syngas is recycled to F-T synthesis and reforming units to enhance process efficiency. From the simulation results, it was found that the carbon efficiencies of both CUGP options were successfully improved, and total CO2 emissions were significantly reduced, compared with the conventional GTL processes. The process efficiency was sensitive to recycle ratio and more recycle seemed to be beneficial for improving process efficiency and reducing CO2 emission. However, the process efficiency was rather insensitive to split ratio (recycle to reforming unit/total recycle), and the optimum split ratio was determined to be zero. PMID:24933030

  12. Fischer-Tropsch Catalyst for Aviation Fuel Production

    NASA Technical Reports Server (NTRS)

    DeLaRee, Ana B.; Best, Lauren M.; Bradford, Robyn L.; Gonzalez-Arroyo, Richard; Hepp, Aloysius F.

    2012-01-01

    As the oil supply declines, there is a greater need for cleaner alternative fuels. There will undoubtedly be a shift from crude oil to nonpetroleum sources as a feedstock for aviation (and other transportation) fuels. The Fischer-Tropsch process uses a gas mixture of carbon monoxide and hydrogen which is converted into various liquid hydrocarbons; this versatile gas-to-liquid technology produces a complex product stream of paraffins, olefins, and oxygenated compounds such as alcohols and aldehydes. The Fischer-Tropsch process can produce a cleaner diesel oil fraction with a high cetane number (typically above 70) without any sulfur and aromatic compounds. It is most commonly catalyzed by cobalt supported on alumina, silica, or titania or unsupported alloyed iron powders. Cobalt is typically used more often than iron, in that cobalt is a longer-active catalyst, has lower water-gas shift activity, and lower yield of modified products. Promoters are valuable in improving Fischer-Tropsch catalyst as they can increase cobalt oxide dispersion, enhance the reduction of cobalt oxide to the active metal phase, stabilize a high metal surface area, and improve mechanical properties. Our goal is to build up the specificity of the Fischer-Tropsch catalyst while adding less-costly transition metals as promoters; the more common promoters used in Fischer-Tropsch synthesis are rhenium, platinum, and ruthenium. In this report we will describe our preliminary efforts to design and produce catalyst materials to achieve our goal of preferentially producing C8 to C18 paraffin compounds in the NASA Glenn Research Center Gas-To-Liquid processing plant. Efforts at NASA Glenn Research Center for producing green fuels using non-petroleum feedstocks support both the Sub-sonic Fixed Wing program of Fundamental Aeronautics and the In Situ Resource Utilization program of the Exploration Technology Development and Demonstration program.

  13. Fischer-Tropsch Catalyst for Aviation Fuel Production

    NASA Technical Reports Server (NTRS)

    deLaRee, Ana B.; Best, Lauren M.; Hepp, Aloysius F.

    2011-01-01

    As the oil supply declines, there is a greater need for cleaner alternative fuels. There will undoubtedly be a shift from crude oil to non-petroleum sources as a feedstock for aviation (and other transportation) fuels. The Fischer-Tropsch process uses a gas mixture of carbon monoxide and hydrogen which is converted into various liquid hydrocarbons; this versatile gas-to-liquid technology produces a complex product stream of paraffins, olefins, and oxygenated compounds such as alcohols and aldehydes. The Fischer-Tropsch process can produce a cleaner diesel oil fraction with a high cetane number (typically above 70) without any sulfur and aromatic compounds. It is most commonly catalyzed by cobalt supported on alumina, silica, or titania or unsupported alloyed iron powders. Cobalt is typically used more often than iron, in that cobalt is a longer-active catalyst, has lower water-gas shift activity, and lower yield of modified products. Promoters are valuable in improving Fischer-Tropsch catalyst as they can increase cobalt oxide dispersion, enhance the reduction of cobalt oxide to the active metal phase, stabilize a high metal surface area, and improve mechanical properties. Our goal is to build up the specificity of the Fischer-Tropsch catalyst while adding less-costly transition metals as promoters; the more common promoters used in Fischer-Tropsch synthesis are rhenium, platinum, and ruthenium. In this report we will describe our preliminary efforts to design and produce catalyst materials to achieve our goal of preferentially producing C8 to C18 paraffin compounds in the NASA Glenn Research Center Gas-To-Liquid processing plant. Efforts at NASA Glenn Research Center for producing green fuels using non-petroleum feedstocks support both the Sub-sonic Fixed Wing program of Fundamental Aeronautics and the In Situ Resource Utilization program of the Exploration Technology Development and Demonstration program.

  14. Abiogenic Fischer-Tropsch synthesis of methane at the Baogutu reduced porphyry copper deposit, western Junggar, NW-China

    NASA Astrophysics Data System (ADS)

    Cao, MingJian; Qin, KeZhang; Li, GuangMing; Evans, Noreen J.; Jin, LuYing

    2014-09-01

    Methane is widely developed in hydrothermal fluids from reduced porphyry copper deposits, but its origin remains enigmatic. The occurrence of methane in fluid inclusions at the Late Carboniferous Baogutu reduced porphyry copper deposit in western Junggar, Xinjiang, NW-China, presents an excellent opportunity to address this problem. A systematic study including fluid inclusion Laser-Raman and CO2-CH4 carbon isotope analyses, igneous and hydrothermal mineral H-O isotope analyses, and in situ major, trace element and Sr isotopic analyses of hydrothermal epidote was conducted to constrain the origin of CH4 and CH4-rich fluids. The δ2H and δ18O of water in equilibrium with igneous biotite ranges from -65.0‰ to -66.0‰ and +7.2‰ to +7.4‰, respectively, indicating notable degassing of probably supercritical fluids in the magma chamber. The wide range of δ2H (-58.0‰ to -107.0‰, n = 23) for water within quartz suggests the existence of significant hydrothermal fluid boiling. Water-rock interaction is the most likely mechanism leading to the wide range of δ18O values for water in vein quartz with water/rock ratios (wt.% in O) of 0.15 to 0.75 and 0.13 to 0.46 for a closed and open system, respectively. Detailed Laser-Raman analyses indicate CO2 in apatite included in granodiorite porphyry phenocrystic biotite that records the carbon species of the early stage magmatic stage, whereas later hydrothermal fluids containing CH4 with trace or without CO2 are found in inclusions of vein quartz. We propose that CH4 is probably transformed from CO2 by Fischer-Tropsch type reactions at 500 °C, assumed from CO2-CH4 C isotope equilibrium. The (87Sr/86Sr)i of hydrothermal epidote yields values of 0.70369-0.70404, consistent with that reported for the whole rocks. The δ13CCH4 (-28.6‰ to -22.6‰) and δ2HCH4 (-108.0‰ to -59.5‰) are characteristic of abiogenic methane. The measured δ13CCO2 shows a slightly depleted 13C (-13.5‰ to -7.2‰) relative to upper mantle

  15. DEVELOPMENT OF A COMPUTATIONAL MULTIPHASE FLOW MODEL FOR FISCHER TROPSCH SYNTHESIS IN A SLURRY BUBBLE COLUMN REACTOR

    SciTech Connect

    Donna Post Guillen; Tami Grimmett; Anastasia M. Gribik; Steven P. Antal

    2011-12-01

    The Hybrid Energy Systems Testing (HYTEST) Laboratory at the Idaho National Laboratory was established to develop and test hybrid energy systems with the principal objective of reducing dependence on imported fossil fuels. A central component of the HYTEST is the slurry bubble column reactor (SBCR) in which the gas-to-liquid reactions are performed to synthesize transportation fuels using the Fischer Tropsch (FT) process. These SBCRs operate in the churn-turbulent flow regime, which is characterized by complex hydrodynamics, coupled with reacting flow chemistry and heat transfer. Our team is developing a research tool to aid in understanding the physicochemical processes occurring in the SBCR. A robust methodology to couple reaction kinetics and mass transfer into a four-field model (consisting of the bulk liquid, small bubbles, large bubbles and solid catalyst particles) consisting of thirteen species, which are CO reactant, H2 reactant, hydrocarbon product, and H2O product in small bubbles, large bubbles, and the bulk fluid plus catalyst is outlined. Mechanistic submodels for interfacial momentum transfer in the churn-turbulent flow regime are incorporated, along with bubble breakup/coalescence and two-phase turbulence submodels. The absorption and kinetic models, specifically changes in species concentrations, have been incorporated into the mass continuity equation. The reaction rate is based on the macrokinetic model for a cobalt catalyst developed by Yates and Satterfield. The model includes heat generation produced by the exothermic chemical reaction, as well as heat removal from a constant temperature heat exchanger. A property method approach is employed to incorporate vapor-liquid equilibrium (VLE) in a robust manner. Physical and thermodynamic properties as functions of changes in both pressure and temperature are obtained from VLE calculations performed external to the CMFD solver. The novelty of this approach is in its simplicity, as well as its

  16. Diesel production from Fischer-Tropsch: the past, the present, and new concepts

    SciTech Connect

    Dieter Leckel

    2009-05-15

    Fischer-Tropsch synthesis is technically classified into two categories, the high-temperature Fischer-Tropsch (HTFT) and the low-temperature Fischer-Tropsch (LTFT) processes. The criterion for this classification is the operating temperature of the synthesis, which ranges between 310-340{sup o}C for the HTFT process and 210-260{sup o}C for the LTFT process. A Fischer-Tropsch facility can be divided into roughly three sections, synthesis gas (syngas) generation, FT synthesis, and refining of the synthetic crude (syncrude). Fischer-Tropsch refineries differ regarding the product upgrading, and both transportation fuels and chemicals can be produced. Regarding the FT refinery history, the configuration of each refinery also reflects the requirements of the fuel specification at that time. This paper gives a condensed overview of how Fischer-Tropsch facilities changed during the last 70 years and focuses in particular on the diesel fuel produced. Some conceptual flow schemes are additionally presented with emphasis on the combined upgrading of the high boiling part of the FT product spectrum with liquids derived from coal pyrolysis. 52 refs., 14 figs., 12 tabs.

  17. Six-flow operations for catalyst development in Fischer-Tropsch synthesis: Bridging the gap between high-throughput experimentation and extensive product evaluation

    SciTech Connect

    Sartipi, Sina E-mail: J.Gascon@tudelft.nl; Jansma, Harrie; Bosma, Duco; Boshuizen, Bart; Makkee, Michiel; Gascon, Jorge E-mail: J.Gascon@tudelft.nl; Kapteijn, Freek

    2013-12-15

    Design and operation of a “six-flow fixed-bed microreactor” setup for Fischer-Tropsch synthesis (FTS) is described. The unit consists of feed and mixing, flow division, reaction, separation, and analysis sections. The reactor system is made of five heating blocks with individual temperature controllers, assuring an identical isothermal zone of at least 10 cm along six fixed-bed microreactor inserts (4 mm inner diameter). Such a lab-scale setup allows running six experiments in parallel, under equal feed composition, reaction temperature, and conditions of separation and analysis equipment. It permits separate collection of wax and liquid samples (from each flow line), allowing operation with high productivities of C5+ hydrocarbons. The latter is crucial for a complete understanding of FTS product compositions and will represent an advantage over high-throughput setups with more than ten flows where such instrumental considerations lead to elevated equipment volume, cost, and operation complexity. The identical performance (of the six flows) under similar reaction conditions was assured by testing a same catalyst batch, loaded in all microreactors.

  18. A Facile Synthesis of SiO2@Co/mSiO2 Egg-Shell Nanoreactors for Fischer-Tropsch Reaction.

    PubMed

    Kwon, Jae In; Kim, Tae Wan; Park, Ji Chan; Yang, Jung-Il; Lee, Kwan Young

    2016-02-01

    Recently, a convenient melt-infiltration method, using a hydrated metal salt with porous support, was developed to prepare various metal/metal-oxide nanocatalysts. Until now, millimeter-scale, bead-shaped, cobalt egg-shell catalysts have been used to enhance the rate of reactant diffusion and catalyst performance. In the present work, new SiO2@Co/mSiO2 egg-shell nanoreactors (~300 nm) were synthesized with controlled Co content of 10 and 20 wt%. This was accomplished using a selective melt-infiltration process with porous silica shells around solid-silica cores. The SiO2@Co(10 wt%)/mSiO2 egg-shell catalyst that bears small cobalt nanoparticles of -2 nm was successfully employed for the industrially valuable Fischer-Tropsch synthesis reaction, showing the high activity of -8.0 x 10(-5) mol(CO) x gCo(-1) x S(-1). PMID:27433671

  19. Six-flow operations for catalyst development in Fischer-Tropsch synthesis: bridging the gap between high-throughput experimentation and extensive product evaluation.

    PubMed

    Sartipi, Sina; Jansma, Harrie; Bosma, Duco; Boshuizen, Bart; Makkee, Michiel; Gascon, Jorge; Kapteijn, Freek

    2013-12-01

    Design and operation of a "six-flow fixed-bed microreactor" setup for Fischer-Tropsch synthesis (FTS) is described. The unit consists of feed and mixing, flow division, reaction, separation, and analysis sections. The reactor system is made of five heating blocks with individual temperature controllers, assuring an identical isothermal zone of at least 10 cm along six fixed-bed microreactor inserts (4 mm inner diameter). Such a lab-scale setup allows running six experiments in parallel, under equal feed composition, reaction temperature, and conditions of separation and analysis equipment. It permits separate collection of wax and liquid samples (from each flow line), allowing operation with high productivities of C5+ hydrocarbons. The latter is crucial for a complete understanding of FTS product compositions and will represent an advantage over high-throughput setups with more than ten flows where such instrumental considerations lead to elevated equipment volume, cost, and operation complexity. The identical performance (of the six flows) under similar reaction conditions was assured by testing a same catalyst batch, loaded in all microreactors. PMID:24387446

  20. Six-flow operations for catalyst development in Fischer-Tropsch synthesis: Bridging the gap between high-throughput experimentation and extensive product evaluation

    NASA Astrophysics Data System (ADS)

    Sartipi, Sina; Jansma, Harrie; Bosma, Duco; Boshuizen, Bart; Makkee, Michiel; Gascon, Jorge; Kapteijn, Freek

    2013-12-01

    Design and operation of a "six-flow fixed-bed microreactor" setup for Fischer-Tropsch synthesis (FTS) is described. The unit consists of feed and mixing, flow division, reaction, separation, and analysis sections. The reactor system is made of five heating blocks with individual temperature controllers, assuring an identical isothermal zone of at least 10 cm along six fixed-bed microreactor inserts (4 mm inner diameter). Such a lab-scale setup allows running six experiments in parallel, under equal feed composition, reaction temperature, and conditions of separation and analysis equipment. It permits separate collection of wax and liquid samples (from each flow line), allowing operation with high productivities of C5+ hydrocarbons. The latter is crucial for a complete understanding of FTS product compositions and will represent an advantage over high-throughput setups with more than ten flows where such instrumental considerations lead to elevated equipment volume, cost, and operation complexity. The identical performance (of the six flows) under similar reaction conditions was assured by testing a same catalyst batch, loaded in all microreactors.

  1. Fischer Tropsch synthesis : influence of Mn on the carburization rates and activities of Fe-based catalysts by TPR-EXAFS/XANES and catalyst testing.

    SciTech Connect

    Ribeiro, M. C.; Jacobs, G.; Pendyala, R.; Davis, B. H.; Cronauer, D. C.; Kropf, A. J.; Marshall, C. L.

    2011-03-24

    Fe-based catalysts containing different amounts of Mn were tested for Fischer-Tropsch synthesis using a stirred tank reactor at 270 C, 1.21 MPa, and H{sub 2}:CO = 0.7. Catalyst activation by carburization with 10% CO/He was followed by Temperature Programmed Reduction/X-ray Absorption Spectroscopy (TPR-EXAFS/XANES) from room temperature to 300 C. {gamma}-Fe{sub 2}O{sub 3} was converted into iron carbides, whereas MnO{sub x} was reduced to oxygen deficient MnO. Mn hindered Fe carburization, such that the carburized catalyst displayed higher Fe{sub 3}O{sub 4} content than the catalyst without Mn. EXAFS fitting indicates that the carburized catalyst contained a mixture of Hgg carbide, Fe{sub 3}O{sub 4}, and Mn oxides. Increasing Mn content led to higher CH{sub 4} and light product selectivities, and lower light olefin selectivities. Higher and stable conversions were obtained with a catalyst containing an almost equimolar Fe/Mn ratio relative to the catalyst without Mn. Selectivity trends are attributed to the higher WGS rates observed on the FeMn catalysts, consistent with the structural differences observed.

  2. Diffusion limitations in Fischer-Tropsch catalysts

    SciTech Connect

    Post, M.F.M.; Sie, S.T. Badhuisweg 3, 1031 CM Amsterdam )

    1988-01-01

    Indirect conversion of natural hydrocarbon resources such as natural gas into transportation fuels or chemicals usually involves the conversion to carbon monoxide and hydrogen (synthesis gas), followed by a catalytic conversion to the desired products via e.g. the Fischer-Tropsch (FT) reaction. In a fixed-bed mode of operation, the FT catalyst generally consists of particles of a few mm in size, for pressure-drop and heat-transfer considerations. To investigate whether diffusion limitations inside larger catalyst particles play a role during the synthesis reaction, the authors have made an extensive study using a number of iron- and cobalt-based catalysts, in which they have evaluated and quantified the effects of catalyst particle size and pore diameter on reaction rates. The effects due to variation of particle size and pore diameter have been quantified with the Thiele model for diffusion limitations.

  3. Technology development for iron Fischer-Tropsch catalysts. Quarterly report, April--June 1993

    SciTech Connect

    Davis, B.H.

    1993-11-01

    The Fischer-Tropsch process has attracted a great deal of attention in terms of catalytic activity and selectivity to produce higher number hydrocarbons by reacting carbon monoxide and hydrogen at high pressures in the presence of catalysts. Shortly after the initial discovery, Fischer and Tropsch developed more active catalysts for indirect liquefaction. The product distribution resulting from the Fischer-Tropsch synthesis (FTS) varies widely depending upon the catalysts, the temperature and pressure of reactions, pretreatment conditions, etc. It is desirable to improve the selectivity while maintaining the activity intact. One approach to achieve this task is the addition of promoters such as oxides of K, Mn, Ti, Mo, Ni, and Co, etc. It was observed that most of these promoted catalysts exhibit an increase in selectivity to higher hydrocarbons. For example, the addition of thoria as a promoter to cobalt-kieselguhr catalysts resulted in an enhanced yield of C{sub 5}{sup +} hydrocarbons. Even a small amount of thoria promoter ({approximately}0.4 wt %) addition to Co/ZSM-5 causes a remarkable increase in the conversion, shift activity, and C{sub 5}{sup +} selectivity. Thoria added as a promoter to a precipitated iron oxide catalyst appears to decrease wax selectivity. It is generally believed that the factors such as dispersion effects of rare earth oxides and thoria, the redox properties, and the basic properties of rare earth oxides and thorium oxides, greatly influence the activity and selectivity.

  4. Organic Analysis of Catalytic Fischer-Tropsch Synthesis Products and Ordinary Chondrite Meteorites by Stepwise Pyrolysis-GCMS: Organics in the Early Solar Nebula

    NASA Technical Reports Server (NTRS)

    Locke, Darren R.; Yazzie, Cyriah A.; Burton, Aaron S.; Niles, Paul B.; Johnson, Natasha M.

    2014-01-01

    Abiotic generation of complex organic compounds, in the early solar nebula that formed our solar system, is hypothesized by some to occur via Fischer-Tropsch (FT) synthesis. In its simplest form, FT synthesis involves the low temperature (<300degC) catalytic reaction of hydrogen and carbon monoxide gases to form more complex hydrocarbon compounds, primarily n-alkanes, via reactive nano-particulate iron, nickel, or cobalt, for example. Industrially, this type of synthesis has been utilized in the gas-to-liquid process to convert syngas, produced from coal, natural gas, or biomass, into paraffin waxes that can be cracked to produce liquid diesel fuels. In general, the effect of increasing reaction temperature (>300degC) produces FT products that include lesser amounts of n-alkanes and greater alkene, alcohol, and polycyclic aromatic hydrocarbon (PAH) compounds. We have begun to experimentally investigate FT synthesis in the context of abiotic generation of organic compounds in the early solar nebula. It is generally thought that the early solar nebula included abundant hydrogen and carbon monoxide gases and nano-particulate matter such as iron and metal silicates that could have catalyzed the FT reaction. The effect of FT reaction temperature, catalyst type, and experiment duration on the resulting products is being investigated. These solid organic products are analyzed by thermal-stepwise pyrolysis-GCMS and yield the types and distribution of hydrocarbon compounds released as a function of temperature. We show how the FT products vary by reaction temperature, catalyst type, and experimental duration and compare these products to organic compounds found to be indigenous to ordinary chondrite meteorites. We hypothesize that the origin of organics in some chondritic meteorites, that represent an aggregation of materials from the early solar system, may at least in part be from FT synthesis that occurred in the early solar nebula.

  5. Surface characterization of iron Fischer-Tropsch catalysts

    SciTech Connect

    Kuivila, C.S.; Butt, J.B.; Stair, P.C.

    1986-01-01

    In this paper the authors address XPS characterization of the iron phases associated with Fischer-Tropsch catalysts. Results obtained for single-phase metal, oxide, and carbide samples are presented. Methods for estimating the extent of carbide formation during low conversion synthesis, and the extent of catalyst oxidation at high conversions are illustrated. This approach is used to monitor the evolution of an initially reduced, unsupported iron catalyst during synthesis at low conversion levels.

  6. Sensitivity of Fischer-Tropsch Synthesis and Water-Gas Shift Catalysts to Poisons from High-Temperature High-Pressure Entrained-Flow (EF) Oxygen-Blown Gasifier Gasification of Coal/Biomass Mixtures

    SciTech Connect

    Burtron Davis; Gary Jacobs; Wenping Ma; Khalid Azzam; Dennis Sparks; Wilson Shafer

    2010-09-30

    The successful adaptation of conventional cobalt and iron-based Fischer-Tropsch synthesis catalysts for use in converting biomass-derived syngas hinges in part on understanding their susceptibility to byproducts produced during the biomass gasification process. With the possibility that oil production will peak in the near future, and due to concerns in maintaining energy security, the conversion of biomass-derived syngas and syngas derived from coal/biomass blends to Fischer-Tropsch synthesis products to liquid fuels may provide a sustainable path forward, especially considering if carbon sequestration can be successfully demonstrated. However, one current drawback is that it is unknown whether conventional catalysts based on iron and cobalt will be suitable without proper development because, while ash, sulfur compounds, traces of metals, halide compounds, and nitrogen-containing chemicals will likely be lower in concentration in syngas derived from mixtures of coal and biomass (i.e., using an entrained-flow oxygen-blown gasifier) than solely from coal, other byproducts may be present in higher concentrations. The current project examines the impact of a number of potential byproducts of concern from the gasification of biomass process, including compounds containing alkali chemicals like the chlorides of sodium and potassium. In the second year, researchers from the University of Kentucky Center for Applied Energy Research (UK-CAER) continued the project by evaluating the sensitivity of a commercial iron-chromia high temperature water-gas shift catalyst (WGS) to a number of different compounds, including KHCO{sub 3}, NaHCO{sub 3}, HCl, HBr, HF, H{sub 2}S, NH{sub 3}, and a combination of H{sub 2}S and NH{sub 3}. Cobalt and iron-based Fischer-Tropsch synthesis (FT) catalysts were also subjected to a number of the same compounds in order to evaluate their sensitivities.

  7. Fischer-Tropsch Catalysts

    NASA Technical Reports Server (NTRS)

    White, James H. (Inventor); Taylor, Jesse W. (Inventor)

    2008-01-01

    Catalyst compositions and methods for F-T synthesis which exhibit high CO conversion with minor levels (preferably less than 35% and more preferably less than 5%) or no measurable carbon dioxide generation. F-T active catalysts are prepared by reduction of certain oxygen deficient mixed metal oxides.

  8. Application of equilibrium analysis to a Fischer-Tropsch product

    SciTech Connect

    Norval, G.W. ); Phillips, M.J. )

    1990-11-01

    In the Fischer-Tropsch (FT) process, synthesis gas is converted, inter alia, to aliphatic hydrocarbons, consisting predominantly of n-alkanes and n-alkenes, over iron- or cobalt-based catalysts. The product composition follows an Anderson-Schults-Flory (ASF) distribution. In this paper, the authors demonstrate that the ASF distribution (Eq. (1)) can be derived from an equilibrium basis, and the consequences arising therefrom are discussed.

  9. Gaseous product mixture from Fischer-Tropsch synthesis as an efficient carbon feedstock for low temperature CVD growth of carbon nanotube carpets

    NASA Astrophysics Data System (ADS)

    Almkhelfe, Haider; Carpena-Núñez, Jennifer; Back, Tyson C.; Amama, Placidus B.

    2016-07-01

    Low-temperature chemical vapor deposition (CVD) growth of carbon nanotube (CNT) carpets from Fe and Fe-Cu catalysts using a gaseous product mixture from Fischer-Tropsch synthesis (FTS-GP) as a superior carbon feedstock is demonstrated. This growth approach addresses a persistent issue of obtaining thick CNT carpets on temperature-sensitive substrates at low temperatures using a non-plasma CVD approach without catalyst pretreatment and/or preheating of the carbon feedstock. The efficiency of the process is evidenced by the highly dense, vertically aligned CNT structures from both Fe and Fe-Cu catalysts even at temperatures as low as 400 °C - a record low growth temperature for CNT carpets obtained via conventional thermal CVD. The grown CNTs exhibit a straight morphology with hollow interior and parallel graphitic planes along the tube walls. The apparent activation energies for CNT carpet growth on Fe and Fe-Cu catalysts are 0.71 and 0.54 eV, respectively. The synergistic effect of Fe and Cu show a strong dependence on the growth temperature, with Cu being more influential at temperatures higher than 450 °C. The low activation energies and long catalyst lifetimes observed are rationalized based on the unique composition of FTS-GP and Gibbs free energies for the decomposition reactions of the hydrocarbon components. The use of FTS-GP facilitates low-temperature growth of CNT carpets on traditional (alumina film) and nontraditional substrates (aluminum foil) and has the potential of enhancing CNT quality, catalyst lifetime, and scalability.Low-temperature chemical vapor deposition (CVD) growth of carbon nanotube (CNT) carpets from Fe and Fe-Cu catalysts using a gaseous product mixture from Fischer-Tropsch synthesis (FTS-GP) as a superior carbon feedstock is demonstrated. This growth approach addresses a persistent issue of obtaining thick CNT carpets on temperature-sensitive substrates at low temperatures using a non-plasma CVD approach without catalyst

  10. Technology development for iron and cobalt Fischer-Tropsch catalysts

    SciTech Connect

    Davis, B.H.

    1999-11-01

    The impact of deuterium on the Fischer-Tropsch (FT) synthesis was studied with a precipitated iron catalyst in the slurry phase. Deuterium has been used by several research groups to better understand the mechanism of CO hydrogenation. Inverse (k{sub H}/k{sub D} < 1), normal (k{sub H}/k{sub D} > 1) and no isotope effect (k{sub H}/k{sub D} = 1) have been reported. The conflicting results are thought to arise because rate of reaction is a combination of kinetic and equilibrium factors. In summary, the presence of boron produced only minor changes on the properties of the cobalt catalyst. In earlier studies, it was shown that the presence of boron made the catalyst less susceptible to poisoning by sulfur. Steady-state supercritical Fischer-Tropsch synthesis was studied in the work using a fixed-bed reactor and an unpromoted Co/SiO{sub 2} catalyst. This serves as the baseline for promoted catalyst studies. A pentane-hexane mixture was used as the supercritical solvent. Overall reactor pressure, syngas partial pressure and contact time were kept constant to obtain a valid comparison of the impact of solvent density in the catalytic activity and selectivity. Three different partial pressures of the mixture were chosen based on the density-pressure curve in order to investigate the pressure tuning effect to Fischer-Tropsch synthesis near critical region.

  11. Gaseous product mixture from Fischer-Tropsch synthesis as an efficient carbon feedstock for low temperature CVD growth of carbon nanotube carpets.

    PubMed

    Almkhelfe, Haider; Carpena-Núñez, Jennifer; Back, Tyson C; Amama, Placidus B

    2016-07-21

    Low-temperature chemical vapor deposition (CVD) growth of carbon nanotube (CNT) carpets from Fe and Fe-Cu catalysts using a gaseous product mixture from Fischer-Tropsch synthesis (FTS-GP) as a superior carbon feedstock is demonstrated. This growth approach addresses a persistent issue of obtaining thick CNT carpets on temperature-sensitive substrates at low temperatures using a non-plasma CVD approach without catalyst pretreatment and/or preheating of the carbon feedstock. The efficiency of the process is evidenced by the highly dense, vertically aligned CNT structures from both Fe and Fe-Cu catalysts even at temperatures as low as 400 °C - a record low growth temperature for CNT carpets obtained via conventional thermal CVD. The grown CNTs exhibit a straight morphology with hollow interior and parallel graphitic planes along the tube walls. The apparent activation energies for CNT carpet growth on Fe and Fe-Cu catalysts are 0.71 and 0.54 eV, respectively. The synergistic effect of Fe and Cu show a strong dependence on the growth temperature, with Cu being more influential at temperatures higher than 450 °C. The low activation energies and long catalyst lifetimes observed are rationalized based on the unique composition of FTS-GP and Gibbs free energies for the decomposition reactions of the hydrocarbon components. The use of FTS-GP facilitates low-temperature growth of CNT carpets on traditional (alumina film) and nontraditional substrates (aluminum foil) and has the potential of enhancing CNT quality, catalyst lifetime, and scalability. PMID:27353432

  12. Fischer-Tropsch synthesis of hydrocarbons during sub-solidus alteration of the Strange Lake peralkaline granite, Quebec/Labrador, Canada

    NASA Astrophysics Data System (ADS)

    Salvi, Stefano; Williams-Jones, Anthony E.

    1997-01-01

    The composition of the carbonic phase(s) of fluid inclusions in pegmatite quartz from the Strange Lake peralkaline complex has been analysed by gas chromatography using online extraction of inclusion contents and a PoraPLOT® Q capillary column. The measured gas species are, in order of abundance, CH 4, H 2, C 2H 6, CO 2, N 2, CA, n-C 4H 10, n-C 5H 12, C 2H 2, i-C 4H 10 and C 2H 4 Minor amounts of i-C 5H 12, n-C 6H 14, i-C 6H 14, and neo-C 6H 14 were also detected (but not quantified) in some samples. A suite of quartz samples from Ca-metasomatised pegmatites contains fluid inclusions with a similar distribution of hydrocarbons but much higher proportions of C0 2. The carbonic fluid coexisted immiscibly with a brine ( Salvi and Williams-Jones, 1992), which on the basis of field and petrographic evidence, was interpreted to have originated from the magma. However, thermodynamic calculations indicate that the above gas species, specifically the hydrocarbons, could not have coexisted at equilibrium in the proportions measured, at any geologically reasonable conditions either prior to or post entrapment. We propose, instead, that the gas compositions measured in the Strange Lake inclusions, and in inclusions from other alkalic complexes, resulted from the production of H 2 during the alteration of arfvedsonite to aegirine, and the subsequent reaction of this H 2 with orthomagmatic C0 2 and CO to form hydrocarbons in a magnetite-catalysed Fischer-Tropsch synthesis. Locally, influx of an oxidised calcic brine, derived externally from the pluton, altered the original composition of the fluid by converting hydrocarbons to C0 2.

  13. Influence of pH of the impregnation solution on the catalytic properties of Co/{gamma}-alumina for Fischer-Tropsch synthesis

    SciTech Connect

    Jong Wook Bae; Yun-Jo Lee; Jo-Yong Park; Ki-Won Jun

    2008-09-15

    The Co/{gamma}-Al{sub 2}O{sub 3} catalysts were prepared by the slurry impregnation of an aqueous solution of cobalt(II) nitrate precursor. Nitric acid or ammonium hydroxide was added to the cobalt nitrate solution, during impregnation, to give an acidic or basic environment. The changes in the particle size of cobalt species were estimated by X-ray diffraction (XRD) and hydrogen chemisorption. The reduction degree of cobalt oxides was measured by temperature-programmed reduction (TPR). The catalysts prepared under acidic conditions showed a higher reduction degree compared to those prepared at higher pH because of the reduced salt-support interaction. During the Fischer-Tropsch synthesis at 220{sup o}C, employing the catalysts prepared at a different pH (0.80, 4.94, 9.96, and 11.12), a considerable difference in the initial activity was observed, depending upon the cobalt metal surface area. However, after stabilization, all of the catalysts attained a similar level of conversion, possibly because of the active-site rearrangement, deactivation, and wax formation on the catalyst surface. At a higher reaction temperature of 240{sup o}C, the catalysts prepared at lower solution pH exhibited higher conversion than those prepared at higher solution pH. The cobalt species on the catalysts prepared under acidic conditions had a heterogeneous particle size distribution, showing higher steady-state activity, because of the reduced interaction with the support. The product distribution revealed a higher selectivity to C{sub 1} and C{sub 8+} on the catalyst prepared with a higher solution pH. 44 refs., 6 figs., 3 tabs.

  14. Compression-ignition fuel properties of Fischer-Tropsch syncrude

    SciTech Connect

    Suppes, G.J.; Terry, J.G.; Burkhart, M.L.; Cupps, M.P.

    1998-05-01

    Fischer-Tropsch conversion of natural gas to liquid hydrocarbon fuel typically includes Fischer-Tropsch synthesis followed by refining (hydrocracking and distillation) of the syncrude into mostly diesel or kerosene with some naphtha (a feedstock for gasoline production). Refining is assumed necessary, possibly overlooking the exception fuel qualities of syncrude for more direct utilization as a compression-ignition (CI) fuel. This paper evaluates cetane number, viscosity, cloud-point, and pour-point properties of syncrude and blends of syncrude with blend stocks such as ethanol and diethyl ether. The results show that blends comprised primarily of syncrude are potentially good CI fuels, with pour-point temperature depression being the largest development obstacle. The resulting blends may provide a much-needed and affordable alternative CI fuel. Particularly good market opportunities exist with Environmental Policy Act (EPACT) applications.

  15. Novel Fischer-Tropsch catalysts. [DOE patent

    DOEpatents

    Vollhardt, K.P.C.; Perkins, P.

    Novel compounds are described which are used as improved Fischer-Tropsch catalysts particularly for the conversion of CO + H/sub 2/ to gaseous and liquid hydrocarbons at milder conditions than with prior catalysts.

  16. Separation of catalyst from Fischer-Tropsch slurry

    DOEpatents

    White, Curt M.; Quiring, Michael S.; Jensen, Karen L.; Hickey, Richard F.; Gillham, Larry D.

    1998-10-27

    In a catalytic process for converting synthesis gas including hydrogen and carbon monoxide to hydrocarbons and oxygenates by a slurry Fischer-Tropsch synthesis, the wax product along with dispersed catalyst is removed from the slurry and purified by removing substantially all of the catalyst prior to upgrading the wax and returning a portion to the Fischer-Tropsch reaction. Separation of the catalyst particles from the wax product is accomplished by dense gas and/or liquid extraction in which the organic compounds in the wax are dissolved and carried away from the insoluble inorganic catalyst particles that are primarily inorganic in nature. The purified catalyst free wax product can be subsequently upgraded by various methods such as hydrogenation, isomerization, hydrocracking, conversion to gasoline and other products over ZSM-5 aluminosilicate zeolite, etc. The catalyst particles are returned to the Fischer-Tropsch Reactor by slurring them with a wax fraction of appropriate molecular weight, boiling point and viscosity to avoid reactor gelation.

  17. Separation of catalyst from Fischer-Tropsch slurry

    DOEpatents

    White, C.M.; Quiring, M.S.; Jensen, K.L.; Hickey, R.F.; Gillham, L.D.

    1998-10-27

    In a catalytic process for converting synthesis gas including hydrogen and carbon monoxide to hydrocarbons and oxygenates by a slurry Fischer-Tropsch synthesis, the wax product along with dispersed catalyst is removed from the slurry and purified by removing substantially all of the catalyst prior to upgrading the wax and returning a portion to the Fischer-Tropsch reaction. Separation of the catalyst particles from the wax product is accomplished by dense gas and/or liquid extraction in which the organic compounds in the wax are dissolved and carried away from the insoluble inorganic catalyst particles that are primarily inorganic in nature. The purified catalyst-free wax product can be subsequently upgraded by various methods such as hydrogenation, isomerization, hydrocracking, conversion to gasoline and other products over ZSM-5 aluminosilicate zeolite, etc. The catalyst particles are returned to the Fischer-Tropsch Reactor by mixing them with a wax fraction of appropriate molecular weight, boiling point and viscosity to avoid reactor gelation. 2 figs.

  18. Slurry phase Fischer-Tropsch synthesis: Cobalt plus a water-gas shift catalyst. [Quarterly] report, June 30, 1988--September 30, 1988

    SciTech Connect

    Yates, I.C.; Satterfield, C.N.

    1988-12-31

    This report details experiments performed on three different copper-based catalysts: Cu/Cr{sub 2}O{sub 3}, Cu/MnO/Cr{sub 2}O{sub 3} and Cu/ZnO/Al{sub 2}O{sub 3}. Of these three catalysts, the Cu/ZnO/Al{sub 2}O{sub 3} exhibits the greatest stability when slurried in octacosane. More than 1000 hours-on-stream indicate that the catalyst activity is not detrimentally affected by high pressure, high H{sub 2}/CO ratio, or the presence of alkenes. All of these are necessary stability characteristics for the water-gas shift catalyst, if it is to be used in combination with a cobalt Fischer-Tropsch catalyst. A review of documented reduction procedures for cobalt-based Fischer-Tropsch catalysts is presented.

  19. Development of precipitated iron Fischer-Tropsch catalysts. Quarterly technical progress report, April 1, 1995--June 30, 1995

    SciTech Connect

    Bukur, D.B.; Lang, X.; Wei, G.; Xiao, S.

    1995-08-17

    Work continued on the development of catalysts for Fischer-Tropsch synthesis. Six catalysts were synthesised. The effects of a calcium oxide promoter were evaluated. Catalysts were characterized for pore size and BET surface area.

  20. Heat transfer and bubble dynamics in bubble and slurry bubble columns with internals for Fischer-Tropsch synthesis of clean alternative fuels and chemicals

    NASA Astrophysics Data System (ADS)

    Kagumba, Moses Odongo O.

    Synthesis gas, a mixture of CO and H2 obtained from coal, natural gas and biomass are increasingly becoming reliable sources of clean synthetic fuels and chemicals and via Fischer-Tropsch (F-T) synthesis process. Slurry bubble column reactor is the reactor of choice for the commercialization of the F-T synthesis. Even though the slurry bubble column reactors and contactors are simple in structures, their design, scale-up, operation, and performance prediction are still challenging and not well understood due to complex interaction of phases. All the studies of heat transfer have been performed without simultaneously investigating the bubble dynamics adjacent to the heat transfer surfaces, particularly in slurry with dense internals. This dissertation focuses on enhancing the understanding of the role of local and overall gas holdup, bubble passage frequency, bubble sizes and bubble velocity on the heat transfer characteristics by means of a hybrid measurement technique comprising an advanced four-point optical probe and a fast response heat transfer probe used simultaneously, in the presence and absence of dense internals. It also seeks to advance a mechanistic approach for estimating the needed parameters for predicting the heat transfer rate in two phase and three phase systems. The results obtained suggest that the smaller diameter internals gives higher heat transfer coefficient, higher local and overall gas holdup, bubble passage frequency and specific interfacial area but smaller bubble sizes and lower axial bubble velocities. The presence of dense internals enhances the heat transfer coefficient in both the large and smaller columns, while increased column diameter increases the heat transfer coefficient, axial bubble velocity, local and overall gas holdup, bubble chord lengths and specific interfacial area. Addition of solids (glass beads) leads to increased bubble chord lengths and increase in axial bubble velocity, but a decrease in local and overall gas

  1. Technology development for iron Fischer-Tropsch catalysis. Quarterly technical progress report, October--December, 1994

    SciTech Connect

    1994-12-31

    Fischer-Tropsch catalysts must undergo a pretreatment in order to be active. As part of the authors comprehensive study to maximize the activity of iron based precipitated Fischer-Tropsch catalysts, they are currently attempting to optimize the activation procedure. Although they are able to achieve high activity using CO pretreatment, the catalysts tend to deactivate suddenly and rapidly after 500 hr of synthesis. Kolbel reports high CO conversion comparable to these results at a lower gas flow (2.4 vs. 3.4 nL/hr-g(Fe)); however, he achieved greater stability with conversions reported to be 90% after 1,400 hrs. One possibility for Kolbel`s higher stability could be due to the activation procedure. Herein are reported the initial results of a study to optimize the catalyst composition and the operating conditions for the iron based slurry phase Fischer-Tropsch synthesis when synthesis gas activation is utilized.

  2. Poisoning of a silica supported cobalt catalyst due to the presence of sulfur impurities in syngas during Fischer-Tropsch synthesis: Effect of chelating agent

    SciTech Connect

    Bambal, A.S.; Gardner, T.H.; Kugler, E.L.; Dadyburjor, D.B.

    2012-01-01

    Sulfur compounds that are generally found in syngas derived from coal and biomass are a poison to Fischer-Tropsch (FT) catalysts. The presence of sulfur impurities in the ppm range can limit the life of a FT catalyst to a few hours or a few days. In this study, FT synthesis was carried out in a fixed-bed reactor at 230 °C, 20 bar, and 13,500 Ncm3/h/gcat for 72 h using syngas with H2/CO = 2.0. Cobalt-based catalysts were subjected to poisoning by 10 and 50 ppm sulfur in the syngas. The performance of FT catalyst was compared in context of syngas conversion, product selectivities and yields, during the poisoning as well as post-poisoning stages. At both the impurity concentrations, the sulfur was noted to cause permanent loss in the activity, possibly by adsorbing irreversibly on the surface. The sulfur poison affects the hydrogenation and the chain-propagation ability of the catalysts, and shifts the product selectivity towards short-chain hydrocarbons with higher percentages of olefins. Additional diffusion limitations caused due to sulfur poisoning are thought to alter the product selectivity. The shifts in product selectivities suggest that the sulfur decreases the ability of the catalyst to form C-C bonds to produce longer-chain hydrocarbons. The selective blocking of sulfur is thought to affect the hydrogenation ability on the catalyst, resulting in more olefins in the product after sulfur poisoning. The sulfur poisoning on the cobalt catalyst is expected to cause an increase in the number of sites responsible for WGS or to influence the Boudouard reaction, resulting in a higher CO2 selectivity. Both the sites responsible for CO adsorptions as well as the sites for chain growth are poisoned during the poisoning. Additionally, the performance of a base-case cobalt catalyst is compared with that of catalysts modified by chelating agents (CAs). The superior performance of CA-modified catalysts during sulfur poisoning is attributed to the presence of smaller

  3. Fischer-Tropsch synthesis of hydrocarbons during sub-solidus alteration of the Strange Lake peralkaline granite, Quebec/Labrador, Canada

    SciTech Connect

    Salvi, S.; Williams-Jones, A.E.

    1997-01-01

    The composition of the carbonic phase(s) of fluid inclusions in pegmatite quartz from the Strange Lake peralkaline complex has been analysed by gas chromatography using online extraction of inclusion contents and a PoraPLOT{reg_sign} Q capillary column. The measured gas species are, in order of abundance, CH{sub 4} H{sub 2}, C{sub 2}H{sub 6}, CO{sub 2}, N{sub 2}, C{sub 3}H{sub 8}, n-C{sub 4}H{sub 10}, n-C{sub 5}H{sub 12}, C{sub 2}H{sub 2}-i-C{sub 4}H{sub 10}, and C{sub 2}H{sub 4}. Minor amounts of i-C{sub 5}H{sub 12}, n-C{sub 6}H{sub 14}, i-C{sub 6}H{sub 14}, and neo-C{sub 6}H{sub 14}, were also detected (but not quantified) in some samples. A suite of quartz samples from Ca-metasomatised pegmatites contains fluid inclusions with a similar distribution of hydrocarbons but much higher proportions of CO{sub 2}. The carbonic fluid coexisted immiscibly with a brine, which on the basis of field and petrographic evidence, was interpreted to have originated from the magma. However, thermodynamic calculations indicate that the above gas species, specifically the hydrocarbons, could not have coexisted at equilibrium in the proportions measured, at any geologically reasonable conditions either prior to or post entrapment. We propose, instead, that the gas compositions measured in the Strange Lake inclusions, and in inclusions from other alkalic complexes, resulted from the production of H{sub 2} during the alteration of arfvedsonite to aegirine, and the subsequent reaction of this H{sub 2} with orthomagmatic CO{sub 2} and CO to form hydrocarbons in a magnetite-catalysed Fischer-Tropsch synthesis. Locally, influx of an oxidised calcic brine, derived externally from the pluton, altered the original composition of the fluid by converting hydrocarbons to CO{sub 2}. 70 refs., 7 figs., 5 tabs.

  4. Sensitivity of Fischer-Tropsch Synthesis and Water-Gas Shift Catalysts to Poisons from High-Temperature High-Pressure Entrained-Flow (EF) Oxygen-Blown Gasifier Gasification of Coal/Biomass Mixtures

    SciTech Connect

    Burton Davis; Gary Jacobs; Wenping Ma; Dennis Sparks; Khalid Azzam; Janet Chakkamadathil Mohandas; Wilson Shafer; Venkat Ramana Rao Pendyala

    2011-09-30

    There has been a recent shift in interest in converting not only natural gas and coal derived syngas to Fischer-Tropsch synthesis products, but also converting biomass-derived syngas, as well as syngas derived from coal and biomass mixtures. As such, conventional catalysts based on iron and cobalt may not be suitable without proper development. This is because, while ash, sulfur compounds, traces of metals, halide compounds, and nitrogen-containing chemicals will likely be lower in concentration in syngas derived from mixtures of coal and biomass (i.e., using entrained-flow oxygen-blown gasifier gasification gasification) than solely from coal, other compounds may actually be increased. Of particular concern are compounds containing alkali chemicals like the chlorides of sodium and potassium. In the first year, University of Kentucky Center for Applied Energy Research (UK-CAER) researchers completed a number of tasks aimed at evaluating the sensitivity of cobalt and iron-based Fischer-Tropsch synthesis (FT) catalysts and a commercial iron-chromia high temperature water-gas shift catalyst (WGS) to alkali halides. This included the preparation of large batches of 0.5%Pt-25%Co/Al{sub 2}O{sub 3} and 100Fe: 5.1Si: 3.0K: 2.0Cu (high alpha) catalysts that were split up among the four different entities participating in the overall project; the testing of the catalysts under clean FT and WGS conditions; the testing of the Fe-Cr WGS catalyst under conditions of co-feeding NaCl and KCl; and the construction and start-up of the continuously stirred tank reactors (CSTRs) for poisoning investigations. In the second and third years, researchers from the University of Kentucky Center for Applied Energy Research (UK-CAER) continued the project by evaluating the sensitivity of a commercial iron-chromia high temperature water-gas shift catalyst (WGS) to a number of different compounds, including KHCO{sub 3}, NaHCO{sub 3}, HCl, HBr, HF, H{sub 2}S, NH{sub 3}, and a combination of H

  5. Fischer-Tropsch synthesis in slurry reactor systems. Technical progress report for period ending July 31, 1981

    SciTech Connect

    Satterfield, C.N.; Huff, G.A. Jr.

    1981-01-01

    This is the first technical progress report on this grant, which had an effective date of initiation of March 9, 1981. During this period preliminary experimental results were obtained on the effects of reactant transport across the gas-liquid interface on synthesis gas conversion and product selectivity, utilizing an iron catalyst in a laboratory-scale, well-mixed slurry reactor.

  6. Slurry phase Fischer-Tropsch synthesis: Cobalt plus a water-gas shift catalyst, January 1, 1990--March 30, 1990

    SciTech Connect

    Yates, I.C.; Satterfield, C.N.

    1990-01-01

    Experiments to study cobalt-catalyzed reactions of light 1-alkenes added to synthesis gas feed have been performed. Data have been collected at 220{degrees}C, 0.45 to 1.48 MPa and a synthesis gas flow rate between 0.015 and 0.030 Nl/(gcatmin) with H{sub 2}/CO of 1.45 to 2.25. C{sub 2}H{sub 4}, C{sub 3}H{sub 6}, and C{sub 4}H{sub 8} were added to the synthesis gas feed in concentrations ranging from 0.5 to 1.2 mole% of total feed. For each material balance in which 1-alkenes were added, a material balance was performed at similar process conditions without 1-alkenes added. This use of base case'' process conditions should make data analysis and interpretation easier. Material balances without 1-alkenes were also repeated to allow verification of catalyst selectivity stability. A total of 49 balances were performed during a single run which lasted over 2500 hours-on-stream. The hydrocarbon data have not yet been completed analyzed.

  7. Slurry phase Fischer-Tropsch synthesis: Cobalt plus a water-gas shift catalyst, January 1, 1990--March 30, 1990

    SciTech Connect

    Yates, I.C.; Satterfield, C.N.

    1990-12-31

    Experiments to study cobalt-catalyzed reactions of light 1-alkenes added to synthesis gas feed have been performed. Data have been collected at 220{degrees}C, 0.45 to 1.48 MPa and a synthesis gas flow rate between 0.015 and 0.030 Nl/(gcatmin) with H{sub 2}/CO of 1.45 to 2.25. C{sub 2}H{sub 4}, C{sub 3}H{sub 6}, and C{sub 4}H{sub 8} were added to the synthesis gas feed in concentrations ranging from 0.5 to 1.2 mole% of total feed. For each material balance in which 1-alkenes were added, a material balance was performed at similar process conditions without 1-alkenes added. This use of ``base case`` process conditions should make data analysis and interpretation easier. Material balances without 1-alkenes were also repeated to allow verification of catalyst selectivity stability. A total of 49 balances were performed during a single run which lasted over 2500 hours-on-stream. The hydrocarbon data have not yet been completed analyzed.

  8. Novel Fischer-Tropsch catalysts

    DOEpatents

    Vollhardt, Kurt P. C.; Perkins, Patrick

    1981-01-01

    Novel polymer-supported metal complexes of the formula: PS --R Me(CO).sub.n H.sub.m where: PS represents a divinylbenzene crosslinked polystyrene in which the divinylbenzene crosslinking is greater than 1% and less than about 18%; R represents a cycloalkadienyl radical of 4 through 6 carbon atoms; Me represents a Group VIII metal; CO represents a carbonyl radical; H represents hydrogen; n represents an integer varying from 0 through 3; m represents an integer varying from 0 through 2 inclusively with the further provision that 2n+m must total 18 when added to the electrons in R and Me, or n+m must total 0; are prepared by: brominating PS --H by treating same with bromine in the presence of a thallium salt in a partially or fully halogenated solvent to form PS --Br; treating said PS --Br so produced with a lithium alkyl of 1 through 12 carbon atoms in an aromatic solvent to produce PS --Li; substituting said PS-- Li so produced by reaction with a 2-cycloalkenone of 4 to 6 carbon atoms in the presence of an ether solvent and using a water work-up to form a cycloalkenylalcohol-substituted PS ; dehydrating said alcohol so produced by heating under a vacuum to produce a cycloalkadienyl-substituted PS ; reacting the cycloalkadienyl-substituted PS with metal carbonyl in the presence of a partially or fully halogenated hydrocarbon, aromatic hydrocarbon of 6 through 8 carbon atoms, ethers, or esters of 4 through 10 carbon atoms as a solvent to produce a polystyrene-supported cycloalkadienyl metal carbonyl. The novel compounds are used as improved Fischer-Tropsch catalysts particularly for the conversion of CO+H.sub.2 to gaseous and liquid hydrocarbons at milder conditions than with prior catalysts.

  9. Novel Fischer-Tropsch catalysts

    DOEpatents

    Vollhardt, Kurt P. C.; Perkins, Patrick

    1981-01-01

    Novel polymer-supported metal complexes of the formula PS -R Me(CO).sub.n H.sub.m where: PS represents a divinylbenzene crosslinked polystyrene in which the divinylbenzene crosslinking is greater than 1% and less than about 18%; R represents a cycloalkadienyl radical of 4 through 6 carbon atoms; Me represents a Group VIII metal; CO represents a carbonyl radical; H represents hydrogen; n represents an integer varying from 0 through 3; m represents an integer varying from 0 through 2 inclusively with the further provision that 2n+m must total 18 when added to the electrons in R and Me, or n+m must total 0; are prepared by: brominating PS -H by treating same with bromine in the presence of a thallium salt in a partially or fully halogenated solvent to form PS -Br; treating said PS -Br so produced with a lithium alkyl of 1 through 12 carbon atoms in an aromatic solvent to produce PS -Li; substituting said PS - Li so produced by reaction with a 2-cycloalkenone of 4 to 6 carbon atoms in the presence of an ether solvent and using a water work-up to form a cycloalkenylalcohol-substituted PS ; dehydrating said alcohol so produced by heating under a vacuum to produce a cycloalkadienyl-substituted PS ; reacting the cycloalkadienyl-substituted PS with metal carbonyl in the presence of a partially or fully halogenated hydrocarbon, aromatic hydrocarbon of 6 through 8 carbon atoms, ethers, or esters of 4 through 10 carbon atoms as a solvent to produce a polystyrene-supported cycloalkadienyl metal carbonyl. The novel compounds are used as improved Fischer-Tropsch catalysts particularly for the conversion of CO+H.sub.2 to gaseous and liquid hydrocarbons at milder conditions than with prior catalysts.

  10. Novel Fischer-Tropsch catalysts

    DOEpatents

    Vollhardt, Kurt P. C.; Perkins, Patrick

    1980-01-01

    Novel polymer-supported metal complexes of the formula: PS --R Me(CO).sub.n H.sub.m where: PS represents a divinylbenzene crosslinked polystyrene in which the divinylbenzene crosslinking is greater than 1% and less than about 18%; R represents a cycloalkadienyl radical of 4 through 6 carbon atoms; Me represents a Group VIII metal; CO represents a carbonyl radical; H represents hydrogen; n represents an integer varying from 0 through 3; m represents an integer varying from 0 through 2 inclusively with the further provision that 2n+m must total 18 when added to the electrons in R and Me, or n+m must total 0; are prepared by: brominating PS --H by treating same with bromine in the presence of a thallium salt in a partially or fully halogenated solvent to form PS --Br; treating said PS --Br so produced with a lithium alkyl of 1 through 12 carbon atoms in an aromatic solvent to produce PS --Li; substituting said PS-- Li so produced by reaction with a 2-cycloalkenone of 4 to 6 carbon atoms in the presence of an ether solvent and using a water work-up to form a cycloalkenylalcohol-substituted PS ; dehydrating said alcohol so produced by heating under a vacuum to produce a cycloalkadienyl-substituted PS ; reacting the cycloalkadienyl-substituted PS with metal carbonyl in the presence of a partially or fully halogenated hydrocarbon, aromatic hydrocarbon of 6 through 8 carbon atoms, ethers, or esters of 4 through 10 carbon atoms as a solvent to produce a polystyrene-supported cycloalkadienyl metal carbonyl. The novel compounds are used as improved Fischer-Tropsch catalysts particularly for the conversion of CO+H.sub.2 to gaseous and liquid hydrocarbons at milder conditions than with prior catalysts.