Science.gov

Sample records for liquid crystal film

  1. Patterned cholesteric liquid crystal polymer film.

    PubMed

    Hsu, Wei-Liang; Ma, Ji; Myhre, Graham; Balakrishnan, Kaushik; Pau, Stanley

    2013-02-01

    Herein, the ability to create arbitrarily patterned circular polarized optical devices is demonstrated by using cholesteric liquid crystal polymer. Photoalignment with polarized ultraviolet light is utilized to create aligned cholesteric liquid crystal films. Two different methods, thermal annealing and solvent rinse, are utilized for patterning cholesteric liquid crystal films over large areas. The patterned cholesteric liquid crystal films are measured using a Mueller matrix imaging polarimeter, and the polarization properties, including depolarization index, circular diattenuation (CD), and circular retardance are derived. Patterned nonlinearly polarized optical devices can be fabricated with feature sizes as small as 20 μm with a CD of 0.812±0.015. Circular polarizing filters based on polymer cholesteric liquid crystal films have applications in three-dimensional displays, medical imaging, polarimetry, and interferometry. PMID:23456060

  2. Liquid crystal film development for plasma mirrors and waveplates

    NASA Astrophysics Data System (ADS)

    Cochran, G. E.; Poole, P. L.; Willis, C.; Hanna, R. J.; Pytel, K.; Sullivan, K. S.; Andereck, C. D.; Schumacher, D. W.

    2015-11-01

    Many laser-plasma phenomena currently under study depend critically on the quality of the pulse contrast. Costly sacrificial plasma mirrors are now commonly used to improve the temporal laser contrast before target interaction, especially for ion acceleration where high contrast is necessary to achieve interesting new mechanisms. Liquid crystal films were originally developed as variable thickness thin-film targets, and were demonstrated for this purpose in. Varying film formation parameters such as volume, temperature, and draw speed allows thickness control between 10 nm and several 10s of microns, in-situ and under vacuum. Development since that initial work has allowed large area films to be formed, several cm2 in extent, with the same thickness range. The molecular flatness of a freely suspended film renders these films excellent low-cost plasma mirrors, given appropriate formation control. Additionally, the birefringence of the liquid crystal used here permits these films to be used as large area zero-order waveplates at the appropriate thickness. Details on the current state of liquid crystal film application development, including a >1 Hz small area film formation device, will be presented. This work was performed with support from the DARPA PULSE program through a grant from AMRDEC and by the NNSA under contract DE-NA0001976.

  3. Film-Cooling Heat-Transfer Measurements Using Liquid Crystals

    NASA Technical Reports Server (NTRS)

    Hippensteele, Steven A.

    1997-01-01

    The following topics are discussed: (1) The Transient Liquid-Crystal Heat-Transfer Technique; (2) 2-D Film-Cooling Heat-Transfer on an AlliedSignal Vane; and (3) Effects of Tab Vortex Generators on Surface Heat Transfer. Downstream of a Jet in Crossflow.

  4. Anchoring transition in confined discotic columnar liquid crystal films

    NASA Astrophysics Data System (ADS)

    Brunet, Thomas; Thiebaut, Olivier; Charlet, Émilie; Bock, Harald; Kelber, Julien; Grelet, Éric

    2011-01-01

    We report the achievement of ultrathin films (down to 25 nm thick) of thermotropic columnar liquid crystals in homeotropic alignment (columns normal to the interface) confined between a glass slide and a thin metallic electrode (about 150 nm thick). The face-on orientation of the discotic compound is obtained by anchoring transition of a columnar liquid crystalline phase from a degenerate planar orientation to the homeotropic alignment without any phase transition to the isotropic liquid phase. The kinetic dependence on temperature of such anchoring transition is investigated revealing various diffusive growth regimes of the homeotropic domains. Finally, confining effects are also considered by varying the thickness of the columnar liquid crystal film to reach the typical value required in organic solar cells thus demonstrating the reliability of such alignment process in a photovoltaic context.

  5. Liquid crystals for organic thin-film transistors

    NASA Astrophysics Data System (ADS)

    Iino, Hiroaki; Usui, Takayuki; Hanna, Jun-Ichi

    2015-04-01

    Crystalline thin films of organic semiconductors are a good candidate for field effect transistor (FET) materials in printed electronics. However, there are currently two main problems, which are associated with inhomogeneity and poor thermal durability of these films. Here we report that liquid crystalline materials exhibiting a highly ordered liquid crystal phase of smectic E (SmE) can solve both these problems. We design a SmE liquid crystalline material, 2-decyl-7-phenyl-[1]benzothieno[3,2-b][1]benzothiophene (Ph-BTBT-10), for FETs and synthesize it. This material provides uniform and molecularly flat polycrystalline thin films reproducibly when SmE precursor thin films are crystallized, and also exhibits high durability of films up to 200 °C. In addition, the mobility of FETs is dramatically enhanced by about one order of magnitude (over 10 cm2 V-1 s-1) after thermal annealing at 120 °C in bottom-gate-bottom-contact FETs. We anticipate the use of SmE liquid crystals in solution-processed FETs may help overcome upcoming difficulties with novel technologies for printed electronics.

  6. Droplet manipulation on a liquid crystal and polymer composite film

    NASA Astrophysics Data System (ADS)

    Lin, Yi-Hsin; Tsou, Yu-Shih; Chu, Ting-Yu; Chen, Jun-Lin

    2010-08-01

    A droplet manipulation on a switchable surface using a liquid crystal and polymer composite film (LCPCF) based on phase separation is developed recently. The wettability of LCPCF is electrically tunable because of the orientation of liquid crystal directors anchored among the polymer grains. A droplet on LCPCF can be manipulated owning to the wettability gradient induced by spatially orientation of LC directors. We discuss the droplet manipulation on LCPCF and demonstrate several applications of LCPCF, such as polarizer-free displays, and human semen sensing.

  7. Ferroelectric thin films with liquid crystal for gradient index applications.

    PubMed

    Willekens, Oliver; George, John Puthenparampil; Neyts, Kristiaan; Beeckman, Jeroen

    2016-04-18

    We report on the first ever combination of a thin film of lead zirconate titanate (PZT) with a liquid crystal (LC) layer. Many liquid crystal applications use a transparent conductive oxide to switch the liquid crystal. Our proposed processing does not, instead relying on the extremely high dielectric constant of the ferroelectric layer to extend the electric field from widely spaced electrodes over the liquid crystal. It eliminates almost entirely the fringe field problems that arise in nearly all the liquid crystal devices that use multiple addressing electrodes. We show, both via rigorous simulations as well as experiments, that the addition of a PZT layer over the addressing electrodes leads to a markedly improved LC switching performance at distances of up to 30 μm from the addressing electrodes with the current PZT-layer thickness of 0.84 μm. This improvement in switching is used to tune the focal length of the microlens with electrodes spaced at 30 μm. PMID:27137248

  8. Spinodal dewetting of a nematic liquid crystal film

    PubMed

    Braun; Yokoyama

    2000-08-01

    We discuss spinodal dewetting of a nematic film destabilized by Van der Waals forces, focusing on the case of non-antagonistic anchoring conditions. Using physical parameters pertinent to low-molecular-weight thermotropic liquid crystals, we predict a small damping effect. In the presence of an antagonistic applied magnetic field, the anchoring conditions become more significant, and can influence the shape and dynamics of the unstable modes. PMID:11088786

  9. Computer simulations of adsorbed liquid crystal films

    NASA Astrophysics Data System (ADS)

    Wall, Greg D.; Cleaver, Douglas J.

    2003-01-01

    The structures adopted by adsorbed thin films of Gay-Berne particles in the presence of a coexisting vapour phase are investigated by molecular dynamics simulation. The films are adsorbed at a flat substrate which favours planar anchoring, whereas the nematic-vapour interface favours normal alignment. On cooling, a system with a high molecule-substrate interaction strength exhibits substrate-induced planar orientational ordering and considerable stratification is observed in the density profiles. In contrast, a system with weak molecule-substrate coupling adopts a director orientation orthogonal to the substrate plane, owing to the increased influence of the nematic-vapour interface. There are significant differences between the structures adopted at the two interfaces, in contrast with the predictions of density functional treatments of such systems.

  10. Molecular theory of liquid crystal thin films

    NASA Astrophysics Data System (ADS)

    Meng, Shihong

    A molecular theory has been developed to describe the isotropic-nematic transitoon of model nematogens in bulk and in thin films. The surfaces of thin films can be hard surfaces or coated with surfactant monolayers. The theory only includes hard body interactions between all molecule species: solvent, nematogens and surfactants. We have studied the influence of the separation between confining walls, concentration of nematogens, as well as the surface anchoring and areal density of surfactant at the interface upon the phases of nematogens. We have explained the possible existence of planar degenerate phase through entropic pictures and have confirmed close to the bulk isotropic-nematic transition point, the order of the phases of nematogens from isotropic to nematic then back to isotropic when varying the areal density of surfactant monolayers at interfaces. From the results obtained, we believe that we have captured the main competing interactions between surfactants and nematogens and our molecular level theory is capable of describing these two interactions of different natures. Our results can provide a guideline for molecular design of biosensors. We have modeled the molecular systems with as much simplification as possible while retaining the main features. The thesis is arranged into introduction, results on bulk, thin films confined between hard walls and between surfactant monolayers.

  11. Tilted Liquid Crystal Alignment on Asymmetrically Grooved Porous Alumina Film

    NASA Astrophysics Data System (ADS)

    Maeda, Tsuyoshi; Hiroshima, Kohki

    2005-06-01

    This paper reports the achievement of tilted liquid crystal (LC) alignment on an anodic porous alumina (APA) film using microgrooves with asymmetric shapes and dozens of minute pores. The microgrooves with asymmetric shapes were formed by a rubbing technique. The minute pores were then produced by anodization. The LC pretilt angle was controlled by the shapes of the microgrooves and pores. The LC director was orientated in the same inclining direction as that of a rubbed polyimide (PI) film. The pretilt angle was in the range of 20 to 90°. This tilted LC alignment remains very stable against external forces such as thermal shock and intense light.

  12. Orthogonal orientation of chromonic liquid crystals by rubbed polyamide films.

    PubMed

    Mcguire, Aya; Yi, Youngwoo; Clark, Noel A

    2014-05-19

    Chromonic liquid crystals (CLCs) have drawn attention for applications to organic electronics and optical films as well as biological materials. Understanding the alignment mechanism of CLCs is important for those applications. Using a polarized transmission optical microscope, we observe the optical texture, dichroism, and birefringence of CLC films of sunset yellow (SSY) confined by polyamide (nylon) films that are rubbed with a brush. The films align with the stacks of SSY molecules oriented, surprisingly, perpendicular to the rubbing direction. We propose that this alignment is stabilized by molecular interaction between the stretched nylon chains and molecular grooves of the SSY stacks rather than elastic energy of the CLCs due to surface topography induced by the rubbing. PMID:24470318

  13. Two-Dimensional Microrheology of Freely Suspended Liquid Crystal Films

    NASA Astrophysics Data System (ADS)

    Eremin, A.; Baumgarten, S.; Harth, K.; Stannarius, R.; Nguyen, Z. H.; Goldfain, A.; Park, C. S.; Maclennan, J. E.; Glaser, M. A.; Clark, N. A.

    2011-12-01

    Smectic liquid crystals form freely-suspended, fluid films of highly uniform structure and thickness, making them ideal systems for studies of hydrodynamics in two dimensions. We have measured particle mobility and shear viscosity by direct observation of the gravitational drift of silica spheres and smectic islands included in these fluid membranes. In thick films, we observe a hydrodynamic regime dominated by lateral confinement effects, with the mobility of the inclusion determined predominantly by coupling of the fluid flow to the fixed boundaries of the film. In thin films, the mobility of inclusions is governed primarily by coupling of the fluid to the surrounding air, as predicted by Saffman-Delbrück theory.

  14. Hydrodynamics of Inclusions in Freely Suspended Liquid Crystal Films

    NASA Astrophysics Data System (ADS)

    Qi, Zhiyuan

    Hydrodynamic interaction of pairs of circular inclusions in two-dimensional (2D), fluid smectic membranes suspended in air has been studied systematically. By analyzing their Brownian motion, it is found that the radial mutual mobilities of identical inclusions are independent of their size but that the angular coupling becomes strongly size-dependent when their radius exceeds a characteristic hydrodynamic length. These observations are described well for arbitrary inclusion separations by a model that generalizes the Levine/MacKintosh theory of point-force response functions and uses a boundary-element approach to calculate the mobility matrix for inclusions of finite extent. Beyond that, 2D flow fields generated by a rigid, oscillating post inserted in the film have been measured by analyzing the motion of tracer particles and provide a detailed understanding of the hydrodynamic behavior in the film/gas system. The Brownian diffusion of micron-scale inclusions in freely suspended smectic A liquid crystal films a few nanometers thick and several millimeters in diameter depends strongly on the air surrounding the film. Near atmospheric pressure, the three-dimensionally coupled film/gas system is well described by Hughes/Pailthorpe/White hydrodynamic theory but at lower pressure, the diffusion coefficient increases substantially, tending in high vacuum toward the two-dimensional limit where it is determined by film size. In the absence of air, the films are found to be a nearly ideal physical realization of a two-dimensional, incompressible Newtonian fluid.

  15. A liquid crystal and polymer composite film for liquid crystal lenses

    NASA Astrophysics Data System (ADS)

    Lin, Yi-Hsin; Chen, Hung-Shan; Wang, Yu-Jen; Chang, Chia-Ming

    2015-03-01

    Liquid crystal (LC) lenses offer novel opportunities for applications of ophthalmic lenses, camera modules, pico projectors, endoscopes, and optical zoom systems owing to electrically tunable lens power. Nevertheless, the tunable lens power and the aperture size of LC lenses are limited by the optical phase resulting from limit birefringence of LC materials. Recently, we developed a liquid crystal and polymer composite film (LCPCF) as a separation layer and an alignment layer for a multi-layered structure of LC lenses in order to enlarge the polarization-independent optical phase modulation. However, the physical properties and mechanical properties of the LCPCF are not clearly investigated. In this paper, we show the mechanical and physical properties of the LCPCF. The anchoring energy of the LCPCF is comparable with the standard rubbing-induced alignment layer. The transmission efficiency is around 97% neglecting the Fresnel reflection. The surface roughness is under 2 nm by using AFM scanning. The bending strength test indicates that the LCPCF can hold the LC material with reasonable deformation. We believe this study provides a deeper insight to the LC lens structure embedded with LCPCF.

  16. Switchable photoluminescence liquid crystal coated bacterial cellulose films with conductive response.

    PubMed

    Tercjak, Agnieszka; Gutierrez, Junkal; Barud, Hernane S; Ribeiro, Sidney J L

    2016-06-01

    Three different low molecular weight nematic liquid crystals (LCs) were used to impregnate bacterial cellulose (BC) film. This simple fabrication pathway allows to obtain highly transparent BC based films. The coating of BC film with different liquid crystals changed transmittance spectra in ultraviolet-visible region and allows to design UVC and UVB shielding materials. Atomic force microscopy results confirmed that liquid crystals coated BC films maintain highly interconnected three-dimensional network characteristic of BC film and simultaneously, transversal cross-section scanning electron microscopy images indicated penetration of liquid crystals through the three-dimensional network of BC nanofibers. Investigated BC films maintain nematic liquid crystal properties being switchable photoluminiscence as a function of temperature during repeatable heating/cooling cycles. Conductive response of the liquid crystal coated BC films was proved by tunneling atomic force microscopy measurement. Moreover, liquid crystal coated BC films maintain thermal stability and mechanical properties of the BC film. Designed thermoresponsive materials possessed interesting optical and conductive properties opening a novel simple pathway of fabrication liquid crystal coated BC films with tuneable properties. PMID:27083359

  17. Aligned Carbon Nanotube Thin Films from Liquid Crystal Polyelectrolyte Inks.

    PubMed

    Tune, Daniel D; Blanch, Adam J; Shearer, Cameron J; Moore, Katherine E; Pfohl, Moritz; Shapter, Joseph G; Flavel, Benjamin S

    2015-11-25

    Single walled carbon nanotube thin films are fabricated by solution shearing from high concentration sodium nanotubide polyelectrolyte inks. The solutions are produced by simple stirring of the nanotubes with elemental sodium in dimethylacetamide, and the nanotubes are thus not subject to any sonication-induced damage. At such elevated concentrations (∼4 mg mL(-1)), the solutions exist in the liquid crystal phase and during deposition this order is transferred to the films, which are well aligned in the direction of shear with a 2D nematic order parameter of ∼0.7 determined by polarized absorption measurements. Compared to similarly formed films made from superacids, the polyelectrolyte films contain smaller bundles and a much narrower distribution of bundle diameters. After p-doping with an organic oxidizer, the films exhibit a very high DC electrical to optical conductivity ratio of σ(DC)/σ(OP) ∼ 35, corresponding to a calculated DC conductivity of over 7000 S cm(-1). When very thin (T550 ∼ 96%), smooth (RMS roughness, R(q) ∼ 2.2 nm), and highly aligned films made via this new route are used as the front electrodes of carbon nanotube-silicon solar cells, the power conversion efficiency is almost an order of magnitude greater than that obtained when using the much rougher (R(q) ∼ 20-30 nm) and less conductive (peak σ(DC)/σ(OP) ∼ 2.5) films formed by common vacuum filtration of the same starting material, and having the same transmittance. PMID:26511159

  18. Formation and performance of polymer dispersed liquid crystal films

    NASA Astrophysics Data System (ADS)

    Chan, Philip Kwok-Kiou

    Polymer dispersed liquid crystals (PDLC's) are novel composite materials consisting of micron-size liquid crystalline droplets dispersed uniformly in a solid polymer matrix. PDLC's are formed by spinodal decomposition induced by thermal quenching or polymerization. These materials have excellent magneto-optical properties, and have great potential in applications that require efficient light scattering. Present commercial applications include switchable windows for privacy control and large-scale billboards. The optical properties depend on the droplet size, shape and positional order, which are determined during the formation stage, and reorientation dynamics of the liquid crystalline molecules confined within the droplets which occurs during product use. In this thesis, new complex mathematical models that describe the formation and performance of PDLC's are successfully developed, implemented, solved and validated. The nonequilibrium thermodynamic formation model takes into account initial thermal fluctuations computed using Monte Carlo simulations and realistic arbitrary boundary conditions. The performance model is based on classical nematic liquid crystalline magneto-viscoelastic theories, and incorporates transient viscoelastic boundary conditions. The simulations are able to reproduce successfully all the experimentally observed significant dynamical and morphological features of film formation as well as all the dynamical stages observed during the use of these thin optical films. In addition, the sensitivity of the phase separating morphology to processing conditions and material parameters is elucidated. Furthermore, a new scaling method is introduced to describe the phase separation phenomena during the early and intermediate stages of spinodal decomposition induced by thermal quenching. The droplet size selection mechanism for the polymerization-induced phase separation method of forming PDLC films is identified and explained for the first time. Lastly

  19. Layer Thinning in Freely-Suspended Thin Liquid Films of a Symmetric Liquid Crystal Dimer

    NASA Astrophysics Data System (ADS)

    Pardaev, Shokir; Parsouzi, Zeinab; Gleeson, James; Jakli, Antal; Sprunt, Samuel

    We report optical reflectivity and dynamic light scattering (DLS) studies on freely suspended smectic films of a symmetric liquid crystal dimer, which exhibits the phase sequence isotropic--nematic--twist-bend nematic--smectic in cooling. In sufficiently thin films the reflectivity R is expected to scale as the square of the number of smectic layers (N2) while the frequency f of underdamped layer fluctuations scales as N - 1 / 2. On heating thin films drawn in the smectic phase, we observe a sequence of layer thinning transitions, with R and f following the expected scaling relations, provided the stepwise melting involves double rather than single layers. We will describe a model to explain the unusual layer thinning process. We thank M. G. Tamba and G. Mehl for providing the liquid crystal compound: NSF grant DMR-1307674.

  20. Rewritable Optical Storage with a Spiropyran Doped Liquid Crystal Polymer Film.

    PubMed

    Petriashvili, Gia; De Santo, Maria Penelope; Devadze, Lali; Zurabishvili, Tsisana; Sepashvili, Nino; Gary, Ramla; Barberi, Riccardo

    2016-03-01

    Rewritable optical storage has been obtained in a spiropyran doped liquid crystal polymer films. Pictures can be recorded on films upon irradiation with UV light passing through a grayscale mask and they can be rapidly erased using visible light. Films present improved photosensitivity and optical contrast, good resistance to photofatigue, and high spatial resolution. These photochromic films work as a multifunctional, dynamic photosensitive material with a real-time image recording feature. PMID:26864876

  1. Self-assembled ordered structures in thin films of HAT5 discotic liquid crystal

    PubMed Central

    Morales, Piero; Lagerwall, Jan; Vacca, Paolo; Laschat, Sabine

    2010-01-01

    Summary Thin films of the discotic liquid crystal hexapentyloxytriphenylene (HAT5), prepared from solution via casting or spin-coating, were investigated by atomic force microscopy and polarizing optical microscopy, revealing large-scale ordered structures substantially different from those typically observed in standard samples of the same material. Thin and very long fibrils of planar-aligned liquid crystal were found, possibly formed as a result of an intermediate lyotropic nematic state arising during the solvent evaporation process. Moreover, in sufficiently thin films the crystallization seems to be suppressed, extending the uniform order of the liquid crystal phase down to room temperature. This should be compared to the bulk situation, where the same material crystallizes into a polymorphic structure at 68 °C. PMID:20625522

  2. Variable Thickness Liquid Crystal Films for High Repetition Rate Laser Applications

    NASA Astrophysics Data System (ADS)

    Poole, Patrick; Willis, Christopher; Cochran, Ginevra; Hanna, Randall; Andereck, C. David; Schumacher, Douglass

    2015-05-01

    The presentation of a clean target or target substrate at high repetition rates is of importance to a number of photoelectron spectroscopy and free electron laser applications, often in high vacuum environments. Additionally, high intensity laser facilities are approaching the 10 Hz shot rate at petawatt powers, but are currently unable to insert targets at these rates. We have developed liquid crystal films to address this need for high rep rate targets while preserving the planar geometry advantageous to many applications. The molecular ordering of liquid crystal is variable with temperature and can be manipulated to form a layered thin film. In this way temperature and volume control can be used to vary film thickness in vacuo and on-demand between 10 nm and over 10 μm. These techniques were previously applied to a single-shot ion acceleration experiment in, where target thickness critically determines the physics of the acceleration. Here we present an automatic film formation device that utilizes a linear sliding rail to form liquid crystal films within the aforementioned range at rates up to 0.1 Hz. The design ensures film formation location within 2 μm RMS, well within the Rayleigh range of even short f-number systems. Details of liquid crystal films and this target formation device will be shown as well as recent experimental data from the Scarlet laser facility at OSU. This work was supported by DARPA through a grant from AMRDEC.

  3. Strongly Dichroic Organic Films via Controlled Assembly of Modular Aromatic Charge-Transfer Liquid Crystals.

    PubMed

    Bé, Ariana Gray; Tran, Cheryl; Sechrist, Riley; Reczek, Joseph J

    2015-10-01

    The formation of highly anisotropic organic thin films based on the designed self-assembly of mixed-stack liquid crystals is reported. A series of alkoxyanthracene donors is combined in a modular fashion with a naphthalenediimide acceptor to generate new charge-transfer columnar liquid crystals. Materials characterization and molecular modeling provides insight into structure-function relationships in these organic materials that lead to the striking bulk dichroic properties of certain molecular assemblies. PMID:26375256

  4. Thin film polarizer and color filter based on photo-polymerizable nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Mohammadimasoudi, Mohammad; Neyts, Kristiaan; Beeckman, Jeroen

    2015-03-01

    We present a method to fabricate a thin film color filter based on a mixture of photo-polymerizable liquid crystal and chiral dopant. A chiral nematic liquid crystal layer reflects light for a certain wavelength interval Δλ (= Δn.P) with the period and Δn the birefringence of the liquid crystal. The reflection band is determined by the chiral dopant concentration. The bandwidth is limited to 80nm and the reflectance is at most 50% for unpolarized incident light. The thin color filter is interesting for innovative applications like polarizer-free reflective displays, polarization-independent devices, stealth technologies, or smart switchable reflective windows to control solar light and heat. The reflected light has strong color saturation without absorption because of the sharp band edges. A thin film polarizer is developed by using a mixture of photo-polymerizable liquid crystal and color-neutral dye. The fabricated thin film absorbs light that is polarized parallel to the c axis of the LC. The obtained polarization ratio is 80% for a film of only 12 μm. The thin film polarizer and the color filter feature excellent film characteristics without domains and can be detached from the substrate which is useful for e.g. flexible substrates.

  5. Langmuir Films of Flexible Polymers Transferred to Aqueous/Liquid Crystal Interfaces Induce Uniform Azimuthal Alignment of the Liquid Crystal

    PubMed Central

    Kinsinger, Michael I.; Buck, Maren E.; Meli, Maria-Victoria; Abbott, Nicholas L.; Lynn, David M.

    2009-01-01

    We reported recently that amphiphilic polymers can be assembled at interfaces created between aqueous phases and thermotropic liquid crystals (LCs) in ways that (i) couple the organization of the polymer to the order of the LC and (ii) respond to changes in the properties of aqueous phases that can be characterized as changes in the optical appearance of the LC. This investigation sought to characterize the behavior of aqueous-LC interfaces decorated with uniaxially compressed thin films of polymers transferred by Langmuir-Schaefer (LS) transfer. Here, we report physicochemical characterization of interfaces created between aqueous phases and the thermotropic LC 4-cyano-4’-pentylbiphenyl (5CB) decorated with Langmuir films of a novel amphiphilic polymer (polymer 1), synthesized by the addition of hydrophobic and hydrophilic side chains to poly(2-vinyl-4,4’-dimethylazlactone). Initial characterization of this system resulted in the unexpected observation of uniform azimuthal alignment of 5CB after LS transfer of the polymer films to aqueous-5CB interfaces. This paper describes characterization of Langmuir films of polymer 1 hosted at aqueous-5CB interfaces as well as the results of our investigations into the origins of the uniform ordering of the LC observed upon LS transfer. Our results, when combined, support the conclusion that uniform azimuthal alignment of 5CB is the result of long-range ordering of polymer chains in the Langmuir films (in a preferred direction orthogonal to the direction of compression) that is generated during uniaxial compression of the films prior to LS transfer. Although past studies of Langmuir films of polymers at aqueous-air interfaces have demonstrated that in-plane alignment of polymer backbones can be induced by uniaxial compression, these past reports have generally made use of polymers with rigid backbones. One important outcome of this current study is thus the observation of anisotropy and long-range order in Langmuir films

  6. Liquid crystal surface alignments by using ion beam sputtered magnetic thin films

    SciTech Connect

    Wu, H.-Y.; Pan, R.-P.

    2007-08-13

    A method for liquid crystal surface alignment by using a one-step, ion beam bombardment of the glass substrates is demonstrated. Precoating by polyimide is not necessary. The authors show that the homeotropic alignment is achieved due to orientation of the diamagnetic nematogenic molecules by the magnetic field from the {gamma}-Fe{sub 2}O{sub 3} ferrimagnetic thin films created on the substrates by ion beam bombardment. The film exhibits a high Curie temperature well above 300 K and a compensation temperature which is the typical feature of ferrimagnetism. This is a simple, noncontact, and reliable alignment method for liquid crystal devices.

  7. Liquid crystal catalytic surfactant films for decomposing and sensing pollutants by electrolysis

    SciTech Connect

    Rusling, J.F.; Howe, D.J.; Nassar, A.E.

    1993-12-31

    Living organisms utilize protein biocatalysts incorporated in lipid bilayer membranes. Some synthetic lipid-like surfactant molecules can be self assembled into bilayer structures resembling biomembranes. Films composed of stacks of bilayers were prepared by casting solutions of insoluble surfactants onto solid electrodes. Catalysts were incorporated either after or before casting. In their liquid crystal forms, films containing metal phthalocyanine tetrasulfonates or the redox protein myoglobin were excellent, stable electrochemical catalysts for dehalogenation of pollutants such as trichloracetic acid and ethylene dibromide. Electrons are transported to reactions sites via the incorporated catalysts, and the films also preconcentrate the organohalides to enhance reaction rates. Characterization and applications of these films will be discussed.

  8. Low switching voltage ZnO quantum dots doped polymer-dispersed liquid crystal film.

    PubMed

    Hsu, Chuan-Chun; Chen, Yi-Xuan; Li, Hui-Wen; Hsu, Jy-Shan

    2016-04-01

    This paper investigates the effects of ZnO nanoparticles (NPs) on the switching voltages of polymer dispersed liquid crystal (PDLC) films. The threshold and driving electric fields of PDLC film doped with 2.44 wt% ZnO NPs were 0.13 and 0.31 V/μm, respectively, with a contrast ratio of 26. The results of field emission scanning electron microscopy show that the size of the droplets in doped PDLC films increases with the doping concentration. The development of ZnO-doped PDLC films with low driving voltages greatly broadens the applicability of these devices. PMID:27137000

  9. Complex Nanoscale-Ordered Liquid Crystal Polymer Film for High Transmittance Holographic Polarizer.

    PubMed

    Du, Tao; Fan, Fan; Tam, Alwin Ming Wai; Sun, Jiatong; Chigrinov, Vladimir G; Sing Kwok, Hoi

    2015-11-25

    A special design of a complex-ordered liquid crystal polymer film is developed into a holographic polarizer. The holographic polarizer shows over 90% transmittance, which provides a simple solution to make LEDs polarized. Furthermore, the holographic polarizer exhibits intensity and polarization maintenance properties, which could be further developed for photonics applications. PMID:26457810

  10. Heat, Light, and Videotapes: Experiments in Heat Conduction Using Liquid Crystal Film.

    ERIC Educational Resources Information Center

    Bacon, Michael E.; And Others

    1995-01-01

    Presents a range of experiments in heat conduction suitable for upper-level undergraduate laboratories that make use of heat sensitive liquid crystal film to measure temperature contours. Includes experiments mathematically described by Laplace's equation, experiments theoretically described by Poisson's equation, and experiments that involve…

  11. Mechanisms of liquid crystal and biopolymer alignment on highly-oriented polymer thin films

    NASA Astrophysics Data System (ADS)

    Dennis, John Raymond

    1998-12-01

    Molecular order can strongly enhance material properties, or produce materials which perform advanced functions. Many materials, from small crystals to large macromolecules, may be aligned on highly-oriented poly(tetrafluoroethylene) (PTFE) or high-density polyethylene (HDPE) thin films, prepared by a simple shear deposition procedure. Here, processes by which these films produce order are examined, first in a well- characterized liquid crystal, then in two more complex polymer liquid crystals, and finally in an adsorbed motor protein system. Optical second harmonic generation (SHG) was used to study surface molecular order in the liquid crystal 4'-n-octyl-4-cyano-biphenyl (8CB) on PTFE and HDPE films. In nematic 8CB cells with bulk alignment along the polymer orientation axis, the surface monolayers of 8CB were also aligned, and showed C2ν symmetry. In the isotropic phase, the surface monolayer alignment was lost. Monolayers of 8CB evaporated onto either polymer showed little or no alignment. The bulk 8CB alignment appears to be primarily caused by surface ridges through an elastic, bulk- mediated mechanism, unlike the epitaxy-like alignment found on some cloth-rubbed polymer surfaces. For the polymer liquid crystal poly-γ-benzyl- glutamate (PBG), uniform homogeneous surface alignment was observed on PTFE films; this is the first report of PBG surface alignment. However, liquid crystalline samples of microtubules were not aligned. PTFE films show promise for aligning some other polymer liquid crystals via elastic interactions. The motor protein kinesin, adsorbed to PTFE films, transported fluorescently labeled microtubules predominantly in straight lines along the films' orientation axis, not in random directions as observed on glass surfaces. As the kinesin surface density was increased, the degree of alignment peaked and then declined. The results indicate that directed motion occurs because active kinesin preferentially adsorbs to surface sites along linear

  12. Application of liquid crystal polymer films for photolithographic fabrication of 3D structures

    NASA Astrophysics Data System (ADS)

    Fox, Anna E.; Fontecchio, Adam K.

    2008-02-01

    In this paper, we demonstrate a silicon etching application of a holographically formed polymer dispersed liquid crystal (H-PDLC) photomask. H-PDLC is a periodically nanostructured material consisting of stratified layers of polymer and liquid crystal. Due to the natural random alignment of the liquid crystal axes with respect to the polymer layers, an index of refraction mismatch exists and a reflection occurs. Application of bias across the film aligns the liquid crystals and eliminates the index mismatch causing the film to become transparent. H-PDLC films have been shown to sufficiently attenuate the UV exposure dose in the photolithographic process when in the unbiased state, and can be electrically controlled to modulate the amount of UV transmission when electric field is applied. We show etch depth profiles of patterns masked on a silicon substrate using the H-PDLC photomask device compared with etch profiles of similar structures patterned with more conventional ink jet printed photomasks and chrome on quartz glass photomasks. We investigate reactive ion etching technique and potassium hydroxide wet etch technique.

  13. Liquid Crystal Alignment on Solution Derived Zinc Oxide Films via Ion Beam Irradiation.

    PubMed

    Park, Hong-Gyu; Han, Jae-Jun; Seo, Dae-Shik

    2016-03-01

    A 75-nm-thick ZnO film was deposited by a sol-gel method on indium-tin oxide (ITO)-coated glass. This film served as a liquid crystal (LC) alignment layer. We report the fabrication and characteristics of this film after ion-beam (IB) irradiation. Uniform LC alignment was achieved at an IB incident energy above 2400 eV. The IB-treated ZnO surface was analyzed by X-ray photoelectron spectroscopy (XPS), monitoring the intensity of the Zn 2p and O 1s peaks as a function of IB-irradiation energy density. The electro-optical (EO) characteristics of a twisted nematic-liquid crystal display (TN-LCD) were comparable to rubbed polyimide. PMID:27455726

  14. High transmittance optical films based on quantum dot doped nanoscale polymer dispersed liquid crystals

    NASA Astrophysics Data System (ADS)

    Gandhi, Sahil Sandesh; Chien, Liang-Chy

    2016-04-01

    We propose a simple way to fabricate highly transparent nanoscale polymer dispersed liquid crystal (nano-PDLC) films between glass substrates and investigate their incident angle dependent optical transmittance properties with both collimated and Lambertian intensity distribution light sources. We also demonstrate that doping nano-PDLC films with 0.1% InP/ZnS core/shell quantum dots (QD) results in a higher optical transmittance. This work lays the foundation for such nanostructured composites to potentially serve as roll-to-roll coatable light extraction or brightness enhancement films in emissive display applications, superior to complex nanocorrugation techniques proposed in the past.

  15. Liquid Crystal Alignment with a Photo-Crosslinkable and Solvent-Soluble Polyimide Film

    NASA Astrophysics Data System (ADS)

    Lee, Wen-Chin; Hsu, Chain-Shu; Wu, Shin-Tson

    2000-05-01

    A new photo-crosslinkable and solvent-soluble polyimide containing cinnamate side chains (PICA) was developed for aligning nematic liquid crystals (LCs). Good LC alignment was achieved by exposing a long-wave linearly polarized ultraviolet (LPUV) light to the PICA film. The LC alignment direction is found perpendicular to the polarization axis of the incident LPUV light. The uniform alignment of LC molecules induced by PICA films remains intact after being heated at 85°C for 450 hours. A small pretilt angle on the PICA film was generated by the double exposure method.

  16. Thin liquid crystal films on liquids in the nematic range of temperatures.

    PubMed

    Delabre, Ulysse; Richard, Céline; Sang, Yann Yip Cheung; Cazabat, Anne-Marie

    2010-08-17

    Hybrid nematic films deposited on liquid substrates reveal a complex behavior, which is not fully understood. Here, the behavior of the n-cyanobiphenyl series on water and glycerol has been studied in a wide temperature range, including the vicinity of the nematic-isotropic (NI) transition. Wettability, allowed film thicknesses, and line tension of nematic domains have been investigated. The study provides a coherent picture of hybrid nematic films, allowing us to account for lower thickness threshold, structure of the film edge, and line tension of domains in the whole nematic range of temperatures. PMID:20695580

  17. Liquid crystal polymer networks: preparation, properties, and applications of films with patterned molecular alignment.

    PubMed

    Liu, Danqing; Broer, Dirk J

    2014-11-18

    Monolithically ordered liquid crystal polymer networks are formed by the photoinitiated polymerization of multifunctional liquid crystal monomers. This paper describes the relevant principles and methods, the basic structure-property relationships in terms of mesogenic properties of the monomers, and the mechanical and optical properties of the polymers. Strategies are discussed to control the molecular orientation by various means and in all three dimensions. The versatility of the process is demonstrated by two examples of films with a patterned molecular order. It is shown that patterned retarders can be made by a two-step polymerization process which is successfully employed in a transflective display principle. A transflective display is a liquid crystal display that operates in both a reflective mode using ambient light and a transmissive mode with light coming from a backlight system. Furthermore, a method is discussed to create a patterned film in a single polymerization process. This film has alternating planar chiral nematic areas next to perpendicularly oriented (so-called homeotropic) areas. When applied as a coating to a substrate, the film changes its surface texture. During exposure to UV light, it switches from a flat to a corrugated state. PMID:24707811

  18. Morphology of open films of discotic hexagonal columnar liquid crystals as probed by grazing incidence X-ray diffraction.

    PubMed

    Grelet, Eric; Dardel, Sébastien; Bock, Harald; Goldmann, Michel; Lacaze, Emmanuelle; Nallet, Frédéric

    2010-04-01

    The structure and the orientation of thermotropic hexagonal columnar liquid crystals are studied by grazing incidence X-ray diffraction (GIXD) for different discotic compounds in the geometry of open supported thin films. Whatever the film deposition mode (either spin-coating or vacuum evaporation) and the film thickness, a degenerate planar alignment with the liquid crystalline columns parallel to the substrate is found. However, if a specific thermal process is applied to the liquid crystal film, homeotropic anchoring (columns normal to the interface) can be stabilized in a metastable state. PMID:20411293

  19. Interaction of a bi-molecular liquid crystal film with functionalized nanoparticles

    NASA Astrophysics Data System (ADS)

    Taylor, Jefferson W.; Martinez-Miranda, L. J.

    2010-03-01

    We investigate the properties of a bi-molecular film of liquid crystal close to a magnetic nanoparticle (CoFe) with a functionalization compound (MHDA) with the atomic force microscope (AFM). We seek to investigate if the functionalization compound has an effect on the ordering of the liquid crystal in the vicinity of the nanoparticle. Studies in bulk liquid crystals have shown that the functionalization compound influences how the liquid crystal reorganize [1]. The results of this investigation will be compared to the results of work done on phospholipids in close contact with uncovered silica nanoparticles [2]. Preliminary studies of the liquid crystal in contact with the nanoparticles show that it behaves similarly to the way the phospholipids behave. More functionalization compounds are studied in order to establish whether it behaves differently depending on the functionalization compound. [4pt] [1] L. J. Mart'inez-Miranda, L. K. Kurihara, J. Appl. Phys 105, 084305 (2009). [0pt] [2] Yuri Roiter, Maryna Ornatska, Aravind R. Rammohan, Jitendra Balakrishnan, David R. Heine, and Sergiy Minko, Langmuir, 25, 6287-6299 (2009).

  20. Liquid Crystals

    NASA Astrophysics Data System (ADS)

    1990-01-01

    Thermochromic liquid crystals, or TLCs, are a type of liquid crystals that react to changes in temperature by changing color. The Hallcrest/NASA collaboration involved development of a new way to visualize boundary layer transition in flight and in wind tunnel testing of aircraft wing and body surfaces. TLCs offered a new and potentially better method of visualizing the boundary layer transition in flight. Hallcrest provided a liquid crystal formulation technique that afforded great control over the sensitivity of the liquid crystals to varying conditions. Method is of great use to industry, government and universities for aerodynamic and hydrodynamic testing. Company's principal line is temperature indicating devices for industrial use, such as non-destructive testing and flaw detection in electric/electronic systems, medical application, such as diagnostic systems, for retail sale, such as room, refrigerator, baby bath and aquarium thermometers, and for advertising and promotion specials. Additionally, Hallcrest manufactures TLC mixtures for cosmetic applications, and liquid crystal battery tester for Duracell batteries.

  1. Solvent vapour mediated spontaneous healing of self-organized defects of liquid crystal films.

    PubMed

    Ravi, Bolleddu; Mukherjee, Rabibrata; Bandyopadhyay, Dipankar

    2015-01-01

    Ultrathin liquid crystal films showed a nematic to isotropic transition when exposed to solvent vapour for a short duration while a reverse isotropic to nematic transition was observed when the film was isolated from the solvent exposure. The phase transitions were associated with the appearance and fading of surface patterns as the solvent molecules diffused into and out of the film matrix, resulting in the destruction or restoration of the orientational order. A long-time solvent vapour exposure caused the dewetting of the film on the surface, which was demonstrated by the formation of holes and their growth in size with the progress of time. Even at this stage, withdrawal of the solvent exposure produced an array of nematic fingers, which nearly self-healed the dewetted holes. The change in contact angle due to the phase transition coupled with the imbalance of osmotic pressure across the contact line due to the differential rate of solvent evaporation from the film and the hole helped the fingers to grow towards the centre of the hole. The appearance of the fingers upon withdrawal of the solvent exposure and their disappearance upon exposure to solvent were also found to be a nearly reversible process. These findings could significantly contribute to the development of vapour sensors and self-healing surfaces using liquid crystal thin films. PMID:25372336

  2. Rupture mechanism of liquid crystal thin films realized by large-scale molecular simulations

    SciTech Connect

    Nguyen, Trung D; Carrillo, Jan-Michael Y; Brown, W Michael; Matheson, Michael A

    2014-01-01

    The ability of liquid crystal (LC) molecules to respond to changes in their environment makes them an interesting candidate for thin film applications, particularly in bio-sensing, bio-mimicking devices, and optics. Yet the understanding of the (in)stability of this family of thin films has been limited by the inherent challenges encountered by experiment and continuum models. Using unprecedented largescale molecular dynamics (MD) simulations, we address the rupture origin of LC thin films wetting a solid substrate at length scales similar to those in experiment. Our simulations show the key signatures of spinodal instability in isotropic and nematic films on top of thermal nucleation, and importantly, for the first time, evidence of a common rupture mechanism independent of initial thickness and LC orientational ordering. We further demonstrate that the primary driving force for rupture is closely related to the tendency of the LC mesogens to recover their local environment in the bulk state. Our study not only provides new insights into the rupture mechanism of liquid crystal films, but also sets the stage for future investigations of thin film systems using peta-scale molecular dynamics simulations.

  3. Rupture mechanism of liquid crystal thin films realized by large-scale molecular simulations.

    PubMed

    Nguyen, Trung Dac; Carrillo, Jan-Michael Y; Matheson, Michael A; Brown, W Michael

    2014-03-21

    The ability of liquid crystal (LC) molecules to respond to changes in their environment makes them an interesting candidate for thin film applications, particularly in bio-sensing, bio-mimicking devices, and optics. Yet the understanding of the (in)stability of this family of thin films has been limited by the inherent challenges encountered by experiment and continuum models. Using unprecedented large-scale molecular dynamics (MD) simulations, we address the rupture origin of LC thin films wetting a solid substrate at length scales similar to those in experiment. Our simulations show the key signatures of spinodal instability in isotropic and nematic films on top of thermal nucleation, and importantly, for the first time, evidence of a common rupture mechanism independent of initial thickness and LC orientational ordering. We further demonstrate that the primary driving force for rupture is closely related to the tendency of the LC mesogens to recover their local environment in the bulk state. Our study not only provides new insights into the rupture mechanism of liquid crystal films, but also sets the stage for future investigations of thin film systems using peta-scale molecular dynamics simulations. PMID:24264516

  4. An electrically switchable surface free energy on a liquid crystal and polymer composite film

    NASA Astrophysics Data System (ADS)

    Lin, Yi-Hsin; Chu, Ting-Yu; Tsou, Yu-Shih; Chang, Kai-Han; Chiu, Ya-Ping

    2012-12-01

    An electrically switchable surface free energy on a liquid crystal and polymer composite film (LCPCF) resulting from the orientations of liquid crystal molecules is investigated. By modification of Cassie's model and the measurement based on the Chibowski's film pressure model (E. Chibowski, Adv. Colloid Interface Sci. 103, 149 (2003)), the surface free energy of LCPCF is electrically switchable from 36×10-3J/ m2 to 51×10-3J/ m2 while the average tilt angle of LC molecules changes from 0° to 32° with the applied pulsed voltage. The switchable surface free energy of LCPCF can help us to design biosensors and photonics devices, such as electro-optical switches, blood sensors, and sperm testers.

  5. Dynamics of photoinduced processes in liquid-crystal polymer films containing azo compounds

    SciTech Connect

    Simonov, A N; Larichev, A V

    1999-07-31

    The photoinduced processes in azo-compound-containing side-chain polymer films with liquid-crystal properties are examined theoretically. A model is proposed whereby it is possible to consider the dynamics of the optical response of a medium taking into account the anisotropic saturation in the angular distribution of the azo-dye isomers as well as the intermolecular interaction. The influence of the liquid-crystal ordering in the polymer is taken into account by introducing a phenomenological mean-field factor. Analytical solutions describing changes in the optical properties of a polymer film during the initial illumination stages are in good agreement with experimental data. (this issue is dedicated to the memory of s a akhmanov)

  6. Characterisation of protein adsorption on different liquid crystal phthalocyaninethin films.

    PubMed

    Paul, S; Paul, D; Basova, T; Ray, A K

    2010-03-01

    Bovine serum albumin (BSA) protein adsorption on thin spun films of different metal octakishexylthiophthalocyanine [(C(6)S)(8)PcM, M=Cu, Ni] derivatives is investigated by using three independent spectroscopic measurements namely Raman spectroscopy, ellipsometry and surface plasmon resonance imaging. Thermally induced molecular self-reorganisations in the phthalocyanine films are found to have produced the changes in the surface energy which, in turn, control protein adsorption. The amount of BSA adsorption on [(C(6)S)(8)PcNi] is more limited than that on [(C(6)S)(8)PcCu] and this observation is consistent with the results on the surface wettability obtained from the contact angle measurements. The shift from the plasmonic resonance wavelength because of the BSA adsorption was significantly larger for the heat-treated [(C(6)S)(8)PcCu] than as-deposited film. Similar measurements on the [(C(6)S)(8)PcNi] films showed a limited BSA adsorption. The results of surface plasmon resonance experiments are consistent with those obtained from Raman spectroscopic and ellipsometric techniques. PMID:20170253

  7. Anisotropic light absorption, refractive indices, and orientational order parameter of unidirectionally aligned columnar liquid crystal films.

    PubMed

    Charlet, Emilie; Grelet, Eric

    2008-10-01

    The anisotropic optical properties of thermotropic columnar liquid crystals absorbing in the visible range are investigated for different discotic compounds unidirectionally oriented in open supported thin films. Two methods to monitor the alignment of columnar mesophases in thin films are reported, making possible to achieve either homeotropic anchoring (columns normal to the substrate) by a specific thermal annealing, or unidirectional planar orientation (columns parallel to the substrate) by using a rubbed Teflon coating. The columnar liquid crystal anchoring is found to depend on the nature of the compound, either parallel or perpendicular to the Teflon orientation. Based on this control of the mesophase alignment, the dichroic ratio and the orientational order parameter of oriented samples are measured, and a high order parameter of 0.9 is found in the case of parallel alignment. From the polarized absorption data of the columnar liquid crystal films, the light wavelength dependence of the birefringence and of the real and imaginary parts (refractive index and extinction coefficient, respectively) of the anisotropic optical indices are determined over the whole visible range. PMID:18999445

  8. Tunable liquid crystal lasers

    NASA Astrophysics Data System (ADS)

    Woltman, Scott J.

    Liquid crystal lasers are dye-doped distributed feedback lasing systems. Fabricated by coupling the periodic structure of a liquid crystal medium with a fluorescent dye, the emission from these systems is tunable by controlling the liquid crystal system---be it through electric or thermal field effects, photochemical reactions, mechanical deformations, etc. The laser action arises from an extended interaction time between the radiation field, the laser emission, and the matter field, the periodic liquid crystal medium, at the edge of the photonic band gap. In this thesis, several tunable liquid crystal laser systems are investigated: cholesteric liquid crystals, holographic-polymer dispersed liquid crystals and liquid crystal polarization gratings. The primary focus has been to fabricate systems that are tunable through electrical means, as applications requiring mechanical or thermal changes are often difficult to control. Cholesteric liquid crystal lasers are helical Bragg reflectors, with a band gap for circularly polarized light of equivalent handedness to their helix. These materials were doped with a laser dye and laser emission was observed. The use of an in-plane electric field tends to unwind the helical pitch of the film and in doing so tunable emission was demonstrated for ˜15 nm. Holographic-polymer dispersed liquid crystals (H-PDLCs) are grating structures consisting of alternating layers of polymer and liquid crystal, with different indices of refraction. The application of an electric field index matches these layers and switches off the grating. Thus, laser emission can be switched on and off through the use of an electric field. Spatially tunable H-PDLC lasers were fabricated by creating chirped gratings, formed by divergent beams. The emission was shown to tune ˜5 nm as the pump beam was translated across a 1 inch film. Liquid crystal polarization gratings use photo-patterned alignment layers, through a polarization holography exposure, to

  9. Permanent photoalignment of liquid crystals on nanostructured chalcogenide glassy thin films

    SciTech Connect

    Gelbaor, Miri; Abdulhalim, I.; Klebanov, Matvey; Lyubin, Victor

    2011-02-14

    Photoalignment of nematic liquid crystals is obtained on the chalcogenide glassy thin film of As{sub 2}S{sub 3} using irradiation with polarized blue light. A uniform homogeneously aligned device is obtained with high contrast and strong anchoring. The device alignment quality is permanent as checked by following its functionality over a period of few months. The origin of the observed photoalignment is attributed to the photoinduced anisotropy in chalcogenide glasses. No differences between the different As{sub 2}S{sub 3} film thicknesses observed, thus supporting the proposition that some orientational order is photoinduced on the surface of the glass and responsible for the photoalignment.

  10. Transient self-interaction of light in a liquid-crystal polymer film containing azodye molecules

    SciTech Connect

    Simonov, A N

    1999-07-31

    Transient self-interaction of low-power He - Ne laser radiation (1 < 50 mW cm{sup -2} ) in a liquid-crystal polymer film containing chemically bound azodye molecules was observed experimentally. The self-interaction occurred in the region of a temperature-induced phase transition in the polymer film and was accompanied by the formation of quasi-periodic ring-shaped structures in the distribution of the transmitted light intensity. (this issue is dedicated to the memory of s a akhmanov)

  11. Transflective spatial filter based on azo-dye-doped cholesteric liquid crystal films

    SciTech Connect

    Lin, T.-H.; Fuh, Andy Y.-G.

    2005-07-04

    This work demonstrates the feasibility of exploiting the photoisomerization effect in azo-dye-doped cholesteric liquid crystal (DDCLC) films with a concomitant decline of the phase transition temperature from the cholesteric to an isotropic phase (T{sub Ch-I}) as a spatial filter. The fabrication depends on the fact that the various intensities of the diffracted orders are responsible for the various degrees of transparency associated with the photoisomerized DDCLC film. High- and low-pass images in the Fourier optical signal process can be simultaneously observed via reflected and transmitted signals, respectively. A simulation is also performed, and the results are consistent closely with experimental data.

  12. Pyrolysis mechanism for recycle renewable resource from polarizing film of waste liquid crystal display panels.

    PubMed

    Wang, Ruixue; Xu, Zhenming

    2014-08-15

    Liquid crystal display (LCD) panels mainly consist of polarizing film, liquid crystal and glass substrates. In this study, a novel pyrolysis model and a pyrolysis mechanism to recover the reusable resource from polarizing film of waste LCD panels was proposed. Polarizing film and its major components, such as cellulose triacetate (TAC) and polyvinyl alcohol (PVA) were pyrolyzed, respectively, to model the pyrolysis process. The pyrolysis process mainly generated a large ratio of oil, a few gases and a little residue. Acetic acid was the main oil product and could be easily recycled. The pyrolysis mechanism could be summarized as follows: (i) TAC, the main component of polarizing film, was heated and generated active TAC with a low polymerization, and then decomposed into triacetyl-d-glucose. (ii) Some triacetyl-d-glucose generated triacetyl-d-mannosan and its isomers through an intramolecular dehydration, while most triacetyl-d-glucose generated the main oil product, namely acetic acid, through a six-member cyclic transition state. (iii) Meanwhile, other products formed through a series of bond cleavage, dehydration, dehydrogenation, interesterification and Diels-Alder cycloaddition. This study could contribute significantly to understanding the polarizing film pyrolysis performance and serve as guidance for the future technological parameters control of the pyrolysis process. PMID:24992456

  13. Computer simulation studies of confined liquid-crystal films

    NASA Astrophysics Data System (ADS)

    Wall, Greg D.; Cleaver, Douglas J.

    1997-10-01

    In this paper we present results from molecular dynamics simulations performed using a system of Gay-Berne particles confined between two substrates in a slab geometry. We use a nonseparable anisotropic molecule-substrate interaction potential and investigate weak and moderate molecule-substrate coupling strengths. We find that for both coupling strengths a well-defined, tilted molecular layer forms at each wall and that the pretilt angle and layer density are only weakly dependent on temperature as the central region is cooled through isotropiclike and nematiclike regions. The orientationally ordered fluid formed at the center of the film is tilted in sympathy with the surface layers. At low temperatures, however, where the central region adopts a layered arrangement, a sharp change is observed in the pretilt angle. This transition is more marked in the weak-coupling system where the high-temperature tilted surface layers adopt an approximately planar arrangement at low temperatures and the system resembles a bookshelf-geometry smectic film. In the moderate-coupling system, the surface layers maintain some tilt in the presence of the layered central region, leading to a smectic-stripe phase arrangement.

  14. Photoinduced Directional Motions of Microparticles at Air-Liquid-Crystal Interfaces of Azobenzene-Doped Liquid-Crystal Films with Homeotropic or Homogeneous Alignment Structures

    NASA Astrophysics Data System (ADS)

    Yamamoto, Takahiro; Yoshida, Masaru

    2012-10-01

    We investigated the effects of liquid-crystal (LC) alignments on photoinduced motions of microparticles at air-LC interfaces of azobenzene-doped LC films. In homeotropically aligned LC films, the lattice spacings of pseudo-hexagonal structures of microparticles site-selectively exhibited reversible expansion or contraction on alternating irradiation with ultraviolet and visible light. The particle motions were probably driven by photochemical deformation of LC surfaces. In homogeneously aligned films, alternating irradiation induced macroscopic convective flows followed by rapid gathering or dispersion of linear chains of microparticles. Particle motions were significantly influenced by LC alignments as well as the light wavelength.

  15. Comparison of transferred freely-suspended films and LB-films of liquid crystals

    SciTech Connect

    Decher, G.; Reibel, J.; Sohling, U.

    1993-12-31

    Amphiphilic liquid crystalline (LC) compounds offer the possibility to obtain similar layered structures such as LB mono- and multilayers, freely suspended and transferred freely-suspended films or bulk LC-phases from a single compound. This way a structural comparison of all types of assemblies can be achieved, combining the experience from both the LB-and the LC-fields. There is a remarkable similarity of the structures of the transferred freely-suspended (TFS) and LB-films. Nevertheless both types of multilayer assemblies, prepared from the same substance (ethyl-4`-n-octyloxybiphenyl-4-carboxylate), show a different thermal behavior. Whereas the TFS-films undergo reversible phase transitions and are stable up to the clearing point of the bulk material (110{degrees}C), the LB-films show only one irreversible phase transition and start to melt already 30{degrees}C below the clearing point of the bulk material.

  16. Characterization of rhenium oxide films and their application to liquid crystal cells

    SciTech Connect

    Cazzanelli, E.; Castriota, M.; Marino, S.; Scaramuzza, N.; Purans, J.; Kuzmin, A.; Kalendarev, R.; Mariotto, G.; Das, G.

    2009-06-01

    Rhenium trioxide exhibits high electronic conductivity, while its open cubic crystal structure allows an appreciable hydrogen intercalation, generating disordered solid phases, with protonic conductivity. Rhenium oxide thin films have been obtained by thermal evaporation of ReO{sub 3} powders on different substrates, maintained at different temperatures, and also by reactive magnetron sputtering of a Re metallic target. A comparative investigation has been carried out on these films, by using micro-Raman spectroscopy and x-ray diffraction. Two basic types of solid phases appear to grow in the films: a red metallic H{sub x}ReO{sub 3} compound, with distorted perovskite structures, like in the bulk material, and ordered HReO{sub 4} crystals based on tetrahedral perrhenate ions. Because of its conduction properties, the electrical and electro-optical behaviors of ReO{sub 3} films deposited on standard indium tin oxide/glass substrate have been tested inside asymmetric nematic liquid crystal cells, showing an appreciable capability of rectification of their electro-optical response, in similar way to tungsten trioxide.

  17. Liquid crystal orientation on solution processed zinc oxide inorganic films according to molecular concentration

    NASA Astrophysics Data System (ADS)

    Lee, Jong-Jin; Han, Jae-Jun; Park, Hong-Gyu; Kim, Dai-Hyun; Byun, Sang-Un; Seo, Dae-Shik

    2013-10-01

    In this paper we present the characteristics of molar concentration-dependent zinc oxide (ZnO) inorganic films deposited by the solution process for application in liquid crystal displays. ZnO surfaces supported homogeneously aligned liquid crystal (LC) molecules based on an ion-beam (IB) irradiation system. Uniform LC alignment was obtained at ZnO molar concentrations greater than 0.25 mol l-1. X-ray photoelectron spectroscopic (XPS) analysis revealed that changes in the orientation of LC molecules occurred on the ZnO layer. The electro-optic characteristics of the aligned homogenous LCs and twisted nematic (TN) mode based on the ZnO layer were comparable to those based on polyimide, which showed good potential as ZnO surfaces as an alignment layer.

  18. Elasticity-dependent self-assembly of micro-templated chromonic liquid crystal films.

    PubMed

    Lohr, Matthew A; Cavallaro, Marcello; Beller, Daniel A; Stebe, Kathleen J; Kamien, Randall D; Collings, Peter J; Yodh, Arjun G

    2014-05-21

    We explore micropatterned director structures of aqueous lyotropic chromonic liquid crystal (LCLC) films created on square-lattice cylindrical-micropost substrates. The structures are manipulated by modulating the LCLC mesophases and their elastic properties via concentration through drying. Nematic LCLC films exhibit preferred bistable alignment along the diagonals of the micropost lattice. Columnar LCLC films, dried from nematics, form two distinct director and defect configurations: a diagonally aligned director pattern with local squares of defects, and an off-diagonal configuration with zig-zag defects. The formation of these states appears to be tied to the relative splay and bend free energy costs of the initial nematic films. The observed nematic and columnar configurations are understood numerically using a Landau-de Gennes free energy model. Among other attributes, the work provide first examples of quasi-2D micropatterning of LC films in the columnar phase and lyotropic LC films in general, and it demonstrates alignment and configuration switching of typically difficult-to-align LCLC films via bulk elastic properties. PMID:24651876

  19. Superior switching behavior of liquid crystals on surface-modified compound oxide films

    NASA Astrophysics Data System (ADS)

    Jeong, Hae-Chang; Oh, Byeong-Yun; Park, Hong-Gyu; Lee, Ju Hwan; Jung, Yoon Ho; Jang, Sang Bok; Seo, Dae-Shik

    2015-12-01

    We demonstrate high-performance liquid crystal (LC) devices using alignment layers formed of solution-processed HfYO films that were subjected to ion-beam (IB) irradiation. IB irradiation entails the increment of the surface roughness and chemical modification of the surface. Our X-ray photoelectron spectroscopy (XPS) analysis revealed that IB irradiation also breaks oxygen bonds, and thereby creates oxygen vacancies with lattice displacement of the metal atoms. This variation stabilizes the homogeneous LC alignment. The LC cells formed using the IB-irradiated HfYO films with an intensity of 2200 eV yielded a rapid response time of 6.579 ms. Therefore, our fast switching application based on IB-irradiated HfYO films has great potential for application of display devices.

  20. Molecular dynamics in azobenzene liquid crystal polymer films studied by transient grating technique

    NASA Astrophysics Data System (ADS)

    Katayama, Kenji; Fujii, Tomomi; Kuwahara, Shota; Takado, Kiyohide; Ikeda, Tomiki

    2014-10-01

    We studied the effect of the ratio between the monomer and cross-linker molecules in the azobenene included liquid crystal polymer films by using the heterodyne transient grating (HD-TG) technique, which is one of the time-resolved measurement techniques. Depending on the ratio, the magnitude of the refractive index change, its anisotropy, and the lifetime of the cis isomer of azobenzene, generated by a UV pulse irradiation. By increasing the cross-linker ratio, the refractive index change and its anisotropy was reduced, indicating less ability for the motion, while slower lifetime was observed by increasing the monomer ratio, indicating that the film is difficult to return the original shape by a visiblelight irradiation. The obtained dynamics was consistent with the functionality of the films.

  1. Enhanced Solar Cell Conversion Efficiency Using Birefringent Liquid Crystal Polymer Homeotropic Films from Reactive Mesogens

    PubMed Central

    Wu, Gwomei; Hsieh, Li-Hang; Chien, How-Wen

    2013-01-01

    Novel birefringent liquid crystal polymer homeotropic films have been coated on semiconductor solar cells to improve the effective incident sunlight angles. The liquid crystal polymer precursor, based on reactive mesogens, is fluidic and flows like liquid. It would distribute uniformly on the solar cell sample surface by any traditional coating technique. The birefringence for light, due to the liquid crystal retardation properties, manipulated the optical length and the deflection of incident light, thus allowed an increase in the energy conversion efficiency. The expensive sunlight tracking systems could be avoided. The processing parameters can be tuned such as different mesogen concentrations and plate speeds of spin-coating. The results showed that the solar cell conversion efficiency was improved from 14.56% to 14.85% at an incident sunlight angle of 15°. It was further improved from 13.40% to 13.81% when the angle was 30°. The interesting angular dependency on solar cell efficiency enhancement has been evaluated. PMID:24232577

  2. Enhanced solar cell conversion efficiency using birefringent liquid crystal polymer homeotropic films from reactive mesogens.

    PubMed

    Wu, Gwomei; Hsieh, Li-Hang; Chien, How-Wen

    2013-01-01

    Novel birefringent liquid crystal polymer homeotropic films have been coated on semiconductor solar cells to improve the effective incident sunlight angles. The liquid crystal polymer precursor, based on reactive mesogens, is fluidic and flows like liquid. It would distribute uniformly on the solar cell sample surface by any traditional coating technique. The birefringence for light, due to the liquid crystal retardation properties, manipulated the optical length and the deflection of incident light, thus allowed an increase in the energy conversion efficiency. The expensive sunlight tracking systems could be avoided. The processing parameters can be tuned such as different mesogen concentrations and plate speeds of spin-coating. The results showed that the solar cell conversion efficiency was improved from 14.56% to 14.85% at an incident sunlight angle of 15°. It was further improved from 13.40% to 13.81% when the angle was 30°. The interesting angular dependency on solar cell efficiency enhancement has been evaluated. PMID:24232577

  3. In situ prepared polymer films as alignment layers for nematic liquid crystals

    SciTech Connect

    Pires, David; Galerne, Yves

    2006-12-15

    By means of UV-visible irradiations and convenient photoinitiators, we realize the cross-linked polymerization of a triacrylate monomer in solution in a nematic liquid crystal (p-pentyl-p{sup '}-cyanobiphenyl) at low concentrations (a few wt %), i.e., under conditions opposite to the synthesis of polymer-dispersed liquid crystals. As atomic force microscope measurements show, when operating close to, but below, the percolation transition, a thin polymer layer is synthesized in situ, directly covering and coating all the substrate. These observations therefore confirm that the properties of anchoring and of alignment memory previously observed in such nematic cells effectively originate from the synthesized polymer film. According to the photoinitiator used, bulk or surface polymerizations dominate and respectively produce continuous or discontinuous films (i.e., with separate clusters). In the former case, polymer aggregates are first synthesized. They then diffuse in the volume until they meet a surface, where they definitely stick if they are large enough. An estimate of the entropy and interaction energy differences between the two states, stuck or free, shows that the aggregates stick on the substrates if their size exceeds the length of about three monomers, i.e., if they contain more than 20-30 monomers. Interestingly, these films may be used to replicate nonuniform alignment patterns that are difficult to realize otherwise. The method may be considered as an imprinting method.

  4. Liquid crystal devices with continuous phase variation based on high-permittivity thin films

    NASA Astrophysics Data System (ADS)

    Willekens, Oliver; Neyts, Kristiaan; Beeckman, Jeroen

    2016-03-01

    Most liquid crystal devices use transparent conductive electrodes such as indium tin oxide (ITO) to apply a potential difference in order to achieve electro-optic switching. As an alternative, we study a device with narrow metallic electrodes in combination with dielectric layers with large dielectric permittivity. In this approach the applied voltage can be a continuous function of the lateral distance from the electrode line. Simulations for a one-dimensional beam-steering device show that the switching of the liquid crystal (LC) director depends indeed on the distance from the addressing electrodes and on the value of the relative permittivity. We show that in a device with electrodes spaced 60 µm apart, the LC director halfway between the electrodes shows a considerable reorientation, when a dielectric layer with permittivity of Epsilonr = 550 is used, whereas no reorientation is observed for the uncoated reference sample at the same voltage. An added advantage is that the proposed configuration only contains dielectric materials, without resistive losses, which means that almost no heat is dissipated. This indicates that this technology could be used in low-power LC devices. The results show that using dielectric thin films with high relative permittivity in liquid crystal devices could form a cost-efficient and low-power alternative to many LC technologies where a gradient electric field is desirable.

  5. Liquid crystal films as on-demand, variable thickness (50–5000 nm) targets for intense lasers

    SciTech Connect

    Poole, P. L. Andereck, C. D.; Schumacher, D. W.; Daskalova, R. L.; Feister, S.; George, K. M.; Willis, C.; Akli, K. U.; Chowdhury, E. A.

    2014-06-15

    We have developed a new type of target for intense laser-matter experiments that offers significant advantages over those currently in use. The targets consist of a liquid crystal film freely suspended within a metal frame. They can be formed rapidly on-demand with thicknesses ranging from nanometers to micrometers, where the particular value is determined by the liquid crystal temperature and initial volume as well as by the frame geometry. The liquid crystal used for this work, 8CB (4′-octyl-4-cyanobiphenyl), has a vapor pressure below 10{sup −6} Torr, so films made at atmospheric pressure maintain their initial thickness after pumping to high vacuum. Additionally, the volume per film is such that each target costs significantly less than one cent to produce. The mechanism of film formation and relevant physics of liquid crystals are described, as well as ion acceleration data from the first shots on liquid crystal film targets at the Ohio State University Scarlet laser facility.

  6. Liquid crystal films as on-demand, variable thickness (50-5000 nm) targets for intense lasers

    NASA Astrophysics Data System (ADS)

    Poole, P. L.; Andereck, C. D.; Schumacher, D. W.; Daskalova, R. L.; Feister, S.; George, K. M.; Willis, C.; Akli, K. U.; Chowdhury, E. A.

    2014-06-01

    We have developed a new type of target for intense laser-matter experiments that offers significant advantages over those currently in use. The targets consist of a liquid crystal film freely suspended within a metal frame. They can be formed rapidly on-demand with thicknesses ranging from nanometers to micrometers, where the particular value is determined by the liquid crystal temperature and initial volume as well as by the frame geometry. The liquid crystal used for this work, 8CB (4'-octyl-4-cyanobiphenyl), has a vapor pressure below 10-6 Torr, so films made at atmospheric pressure maintain their initial thickness after pumping to high vacuum. Additionally, the volume per film is such that each target costs significantly less than one cent to produce. The mechanism of film formation and relevant physics of liquid crystals are described, as well as ion acceleration data from the first shots on liquid crystal film targets at the Ohio State University Scarlet laser facility.

  7. Optically switchable and axially symmetric half-wave plate based on photoaligned liquid crystal films

    NASA Astrophysics Data System (ADS)

    Lin, C.-C.; Huang, T.-C.; Chu, C.-C.; Hsiao, Vincent K. S.

    2016-07-01

    We demonstrate an optically switchable half-wave plate (HWP) composed of a photoaligned and axially symmetric liquid crystal (ASLC) film containing two azobenzene derivatives, methyl red (MR) and 4-butyl-4‧-methoxyazobenzene (BMAB). MR is responsible for photoalignment, and BMAB is used for optical tuning and switching the state of polarization (SOP) of probe beam (633 nm He-Ne laser) passing through the MR/BMAB doped ASLC film. The photoaligned ASLC film is first fabricated using a line-shaped laser beam (532 nm) exposure applied on a rotating LC sample. The fabricated ASLC film can passively change the linearly polarized light. Under UV light exposure, the formation of cis-BMAB (bend-like shape) within the film disrupts the LC molecules, switches the LC orientation, and further changes the SOP of the probe beam. Under laser irradiation (532 nm), the formation of trans-BMAB (rod-like shape) reverts the LC orientation back and simultaneously generates cis-MR, helping anchor the LC in the previously photoaligned orientation. The photoaligned MR/BMAB-doped LC HWP can change the linear SOP under alternating UV and visible light exposure.

  8. Wrinkling of a thin film on a nematic liquid-crystal elastomer.

    PubMed

    Soni, Harsh; Pelcovits, Robert A; Powers, Thomas R

    2016-07-01

    Wrinkles commonly develop in a thin film deposited on a soft elastomer substrate when the film is subject to compression. Motivated by recent experiments [Agrawal et al., Soft Matter 8, 7138 (2012)]1744-683X10.1039/c2sm25734c that show how wrinkle morphology can be controlled by using a nematic elastomer substrate, we develop the theory of small-amplitude wrinkles of an isotropic film atop a nematic elastomer. The directors of the nematic elastomer are initially uniform. For uniaxial compression of the film along the direction perpendicular to the elastomer directors, the system behaves as a compressed film on an isotropic substrate. When the uniaxial compression is along the direction of nematic order, we find that the soft elasticity characteristic of liquid-crystal elastomers leads to a critical stress for wrinkling which is very small compared to the case of an isotropic substrate. We also determine the wavelength of the wrinkles at the critical stress and show how the critical stress and wavelength depend on substrate depth and the anisotropy of the polymer chains in the nematic elastomer. PMID:27575192

  9. Wrinkling of a thin film on a nematic liquid-crystal elastomer

    NASA Astrophysics Data System (ADS)

    Soni, Harsh; Pelcovits, Robert A.; Powers, Thomas R.

    2016-07-01

    Wrinkles commonly develop in a thin film deposited on a soft elastomer substrate when the film is subject to compression. Motivated by recent experiments [Agrawal et al., Soft Matter 8, 7138 (2012)], 10.1039/c2sm25734c that show how wrinkle morphology can be controlled by using a nematic elastomer substrate, we develop the theory of small-amplitude wrinkles of an isotropic film atop a nematic elastomer. The directors of the nematic elastomer are initially uniform. For uniaxial compression of the film along the direction perpendicular to the elastomer directors, the system behaves as a compressed film on an isotropic substrate. When the uniaxial compression is along the direction of nematic order, we find that the soft elasticity characteristic of liquid-crystal elastomers leads to a critical stress for wrinkling which is very small compared to the case of an isotropic substrate. We also determine the wavelength of the wrinkles at the critical stress and show how the critical stress and wavelength depend on substrate depth and the anisotropy of the polymer chains in the nematic elastomer.

  10. Substrate-induced order in confined nematic liquid-crystal films

    NASA Astrophysics Data System (ADS)

    Gruhn, Thomas; Schoen, Martin

    1998-06-01

    In orientationally biased grand canonical ensemble Monte Carlo (GCEMC) simulations we investigated the microscopic structure of liquid-crystalline films confined between two plane parallel solid surfaces (i.e., walls) consisting of Ns discrete, rigidly fixed atoms. These wall atoms are distributed across the plane of a wall according to the (100) structure of the face-centered cubic lattice. Parameters of the film-wall interaction potential are chosen such that a homeotropic alignment of film molecules is favored. In the simulations the thermodynamic state of the film is determined by the temperature T, the chemical potential μ, the distance between the walls sz, and the film-wall interfacial area A. Thermodynamic states of the film are chosen such that a corresponding bulk liquid crystal is nematic. To simulate nematic phases in the GCEMC we modified the classic Gay-Berne potential for the interaction between a pair of film molecules so that the isotropic-nematic phase transition in the bulk occurs at sufficiently low densities. Reliability of the GCEMC method under these conditions is illustrated by a self-consistent comparison between Monte Carlo simulations in the canonical and grand canonical ensembles. In the bulk the nematic nature of the modified Gay-Berne fluid is established by computing the Mayer-Saupe order parameter S and suitably defined pair correlation functions which show that the bulk phase is not smectic even though S is fairly large. For a single temperature we investigate the isotropic-nematic phase transition in the modified Gay-Berne fluid which turns out to be a first-order phase transition. In the corresponding confined film variations of the microscopic structure with increasing sz are correlated with the normal component of the stress tensor Tzz(sz). Our results show that molecules in inner portions of the film undergo a reorganization from an originally planar orientation of their symmetry axes to a perpendicular one with respect to the

  11. Alignment structures and diffraction properties of chiral nematic liquid crystal cells with periodically patterned photoalignment films

    NASA Astrophysics Data System (ADS)

    Sasaki, Tomoyuki; Shimura, Rei; Kawai, Kotaro; Noda, Kohei; Sakamoto, Moritsugu; Kawatsuki, Nobuhiro; Ono, Hiroshi

    2016-01-01

    Liquid crystal (LC) cells with periodic alignment distributions were fabricated using chiral nematic LCs (N*LCs), which were prepared using mixtures of a nematic LC and a chiral dopant, along with photoreactive liquid crystalline polymer (PLCP) films. Periodic structures were formed by polarization holographic recording in the PLCP films. The director distribution in each cell depended on the ratio of chiral dopant present, i.e., the inherent helical pitch of the N*LCs. These periodic alignment structures with line defects in the LC grating cells were well explained on the basis of the elastic continuum theory of the N*LCs and the photoalignment effect of the PLCP films. The diffraction properties of the grating LC cells were also investigated using a polarized visible laser. The observed intensity and polarization states of the diffracted beams were consistent with theoretical ones calculated using the director distribution models. Our results clarify that the diffraction properties of the grating LC cells can be controlled by the helical pitch of the N*LCs.

  12. Observation of two regions of selective light reflection from a thin film of a cholesteric liquid crystal

    SciTech Connect

    Alaverdyan, R B; Dadalyan, T K; Chilingaryan, Yurii S

    2013-05-31

    Two regions of selective light reflection (in the short- and long- wavelength parts of the visible spectrum) from a thin film of a cholesteric liquid crystal (CLC), consisting of the mixture of two CLCs with opposite chirality and a nematic liquid crystal, are experimentally found for the first time. The spectral position of the reflection regions and the separation between them varies depending on the CLC composition and the temperature. The long-wavelength region of reflection corresponds to the region of Bragg reflection from the CLC helix, while the short-wavelength region is probably due to the defects in the structure of the CLC film. (letters)

  13. Use of black diamond-like carbon films as a contrast enhancement layer for liquid-crystal displays

    NASA Astrophysics Data System (ADS)

    Singh, B.; McClelland, S.; Tams, F., III; Halon, B.; Mesker, O.

    1990-11-01

    This paper describes the preparation of a highly durable single-layer pinhole-free abrasion-resistant chemically inert black diamondlike coating which is suitable for use as a contrast enhancement layer for liquid-crystal display devices. The diamondlike films prepared have an optical transmission of less than 2 percent over the visible spectrum, and a reflectance of about 20 percent. The coating is also electrically insulating and chemically compatible with liquid-crystal display materials. Data on the optical and mechanical properties of these films are presented.

  14. Liquid Crystal Devices.

    ERIC Educational Resources Information Center

    Bradshaw, Madeline J.

    1983-01-01

    The nature of liquid crystals and several important liquid crystal devices are described. Ideas for practical experiments to illustrate the properties of liquid crystals and their operation in devices are also described. (Author/JN)

  15. Liquid Crystal Inquiries.

    ERIC Educational Resources Information Center

    Marroum, Renata-Maria

    1996-01-01

    Discusses the properties and classification of liquid crystals. Presents a simple experiment that illustrates the structure of liquid crystals and the differences between the various phases liquid crystals can assume. (JRH)

  16. Isothermal and non-isothermal crystallization kinetics of PVA + ionic liquid [BDMIM][BF4]-based polymeric films

    NASA Astrophysics Data System (ADS)

    Saroj, A. L.; Chaurasia, S. K.; Kataria, Shalu; Singh, R. K.

    2016-06-01

    The effect of ionic liquid (IL), 1-butyl-2,3-dimethylimidazolium tetrafluoroborate [BDMIM][BF4], on crystallization behavior of poly(vinyl alcohol) (PVA) has been studied by isothermal and non-isothermal differential scanning calorimetry techniques. The PVA + IL based polymer electrolyte films have been prepared using solution casting technique. To describe the isothermal and non-isothermal crystallization kinetics, several kinetic equations have been employed on PVA + IL based films. There is strong dependence of the peak crystallization temperature (Tc), relative degree of crystallity (Xt), half-time of crystallization (t1/2), crystallization rate constants (Avrami Kt and Tobin AT), and Avrami (n) and Tobin (nT) exponents on the cooling rate and IL loading.

  17. Photomechanical bending mechanics of polydomain azobenzene liquid crystal polymer network films

    SciTech Connect

    Cheng Liang; Torres, Yanira; Oates, William S.; Lee, Kyung Min; McClung, Amber J.; Baur, Jeffery; White, Timothy J.

    2012-07-01

    Glassy, polydomain azobenzene liquid crystal polymer networks (azo-LCNs) have been synthesized, characterized, and modeled to understand composition dependence on large amplitude, bidirectional bending, and twisting deformation upon irradiation with linearly polarized blue-green (440-514 nm) light. These materials exhibit interesting properties for adaptive structure applications in which the shape of the photoresponsive material can be rapidly reconfigured with light. The basis for the photomechanical output observed in these materials is absorption of actinic light by azobenzene, which upon photoisomerization dictates an internal stress within the local polymer network. The photoinduced evolution of the underlying liquid crystal microstructure is manifested as macroscopic deformation of the glassy polymer film. Accordingly, this work examines the polarization-controlled bidirectional bending of highly concentrated azo-LCN materials and correlates the macroscopic output (observed as bending) to measured blocked stresses upon irradiation with blue-green light of varying polarization. The resulting photomechanical output is highly dependent on the concentration of crosslinked azobenzene mesogens employed in the formulation. Experiments that quantify photomechanical bending and photogenerated stress are compared to a large deformation photomechanical shell model to quantify the effect of polarized light interactions with the material during static and dynamic polarized light induced deformation. The model comparisons illustrate differences in internal photostrain and deformation rates as a function of composition and external mechanical constraints.

  18. Vacuum filtration based formation of liquid crystal films of semiconducting carbon nanotubes and high performance transistor devices

    NASA Astrophysics Data System (ADS)

    King, Benjamin; Panchapakesan, Balaji

    2014-05-01

    In this paper, we report ultra-thin liquid crystal films of semiconducting carbon nanotubes using a simple vacuum filtration process. Vacuum filtration of nanotubes in aqueous surfactant solution formed nematic domains on the filter membrane surface and exhibited local ordering. A 2D fast Fourier transform was used to calculate the order parameters from scanning electron microscopy images. The order parameter was observed to be sensitive to the filtration time demonstrating different regions of transformation namely nucleation of nematic domains, nanotube accumulation and large domain growth.Transmittance versus sheet resistance measurements of such films resulted in optical to dc conductivity of σ opt/σ dc = 9.01 indicative of purely semiconducting nanotube liquid crystal network.Thin films of nanotube liquid crystals with order parameters ranging from S = 0.1-0.5 were patterned into conducting channels of transistor devices which showed high I on/I off ratios from 10-19 800 and electron mobility values μ e = 0.3-78.8 cm2 (V-s)-1, hole mobility values μ h = 0.4-287 cm2 (V-s)-1. High I on/I off ratios were observed at low order parameters and film mass. A Schottky barrier transistor model is consistent with the observed transistor characteristics. Electron and hole mobilities were seen to increase with order parameters and carbon nanotube mass fractions. A fundamental tradeoff between decreasing on/off ratio and increasing mobility with increasing nanotube film mass and order parameter is therefore concluded. Increase in order parameters of nanotubes liquid crystals improved the electronic transport properties as witnessed by the increase in σ dc/σ opt values on macroscopic films and high mobilities in microscopic transistors. Liquid crystal networks of semiconducting nanotubes as demonstrated here are simple to fabricate, transparent, scalable and could find wide ranging device applications.

  19. Pressure sensor using liquid crystals

    NASA Technical Reports Server (NTRS)

    Parmar, Devendra S. (Inventor); Holmes, Harlan K. (Inventor)

    1994-01-01

    A pressure sensor includes a liquid crystal positioned between transparent, electrically conductive films (18 and 20), that are biased by a voltage (V) which induces an electric field (E) that causes the liquid crystal to assume a first state of orientation. Application of pressure (P) to a flexible, transparent film (24) causes the conductive film (20) to move closer to or farther from the conductive film (18), thereby causing a change in the electric field (E'(P)) which causes the liquid crystal to assume a second state of orientation. Polarized light (P.sub.1) is directed into the liquid crystal and transmitted or reflected to an analyzer (A or 30). Changes in the state of orientation of the liquid crystal induced by applied pressure (P) result in a different light intensity being detected at the analyzer (A or 30) as a function of the applied pressure (P). In particular embodiments, the liquid crystal is present as droplets (10) in a polymer matrix (12) or in cells (14) in a polymeric or dielectric grid (16) material in the form of a layer (13) between the electrically conductive films (18 and 20). The liquid crystal fills the open wells in the polymer matrix (12) or grid (16) only partially.

  20. X-ray microscopy study of chromonic liquid crystal dry film texture

    NASA Astrophysics Data System (ADS)

    Kaznatcheev, K. V.; Dudin, P.; Lavrentovich, O. D.; Hitchcock, A. P.

    2007-12-01

    Soft x-ray spectromicroscopy has been used to investigate the degree of the molecular alignment of sulfonated benzo[de]benzo[4.5]imidazo[2,1-a]isoquinoline[7,1], a lyotropic chromonic liquid crystal (LCLC). LCLC thin films cast from concentrated aqua solution (20%wt.) , aligned by shear flow and dried, show strong linear dichroism in their C-, N-, O-, S- K edge near edge x-ray spectra (NEXAFS). The carbon K edge has been used for quantitative evaluation of the orientational texture of the films at a submicron spatial scale. This has verified there is predominantly in-plane alignment of the LC director. To highlight the role of hydrophobic-hydrophilic interactions, two stereoisomers of the same dye has been synthesized with different positioning of terminal sulfonate groups, in the form of a mixture of isomers with sulfonate groups in 2,10 and 2,11 positions (Y104 compound) and in a 5,10-disulfo arrangement (Y105). Both compounds develop characteristic herringbone-type texture with similar domain sizes. Polarized optical microscopy and higher resolution x-ray microscopy show sinusoidal-like undulations of the molecular director, with occasional crisscross appearance. Such behavior is found to be consistent with earlier observation of striations, characteristic of the columnar phase. The drastic difference in the degree of undulation ( ±15° in Y104 and ±7° in Y105 films) and long period of undulation (approaching the film thickness) requires further analysis. It was also found that the degree of in-plane order within domains changes from 0.8 for Y104 to >0.9 in Y105 films.

  1. X-ray microscopy study of chromonic liquid crystal dry film texture.

    PubMed

    Kaznatcheev, K V; Dudin, P; Lavrentovich, O D; Hitchcock, A P

    2007-12-01

    Soft x-ray spectromicroscopy has been used to investigate the degree of the molecular alignment of sulfonated benzo[de]benzo[4.5]imidazo[2,1-a]isoquinoline[7,1], a lyotropic chromonic liquid crystal (LCLC). LCLC thin films cast from concentrated aqua solution (20%wt.) , aligned by shear flow and dried, show strong linear dichroism in their C-, N-, O-, S- K edge near edge x-ray spectra (NEXAFS). The carbon K edge has been used for quantitative evaluation of the orientational texture of the films at a submicron spatial scale. This has verified there is predominantly in-plane alignment of the LC director. To highlight the role of hydrophobic-hydrophilic interactions, two stereoisomers of the same dye has been synthesized with different positioning of terminal sulfonate groups, in the form of a mixture of isomers with sulfonate groups in 2,10 and 2,11 positions (Y104 compound) and in a 5,10-disulfo arrangement (Y105). Both compounds develop characteristic herringbone-type texture with similar domain sizes. Polarized optical microscopy and higher resolution x-ray microscopy show sinusoidal-like undulations of the molecular director, with occasional crisscross appearance. Such behavior is found to be consistent with earlier observation of striations, characteristic of the columnar phase. The drastic difference in the degree of undulation ( +/-15 degrees in Y104 and +/-7 degrees in Y105 films) and long period of undulation (approaching the film thickness) requires further analysis. It was also found that the degree of in-plane order within domains changes from 0.8 for Y104 to >0.9 in Y105 films. PMID:18233857

  2. Zenithal alignment of liquid crystal on homeotropic polyimide film irradiated by ion beam.

    PubMed

    Choi, Yoonseuk; Yoon, Tae-Hoon; Kwon, Jin Hyuk; Yi, Jonghoon; Gwag, Jin Seog

    2012-01-01

    We investigate the pretilt characteristics of a nematic liquid crystal [LC] in terms of ion beam exposure conditions on the homeotropic polyimide alignment layer. The pretilt angle of LCs in the case of high-energy ion beam treatment was decreased considerably almost the same to that of the homogenous alignment layer though we used homeotropic polyimide film at first. Increasing irradiating energy, we could control the pretilt from 90° to 1° with several steps. We believe that this is because the side chain with hydrophobicity in the used polyimide is broken by ion beam exposure. To confirm it, contact angle measurement was carried out. With this result, we can easily control the LC pretilt in the pixel with appropriate exposure conditions which is critical to achieve excellent electrooptic characteristics and good image quality. PMID:22221956

  3. Bistable liquid crystal devices with nanoparticle-coated polyimide alignment films.

    PubMed

    Lee, Chuan-En; Jeng, Shie-Chang

    2013-04-01

    Bistable hybrid-aligned nematic (HAN) liquid crystal devices (LCDs) with silica nanoparticle-coated polyimide alignment films were investigated. It was observed that the existence of the internal electric field produced from the triboelectrically charged silica nanoparticles layer and impurity ions in the LC reduced the total free energy of the HAN-LCD and stabilized the cell in the homeotropic state. The stable homeotropic state can be switched back to the HAN state by changing the ion distribution through a voltage pulse with proper polarity. The capability of controlling bistability through modification of ion density in the LC layer may have some applications, such as displaying a one-time password requiring a specific stable time. PMID:23546227

  4. Zenithal alignment of liquid crystal on homeotropic polyimide film irradiated by ion beam

    PubMed Central

    2012-01-01

    We investigate the pretilt characteristics of a nematic liquid crystal [LC] in terms of ion beam exposure conditions on the homeotropic polyimide alignment layer. The pretilt angle of LCs in the case of high-energy ion beam treatment was decreased considerably almost the same to that of the homogenous alignment layer though we used homeotropic polyimide film at first. Increasing irradiating energy, we could control the pretilt from 90° to 1° with several steps. We believe that this is because the side chain with hydrophobicity in the used polyimide is broken by ion beam exposure. To confirm it, contact angle measurement was carried out. With this result, we can easily control the LC pretilt in the pixel with appropriate exposure conditions which is critical to achieve excellent electrooptic characteristics and good image quality. PMID:22221956

  5. Zenithal alignment of liquid crystal on homeotropic polyimide film irradiated by ion beam

    NASA Astrophysics Data System (ADS)

    Choi, Yoonseuk; Yoon, Tae-Hoon; Kwon, Jin Hyuk; Yi, Jonghoon; Gwag, Jin Seog

    2012-01-01

    We investigate the pretilt characteristics of a nematic liquid crystal [LC] in terms of ion beam exposure conditions on the homeotropic polyimide alignment layer. The pretilt angle of LCs in the case of high-energy ion beam treatment was decreased considerably almost the same to that of the homogenous alignment layer though we used homeotropic polyimide film at first. Increasing irradiating energy, we could control the pretilt from 90° to 1° with several steps. We believe that this is because the side chain with hydrophobicity in the used polyimide is broken by ion beam exposure. To confirm it, contact angle measurement was carried out. With this result, we can easily control the LC pretilt in the pixel with appropriate exposure conditions which is critical to achieve excellent electrooptic characteristics and good image quality.

  6. Merged vector gratings recorded in a photocrosslinkable polymer liquid crystal film for polarimetry

    SciTech Connect

    Sasaki, Tomoyuki Wada, Takumi; Noda, Kohei; Ono, Hiroshi; Kawatsuki, Nobuhiro

    2014-01-14

    A merged vector grating, which is holographically fabricated in an anisotropic medium by irradiation with interference light with intensity modulation and polarization modulation, was designed to detect the polarization of light. The merged vector grating is recorded by the interference of two elliptically polarized beams with equal intensities, parallel azimuths, equal ellipticities, and different directions of rotation. We clarified theoretically that the Stokes parameters of the incident light beam are described by the diffraction efficiency of the merged vector grating. Also, to apply this property to formation of a polarimeter without any moving parts or mechanisms, two merged vector gratings with different grating vectors were recorded in a photocrosslinkable polymer liquid crystal film by angle-multiplexed holography. By investigation of the diffraction properties of the gratings obtained, we demonstrated the applicability of the merged vector gratings for use in polarimetry.

  7. Photoalignment of a Nematic Liquid Crystal Fluid and Glassy-Nematic Oligofluorenes on Coumarin-Containing Polymer Films

    SciTech Connect

    Trajkovska, A.; Kim, C.; Marshall, K.L.; Mourey, T.H.; Chen, S.H.

    2007-03-19

    The orientations of both a nematic liquid crystal fluid and a series of monodisperse glassy-nematic oligofluorenes were investigated on photoalignment films comprising a polymethacrylate backbone with 7-benzoyloxycoumarin pendants. Both classes of liquid crystalline material were found to undergo a transition from a parallel to a perpindicular orientation with reference to the polarization axis of UV-irradiation at a sufficiently high extent of dimerization.

  8. Self-organized arrays of dislocations in thin smectic liquid crystal films.

    PubMed

    Coursault, Delphine; Zappone, Bruno; Coati, Alessandro; Boulaoued, Athmane; Pelliser, Laurent; Limagne, Denis; Boudet, Nathalie; Ibrahim, Bicher Haj; de Martino, Antonello; Alba, Michel; Goldmann, Michel; Garreau, Yves; Gallas, Bruno; Lacaze, Emmanuelle

    2016-01-21

    Combining optical microscopy, synchrotron X-ray diffraction and ellipsometry, we studied the internal structure of linear defect domains (oily streaks) in films of a smectic liquid crystal 8CB with thicknesses in the range of 100-300 nm. These films are confined between air and a rubbed PVA polymer substrate which imposes hybrid anchoring conditions (normal and unidirectional planar, respectively). We show how the presence or absence of dislocations controls the structure of highly deformed thin smectic films. Each domain contains smectic layers curved in the shape of flattened hemicylinders to satisfy both anchoring conditions, together with grain boundaries whose size and shape are controlled by the presence of dislocation lines. A flat grain boundary normal to the interface connects neighboring hemicylinders, while a rotating grain boundary (RGB) is located near the axis of curvature of the cylinders. The RGB shape appears such that dislocation lines are concentrated at its summit close to the air interface. The smectic layers reach the polymer substrate via a transition region where the smectic layer orientation satisfies the planar anchoring conditions over the entire polymer substrate and whose thickness does not depend on that of the film. The strength of planar anchoring appears to be high, larger than 10(-2) mJ m(-2), compensating for the high energy cost of creating an additional 2D defect between a horizontal smectic layer and perpendicular ones of the transition region. This 2D defect may be melted, in order to avoid the creation of a transition region structure composed of a large number of dislocations. As a result, linear defect domains can be considered as arrays of oriented defects, straight dislocations of various Burger vectors, whose location is now known, and 2D nematic defects. The possibility of easy variation between the present structure with a moderate amount of dislocations and a structure with a large number of dislocations is also

  9. Orientations of Chromonic Liquid Crystals by Imprinted or Rubbed Polymer Films

    NASA Astrophysics Data System (ADS)

    Yi, Youngwoo; McGuire, Aya; Clark, Noel

    2014-03-01

    A variety of novel alignment effects of chromonic liquid crystal phases of sunset yellow (SSY)/water, disodium cromoglycate (DSCG)/water, and their mixtures by thiol-ene polymer films topographically imprinted with linear channels are observed using polarizing optical microscopy. Nematic DSCG and SSY at low concentration and their nematic mixtures orient with the long axes of stacked chromonic aggregates on average parallel to the channels, that is, with the molecular planes normal to the channel axis. On the contrary, nematic SSY in contact with the rubbed polyimide films orients with the long axes on average in-plane perpendicular to the rubbing direction, arguably, due to a tongue-groove interaction between SSY and the stretched PI chains. Furthermore, multi-stable alignments are observed in SSY solutions of sufficiently high concentration, including preferential in-plane orientation of the long axes of the aggregates parallel to, perpendicular to, and 45° rotated from the channels. This work was supported by NSF grant DMR 1207606, NSF MRSEC grant DMR 0820579, and NSF Research Experience for Undergraduate programs.

  10. The mechanism of controlling liquid crystal surface pretilt angle on plasma beam sputtered films

    NASA Astrophysics Data System (ADS)

    Pan, Ru-Pin; Huang, Meng-Chiou; Wu, Wei-Ta; Lai, Cheng-Wei; Wu, Hsin-Ying

    2012-02-01

    In liquid crystal (LC) devices, the surface alignment is essential. The polyimide (PI) film is commonly used to make LC molecules parallel to the surface. A rubbing process is usually applied to choose a particular direction on the surface. A pretilt angle is also induced, which is useful but usually very small. In previous works, we have found out that the sputtered ion-oxide films can give a homeotropic alignment to LC, i,e, the LC molecules are perpendicular to the surface. In this work, we combine these two effects by sputtering the ion-oxide particles onto the PI coated glasses. By adjusting the sputtering conditions, the LC alignment are controlled. A wide range of pretilt angles have been achieved, while the rubbing process is no longer required. A thorough study by varying the sputtering conditions, such as voltage, current, and time duration, and observing the pretilt angles is carried out. The sputtered surfaces are examined with scanning electron microscope to see the coverage. By considering the charge distribution and electric field within the sputter, a quantitative model is then developed, which explains how the sputtering conditions affect the pretilt angles almost perfectly.

  11. Light and thermal responses of liquid-crystal-network films: A finite element study

    NASA Astrophysics Data System (ADS)

    Chung, Hayoung; Choi, Joonmyung; Yun, Jung-Hoon; Cho, Maenghyo

    2015-04-01

    As a polymeric system incorporating rigid molecules within its structure, the liquid-crystal network (LCN) has been envisaged as a novel heterogeneous material. Under the influence of external stimuli, the orientational order of the liquid-crystalline phase becomes dilute and overall anisotropy is hence decreased; the actinic light absorbed by photochromic molecules, for example, induces the geometric isomerization and subsequently yields internal stress within the local network. In this study we investigate light- and temperature-induced spontaneous deformations of the LCN structure via a three-dimensional finite element model that incorporates geometric nonlinearity with a photomechanical constitutive model. We first examine the bending behavior and its nonlinearity and then parametrically study the various behaviors that stem from different origins ranging from the microscale to the macroscale: (i) the geometry of the LCN film, (ii) the macroscopic global order, (iii) the distorted mesogenic orientation due to the Fredericks distortion, and (iv) defect-induced instability. These interrelated behaviors demonstrate both the simulation capability and the necessity of the presenting framework. By employing a nonlinear consideration along with a microscopic shape parameter r the present approach facilitates further understanding of photomechanical physics such as the deconvolution of various stimuli and the deformed shape obtained due to snap-through instability. Furthermore, this study may offer insight into the design of light-sensitive actuation systems by deepening our knowledge and providing an efficient measure.

  12. Microfludic Sensing Devices Employing In Situ-Formed Liquid Crystal Thin Film for Detection of Biochemical Interactions1†

    PubMed Central

    Liu, Ye; Cheng, Daming; Lin, I-Hsin; Abbott, Nicholas L.; Jiang, Hongrui

    2012-01-01

    Although biochemical sensing using liquid crystals (LC) has been demonstrated, relatively little attention has been paid towards the fabrication of in situ-formed LC sensing devices. Herein, we demonstrate a highly reproducible method to create uniform LC thin film on treated substrates, as needed, for LC sensing. We use shear forces generated by the laminar flow of aqueous liquid within a microfluidic channel to create LC thin films stabilized within microfabricated structures. The orientational response of the LC thin films to targeted analytes in aqueous phases was transduced and amplified by the optical birefringence of the LC thin films. The biochemical sensing capability of our sensing devices was demonstrated through experiments employing two chemical systems: dodecyl trimethylammonium bromide (DTAB) dissolved in an aqueous solution, and the hydrolysis of phospholipids by the enzyme phospholipase A2 (PLA2). PMID:22842797

  13. Microfluidic sensing devices employing in situ-formed liquid crystal thin film for detection of biochemical interactions.

    PubMed

    Liu, Ye; Cheng, Daming; Lin, I-Hsin; Abbott, Nicholas L; Jiang, Hongrui

    2012-10-01

    Although biochemical sensing using liquid crystals (LC) has been demonstrated, relatively little attention has been paid towards the fabrication of in situ-formed LC sensing devices. Herein, we demonstrate a highly reproducible method to create uniform LC thin film on treated substrates, as needed, for LC sensing. We use shear forces generated by the laminar flow of aqueous liquid within a microfluidic channel to create LC thin films stabilized within microfabricated structures. The orientational response of the LC thin films to targeted analytes in aqueous phases was transduced and amplified by the optical birefringence of the LC thin films. The biochemical sensing capability of our sensing devices was demonstrated through experiments employing two chemical systems: dodecyl trimethylammonium bromide (DTAB) dissolved in an aqueous solution, and the hydrolysis of phospholipids by the enzyme phospholipase A(2) (PLA(2)). PMID:22842797

  14. Homogeneous liquid crystal alignment characteristics on solution-derived HfYGaO films treated with IB irradiation.

    PubMed

    Lee, Yun-Gun; Park, Hong-Gyu; Jeong, Hae-Chang; Lee, Ju Hwan; Heo, Gi-Seok; Seo, Dae-Shik

    2015-06-29

    Solution-derived HfYGaO films have been treated by ion beam (IB) irradiation and used as liquid crystal (LC) alignment layers. Solution processing was adopted due to its simplicity, high throughput, and facile composition modification. Homogeneous and uniform LC alignment was achieved on the IB-irradiated HfYGaO films, and when these films were adopted in twisted nematic (TN) cells, electro-optical performance comparable to that of TN cells with conventional polyimide layers was achieved, with almost no capacitance-voltage hysteresis. Moreover, LC cells based on IB-irradiated HfYGaO films had a high thermal budget. The proposed IB-irradiated solution-derived HfYGaO films have considerable potential for use in advanced LC applications. PMID:26191738

  15. Equilibrium and Nonequilibrium Statistical Mechanics of Membranes, Liquid Crystal Films, and Other Layered Structures.

    NASA Astrophysics Data System (ADS)

    Chen, Chi-Ming

    In this thesis, we develop and analyze a continuum Landau theory for chiral and achiral lipid bilayers. This theory contains couplings between tangent-plane orientational order and curvature that lead to "rippled" phases with one-dimensional height modulations and to phases with two -dimensional height modulations. We calculate the mean -field phase diagrams by using both analytical and numerical methods. We generalize our theory to study the equilibrium phase diagrams of liquid crystal films. Both bulk smectics and freely suspended films are considered. For flexoelectric systems, continuous structural phase transitions are predicted among square-lattice, hexagonal, and distorted square-lattice phases as a function of the applied electric field. It is also shown that only uniform flat phases are predicted for thin films. One-dimensional ripple phases and two -dimensional square lattice phases can occur with increasing film thickness. Secondly we study the growth and instability of Myelin figures. For quasi-equilibrium growth, we predict a growth rate proportional to t^{-1/2 }, where t is the growth time. The proportional constant is inversely proportional to the viscosity of the fluid. Myelin figures are unstable under dehydration. The initial instability of myelin figures develops periodic arrays of bumps at the surface with a wave length of about 1 mum. This morphological change is induced by increasing the ratio of surface area to volume of myelin figures due to dehydration. We interpret this initial instability from energetical considerations and calculate the preferred wave length. Finally, we study theoretically the swelling kinetics of layered structures, particularly triblock copolymer mesogels. The gels are swollen by a solvent good for the bridging block but poor for the nonbridging block. At late stages the penetration front moves as in ordinary diffusion. However, the bending elasticity of the non -bridging layers leads to an initial t^{1/6 } relaxation

  16. Smart electro-optical iris diaphragm based on liquid crystal film coating with photoconductive polymer of poly(N-vinylcarbazole).

    PubMed

    Fuh, Andy Ying-Guey; Chen, Ko Nan; Wu, Shing-Trong

    2016-08-01

    This study develops a light shutter whose transmittance can be tuned electro-optically. The liquid crystal (LC) film applies the photoconductive material of poly(N-vinylcarbazole) (PVK) based on twisted nematic (TN) liquid crystals (LCs). The hole-transport layer of PVK could reduce the built-in electric field of the LC film under the exposure of UV light. The driving voltage is considerably decreased with the aid of UV light exposure. The repeating optical switching is performed under sunlight illumination with an external bias of electric field ∼5  V. Further, it could be operated under a parallel/cross-polarizer to change the light beam/ring as an iris and used to automatically block the UV light to protect an optical integrated system. PMID:27505385

  17. Unsteady High Turbulence Effects on Turbine Blade Film Cooling Heat Transfer Performance Using a Transient Liquid Crystal Technique

    NASA Technical Reports Server (NTRS)

    Han, J. C.; Ekkad, S. V.; Du, H.; Teng, S.

    2000-01-01

    Unsteady wake effect, with and without trailing edge ejection, on detailed heat transfer coefficient and film cooling effectiveness distributions is presented for a downstream film-cooled gas turbine blade. Tests were performed on a five-blade linear cascade at an exit Reynolds number of 5.3 x 10(exp 5). Upstream unsteady wakes were simulated using a spoke-wheel type wake generator. Coolant blowing ratio was varied from 0.4 to 1.2; air and CO2 were used as coolants to simulate different density ratios. Surface heat transfer and film effectiveness distributions were obtained using a transient liquid crystal technique; coolant temperature profiles were determined with a cold wire technique. Results show that Nusselt numbers for a film cooled blade are much higher compared to a blade without film injection. Unsteady wake slightly enhances Nusselt numbers but significantly reduces film effectiveness versus no wake cases. Nusselt numbers increase only slic,htly but film cooling, effectiveness increases significantly with increasing, blowing ratio. Higher density coolant (CO2) provides higher effectiveness at higher blowing ratios (M = 1.2) whereas lower density coolant (Air) provides higher 0 effectiveness at lower blowing ratios (M = 0.8). Trailing edge ejection generally has more effect on film effectiveness than on the heat transfer, typically reducing film effectiveness and enhancing heat transfer. Similar data is also presented for a film cooled cylindrical leading edge model.

  18. Controlling the alignment of liquid crystals by nanoparticle-doped and UV-treated polyimide alignment films

    NASA Astrophysics Data System (ADS)

    Jeng, Shie-Chang; Hwang, Su-June; Chen, Tai-An; Liu, Han-Shiang; Chen, Mu-Zhe

    2012-03-01

    We have developed two approaches for controlling the pretilt angles of liquid crystal molecules by using conventional polyimide (PI) alignment materials either doping homogeneous PIs with Polyhedral Oligomeric Silsequioxanes (POSS) nanoparticles or treating homeotropic PIs with ultraviolet light. These techniques are very simple and are compatible with current methods familiar in the LCD industry. The characteristics of modified PI alignment films and their applications for photonic devices are demonstrated in this paper.

  19. Monolithically integrated, flexible display of polymer-dispersed liquid crystal driven by rubber-stamped organic thin-film transistors

    SciTech Connect

    Mach, P.; Rodriguez, S. J.; Nortrup, R.; Wiltzius, P.; Rogers, J. A.

    2001-06-04

    This letter describes the monolithic integration of rubber-stamped thin-film organic transistors with polymer-dispersed liquid crystals (PDLCs) to create a multipixel, flexible display with plastic substrates. We report the electro-optic switching behavior of the PDLCs as driven by the organic transistors, and we show that our displays operate robustly under flexing and have a contrast comparable to that of newsprint. {copyright} 2001 American Institute of Physics.

  20. Thin Films of a Main Chain Columnar Liquid Crystal: Studies of Structure, Phase Transitions and Alignment

    SciTech Connect

    Defaux, M.; DiMasi, E.; Vidal, Loic; Moller, Martin; Gearba, Raluca; Ivanov, Dimitri

    2009-03-22

    The structure of thin films of poly(di-n-propylsiloxane), PDPS, was studied with a combination of optical and atomic force microscopy, electron diffraction, and grazing incidence X-ray diffraction. Two different morphological features are observed in the mesomorphic films. The lamellar ribbons are composed of the chains oriented parallel to the plane of the substrate in which the reciprocal space 10 vector is vertical. The other feature with a circular symmetry, the cylindrite, contains the chains parallel to the substrate normal. The cylindrites and needles are essentially the same mesomorphic lamellae that develop differently under the conditions of confinement. The crystallization of PDPS films does not change the gross morphological features developed during the mesophase formation and mainly proceeds via epitaxial growth of the {alpha}-crystal on the parent mesophase. Spontaneous alignment of the mesomorphic PDPS films on the PTFE-rubbed substrates allows fabricating highly crystalline inorganic polymer surfaces oriented on the scale of centimeters.

  1. Radial liquid crystal alignment based on circular rubbing of a substrate coated with poly(N-vinyl carbazole) film

    NASA Astrophysics Data System (ADS)

    Chen, Yuan-Di; Ying-Guey Fuh, Andy; Liu, Cheng-Kai; Cheng, Ko-Ting

    2011-06-01

    This paper presents a simple method to produce radial liquid crystal (LC) alignment layers using circular rubbing of poly(N-vinyl carbazole) (PVK) films. The produced layer can be used for fabricating axially symmetric homogeneous-radial, homeotropic-radial and radial-radial LC alignment devices by combining a rubbed PVK-coated substrate with another one with a desired LC alignment layer. The transmittance-voltage curves of the fabricated LC devices at various positions are measured to examine the uniformity of the alignment effect. Additionally, the PVK film does not absorb visible light, and can be operated at high temperatures.

  2. Effects of thermomechanical properties of polarizer components on light leakage in thin-film transistor liquid-crystal displays

    NASA Astrophysics Data System (ADS)

    Lin, Taiy-In; Chen, Alexander; Chen, Shou-I.; Leu, Jihperng

    2015-07-01

    In this paper, we present static thermal analysis of stress and strain on a thin-film transistor liquid-crystal display (TFT-LCD) panel and their correlation with light leakage phenomena under high-temperature durability test. Three-dimensional (3D) finite element analysis (FEA) is coupled with experimental parameters of key components of the TFT-LCD panel for the analysis. A strong correlation exists between light leakage and retardation difference induced by stress on triacetyl cellulose (TAC) films. Moreover, shrinkage in stretched poly(vinyl alcohol) (PVA) film and modulus of the adhesive layer are key factors affecting stress distribution and displacement of polarizer stack. An increase in Young’s modulus (E) of the adhesive layer effectively reduces polarizer shrinkage and light leakage at the center of the panel. A TAC film with lower Young’s modulus and/or coefficient of thermal expansion (CTE) is also an effective solution.

  3. Homeotropic alignment and director structures in thin films of triphenylamine-based discotic liquid crystals controlled by supporting nanostructured substrates and surface confinement.

    PubMed

    Choudhury, Trirup Dutta; Rao, Nandiraju V S; Tenent, Robert; Blackburn, Jeffrey; Gregg, Brian; Smalyukh, Ivan I

    2011-02-01

    We explore the effects of nanoscale morphology of supporting solid substrates on alignment, defects, and director structures exhibited by thin films of triphenylamine-based discotic liquid crystals. Fluorescence confocal polarizing microscopy and intrinsic polarized fluorescence properties of studied molecules are used to visualize three-dimensional director fields in the liquid crystal films. We demonstrate that, by controlling surface anchoring on supporting or confining solid substrates such as those of carbon nanotube electrodes on glass plates, both uniform homeotropic and in-plane (edge-on) alignment and nonuniform structures with developable domains can be achieved for the same discotic liquid crystal material. PMID:21214228

  4. Liquid crystal light valve structures

    NASA Technical Reports Server (NTRS)

    Koda, N. J. (Inventor)

    1985-01-01

    An improved photosensor film and liquid crystal light valves embodying said film is provided. The photosensor film and liquid crystal light valve is characterized by a significant lower image retention time while maintaining acceptable photosensitivity. The photosensor film is produced by sputter depositing CdS onto an ITO substrate in an atmosphere of argon/H2S gas while maintaining the substrate at a temperature in the range of about 130 C to about 200 C and while introducing nitrogen gas into the system to the extent of not more than about 1% of plasma mixture. Following sputter deposition of the CdS, the film is annealed in an inert gas at temperatures ranging from about 300 C to about 425 C.

  5. Recycling acetic acid from polarizing film of waste liquid crystal display panels by sub/supercritical water treatments.

    PubMed

    Wang, Ruixue; Chen, Ya; Xu, Zhenming

    2015-05-19

    Waste liquid crystal display (LCD) panels mainly contain inorganic materials (glass substrate) and organic materials (polarizing film and liquid crystal). The organic materials should be removed first since containing polarizing film and liquid crystal is to the disadvantage of the indium recycling process. In the present study, an efficient and environmentally friendly process to obtain acetic acid from waste LCD panels by sub/supercritical water treatments is investigated. Furthermore, a well-founded reaction mechanism is proposed. Several highlights of this study are summarized as follows: (i) 99.77% of organic matters are removed, which means the present technology is quite efficient to recycle the organic matters; (ii) a yield of 78.23% acetic acid, a quite important fossil energy based chemical product is obtained, which can reduce the consumption of fossil energy for producing acetic acid; (iii) supercritical water acts as an ideal solvent, a requisite reactant as well as an efficient acid-base catalyst, and this is quite significant in accordance with the "Principles of Green Chemistry". In a word, the organic matters of waste LCD panels are recycled without environmental pollution. Meanwhile, this study provides new opportunities for alternating fossil-based chemical products for sustainable development, converting "waste" into "fossil-based chemicals". PMID:25915068

  6. Smectic C liquid crystal growth through surface orientation by ZnxCd1-xSe thin films

    NASA Astrophysics Data System (ADS)

    Katranchev, B.; Petrov, M.; Bineva, I.; Levi, Z.; Mineva, M.

    2012-12-01

    A smectic C liquid crystal (LC) texture, consisting of distinct local single crystals (DLSCs) was grown using predefined orientation of ternary nanocrystalline thin films of ZnxCd1-xSe. The surface morphology and orientation features of the ZnxCd1-xSe films were investigated by AFM measurements and micro-texture polarization analysis. The ZnxCd1-xSe surface causes a substantial enlargement of the smectic C DLSCs and induction of a surface bistable state. The specific character of the morphology of this coating leads to the decrease of the corresponding anchoring energy. Two new chiral states, not typical for this LC were indicated. The physical mechanism providing these new effects is presented.

  7. Application of Commercially Available Liquid Crystal Polymer Films for the Improvement of Color and Viewing Angle Performance of Twisted Nematic Devices

    NASA Astrophysics Data System (ADS)

    Tatiana A. Sergan,; Marina D. Lavrentovich,; Jack R. Kelly,; Tadayuki Kameyama,

    2010-06-01

    In our work we analyzed the optical performance of liquid crystal polymer films by Nippon Mitsubishi Oil and by Fuji Film. We applied the films for twisted nematic (TN) display compensation and found several non-traditional display configurations. One display configuration employs flipped Nippon Mitsubishi Oil films mounted on polarizers, the second one, a combination of both types of films on one TN side and two crossed uniaxial films on the other. The compensated devices demonstrate greatly improved optical characteristics that surpass all those previously known, utilize the commercially available films, and are experimentally verified.

  8. Effects of nanoparticle doping on the phase transitional behaviour of ferroelectric liquid crystal Langmuir-Blodgett composite films

    NASA Astrophysics Data System (ADS)

    Kaur, Ramneek; Raina, K. K.

    2015-12-01

    Langmuir-Blodgett films of ferroelectric liquid crystals (FLCs) doped with a low concentration of functionalized Al: ZnO (AZO) nanoparticles were prepared and characterized. Pressure-area isotherms show that the nanoparticles as well as FLC composite systems have the capability to form stable monolayers at the air-water interface. The molecular interaction between nanoparticles and FLC molecules increased during barrier compression, which resulted in increased surface pressure. We observed various phases in isotherms with increasing concentration of nanoparticles in the FLC matrix. An X-ray diffraction profile at a low angle confirmed that FLCs retain their layer structure at a low concentration doping of AZO nanoparticles in the FLC matrix. Atomic force microscopy images indicate that low wt% composites are uniformly deposited without disturbing the translation behaviour of SmC* liquid crystals.

  9. NIR-Vis-UV Light-Responsive Actuator Films of Polymer-Dispersed Liquid Crystal/Graphene Oxide Nanocomposites.

    PubMed

    Cheng, Zhangxiang; Wang, Tianjie; Li, Xiao; Zhang, Yihe; Yu, Haifeng

    2015-12-16

    To take full advantage of sunlight for photomechanical materials, NIR-vis-UV light-responsive actuator films of polymer-dispersed liquid crystal (PDLC)/graphene oxide (GO) nanocomposites were fabricated. The strategy is based on phase transition of LCs from nematic to isotropic phase induced by combination of photochemical and photothermal processes in the PDLC/GO nanocomposites. Upon mechanical stretching of the film, both topological shape change and mesogenic alignment occurred in the separated LC domains, enabling the film to respond to NIR-vis-UV light. The homodispersed GO flakes act as photoabsorbent and nanoscale heat source to transfer NIR or VIS light into thermal energy, heating the film and photothermally inducing phase transition of LC microdomains. By utilizing photochemical phase transition of LCs upon UV-light irradiation, one azobenzene dye was incorporated into the LC domains, endowing the nanocomposite films with UV-responsive property. Moreover, the light-responsive behaviors can be well-controlled by adjusting the elongation ratio upon mechanical treatment. The NIR-vis-UV light-responsive PDLC/GO nanocomposite films exhibit excellent properties of easy fabrication, low-cost, and good film-forming and mechanical features, promising their numerous applications in the field of soft actuators and optomechanical systems driven directly by sunlight. PMID:26592303

  10. Phase Determination of Second-Order Surface Susceptibility Tensor of Liquid Crystal Monolayer Using Ultra-Thin Film Local Oscillator

    NASA Astrophysics Data System (ADS)

    Sei, Masaki; Nagayama, Kohei; Kajikawa, Kotaro; Ishii, Hisao; Seki, Kazuhiko; Kondo, Katsumi; Matsumoto, Yoshiyasu; Ouchi, Yukio

    1998-04-01

    We demonstrated full determination of second-order nonlinear susceptibility of a 4‧-n-octyl-4-cyanobiphenyl (8CB) liquid crystal (LC) monolayer adsorbed on a second-harmonic (SH) active polyimide (PI) substrate. In order to separate the SH signal of the LC film from that of the PI film, we adopted an interferometry technique of second-harmonic generation (SHG) using an ultra-thin film local oscillator. We have found a variety of phases in the components of susceptibility: those of χzii and χizi are almost the same but the phase of χzzz differs by 80° from the other two. The phases of the components of the surface susceptibility tensor are not always identical. This fact indicates that the surface SH response is more complicated than what we expected.

  11. Freely Suspended Liquid Crystalline Films

    NASA Astrophysics Data System (ADS)

    Sonin, A. A.

    2003-05-01

    Freely Suspended Liquid Crystalline Films Andrei A. Sonin Centre d'Etudes Atomiques de Saclay, France and Institute of Crystallography, Russian Academy of Sciences with a Foreword by Professor Noel Clark University of Colorado, USA This book provides a brief introduction to the physics of liquid crystals and to macroscopic physical parameters characterising freely suspended liquid crystalline (FSLC) films, and then reviews the experimental techniques for preparing these films, measuring their thicknesses, and investigating their physical properties and structural aspects. Molecular structures and defects of FSLC films and the problems of film stability, thinning and rupture are discussed in later chapters. Physical phenomena, such as orientational and phase transitions, Frederick's and flexoelectric effects, hydroelectrodynamics, etc., are also analysed. Finally, some applications of FSLC films in industry and in various branches of science are discussed. Specialists working in the physics of liquid crystals and in surface physics will find this book of interest. Industrial firms and their research centres investigating liquid crystals, biological membranes, detergent/surfactant/biomedical areas; and graduates and postgraduates in solid state physics and crystallography will also benefit from this book. The book has an easy-to-read style with just the minimum amount of mathematics necessary to explain important concepts. This is the first book dedicated exclusively to the physics of FSLC in almost a century since their discovery and last twenty years of their active studies. Andrei Sonin, a scientist in the area of FSLC and author of many articles on surface phenomena in liquid crystals, the properties and behaviour of thin liquid crystalline and surfactant films, has a long standing reputation in liquid crystals and surfactant systems and has been particularly active in issues involving surface interactions.

  12. Thermal switching of the reflection in chiral nematic mesoporous organosilica films infiltrated with liquid crystals.

    PubMed

    Giese, Michael; De Witt, Joanna C; Shopsowitz, Kevin E; Manning, Alan P; Dong, Ronald Y; Michal, Carl A; Hamad, Wadood Y; MacLachlan, Mark J

    2013-08-14

    Materials that undergo stimulus-induced optical changes are important for many new technologies. In this paper, we describe a new free-standing silica-based composite film that exhibits reversible thermochromic reflection, induced by a liquid crystalline guest in the pores of iridescent mesoporous films. We demonstrate that selective reflection from the novel mesoporous organosilica material with chiral nematic organization can be reversibly switched by thermal cycling of the 8CB guest between its isotropic and liquid crystalline states, which was proven by solid-state NMR experiments. The switching of the optical properties of the chiral solid-state host by stimulus-induced transitions of the guest opens the possibility of applications for these novel materials in sensors and displays. PMID:23859140

  13. Erasable thin-film optical diode based on a photoresponsive liquid crystal polymer.

    PubMed

    Zhang, Xinping; Zhang, Jian; Sun, Yujian; Yang, Huai; Yu, Haifeng

    2014-04-01

    We report a thin-film optical diode written into thin films of a liquid-crystalline polymer (LCP), which is based on the photoinduced LC-to-isotropic phase transition of LCPs. The interference pattern between a collimated and a focused UV laser beam is imprinted as chirped volume-phase gratings in photoresponsive LCP films and no further processing steps like development or liftoff are required for the fabrication. The resultant thin-film device not only possesses the fundamental functions of an optical lens for laser beam focusing, but also shows diode effects with the focusing/defocusing function dependent on the direction of light incidence and orientation of the device. Furthermore, this photonic thin-film lens exhibits a spatially tunable spectroscopic response, revealing a unique physics of secondary excitations of resonance modes of the single-layer LCP waveguide grating structures. This reveals the mechanisms for the focusing/defocusing of laser beams by chirped grating structures. Erasability and reconstructibility of the photoresponsive LCPs guarantee rewritability of the thin-film diode lens. PMID:24584886

  14. Liquid crystal polyester thermosets

    SciTech Connect

    Benicewicz, B.C.; Hoyt, A.E.

    1990-01-01

    The present invention relates to the field of curable liquid crystal polyester monomers and to thermoset liquid crystalline polyester compositions prepared therefrom. It is an object of this invention to provide curable liquid crystalline polyester materials. Another object of this invention is to provide a process of preparing curable liquid crystal polyester monomers. Yet another object of this invention is to provide liquid crystalline blends of polyester materials. It is a further object of this invention to provide thermoset liquid crystalline polyester compositions. It is a still further object of this invention to provide thermoset liquid crystalline polyester compositions having a high heat resistance. 1 fig.

  15. Liquid crystal polyester thermosets

    SciTech Connect

    Benicewicz, B.C.; Hoyt, A.E.

    1990-12-31

    The present invention relates to the field of curable liquid crystal polyester monomers and to thermoset liquid crystalline polyester compositions prepared therefrom. It is an object of this invention to provide curable liquid crystalline polyester materials. Another object of this invention is to provide a process of preparing curable liquid crystal polyester monomers. Yet another object of this invention is to provide liquid crystalline blends of polyester materials. It is a further object of this invention to provide thermoset liquid crystalline polyester compositions. It is a still further object of this invention to provide thermoset liquid crystalline polyester compositions having a high heat resistance. 1 fig.

  16. Liquid Crystal Optofluidics

    SciTech Connect

    Vasdekis, Andreas E.; Cuennet, J. G.; Psaltis, D.

    2012-10-11

    By employing anisotropic fluids and namely liquid crystals, fluid flow becomes an additional degree of freedom in designing optofluidic devices. In this paper, we demonstrate optofluidic liquid crystal devices based on the direct flow of nematic liquid crystals in microfluidic channels. Contrary to previous reports, in the present embodiment we employ the effective phase delay acquired by light travelling through flowing liquid crystal, without analysing the polarisation state of the transmitted light. With this method, we demonstrate the variation in the diffraction pattern of an array of microfluidic channels acting as a grating. We also discuss our recent activities in integrating mechanical oscillators for on-chip peristaltic pumping.

  17. Near-zero pretilt alignment of liquid crystals using polyimide films doped with UV-curable polymer.

    PubMed

    Oh, Seung-Won; Park, Jun-Hee; Yoon, Tae-Hoon

    2015-01-26

    We propose an alignment method for the near-zero pretilt angle of liquid crystals (LCs) using polyimide films doped with a UV-curable polymer. The near-zero pretilt angle can be obtained by UV curing of reactive mesogen monomers mixed with planar alignment material while a vertical electric field is applied to an LC cell assembled after the rubbing process. We demonstrated that the pretilt angle can be decreased from 2.390° to 0.082° by employing the proposed method. PMID:25835864

  18. Intermediate pre-tilt angle control by a composite alignment thin film structure for liquid crystal displays.

    PubMed

    Wu, G M; Chien, H W; Huang, J W; Zeng, H L

    2010-04-01

    We designed a patterned composite alignment thin film structure using a horizontal alignment polyimide (PI) layer and vertical alignment liquid crystal polymer (LCP) pillars. The LCP polymer precursor concentration was varied at 0-10% and the pillars were introduced by a photolithography process. Both single-sided and double-sided liquid crystal display cells were assembled for a series of electro-optical characterization techniques. The horizontal PI alignment layer alone had a designated control of the pre-tilt angle of 7 degrees after the prescribed mechanical rubbing process. The pre-tilt angle was improved to 24 degrees when the LCP precursor concentration was 5%. It was further increased to 61 degrees at the concentration of 10%. In addition, the study on the electrical response time and gray level variation demonstrated promising results for potential applications. The field-on response time was only 2.79 ms and the field-off response time was 0.35 ms for the double-sided liquid crystal display cells using a ramping voltage of 5.5 V. The effective control of the cell pre-tilt angle suggested that the display power consumption and response time would be greatly improved. PMID:20208122

  19. High-optical-quality ferroelectric film wet-processed from a ferroelectric columnar liquid crystal as observed by non-linear-optical microscopy.

    PubMed

    Araoka, Fumito; Masuko, Shiori; Kogure, Akinori; Miyajima, Daigo; Aida, Takuzo; Takezoe, Hideo

    2013-08-01

    The self-organization of ferroelectric columnar liquid crystals (FCLCs) is demonstrated. Columnar order is spontaneously formed in thin films made by the wet-process due to its liquid crystallinity. Electric-field application results in high optical quality and uniform spontaneous polarization. Such good processability and controllability of the wet-processed FCLC films provide us with potential organic ferroelectric materials for device applications. PMID:23740767

  20. Semiconductor nanorod liquid crystals

    SciTech Connect

    Li, Liang-shi; Walda, Joost; Manna, Liberato; Alivisatos, A. Paul

    2002-01-28

    Rodlike molecules form liquid crystalline phases with orientational order and positional disorder. The great majority of materials in which liquid crystalline phases have been observed are comprised of organic molecules or polymers, even though there has been continuing and growing interest in inorganic liquid crystals. Recent advances in the control of the sizes and shapes of inorganic nanocrystals allow for the formation of a broad class of new inorganic liquid crystals. Here we show the formation of liquid crystalline phases of CdSe semiconductor nanorods. These new liquid crystalline phases may have great importance for both application and fundamental study.

  1. Blazed vector grating liquid crystal cells with photocrosslinkable polymeric alignment films fabricated by one-step polarizer rotation method

    NASA Astrophysics Data System (ADS)

    Kawai, Kotaro; Kuzuwata, Mitsuru; Sasaki, Tomoyuki; Noda, Kohei; Kawatsuki, Nobuhiro; Ono, Hiroshi

    2014-12-01

    Blazed vector grating liquid crystal (LC) cells, in which the directors of low-molar-mass LCs are antisymmetrically distributed, were fabricated by one-step exposure of an empty glass cell inner-coated with a photocrosslinkable polymer LC (PCLC) to UV light. By adopting a LC cell structure, twisted nematic (TN) and homogeneous (HOMO) alignments were obtained in the blazed vector grating LC cells. Moreover, the diffraction efficiency of the blazed vector grating LC cells was greatly improved by increasing the thickness of the device in comparison with that of a blazed vector grating with a thin film structure obtained in our previous study. In addition, the diffraction efficiency and polarization states of ±1st-order diffracted beams from the resultant blazed vector grating LC cells were controlled by designing a blazed pattern in the alignment films, and these diffraction properties were well explained on the basis of Jones calculus and the elastic continuum theory of nematic LCs.

  2. Photoinduced changes of surface order in coumarin side-chain polymer films used for liquid crystal photoalignment

    SciTech Connect

    Bergmann, G.; Jackson, P.O.; Hogg, J.H.C.; Stirner, T.; O'Neill, M.; Duffy, W.L.; Kelly, S.M.; Clark, G.F.

    2005-08-08

    Specular x-ray reflectivity probes morphological changes in a crosslinkable coumarin photoalignment polymer film resulting from ultraviolet irradiation. An ordered surface layer with density oscillations compatible with planar side-chain alignment is obtained before irradiation. The ordering is enhanced in the early stages of crosslinking. This is attributed to the photoinduced increase of mobility of the side-chains resulting from the creation of free volume by the crosslinking process. The expansion of the thin film confirms that free volume is created. The surface ordering decreases with prolonged ultraviolet irradiation because of increased material viscosity resulting from a high crosslinked density. The implications of surface ordering on liquid crystal photoalignment are discussed.

  3. Electrically switchable liquid crystal Fresnel lens using UV-modified alignment film.

    PubMed

    Jeng, Shie-Chang; Hwang, Shug-June; Horng, Jing-Shyang; Lin, Kuo-Ren

    2010-12-01

    A simple method to make a switchable liquid crystal (LC) Fresnel lens with high diffraction efficiency and a low driving voltage was proposed based on the photo-induced surface modification of the vertical alignment layer. UV illumination alters the pretilt angle of alignment layers, a Fresnel zone-distribution hybrid alignment in the homeotropic LC cell can be straightforwardly achieved through UV exposure, yielding a concentric structure of the Fresnel phase LC lens. A remarkable diffraction efficiency of ~31.4%, close to the measured diffraction efficiency of the used Fresnel-zone-plate mask of 32%, was detected using a linearly polarized incident beam. PMID:21164982

  4. Selective liquid crystal molecule orientation on ion beam irradiated tantalum oxide ultrathin films

    SciTech Connect

    Lim, Ji-Hun; Oh, Byeong-Yun; Lee, Won-Kyu; Lee, Kang-Min; Na, Hyun-Jae; Kim, Byoung-Yong; Seo, Dae-Shik; Han, Jeong-Min; Hwang, Jeong-Yeon

    2009-09-21

    We recently achieved the homogeneous alignment of liquid crystal (LC) on amorphous Ta{sub 2}O{sub 5} layers. This study demonstrates that LC layers could be aligned either homogeneously or vertically by increasing the growth temperature of rf magnetron sputtering device and the irradiation time of the DuoPIGatron type Ar ion beam device causing uniform and dense plasma. We attained two LC orientations by observing Ta 4f and O 1s peak shifts with x-ray photoelectron spectroscopy. Moreover, the decreased thickness of layers with high-k dielectric constants helped to decrease driving LC voltages and in turn to achieve low power consumption.

  5. Surface-Controlled Orientational Transitions in Elastically Strained Films of Liquid Crystal That Are Triggered by Vapors of Toluene.

    PubMed

    Bedolla Pantoja, Marco A; Abbott, Nicholas L

    2016-05-25

    We report the fabrication of chemically patterned microwells that enable the rapid and facile preparation (by spin coating and patterned dewetting) of thin films of liquid crystals (LCs) that have precise thicknesses (0.7-30 μm), are supported on chemically defined substrates, and have free upper surfaces. We use these microwells to prepare elastically strained nematic LC films supported on silica glass, gold, or polystyrene substrates and thereby characterize the response of the strained LC films to vapors of toluene. We report that low concentrations of toluene vapor (<500 ppm) can partition into the LC to lower the anchoring energy of the LC on these substrates, thus allowing the elastic energy of the strained LC film to drive the LC films through an orientational transition. The central role of the toluene-induced change in surface anchoring energy is supported by additional experiments in which the response of the nematic LC to changes in film thickness and substrate identity are quantified. A simple thermodynamic model captures these trends and yielded estimates of anchoring energies (8-22 μJ/m(2)). Significantly, the orientational transitions observed in these strained LC thin films occur at concentrations of toluene vapor that are almost 1 order of magnitude below those which lead to bulk phase transitions, and they are not triggered by exposure to water vapor. Overall, these results hint at principles for the design of responsive LC-based materials that can be triggered by concentrations of aromatic, volatile organic compounds that are relevant to human health. PMID:27070511

  6. Liquid crystal-templated conducting organic polymers

    DOEpatents

    Stupp, Samuel I.; Hulvat, James F.

    2004-01-20

    A method of preparing a conductive polymeric film, includes providing a liquid crystal phase comprising a plurality of hydrophobic cores, the phase on a substrate, introducing a hydrophobic component to the phase, the component a conductive polymer precursor, and applying an electric potential across the liquid crystal phase, the potential sufficient to polymerize the said precursor.

  7. [Comparison of detectability of liquid crystal displays (LCDs) and film using phantoms of small adenocarcinomas as abnormalities].

    PubMed

    Mochizuki, Yasuo; Abe, Shinji; Monma, Masahiko; Yamaguchi, Kojirou; Adachi, Toshiki

    2011-01-01

    Following the trend of the digitalization of the modalities used for diagnostic imaging, the devices for such imaging have increasingly included monitors. The present study was undertaken to evaluate the usefulness of soft-copy (liquid crystal display; LCD) images of phantoms of small adenocarcinomas using receiver operating characteristic (ROC) analysis of two different display systems: LCD and hard copy (film). A two-tailed paired t-test and the jackknife method (parametric methods) were performed, and no significant differences were found in the area under the ROC curve (AUC) for the pulmonary fields, lungs, ribs, or mediastinum between the film and LCD display systems, and the detectability did not differ between the film and LCD monitors. A Mann-Whitney U test, which is a non-parametric method that applies to the analysis of a small sample, also showed no significant differences in the AUC. The results of this study suggest that LCDs can replace hard-copy film as a display system if the signals. PMID:21532242

  8. Fast response liquid crystal devices

    NASA Astrophysics Data System (ADS)

    Wu, Yung-Hsun

    LC-based VOA. In Chapter 7, we report a new device called axially-symmetric sheared polymer network liquid crystals (AS-SPNLC) and use it as LC devices. Through analyzing the structure of this axially-symmetric SPNLC, we construct a 3-D model to explain the observed phenomena. An axially-symmetric sheared polymer network liquid crystal has several attractive features: (1) it is polarization independent, (2) it has gradient phase change, and (3) its response time is fast. It can be used for polarization converter and divergent LC lens. In addition, a new method for simultaneously measuring the phase retardation and optic axis of a compensation film is demonstrated using an axially-symmetric sheared polymer network liquid crystal. By overlaying a tested compensation film with a calibrated SPNLC cell between crossed polarizers, the optic axis and phase retardation value of the compensation film can be determined. This simple technique can be used for simultaneously measuring the optic axis and phase retardations of both A- and C-plates. These compensation films have been used extensively in wide-view LCD industry. Therefore, this method will make an important impact to the LCD industry.

  9. Nanoscopic Manipulation and Imaging of Liquid Crystals

    SciTech Connect

    Rosenblatt, Charles S.

    2014-02-04

    This is the final project report. The project’s goals centered on nanoscopic imaging and control of liquid crystals and surfaces. We developed and refined techniques to control liquid crystal orientation at surfaces with resolution as small as 25 nm, we developed an optical imaging technique that we call Optical Nanotomography that allows us to obtain images inside liquid crystal films with resolution of 60 x 60 x 1 nm, and we opened new thrust areas related to chirality and to liquid crystal/colloid composites.

  10. Excitability in liquid crystal.

    PubMed

    Coullet, P.; Frisch, T.; Gilli, J. M.; Rica, S.

    1994-09-01

    The spiral waves observed in a liquid crystal submitted to a vertical electric field and a horizontal rotating magnetic field are explained in the framework of a purely mechanical description of the liquid crystal. The originality of the experiment described in this paper is the presence of the vertical electric field which allows us to analyze the spiral waves in the framework of a weakly nonlinear theory. PMID:12780124

  11. Circular flow formation triggered by Marangoni convection in nematic liquid crystal films with a free surface.

    PubMed

    Choi, Hyunhee; Takezoe, Hideo

    2016-01-14

    We demonstrate circular flow formation at a surface in homeotropically oriented nematic liquid crystals with a free surface using focused laser beam irradiation. Under a weak laser power, a pit together with an associated circular bulge is formed: the Marangoni effect. Here a diverging molecular flow from the pit (thermocapillary flow) also induces director tilt in the radial direction. Upon increasing the laser power, the pit becomes deeper, and eventually evolves into a circular flow associated with a deeper pit and a subsidiary circular bulge or valley structure. This phenomenon is induced by escaping from excess deformation energy due to a bend deformation of the director. Actually, we confirmed that the circular flow is never formed in the isotropic phase. The handedness of the vortex cannot be controlled by circular polarisation, but is controllable by doping with chiral molecules. This rotational motion (a nematic micro-rotor) is a unique phenomenon only exhibited by anisotropic liquids, and is expected to be applied for novel devices. PMID:26482229

  12. Shear-Sensitive Monomer/Polymer Liquid Crystal System

    NASA Technical Reports Server (NTRS)

    Singh, Jag J.; Eftekhari, Abe; Parmar, D. S.

    1993-01-01

    Report describes preliminary investigation of new monomer/polymer liquid crystal system, thin film of shear-sensitive cholesteric monomer liquid crystal (TI 511) on Xydar (STR800) (or equivalent) liquid crystal polymer substrate. Monomer/polymer liquid crystal films applied to surfaces provide quantitative indications of shear stresses caused by winds blowing along surfaces. Effects of shear stresses reversible in new coating system. System provides quantitative data on flows in wind tunnels.

  13. Computational studies of optical textures of twist disclination loops in liquid-crystal films by using the finite-difference time-domain method

    NASA Astrophysics Data System (ADS)

    Hwang, Dae Kun; Rey, Alejandro D.

    2006-02-01

    Optical images of textured liquid-crystal films containing various types of twist disclination loops are computed using an approximate matrix method and a direct numerical simulation based on the finite-difference time-domain (FDTD) method. The selected defects introduce large multidirectional spatial gradients in the optic axis, mimicking the orientation textures that arise in the construction and use of biosensors based on liquid-crystal vision. It is shown that under these experimentally relevant conditions, the matrix method fails to capture important signatures in the transmitted light intensity under crossed polarizers. The differences between the predictions by the two methods are analyzed with respect to gradients in the optic axis. We show that the FDTD method is a useful tool to perform computational optics of textured liquid-crystal films.

  14. Photochemical manipulation of microparticles on azobenzene-doped liquid-crystal films with homogeneous or homeotropic alignment structures

    NASA Astrophysics Data System (ADS)

    Yamamoto, Takahiro; Yoshida, Masaru

    2012-10-01

    In this study, we investigated self-organized structures and photoinduced motions of microparticles on azobenzenedoped liquid crystal (LC) films with homogeneous or homeotropic alignment structures. In the case of homogeneous alignment, the microparticles formed linear chains oriented along the direction of the bulk LC alignment at air-LC interface in the initial state. Upon irradiation with ultra-violet (UV) light, the linear chains gathered into the irradiated area and formed closely-packed aggregates. The assembled chains diffused outside the irradiated area to reform the chains upon irradiation with visible light. In contrast, on the homeotropically aligned LC films, pseudo-hexagonal lattice structures of microparticles with long interparticle distances have been organized in the initial state. The particles exhibited photoinduced motions in directions opposite to those observed on the homogeneously aligned LC films. Upon irradiation with UV light, lattice structures were expanded by a particle motion away from the photoirradiated area. Irradiation with visible light then induced contraction of lattice structures based on a particle motion toward the irradiated area. The photoinduced particle motions depending on LC alignments would be explained by macroscopic convective flow or deformation of LC surface induced by cis-trans photoisomerization of azobenzene dopant.

  15. A High-Retardation Polymer Film for Viewing Liquid Crystal Displays through Polarized Sunglasses without Chromaticity Change in the Image

    NASA Astrophysics Data System (ADS)

    Kobayashi, Daisuke; Tagaya, Akihiro; Koike, Yasuhiro

    2011-04-01

    We describe a high-retardation polymer film (HRPF) that enables liquid crystal displays (LCDs) to be viewed through polarized sunglasses at all rotation angles without any chromaticity changes in the image. We investigated the relationship between retardation and polymer interference color after developing a program that simulates the interference colors of polymers taking into consideration the polymer birefringence dispersion and LCD emission light spectrum. As a result, we confirmed that the retardation value required for our HRPF made of polyethylene terephthalate and applied to an LCD with white LED backlight was not less than 7832 nm. We also confirmed that the image quality was not degraded by attaching the HRPF to the LCD, and chromaticity change in the image observed through HRPF and polarized sunglasses was negligible compared to the LCD image.

  16. A biosensor of high-density lipoprotein of human serum on a liquid crystal and polymer composite film

    NASA Astrophysics Data System (ADS)

    Lin, Yi-Hsin; Chang, Kai-Han; Chu, Wei-Lin; Tsou, Yu-Shih; Wu, Li-Ching; Li, Chien-Feng

    2013-10-01

    A biosensor for the concentration of high-density lipoprotein (HDL) in human serum on a liquid crystal and polymer composite film (LCPCF) is demonstrated. The sensing mechanism is based on a polar-polar interaction between orientation of LC directors and HDL in human serum. The concentration of polar HDL in human serum affects the orientations of LC directors at the interface between LCPCF and the human serum. In addition, the surface free energy of LCPCF changes with the applied voltage due to the electrically tunable orientations of LC directors anchored among the polymer grains of LCPCF. As a result, the droplet motion of human serum on LCPCF under applied voltages can sense the concentration of HDL in human serum.

  17. Conducting glasses recovered from thin film transistor liquid crystal display wastes for dye-sensitized solar cell cathodes.

    PubMed

    Chen, C-C; Chang, F-C; Peng, C Y; Wang, H Paul

    2015-01-01

    Transparent conductive glasses such as thin film transistor (TFT) array and colour filter glasses were recovered from the TFT-liquid crystal display panel wastes by dismantling and sonic cleaning. Noble metals (i.e. platinum (Pt)) and indium tin oxide (ITO) are generally used in the cathode of a dye-sensitized solar cell (DSSC). To reduce the DSSC cost, Pt was replaced with nano nickel-encapsulated carbon-shell (Ni@C) nanoparticles, which were prepared by carbonization of Ni²⁺-β-cyclodextrin at 673 K for 2 h. The recovered conductive glasses were used in the DSSC electrodes in the substitution of relatively expensive ITO. Interestingly, the efficiency of the DSSC having the Ni@C-coated cathode is as high as 2.54%. Moreover, the cost of the DSSC using the recovered materials can be reduced by at least 24%. PMID:25399759

  18. Evaluation of photoinduced change in refractive index of a polymer film doped with an azobenzene liquid crystal by means of a prism-coupling method

    SciTech Connect

    Kurihara, Hideo; Shishido, Atsushi; Ikeda, Tomiki

    2005-10-15

    The photoinduced change in refractive index of poly(methyl methacrylate) films doped with an azobenzene liquid crystal was measured by the prism-coupling method. Upon irradiation of the film with a high-pressure mercury lamp at 366 nm, the coupling angles shifted and then recovered to the initial position by turning off the light. The change in refractive index was found to be 2x10{sup -3}, which is attributed to the reversible photoisomerization of the azobenzene moieties.

  19. Vertical alignment of liquid crystal through ion beam exposure on oxygen-doped SiC films deposited at room temperature

    SciTech Connect

    Son, Phil Kook; Park, Jeung Hun; Kim, Jae Chang; Yoon, Tae-Hoon; Rho, Soon Joon; Jeon, Back Kyun; Shin, Sung Tae; Kim, Jang Sub; Lim, Soon Kwon

    2007-09-03

    The authors report the vertical alignment of liquid crystal (LC) through the ion beam exposure on amorphous oxygen-doped SiC (SiOC) film surfaces deposited at room temperature. The optical transmittance of these films was similar to that of polyimide layers, but much higher than that of SiO{sub x} films. The light leakage of a LC cell aligned vertically on SiOC films was much lower than those of a LC cell aligned on polyimide layers or other inorganic films. They found that LC molecules align vertically on ion beam treated SiOC film when the roughness of the electrostatic force microscopy (EFM) data is high on the SiOC film surface, while they align homogeneously when the roughness of the EFM data is low.

  20. Hierarchical Thin Film Architectures for Enhanced Sensor Performance: Liquid Crystal-Mediated Electrochemical Synthesis of Nanostructured Imprinted Polymer Films for the Selective Recognition of Bupivacaine

    PubMed Central

    Suriyanarayanan, Subramanian; Nawaz, Hazrat; Ndizeye, Natacha; Nicholls, Ian A.

    2014-01-01

    Nanostructured bupivacaine-selective molecularly imprinted 3-aminophenylboronic acid-p-phenylenediamine co-polymer (MIP) films have been prepared on gold-coated quartz (Au/quartz) resonators by electrochemical synthesis under cyclic voltammetric conditions in a liquid crystalline (LC) medium (triton X-100/water). Films prepared in water and in the absence of template were used for control studies. Infrared spectroscopic studies demonstrated comparable chemical compositions for LC and control polymer films. SEM studies revealed that the topologies of the molecularly imprinted polymer films prepared in the LC medium (LC-MIP) exhibit discernible 40 nm thick nano-fiber structures, quite unlike the polymers prepared in the absence of the LC-phase. The sensitivity of the LC-MIP in a quartz crystal microbalance (QCM) sensor platform was 67.6 ± 4.9 Hz/mM under flow injection analysis (FIA) conditions, which was ≈250% higher than for the sensor prepared using the aqueous medium. Detection was possible at 100 nM (30 ng/mL), and discrimination of bupivacaine from closely related structural analogs was readily achieved as reflected in the corresponding stability constants of the MIP-analyte complexes. The facile fabrication and significant enhancement in sensor sensitivity together highlight the potential of this LC-based imprinting strategy for fabrication of polymeric materials with hierarchical architectures, in particular for use in surface-dependent application areas, e.g., biomaterials or sensing. PMID:25587412

  1. Hierarchical thin film architectures for enhanced sensor performance: liquid crystal-mediated electrochemical synthesis of nanostructured imprinted polymer films for the selective recognition of bupivacaine.

    PubMed

    Suriyanarayanan, Subramanian; Nawaz, Hazrat; Ndizeye, Natacha; Nicholls, Ian A

    2014-06-01

    Nanostructured bupivacaine-selective molecularly imprinted 3-aminophenylboronic acid-p-phenylenediamine co-polymer (MIP) films have been prepared on gold-coated quartz (Au/quartz) resonators by electrochemical synthesis under cyclic voltammetric conditions in a liquid crystalline (LC) medium (triton X-100/water). Films prepared in water and in the absence of template were used for control studies. Infrared spectroscopic studies demonstrated comparable chemical compositions for LC and control polymer films. SEM studies revealed that the topologies of the molecularly imprinted polymer films prepared in the LC medium (LC-MIP) exhibit discernible 40 nm thick nano-fiber structures, quite unlike the polymers prepared in the absence of the LC-phase. The sensitivity of the LC-MIP in a quartz crystal microbalance (QCM) sensor platform was 67.6 ± 4.9 Hz/mM under flow injection analysis (FIA) conditions, which was ≈250% higher than for the sensor prepared using the aqueous medium. Detection was possible at 100 nM (30 ng/mL), and discrimination of bupivacaine from closely related structural analogs was readily achieved as reflected in the corresponding stability constants of the MIP-analyte complexes. The facile fabrication and significant enhancement in sensor sensitivity together highlight the potential of this LC-based imprinting strategy for fabrication of polymeric materials with hierarchical architectures, in particular for use in surface-dependent application areas, e.g., biomaterials or sensing. PMID:25587412

  2. Effect of the annealing temperature and ion-beam bombardment on the properties of solution-derived HfYGaO films as liquid crystal alignment layers

    SciTech Connect

    Park, Hong-Gyu; Lee, Yun-Gun; Jang, Sang Bok; Lee, Ju Hwan; Jeong, Hae-Chang; Seo, Dae-Shik; Oh, Byeong-Yun

    2015-11-15

    Hafnium yttrium gallium oxide (HfYGaO) films were applied to liquid crystal displays (LCDs) as liquid crystal (LC) alignment layers, replacing conventional polyimide (PI) layers. The HfYGaO alignment layers were prepared by fabricating solution-processed HfYGaO films, annealing them, and treating them with ion-beam (IB) irradiation. The authors studied the effects of annealing temperature and IB irradiation of the solution-derived HfYGaO films on the orientation of LC molecules. The LC molecules on the solution-derived HfYGaO films were homogeneously and uniformly aligned by IB irradiation, irrespective of the annealing temperature. Atomic force microscopy analyses revealed that the surface reformation of the HfYGaO films induced by IB irradiation strengthened the van der Waals force between the LC molecules and the HfYGaO films, leading to uniform LC alignment. Enhanced electro-optical characteristics were observed in the twisted-nematic (TN) LCDs based on IB-irradiated HfYGaO films compared with those of TN-LCDs based on PI layers, demonstrating the high application potential of the proposed solution-derived HfYGaO films as LC alignment layers.

  3. Thermoelectricity in liquid crystals

    NASA Astrophysics Data System (ADS)

    Mohd Said, Suhana; Nordin, Abdul Rahman; Abdullah, Norbani; Balamurugan, S.

    2015-09-01

    The thermoelectric effect, also known as the Seebeck effect, describes the conversion of a temperature gradient into electricity. A Figure of Merit (ZT) is used to describe the thermoelectric ability of a material. It is directly dependent on its Seebeck coefficient and electrical conductivity, and inversely dependent on its thermal conductivity. There is usually a compromise between these parameters, which limit the performance of thermoelectric materials. The current achievement for ZT~2.2 falls short of the expected threshold of ZT=3 to allow its viability in commercial applications. In recent times, advances in organic thermoelectrics been significant, improving by over 3 orders of magnitude over a period of about 10 years. Liquid crystals are newly investigated as candidate thermoelectric materials, given their low thermal conductivity, inherent ordering, and in some cases, reasonable electrical conductivity. In this work the thermoelectric behaviour of a discotic liquid crystal, is discussed. The DLC was filled into cells coated with a charge injector, and an alignment of the columnar axis perpendicular to the substrate was allowed to form. This thermoelectric behavior can be correlated to the order-disorder transition. A reasonable thermoelectric power in the liquid crystal temperature regime was noted. In summary, thermoelectric liquid crystals may have the potential to be utilised in flexible devices, as a standalone power source.

  4. Quantitative Assessment of Coumarin-Containing Polymer Film's Capability for Photoalignment of Liquid Crystals

    SciTech Connect

    Kim, C.; Wallace, J.U.; Trajkovska, A.; Ou, J.J.; Chen, S.H.

    2007-12-12

    The photoalignment of a nematic fluid, E-7, and a glassy-nematic oligofluorene, F(MB)5, was investigated on films of Polymers 1 and 2 in the parallel regime. Polarized absorption spectroscopy and computational chemistry were employed to characterize coumarin monomer's and dimer's molar extinction coefficients and to locate absorption dipoles as parallel to their long molecular axes. Moreover, their orientational order parameters, S_m and S_d, were experimentally determined as functions of the extent of dimerization. Higher S_d and Y_d, coumarin dimer's mole fraction, were achieved in films of Polymer 1 than in Polymer 2 because of the greater coumarin mobility of the former. The ability of a coumarin-containing photoalignment film to orient a spin-cast F(MB)5 film was found to improve with increasing Y_d S_d to an extent comparable to that of a rubbed polyimide film. Because of the relatively short lengths of its constituent molecules, E-7 was oriented equally well on both polymer films regardless of the Y_d S_d values.

  5. Optical-to-optical interface device. [consisting of two transparent electrodes on glass substrates that enclose thin film photoconductor and thin layer of nematic liquid crystal

    NASA Technical Reports Server (NTRS)

    Jacobson, A. D.

    1973-01-01

    Studies were conducted on the performance of a photoactivated dc liquid crystal light valve. The dc light valve is a thin film device that consists of two transparent electrodes, deposited on glass substrates, that enclose a thin film photoconductor (cadmium sulfide) and a thin layer of a nematic liquid crystal that operates in the dynamic scattering mode. The work was directed toward application of the light valve to high resolution non-coherent light to coherent light image conversion. The goal of these studies was to improve the performance and quality of the already existing dc light valve device and to evaluate quantitatively the properties and performance of the device as they relate to the coherent optical data processing application. As a result of these efforts, device sensitivity was improved by a factor of ten, device resolution was improved by a factor of three, device lifetime was improved by two-orders of magnitude, undesirable secondary liquid crystal scattering effects were eliminated, the scattering characteristics of the liquid crystal were thoroughly documented, the cosmetic quality of the devices was dramatically improved, and the performance of the device was fully documented.

  6. Adaptive Liquid Crystal Windows

    SciTech Connect

    Taheri, Bahman; Bodnar, Volodymyr

    2011-12-31

    Energy consumption by private and commercial sectors in the U.S. has steadily grown over the last decade. The uncertainty in future availability of imported oil, on which the energy consumption relies strongly, resulted in a dramatic increase in the cost of energy. About 20% of this consumption are used to heat and cool houses and commercial buildings. To reduce dependence on the foreign oil and cut down emission of greenhouse gases, it is necessary to eliminate losses and reduce total energy consumption by buildings. To achieve this goal it is necessary to redefine the role of the conventional windows. At a minimum, windows should stop being a source for energy loss. Ideally, windows should become a source of energy, providing net gain to reduce energy used to heat and cool homes. It is possible to have a net energy gain from a window if its light transmission can be dynamically altered, ideally electronically without the need of operator assistance, providing optimal control of the solar gain that varies with season and climate in the U.S. In addition, the window must not require power from the building for operation. Resolution of this problem is a societal challenge and of national interest and will have a broad global impact. For this purpose, the year-round, allclimate window solution to provide an electronically variable solar heat gain coefficient (SHGC) with a wide dynamic range is needed. AlphaMicron, Inc. (AMI) developed and manufactured 1ft × 1ft prototype panels for the world’s first auto-adjusting Adaptive Liquid Crystal Windows (ALCWs) that can operate from sunlight without the need for external power source and demonstrate an electronically adjustable SHGC. This novel windows are based on AlphaMicron’s patented e-Tint® technology, a guesthost liquid crystal system implemented on flexible, optically clear plastic films. This technology is suitable both for OEM and aftermarket (retro-fitting) lamination to new and existing windows. Low level of

  7. Liquid crystal orientation control in photonic liquid crystal fibers

    NASA Astrophysics Data System (ADS)

    Chychlowski, M. S.; Nowinowski-Kruszelnicki, E.; Woliński, T. R.

    2011-05-01

    Similarly to liquid crystal displays technology in photonic liquid crystal fibers (PLCFs) a molecular orientation control is a crucial issue that influences proper operation of PLCF-based devices. The paper presents two distinct configurations: planar and radial escaped orientation of the LC molecules inside capillaries as well as methods of their application to photonic liquid crystal fibers. Possibilities of LC orientation control influence both: attenuation and transmitting spectra of the PLCF The orienting method is based on creation of an additional orienting layer on the inner surface of the capillary or air hole of the photonic liquid crystal fiber. Aligning materials used in the experiment are commercially available polyimides SE1211 and SE130 which induce liquid crystal homeotropic and planar anchoring conditions. The orienting layer increase an order parameter of the liquid crystal improving propagation properties and stability of photonic liquid crystal fiber-based devices.

  8. Combined photocatalysis and membrane bioreactor for the treatment of feedwater containing thin film transistor-liquid crystal display discharge.

    PubMed

    You, Sheng-Jie; Semblante, Galilee Uy; Chen, Yu-Pu; Chang, Tien-Chin

    2015-01-01

    The nitrogen content of waste water generated by the thin film transistor-liquid crystal display (TFT-LCD) industry is not satisfactorily removed through the conventional aerobic-activated sludge process. In this study, the performance of three reactors – suspended type TiO2 membrane photoreactor (MPR), anoxic/oxic membrane bioreactor (AOMBR), and their combination (MPR-AOMBR) – was evaluated using feedwater containing TFT-LCD discharge. The parameters that maximized monoethanolamine (MEA) removal in the MPR were continuous ultraviolet (UV) irradiation and pH 11. Among the tested loadings, 0.1 g/l of TiO2 promoted MEA removal but degradation rate may further increase with photocatalyst concentration. The nitrified sludge recycle ratio R of the AOMBR was adjusted to 1.5 to minimize the amount of nitrate in the effluent. The AOMBR greatly decreased chemical oxygen demand and MEA, but removed only 32.7% of tetramethyl ammonium hydroxide (TMAH). The MPR was configured as the pre-treatment unit for AOMBR, and the combined MPR-AOMBR has improved TMAH removal by 80.1%. The MPR bolstered performance by decomposing slowly biodegradable compounds, and had no negative effects on denitrification and carbon removal. PMID:25952015

  9. Optical switching of nematic liquid crystal film arising from induced electric field of localized surface plasmon resonance

    NASA Astrophysics Data System (ADS)

    Quint, Makiko T.; Delgado, Silverio; Paredes, John H.; Hirst, Linda S.; Ghosh, Sayantani

    2015-08-01

    We have developed an all-optical method to control the in- and out-of-plane spatial orientation of nematic liquid crystal (NLC) molecules by leveraging the highly localized electric fields produced in the near-field regime of gold nanoparticle (AuNP) layers. A 1-2 micron thick NLC film is deposited on a close-packed drop-cast AuNP layer, excited with tunable optical sources and the transmission of white light through it analyzed using polarization optics as a function of incident light wavelength, excitation power and sample temperature. Our findings, supported by simulations using discrete-dipole approximations, establish the optical switching effect to be repeatable, reversible, spectrally-selective, operational over a broad temperature range, including room temperature, and requiring very small on-resonance excitation intensity (0.3 W/cm2). For the case of the in-plane switching we have additionally demonstrated that controlling the incident excitation polarization can continuously vary the alignment of the NLC molecules, allowing for grayscale transmission.

  10. Exposure to volatile organic compounds and kidney dysfunction in thin film transistor liquid crystal display (TFT-LCD) workers.

    PubMed

    Chang, Ta-Yuan; Huang, Kuei-Hung; Liu, Chiu-Shong; Shie, Ruei-Hao; Chao, Keh-Ping; Hsu, Wen-Hsin; Bao, Bo-Ying

    2010-06-15

    Many volatile organic compounds (VOCs) are emitted during the manufacturing of thin film transistor liquid crystal displays (TFT-LCDs), exposure to some of which has been reported to be associated with kidney dysfunction, but whether such an effect exists in TFT-LCD industry workers is unknown. This cross-sectional study aimed to investigate the association between exposure to VOCs and kidney dysfunction among TFT-LCD workers. The results showed that ethanol (1811.0+/-1740.4 ppb), acetone (669.0+/-561.0 ppb), isopropyl alcohol (187.0+/-205.3 ppb) and propylene glycol monomethyl ether acetate (PGMEA) (102.9+/-102.0 ppb) were the four dominant VOCs present in the workplace. The 63 array workers studied had a risk of kidney dysfunction 3.21-fold and 3.84-fold that of 61 cell workers and 18 module workers, respectively. Workers cumulatively exposed to a total level of isopropyl alcohol, PGMEA and propylene glycol monomethyl ether> or =324 ppb-year had a significantly higher risk of kidney dysfunction (adjusted OR=3.41, 95% CI=1.14-10.17) compared with those exposed to <25 ppb-year after adjustment for potential confounding factors. These findings indicated that array workers might be the group at greatest risk of kidney dysfunction within the TFT-LCD industry, and cumulative exposure to specific VOCs might be associated with kidney dysfunction. PMID:20227824

  11. Nematic liquid crystal bridges

    NASA Astrophysics Data System (ADS)

    Doss, Susannah; Ellis, Perry; Vallamkondu, Jayalakshmi; Danemiller, Edward; Vernon, Mark; Fernandez-Nieves, Alberto

    We study the effects of confining a nematic liquid crystal between two parallel glass plates with homeotropic boundary conditions for the director at all bounding surfaces. We find that the free surface of the nematic bridge is a surface of constant mean curvature. In addition, by changing the distance between the plates and the contact angle with the glass plates, we transition between loops and hedgehogs that can be either radial or hyperbolic.

  12. Partially exposed polymer dispersed liquid crystals for boundary layer investigations

    NASA Technical Reports Server (NTRS)

    Parmar, Devendra S.; Singh, Jag J.

    1992-01-01

    A new configuration termed partially exposed polymer dispersed liquid crystal in which the liquid crystal microdroplets dispersed in a rigid polymer matrix are partially entrapped on the free surface of the thin film deposited on a glass substrate is reported. Optical transmission characteristics of the partially exposed polymer dispersed liquid crystal thin film in response to an air flow induced shear stress field reveal its potential as a sensor for gas flow and boundary layer investigations.

  13. Polymer Crystallization at Curved Liquid/Liquid Interface

    NASA Astrophysics Data System (ADS)

    Wang, Wenda

    Liquid/liquid interface, either flat or curved, is a unique template for studying self-assembly of a variety of nanomaterials such as nanoparticles and nanorods. The resultant monolayer films can be ordered or disordered depending on the regularity of the nanomaterials. Integration of nanoparticles into two-dimensional structure leads to intriguing collective properties of the nanoparticles. Crystallization can also be guided by liquid/liquid interface. Due to the particular shape of the interface, crystallization can happen in a different manner comparing to the normal solution crystallization. In this dissertation, liquid/liquid interface is employed to guide the crystallization of polymers, mainly focusing on using curved liquid/liquid interface. Due to the unique shape of the interface and feasibility to control the curvature, polymer crystallization can take place in different manner and lead to the formation of curved or vesicular crystals. Curved liquid/liquid interface is typically created through o/w emulsions. With the presence of surfactant, the emulsions are controlled to be stable at least for the polymer crystallization periods. The difference to normal solution crystallization is: the nuclei will diffuse to the curved interface due to the Pickering effect and guide the crystallization along the curved liquid/liquid interface. If the supercooling can be controlled to be very small, crystal growth in the bulk droplets can be avoided. The advantages of this strategy are: 1) the formation process of vesicular type crystals can be monitored by controlling the polymer supply; 2) curved crystals, bowl-like structures and enclosed capsules can be easily obtained comparing to the self-assembly method for vesicle formation; 3) the obtained vesicles will be made of polymer crystals, which will possess the extraordinary mechanical properties. Based on the nucleation type, this dissertation is divided into two parts. The first part is focused on the self

  14. Living liquid crystals

    PubMed Central

    Zhou, Shuang; Sokolov, Andrey; Lavrentovich, Oleg D.; Aranson, Igor S.

    2014-01-01

    Collective motion of self-propelled organisms or synthetic particles, often termed “active fluid,” has attracted enormous attention in the broad scientific community because of its fundamentally nonequilibrium nature. Energy input and interactions among the moving units and the medium lead to complex dynamics. Here, we introduce a class of active matter––living liquid crystals (LLCs)––that combines living swimming bacteria with a lyotropic liquid crystal. The physical properties of LLCs can be controlled by the amount of oxygen available to bacteria, by concentration of ingredients, or by temperature. Our studies reveal a wealth of intriguing dynamic phenomena, caused by the coupling between the activity-triggered flow and long-range orientational order of the medium. Among these are (i) nonlinear trajectories of bacterial motion guided by nonuniform director, (ii) local melting of the liquid crystal caused by the bacteria-produced shear flows, (iii) activity-triggered transition from a nonflowing uniform state into a flowing one-dimensional periodic pattern and its evolution into a turbulent array of topological defects, and (iv) birefringence-enabled visualization of microflow generated by the nanometers-thick bacterial flagella. Unlike their isotropic counterpart, the LLCs show collective dynamic effects at very low volume fraction of bacteria, on the order of 0.2%. Our work suggests an unorthodox design concept to control and manipulate the dynamic behavior of soft active matter and opens the door for potential biosensing and biomedical applications. PMID:24474746

  15. Living liquid crystals.

    PubMed

    Zhou, Shuang; Sokolov, Andrey; Lavrentovich, Oleg D; Aranson, Igor S

    2014-01-28

    Collective motion of self-propelled organisms or synthetic particles, often termed "active fluid," has attracted enormous attention in the broad scientific community because of its fundamentally nonequilibrium nature. Energy input and interactions among the moving units and the medium lead to complex dynamics. Here, we introduce a class of active matter--living liquid crystals (LLCs)--that combines living swimming bacteria with a lyotropic liquid crystal. The physical properties of LLCs can be controlled by the amount of oxygen available to bacteria, by concentration of ingredients, or by temperature. Our studies reveal a wealth of intriguing dynamic phenomena, caused by the coupling between the activity-triggered flow and long-range orientational order of the medium. Among these are (i) nonlinear trajectories of bacterial motion guided by nonuniform director, (ii) local melting of the liquid crystal caused by the bacteria-produced shear flows, (iii) activity-triggered transition from a nonflowing uniform state into a flowing one-dimensional periodic pattern and its evolution into a turbulent array of topological defects, and (iv) birefringence-enabled visualization of microflow generated by the nanometers-thick bacterial flagella. Unlike their isotropic counterpart, the LLCs show collective dynamic effects at very low volume fraction of bacteria, on the order of 0.2%. Our work suggests an unorthodox design concept to control and manipulate the dynamic behavior of soft active matter and opens the door for potential biosensing and biomedical applications. PMID:24474746

  16. Superconductor-insulator phase transition in single-crystal La2-xSrxCuO4 films grown by the liquid-phase epitaxy method

    NASA Astrophysics Data System (ADS)

    Islam, A. T. M. Nazmul; Hitosugi, T.; Dudzik, E.; Hasegawa, T.; Ueda, S.; Takano, Y.; Islam, F. N.; Khan, M. K. R.; Islam, M. N.; Islam, A. K. M. A.; Watauchi, S.; Tanaka, I.

    2009-07-01

    We have studied epitaxial strain effect on superconductivity in single-crystal La2-xSrxCuO4 films grown by liquid-phase epitaxy method on (001) La2CuO4 substrates. Due to lattice mismatch the as-grown films suffer a compressive strain in the c axis and an orthorhombic tensile strain on the ab plane with almost no relaxation up to several micrometers thickness. Our results show that La2-xSrxCuO4 (0.10≤x≤0.15) , which is superconducting in the bulk at low temperatures, transforms to an insulating state under such strain.

  17. On dewetting of thin films due to crystallization (crystallization dewetting).

    PubMed

    Habibi, Mehran; Rahimzadeh, Amin; Eslamian, Morteza

    2016-03-01

    Drying and crystallization of a thin liquid film of an ionic or a similar solution can cause dewetting in the resulting thin solid film. This paper aims at investigating this type of dewetting, herein termed "crystallization dewetting", using PbI2 dissolved in organic solvents as the model solution. PbI2 solid films are usually used in X-ray detection and lead halide perovskite solar cells. In this work, PbI2 films are fabricated using spin coating and the effect of major parameters influencing the crystallization dewetting, including the type of the solvent, solution concentration, drying temperature, spin speed, as well as imposed vibration on the substrate are studied on dewetting, surface profile and coverage, using confocal scanning laser microscopy. Simplified hydrodynamic governing equations of crystallization in thin films are presented and using a mathematical representation of the process, it is phenomenologically demonstrated that crystallization dewetting occurs due to the absorption and consumption of the solution surrounding a growing crystal. Among the results, it is found that a low spin speed (high thickness), a high solution concentration and a low drying temperature promote crystal growth, and therefore crystallization dewetting. It is also shown that imposed vibration on the substrate can affect the crystal size and crystallization dewetting. PMID:26993991

  18. Vertically aligned liquid crystals on a {gamma}-Al{sub 2}O{sub 3} alignment film using ion-beam irradiation

    SciTech Connect

    Park, Hong-Gyu; Kim, Young-Hwan; Oh, Byeong-Yun; Lee, Won-Kyu; Kim, Byoung-Yong; Seo, Dae-Shik; Hwang, Jeong-Yeon

    2008-12-08

    Using ion-beam (IB) irradiation, liquid crystals (LCs) were vertically aligned (VA) on a {gamma}-Al{sub 2}O{sub 3} alignment film. Atomic-layer deposition was used to orient the LCs on high-quality {gamma}-Al{sub 2}O{sub 3} alignment films. The LC molecule orientation indicates the vertical direction of the atomic-layer-deposited {gamma}-Al{sub 2}O{sub 3} alignment films. X-ray photoelectron spectroscopy showed that IB irradiation changed the chemical structure, shifting the Al-O binding energy and altering the Al-O bonding intensity. The low-voltage transmittance characteristics of the VA LC displays on the {gamma}-Al{sub 2}O{sub 3} alignment films were also measured, showing reduced voltage and power requirements.

  19. Liquid Crystals in Tribology

    PubMed Central

    Carrión, Francisco-José; Martínez-Nicolás, Ginés; Iglesias, Patricia; Sanes, José; Bermúdez, María-Dolores

    2009-01-01

    Two decades ago, the literature dealing with the possible applications of low molar mass liquid crystals, also called monomer liquid crystals (MLCs), only included about 50 references. Today, thousands of papers, conference reports, books or book chapters and patents refer to the study and applications of MLCs as lubricants and lubricant additives and efforts are made to develop new commercial applications. The development of more efficient lubricants is of paramount technological and economic relevance as it is estimated that half the energy consumption is dissipated as friction. MLCs have shown their ability to form ordered boundary layers with good load-carrying capacity and to lower the friction coefficients, wear rates and contact temperature of sliding surfaces, thus contributing to increase the components service life and to save energy. This review includes the use of MLCs in lubrication, and dispersions of MLCs in conventional polymers (PDMLCs). Finally, new lubricating system composed of MLC blends with surfactants, ionic liquids or nanophases are considered. PMID:19865534

  20. Tunable liquid crystal photonic devices

    NASA Astrophysics Data System (ADS)

    Fan, Yun-Hsing

    2005-07-01

    Liquid crystal (LC)-based adaptive optics are important for information processing, optical interconnections, photonics, integrated optics, and optical communications due to their tunable optical properties. In this dissertation, we describe novel liquid crystal photonic devices. In Chap. 3, we demonstrate a novel electrically tunable-efficiency Fresnel lens which is devised for the first time using nanoscale PDLC. The tunable Fresnel lens is very desirable to eliminate the need of external spatial light modulator. The nanoscale LC devices are polarization independent and exhibit a fast response time. Because of the small droplet sizes, the operating voltage is higher than 100 Vrms. To lower the driving voltage, in Chap. 2 and Chap. 3, we have investigated tunable Fresnel lens using polymer-network liquid crystal (PNLC) and phase-separated composite film (PSCOF). The operating voltage is below 12 Vrms. The PNLC and PSCOF devices are polarization dependent. To overcome this shortcoming, stacking two cells with orthogonal alignment directions is a possibility. Using PNLC, we also demonstrated LC blazed grating. The diffraction efficiency of these devices is continuously controlled by the electric field. We also develop a system with continuously tunable focal length. A conventional mechanical zooming system is bulky and power hungry. In Chap. 4, we developed an electrically tunable-focus flat LC spherical lens and microlens array. A huge tunable range from 0.6 m to infinity is achieved by the applied voltage. In Chap. 5, we describe a LC microlens array whose focal length can be switched from positive to negative by the applied voltage. The fast response time feature of our LC microlens array will be very helpful in developing 3-D animated images. In Chap. 6, we demonstrate polymer network liquid crystals for switchable polarizers and optical shutters. The use of dual-frequency liquid crystal and special driving scheme leads to a sub-millisecond response time. In

  1. A novel light trapping concept for liquid phase crystallized poly-Si thin-film solar cells on periodically nanoimprinted glass substrates

    NASA Astrophysics Data System (ADS)

    Preidel, V.; Amkreutz, D.; Sontheimer, T.; Back, F.; Rudigier-Voigt, E.; Rech, B.; Becker, C.

    2013-09-01

    Large grained polycrystalline silicon (poly-Si) absorbers were realized by electron beam induced liquid phase crystallization on 2 μm periodically patterned glass substrates and processed into a-Si:H/poly-Si heterojunction thin-film solar cells. The substrates were structured by nanoimprint lithography using a UV curable hybrid polymer sol-gel resist, resulting in a glassy high-temperature stable micro-structured surface. Structural analysis yielded high quality poly-Si material with grain sizes up to several hundred micrometers. An increase of absorption and an enhancement of the external quantum efficiency in the NIR as a consequence of light trapping due to the micro-structured poly-Si/substrate interface were observed. Up to now, only moderate solar cell parameters, a maximum open-circuit voltage of 413 mV and a short-circuit current density of 8 mA cm-2, were measured being significantly lower to what can be achieved with liquid phase crystallized poly-Si thin-film solar cells on planar glass substrates indicating that the substrate texture has impact on the electrical material quality. By reduction of the SiC interlayer thickness at the micro-structured poly- Si/substrate interface defect-related parasitic absorption was considerably minimized. This encourages the implementation of nanoimprinted tailored substrate textures for light trapping in liquid phase crystallized poly-Si thinfilm solar cells.

  2. Temperature and orientation dependence of surface relief gratings based on dye-doped polymer film with the interface of nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Huang, Shuan-Yu; Huang, Bing-Yau; Hung, Wen-Chi; Yu, Kai-Yu; Cheng, Wen-Shou; Kuo, Chie-Tong

    2011-02-01

    The formation of surface relief grating on dye-doped polymer film with the interface of nematic liquid crystals has been investigated by means of the holographic technique. The first-order diffraction efficiency of surface relief grating depends on the temperature and the orientation of molecular director in the interface of nematic liquid crystals. The diffraction efficiency is roughly independent of thermal fluctuations of molecular director in the most part of nematic temperature range and apparently drops near the transition temperature. The morphology of surface relief grating demonstrates that the surface modulation is larger for molecular director parallel to the groove direction. The experimental result also shows that the first-order diffraction efficiency is dependent on the surface modulation of surface relief grating.

  3. Wetting of cholesteric liquid crystals.

    PubMed

    Silvestre, Nuno M; Figueirinhas Pereira, Maria Carolina; Bernardino, Nelson R; Telo da Gama, Margarida M

    2016-02-01

    We investigate theoretically the wetting properties of cholesteric liquid crystals at a planar substrate. If the properties of substrate and of the interface are such that the cholesteric layers are not distorted, the wetting properties are similar to those of a nematic liquid crystal. If, on the other hand, the anchoring conditions force the distortion of the liquid crystal layers the wetting properties are altered, the free cholesteric-isotropic interface is non-planar and there is a layer of topological defects close to the substrate. These deformations can either promote or hinder the wetting of the substrate by a cholesteric, depending on the properties of the cholesteric liquid crystal. PMID:26920516

  4. Photo-aligned blend films of azobenzene-containing polyimides with and without side-chains for inducing inclined alignment of liquid crystal molecules

    NASA Astrophysics Data System (ADS)

    Usami, Kiyoaki; Sakamoto, Kenji

    2011-08-01

    We have succeeded in controlling the pretilt angle of liquid crystal (LC) molecules over the whole range of 0 to 90° by using photo-aligned blend films of two azobenzene-containing polyimides (Azo-PIs) with and without side-chains. The Azo-PIs were synthesized from pyromellitic dianhydride and a mixture of 4,4'-diaminoazobenzene and 4-(4'-propylbi(cyclohexan)-4-yl)phenyl 3,5-diaminobenzoate (PBCP-DABA). PBCP-DABA is a diamine to introduce a side-chain structure into the polyimide. Defect-free uniform LC alignment was obtained in the pretilt angle (θp) ranges of θp ≤ 11° and θp ≥ 78°. Previously, we reported that the pretilt angle can be controlled using pure photo-aligned films of Azo-PIs with different molar fractions of PBCP-DABA. For the pure photo-aligned films, the defect-free pretilt angle ranges were θp < 5° and θp ≥ 85°. These results suggest that the azimuthal anchoring strength of the blend Azo-PI film is stronger than that of the pure films of Azo-PIs with side-chains, at least for the pretilt angle range from 5 to 11°. We found that the defect-free pretilt angle range can be extended by using the blend Azo-PI films instead of the pure Azo-PI films.

  5. A droplet manipulation on a liquid crystal and polymer composite film as a concentrator and a sun tracker for a concentrating photovoltaic system

    NASA Astrophysics Data System (ADS)

    Tsou, Yu-Shih; Chang, Kai-Han; Lin, Yi-Hsin

    2013-06-01

    We demonstrate a droplet manipulation on a liquid crystal and polymer composite film (LCPCF) as a concentrator and a sun tracker for a concentrating photovoltaic (CPV) system with a steady output electric power. The CPV system adopts a liquid lens on LCPCF whose curvature is not only tunable but position is also bistably switchable based on liquid crystal orientations on LCPCF. The change of curvature of the liquid lens results in a tunable concentration ratio which helps to increase photocurrent at a low illumination and prevent the effect of the series resistance at a high illumination. Moreover, the change of the position of the liquid lens helps to track sun owing to sun movement. Therefore, the output power of such a system is steady no matter the sunlight condition and the angle of incident light. The operating principles and experiments are investigated. The concept in this paper can be extended to design optical components for obtaining steady output power of the solar cell at indoor or outdoor use and also tracking sunlight.

  6. Voxelated liquid crystal elastomers

    NASA Astrophysics Data System (ADS)

    Ware, Taylor H.; McConney, Michael E.; Wie, Jeong Jae; Tondiglia, Vincent P.; White, Timothy J.

    2015-02-01

    Dynamic control of shape can bring multifunctionality to devices. Soft materials capable of programmable shape change require localized control of the magnitude and directionality of a mechanical response. We report the preparation of soft, ordered materials referred to as liquid crystal elastomers. The direction of molecular order, known as the director, is written within local volume elements (voxels) as small as 0.0005 cubic millimeters. Locally, the director controls the inherent mechanical response (55% strain) within the material. In monoliths with spatially patterned director, thermal or chemical stimuli transform flat sheets into three-dimensional objects through controlled bending and stretching. The programmable mechanical response of these materials could yield monolithic multifunctional devices or serve as reconfigurable substrates for flexible devices in aerospace, medicine, or consumer goods.

  7. Transparent conductive ZnInSnO-Ag-ZnInSnO multilayer films for polymer dispersed liquid-crystal based smart windows

    NASA Astrophysics Data System (ADS)

    Kim, Eun Mi; Choi, In-Seok; Oh, Jeong-Pyo; Kim, Young-Baek; Lee, Jong-Ho; Choi, Yong-Sung; Cho, Jung-Dae; Kim, Yang-Bae; Heo, Gi-Seok

    2014-09-01

    Multilayer transparent films with electrical resistances lower than those in conventionally used transparent conductive electrodes were prepared at room temperature on glass substrates in an RF/DC magnetron sputtering system. The multilayer structure of the films consisted of three layers, ZnInSnO (ZITO)-Ag-ZITO. The optical and electrical properties of the multilayer structures were investigated with respect to the thickness of each ZITO-Ag-ZITO layer. Transparent conductive films with a sheet resistance of 9.4 Ω/square and an average transmittance of 92% at 550 nm were obtained at the following thicknesses of the glass substrate: ZITO (100 nm)-Ag (8 nm)-ZITO (42 nm). The surface roughness (RRMS) of the obtained ZITO-Ag-ZITO multilayer films was below 0.8 nm. Overall, the properties of the ZITO-Ag-ZITO multilayer films were comparable or superior to those of other multilayers such as InSnO (ITO)-Ag-ITO and InZnO (IZO)-Ag-IZO. The deposited ZITO single layer and ZITO-Ag-ZITO multilayer films were used in the fabrication of polymer-dispersed liquid-crystal (PDLC)-based smart windows. The ZITO-Ag-ZITO multilayer-based smart windows exhibited a lower operating voltage (16 V) and a higher cutoff rate of infrared light than ITO or ZITO-based smart windows 20-26 V. However, they showed a lower PDLC-ON transmittance than ITO-based smart windows.

  8. Intense pulsed light induced crystallization of a liquid-crystalline polymer semiconductor for efficient production of flexible thin-film transistors.

    PubMed

    Yang, Hee Yeon; Park, Han-Wool; Kim, Soo Jin; Hong, Jae-Min; Kim, Tae Whan; Kim, Do Hwan; Lim, Jung Ah

    2016-02-14

    Here we demonstrated the split-second crystallization of a liquid-crystalline conjugated polymer semiconductor induced by irradiation with intense pulsed white light (IPWL) for the efficient improvement of electrical properties of flexible thin film transistors. A few seconds of IPWL irradiation of poly(didodecylquaterthiophene-alt-didodecylbithiazole) (PQTBTz-C12) thin films generated heat energy through the photo-thermal effect, leading to the crystallization of PQTBTz-C12 and formation of nodule-like nanostructures. The IPWL-induced crystallization of PQTBTz-C12 resulted in a threefold improvement in the field-effect mobility of thin film transistors compared to as-prepared devices. The conformational change of the PQTBTz-C12 chains was found to be strongly related to the irradiation fluence. As a proof-of-concept, the IPWL treatment was successfully applied to the PQTBTz-C12 layer in flexible transistors based on plastic substrates. The performance of these flexible devices was significantly improved after only 0.6 s of IPWL treatment, without deformation of the plastic substrate. PMID:26795202

  9. Modeling liquid crystal polymeric devices

    NASA Astrophysics Data System (ADS)

    Gimenez Pinto, Vianney Karina

    The main focus of this work is the theoretical and numerical study of materials that combine liquid crystal and polymer. Liquid crystal elastomers are polymeric materials that exhibit both the ordered properties of the liquid crystals and the elastic properties of rubbers. Changing the order of the liquid crystal molecules within the polymer network can induce shape change. These materials are very valuable for applications such as actuators, sensors, artificial muscles, haptic displays, etc. In this work we apply finite element elastodynamics simulations to study the temperature induced shape deformation in nematic elastomers with complex director microstructure. In another topic, we propose a novel numerical method to model the director dynamics and microstructural evolution of three dimensional nematic and cholesteric liquid crystals. Numerical studies presented in this work are in agreement with experimental observations and provide insight into the design of application devices.

  10. Topographic-pattern-induced homeotropic alignment of liquid crystals.

    PubMed

    Yi, Youngwoo; Lombardo, Giuseppe; Ashby, Neil; Barberi, Riccardo; Maclennan, Joseph E; Clark, Noel A

    2009-04-01

    Polymer films nanoimprinted with checkerboard patterns of square wells align calamitic (rodlike) liquid crystals vertically, horizontally, or tilted depending on the depth/width ratio of the wells. The liquid crystal prefers planar orientation on polymer films that are smooth but when the films are topographically patterned, the increasing elastic energy density as the wells become narrower eventually overcomes the surface anchoring of the polymer and the liquid crystal director field makes a transition from planar to homeotropic. Similar effects have been demonstrated in both nematics and smectics, and the behavior is confirmed by theory and computer simulation. PMID:19518244

  11. Pretilt Angle of Liquid Crystals on Polyimide Films Photo-Aligned by Single Oblique Angle Irradiation with Un-polarized Light

    NASA Astrophysics Data System (ADS)

    Sakamoto, Kenji; Usami, Kiyoaki; Sasaki, Toru; Uehara, Yoichi; Ushioda, Sukekatsu

    2006-04-01

    We have investigated the pretilt angle of liquid crystal (LC) molecules induced by photo-aligned films of polyimide containing azobenzene in the backbone structure (Azo-PI). The photo-alignment treatment was single oblique-angle irradiation with un-polarized light (UP-L) at an incidence angle of 45°. It was performed on films of polyamic acid (Azo-PAA) using a light source of wavelength 340-500 nm. The photo-treated films of Azo-PAA were converted into Azo-PI by thermal imidization. The pretilt angle of LC molecules was determined by a crystal rotation method. The pretilt angle increased with the UP-L exposure, reaching ˜3° at 880 J/cm2. For UP-L exposures above 440 J/cm2 the LC alignment was uniform and defect-free, while marbled textures were observed below 220 J/cm2. This is due to the small in-plane anisotropy of the photo-aligned Azo-PI films.

  12. Liquid crystal filled diffraction gratings

    NASA Astrophysics Data System (ADS)

    Jepsen, Mary Lou

    1997-12-01

    Liquid crystal technology is becoming increasingly important for flat displays in electronics, computers and TV. Most liquid crystal displays currently made have as their basic unit, two flat surfaces each coated with a transparent, conductive layer, between which a thin layer of liquid crystals is sandwiched. The work detailed in this dissertation is based on a modification of the basic liquid crystal unit and studies the properties of structures which consist of certain anisotropic liquid crystals confined between a flat substrate and a corrugated one, each substrate being transparent and having a thin trans-parent conductive coating. Without an applied electric field, the refractive indices of the liquid crystal and corrugated substrate do not match, and thus strong diffraction occurs. When an electric field is applied to the device, the liquid crystals are re-oriented so that the refractive indices now match, and the device behaves as a uniform slab of homogeneous material producing no diffraction. Rigorous coupled wave analysis was developed to design the ideal devices and analyze the performance of our experimental ones. 99% diffraction efficiencies in single wavelength polarized illumination are shown to be possible with this class of devices. The best device we fabricated showed a 62% distraction efficiency, as our fabrication process roughened the top surface of the device so that (≃30%) of the incident light was lost to scatter. Several new fabrication processes are proposed to eliminate this scatter problem, and that details of fabrication processes thus far attempted are outlined.

  13. Instability of liquid crystal elastomers

    NASA Astrophysics Data System (ADS)

    An, Ning; Li, Meie; Zhou, Jinxiong

    2016-01-01

    Nematic liquid crystal elastomers (LCEs) contract in the director direction but expand in other directions, perpendicular to the director, when heated. If the expansion of an LCE is constrained, compressive stress builds up in the LCE, and it wrinkles or buckles to release the stored elastic energy. Although the instability of soft materials is ubiquitous, the mechanism and programmable modulation of LCE instability has not yet been fully explored. We describe a finite element method (FEM) scheme to model the inhomogeneous deformation and instability of LCEs. A constrained LCE beam working as a valve for microfluidic flow, and a piece of LCE laminated with a nanoscale poly(styrene) (PS) film are analyzed in detail. The former uses the buckling of the LCE beam to occlude the microfluidic channel, while the latter utilizes wrinkling or buckling to measure the mechanical properties of hard film or to realize self-folding. Through rigorous instability analysis, we predict the critical conditions for the onset of instability, the wavelength and amplitude evolution of instability, and the instability patterns. The FEM results are found to correlate well with analytical results and reported experiments. These efforts shed light on the understanding and exploitation of the instabilities of LCEs.

  14. Liquid encapsulated crystal growth

    NASA Technical Reports Server (NTRS)

    Morrison, Andrew D. (Inventor)

    1989-01-01

    Low-defect crystals are grown in a closed ampoule under a layer of encapsulant. After crystal growth, the crystal is separated from the melt and moved into the layer of encapsulant and cooled to a first temperature at which crystal growth stops. The crystal is then moved into the inert gas ambient in the ampoule and further cooled. The crystal can be separated from the melt by decanting the melt into an adjacent reservoir or by rotating the ampoule to rotate the crystal into the encapsulant layer.

  15. Liquid encapsulated crystal growth

    NASA Technical Reports Server (NTRS)

    Morrison, Andrew D. (Inventor)

    1987-01-01

    Low-defect crystals are grown in a closed ampoule under a layer of encapsulant. After crystal growth, the crystal is separated from the melt and moved into the layer of encapsulant and cooled to a first temperature at which crystal growth stops. The crystal is then moved into the inert gas ambient in the ampoule and further cooled. The crystal can be separated from the melt by decanting the melt into and adjacent reservoir or by rotating the ampoule to rotate the crystal into the encapsulant layer.

  16. Crystals, liquid crystals and superfluid helium on curved surfaces

    NASA Astrophysics Data System (ADS)

    Vitelli, Vincenzo

    In this thesis we study the ground state of ordered phases grown as thin layers on substrates with smooth spatially varying Gaussian curvature. The Gaussian curvature acts as a source for a one body potential of purely geometrical origin that controls the equilibrium distribution of the defects in liquid crystal layers, thin films of He4 and two dimensional crystals on a frozen curved surface. For superfluids, all defects are repelled (attracted) by regions of positive (negative) Gaussian curvature. For liquid crystals, charges between 0 and 4pi are attracted by regions of positive curvature while all other charges are repelled. As the thickness of the liquid crystal film increases, transitions between two and three dimensional defect structures are triggered in the ground state of the system. Thin spherical shells of nematic molecules with planar anchoring possess four short 12 disclination lines but, as the thickness increases, a three dimensional escaped configuration composed of two pairs of half-hedgehogs becomes energetically favorable. Finally, we examine the static and dynamical properties that distinguish two dimensional crystals constrained to lie on a curved substrate from their flat space counterparts. A generic mechanism of dislocation unbinding in the presence of varying Gaussian curvature is presented. We explore how the geometric potential affects the energetics and dynamics of dislocations and point defects such as vacancies and interstitials.

  17. Photoalignment of liquid crystals and development of novel glassy liquid crystals

    NASA Astrophysics Data System (ADS)

    Kim, Chunki

    This thesis consists of two parts: (i) photoalignment of liquid crystals, including a nematic fluid, a glassy-namtic pentafluorene, and a cholesteric glassy liquid crystal; and (ii) development of cholesteric glassy liquid crystals comprising a hybrid chiral-nematic mesogen and of photochromic glassy liquid crystals with dithienylethene cores. Photoalignment behaviors were interpreted in terms of the kinetics of axis-selective photodimerization, the rotational mobility of pendant coumarin monomers, and the coumarin monomer's and dimer's absorption dipoles located by computational chemistry. Coumarin-containing polymethacrylate films were employed to elucidate the roles played by coumarin monomer's and dimer's orientational order, their relative abundance, and the energetics of their interactions with overlying liquid crystals. Under favorable conditions, photoalignment was shown to be comparable to rubbing polymimide film in the ability to orient liquid crystals. A hole-conducting copolymer film comprising triphenylamine and coumarin was used to unravel how the dilution of coumarin monomers, polarization ratio of UV-irradiation to induce dimerization of coumarin, and triplet energy transfer from triphenylamine to coumarin moieties affect the quality of photoalignment and its cross-over behavior. Cholesteric glassy liquid crystals are comprised of a helical stack of quasi-nematic layers frozen in the solid state capable of selective wavelength reflection with simultaneous circular polarization. Potentially applications of this material class include robust non-absorbing circular polarizers, optical notch filters and reflectors, and polarized light-emitters and lasers. To facilitate material synthesis over prior arts, hybrid chiral-nematic mesogens were chemically bonded to benzene via enantiomeric 2-methylpropylene spacers, exhibiting a broad cholesteric fluid temperature range. Phase transition temperatures, glass-forming ability, morphological stability against

  18. Investigaction of Switching Behavior in a Ferroelectric Liquid Crystal Aligned on Obliquely Deposited SiO Films

    NASA Astrophysics Data System (ADS)

    Yamada, Yuichiro; Yamamoto, Norio; Inoue, Tetsuya; Orihara, Hiroshi; Ishibashi, Yoshihiro

    1989-01-01

    The effect of oblique evaporation of SiO on the chevron structure and the switching behavior in a ferroelectric liquid crystal have been investigated by means of the X-ray diffraction and the stroboscopic micrographs. It is found experimentally that the chevron direction and the domain structure appearing during the switching are determined by the direction of incidence of evaporated SiO. On the basis of the experimental results, it is clarified that the bow and the stern of the boat-shaped domain correspond to {+}2π and {-}2π internal disclinations, respectively. The structure of the zig-zag defect is determined.

  19. Magnetoactive Liquid Crystal Elastomers

    NASA Astrophysics Data System (ADS)

    Winkler, Moritz; Kaiser, Andreas; Krause, Simon; Finkelmann, Heino; Schmidt, Annette

    2008-03-01

    Liquid crystal elastomers (LCEs) offer an interesting spectrum of properties, including temperature induced, fully reversible shape changes connected with considerable development of pulling force, and synthetic diversity. In order to take advantage of LCEs for an extended number of viable devices, it is desirable to trigger such shape changes with electromagnetic fields rather than temperature changes. Magnetoactive LCEs are accessible by the incorporation of superparamagnetic Fe3O4 nanoparticles into oriented nematic side-chain LCEs and offer a contactless activation pathway to activate the nematic-to-isotrope transition by local magnetic heating in external fields due to relaxational processes. In magnetomechanical measurements at 300 kHz and 43 kA.m-1, a sample contraction of up to 30 % is observed under field influence, that is fully released when the field is switched off. The load evolved reaches 60 kPa and more. The materials' ability to respond to a contactless electromagnetic stimulus with a well-defined contraction can be of use for various actuator applications.

  20. Errors in thermochromic liquid crystal thermometry

    NASA Astrophysics Data System (ADS)

    Wiberg, Roland; Lior, Noam

    2004-09-01

    This article experimentally investigates and assesses the errors that may be incurred in the hue-based thermochromic liquid crystal thermochromic liquid crystal (TLC) method, and their causes. The errors include response time, hysteresis, aging, surrounding illumination disturbance, direct illumination and viewing angle, amount of light into the camera, TLC thickness, digital resolution of the image conversion system, and measurement noise. Some of the main conclusions are that: (1) The 3×8 bits digital representation of the red green and blue TLC color values produces a temperature measurement error of typically 1% of the TLC effective temperature range, (2) an eight-fold variation of the light intensity into the camera produced variations, which were not discernable from the digital resolution error, (3) this temperature depends on the TLC film thickness, and (4) thicker films are less susceptible to aging and thickness nonuniformities.

  1. Thermotropic liquid crystals from biomacromolecules

    PubMed Central

    Liu, Kai; Chen, Dong; Marcozzi, Alessio; Zheng, Lifei; Su, Juanjuan; Pesce, Diego; Zajaczkowski, Wojciech; Kolbe, Anke; Pisula, Wojciech; Müllen, Klaus; Clark, Noel A.; Herrmann, Andreas

    2014-01-01

    Complexation of biomacromolecules (e.g., nucleic acids, proteins, or viruses) with surfactants containing flexible alkyl tails, followed by dehydration, is shown to be a simple generic method for the production of thermotropic liquid crystals. The anhydrous smectic phases that result exhibit biomacromolecular sublayers intercalated between aliphatic hydrocarbon sublayers at or near room temperature. Both this and low transition temperatures to other phases enable the study and application of thermotropic liquid crystal phase behavior without thermal degradation of the biomolecular components. PMID:25512508

  2. Control of liquid crystal molecular orientation using ultrasound vibration

    NASA Astrophysics Data System (ADS)

    Taniguchi, Satoki; Koyama, Daisuke; Shimizu, Yuki; Emoto, Akira; Nakamura, Kentaro; Matsukawa, Mami

    2016-03-01

    We propose a technique to control the orientation of nematic liquid crystals using ultrasound and investigate the optical characteristics of the oriented samples. An ultrasonic liquid crystal cell with a thickness of 5-25 μm and two ultrasonic lead zirconate titanate transducers was fabricated. By exciting the ultrasonic transducers, the flexural vibration modes were generated on the cell. An acoustic radiation force to the liquid crystal layer was generated, changing the molecular orientation and thus the light transmission. By modulating the ultrasonic driving frequency and voltage, the spatial distribution of the molecular orientation of the liquid crystals could be controlled. The distribution of the transmitted light intensity depends on the thickness of the liquid crystal layer because the acoustic field in the liquid crystal layer is changed by the orientational film.

  3. Optical modeling of liquid crystal biosensors

    NASA Astrophysics Data System (ADS)

    Hwang, Dae Kun; Rey, Alejandro D.

    2006-11-01

    Optical simulations of a liquid crystal biosensor device are performed using an integrated optical/textural model based on the equations of nematodynamics and two optical methods: the Berreman optical matrix method [J. Opt. Soc. Am. 62, 502 (1972)] and the discretization of the Maxwell equations based on the finite difference time domain (FDTD) method. Testing the two optical methods with liquid crystal films of different degrees of orientational heterogeneities demonstrates that only the FDTD method is suitable to model this device. Basic substrate-induced texturing process due to protein adsorption gives rise to an orientation correlation function that is nearly linear with the transmitted light intensity, providing a basis to calibrate the device. The sensitivity of transmitted light to film thickness, protein surface coverage, and wavelength is established. A crossover incident light wavelength close to λco≈500nm is found, such that when λ >λco thinner films are more sensitive to the amount of protein surface coverage, while for λ <λco the reverse holds. In addition it is found that for all wavelengths the sensitivity increases with the amount of protein coverage. The integrated device model based on FDTD optical simulations in conjunction with the Landau-de Gennes nematodynamics model provides a rational basis for further progress in liquid crystal biosensor devices.

  4. The effect of salt on ion adsorption on a SiOx alignment film and reduced conductivity of a liquid crystal host

    NASA Astrophysics Data System (ADS)

    Huang, Yi; Bhowmik, Achintya; Bos, Philip J.

    2012-01-01

    It is shown that the addition of salt to liquid crystal cells, using a SiOx alignment layer, can actually reduce the ion concentration. This seeming contradiction may be explained by the ability of salt to complex with water and to aid the drying of the liquid crystal material. The results show a pathway to purifying liquid crystal devices to the extent needed for low-power low-refresh rate displays for e-book applications.

  5. Effects of Dilution, Polarization Ratio, and Energy Transfer on Photoalignment of Liquid Crystals Using Coumarin-Containing Polymer Films

    SciTech Connect

    Kim, C.; Wallace, J.U.; Chen, S.H.; Merkel, P.B.

    2008-05-27

    Orientation of a nematic liquid crystal, E-7, was investigated using coumarin-containing polymethacrylates to elucidate the roles played by the dilution of coumarin and the polarization ratio of irradiation. Dilution of coumarin by inert moieties had adverse effects on a nematic cell’s number density of disclinations and its orientational order parameter in the parallel but not the perpendicular regime. In addition, both dilution of coumarin and a decreasing polarization ratio resulted in a lower extent of coumarin dimerization at crossover, Xc. The significantly reduced Xc in a homopolymer comprising triphenylamine and coumarin was attributed to the dilution of coumarin and the diminished polarization ratio caused by competing absorption with simultaneous triplet energy transfer from triphenylamine to coumarin moieties.

  6. Current trends in studies on reverse-mode polymer dispersed liquid-crystal films — A review

    NASA Astrophysics Data System (ADS)

    Ahmad, Farzana; Jamil, M.; Jeon, Y. J.

    2014-07-01

    Reverse-mode polymer dispersed liquid crystals (PDLCs) comprise an important new class of materials for optical device applications. Generally reverse-mode PDLCs are transparent and opaque in the absence and presence of an external field, respectively. Display devices based on reverse-mode PDLC technology are useful for large-area displays; because their fabrication for manufacturing shutters is considered to be easier and faster, they are also employed for automotive technology and smart windows. These devices can be operated at a low voltage, which conserves energy in intelligent-device applications. This work presents a comprehensive review of past research regarding reverse-mode PDLCs and includes the advantageous features, applications, and various fabrication methods of reverse-mode PDLCs and photo-chromic reverse-mode PDLCs. In addition, some new features of this technology that have recently been reported and future investigations by a variety of research groups are presented.

  7. Liquid film target impingement scrubber

    DOEpatents

    McDowell, William J.; Coleman, Charles F.

    1977-03-15

    An improved liquid film impingement scrubber is provided wherein particulates suspended in a gas are removed by jetting the particle-containing gas onto a relatively small thin liquid layer impingement target surface. The impingement target is in the form of a porous material which allows a suitable contacting liquid from a pressurized chamber to exude therethrough to form a thin liquid film target surface. The gas-supported particles collected by impingement of the gas on the target are continuously removed and flushed from the system by the liquid flow through each of a number of pores in the target.

  8. Deformations in chiral liquid crystals

    NASA Astrophysics Data System (ADS)

    Shibaev, Petr; Reddy, Kathryn; Bateman, Daniel; Iljin, Andrey

    2014-03-01

    Deformations and their relaxation in chiral liquid crystals are studied experimentally and theoretically in planar geometry for liquid crystalline mixtures of varying viscosities. It is shown by both methods that shear deformation in liquid crystals results in the inclination and extension of cholesteric helix in samples with high viscosity. Stretching deformation results in shrinking cholesteric helix. This leads to a possibility of detecting deformations on a nanometer scale by observing changes in selective reflection spectra. Theoretical model takes into account elastic strain of physical network formed by the entanglements between components of liquid crystalline mixture, viscosity of the matrix and elasticity of the liquid crystalline subsystem. This allows to model mechanical response of the matrix with different viscosities to stretching and shear of various amplitudes. It is shown that relaxation of the cholesteric helix takes much shorter time than mechanical relaxation of the mixtures. The model perfectly agrees with experimental data. The model is compared with theoretical model describing behavior of elastomers.

  9. Process Techniques of 15-inch Full-Color High-Resolution Liquid Crystal Displays Addressed by a-Si Thin Film Transistors

    NASA Astrophysics Data System (ADS)

    Fujii, Kenichi; Tanaka, Yasuo; Honda, Kouichi; Tsutsu, Hiroshi; Koseki, Hideo; Hotta, Sadayoshi

    1992-12-01

    A 15 inch-diagonal-size full-color liquid crystal display (LCD) with 1152(× 3)× 900 pixels has been fabricated which enables a portable workstation with improved display performances. The process techniques used for this development are described, with special reference to metallization and dry etching. In multilevel metallization, Cr/Al interconnection is metallurgically undesirable. By contrast, the Cr/Ti/Al metal system provides excellent properties of contact resistivity and thermodynamical stability. Dry etching processes are developed for multilayered insulating films and metallization-related bilayers, namely SiO2/TaOx/SiNx/(i/n+)a-Si and a-Si/Ti, respectively. Fine patterning and easier stepcoverage of subsequently deposited layers are achieved.

  10. Band-tunable color cone lasing emission based on a dye-doped cholesteric liquid crystal film

    NASA Astrophysics Data System (ADS)

    Lee, Chia-Rong; Lin, S.-H.; Yeh, H.-C.; Ji, T.-D.; Liu, J.-H.; Yang, P.-C.; Mo, T.-S.; Huang, S.-Y.; Kuo, C.-T.; Lo, K.-Y.; Fuh, Andy Y.

    2010-02-01

    This investigation reports for the first time a novel phenomenon, called band-tunable color cone lasing emission (CCLE), based on a single-pitched one-dimensional photonic crystal-like dye-doped cholesteric liquid crystal (DDCLC) cell. The lasing wavelength in the CCLE pattern is distributed continuously at 676.7-595.6 nm as the oblique angle increases continuously from 0° to 50° relative to the helical axis. The variation of the lasing wavelength in the CCLE with the oblique angle is consistent with that of the wavelength at the long-wavelength edge (LWE) of the CLC reflection band (CLCRB) with the oblique angle. Simulation results obtained utilizing Berreman's 4×4 matrix method show that, at each oblique angle, the associated group velocity and density of photonic state (DOS) are near zero and large at the shortwavelength edge (SWE) and LWE of the CLCRB, respectively, and are in good agreement with experimental results. The particularly strong lasing ring emission at a cone angle of ~35° can be explained to be likely due to a special effect that, under the condition of overlap between the LWE of the CLCRB measured at 35° and the SWE of the CLCRB measured at 0°, the LWE and SWE fluorescence propagating along 35° and 0°, respectively, may indirectly enhance each other due to individual enhanced rate of spontaneous emission. Furthermore, the lasing band of the CCLE can be tuned from long-wavelength (deep red~orange) to short-wavelength (orange~green) regions by changing the concentration of the chiral or by the photo-irradiation on a DDCLC cell with a photoisoemerizable chiral dopant.

  11. Liquid crystal nanodroplets in solution

    NASA Astrophysics Data System (ADS)

    Brown, W. Michael; Petersen, Matt K.; Plimpton, Steven J.; Grest, Gary S.

    2009-01-01

    The aggregation of liquid crystal nanodroplets from a homogeneous solution is studied by molecular dynamics simulations. The liquid crystal particles are modeled as elongated ellipsoidal Gay-Berne particles while the solvent is modeled as spherical Lennard-Jones particles. Extending previous studies of Berardi et al. [J. Chem. Phys. 126, 044905 (2007)], we find that liquid crystal nanodroplets are not stable and that after sufficiently long times the nanodroplets always aggregate into a single large droplet. Results describing the droplet shape and orientation for different temperatures and shear rates are presented. The implementation of the Gay-Berne potential for biaxial ellipsoidal particles in a parallel molecular dynamics code is also briefly discussed.

  12. Liquid crystal nanodroplets in solution.

    PubMed

    Brown, W Michael; Petersen, Matt K; Plimpton, Steven J; Grest, Gary S

    2009-01-28

    The aggregation of liquid crystal nanodroplets from a homogeneous solution is studied by molecular dynamics simulations. The liquid crystal particles are modeled as elongated ellipsoidal Gay-Berne particles while the solvent is modeled as spherical Lennard-Jones particles. Extending previous studies of Berardi et al. [J. Chem. Phys. 126, 044905 (2007)], we find that liquid crystal nanodroplets are not stable and that after sufficiently long times the nanodroplets always aggregate into a single large droplet. Results describing the droplet shape and orientation for different temperatures and shear rates are presented. The implementation of the Gay-Berne potential for biaxial ellipsoidal particles in a parallel molecular dynamics code is also briefly discussed. PMID:19191407

  13. Ferroelectric Liquid Crystals In Aerodynamic Testing

    NASA Technical Reports Server (NTRS)

    Parmar, Devendra S.; Holmes, Harlan K.

    1994-01-01

    The process of simultaneous optical visualization and quantitative measurement of aerodynamic boundary layer parameters requires new concepts, materials and utilization methods. Measurement of shear stress in terms of the transmitted or the reflected light intensity from an aligned ferroelectric liquid crystal (FLC) thin (approx. 1 micron) film deposited on a glass substrate has been the first step in this direction. In this paper, recent progress in utilization of FLC thin films for skin friction measurement and for studying the state of the boundary layer in a wind tunnel environment is reviewed. The switching characteristics of FLCs have been used to measure pressure from the newly devised system of partially exposed polymer dispersed ferroelectric liquid crystals (PEPDFLCs). In this configuration, a PEPDFLC thin film (approx. 10-25 microns) is sandwiched between two transparent conducting electrodes, one a rigid surface and the other a flexible sheet such as polyvinylidene fluoride or mylar. The switching characteristics of the film are a function of the pressure applied to the flexible transparent electrode and a predetermined bias voltage across the two electrodes. The results, considering the dielectrics of composite media, are discussed.

  14. Liquid crystal assisted optical fibres.

    PubMed

    Wahle, M; Kitzerow, H-S

    2014-01-13

    Microstructured fibres which consist of a circular step index core and a liquid crystal inclusion running parallel to this core are investigated. The attenuation and electro-optic effects of light coupled into the core are measured. Coupled mode theory is used to study the interaction of core modes with the liquid crystal inclusion. The experimental and theoretical results show that these fibres can exhibit attenuation below 0.16 dB cm(-1) in off-resonant wavelength regions and still have significant electro-optic effects which can lead to a polarisation extinction of 6 dB cm(-1). PMID:24514987

  15. A liquid crystal adaptive lens

    NASA Technical Reports Server (NTRS)

    Kowel, S. T.; Cleverly, D.

    1981-01-01

    Creation of an electronically controlled liquid crystal lens for use as a focusing mechanism in a multi-element lens system or as an adaptive optical element is analyzed. Varying the index of refraction is shown to be equivalent to the shaping of a solid refracting material. Basic characteristics of liquid crystals, essential for the creation of a lens, are reviewed. The required variation of index of refraction is provided by choosing appropriate electrode voltages. The configuration required for any incoming polarization is given and its theoretical performance in terms of modulation transfer function derived.

  16. Ionic Liquid Crystals: Versatile Materials.

    PubMed

    Goossens, Karel; Lava, Kathleen; Bielawski, Christopher W; Binnemans, Koen

    2016-04-27

    This Review covers the recent developments (2005-2015) in the design, synthesis, characterization, and application of thermotropic ionic liquid crystals. It was designed to give a comprehensive overview of the "state-of-the-art" in the field. The discussion is focused on low molar mass and dendrimeric thermotropic ionic mesogens, as well as selected metal-containing compounds (metallomesogens), but some references to polymeric and/or lyotropic ionic liquid crystals and particularly to ionic liquids will also be provided. Although zwitterionic and mesoionic mesogens are also treated to some extent, emphasis will be directed toward liquid-crystalline materials consisting of organic cations and organic/inorganic anions that are not covalently bound but interact via electrostatic and other noncovalent interactions. PMID:27088310

  17. Copper sulfate: Liquid or crystals?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two separate experiments were conducted to evaluate copper toxicity to channel catfish and free-swimming Ichthyophthirius multifiliis or Ich (the stage of Ich that can be treated); the compounds we used were CuSO4 crystals and a non-chelated liquid CuSO4 product. In 96 hr tests conducted in aquaria...

  18. Liquid-Crystal Optical Correlator

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang

    1989-01-01

    Optical correlator uses commercially-available liquid-crystal television (LCTV) screen as spatial light modulator. Correlations with this device done at video frame rates, making such operations as bar-code recognition possible at reasonable cost. With further development, such correlator useful in automation, robotic vision, and optical image processing.

  19. Experiments with Cholesteric Liquid Crystals

    ERIC Educational Resources Information Center

    Fergason, James L.

    1970-01-01

    Describes laboratory experiments designed to demonstrate (1) the properties of cholesteric liquid crystals, (2) thermal mapping, (3) thermal diffusivity, (4) adiabatic expansion of rubber, and (5) measurement of radiated energy by a point source. Contains all of the information on materials and apparatus needed to perform the experiments.…

  20. Experimental investigation of the effects of compound angle holes on film cooling effectiveness and heat transfer performance using a transient liquid crystal thermometry technique

    NASA Astrophysics Data System (ADS)

    Seager, David J.; Liburdy, James A.

    1997-11-01

    To further understand the effect of both compound angle holes and hole shaping on film cooling, detailed heat transfer measurements were obtained using hue based thermochromic liquid crystal method. The data were analyzed to measure both the full surface adiabatic effectiveness and heat transfer coefficient. The compound angles that were evaluated consist of holes that were aligned 0 degrees, 45 degrees, 60 degrees and 90 degrees to the main cross flow direction. Hole shaping variations from the traditional cylindrical shaped hole include forward diffused and laterally diffused hole geometries. Geometric parameters that were selected were the length to diameter ratio of 3.0, and the inclination angle 35 degrees. A density ratio of 1.55 was obtained for all teste. For each set of conditions the blowing ratio was varied to be 0.88, 1.25, and 1.88. Adiabatic effectiveness was obtained using a steady state test, while an active heating surface was used to determine the heat transfer coefficient using a transient method. The experimental method provides a unique method of analyzing a three-temperature heat transfer problem by providing detailed surface transport properties. Based on these results for the different hole geometries at each blowing ratio conclusions are drawn relative to the effects of compound angle holes on the overall film cooling performance.

  1. Liquid-film electron stripper

    DOEpatents

    Gavin, Basil F.

    1986-01-01

    An improved liquid-film electron stripper particularly for high intensity heavy ion beams which produces constant regenerated, stable, free-standing liquid films having an adjustable thickness between 0.3 to 0.05 microns. The improved electron stripper is basically composed of at least one high speed, rotating disc with a very sharp, precision-like, ground edge on one said of the disc's periphery and with a highly polished, flat, radial surface adjacent the sharp edge. A fine stream of liquid, such as oil, impinges at a 90.degree. angle adjacent the disc's sharp outer edge. Film terminators, located at a selected distance from the disc perimeter are positioned approximately perpendicular to the film. The terminators support, shape, and stretch the film and are arranged to assist in the prevention of liquid droplet formation by directing the collected film to a reservoir below without breaking or interfering with the film. One embodiment utilizes two rotating discs and associated terminators, with the discs rotating so as to form films in opposite directions, and with the second disc being located down beam-line relative to the first disc.

  2. Liquid crystal photoalignment material based on chloromethylated polyimide

    SciTech Connect

    Zhong Zhenxin; Li Xiangdan; Lee, Seung Hee; Lee, Myong-Hoon

    2004-09-27

    We report a liquid crystal photoalignment material with high photosensitivity and excellent thermal stability. The chloromethylated aromatic polyimide exhibited defect-free homogeneous alignment of liquid crystals upon irradiation of polarized deep ultraviolet (UV) for 50 s. The aligning ability of the film was retained up to 210 deg. C, and the cell containing liquid crystals could be stored at 85 deg. C for more than 14 days without any deterioration. FT-IR and UV-vis spectra confirmed that the alignment was induced by photodecomposition of polyimide, drastically accelerated by the introduction of chloromethyl side group.

  3. Liquid crystal polyester thermosets

    DOEpatents

    Benicewicz, Brian C.; Hoyt, Andrea E.

    1992-01-01

    The present invention provides (1) curable liquid crystalline polyester monomers represented by the formula: R.sup.1 --A.sup.1 --B.sup.1 --A.sup.2 --B.sup.2 --A.sup.3 --R.sup.2 where R.sup.1 and R.sup.2 are radicals selected from the group consisting of maleimide, substituted maleimide, nadimide, substituted naimide, ethynyl, and (C(R.sup.3).sub.2).sub.2 where R.sup.3 is hydrogen with the proviso that the two carbon atoms of (C(R.sup.3).sub.2).sub.2 are bound on the aromatic ring of A.sup.1 or A.sup.3 to adjacent carbon atoms, A.sup.1 and A.sup.3 are 1,4-phenylene and the same where said group contains one or more substituents selected from the group consisting of halo, e.g., fluoro, chloro, bromo, or iodo, nitro lower alkyl, e.g., methyl, ethyl, or propyl, alkoxy, e.g., methoxy, ethoxy, or propoxy, and fluoroalkyl, e.g., trifluoromethyl, pentafluoroethyl and the like, A.sup.2 is selected from the group consisting of 1,4-phenylene, 4,4'-biphenyl, 2,6-naphthylene and the same where said groups contain one or more substituents selected from the group consisting of halo, e.g., fluoro, chloro, bromo, or iodo, nitro, lower alkyl, e.g., methyl, ethyl, and propyl, lower alkoxy, e.g., methoxy, ethoxy, or propoxy, and fluoroalkyl or fluoroalkoxy, e.g., trifluoromethyl, pentafluoroethyl and the like, and B.sup.1 and B.sup.2 are selected from the group consisting of --C(O)--O-- and --O--C(O)--, (2) thermoset liquid crystalline polyester compositions comprised of heat-cured segments derived from monomers represented by the formula: R.sup.1 --A.sup.1 --B.sup.1 --A.sup.2 --B.sup.2 --A.sup.3 --R.sup.2 as described above, (3) curable blends of at least two of the polyester monomers and (4) processes of preparing the curable liquid crystalline polyester monomers.

  4. Liquid Crystals: The Phase of the Future.

    ERIC Educational Resources Information Center

    Ondris-Crawford, Renate; And Others

    1992-01-01

    Liquid crystal displays are currently utilized to convey information via graphic displays. Presents experiments and explanations that employ the concept of liquid crystals to learn concepts related to the various states of matter, electric and magnetic forces, refraction of light, and optics. Discusses applications of liquid crystal technology.…

  5. Simultaneous measurements of molecular forces and electro-optical properties of a confined 5CB liquid crystal film using a surface forces apparatus.

    PubMed

    Kristiansen, Kai; Zeng, Hongbo; Zappone, Bruno; Israelachvili, Jacob N

    2015-04-01

    Using a surface forces apparatus (SFA), we studied the forces associated with the reorientation of molecules of a common nematic thermotropic liquid crystal, 4'-n-pentyl-4-cyanobiphenyl (5CB), confined between two conducting (silver) surfaces and its optical behavior under the influence of electric fields with varying magnitudes and field directions. A transient attractive force was observed due to partial reorientations of the liquid crystal molecules and the flow of free ions, in addition to a stronger constant capacitance attraction between the silver surfaces. At the same time, the optical properties of the liquid crystals were observed perpendicular to the silver surfaces. Observations of shifts and fluctuations of the extraordinary wave of the (multiple beam) interference fringes measure the refractive index of the director component parallel to the surface, which is sensitive to tilt motion (or reorientation) of the liquid crystal molecules that provided details of the anisotropic orientations of the molecules and domains. Any lateral differential refractive index change is easily observed by optical microscopy. The optical microscope imaging showed that the changes in the optical properties are due to convective flow at domain boundaries of the liquid crystal molecules (and possible free ions) between the two charged surfaces. At low electric fields, propagation of domain boundaries was observed, while at higher electric fields, hexagonal patterns of flowing molecules were observed. The interplay of the force measurements and optical observations reveal a complex dynamic behavior of liquid crystals subjected to varying electric fields in confined spaces. PMID:25774432

  6. Optical trapping in liquid crystals

    NASA Astrophysics Data System (ADS)

    Simoni, F.; Lucchetti, L.; Criante, L.; Bracalente, F.; Aieta, F.

    2010-08-01

    Optical trapping and manipulation of micrometric silica particles dispersed in a nematic liquid crystal is reported. Several kind of samples are considered: homeotropic and planar undoped cells and homeotropic and planar cells doped by a small amount of the azo-dye Methyl-Red. The incident light intensity is over the threshold for optical reorientation of the molecular director. The refractive index of the dispersed particles is lower than the ones of the liquid crystal therefore the usual conditions for laser trapping and manipulation are not fulfilled. Nevertheless optical trapping is possible and is closely related to the optical nonlinearity of the hosting liquid crystal1. Trapping in doped and undoped cells are compared and it is shown that in the first case intensity lower by more than one order of magnitude is required as compared to the one needed in undoped samples. The effect is faster and the structural forces are of longer range. The formation of bubble-gum like defects in doped samples under certain experimental conditions is also reported and discussed.

  7. Bent core liquid crystal elastomers

    SciTech Connect

    Verduzco, R.; DiMasi, E.; Luchette, P.; Ho Hong, S.; Harden, J.; Palffy-Muhoray, P.; Kilbey II, S.M.; Sprunt, S.; Gleeson, G.T. Jakli, A.

    2010-07-28

    Liquid crystal (LC) elastomers with bent-core side-groups incorporate the properties of bent-core liquid crystals in a flexible and self-supporting polymer network. Bent-core liquid crystal elastomers (BCEs) with uniform alignment were prepared by attaching a reactive bent-core LC to poly(hydrogenmethylsiloxane) and crosslinking with a divinyl crosslinker. Phase behavior studies indicate a nematic phase over a wide temperature range that approaches room temperature, and thermoelastic measurements show that these BCEs can reversibly change their length by more than a factor of two upon heating and cooling. Small-angle X-ray scattering studies reveal multiple, broad low-angle peaks consistent with short-range smectic C order of the bent-core side groups. A comparison of these patterns with predictions of a Landau model for short-range smectic C order shows that the length scale for smectic ordering in BCEs is similar to that seen in pure bent-core LCs. The combination of rubber elasticity and smectic ordering of the bent-core side groups suggests that BCEs may be promising materials for sensing, actuating, and other advanced applications.

  8. Swimming bacteria in liquid crystal

    NASA Astrophysics Data System (ADS)

    Sokolov, Andrey; Zhou, Shuang; Aranson, Igor; Lavrentovich, Oleg

    2014-03-01

    Dynamics of swimming bacteria can be very complex due to the interaction between the bacteria and the fluid, especially when the suspending fluid is non-Newtonian. Placement of swimming bacteria in lyotropic liquid crystal produces a new class of active materials by combining features of two seemingly incompatible constituents: self-propelled live bacteria and ordered liquid crystals. Here we present fundamentally new phenomena caused by the coupling between direction of bacterial swimming, bacteria-triggered flows and director orientations. Locomotion of bacteria may locally reduce the degree of order in liquid crystal or even trigger nematic-isotropic phase transition. Microscopic flows generated by bacterial flagella disturb director orientation. Emerged birefringence patterns allow direct optical observation and quantitative characterization of flagella dynamics. At high concentration of bacteria we observed the emergence of self-organized periodic texture caused by bacteria swimming. Our work sheds new light on self-organization in hybrid bio-mechanical systems and can lead to valuable biomedical applications. Was supported by the US DOE, Office of Basic Energy Sciences, Division of Materials Science and Engineering, under the Contract No. DE AC02-06CH11357.

  9. Cholesteric liquid crystal photonic crystal lasers and photonic devices

    NASA Astrophysics Data System (ADS)

    Zhou, Ying

    emission is further demonstrated in a hybrid photonic band edge - Fabry-Perot (FP) type structure by sandwiching the CLC active layer within a circular polarized resonator consisting of two CLC reflectors. The resonator generates multiple FP modes while preserving the PBE mode from the active layer. More importantly this band edge mode can be greatly enhanced by the external resonator under some conditions. Theoretical analysis is conducted based on 4x4 transfer matrix and scattering matrix and the results are consistent with our experimental observations. To make the CLC laser more compact and miniaturized, we have developed a flexible polymer laser using dye-doped cholesteric polymeric films. By stacking the mirror reflecting layer, the active layer and the CLC reflecting layer, enhanced laser emission was observed in opposite-handed circular polarization state, because of the light recycling effect. On the other hand, we use the stacked cholesteric liquid crystal films, or the cholesteric liquid crystals and polymer composite films to demonstrate the single film broadband circular polarizers, which are helpful for converting a randomly polarized light into linear polarization. New fabrication methods are proposed and the circular polarizers cover ˜280 nm in the visible spectral range. Both theoretical simulation and experimental results are presented with a good match.

  10. Laser damage resistant nematic liquid crystal cell

    NASA Astrophysics Data System (ADS)

    Raszewski, Z.; Piecek, W.; Jaroszewicz, L.; Soms, L.; Marczak, J.; Nowinowski-Kruszelnicki, E.; Perkowski, P.; Kedzierski, J.; Miszczyk, E.; Olifierczuk, M.; Morawiak, P.; Mazur, R.

    2013-08-01

    There exists a problem in diagnostics of a dense plasma (so-called Thomson diagnostics). For this purpose, the plasma is illuminated by series of high energy laser pulses. Such pulses are generated by several independent lasers operating sequentially, and these pulses are to be directed along an exactly the same optical path. In this case, the energy of each separate pulse is as large as 3 J, so it is impossible to generate a burst of such pulses by a single laser. In this situation, several independent lasers have to be used. To form optical path with λ = 1.064 μm and absolute value of the energy of laser pulse through of 3 J, a special refractive index matched twisted Nematic Liquid Crystal Cell (NLCC) of type LCNP2 with switching on time τON smaller than 5 μs might be applied. High laser damage resistance of NLCC and short τON can be fulfilled by preparation of liquid crystal cells with Liquid Crystal Mixture (LCM), well tuned to twisted nematic electro-optical effect, and well tuned all optical interfaces (Air - Antireflection - Quartz Plate - Electrode - Blocking Film - Aligning Layer - LCM - Aligning Layer - Blocking Film - Electrode - Quartz Plate - Antireflection - Air). In such LCNP2 cell, the transmission is higher than 97% at λ = 1.064 μm, as it is presented by Gooch and Tarry [J. Phys. D: Appl. Phys. 8, 1575 (1975)]. The safe laser density energy is about 0.6 J/cm2 for a train of laser pulses (λ = 1.064 μm, pulse duration 10 ns FWHM, pulse repetition rate 100 pps, train duration 10 s), so the area of liquid crystal cell tolerating 3 J through it shall be as large as 5 cm2. Due to the presence of two blocking film layers between electrodes, LCNP2 can be driven by high voltages. Switching on time smaller than τON = 5 μs was obtained under 200 V switching voltage.

  11. Structural studies of tubular discotic liquid crystals

    NASA Astrophysics Data System (ADS)

    Mindyuk, Oksana Yaroslavovna

    1999-11-01

    Discotic liquid crystals based on the rigid ring-shaped phenylacetylene macrocycle molecule (PAM) are of great interest due to their potential organization into supramolecular channels. We have used high resolution X-ray diffraction to study the structure of pure and doped PAM and to demonstrate that PAM forms a tubular columnar liquid crystal with an unexpected distortion and doubling of the underlying hexagonal lattice. We have doped PAM with different percentages of silver ions and determined that doping did not change peak positions on the powder diffraction data but significantly altered the intensity of the peaks. This implies that the silver ions were most likely intercalated within the channels formed by the PAM molecules, thus leaving the lattice parameters unaffected. We have also used grazing incidence X-ray diffraction and X-ray reflectivity to study Langmuir films of PAM. PAM adopts an "edge-on" molecular arrangement at the air-water interface. We will discuss the direct observation of the structural reorganization within macromolecular Langmuir films of disc-shaped ionophoric molecules arising from interactions with potassium and cesium ions in the subphase. The columnar order is disrupted by CsCl in the subphase and strongly enhanced by KCl in the subphase, thus effectively tailoring the structural properties of the Langmuir films for potential applications. We have also used X-ray reflectivity (XR) and grazing incidence x-ray diffraction (GID) to study Langmuir films of another macrocyclic ionophore: torand (tributyldodecahydrohexaazakekulene, "TBDK") molecules. TBDK is a rigid, triangular molecule; it has been investigated as a potential surface-active complexing agent. The system forms a stable monolayer at the air-water interface and exhibits two distinct structural phases at lower and higher pressures.

  12. Protein crystallization on liquid surfaces: Forced versus natural crystallization

    NASA Astrophysics Data System (ADS)

    Hirsa, A.

    2005-11-01

    Two-dimensional crystallization of proteins has recently been reported where streptavidin protein dissolved in the bulk liquid anchors to binding sites on a biotinylated lipid monolayer initially spread on the liquid surface. Thermodynamic aspects investigated include the effects of subphase buffer and pH, dilution of bulk protein and monolayer. Here, we investigate three possible avenues where flow can influence protein crystallization: i) change the initial state of monolayer, ii) advect dissolved protein to the interface, iii) apply direct hydrodynamic force on the crystals at the interface. The flow system consists of a stationary open cylinder driven by constant rotation of the floor, in the axisymmetric flow regime with inertia. Direct imaging of the interface illuminated by forward scattering of a laser was utilized to avoid labeling proteins for conventional fluorescence microscopy. These images provide greater detail than Brewster angle microscopy. Scientific motivation is to use flow to probe protein structure, and the application is to make designer protein thin-films, e.g. for biosensors.

  13. Short channel amorphous In-Ga-Zn-O thin-film transistor arrays for ultra-high definition active matrix liquid crystal displays: Electrical properties and stability

    NASA Astrophysics Data System (ADS)

    Kim, Soo Chang; Kim, Young Sun; Yu, Eric Kai-Hsiang; Kanicki, Jerzy

    2015-09-01

    The electrical properties and stability of ultra-high definition (UHD) amorphous In-Ga-Zn-O (a-IGZO) thin-film transistor (TFT) arrays with short channel (width/length = 12/3 μm) were examined. A-IGZO TFT arrays have a mobility of ∼6 cm2/V s, subthreshold swing (S.S.) of 0.34 V/decade, threshold voltage of 3.32 V, and drain current (Id) on/off ratio of <109 with Ioff below 10-13 A. Overall these devices showed slightly different electrical characteristics as compared to the long channel devices; non-saturation of output curve at high drain-to-source voltage (Vds), negative shift of threshold voltage with increasing Vds, and the mobility reduction at high gate voltage (Vgs) were observed. The second derivative method adopting Tikhonov's regularization theory is suggested for the robust threshold voltage extraction. The temperature dependency of γ-value was established after taking into consideration the impact of source/drain contact resistances. The AC bias-temperature stress was used to simulate the actual operation of active matrix liquid crystal displays (AM-LCDs). The threshold voltage shift had a dependency on the magnitude of drain bias stress, frequency, and duty cycle due to the impact ionization accelerated at high temperature. This study demonstrates that the short channel effects, source/drain contact resistances and impact ionization have to be taken into account during optimization of UHD AM-LCDs.

  14. Biological treatment of thin-film transistor liquid crystal display (TFT-LCD) wastewater using aerobic and anoxic/oxic sequencing batch reactors.

    PubMed

    Lei, Chin-Nan; Whang, Liang-Ming; Chen, Po-Chun

    2010-09-01

    The amount of pollutants produced during manufacturing processes of thin-film transistor liquid crystal display (TFT-LCD) substantially increases due to an increasing production of the opto-electronic industry in Taiwan. This study presents the treatment performance of one aerobic and one anoxic/oxic (A/O) sequencing batch reactors (SBRs) treating synthetic TFT-LCD wastewater containing dimethyl sulfoxide (DMSO), monoethanolamine (MEA), and tetra-methyl ammonium hydroxide (TMAH). The long-term monitoring results for the aerobic and A/O SBRs demonstrate that stable biodegradation of DMSO, MEA, and TMAH can be achieved without any considerably adverse impacts. The ammonium released during MEA and TMAH degradation can also be completely oxidized to nitrate through nitrification in both SBRs. Batch studies on biodegradation rates for DMSO, MEA, and TMAH under anaerobic, anoxic, and aerobic conditions indicate that effective MEA degradation can be easily achieved under all three conditions examined, while efficient DMSO and TMAH degradation can be attained only under anaerobic and aerobic conditions, respectively. The potential odor problem caused by the formation of malodorous dimethyl sulfide from DMSO degradation under anaerobic conditions, however, requires insightful consideration in treating DMSO-containing wastewater. PMID:20705321

  15. Photoinduced reordering in thin azo-dye films and light-induced reorientation dynamics of the nematic liquid-crystal easy axis.

    PubMed

    Kiselev, Alexei D; Chigrinov, V G; Pasechnik, S V; Dubtsov, A V

    2012-07-01

    We theoretically study the kinetics of photoinduced reordering triggered by linearly polarized (LP) reorienting light in thin azo-dye films that were initially illuminated with LP ultraviolet pumping beam. The process of reordering is treated as a rotational diffusion of molecules in the light intensity-dependent mean-field potential. The two-dimensional diffusion model which is based on the free energy rotational Fokker-Planck equation and describes the regime of in-plane reorientation is generalized to analyze the dynamics of the azo-dye order parameter tensor at varying polarization azimuth of the reorienting light. It is found that, in the photosteady state, the intensity of LP reorienting light determines the scalar order parameter (the largest eigenvalue of the order parameter tensor), whereas the steady state orientation of the corresponding eigenvector (the in-plane principal axis) depends solely on the polarization azimuth. We show that, under certain conditions, reorientation takes place only if the reorienting light intensity exceeds its critical value. Such threshold behavior is predicted to occur in the bistability region provided that the initial principal axis lies in the polarization plane of reorienting light. The model is used to interpret the experimental data on the light-induced azimuthal gliding of the liquid-crystal easy axis on photoaligned azo-dye substrates. PMID:23005436

  16. Thermally switchable flexible liquid crystal devices in prepolymer-doped cholesteric liquid crystals

    NASA Astrophysics Data System (ADS)

    Fuh, A. Y.-G.; Li, J.-H.; Cheng, K.-T.

    2010-10-01

    This work describes an approach for fabricating thermally switchable flexible liquid crystal devices in prepolymer-doped cholesteric liquid crystals (CLCs). The roughness of the UV-cured polymer film eliminates the stability of planar CLCs, allowing the textures in the UV-cured regions to be changed from planar to focal conic. Impurities associated with doping with prepolymers cause the clearing temperature of LCs in the UV-cured regions to differ from that in the uncured regions as the prepolymers are polymerized. Therefore, the textures in these two regions can be switched by controlling the temperature. Thermally switchable flexible LC devices, such as optically addressed smart cards, light valves, and others, can be realized using this approach.

  17. Computer simulations of liquid crystals

    NASA Astrophysics Data System (ADS)

    Smondyrev, Alexander M.

    Liquid crystal physics is an exciting interdisciplinary field of research with important practical applications. Their complexity and the presence of strong translational and orientational fluctuations require a computational approach, especially in the studies of nonequlibrium phenomena. In this dissertation we present the results of computer simulation studies of liquid crystals using the molecular dynamics technique. We employed the Gay-Berne phenomenological model of liquid crystals to describe the interaction between the molecules. Both equilibrium and non-equilibrium phenomena were studied. In the first case we studied the flow properties of the liquid crystal system in equilibrium as well as the dynamics of the director. We measured the viscosities of the Gay-Berne model in the nematic and isotropic phases. The temperature-dependence of the rotational and shear viscosities, including the nonmonotonic behavior of one shear viscosity, are in good agreement with experimental data. The bulk viscosities are significantly larger than the shear viscosities, again in agreement with experiment. The director motion was found to be ballistic at short times and diffusive at longer times. The second class of problems we focused on is the properties of the system which was rapidly quenched to very low temperatures from the nematic phase. We find a glass transition to a metastable phase with nematic order and frozen translational and orientational degrees of freedom. For fast quench rates the local structure is nematic-like, while for slower quench rates smectic order is present as well. Finally, we considered a system in the isotropic phase which is then cooled to temperatures below the isotropic-nematic transition temperature. We expect topological defects to play a central role in the subsequent equilibration of the system. To identify and study these defects we require a simulation of a system with several thousand particles. We present the results of large

  18. Multifunctional Glassy Liquid Crystal for Photonics

    SciTech Connect

    Chen,S.H.

    2004-11-05

    As an emerging class of photonic materials, morphologically stable glassy liquid crystals, were developed following a versatile molecular design approach. Glassy cholesteric liquid crystals with elevated phase-transition temperatures and capability for selective-wavelength reflection and circular polarization were synthesized via determinstic synthesis strategies. Potential applications of glassy cholesteric liquid crystals include high-performance polarizers, optical notch filters and reflectors, and circularly polarized photoluminescence. A glassy nematic liquid crystal comprising a dithienylethene core was also synthesized for the demonstration of nondestructive rewritable optical memory and photonic switching in the sollid state.

  19. Liquid crystal devices especially for use in liquid crystal point diffraction interferometer systems

    DOEpatents

    Marshall, Kenneth L.

    2009-02-17

    Liquid crystal point diffraction interferometer (LCPDI) systems that can provide real-time, phase-shifting interferograms that are useful in the characterization of static optical properties (wavefront aberrations, lensing, or wedge) in optical elements or dynamic, time-resolved events (temperature fluctuations and gradients, motion) in physical systems use improved LCPDI cells that employ a "structured" substrate or substrates in which the structural features are produced by thin film deposition or photo resist processing to provide a diffractive element that is an integral part of the cell substrate(s). The LC material used in the device may be doped with a "contrast-compensated" mixture of positive and negative dichroic dyes.

  20. Liquid crystal devices especially for use in liquid crystal point diffraction interferometer systems

    NASA Technical Reports Server (NTRS)

    Marshall, Kenneth L. (Inventor)

    2009-01-01

    Liquid crystal point diffraction interferometer (LCPDI) systems that can provide real-time, phase-shifting interferograms that are useful in the characterization of static optical properties (wavefront aberrations, lensing, or wedge) in optical elements or dynamic, time-resolved events (temperature fluctuations and gradients, motion) in physical systems use improved LCPDI cells that employ a "structured" substrate or substrates in which the structural features are produced by thin film deposition or photo resist processing to provide a diffractive element that is an integral part of the cell substrate(s). The LC material used in the device may be doped with a "contrast-compensated" mixture of positive and negative dichroic dyes.

  1. Thermal response of cholesteric liquid crystal elastomers

    NASA Astrophysics Data System (ADS)

    Nagai, Hama; Urayama, Kenji

    2015-08-01

    The effects of temperature variation on photonic properties of cholesteric liquid crystal elastomers (CLCEs) are investigated in mechanically unconstrained and constrained geometries. In the unconstrained geometry, cooling in the cholesteric state induces both a considerable shift of the selective reflection band to shorter wavelengths and a finite degree of macroscopic expansion in the two directions normal to the axis of the helical director configuration. The thermal deformation is driven by a change in orientational order of the underlying nematic structure S and the relation between the macroscopic strain and S is explained on the basis of the anisotropic Gaussian chain network model. The helical pitch varies with the film thickness in an affine manner under temperature variation. The CLCEs under the constrained geometry where thermal deformation is strictly prohibited show no shift of the reflection bands when subjected to temperature variation. This also reveals the strong correlation between the macroscopic dimensions and the pitch of the helical director configuration.

  2. Lipid decorated liquid crystal pressure sensors

    NASA Astrophysics Data System (ADS)

    Lopatkina, Tetiana; Popov, Piotr; Honaker, Lawrence; Jakli, Antal; Mann, Elizabeth; Mann's group Collaboration; Jakli's group Collaboration

    Surfactants usually promote the alignment of liquid crystal (LC) director parallel to the surfactant chains, and thus on average normal to the substrate (homeotropic), whereas water promotes tangential (planar) alignment. A water-LC interface is therefore very sensitive to the presence of surfactants, such as lipids: this is the principle of LC-based chemical and biological sensing introduced by Abbott et al.Using a modified configuration, we found that at higher than 10 micro molar lipid concentration, the uniformly dark texture seen for homeotropic alignment between left-, and right-handed circular polarizers becomes unstable and slowly brightens again. This texture shows extreme sensitivity to external air pressure variations offering its use for sensitive pressure sensors. Our analysis indicates an osmotic pressure induced bending of the suspended films explaining both the birefringence and pressure sensitivity. In the talk we will discuss the experimental details of these effects. This work was financially supported by NSF DMR No. DMR-0907055.

  3. Liquid film demonstration experiment Skylab SL-4

    NASA Technical Reports Server (NTRS)

    Darbro, W.

    1975-01-01

    The liquid film demonstration experiment performed on Skylab 4 by Astronaut Gerald Carr, which involved the construction of water and soap films by boundary expansion and inertia, is discussed. Results include a 1-ml globule of water expanded into a 7-cm-diameter film as well as complex film structures produced by inertia whose lifetimes are longer in the low-g environment. Also discussed are 1-g acceleration experiments in which the unprovoked rupture of films was photographed and film lifetimes of stationary and rotated soap films were compared. Finally, there is a mathematical discussion regarding minimal surfaces, an isoperimetric problem, and liquid films.

  4. Liquid-Crystal Point-Diffraction Interferometer

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.

    1996-01-01

    Liquid-crystal point-diffraction interferometer (LCPDI) invented to combine flexible control of liquid-crystal phase-shifts with robustness of point-diffraction interferometers. Produces interferograms indicative of shapes of wavefronts of laser beams having passed through or reflected from objects of interest. Interferograms combined in computers to produce phase maps describing wavefronts.

  5. Demonstrations with a Liquid Crystal Shutter

    ERIC Educational Resources Information Center

    Kraftmakher, Yaakov

    2012-01-01

    The experiments presented show the response of a liquid crystal shutter to applied electric voltages and the delay of the operations. Both properties are important for liquid crystal displays of computers and television sets. Two characteristics of the shutter are determined: (i) the optical transmittance versus applied voltage of various…

  6. Liquid Crystals in Education--The Basics

    ERIC Educational Resources Information Center

    Cepic, Mojca

    2012-01-01

    The introduction of teaching about liquid crystals is discussed from several points of view: the rationale why to teach them, the basics about liquid crystals or what the teacher should teach about them, the fundamental pre-knowledge of students required, the set of experiments accompanying the teaching and the brief report on the already…

  7. Chemical and biological sensing using liquid crystals

    PubMed Central

    Carlton, Rebecca J.; Hunter, Jacob T.; Miller, Daniel S.; Abbasi, Reza; Mushenheim, Peter C.; Tan, Lie Na; Abbott, Nicholas L.

    2014-01-01

    The liquid crystalline state of matter arises from orientation-dependent, non-covalent interaction between molecules within condensed phases. Because the balance of intermolecular forces that underlies formation of liquid crystals is delicate, this state of matter can, in general, be easily perturbed by external stimuli (such as an electric field in a display). In this review, we present an overview of recent efforts that have focused on exploiting the responsiveness of liquid crystals as the basis of chemical and biological sensors. In this application of liquid crystals, the challenge is to design liquid crystalline systems that undergo changes in organization when perturbed by targeted chemical and biological species of interest. The approaches described below revolve around the design of interfaces that selectively bind targeted species, thus leading to surface-driven changes in the organization of the liquid crystals. Because liquid crystals possess anisotropic optical and dielectric properties, a range of different methods can be used to read out the changes in organization of liquid crystals that are caused by targeted chemical and biological species. This review focuses on principles for liquid crystal-based sensors that provide an optical output. PMID:24795857

  8. Liquid Crystal Cells Based on Photovoltaic Substrates

    NASA Astrophysics Data System (ADS)

    Lucchetti, L.; Kushnir, K.; Zaltron, A.; Simoni, F.

    2016-02-01

    Liquid crystal cells with LiNbO3:Fe crystals as substrates, are described. The photovoltaic field generated by the substrates is able to reorient the liquid crystal director thus giving rise to a phase shift on the light propagating through the cell, as in liquid crystal light valves. The process does not require the application of an external electric field, thus being potentially useful for applications requiring a high degree of compactness. An efficient optical switch with a high transmission contrast, based on the described optically-induced electric field, is also proposed.

  9. Homeotropic alignment of lyotropic chromonic liquid crystals using noncovalent interactions.

    PubMed

    Jeong, Joonwoo; Han, Ganghee; Johnson, A T Charlie; Collings, Peter J; Lubensky, Tom C; Yodh, Arjun G

    2014-03-18

    We report on the homeotropic alignment of lyotropic chromonic liquid crystals (LCLCs). Homeotropic anchoring of LCLCs is difficult to achieve, and this challenge has limited development of applications for LCLCs. In this work, homeotropic alignment is achieved using noncovalent interactions between the LCLC molecules and various alignment layers including graphene, parylene films, poly(methyl methacrylate) films, and fluoropolymer films. The LCLC molecules are unique in that they self-assemble via noncovalent interactions in water into elongated aggregates which, in turn, form nematic and columnar liquid crystal (LC) phases. Here we exploit these same noncovalent interactions to induce homeotropic anchoring of the nematic LCLC. Homeotropic alignment is confirmed by polarized optical microscopy and conoscopy. We also report on novel transient stripe textures that occur when an initial flow-induced planar alignment transforms into the equilibrium homeotropic alignment required by boundary conditions. An understanding of this behavior could be important for switching applications. PMID:24559290

  10. Liquid crystal device and method thereof

    SciTech Connect

    Shiyanovskii, Sergij V; Gu, Mingxia; Lavrentovich, Oleg D

    2012-10-23

    The invention provides a liquid crystal device and method thereof. Subsequent to applying a first electrical voltage on a liquid crystal to induce a reorientation of the liquid crystal, a second electrical voltage with proper polarity is applied on the liquid crystal to assist the relaxation of the reorientation that was induced by the first electrical voltage. The "switch-off" phase of the liquid crystal can therefore be accelerated or temporally shortened, and the device can exhibit better performance such as fast response to on/off signals. The invention can be widely used LCD, LC shutter, LC lens, spatial light modulator, telecommunication device, tunable filter, beam steering device, and electrically driven LC device, among others.

  11. Cooperative liquid-crystal alignment generated by overlaid topography

    NASA Astrophysics Data System (ADS)

    Yi, Youngwoo; Maclennan, Joseph E.; Clark, Noel A.

    2011-05-01

    Nematic and smectic liquid crystals were introduced into μm-scale gaps between plates coated with polymer films nanoimprinted with parallel arrays of rectangular channels. Overlaying the channels on the two plates close enough at a slight angle produces a mosaic of alternating planar and homeotropic alignments and hybrid alignment, showing that complex liquid-crystal orientation patterns can be achieved by combining two simple topographic patterns. These alignment patterns are attributed to spatial variation of surface roughness and 3D topographic structure created by a sufficient proximity of the two patterns.

  12. Cooperative liquid-crystal alignment generated by overlaid topography.

    PubMed

    Yi, Youngwoo; Maclennan, Joseph E; Clark, Noel A

    2011-05-01

    Nematic and smectic liquid crystals were introduced into μm-scale gaps between plates coated with polymer films nanoimprinted with parallel arrays of rectangular channels. Overlaying the channels on the two plates close enough at a slight angle produces a mosaic of alternating planar and homeotropic alignments and hybrid alignment, showing that complex liquid-crystal orientation patterns can be achieved by combining two simple topographic patterns. These alignment patterns are attributed to spatial variation of surface roughness and 3D topographic structure created by a sufficient proximity of the two patterns. PMID:21728557

  13. Phototropic liquid crystals comprising one component

    NASA Astrophysics Data System (ADS)

    Sobolewska, Anna; Zawada, Joanna; Bartkiewicz, Stanislaw; Galewski, Zbigniew

    2013-09-01

    Phototropic liquid crystals (PtLC), in which the phase transition can be controlled by the light, are a new class of liquid crystal materials possessing number of potential applications, especially in photonic devices. So far a significant majority of PtLC materials has been realized by the doping a classical liquid crystal with a photochromic dye. Here we report PtLCs comprising a single compound. Liquid-crystalline and photochromic properties have been accomplished in alkylo-alkoxy derivatives of azobenzene. Such compounds show a rich polymorphism which can be controlled by the light. The phenomenon of the photochemical phase transition has been investigated by means of holographic grating recording.

  14. Mesomorphism and electrochemistry of thienoviologen liquid crystals.

    PubMed

    Cospito, S; Beneduci, A; Veltri, L; Salamonczyk, M; Chidichimo, G

    2015-07-21

    The thienoviologen series 4,4'-(2,2'-bithiophene-5,5'-diyl)bis(1-alkylpridinium)X2, with = counterion is a new class of electron acceptor materials which show very interesting electrochromic and electrofluorescence properties. Depending on the length, m, of the promesogenic alkyl chains, and on the counterion, thienoviologens might become liquid crystals. Here, we present the mesomorphic behaviour, and the electrochemical and spectroelectrochemical properties in solution of new thienoviologens of the series and (I = iodide; NTf2(-) = bis(tri-fuoromethylsulfonyl)imide) with m = 8, 12. Interestingly, we found that only the compounds are liquid crystals, exhibiting a calamitic behaviour in contrast to the homologous compounds of the series with m = 9-11 and X = NTf2(-), which showed columnar rectangular mesophases. The electrochemical study here reported allowed us to explain for the first time the anomalous behaviour of these thienoviologens already observed in cyclic voltammetry, where two apparently irreversible redox processes occur. This can be explained by a comproportionation reaction in which the neutral species rapidly reduces the dication to the radical-cation, due to its strong reducing power. Electrochemical reduction of the thienoviologens causes electrochromism since a new absorption band, occurring at 660 nm in the electronic spectra, appears with the negative potential bias applied. With a LUMO level of 3.64 eV, similar to those of the C60 and of other n-type materials, these compounds can find applications in several electronics devices, where their liquid crystalline properties can be used to control film morphology and geometry, provided they have good electron mobility. PMID:26082287

  15. Generation of fluorescent nanodroplets of liquid crystal utilizing electrospray deposition

    NASA Astrophysics Data System (ADS)

    Ohdaira, Yasuo; Oka, Hisaki; Shinbo, Kazunari; Baba, Akira; Kato, Keizo; Kaneko, Futao

    2016-02-01

    Fluorescent nanodroplets of liquid crystal (LC) were generated by the electrospray deposition of LC solvent containing rhodamine 6G (Rh6G) dye molecules. The shape and density of the nanodroplets strongly depended on the concentration of LC diluted with ethanol solution. The fluorescent spectra from the Rh6G molecules in LC nanodroplets were obviously blue-shifted compared with the LC films of the bulk state. Furthermore, the LC nanodroplets were dispersed on a metallic nanograting formed by optically modifying an azobenzene thin-film layer under the metallic film. The nanodroplets were size-selectively aligned on the metallic nanograting.

  16. Photoalignment of an azobenzene-based chromonic liquid crystal dispersed in triacetyl cellulose: single-layer alignment films with an exceptionally high order parameter.

    PubMed

    Matsumori, Masaki; Takahashi, Ayami; Tomioka, Yasushi; Hikima, Takaaki; Takata, Masaki; Kajitani, Takashi; Fukushima, Takanori

    2015-06-01

    Single-layer thin alignment films of dye molecules are of growing importance, particularly for state-of-the-art LCD technology. Here we show that a sequential process involving the photoalignment and humidification of a chromonic liquid crystalline azobenzene (brilliant yellow; BY) dispersed in a triacetyl cellulose (TAC) matrix gives a thin alignment film with an exceptionally high order parameter (0.81). Spectroscopic and X-ray diffraction analyses of a BY/TAC composite film in each alignment process revealed that brief humidification triggers restructuring of the BY assembly from 1D nematic-like order to anisotropic 2D columnar order, resulting in the dramatic increase in the order parameter. PMID:25984633

  17. Planarization of amorphous silicon thin film transistors for high-aperture-ratio and large-area active-matrix liquid crystal displays

    NASA Astrophysics Data System (ADS)

    Lan, Je-Hsiung

    The reduction of the backlight power consumption and the improvement of the display image uniformity for future large-area and high-resolution active-matrix liquid- crystal displays (AM-LCDs) are very important. One possible method to achieve the former goal is to increase the pixel electrode aperture-ratio. This can be realized by overlapping the pixel electrode with both gate/data buslines. While for the latter, reduction of the RC-delay by using a low resistance gate metal line is the key. Both of these approaches can be realized by using planarization technology. In this dissertation, the planarization technology based on low dielectric constant organic polymer, benzocyclobutene (BCB), is demonstrated, and this technology has been successfully applied to hydrogenated amorphous-silicon (a-Si:H) thin-film transistor (TFT) arrays and thick metal gate buslines/electrodes. Through the planarization technology, a high-aperture-ratio (HAR) pixel electrode structure has been fabricated. The parasitic capacitance and crosstalk issues in the HAR pixel electrode have been studied through interconnect analysis and circuit simulation. The impact of the parasitic capacitance on display performances, such as feedthrough voltage, vertical crosstalk, pixel electrode aperture-ratio, pixel charging behavior, and gate busline RC-delay issues, has been thoroughly discussed. Some key issues during the process integration of the HAR pixel electrode structure have been addressed. These include the BCB contact via formation, the patterning of the ITO pixel electrodes on BCB layer, the selection of Ar plasma treatment conditions for BCB surface, and the optical transmittance evaluation of the ITO/BCB double-layer structure. In addition, the BCB passivation effects on back-channel etched type a-Si:H TFTs have been investigated. It is found that there is no degradation in the TFT electrical performance and reliability after the BCB passivation. Finally, the planarization technology is

  18. Liquid film/polymer interfaces

    SciTech Connect

    Allara, David L.

    2003-06-12

    The objectives were: (1) Through experimental studies, advance the fundamental understanding of the principles that govern adsorption and wetting phenomena at polymer and organic surfaces. (2) Establish a firm scientific basis for improving the design of coatings for metal fin cooling surfaces used to control the wetting of water condensate for optimum energy efficiency. Several important findings were: (1) water adsorbed at hydrophobic surfaces has a liquid-like structure, in contrast to the generally held view of an ordered structure; (2) Correlations of large amounts of contact angle wetting data of grafted alkyl chain compounds showed a distinct link between the contact angle and the conformational ordering of the chains; (3) water adsorption at long chain alkysiloxane films showed a strong pH dependence on the film stability, which can be attributed to interfacial chemical effects on the siloxane network.

  19. Guided-wave liquid-crystal photonics.

    PubMed

    Zografopoulos, D C; Asquini, R; Kriezis, E E; d'Alessandro, A; Beccherelli, R

    2012-10-01

    In this paper we review the state of the art in the field of liquid-crystal tunable guided-wave photonic devices, a unique type of fill-once, molecular-level actuated, optofluidic systems. These have recently attracted significant research interest as potential candidates for low-cost, highly functional photonic elements. We cover a full range of structures, which span from micromachined liquid-crystal on silicon devices to periodic structures and liquid-crystal infiltrated photonic crystal fibers, with focus on key-applications for photonics. Various approaches on the control of the LC molecular orientation are assessed, including electro-, thermo- and all-optical switching. Special attention is paid to practical issues regarding liquid-crystal infiltration, molecular alignment and actuation, low-power operation, as well as their integrability in chip-scale or fiber-based devices. PMID:22842818

  20. Temperature sensing with thermochromic liquid crystals

    NASA Astrophysics Data System (ADS)

    Smith, C. R.; Sabatino, D. R.; Praisner, T. J.

    A review of the most recent developments in the application of thermochromic liquid crystals to fluid flow temperature measurement is presented. The experimental aspects including application, illumination, recording, and calibration of liquid crystals on solid surfaces, as well as in fluid suspensions, are discussed. Because of the anisotropic optical properties of liquid crystals, on-axis lighting/viewing arrangements, combined with in-situ calibration techniques, generally provide the most accurate temperature assessments. However, where on-axis viewing is not possible, calibration techniques can be employed, which reduce the uncertainty associated with off-axis viewing and lighting arrangements. It has been determined that the use of hue definitions that display a linear trend across the color spectrum yield the most accurate correlation with temperature. The uncertainty of both wide-band and narrow-band thermochromic liquid crystal calibration techniques can be increased due to hysteresis effects, which occur when the temperature of the liquid crystals exceeds their maximum activation temperature. Although liquid crystals are commonly used to provide time-mean temperature measurements, techniques are available which allow the monitoring of temporal changes. Selected examples illustrating the use of thermochromic liquid crystals are shown, and a survey of reported temperature measurement uncertainties is presented.

  1. A swing driven by liquid crystals

    NASA Astrophysics Data System (ADS)

    Cheng, Cheng

    Angular momentum in liquid crystals exists as flow, director reorientation, etc. However, it is hard to observe and measure angular momentum in liquid crystals by a direct mechanical approach. Torsion pendulum is a general tool to measure angular momentum by torque balance. Our torsion pendulum can harvest the angular momentum in liquid crystals to make it observable. The oscillation of the pendulum keeps increasing by constructively adding a small angular momentum of liquid crystals each period at the resonant frequency of the pendulum. Its similar to a swing driven by a force at its resonant frequency. For the torsion pendulum, a cage made of two aluminum discs, in which a liquid crystal cell is placed, is suspended between two thin tungsten wires. A gold mirror, which is a part of the optical lever system, is attached on one tungsten wire. As first demonstration, we fabricate a circular hybrid liquid crystal cell, which can induce concentric backflows to generate angular momentum. The alignment on the planar substrate is concentric and tangential. Due to the coupling between director rotation and flow, the induced backflow goes around the cell when we add electrical pulses between top and bottom substrates. The oscillation is observed by a position sensitive detector and analyzed on the basis of Eriksen-Leslie theory. With vacuum condition and synchronous driving system, the oscillation signal is improved. We demonstrate that this torsion pendulum can sensitively detect the angular momentum in liquid crystals.

  2. Free surface dynamics of nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Cummings, Linda; Kondic, Lou; Lam, Michael; Lin, Te-Sheng

    2014-11-01

    Spreading thin films of nematic liquid crystal (NLC) are known to behave very differently to those of isotropic fluids. The polar interactions of the rod-like molecules with each other, and the interactions with the underlying substrate, can lead to intricate patterns and instabilities that are not yet fully understood. The physics of a system even as simple as a film of NLC spreading slowly over a surface (inclined or horizontal) are remarkably complex: the outcome depends strongly on the details of the NLC's behavior at both the substrate and the free surface (so-called ``anchoring'' effects). We will present a dynamic flow model that takes careful account of such nematic-substrate and nematic-free surface interactions. We will present model simulations for several different flow scenarios that indicate the variety of behavior that can emerge. Spreading over a horizontal substrate may exhibit a range of unstable behavior. Flow down an incline also exhibits intriguing instabilities: in addition to the usual transverse fingering, instabilities can be manifested behind the flowing front in a manner reminiscent of Newtonian flow down an inverted substrate. NSF DMS-1211713.

  3. Defects and order in liquid crystal phases

    NASA Astrophysics Data System (ADS)

    Jain, Shilpa

    This thesis investigates the partial destruction of ordering in liquid crystalline systems due to the influence of defects and thermal fluctuations. The systems under consideration are hexagonal columnar crystals with crystalline order perpendicular to the columns, and two-dimensional smectics with order perpendicular to the layers. We first study the possibility of reentrant melting of a hexagonal columnar crystal of flexible charged polymers at high enough densities. The Lindemann criterion is employed in determining the melting point. Lattice fluctuations are calculated in the Debye model, and an analogy with the Abrikosov vortex lattice in superconductors is exploited in estimating both the elastic constants of the hexagonal lattice, and the appropriate Lindemann constant. We also discuss the unusual functional integral describing the statistical mechanics of a single polymer in an Einstein cage model using the path-integral formulation. A crossover as a function of an external field along the column axis is discussed as well. Next, we study defects in a columnar crystal in the form of vacancy/interstitial loops or strings of vacancies and interstitials bounded by column "heads" and "tails". These defect strings are oriented by the columnar lattice and can change size and shape by movement of the ends and forming kinks along the length. Hence an analysis in terms of directed living polymers is appropriate to study their size and shape distribution, volume fraction, etc. If the entropy of transverse fluctuations overcomes the string line tension in the crystalline phase, a string proliferation transition occurs, leading to a "supersolid" phase with infinitely long vacancy or interstitial strings. We estimate the wandering entropy and examine the behaviour in the transition regime. We also calculate numerically the line tension of various species of vacancies and interstitials in a triangular lattice for power-law potentials as well as for a modified Bessel

  4. Graphene-based liquid crystal microlens arrays

    NASA Astrophysics Data System (ADS)

    Hu, Wei; Chen, Cheng; Wu, Yong; Luo, Jun; Lei, Yu; Tong, Qing; Zhang, Xinyu; Sang, Hongshi; Xie, Changsheng

    2015-12-01

    In this paper, we design and fabricate a kind of liquid crystal microlens arrays (LCMAs) with patterned electrodes made of monolayer graphene, which is grown on copper sheet by chemical vapor deposition (CVD). Graphene is the first two-dimensional atomic crystal. It uniquely combines extreme mechanical strength, high optically transmittance from visible light to infrared spectrum, and excellent electrical conductivity. These properties make it highly attractive for various applications in photonic devices that require conductive but transparent thin films. The graphene-based LCMAs have shown excellent optical performances in the tests. By adjusting the voltage signal loaded over the graphene-based LCMAs, the point spread functions (PSF) and focusing images of incident laser beams with different wavelengths, could be obtained. At the same time, we also get the focusing images of the common ITO-based LCMAs under the same experimental conditions to discuss the advantages and disadvantages between them. Further, the graphene-based LCMAs are also used in visible imaging. During the imaging tests, the graphene electrodes in the LCMAs work well.

  5. Two distinct crystallization processes in supercooled liquid

    NASA Astrophysics Data System (ADS)

    Tane, Masakazu; Kimizuka, Hajime; Ichitsubo, Tetsu

    2016-05-01

    Using molecular dynamics simulations we show that two distinct crystallization processes, depending on the temperature at which crystallization occurs, appear in a supercooled liquid. As a model for glass-forming materials, an Al2O3 model system, in which both the glass transition and crystallization from the supercooled liquid can be well reproduced, is employed. Simulations in the framework of an isothermal-isobaric ensemble indicate that the calculated time-temperature-transformation curve for the crystallization to γ(defect spinel)-Al2O3 exhibited a typical nose shape, as experimentally observed in various glass materials. During annealing above the nose temperature, the structure of the supercooled liquid does not change before the crystallization, because of the high atomic mobility (material transport). Thus, the crystallization is governed by the abrupt crystal nucleation, which results in the formation of a stable crystal structure. In contrast, during annealing below the nose temperature, the structure of the supercooled liquid gradually changes before the crystallization, and the formed crystal structure is less stable than that formed above the nose temperature, because of the restricted material transport.

  6. Two distinct crystallization processes in supercooled liquid.

    PubMed

    Tane, Masakazu; Kimizuka, Hajime; Ichitsubo, Tetsu

    2016-05-21

    Using molecular dynamics simulations we show that two distinct crystallization processes, depending on the temperature at which crystallization occurs, appear in a supercooled liquid. As a model for glass-forming materials, an Al2O3 model system, in which both the glass transition and crystallization from the supercooled liquid can be well reproduced, is employed. Simulations in the framework of an isothermal-isobaric ensemble indicate that the calculated time-temperature-transformation curve for the crystallization to γ(defect spinel)-Al2O3 exhibited a typical nose shape, as experimentally observed in various glass materials. During annealing above the nose temperature, the structure of the supercooled liquid does not change before the crystallization, because of the high atomic mobility (material transport). Thus, the crystallization is governed by the abrupt crystal nucleation, which results in the formation of a stable crystal structure. In contrast, during annealing below the nose temperature, the structure of the supercooled liquid gradually changes before the crystallization, and the formed crystal structure is less stable than that formed above the nose temperature, because of the restricted material transport. PMID:27208956

  7. Liquid Crystal Research Shows Deformation By Drying

    NASA Technical Reports Server (NTRS)

    2003-01-01

    These images, from David Weitz's liquid crystal research, show ordered uniform sized droplets (upper left) before they are dried from their solution. After the droplets are dried (upper right), they are viewed with crossed polarizers that show the deformation caused by drying, a process that orients the bipolar structure of the liquid crystal within the droplets. When an electric field is applied to the dried droplets (lower left), and then increased (lower right), the liquid crystal within the droplets switches its alignment, thereby reducing the amount of light that can be scattered by the droplets when a beam is shone through them.

  8. Advancements of vertically aligned liquid crystal displays.

    PubMed

    Kumar, Pankaj; Jaggi, Chinky; Sharma, Vandna; Raina, Kuldeep Kumar

    2016-02-01

    This review describes the recent advancements in the field of the vertical aligned (VA) liquid crystal displays. The process and formation of different vertical alignment modes such as conventional VA, patterned VA, multi-domain VA, and polymer stabilised VA etc are widely discussed. Vertical alignment of liquid crystal due to nano particle dispersion in LC host, bifunctional PR-SAM formed by silane coupling reaction to oxide surfaces, azo dye etc., are also highlighted and discussed. Overall, the article highlights the advances in the research of vertical aligned liquid crystal in terms of their scientific and technological aspects. PMID:26800482

  9. Tactoids of chiral liquid crystals

    NASA Astrophysics Data System (ADS)

    Palacio-Betancur, Viviana; Villada-Gil, Stiven; Zhou, Ye; Armas-Pérez, Julio C.; de Pablo, Juan José; Hernández-Ortiz, Juan Pablo

    The phase diagram of chiral liquid crystals confined in ellipsoids is obtained, by following a theoretically informed Monte Carlo relaxation of the tensor alignment field Q. The free energy of the system is described by a functional in the framework of the Landau-de Gennes formalism. This study also includes the effect of anchoring strength, curvature, and chirality of the system. In the low chirality region of the phase diagram we found the twist bipolar (BS) phase and some cholesteric phases such as the radial spherical structure (RSS), twist cylinder (TC) and double twist cylinder (DTC) whose axis of rotation is not necessarily aligned with the major axis of the geometry. For high chirality scenarios, the disclination lines are twisted or bent near the surface preventing the formation of symmetric networks of defects, although an hexagonal pattern is formed on the surface which might serve as open sites for collocation of colloids. By analyzing the free energies of isochoric systems, prolate geometries tend to be more favorable for high chirality and low anchoring conditions. Universidad Nacional de Colombia Ph.D. grant and COLCIENCIAS under the Contract No. 110-165-843-748. CONACYT for Postdoctoral Fellowships Nos. 186166 and 203840.

  10. Detection of harmful vapors and biological agents by means of liquid crystals

    NASA Astrophysics Data System (ADS)

    Gustafson, Jon; Shibaev, Petr

    2014-03-01

    Orientation of liquid crystals is determined by surface energy and molecular orientation at the surface. This opens a possibility of exploring liquid crystals as gas sensors. In this work the simple model that takes into account gas concentration, absorption rate and material characteristics of liquid crystals (MBBA and pentylcyanobiphenyl) is experimentally tested in order to determine the sensitivity of the method. Thin films and droplets of chiral and non-chiral liquid crystals were used to detect vapors of volatile organic solvents. It was found that sensitivity of the method depends on the chemical nature of gas and structure of liquid crystal. Modification of liquid crystalline composition by means of additions of specifically tailored compounds (for example, hydrogen bonded acids) can lead to significant increase in sensitivity of liquid crystal to harmful vapors. The method was also tested for detection of biological molecules.