Science.gov

Sample records for liquid hydrogen systems

  1. Modeling leaks from liquid hydrogen storage systems.

    SciTech Connect

    Winters, William Stanley, Jr.

    2009-01-01

    This report documents a series of models for describing intended and unintended discharges from liquid hydrogen storage systems. Typically these systems store hydrogen in the saturated state at approximately five to ten atmospheres. Some of models discussed here are equilibrium-based models that make use of the NIST thermodynamic models to specify the states of multiphase hydrogen and air-hydrogen mixtures. Two types of discharges are considered: slow leaks where hydrogen enters the ambient at atmospheric pressure and fast leaks where the hydrogen flow is usually choked and expands into the ambient through an underexpanded jet. In order to avoid the complexities of supersonic flow, a single Mach disk model is proposed for fast leaks that are choked. The velocity and state of hydrogen downstream of the Mach disk leads to a more tractable subsonic boundary condition. However, the hydrogen temperature exiting all leaks (fast or slow, from saturated liquid or saturated vapor) is approximately 20.4 K. At these temperatures, any entrained air would likely condense or even freeze leading to an air-hydrogen mixture that cannot be characterized by the REFPROP subroutines. For this reason a plug flow entrainment model is proposed to treat a short zone of initial entrainment and heating. The model predicts the quantity of entrained air required to bring the air-hydrogen mixture to a temperature of approximately 65 K at one atmosphere. At this temperature the mixture can be treated as a mixture of ideal gases and is much more amenable to modeling with Gaussian entrainment models and CFD codes. A Gaussian entrainment model is formulated to predict the trajectory and properties of a cold hydrogen jet leaking into ambient air. The model shows that similarity between two jets depends on the densimetric Froude number, density ratio and initial hydrogen concentration.

  2. High Efficient Cryocooler for Liquid Hydrogen System

    NASA Astrophysics Data System (ADS)

    Nakagome, H.

    2006-04-01

    Conversion into Hydrogen Energy Society is advanced focusing on the application to a fuel cell electric vehicle. As volume and weight density of liquid hydrogen are large, it is the method which was most excellent as the storage method of hydrogen. However, in order to store liquid hydrogen stably over a long period of time, decreasing the loss of energy, development of an efficient small cryocooler becomes important. This paper reports the research about improvement in the refrigeration efficiency of a two-stage GM cryocooler. In order that the GM cryocooler may operate by the Simon expansion, it carries out asymptotic of the COP of the GM cryocooler to the Carnot COP as a compression ratio is lowered. When experimented based on this view, it was checked that refrigeration efficiency rises with reduction in a compression ratio. Furthermore, if the compression ratio is lowered, refrigeration efficiency will fall rapidly. The peak value of the refrigeration efficiency in 20K level attained 28%Carnot. It was verified by optimization of the compression ratio of the GM cryocooler that refrigeration efficiency can be improved significantly. Therefore, sharp reduction of the energy consumption of a liquid hydrogen system will be attained by applying the result of this research.

  3. Design of a liquid hydrogen target system

    NASA Astrophysics Data System (ADS)

    Komisarcik, K.; Meyer, H. O.; Bertuccio, T.; Manwaring, W.; Smith, W.

    1986-08-01

    An internal liquid hydrogen target is described for use with intermediate energy light ion beams. As a result, certain safety features are required to prevent a possible hydrogen explosion within the beamline or cyclotron. These safety features include an acoustical delay line which slows the hydrogen gas shock wave and a fast closing valve which shuts before any large volume of escaping gas reaches it. Other safety devices which reduce the chances of cell breakage and quickly shut off various ignition sources are discussed. Also described is a device involving a variable heat load which is coupled directly to the cryocondenser and is used to continually monitor and stabilize the pressure and temperature of the liquid hydrogen.

  4. Vapor-liquid equilibria for the systems difluoromethane + hydrogen fluoride, dichlorodifluoromethane + hydrogen fluoride, and chlorine + hydrogen fluoride

    SciTech Connect

    Kang, Y.W.

    1998-01-01

    Isothermal vapor-liquid equilibria for difluoromethane + hydrogen fluoride, dichlorodifluoromethane + hydrogen fluoride, and chlorine + hydrogen fluoride have been measured. The experimental data for the binary systems are correlated with the NRTL equation with the vapor-phase association model for the mixtures containing hydrogen fluoride, and the relevant parameters are presented. The binary system difluoromethane + hydrogen fluoride forms a homogeneous liquid phase, and the others form minimum boiling heterogeneous azeotropes at the experimental conditions.

  5. A novel liquid organic hydrogen carrier system based on catalytic peptide formation and hydrogenation

    PubMed Central

    Hu, Peng; Fogler, Eran; Diskin-Posner, Yael; Iron, Mark A.; Milstein, David

    2015-01-01

    Hydrogen is an efficient green fuel, but its low energy density when stored under high pressure or cryogenically, and safety issues, presents significant disadvantages; hence finding efficient and safe hydrogen carriers is a major challenge. Of special interest are liquid organic hydrogen carriers (LOHCs), which can be readily loaded and unloaded with considerable amounts of hydrogen. However, disadvantages include high hydrogen pressure requirements, high reaction temperatures for both hydrogenation and dehydrogenation steps, which require different catalysts, and high LOHC cost. Here we present a readily reversible LOHC system based on catalytic peptide formation and hydrogenation, using an inexpensive, safe and abundant organic compound with high potential capacity to store and release hydrogen, applying the same catalyst for loading and unloading hydrogen under relatively mild conditions. Mechanistic insight of the catalytic reaction is provided. We believe that these findings may lead to the development of an inexpensive, safe and clean liquid hydrogen carrier system. PMID:25882348

  6. Molecular absorption cryogenic cooler for liquid hydrogen propulsion systems

    NASA Technical Reports Server (NTRS)

    Klein, G. A.; Jones, J. A.

    1982-01-01

    A light weight, long life molecular absorption cryogenic cooler (MACC) system is described which can use low temperature waste heat to provide cooling for liquid hydrogen propellant tanks for interplanetary spacecraft. Detailed tradeoff studies were made to evaluate the refrigeration system component interactions in order to minimize the mass of the spacecraft cooler system. Based on this analysis a refrigerator system mass of 31 kg is required to provide the .48 watts of cooling required by a 2.3 meter diameter liquid hydrogen tank.

  7. Liquid oxygen/liquid hydrogen auxiliary power system thruster investigation

    NASA Technical Reports Server (NTRS)

    Eberle, E. E.; Kusak, L.

    1979-01-01

    The design, fabrication, and demonstration of a 111 newton (25 lb) thrust, integrated auxiliary propulsion system (IAPS) thruster for use with LH2/LO2 propellants is described. Hydrogen was supplied at a temperature range of 22 to 33 K (40 to 60 R), and oxygen from 89 to 122 K (160 to 220 R). The thruster was designed to operate in both pulse mode and steady-state modes for vehicle attitude control, space maneuvering, and as an abort backup in the event of failure of the main propulsion system. A dual-sleeve, tri-axial injection system was designed that utilizes a primary injector/combustor where 100 percent of the oxygen and 8 percent of the hydrogen is introduced; a secondary injector/combustor where 45 percent of the hydrogen is introduced to mix with the primary combustor gases; and a boundary layer injector that uses the remaining 45 percent of the hydrogen to cool the thrust throat/nozzle design. Hot-fire evaluation of this thruster with a BLC injection distance of 2.79 cm (1.10 in.) indicated that a specific impulse value of 390 sec can be attained using a coated molybdenum thrust chamber. Pulse mode tests indicated that a chamber pressure buildup to 90 percent thrust can be achieved in a time on the order of 48 msec. Some problems were encountered in achieving ignition of each pulse during pulse trains. This was interpreted to indicate that a higher delivered spark energy level ( 100 mJ) would be required to maintain ignition reliability of the plasma torch ignition system under the extra 'cold' conditions resulting during pulsing.

  8. Integrated gasifier combined cycle polygeneration system to produce liquid hydrogen

    NASA Technical Reports Server (NTRS)

    Burns, R. K.; Staiger, P. J.; Donovan, R. M.

    1982-01-01

    An integrated gasifier combined cycle (IGCC) system which simultaneously produces electricity, process steam, and liquid hydrogen was evaluated and compared to IGCC systems which cogenerate electricity and process steam. A number of IGCC plants, all employing a 15 MWe has turbine and producing from 0 to 20 tons per day of liquid hydrogen and from 0 to 20 MWt of process steam were considered. The annual revenue required to own and operate such plants was estimated to be significantly lower than the potential market value of the products. The results indicate a significant potential economic benefit to configuring IGCC systems to produce a clean fuel in addition to electricity and process steam in relatively small industrial applications.

  9. Study of Hydrogen Recovery Systems for Gas Vented While Refueling Liquid-Hydrogen Fueled Aircraft

    NASA Technical Reports Server (NTRS)

    Baker, C. R.

    1979-01-01

    Methods of capturing and reliquefying the cold hydrogen vapor produced during the fueling of aircraft designed to utilize liquid hydrogen fuel were investigated. An assessment of the most practical, economic, and energy efficient of the hydrogen recovery methods is provided.

  10. Study of liquid oxygen/liquid hydrogen auxiliary propulsion systems for the space tug

    NASA Technical Reports Server (NTRS)

    Nichols, J. F.

    1975-01-01

    Design concepts are considered that permit use of a liquid-liquid (as opposed to gas-gas) oxygen/hydrogen thrust chamber for attitude control and auxiliary propulsion thrusters on the space tug. The best of the auxiliary propulsion system concepts are defined and their principal characteristics, including cost as well as operational capabilities, are established. Design requirements for each of the major components of the systems, including thrusters, are developed at the conceptual level. The competitive concepts considered use both dedicated (separate tanks) and integrated (propellant from main propulsion tanks) propellant supply. The integrated concept is selected as best for the space tug after comparative evaluation against both cryogenic and storable propellant dedicated systems. A preliminary design of the selected system is established and recommendations for supporting research and technology to further the concept are presented.

  11. System for exchange of hydrogen between liquid and solid phases

    DOEpatents

    Reilly, J.J.; Grohse, E.W.; Johnson, J.R.; Winsche, W.E.

    1985-02-22

    The reversible reaction M + x/2 H/sub 2/ reversible MH/sub x/, wherein M is a reversible metal hydride former that forms a hydride MH/sub x/ in the presence of H/sub 2/, generally used to store and recall H/sub 2/, is found to proceed under an inert liquid, thereby reducing contamination, providing better temperature control, providing in situ mobility of the reactants, and increasing flexibility in process design. Thus, a slurry of particles of a metal hydride former with an inert solvent is subjected to a temperature and pressure controlled atmosphere containing H/sub 2/, to store hydrogen and to release previously stored hydrogen. The direction of the flow of the H/sub 2/ through the liquid is dependent upon the H/sub 2/ pressure in the gas phase at a given temperature. When the actual H/sub 2/ pressure is above the equilibrium absorption pressure of the respective hydride the reaction proceeds to the right, i.e., the metal hydride is formed and hydrogen is stored in the solid particle. When the actual pressure in the gas phase is below the equilibrium dissociation pressure of the respective hydride the reaction proceeds to the left, the metal hydride is decomposed and hydrogen is released into the gas phase.

  12. System for exchange of hydrogen between liquid and solid phases

    DOEpatents

    Reilly, James J.; Grohse, Edward W.; Johnson, John R.; Winsche, deceased, Warren E.

    1988-01-01

    The reversible reaction M+x/2 H.sub.2 .rarw..fwdarw.MH.sub.x, wherein M is a reversible metal hydride former that forms a hydride MH.sub.x in the presence of H.sub.2, generally used to store and recall H.sub.2, is found to proceed under an inert liquid, thereby reducing contamination, providing better temperature control, providing in situ mobility of the reactants, and increasing flexibility in process design. Thus, a slurry of particles of a metal hydride former with an inert solvent is subjected to a temperature and pressure controlled atmosphere containing H.sub.2, to store hydrogen and to release previously stored hydrogen. The direction of the flow of the H.sub.2 through the liquid is dependent upon the H.sub.2 pressure in the gas phase at a given temperature. When the actual H.sub.2 pressure is above the equilibrium absorption pressure of the respective hydride the reaction proceeds to the right, i.e., the metal hydride is formed and hydrogen is stored in the solid particles. When the actual pressure in the gas phase is below the equilibrium dissociation pressure of the respective hydride the reaction proceeds to the left, the metal hydride is decomposed and hydrogen is released into the gas phase.

  13. Isothermal vapor-liquid equilibria for the systems 1-chloro-1,1-difluoroethane + hydrogen fluoride, 1,1-dichloro-1-fluoroethane + hydrogen fluoride, and chlorodifluoromethane + hydrogen fluoride

    SciTech Connect

    Kang, Y.W.; Lee, Y.Y.

    1997-03-01

    Isothermal vapor-liquid equilibria for the three binary systems (1-chloro-1,1-difluoroethane + hydrogen fluoride, 1,1-dichloro-1-fluoroethane + hydrogen fluoride, and chlorodifluoromethane + hydrogen fluoride) have been measured. The experimental data for the binary systems are correlated with the NRTL equation with the vapor-phase association model for the mixtures containing hydrogen fluoride, and the relevant parameters are presented. All of the systems form minimum boiling heterogeneous azeotropes.

  14. Hydrogenation of liquid natural rubber via diimide reduction in hydrazine hydrate/hydrogen peroxide system

    SciTech Connect

    Yusof, Muhammad Jefri Mohd; Jamaluddin, Naharullah; Abdullah, Ibrahim; Yusoff, Siti Fairus M.

    2015-09-25

    Liquid natural rubber (LNR) with molecular weight of lower than 10{sup 5} and shorter polymeric chain than natural rubber was prepared. LNR was then hydrogenated via diimide reduction by oxidation of hydrazine hydrate with hydrogen peroxide. The unsaturated units of the rubber were converted into saturated hydrocarbon to strengthen the backbone of the polymer so it was able to resist thermal degradation. The results indicated that hydrogenation degree of the product (HLNR) could be extended to 91.2% conversion under appropriate conditions. The hydrogenated LNR (HLNR) was characterized using Fourier-Transform Infrared (FTIR) and Nuclear Magnetic Resonance (NMR) spectroscopy. The physical characteristics of HLNR were analyzed with Termogravimetric Analysis (TGA)

  15. Hydrogenation of liquid natural rubber via diimide reduction in hydrazine hydrate/hydrogen peroxide system

    NASA Astrophysics Data System (ADS)

    Yusof, Muhammad Jefri Mohd; Jamaluddin, Naharullah; Abdullah, Ibrahim; Yusoff, Siti Fairus M.

    2015-09-01

    Liquid natural rubber (LNR) with molecular weight of lower than 105 and shorter polymeric chain than natural rubber was prepared. LNR was then hydrogenated via diimide reduction by oxidation of hydrazine hydrate with hydrogen peroxide. The unsaturated units of the rubber were converted into saturated hydrocarbon to strengthen the backbone of the polymer so it was able to resist thermal degradation. The results indicated that hydrogenation degree of the product (HLNR) could be extended to 91.2% conversion under appropriate conditions. The hydrogenated LNR (HLNR) was characterized using Fourier-Transform Infrared (FTIR) and Nuclear Magnetic Resonance (NMR) spectroscopy. The physical characteristics of HLNR were analyzed with Termogravimetric Analysis (TGA).

  16. The Liquid Hydrogen System for the MuCool Test Area

    SciTech Connect

    Darve, C.; Klebaner, A.; Martinez, A.; Norris, B.; Pei, L.; Lau, W.; Yang, S.

    2004-06-23

    A new MuCool test area (MTA) is under construction at Fermi National Accelerator Laboratory. This facility will house a cryo-system composed of a liquid hydrogen absorber enclosed in a 5 Tesla magnet. The total volume of liquid hydrogen in the system is 25 liters. Helium gas at 14 K is provided by an in-house refrigerator and will sub-cool the hydrogen system to 17 K. Liquid hydrogen temperature in the absorber is chosen to satisfy the requirement of a density change smaller than +/- 2.5 %. To accommodate this goal and to remove the heat deposited by a beam, a pump will circulate liquid hydrogen at a rate of 450 g/s. The cooling loop was optimized with respect to the heat transport in liquid hydrogen and the pressure drop across the pump. Specific instrumentation will permit an intrinsically safe monitoring and control of the cryo-system. Safety issues are the main driver of the cryo-design.This paper describes the implementation of the liquid hydrogen system at MTA and the preliminary results of a finite element analysis used to size the LH2 absorber force-flow.

  17. The Liquid Hydrogen System for the MuCool Test Area

    NASA Astrophysics Data System (ADS)

    Darve, C.; Klebaner, A.; Martinez, A.; Norris, B.; Pei, L.; Lau, W.; Yang, S.

    2004-06-01

    A new MuCool test area (MTA) is under construction at Fermi National Accelerator Laboratory. This facility will house a cryo-system composed of a liquid hydrogen absorber enclosed in a 5 Tesla magnet. The total volume of liquid hydrogen in the system is 25 liters. Helium gas at 14 K is provided by an in-house refrigerator and will sub-cool the hydrogen system to 17 K. Liquid hydrogen temperature in the absorber is chosen to satisfy the requirement of a density change smaller than +/- 2.5 %. To accommodate this goal and to remove the heat deposited by a beam, a pump will circulate liquid hydrogen at a rate of 450 g/s. The cooling loop was optimized with respect to the heat transport in liquid hydrogen and the pressure drop across the pump. Specific instrumentation will permit an intrinsically safe monitoring and control of the cryo-system. Safety issues are the main driver of the cryo-design. This paper describes the implementation of the liquid hydrogen system at MTA and the preliminary results of a finite element analysis used to size the LH2 absorber force-flow.

  18. Liquid metal hydrogen barriers

    DOEpatents

    Grover, George M.; Frank, Thurman G.; Keddy, Edward S.

    1976-01-01

    Hydrogen barriers which comprise liquid metals in which the solubility of hydrogen is low and which have good thermal conductivities at operating temperatures of interest. Such barriers are useful in nuclear fuel elements containing a metal hydride moderator which has a substantial hydrogen dissociation pressure at reactor operating temperatures.

  19. Technical Assessment of Organic Liquid Carrier Hydrogen Storage Systems for Automotive Applications

    SciTech Connect

    Ahluwalia, R. K.; Hua, T. Q.; Peng, J. -K; Kromer, M.; Lasher, S.; McKenney, K.; Law, K.; Sinha, J.

    2011-06-21

    In 2007-2009, the DOE Hydrogen Program conducted a technical assessment of organic liquid carrier based hydrogen storage systems for automotive applications, consistent with the Program’s Multiyear Research, Development, and Demonstration Plan. This joint performance (ANL) and cost analysis (TIAX) report summarizes the results of this assessment. These results should be considered only in conjunction with the assumptions used in selecting, evaluating, and costing the systems discussed here and in the Appendices.

  20. A 10,000-gpm liquid hydrogen transfer system for the Saturn/Apollo program.

    NASA Technical Reports Server (NTRS)

    Wybranowski, E., Jr.

    1972-01-01

    Brief description of the design and operation of the liquid hydrogen transfer system used to service the Saturn V launch vehicle. The cryogenic loading of the huge booster begins eight hours before the scheduled liftoff. The first three hours of fueling are spent in cold hydrogen gas conditioning of the fuel tank. The cold hydrogen gas is provided by vaporizing liquid hydrogen from the storage tank and routing the resultant gas through the fill system. Boil-off losses after loading are continuously replaced through control valves which are driven by a computer system. The liquid hydrogen transfer system is made up of a number of subsystems including the 850,000 gal storage tank whose boil-off losses amount to only 200 gal/day, the pressurization system, the burn pond for controlled disposal of hydrogen waste gas, the storage tank fill manifold, and the hazardous gas monitoring system. Some of the subsystems and components are redundant to provide a high degree of reliability.

  1. Performance Tests of a Liquid Hydrogen Propellant Densification Ground System for the X33/RLV

    NASA Technical Reports Server (NTRS)

    Tomsik, Thomas M.

    1997-01-01

    A concept for improving the performance of propulsion systems in expendable and single-stage-to-orbit (SSTO) launch vehicles much like the X33/RLV has been identified. The approach is to utilize densified cryogenic liquid hydrogen (LH2) and liquid oxygen (LOX) propellants to fuel the propulsion stage. The primary benefit for using this relatively high specific impulse densified propellant mixture is the subsequent reduction of the launch vehicle gross lift-off weight. Production of densified propellants however requires specialized equipment to actively subcool both the liquid oxygen and liquid hydrogen to temperatures below their normal boiling point. A propellant densification unit based on an external thermodynamic vent principle which operates at subatmospheric pressure and supercold temperatures provides a means for the LH2 and LOX densification process to occur. To demonstrate the production concept for the densification of the liquid hydrogen propellant, a system comprised of a multistage gaseous hydrogen compressor, LH2 recirculation pumps and a cryogenic LH2 heat exchanger was designed, built and tested at the NASA Lewis Research Center (LeRC). This paper presents the design configuration of the LH2 propellant densification production hardware, analytical details and results of performance testing conducted with the hydrogen densifier Ground Support Equipment (GSE).

  2. A Low Cost, Self Acting, Liquid Hydrogen Boil-Off Recovery System

    NASA Technical Reports Server (NTRS)

    Pelfrey, Joy W.; Sharp, Kirk V. (Technical Monitor)

    2001-01-01

    The purpose of this research was to develop a prototype liquid hydrogen boll-off recovery system. Perform analyses to finalize recovery system cycle, design detail components, fabricate hardware, and conduct sub-component, component, and system level tests leading to the delivery of a prototype system. The design point and off-design analyses identified cycle improvements to increase the robustness of the system by adding a by-pass heat exchanger. Based on the design, analysis, and testing conducted, the recovery system will liquefy 31% of the gaseous boil off from a liquid hydrogen storage tank. All components, including a high speed, miniature turbocompressor, were designed and manufacturing drawings were created. All hardware was fabricated and tests were conducted in air, helium, and hydrogen. Testing validated the design, except for the turbocompressor. A rotor-to-stator clearance issue was discovered as a result of a concentricity tolerance stack-up.

  3. Evaluation of industrially applied heat-transfer fluids as liquid organic hydrogen carrier systems.

    PubMed

    Brückner, Nicole; Obesser, Katharina; Bösmann, Andreas; Teichmann, Daniel; Arlt, Wolfgang; Dungs, Jennifer; Wasserscheid, Peter

    2014-01-01

    Liquid organic hydrogen carrier (LOHC) systems offer a very attractive method for the decentralized storage of renewable excess energy. In this contribution, industrially well-established heat-transfer oils (typically sold under trade names, e.g., Marlotherm) are proposed as a new class of LOHC systems. It is demonstrated that the liquid mixture of isomeric dibenzyltoluenes (m.p. -39 to -34 °C, b.p. 390 °C) can be readily hydrogenated to the corresponding mixture of perhydrogenated analogues by binding 6.2 wt% of H2. The liquid H2 -rich form can be stored and transported similarly to diesel fuel. It readily undergoes catalytic dehydrogenation at temperatures above 260 °C, which proves its applicability as a reversible H2 carrier. The presented LOHC systems are further characterized by their excellent technical availability at comparably low prices, full registration of the H2 -lean forms, and excellent thermal stabilities. PMID:23956191

  4. Design study of the cooling scheme for SMES system in ASPCS by using liquid hydrogen

    NASA Astrophysics Data System (ADS)

    Makida, Yasuhiro; Shintomi, Takakazu; Asami, Takuya; Suzuki, Goro; Takao, Tomoaki; Hamajima, Takataro; Tsuda, Makoto; Miyagi, Daisuke; Munakata, Kouhei; Kajiwara, Masataka

    2013-11-01

    From the point of view of environment and energy problems, the renewable energies have been attracting attention. However, fluctuating power generation by the renewable energies affects the stability of the power network. Thus, we propose a new electric power storage and stabilization system, Advanced Superconducting Power Conditioning System (ASPCS), in which a Superconducting Magnetic Energy Storage (SMES) and a hydrogen-energy-storage converge on a liquid hydrogen station for fuel cell vehicles. The ASPCS proposes that the SMES coils wound with MgB2 conductor are indirectly cooled by thermo-siphon circulation of liquid hydrogen to use its cooling capability. The conceptual design of cooling scheme of the ASPCS is presented.

  5. Reference Gauging System for a Small-Scale Liquid Hydrogen Tank

    NASA Technical Reports Server (NTRS)

    VanDresar, Neil T.; Siegwarth, James D.

    2003-01-01

    A system to accurately weigh the fluid contents of a small-scale liquid hydrogen test tank has been experimentally verified. It is intended for use as a reference or benchmark system when testing lowgravity liquid quantity gauging concepts in the terrestrial environment. The reference gauging system has shown a repeatable measurement accuracy of better than 0.5 percent of the full tank liquid weight. With further refinement, the system accuracy can be improved to within 0.10 percent of full scale. This report describes the weighing system design, calibration, and operational results. Suggestions are given for further refinement of the system. An example is given to illustrate additional sources of uncertainty when mass measurements are converted to volume equivalents. Specifications of the companion test tank and its multi-layer insulation system are provided.

  6. Liquid Hydrogen: Target, Detector

    SciTech Connect

    Mulholland, G.T.; Harigel, G.G.

    2004-06-23

    In 1952 D. Glaser demonstrated that a radioactive source's radiation could boil 135 deg. C superheated-diethyl ether in a 3-mm O glass vessel and recorded bubble track growth on high-speed film in a 2-cm3 chamber. This Bubble Chamber (BC) promised improved particle track time and spatial resolution and cycling rate. Hildebrand and Nagle, U of Chicago, reported Liquid Hydrogen minimum ionizing particle boiling in August 1953. John Wood created the 3.7-cm O Liquid Hydrogen BC at LBL in January 1954. By 1959 the Lawrence Berkley Laboratory (LBL) Alvarez group's '72-inch' BC had tracks in liquid hydrogen. Within 10 years bubble chamber volumes increased by a factor of a million and spread to every laboratory with a substantial high-energy physics program. The BC, particle accelerators and special separated particle beams created a new era of High Energy Physics (HEP) experimentation. The BC became the largest most complex cryogenic installation at the world's HEP laboratories for decades. The invention and worldwide development, deployment and characteristics of these cryogenic dynamic target/detectors and related hydrogen targets are described.

  7. Thermal Performance Comparison of Glass Microsphere and Perlite Insulation Systems for Liquid Hydrogen Storage Tanks

    NASA Astrophysics Data System (ADS)

    Sass, J. P.; Fesmire, J. E.; Nagy, Z. F.; Sojourner, S. J.; Morris, D. L.; Augustynowicz, S. D.

    2008-03-01

    A technology demonstration test project was conducted by the Cryogenics Test Laboratory at the Kennedy Space Center (KSC) to provide comparative thermal performance data for glass microspheres, referred to as bubbles, and perlite insulation for liquid hydrogen tank applications. Two identical 1/15th scale versions of the 3,200,000 liter spherical liquid hydrogen tanks at Launch Complex 39 at KSC were custom designed and built to serve as test articles for this test project. Evaporative (boil-off) calorimeter test protocols, including liquid nitrogen and liquid hydrogen, were established to provide tank test conditions characteristic of the large storage tanks that support the Space Shuttle launch operations. This paper provides comparative thermal performance test results for bubbles and perlite for a wide range of conditions. Thermal performance as a function of cryogenic commodity (nitrogen and hydrogen), vacuum pressure, insulation fill level, tank liquid level, and thermal cycles will be presented.

  8. Vehicle-scale investigation of a fluorine jet-pump liquid hydrogen tank pressurization system

    NASA Technical Reports Server (NTRS)

    Cady, E. C.; Kendle, D. W.

    1972-01-01

    A comprehensive analytical and experimental program was performed to evaluate the performance of a fluorine-hydrogen jet-pump injector for main tank injection (MTI) pressurization of a liquid hydrogen (LH2) tank. The injector performance during pressurization and LH2 expulsion was determined by a series of seven tests of a full-scale injector and MTI pressure control system in a 28.3 cu m (1000 cu ft) flight-weight LH2 tank. Although the injector did not effectively jet-pump LH2 continuously, it showed improved pressurization performance compared to straight-pipe injectors tested under the same conditions in a previous program. The MTI computer code was modified to allow performance prediction for the jet-pump injector.

  9. Fail-safe system for activity cooled supersonic and hypersonic aircraft. [using liquid hydrogen fuel

    NASA Technical Reports Server (NTRS)

    Jones, R. A.; Braswell, D. O.; Richie, C. B.

    1975-01-01

    A fail-safe-system concept was studied as an alternative to a redundant active cooling system for supersonic and hypersonic aircraft which use the heat sink of liquid-hydrogen fuel for cooling the aircraft structure. This concept consists of an abort maneuver by the aircraft and a passive thermal protection system (TPS) for the aircraft skin. The abort manuever provides a low-heat-load descent from normal cruise speed to a lower speed at which cooling is unnecessary, and the passive TPS allows the aircraft skin to absorb the abort heat load without exceeding critical skin temperature. On the basis of results obtained, it appears that this fail-safe-system concept warrants further consideration, inasmuch as a fail-safe system could possibly replace a redundant active cooling system with no increase in weight and would offer other potential advantages.

  10. Design and performance of liquid hydrogen target systems for the Fermilab Fixed Target Program

    SciTech Connect

    Allspah, D.; Danes, J.; Peifer, J.; Stanek, R.

    1991-07-01

    The Fermilab 1990--1991 Fixed Target Program featured six experiments utilizing liquid hydrogen or liquid deuterium targets as part of their apparatus. Each design was optimized to the criteria of the experiment, resulting in variations of material selection, methods of refrigeration and secondary containment. Collectively, the targets were run for a total of 14,184 hours with an average operational efficiency of 97.6%. The safe and reliable operation of these targets was complemented by an increased degree of documentation and component testing. This operation was also aided by several key upgrades. All the systems were designed and fabricated under a set of written guidelines that blend analytical calculations and empirical guidance drawn from over twenty years of target fabrication experience. 3 refs., 4 tabs.

  11. Reduction of liquid hydrogen boiloff: Optimal reliquefaction system design and cost study

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A preliminary design and economic analysis of candidate hydrogen reliquefaction systems was performed. All candidate systems are of the same general type; differences and size, compressor arrangement, and amount of hydrogen venting. The potential application of the hydrogen reliquefaction will be to reduce the boil-off from the 850,000 gallon storage dewars at LC-39.

  12. Testing the Effects of Helium Pressurant on Thermodynamic Vent System Performance with Liquid Hydrogen

    NASA Technical Reports Server (NTRS)

    Flachbart, R. H.; Hastings, L. J.; Hedayat, A.; Nelson, S.; Tucker, S.

    2006-01-01

    In support of the development of a zero gravity pressure control capability for liquid hydrogen, testing was conducted at the Marshall Space Flight Center using the Multipurpose Hydrogen Test Bed (MHTB) to evaluate the effects of helium pressurant on the performance of a spray bar thermodynamic vent system (TVS). Fourteen days of testing was performed in August - September 2005, with an ambient heat leak of about 70-80 watts and tank fill levels of 90%, 50%, and 25%. The TVS successfully controlled the tank pressure within a +/- 3.45 kPa (+/- 0.5 psi) band with various helium concentration levels in the ullage. Relative to pressure control with an "all hydrogen" ullage, the helium presence resulted in 10 to 30 per cent longer pressure reduction durations, depending on the fill level, during the mixing/venting phase of the control cycle. Additionally, the automated control cycle was based on mixing alone for pressure reduction until the pressure versus time slope became positive, at which time the Joule-Thomson vent was opened. Testing was also conducted to evaluate thermodynamic venting without the mixer operating, first with liquid then with vapor at the recirculation line inlet. Although ullage stratification was present, the ullage pressure was successfully controlled without the mixer operating. Thus, if vapor surrounded the pump inlet in a reduced gravity situation, the ullage pressure can still be controlled by venting through the TVS Joule Thomson valve and heat exchanger. It was evident that the spray bar configuration, which extends almost the entire length of the tank, enabled significant thermal energy removal from the ullage even without the mixer operating. Details regarding the test setup and procedures are presented in the paper. 1

  13. A new vapor-liquid equilibrium apparatus for hydrogen fluoride containing systems

    SciTech Connect

    Jongcheon Lee; Hwayong Kim; Jong Sung Lim; Jae-Duck Kim; Youn Yong Lee

    1996-12-31

    A new circulating type apparatus has been constructed to obtain reliable equilibrium PTxy data for hydrogen fluoride (HF) containing system. Equilibrium cell with Pyrex windows protected by Teflon PFA sheets to prevent the corrosion was used. Isothermal vapor-liquid equilibrium data for the 1,1-difluoroethane (HFC-152a) + HF system at 288.23 and 298.35 K were obtained, and compared with PTx measurement results. Experimental data were correlated using Lencka and Anderko equation of state for HF with the Wong-Sandler mixing rule as well as the van der Waals one fluid mixing rule. The Wong-Sandler mixing rule gives better results. 5 refs., 3 figs.

  14. Liquid Hydrogen Absorber for MICE

    SciTech Connect

    Ishimoto, S.; Suzuki, S.; Yoshida, M.; Green, Michael A.; Kuno, Y.; Lau, Wing

    2010-05-30

    Liquid hydrogen absorbers for the Muon Ionization Cooling Experiment (MICE) have been developed, and the first absorber has been tested at KEK. In the preliminary test at KEK we have successfully filled the absorber with {approx}2 liters of liquid hydrogen. The measured hydrogen condensation speed was 2.5 liters/day at 1.0 bar. No hydrogen leakage to vacuum was found between 300 K and 20 K. The MICE experiment includes three AFC (absorber focusing coil) modules, each containing a 21 liter liquid hydrogen absorber made of aluminum. The AFC module has safety windows to separate its vacuum from that of neighboring modules. Liquid hydrogen is supplied from a cryocooler with cooling power 1.5 W at 4.2 K. The first absorber will be assembled in the AFC module and installed in MICE at RAL.

  15. Spray Bar Zero-Gravity Vent System for On-Orbit Liquid Hydrogen Storage

    NASA Technical Reports Server (NTRS)

    Hastings, L. J.; Flachbart, R. H.; Martin, J. J.; Hedayat, A.; Fazah, M.; Lak, T.; Nguyen, H.; Bailey, J. W.

    2003-01-01

    During zero-gravity orbital cryogenic propulsion operations, a thermodynamic vent system (TVS) concept is expected to maintain tank pressure control without propellant resettling. In this case, a longitudinal spray bar mixer system, coupled with a Joule-Thompson (J-T) valve and heat exchanger, was evaluated in a series of TVS tests using the 18 cu m multipurpose hydrogen test bed. Tests performed at fill levels of 90, 50, and 25 percent, coupled with heat tank leaks of about 20 and 50 W, successfully demonstrated tank pressure control within a 7-kPa band. Based on limited testing, the presence of helium constrained the energy exchange between the gaseous and liquid hydrogen (LH2) during the mixing cycles. A transient analytical model, formulated to characterize TVS performance, was used to correlate the test data. During self-pressurization cycles following tank lockup, the model predicted faster pressure rise rates than were measured; however, once the system entered the cyclic self-pressurization/mixing/venting operational mode, the modeled and measured data were quite similar. During a special test at the 25-percent fill level, the J-T valve was allowed to remain open and successfully reduced the bulk LH2 saturation pressure from 133 to 70 kPa in 188 min.

  16. Investigation of parameters of interaction of hydrogen isotopes with liquid lithium and lithium capillary-porous system under reactor irradiation

    NASA Astrophysics Data System (ADS)

    Tazhibayeva, I. L.; Kulsartov, T. V.; Gordienko, Yu. N.; Zaurbekova, Zh. A.; Ponkratov, Yu. V.; Barsukov, N. I.; Tulubayev, Ye. Yu.; Baklanov, V. V.; Gnyrya, V. S.; Kenzhin, Ye. A.

    2015-12-01

    In this study, the effect of reactor irradiation on the processes of interaction of hydrogen with liquid lithium and a lithium capillary-porous system (CPS) is considered. The experiments are carried out by the gas-absorption method with use of a specially designed ampoule device. The results of investigation of the interaction of hydrogen with liquid lithium and a lithium CPS under conditions of reactor irradiation are described; namely, these are the temperature dependences of the rate constant for the interaction of hydrogen with liquid lithium at different reactor powers, the activation energies of the processes, and the pre-exponential factor in the Arrhenius dependence. The effect of increasing absorption of hydrogen by the samples under investigation as a result of the reactor irradiation is fixed. The effect can be explained by increasing mobility of hydrogen in liquid lithium due to hot spots in lithium bulk and the interaction of helium and tritium ions (formed as a result of the nuclear reaction of 6Li with neutron) with a surface hydride film.

  17. Investigation of parameters of interaction of hydrogen isotopes with liquid lithium and lithium capillary-porous system under reactor irradiation

    SciTech Connect

    Tazhibayeva, I. L. Kulsartov, T. V.; Gordienko, Yu. N.; Zaurbekova, Zh. A.; Ponkratov, Yu. V.; Barsukov, N. I.; Tulubayev, Ye. Yu.; Baklanov, V. V.; Gnyrya, V. S.; Kenzhin, Ye. A.

    2015-12-15

    In this study, the effect of reactor irradiation on the processes of interaction of hydrogen with liquid lithium and a lithium capillary-porous system (CPS) is considered. The experiments are carried out by the gas-absorption method with use of a specially designed ampoule device. The results of investigation of the interaction of hydrogen with liquid lithium and a lithium CPS under conditions of reactor irradiation are described; namely, these are the temperature dependences of the rate constant for the interaction of hydrogen with liquid lithium at different reactor powers, the activation energies of the processes, and the pre-exponential factor in the Arrhenius dependence. The effect of increasing absorption of hydrogen by the samples under investigation as a result of the reactor irradiation is fixed. The effect can be explained by increasing mobility of hydrogen in liquid lithium due to hot spots in lithium bulk and the interaction of helium and tritium ions (formed as a result of the nuclear reaction of {sup 6}Li with neutron) with a surface hydride film.

  18. Thermal Analysis on Cryogenic Liquid Hydrogen Tank on an Unmanned Aerial Vehicle System

    NASA Technical Reports Server (NTRS)

    Wang, Xiao-Yen; Harpster, George; Hunter, James

    2007-01-01

    Thermal analyses are performed on the liquid hydrogen (LH2) tank designed for an unmanned aerial vehicle (UAV) powered by solar arrays and a regenerative proton-exchange membrane (PEM) fuel cell. A 14-day cruise mission at a 65,000 ft altitude is considered. Thermal analysis provides the thermal loads on the tank system and the boiling-off rates of LH2. Different approaches are being considered to minimize the boiling-off rates of the LH2. It includes an evacuated multilayer insulation (MLI) versus aerogel insulation on the LH2 tank and aluminum versus stainless steel spacer rings between the inner and outer tank. The resulting boil-off rates of LH2 provided by the one-dimensional model and three-dimensional finite element analysis (FEA) on the tank system are presented and compared to validate the results of the three-dimensional FEA. It concludes that heat flux through penetrations by conduction is as significant as that through insulation around the tank. The tank system with MLI insulation and stainless steel spacer rings result in the lowest boiling-off rate of LH2.

  19. Liquid Hydrogen Tank for the External Tank

    NASA Technical Reports Server (NTRS)

    1977-01-01

    This photograph shows an inside view of a liquid hydrogen tank for the Space Shuttle external tank (ET) Main Propulsion Test Article (MPTA). The ET provides liquid hydrogen and liquid oxygen to the Shuttle's three main engines during the first 8.5 minutes of flight. At 154-feet long and more than 27-feet in diameter, the ET is the largest component of the Space Shuttle, the structural backbone of the entire Shuttle system, and is the only part of the vehicle that is not reusable. The ET is manufactured at the Michoud Assembly Facility near New Orleans, Louisiana, by the Martin Marietta Corporation under management of the Marshall Space Flight Center.

  20. Liquid Hydrogen Target Experience at SLAC

    SciTech Connect

    Weisend, J.G.; Boyce, R.; Candia, A.; Kaminskas, W.; Mark, J.; Racine, M.; St. Lorant, S.; Weber, T.; Arnold, R.; Bosted, P.; Carr, R.; Gao, J.; Jones, C.E.; McKeown, R.; /Caltech

    2005-08-29

    Liquid hydrogen targets have played a vital role in the physics program at SLAC for the past 40 years. These targets have ranged from small ''beer can'' targets to the 1.5 m long E158 target that was capable of absorbing up to 800 W without any significant density changes. Successful use of these targets has required the development of thin wall designs, liquid hydrogen pumps, remote positioning and alignment systems, safety systems, control and data acquisition systems, cryogenic cooling circuits and heat exchangers. Detailed operating procedures have been created to ensure safety and operational reliability. This paper surveys the evolution of liquid hydrogen targets at SLAC and discusses advances in several of the enabling technologies that made these targets possible.

  1. Engineering development of ceramic membrane reactor system for converting natural gas to hydrogen and synthesis gas for liquid transportation fuels

    SciTech Connect

    1998-05-01

    The objective of this contract is to research, develop and demonstrate a novel ceramic membrane reactor system for the low-cost conversion of natural gas to synthesis gas and hydrogen for liquid transportation fuels: the ITM Syngas process. Through an eight-year, three-phase program, the technology will be developed and scaled up to obtain the technical, engineering, operating and economic data necessary for the final step to full commercialization of the Gas-to-Liquids (GTL) conversion technology. This report is a summary of activities through April 1998.

  2. ENGINEERING DEVELOPMENT OF CERAMIC MEMBRANE REACTOR SYSTEM FOR CONVERTING NATURAL GAS TO HYDROGEN AND SYNTHESIS GAS FOR LIQUID TRANSPORTATION FUELS

    SciTech Connect

    1999-12-01

    The objective of this contract is to research, develop and demonstrate a novel ceramic membrane reactor system for the low-cost conversion of natural gas to synthesis gas and hydrogen for liquid transportation fuels: the ITM Syngas process. Through an eight-year, three-phase program, the technology will be developed and scaled up to obtain the technical, engineering, operating and economic data necessary for the final step to full commercialization of the Gas-to-Liquids (GTL) conversion technology. This report is a summary of activities through November 1999.

  3. Calibrating the Helium Pressurization System for the Space Shuttle Liquid-Hydrogen Tank

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Analysis of the results from the STS-114 tanking tests and subsequent launch called into question existing thermal and mass models of helium pressurization of the liquid hydrogen tank. This hydrogen tank, which makes up the bottom two-thirds of the External Tank, is pressurized prior to launch to avoid cavitation in the Shuttle Main Engine pumps. At about 2 minutes prior to launch, the main vent valve is closed, and pressurized helium flows into the tank ullage space to achieve set point pressure. As the helium gas cools, its pressure drops, calling for additional helium. Subsequent helium flows are provided in short, timed pulses. The number of pulses is taken as a rough leak indicator. An analysis of thermal models by Marshall Space Flight Center showed considerable uncertainty in the pressure-versus-time behavior of the helium ullage space and the ability to predict the number of pulses normally expected. Kennedy Space Center proposed to calibrate the dime-sized orifice, which together with valves, controls the helium flow quantity (Figure 1). Pressure and temperature sensors were installed to provide upstream and downstream measurements necessary to compute flow rate based on the orifice discharge coefficient. An assessment of flow testing with helium indicated an extremely costly use of this critical resource. In order to reduce costs, we proposed removing the orifices from each Mobile Launcher Platform (MLP) and asking Colorado Engineering Experiment Station Inc. (CEESI) to calibrate the flow. CEESI has a high-pressure air flow system with traceable flow meters capable of handling the large flow rates. However, literature research indicated that square-edged orifices of small diameters often exhibit significant hysteresis and nonrepeatability in the vicinity of choked or sonic flow. Fortunately, the MLP orifices behaved relatively well in testing (Figure 2). Using curve fitting of the air-flow data, in conjunction with ASME orifice modeling equations, a

  4. Large-capacity pump vaporizer for liquid hydrogen and nitrogen

    NASA Technical Reports Server (NTRS)

    Hauser, J. A.

    1970-01-01

    Pump vaporizer system delivers 500 standard cubic feet per minute of hydrogen or nitrogen, one system delivers both gases. Vacuum-jacketed pump discharges liquid hydrogen or liquid nitrogen into vaporizing system heated by ambient air. Principal characteristics of the flow and discharge system, pump, and vaporizer are given.

  5. Crash test of a liquid hydrogen automobile

    NASA Technical Reports Server (NTRS)

    Finegold, J. G.; Van Vorst, W. D.

    1976-01-01

    Details of the conversion of a U.S. Postal Service mail truck to hydrogen-fueled operation are given. Specific reference is made to design safety considerations. A traffic accident is described that caused the mail truck (mounted on a trailer) to turn on its side at approximately 20 mph and to finally slide to a stop and turn upside down. No one was injured, and there was essentially no damage to the liquid hydrogen fuel system. The mail truck was driven away from the scene of the accident. Suggestions to insure the safety of hydrogen-fueled experimental vehicles are made.

  6. Thermal performance of a liquid hydrogen tank multilayer insulation system at warm boundary temperatures of 630, 530, and 152 R

    NASA Technical Reports Server (NTRS)

    Stochl, Robert J.; Knoll, Richard H.

    1991-01-01

    The results are presented of a study conducted to obtain experimental heat transfer data on a liquid hydrogen tank insulated with 34 layers of MLI (multilayer insulation) for warm side boundary temperatures of 630, 530, and 150 R. The MLI system consisted of two blankets, each blanket made up of alternate layers of double silk net (16 layers) and double aluminized Mylar radiation shields (15 layers) contained between two cover sheets of Dacron scrim reinforced Mylar. The insulation system was designed for and installed on a 87.6 in diameter liquid hydrogen tank. Nominal layer density of the insulation blankets is 45 layers/in. The insulation system contained penetrations for structural support, plumbing, and electrical wiring that would be representative of a cryogenic spacecraft. The total steady state heat transfer rates into the test tank for shroud temperatures of 630, 530, 152 R were 164.4, 95.8, and 15.9 BTU/hr respectively. The noninsulation heat leaks into the tank (12 fiberglass support struts, tank plumbing, and instrumentation lines) represent between 13 to 17 pct. of the total heat input. The heat input values would translate to liquid H2 losses of 2.3, 1.3, and 0.2 pct/day, with the tank held at atmospheric pressure.

  7. Thermal performance of a liquid hydrogen tank multilayer insulation system at warm boundary temperatures of 630, 530, and 152 R

    NASA Technical Reports Server (NTRS)

    Stochl, Robert J.; Knoll, Richard H.

    1991-01-01

    The results are presented of a study conducted to obtain experimental heat transfer data on a liquid hydrogen tank insulated with 34 layers of MLI (multilayer insulation) for warm side boundary temperatures of 630, 530, and 150 R. The MLI system consisted of two blankets, each blanket made up of alternate layers of double silk net (16 layers) and double aluminized Mylar radiation shields (15 layers) contained between two cover sheets of Dacron scrim reinforced Mylar. The insulation system was designed for and installed on an 87.6 in. diameter liquid hydrogen tank. Nominal layer density of the insulation blankets is 45 layers/in. The insulation system contained penetrations for structural support, plumbing, and electrical wiring that would be representative of a cryogenic spacecraft. The total steady state heat transfer rates into the test tank for shroud temperatures of 630, 530, 152 R were 164.4, 95.8, and 15.9 BTU/hr, respectively. The noninsulation heat leaks into the tank (12 fiberglass support struts, tank plumbing, and instrumentation lines) represent between 13 to 17 pct. of the total heat input. The heat input values would translate to liquid H2 losses of 2.3, 1.3, and 0.2 pct/day, with the tank held at atmospheric pressure.

  8. Thermal Analysis of Cryogenic Hydrogen Liquid Separator

    NASA Technical Reports Server (NTRS)

    Congiardo, Jared F.; Fortier, Craig R. (Editor)

    2014-01-01

    During launch for the new Space Launch System (SLS) liquid hydrogen is bleed through the engines during replenish, pre-press, and extended pre-press to condition the engines prior to launch. The predicted bleed flow rates are larger than for the shuttle program. A consequence of the increased flow rates is having liquif hydrogen in the vent system, which the facilities was never designed to handle. To remedy the problem a liquid separator is being designed in the system to accumulated the liquid propellant and protect the facility flare stack (which can only handle gas). The attached document is a presentation of the current thermalfluid analysis performed for the separator and will be presented at the Thermal and Fluid Analysis Workshop (NASA workshop) next week in Cleveland, Ohio.

  9. Study of Systems and Technology for Liquid Hydrogen Production Independent of Fossil Fuels

    NASA Technical Reports Server (NTRS)

    Sprafka, R. J.; Escher, W. J. D.; Foster, R. W.; Tison, R. R.; Shingleton, J.; Moore, J. S.; Baker, C. R.

    1983-01-01

    Based on Kennedy Space Center siting and logistics requirements and the nonfossil energy resources at the Center, a number of applicable technologies and system candidates for hydrogen production were identified and characterized. A two stage screening of these technologies in the light of specific criteria identified two leading candidates as nonfossil system approaches. Conceptual design and costing of two solar-operated, stand alone systems, one photovoltaic based on and the other involving the power tower approach reveals their technical feasibility as sited as KSC, and the potential for product cost competitiveness with conventional supply approaches in the 1990 to 1210 time period. Conventional water hydrolysis and hydrogen liquefaction subsystems are integrated with the solar subsystems.

  10. Characterization of Pump-Induced Acoustics in Space Launch System Main Propulsion System Liquid Hydrogen Feedline Using Airflow Test Data

    NASA Technical Reports Server (NTRS)

    Eberhart, C. J.; Snellgrove, L. M.; Zoladz, T. F.

    2015-01-01

    High intensity acoustic edgetones located upstream of the RS-25 Low Pressure Fuel Turbo Pump (LPFTP) were previously observed during Space Launch System (STS) airflow testing of a model Main Propulsion System (MPS) liquid hydrogen (LH2) feedline mated to a modified LPFTP. MPS hardware has been adapted to mitigate the problematic edgetones as part of the Space Launch System (SLS) program. A follow-on airflow test campaign has subjected the adapted hardware to tests mimicking STS-era airflow conditions, and this manuscript describes acoustic environment identification and characterization born from the latest test results. Fluid dynamics responsible for driving discrete excitations were well reproduced using legacy hardware. The modified design was found insensitive to high intensity edgetone-like discretes over the bandwidth of interest to SLS MPS unsteady environments. Rather, the natural acoustics of the test article were observed to respond in a narrowband-random/mixed discrete manner to broadband noise thought generated by the flow field. The intensity of these responses were several orders of magnitude reduced from those driven by edgetones.

  11. Test Data Analysis of a Spray Bar Zero-Gravity Liquid Hydrogen Vent System for Upper Stages

    NASA Technical Reports Server (NTRS)

    Hedayat, A.; Bailey, J. W.; Hastings, L. J.; Flachbart, R. H.

    2003-01-01

    To support development of a zero-gravity pressure control capability for liquid hydrogen (LH2), a series of thermodynamic venting system (TVS) tests was conducted in 1996 and 1998 using the Marshall Space Flight Center (MSFC) multipurpose hydrogen test bed (MHTB). These tests were performed with ambient heat leaks =20 and 50 W for tank fill levels of 90%, 50%, and 25%. TVS performance testing revealed that the spray bar was highly effective in providing tank pressure control within a 7-kPa band (131-138 Wa), and complete destratification of the liquid and the ullage was achieved with all test conditions. Seven of the MHTB tests were correlated with the TVS performance analytical model. The tests were selected to encompass the range of tank fill levels, ambient heat leaks, operational modes, and ullage pressurants. The TVS model predicted ullage pressure and temperature and bulk liquid saturation pressure and temperature obtained from the TVS model were compared with the test data. During extended self-pressurization periods, following tank lockup, the model predicted faster pressure rise rates than were measured. However, once the system entered the cyclic mixing/venting operational mode, the modeled and measured data were quite similar.

  12. Development and validation of purged thermal protection systems for liquid hydrogen fuel tanks of hypersonic vehicles

    NASA Technical Reports Server (NTRS)

    Helenbrook, R. D.; Colt, J. Z.

    1977-01-01

    An economical, lightweight, safe, efficient, reliable, and reusable insulation system was developed for hypersonic cruise vehicle hydrogen fuel tanks. Results indicate that, a nitrogen purged, layered insulation system with nonpermeable closed-cell insulation next to the cryogenic tank and a high service temperature fibrous insulation surrounding it, is potentially an attractive solution to the insulation problem. For the postulated hypersonic flight the average unit weight of the purged insulation system (including insulation, condensate and fuel boil off) is 6.31 kg/sq m (1.29 psf). Limited cyclic tests of large specimens of closed cell polymethacrylimide foam indicate it will withstand the expected thermal cycle.

  13. Liquid Hydrogen Sensor Considerations for Space Exploration

    NASA Technical Reports Server (NTRS)

    Moran, Matthew E.

    2006-01-01

    The on-orbit management of liquid hydrogen planned for the return to the moon will introduce new considerations not encountered in previous missions. This paper identifies critical liquid hydrogen sensing needs from the perspective of reliable on-orbit cryogenic fluid management, and contrasts the fundamental differences in fluid and thermodynamic behavior for ground-based versus on-orbit conditions. Opportunities for advanced sensor development and implementation are explored in the context of critical Exploration Architecture operations such as on-orbit storage, docking, and trans-lunar injection burn. Key sensing needs relative to these operations are also examined, including: liquid/vapor detection, thermodynamic condition monitoring, mass gauging, and leak detection. Finally, operational aspects of an integrated system health management approach are discussed to highlight the potential impact on mission success.

  14. Comments on liquid hydrogen absorbers for MICE

    SciTech Connect

    Green, Michael A.

    2003-02-01

    This report describes the heat transfer problems associatedwith a liquid hydrogen absorber for the MICE experiment. This reportdescribes a technique for modeling heat transfer from the outside world,to the abosrber case and in its vacuum vessel, to the hydrogen and theninto helium gas at 14 K. Also presented are the equation for freeconvection cooling of the liquid hydrogen in the absorber.

  15. Liquid composition having ammonia borane and decomposing to form hydrogen and liquid reaction product

    DOEpatents

    Davis, Benjamin L; Rekken, Brian D

    2014-04-01

    Liquid compositions of ammonia borane and a suitably chosen amine borane material were prepared and subjected to conditions suitable for their thermal decomposition in a closed system that resulted in hydrogen and a liquid reaction product.

  16. Liquid hydrogen flow problems in Kiwi reactors

    SciTech Connect

    Thurston, R.S.

    1992-09-01

    The Kiwi series of reactors were the first ones tested in the US Rover Program in the development of nuclear rocket engines for space propulsion. The early experiments with liquid hydrogen showed that parallel flow systems were prone to uneven flow distributions and violent fluctuations in pressure and flow that were capable of destroying a reactor core. Kiwi flow distribution problems were solved by using multiple feed lines into the nozzle cooling system and carefully balancing impedance among them. The violent pressure and flow fluctuations were eliminated after their cause was identified as resonance phenomena driven by the response to flow disturbances of heat transfer through a superheated hydrogen layer. Smooth flow operations were assured by rapidly bringing operating pressures beyond several times the critical pressure of hydrogen. After this initial rough start, solid core nuclear rocket engines successfully passed milestones of achievements during the remainder of the Rover program.

  17. Turbine engine altitude chamber and flight testing with liquid hydrogen

    NASA Technical Reports Server (NTRS)

    Conrad, E. W.

    1979-01-01

    In the late fifties the Lewis Research Center evaluated experimentally the use of hydrogen using three different turbojet engines in altitude test chambers. One of these engines was later flown experimentally using liquid hydrogen fuel. This paper is a brief overview of the significant aspects of this exploratory research and gives a few implications of the results to modern turbine engines. A subsequent contract dealing with a positive displacement pump operating on liquid hydrogen is discussed and some aspects of liquid hydrogen propellant systems, reflected by rocket booster experience are treated briefly. Areas requiring further research and technology effort are delineated.

  18. Demonstration of a pulsing liquid hydrogen/liquid oxygen thruster

    NASA Technical Reports Server (NTRS)

    Herr, P. N.; Choenman, L.

    1973-01-01

    Successful operation of a pulsing liquid hydrogen/liquid oxygen attitude control propulsion system thruster (1250 lb sub f) at cryogenic inlet conditions while maintaining high specific impulse and low impulse bit capability was demonstrated. Significant technical advances and departures from conventional injector design practices were necessary in order to achieve an operable thruster. These advancements were achieved through extensive analyses of heat transfer and injector manifold priming that established the baseline feasibility for an actual hardware design. The primary subject of this paper is the result of experimental evaluation of the 45 R hydrogen inlet temperature injector concept. The test matrix consisted of 66 hot firing tests in a heat sink thrust chamber.

  19. Modeling hydrogen sulfide emissions across the gas-liquid interface of an anaerobic swine waste treatment storage system

    NASA Astrophysics Data System (ADS)

    Blunden, Jessica; Aneja, Viney P.; Overton, John H.

    Hydrogen sulfide (H 2S) is a colorless gas emitted during decomposition of hog manure that produces an offensive "rotten egg" smell and is considered a toxic manure gas. In the southeastern United States, anaerobic waste treatment lagoons are widely used to store and treat hog excreta at commercial hog farms. Hydrogen sulfide is produced as manure decomposes anaerobically, resulting from the mineralization of organic sulfur compounds as well as the reduction of oxidized inorganic sulfur compounds by sulfur-reducing bacteria. The process of H 2S emissions from anaerobic waste treatment lagoons are investigated utilizing a two-film model with three different modeling approaches: Coupled Mass Transfer with Chemical Reactions Model with the assumption (1) pH remains constant in the liquid film (MTCR Model I) and (2) pH may change throughout the liquid film due to diffusion processes that occur within the film (MTCR Model II); and (3) a Mass Transfer Model which neglects chemical reactions (MTNCR Model) in the gas and liquid films. Results of model predictions are consistent with previous works, which show that flux is largely dependent on the physicochemical lagoon properties including sulfide concentration, pH, and lagoon temperature. Air temperature and low wind velocities (e.g., <3.25 m s -1) have negligible impact on flux. Results also indicate that flux values decrease with increased film thickness. The flux was primarily influenced by variations in the liquid film thickness, signifying that the H 2S flux is driven by liquid-phase parameters. Model results were compared with H 2S flux measurements made at a swine waste treatment storage lagoon in North Carolina using a dynamic emission flux chamber system in order to evaluate model accuracy in calculating lagoon H 2S emissions. The MTCR Model II predicted the highest increase in emission rates as aqueous sulfide concentration was increased. The MTNCR Model showed the highest dependence on pH. All three models

  20. Analysis and optimization of thermal stratification and self-pressurization effects in liquid hydrogen storage systems -- Part 1: Model development

    SciTech Connect

    Gursu, S.; Veziroglu, T.N. . Clean Energy Research Inst.); Sherif, S.A. . Dept. of Mechanical Engineering); Sheffield, J.W. )

    1993-09-01

    This paper reports on analyses and optimization studies of problems associated with liquid hydrogen thermal stratification and self-pressurization in cryogenic vessels. Three different pressure rise models were employed to calculate the self-pressurization and boil-off rates. These are a homogeneous model, a surface-evaporation model, and a thermal stratification model. The first two models are based on the assumption that no temperature gradients exist in the tank, while the thermal stratification model takes the temperature distribution into account. Employing the thermal stratification model, temperature gradients and their effect on the pressure rise rates in liquid hydrogen tanks are analyzed.

  1. Analysis and optimization of thermal stratification and self-pressurization effects in liquid hydrogen storage systems -- Part 2: Model results and conclusions

    SciTech Connect

    Gursu, S.; Veziroglu, T.N. . Clean Energy Research Inst.); Sherif, S.A. . Dept. of Mechanical Engineering); Sheffield, J.W. . Dept. of Mechanical and Aerospace Engineering and Engineering Mechanics)

    1993-09-01

    Three models capable of predicting the phenomena of thermal stratification and self-pressurization in liquid hydrogen storage systems were presented in Part 1 of this paper. In order to be able to evaluate the performance of the different pressure rise models, the results are compared with experimental data obtained from different tests. The set of experimental data obtained from the Plum Brook B-2 test, in the NASA-Lewis Research Center, represents a very accurately instrumented and closely controlled experimental work performed on the liquid hydrogen storage tank. Another set of data is taken from the experimental study conducted again in the NASA-Lewis Research Center to obtain a correlating parameter which relates the rate of pressure rise to the volume of spherical liquid hydrogen tank. In this paper model results are presented and discussed and general conclusions are reached.

  2. Thermal Gaussian molecular dynamics for quantum dynamics simulations of many-body systems: application to liquid para-hydrogen.

    PubMed

    Georgescu, Ionut; Deckman, Jason; Fredrickson, Laura J; Mandelshtam, Vladimir A

    2011-05-01

    A new method, here called thermal Gaussian molecular dynamics (TGMD), for simulating the dynamics of quantum many-body systems has recently been introduced [I. Georgescu and V. A. Mandelshtam, Phys. Rev. B 82, 094305 (2010)]. As in the centroid molecular dynamics (CMD), in TGMD the N-body quantum system is mapped to an N-body classical system. The associated both effective Hamiltonian and effective force are computed within the variational Gaussian wave-packet approximation. The TGMD is exact for the high-temperature limit, accurate for short times, and preserves the quantum canonical distribution. For a harmonic potential and any form of operator Â, it provides exact time correlation functions C(AB)(t) at least for the case of B, a linear combination of the position, x, and momentum, p, operators. While conceptually similar to CMD and other quantum molecular dynamics approaches, the great advantage of TGMD is its computational efficiency. We introduce the many-body implementation and demonstrate it on the benchmark problem of calculating the velocity time auto-correlation function for liquid para-hydrogen, using a system of up to N = 2592 particles. PMID:21548675

  3. Screen Channel Liquid Acquisition Device Outflow Tests in Liquid Hydrogen

    NASA Technical Reports Server (NTRS)

    Hartwig, Jason W.; Chato, David J.; McQuillen, J. B.; Vera, J.; Kudlac, M. T.; Quinn, F. D.

    2013-01-01

    This paper presents experimental design and test results of the recently concluded 1-g inverted vertical outflow testing of two 325x2300 full scale liquid acquisition device (LAD) channels in liquid hydrogen (LH2). One of the channels had a perforated plate and internal cooling from a thermodynamic vent system (TVS) to enhance performance. The LADs were mounted in a tank to simulate 1-g outflow over a wide range of LH2 temperatures (20.3 - 24.2 K), pressures (100 - 350 kPa), and flow rates (0.010 - 0.055 kg/s). Results indicate that the breakdown point is dominated by liquid temperature, with a second order dependence on mass flow rate through the LAD. The best performance is always achieved in the coldest liquid states for both channels, consistent with bubble point theory. Higher flow rates cause the standard channel to break down relatively earlier than the TVS cooled channel. Both the internal TVS heat exchanger and subcooling the liquid in the propellant tank are shown to significantly improve LAD performance.

  4. Screen channel liquid acquisition device outflow tests in liquid hydrogen

    NASA Astrophysics Data System (ADS)

    Hartwig, J. W.; Chato, D. J.; McQuillen, J. B.; Vera, J.; Kudlac, M. T.; Quinn, F. D.

    2014-11-01

    This paper presents experimental design and test results of the recently concluded 1-g inverted vertical outflow testing of two 325 × 2300 full scale liquid acquisition device (LAD) channels in liquid hydrogen (LH2). One of the channels had a perforated plate and internal cooling from a thermodynamic vent system (TVS) to enhance performance. The LADs were mounted in a tank to simulate 1-g outflow over a wide range of LH2 temperatures (20.3-24.2 K), pressures (100-350 kPa), and flow rates (0.010-0.055 kg/s). Results indicate that the breakdown point is dominated by liquid temperature, with a second order dependence on mass flow rate through the LAD. The best performance is always achieved in the coldest liquid states for both channels, consistent with bubble point theory. Higher flow rates cause the standard channel to break down relatively earlier than the TVS cooled channel. Both the internal TVS heat exchanger and subcooling the liquid in the propellant tank are shown to significantly improve LAD performance.

  5. Pad B Liquid Hydrogen Storage Tank

    NASA Technical Reports Server (NTRS)

    Hall, Felicia

    2007-01-01

    Kennedy Space Center is home to two liquid hydrogen storage tanks, one at each launch pad of Launch Complex 39. The liquid hydrogen storage tank at Launch Pad B has a significantly higher boil off rate that the liquid hydrogen storage tank at Launch Pad A. This research looks at various calculations concerning the at Launch Pad B in an attempt to develop a solution to the excess boil off rate. We will look at Perlite levels inside the tank, Boil off rates, conductive heat transfer, and radiant heat transfer through the tank. As a conclusion to the research, we will model the effects of placing an external insulation to the tank in order to reduce the boil off rate and increase the economic efficiency of the liquid hydrogen storage tanks.

  6. First calibration measurements of an FTIR absorption spectroscopy system for liquid hydrogen isotopologues for the isotope separation system of fusion power plants

    SciTech Connect

    Groessle, R.; Beck, A.; Bornschein, B.; Fischer, S.; Kraus, A.; Mirz, S.; Rupp, S.

    2015-03-15

    Fusion facilities like ITER and DEMO will circulate huge amounts of deuterium and tritium in their fuel cycle with an estimated throughput of kg per hour. One important capability of these fuel cycles is to separate the hydrogen isotopologues (H{sub 2}, D{sub 2}, T{sub 2}, HD, HT, DT). For this purpose the Isotope Separation System (ISS), using cryogenic distillation, as part of the Tritium Enrichment Test Assembly (TRENTA) is under development at Tritium Laboratory Karlsruhe. Fourier transform infrared absorption spectroscopy (FTIR) has been selected to prove its capability for online monitoring of the tritium concentration in the liquid phase at the bottom of the distillation column of the ISS. The actual research-development work is focusing on the calibration of such a system. Two major issues are the identification of appropriate absorption lines and their dependence on the isotopic concentrations and composition. For this purpose the Tritium Absorption IR spectroscopy experiment has been set up as an extension of TRENTA. For calibration a Raman spectroscopy system is used. First measurements, with equilibrated mixtures of H{sub 2}, D{sub 2} and HD demonstrate that FTIR can be used for quantitative analysis of liquid hydro-gen isotopologues and reveal a nonlinear dependence of the integrated absorbance from the D{sub 2} concentration in the second vibrational branch of D{sub 2} FTIR spectra. (authors)

  7. Reduction of liquid hydrogen boiloff: Optimal reliquefaction system design and cost study

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The refrigeration cycles investigated are referred to as Joule-Thomson cycles because they depend on the J-T effect to produce the low temperatures. Two basic competitive refrigeration cycles were evaluated. The first vents a portion of cold H2 gas to achieve the required precooling; the second uses LN2 for precooling. Both open loop and closed loop cycles were evaluated as well as combinations of venting to supplement the LN2 precooling. All cycles use a H2 compressor to achieve the desired high pressure (1325 psig). The heat compression was removed by cooling water. The high pressure H2 gas was cooled in counter flow heat exchangers by flowing cold H2 to the compressor. Further cooling was achieved for cycles using LN2 by passing H2 vapors through a LN2 heat exchanger. Finally, the high pressure H2 gas was expanded through a J-T valve where a portion of H2 was liquefied. The low pressure H2 gas flow back through the heat exchangers to the compressor is that portion not liquefied and makes up hydrogen gas from the dewar.

  8. Hydrogen energy systems studies

    SciTech Connect

    Ogden, J.M.; Kreutz, T.G.; Steinbugler, M.

    1996-10-01

    In this report the authors describe results from technical and economic assessments carried out during the past year with support from the USDOE Hydrogen R&D Program. (1) Assessment of technologies for small scale production of hydrogen from natural gas. Because of the cost and logistics of transporting and storing hydrogen, it may be preferable to produce hydrogen at the point of use from more readily available energy carriers such as natural gas or electricity. In this task the authors assess near term technologies for producing hydrogen from natural gas at small scale including steam reforming, partial oxidation and autothermal reforming. (2) Case study of developing a hydrogen vehicle refueling infrastructure in Southern California. Many analysts suggest that the first widespread use of hydrogen energy is likely to be in zero emission vehicles in Southern California. Several hundred thousand zero emission automobiles are projected for the Los Angeles Basin alone by 2010, if mandated levels are implemented. Assuming that hydrogen vehicles capture a significant fraction of this market, a large demand for hydrogen fuel could evolve over the next few decades. Refueling a large number of hydrogen vehicles poses significant challenges. In this task the authors assess near term options for producing and delivering gaseous hydrogen transportation fuel to users in Southern California including: (1) hydrogen produced from natural gas in a large, centralized steam reforming plant, and delivered to refueling stations via liquid hydrogen truck or small scale hydrogen gas pipeline, (2) hydrogen produced at the refueling station via small scale steam reforming of natural gas, (3) hydrogen produced via small scale electrolysis at the refueling station, and (4) hydrogen from low cost chemical industry sources (e.g. excess capacity in refineries which have recently upgraded their hydrogen production capacity, etc.).

  9. Thermal properties of hydrogenated liquid natural rubber

    SciTech Connect

    Jamaluddin, Naharullah; Abdullah, Ibrahim; Yusoff, Siti Fairus M.

    2015-09-25

    Natural rubber (NR) was modified to form liquid natural rubber (LNR) via photooxidative degradation. Hydrogenated liquid natural rubber (HLNR) was synthesized by using diimide as source of hydrogen which the diimide is produced by thermolysis of p-toluenesulfonyl hydrazide (TSH). The structure of HLNR was characterized by determining the changes of main peaks in Fourier Transform infrared and nuclear magnetic resonance spectra after hydrogenation. Thermogravimetric analysis showed that the HLNR had higher decomposition temperature compared to LNR and the decomposition temperature is directly proportional to the percentage of conversion.

  10. Thermal properties of hydrogenated liquid natural rubber

    NASA Astrophysics Data System (ADS)

    Jamaluddin, Naharullah; Abdullah, Ibrahim; Yusoff, Siti Fairus M.

    2015-09-01

    Natural rubber (NR) was modified to form liquid natural rubber (LNR) via photooxidative degradation. Hydrogenated liquid natural rubber (HLNR) was synthesized by using diimide as source of hydrogen which the diimide is produced by thermolysis of p-toluenesulfonyl hydrazide (TSH). The structure of HLNR was characterized by determining the changes of main peaks in Fourier Transform infrared and nuclear magnetic resonance spectra after hydrogenation. Thermogravimetric analysis showed that the HLNR had higher decomposition temperature compared to LNR and the decomposition temperature is directly proportional to the percentage of conversion.

  11. DETAIL OF THE LIQUID HYDROGEN AND LIQUID OXYGEN VENT VALVES, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF THE LIQUID HYDROGEN AND LIQUID OXYGEN VENT VALVES, SIXTH LEVEL OF THE EXTERNAL TANK CHECK-OUT CELLS, HB-2, FACING NORTHEAST - Cape Canaveral Air Force Station, Launch Complex 39, Vehicle Assembly Building, VAB Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  12. Thermochemistry of binary Na-NaH and ternary Na-O-H systems and the kinetics of reaction of hydrogen/water with liquid sodium - a review

    NASA Astrophysics Data System (ADS)

    Gnanasekaran, T.

    A review of the literature data on the binary Na-H and ternary Na-O-H systems has been carried out. Influence of dissolved oxygen on Sieverts' constant for hydrogen in sodium is analysed and an expression for the variation of Sieverts' constant with oxygen concentration is derived. Data on equilibrium hydrogen partial pressures over Na(l)-NaH(s) phase mixtures are assessed and an expression for variation of Gibbs energy of formation of NaH(s) with temperature is obtained. Analysis of the phase diagram and thermochemical information on the ternary Na-O-H system has been carried out. Kinetics of the reaction of water/steam and gaseous hydrogen with liquid sodium are also presented and the need to resolve the disagreement among the literature data is brought out.

  13. Hydrogen-Bonded Liquid Crystal Nanocomposites.

    PubMed

    Roohnikan, Mahdi; Toader, Violeta; Rey, Alejandro; Reven, Linda

    2016-08-23

    Nanoparticle-liquid crystal (NP-LC) composites based on hydrogen bonding were explored using a model system. The ligand shells of 3 nm diameter zirconium dioxide nanoparticles (ZrO2 NPs) were varied to control their interaction with 4-n-hexylbenzoic acid (6BA). The miscibility and effect of the NPs on the nematic order as a function of particle concentration was characterized by polarized optical microscopy (POM), fluorescence microscopy and (2)H NMR spectroscopy. Nonfunctionalized ZrO2 NPs have the lowest miscibility and strongest effect on the LC matrix due to irreversible binding of 6BA to the NPs via a strong zirconium carboxylate bond. The ZrO2 NPs were functionalized with 6-phosphonohexanoic acid (6PHA) or 4-(6-phosphonohexyloxy)benzoic acid (6BPHA) which selectively bind to the ZrO2 NP surface via the phosphonic acid groups. The miscibility was increased by controlling the concentration of the pendant CO2H groups by adding hexylphosphonic acid (HPA) to act as a spacer group. Fluorescence microscopy of lanthanide doped ZrO2 NPs showed no aggregates in the nematic phase below the NP concentration where aggregates are observed in the isotropic phase. The functionalized NPs preferably concentrate into LC defects and any remaining isotropic liquid but are still present throughout the nematic liquid at a lower concentration. PMID:27466705

  14. A liquid hydrogen experiment as a Shuttle payload

    NASA Technical Reports Server (NTRS)

    Eberhardt, R. N.; Fester, D. A.; Aydelott, J. C.

    1980-01-01

    The paper describes the cryogenic fluid management experiment (CFME) as a Shuttle payload. The experiment includes a liquid hydrogen tank containing a fine-mesh screen acquisition device, and a thermal control system consisting of a thermodynamic vent system to intercept heat leak to the hydrogen tank and control tank pressure. Engineering data obtained will be used to establish design criteria for subcritical cryogenic storage and supply tankage.

  15. Hydrogen-bond kinetics in liquid water

    NASA Astrophysics Data System (ADS)

    Luzar, Alenka; Chandler, David

    1996-01-01

    HYDROGEN bonds play a crucial role in the behaviour of water1-4 their spatial patterns and fluctuations characterize the structure and dynamics of the liquid5-7. The processes of breaking and making hydrogen bonds in the condensed phase can be probed indirectly by a variety of experimental techniques8, and more quantitative information can be obtained from computer simulations9. In particular, simulations have revealed that on long timescales the relaxation behaviour of hydrogen bonds in liquid water exhibit non-exponential kinetics7,10-13, suggesting that bond making and breaking are not simple processes characterized by well defined rate constants. Here we show that these kinetics can be understood in terms of an interplay between diffusion and hydrogen-bond dynamics. In our model, which can be extended to other hydrogen-bonded liquids, diffusion governs whether a specific pair of water molecules are near neighbours, and hydrogen bonds between such pairs form and persist at random with average lifetimes determined by rate constants for bond making and breaking.

  16. Silicon surface barrier detectors used for liquid hydrogen density measurement

    NASA Technical Reports Server (NTRS)

    James, D. T.; Milam, J. K.; Winslett, H. B.

    1968-01-01

    Multichannel system employing a radioisotope radiation source, strontium-90, radiation detector, and a silicon surface barrier detector, measures the local density of liquid hydrogen at various levels in a storage tank. The instrument contains electronic equipment for collecting the density information, and a data handling system for processing this information.

  17. Eddy Current Loss Induced in Aluminum Thermal Conduction Strips for ASPCS Coils Indirectly Cooled by Liquid Hydrogen through Thermo-siphon System

    NASA Astrophysics Data System (ADS)

    Ota, Narumi; Katsura, Masashi; Ando, Kennosuke; Takao, Tomoaki; Shintomi, Takakazu; Makida, Yasuhiro; Hamajima, Takataro; Tsuda, Makoto; Miyagi, Daisuke; Tsujigami, Hiroshi; Fujikawa, Shizuichi; Semba, Toshiaki; Iwaki, Katsuya

    To promote renewable energy sources, we proposed a new system called the Advanced Superconducting Power Conditioning System (ASPCS), which consists of Superconducting Magnetic Energy Storage-system (SMES), Electrolyzer, and Fuel Cell, and is also combined with a liquid hydrogen station for vehicles. The SMES plays a role to compensate the fast fluctuations generated by the renewable energies. In case of the ASPCS with a capacity of 5 MW, we designed the 50 MJ-class SMES composed of 4 solenoid coils. The winding of the solenoid coils is double pancake and a basic coil is 2 m in diameter and 0.5 m in height. Each SMES coil is wound with MgB2 conductor and indirectly cooled at 20 K by liquid hydrogen flowing through a thermo-siphon cooling system. Pure aluminum strips are inserted between the double-pancake coils and the pure aluminum plates gathering the strips lead to liquid hydrogen pipes. This scheme enables the strips and the plates to transfer the heat load in the coils to the cooling pipes and keep the coils at low temperature. On the other hand, we must consider that the strips generate eddy current loss which is strongly affected by a width of the strips. At the same time as the primary study of the SMES coils, we experimented on the thermo-siphon cooling system and investigated the relationship between the heat load and the heat extraction ability of the cooling system. The experiments showed that the cooling system could proficiently function. The estimation of eddy current loss from the particular cooling aluminum strips for the SMES in the ASPCS is reported with the results of the thermo-siphon driving experiment.

  18. Liquid Hydrogen Consumption During Space Shuttle Program

    NASA Technical Reports Server (NTRS)

    Partridge, Jonathan K.

    2011-01-01

    This slide presentation reviews the issue of liquid hydrogen consumption and the points of its loss in prior to the shuttle launch. It traces the movement of the fuel from the purchase to the on-board quantity and the loss that results in 54.6 of the purchased quantity being on board the Shuttle.

  19. Small, high-pressure liquid hydrogen turbopump

    NASA Technical Reports Server (NTRS)

    Csomor, A.; Sutton, R.

    1977-01-01

    A high pressure, liquid hydrogen turbopump was designed, fabricated, and tested to a maximum speed of 9739 rad/s and a maximum pump discharge pressure of 2861 N/sq. cm. The approaches used in the analysis and design of the turbopump are described, and fabrication methods are discussed. Data obtained from gas generator tests, turbine performance calibration, and turbopump testing are presented.

  20. Hydrogen energy systems studies

    SciTech Connect

    Ogden, J.M.; Steinbugler, M.; Kreutz, T.

    1998-08-01

    In this progress report (covering the period May 1997--May 1998), the authors summarize results from ongoing technical and economic assessments of hydrogen energy systems. Generally, the goal of their research is to illuminate possible pathways leading from present hydrogen markets and technologies toward wide scale use of hydrogen as an energy carrier, highlighting important technologies for RD and D. Over the past year they worked on three projects. From May 1997--November 1997, the authors completed an assessment of hydrogen as a fuel for fuel cell vehicles, as compared to methanol and gasoline. Two other studies were begun in November 1997 and are scheduled for completion in September 1998. The authors are carrying out an assessment of potential supplies and demands for hydrogen energy in the New York City/New Jersey area. The goal of this study is to provide useful data and suggest possible implementation strategies for the New York City/ New Jersey area, as the Hydrogen Program plans demonstrations of hydrogen vehicles and refueling infrastructure. The authors are assessing the implications of CO{sub 2} sequestration for hydrogen energy systems. The goals of this work are (a) to understand the implications of CO{sub 2} sequestration for hydrogen energy system design; (b) to understand the conditions under which CO{sub 2} sequestration might become economically viable; and (c) to understand design issues for future low-CO{sub 2} emitting hydrogen energy systems based on fossil fuels.

  1. Ground operations demonstration unit for liquid hydrogen initial test results

    NASA Astrophysics Data System (ADS)

    Notardonato, W. U.; Johnson, W. L.; Swanger, A. M.; Tomsik, T.

    2015-12-01

    NASA operations for handling cryogens in ground support equipment have not changed substantially in 50 years, despite major technology advances in the field of cryogenics. NASA loses approximately 50% of the hydrogen purchased because of a continuous heat leak into ground and flight vessels, transient chill down of warm cryogenic equipment, liquid bleeds, and vent losses. NASA Kennedy Space Center (KSC) needs to develop energy-efficient cryogenic ground systems to minimize propellant losses, simplify operations, and reduce cost associated with hydrogen usage. The GODU LH2 project has designed, assembled, and started testing of a prototype storage and distribution system for liquid hydrogen that represents an advanced end-to-end cryogenic propellant system for a ground launch complex. The project has multiple objectives including zero loss storage and transfer, liquefaction of gaseous hydrogen, and densification of liquid hydrogen. The system is unique because it uses an integrated refrigeration and storage system (IRAS) to control the state of the fluid. This paper will present and discuss the results of the initial phase of testing of the GODU LH2 system.

  2. Ground Operations Demonstration Unit for Liquid Hydrogen Initial Test Results

    NASA Technical Reports Server (NTRS)

    Notardonato, W. U.; Johnson, W. L.; Swanger, A. M.; Tomsik, T.

    2015-01-01

    NASA operations for handling cryogens in ground support equipment have not changed substantially in 50 years, despite major technology advances in the field of cryogenics. NASA loses approximately 50% of the hydrogen purchased because of a continuous heat leak into ground and flight vessels, transient chill down of warm cryogenic equipment, liquid bleeds, and vent losses. NASA Kennedy Space Center (KSC) needs to develop energy-efficient cryogenic ground systems to minimize propellant losses, simplify operations, and reduce cost associated with hydrogen usage. The GODU LH2 project has designed, assembled, and started testing of a prototype storage and distribution system for liquid hydrogen that represents an advanced end-to-end cryogenic propellant system for a ground launch complex. The project has multiple objectives including zero loss storage and transfer, liquefaction of gaseous hydrogen, and densification of liquid hydrogen. The system is unique because it uses an integrated refrigeration and storage system (IRAS) to control the state of the fluid. This paper will present and discuss the results of the initial phase of testing of the GODU LH2 system.

  3. Hydrogen energy systems studies

    SciTech Connect

    Ogden, J.M.; Steinbugler, M.; Dennis, E.

    1995-09-01

    For several years, researchers at Princeton University`s Center for Energy and Environmental Studies have carried out technical and economic assessments of hydrogen energy systems. Initially, we focussed on the long term potential of renewable hydrogen. More recently we have explored how a transition to renewable hydrogen might begin. The goal of our current work is to identify promising strategies leading from near term hydrogen markets and technologies toward eventual large scale use of renewable hydrogen as an energy carrier. Our approach has been to assess the entire hydrogen energy system from production through end-use considering technical performance, economics, infrastructure and environmental issues. This work is part of the systems analysis activity of the DOE Hydrogen Program. In this paper we first summarize the results of three tasks which were completed during the past year under NREL Contract No. XR-11265-2: in Task 1, we carried out assessments of near term options for supplying hydrogen transportation fuel from natural gas; in Task 2, we assessed the feasibility of using the existing natural gas system with hydrogen and hydrogen blends; and in Task 3, we carried out a study of PEM fuel cells for residential cogeneration applications, a market which might have less stringent cost requirements than transportation. We then give preliminary results for two other tasks which are ongoing under DOE Contract No. DE-FG04-94AL85803: In Task 1 we are assessing the technical options for low cost small scale production of hydrogen from natural gas, considering (a) steam reforming, (b) partial oxidation and (c) autothermal reforming, and in Task 2 we are assessing potential markets for hydrogen in Southern California.

  4. 49 CFR 179.102-17 - Hydrogen chloride, refrigerated liquid.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Hydrogen chloride, refrigerated liquid. 179.102-17... Hydrogen chloride, refrigerated liquid. Each tank car used to transport hydrogen chloride, refrigerated... on or after March 16, 2009 used for the transportation of hydrogen chloride, refrigerated...

  5. 49 CFR 179.102-17 - Hydrogen chloride, refrigerated liquid.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Hydrogen chloride, refrigerated liquid. 179.102-17... Hydrogen chloride, refrigerated liquid. Each tank car used to transport hydrogen chloride, refrigerated... on or after March 16, 2009 used for the transportation of hydrogen chloride, refrigerated...

  6. 49 CFR 179.102-17 - Hydrogen chloride, refrigerated liquid.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Hydrogen chloride, refrigerated liquid. 179.102-17... Hydrogen chloride, refrigerated liquid. Each tank car used to transport hydrogen chloride, refrigerated... on or after March 16, 2009 used for the transportation of hydrogen chloride, refrigerated...

  7. 49 CFR 179.102-17 - Hydrogen chloride, refrigerated liquid.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Hydrogen chloride, refrigerated liquid. 179.102-17... Hydrogen chloride, refrigerated liquid. Each tank car used to transport hydrogen chloride, refrigerated... on or after March 16, 2009 used for the transportation of hydrogen chloride, refrigerated...

  8. 49 CFR 179.102-17 - Hydrogen chloride, refrigerated liquid.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Hydrogen chloride, refrigerated liquid. 179.102-17...) § 179.102-17 Hydrogen chloride, refrigerated liquid. Each tank car used to transport hydrogen chloride... on or after March 16, 2009 used for the transportation of hydrogen chloride, refrigerated...

  9. Small, high pressure liquid hydrogen turbopump

    NASA Technical Reports Server (NTRS)

    Csomor, A.; Warren, D. J.

    1980-01-01

    A high pressure, low capacity, liquid hydrogen turbopump was designed, fabricated, and tested. The design configuration of the turbopump is summarized and the results of the analytical and test efforts are presented. Approaches used to pin point the cause of poor suction performance with the original design are described and performance data are included with an axial inlet design which results in excellent suction capability.

  10. Cryofenix Mission- Study of Liquid Hydrogen Under Low Gravity

    NASA Astrophysics Data System (ADS)

    Leudiere, V.; Bianchi, S.; Lundin, M.; Andersson, G.; Loth, K.

    2015-09-01

    For the first time in Europe a cryogenic sounding rocket experiment was performed, canying liquid hydrogen. For this purpose was the well proven SSC Sounding rocket system MASER selected. The Cryofenix was launched from ESC, Esrange Space Center on February 22, 2015. The main objective for the mission was to study the global behaviour of liquid hydrogen under controlled gravity conditions. The controlled gravity during the mission was created by a cold gas thruster module. The experiment data obtained during the flight in terms of high resolution videos, pressure and temperature data are well in line with the expected results. The experiment data will support future development of liquid propellant management systems for Ariane.

  11. Modeling efficiency and water balance in PEM fuel cell systems with liquid fuel processing and hydrogen membranes

    NASA Astrophysics Data System (ADS)

    Pearlman, Joshua B.; Bhargav, Atul; Shields, Eric B.; Jackson, Gregory S.; Hearn, Patrick L.

    Integrating PEM fuel cells effectively with liquid hydrocarbon reforming requires careful system analysis to assess trade-offs associated with H 2 production, purification, and overall water balance. To this end, a model of a PEM fuel cell system integrated with an autothermal reformer for liquid hydrocarbon fuels (modeled as C 12H 23) and with H 2 purification in a water-gas-shift/membrane reactor is developed to do iterative calculations for mass, species, and energy balances at a component and system level. The model evaluates system efficiency with parasitic loads (from compressors, pumps, and cooling fans), system water balance, and component operating temperatures/pressures. Model results for a 5-kW fuel cell generator show that with state-of-the-art PEM fuel cell polarization curves, thermal efficiencies >30% can be achieved when power densities are low enough for operating voltages >0.72 V per cell. Efficiency can be increased by operating the reformer at steam-to-carbon ratios as high as constraints related to stable reactor temperatures allow. Decreasing ambient temperature improves system water balance and increases efficiency through parasitic load reduction. The baseline configuration studied herein sustained water balance for ambient temperatures ≤35 °C at full power and ≤44 °C at half power with efficiencies approaching ∼27 and ∼30%, respectively.

  12. Gauging Systems Monitor Cryogenic Liquids

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Rocket fuel needs to stay cool - super cool, in fact. The ability to store gas propellants like liquid hydrogen and oxygen at cryogenic temperatures (below -243 F) is crucial for space missions in order to reduce their volumes and allow their storage in smaller (and therefore, less costly) tanks. The Agency has used these cryogenic fluids for vehicle propellants, reactants, and life support systems since 1962 with the Centaur upper stage rocket, which was powered with liquid oxygen and liquid hydrogen. During proposed long-duration missions, super-cooled fluids will also be used in space power systems, spaceports, and lunar habitation systems. In the next generation of launch vehicles, gaseous propellants will be cooled to and stored for extended periods at even colder temperatures than currently employed via a process called densification. Densification sub-cools liquids to temperatures even closer to absolute zero (-459 F), increasing the fluid s density and shrinking its volume beyond common cryogenics. Sub-cooling cryogenic liquid hydrogen, for instance, from 20 K (-423 F) to 15 K (-432.4 F) reduces its mass by 10 percent. These densified liquid gases can provide more cost savings from reduced payload volume. In order to benefit from this cost savings, the Agency is working with private industry to prevent evaporation, leakage, and other inadvertent loss of liquids and gases in payloads - requiring new cryogenic systems to prevent 98 percent (or more) of boil-off loss. Boil-off occurs when cryogenic or densified liquids evaporate, and is a concern during launch pad holds. Accurate sensing of propellants aboard space vehicles is also critical for proper engine shutdown and re-ignition after launch, and zero boil-off fuel systems are also in development for the Altair lunar lander.

  13. Purdue Hydrogen Systems Laboratory

    SciTech Connect

    Jay P Gore; Robert Kramer; Timothee L Pourpoint; P. V. Ramachandran; Arvind Varma; Yuan Zheng

    2011-12-28

    The Hydrogen Systems Laboratory in a unique partnership between Purdue University's main campus in West Lafayette and the Calumet campus was established and its capabilities were enhanced towards technology demonstrators. The laboratory engaged in basic research in hydrogen production and storage and initiated engineering systems research with performance goals established as per the USDOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program. In the chemical storage and recycling part of the project, we worked towards maximum recycling yield via novel chemical selection and novel recycling pathways. With the basic potential of a large hydrogen yield from AB, we used it as an example chemical but have also discovered its limitations. Further, we discovered alternate storage chemicals that appear to have advantages over AB. We improved the slurry hydrolysis approach by using advanced slurry/solution mixing techniques. We demonstrated vehicle scale aqueous and non-aqueous slurry reactors to address various engineering issues in on-board chemical hydrogen storage systems. We measured the thermal properties of raw and spent AB. Further, we conducted experiments to determine reaction mechanisms and kinetics of hydrothermolysis in hydride-rich solutions and slurries. We also developed a continuous flow reactor and a laboratory scale fuel cell power generation system. The biological hydrogen production work summarized as Task 4.0 below, included investigating optimal hydrogen production cultures for different substrates, reducing the water content in the substrate, and integrating results from vacuum tube solar collector based pre and post processing tests into an enhanced energy system model. An automated testing device was used to finalize optimal hydrogen production conditions using statistical procedures. A 3 L commercial fermentor (New Brunswick, BioFlo 115) was used to finalize testing of larger samples and to consider issues related to scale up. Efforts

  14. Integrated Refrigeration and Storage for Advanced Liquid Hydrogen Operations

    NASA Technical Reports Server (NTRS)

    Swanger, A. M.; Notardonato, W. U.; Johnson, W. L.; Tomsik, T. M.

    2016-01-01

    NASA has used liquefied hydrogen (LH2) on a large scale since the beginning of the space program as fuel for the Centaur and Apollo upper stages, and more recently to feed the three space shuttle main engines. The LH2 systems currently in place at the Kennedy Space Center (KSC) launch pads are aging and inefficient compared to the state-of-the-art. Therefore, the need exists to explore advanced technologies and operations that can drive commodity costs down, and provide increased capabilities. The Ground Operations Demonstration Unit for Liquid Hydrogen (GODU-LH2) was developed at KSC to pursue these goals by demonstrating active thermal control of the propellant state by direct removal of heat using a cryocooler. The project has multiple objectives including zero loss storage and transfer, liquefaction of gaseous hydrogen, and densification of liquid hydrogen. The key technology challenge was efficiently integrating the cryogenic refrigerator into the LH2 storage tank. A Linde LR1620 Brayton cycle refrigerator is used to produce up to 900W cooling at 20K, circulating approximately 22 g/s gaseous helium through the hydrogen via approximately 300 m of heat exchanger tubing. The GODU-LH2 system is fully operational, and is currently under test. This paper will discuss the design features of the refrigerator and storage system, as well as the current test results.

  15. Warm Pressurant Gas Effects on the Liquid Hydrogen Bubble Point

    NASA Technical Reports Server (NTRS)

    Hartwig, Jason W.; McQuillen, John B.; Chato, David J.

    2013-01-01

    This paper presents experimental results for the liquid hydrogen bubble point tests using warm pressurant gases conducted at the Cryogenic Components Cell 7 facility at the NASA Glenn Research Center in Cleveland, Ohio. The purpose of the test series was to determine the effect of elevating the temperature of the pressurant gas on the performance of a liquid acquisition device. Three fine mesh screen samples (325 x 2300, 450 x 2750, 510 x 3600) were tested in liquid hydrogen using cold and warm noncondensible (gaseous helium) and condensable (gaseous hydrogen) pressurization schemes. Gases were conditioned from 0 to 90 K above the liquid temperature. Results clearly indicate a degradation in bubble point pressure using warm gas, with a greater reduction in performance using condensable over noncondensible pressurization. Degradation in the bubble point pressure is inversely proportional to screen porosity, as the coarsest mesh demonstrated the highest degradation. Results here have implication on both pressurization and LAD system design for all future cryogenic propulsion systems. A detailed review of historical heated gas tests is also presented for comparison to current results.

  16. Hydrogenation of coal liquid utilizing a metal carbonyl catalyst

    DOEpatents

    Feder, Harold M.; Rathke, Jerome W.

    1979-01-01

    Coal liquid having a dissolved transition metal, catalyst as a carbonyl complex such as Co.sub.2 (CO.sub.8) is hydrogenated with hydrogen gas or a hydrogen donor. A dissociating solvent contacts the coal liquid during hydrogenation to form an immiscible liquid mixture at a high carbon monoxide pressure. The dissociating solvent, e.g. ethylene glycol, is of moderate coordinating ability, while sufficiently polar to solvate the transition metal as a complex cation along with a transition metal, carbonyl anion in solution at a decreased carbon monoxide pressure. The carbon monoxide pressure is reduced and the liquids are separated to recover the hydrogenated coal liquid as product. The dissociating solvent with the catalyst in ionized form is recycled to the hydrogenation step at the elevated carbon monoxide pressure for reforming the catalyst complex within fresh coal liquid.

  17. Liquid hydrogen densitometer utilizes open-ended microwave cavity

    NASA Technical Reports Server (NTRS)

    Smetana, J.; Wenger, N. C.

    1967-01-01

    Open-ended microwave cavity directly measures the density of flowing liquid, gaseous, or two-phase hydrogen. Its operation is based on derived relations between the cavity resonant frequency and the dielectric constant and density of hydrogen.

  18. Design of a refueling tanker delivering liquid hydrogen

    NASA Technical Reports Server (NTRS)

    Lourme, Daniel; Barnier, Caroline; Faure, Sabine; Pompei, Marie-Helene; Pruniaux, Karine

    1992-01-01

    A refueling tanker that could deliver 155,000 lb of liquid hydrogen to a hypersonic tanker in 15 min was designed. A flying boom system was chosen to fit strict delivery criteria. Tank design and material specification were also addressed. To assure the flow required, it was important to cancel the pressure drop phenomenon. Geometry, aerodynamics, weight considerations, propulsion, stability, and performance for the tanker were also considered. Finally, the cost of developing three prototypes was estimated.

  19. A liquid-hydrogen cold neutron source for the NBSR

    SciTech Connect

    Williams, R.E.; Roew, J.M.; Kopetka, P. )

    1992-01-01

    The National Bureau of Standards Reactor (NBSR) is a 20-MW research reactor operated by the National Institute of Standards and Technology. It was designed with a 55-cm-diam beamport for the purpose of installing a D[sub 2]O-ice cold neutron source, completed in 1987. The success of the cold source led to the construction of the Cold Neutron Research Facility, an experimental hall ultimately to have 7 neutron guides and 15 instruments. A liquid-hydrogen cold neutron source is being developed to replace the D[sub 2]O ice in order to increase the cold neutron yield. A simple, passively safe system has been designed with multiple barriers that prevent air from mixing with hydrogen. A thermosiphon will be used to maintain the liquid-hydrogen inventory in the moderator chamber. The thermosiphon relies on natural circulation; no pumps or moving parts are required to adequately cool the moderator chamber. The hydrogen condenser is cooled by a 3.5-kW helium refrigerator. A ballast tank is connected to the condenser so the entire hydrogen inventory can expand freely into the tank, providing completely passive protection against refrigerator failures.

  20. Hydrogen storage and generation system

    DOEpatents

    Dentinger, Paul M.; Crowell, Jeffrey A. W.

    2010-08-24

    A system for storing and generating hydrogen generally and, in particular, a system for storing and generating hydrogen for use in an H.sub.2/O.sub.2 fuel cell. The hydrogen storage system uses the beta particles from a beta particle emitting material to degrade an organic polymer material to release substantially pure hydrogen. In a preferred embodiment of the invention, beta particles from .sup.63Ni are used to release hydrogen from linear polyethylene.

  1. Design, fabrication and testing of a liquid hydrogen fuel tank for a long duration aircraft

    NASA Astrophysics Data System (ADS)

    Mills, Gary L.; Buchholtz, Brian; Olsen, Al

    2012-06-01

    Liquid hydrogen has distinct advantages as an aircraft fuel. These include a specific heat of combustion 2.8 times greater than gasoline or jet fuel and zero carbon emissions. It can be utilized by fuel cells, turbine engines and internal combustion engines. The high heat of combustion is particularly important in the design of long endurance aircraft with liquid hydrogen enabling cruise endurance of several days. However, the mass advantage of the liquid hydrogen fuel will result in a mass advantage for the fuel system only if the liquid hydrogen tank and insulation mass is a small fraction of the hydrogen mass. The challenge is producing a tank that meets the mass requirement while insulating the cryogenic liquid hydrogen well enough to prevent excessive heat leak and boil off. In this paper, we report on the design, fabrication and testing of a liquid hydrogen fuel tank for a prototype high altitude long endurance (HALE) demonstration aircraft. Design options on tank geometry, tank wall material and insulation systems are discussed. The final design is an aluminum sphere insulated with spray on foam insulation (SOFI). Several steps and organizations were involved in the tank fabrication and test. The tank was cold shocked, helium leak checked and proof pressure tested. The overall thermal performance was verified with a boil off test using liquid hydrogen.

  2. 14 CFR 420.66 - Separation distance requirements for storage of hydrogen peroxide, hydrazine, and liquid hydrogen...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... storage of hydrogen peroxide, hydrazine, and liquid hydrogen and any incompatible energetic liquids stored... Responsibilities of a Licensee § 420.66 Separation distance requirements for storage of hydrogen peroxide, hydrazine, and liquid hydrogen and any incompatible energetic liquids stored within an intraline...

  3. 14 CFR 420.66 - Separation distance requirements for storage of hydrogen peroxide, hydrazine, and liquid hydrogen...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... storage of hydrogen peroxide, hydrazine, and liquid hydrogen and any incompatible energetic liquids stored... Responsibilities of a Licensee § 420.66 Separation distance requirements for storage of hydrogen peroxide, hydrazine, and liquid hydrogen and any incompatible energetic liquids stored within an intraline...

  4. Glass Bubbles Insulation for Liquid Hydrogen Storage Tanks

    NASA Technical Reports Server (NTRS)

    Sass, J. P.; SaintCyr, W. W.; Barrett, T. M.; Baumgartner, R. G.; Lott, J. W.; Fesmire, J. E.

    2009-01-01

    A full-scale field application of glass bubbles insulation has been demonstrated in a 218,000 L liquid hydrogen storage tank. This work is the evolution of extensive materials testing, laboratory scale testing, and system studies leading to the use of glass bubbles insulation as a cost efficient and high performance alternative in cryogenic storage tanks of any size. The tank utilized is part of a rocket propulsion test complex at the NASA Stennis Space Center and is a 1960's vintage spherical double wall tank with an evacuated annulus. The original perlite that was removed from the annulus was in pristine condition and showed no signs of deterioration or compaction. Test results show a significant reduction in liquid hydrogen boiloff when compared to recent baseline data prior to removal of the perlite insulation. The data also validates the previous laboratory scale testing (1000 L) and full-scale numerical modeling (3,200,000 L) of boiloff in spherical cryogenic storage tanks. The performance of the tank will continue to be monitored during operation of the tank over the coming years. KEYWORDS: Glass bubble, perlite, insulation, liquid hydrogen, storage tank.

  5. Rapid Chill and Fill of a Liquid Hydrogen Tank Demonstrated

    NASA Technical Reports Server (NTRS)

    Kudlac, Maureen T.

    1999-01-01

    The NASA Lewis Research Center, in conjunction with Boeing North American, has been supporting the High Energy Upper Stage (HEUS) program by performing feasibility studies at Lewis Supplemental Multilayer Insulation Research Facility (SMIRF). These tests were performed to demonstrate the feasibility of chilling and filling a tank with liquid hydrogen in under 5 minutes. The goal of the HEUS program is to release a satellite from the shuttle cargo bay and then use a cryogenic (high-energy) upper stage to allow the satellite to achieve final orbit. Because of safety considerations, the propellant tanks for the upper stage will be launched warm and dry. They will be filled from the shuttle's external tank during the mission phase after the solid rocket boosters have jettisoned and prior to jettison of the external tank. Data from previous shuttle missions have been analyzed to ensure that sufficient propellant would be available in the external tank to fill the propellant tank of the proposed vehicle upper stage. Because of mission time-line considerations, the propellant tanks for the upper stage will have to be chilled down and filled in approximately 5 minutes. An existing uninsulated flight weight test tank was installed inside the vacuum chamber at SMIRF, and the chamber was evacuated to the 10(exp -5) torr range to simulate space vacuum conditions in the cargo bay with the doors open. During prerun operations, the facility liquid hydrogen (LH2) supply piping was prechilled with the vent gas bypassing the test article. The liquid hydrogen supply dewar was saturated at local ambient pressure and then pressurized with ambient temperature gaseous helium to the test pressure. A control system was used to ensure that the liquid hydrogen supply pressure was maintained at the test pressure.

  6. Liquid-hydrogen rocket engine development at Aerojet, 1944 - 1950

    NASA Technical Reports Server (NTRS)

    Osborn, G. H.; Gordon, R.; Coplen, H. L.; James, G. S.

    1977-01-01

    This program demonstrated the feasibility of virtually all the components in present-day, high-energy, liquid-rocket engines. Transpiration and film-cooled thrust chambers were successfully operated. The first liquid-hydrogen tests of the coaxial injector was conducted and the first pump to successfully produce high pressures in pumping liquid hydrogen was tested. A 1,000-lb-thrust gaseous propellant and a 3,000-lb-thrust liquid-propellant thrust chamber were operated satisfactorily. Also, the first tests were conducted to evaluate the effects of jet overexpansion and separation on performance of rocket thrust chambers with hydrogen-oxygen propellants.

  7. System for Hydrogen Sensing

    NASA Technical Reports Server (NTRS)

    Lin, Jenshan; Norton, David P.; Pearton, Stephen J.; Ren, Fan

    2010-01-01

    A low-power, wireless gas-sensing system is designed to safeguard the apparatus to which it is attached, as well as associated personnel. It also ensures the efficiency and operational integrity of the hydrogen-powered apparatus. This sensing system can be operated with lower power consumption (less than 30 nanowatts), but still has a fast response. The detecting signal can be wirelessly transmitted to remote locations, or can be posted on the Web. This system can also be operated by harvesting energy.

  8. Supercritical phenomenon of hydrogen beyond the liquid-liquid phase transition

    NASA Astrophysics Data System (ADS)

    Li, Renzhong; Chen, Ji; Li, Xinzheng; Wang, Enge; Xu, Limei

    2015-06-01

    Using ab initio molecular dynamics simulation, we investigate the supercritical phenomenon associated with the liquid-liquid phase transition of hydrogen by studying the isothermal response functions, such as electric conductivity, molecular dissociation coefficient and isothermal compressibility, with respect to pressure. We find that, along each isotherm in the supercritical region, each of these response functions shows a maximum, the location of which is different for different response functions. As temperature decreases, the loci of these maxima asymptotically converge to a line of zero ordering field, known as the Widom line along which the magnitude of the response function maxima becomes larger and larger until it diverges as the critical point is approached. Thus, our study provides a possible way to locate the liquid-liquid critical point of hydrogen from the supercritical region at lower pressures. It also indicates that the supercritical phonomenon near the critical point of hydrogen is a rather general feature of second-order phase transition, it is not only true for classical systems with weak interactions but also true for highly condensed system with strong inter-atomic interactions.

  9. Behavior of liquid hydrogen inside an ICF target

    NASA Technical Reports Server (NTRS)

    Kim, K.; Mok, L.; Bernat, T.

    1982-01-01

    The configuration of liquid hydrogen inside spherical glass shell ICF target was studied both theoretically and experimentally. Because of the zero contact angle between the .D2 liquid and glass substrate and the limited wetting surface that is continuous, the liquid hydrogen completely covers the interior of the glass shell, resulting in the formation of a void at the center. For this reason, the present problem distinguishes itself from that for a sessile drop sitting on a flat surface. A theory was formulated to calculate the liquid hydrogen configuration by including the London-dispersion force between the liquid and the substrate molecules. The net result is an augmented Bashforth-Adams equation appropriate to a spherical substrate, which is considered to be the major contribution of the present work. Preliminary calculations indicate that this equation accurately models the liquid hydrogen behavior inside a spherical microshell.

  10. Innovative Strategy on Hydrogen Evolution Reaction Utilizing Activated Liquid Water

    PubMed Central

    Hwang, Bing-Joe; Chen, Hsiao-Chien; Mai, Fu-Der; Tsai, Hui-Yen; Yang, Chih-Ping; Rick, John; Liu, Yu-Chuan

    2015-01-01

    Splitting water for hydrogen production using light, or electrical energy, is the most developed ‘green technique’. For increasing efficiency in hydrogen production, currently, the most exciting and thriving strategies are focused on efficient and inexpensive catalysts. Here, we report an innovative idea for efficient hydrogen evolution reaction (HER) utilizing plasmon-activated liquid water with reduced hydrogen-bonded structure by hot electron transfer. This strategy is effective for all HERs in acidic, basic and neutral systems, photocatalytic system with a g-C3N4 (graphite carbon nitride) electrode, as well as in an inert system with an ITO (indium tin oxide) electrode. Compared to deionized water, the efficiency of HER increases by 48% based on activated water ex situ on a Pt electrode. Increase in energy efficiency from activated water is 18% at a specific current yield of −20 mA in situ on a nanoscale-granulated Au electrode. Moreover, the onset potential of −0.023 V vs RHE was very close to the thermodynamic potential of the HER (0 V). The measured current density at the corresponding overpotential for HER in an acidic system was higher than any data previously reported in the literature. This approach establishes a new vista in clean green energy production. PMID:26541371

  11. Innovative Strategy on Hydrogen Evolution Reaction Utilizing Activated Liquid Water.

    PubMed

    Hwang, Bing-Joe; Chen, Hsiao-Chien; Mai, Fu-Der; Tsai, Hui-Yen; Yang, Chih-Ping; Rick, John; Liu, Yu-Chuan

    2015-01-01

    Splitting water for hydrogen production using light, or electrical energy, is the most developed 'green technique'. For increasing efficiency in hydrogen production, currently, the most exciting and thriving strategies are focused on efficient and inexpensive catalysts. Here, we report an innovative idea for efficient hydrogen evolution reaction (HER) utilizing plasmon-activated liquid water with reduced hydrogen-bonded structure by hot electron transfer. This strategy is effective for all HERs in acidic, basic and neutral systems, photocatalytic system with a g-C3N4 (graphite carbon nitride) electrode, as well as in an inert system with an ITO (indium tin oxide) electrode. Compared to deionized water, the efficiency of HER increases by 48% based on activated water ex situ on a Pt electrode. Increase in energy efficiency from activated water is 18% at a specific current yield of -20 mA in situ on a nanoscale-granulated Au electrode. Moreover, the onset potential of -0.023 V vs RHE was very close to the thermodynamic potential of the HER (0 V). The measured current density at the corresponding overpotential for HER in an acidic system was higher than any data previously reported in the literature. This approach establishes a new vista in clean green energy production. PMID:26541371

  12. Innovative Strategy on Hydrogen Evolution Reaction Utilizing Activated Liquid Water

    NASA Astrophysics Data System (ADS)

    Hwang, Bing-Joe; Chen, Hsiao-Chien; Mai, Fu-Der; Tsai, Hui-Yen; Yang, Chih-Ping; Rick, John; Liu, Yu-Chuan

    2015-11-01

    Splitting water for hydrogen production using light, or electrical energy, is the most developed ‘green technique’. For increasing efficiency in hydrogen production, currently, the most exciting and thriving strategies are focused on efficient and inexpensive catalysts. Here, we report an innovative idea for efficient hydrogen evolution reaction (HER) utilizing plasmon-activated liquid water with reduced hydrogen-bonded structure by hot electron transfer. This strategy is effective for all HERs in acidic, basic and neutral systems, photocatalytic system with a g-C3N4 (graphite carbon nitride) electrode, as well as in an inert system with an ITO (indium tin oxide) electrode. Compared to deionized water, the efficiency of HER increases by 48% based on activated water ex situ on a Pt electrode. Increase in energy efficiency from activated water is 18% at a specific current yield of -20 mA in situ on a nanoscale-granulated Au electrode. Moreover, the onset potential of -0.023 V vs RHE was very close to the thermodynamic potential of the HER (0 V). The measured current density at the corresponding overpotential for HER in an acidic system was higher than any data previously reported in the literature. This approach establishes a new vista in clean green energy production.

  13. Mixing and transient interface condensation of a liquid hydrogen tank

    NASA Technical Reports Server (NTRS)

    Lin, C. S.; Hasan, M. M.; Nyland, T. W.

    1993-01-01

    Experiments were conducted to investigate the effect of axial jet-induced mixing on the pressure reduction of a thermally stratified liquid hydrogen tank. The tank was nearly cylindrical, having a volume of about 0.144 cu m with 0.559 m in diameter and 0.711 m length. A mixer/pump unit, which had a jet nozzle outlet of 0.0221 m in diameter was located 0.178 m from the tank bottom and was installed inside the tank to generate the axial jet mixing and tank fluid circulation. Mixing tests began with the tank pressures at which the thermal stratification results in 4.9-6.2 K liquid subcooling. The mixing time and transient vapor condensation rate at the liquid-vapor interface are determined. Two mixing time correlations, based on the thermal equilibrium and pressure equilibrium, are developed and expressed as functions of system and buoyancy parameters. The limited liquid hydrogen data of the present study shows that the modified steady state condensation rate correlation may be used to predict the transient condensation rate in a mixing process if the instantaneous values of jet sub cooling and turbulence intensity at the interface are employed.

  14. Liquid-vapour surface sensors for liquid nitrogen and hydrogen

    NASA Technical Reports Server (NTRS)

    Siegwarth, J. D.; Voth, R. O.; Snyder, S. M.

    1992-01-01

    The present paper identifies devices to serve as liquid-vapor detectors in zero gravity. The testing in LH2 was done in a sealed glass Dewar system to eliminate any chance of mixing H2 and air. Most of the tests were performed with the leads to the sensor horizontal. Some results of rapid cycle testing of LVDG in LH2 are presented. Findings of rapid-cycle testing of LVDG in LH2 are discussed. The sensor crossed the liquid surface when the position sensor registered 1.9 V, which occurred at about 0.4075 s. The delay time was about 1.5 ms. From the estimated slope of the position sensor curve at 1.9 V, the velocity of the sensor through the liquid surface is over 3 m/s. Results of tests of optical sensors are presented as well.

  15. Aerogel Insulation Applications for Liquid Hydrogen Launch Vehicle Tanks

    NASA Technical Reports Server (NTRS)

    Fesmire, J. E.; Sass, J.

    2007-01-01

    Aerogel based insulation systems for ambient pressure environments were developed for liquid hydrogen (LH2) tank applications. Solutions to thermal insulation problems were demonstrated for the Space Shuttle External Tank (ET) through extensive testing at the Cryogenics Test Laboratory. Demonstration testing was performed using a 1/10th scale ET LH2 intertank unit and liquid helium as the coolant to provide the 20 K cold boundary temperature. Cryopumping tests in the range of 20K were performed using both constant mass and constant pressure methods. Long-duration tests (up to 10 hours) showed that the nitrogen mass taken up inside the intertank is reduced by a factor of nearly three for the aerogel insulated case as compared to the un-insulated (bare metal flight configuration) case. Test results including thermal stabilization, heat transfer effectiveness, and cryopumping confirm that the aerogel system eliminates free liquid nitrogen within the intertank. Physisorption (or adsorption) of liquid nitrogen within the fine pore structure of aerogel materials was also investigated. Results of a mass uptake method show that the sorption ratio (liquid nitrogen to aerogel beads) is about 62 percent by volume. A novel liquid nitrogen production method of testing the liquid nitrogen physical adsorption capacity of aerogel beads was also performed to more closely approximate the actual launch vehicle cooldown and thermal stabilization effects within the aerogel material. The extraordinary insulating effectiveness of the aerogel material shows that cryopumping is not an open-cell mass transport issue but is strictly driven by thermal communication between warm and cold surfaces. The new aerogel insulation technology is useful to solve heat transfer problem areas and to augment existing thermal protection systems on launch vehicles. Examples are given and potential benefits for producing launch systems that are more reliable, robust, reusable, and efficient are outlined.

  16. Hydrophobicity and hydrogen-bonded network in liquid water

    NASA Astrophysics Data System (ADS)

    Li, Je-Luen; Wingreen, Ned; Tang, Chao; Car, Roberto

    2004-03-01

    Hydrophobicity is the main driving force behind numerous important biological processes at molecular level, including protein folding and the formation of biological membranes. Yet few experimental probes can measure the local water structure around a hydrophobic solute, and our understanding of the detailed structure of hydrophobic hydration has to rely on molecular dynamics simulation. As a model system, several groups studied two methane molecules in liquid water and obtained the potential of mean force using Lennard-Jones potential and various water models. However, hydrophobic effect critically depends on the description of hydrogen-bonded network, and classical simulations may not be sufficient to descirbe the forming and breaking of hydrogen bonds. In this work, we apply ab initio molecular dynamics simulations to study this model system. Besides the potential of mean force between 2 methanes in water, the role of the local water structure will be highlighted.

  17. Liquid crystal nanocomposites produced by mixtures of hydrogen bonded achiral liquid crystals and functionalized carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Katranchev, B.; Petrov, M.; Keskinova, E.; Naradikian, H.; Rafailov, P. M.; Dettlaff-Weglikowska, U.; Spassov, T.

    2014-12-01

    The liquid crystalline (LC) nature of alkyloxybenzoic acids is preserved after adding of any mesogenic or non-mesogenic compound through hydrogen bonding. However, this noncovalent interaction provokes a sizable effect on the physical properties as, e. g. melting point and mesomorphic states. In the present work we investigate nanocomposites, prepared by mixture of the eighth homologue of p-n-alkyloxybenzoic acids (8OBA) with single-walled carbon nanotubes (SWCNT) with the purpose to modify the optical properties of the liquid crystal. We exercise optical control on the LC system by inserting SWCNT specially functionalized by carboxylic groups. Since the liquid crystalline state combines order and mobility at the molecular (nanoscale) level, molecular modification can lead to different macroscopical nanocomposite symmetry. The thermal properties of the functionalized nanocomposite are confirmed by DSC analyses. The mechanism of the interaction between surface-treated nanoparticles (functionalized nanotubes) and the liquid crystal 8OBA bent- dimer molecules is briefly discussed.

  18. Vapor ingestion in Centaur liquid-hydrogen tank

    NASA Technical Reports Server (NTRS)

    Symons, E. P.

    1977-01-01

    Vapor ingestion phenomena were investigated using scale models of the Centaur liquid hydrogen tank to determine the height of the free surface of the liquid when vapor is intially ingested into the tank outlet. Data are compared with an analysin and, is general the agreement is very good. Predictions are presented for minimum liquid levels required in the Centaur liquid hydrogen tank in order to prevent vapor ingestion when restarting the engines in space and the quantities of liquid remaining in the tank at vapor ingestion during main engine firing.

  19. Sum frequency generation of hydrogen-bonding liquid surfaces

    NASA Astrophysics Data System (ADS)

    Baldelli, Steve

    The surface-specific vibrational spectroscopy sum frequency generation (SFG) is used to examine the physical/chemical environment of molecules at the liquid/air interface. In glycerol/water mixtures, glycerol is found to partition to the surface in excess compared to the bulk concentration. Further, it is discovered that the free OH peak of water (an OH group projecting out of the liquid into the vapor) can be used as an indicator of the surface coverage of water at the surface. Solutions of alkali sulfate salts also affect the surface structure of water. These ions increase the ordered structure of water at the interface by increasing the oriented hydrogen-bond network. This order-increasing effect is found to occur to a greater extent for sulfuric acid solutions. A model based on ion association and a sub-surface electric double-layer is used to describe these results. A correlation between the surface coverage of water and the extent of dissociation of the acid is discovered; i.e., increasing acid association decreases the surface coverage of water. Finally, solutions of HCl/water are investigated. In these systems, the electrolytic nature of HCl is found to increase the hydrogen-bonded order of the interfacial water molecules. Further, despite the polar nature of HCl, no molecular HCl is detected on any surface despite surface tension measurements indicating an excess of HCl at the surface. The neat HCl liquid surface is the only system where molecular HCl is observed.

  20. Fractional Consumption of Liquid Hydrogen and Liquid Oxygen During the Space Shuttle Program

    NASA Technical Reports Server (NTRS)

    Partridge, Jonathan K.

    2011-01-01

    The Space Shuttle uses the propellants, liquid hydrogen and liquid oxygen, to meet part of the propulsion requirements from ground to orbit. The Kennedy Space Center procured over 25 million kilograms of liquid hydrogen and over 250 million kilograms of liquid oxygen during the 3D-year Space Shuttle Program. Because of the cryogenic nature of the propellants, approximately 55% of the total purchased liquid hydrogen and 30% of the total purchased liquid oxygen were used in the Space Shuttle Main Engines. The balance of the propellants were vaporized during operations for various purposes. This paper dissects the total consumption of liqUid hydrogen and liqUid oxygen and determines the fraction attributable to each of the various processing and launch operations that occurred during the entire Space Shuttle Program at the Kennedy Space Center.

  1. Fractional consumption of liquid hydrogen and liquid oxygen during the space shuttle program

    NASA Astrophysics Data System (ADS)

    Partridge, Jonathan K.

    2012-06-01

    The Space Shuttle uses the propellants, liquid hydrogen and liquid oxygen, to meet part of the propulsion requirements from ground to orbit. The Kennedy Space Center procured over 350 million liters of liquid hydrogen and over 200 million liters of liquid oxygen during the 30-year Space Shuttle Program. Because of the nature of the cryogenic propellants, approximately 54% of the total purchased liquid hydrogen and 32% of the total purchased liquid oxygen were used in the Space Shuttle Main Engines. The balance of the propellants were vaporized during operations for various purposes. This paper dissects the total consumption of liquid hydrogen and liquid oxygen and determines the fraction attributable to each of the various processing and launch operations that occurred during the entire Space Shuttle Program at the Kennedy Space Center.

  2. Gaseous hydrogen leakage optical fibre detection system

    NASA Astrophysics Data System (ADS)

    Trouillet, Alain; Veillas, Colette; Sigronde, E.; Gagnaire, Henri; Clement, Michel

    2004-06-01

    Liquid hydrogen has been intensively used in aerospace applications during the past forty years and is of great interest for fuel cells technologies and future automotive applications. Following upon major explosive risks due to the use of hydrogen in air, previous studies were carried out in our laboratory in order to develop optical fiber sensors for the detection of hydrogen leakage. This communication is aimed towards a prototype optical fiber system designed for the detection of gaseous hydrogen leakage near the conecting flanges of the liquid hydrogen pipes on the test bench of the engine Vulcain of the rocket ARIANE V. Depending on the configuration, the prototype sensor provides a two-level alarm signal and the detection of gaseous hydrogen leakage is possible for concentrations lower than the lower explosive limit in air (between 0.1 and 4%) with alarm response times lower than 10 seconds in a wide range of temperatures between -35°C and 300°C. The sensing principle based on palladium-hydrogen interaction is presented as well as the detection system composed of an optical fiber probe and an optoelectronic device.

  3. An exploratory study to determine the integrated technological air transportation system ground requirements of liquid-hydrogen-fueled subsonic, long-haul civil air transports

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A baseline air terminal concept was developed which permitted airlines and the airport to operate JP- or LH2-fueled aircraft at common terminal gates. The concept included installation of a hydrogen liquefaction and storage facility on airport property, as well as the fuel distribution system. The capital investment and hydrogen-related operating costs to the airlines were estimated.

  4. Engineering Development of Ceramic Membrane Reactor System for Converting Natural Gas to Hydrogen and Synthesis Gas for Liquid Transportation Fuels

    SciTech Connect

    Air Products and Chemicals

    2008-09-30

    An Air Products-led team successfully developed ITM Syngas technology from the concept stage to a stage where a small-scale engineering prototype was about to be built. This technology produces syngas, a gas containing carbon monoxide and hydrogen, by reacting feed gas, primarily methane and steam, with oxygen that is supplied through an ion transport membrane. An ion transport membrane operates at high temperature and oxygen ions are transported through the dense membrane's crystal lattice when an oxygen partial pressure driving force is applied. This development effort solved many significant technical challenges and successfully scaled-up key aspects of the technology to prototype scale. Throughout the project life, the technology showed significant economic benefits over conventional technologies. While there are still on-going technical challenges to overcome, the progress made under the DOE-funded development project proved that the technology was viable and continued development post the DOE agreement would be warranted.

  5. Performance of a 10-kJ SMES model cooled by liquid hydrogen thermo-siphon flow for ASPCS study

    NASA Astrophysics Data System (ADS)

    Makida, Y.; Shintomi, T.; Hamajima, T.; Ota, N.; Katsura, M.; Ando, K.; Takao, T.; Tsuda, M.; Miyagi, D.; Tsujigami, H.; Fujikawa, S.; Hirose, J.; Iwaki, K.; Komagome, T.

    2015-12-01

    We propose a new electrical power storage and stabilization system, called an Advanced Superconducting Power Conditioning System (ASPCS), which consists of superconducting magnetic energy storage (SMES) and hydrogen energy storage, converged on a liquid hydrogen station for fuel cell vehicles. A small 10- kJ SMES system, in which a BSCCO coil cooled by liquid hydrogen was installed, was developed to create an experimental model of an ASPCS. The SMES coil is conductively cooled by liquid hydrogen flow through a thermo-siphon line under a liquid hydrogen buffer tank. After fabrication of the system, cooldown tests were carried out using liquid hydrogen. The SMES coil was successfully charged up to a nominal current of 200 A. An eddy current loss, which was mainly induced in pure aluminum plates pasted onto each pancake coils for conduction cooling, was also measured.

  6. Hydrogen engines based on liquid fuels, a review

    NASA Technical Reports Server (NTRS)

    Houseman, J.; Voecks, G. E.

    1981-01-01

    The concept of storing hydrogen as part of a liquid fuel, such as gasoline or methanol, and subsequent onboard generation of the hydrogen from such liquids, is reviewed. Hydrogen generation processes, such as steam reforming, partial oxidation, and thermal decomposition are evaluated in terms of theoretical potential and practical limitations, and a summary is presented on the major experimental work on conversion of gasoline and methanol. Results of experiments indicate that onboard hydrogen generation from methanol is technically feasible and will yield substantial improvements in fuel economy and emissions, especially if methanol decomposition is brought about by the use of engine exhaust heat; e.g., a methanol decomposition reactor of 3.8 provides hydrogen-rich gas for a 4 cylinder engine (1.952), and 80% of the methanol is converted, engine exhaust gas being the only heat supply. A preliminary outline of the development of a methanol-based hydrogen engine and a straight hydrogen engine is presented.

  7. Liquid Water vs. Hydrogen Cyanide on Enceladus

    NASA Astrophysics Data System (ADS)

    Glein, C. R.; Zolotov, M. Y.; Shock, E. L.

    2008-12-01

    The Ion and Neutral Mass Spectrometer onboard the Cassini spacecraft detected hydrogen cyanide (HCN) in plumes on Enceladus [1]. We explored computationally the thermodynamic stability and kinetic reactivity of HCN. Thermochemical equilibrium calculations show that HCN is unstable in liquid water, and should be overwhelmingly hydrolyzed to formic acid (HCOOH) and ammonia (NH3) under all conditions relevant to Enceladus. Even in an aqueous solution with an unreasonably high NH3 activity of 10, the HCOOH/HCN activity ratio is predicted to be greater than 107 at 0°C. This ratio decreases with increasing NH3 activity and with increasing temperature. Even at high temperatures (e.g., 200°C), it is at least 3-4 orders-of-magnitude above unity. It is notable that neither formic acid nor ammonia have been detected in any plumes [1]. We thus infer that the detected HCN is unlikely to have equilibrated with an aqueous solution below Enceladus' surface. Chemical kinetic considerations indicate that the hydrolysis lifetime of HCN has a complex dependence on pH, and decreases with increasing temperature. We find that, even at the pH value most conducive to the survival of HCN (~5), HCN can persist for only about 5 Ma in liquid water at 0°C. Thus, the HCN in the plumes could not have come from a long-lasting ocean or sea, and probably came from a recent aqueous melt or some icy phase. A liquid source for the HCN would be more restrictive than an ice source. For example, an aqueous solution must have a pH between 4-6 for HCN to be preserved in it for at least ~1 Ma at 0°C. However, this pH restriction would be lifted if the HCN source were a very young pool (i.e., centuries-millennia old). On the other hand, it is expected that HCN could survive indefinitely in an icy matrix. The proposed HCN sources may be less favorable abodes for life than a long-lived aqueous reservoir. Reference: [1] Waite J.H. et al. (2008) Eur. Planet. Sci. Congr. 3, EPSC2008-A-00593.

  8. Guide for Hydrogen Hazards Analysis on Components and Systems

    NASA Technical Reports Server (NTRS)

    Beeson, Harold; Woods, Stephen

    2003-01-01

    The physical and combustion properties of hydrogen give rise to hazards that must be considered when designing and operating a hydrogen system. One of the major concerns in the use of hydrogen is that of fire or detonation because of hydrogen's wide flammability range, low ignition energy, and flame speed. Other concerns include the contact and interaction of hydrogen with materials, such as the hydrogen embrittlement of materials and the formation of hydrogen hydrides. The low temperature of liquid and slush hydrogen bring other concerns related to material compatibility and pressure control; this is especially important when dissimilar, adjoining materials are involved. The potential hazards arising from these properties and design features necessitate a proper hydrogen hazards analysis before introducing a material, component, or system into hydrogen service. The objective of this guide is to describe the NASA Johnson Space Center White Sands Test Facility hydrogen hazards analysis method that should be performed before hydrogen is used in components and/or systems. The method is consistent with standard practices for analyzing hazards. It is recommended that this analysis be made before implementing a hydrogen component qualification procedure. A hydrogen hazards analysis is a useful tool for hydrogen-system designers, system and safety engineers, and facility managers. A hydrogen hazards analysis can identify problem areas before hydrogen is introduced into a system-preventing damage to hardware, delay or loss of mission or objective, and possible injury or loss of life.

  9. Liquid hydrogen for automotive vehicles - Experimental results

    SciTech Connect

    Peschka, W.

    1981-01-01

    A BMW-518 has been adapted for LH2-fuel, representing the first LH2-fueled car in Europe. This is a joint program between the German Research and Testing Laboratory for Aeronautics and the Research Institute for Motor-Transport Service and Automotive Engines at the University of Stuttgart. The program was established for demonstration of successful car-operation and and the safe handling of LH2-fuel during car operation and refueling. Based on earlier papers, more recent test results and experiences are reported about car operation and engine performance. The car has been driven over an accumulated distance of about 1800 km on a test track. The test track consists of a loop of about 2.5 km in length, including a proper combination of straight level sections, curved sections and ascending sections. In order to demonstrate a safe liquid hydrogen refueling procedure that could also be used by untrained people, a semiautomatic computer operated refueling station has been developed. This refueling station is in successful operation.

  10. PEP liquid level system

    SciTech Connect

    Lauritzen, T.; Sah, R.C.

    1981-03-01

    A liquid level system has been installed in the accelerator housing of the PEP storage ring. This instrument spans the entire 2.2 km circumference of the PEP project, and over one hundred readouts provide reference elevations which are used for the accurate alignment of accelerator components. The liquid level has proven to be extremely precise (+-0.10 mm) and quick to use, and it has contributed to the accurate alignment of PEP before beam turn-on. Since the liquid level readouts are rigidly attached to the accelerator housing, the liquid level has been a convenient means to monitor the settling of the accelerator housing.

  11. Mixing and transient interface condensation of a liquid hydrogen tank

    NASA Technical Reports Server (NTRS)

    Lin, C. S.; Hasan, M. M.; Nyland, T. W.

    1993-01-01

    Experiments were conducted to investigate the effect of axial jet-induced mixing on the pressure reduction of a thermally stratified liquid hydrogen tank. The tank was nearly cylindrical, having a volume of about 0.144 cu m with 0.559 m in diameter and 0.711 m long. A mixer/pump unit, which had a jet nozzle outlet of 0.0221 m in diameter was located 0.178 m from the tank bottom and was installed inside the tank to generate the axial jet mixing and tank fluid circulation. The liquid fill and jet flow rate ranged from 42 to 85 percent (by volume) and 0.409 to 2.43 cu m/hr, respectively. Mixing tests began with the tank pressure ranging from 187.5 to 238.5 kPa at which the thermal stratification results in 4.9 to 6.2 K liquid sub cooling. The mixing time and transient vapor condensation rate at the liquid-vapor interface are determined. Two mixing time correlations, based on the thermal equilibrium and pressure equilibrium, are developed. Both mixing time correlations are expressed as functions of system and buoyancy parameters and compared well with other experimental data. The steady state condensation rate correlation of Sonin et al. based on steam-water data is modified and expressed as a function of jet subcooling. The limited liquid hydrogen data of the present study shows that the modified steady state condensation rate correlation may be used to predict the transient condensation rate in a mixing process if the instantaneous values of jet sub cooling and turbulence intensity at the interface are employed.

  12. Additive Manufacturing a Liquid Hydrogen Rocket Engine

    NASA Technical Reports Server (NTRS)

    Jones, Carl P.; Robertson, Elizabeth H.; Koelbl, Mary Beth; Singer, Chris

    2016-01-01

    Space Propulsion is a 5 day event being held from 2nd May to the 6th May 2016 at the Rome Marriott Park Hotel in Rome, Italy. This event showcases products like Propulsion sub-systems and components, Production and manufacturing issues, Liquid, Solid, Hybrid and Air-breathing Propulsion Systems for Launcher and Upper Stages, Overview of current programmes, AIV issues and tools, Flight testing and experience, Technology building blocks for Future Space Transportation Propulsion Systems : Launchers, Exploration platforms & Space Tourism, Green Propulsion for Space Transportation, New propellants, Rocket propulsion & global environment, Cost related aspects of Space Transportation propulsion, Modelling, Pressure-Thrust oscillations issues, Impact of new requirements and regulations on design etc. in the Automotive, Manufacturing, Fabrication, Repair & Maintenance industries.

  13. Hydrogen gettering the overpressure gas from highly radioactive liquids

    SciTech Connect

    Riley, D.L.; McCoy, J.C.; Schicker, J.R.

    1996-04-01

    Remediation of current inventories of high-activity radioactive liquid waste (HALW) requires transportation of Type-B quantities of radioactive material, possibly up to several hundred liters. However, the only currently certified packaging is limited to quantities of 50 ml (0.01 gal) quantities of Type-B radioactive liquid. Efforts are under way to recertify the existing packaging to allow the shipment of up to 4 L (1.1 gal) of Type-B quantities of HALW, but significantly larger packaging could be needed in the future. Scoping studies and preliminary designs have identified the feasibility of retrofitting an insert into existing casks, allowing the transport of up to 380 L (100 gal) of HALW. However, the insert design and ultimate certification strategy depend heavily on the gas-generating attributes of the HALW. A non-vented containment vessel filled with HALW, in the absence of any gas-mitigation technologies, poses a deflagration threat and, therefore, gas generation, specifically hydrogen generation, must be reliably controlled during all phases of transportation. Two techniques are available to mitigate hydrogen accumulation: recombiners and getters. Getters have an advantage over recombiners in that oxides are not required to react with the hydrogen. A test plan was developed to evaluate three forms of getter material in the presence of both simulated HALW and the gases that are produced by the HALW. These tests demonstrated that getters can react with hydrogen in the presence of simulated waste and in the presence of several other gases generated by the HALW, such as nitrogen, ammonia, nitrous oxide, and carbon monoxide. Although the use of such a gettering system has been shown to be technically feasible, only a preliminary design for its use has been completed. No further development is planned until the requirement for bulk transport of Type-B quantities of HALW is more thoroughly defined.

  14. Liquid hydrogen turbopump rapid start program. [thermal preconditioning using coatings

    NASA Technical Reports Server (NTRS)

    Wong, G. S.

    1973-01-01

    This program was to analyze, test, and evaluate methods of achieving rapid-start of a liquid hydrogen feed system (inlet duct and turbopump) using a minimum of thermal preconditioning time and propellant. The program was divided into four tasks. Task 1 includes analytical studies of the testing conducted in the other three tasks. Task 2 describes the results from laboratory testing of coating samples and the successful adherence of a KX-635 coating to the internal surfaces of the feed system tested in Task 4. Task 3 presents results of testing an uncoated feed system. Tank pressure was varied to determine the effect of flowrate on preconditioning. The discharge volume and the discharge pressure which initiates opening of the discharge valve were varied to determine the effect on deadhead (no through-flow) start transients. Task 4 describes results of testing a similar, internally coated feed system and illustrates the savings in preconditioning time and propellant resulting from the coatings.

  15. Liquid hydrogen as a propulsion fuel, 1945-1959

    NASA Technical Reports Server (NTRS)

    Sloop, J. L.

    1978-01-01

    A historical review is presented on the research and development of liquid hydrogen for use as a propulsion fuel. The document is divided into three parts: Part 1 (1945-1950); Part 2 (1950-1957); and Part 3 (1957-1958), encompassing eleven topics. Two appendixes are included. Hydrogen Technology Through World War 2; and Propulsion Primer, Performance Parameters and Units.

  16. Study on Introduction of CO2 Free Energy to Japan with Liquid Hydrogen

    NASA Astrophysics Data System (ADS)

    Kamiya, Shoji; Nishimura, Motohiko; Harada, Eichi

    In Japan, both CO2(Carbon dioxide) emission reduction and energy security are the very important social issues after Fukushima Daiichi accident. On the other hand, FCV (Fuel Cell Vehicle)using hydrogen will be on the market in 2015. Introducing large mass hydrogen energy is being expected as expanding hydrogen applications, or solution to energy issues of Japan.And then,the Japanese government announced the road map for introducing hydrogen energy supply chain in this June,2014. Under these circumstances, imported CO2 free hydrogen will be one of the solutions for energy security and CO2 reduction, if the hydrogen price is affordable. To achieve this, Kawasaki Heavy Industries, Ltd. (KHI) performed a feasibility studyon CO2-free hydrogen energy supply chainfrom Australian brown coal linked with CCS (Carbon dioxide Capture and Storage) to Japan. In the study, hydrogen production systems utilizing brown coal gasificationandLH2 (liquid hydrogen)systems as storing and transporting hydrogen are examined.This paper shows the possibilityof realizingthe CO2 free hydrogen supply chain, the cost breakdown of imported hydrogen cost, its cost competitiveness with conventionalfossil, andLH2systems as key technologies of the hydrogen energy chain.

  17. Hydrogen-methane fuel control systems for turbojet engines

    NASA Technical Reports Server (NTRS)

    Goldsmith, J. S.; Bennett, G. W.

    1973-01-01

    Design, development, and test of a fuel conditioning and control system utilizing liquid methane (natural gas) and liquid hydrogen fuels for operation of a J85 jet engine were performed. The experimental program evaluated the stability and response of an engine fuel control employing liquid pumping of cryogenic fuels, gasification of the fuels at supercritical pressure, and gaseous metering and control. Acceptably stable and responsive control of the engine was demonstrated throughout the sea level power range for liquid gas fuel and up to 88 percent engine speed using liquid hydrogen fuel.

  18. Safe Use of Hydrogen and Hydrogen Systems

    NASA Technical Reports Server (NTRS)

    Maes, Miguel

    2006-01-01

    This is a viewgraph presentation that is a course for teaching the safe use of hydrogen. The objectives of the course are 1. To familiarize the student with H2 safety properties 2. To enable the identification, evaluations and addressing of H2 system hazards 3. To teach: a. Safe practices for, b. Design, c. Materials selection, d. H2 system operation, e. Physical principles and empirical observations on which these safe practices are based, f. How to respond to emergency situations involving H2, g How to visualize safety concepts through in-class exercises, h. Identify numerous parameters important to H2 safety.

  19. Liquid Level Sensing System

    NASA Technical Reports Server (NTRS)

    Korman, Valentin (Inventor); Wiley, John T. (Inventor); Duffell, Amanda G. (Inventor)

    2014-01-01

    A liquid level sensing system includes waveguides disposed in a liquid and distributed along a path with a gap between adjacent waveguides. A source introduces electromagnetic energy into the waveguides at a first end of the path. A portion of the electromagnetic energy exits the waveguides at a second end of the path. A detector measures the portion of the electromagnetic energy exiting the second end of the path.

  20. Catalytic hydrogenation process and apparatus with improved vapor liquid separation

    DOEpatents

    Chervenak, Michael C.; Comolli, Alfred G.

    1980-01-01

    A continuous hydrogenation process and apparatus wherein liquids are contacted with hydrogen in an ebullated catalyst reaction zone with the liquids and gas flowing vertically upwardly through that zone into a second zone substantially free of catalyst particles and wherein the liquid and gases are directed against an upwardly inclining surface through which vertical conduits are placed having inlet ends at different levels in the liquid and having outlet ends at different levels above the inclined surface, such that vapor-rich liquid is collected and discharged through conduits terminating at a higher level above the inclined surface than the vapor-poor liquid which is collected and discharged at a level lower than the inclined surface.

  1. The mobility of negative charges in liquid hydrogen

    NASA Astrophysics Data System (ADS)

    Lerner, P. B.; Sokolov, I. M.

    1994-06-01

    There is a great difference in behavior of e- in liquid hydrogen and helium despite the fact that the adopted theories of the mobility are quite similar. Recently, Levchenko and Mezhov-Deglin (Journal of Low Temperature Physics, 89, 457 (1992)) reported large discrepancies of the mobility of the electrons in liquid hydrogen from estimates based on the theory that the electrons are trapped in bubbles forming atomlike structures (“bubblonium”). They properly suggested that these deviations are related to the existence in liquid hydrogen of another, metastable type of negative charge carrier. The subject of the current paper is the physical explanation of the existence of two types of carriers in liquid hydrogen. We attribute the second type of carriers to the cluster ion H - ( H 2 ) x , which is created by the formation of solid hydrogen around a bound state of a hydride ion. We provide estimates for the radius and the kinetics of degradation of the “snowball” formed around the H - ion on the basis of energy diagrams for a hydride ion submerged in liquid hydrogen.

  2. Glass Bubbles Insulation for Liquid Hydrogen Storage Tanks

    NASA Astrophysics Data System (ADS)

    Sass, J. P.; Cyr, W. W. St.; Barrett, T. M.; Baumgartner, R. G.; Lott, J. W.; Fesmire, J. E.

    2010-04-01

    A full-scale field application of glass bubbles insulation has been demonstrated in a 218,000 L liquid hydrogen storage tank. This work is the evolution of extensive materials testing, laboratory scale testing, and system studies leading to the use of glass bubbles insulation as a cost efficient and high performance alternative in cryogenic storage tanks of any size. The tank utilized is part of a rocket propulsion test complex at the NASA Stennis Space Center and is a 1960's vintage spherical double wall tank with an evacuated annulus. The original perlite that was removed from the annulus was in pristine condition and showed no signs of deterioration or compaction. Test results show a significant reduction in liquid hydrogen boiloff when compared to recent baseline data prior to removal of the perlite insulation. The data also validates the previous laboratory scale testing (1000 L) and full-scale numerical modeling (3,200,000 L) of boiloff in spherical cryogenic storage tanks. The performance of the tank will continue to be monitored during operation of the tank over the coming years.

  3. Coordinating Chiral Ionic Liquids: Design, Synthesis, and Application in Asymmetric Transfer Hydrogenation under Aqueous Conditions

    PubMed Central

    Vasiloiu, Maria; Gaertner, Peter; Zirbs, Ronald; Bica, Katharina

    2015-01-01

    Hydrophilic coordinating chiral ionic liquids with an amino alcohol substructure were developed and efficiently applied to the asymmetric reduction of ketones. Their careful design and adaptability to the desired reaction conditions allow for these chiral ionic liquids to be used as the sole source of chirality in a ruthenium-catalyzed transfer hydrogenation reaction of aromatic ketones. When used in this reaction system, these chiral ionic liquids afforded excellent yields and high enantioselectivities. PMID:26279638

  4. Compression mass gauge testing in a liquid hydrogen dewar

    NASA Technical Reports Server (NTRS)

    Jurns, J. M.; Rogers, A. C.

    1995-01-01

    This paper describes testing that was conducted using a mass gauge in a liquid hydrogen environment. The mass gauge, herein referred to as the 'compressibility gauge,' is being developed as a means to accurately determine the mass of liquid contained in a tank in a low-gravity environment. The concept is based on the thermodynamic principle that the pressure of gas or vapor changes when its volume changes. Previous work has been conducted by Southwest Research Institute in collaboration with NASA Lewis Research Center. This consisted of testing the concept with water and other cryogenic simulant fluids. The purpose of conducting liquid hydrogen tests is to test the concept in actual cryogenic conditions, and address hardware issues that arise in fabricating a test article for use in liquid hydrogen.

  5. Process for hydrogen isotope concentration between liquid water and hydrogen gas

    DOEpatents

    Stevens, William H.

    1976-09-21

    A process for hydrogen isotope exchange and concentration between liquid water and hydrogen gas, wherein liquid water and hydrogen gas are contacted, in an exchange section, with one another and with at least one catalyst body comprising at least one metal selected from Group VIII of the Periodic Table and preferably a support therefor, the catalyst body has a liquid-water-repellent, gas permeable polymer or organic resin coating, preferably a fluorinated olefin polymer or silicone coating, so that the isotope concentration takes place by two simultaneously occurring steps, namely, ##EQU1## WHILE THE HYDROGEN GAS FED TO THE EXCHANGE SECTION IS DERIVED IN A REACTOR VESSEL FROM LIQUID WATER THAT HAS PASSED THROUGH THE EXCHANGE SECTION.

  6. Overview of interstate hydrogen pipeline systems.

    SciTech Connect

    Gillette, J .L.; Kolpa, R. L

    2008-02-01

    . The following discussion will focus on the similarities and differences between the two pipeline networks. Hydrogen production is currently concentrated in refining centers along the Gulf Coast and in the Farm Belt. These locations have ready access to natural gas, which is used in the steam methane reduction process to make bulk hydrogen in this country. Production centers could possibly change to lie along coastlines, rivers, lakes, or rail lines, should nuclear power or coal become a significant energy source for hydrogen production processes. Should electrolysis become a dominant process for hydrogen production, water availability would be an additional factor in the location of production facilities. Once produced, hydrogen must be transported to markets. A key obstacle to making hydrogen fuel widely available is the scale of expansion needed to serve additional markets. Developing a hydrogen transmission and distribution infrastructure would be one of the challenges to be faced if the United States is to move toward a hydrogen economy. Initial uses of hydrogen are likely to involve a variety of transmission and distribution methods. Smaller users would probably use truck transport, with the hydrogen being in either the liquid or gaseous form. Larger users, however, would likely consider using pipelines. This option would require specially constructed pipelines and the associated infrastructure. Pipeline transmission of hydrogen dates back to late 1930s. These pipelines have generally operated at less than 1,000 pounds per square inch (psi), with a good safety record. Estimates of the existing hydrogen transmission system in the United States range from about 450 to 800 miles. Estimates for Europe range from about 700 to 1,100 miles (Mohipour et al. 2004; Amos 1998). These seemingly large ranges result from using differing criteria in determining pipeline distances. For example, some analysts consider only pipelines above a certain diameter as transmission lines

  7. Electrochemical hydrogen Storage Systems

    SciTech Connect

    Dr. Digby Macdonald

    2010-08-09

    As the global need for energy increases, scientists and engineers have found a possible solution by using hydrogen to power our world. Although hydrogen can be combusted as a fuel, it is considered an energy carrier for use in fuel cells wherein it is consumed (oxidized) without the production of greenhouse gases and produces electrical energy with high efficiency. Chemical storage of hydrogen involves release of hydrogen in a controlled manner from materials in which the hydrogen is covalently bound. Sodium borohydride and aminoborane are two materials given consideration as chemical hydrogen storage materials by the US Department of Energy. A very significant barrier to adoption of these materials as hydrogen carriers is their regeneration from 'spent fuel,' i.e., the material remaining after discharge of hydrogen. The U.S. Department of Energy (DOE) formed a Center of Excellence for Chemical Hydrogen Storage, and this work stems from that project. The DOE has identified boron hydrides as being the main compounds of interest as hydrogen storage materials. The various boron hydrides are then oxidized to release their hydrogen, thereby forming a 'spent fuel' in the form of a lower boron hydride or even a boron oxide. The ultimate goal of this project is to take the oxidized boron hydrides as the spent fuel and hydrogenate them back to their original form so they can be used again as a fuel. Thus this research is essentially a boron hydride recycling project. In this report, research directed at regeneration of sodium borohydride and aminoborane is described. For sodium borohydride, electrochemical reduction of boric acid and sodium metaborate (representing spent fuel) in alkaline, aqueous solution has been investigated. Similarly to literature reports (primarily patents), a variety of cathode materials were tried in these experiments. Additionally, approaches directed at overcoming electrostatic repulsion of borate anion from the cathode, not described in the

  8. Hydrogen storage and delivery system development

    SciTech Connect

    Handrock, J.L.; Wally, K.; Raber, T.N.

    1995-09-01

    Hydrogen storage and delivery is an important element in effective hydrogen utilization for energy applications and is an important part of the FY1994-1998 Hydrogen Program Implementation Plan. The purpose of this project is to develop a platform for the engineering evaluation of hydrogen storage and delivery systems with an added focus on lightweight hydride utilization. Hybrid vehicles represent the primary application area of interest, with secondary interests including such items as existing vehicles and stationary uses. The near term goal is the demonstration of an internal combustion engine/storage/delivery subsystem. The long term goal is optimization of storage technologies for both vehicular and industrial stationary uses. In this project an integrated approach is being used to couple system operating characteristics to hardware development. A model has been developed which integrates engine and storage material characteristics into the design of hydride storage and delivery systems. By specifying engine operating parameters, as well as a variety of storage/delivery design features, hydride bed sizing calculations are completed. The model allows engineering trade-off studies to be completed on various hydride material/delivery system configurations. A more generalized model is also being developed to allow the performance characteristics of various hydrogen storage and delivery systems to be compared (liquid, activated carbon, etc.). Many of the features of the hydride storage model are applicable to the development of this more generalized model.

  9. ALS liquid hydrogen turbopump: Advanced Development Program

    NASA Technical Reports Server (NTRS)

    Shimp, Nancy R.; Claffy, George J.

    1989-01-01

    The point of departure (POD) turbopump concept was reviewed and finalized. The basis for the POD was the configuration presented in the Aerojet proposal. After reviewing this proposal concept, several modifications were made. These modifications include the following: (1) the dual pump discharge arrangement was changed to a single discharge; (2) commonality of the turbine inlet manifold with the advanced launch system (ALS) liquid oxygen (LOX) TPA was dropped for this program; (3) the turbine housing flange arrangement was improved by relocating it away from the first stage nozzles; (4) a ten percent margin (five percent diameter increase) was built into the impeller design to ensure meeting the required discharge pressure without the need for increasing speed; (5) a ten percent turbine power margin was imposed which is to be obtained by increasing turbine inlet pressure if required; and (6) the backup concept, as an alternative to the use of cast impellers, now incorporates forged/machined shrouded impellers, rather than the unshrouded type originally planned.

  10. Nanoparticulate gellants for metallized gelled liquid hydrogen with aluminum

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan; Starkovich, John; Adams, Scott

    1996-01-01

    Gelled liquid hydrogen was experimentally formulated using sol-gel technology. As a follow-on to work with cryogenic simulants, hydrogen was gelled with an alkoxide material: BTMSE. Initial results demonstrated that gellants with a specific surface area of 1000 m(exp 2)/g could be repeatably fabricated. Gelled hexane and metallized gelled hexane (with 13.8-wt% Al) were produced. Propellant settling testing was conducted for acceleration levels of 2 to 10 times normal gravity and a minimum gellant percentage was determined for stable gelled hexane and metalized gelled hexane. A cryogenic capillary rheometer was also designed, constructed, and used to determine the viscosity of gelled hydrogen. Small volumes of liquid hydrogen were gelled with a 7- to 8-wt% gellant level. The gelled H2 viscosity was 1.5 to 3.7 times that of liquid hydrogen: 0.048 to 0.116 mPa-s versus 0.03 mPa-s for liquid H2 (at 16 K and approximately 1 atm pressure).

  11. Experimental study of liquid level gauge for liquid hydrogen using Helmholtz resonance technique

    NASA Astrophysics Data System (ADS)

    Nakano, Akihiro; Nishizu, Takahisa

    2016-07-01

    The Helmholtz resonance technique was applied to a liquid level gauge for liquid hydrogen to confirm the applicability of the technique in the cryogenic industrial field. A specially designed liquid level gauge that has a Helmholtz resonator with a small loudspeaker was installed in a glass cryostat. A swept frequency signal was supplied to the loudspeaker, and the acoustic response was detected by measuring the electrical impedance of the loudspeaker's voice coil. The penetration depth obtained from the Helmholtz resonance frequency was compared with the true value, which was read from a scale. In principle, the Helmholtz resonance technique is available for use with liquid hydrogen, however there are certain problems as regards practical applications. The applicability of the Helmholtz resonance technique to liquid hydrogen is discussed in this study.

  12. Advantages of cryopumping with liquid hydrogen instead of helium refrigerators

    NASA Technical Reports Server (NTRS)

    Anderson, J. W.; Tueller, J. E.

    1972-01-01

    Open loop hydrogen vaporizers and helium refrigerators are compared for operational complexity, installation and operating cost, and safety requirements. Data from two vacuum chambers using helium refrigerators are used to provide comparative data. In general, the use of hydrogen is attractive in the larger systems, even when extra safety precautions are taken. Emotional resistance to the use of hydrogen because of safety requirements is considered great. However, the experience gained in the handling of large quantities of cryogenics, particularly hydrogen and liquefied natural gases, should be considered in the design of open loop hydrogen cooling systems.

  13. Video System Highlights Hydrogen Fires

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert C.; Gleman, Stuart M.; Moerk, John S.

    1992-01-01

    Video system combines images from visible spectrum and from three bands in infrared spectrum to produce color-coded display in which hydrogen fires distinguished from other sources of heat. Includes linear array of 64 discrete lead selenide mid-infrared detectors operating at room temperature. Images overlaid on black and white image of same scene from standard commercial video camera. In final image, hydrogen fires appear red; carbon-based fires, blue; and other hot objects, mainly green and combinations of green and red. Where no thermal source present, image remains in black and white. System enables high degree of discrimination between hydrogen flames and other thermal emitters.

  14. Hydrogen Event Containment Response Code System.

    Energy Science and Technology Software Center (ESTSC)

    1999-11-23

    Version: 00 Distribution is restricted to the United States Only. HECTR1.5 (Hydrogen Event-Containment Transient Response) is a lumped-volume containment analysis program that is most useful for performing parametric studies. Its main purpose is to analyze nuclear reactor accidents involving the transport and combustion of hydrogen, but HECTR can also function as an experiment analysis tool and can solve a limited set of other containment problems. Six gases; steam, nitrogen, oxygen, hydrogen, carbon monoxide, and carbonmore » dioxide are modified along with sumps containing liquid water. HECTR can model virtually all the containment systems of importance in ice condenser, large dry and Mark III containments. A postprocessor, ACHILES1.5, is included. It processes the time-dependent variable output (compartment pressures, flow junction velocities, surface temperatures, etc.) produced by HECTR. ACHILES can produce tables and graphs of these data.« less

  15. The Ammonia-Hydrogen System under Pressure

    SciTech Connect

    Chidester, Bethany A; Strobel, Timothy A

    2012-01-20

    Binary mixtures of hydrogen and ammonia were compressed in diamond anvil cells to 15 GPa at room temperature over a range of compositions. The phase behavior was characterized using optical microscopy, Raman spectroscopy, and synchrotron X-ray diffraction. Below 1.2 GPa we observed two-phase coexistence between liquid ammonia and fluid hydrogen phases with limited solubility of hydrogen within the ammonia-rich phase. Complete immiscibility was observed subsequent to the freezing of ammonia phase III at 1.2 GPa, although hydrogen may become metastably trapped within the disordered face-centered-cubic lattice upon rapid solidification. For all compositions studied, the phase III to phase IV transition of ammonia occurred at ~3.8 GPa and hydrogen solidified at ~5.5 GPa, transition pressures equivalent to those observed for the pure components. A P-x phase diagram for the NH3-H2 system is proposed on the basis of these observations with implications for planetary ices, molecular compound formation, and possible hydrogen storage materials.

  16. Hydrogen permeation resistant layers for liquid metal reactors

    SciTech Connect

    McGuire, J.C.

    1980-03-01

    Reviewing the literature in the tritium diffusion field one can readily see a wide divergence in results for both the response of permeation rate to pressure, and the effect of oxide layers on total permeation rates. The basic mechanism of protective oxide layers is discussed. Two coatings which are less hydrogen permeable than the best naturally occurring oxide are described. The work described is part of an HEDL-ANL cooperative research program on Tritium Permeation in Liquid Metal Cooled Reactors. This includes permeation work on hydrogen, deuterium, and tritium with the hydrogen-deuterium research leading to the developments presented.

  17. Hydrogen energy systems technology study

    NASA Technical Reports Server (NTRS)

    Kelley, J. H.

    1975-01-01

    The paper discusses the objectives of a hydrogen energy systems technology study directed toward determining future demand for hydrogen based on current trends and anticipated new uses and identifying the critical research and technology advancements required to meet this need with allowance for raw material limitations, economics, and environmental effects. Attention is focused on historic production and use of hydrogen, scenarios used as a basis for projections, projections of energy sources and uses, supply options, and technology requirements and needs. The study found more than a billion dollar annual usage of hydrogen, dominated by chemical-industry needs, supplied mostly from natural gas and petroleum feedstocks. Evaluation of the progress in developing nuclear fusion and solar energy sources relative to hydrogen production will be necessary to direct the pace and character of research and technology work in the advanced water-splitting areas.

  18. A liquid hydrogen target for the calibration of the MEG and MEG II liquid xenon calorimeter

    NASA Astrophysics Data System (ADS)

    Signorelli, G.; Baldini, A. M.; Bemporad, C.; Cei, F.; Nicolò, D.; Galli, L.; Gallucci, G.; Grassi, M.; Papa, A.; Sergiampietri, F.; Venturini, M.

    2016-07-01

    We designed, built and operated a liquid hydrogen target for the calibration of the liquid xenon calorimeter of the MEG experiment. The target was used throughout the entire data taking period, from 2008 to 2013 and it is being refurbished and partly re-designed to be integrated and used in the MEG-II experiment.

  19. Performance of a Small Gas Generator Using Liquid Hydrogen and Liquid Oxygen

    NASA Technical Reports Server (NTRS)

    Acker, Loren W.; Fenn, David B.; Dietrich, Marshall W.

    1961-01-01

    The performance and operating problems of a small hot-gas generator burning liquid hydrogen with liquid oxygen are presented. Two methods of ignition are discussed. Injector and combustion chamber design details based on rocket design criteria are also given. A carefully fabricated showerhead injector of simple design provided a gas generator that yielded combustion efficiencies of 93 and 96 percent.

  20. Clogging of Joule-Thomson Devices in Liquid Hydrogen Handling

    NASA Technical Reports Server (NTRS)

    Jurns, John M.; Lekki, John D.

    2009-01-01

    Experiments conducted at the NASA Glenn Research Center indicate that Joule-Thomson devices become clogged when transferring liquid hydrogen (LH2), operating at a temperature range from 20.5 to 24.4 K. Blockage does not exist under all test conditions but is found to be sensitive to the inlet temperature of the LH2. At a subcooled inlet temperature of 20.5 K blockage consistently appears but is dissipated when the fluid temperature is raised above 24.5 K. Clogging steadily reduced flow rate through the orifices, eventually resulting in complete blockage. This tendency poses a threat to spacecraft cryogenic propulsion systems that would utilize passive thermal control systems. We propose that this clogging is due to trace amounts of neon in the regular LH2 supply. Neon freezes at 24.5 K at one atmosphere pressure. It is postulated that between 20.5 and 24.5 K, neon remains in a meta-stable, supercooled liquid state. When impacting the face of an orifice, liquid neon droplets solidify and accumulate, blocking flow over time. The purpose of this test program was to definitively quantify the phenomena experimentally by obtaining direct visual evidence of orifice clogging by accretion from neon contaminates in the LH2 flow stream, utilizing state of the art imaging technology. Tests were conducted with LH2 flowing in the temperature range of 20.5 to 24.4 K. Additional imaging was also done at LH2 temperatures with no flow to verify clear view through the orifice.

  1. The Liquid Hydrogen Option for the Subsonic Transport: A status report

    NASA Technical Reports Server (NTRS)

    Korycinski, P. F.

    1977-01-01

    Continued subsonic air transport design studies include the option for a liquid hydrogen fuel system as an aircraft fuel conservation measure. Elements of this option discussed include: (1) economical production of hydrogen; (2) efficient liquefaction of hydrogen; (3) materials for long service life LH2 fuel tanks; (4) insulation materials; (5) LH2 fuel service and installations at major air terminals; (6) assessment of LH2 hazards; and (7) the engineering definition of an LH2 fuel system for a large subsonic passenger air transport.

  2. Two-component Fermi-liquid theory - Equilibrium properties of liquid metallic hydrogen

    NASA Technical Reports Server (NTRS)

    Oliva, J.; Ashcroft, N. W.

    1981-01-01

    It is reported that the transition of condensed hydrogen from an insulating molecular crystal phase to a metallic liquid phase, at zero temperature and high pressure, appears possible. Liquid metallic hydrogen (LMH), comprising interpenetrating proton and electron fluids, would constitute a two-component Fermi liquid with both a very high component-mass ratio and long-range, species-dependent bare interactions. The low-temperature equilibrium properties of LMH are examined by means of a generalization to the case of two components of the phenomenological Landau Fermi-liquid theory, and the low-temperature specific heat, compressibility, thermal expansion coefficient and spin susceptibility are given. It is found that the specific heat and the thermal expansion coefficient are vastly greater in the liquid than in the corresponding solid, due to the presence of proton quasiparticle excitations in the liquid.

  3. Autothermal hydrogen storage and delivery systems

    DOEpatents

    Pez, Guido Peter; Cooper, Alan Charles; Scott, Aaron Raymond

    2011-08-23

    Processes are provided for the storage and release of hydrogen by means of dehydrogenation of hydrogen carrier compositions where at least part of the heat of dehydrogenation is provided by a hydrogen-reversible selective oxidation of the carrier. Autothermal generation of hydrogen is achieved wherein sufficient heat is provided to sustain the at least partial endothermic dehydrogenation of the carrier at reaction temperature. The at least partially dehydrogenated and at least partially selectively oxidized liquid carrier is regenerated in a catalytic hydrogenation process where apart from an incidental employment of process heat, gaseous hydrogen is the primary source of reversibly contained hydrogen and the necessary reaction energy.

  4. Microchannel Reactor System for Catalytic Hydrogenation

    SciTech Connect

    Adeniyi Lawal; Woo Lee; Ron Besser; Donald Kientzler; Luke Achenie

    2010-12-22

    We successfully demonstrated a novel process intensification concept enabled by the development of microchannel reactors, for energy efficient catalytic hydrogenation reactions at moderate temperature, and pressure, and low solvent levels. We designed, fabricated, evaluated, and optimized a laboratory-scale microchannel reactor system for hydrogenation of onitroanisole and a proprietary BMS molecule. In the second phase of the program, as a prelude to full-scale commercialization, we designed and developed a fully-automated skid-mounted multichannel microreactor pilot plant system for multiphase reactions. The system is capable of processing 1 – 10 kg/h of liquid substrate, and an industrially relevant immiscible liquid-liquid was successfully demonstrated on the system. Our microreactor-based pilot plant is one-of-akind. We anticipate that this process intensification concept, if successfully demonstrated, will provide a paradigm-changing basis for replacing existing energy inefficient, cost ineffective, environmentally detrimental slurry semi-batch reactor-based manufacturing practiced in the pharmaceutical and fine chemicals industries.

  5. Performance of turbine-type flowmeters in liquid hydrogen

    NASA Technical Reports Server (NTRS)

    1967-01-01

    Tests using commercially available flowmeters provide information on the constancy in water of the calibration factor /pulses per unit volume/, on the maximum deviation of the factor from its mean value, and on the probability of predicting the calibration factor of a meter in liquid hydrogen at full scale.

  6. 20. DECOMMISIONED HYDROGEN TANK IN FORMER LIQUID OXYGEN STORAGE AREA, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. DECOMMISIONED HYDROGEN TANK IN FORMER LIQUID OXYGEN STORAGE AREA, BETWEEN TEST STAND 1-A AND INSTRUMENTATION AND CONTROL BUILDING. Looking northwest. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  7. Sloshing in the Liquid Hydrogen and Liquid Oxygen Propellant Tanks After Main Engine Cut Off

    NASA Technical Reports Server (NTRS)

    Kim, Sura; West, Jeff

    2011-01-01

    NASA Marshall Space Flight Center is designing and developing the Main Propulsion System (MPS) for Ares launch vehicles. Propellant sloshing in the liquid hydrogen (LH2) and liquid oxygen (LO2) propellant tanks after Main Engine Cut Off (MECO) was modeled using the Volume of Fluid (VOF) module of the computational fluid dynamics code, CFD-ACE+. The present simulation shows that there is substantial sloshing side forces acting on the LH2 tank during the deceleration of the vehicle after MECO. The LH2 tank features a side wall drain pipe. The side loads result from the residual propellant mass motion in the LH2 tank which is initiated by the stop of flow into the drain pipe at MECO. The simulations show that radial force on the LH2 tank wall is less than 50 lbf and the radial moment calculated based up through the center of gravity of the vehicle is predicted to be as high as 300 lbf-ft. The LO2 tank features a bottom dome drain system and is equipped with sloshing baffles. The remaining LO2 in the tank slowly forms a liquid column along the centerline of tank under the zero gravity environments. The radial force on the LO2 tank wall is predicted to be less than 100 lbf. The radial moment calculated based on the center of gravity of the vehicle is predicted as high as 4500 lbf-ft just before MECO and dropped down to near zero after propellant draining stopped completely.

  8. The liquid annular reactor system (LARS) propulsion

    SciTech Connect

    Maise, G.; Lazareth, O.W.; Horn, F.; Powell, J.R.; Ludewig, H. ); Lenard, R.X. )

    1991-01-05

    A new concept for very high specific impulse ({gt}2000 seconds) direct nuclear propulsion is described. The concept, termed LARS (Liquid Annular Reactor System) uses liquid nuclear fuel elements to heat hydrogen propellant to very high temperatures ({similar to}6000 K). Operating pressure is moderate ({similar to}10 atm), with the result that the outlet hydrogen is virtually 100% dissociated to monatomic H. The molten fuel is contained in a solid container of its own material, which is rotated to stabilize the liquid layer by centripetal force. LARS reactor designs are described, together with neutronic and thermal-hydraulic analyses. Power levels are on the order of 200 megawatts. Typically, LARS designs use 7 rotating fuel elements, are beryllium moderated and have critical radii of {similar to}100 cm (core L/D{approx}1.5).

  9. Molecular catalytic hydrogenation of aromatic hydrocarbons and hydrotreating of coal liquids.

    SciTech Connect

    Yang, Shiyong; Stock, L.M.

    1996-05-01

    This report presents the results of research on the development of new catalytic pathways for the hydrogenation of multiring aromatic hydrocarbons and the hydrotreating of coal liquids at The University of Chicago under DOE Contract No. DE-AC22-91PC91056. The work, which is described in three parts, is primarily concerned with the research on the development of new catalytic systems for the hydrogenation of aromatic hydrocarbons and for the improvement of the quality of coal liquids by the addition of dihydrogen. Part A discusses the activation of dihydrogen by very basic molecular reagents to form adducts that can facilitate the reduction of multiring aromatic hydrocarbons. Part B examines the hydrotreating of coal liquids catalyzed by the same base-activated dihydrogen complexes. Part C concerns studies of molecular organometallic catalysts for the hydrogenation of monocyclic aromatic hydrocarbons under mild conditions.

  10. Trade study: Liquid hydrogen transportation - Kennedy Space Center. [cost and operational effectivenss of shipping methods.

    NASA Technical Reports Server (NTRS)

    Gray, D. J.

    1978-01-01

    Cryogenic transportation methods for providing liquid hydrogen requirements are examined in support of shuttle transportation system launch operations at Kennedy Space Center, Florida, during the time frames 1982-1991 in terms of cost and operational effectiveness. Transportation methods considered included sixteen different options employing mobile semi-trailer tankers, railcars, barges and combinations of each method. The study concludes that the most effective method of delivering liquid hydrogen from the vendor production facility in New Orleans to Kennedy Space Center includes maximum utilization of existing mobile tankers and railcars supplemented by maximum capacity mobile tankers procured incrementally in accordance with shuttle launch rates actually achieved.

  11. Chemical/hydrogen energy systems

    NASA Astrophysics Data System (ADS)

    1987-06-01

    This report describes activities conducted during 1986 within the Chemical/Hydrogen Energy Systems (C/HES) Program, for which Bookhaven National Laboratory provides technical and management support to the U.S. Department of Energy. Research and exploratory efforts under this program have been directed towards developing a base technology that will apply to hydrogen production, storage, and transport. Major areas of interest include: (1) High Temperature Water Vapor Electrolysis for Hydrogen Generation (Westinghouse); (2) Evaluation of Materials for Medium Temperature Water Vapor Electrolysis; (3) Cryoadsorption of Hydrogen on Activated Carbon (Syracuse). Contributions in 1986 made by private sector contractors, university, researchers, and BNL in-house technical staff are summarized in the report. Also included is a summary of related International Energy Agency (IEA) cooperative efforts as well as plans and major activities scheduled for 1987.

  12. Electrokinetic Hydrogen Generation from Liquid WaterMicrojets

    SciTech Connect

    Duffin, Andrew M.; Saykally, Richard J.

    2007-05-31

    We describe a method for generating molecular hydrogen directly from the charge separation effected via rapid flow of liquid water through a metal orifice, wherein the input energy is the hydrostatic pressure times the volume flow rate. Both electrokinetic currents and hydrogen production rates are shown to follow simple equations derived from the overlap of the fluid velocity gradient and the anisotropic charge distribution resulting from selective adsorption of hydroxide ions to the nozzle surface. Pressure-driven fluid flow shears away the charge balancing hydronium ions from the diffuse double layer and carries them out of the aperture. Downstream neutralization of the excess protons at a grounded target electrode produces gaseous hydrogen molecules. The hydrogen production efficiency is currently very low (ca. 10-6) for a single cylindrical jet, but can be improved with design changes.

  13. Solar Thermal Upper Stage Liquid Hydrogen Pressure Control Testing

    NASA Technical Reports Server (NTRS)

    Moore, J. D.; Otto, J. M.; Cody, J. C.; Hastings, L. J.; Bryant, C. B.; Gautney, T. T.

    2015-01-01

    High-energy cryogenic propellant is an essential element in future space exploration programs. Therefore, NASA and its industrial partners are committed to an advanced development/technology program that will broaden the experience base for the entire cryogenic fluid management community. Furthermore, the high cost of microgravity experiments has motivated NASA to establish government/aerospace industry teams to aggressively explore combinations of ground testing and analytical modeling to the greatest extent possible, thereby benefitting both industry and government entities. One such team consisting of ManTech SRS, Inc., Edwards Air Force Base, and Marshall Space Flight Center (MSFC) was formed to pursue a technology project designed to demonstrate technology readiness for an SRS liquid hydrogen (LH2) in-space propellant management concept. The subject testing was cooperatively performed June 21-30, 2000, through a partially reimbursable Space Act Agreement between SRS, MSFC, and the Air Force Research Laboratory. The joint statement of work used to guide the technical activity is presented in appendix A. The key elements of the SRS concept consisted of an LH2 storage and supply system that used all of the vented H2 for solar engine thrusting, accommodated pressure control without a thermodynamic vent system (TVS), and minimized or eliminated the need for a capillary liquid acquisition device (LAD). The strategy was to balance the LH2 storage tank pressure control requirements with the engine thrusting requirements to selectively provide either liquid or vapor H2 at a controlled rate to a solar thermal engine in the low-gravity environment of space operations. The overall test objective was to verify that the proposed concept could enable simultaneous control of LH2 tank pressure and feed system flow to the thruster without necessitating a TVS and a capillary LAD. The primary program objectives were designed to demonstrate technology readiness of the SRS concept

  14. Space shuttle auxiliary propulsion system design study. Phase D report: Oxygen-hydrogen special RCS studies

    NASA Technical Reports Server (NTRS)

    Baumann, T. L.; Pattern, T. C.; Mckee, H. B.

    1972-01-01

    Two alternate oxygen-hydrogen auxiliary propulsion system concepts for use with the space shuttle vehicle were evaluated. The two concepts considered were: (1) gaseous oxygen-hydrogen systems with electric or hydraulic motor driven pumps to provide system pressure and (2) liquid oxygen-hydrogen systems which delivered propellants to the engines in a liquid state without the need for pumps. The various means of implementing each of the concepts are compared on the basis of weight, technology requirements, and operational considerations. It was determined that the liquid oxygen-hydrogen system concepts have the potential to produce substantial weight reductions in the space shuttle orbiter total impulse range.

  15. FINAL REPORT: Room Temperature Hydrogen Storage in Nano-Confined Liquids

    SciTech Connect

    VAJO, JOHN

    2014-06-12

    DOE continues to seek solid-state hydrogen storage materials with hydrogen densities of ≥6 wt% and ≥50 g/L that can deliver hydrogen and be recharged at room temperature and moderate pressures enabling widespread use in transportation applications. Meanwhile, development including vehicle engineering and delivery infrastructure continues for compressed-gas hydrogen storage systems. Although compressed gas storage avoids the materials-based issues associated with solid-state storage, achieving acceptable volumetric densities has been a persistent challenge. This project examined the possibility of developing storage materials that would be compatible with compressed gas storage technology based on enhanced hydrogen solubility in nano-confined liquid solvents. These materials would store hydrogen in molecular form eliminating many limitations of current solid-state materials while increasing the volumetric capacity of compressed hydrogen storage vessels. Experimental methods were developed to study hydrogen solubility in nano-confined liquids. These methods included 1) fabrication of composites comprised of volatile liquid solvents for hydrogen confined within the nano-sized pore volume of nanoporous scaffolds and 2) measuring the hydrogen uptake capacity of these composites without altering the composite composition. The hydrogen storage capacities of these nano-confined solvent/scaffold composites were compared with bulk solvents and with empty scaffolds. The solvents and scaffolds were varied to optimize the enhancement in hydrogen solubility that accompanies confinement of the solvent. In addition, computational simulations were performed to study the molecular-scale structure of liquid solvent when confined within an atomically realistic nano-sized pore of a model scaffold. Confined solvent was compared with similar simulations of bulk solvent. The results from the simulations were used to formulate a mechanism for the enhanced solubility and to guide the

  16. Evidence of a liquid-liquid phase transition in hot dense hydrogen.

    PubMed

    Dzyabura, Vasily; Zaghoo, Mohamed; Silvera, Isaac F

    2013-05-14

    We use pulsed-laser heating of hydrogen at static pressures in the megabar pressure region to search for the plasma phase transition to liquid atomic metallic hydrogen. We heat our samples substantially above the melting line and observe a plateau in a temperature vs. laser power curve that otherwise increases with power. This anomaly in the heating curve appears correlated with theoretical predictions for the plasma phase transition. PMID:23630287

  17. A centroid molecular dynamics study of liquid para-hydrogen and ortho-deuterium.

    PubMed

    Hone, Tyler D; Voth, Gregory A

    2004-10-01

    Centroid molecular dynamics (CMD) is applied to the study of collective and single-particle dynamics in liquid para-hydrogen at two state points and liquid ortho-deuterium at one state point. The CMD results are compared with the results of classical molecular dynamics, quantum mode coupling theory, a maximum entropy analytic continuation approach, pair-product forward- backward semiclassical dynamics, and available experimental results. The self-diffusion constants are in excellent agreement with the experimental measurements for all systems studied. Furthermore, it is shown that the method is able to adequately describe both the single-particle and collective dynamics of quantum liquids. PMID:15446940

  18. Composite seals for liquid hydrogen and nuclear radiation environments.

    NASA Technical Reports Server (NTRS)

    Van Auken, R. L.; Chase, V. A.

    1971-01-01

    Description of plastic composite seals for service in a liquid-hydrogen and nuclear-radiation environment. The radiation-resistant aromatic heterocyclic class of polymers, including polyimide, polybenzimidazole, and polyquinoxaline, were evaluated for this application. The seal developed is based on a design involving a resin-starved laminate consisting of alternating layers of woven glass fabric and polymer film. This design imparts a mechanical spring characteristic to the seal, resulting in essentially complete elastic recovery when unloaded, and eliminates cold flow. Encapsulating techniques employing the polyquinoxaline polymer were developed which rendered the seal impervious to liquid hydrogen. The seals were tested before and after gamma irradiation up to 10 to the 10th ergs/g. Load/deflection and leakage tests were performed over a temperature range from -423 through +500 F.

  19. Fuel cell using a hydrogen generation system

    DOEpatents

    Dentinger, Paul M.; Crowell, Jeffrey A. W.

    2010-10-19

    A system is described for storing and generating hydrogen and, in particular, a system for storing and generating hydrogen for use in an H.sub.2/O.sub.2 fuel cell. The hydrogen storage system uses beta particles from a beta particle emitting material to degrade an organic polymer material to release substantially pure hydrogen. In a preferred embodiment of the invention, beta particles from .sup.63Ni are used to release hydrogen from linear polyethylene.

  20. Hydrogen mitigation Gas Characterization System: System design description

    SciTech Connect

    Schneider, T.C.

    1998-07-17

    The Gas Characterization System (GCS) design is described for flammable gas monitoring. Tank 241-SY-101 (SY-101) is known to experience periodic tank level increases and decreases during which hydrogen gas is released. It is believed that the generated gases accumulate in the solids-containing layer near the bottom of the tank. Solids and gases are also present in the crust and may be present in the interstitial liquid layer. The accumulation of gases creates a buoyancy that eventually overcomes the density and bonding strength of the bottom layer. When this happens, the gas from the bottom layer is released upward through the liquid layer to the vapor space above the tank crust. Previous monitoring of the vapor space gases during such an event indicates hydrogen release concentrations greater than the lower flammability limit (LFL) of hydrogen in a partial nitrous oxide atmosphere. Tanks 241-AN-105, 241-AW-101, and 241-SY-103 have been identified as having the potential to behave similar to SY-101. These waste tanks have been placed on the flammable gas watch list (FGWL). All waste tanks on the FGWL will have a standard hydrogen monitoring system (SHMS) installed to measure hydrogen. In the event that hydrogen levels exceed 0.75% by volume, additional characterization will be required. The purpose of this additional vapor space characterization is to determine the actual lower flammability limit of these tanks, accurately measure low baseline gas release concentrations, and to determine potential hazards associated with larger Gas Release Events (GREs). The instruments to be installed in the GCS for vapor monitoring will allow accurate analysis of samples from the tank vapor space. It will be possible to detect a wide range of hydrogen from parts per million to percent by volume, as well as other gas species suspected to be generated in waste tanks.

  1. Alkaline ionic liquids applied in supported ionic liquid catalyst for selective hydrogenation of citral to citronellal

    NASA Astrophysics Data System (ADS)

    Salminen, Eero; Virtanen, Pasi; Mikkola, Jyri-Pekka

    2014-02-01

    The challenge in preparation of ionic liquids containing a strong alkaline anion is to identify a suitable cation which can tolerate the harsh conditions induced by the anion. In this study, a commercial quaternary ammonium compound (quat) benzalkonium [ADBA] (alkyldimethylbenzylammonium) was used as a cation in the synthesis of different alkaline ionic liquids. In fact, the precursor, benzalkonium chloride, is a mixture of alkyldimethylbenzylammonium chlorides of various alkyl chain lengths and is commonly used in the formulation of various antiseptic products. The prepared ionic liquids were utilized as Supported Ionic Liquid Catalysts (SILCAs). Typically, a SILCA contains metal nanoparticles, enzymes or metal complexes in an ionic liquid layer which is immobilized on a solid carrier material such as an active carbon cloth (ACC). The catalysts were applied in the selective hydrogenation of citral to citronellal which is an important perfumery chemical. Interestingly, 70 % molar yield towards citronellal was achieved over a catalyst containing the alkaline ionic liquid benzalkonium methoxide.

  2. Alkaline ionic liquids applied in supported ionic liquid catalyst for selective hydrogenation of citral to citronellal.

    PubMed

    Salminen, Eero; Virtanen, Pasi; Mikkola, Jyri-Pekka

    2014-01-01

    The challenge in preparation of ionic liquids containing a strong alkaline anion is to identify a suitable cation which can tolerate the harsh conditions induced by the anion. In this study, a commercial quaternary ammonium compound (quat) benzalkonium [ADBA] (alkyldimethylbenzylammonium) was used as a cation in the synthesis of different alkaline ionic liquids. In fact, the precursor, benzalkonium chloride, is a mixture of alkyldimethylbenzylammonium chlorides of various alkyl chain lengths and is commonly used in the formulation of various antiseptic products. The prepared ionic liquids were utilized as Supported Ionic Liquid Catalysts (SILCAs). Typically, a SILCA contains metal nanoparticles, enzymes, or metal complexes in an ionic liquid layer which is immobilized on a solid carrier material such as an active carbon cloth (ACC). The catalysts were applied in the selective hydrogenation of citral to citronellal which is an important perfumery chemical. Interestingly, 70% molar yield toward citronellal was achieved over a catalyst containing the alkaline ionic liquid benzalkonium methoxide. PMID:24790972

  3. Alkaline ionic liquids applied in supported ionic liquid catalyst for selective hydrogenation of citral to citronellal

    PubMed Central

    Salminen, Eero; Virtanen, Pasi; Mikkola, Jyri-Pekka

    2014-01-01

    The challenge in preparation of ionic liquids containing a strong alkaline anion is to identify a suitable cation which can tolerate the harsh conditions induced by the anion. In this study, a commercial quaternary ammonium compound (quat) benzalkonium [ADBA] (alkyldimethylbenzylammonium) was used as a cation in the synthesis of different alkaline ionic liquids. In fact, the precursor, benzalkonium chloride, is a mixture of alkyldimethylbenzylammonium chlorides of various alkyl chain lengths and is commonly used in the formulation of various antiseptic products. The prepared ionic liquids were utilized as Supported Ionic Liquid Catalysts (SILCAs). Typically, a SILCA contains metal nanoparticles, enzymes, or metal complexes in an ionic liquid layer which is immobilized on a solid carrier material such as an active carbon cloth (ACC). The catalysts were applied in the selective hydrogenation of citral to citronellal which is an important perfumery chemical. Interestingly, 70% molar yield toward citronellal was achieved over a catalyst containing the alkaline ionic liquid benzalkonium methoxide. PMID:24790972

  4. Liquid hydrogen production and commercial demand in the United States

    NASA Technical Reports Server (NTRS)

    Heydorn, Barbara

    1990-01-01

    Kennedy Space Center, the single largest purchaser of liquid hydrogen (LH2) in the United States, evaluated current and anticipated hydrogen production and consumption in the government and commercial sectors. Specific objectives of the study are as follows: (1) identify LH2 producers in the United States and Canada during 1980-1989 period; (2) compile information in expected changes in LH2 production capabilities over the 1990-2000 period; (3) describe how hydrogen is used in each consuming industry and estimate U.S. LH2 consumption for the chemicals, metals, electronics, fats and oil, and glass industries, and report data on a regional basis; (4) estimate historical and future consumption; and (5) assess the influence of international demands on U.S. plants.

  5. Nickel Hydrogen Battery Expert System

    NASA Astrophysics Data System (ADS)

    Johnson, Yvette B.; McCall, Kurt E.

    The Nickel Cadmium Battery Expert System-2, or 'NICBES-2', which was used by the NASA HST six-battery testbed, was subsequently converted into the Nickel Hydrogen Battery Expert System, or 'NICHES'. Accounts are presently given of this conversion process and future uses being contemplated for NICHES. NICHES will calculate orbital summary data at the end of each orbit, and store these files for trend analyses and rules-generation.

  6. Performance Gains of Propellant Management Devices for Liquid Hydrogen Depots

    NASA Technical Reports Server (NTRS)

    Hartwig, Jason W.; McQuillen, John B.; Chato, David J.

    2013-01-01

    This paper presents background, experimental design, and preliminary experimental results for the liquid hydrogen bubble point tests conducted at the Cryogenic Components Cell 7 facility at the NASA Glenn Research Center in Cleveland, Ohio. The purpose of the test series was to investigate the parameters that affect liquid acquisition device (LAD) performance in a liquid hydrogen (LH2) propellant tank, to mitigate risk in the final design of the LAD for the Cryogenic Propellant Storage and Transfer Technology Demonstration Mission, and to provide insight into optimal LAD operation for future LH2 depots. Preliminary test results show an increase in performance and screen retention over the low reference LH2 bubble point value for a 325 2300 screen in three separate ways, thus improving fundamental LH2 LAD performance. By using a finer mesh screen, operating at a colder liquid temperature, and pressurizing with a noncondensible pressurant gas, a significant increase in margin is achieved in bubble point pressure for LH2 screen channel LADs.

  7. Covalency of hydrogen bonds in liquid water can be probed by proton nuclear magnetic resonance experiments.

    PubMed

    Elgabarty, Hossam; Khaliullin, Rustam Z; Kühne, Thomas D

    2015-01-01

    The concept of covalency is widely used to describe the nature of intermolecular bonds, to explain their spectroscopic features and to rationalize their chemical behaviour. Unfortunately, the degree of covalency of an intermolecular bond cannot be directly measured in an experiment. Here we established a simple quantitative relationship between the calculated covalency of hydrogen bonds in liquid water and the anisotropy of the proton magnetic shielding tensor that can be measured experimentally. This relationship enabled us to quantify the degree of covalency of hydrogen bonds in liquid water using the experimentally measured anisotropy. We estimated that the amount of electron density transferred between molecules is on the order of 10  m while the stabilization energy due to this charge transfer is ∼15 kJ mol(-1). The physical insight into the fundamental nature of hydrogen bonding provided in this work will facilitate new studies of intermolecular bonding in a variety of molecular systems. PMID:26370179

  8. 15 K liquid hydrogen thermal Energy Storage Unit for future ESA science missions

    NASA Astrophysics Data System (ADS)

    Borges de Sousa, P.; Martins, D.; Tomás, G.; Barreto, J.; Noite, J.; Linder, M.; Fruchart, D.; de Rango, P.; Haettel, R.; Catarino, I.; Bonfait, G.

    2015-12-01

    A thermal Energy Storage Unit (ESU) using liquid hydrogen has been developed as a solution for absorbing the heat peaks released by the recycling phase of a 300 mK cooler that is a part of the cryogenic chain of one of ESA's new satellites for science missions. This device is capable of storing 400 J of thermal energy between 15 and 16 K by taking advantage of the liquid-to-vapor latent heat of hydrogen in a closed system. This paper describes some results obtained with the development model of the ESU under different configurations and using two types of hydrogen storage: a large expansion volume for ground testing and a much more compact unit, suitable for space applications and that can comply with ESA's mass budget.

  9. Covalency of hydrogen bonds in liquid water can be probed by proton nuclear magnetic resonance experiments

    PubMed Central

    Elgabarty, Hossam; Khaliullin, Rustam Z.; Kühne, Thomas D.

    2015-01-01

    The concept of covalency is widely used to describe the nature of intermolecular bonds, to explain their spectroscopic features and to rationalize their chemical behaviour. Unfortunately, the degree of covalency of an intermolecular bond cannot be directly measured in an experiment. Here we established a simple quantitative relationship between the calculated covalency of hydrogen bonds in liquid water and the anisotropy of the proton magnetic shielding tensor that can be measured experimentally. This relationship enabled us to quantify the degree of covalency of hydrogen bonds in liquid water using the experimentally measured anisotropy. We estimated that the amount of electron density transferred between molecules is on the order of 10  m while the stabilization energy due to this charge transfer is ∼15 kJ mol−1. The physical insight into the fundamental nature of hydrogen bonding provided in this work will facilitate new studies of intermolecular bonding in a variety of molecular systems. PMID:26370179

  10. Parametric analysis of the liquid hydrogen and nitrogen bubble point pressure for cryogenic liquid acquisition devices

    NASA Astrophysics Data System (ADS)

    Hartwig, Jason; Adin Mann, Jay; Darr, Samuel R.

    2014-09-01

    This paper presents the parametric investigation of the factors which govern screen channel liquid acquisition device bubble point pressure in a low pressure propellant tank. The five test parameters that were varied included the screen mesh, liquid cryogen, liquid temperature and pressure, and type of pressurant gas. Bubble point data was collected using three fine mesh 304 stainless steel screens in two different liquids (hydrogen and nitrogen), over a broad range of liquid temperatures and pressures in subcooled and saturated liquid states, using both a noncondensible (helium) and autogenous (hydrogen or nitrogen) gas pressurization scheme. Bubble point pressure scales linearly with surface tension, but does not scale inversely with the fineness of the mesh. Bubble point pressure increases proportional to the degree of subcooling. Higher bubble points are obtained using noncondensible pressurant gases over the condensable vapor. The bubble point model is refined using a temperature dependent pore diameter of the screen to account for screen shrinkage at reduced liquid temperatures and to account for relative differences in performance between the two pressurization schemes. The updated bubble point model can be used to accurately predict performance of LADs operating in future cryogenic propellant engines and cryogenic fuel depots.

  11. Integrated Renewable Hydrogen Utility System

    SciTech Connect

    Proton Energy Systems

    2003-04-01

    Products based on Proton Exchange Membrane (PEM) technology offer a unique solution to today's energy conversion storage needs. PEM products have undergone continual development since the late 1950's for many diverse applications. Rooted in rigorous aerospace applications, this technology is now ''breaking away'' to provide commercial solutions to common power, energy, and industrial gas feedstock problems. Important developments in PEM electrolyzers and various energy conversion devices (e.g. engines and fuel cells) can now be combined to form the basis for a revolutionary energy storage system that provides a much needed link to renewable resources, and offers a credible alternative for off-grid power applications. This technology operates by converting electrical energy into chemical energy in the form of hydrogen as part of a water electrolysis process when excess power is available. When the primary source of power is unavailable, chemical energy is converted into electrical energy through an external combustion heat engine or other energy conversion device. The Phase II portion of this program began in May of 2000. The goal of Phase II of the project was to cost reduce the hydrogen generator as a critical link to having a fully sustainable hydrogen energy system. The overall goal is to enable the link to sustainability by converting excess renewable power into hydrogen and having that hydrogen available for conversion back to power, on demand. Furthermore, the cost of the capability must be less the $1,000 per kW (electrical power into the generator) and allow for a variety of renewable technology inputs. This cost target is based on a production volume of 10,000 units per year. To that end, Proton undertook an aggressive approach to cost reduction activities surrounding the 6kW, 40 standard cubic foot per hour (scfh) HOGEN hydrogen generator. The electrical side of the system targeted a number of areas that included approaches to reduce the cost of the power

  12. Liquid monobenzoxazine based resin system

    DOEpatents

    Tietze, Roger; Nguyen, Yen-Loan; Bryant, Mark

    2014-10-07

    The present invention provides a liquid resin system including a liquid monobenzoxazine monomer and a non-glycidyl epoxy compound, wherein the weight ratio of the monobenzoxazine monomer to the non-glycidyl epoxy compound is in a range of about 25:75 to about 60:40. The liquid resin system exhibits a low viscosity and exceptional stability over an extended period of time making its use in a variety of composite manufacturing methods highly advantageous.

  13. Laser-induced separation of hydrogen isotopes in the liquid phase

    DOEpatents

    Freund, Samuel M.; Maier, II, William B.; Beattie, Willard H.; Holland, Redus F.

    1980-01-01

    Hydrogen isotope separation is achieved by either (a) dissolving a hydrogen-bearing feedstock compound in a liquid solvent, or (b) liquefying a hydrogen-bearing feedstock compound, the liquid phase thus resulting being kept at a temperature at which spectral features of the feedstock relating to a particular hydrogen isotope are resolved, i.e., a clear-cut isotope shift is delineated, irradiating the liquid phase with monochromatic radiation of a wavelength which at least preferentially excites those molecules of the feedstock containing a first hydrogen isotope, inducing photochemical reaction in the excited molecules, and separating the reaction product containing the first isotope from the liquid phase.

  14. INTEGRATED HYDROGEN STORAGE SYSTEM MODEL

    SciTech Connect

    Hardy, B

    2007-11-16

    Hydrogen storage is recognized as a key technical hurdle that must be overcome for the realization of hydrogen powered vehicles. Metal hydrides and their doped variants have shown great promise as a storage material and significant advances have been made with this technology. In any practical storage system the rate of H2 uptake will be governed by all processes that affect the rate of mass transport through the bed and into the particles. These coupled processes include heat and mass transfer as well as chemical kinetics and equilibrium. However, with few exceptions, studies of metal hydrides have focused primarily on fundamental properties associated with hydrogen storage capacity and kinetics. A full understanding of the complex interplay of physical processes that occur during the charging and discharging of a practical storage system requires models that integrate the salient phenomena. For example, in the case of sodium alanate, the size of NaAlH4 crystals is on the order of 300nm and the size of polycrystalline particles may be approximately 10 times larger ({approx}3,000nm). For the bed volume to be as small as possible, it is necessary to densely pack the hydride particles. Even so, in packed beds composed of NaAlH{sub 4} particles alone, it has been observed that the void fraction is still approximately 50-60%. Because of the large void fraction and particle to particle thermal contact resistance, the thermal conductivity of the hydride is very low, on the order of 0.2 W/m-{sup o}C, Gross, Majzoub, Thomas and Sandrock [2002]. The chemical reaction for hydrogen loading is exothermic. Based on the data in Gross [2003], on the order of 10{sup 8}J of heat of is released for the uptake of 5 kg of H{sub 2}2 and complete conversion of NaH to NaAlH{sub 4}. Since the hydride reaction transitions from hydrogen loading to discharge at elevated temperatures, it is essential to control the temperature of the bed. However, the low thermal conductivity of the hydride

  15. Liquid sampling system

    DOEpatents

    Larson, Loren L.

    1987-01-01

    A conduit extends from a reservoir through a sampling station and back to the reservoir in a closed loop. A jet ejector in the conduit establishes suction for withdrawing liquid from the reservoir. The conduit has a self-healing septum therein upstream of the jet ejector for receiving one end of a double-ended cannula, the other end of which is received in a serum bottle for sample collection. Gas is introduced into the conduit at a gas bleed between the sample collection bottle and the reservoir. The jet ejector evacuates gas from the conduit and the bottle and aspirates a column of liquid from the reservoir at a high rate. When the withdrawn liquid reaches the jet ejector the rate of flow therethrough reduces substantially and the gas bleed increases the pressure in the conduit for driving liquid into the sample bottle, the gas bleed forming a column of gas behind the withdrawn liquid column and interrupting the withdrawal of liquid from the reservoir. In the case of hazardous and toxic liquids, the sample bottle and the jet ejector may be isolated from the reservoir and may be further isolated from a control station containing remote manipulation means for the sample bottle and control valves for the jet ejector and gas bleed.

  16. Liquid sampling system

    DOEpatents

    Larson, L.L.

    1984-09-17

    A conduit extends from a reservoir through a sampling station and back to the reservoir in a closed loop. A jet ejector in the conduit establishes suction for withdrawing liquid from the reservoir. The conduit has a self-healing septum therein upstream of the jet ejector for receiving one end of a double-ended cannula, the other end of which is received in a serum bottle for sample collection. Gas is introduced into the conduit at a gas bleed between the sample collection bottle and the reservoir. The jet ejector evacuates gas from the conduit and the bottle and aspirates a column of liquid from the reservoir at a high rate. When the withdrawn liquid reaches the jet ejector the rate of flow therethrough reduces substantially and the gas bleed increases the pressure in the conduit for driving liquid into the sample bottle, the gas bleed forming a column of gas behind the withdrawn liquid column and interrupting the withdrawal of liquid from the reservoir. In the case of hazardous and toxic liquids, the sample bottle and the jet ejector may be isolated from the reservoir and may be further isolated from a control station containing remote manipulation means for the sample bottle and control valves for the jet ejector and gas bleed. 5 figs.

  17. Hydrogen isotope separation by catalyzed exchange between hydrogen and liquid water

    SciTech Connect

    Butler, J.P.

    1980-04-01

    The discovery, at Chalk River Nuclear Laboratories, of a simple method of wetproofing platinum catalysts so that they retain their activity in liquid water stimulated a concentrated research program for the development of catalysts for the hydrogen-water isotopic exchange reaction. This paper reviews 10 years of study which have resulted in the development of highly active platinum catalysts which remain effective in water for periods greater than a year. The most efficient way to use these catalysts for the separation of hydrogen isotopes is in a trickle bed reactor which effects a continuous separation. The catalyst is packed in a column with hydrogen and water flowing countercurrently through the bed. The overall isotope transfer rate measured for the exchange reaction is influenced by various parameters, such as hydrogen and water flow rates, temperature, hydrogen pressure, and platinum metal loading. The effect of these parameters as well as the improved performance obtained by diluting the hydrophobic catalyst with inert hydrophilic packing are discussed. The hydrophobic catalysts can be effectively used in a variety of applications of particular interest in the nuclear industry. A Combined Electrolysis Catalytic Exchange - Heavy Water Process (CECE-HWP) is being developed at Chalk River with the ultimate aim of producing parasitic heavy water from electrolytic hydrogen streams. Other more immediate applications include the final enrichment of heavy water and the extraction of tritium from light and heavy water. Pilot plant studies on these latter processes are currently in progress.

  18. Design and Development of New Carbon-Based Sorbent Systems for an Effective Containment of Hydrogen

    SciTech Connect

    Alan C. Cooper

    2012-05-03

    This is a summary for work performed under cooperative agreement DE FC36 04GO14006 (Design and Development of New Carbon-based Sorbent Systems for an Effective Containment of Hydrogen). The project was directed to discover new solid and liquid materials that use reversible catalytic hydrogenation as the mechanism for hydrogen capture and storage. After a short period of investigation of solid materials, the inherent advantages of storing and transporting hydrogen using liquid-phase materials focused our attention exclusively on organic liquid hydrogen carriers (liquid carriers). While liquid carriers such as decalin and methylcyclohexane were known in the literature, these carriers suffer from practical disadvantages such as the need for very high temperatures to release hydrogen from the carriers and difficult separation of the carriers from the hydrogen. In this project, we were successful in using the prediction of reaction thermodynamics to discover liquid carriers that operate at temperatures up to 150 C lower than the previously known carriers. The means for modifying the thermodynamics of liquid carriers involved the use of certain molecular structures and incorporation of elements other than carbon into the carrier structure. The temperature decrease due to the more favorable reaction thermodynamics results in less energy input to release hydrogen from the carriers. For the first time, the catalytic reaction required to release hydrogen from the carriers could be conducted with the carrier remaining in the liquid phase. This has the beneficial effect of providing a simple means to separate the hydrogen from the carrier.

  19. A statistical model of hydrogen bond networks in liquid alcohols

    NASA Astrophysics Data System (ADS)

    Sillrén, Per; Bielecki, Johan; Mattsson, Johan; Börjesson, Lars; Matic, Aleksandar

    2012-03-01

    We here present a statistical model of hydrogen bond induced network structures in liquid alcohols. The model generalises the Andersson-Schulz-Flory chain model to allow also for branched structures. Two bonding probabilities are assigned to each hydroxyl group oxygen, where the first is the probability of a lone pair accepting an H-bond and the second is the probability that given this bond also the second lone pair is bonded. The average hydroxyl group cluster size, cluster size distribution, and the number of branches and leaves in the tree-like network clusters are directly determined from these probabilities. The applicability of the model is tested by comparison to cluster size distributions and bonding probabilities obtained from Monte Carlo simulations of the monoalcohols methanol, propanol, butanol, and propylene glycol monomethyl ether, the di-alcohol propylene glycol, and the tri-alcohol glycerol. We find that the tree model can reproduce the cluster size distributions and the bonding probabilities for both mono- and poly-alcohols, showing the branched nature of the OH-clusters in these liquids. Thus, this statistical model is a useful tool to better understand the structure of network forming hydrogen bonded liquids. The model can be applied to experimental data, allowing the topology of the clusters to be determined from such studies.

  20. A statistical model of hydrogen bond networks in liquid alcohols.

    PubMed

    Sillrén, Per; Bielecki, Johan; Mattsson, Johan; Börjesson, Lars; Matic, Aleksandar

    2012-03-01

    We here present a statistical model of hydrogen bond induced network structures in liquid alcohols. The model generalises the Andersson-Schulz-Flory chain model to allow also for branched structures. Two bonding probabilities are assigned to each hydroxyl group oxygen, where the first is the probability of a lone pair accepting an H-bond and the second is the probability that given this bond also the second lone pair is bonded. The average hydroxyl group cluster size, cluster size distribution, and the number of branches and leaves in the tree-like network clusters are directly determined from these probabilities. The applicability of the model is tested by comparison to cluster size distributions and bonding probabilities obtained from Monte Carlo simulations of the monoalcohols methanol, propanol, butanol, and propylene glycol monomethyl ether, the di-alcohol propylene glycol, and the tri-alcohol glycerol. We find that the tree model can reproduce the cluster size distributions and the bonding probabilities for both mono- and poly-alcohols, showing the branched nature of the OH-clusters in these liquids. Thus, this statistical model is a useful tool to better understand the structure of network forming hydrogen bonded liquids. The model can be applied to experimental data, allowing the topology of the clusters to be determined from such studies. PMID:22401459

  1. Flow Visualization of Liquid Hydrogen Line Chilldown Tests

    NASA Technical Reports Server (NTRS)

    Rame, Enrique; Hartwig, Jason W.; McQuillen John B.

    2014-01-01

    We present experimental measurements of wall and fluid temperature during chill-down tests of a warm cryogenic line with liquid hydrogen. Synchronized video and fluid temperature measurements are used to interpret stream temperature profiles versus time. When cold liquid hydrogen starts to flow into the warm line, a sequence of flow regimes, spanning from all-vapor at the outset to bubbly with continuum liquid at the end can be observed at a location far downstream of the cold inlet. In this paper we propose interpretations to the observed flow regimes and fluid temperature histories for two chilldown methods, viz. trickle (i.e. continuous) flow and pulse flow. Calculations of heat flux from the wall to the fluid versus wall temperature indicate the presence of the transition/nucleate boiling regimes only. The present tests, run at typical Reynolds numbers of approx O(10 (exp 5)), are in sharp contrast to similar tests conducted at lower Reynolds numbers where a well-defined film boiling region is observed.

  2. Thermo-physical performance prediction of the KSC Ground Operation Demonstration Unit for liquid hydrogen

    NASA Astrophysics Data System (ADS)

    Baik, J. H.; Notardonato, W. U.; Karng, S. W.; Oh, I.

    2015-12-01

    NASA Kennedy Space Center (KSC) researchers have been working on enhanced and modernized cryogenic liquid propellant handling techniques to reduce life cycle costs of propellant management system for the unique KSC application. The KSC Ground Operation Demonstration Unit (GODU) for liquid hydrogen (LH2) plans to demonstrate integrated refrigeration, zero-loss flexible term storage of LH2, and densified hydrogen handling techniques. The Florida Solar Energy Center (FSEC) has partnered with the KSC researchers to develop thermal performance prediction model of the GODU for LH2. The model includes integrated refrigeration cooling performance, thermal losses in the tank and distribution lines, transient system characteristics during chilling and loading, and long term steady-state propellant storage. This paper will discuss recent experimental data of the GODU for LH2 system and modeling results.

  3. Analysis of the nonvented fill of a 4.96-cubic-meter lightweight liquid hydrogen tank

    NASA Technical Reports Server (NTRS)

    Chato, David J.

    1989-01-01

    As part of its development of cryogenic fluid management techniques for spacecraft, the NASA Lewis Research Center Cryogenic Fluid Technology Office (CFTO) is planning to perform ground tests of nonvented fill techniques on a 4.96-cubic-meter lightweight liquid hydrogen tank. This tank is similar in size and shape to the tankage planned for CFTO's COLD-SAT liquid hydrogen flight experiment. The analyses used to select two injection systems are presented for nonvented fills of this tank at design flow rates between 220 and 450 kg/hr. The first system uses multiple nozzles spraying from the top of the tank through the ullage space. This system should be capable of liquid fill levels in excess of 95 percent. The second system injects the liquid through a submerged nozzle and should produce fill levels on the order of 80 percent liquid.

  4. Fiber optic hydrogen detection system

    NASA Astrophysics Data System (ADS)

    Kazemi, Alex A.; Larson, David B.; Wuestling, Mark D.

    1999-12-01

    Commercial and military launch vehicles are designed to use hydrogen as the main propellant, which is very volatile, extremely flammable, and highly explosive. Current detection systems uses Teflon transfer tubes at a large number of vehicle locations through which gas samples are drawn and the stream analyzed by a mass spectrometer. A concern with this approach is the high cost of the system. Also, the current system does not provide leak location and is not in real-time. This system is very complex and cumbersome for production and ground support measurement personnel. The fiber optic micromirror sensor under development for cryogenic environment relies on a reversible chemical interaction causing a change in reflectivity of a thin film of coated Palladium. The magnitude of the reflectivity change is correlated to hydrogen concentration. The sensor uses only a tiny light beam, with no electricity whatsoever at the sensor, leading to devices that is intrinsically safe from explosive ignition. The sensor, extremely small in size and weight detects, hydrogen concentration using a passive element consisting of chemically reactive microcoatings deposited on the surface of a glass microlens, which is then bonded to an optical fiber. The system uses a multiplexing technique with a fiber optic driver-receiver consisting of a modulated LED source that is launched into the sensor, and a photodiode detector that synchronously measures the reflected signal. The system incorporates a microprocessor (or PC) to perform the data analysis and storage, as well as trending and set alarm function. As it is a low cost system with a fast response, many more detection sensors can be used that will be extremely helpful in determining leak location for safety of crew and vehicles during launch operations.

  5. Electrochemical desorption of hydrogen atoms adsorbed on liquid gallium

    SciTech Connect

    Krivenko, A.G.; Vekin, A.B.; Benderskii, V.A.

    1987-12-01

    Laser-pulse electron photoemission was used to measure absolute values of the rate constants, W/sub 3/, of electrochemical desorption (ECD) of hydrogen atoms from liquid gallium. The W/sub 3/ were shown to be a linear function of hydrogen concentration, in accord with the fact that both hydrogen ions and water molecules are involved in desorption. The components of W/sub 3/ arising from the two reaction channels are exponential functions of electrode potential, and in their order of magnitude (approx. 10/sup 8/ liter/mole x sec and approx. 10/sup 6/ sec/sup -1/) are close to the corresponding constants for mercury and bismuth. In the desorption involving hydrogen ions, the H/D isotope effect decreases from 5 to 3 as the overpotential is raised from 0.75 to 1.15 V. It was suggested that isotope effects which are higher than those found for Hg and Bi electrodes arise from longer proton tunneling distance.

  6. Liquid-liquid equilibria for hydrogen fluoride + 1,1-dichloro-1-fluoroethane + 1-chloro-1,1-difluoroethane at {minus}20 and 20 C

    SciTech Connect

    Kang, Y.W.; Lee, Y.Y.

    1995-03-01

    1,1-Dichloro-1-fluoroethane is presently under consideration as a replacement for trichlorofluoromethane, which is widely used as a foam blowing agent. 1-Chloro-1,1-difluoroethane is the major raw material for the production of poly(vinylidene fluoride). These two materials are normally manufactured by the fluorination of 1,1,1-trichloroethane or vinylidene chloride with hydrogen fluoride. A phase separator is normally used to retrieve hydrogen fluoride from the product stream. To design the phase separator, liquid-liquid equilibrium data are required. Liquid-liquid equilibria for the ternary system (hydrogen fluoride + 1,1-dichloro-1-fluoroethane + 1-chloro-1,1-difluoroethane) have been measured at {minus}20 and 20 C. The results are correlated with the NRTL model, and the relevant parameters are presented.

  7. Capture of liquid hydrogen boiloff with metal hydride absorbers

    NASA Technical Reports Server (NTRS)

    Rosso, M. J.; Golben, P. M.

    1984-01-01

    A procedure which uses metal hydrides to capture some of this low pressure (,1 psig) hydrogen for subsequent reliquefaction is described. Of the five normally occurring sources of boil-off vapor the stream associated with the off-loading of liquid tankers during dewar refill was identified as the most cost effective and readily recoverable. The design, fabrication and testing of a proof-of-concept capture device, operating at a rate that is commensurate with the evolution of vapor by the target stream, is described. Liberation of the captured hydrogen gas at pressure .15 psig at normal temperatures (typical liquefier compressor suction pressure) are also demonstrated. A payback time of less than three years is projected.

  8. Minimum energy, liquid hydrogen supersonic cruise vehicle study

    NASA Technical Reports Server (NTRS)

    Brewer, G. D.; Morris, R. E.

    1975-01-01

    The potential was examined of hydrogen-fueled supersonic vehicles designed for cruise at Mach 2.7 and at Mach 2.2. The aerodynamic, weight, and propulsion characteristics of a previously established design of a LH2 fueled, Mach 2.7 supersonic cruise vehicle (SCV) were critically reviewed and updated. The design of a Mach 2.2 SCV was established on a corresponding basis. These baseline designs were then studied to determine the potential of minimizing energy expenditure in performing their design mission, and to explore the effect of fuel price and noise restriction on their design and operating performance. The baseline designs of LH2 fueled aircraft were than compared with equivalent designs of jet A (conventional hydrocarbon) fueled SCV's. Use of liquid hydrogen for fuel for the subject aircraft provides significant advantages in performance, cost, noise, pollution, sonic boom, and energy utilization.

  9. Compact hydrogen production systems for solid polymer fuel cells

    NASA Astrophysics Data System (ADS)

    Ledjeff-Hey, K.; Formanski, V.; Kalk, Th.; Roes, J.

    Generally there are several ways to produce hydrogen gas from carbonaceous fuels like natural gas, oil or alcohols. Most of these processes are designed for large-scale industrial production and are not suitable for a compact hydrogen production system (CHYPS) in the power range of 1 kW. In order to supply solid polymer fuel cells (SPFC) with hydrogen, a compact fuel processor is required for mobile applications. The produced hydrogen-rich gas has to have a low level of harmful impurities; in particular the carbon monoxide content has to be lower than 20 ppmv. Integrating the reaction step, the gas purification and the heat supply leads to small-scale hydrogen production systems. The steam reforming of methanol is feasible at copper catalysts in a low temperature range of 200-350°C. The combination of a small-scale methanol reformer and a metal membrane as purification step forms a compact system producing high-purity hydrogen. The generation of a SPFC hydrogen fuel gas can also be performed by thermal or catalytic cracking of liquid hydrocarbons such as propane. At a temperature of 900°C the decomposition of propane into carbon and hydrogen takes place. A fuel processor based on this simple concept produces a gas stream with a hydrogen content of more than 90 vol.% and without CO and CO2.

  10. Thermophysical properties of hydrogen along the liquid-vapor coexistence

    NASA Astrophysics Data System (ADS)

    Osman, S. M.; Sulaiman, N.; Bahaa Khedr, M.

    2016-05-01

    We present Theoretical Calculations for the Liquid-Vapor Coexistence (LVC) curve of fluid Hydrogen within the first order perturbation theory with a suitable first order quantum correction to the free energy. In the present equation of state, we incorporate the dimerization of H2 molecule by treating the fluid as a hard convex body fluid. The thermophysical properties of fluid H2 along the LVC curve, including the pressure-temperature dependence, density-temperature asymmetry, volume expansivity, entropy and enthalpy, are calculated and compared with computer simulation and empirical results.

  11. Electrons and Hydrogen-Bond Connectivity in Liquid Water

    SciTech Connect

    Fernandez-Serra, M.V.; Artacho, Emilio

    2006-01-13

    The network connectivity in liquid water is revised in terms of electronic signatures of hydrogen bonds (HBs) instead of geometric criteria, in view of recent x-ray absorption studies. The analysis is based on ab initio molecular-dynamics simulations at ambient conditions. Even if instantaneous threadlike structures are observed in the electronic network, they continuously reshape in oscillations reminiscent of the r and t modes in ice ({tau}{approx}170 fs). However, two water molecules initially joined by a HB remain effectively bound over many periods regardless of its electronic signature.

  12. Pressurization and expulsion of a flightweight liquid hydrogen tank

    NASA Technical Reports Server (NTRS)

    Vandresar, N. T.; Stochl, R. J.

    1993-01-01

    Experimental results are presented for pressurization and expulsion of a flight-weight 4.89 cu m liquid hydrogen storage tank under normal gravity conditions. Pressurization and expulsion times are parametrically varied to study the effects of longer transfer times expected in future space flight applications. It is found that the increase in pressurant consumption with increased operational time is significant at shorter pressurization or expulsion durations and diminishes as the duration lengthens. Gas-to-wall heat transfer in the ullage is the dominant mode of energy exchange, with more than 50 percent of the pressurant energy being lost to tank wall heating in expulsions and the long duration pressurizations. Advanced data analysis will require a multidimensional approach combined with improved measurement capabilities of liquid-vapor interfacial transport phenomena.

  13. Design and development of liquid hydrogen mixer unit

    NASA Technical Reports Server (NTRS)

    Morgan, R. W.; Wuertz, K.; Rudich, R. R.

    1973-01-01

    A dc brushless motor driven mixer unit (a vaneaxial fan) was designed and evaluated for use in cryogenic fluids (liquids and gases). It was found to operate well in all fluids in which it was tested. The test fluids were liquid and gaseous helium, hydrogen in the liquid phase gas phase and mixtures of the two phases, and liquid nitrogen. It operated for over 100 hr at cryogenic temperatures without damage to the bearings and at the conclusion of testing the condition of the bearings was such that an operational life of 5000 hr appeared possible. The unit demonstrated that (with the brushless dc motor principle) useful pumping of cryogenic fluids could be accomplished with very small power inputs to the mixer motor. During test, the motor input power varied from approximately 0.5 W to 2.5 W, depending on fluid density. The high power input produced a mixer efficiency of over 49 percent. In an earlier program (see NASA Report CR-72365), a mixer using an ac induction motor demonstrated an efficiency of 17.7 percent under the same conditions, illustrating the advantage of the dc brushless motor driven unit. The mixer also demonstrated its ability to automatically vary speed as a function of the density of the fluid being pumped. This causes the unit to deliver higher volumetric flow rates as fluid density decreases.

  14. Safety Standard for Hydrogen and Hydrogen Systems: Guidelines for Hydrogen System Design, Materials Selection, Operations, Storage and Transportation. Revision

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The NASA Safety Standard, which establishes a uniform process for hydrogen system design, materials selection, operation, storage, and transportation, is presented. The guidelines include suggestions for safely storing, handling, and using hydrogen in gaseous (GH2), liquid (LH2), or slush (SLH2) form whether used as a propellant or non-propellant. The handbook contains 9 chapters detailing properties and hazards, facility design, design of components, materials compatibility, detection, and transportation. Chapter 10 serves as a reference and the appendices contained therein include: assessment examples; scaling laws, explosions, blast effects, and fragmentation; codes, standards, and NASA directives; and relief devices along with a list of tables and figures, abbreviations, a glossary and an index for ease of use. The intent of the handbook is to provide enough information that it can be used alone, but at the same time, reference data sources that can provide much more detail if required.

  15. Hydrogen fueled-hydrogen transport rail system - A NASA proposal

    NASA Technical Reports Server (NTRS)

    Bain, A. L.; Tison, R. R.; Spafka, R. J.

    1984-01-01

    The technical possibility of fueling motive power equipment with hydrogen as an alternative to petroleum is studied, and the economics of operating hydrogen-fueled systems are evaluated. Technical considerations include the areas of fuel storage and distribution systems, engine design changes, and a test and evaluation program. A conversion methodology, which conforms to the scheme of high-pressure injection of hydrogen directly into the cylinder late in the compresssion stroke and injection of pilot diesel fuel for ignition, is illustrated with detailed diagrams.

  16. Solar liquid heating system

    SciTech Connect

    Finn, D.J.

    1990-05-08

    This patent describes a solar heater for heating liquids. It comprises: a heatable bag, a support means supporting the heatable bag, a heatable body of liquid in the heatable bag, the heatable bag being disposed in sunlight so as to become heated thereby, a topside gas bag above the heatable bag, the topside gas bag containing a gas for serving as insulation, a topside fluid bag disposed above the topside gas bag and containing a fluid for further insulation. The bags being substantially gasproof and waterproof and also being flexible whereby the gravity pull on the bags and the flexibility thereof causes the upper sides of the bags to seek horizontal levels.

  17. Hydrogen-bond acidity of ionic liquids: an extended scale†

    PubMed Central

    Kurnia, Kiki A.; Lima, Filipa; Cláudio, Ana Filipa M.; Coutinho, João A. P.; Freire, Mara G.

    2015-01-01

    One of the main drawbacks comprising an appropriate selection of ionic liquids (ILs) for a target application is related to the lack of an extended and well-established polarity scale for these neoteric fluids. Albeit considerable progress has been made on identifying chemical structures and factors that influence the polarity of ILs, there still exists a high inconsistency in the experimental values reported by different authors. Furthermore, due to the extremely large number of possible ILs that can be synthesized, the experimental characterization of their polarity is a major limitation when envisaging the choice of an IL with a desired polarity. Therefore, it is of crucial relevance to develop correlation schemes and a priori predictive methods able to forecast the polarity of new (or not yet synthesized) fluids. In this context, and aiming at broadening the experimental polarity scale available for ILs, the solvatochromic Kamlet–Taft parameters of a broad range of bis(trifluoromethylsulfonyl)imide-([NTf2]−)-based fluids were determined. The impact of the IL cation structure on the hydrogen-bond donating ability of the fluid was comprehensively addressed. Based on the large amount of novel experimental values obtained, we then evaluated COSMO-RS, COnductor-like Screening MOdel for Real Solvents, as an alternative tool to estimate the hydrogen-bond acidity of ILs. A three-parameter model based on the cation–anion interaction energies was found to adequately describe the experimental hydrogen-bond acidity or hydrogen-bond donating ability of ILs. The proposed three-parameter model is also shown to present a predictive capacity and to provide novel molecular-level insights into the chemical structure characteristics that influence the acidity of a given IL. It is shown that although the equimolar cation–anion hydrogen-bonding energies (EHB) play the major role, the electrostatic-misfit interactions (EMF) and van der Waals forces (EvdW) also contribute

  18. Hydrogen-bond acidity of ionic liquids: an extended scale.

    PubMed

    Kurnia, Kiki A; Lima, Filipa; Cláudio, Ana Filipa M; Coutinho, João A P; Freire, Mara G

    2015-07-15

    One of the main drawbacks comprising an appropriate selection of ionic liquids (ILs) for a target application is related to the lack of an extended and well-established polarity scale for these neoteric fluids. Albeit considerable progress has been made on identifying chemical structures and factors that influence the polarity of ILs, there still exists a high inconsistency in the experimental values reported by different authors. Furthermore, due to the extremely large number of possible ILs that can be synthesized, the experimental characterization of their polarity is a major limitation when envisaging the choice of an IL with a desired polarity. Therefore, it is of crucial relevance to develop correlation schemes and a priori predictive methods able to forecast the polarity of new (or not yet synthesized) fluids. In this context, and aiming at broadening the experimental polarity scale available for ILs, the solvatochromic Kamlet-Taft parameters of a broad range of bis(trifluoromethylsulfonyl)imide-([NTf2](-))-based fluids were determined. The impact of the IL cation structure on the hydrogen-bond donating ability of the fluid was comprehensively addressed. Based on the large amount of novel experimental values obtained, we then evaluated COSMO-RS, COnductor-like Screening MOdel for Real Solvents, as an alternative tool to estimate the hydrogen-bond acidity of ILs. A three-parameter model based on the cation-anion interaction energies was found to adequately describe the experimental hydrogen-bond acidity or hydrogen-bond donating ability of ILs. The proposed three-parameter model is also shown to present a predictive capacity and to provide novel molecular-level insights into the chemical structure characteristics that influence the acidity of a given IL. It is shown that although the equimolar cation-anion hydrogen-bonding energies (EHB) play the major role, the electrostatic-misfit interactions (EMF) and van der Waals forces (EvdW) also contribute

  19. Oxidizer Selection for the ISTAR Program (Liquid Oxygen versus Hydrogen Peroxide)

    NASA Technical Reports Server (NTRS)

    Quinn, Jason Eugene; Koelbl, Mary E. (Technical Monitor)

    2002-01-01

    This paper discusses a study of two alternate oxidizers, liquid oxygen and hydrogen peroxide, for use in a rocket based combined cycle (RBCC) demonstrator vehicle. The flight vehicle is baselined as an airlaunched self-powered Mach 0.7 to 7 demonstration of an RBCC engine through all or its air breathing propulsion modes. Selection of an alternate oxidizer has the potential to lower overall vehicle size, system complexity/ cost and ultimately the total program risk. This trade study examined the oxidizer selection effects upon the overall vehicle performance, safety and operations. After consideration of all the technical and programmatic details available at this time, 90% hydrogen peroxide was selected over liquid oxygen for use in this program.

  20. Development of a Ground Operations Demonstration Unit for Liquid Hydrogen at Kennedy Space Center

    NASA Astrophysics Data System (ADS)

    Notardonato, W. U.

    NASA operations for handling cryogens in ground support equipment have not changed substantially in 50 years, despite major technology advances in the field of cryogenics. NASA loses approximately 50% of the hydrogen purchased because of a continuous heat leak into ground and flight vessels, transient chill down of warm cryogenic equipment, liquid bleeds, and vent losses. NASA Kennedy Space Center (KSC) needs to develop energy-efficient cryogenic ground systems to minimize propellant losses, simplify operations, and reduce cost associated with hydrogen usage. The GODU LH2 project will design, assemble, and test a prototype storage and distribution system for liquid hydrogen that represents an advanced end-to-end cryogenic propellant system for a ground launch complex. The project has multiple objectives and will culminate with an operational demonstration of the loading of a simulated flight tank with densified propellants. The system will be unique because it uses an integrated refrigeration and storage system (IRAS) to control the state of the fluid. The integrated refrigerator is the critical feature enabling the testing of the following three functions: zero-loss storage and transfer, propellant densification/conditioning, and on-site liquefaction. This paper will discuss the test objectives, the design of the system, and the current status of the installation.

  1. Performance test of a 6 L liquid hydrogen fuel tank for unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Garceau, N. M.; Kim, S. Y.; Lim, C. M.; Cho, M. J.; Kim, K. Y.; Baik, J. H.

    2015-12-01

    A 6 L liquid hydrogen fuel tank has been designed, fabricated and tested to optimize boil-off rate and minimize weight for a 200 W light weight fuel cell in an unmanned aerial vehicle (UAV). The 200 W fuel cell required a maximum flow rate of 2.3 SLPM or less liquid hydrogen boil-off from the fuel tank. After looking at several different insulation schemes, the system was optimized as two concentric lightweight aluminum cylinders with high vacuum and multi-layer insulation in between. MLI thickness and support structures were designed to minimize the tank weight. For support, filling and feed gas to a fuel-cell, the system was designed with two G-10 CR tubes which connected the inner vessel to the outer shell. A secondary G10-CR support structure was also added to ensure stability and durability during a flight. After fabrication the fuel tank was filled with liquid hydrogen. A series of boil-off tests were performed in various operating conditions to confirm thermal performance of the fuel tank for a 200 W fuel cell.

  2. Water reactive hydrogen fuel cell power system

    DOEpatents

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-11-25

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into the fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  3. Water reactive hydrogen fuel cell power system

    DOEpatents

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-01-21

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into a fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  4. Effect of cashew nut shell liquid on metabolic hydrogen flow on bovine rumen fermentation.

    PubMed

    Mitsumori, Makoto; Enishi, Osamu; Shinkai, Takumi; Higuchi, Koji; Kobayashi, Yosuke; Takenaka, Akio; Nagashima, Kyo; Mochizuki, Masami; Kobayashi, Yasuo

    2014-03-01

    Effect of cashew nut shell liquid (CNSL), a methane inhibitor, on bovine rumen fermentation was investigated through analysis of the metabolic hydrogen flow estimated from concentrations of short-chain fatty acids (SCFA) and methane. Three cows were fed a concentrate and hay diet without or with a CNSL-containing pellet. Two trials were conducted using CNSL pellets blended with only silica (trial 1) or with several other ingredients (trial 2). Methane production was measured in a respiration chamber system, and energy balance and nutrient digestibility were monitored. The estimated flow of metabolic hydrogen demonstrated that a part of metabolic hydrogen was used for hydrogen gas production, and a large amount of it flowed into production of methane and SCFA in both trial 1 and 2, when CNSL was administered to the bovine rumen. The results obtained by regression analyses showed that the effect of CNSL supply on methane reduction was coupled with a significant (P < 0.01) decrease of acetate and a significant (P < 0.01) increase of propionate and hydrogen gas. These findings reveal that CNSL is able to reduce methane and acetate production, and to increase hydrogen gas and propionate production in vivo. PMID:24128067

  5. Method and system for hydrogen evolution and storage

    DOEpatents

    Thorn, David L.; Tumas, William; Hay, P. Jeffrey; Schwarz, Daniel E.; Cameron, Thomas M.

    2012-12-11

    A method and system for storing and evolving hydrogen (H.sub.2) employ chemical compounds that can be hydrogenated to store hydrogen and dehydrogenated to evolve hydrogen. A catalyst lowers the energy required for storing and evolving hydrogen. The method and system can provide hydrogen for devices that consume hydrogen as fuel.

  6. Method and System for Hydrogen Evolution and Storage

    DOEpatents

    Thorn, David L.; Tumas, William; Hay, P. Jeffrey; Schwarz, Daniel E.; Cameron, Thomas M.

    2008-10-21

    A method and system for storing and evolving hydrogen employ chemical compounds that can be hydrogenated to store hydrogen and dehydrogenated to evolve hydrogen. A catalyst lowers the energy required for storing and evolving hydrogen. The method and system can provide hydrogen for devices that consume hydrogen as fuel.

  7. Polymer system for gettering hydrogen

    DOEpatents

    Shepodd, Timothy Jon; Whinnery, LeRoy L.

    2000-01-01

    A novel composition comprising organic polymer molecules having carbon-carbon double bonds, for removing hydrogen from the atmosphere within enclosed spaces. Organic polymers molecules containing carbon-carbon double bonds throughout their structures, preferably polybutadiene, polyisoprene and derivatives thereof, intimately mixed with an insoluble catalyst composition, comprising a hydrogenation catalyst and a catalyst support, preferably Pd supported on carbon, provide a hydrogen getter composition useful for removing hydrogen from enclosed spaces even in the presence of contaminants such as common atmospheric gases, water vapor, carbon dioxide, ammonia, oil mists, and water. The hydrogen getter composition disclosed herein is particularly useful for removing hydrogen from enclosed spaces containing potentially explosive mixtures of hydrogen and oxygen.

  8. Integrated photoelectrochemical cell and system having a liquid electrolyte

    DOEpatents

    Deng, Xunming; Xu, Liwei

    2010-07-06

    An integrated photoelectrochemical (PEC) cell generates hydrogen and oxygen from water while being illuminated with radiation. The PEC cell employs a liquid electrolyte, a multi-junction photovoltaic electrode, and a thin ion-exchange membrane. A PEC system and a method of making such PEC cell and PEC system are also disclosed.

  9. Nickel-hydrogen bipolar battery systems

    NASA Technical Reports Server (NTRS)

    Thaller, L. H.

    1982-01-01

    Nickel-hydrogen cells are currently being manufactured on a semi-experimental basis. Rechargeable nickel-hydrogen systems are described that more closely resemble a fuel cell system than a traditional nickel-cadmium battery pack. This has been stimulated by the currently emerging requirements related to large manned and unmanned low earth orbit applications. The resultant nickel-hydrogen battery system should have a number of features that would lead to improved reliability, reduced costs as well as superior energy density and cycle lives as compared to battery systems constructed from the current state-of-the-art nickel-hydrogen individual pressure vessel cells.

  10. Design, fabrication, assembly, and test of a liquid hydrogen acquisition subsystem

    NASA Technical Reports Server (NTRS)

    Blackman, J. B.

    1974-01-01

    The development of a cryogenic fluid system to supply liquid hydrogen to a turbopump at flowrates up to 7.5 pounds per second for a period of approximately 5 seconds before refill, is discussed. Refill is accomplished in less than 10 seconds, during which a constant flowrate can be maintained to the pumps. Diagrams are provided to show the configuration of the system. Subsystem acceptance and functional tests, including acquisition subsystem expulsion, pressurization, and refill were performed. The tests included: (1) thermodynamic vent system operation, (2) warm-gas pressurization effects, (3) hydraulic pressure surge effects, (4) screen device operational limitations, (5) feedline vapor control, and (6) two-phase refill.

  11. Simple Enrichment System for Hydrogen Producers ▿

    PubMed Central

    Tolvanen, Katariina E. S.; Mangayil, Rahul K.; Karp, Matti T.; Santala, Ville P.

    2011-01-01

    This study presents a simple enrichment system where gas pressure produced by microbes performs functions that are normally done by labor. The system was tested with Escherichia coli strains with different hydrogen production and growth capabilities. The results show that the system can enrich the best hydrogen producer. PMID:21531834

  12. Growth and Characterization of Hydrogenated Amorphous Silicon and Hydrogenated Amorphous Silicon Carbide with Liquid Organometallic Sources.

    NASA Astrophysics Data System (ADS)

    Gaughan, Kevin David

    The growth and characterization of hydrogenated amorphous silicon (a-Si:H) and hydrogenated amorphous silicon -carbon (rm a-rm Si _{1-X}C_{X}: H) alloys employing liquid organometallic sources are described. N -type a-Si:H films were grown using a mixture of silane and tertiarybutylphosphine (TBP-rm C_4H _9P_2) vapor in a plasma enhanced chemical vapor deposition system. Impurity levels from parts per million to about 5 at. % phosphorus have been incorporated into the film with this method. Tertiarybutylphosphine is less toxic and less pyrophoric than phosphine which is usually used in n-type doping of a-Si:H films. Optical and electronic properties were characterized by room temperature as well as temperature dependent dark conductivity, photothermal deflection spectroscopy, infrared vibrational spectroscopy, electron spin resonance, and electron microprobe analysis. The gross doping properties of a-Si:H doped with TBP are the same as those obtained with phosphine. The experimental results are compared with the predictions of several models that describe the chemical equilibrium between active dopants and deep defects. A pronounced decrease in the effects of doping, such as an increase in the activation energy of electrical conductivity and an decrease in the conductivity of the sample, were seen in heavily doped films (TBP/SiH _4> 0.5%), perhaps influenced by the increased carbon and/or phosphorus concentrations. Amorphous silicon-carbide alloys have been grown by the plasma decomposition of ditertiarybutylsilane ( rm DTBS-rm SiH_2(C _4H_9)_2). The optical bandgaps, which varied from 2.2 to 3.3 eV, are strongly dependent upon the deposition conditions. The carbon concentrations in these films varied from 60 to 95 at. %. The optical band-edge is very broad compared to that which is found in a-Si:H and this breadth is essentially independent of the deposition conditions. The plasma decomposition of admixtures of DTBS and silane has produced rm a- rm Si_{1-X

  13. A Transferable Coarse-Grained Model for Hydrogen Bonding Liquids

    PubMed Central

    Golubkov, Pavel A.; Wu, Johnny C.; Ren, Pengyu

    2008-01-01

    We present here a recent development of a generalized coarse-grained model for use in molecular simulations. In this model, interactions between coarse-grained particles consist of both van der Waals and explicit electrostatic components. As a result, the coarse-grained model offers the transferability that is lacked by most current effectivepotential based approaches. The previous center-of-mass framework1 is generalized here to include arbitrary off-center interaction sites for both Gay-Berne and multipoles. The new model has been applied to molecular dynamic simulations of neat methanol liquid. By placing a single point multipole at the oxygen atom rather than at the center of mass of methanol, there is a significant improvement in the ability to capture hydrogen-bonding. The critical issue of transferability of the coarse-grained model is verified on methanol-water mixtures, using parameters derived from neat liquids without any modification. The mixture density and internal energy from coarse-grained molecular dynamics simulations show good agreement with experimental measurements, on a par with what has been obtained from more detailed atomic models. By mapping the dynamics trajectory from the coarse-grained simulation into the all-atom counterpart, we are able to investigate atomic .level structure and interaction. Atomic radial distribution functions of neat methanol, neat water and mixtures compare favorably to experimental measurements. Furthermore, hydrogen-bonded 6- and 7-molecule chains of water and methanol observed in the mixture are in agreement with previous atomic simulations. PMID:18688358

  14. Liquid Fuel From Bacteria: Engineering Ralstonia eutropha for Production of Isobutanol (IBT) Motor Fuel from CO2, Hydrogen, and Oxygen

    SciTech Connect

    2010-07-15

    Electrofuels Project: MIT is using solar-derived hydrogen and common soil bacteria called Ralstonia eutropha to turn carbon dioxide (CO2) directly into biofuel. This bacteria already has the natural ability to use hydrogen and CO2 for growth. MIT is engineering the bacteria to use hydrogen to convert CO2 directly into liquid transportation fuels. Hydrogen is a flammable gas, so the MIT team is building an innovative reactor system that will safely house the bacteria and gas mixture during the fuel-creation process. The system will pump in precise mixtures of hydrogen, oxygen, and CO2, and the online fuel-recovery system will continuously capture and remove the biofuel product.

  15. Nickel hydrogen battery expert system

    NASA Technical Reports Server (NTRS)

    Shiva, Sajjan G.

    1991-01-01

    The Hubble Telescope Battery Testbed at MSFC uses the Nickel Cadmium (NiCd) Battery Expert System (NICBES-2) which supports the evaluation of performance of Hubble Telescope spacecraft batteries and provides alarm diagnosis and action advice. NICBES-2 provides a reasoning system along with a battery domain knowledge base to achieve this battery health management function. An effort is summarized which was used to modify NICBES-2 to accommodate Nickel Hydrogen (NiH2) battery environment now in MSFC testbed. The NICBES-2 is implemented on a Sun Microsystem and is written in SunOS C and Quintus Prolog. The system now operates in a multitasking environment. NICBES-2 spawns three processes: serial port process (SPP); data handler process (DHP); and the expert system process (ESP) in order to process the telemetry data and provide the status and action advice. NICBES-2 performs orbit data gathering, data evaluation, alarm diagnosis and action advice and status and history display functions. The adaptation of NICBES-2 to work with NiH2 battery environment required modification to all of the three component processes.

  16. Fermentative hydrogen production from liquid swine manure with glucose supplement using an anaerobic sequencing batch reactor

    NASA Astrophysics Data System (ADS)

    Wu, Xiao

    2009-12-01

    The idea of coupling renewable energy production and agricultural waste management inspired this thesis. The production of an important future fuel---hydrogen gas---from high strength waste stream-liquid swine manure---using anaerobic treatment processes makes the most sustainable sense for both wastewater utilization and energy generation. The objectives of this thesis were to develop a fermentation process for converting liquid swine manure to hydrogen and to maximize hydrogen productivity. Anaerobic sequencing batch reactor (ASBR) systems were constructed to carry out this fermentation process, and seed sludge obtained from a dairy manure anaerobic digester and pretreated by nutrient acclimation, heat and pH treatment was used as inoculum. High system stability was indicated by a short startup period of 12 days followed by stable hydrogen production, and successful sludge granulation occurred within 23 days of startup at a hydraulic retention time (HRT) of 24 hours. Operation at a progressively decreasing HRT from 24 to 8h gave rise to an increasing biogas production rate from 15.2-34.4L/d, while good linear relationships were observed between both total biogas and hydrogen production rates correlated to HRT, with R2 values of 0.993 and 0.997, respectively. The maximum hydrogen yield of 1.63 mol-H 2/mol-hexose-feed occurred at HRT of 16h, while the HRT of 12h was highly suggested to achieve both high production rate and efficient yield. Hexose utilization efficiencies over 98%, considerable hydrogen production rate up to 14.3 L/d and hydrogen percentage of off-gas up to 43% (i.e., a CO 2/H2 ratio of 1.2) with the absence of CH4 production throughout the whole course of experiment at a pH of 5.0 strongly validated the feasibility of the fermentative H2 production from liquid swine manure using an ASBR system. Ethanol as well as acetic, butyric and valeric acids were produced in the system accompanying the hydrogen production, with acetic acid being the dominant

  17. Low Temperature Regenerators for Zero Boil-Off Liquid Hydrogen Pulse Tube Cryocoolers

    NASA Technical Reports Server (NTRS)

    Salerno, Louis J.; Kashani, Ali; Helvensteijn, Ben; Kittel, Peter; Arnoldm James O. (Technical Monitor)

    2002-01-01

    Recently, a great deal of attention has been focused on zero boil-off (ZBO) propellant storage as a means of minimizing the launch mass required for long-term exploration missions. A key component of ZBO systems is the cooler. Pulse tube coolers offer the advantage of zero moving mass at the cold head, and recent advances in lightweight, high efficiency cooler technology have paved the way for reliable liquid oxygen (LOx) temperature coolers to be developed which are suitable for flight ZBO systems. Liquid hydrogen (LH2) systems, however, are another matter. For ZBO liquid hydrogen systems, cooling powers of 1-5 watts are required at 20 K. The final development from tier for these coolers is to achieve high efficiency and reliability at lower operating temperatures. Most of the life-limiting issues of flight Stirling and pulse tube coolers are associated with contamination, drive mechanisms, and drive electronics. These problems are well in hand in the present generation coolers. The remaining efficiency and reliability issues reside with the low temperature regenerators. This paper will discuss advances to be made in regenerators for pulse tube LH2 ZBO coolers, present some historical background, and discuss recent progress in regenerator technology development using alloys of erbium.

  18. Liquid Hydrogen Zero-Boiloff Testing and Analysis for Long-Term Orbital Storage

    NASA Astrophysics Data System (ADS)

    Hastings, L. J.; Hedayat, A.; Bryant, C. B.; Flachbart, R. H.

    2004-06-01

    Advancement of cryocooler and passive insulation technologies in recent years has improved the prospects for zero-boiloff (ZBO) storage of cryogenic fluids. The ZBO concept involves the use of a cryocooler/radiator system to balance storage system incoming and extracted energy such that zero boiloff (no venting) occurs. A large-scale demonstration of the ZBO concept was conducted using the Marshall Space Flight Center (MSFC) multipurpose hydrogen test bed (MHTB) along with a commercial cryocooler unit. The liquid hydrogen (LH2) was withdrawn from the tank, passed through the cryocooler heat exchanger, and then the chilled liquid was sprayed back into the tank through a spray bar. The spray bar recirculation system was designed to provide destratification independent of ullage and liquid positions in a zero-gravity environment. The insulated MHTB tank, combined with the vacuum chamber conditions, enabled orbital storage simulation. ZBO was demonstrated for fill levels of 95%, 50%, and 25%. At each fill level, a steady-state boiloff test was performed prior to operating the cryocooler to establish the baseline heat leak. Control system logic based on real-time thermal data and ullage pressure response was implemented to automatically provide a constant tank pressure. A comparison of test data and analytical results is presented in this paper.

  19. High Temperature Separation of Carbon Dioxide/Hydrogen Mixtures Using Facilitated Supported Ionic Liquid Membranes

    SciTech Connect

    Myers, C.R.; Pennline, H.W.; Luebke, D.R.; Ilconich, J.B.; Dixon, J.K.; Maginn, E.J.; Brennecke, J.F.

    2008-09-01

    Efficiently separating CO2 from H2 is one of the key steps in the environmentally responsible uses of fossil fuel for energy production. A wide variety of resources, including petroleum coke, coal, and even biomass, can be gasified to produce syngas (a mixture of COand H2). This gas stream can be further reacted with water to produce CO2 and more H2. Once separated, the CO2 can be stored in a variety of geological formations or sequestered by other means. The H2 can be combusted to operate a turbine, producing electricity, or used to power hydrogen fuel cells. In both cases, onlywater is produced as waste. An amine functionalized ionic liquid encapsulated in a supported ionic liquid membrane (SILM) can separate CO2 from H2 with a higher permeability and selectivity than any known membrane system. This separation is accomplished at elevated temperatures using facilitated transport supported ionic liquid membranes.

  20. Analysis of Hybrid Hydrogen Systems: Final Report

    SciTech Connect

    Dean, J.; Braun, R.; Munoz, D.; Penev, M.; Kinchin, C.

    2010-01-01

    Report on biomass pathways for hydrogen production and how they can be hybridized to support renewable electricity generation. Two hybrid systems were studied in detail for process feasibility and economic performance. The best-performing system was estimated to produce hydrogen at costs ($1.67/kg) within Department of Energy targets ($2.10/kg) for central biomass-derived hydrogen production while also providing value-added energy services to the electric grid.

  1. Evidence of a Liquid-Liquid Phase Transition Hot Dense Hydrogen

    NASA Astrophysics Data System (ADS)

    Silvera, Isaac; Dzyabura, Vasily; Zaghoo, Mohamed

    2013-03-01

    We use pulsed laser heating of hydrogen at static pressures in the megabar pressure region generated in a diamond anvil cell to search for the plasma phase transition (PPT) to liquid atomic metallic hydrogen. Heating the sample substantially above the melting line we observe a plateau in a temperature vs laser power curve that otherwise increases with power. This anomaly in the heating curve is closely correlated with theoretical predictions for the PPT, falling within the theoretically predicted range and having a negative slope with increasing pressure. Details will be presented. The NSF, grant DMR-0804378 and the DOE Stockpile Stewardship Academic Alliance program, grant DE-FG52-10NA29656 supported this research.

  2. Designing Microporus Carbons for Hydrogen Storage Systems

    SciTech Connect

    Alan C. Cooper

    2012-05-02

    An efficient, cost-effective hydrogen storage system is a key enabling technology for the widespread introduction of hydrogen fuel cells to the domestic marketplace. Air Products, an industry leader in hydrogen energy products and systems, recognized this need and responded to the DOE 'Grand Challenge' solicitation (DOE Solicitation DE-PS36-03GO93013) under Category 1 as an industry partner and steering committee member with the National Renewable Energy Laboratory (NREL) in their proposal for a center-of-excellence on Carbon-Based Hydrogen Storage Materials. This center was later renamed the Hydrogen Sorption Center of Excellence (HSCoE). Our proposal, entitled 'Designing Microporous Carbons for Hydrogen Storage Systems,' envisioned a highly synergistic 5-year program with NREL and other national laboratory and university partners.

  3. Cryogenic hydrogen circulation system of neutron source

    SciTech Connect

    Qiu, Y. N.; Hu, Z. J.; Wu, J. H.; Li, Q.; Zhang, Y.; Zhang, P.; Wang, G. P.

    2014-01-29

    Cold neutron sources of reactors and spallation neutron sources are classic high flux neutron sources in operation all over the world. Cryogenic fluids such as supercritical or supercooled hydrogen are commonly selected as a moderator to absorb the nuclear heating from proton beams. By comparing supercritical hydrogen circulation systems and supercooled hydrogen circulation systems, the merits and drawbacks in both systems are summarized. When supercritical hydrogen circulates as the moderator, severe pressure fluctuations caused by temperature changes will occur. The pressure control system used to balance the system pressure, which consists of a heater as an active controller for thermal compensation and an accumulator as a passive volume controller, is preliminarily studied. The results may provide guidelines for design and operation of other cryogenic hydrogen system for neutron sources under construction.

  4. Microwave Plasma Hydrogen Recovery System

    NASA Technical Reports Server (NTRS)

    Atwater, James; Wheeler, Richard, Jr.; Dahl, Roger; Hadley, Neal

    2010-01-01

    A microwave plasma reactor was developed for the recovery of hydrogen contained within waste methane produced by Carbon Dioxide Reduction Assembly (CRA), which reclaims oxygen from CO2. Since half of the H2 reductant used by the CRA is lost as CH4, the ability to reclaim this valuable resource will simplify supply logistics for longterm manned missions. Microwave plasmas provide an extreme thermal environment within a very small and precisely controlled region of space, resulting in very high energy densities at low overall power, and thus can drive high-temperature reactions using equipment that is smaller, lighter, and less power-consuming than traditional fixed-bed and fluidized-bed catalytic reactors. The high energy density provides an economical means to conduct endothermic reactions that become thermodynamically favorable only at very high temperatures. Microwave plasma methods were developed for the effective recovery of H2 using two primary reaction schemes: (1) methane pyrolysis to H2 and solid-phase carbon, and (2) methane oligomerization to H2 and acetylene. While the carbon problem is substantially reduced using plasma methods, it is not completely eliminated. For this reason, advanced methods were developed to promote CH4 oligomerization, which recovers a maximum of 75 percent of the H2 content of methane in a single reactor pass, and virtually eliminates the carbon problem. These methods were embodied in a prototype H2 recovery system capable of sustained high-efficiency operation. NASA can incorporate the innovation into flight hardware systems for deployment in support of future long-duration exploration objectives such as a Space Station retrofit, Lunar outpost, Mars transit, or Mars base. The primary application will be for the recovery of hydrogen lost in the Sabatier process for CO2 reduction to produce water in Exploration Life Support systems. Secondarily, this process may also be used in conjunction with a Sabatier reactor employed to

  5. Theoretical Performance of Liquid Hydrogen with Liquid Oxygen as a Rocket Propellant

    NASA Technical Reports Server (NTRS)

    Gordon, Sanford; McBride, Bonnie J.

    1959-01-01

    Theoretical rocket performance for both equilibrium and frozen composition during expansion was calculated for the propellant combination liquid hydrogen and liquid oxygen at four chamber pressures (60, 150, 300, and 600 lb/sq in. abs) and a wide range of pressure ratios (1 to 4000) and oxidant-fuel ratios (1.190 to 39.683). Data are given to estimate performance parameters at chamber pressures other than those for which data are tabulated. The parameters included are specific impulse, specific impulse in vacuum, combustion-chamber temperature, nozzle-exit temperature, molecular weight, molecular-weight derivatives, characteristic velocity, coefficient of thrust, ratio of nozzle-exit area to throat area, specific heat at constant pressure, isentropic exponent, viscosity, thermal conductivity, Mach number, and equilibrium gas compositions.

  6. Theoretical performance of liquid hydrogen and liquid fluorine as a rocket propellant

    NASA Technical Reports Server (NTRS)

    Gordon, Sanford; Huff, Vearl N

    1953-01-01

    Theoretical values of performance parameters for liquid hydrogen and liquid fluorine as a rocket propellant were calculated on the assumption of equilibrium composition during the expansion process for a wide range of fuel-oxidant and expansion ratios. The parameters included were specific impulse, combustion-chamber temperature, nozzle-exit temperature, equilibrium composition, mean molecular weight, characteristic velocity, coefficient of thrust, ration of nozzle-exit area to throat area, specific heat at constant pressure, coefficient of viscosity, and coefficient of thermal conductivity. The maximum value of specific impulse was 364.6 pound-seconds per pound for a chamber pressure of 300 pounds per square inch absolute (20.41 atm) and an exit pressure of 1 atmosphere.

  7. Hydrogen Fire Detection System Features Sharp Discrimination

    NASA Technical Reports Server (NTRS)

    Bright, C. S.

    1966-01-01

    Hydrogen fire detection system discovers fires by detecting the flickering ultraviolet radiation emitted by the OH molecule, a short-lived intermediate combustion product found in hydrogen-air flames. In a space application, the system discriminates against false signals from sunlight and rocket engine exhaust plume radiation.

  8. Standard hydrogen monitoring system equipment installation instructions

    SciTech Connect

    Schneider, T.C.

    1996-09-27

    This document provides the technical specifications for the equipment fabrication, installation, and sitework construction for the Standard Hydrogen Monitoring System. The Standard Hydrogen Monitoring System is designed to remove gases from waste tank vapor space and exhaust headers for continual monitoring and remote sample analysis.

  9. Electronic transport coefficients from ab initio simulations and application to dense liquid hydrogen

    SciTech Connect

    Holst, Bastian; French, Martin; Redmer, Ronald

    2011-06-15

    Using Kubo's linear response theory, we derive expressions for the frequency-dependent electrical conductivity (Kubo-Greenwood formula), thermopower, and thermal conductivity in a strongly correlated electron system. These are evaluated within ab initio molecular dynamics simulations in order to study the thermoelectric transport coefficients in dense liquid hydrogen, especially near the nonmetal-to-metal transition region. We also observe significant deviations from the widely used Wiedemann-Franz law, which is strictly valid only for degenerate systems, and give an estimate for its valid scope of application toward lower densities.

  10. Hydrogen Embrittlement and Its Control in Hydrogen-Fueled Engine Systems

    NASA Technical Reports Server (NTRS)

    Chandler, W. T.

    1978-01-01

    The nature of hydrogen embrittlement by high pressure gaseous hydrogen is described and methods of designing SSME gaseous hydrogen systems, including techniques of hydrogen embrittlement prevention, are discussed. The effects of gaseous hydrogen environments are emphasized. Results of extensive investigations of gaseous hydrogen environments on metals conducted under the SSME program are presented.