Science.gov

Sample records for liquid injection mocvd

  1. Liquid injection plasma deposition method and apparatus

    DOEpatents

    Kong, Peter C.; Watkins, Arthur D.

    1999-01-01

    A liquid injection plasma torch deposition apparatus for depositing material onto a surface of a substrate may comprise a plasma torch for producing a jet of plasma from an outlet nozzle. A plasma confinement tube having an inlet end and an outlet end and a central bore therethrough is aligned with the outlet nozzle of the plasma torch so that the plasma jet is directed into the inlet end of the plasma confinement tube and emerges from the outlet end of the plasma confinement tube. The plasma confinement tube also includes an injection port transverse to the central bore. A liquid injection device connected to the injection port of the plasma confinement tube injects a liquid reactant mixture containing the material to be deposited onto the surface of the substrate through the injection port and into the central bore of the plasma confinement tube.

  2. Liquid injection plasma deposition method and apparatus

    DOEpatents

    Kong, P.C.; Watkins, A.D.

    1999-05-25

    A liquid injection plasma torch deposition apparatus for depositing material onto a surface of a substrate may comprise a plasma torch for producing a jet of plasma from an outlet nozzle. A plasma confinement tube having an inlet end and an outlet end and a central bore therethrough is aligned with the outlet nozzle of the plasma torch so that the plasma jet is directed into the inlet end of the plasma confinement tube and emerges from the outlet end of the plasma confinement tube. The plasma confinement tube also includes an injection port transverse to the central bore. A liquid injection device connected to the injection port of the plasma confinement tube injects a liquid reactant mixture containing the material to be deposited onto the surface of the substrate through the injection port and into the central bore of the plasma confinement tube. 8 figs.

  3. [Development of a novel liquid injection system].

    PubMed

    Chen, Kai; Lv, Yong-Gui

    2009-11-01

    A liquid jet injector employs compressed gas or spring to produce a high-velocity stream to deliver liquid drug into human body through skin. There are many clinical jet injection products available, none of which is domestic. A new liquid jet injector is designed based on a comprehensive analysis of the current products. The injector consists of an ejector, trigger and a re-positioning mechanism. The jets characteristics of sample injector are tested, and the results show that the maximum exit pressure is above 15 MPa, a threshold value for penetrating into the skin. PMID:20352911

  4. Liquid fuel injection elements for rocket engines

    NASA Technical Reports Server (NTRS)

    Cox, George B., Jr. (Inventor)

    1993-01-01

    Thrust chambers for liquid propellant rocket engines include three principal components. One of these components is an injector which contains a plurality of injection elements to meter the flow of propellants at a predetermined rate, and fuel to oxidizer mixture ratio, to introduce the mixture into the combustion chamber, and to cause them to be atomized within the combustion chamber so that even combustion takes place. Evolving from these injectors are tube injectors. These tube injectors have injection elements for injecting the oxidizer into the combustion chamber. The oxidizer and fuel must be metered at predetermined rates and mixture ratios in order to mix them within the combustion chamber so that combustion takes place smoothly and completely. Hence tube injectors are subject to improvement. An injection element for a liquid propellant rocket engine of the bipropellant type is provided which includes tangential fuel metering orifices, and a plurality of oxidizer tube injection elements whose injection tubes are also provided with tangential oxidizer entry slots and internal reed valves.

  5. Multiple-orifice liquid injection into hypersonic air streams.

    NASA Technical Reports Server (NTRS)

    Weaver, W. L.

    1972-01-01

    Review of oblique water and fluorocarbon injection test results obtained in experimental studies of the effects of multiple-orifice liquid injection into hypersonic air streams. The results include the finding that maximum lateral penetration from such injections increases linearly with the square root of the jet-to-freestream dynamic-pressure ratio and is proportional to an equivalent orifice diameter.

  6. Innovations in high-pressure liquid injection technique for gas chromatography: pressurized liquid injection system.

    PubMed

    Luong, Jim; Gras, Ronda; Tymko, Richard

    2003-01-01

    In gas chromatography (GC), highly volatile liquefied hydrocarbons are commonly injected using devices such as high-pressure syringes, piston valves, liquid rotary sampling valves, or vaporizing regulators. Although these techniques are adequate in some cases, there are known deficiencies. A new generation of sampling valve has been recently innovated and commercialized. Some of the highlights of the pressurized liquid injection system (PLIS) include compact size, the capability to directly couple to an injection port without the need for preinjection vaporization and transfer lines, and sample sizes ranging from 0.2 to 2.0 micro L. Although the valve has a specification of helium leak-free rating of 82.7 bar (1200 psig), the valve passes a hydrostatic pressure test of up to 414 bar (6000 psig). In the unheated version of PLIS, vaporization of solutes occur mainly because of the sheering effect of carrier gas in combination with thermal energy drawn from an injection port or a heated adaptor. This was found to be adequate for solutes with high to medium volatility of up to nC14 hydrocarbon. A higher molecular weight range of up to nC44 hydrocarbon can be achieved with the implementation of a heated version of PLIS, in which the channel of the shaft can be resistively heated at a rate of up to 400 degrees C/s. With its first introduction in May 2002, PLIS has gained acceptance amongst practitioners in GC because it addresses a key unarticulated need in sample introduction/enrichment and by specifically targeting many deficiencies encountered in contemporary high-pressure injection devices. In this paper, the design and performance of the various valve systems of PLIS, as well as industrial chromatographic applications, is presented. PMID:14629794

  7. Growth condition dependence of Mg-doped GaN film grown by horizontal atmospheric MOCVD system with three layered laminar flow gas injection

    NASA Astrophysics Data System (ADS)

    Tokunaga, H.; Waki, I.; Yamaguchi, A.; Akutsu, N.; Matsumoto, K.

    1998-06-01

    We developed a novel atmospheric pressure horizontal MOCVD system (SR2000) for the growth of III-nitride film. This system was designed for high-speed gas flow in order to suppress thermal convection and undesirable reactant gas reaction. We have grown Mg-doped GaN films using SR2000. We studied the bis-cyclopentadienyl magnesium (Cp 2Mg) flow rate dependence and growth temperature ( Tg) dependence of Mg-doped GaN. As a result, we have obtained p-type GaN film with hole carrier density of 8×10 17 cm -3 with a mobility of 7.5 cm 2/(V s) at the growth condition with Cp 2Mg flow rate of 0.1 μmol/min at Tg of 1025°C.

  8. OBSERVATIONS ON WASTE DESTRUCTION IN LIQUID INJECTION INCINERATORS

    EPA Science Inventory

    Various factors affecting the performance of a subscale liquid injection incinerator simulator are discussed. The mechanisms by which waste escapes incineration within the spray flame are investigated for variations in atomization quality, flame stoichiometry. and the initial was...

  9. Solid source MOCVD system

    DOEpatents

    Hubert, Brian N.; Wu, Xin Di

    1998-01-01

    A system for MOCVD fabrication of superconducting and non-superconducting oxide films provides a delivery system for the feeding of metalorganic precursors for multi-component chemical vapor deposition. The delivery system can include multiple cartridges containing tightly packed precursor materials. The contents of each cartridge can be ground at a desired rate and fed together with precursor materials from other cartridges to a vaporization zone and then to a reaction zone within a deposition chamber for thin film deposition.

  10. Solid source MOCVD system

    DOEpatents

    Hubert, B.N.; Wu, X.D.

    1998-10-13

    A system for MOCVD fabrication of superconducting and non-superconducting oxide films provides a delivery system for the feeding of metallorganic precursors for multi-component chemical vapor deposition. The delivery system can include multiple cartridges containing tightly packed precursor materials. The contents of each cartridge can be ground at a desired rate and fed together with precursor materials from other cartridges to a vaporization zone and then to a reaction zone within a deposition chamber for thin film deposition. 13 figs.

  11. MOCVD OF YSZ COATINGS USING ?-DIKETONATE PRECURSORS

    SciTech Connect

    Varanasi, Venu G; Besmann, Theodore M; Hyde, Robin L.; Payzant, E Andrew; Anderson, Timothy J

    2009-01-01

    Metallorganic chemical vapor deposition (MOCVD) was used to fabricate yttria-stabilized zirconia as a thermal barrier coating. The MOCVD precursors were Y(tmhd)3 and Zr(tmhd)4 (tmhd = 2, 2, 6, 6-tetramethyl-3, 5-heptanedianato) and delivered via aerosol assisted liquid delivery (AALD). The maximum tetragonal YSZ coating rate was 14.2 1.3 m h -1 (at 845oC) yielding a layered coating microstructure. The growth was first-order with temperature (T < 827oC) with an apparent activation energy (Ea) of 50.9 4.3 kJ mol -1. Coating efficiency was a maximum of approximately 10% at the highest growth rate.

  12. Continuous injection of corrosion-inhibiting liquids

    SciTech Connect

    Spivey, M.F.

    1987-01-13

    A portable system is described for the continuous injection of corrosion-inhibiting chemical into a production well, comprising: a portable skid; a corrosion-inhibiting chemical tank, and a water tank, mounted on the skid; pump means for pumping an desired amounts and proportions of chemical and water from the tanks for injection into a production well. The pump means is mounted on the skid. A conduit means operatively interconnects is the pumps and tanks for delivery of corrosion-inhibiting chemical to a production well, the conduit means including an end conduit for operative interconnection to a production well. A control means is mounted on the skid for controlling the operation of the pump means to provide desired amounts and proportions of a mix of corrosion-inhibiting chemical and water to the end conduit. A method is described for delivering a mix of corrosion-inhibiting chemical and water to a production well utilizing a portable skid having a chemical tank and water tank mounted thereon, comprising: transporting the skid to a single production well site; operatively interconnecting the chemical and water tanks to an injection tube string, or an annulus associated with a side mandrel, of the production well; and controlling delivery of a mix of corrosion-inhibiting chemical and water from the tanks to the production well so that any desired amounts and proportions of a mix of chemical and water are continuously injected into the well to provide corrosion-inhibiting of a production tube string of the well without interruption of production through the production tube string.

  13. Some Numerical Research of Supersonic Gaseous Jet Injected Into Liquid

    NASA Astrophysics Data System (ADS)

    Sun, L. H.; Hu, J.; Yu, Y.

    2011-09-01

    The article kept the laval nozzle outer radium (D) and nozzle expansion ratio as a constant. Three different underwater gas jets multiphase unsteady flows were simulated using the volume of fluid (VOF) method. It adopted standard κ—ɛ turbulence mode and SIMPLE algorithm to solve the two-phase flow of supersonic gaseous jet injected into liquid. We got the flow structure and the main parameters of the flow field and compared and analyzed the key parameters of three different flow field.

  14. Wideband-Switchable Metamaterial Absorber Using Injected Liquid Metal.

    PubMed

    Kim, Hyung Ki; Lee, Dongju; Lim, Sungjoon

    2016-01-01

    Metamaterial absorbers can provide good solutions for radar-cross-section (RCS) reduction. In spite of their attractive features of thinness, lightness, and low cost, resonant metamaterial absorbers have a drawback of narrow bandwidth. For practical radar applications, wideband absorbers are necessary. In this paper, we propose a wideband-switchable metamaterial absorber using liquid metal. In order to reduce RCS both for X-band and C-band, the switchable Jerusalem cross (JC) resonator is introduced. The JC resonator consists of slotted circular rings, chip resistors, and microfluidic channels. The JC resonator is etched on a flexible printed circuit board (FPCB), and the microfluidic channels are laser-etched on a polydimethylsiloxane (PDMS) material. The proposed absorber can switch the absorption frequency band by injecting a liquid metal alloy into the channels. The performance of the absorber was demonstrated through full-wave simulation and through measurements employing prototypes. The experimental results showed absorption ratios of over 90% from 7.43 GHz to 14.34 GHz, and from 5.62 GHz to 7.3 GHz, with empty channels and liquid metal-filled channels, respectively. Therefore, the absorption band was successfully switched between the C-band (4-8 GHz) and the X-band (8-12 GHz) by injecting liquid metal eutectic gallium indium alloy (EGaIn) into the channels. PMID:27546310

  15. Wideband-Switchable Metamaterial Absorber Using Injected Liquid Metal

    PubMed Central

    Kim, Hyung Ki; Lee, Dongju; Lim, Sungjoon

    2016-01-01

    Metamaterial absorbers can provide good solutions for radar-cross-section (RCS) reduction. In spite of their attractive features of thinness, lightness, and low cost, resonant metamaterial absorbers have a drawback of narrow bandwidth. For practical radar applications, wideband absorbers are necessary. In this paper, we propose a wideband-switchable metamaterial absorber using liquid metal. In order to reduce RCS both for X-band and C-band, the switchable Jerusalem cross (JC) resonator is introduced. The JC resonator consists of slotted circular rings, chip resistors, and microfluidic channels. The JC resonator is etched on a flexible printed circuit board (FPCB), and the microfluidic channels are laser-etched on a polydimethylsiloxane (PDMS) material. The proposed absorber can switch the absorption frequency band by injecting a liquid metal alloy into the channels. The performance of the absorber was demonstrated through full-wave simulation and through measurements employing prototypes. The experimental results showed absorption ratios of over 90% from 7.43 GHz to 14.34 GHz, and from 5.62 GHz to 7.3 GHz, with empty channels and liquid metal-filled channels, respectively. Therefore, the absorption band was successfully switched between the C-band (4–8 GHz) and the X-band (8–12 GHz) by injecting liquid metal eutectic gallium indium alloy (EGaIn) into the channels. PMID:27546310

  16. Vacuum MOCVD fabrication of high efficience cells

    NASA Technical Reports Server (NTRS)

    Partain, L. D.; Fraas, L. M.; Mcleod, P. S.; Cape, J. A.

    1985-01-01

    Vacuum metal-organic-chemical-vapor-deposition (MOCVD) is a new fabrication process with improved safety and easier scalability due to its metal rather than glass construction and its uniform multiport gas injection system. It uses source materials more efficiently than other methods because the vacuum molecular flow conditions allow the high sticking coefficient reactants to reach the substrates as undeflected molecular beams and the hot chamber walls cause the low sticking coefficient reactants to bounce off the walls and interact with the substrates many times. This high source utilization reduces the materials costs power device and substantially decreases the amounts of toxic materials that must be handled as process effluents. The molecular beams allow precise growth control. With improved source purifications, vacuum MOCVD has provided p GaAs layers with 10-micron minority carrier diffusion lengths and GaAs and GaAsSb solar cells with 20% AMO efficiencies at 59X and 99X sunlight concentration ratios. Mechanical stacking has been identified as the quickest, most direct and logical path to stacked multiple-junction solar cells that perform better than the best single-junction devices. The mechanical stack is configured for immediate use in solar arrays and allows interconnections that improve the system end-of-life performance in space.

  17. Superheated fuel injection for combustion of liquid-solid slurries

    DOEpatents

    Robben, Franklin A.

    1985-01-01

    A method and device for obtaining, upon injection, flash evaporation of a liquid in a slurry fuel to aid in ignition and combustion. The device is particularly beneficial for use of coal-water slurry fuels in internal combustion engines such as diesel engines and gas turbines, and in external combustion devices such as boilers and furnaces. The slurry fuel is heated under pressure to near critical temperature in an injector accumulator, where the pressure is sufficiently high to prevent boiling. After injection into a combustion chamber, the water temperature will be well above boiling point at a reduced pressure in the combustion chamber, and flash boiling will preferentially take place at solid-liquid surfaces, resulting in the shattering of water droplets and the subsequent separation of the water from coal particles. This prevents the agglomeration of the coal particles during the subsequent ignition and combustion process, and reduces the energy required to evaporate the water and to heat the coal particles to ignition temperature. The overall effect will be to accelerate the ignition and combustion rates, and to reduce the size of the ash particles formed from the coal.

  18. Superheated fuel injection for combustion of liquid-solid slurries

    DOEpatents

    Robben, F.A.

    1984-10-19

    A method and device are claimed for obtaining, upon injection, flash evaporation of a liquid in a slurry fuel to aid in ignition and combustion. The device is particularly beneficial for use of coal-water slurry fuels in internal combustion engines such as diesel engines and gas turbines, and in external combustion devices such as boilers and furnaces. The slurry fuel is heated under pressure to near critical temperature in an injector accumulator, where the pressure is sufficiently high to prevent boiling. After injection into a combustion chamber, the water temperature will be well above boiling point at a reduced pressure in the combustion chamber, and flash boiling will preferentially take place at solid-liquid surfaces, resulting in the shattering of water droplets and the subsequent separation of the water from coal particles. This prevents the agglomeration of the coal particles during the subsequent ignition and combustion process, and reduces the energy required to evaporate the water and to heat the coal particles to ignition temperature. The overall effect will be to accelerate the ignition and combustion rates, and to reduce the size of the ash particles formed from the coal. 2 figs., 2 tabs.

  19. Sodium-water reaction acoustic noise for liquid phase injections. [LMFBR

    SciTech Connect

    Callis, K.R.; Greene, D.A.; Malovrh, J.W.

    1981-02-01

    Data on liquid and steam injections into sodium were recorded during a series of wastage experiments. These data are analyzed for acoustic power and spectral characteristics, expanding the data base up to 10 gm/sec injection rates from the earlier 0.5 gms/sec. No significant difference in acoustic power was measured between low temperature steam and liquid injections for the same mass flowrates. The bandwidth for steam injections is broader than for liquid injections. Reaction product deposition during water injections appears to cause a decrease in signal strength with test duration.

  20. Jet-noise reduction through liquid-base foam injection.

    NASA Technical Reports Server (NTRS)

    Manson, L.; Burge, H. L.

    1971-01-01

    An experimental investigation has been made of the sound-absorbing properties of liquid-base foams and of their ability to reduce jet noise. Protein, detergent, and polymer foaming agents were used in water solutions. A method of foam generation was developed to permit systematic variation of the foam density. The investigation included measurements of sound-absorption coefficents for both plane normal incidence waves and diffuse sound fields. The intrinsic acoustic properties of foam, e.g., the characteristic impedance and the propagation constant, were also determined. The sound emitted by a 1-in.-diam cold nitrogen jet was measured for subsonic (300 m/sec) and supersonic (422 m/sec) jets, with and without foam injection. Noise reductions up to 10 PNdB were measured.

  1. Refrigeration system with a compressor-pump unit and a liquid-injection desuperheating line

    DOEpatents

    Gaul, Christopher J.

    2001-01-01

    The refrigeration system includes a compressor-pump unit and/or a liquid-injection assembly. The refrigeration system is a vapor-compression refrigeration system that includes an expansion device, an evaporator, a compressor, a condenser, and a liquid pump between the condenser and the expansion device. The liquid pump improves efficiency of the refrigeration system by increasing the pressure of, thus subcooling, the liquid refrigerant delivered from the condenser to the expansion device. The liquid pump and the compressor are driven by a single driving device and, in this regard, are coupled to a single shaft of a driving device, such as a belt-drive, an engine, or an electric motor. While the driving device may be separately contained, in a preferred embodiment, the liquid pump, the compressor, and the driving device (i.e., an electric motor) are contained within a single sealable housing having pump and driving device cooling paths to subcool liquid refrigerant discharged from the liquid pump and to control the operating temperature of the driving device. In another aspect of the present invention, a liquid injection assembly is included in a refrigeration system to divert liquid refrigerant from the discharge of a liquid pressure amplification pump to a compressor discharge pathway within a compressor housing to desuperheat refrigerant vapor to the saturation point within the compressor housing. The liquid injection assembly includes a liquid injection pipe with a control valve to meter the volume of diverted liquid refrigerant. The liquid injection assembly may also include a feedback controller with a microprocessor responsive to a pressure sensor and a temperature sensor both positioned between the compressor to operate the control valve to maintain the refrigerant at or near saturation.

  2. In-situ thin films by MOCVD

    SciTech Connect

    Norris, P.E.; Orlando, G.W. )

    1990-01-01

    This paper reports on the growth of high quality yttrium barium copper oxide (YBCO) thin films by MOCVD. Three MOCVD processes have been studied: a two-step (growth/post anneal) process requiring O{sub 2} anneal at 950--980 C, an in-situ (one step, no post growth anneal) process at 800--850 C and a plasma-enhanced, in-situ process (PE-MOCVD), which is operable at still lower substrate temperatures. The in-situ PE-MOCVD process is of great interest since, to a substantial degree, the growth temperature determines the degree of compatibility of a process with substrate materials and existing device technologies, such as VLSI-SilicoVLSI-Silicon.

  3. Bubble formation during horizontal gas injection into downward-flowing liquid

    NASA Astrophysics Data System (ADS)

    Bai, Hua; Thomas, Brian G.

    2001-12-01

    Bubble formation during gas injection into turbulent downward-flowing water is studied using high-speed videos and mathematical models. The bubble size is determined during the initial stages of injection and is very important to turbulent multiphase flow in molten-metal processes. The effects of liquid velocity, gas-injection flow rate, injection hole diameter, and gas composition on the initial bubble-formation behavior have been investigated. Specifically, the bubble-shape evolution, contact angles, size, size range, and formation mode are measured. The bubble size is found to increase with increasing gas-injection flow rate and decreasing liquid velocity and is relatively independent of the gas injection hole size and gas composition. Bubble formation occurs in one of four different modes, depending on the liquid velocity and gas flow rate. Uniform-sized spherical bubbles form and detach from the gas injection hole in mode I for a low liquid speed and small gas flow rate. Modes III and IV occur for high-velocity liquid flows, where the injected gas elongates down along the wall and breaks up into uneven-sized bubbles. An analytical two-stage model is developed to predict the average bubble size, based on realistic force balances, and shows good agreement with measurements. Preliminary results of numerical simulations of bubble formation using a volume-of-fluid (VOF) model qualitatively match experimental observations, but more work is needed to reach a quantitative match. The analytical model is then used to estimate the size of the argon bubbles expected in liquid steel in tundish nozzles for conditions typical of continuous casting with a slide gate. The average argon bubble sizes generated in liquid steel are predicted to be larger than air bubbles in water for the same flow conditions. However, the differences lessen with increasing liquid velocity.

  4. Analysis of injection tests in liquid-dominated geothermal reservoirs

    SciTech Connect

    Benson, S.M.

    1984-12-01

    The objective was to develop procedures for analyzing nonisothermal injection test data during the early phases of injection. In particular, methods for determining the permeability-thickness of the formation, skin factor of the well and tracking the movement of the thermal front have been developed. The techniques developed for interpreting injection pressure transients are closely akin to conventional groundwater and petroleum techniques for evaluating these parameters. The approach taken was to numerically simulate injection with a variety of temperatures, reservoir parameters and flowrates, in order to determine the characteristic responses due to nonisothermal injection. Two characteristic responses were identified: moving front dominated behavior and composite reservoir behavior. Analysis procedures for calculating the permeability-thickness of the formation and the skin factor of the well have been developed for each of these cases. In order to interpret the composite reservior behavior, a new concept has been developed; that of a ''fluid skin factor'', which accounts for the steady-state pressure buildup due to the region inside the thermal front. Based on this same concept, a procedure for tracking the movement of the thermal front has been established. The results also identify the dangers of not accounting the nonisothermal effects when analyzing injection test data. Both the permeability-thickness and skin factor of the well can be grossly miscalculated if the effects of the cold-region around the well are not taken into consideration. 47 refs., 30 figs., 14 tabs.

  5. The stability of a horizontal interface between air and an insulating liquid subjected to charge injection

    NASA Astrophysics Data System (ADS)

    Chicón, Rafael; Pérez, Alberto T.

    2014-03-01

    This paper presents the linear stability analysis of an interface between air and an insulating liquid subjected to a perpendicular electric field, in the presence of unipolar injection of charge. Depending on the characteristics of the liquid and the depth of the liquid layer two different instability thresholds may be found. One of them is characterized by a wavelength of the order of the liquid layer thickness and corresponds to the well-known volume instability of a liquid layer subjected to charge injection. The other one is characterized by a wavelength some ten times the liquid layer thickness and corresponds to the so-called rose-window instability, an instability associated to the balance of surface stresses.

  6. Intensification of liquid jet atomization through injection into the exit channel of the atomizer

    NASA Astrophysics Data System (ADS)

    Gel'Fand, B. E.; Dranovskii, M. L.; Novikov, A. G.; Pikalov, V. P.

    The injection of a gas jet into the liquid flow at the exit of an atomizer nozzle, directly before the liquid is discharged into the ambient atmosphere, was investigated experimentally as a possible method of improving the quality of atomization. The atomizer used in the experiments had transparent side walls and a nozzle of rectangular (2 x 4 mm) cross section; the relative length of the nozzle was 1.5-1.6. It is shown that gas injection not only improves the quality of atomization but also makes it possible to lower the liquid supply pressure and to increase the atomizer nozzle diameter.

  7. Frequency-Switchable Metamaterial Absorber Injecting Eutectic Gallium-Indium (EGaIn) Liquid Metal Alloy

    PubMed Central

    Ling, Kenyu; Kim, Hyung Ki; Yoo, Minyeong; Lim, Sungjoon

    2015-01-01

    In this study, we demonstrated a new class of frequency-switchable metamaterial absorber in the X-band. Eutectic gallium-indium (EGaIn), a liquid metal alloy, was injected in a microfluidic channel engraved on polymethyl methacrylate (PMMA) to achieve frequency switching. Numerical simulation and experimental results are presented for two cases: when the microfluidic channels are empty, and when they are filled with liquid metal. To evaluate the performance of the fabricated absorber prototype, it is tested with a rectangular waveguide. The resonant frequency was successfully switched from 10.96 GHz to 10.61 GHz after injecting liquid metal while maintaining absorptivity higher than 98%. PMID:26561815

  8. Frequency-Switchable Metamaterial Absorber Injecting Eutectic Gallium-Indium (EGaIn) Liquid Metal Alloy.

    PubMed

    Ling, Kenyu; Kim, Hyung Ki; Yoo, Minyeong; Lim, Sungjoon

    2015-01-01

    In this study, we demonstrated a new class of frequency-switchable metamaterial absorber in the X-band. Eutectic gallium-indium (EGaIn), a liquid metal alloy, was injected in a microfluidic channel engraved on polymethyl methacrylate (PMMA) to achieve frequency switching. Numerical simulation and experimental results are presented for two cases: when the microfluidic channels are empty, and when they are filled with liquid metal. To evaluate the performance of the fabricated absorber prototype, it is tested with a rectangular waveguide. The resonant frequency was successfully switched from 10.96 GHz to 10.61 GHz after injecting liquid metal while maintaining absorptivity higher than 98%. PMID:26561815

  9. Method for preparation of viscous aqueous liquids for wellbore injection

    SciTech Connect

    Abdo, M.K.

    1986-03-11

    This patent describes a method of preparing a viscous aqueous liquid for introduction into a well penetrating the earth. The method consists of: (a) incorporating a water-dispersible polysaccharide produced by addition of bacteria of the genus Xanthomonas on a carbohydrate into an aqueous liquid having a salinity within the range of 0-0.03 weight percent, (b) incorporating trivalent metal ions selected from the group consisting of aluminum, chromium, and iron ions into the aqueous liquid in a concentration sufficient to effect complexing of the polysaccharide, (c) subsequent to steps (a) and (b), adding an aqueous saline makeup solution to the aqueous liquid containing the polysaccharide and the trivalent metal ions to increase the salinity to a value of at least 0.5 weight percent, and (d) introducing the aqueous liquid into the well. Also described is the production of oil from a subterranean reservoir by the waterflooding technique in which an aqueous liquid comprising a polysaccharide produced by the action of bacteria of the genus Xanthomonas on a carbohydrate is introduced into a well penetrating the earth. The improvement consists of using an aqueous polysaccharide solution made by prehydrating the polysaccharide in fresh water and then mixing this prehydrated solution with hard water, whereby the prehydration step yields a polysaccharide solution in hard water of higher viscosity than by hydrating directly in hard water.

  10. Disposal of liquid wastes by injection underground--Neither myth nor millennium

    USGS Publications Warehouse

    Piper, Arthur M.

    1969-01-01

    Injecting liquid wastes deep underground is an attractive but not necessarily practical means for disposing of them. For decades, impressive volumes of unwanted oil-field brine have been injected, currently about 10,000 acre-feet yearly. Recently, liquid industrial wastes are being injected in ever-increasing quantity. Dimensions of industrial injection wells range widely but the approximate medians are: depth, 2,660 feet; thickness of injection zone, 185 feet; injection rate, 135 gallons per minute; wellhead injection pressure, 185 pounds per square inch. Effects of deep injection are complex and not all are understood clearly. In a responsible society, injection cannot be allowed to put wastes out of mind. Injection is no more than storage--for all time in the case of the most intractable wastes--in underground space of which little is attainable in some areas and which is exhaustible in most areas. Liquid wastes range widely in character and concentration-some are incompatible one with another or with materials of the prospective injection zone; some which are reactive or chemically unstable would require pretreatment or could not be injected. Standards by which to categorize the wastes are urgently desirable. To the end that injection may be planned effectively and administered in orderly fashion, there is proposed an immediate and comprehensive canvass of all the United States to outline injection provinces and zones according to their capacities to accept waste. Much of the information needed to this end is at hand. Such a canvass would consider (1) natural zone, of groundwater circulation, from rapid to stagnant, (2) regional hydrodynamics, (3) safe injection pressures, and (4) geochemical aspects. In regard to safe pressure, definitive criteria would be sought by which to avoid recurrence of earthquake swarms such as seem to have been triggered by injection at the Rocky Mountain Arsenal well near Denver, Colo. Three of the 50 States--Missouri, .Ohio, and

  11. Circulation convection during subsurface injection of liquid waste, St. Petersburg, Florida

    USGS Publications Warehouse

    Hickey, J.J.

    1989-01-01

    Injection of liquid waste into a highly transmissive, saltwater-bearing, fractured dolomite underlying the city of St. Petersburg, Florida, provided an opportunity to study density-dependent flow associated with two miscible and density-different liquids. The injection zone was 98 m thick with a radial hydraulic conductivity of 762 m/d and a vertical hydraulic conductivity of 152 m/d. Mean chloride concentrations of the injectant during two tests of 91 and 366 days duration were 180 and 170 mg/L, respectively, whereas chloride concentration of native salt water ranged from 19,000 to 20,000 mg/L. During the 366-day test, chloride concentration in water from a well open to the upper part of the injection zone 223 m from the injection well approximately stabilized at about 4000 mg/L. Relatively constant chloride concentrations in water from this observation well at a level significantly greater than the injectant concentration suggested the hypothesis that circular convection with saltwater flow added chloride ions to the injection zone flow sampled at the observation well. In order to assess the acceptability of the circular convection hypothesis, information was required about the velocity field during injection. Mass transport model simulations were used to provide this information, after determining that the fractured injection zone could be treated as an equivalent porous medium with a single porosity. The mass transport model was calibrated using the 91-day test data from two observation wells 223 m from the injection well. The model was then run without parameter changes to simulate the 366-day test. Mass fractions of injectant computed for four observation wells during the 366-day test compared favorably with observed mass fractions. Observed mass fractions were calculated as a function of chloride concentration and density. Comparisons between model-computed mass fraction and velocity fields in a radial section showed circular convection, with salt water

  12. Data requirements for simulation of hydrogeologic effects of liquid waste injection, Harrison and Jackson Counties, Mississippi

    USGS Publications Warehouse

    Rebich, Richard A.

    1994-01-01

    Available literature and data were reviewed to quantify data requirements for computer simulation of hydrogeologic effects of liquid waste injection in southeastern Mississippi. Emphasis of each review was placed on quantifying physical properties of current Class I injection zones in Harrison and Jackson Counties. Class I injection zones are zones that are used for injection of hazardous or non-hazardous liquid waste below a formation containing the lowermost underground source of drinking water located within one-quarter of a mile of the injection well. Several mathematical models have been developed to simulate injection effects. The Basic Plume Method was selected because it is commonly used in permit applications, and the Intercomp model was selected because it is generally accepted and used in injection-related research. The input data requirements of the two models were combined into a single data requirement list inclusive of physical properties of injection zones only; injected waste and well properties are not included because such information is site-specific by industry, which is beyond the scope of this report. Results of the reviews of available literature and data indicated that Class I permit applications and standard-reference chemistry and physics texts were the primary sources of information to quantify physical properties of injection zones in Harrison and Jackson Counties. With the exception of a few reports and supplementary data for one injection zone in Jackson County, very little additional information pertaining to physical properties of the injection zones was available in sources other than permit applications and standard-reference texts.

  13. High-performance liquid chromatographic-amperometric determination of naloxone hydrochloride injection.

    PubMed

    Wilson, T D

    1984-08-17

    Naloxone hydrochloride has been measured in the injectable dosage form at 0.4 and 0.02 mg/ml using high-performance liquid chromatography with amperometric detection. This method was contrasted with an ultraviolet detection method at 229 nm and found to provide comparable recovery and linearity results. At the electrochemical detection limit of 0.1 ng injected a signal-to-noise ratio of 10.4 was found. PMID:6480748

  14. Reprint of : Transient dynamics of spin-polarized injection in helical Luttinger liquids

    NASA Astrophysics Data System (ADS)

    Calzona, A.; Carrega, M.; Dolcetto, G.; Sassetti, M.

    2016-08-01

    We analyze the time evolution of spin-polarized electron wave packets injected into the edge states of a two-dimensional topological insulator. In the presence of electron interactions, the system is described as a helical Luttinger liquid and injected electrons fractionalize. However, because of the presence of metallic detectors, no evidences of fractionalization are encoded in dc measurements, and in this regime the system does not show deviations from its non-interacting behavior. Nevertheless, we show that the helical Luttinger liquid nature emerges in the transient dynamics, where signatures of charge/spin fractionalization can be clearly identified.

  15. Flow and transport modeling of liquid radioactive waste injection using data from the Siberian Chemical Plant Injection Site

    NASA Astrophysics Data System (ADS)

    Shestakov, V.; Kuvaev, A.; Lekhov, A.; Pozdniakov, S.; Rybalchenko, A.; Zubkov, A.; Davis, P.; Kalinina, E.

    2002-06-01

    The focus of our investigation was simulating pre-injection and post-injection subsurface conditions at the waste disposal site of liquid radioactive wastes at the Siberian Chemical Complex (SCC). The main environmental and human safety concern posed by this site is related to the potential radionuclide discharge into the nearby Tom River and into the existing public-water-supply well fields located 10-13 km away. Even though (within the site) the two lower injection aquifers are isolated from the upper aquifers by a relatively continuous aquitard, in terms of regional flow they represent one hydrogeologic system that is affected by injection as well as by groundwater withdrawal from the upper aquifers and groundwater discharge into the river. Groundwater flow and transport models were developed to simulate regional flow and waste migration. Even after 1,000 years, none of the simulations indicated that there is any serious potential of high-concentration contamination of water supply wells and the discharge zone. In that time frame, simulation indicated a potential for upward movement of some amounts of contaminants through the heterogeneous sandy-clay aquitard. That is why a conceptual model incorporating heterogeneity of the clay aquitard with the possibility of preferential flow via sandy windows needs to be developed. Additional field characterization of the aquitard properties should be performed along the potential contaminant migration pathways that lead to the groundwater discharge zone.

  16. Delayed granulomatous reactions to facial cosmetic injections of polymethylmethacrylate microspheres and liquid injectable silicone: A case series.

    PubMed

    Friedmann, Daniel P; Kurian, Anil; Fitzpatrick, Richard E

    2016-06-01

    Polymethylmethacrylate microsphere (PMMA) and liquid injectable silicone (LIS) fillers are non-biodegradable, synthetic polymers utilized for long-term soft-tissue augmentation. Delayed granulomatous reactions to permanent fillers are a rare yet significant event that can occur months to years post procedure and are often refractory to treatment and associated with significant cosmetic morbidity. We report a case series of 4 patients who developed granulomatous reactions to PMMA or LIS, 15 months to 5 years post injection. The etiology of granulomatous reactions to permanent fillers is still poorly understood, with foreign-body reactions and/or biofilms purported to play a role. Real-time biochemical analysis with polymerase chain reaction should be performed when the index of suspicion for the presence of a biofilm is high. PMID:26735450

  17. A CFD Model for High Pressure Liquid Poison Injection for CANDU-6 Shutdown System No. 2

    SciTech Connect

    Bo Wook Rhee; Chang Jun Jeong; Hye Jeong Yun; Dong Soon Jang

    2002-07-01

    In CANDU reactor one of the two reactor shutdown systems is the liquid poison injection system which injects the highly pressurized liquid neutron poison into the moderator tank via small holes on the nozzle pipes. To ensure the safe shutdown of a reactor it is necessary for the poison curtains generated by jets provide quick, and enough negative reactivity to the reactor during the early stage of the accident. In order to produce the neutron cross section necessary to perform this work, the poison concentration distribution during the transient is necessary. In this study, a set of models for analyzing the transient poison concentration induced by this high pressure poison injection jet activated upon the reactor trip in a CANDU-6 reactor moderator tank has been developed and used to generate the poison concentration distribution of the poison curtains induced by the high pressure jets injected into the vacant region between the pressure tube banks. The poison injection rate through the jet holes drilled on the nozzle pipes is obtained by a 1-D transient hydrodynamic code called, ALITRIG, and this injection rate is used to provide the inlet boundary condition to a 3-D CFD model of the moderator tank based on CFX4.3, a CFD code, to simulate the formation of the poison jet curtain inside the moderator tank. For validation, an attempt was made to validate this model against a poison injection experiment performed at BARC. As conclusion this set of models is judged to be appropriate. (authors)

  18. DISTRIBUTION OF TRACE ELEMENT EMISIONS FROM THE LIQUID INJECTION INCINERATOR COMBUSTION RESEARCH FACILITY

    EPA Science Inventory

    A series of tests was conducted at EPA's Combustion Research Facility (CRF) to investigate the fate of volatile trace elements in liquid injection hazardous waste incineration. In these tests, arsenic in the form of arsenic trioxide and antimony in the form of antimony trichlorid...

  19. Multiple-orifice liquid injection into hypersonic airstreams and applications to ram C-3 flight

    NASA Technical Reports Server (NTRS)

    Weaver, W. L.

    1972-01-01

    Experimental data are presented for the oblique injection of water and three electrophilic liquids (fluorocarbon compounds) through multiple-orifice nozzles from a flat plate and the sides of a hemisphere-cone (0.375 scale of RAM C spacecraft) into hypersonic airstreams. The nozzle patterns included single and multiple orifices, single rows of nozzles, and duplicates of the RAM C-III nozzles. The flat-plate tests were made at Mach 8. Total pressure was varied from 3.45 MN/m2 to 10.34 MN/m2, Reynolds number was varied form 9,840,000 per meter to 19,700,000 per meter, and liquid injection pressure was varied from 0.69 MN/m2 to 3.5 MN/m2. The hemisphere-cone tests were made at Mach 7.3. Total pressure was varied from 1.38 MN/m2, to 6.89 MN/m2, Reynolds number was varied from 3,540,000 per meter to 17,700,000 per meter, and liquid-injection pressure was varied from 0.34 MN/m2 to 4.14 MN/m2. Photographs of the tests and plots of liquid-penetration and spray cross-section area are presented. Maximum penetration was found to vary as the square root of the dynamic-pressure ratio and the square root of the total injection nozzle area. Spray cross-section area was linear with maximum penetration. The test results are used to compute injection parameters for the RAM C-3 flight injection experiment.

  20. Injectable Calcium Phosphate Cement: Effects of Powder-to-Liquid Ratio and Needle Size

    PubMed Central

    Burguera, Elena F.; Sun, Limin

    2009-01-01

    Calcium phosphate cement (CPC) sets in situ and forms apatite with excellent osteoconductivity and bone-replacement capability. The objectives of this study were to formulate an injectable tetracalcium phosphate-dicalcium phosphate cement (CPCD), and investigate the powder/liquid ratio and needle-size effects. The injection force (mean ± SD; n = 4) to extrude the paste increased from (8 ± 2) N using a 10-gauge needle to (144 ± 17) N using a 21-gauge needle (p < 0.05). With the 10-gauge needle, the mass percentage of extruded paste was (95 ± 4)% at a powder/liquid ratio of 3; it decreased to (70 ± 12)% at powder/liquid = 3.5 (p < 0.05). A relationship was established between injection force, F, and needle lumen cross-sectional area, A: F = 5.0 + 38.7/A0.8. Flexural strength, S, (mean ± SD; n = 5) increased from (5.3 ± 0.8) MPa at powder/liquid = 2 to (11.0 ± 0.8) MPa at powder/liquid = 3.5 (p < 0.05). Pore volume fraction, P, ranged from 62.4% to 47.9%. A relationship was established: S = 47.7 × (1 - P)2.3. The strength of the injectable CPCD matched/exceeded the reported strengths of sintered porous hydroxyapatite implants that required machining. The novel injectable CPCD with a relatively high strength may be useful in filling defects with limited accessibility such as periodontal repair and tooth root-canal fillings, and in minimally-invasive techniques such as percutaneous vertebroplasty to fill the lesions and to strengthen the osteoporotic bone. PMID:17635038

  1. Instability of an interface between air and a low conducting liquid subjected to charge injection

    NASA Astrophysics Data System (ADS)

    Chicón, Rafael; Pérez, Alberto T.

    2006-10-01

    We study the linear stability of an interface between air and a low conducting liquid in the presence of unipolar injection of charge. As a consequence of charge injection, a volume charge density builds up in the air gap and a surface charge density on the interface. Above a certain voltage threshold the electrical stresses may destabilize the interface, giving rise to a characteristic cell pattern known as rose-window instability. Contrary to what occurs in the classical volume electrohydrodynamic instability in insulating liquids, the typical cell size is several times larger than the liquid depth. We analyze the linear stability through the usual procedure of decomposing an arbitrary perturbation into normal modes. The resulting homogeneous linear system of ordinary differential equations is solved using a commercial software package. Finally, an analytical method is developed that provides a solution valid in the limit of small wavenumbers.

  2. Liquid and gelled sprays for mixing hypergolic propellants using an impinging jet injection system

    NASA Astrophysics Data System (ADS)

    James, Mark D.

    The characteristics of sprays produced by liquid rocket injectors are important in understanding rocket engine ignition and performance. The includes, but is not limited to, drop size distribution, spray density, drop velocity, oscillations in the spray, uniformity of mixing between propellants, and the spatial distribution of drops. Hypergolic ignition and the associated ignition delay times are also important features in rocket engines, providing high reliability and simplicity of the ignition event. The ignition delay time is closely related to the level and speed of mixing between a hypergolic fuel and oxidizer, which makes the injection method and conditions crucial in determining the ignition performance. Although mixing and ignition of liquid hypergolic propellants has been studied for many years, the processes for injection, mixing, and ignition of gelled hypergolic propellants are less understood. Gelled propellants are currently under investigation for use in rocket injectors to combine the advantages of solid and liquid propellants, although not without their own difficulties. A review of hypergolic ignition has been conducted for selected propellants, and methods for achieving ignition have been established. This research is focused on ignition using the liquid drop-on-drop method, as well as the doublet impinging jet injector. The events leading up to ignition, known as pre-ignition stage are discussed. An understanding of desirable ignition and combustion performance requires a study of the effects of injection, temperature, and ambient pressure conditions. A review of unlike-doublet impinging jet injection mixing has also been conducted. This includes mixing factors in reactive and non-reactive sprays. Important mixing factors include jet momentum, jet diameter and length, impingement angle, mass distribution, and injector configuration. An impinging jet injection system is presented using an electro-mechanically driven piston for injecting liquid

  3. Comparison of liquid chromatographic and bioassay procedures for determining depletion of intramuscularly injected tylosin.

    PubMed

    Moats, W A; Harris, E W; Steele, N C

    1985-01-01

    Crossbred pigs weighing 80-110 kg were injected intramuscularly in the ham with 8.8 mg/kg tylosin. Animals were slaughtered in groups of 3 at intervals of 4 h, and 1, 2, 4, and 8 days after injection, and samples of blood, injected muscle, uninjected muscle, liver, and kidney were analyzed by liquid chromatography (LC) and by bioassay using Sarcina lutea as the test organism. The LC method was far more sensitive with a detection limit of less than 0.1 ppm, while the detection limit by bioassay was about 0.5 ppm in tissue. Results by bioassay and LC sometimes differed considerably for tissue samples. Residues in all tissues were below the tolerance limit of 0.2 ppm at 24 h, except in the injected muscle in one animal. Residues were not detected in any tissue of any animal at 48 h after treatment. PMID:4019360

  4. Active suppression of vortex-driven combustion instability using controlled liquid-fuel injection

    NASA Astrophysics Data System (ADS)

    Pang, Bin

    Combustion instabilities remain one of the most challenging problems encountered in developing propulsion and power systems. Large amplitude pressure oscillations, driven by unsteady heat release, can produce numerous detrimental effects. Most previous active control studies utilized gaseous fuels to suppress combustion instabilities. However, using liquid fuel to suppress combustion instabilities is more realistic for propulsion applications. Active instability suppression in vortex-driven combustors using a direct liquid fuel injection strategy was theoretically established and experimentally demonstrated in this dissertation work. Droplet size measurements revealed that with pulsed fuel injection management, fuel droplet size could be modulated periodically. Consequently, desired heat release fluctuation could be created. If this oscillatory heat release is coupled with the natural pressure oscillation in an out of phase manner, combustion instabilities can be suppressed. To identify proper locations of supplying additional liquid fuel for the purpose of achieving control, the natural heat release pattern in a vortex-driven combustor was characterized in this study. It was found that at high Damkohler number oscillatory heat release pattern closely followed the evolving vortex front. However, when Damkohler number became close to unity, heat release fluctuation wave no longer coincided with the coherent structures. A heat release deficit area was found near the dump plane when combustor was operated in lean premixed conditions. Active combustion instability suppression experiments were performed in a dump combustor using a controlled liquid fuel injection strategy. High-speed Schlieren results illustrated that vortex shedding plays an important role in maintaining self-sustained combustion instabilities. Complete combustion instability control requires total suppression of these large-scale coherent structures. The sound pressure level at the excited dominant

  5. Characteristics of CoxTi1-xO2 thin films deposited by MOCVD

    SciTech Connect

    McClure, A.; Kayani, A.; Idzerda, Y.U.; Arenholz, E.; Cruz, E.

    2008-05-09

    This paper deals with the growth and characterization of ferromagnetic cobalt doped TiO{sub 2} thin films deposited by liquid precursor metal organic chemical vapor deposition (MOCVD) using a new combination of the source materials Co(TMHD){sub 3}, tetrahydrofuran (THF), and titanium isopropoxide (TIP). An array of experiments reveals the intrinsic ferromagnetic nature of the grown films, and suggests that the magnetism is not generated by oxygen vacancies.

  6. A non-invasive method for the determination of liquid injectables by Raman spectroscopy.

    PubMed

    Zhao, Yu; Ji, Nan; Yin, Lihui; Wang, Jun

    2015-08-01

    Drug safety has become a very important subject, and more countries have joined in the fight against counterfeit drugs. This study demonstrated a non-invasive Raman spectroscopy method that could be utilized for screening liquid injectable drugs for spurious/falsely-labeled/falsified/counterfeit medical products (SFFCs). Two problems were solved to remove the blocks in identification and quantitation: one problem was the weak API signal extraction from the non-invasive Raman spectra and the other was the problem of Raman absolute measurement. Principal component analysis (PCA) and classical least square (CLS) algorithms were performed to establish the models. Water was chosen as the "internal standard" to normalize the spectra to solve the problem of Raman absolute measurement. The results showed that the 11 positive samples and 66 negative samples were all well identified with a threshold of 0.95. One of the positive samples contained the excipient propylene glycol, which was identified successfully at the same time. The accuracy of quantitative results was approximately 5% for doxofylline liquid injectables and about 10% for the low-concentration and big glass bottle-containers of Levofloxacin Lactate and Sodium Chloride Injections as compared to the results using an HPLC method, this is satisfactory for fast screening of SFFCs. In conclusion, with the development of a database of identification and quantitation models, this method may determine liquid injectable drugs in a fast and non-invasive way and become one of the most powerful weapons against SFFCs. Graphical Abstract ᅟ. PMID:25588367

  7. Evolution of Bubbles through Gas Injection from a Micro-Tube into Liquid Cross-Flow

    NASA Astrophysics Data System (ADS)

    Ghaemi, Sina; Rahimi, Payam; Nobes, David

    2008-11-01

    Generation of small-size bubbles is of importance in many processes such as chemical, medical and food industries. The most common method of bubble generation is injection of gas from an orifice into the liquid phase. In spite of simplicity of this method, appropriate conditions should exist to avoid bubble growth and obtain required small-size bubbles. Thorough understanding of the bubble formation and growth can reveal the required conditions and ensure detachment of the bubbles from the orifice with desired timing to control their size. In this work, evolution of bubbles from a micro-size gas injection tube into liquid cross-flow is investigated. Special attention has been devoted to optimize the conditions to generate micro-size bubbles. Specifically, the influence of gas injection tube size and location, gas and liquid Reynolds numbers and the geometry of the mixing chamber on the bubbles evolution is studied. High-speed shadowgraphy technique is applied to investigate bubbles size and shape. A Particle Tracking Velocimetry algorithm is also applied to calculate bubbles velocity. The velocity field of the liquid flow surrounding the bubbles is also characterized using a Mirco-Stereo-Particle Image Velocimetry technique.

  8. A field test of a waste containment technology using a new generation of injectable barrier liquids

    SciTech Connect

    Moridis, G.; Apps, J.; Persoff, P.; Myer, L.; Muller, S.; Pruess, K.; Yen, P.

    1996-08-01

    A first stage field injection of a new generation of barrier liquids was successfully completed. Two types of barrier liquids, colloidal silica (CS) and polysiloxane (PSX), were injected into heterogeneous unsaturated deposits of sand, silt, and gravel typical of many of the arid DOE cleanup sites and particularly analogous to the conditions of the Hanford Site. Successful injection by commercially available chemical grouting equipment and the tube-a-manchette technique was demonstrated. Excavation of the grout bulbs permitted visual evaluation of the soil permeation by the grout, as well as sample collection. Both grouts effectively permeated all of the formation. The PSX visually appeared to perform better, producing a more uniform and symmetric permeation regardless of heterogeneity, filling large as well as small pores and providing more structural strength than the CS. Numerical simulation of the injection tests incorporated a stochastic field to represent site heterogeneity and was able to replicate the general test behavior. Tiltmeters were used successfully to monitor surface displacements during grout injection.

  9. Water injection into vapor- and liquid-dominated reservoirs: Modeling of heat transfer and mass transport

    SciTech Connect

    Pruess, K.; Oldenburg, C.; Moridis, G.; Finsterle, S.

    1997-12-31

    This paper summarizes recent advances in methods for simulating water and tracer injection, and presents illustrative applications to liquid- and vapor-dominated geothermal reservoirs. High-resolution simulations of water injection into heterogeneous, vertical fractures in superheated vapor zones were performed. Injected water was found to move in dendritic patterns, and to experience stronger lateral flow effects than predicted from homogeneous medium models. Higher-order differencing methods were applied to modeling water and tracer injection into liquid-dominated systems. Conventional upstream weighting techniques were shown to be adequate for predicting the migration of thermal fronts, while higher-order methods give far better accuracy for tracer transport. A new fluid property module for the TOUGH2 simulator is described which allows a more accurate description of geofluids, and includes mineral dissolution and precipitation effects with associated porosity and permeability change. Comparisons between numerical simulation predictions and data for laboratory and field injection experiments are summarized. Enhanced simulation capabilities include a new linear solver package for TOUGH2, and inverse modeling techniques for automatic history matching and optimization.

  10. Electronic structure and charge injection at interface between electrode and liquid-crystalline semiconductor

    NASA Astrophysics Data System (ADS)

    Toda, Tohru; Hanna, Jun-ichi; Tani, Tadaaki

    2007-01-01

    The measurement and analysis of the current-voltage characteristics of a liquid-crystalline organic semiconductor 2-(4'-octyphenyl)-6-dodecyloxynaphthalene (8-PNP-O12) in contact with electrodes of Pt, Au, ITO, Cr, and Al (in the order of work function) have revealed that the injection of holes from the electrodes of Pt, Au, and indium tin oxide to 8-PNP-O12 takes place according to the Richardson-Schottky model and that an electric double layer is formed at the interface between each of these electrodes and 8-PNP-O12, making it difficult to inject holes from the former to the latter.

  11. Low-grade liquid silicone injections as a penile enhancement procedure: Is bigger better?

    PubMed Central

    Sasidaran, Ramesh; Zain, Mohd Ali Mat; Basiron, Normala Hj

    2012-01-01

    To report our experience with 5 cases of complications of penile enhancement procedures secondary to liquid silicone injections and our method of management of its debilitating effects. All five patients were treated with excision of penile shaft skin down to buck's fascia followed by resurfacing with split thickness skin grafting. We conclude that penile enhancement procedures with liquid silicone by non-medical personnel could result in devastating consequences. We also demonstrate that a simple method of excision of the entire penile shaft skin and resurfacing with split skin grafting showed improvement in cosmetic as well as functional outcome. PMID:23248528

  12. Large Eddy Simulation of a Cavitating Multiphase Flow for Liquid Injection

    NASA Astrophysics Data System (ADS)

    Cailloux, M.; Helie, J.; Reveillon, J.; Demoulin, F. X.

    2015-12-01

    This paper presents a numerical method for modelling a compressible multiphase flow that involves phase transition between liquid and vapour in the context of gasoline injection. A discontinuous compressible two fluid mixture based on the Volume of Fluid (VOF) implementation is employed to represent the phases of liquid, vapour and air. The mass transfer between phases is modelled by standard models such as Kunz or Schnerr-Sauer but including the presence of air in the gas phase. Turbulence is modelled using a Large Eddy Simulation (LES) approach to catch instationnarities and coherent structures. Eventually the modelling approach matches favourably experimental data concerning the effect of cavitation on atomisation process.

  13. Magma Interactions in Rhyolite Reservoirs Caused by Injection of New Rhyolitic Liquid: Results From Analogue Modeling

    NASA Astrophysics Data System (ADS)

    Girard, G.; Stix, J.

    2006-12-01

    Recharge of magma chambers by new inputs of magma is often identified as a trigger for eruptions. However, most studies to date have been carried out on mafic to intermediate composition melts replenishing mafic to silicic reservoirs, often with large compositional differences. Here we focus on rhyolites at large silicic centers such as Yellowstone where no differentiated material other than rhyolite is erupted. We investigate the behavior of rhyolite magma intruding reservoirs of similar composition and temperature, by using analogue experiments with water/corn syrup solutions as analogue magma. The density and viscosity of these solutions range from 1130 to 1320 kg m-3 and 0.008 to 8 Pa s, respectively. The fate of the injected liquid is mainly controlled by the density difference between the injected and resident liquids. Intruding material denser than resident liquid is not able to rise into the reservoir, instead building a flat basal layer or a cone above the discharge point. No further interaction such as mixing occurs. Buoyant injected material rises vertically to the top of the reservoir, also with little interaction involving resident liquid during its ascent. The injected fluid eventually spreads at the top of the reservoir, followed by mixing with the resident phase through the entire reservoir. Variables such as injection rate and viscosity mostly influence the timing and duration of this sequence of events, without changing the final result. The presence of a basal crystal mush, modeled by adding Elvacite plastic grains of 0.15 mm diameter with a density of 1160 kg m-3, does not influence the behavior of a slightly buoyant injection; the injected fluid creates its own path through the mush, eventually rising to the top of the liquid upper part of the reservoir. At the beginning of the injection, however, the intruding liquid must establish a path through the mush. At this stage, the intruding fluid violently entrains substantial numbers of particles

  14. Biomaterials Used in Injectable Implants (Liquid Embolics) for Percutaneous Filling of Vascular Spaces

    SciTech Connect

    Jordan, Olivier Doelker, Eric; Ruefenacht, Daniel A.

    2005-06-15

    The biomaterials currently used in injectable implants (liquid embolics) for minimally invasive image-guided treatment of vascular lesions undergo, once injected in situ, a phase transition based on a variety of physicochemical principles. The mechanisms leading to the formation of a solid implant include polymerization, precipitation and cross-linking through ionic or thermal process. The biomaterial characteristics have to meet the requirements of a variety of treatment conditions. The viscosity of the liquid is adapted to the access instrument, which can range from 0.2 mm to 3 mm in diameter and from a few centimeters up to 200 cm in length. Once such liquid embolics reach the vascular space, they are designed to become occlusive by inducing thrombosis or directly blocking the lesion when hardening of the embolics occurs. The safe delivery of such implants critically depends on their visibility and their hardening mechanism. Once delivered, the safety and effectiveness issues are related to implant functions such as biocompatibility, biodegradability or biomechanical properties. We review here the available and the experimental products with respect to the nature of the polymer, the mechanism of gel cast formation and the key characteristics that govern the choice of effective injectable implants.

  15. Biomaterials used in injectable implants (liquid embolics) for percutaneous filling of vascular spaces.

    PubMed

    Jordan, Olivier; Doelker, Eric; Rüfenacht, Daniel A

    2005-01-01

    The biomaterials currently used in injectable implants (liquid embolics) for minimally invasive image-guided treatment of vascular lesions undergo, once injected in situ, a phase transition based on a variety of physicochemical principles. The mechanisms leading to the formation of a solid implant include polymerization, precipitation and cross-linking through ionic or thermal process. The biomaterial characteristics have to meet the requirements of a variety of treatment conditions. The viscosity of the liquid is adapted to the access instrument, which can range from 0.2 mm to 3 mm in diameter and from a few centimeters up to 200 cm in length. Once such liquid embolics reach the vascular space, they are designed to become occlusive by inducing thrombosis or directly blocking the lesion when hardening of the embolics occurs. The safe delivery of such implants critically depends on their visibility and their hardening mechanism. Once delivered, the safety and effectiveness issues are related to implant functions such as biocompatibility, biodegradability or biomechanical properties. We review here the available and the experimental products with respect to the nature of the polymer, the mechanism of gel cast formation and the key characteristics that govern the choice of effective injectable implants. PMID:15959697

  16. Vertical gas injection into liquid cross-stream beneath horizontal surfaces

    NASA Astrophysics Data System (ADS)

    Lee, In-Ho; Makiharju, Simo; Lee, Inwon; Perlin, Marc; Ceccio, Steve

    2013-11-01

    Skin friction drag reduction on flat bottomed ships and barges can be achieved by creating an air layer immediately beneath the horizontal surface. The simplest way of introducing the gas is through circular orifices; however the dynamics of gas injection into liquid cross-streams under horizontal surfaces is not well understood. Experiments were conducted to investigate the development of the gas topology following its vertical injection through a horizontal surface. The liquid cross-flow, orifice diameter and gas flow rate were varied to investigate the effect of different ratios of momentum fluxes. The testing was performed on a 4.3 m long and 0.73 m wide barge model with air injection through a hole in the transparent bottom hull. The incoming boundary layer was measured via a pitot tube. Downstream distance based Reynolds number at the injection location was 5 × 105 through 4 × 106 . To observe the flow topology, still images and video were recorded from above the model (i.e. through the transparent hull), from beneath the bottom facing upward, and from the side at an oblique angle. The transition point of the flow topology was determined and analyzed.

  17. Radiation effects on p+n InP junctions grown by MOCVD

    NASA Technical Reports Server (NTRS)

    Messenger, Scott R.; Walters, Robert J.; Panunto, M. J.; Summers, Geoffrey P.

    1994-01-01

    The superior radiation resistance of InP over other solar cell materials such as Si or GaAs has prompted the development of InP cells for space applications. The early research on radiation effects in InP was performed by Yamaguchi and co-workers who showed that, in diffused p-InP junctions, radiation-induced defects were readily annealed both thermally and by injection, which was accompanied by significant cell recovery. More recent research efforts have been made using p-InP grown by metalorganic chemical vapor deposition (MOCVD). While similar deep level transient spectroscopy (DLTS) results were found for radiation induced defects in these cells and in diffused junctions, significant differences existed in the annealing characteristics. After injection annealing at room temperature, Yamaguchi noticed an almost complete recovery of the photovoltaic parameters, while the MOCVD samples showed only minimal annealing. In searching for an explanation of the different annealing behavior of diffused junctions and those grown by MOCVD, several possibilities have been considered. One possibility is the difference in the emitter structure. The diffused junctions have S-doped graded emitters with widths of approximately 0.3 micrometers, while the MOCVD emitters are often doped with Si and have widths of approximately 300A (0.03 micrometers). The difference in the emitter thickness can have important effects, e.g. a larger fraction of the total photocurrent is generated in the n-type material for thicker emitters. Therefore the properties of the n-InP material may explain the difference in the observed overall annealing behavior of the cells.

  18. Hollow fiber-based liquid-liquid-liquid microextraction followed by flow injection analysis using column-less HPLC for the determination of phenazopyridine in plasma and urine.

    PubMed

    Saraji, Mohammad; Bidgoli, Ali Akbar Hajialiakbari; Farajmand, Bahman

    2011-07-01

    Hollow fiber-based liquid-liquid-liquid microextraction (HF-LLLME) followed by flow injection analysis and diode array detection (FIA-DAD) was applied as a simple and sensitive quantitative method for the determination of phenazopyridine in urine and plasma samples. Flow injection system included a conventional HPLC system (without a chromatographic column) and a diode array detector. The extraction of phenazopyridine was carried out using diphenyl ether as the organic phase for filling the pores of the hollow fiber wall, and 0.1 M H(2)SO(4) solution as acceptor phase in the lumen of the fiber. The factors affecting the HF-LLLME and flow injection analysis including type of organic solvent, pH of donor phase, extraction temperature, extraction time, stirring rate, and pH of mobile phase were investigated and the optimal extraction conditions were established. With the consumption of 5 mL of sample solution, the enrichment factor was about 230. The limit of detection was 0.5 μg/L with inter- and intra-day precision being (RSD%) 6.9 and 4.9, respectively. Excellent linearity was found between 5 and 200 μg/L. PMID:21681956

  19. Heat and mass transfer of submerged helium injection in liquid oxygen vessel

    NASA Astrophysics Data System (ADS)

    Jung, Youngsuk; Cho, Namkyung; Baek, Seungwhan; Jeong, Sangkwon

    2014-11-01

    The submerged helium injection process results in the heat and mass transfer between the helium bubble and the cryogenic liquid. The objective of this paper is to analyze the dynamics of the heat and mass transfer process. It is observed that during the helium injection process the dynamics of mass transfer is dominant and the transient heat transfer is negligible. The helium bubble shape and rising patterns are observed with a visualization device that helps to discern the dominant process between heat transfer and mass transfer. The clustering patterns such as coalescence of helium bubbles are observed with the visualization device. The visualization results indicate that, it is very difficult to determine the representative size of bubbles due to the irregular shape of the helium bubbles. The shape and size of the helium bubbles are important parameters for evaluating the overall mass transfer coefficient (kGA) which is the essential parameter for calculating the evaporation rate of the bulk liquid into the helium bubbles. In this paper, the simplified lumped model is considered to fairly approximate the evaporation rate of the cryogenic liquid into the bubbles and the cooling rate of helium injection. The empirical correlation for the average concentration (C‾A) of evaporated cryogenic liquid into the helium bubbles is presented and the overall mass transfer coefficients (kGA) are calculated as the result of the lumped model. The proposed model and empirical correlations are compared with the experimental results, and the comparison result shows good agreement with differences that are less than ±0.4 K.

  20. Emissions Prediction and Measurement for Liquid-Fueled TVC Combustor with and without Water Injection

    NASA Technical Reports Server (NTRS)

    Brankovic, A.; Ryder, R. C., Jr.; Hendricks, R. C.; Liu, N.-S.; Shouse, D. T.; Roquemore, W. M.

    2005-01-01

    An investigation is performed to evaluate the performance of a computational fluid dynamics (CFD) tool for the prediction of the reacting flow in a liquid-fueled combustor that uses water injection for control of pollutant emissions. The experiment consists of a multisector, liquid-fueled combustor rig operated at different inlet pressures and temperatures, and over a range of fuel/air and water/fuel ratios. Fuel can be injected directly into the main combustion airstream and into the cavities. Test rig performance is characterized by combustor exit quantities such as temperature and emissions measurements using rakes and overall pressure drop from upstream plenum to combustor exit. Visualization of the flame is performed using gray scale and color still photographs and high-frame-rate videos. CFD simulations are performed utilizing a methodology that includes computer-aided design (CAD) solid modeling of the geometry, parallel processing over networked computers, and graphical and quantitative post-processing. Physical models include liquid fuel droplet dynamics and evaporation, with combustion modeled using a hybrid finite-rate chemistry model developed for Jet-A fuel. CFD and experimental results are compared for cases with cavity-only fueling, while numerical studies of cavity and main fueling was also performed. Predicted and measured trends in combustor exit temperature, CO and NOx are in general agreement at the different water/fuel loading rates, although quantitative differences exist between the predictions and measurements.

  1. Experimental investigation on the effect of liquid injection by multiple orifices in the formation of droplets in a Venturi scrubber.

    PubMed

    Guerra, V G; Gonçalves, J A S; Coury, J R

    2009-01-15

    Venturi scrubbers are widely utilized in gas cleaning. The cleansing elements in these scrubbers are droplets formed from the atomization of a liquid into a dust-laden gas. In industrial scrubbers, this liquid is injected through several orifices so that the cloud of droplets can be evenly distributed throughout the duct. The interaction between droplets when injected through many orifices, where opposite clouds of atomized liquid can reach each other, is to be expected. This work presents experimental measurements of droplet size measured in situ and the evidence of cloud interaction within a Venturi scrubber operating with multi-orifice jet injection. The influence of gas velocity, liquid flow rate and droplet size variation in the axial position after the point of the injection of the liquid were also evaluated for the different injection configurations. The experimental results showed that an increase in the liquid flow rate generated greater interaction between jets. The number of orifices had a significant influence on droplet size. In general, the increase in the velocity of the liquid jet and in the gas velocity favored the atomization process by reducing the size of the droplets. PMID:18462874

  2. Digital simulation of the regional effects of subsurface injection of liquid waste near Pensacola, Florida

    USGS Publications Warehouse

    Merritt, M.L.

    1984-01-01

    Industrial, organic, liquid waste has been injected into a part of the lower limestone of the Floridan aquifer at one site since 1963 and at another site since 1975, raising water levels in the injection zone throughout a large region. The hydrogeologic conceptual model of the injection zone is a layer tightly confined above by a thick layer of clay and in which lateral hydraulic conductivity decreases rapidly below the upper 60 feet. Recharge areas are to the north and east, where the confining layer pinches out. There appear to be permeability barriers to the northwest, west, and southwest due to facies changes, faults, or pinchouts. Measured and reconstructed preinjection water levels suggested that flow in the aquifer is from the northern recharge areas toward the southeast. A steady-state model simulation incorporating the cited boundary assumptions approximately simulated this pattern. A two-dimensional flow model and the subsurface waste injection program (SWIP) were calibrated to simulate the water level increases at various monitor wells since 1963. Sensitivity analyses showed the simulations to be quite sensitive to moderate errors in either transmissivity or storage parameter specifications. The predictive use of the hydraulic model is understood to be restricted to the geographical locations of data used for model calibration. (USGS)

  3. Determination of hexazinone in groundwater by direct-injection high-performance liquid chromatography.

    PubMed

    Perkins, L B; Bushway, R J; Katz, L E

    1999-01-01

    Hexazinone has been detected at levels ranging from 0.2 to 50 micrograms/L in many groundwater samples from eastern Maine over the past decade. A rapid and inexpensive direct-injection high-performance liquid chromatographic (HPLC) method has been developed to monitor contamination levels of the herbicide. The method is sensitive (limit of quantitation = 0.33 microgram/L) and is linear to 33.0 micrograms/L (R2 = 0.9995). Direct injection results from 50 field samples compared well (R2 = 0.98) with an HPLC method using solid-phase extraction for concentration and cleanup. The technique is very reproducible (coefficients of variation of 0-8.4% within day and 3.0-13.2% between day) and eliminates loss of analyte because of fewer steps in the procedure. PMID:10589500

  4. Study on the gas-liquid interface and polymer melt front in gas-assisted injection molding

    SciTech Connect

    Shen, Y.K.

    1997-03-01

    The algorithms are developed to predict the gas-liquid interface in gas-assisted injection molding. The simulation of two-dimensional, transient, non-isothermal and high viscous flow between two parallel plates with the generalized Newtonian fluid is presented in detail. The model takes into account the effects of the gas-liquid interface and polymer melt front.

  5. Liquid metal ion source assembly for external ion injection into an electron string ion source (ESIS)

    NASA Astrophysics Data System (ADS)

    Segal, M. J.; Bark, R. A.; Thomae, R.; Donets, E. E.; Donets, E. D.; Boytsov, A.; Ponkin, D.; Ramsdorf, A.

    2016-02-01

    An assembly for a commercial Ga+ liquid metal ion source in combination with an ion transportation and focusing system, a pulse high-voltage quadrupole deflector, and a beam diagnostics system has been constructed in the framework of the iThemba LABS (Cape Town, South Africa)—JINR (Dubna, Russia) collaboration. First, results on Ga+ ion beam commissioning will be presented. Outlook of further experiments for measurements of charge breeding efficiency in the electron string ion source with the use of external injection of Ga+ and Au+ ion beams will be reported as well.

  6. [Preparation and evaluation of intra-articular injectable sinomenine hydrochloride-loaded in situ liquid crystals].

    PubMed

    Chen, Yu-lin; Gui, Shuang-ying; Liang, Xin; Wang, Sheng-mei; Jiang, Xiao-jing

    2016-01-01

    Phytantriol (PT), ethanol (ET) and water were used to prepare in situ cubic liquid crystal (ISV2). The pseudo-ternary phase diagram of PT-ET-water was constructed and isotropic solution formulations were chosen for further optimization. The physicochemical properties of isotropic solution formulations were evaluated to optimize the composition of ISV2. In situ hexagonal liquid crystals (ISH2) were prepared based on the composition of ISV2 with the addition of vitamin E acetate (VitEA) and the amount of VitEA was optimized by in vitro release behavior. The phase structures of liquid crystalline gels formed by ISV2 and ISH2 in excess water were confirmed by crossed polarized light microscopy and small angle X-ray scattering, respectively. Rheological properties of ISV2 and ISH2 were studied by a DHR-2 rheometer. In vitro drug release studies were conducted by using a dialysis membrane diffusion method. Pharmacokinetics was investigated by determination of sinomenine hydrochloride (SMH) concentration in synovial membrane after intra-articular injection of SMH-loaded ISH2 in adjuvant-induced arthritis rats. The optimal ISV2 (PT/ET/water, 64 : 16 : 20, w/w/w) loaded with 6 mg x g(-1) of SMH showed a suitable pH, injectable and formed a cubic liquid crystalline gel in situ with minimum water absorption in the shortest time. The optimal ISV2 was able to sustain the drug release for 144 h. The optimal ISH2 system was prepared by addition of 5% VitEA into PT in the optimal ISV2 system. This ISH2 (PT/VitEA/ET/water, 60.8 : 3.2 : 16 : 20, w/w/w/w) was an injectable isotropic solution with suitable pH. The new ISH2 was able to sustain the drug release for more than 240 h. Local pharmacokinetics study indicated that the retention time and AUC(0-∞) of ISH2 group were increased significantly compared with that of SMH solution group and the AUC(0-∞) of ISH2 group was 6.01 times higher than that of SMH solution group. The developed ISH2 was suitable for intra

  7. Distribution of trace-element emissions from the liquid-injection incinerator Combustion Research Facility

    SciTech Connect

    Lee, J.W.; Ross, R.W.; Vocque, R.H.; Lewis, J.W.; Waterland, L.R.

    1987-08-01

    A series of tests was conducted at EPA's Combustion Research Facility (CRF) to investigate the fate of volatile trace elements in liquid-injection hazardous-waste incineration. In these tests, arsenic in the form of arsenic trioxide and antimony in the form of antimony trichloride were added to a methanol base containing varying amounts of chlorobenzene and carbon tetrachloride, and fired in the liquid-injection incinerator at the CRF. Test variables included incinerator temperature and excess air level, and feed chlorine content. Test results show a relatively even distribution of both elements between scrubber-exit flue gas and scrubber blowdown. Both elements are found in the vapor phase at high temperatures, though most condenses to particulate at scrubber exit temperatures. Designated POHC destruction and removal efficiency (DRE) ranged from 99.99 to 99.999% at the afterburner exit to 99.999 to 99.9999% in the scrubber-exit flue gas. Typical levels of common products of incomplete combustion were measured.

  8. Injection and swirl driven flowfields in solid and liquid rocket motors

    NASA Astrophysics Data System (ADS)

    Vyas, Anand B.

    In this work, we seek approximate analytical solutions to describe the bulk flow motion in certain types of solid and liquid rocket motors. In the case of an idealized solid rocket motor, a cylindrical double base propellant grain with steady regression rate is considered. The well known inviscid profile determined by Culick is extended here to include the effects of viscosity and steady grain regression. The approximate analytical solution for the cold flow is obtained from similarity principles, perturbation methods and the method of variation of parameters. The velocity, vorticity, pressure gradient and the shear stress distributions are determined and interpreted for different rates of wall regression and injection Reynolds number. The liquid propellant rocket engine considered here is based on a novel design that gives rise to a cyclonic flow. The resulting bidirectional motion is triggered by the tangential injection of an oxidizer just upstream of the chamber nozzle. Velocity, vorticity and pressure gradient distributions are determined for the bulk gas dynamics using a non-reactive inviscid model. Viscous corrections are then incorporated to explain the formation of a forced vortex near the core. Our results compare favorably with numerical simulations and experimental measurements obtained by other researchers. They also indicate that the bidirectional vortex in a cylindrical chamber is a physical solution of the Euler equations. In closing, we investigate the possibility of multi-directional flow behavior as predicted by Euler's equation and as reported recently in laboratory experiments.

  9. Surface Orientation in Injection-Molded Thermotropic Liquid Crystalline Copolyester (TLCP) Plaques

    NASA Astrophysics Data System (ADS)

    Bubeck, Robert; Fang, Jun; Burghardt, Wesley; Burgard, Susan; Robertson, Katherine; Fischer, Daniel

    2008-03-01

    Attenuated total reflection Fourier transform infra-red (ATR-FTIR), C K edge near edge X-ray adsorption fine structure (NEXAFS) spectroscopies, and 2-D WAXS in transmission were used to characterize surface orientation in thermotropic liquid crystalline copolyester (TLCP) injection-molded plaques to varying depths into the samples. Injection-molded TLCPs have bimodal orientation states due to contributions from ``skin'' and ``core'' regions resulting from extensional and shear flow, respectively, in the mold. The NEXAFS is sensitive to the orientation of the molecular pi orbital of backbone phenyl groups of the top 2 nm of a surface. ATR-FTIR obtained using a Herrick Seagull variable angle reflectance accessory is sensitive for dichroic ratios to a depth of 5 microns. Orientation parameters derived from the 1502/cm absorption band for equivalent positions are often typically about 5 to 10 percent less by ATR-FTIR than by NEXAFS. The orientational states are being correlated with physical properties of injection-molded TLCP samples.

  10. Safety-Enclosure System For MOCVD Process Chamber

    NASA Technical Reports Server (NTRS)

    Singletery, James, Jr.; Velasquez, Hugo; Warner, Joseph

    1995-01-01

    Safety-enclosure system filled with nitrogen surrounds reaction chamber in which metallo-organic chemical vapor deposition (MOCVD) performed. Designed to protect against explosions and/or escaping toxic gases and particulates. Gas-purification subsystem ensures during loading and unloading of process materials, interior of MOCVD chamber exposed to less than 1 ppm of oxygen and less than 5 ppm of water in nitrogen atmosphere. Toxic byproducts of MOCVD process collected within inert atmosphere. Enclosure strong enough to contain any fragments in unlikely event of explosion.

  11. High quality GaN-based LED epitaxial layers grown in a homemade MOCVD system

    NASA Astrophysics Data System (ADS)

    Haibo, Yin; Xiaoliang, Wang; Junxue, Ran; Guoxin, Hu; Lu, Zhang; Hongling, Xiao; Jing, Li; Jinmin, Li

    2011-03-01

    A homemade 7 × 2 inch MOCVD system is presented. With this system, high quality GaN epitaxial layers, InGaN/GaN multi-quantum wells and blue LED structural epitaxial layers have been successfully grown. The non-uniformity of undoped GaN epitaxial layers is as low as 2.86%. Using the LED structural epitaxial layers, blue LED chips with area of 350 × 350 μm2 were fabricated. Under 20 mA injection current, the optical output power of the blue LED is 8.62 mW.

  12. Rapid and low-cost prototyping of medical devices using 3D printed molds for liquid injection molding.

    PubMed

    Chung, Philip; Heller, J Alex; Etemadi, Mozziyar; Ottoson, Paige E; Liu, Jonathan A; Rand, Larry; Roy, Shuvo

    2014-01-01

    Biologically inert elastomers such as silicone are favorable materials for medical device fabrication, but forming and curing these elastomers using traditional liquid injection molding processes can be an expensive process due to tooling and equipment costs. As a result, it has traditionally been impractical to use liquid injection molding for low-cost, rapid prototyping applications. We have devised a method for rapid and low-cost production of liquid elastomer injection molded devices that utilizes fused deposition modeling 3D printers for mold design and a modified desiccator as an injection system. Low costs and rapid turnaround time in this technique lower the barrier to iteratively designing and prototyping complex elastomer devices. Furthermore, CAD models developed in this process can be later adapted for metal mold tooling design, enabling an easy transition to a traditional injection molding process. We have used this technique to manufacture intravaginal probes involving complex geometries, as well as overmolding over metal parts, using tools commonly available within an academic research laboratory. However, this technique can be easily adapted to create liquid injection molded devices for many other applications. PMID:24998993

  13. Rapid and Low-cost Prototyping of Medical Devices Using 3D Printed Molds for Liquid Injection Molding

    PubMed Central

    Chung, Philip; Heller, J. Alex; Etemadi, Mozziyar; Ottoson, Paige E.; Liu, Jonathan A.; Rand, Larry; Roy, Shuvo

    2014-01-01

    Biologically inert elastomers such as silicone are favorable materials for medical device fabrication, but forming and curing these elastomers using traditional liquid injection molding processes can be an expensive process due to tooling and equipment costs. As a result, it has traditionally been impractical to use liquid injection molding for low-cost, rapid prototyping applications. We have devised a method for rapid and low-cost production of liquid elastomer injection molded devices that utilizes fused deposition modeling 3D printers for mold design and a modified desiccator as an injection system. Low costs and rapid turnaround time in this technique lower the barrier to iteratively designing and prototyping complex elastomer devices. Furthermore, CAD models developed in this process can be later adapted for metal mold tooling design, enabling an easy transition to a traditional injection molding process. We have used this technique to manufacture intravaginal probes involving complex geometries, as well as overmolding over metal parts, using tools commonly available within an academic research laboratory. However, this technique can be easily adapted to create liquid injection molded devices for many other applications. PMID:24998993

  14. The Streaming Potential Coupling Coefficient of Liquid Carbon Dioxide Injected Into Water Saturated Berea Sandstone

    NASA Astrophysics Data System (ADS)

    Moore, J. R.; Glaser, S. D.; Morrison, H. F.

    2003-12-01

    The streaming potential coupling coefficient was determined for a liquid carbon dioxide flood of a water-saturated sample of Berea sandstone. The coupling coefficient for the rock/water case was determined both before and after each CO2 flood of three samples using a low-pressure static head method. Next, liquid CO2 was allowed to flow through each sample. As the CO2 displaced the water the coupling coefficient decreased. At longer times, when all mobile pore water was displaced, the coupling coefficient maintained a steady state, and was lower than that for water by about 10 times. The results of this testing reveal a coupling coefficient of 30 mV/0.1MPa, for 125 Ohm-m water flow through the sample, and 3.0 mV / 0.1 MPa for liquid CO2 flow. Calculated zeta potentials are -3.4 mV using water as the pore fluid and -1.7 x 10-6 mV for liquid CO2. We propose that the lower coupling coefficient for CO2 flow is primarily a result of changes in zeta potential, since changes in pore fluid resistivity and viscosity would act to increase the coupling coefficient. Zeta potential for the liquid CO2 / mineral interface is a function of the low polarity and lack of mobile ions associated with liquid CO2. We find no anomalous 2-phase liquid/gas effects, which may have augmented single-phase streaming potentials by many times. We propose that although CO2 gas may have been present for some of the higher pressure drop events, the low gas fraction (or quality) of the two-phase mixture did not lead to any significant anomalous or augmented observations. Implications of this work include spatial and temporal monitoring of CO2 injectate in subsurface reservoirs and the identification of flow paths, with the recommendation being to attempt to image the advancing CO2/water front, where the coupling coefficient is higher.

  15. MICROSCALE FLOW INJECTION AND MICROBORE HIGH-PERFORMANCE LIQUID CHROMATORGRAPHY COUPLED WITH INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY VIA A HIGH-EFFICIENCY NEBULIZER

    EPA Science Inventory

    A high-effeciency nebulizer has been used for coupling microscale flow injection and microbore high-performance liquid chromatography with inductively coupled plasma mass spectrometry (ICPMS). The microscale flow injection system was configured to minimize band broadening between...

  16. MOCVD deposition of YSZ on stainless steels

    NASA Astrophysics Data System (ADS)

    Chevalier, S.; Kilo, M.; Borchardt, G.; Larpin, J. P.

    2003-01-01

    Yttria stabilized zirconia was deposited on stainless steel using the metal-organic chemical vapor deposition (MOCVD) technique, from β-diketonate precursors. The variation of the evaporation temperatures of yttrium and zirconium precursor allowed to control the level of Y within the film. Over the temperature range 125-150 °C, the Y content increased from 2.5 to 17.6 at.%. X-ray diffraction (XRD) analyses evidenced tetragonal phase of zirconia when the Y content was below 8 at.%, and cubic phase for higher concentration. Sputtered neutral mass spectrometry (SNMS) profiles confirmed that the control and stability of Y precursor temperature were of major importance to guarantee the homogeneity of the deposited films.

  17. Ultrasound-assisted dispersive liquid-liquid microextraction of tetracycline drugs from egg supplements before flow injection analysis coupled to a liquid waveguide capillary cell.

    PubMed

    Rodríguez, Michael Pérez; Pezza, Helena Redigolo; Pezza, Leonardo

    2016-09-01

    A simple, rapid, and efficient ultrasound-assisted dispersive liquid-liquid microextraction (US-DLLME) method was developed for extraction of tetracycline residues from egg supplement samples, with subsequent determination by flow injection analysis (FIA) coupled to a liquid waveguide capillary cell (LWCC) and a controlled temperature heating bath. Tetracyclines react with diazotized p-sulfanilic acid, in a slightly alkaline medium, to form azo compounds that can be measured at 435 nm. The reaction sensitivity improved substantially (5.12-fold) using an in-line heating temperature of 45 °C. Multivariate methodology was used to optimize the factors affecting the extraction efficiency, considering the volumes of extraction and disperser solvents, sonication time, extraction time, and centrifugation time. Good linearity in the range 30-600 μg L(-1) was obtained for all the tetracyclines, with regression coefficients (r) higher than 0.9974. The limits of detection ranged from 6.4 to 11.1 μg L(-1), and the recoveries were in the range 85.7-96.4 %, with relative standard deviation lower than 9.8 %. Analyte recovery was improved by approximately 6 % when the microextraction was assisted by ultrasound. The results obtained with the proposed US-DLLME-FIA method were confirmed by a reference HPLC method and showed that the egg supplement samples analyzed were suitable for human consumption. PMID:27379391

  18. Preliminary experience with precipitating hydrophobic injectable liquid in brain arteriovenous malformations.

    PubMed

    Koçer, Naci; Hanımoğlu, Hakan; Batur, Şebnem; Kandemirli, Sedat Giray; Kızılkılıç, Osman; Sanus, Zihni; Öz, Büge; Işlak, Civan; Kaynar, Mehmet Yaşar

    2016-01-01

    Advancement in microcatheter design and emergence of new embolic agents offer better results in endovascular treatment of brain arteriovenous malformations (AVMs). Precipitating hydrophobic injectable liquid (PHIL) (Microvention) is a newly introduced dimethyl sulfoxide-based embolic agent for endovascular use. Herein, we present three patients who underwent endovascular treatment of brain AVMs with PHIL, followed by surgical resection. Endovascular features and same-day surgical handling of the new embolic agent PHIL are presented along with histopathologic changes in the acute stage in brain AVMs are presented, and its major differences from Onyx. In our series, PHIL had moderate inflammatory reaction in the acute stage without any associated angionecrosis that is different than Onyx which cause mild inflammatory reaction with angionecrosis. Smallest vessel containing PHIL was 2.9 μm compared to 5 μm with Onyx, which suggests better penetration. PMID:26782157

  19. Preliminary experience with precipitating hydrophobic injectable liquid in brain arteriovenous malformations

    PubMed Central

    Koçer, Naci; Hanımoğlu, Hakan; Batur, Şebnem; Kandemirli, Sedat Giray; Kızılkılıç, Osman; Sanus, Zihni; Öz, Büge; Işlak, Civan; Kaynar, Mehmet Yaşar

    2016-01-01

    Advancement in microcatheter design and emergence of new embolic agents offer better results in endovascular treatment of brain arteriovenous malformations (AVMs). Precipitating hydrophobic injectable liquid (PHIL) (Microvention) is a newly introduced dimethyl sulfoxide-based embolic agent for endovascular use. Herein, we present three patients who underwent endovascular treatment of brain AVMs with PHIL, followed by surgical resection. Endovascular features and same-day surgical handling of the new embolic agent PHIL are presented along with histopathologic changes in the acute stage in brain AVMs are presented, and its major differences from Onyx. In our series, PHIL had moderate inflammatory reaction in the acute stage without any associated angionecrosis that is different than Onyx which cause mild inflammatory reaction with angionecrosis. Smallest vessel containing PHIL was 2.9 μm compared to 5 μm with Onyx, which suggests better penetration. PMID:26782157

  20. On the Design and Test of a Liquid Injection Electric Thruster

    NASA Technical Reports Server (NTRS)

    Jones, T. A.; Kenney, J. T.; Youmans, E. H.

    1973-01-01

    A liquid injection electric thruster (LINJET) was designed and tested. The results of the tests were very encouraging with thruster performance levels well in excess of design goals. Supporting activities to the engine design and test included a five-million pulse life test on the main capacitor, a 46-million pulse test on the trigger electronics, design and fabrication of a zero resistance torque connector for use with the torsional pendulum thrust stand, design and fabrication of a logic box for control of engine firing, and a physical and chemical properties characterization of the perfluorocarbon propellant. While the results were encouraging, testing was limited, as many problems existed with the design. The most significant problem was involved with excessive propellant flow which contributed to false triggering and shorting. Low power active thermal control of the propellant storage cavity, coupled with a re-evaluation of the injection ring pore size and area exposed to the main capacitor discharge are areas that should be investigated should this design be carried forward.

  1. Bulk and Surface Molecular Orientation Distribution in Injection-molded Liquid Crystalline Polymers: Experiment and Simulation

    SciTech Connect

    Fang, J.; Burghardt, W; Bubeck, R; Burgard, S; Fischer, D

    2010-01-01

    Bulk and surface distributions of molecular orientation in injection-molded plaques of thermotropic liquid crystalline polymers (TLCPs) have been studied using a combination of techniques, coordinated with process simulations using the Larson-Doi 'polydomain' model. Wide-angle X-ray scattering was used to map out the bulk orientation distribution. Fourier Transform Infrared Attenuated Total Reflectance (FTIR-ATR) and Near-Edge X-ray Absorption Fine Structure (NEXAFS) were utilized to probe the molecular orientation states to within about {approx}5 {micro}m and {approx}2 nm, respectively, of the sample surface. These noninvasive, surface-sensitive techniques yield reasonable self-consistency, providing complementary validation of the robustness of these methods. An analogy between Larson-Doi and fiber orientation models has allowed the first simulations of TLCP injection molding. The simulations capture many fine details in the bulk orientation distribution across the sample plaque. Direct simulation of surface orientation at the level probed by FTIR-ATR and NEXAFS was not possible due to the limited spatial resolution of the simulations. However, simulation results extracted from the shear-dominant skin region are found to provide a qualitatively accurate indicator of surface orientation. Finally, simulations capture the relation between bulk and surface orientation states across the different regions of the sample plaque.

  2. [Simultaneous determination of ibuprofen and arginine in ibuprofen injection using ultra performance liquid chromatography].

    PubMed

    Liu, Jing; Ma, Hequn; Zhu, Meng; Wang, Huan; Zhang, Tianhong

    2011-10-01

    An ultra performance liquid chromatography-photodiode array detector (UPLC-PDA) method was developed for the determination of ibuprofen and the solubilizer arginine in ibuprofen injection. 2,4-Dinitroflurobenzene (DNFB) was used as the precolumn derivatization reagent. The separation of ibuprofen and arginine derivative was performed on a BEH C18 column (50 mm x 2. 1 mm, 1.7 microm) with the mobile phase consisting of acetonitrile-0. 05 mol/L potassium dihydrogen phosphate (pH 2. 5) in a gradient elution mode at a flow rate of 0.4 mL/min. Ultraviolet absorption detection wavelengths were set at 357 nm for arginine derivative and 220 nm for ibuprofen. The column temperature was set at 30 degrees C. Good linearities were obtained in the ranges of 2.0 - 100.5 mg/L for ibuprofen and 1.7 - 84.5 mg/L for arginine, both with the correlation coefficients (r) of 0. 999 7. The spiked recoveries were 99. 8% and 99. 6% with the relative standard deviations (RSDs) of 0. 37% and 0. 25% for ibuprofen and arginine, respectively. Their respective limits of quantification (LOQs) (S/N = 10) were 0. 1 ng and 0. 2 ng, and the limits of detection (LODs) (S/N= 3) were 0.03 ng and 0.05 ng. The results demonstrated that the proposed method is simple, accurate, reproducible and suitable for the quality control of ibuprofen injection. PMID:22268358

  3. Hot Microbubble Injection in Thin Liquid Film Layers for Ammonia-Water Separation

    NASA Astrophysics Data System (ADS)

    Desai, Pratik; Zimmerman, William

    2015-11-01

    140 MT of NH3 produced p.a. barely keeps up with the global usage of this ubiquitously used commodity. NH3 manufacture & later remediation from landfill leachate to lower eco-toxicity makes further demands on the energy utilised for this ``NH3 cycle.'' Moreover, current methods for lowering eco-toxicity destroy NH3 rather than recovering it. Air stripping is a widely employed low energy industrial process used for NH3 recovery but has a long processing time- ≅24h for 60% efficiency & 100h for 95% efficiency. The solution presented herein is based on hot microbubble injection in thin liquid film layers designed to separate NH3 from NH3-H2O solutions. The transport phenomena exhibited by the microbubbles helps them separate volatile liquids effectively with negligible sensible heat transfer. This process is nearly isothermal simply because evaporation by microbubbles is controlled by internal mixing, which is fast relative to sensible heat transfer, when limited to short contact times in thin films. A 1000-3000-fold increase in mass transfer, over conventional stripping, and a 100% separation efficiency achieved in a processing time of 30 minutes is observed, potentially, if persisting with industrial scale up, resulting in a 200-fold reduction in processing time. The authors would like to acknowledge contributions from Michael Turley MEng - University of Sheffield and Richard Robinson from Viridor for their help and support as well as EPSRC Grant Number EP/K001329/1 - ``4CU''.

  4. Temperature coefficients and radiation induced DLTS spectra of MOCVD grown n(+)p InP solar cells

    NASA Technical Reports Server (NTRS)

    Walters, Robert J.; Statler, Richard L.; Summers, Geoffrey P.

    1991-01-01

    The effects of temperature and radiation on n(+)p InP solar cells and mesa diodes grown by metallorganic chemical vapor deposition (MOCVD) were studied. It was shown that MOCVD is capable of consistently producing good quality InP solar cells with Eff greater than 19 percent which display excellent radiation resistance due to minority carrier injection and thermal annealing. It was also shown that universal predictions of InP device performance based on measurements of a small group of test samples can be expected to be quite accurate, and that the degradation of an InP device due to any incident particle spectrum should be predictable from a measurement following a single low energy proton irradiation.

  5. Microscopic linear liquid streams in vacuum: Injection of solvated biological samples into X-ray free electron lasers

    SciTech Connect

    Doak, R. B.; DePonte, D. P.; Nelson, G.; Camacho-Alanis, F.; Ros, A.; Spence, J. C. H.; Weierstall, U.

    2012-11-27

    Microscopic linear liquid free-streams offer a means of gently delivering biological samples into a probe beam in vacuum while maintaining the sample species in a fully solvated state. By employing gas dynamic forces to form the microscopic liquid stream (as opposed to a conventional solid-walled convergent nozzle), liquid free-streams down to 300 nm diameter have been generated. Such 'Gas Dynamic Virtual Nozzles' (GDVN) are ideally suited to injecting complex biological species into an X-ray Free Electron Laser (XFEL) to determine the structure of the biological species via Serial Femtosecond Crystallography (SFX). GDVN injector technology developed for this purpose is described.

  6. Exploring Liquid Sequential Injection Chromatography to Teach Fundamentals of Separation Methods: A Very Fast Analytical Chemistry Experiment

    ERIC Educational Resources Information Center

    Penteado, Jose C.; Masini, Jorge Cesar

    2011-01-01

    Influence of the solvent strength determined by the addition of a mobile-phase organic modifier and pH on chromatographic separation of sorbic acid and vanillin has been investigated by the relatively new technique, liquid sequential injection chromatography (SIC). This technique uses reversed-phase monolithic stationary phase to execute fast…

  7. Development of a new direct liquid injection system for nanoparticle deposition by chemical vapor deposition using nanoparticle solutions.

    PubMed

    Vervaele, Mattias; De Roo, Bert; Deschaume, Olivier; Rajala, Markku; Guillon, Herve; Sousa, Marilyne; Bartic, Carmen; Van Haesendonck, Chris; Seo, Jin Won; Locquet, Jean-Pierre

    2016-02-01

    Nanoparticles of different materials are already in use for many applications. In some applications, these nanoparticles need to be deposited on a substrate in a fast and reproducible way. We have developed a new direct liquid injection system for nanoparticle deposition by chemical vapor deposition using a liquid nanoparticle precursor. The system was designed to deposit nanoparticles in a controlled and reproducible way by using two direct liquid injectors to deliver nanoparticles to the system. The nanoparticle solution is first evaporated and then the nanoparticles flow onto a substrate inside the vacuum chamber. To allow injection and evaporation of the liquid, a direct liquid injection and vaporization system are mounted on top of the process chamber. The deposition of the nanoparticles is controlled by parameters such as deposition temperature, partial pressure of the gases, and flow rate of the nanoparticle suspension. The concentration of the deposited nanoparticles can be varied simply by changing the flow rate and deposition time. We demonstrate the capabilities of this system using gold nanoparticles. The selected suspension flow rates were varied between 0.25 and 1 g/min. AFM analysis of the deposited samples showed that the aggregation of gold nanoparticles is well controlled by the flow and deposition parameters. PMID:26931885

  8. Development of a new direct liquid injection system for nanoparticle deposition by chemical vapor deposition using nanoparticle solutions

    NASA Astrophysics Data System (ADS)

    Vervaele, Mattias; De Roo, Bert; Deschaume, Olivier; Rajala, Markku; Guillon, Herve; Sousa, Marilyne; Bartic, Carmen; Van Haesendonck, Chris; Seo, Jin Won; Locquet, Jean-Pierre

    2016-02-01

    Nanoparticles of different materials are already in use for many applications. In some applications, these nanoparticles need to be deposited on a substrate in a fast and reproducible way. We have developed a new direct liquid injection system for nanoparticle deposition by chemical vapor deposition using a liquid nanoparticle precursor. The system was designed to deposit nanoparticles in a controlled and reproducible way by using two direct liquid injectors to deliver nanoparticles to the system. The nanoparticle solution is first evaporated and then the nanoparticles flow onto a substrate inside the vacuum chamber. To allow injection and evaporation of the liquid, a direct liquid injection and vaporization system are mounted on top of the process chamber. The deposition of the nanoparticles is controlled by parameters such as deposition temperature, partial pressure of the gases, and flow rate of the nanoparticle suspension. The concentration of the deposited nanoparticles can be varied simply by changing the flow rate and deposition time. We demonstrate the capabilities of this system using gold nanoparticles. The selected suspension flow rates were varied between 0.25 and 1 g/min. AFM analysis of the deposited samples showed that the aggregation of gold nanoparticles is well controlled by the flow and deposition parameters.

  9. Investigation of oil injection into brine for the strategic petroleum reserve : hydrodynamics experiments with simulant liquids.

    SciTech Connect

    Castaneda, Jaime N.; Shollenberger, Kim Ann; Torczynski, John Robert; Cote, Raymond O.; Barney, Jeremy; O'Hern, Timothy John

    2003-10-01

    An experimental program is being conducted to study a proposed approach for oil reintroduction in the Strategic Petroleum Reserve (SPR). The goal is to assess whether useful oil is rendered unusable through formation of a stable oil-brine emulsion during reintroduction of degassed oil into the brine layer in storage caverns. This report documents the first stage of the program, in which simulant liquids are used to characterize the buoyant plume that is produced when a jet of crude oil is injected downward from a tube into brine. The experiment consists of a large transparent vessel that is a scale model of the proposed oil injection process at the SPR. An oil layer is floated on top of a brine layer. Silicon oil (Dow Corning 200{reg_sign} Fluid, 5 cSt) is used as the simulant for crude oil to allow visualization of the flow and to avoid flammability and related concerns. Sodium nitrate solution is used as the simulant for brine because it is not corrosive and it can match the density ratio between brine and crude oil. The oil is injected downward through a tube into the brine at a prescribed depth below the oil-brine interface. Flow rates are determined by scaling to match the ratio of buoyancy to momentum between the experiment and the SPR. Initially, the momentum of the flow produces a downward jet of oil below the tube end. Subsequently, the oil breaks up into droplets due to shear forces, buoyancy dominates the flow, and a plume of oil droplets rises to the interface. The interface is deflected upward by the impinging oil-brine plume. Two different diameter injection tubes were used (1/2-inch and 1-inch OD) to vary the scaling. Use of the 1-inch injection tube also assured that turbulent pipe flow was achieved, which was questionable for lower flow rates in the 1/2-inch tube. In addition, a 1/2-inch J-tube was used to direct the buoyant jet upwards rather than downwards to determine whether flow redirection could substantially reduce the oil-plume size and the

  10. Atomization and Dispersion of a Liquid Jet Injected Into a Crossflow of Air

    NASA Technical Reports Server (NTRS)

    Seay, J. E.; Samuelson, G. S.

    1996-01-01

    In recent years, environmental regulations have become more stringent, requiring lower emissions of mainly nitrogen oxides (NOx), as well as carbon monoxide (CO) and unburned hydrocarbons (UHC). These regulations have forced the gas turbine industry to examine non-conventional combustion strategies, such as the lean burn approach. The reasoning behind operating under lean conditions is to maintain the temperature of combustion near and below temperatures required for the formation of thermal nitric oxide (NO). To be successful, however, the lean processes require careful preparation of the fuel/air mixture to preclude formation of either locally rich reaction zones, which may give rise to NO formation, or locally lean reaction zones, which may give rise to inefficient fuel processing. As a result fuel preparation is crucial to the development and success of new aeroengine combustor technologies. A key element of the fuel preparation process is the fuel nozzle. As nozzle technologies have developed, airblast atomization has been adopted for both industrial and aircraft gas turbine applications. However, the majority of the work to date has focused on prefilming nozzles, which despite their complexity and high cost have become an industry standard for conventional combustion strategies. It is likely that the new strategies required to meet future emissions goals will utilize novel fuel injector approaches, such as radial injection. This thesis proposes and demonstrates an experiment to examine, on a mechanistic level (i.e., the physics of the action), the processes associated with the atomization, evaporation, and dispersion of a liquid jet introduced, from a radial, plain-jet airblast injector, into a crossflow of air. This understanding requires the knowledge not only of what factors influence atomization, but also the underlying mechanism associated with liquid breakup and dispersion. The experimental data acquired identify conditions and geometries for improved

  11. Radiative efficiency of MOCVD grown QD lasers

    NASA Astrophysics Data System (ADS)

    Mawst, Luke; Tsvid, Gene; Dudley, Peter; Kirch, Jeremy; Park, J. H.; Kim, N.

    2010-02-01

    The optical spectral gain characteristics and overall radiative efficiency of MOCVD grown InGaAs quantum dot lasers have been evaluated. Single-pass, multi-segmented amplified spontaneous emission measurements are used to obtain the gain, absorption, and spontaneous emission spectra in real units. Integration of the calibrated spontaneous emission spectra then allows for determining the overall radiative efficiency, which gives important insights into the role which nonradiative recombination plays in the active region under study. We use single pass, multi-segmented edge-emitting in which electrically isolated segments allow to vary the length of a pumped region. In this study we used 8 section devices (the size of a segment is 50x300 μm) with only the first 5 segments used for varying the pump length. The remaining unpumped segments and scribed back facet minimize round trip feedback. Measured gain spectra for different pump currents allow for extraction of the peak gain vs. current density, which is fitted to a logarithmic dependence and directly compared to conventional cavity length analysis, (CLA). The extracted spontaneous emission spectrum is calibrated and integrated over all frequencies and modes to obtain total spontaneous radiation current density and radiative efficiency, ηr. We find ηr values of approximately 17% at RT for 5 stack QD active regions. By contrast, high performance InGaAs QW lasers exhibit ηr ~50% at RT.

  12. A Comparative Review of Hydrologic Issues Involved in Geologic Storage of CO2 and Injection Disposal of Liquid Waste

    SciTech Connect

    Tsang, C.-F.; Birkholzer, J.; Rutqvist, J.

    2008-04-15

    The paper presents a comparison of hydrologic issues and technical approaches used in deep-well injection and disposal of liquid wastes, and those issues and approaches associated with injection and storage of CO{sub 2} in deep brine formations. These comparisons have been discussed in nine areas: (1) Injection well integrity; (2) Abandoned well problems; (3) Buoyancy effects; (4) Multiphase flow effects; (5) Heterogeneity and flow channeling; (6) Multilayer isolation effects; (7) Caprock effectiveness and hydrogeomechanics; (8) Site characterization and monitoring; and (9) Effects of CO{sub 2} storage on groundwater resources There are considerable similarities, as well as significant differences. Scientifically and technically, these two fields can learn much from each other. The discussions presented in this paper should help to focus on the key scientific issues facing deep injection of fluids. A substantial but by no means exhaustive reference list has been provided for further studies into the subject.

  13. Surgical Removal of Retained Subfoveal Perfluorocarbon Liquid through a Therapeutic Macular Hole with Intravitreal PFCL Injection and Gas Tamponade

    PubMed Central

    Kim, Jae Min; Park, Kyu Hyung; Chung, Hum

    2013-01-01

    We report two cases of surgical removal of a retained subfoveal perfluorocarbon liquid (PFCL) bubble through a therapeutic macular hole combined with intravitreal PFCL injection and gas tamponade. Two patients underwent pars plana vitrectomy with PFCL injection for rhegmatogenous retinal detachment. In both cases, a retained subfoveal PFCL bubble was noticed postoperatively by funduscopy and optical coherence tomography. Both patients underwent surgical removal of the subfoveal PFCL through a therapeutic macular hole and gas tamponade. The therapeutic macular holes were completely closed by gas tamponade and the procedure yielded a good visual outcome (best-corrected visual acuity of 20 / 40 in both cases). In one case, additional intravitreal PFCL injection onto the macula reduced the size of the therapeutic macular hole and preserved the retinal structures in the macula. Surgical removal of a retained subfoveal PFCL bubble through a therapeutic macular hole combined with intravitreal PFCL injection and gas tamponade provides an effective treatment option. PMID:24082781

  14. Epinephrine Injection

    MedlinePlus

    Adrenalin® Chloride Solution ... a pre-filled automatic injection device containing a solution (liquid) to inject under the skin or into ... device when this date passes. Look at the solution in the device from time to time. If ...

  15. Selective and Sensitive Chemiluminescence Determination of MCPB: Flow Injection and Liquid Chromatography.

    PubMed

    Meseguer-Lloret, Susana; Torres-Cartas, Sagrario; Catalá-Icardo, Mónica; Gómez-Benito, Carmen

    2016-02-01

    Two new chemiluminescence (CL) methods are described for the determination of the herbicide 4-(4-chloro-o-tolyloxy) butyric acid (MCPB). First, a flow injection chemiluminescence (FI-CL) method is proposed. In this method, MCPB is photodegraded with an ultraviolet (UV) lamp and the photoproducts formed provide a great CL signal when they react with ferricyanide in basic medium. Second, a high-performance liquid chromatography chemiluminescence (HPLC-CL) method is proposed. In this method, before the photodegradation and CL reaction, the MCPB and other phenoxyacid herbicides are separated in a C18 column. The experimental conditions for the FI-CL and HPLC-CL methods are optimized. Both methods present good sensitivity, the detection limits being 0.12 µg L(-1) and 0.1 µg L(-1) (for FI-CL and HPLC-CL, respectively) when solid phase extraction (SPE) is applied. Intra- and interday relative standard deviations are below 9.9%. The methods have been satisfactorily applied to the analysis of natural water samples. FI-CL method can be employed for the determination of MCPB in simple water samples and for the screening of complex water samples in a fast, economic, and simple way. The HPLC-CL method is more selective, and allows samples that have not been resolved with the FI-CL method to be solved. PMID:26903566

  16. Quantitative analysis of piroxicam using temperature-controlled ionic liquid dispersive liquid phase microextraction followed by stopped-flow injection spectrofluorimetry

    PubMed Central

    2013-01-01

    Background Piroxicam (PXM) belongs to the wide class of non-steroidal anti-inflammatory drugs (NSAIDs). PXM has been widely applied in the treatment of rheumatoid arthritis, gonarthrosis, osteoarthritis, backaches, neuralgia, mialgia. In the presented work, a green and benign sample pretreatment method called temperature-controlled ionic liquid dispersive liquid phase microextraction (TCIL-DLPME) was followed with stopped-flow injection spectrofluorimetry (SFIS) for quantitation of PXM in pharmaceutical formulations and biological samples. Methods Temperature-controlled ionic liquid dispersive liquid phase microextraction (TCIL-DLPME) was applied as an environmentally friendly sample enrichment method to extract and isolate PXM prior to quantitation. Dispersion of 1-hexyl-3-methylimidazolium hexafluorophosphate ([Hmim][PF6]) ionic liquid (IL) through the sample aqueous solution was performed by applying a relatively high temperature. PXM was extracted into the extractor, and after phase separation, PXM in the final solution was determined by stopped-flow injection spectrofluorimetry (SFIS). Results and Major Conclusion Different factors affecting the designed method such as IL amount, diluting agent, pH and temperature were investigated in details and optimized. The method provided a linear dynamic range of 0.2-150 μg l-1, a limit of detection (LOD) of 0.046 μg l-1 and a relative standard deviation (RSD) of 3.1%. Furthermore, in order to demonstrate the analytical applicability of the recommended method, it was applied for quantitation of PXM in real samples. PMID:23895461

  17. MOCVD of multimetal and noble metal films

    NASA Astrophysics Data System (ADS)

    Endle, James Patrick

    2000-11-01

    Carbon content in TiN films produced with tetrakis(dimethylamino)titanium (TDMAT) and methylhydrazine or dimethylhydrazine can be controlled at or below 10% with a N/Ti ratio of ˜1.3 at growth temperatures between 573 and 723 K. Post-dosing either hydrazine on a CVD TiN film results in additional N-Ti bonds, indicating a surface reaction between the two precursors occurs. Co-dosing hydrazine-like compounds with larger alkyl ligands than methyl resulted in additional carbon incorporation in the TiN film. A growth system, consisting of a load lock and growth chamber, and a precursor pyrolysis system were designed and built to study metalorganic chemical vapor deposition. Addition of a bubbler and a direct liquid injection system allowed for the vaporization of solid and liquid precursors and solutions of multiple precursors. A precursor pyrolysis system was designed for high and low vapor pressure precursors and high carrier gas flow rates. The systems were used to study (Al,Ti)N and Ir film growth. (Al,Ti)N was used as a template to study the incorporation of elements into a multimetal chemical vapor deposited film using NH3 and a DLI solution of TDMAT and the tris(dimethylarnino)alane dimer (TDMAA) in toluene-NH 3 significantly decreases the decomposition temperature of both precursors. Carbon was reduced by increasing the NH3 partial pressure, and the Al incorporation was increased by increasing the TDMAA/TDMAT ratio in the DLI solution. Exposure to ambient resulted in significant oxygen incorporation and the removal of carbon and nitrogen from the (AI,Ti)N film. Conformal (AI,Ti)N films were produced at 450 K in the presence of NH3 and at 550 K without NH3. The role of O2 in Ir film growth was studied with the newly designed equipment. O2 significantly decreases the decomposition temperature of (MeCp)Ir(COD) below 425 K by preventing a carbonaceous build-up on the iridium film. By decreasing the oxygen partial pressure, the island nucleation and coalescence

  18. WETTABILITY ALTERATION OF POROUS MEDIA TO GAS-WETTING FOR IMPROVING PRODUCTIVITY AND INJECTIVITY IN GAS-LIQUID FLOWS

    SciTech Connect

    Abbas Firoozabadi

    2001-10-15

    The wettability of Berea and chalk samples for gas-oil and gas-water fluids were altered from strong liquid-wetting to intermediate gas-wetting. Two polymers, FC-722 and FC-759, were used to alter the wettability. FC-759 is soluble in water and some 20 times less expensive than FC-722. Gas and liquid relative permeabilities were measured before and after wettability alteration. The results demonstrate a significant increase in liquid-phase relative permeability. Gas-phase relative permeability for a fixed saturation may increase or decrease. However, because of the very high liquid mobility and reduced liquid saturation, the gas mobility also increases for a fixed pressure drop. A number of liquid injectivity tests were also carried out. The results reveal that the liquid-phase mobility can increase significantly when the wettability of rocks is altered from strong liquid-wetting to intermediate gas-wetting. All the results show clearly that the application of wettability alteration to intermediate gas-wetting may significantly increase deliverability in gas condensate reservoirs.

  19. Simultaneous determination of some food additives in soft drinks and other liquid foods by flow injection on-line dialysis coupled to high performance liquid chromatography.

    PubMed

    Kritsunankul, Orawan; Jakmunee, Jaroon

    2011-06-15

    Flow injection on-line dialysis was developed for sample pretreatment prior to the simultaneous determination of some food additives by high performance liquid chromatography (FID-HPLC). A liquid sample or mixed standard solution (900 μL) was injected into a donor stream (5%, w/v, sucrose) of FID system and was pushed further through a dialysis cell, while an acceptor solution (0.025 mol L(-1) phosphate buffer, pH 3.75) was held in the opposite side of the dialysis membrane. The dialysate was then flowed to an injection loop of the HPLC valve, where it was further injected into the HPLC system and analyzed under isocratic reverse-phase HPLC conditions and UV detection (230 nm). The order of elution of five food additives was acesulfame-K, saccharin, caffeine, benzoic acid and sorbic acid, respectively, with the analysis time of 14 min. On-line dialysis and HPLC analysis could be performed in parallel, providing sample throughput of 4.3h(-1). Dialysis efficiencies of five food additives were in ranges of 5-11%. Linear calibration graphs were in ranges of 10-100 mg L(-1) for acesulfame-K and saccharin, 10-250 mg L(-1) for benzoic acid and 10-500 mg L(-1) for caffeine and sorbic acid. Good precisions (RSD<5%) for all the additives were obtained. The proposed system was applied to soft drink and other liquid food samples. Acceptable percentage recoveries could be obtained by appropriate dilution of the sample before injecting into the system. The developed system has advantages of high degrees of automation for sample pretreatment, i.e., on-line sample separation and dilution and low consumption of chemicals and materials. PMID:21641449

  20. Identification of the Allergenic Ingredients in Reduning Injection by Ultrafiltration and High-Performance Liquid Chromatography

    PubMed Central

    Wang, Fang; Li, Cun-yu; Zheng, Yun-feng; Li, Hong-yang; Xiao, Wei; Peng, Guo-ping

    2016-01-01

    Reduning injection is a traditional Chinese medicine injection which has multiple functions such as clearing heat, dispelling wind, and detoxification. Although Reduning injection was widely utilized, reports of its allergenicity emerged one after another. However, there is little research on its allergenic substances. The aim of this study is to evaluate the sensitization of Reduning injection and explore the underlying cause of the anaphylactic reaction. The main ingredients in Reduning injection were analyzed before and after ultrafiltration. Ultrafiltrate Reduning injection, unfiltered Reduning injection, egg albumin, Tween-80, and nine effective components in Reduning injection were utilized to sensitize guinea pigs. The serum 5-hydroxytryptamine level was used to assess the sensitization effect of Reduning injection. We found a significant decrease in Tween-80 content comparing to other components in the injection after ultrafiltration. Unfiltered Reduning injection, Tween-80, chlorogenic acid, and cryptochlorogenin acid caused remarkable anaphylactoid reaction on guinea pigs while ultrafiltration Reduning resulted in a significantly lower degree of sensitization. Our results suggest that ultrafiltration could significantly reduce the sensitization of Reduning injection, which is likely due to the decrease of Tween-80. We also conjectured that the form of chlorogenic acid and cryptochlorogenin acid within the complex solution mixture may also affect the sensitizing effect. PMID:27144180

  1. Reactive amyloidosis complicated by end-stage renal disease 28 years after liquid silicone injection in the buttocks

    PubMed Central

    d'Ythurbide, Geraldine; Kerrou, Khaldoun; Brocheriou, Isabelle; Hertig, Alexandre

    2012-01-01

    Silicone ganulomas usually arise from the rupture of silicone implants. Until the 1980s, however, underground care providers used to inject liquid and unapproved silicone directly into human tissues, in the absence of a containing capsule. We report here the case of a man who ultimately developed end-stage renal disease (ESRD) because of a chronic glomerulosclerosis that was attributed to a glomerular AA amyloidosis diagnosed 28 years after a buttock injection of liquid silicone. To our knowledge, this is the first case of a silicone-induced AA amyloidosis irreversibly affecting the kidneys, and leading to ESRD. An interleukin 1 receptor antagonist was started to prevent the extension of amyloidosis, but to no avail as far as the kidneys are concerned. We want to draw the attention of health professionals about the risk of developing AA amyloidosis secondary to a long-lasting inflammation induced by silicone leakage, after a long latency period. PMID:23035166

  2. One-step preparation of highly dispersed metal-supported catalysts by fluidized-bed MOCVD for carbon nanotube synthesis

    NASA Astrophysics Data System (ADS)

    Xu, Chunbao; Zhu, Jesse

    2004-11-01

    A new technique of fluidized-bed metal-organic chemical vapour deposition (FB-MOCVD) is developed as a one-step method to prepare highly dispersed metal-supported catalysts for carbon nanotube synthesis. By using ultrafine powder of gamma-alumina (70 nm Sauter mean in size) as the support with Fe(CO)5 and Mo(CO)6 as the metal precursors, Fe/Al2O3, Mo/Al2O3 and Fe-Mo/Al2O3 catalysts have been prepared in an FB-MOCVD reactor. Compared with the conventional catalyst-preparation methods such as impregnation, ion exchange, co-precipitation and co-crystallization, the one-step FB-MOCVD technique is advantageous in many aspects. These include eliminating the solid-liquid separation and the subsequent operations of drying and high-temperature calcination/reduction, thus minimizing the aggregation or the crystalline size-growing problem for the supported metal particles caused by these operations. The metal-supported catalysts obtained by FB-MOCVD are characterized with various techniques including ICP-AES, SEM-EDX, XRD and nitrogen isothermal adsorption. Some catalysts are selected and used for carbon nanotube synthesis by CVD from acetylene (C2H2) in a fluidized bed at 650 or 850 °C. The formation of the entangled multi-walled carbon nanotubes (MWNTs), around 50 nm in outer diameter and 10 nm in inner diameter, and several to tens of microns in length, has been confirmed by the TEM and SEM analyses. High CNT selectivity ({\\ge }95{%} ) with the carbon yield ranging widely from about 10% to over 60%, depending on the type of catalyst used and the CNT deposition temperature, has been demonstrated with TGA tests.

  3. Process and device for injecting a liquid agent used for treating a geological formation in the vicinity of a well bore traversing this formation

    SciTech Connect

    Colonna, J.; Fitremann, Jm.; Genin, R.; Sarda, Jp.

    1984-02-14

    A technique is disclosed for liquid treating a geological formation. It comprises spraying the liquid with a pressurized carrier gas, using a spraying pipe whose length and diameter are adjusted as a function of the pressure prevailing at the level of the formation and of the characteristics of the injected liquid and the pressurized carrier gas, so that the size of the liquid droplets at the outlet of the spraying pipe has a narrow range of distribution about a single preselected value.

  4. Modeling the Rapid Boil-Off of a Cryogenic Liquid When Injected into a Low Pressure Cavity

    NASA Technical Reports Server (NTRS)

    Lira, Eric

    2016-01-01

    Many launch vehicle cryogenic applications require the modeling of injecting a cryogenic liquid into a low pressure cavity. The difficulty of such analyses lies in accurately predicting the heat transfer coefficient between the cold liquid and a warm wall in a low pressure environment. The heat transfer coefficient and the behavior of the liquid is highly dependent on the mass flow rate into the cavity, the cavity wall temperature and the cavity volume. Testing was performed to correlate the modeling performed using Thermal Desktop and Sinda Fluint Thermal and Fluids Analysis Software. This presentation shall describe a methodology to model the cryogenic process using Sinda Fluint, a description of the cryogenic test set up, a description of the test procedure and how the model was correlated to match the test results.

  5. Etanercept Injection

    MedlinePlus

    ... and colorless. The liquid may contain small white particles, but should not contain large or colored particles. Do not use a syringe or dosing pen ... liquid is cloudy or contains large or colored particles.The best place to inject etanercept injection is ...

  6. Stability and compatibility of granisetron hydrochloride in i.v. solutions and oral liquids and during simulated Y-site injection with selected drugs.

    PubMed

    Mayron, D; Gennaro, A R

    1996-02-01

    The stability and compatibility of granisetron hydrochloride in common i.v. fluids and oral liquids and during simulated Y-site injection with selected drugs were studied. One milliliter of solution containing granisetron 1 mg (as the hydrochloride salt) was added to 50 mL of 5% dextrose injection, 5% dextrose and 0.9% sodium chloride injection, 5% dextrose and 0.45% sodium chloride injection, or 0.9% sodium chloride injection in polyvinyl chloride (PVC) bags and to 5 mL of 5% dextrose injection, 0.9% sodium chloride injection, or bacteriostatic water for injection in polypropylene syringes and stored at room temperature (20 degrees C) for 24 hours. One milliliter of the granisetron hydrochloride injection was added to 50 mL of apple juice, orange juice, cola, or an electrolyte replacement solution and stored for 60 minutes at room temperature. Twenty-nine drugs were mixed with the granisetron hydrochloride injection in 0.9% sodium chloride injection in volumes simulating Y-site injection and stored at room temperature. Finally, dexamethasone sodium phosphate injection 0.5 mL and 1 mL of the granisetron hydrochloride injection were added to 50 mL of 0.9% sodium chloride injection in a PVC bag and stored for 60 minutes. Drug concentrations were determined by high-performance liquid chromatography, and color, clarity, and pH were evaluated. Granisetron hydrochloride was stable in and compatible with all the i.v. solutions and oral liquids. Neither granisetron nor any of the drugs it was tested with during simulated Y-site injection showed any physical changes except for a slight Tyndall effect in the granisetron hydrochloride-doxorubicin hydrochloride combination; all the drugs retained at least 96% of initial concentrations. Granisetron and dexamethasone sodium phosphate were stable and compatible in the admixture. Granisetron 1 mg (as the hydrochloride salt) was stable for 24 hours in four i.v. infusion fluids in PVC bags and in 5% dextrose injection, 0.9% sodium

  7. Dispersive liquid-liquid microextraction for the determination of nitrophenols in soils by microvial insert large volume injection-gas chromatography-mass spectrometry.

    PubMed

    Cacho, J I; Campillo, N; Viñas, P; Hernández-Córdoba, M

    2016-07-22

    A rapid and sensitive procedure for the determination of six NPs in soils by gas chromatography and mass spectrometry (GC-MS) is proposed. Ultrasound assisted extraction (UAE) is used for NP extraction from soil matrices to an organic solvent, while the environmentally friendly technique dispersive liquid-liquid microextraction (DLLME) is used for the preconcentration of the resulting UAE extracts. NPs were derivatized by applying an "in-situ" acetylation procedure, before being injected into the GC-MS system using microvial insert large volume injection (LVI). Several parameters affecting UAE, DLLME, derivatization and injection steps were investigated. The optimized procedure provided recoveries of 86-111% from spiked samples. Precision values of the procedure (expressed as relative standard deviation, RSD) lower than 12%, and limits of quantification ranging from 1.3 to 2.6ngg(-1), depending on the compound, were obtained. Twenty soil samples, obtained from military, industrial and agricultural areas, were analyzed by the proposed method. Two of the analytes were quantified in two of the samples obtained from industrial areas, at concentrations in the 4.8-9.6ngg(-1) range. PMID:27317004

  8. In-situ deposition of YBCO high-Tc superconducting thin films by MOCVD and PE-MOCVD

    NASA Technical Reports Server (NTRS)

    Zhao, J.; Noh, D. W.; Chern, C.; Li, Y. Q.; Norris, P. E.; Kear, B.; Gallois, B.

    1991-01-01

    Metal-Organic Chemical Vapor Deposition (MOCVD) offers the advantages of a high degree of compositional control, adaptability for large scale production, and the potential for low temperature fabrication. The capability of operating at high oxygen partial pressure is particularly suitable for in situ formation of high temperature superconducting (HTSC) films. Yttrium barium copper oxide (YBCO) thin films having a sharp zero-resistance transition with T(sub c) greater than 90 K and J(sub c) of approximately 10(exp 4) A on YSZ have been prepared, in situ, at a substrate temperature of about 800 C. Moreover, the ability to form oxide films at low temperature is very desirable for device applications of HTSC materials. Such a process would permit the deposition of high quality HTSC films with a smooth surface on a variety of substrates. Highly c-axis oriented, dense, scratch resistant, superconducting YBCO thin films with mirror-like surfaces have been prepared, in situ, at a reduced substrate temperature as low as 570 C by a remote microwave-plasma enhanced metal-organic chemical vapor deposition (PE-MOCVD) process. Nitrous oxide was used as a reactant gas to generate active oxidizing species. This process, for the first time, allows the formation of YBCO thin films with the orthorhombic superconducting phase in the as-deposited state. The as-deposited films grown by PE-MOCVD show attainment of zero resistance at 72 K with a transition width of about 5 K. MOCVD was carried out in a commercial production scale reactor with the capability of uniform deposition over 100 sq cm per growth run. Preliminary results indicate that PE-MOCVD is a very attractive thin film deposition process for superconducting device technology.

  9. In Situ deposition of YBCO high-T(sub c) superconducting thin films by MOCVD and PE-MOCVD

    NASA Technical Reports Server (NTRS)

    Zhao, J.; Noh, D. W.; Chern, C.; Li, Y. Q.; Norris, P.; Gallois, B.; Kear, B.

    1990-01-01

    Metalorganic Chemical Vapor Deposition (MOCVD) offers the advantages of a high degree of compositional control, adaptability for large scale production, and the potential for low temperature fabrication. The capability of operating at high oxygen partial pressure is particularly suitable for in situ formation of high temperature superconducting (HTSC) films. Yttrium barium copper oxide (YBCO) thin films having a sharp zero-resistance transition with T( sub c) greater than 90 K and Jc approx. 10 to the 4th power A on YSZ have been prepared, in situ, at a substrate temperature of about 800 C. Moreover, the ability to form oxide films at low temperature is very desirable for device applications of HTSC materials. Such a process would permit the deposition of high quality HTSC films with a smooth surface on a variety of substrates. Highly c-axis oriented, dense, scratch resistant, superconducting YBCO thin films with mirror-like surfaces have been prepared, in situ, at a reduced substrate temperature as low as 570 C by a remote microwave-plasma enhanced metalorganic chemical vapor deposition (PE-MOCVD) process. Nitrous oxide was used as a reactant gas to generate active oxidizing species. This process, for the first time, allows the formation of YBCO thin films with the orthorhombic superconducting phase in the as-deposited state. The as-deposited films grown by PE-MOCVD show attainment of zero resistance at 72 K with a transition width of about 5 K. MOCVD was carried out in a commercial production scale reactor with the capability of uniform deposition over 100 sq cm per growth run. Preliminary results indicate that PE-MOCVD is a very attractive thin film deposition process for superconducting device technology.

  10. Evaluation of a direct injection nebulizer interface for flow injection analysis and high performance liquid chromatography with inductively coupled plasma-atomic emission spectroscopic detection

    SciTech Connect

    LaFreniere, K.E.

    1986-06-01

    A direct injection nebulizer (DIN) was designed, developed, and evaluated to determine its potential utilization as an effective interface for flow injection analysis (FIA) and high performance liquid chromatography (HPLC) coupled with inductively coupled plasma-atomic emission spectroscopic detection. The analytical figures of merit for the DIN when used as an interface for FIA-ICP-AES were found to be comparable to or better than those obtained with conventional pneumatic nebulization in terms of limits of detection (LODs), reproducibility, linearity, and interelement effects. Stable plasma operation was maintained for the DIN sample introduction of a variety of pure organic solvents, including acetonitrile, methanol, methylisobutylketone, and pyridine. The HPLC-DIN-ICP-AES facility was specifically applied for the speciation of inorganic and organometallic species contained in synthetic mixtures, vanilla extracts, and a variety of energy-related materials, such as shale oil process water, coal extracts, shale oil, crude oil, and an SRC II. Suggestions for future research are also considered. 227 refs., 44 figs., 15 tabs.

  11. Evaluation of a direct injection nebulizer interface for flow injection analysis and high performance liquid chromatography with inductively coupled plasma-atomic emission spectroscopic detection

    SciTech Connect

    LaFreniere, K.E.

    1986-01-01

    A direct injection nebulizer (DIN) was designed, developed and evaluated to determine its potential utilization as an effective interface for flow injection analysis (FIA) and high performance liquid chromatography (HPLC) coupled with inductively coupled plasma-atomic emission spectroscopic detection. The analytical figures of merit for the DIN when used as an interface for FIA-ICP-AES were found to be comparable to or better than those obtained with conventional pneumatic nebulization in terms of limits of detection (LODs), reproducibility, linearity, and interelement effects. In the HPLC mode, the LODDs were found to be comparable to those obtained by continuous-flow sample introduction into the ICP, or inferior by up to only a factor of four. Stable plasma operation was maintained for the DIN sample introduction of a variety of pure organic solvents, including acetonitrile, methanol, methyl-isobutylketone, and pyridine. The HPLC-DIN-ICP-AES facility was specifically applied for the speciation of inorganic and organo-metallic species contained in synthetic mixtures, vanilla extracts and a variety of energy-related materials, such as shale oil process water, coal extracts, shale oil, crude oil, and an SRC II. Suggestions for future research are also considered.

  12. Original use of a direct injection high efficiency nebulizer for the standardization of liquid fuels spray flames

    NASA Astrophysics Data System (ADS)

    Lemaire, R.; Maugendre, M.; Schuller, T.; Therssen, E.; Yon, J.

    2009-10-01

    It is of practical importance to lead laboratory-scale experiments allowing a better understanding of the impact of commercial fuels composition on the formation of combustion residues such as soot particles. To this end, a hybrid burner has been designed recently to burn high-speed sprays of small liquid fuel droplets. It consists of a Holthuis (previously McKenna) burner originally equipped with a direct injection high efficiency nebulizer for the atomization of liquid hydrocarbons. A detailed description of this original setup is given in this paper. A priori estimations of atomization and evaporation times and length scales are then proposed and compared with experimental data. Droplet-size distribution measurements obtained in nonreacting conditions using a Malvern Spraytec particle sizer are presented and compared with values estimated by calculation. Cold sprays contours and liquid jet lengths in flames determined by Mie scattering at 532 and 1064 nm, respectively, are also presented. The results discussed in this work indicate that the hydrodynamic characteristics of the sprays generated with our system are relatively independent of the physical properties of fuels leading to comparable flames with identical liquid jet lengths, dimensions, and global structure. This feature facilitates an accurate comparison of flames burning various liquid hydrocarbons, which is of interest to emphasize differences in pollutants emissions and to highlight chemical effects for soot formation analysis.

  13. Automated on-line renewable solid-phase extraction-liquid chromatography exploiting multisyringe flow injection-bead injection lab-on-valve analysis.

    PubMed

    Quintana, José Benito; Miró, Manuel; Estela, José Manuel; Cerdà, Víctor

    2006-04-15

    In this paper, the third generation of flow injection analysis, also named the lab-on-valve (LOV) approach, is proposed for the first time as a front end to high-performance liquid chromatography (HPLC) for on-line solid-phase extraction (SPE) sample processing by exploiting the bead injection (BI) concept. The proposed microanalytical system based on discontinuous programmable flow features automated packing (and withdrawal after single use) of a small amount of sorbent (<5 mg) into the microconduits of the flow network and quantitative elution of sorbed species into a narrow band (150 microL of 95% MeOH). The hyphenation of multisyringe flow injection analysis (MSFIA) with BI-LOV prior to HPLC analysis is utilized for on-line postextraction treatment to ensure chemical compatibility between the eluate medium and the initial HPLC gradient conditions. This circumvents the band-broadening effect commonly observed in conventional on-line SPE-based sample processors due to the low eluting strength of the mobile phase. The potential of the novel MSFI-BI-LOV hyphenation for on-line handling of complex environmental and biological samples prior to reversed-phase chromatographic separations was assessed for the expeditious determination of five acidic pharmaceutical residues (viz., ketoprofen, naproxen, bezafibrate, diclofenac, and ibuprofen) and one metabolite (viz., salicylic acid) in surface water, urban wastewater, and urine. To this end, the copolymeric divinylbenzene-co-n-vinylpyrrolidone beads (Oasis HLB) were utilized as renewable sorptive entities in the micromachined unit. The automated analytical method features relative recovery percentages of >88%, limits of detection within the range 0.02-0.67 ng mL(-1), and coefficients of variation <11% for the column renewable mode and gives rise to a drastic reduction in operation costs ( approximately 25-fold) as compared to on-line column switching systems. PMID:16615800

  14. Two-Phase Model of Liquid-Liquid Interactions With Interface Capturing: Application to Water Assisted Injection Molding

    NASA Astrophysics Data System (ADS)

    Silva, Luisa; Lanrivain, Rodolphe; Zerguine, Walid; Rodriguez-Villa, Andrès; Coupez, Thierry

    2007-05-01

    In this paper, a two phase model to compute liquid-liquid flows is presented. We consider that one phase is a highly viscous thermodependent liquid (polymer phase), whereas the second one is a low viscosity low temperature fluid (water). The first part of this paper concerns capture of the interface between the water and the polymer (or determination of the phase field function). Classical VOF and Level set techniques have been implemented and were ameliorated using mesh adaptation techniques. To accurately determine the velocity field, a two-phase formulation is considered, based in the theory of mixtures, and we introduce a scalar parameter, the phase fraction quantifying the presence of each phase in each point of the computational domain. A friction type coupling between both phases is retained. Using the mixed finite element method within an eulerian framework, we calculate in a single system the whole kinematic variables for both liquids (velocity and pressure of each phase). Results are shown, for 2D and 3D parts.

  15. Performance and stability analysis of gas-injection enhanced natural circulation in heavy-liquid-metal-cooled systems

    NASA Astrophysics Data System (ADS)

    Yoo, Yeon-Jong

    The purpose of this study is to investigate the performance and stability of the gas-injection enhanced natural circulation in heavy-liquid-metal-cooled systems. The target system is STAR-LM, which is a 400-MWt-class advanced lead-cooled fast reactor under development by Argonne National Laboratory and Oregon State University. The primary loop of STAR-LM relies on natural circulation to eliminate main circulation pumps for enhancement of passive safety. To significantly increase the natural circulation flow rate for the incorporation of potential future power uprates, the injection of noncondensable gas into the coolant above the core is envisioned ("gas lift pump"). Reliance upon gas-injection enhanced natural circulation raises the concern of flow instability due to the relatively high temperature change in the reactor core and the two-phase flow condition in the riser. For this study, the one-dimensional flow field equations were applied to each flow section and the mixture models of two-phase flow, i.e., both the homogeneous and drift-flux equilibrium models were used in the two-phase region of the riser. For the stability analysis, the linear perturbation technique based on the frequency-domain approach was used by employing the Nyquist stability criterion and a numerical root search method. It has been shown that the thermal power of the STAR-LM natural circulation system could be increased from 400 up to 1152 MW with gas injection under the limiting void fraction of 0.30 and limiting coolant velocity of 2.0 m/s from the steady-state performance analysis. As the result of the linear stability analysis, it has turned out that the STAR-LM natural circulation system would be stable even with gas injection. In addition, through the parametric study, it has been found that the thermal inertia effects of solid structures such as fuel rod and heat exchanger tube should be considered in the stability analysis model. The results of this study will be a part of the

  16. Liquid sprays and flow studies in the direct-injection diesel engine under motored conditions

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung Lee; Carpenter, Mark H.; Ramos, Juan I.; Schock, Harold J.; Stegeman, James D.

    1988-01-01

    A two dimensional, implicit finite difference method of the control volume variety, a two equation model of turbulence, and a discrete droplet model were used to study the flow field, turbulence levels, fuel penetration, vaporization, and mixing in diesel engine environments. The model was also used to study the effects of engine speed, injection angle, spray cone angle, droplet distribution, and intake swirl angle on the flow field, spray penetration and vaporization, and turbulence in motored two-stroke diesel engines. It is shown that there are optimum conditions for injection, which depend on droplet distribution, swirl, spray cone angle, and injection angle. The optimum conditions result in good spray penetration and vaporization and in good fuel mixing. The calculation presented clearly indicates that internal combustion engine models can be used to assess, at least qualitatively, the effects of injection characteristics and engine operating conditions on the flow field and on the spray penetration and vaporization in diesel engines.

  17. Comparison of ultrasound-induced bioeffects in glass catfish after injection with optison and liquid perflourocarbon droplets

    NASA Astrophysics Data System (ADS)

    Maruvada, Subha; Hynynen, Kullervo

    2003-04-01

    This work is an investigation of ultrasound-induced bioeffects in vivo. Glass catfish were used for these experiments because they are optically transparent. Anaesthetized fish were injected with either optison (OPT) or liquid perflourocarbon droplets (LPD), using microinjection techniques. Shortly after injection, the fish were insonified with one of two single element focused transducers (1.091 MHz and 0.747 MHz). An inverted microscope combined with a digital camera was used to optically monitor ultrasound interaction with the blood vessels in the tail of the fish at 200x magnification. The entire interaction was videotaped and digitized. The fish were insonified at power levels between 1-80 W, which translated into acoustic pressures from 0.45-15 MPa. Sonications were pulsed with burst lengths of 10 ms and 100 ms and a repetition frequency of 1 Hz. The entire length of one sonication at a specific pressure was 20 seconds. The effects of the sonication were analyzed at each pressure level. The ultrasound-induced bioeffects due to OPT and LPD were compared. Threshold values for damage were lower after OPT injection than after LPD injection, especially at lower frequencies.

  18. Simultaneous determination of major bioactive components in Qingkailing injection by high-performance liquid chromatography with evaporative light scattering detection.

    PubMed

    Yan, Shi-Kai; Xin, Wen-Feng; Luo, Guo-An; Wang, Yi-Ming; Cheng, Yi-Yu

    2005-11-01

    High-performance liquid chromatography with evaporative light scattering detection (HPLC/ELSD) was established for simultaneous determination of seven major bioactive components of Qingkailing injection including adenosine, geniposide, chlorogenic acid, baicalin, ursodeoxycholic acid, cholic acid, and hyodeoxycholic acid. The proposed method was applied to analyze ten various Qingkailing injections and produced data with acceptable linearity, repeatability, precision and accuracy having a limit of detection (LOD) of 10-50 ng. In comparison with UV detection, HPLC/ELSD permits the determination of non-chromophoric compounds without prior derivatization, and shows good compatibility to the multi-components of complex analytes. The proposed method is a useful alternative for routine analysis in the quality control of traditional Chinese medicine. PMID:16272719

  19. Injection Characteristics of Non-Swirling and Swirling Annular Liquid Sheets

    NASA Technical Reports Server (NTRS)

    Harper, Brent (Technical Monitor); Ibrahim, E. A.; McKinney, T. R.

    2004-01-01

    A simplified mathematical model, based on body-fitted coordinates, is formulated to study the evolution of non-swirling and swirling liquid sheet emanated from an annular nozzle in a quiescent surrounding medium. The model provides predictions of sheet trajectory, thickness and velocity at various liquid mass flow rates and liquid-swirler angles. It is found that a non-swirling annular sheet converges toward its centerline and assumes a bell shape as it moves downstream from the nozzle. The bell radius, and length are more pronounced at higher liquid mass flow rates. The thickness of the non-swirling annular sheet increases while its stream-wise velocity decreases with an increase in mass flow rate. The introduction of swirl results in the formation of a diverging hollow-cone sheet. The hollow-cone divergence from its centerline is enhanced by an increase in liquid mass flow rate or liquid-swirler angle. The hollow- cone sheet its radius, curvature and stream-wise velocity increase while its thickness and tangential velocity decrease as a result of increasing the mass flow rate or liquid-swirler angle. The present results are compared with previous studies and conclusions are drawn.

  20. Liquid metal alloy ion source based metal ion injection into a room-temperature electron beam ion source

    SciTech Connect

    Thorn, A.; Ritter, E.; Zschornack, G.; Ullmann, F.; Pilz, W.; Bischoff, L.

    2012-02-15

    We have carried out a series of measurements demonstrating the feasibility of using the Dresden electron beam ion source (EBIS)-A, a table-top sized, permanent magnet technology based electron beam ion source, as a charge breeder. Low charged gold ions from an AuGe liquid metal alloy ion source were injected into the EBIS and re-extracted as highly charged ions, thereby producing charge states as high as Au{sup 60+}. The setup, the charge breeding technique, breeding efficiencies as well as acceptance and emittance studies are presented.

  1. Preparation of nano/macroporous polycaprolactone microspheres for an injectable cell delivery system using room temperature ionic liquid and camphene.

    PubMed

    Kim, Seong Yeol; Hwang, Ji-Young; Shin, Ueon Sang

    2016-03-01

    The nano/macroporous polycaprolactone (PCL) microspheres with cell active surfaces were developed as an injectable cell delivery system. Room temperature ionic liquid (RTIL) and camphene were used as a liquid mold and a porogen, respectively. Various-sized spheres of 244-601μm with pores of various size and shape of 0.02-100μm, were formed depending on the camphene/RTIL ratio (0.8-2.6). To give cell activity, the surface of porous microspheres were further modified with nerve growth factors (NGF) containing gelatin to give a thin NGF/gelatin layer, to which the neural progenitor cells (PC-12) attached and extended their neurites on to the surface layers of the microspheres. The developed microspheres may be potentially applicable as a neuronal cell delivery scaffold for neuron tissue engineering. PMID:26641560

  2. A fully automated effervescence assisted dispersive liquid-liquid microextraction based on a stepwise injection system. Determination of antipyrine in saliva samples.

    PubMed

    Medinskaia, Kseniia; Vakh, Christina; Aseeva, Darina; Andruch, Vasil; Moskvin, Leonid; Bulatov, Andrey

    2016-01-01

    A first attempt to automate the effervescence assisted dispersive liquid-liquid microextraction (EA-DLLME) has been reported. The method is based on the aspiration of a sample and all required aqueous reagents into the stepwise injection analysis (SWIA) manifold, followed by simultaneous counterflow injection of the extraction solvent (dichloromethane), the mixture of the effervescence agent (0.5 mol L(-1) Na2CO3) and the proton donor solution (1 mol L(-1) CH3COOH). Formation of carbon dioxide microbubbles generated in situ leads to the dispersion of the extraction solvent in the whole aqueous sample and extraction of the analyte into organic phase. Unlike the conventional DLLME, in the case of EA-DLLME, the addition of dispersive solvent, as well as, time consuming centrifugation step for disruption of the cloudy state is avoided. The phase separation was achieved by gentle bubbling of nitrogen stream (2 mL min(-1) during 2 min). The performance of the suggested approach is demonstrated by determination of antipyrine in saliva samples. The procedure is based on the derivatization of antipyrine by nitrite-ion followed by EA-DLLME of 4-nitrosoantipyrine and subsequent UV-Vis detection using SWIA manifold. The absorbance of the yellow-colored extract at the wavelength of 345 nm obeys Beer's law in the range of 1.5-100 µmol L(-1) of antipyrine in saliva. The LOD, calculated from a blank test based on 3σ, was 0.5 µmol L(-1). PMID:26703262

  3. Time-resolved energy dynamics after single electron injection into an interacting helical liquid

    NASA Astrophysics Data System (ADS)

    Calzona, Alessio; Acciai, Matteo; Carrega, Matteo; Cavaliere, Fabio; Sassetti, Maura

    2016-07-01

    The possibility of injecting a single electron into ballistic conductors is at the basis of the new field of electron quantum optics. Here, we consider a single electron injection into the helical edge channels of a topological insulator. Their counterpropagating nature and the unavoidable presence of electron-electron interactions dramatically affect the time evolution of the single wave packet. Modeling the injection process from a mesoscopic capacitor in the presence of nonlocal tunneling, we focus on the time-resolved charge and energy packet dynamics. Both quantities split up into counterpropagating contributions whose profiles are strongly affected by the interaction strength. In addition, stronger signatures are found for the injected energy, which is also affected by the finite width of the tunneling region, in contrast to what happens for the charge. Indeed, the energy flow can be controlled by tuning the injection parameters, and we demonstrate that, in the presence of nonlocal tunneling, it is possible to achieve a situation in which charge and energy flow in opposite directions.

  4. Surface Stoichiometry, Structure, and Kinetics of GaAs MOCVD

    SciTech Connect

    Baucom, K.C.; Creighton, J.R.; Moffat, H.K.

    1999-01-29

    We have used reflectance-difference spectroscopy (RDS) to examine the surface phases of GaAs(100) during metalorganic chemical vapor deposition (MOCVD). Since the identities of two important surface phases were unknown, we determined their structure and stoichiometry using a variety of surface science techniques. The Type III phase is a newly characterized As-rich (1 X 2)-CH{sub 3} reconstruction. The Type II phase is a metastable derivative of the Type I phase. RDS also indicates that the surface during MOCVD has a considerable degree of heterogeneity. Deposition rates were measured over a similar range of conditions and the kinetically-limited regime was found to correlate with the Type III phase. A simple kinetic model was found to quantitatively describe the deposition rates.

  5. From research to manufacture—The evolution of MOCVD

    NASA Astrophysics Data System (ADS)

    Grodzinski, Piotr; Denbaars, Steven P.; Lee, H. C.

    1995-12-01

    The article provides an overview of the manufacturing capabilities of metalorganic chemical vapor deposition (MOCVD) technology and describes its application to the growth and fabrication of devices in three different material groups: AlGaAs/GaAs, AlInGaP, and AlGaN/GaN. Discussed are GaN blue light-emitting diodes (LEDs), AlInGaP red and yellow LEDs, and AlGaAs/GaAs vertical cavity surface-emitting lasers and high-electron-mobility transistors. Based on these examples, the evolution of MOCVD technology from fundamental materials studies and advanced materials development through the early stages of pilot manufacturing and large-volume manufacturing capabilities is demonstrated.

  6. Study of high [Tc] superconducting thin films grown by MOCVD

    SciTech Connect

    Erbil, A.

    1990-01-01

    Work is described briefly, which was carried out on development of techniques to grow metal-semiconductor superlattices (artificially layered materials) and on the copper oxide based susperconductors (naturally layered materials). The current growth technique utilized is metalorganic chemical vapor deposition (MOCVD). CdTe, PbTe, La, LaTe, and Bi[sub 2]Te[sub 3] were deposited, mostly on GaAs. Several YBa[sub 2]Cu[sub 3]O[sub 7] compounds were obtained with possible superconductivity at temperatures up to 550 K (1 part in 10[sup 4]). YBa[sub 2]Cu[sub 3]O[sub 7[minus]x] and Tl[sub 2]CaBa[sub 2]Cu[sub 2]O[sub y] thin films were deposited by MOCVD on common substrates such as glass.

  7. Investigation of oil injection into brine for the Strategic Petroleum Reserve : hydrodynamics and mixing experiments with SPR liquids.

    SciTech Connect

    Castaneda, Jaime N.; Cote, Raymond O.; Torczynski, John Robert; O'Hern, Timothy John

    2004-05-01

    An experimental program was conducted to study a proposed approach for oil reintroduction in the Strategic Petroleum Reserve (SPR). The goal was to assess whether useful oil is rendered unusable through formation of a stable oil-brine emulsion during reintroduction of degassed oil into the brine layer in storage caverns. An earlier report (O'Hern et al., 2003) documented the first stage of the program, in which simulant liquids were used to characterize the buoyant plume that is produced when a jet of crude oil is injected downward into brine. This report documents the final two test series. In the first, the plume hydrodynamics experiments were completed using SPR oil, brine, and sludge. In the second, oil reinjection into brine was run for approximately 6 hours, and sampling of oil, sludge, and brine was performed over the next 3 months so that the long-term effects of oil-sludge mixing could be assessed. For both series, the experiment consisted of a large transparent vessel that is a scale model of the proposed oil-injection process at the SPR. For the plume hydrodynamics experiments, an oil layer was floated on top of a brine layer in the first test series and on top of a sludge layer residing above the brine in the second test series. The oil was injected downward through a tube into the brine at a prescribed depth below the oil-brine or sludge-brine interface. Flow rates were determined by scaling to match the ratio of buoyancy to momentum between the experiment and the SPR. Initially, the momentum of the flow produces a downward jet of oil below the tube end. Subsequently, the oil breaks up into droplets due to shear forces, buoyancy dominates the flow, and a plume of oil droplets rises to the interface. The interface was deflected upward by the impinging oil-brine plume. Videos of this flow were recorded for scaled flow rates that bracket the equivalent pumping rates in an SPR cavern during injection of degassed oil. Image-processing analyses were

  8. Equilibrium composition in II?VI telluride MOCVD systems

    NASA Astrophysics Data System (ADS)

    Ben-Dor, L.; Greenberg, J. H.

    1999-03-01

    Thermodynamic calculations, or computer simulation of the equilibrium composition, offer an excellent possibility to reduce drastically the elaborate trial-and-error experimental efforts of finding the optimal preparation conditions for MOCVD processes (temperature T, pressure P, initial composition of the vapors X), to limit them only to the P- T- X field of existence of the solid to be prepared and an acceptable yield of the product. In this communication equilibrium composition was investigated for MOCVD processes of CdTe, ZnTe, HgTe and solid solutions Cd xZn 1- xTe and Hg xCd 1- xTe. A number of volatile organometallic compounds have been used as precursors for MOCVD growth. These are dimethylcadmium (CH 3) 2Cd, DMCd; diethylzinc (C 2H 5) 2Zn, DEZn; diisopropylzinc [CH(CH 3) 2] 2Zn, DiPZn; diethyltellurium (C 2H 5) 2Te, DETe; diisopropyltellurium [CH(CH 3) 2] 2Te, DiPTe; methylallyltellurium CH 3TeCH 2CHCH 2, MATe. A choice of the particular combination of the precursors largely depends on the desired composition of the film to be prepared, especially in cases of solid solutions Cd xZn 1- xTe and Hg xCd 1- xTe where the vapor pressure of the precursors is instrumental for the composition of the vapor in the reaction zone and, ultimately, for the composition x of the solid solution. Equilibrium composition for II-VI telluride MOCVD systems was investigated at temperatures up to 873 K in hydrogen and inert gas atmospheres at pressures up to 1 atm. P- T- X regions of existence were outlined for each of the five materials.

  9. Wide injection zone compression in gradient reversed-phase liquid chromatography.

    PubMed

    Gilar, Martin; McDonald, Thomas S; Johnson, Jay S; Murphy, James P; Jorgenson, James W

    2015-04-17

    Chromatographic zone broadening is a common issue in microfluidic chromatography, where the sample volume introduced on column often exceeds the column void volume. To better understand the propagation of wide chromatographic zones on a separation device, a series of MS Excel spreadsheets were developed to simulate the process. To computationally simplify these simulations, we investigated the effects of injection related zone broadening and its gradient related zone compression by tracking only the movements of zone boundaries on column. The effects of sample volume, sample solvent, gradient slope, and column length on zone broadening were evaluated and compared to experiments performed on 0.32mm I.D. microfluidic columns. The repetitive injection method (RIM) was implemented to generate experimental chromatograms where large sample volume scenarios can be emulated by injecting two discrete small injection plugs spaced in time. A good match between predicted and experimental RIM chromatograms was observed. We discuss the performance of selected retention models on the accuracy of predictions and use the developed spreadsheets for illustration of gradient zone focusing for both small molecules and peptides. PMID:25748538

  10. Preservation of Geometrical Integrity of Supersolidus-Liquid-Phase-Sintered SKD11 Tool Steels Prepared with Powder Injection Molding

    NASA Astrophysics Data System (ADS)

    Chuang, K. H.; Hwang, K. S.

    2011-07-01

    The powder injection molded SKD11 tool steels often manifest shape retention problems during supersolidus liquid phase sintering due to the difficulties in controlling the amount of liquid phase. The typical temperature range for the sintering of SKD11 is only 10 K, between 1503 and 1513 K (1230 and 1240 °C), and this narrow sintering range demands a special furnace with very uniform temperature distribution. Through the addition of carbides, in particular TiC, this problem is resolved by enlarging the liquid + γ + carbide region in the phase diagram and by impeding the grain growth with the carbides. The resulting sintering window is broadened to 40 K, between 1513 and 1553 K (1240 and 1280 °C). The relevant mechanisms on the improvement of shape retention are discussed with a focus on the effect of carbide addition on the changes in the phase diagram and the microstructure. A guideline for the selection of effective carbides is also proposed based on the experimental results and the phase diagram analyses.

  11. Comparison of conventional molecularly doped polymeric photoreceptors and novel liquid-crystalline systems: charge injection and charge transport

    NASA Astrophysics Data System (ADS)

    Adam, Dieter; Swienty, Horst; Pinsler, Heinz; Lutz, Manfred; Bondkowski, Jens; Bleyl, Ingo; Haarer, Dietrich

    1997-10-01

    Charge-carrier transport and charge-carrier injection in mono-layers and two-layer photoreceptors with both "conventional", i. e., molecularly doped polymeric (MDP) transport layers and novel liquid-crystalline (LC) transport systems have been investigated by time-of-flight (TOF) experiments. As compared to the MDP materials, the LC model compounds showed a considerable potential towards high-speed xerographic application due to a charge-carrier mobility as high as 0,1 cm2/V s for the hexa(hexyltho)triphenylene (HHTT). In two-layer systems with MDP CTL, the formation of a sharp and well-defined interface between CGL and TL is impossible, a bulky intermediate layer is inevitable due to the wet-coating process. This results in a delayed charge-carrier injection due to space-charge effects originating from the intermediate layer. Two-layer systems with a LC CTL allow to investigate two novel aspects: (i) Since preparation of a LC CU is feasible in a solvent-free process, the formation of an ideal, i.e., sharp interface between CU and CGL is possible. Hence, charge-carrier injection from a well-defined interface can be studied. The results can be explained (i) by taking into account the different extrinsic charge-generation mechanisms for azo pigments (Azo) and phthalocyanine pigments and (ii) the different HOMO levels of Azo and phthalocyanine as compared to the HOMO-level of HHTT (ii) Due to the high charge carrier mobility, the LC CU is a "fast enough probe" to monitor time resolved injection phenomena.

  12. Panitumumab Injection

    MedlinePlus

    ... as a solution (liquid) to be given by infusion (injected into a vein). It is usually given ... doctor or nurse in a doctor's office or infusion center. Panitumumab is usually given once every 2 ...

  13. Teduglutide Injection

    MedlinePlus

    ... injection, prefilled syringes containing diluent (liquid to be mixed with teduglutide powder), needles to attach to the diluent syringe, dosing syringes with needles attached, and alcohol swab pads. Throw away needles, syringes, and vials ...

  14. Analysis of selected antibiotics in surface freshwater and seawater using direct injection in liquid chromatography electrospray ionization tandem mass spectrometry.

    PubMed

    Bayen, Stéphane; Yi, Xinzhu; Segovia, Elvagris; Zhou, Zhi; Kelly, Barry C

    2014-04-18

    Emerging contaminants such as antibiotics have received recent attention as they have been detected in natural waters and health concerns over potential antibiotic resistance. With the purpose to investigate fast and high-throughput analysis, and eventually the continuous on-line analysis of emerging contaminants, this study presents results on the analysis of seven selected antibiotics (sulfadiazine, sulfamethazine, sulfamerazine, sulfamethoxazole, chloramphenicol, lincomycin, tylosin) in surface freshwater and seawater using direct injection of a small sample volume (20μL) in liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS). Notably, direct injection of seawater in the LC-ESI-MS/MS was made possible on account of the post-column switch on the system, which allows diversion of salt-containing solutions flushed out of the column to the waste. Mean recoveries based on the isotope dilution method average 95±14% and 96±28% amongst the compounds for spiked freshwater and seawater, respectively. Linearity across six spiking levels was assessed and the response was linear (r(2)>0.99) for all compounds. Direct injection concentrations were compared for real samples to those obtained with the conventional SPE-based analysis and both techniques concurs on the presence/absence and levels of the compounds in real samples. These results suggest direct injection is a reliable method to detect antibiotics in both freshwater and seawater. Method detection limits for the direct injection technique (37pg/L to 226ng/L in freshwater, and from 16pg/to 26ng/L in seawater) are sufficient for a number of environmental applications, for example the fast screening of water samples for ecological risk assessments. In the present study of real samples, this new method allowed for example the positive detection of some compounds (e.g. lincomycin) down to the sub ng/L range. The direct injection method appears to be relatively cheaper and faster

  15. Simulation of elution profiles in liquid chromatography-I: Gradient elution conditions, and with mismatched injection and mobile phase solvents.

    PubMed

    Jeong, Lena N; Sajulga, Ray; Forte, Steven G; Stoll, Dwight R; Rutan, Sarah C

    2016-07-29

    High-performance liquid chromatography (HPLC) simulators are effective method development tools. The goal of the present work was to design and implement a simple algorithm for simulation of liquid chromatographic separations that allows for characterization of the effect of injection solvent mismatch and injection solvent volume overload. The simulations yield full analyte profiles during solute migration and at elution, which enable a thorough physical understanding of the effects of method variables on chromatographic performance. The Craig counter-current distribution model (the plate model) is used as the basis for simulation, where a local retention factor is assigned for each spatial and temporal element within the simulation. The algorithm, which is an adaptation of an approach originally described by Czok and Guiochon (Ref. [10]), is sufficiently flexible to allow the use of either linear (e.g., Linear Solvent Strength Theory) or non-linear models of solute retention (e.g., Neue-Kuss (Ref. [36])). In this study, both types of models were used, one for simulating separations of a homologous series of alkylbenzenes, and the other for separations of selected amphetamines. The simulation program was validated first by comparison of simulated retention times and peak widths for five amphetamines to predictions obtained using linear solvent strength (LSS) theory, and to results from experimental separations of these compounds. The simulated retention times for the amphetamines agreed within 0.02% and 2.5% compared to theory and experiment, respectively. Secondly, the program was evaluated for simulating the case where there is a compositional mismatch between the mobile phase at the column inlet and the injection solvent (i.e., the sample matrix). This work involved alkylbenzenes, and retention time and peak width predictions from simulations were within 1.5 and 6.0% of experimental values, respectively, even without correction for extra-column dispersion. The

  16. Constipation complication: lung injury following inadvertent intravenous injection of liquid paraffin.

    PubMed

    Williams, Siôn Edryd; Docherty, Marie Helena

    2016-01-01

    Liquid paraffin is a highly refined petroleum derivative commonly used medicinally as an oral laxative in Lesotho. We present the case of a 22-year-old Basotho woman admitted under the care of gynaecology in a rural hospital in Lesotho. She was inadvertently administered 10 mL of intravenous liquid paraffin. There were no immediate complications. After 48 h, the patient became unwell with frank haemoptysis and features of systemic inflammation. A chest X-ray demonstrated new bilateral pulmonary infiltrates. She made a full clinical and radiological recovery with a 5-day course of high-dose oral prednisolone and broad-spectrum antibiotics. She was discharged home in a stable condition. PMID:26791127

  17. A dispersive liquid--liquid microextraction methodology for copper (II) in environmental samples prior to determination using microsample injection flame atomic absorption spectrometry.

    PubMed

    Alothman, Zeid A; Habila, Mohamed; Yilmaz, Erkan; Soylak, Mustafa

    2013-01-01

    A simple, environmentally friendly, and efficient dispersive liquid-liquid microextraction method combined with microsample injection flame atomic absorption spectrometry was developed for the separation and preconcentration of Cu(II). 2-(5-Bromo-2-pyridylazo)-5-(diethylamino)phenol (5-Br-PADAP) was used to form a hydrophobic complex of Cu(II) ions in the aqueous phase before extraction. To extract the Cu(II)-5-Br-PADAP complex from the aqueous phase to the organic phase, 2.0 mL of acetone as a disperser solvent and 200 microL of chloroform as an extraction solvent were used. The influences of important analytical parameters, such as the pH, types and volumes of the extraction and disperser solvents, amount of chelating agent, sample volume, and matrix effects, on the microextraction procedure were evaluated and optimized. Using the optimal conditions, the LOD, LOQ, preconcentration factor, and RSD were determined to be 1.4 microg/L, 4.7 microg/L, 120, and 6.5%, respectively. The accuracy of the proposed method was investigated using standard addition/recovery tests. The analysis of certified reference materials produced satisfactory analytical results. The developed method was applied for the determination of Cu in real samples. PMID:24645524

  18. Direct injection method for quantitation of delta-aminolevulinic acid in urine by high-performance liquid chromatography.

    PubMed

    Kondo, M; Kimura, H; Maekubo, T; Tomita, T; Senda, M; Urata, G; Kajiwara, M

    1992-07-01

    A highly sensitive and simple method for determining delta-aminolevulinic acid (ALA) in urine was established, using direct injection of urine into a high-performance liquid chromatographic column, with fluorometric detection after post-column derivatization with o-phthalaldehyde (OPA). The recovery of ALA was about 100% and ALA was completely separated on an ion exchange column (retention time, 38 min). The detection limit for ALA was 10 pmol (S/N = 2). The mean levels of urinary ALA of 10 healthy volunteers, 4 patients with acute intermittent porphyria, and 2 workers occupationally exposed to lead were 0.76, 5.25, and 23.54 mg/l, respectively. Because of its simplicity, the method is considered to be suitable for routine analysis of urinary ALA in the clinical laboratory. PMID:1394716

  19. Intelligent Foreign Particle Inspection Machine for Injection Liquid Examination Based on Modified Pulse-Coupled Neural Networks

    PubMed Central

    Ge, Ji; Wang, YaoNan; Zhou, BoWen; Zhang, Hui

    2009-01-01

    A biologically inspired spiking neural network model, called pulse-coupled neural networks (PCNN), has been applied in an automatic inspection machine to detect visible foreign particles intermingled in glucose or sodium chloride injection liquids. Proper mechanisms and improved spin/stop techniques are proposed to avoid the appearance of air bubbles, which increases the algorithms' complexity. Modified PCNN is adopted to segment the difference images, judging the existence of foreign particles according to the continuity and smoothness properties of their moving traces. Preliminarily experimental results indicate that the inspection machine can detect the visible foreign particles effectively and the detection speed, accuracy and correct detection rate also satisfying the needs of medicine preparation. PMID:22412318

  20. Determination of nifuroxazide in biological fluids by automated high-performance liquid chromatography with large-volume injection.

    PubMed

    Guinebault, P R; Broquaire, M; Braithwaite, R A

    1981-01-16

    A high-performance liquid chromatographic method for the measurement of nifuroxazide in plasma is described. The technique is based on the single extraction of the drug from buffered plasma with chloroform, using nifuratel as internal standard. The chromatographic system consisted of a 15 cm x 4.6 mm I.D. stainless-steel column packed with Spherisorb ODS, 5 micrometer, and the mobile phase was acetonitrile-orthophosphoric acid (pH 2.5) (30:70). The method was able to measure accurately plasma nifuroxazide concentrations down to 2 ng . ml-1 using 2 ml of sample with no interference from endogenous compounds. The coefficients of variation of the method at 200 and 2 ng . ml-1 were 3% and 15%, respectively, and the calibration graph was linear in this range. The use of automatic injection makes the method suitable for the routine analysis of large numbers of samples. PMID:7217261

  1. Electrical properties of ferroelectric-gate FETs with SrBi2Ta2O9 formed using MOCVD technique

    NASA Astrophysics Data System (ADS)

    Yan, Kang; Takahashi, Mitsue; Sakai, Shigeki

    2012-09-01

    Ferroelectric-gate field-effect transistors (FeFETs) with a Pt/SrBi2Ta2O9/Hf-Al-O/Si gate stack were fabricated using the metal-organic chemical vapor deposition (MOCVD) technique to prepare the SrBi2Ta2O9 (SBT) ferroelectric layer. A good threshold voltage ( V th) distribution was found for more than 90 n-channel FeFETs in one chip with a 170 nm SBT layer owing to the good film uniformity of the SBT layer deposited by MOCVD. The average memory window (Vw^{av}) and the standard deviations ( σ thl, σ thr) of the left- and right-side branches of the drain-gate voltage curves of the FeFETs yielded a Vw^{av}/(σ_{thl} + σ_{thr}) value of 5.45, indicating that the FeFETs can be adapted for large-scale-integration. The electric field, the energy band profile in the gate stack, and the gate leakage current were also investigated at high gate voltages. We found that the effect of Fowler-Nordheim tunneling appeared under these conditions. Because of the tunneling injection and trapping of electrons into the gate insulators, the operation voltage ranges of the FeFETs were limited by this tunneling.

  2. Transport phenomena and the effects of reactor geometry for epitaxial GaN growth in a vertical MOCVD reactor

    NASA Astrophysics Data System (ADS)

    Tseng, Chien-Fu; Tsai, Tsung-Yen; Huang, Yen-Hsiu; Lee, Ming-Tsang; Horng, Ray-Hua

    2015-12-01

    In this study a numerical simulation was carried out to analyze the transport phenomena in a vertical type metal organic chemical vapor deposition (MOCVD) reactor for Gallium Nitride (GaN) growth. The simulated results were compared and validated by experiment. The effects of showerhead design and chamber height are investigated and discussed. It was found that, by properly adjusting the height of the chamber, both the growth rate and film uniformity could be significantly improved. This is attributed to the suppression of the thermal and mass transfer boundary layers by the injection flow of reacting gas mixtures, as well as the confined vertical vortices caused by the geometry of the reduced space. However, inappropriate design of the distance between the showerhead and the susceptor can result in uneven distribution of the organic source in the vicinity of the substrate surface resulting in an uneven growth rate of the GaN film. Consequently, there exists an optimal chamber height that will give the best growth rate and uniformity to the GaN film as discussed in this study. This study provides comprehensive insight into the transport phenomena of GaN growth that includes coupled heat and mass transfer as well as chemical reactions. The results provide important information in a succinct format and enable decisions to be made about the showerhead and the geometrical design and size of a vertical MOCVD reactor.

  3. Liquid core optical fiber total reflection cell as a colorimetric detector for flow injection analysis

    SciTech Connect

    Fujiwara, K.; Fuwa, K.

    1985-05-01

    A hollow fiber (250 ..mu..m i.d.) was used as a colorimetric cell for detecting iodine absorption. To attain total reflection of source light inside the capillary, carbon disulfide was used as a solvent which constitutes the fiber core. A funnel-shaped glass was used for efficiency condensing the light source emission into an aperture of hollow fiber; a low-power tungsten lamp was usable as the light source. With a 5-m cell, 0.1 ..mu..g of I/mL (10 ng of I) can be detected based on the iodine absorption at 540 nm when the solution was injected into the carbon disulfide flow. An automated detection system of iodide ion was also constructed. 11 references, 8 figures.

  4. WETTABILITY ALTERATION OF POROUS MEDIA TO GAS-WETTING FOR IMPROVING PRODUCTIVITY AND INJECTIVITY IN GAS-LIQUID FLOWS

    SciTech Connect

    Abbas Firoozabadi

    2003-12-01

    Wettability alteration to intermediate gas-wetting in porous media by treatment with FC-759, a fluoropolymer polymer, has been studied experimentally. Berea sandstone was used as the main rock sample in our work and its wettability before and after chemical treatment was studied at various temperatures from 25 to 93 C. We also studied recovery performance for both gas/oil and oil/water systems for Berea sandstone before and after wettability alteration by chemical treatment. Our experimental study shows that chemical treatment with FC-759 can result in: (1) wettability alteration from strong liquid-wetting to stable intermediate gas-wetting at room temperature and at elevated temperatures; (2) neutral wetting for gas, oil, and water phases in two-phase flow; (3) significant increase in oil mobility for gas/oil system; and (4) improved recovery behavior for both gas/oil and oil/water systems. This work reveals a potential for field application for improved gas-well deliverability and well injectivity by altering the rock wettability around wellbore in gas condensate reservoirs from strong liquid-wetting to intermediate gas-wetting.

  5. Membrane supported liquid-liquid-liquid microextraction combined with field-amplified sample injection CE-UV for high-sensitivity analysis of six cardiovascular drugs in human urine sample.

    PubMed

    Zhou, Xiaoqing; He, Man; Chen, Beibei; Yang, Qing; Hu, Bin

    2016-05-01

    An effective dual preconcentration method involving off-line membrane supported liquid-liquid-liquid microextraction (MS-LLLME) and on-line field-amplified sample injection (FASI) was proposed for the extraction of six cardiovascular drugs, including mexiletine, xylocaine, propafenone, propranolol, metoprolol, and carvedilol from aqueous solution prior to CE-UV. In MS-LLLME, the analytes were extracted from 9 mL sample solution into toluene, and then back extracted into a drop of acceptor phase of 10 μL 20 mmol/L acetic acid. After that, the acceptor phase was directly introduced into CE for FASI without any modification. In FASI process, water plug was hydrodynamically injected (50 mbar, 3 s) into the capillary prior to sample injection (+6 kV, 18 s). Six target analytes were separated in less than 10 min at 25°C with a BGE consisting of 70 mmol/L Tris-H3 PO4 (pH 2.2) containing 10% v/v methanol. Under the optimized conditions, LODs obtained by the proposed MS-LLLME-FASI-CE-UV method were in the range of 0.02-0.82 μg/L (based on S/N = 3) with enrichment factors of 546- to 7300-fold for the target analytes. The RSDs of the developed method were in the range of 6.7-12.9% (n = 7). Good linearity (R(2) = 0.9928-0.9997) was obtained in concentration range of 0.1-100 μg/L for mexiletine and propranolol, 0.2-100 μg/L for xylocaine and metoprolol, 0.5-100 μg/L for propafenone and 2.0-100 μg/L for carvedilol, respectively. The developed method was successfully applied for real-time determination of metoprolol in human urine samples within 26 h after uptake. PMID:26763094

  6. Orientation distribution and process modeling of thermotropic liquid crystalline copolyester (TLCP) injection-moldings

    NASA Astrophysics Data System (ADS)

    Bubeck, Robert; Fang, Jun; Burghardt, Wesley; Burgard, Susan; Fischer, Daniel

    2009-03-01

    The influence of melt processing conditions upon mechanical properties and degrees of compound molecular orientation have been thoroughly studied for a series of well-defined injection molded samples fabricated from VECTRA (TM) A950 and 4,4'-dihydroxy-a-methylstilbene TLCPs. Fracture and tensile data were correlated with processing conditions, orientation, and molecular weight. Mechanical properties for both TLCPs were found to follow a ``universal'' Anisotropy Factor (AF) associated with the bimodal orientation states in the plaques determined from 2-D WAXS. Surface orientations were globally surveyed using Attenuated Total Reflectance -- Fourier Transform Infrared (ATR-FTIR) spectroscopy and C K edge Near-Edge X-ray Absorption Fine Structure (NEXAFS). The results derived from the two spectroscopy techniques confirmed each other well. These results along with those from 2-D WAXS in transmission were compared with the results of process modeling using a commercial program, MOLDFLOW(TM). The agreement between model predictions and the measured orientation states was gratifyingly good.

  7. MOCVD growth of vertically aligned InGaN nanowires

    NASA Astrophysics Data System (ADS)

    Kuo, H. C.; Su Oh, Tae; Ku, P.-C.

    2013-05-01

    In this work, we report the growth of vertically aligned bulk InGaN nanowires (NWs) on r-plane sapphire substrate by metal organic chemical vapor deposition (MOCVD). Through the optimization process of growth conditions, such as growth temperature and pressure, we obtained high density InGaN NWs consisting of one (0001) polar- and two equivalent {1101} semi-polar planes. We have shown the highest InGaN NWs wire density of 8×108 cm-2,with an average diameter of 300 nm and a length of 2 μm. From results of photoluminescence (PL) at 30 K and 300 K, we observed the intense and broad emission peak from InGaN NWs at around 595 nm, and confirmed that the luminescence could be tuned from 580 nm to 660 nm by controlling the indium flow (TMIn) rate. Our results indicate that MOCVD-grown InGaN NWs can be effective absorbers of the blue-green range of solar spectrum and may be one of the good candidates for high efficiency photovoltaic devices targeting at blue-green photons.

  8. Real-time physico-neural solutions for MOCVD

    SciTech Connect

    Kelkar, A.S.; Mahajan, R.L.; Sani, R.L.

    1995-12-31

    This paper presents an integrated physical neural network approach for the modeling and optimization of a vertical MOCVD reactor. A first-principles physical model for the reactor was solved numerically using the Fluid Dynamics Analysis Package (FIDAP). This transient model included property variation and thermodiffusion effects. Artificial Neural Network (ANN) models were then trained to predict the growth rate profiles within the reactor. The data used to train the network was obtained from FIDAP simulations for combinations of process parameters determined by statistical Design of Experiments (DOE) methodology. It is shown that the trained ANN predicts the behavior of the reactor accurately. Optimum process conditions to obtain a uniform thickness of the deposited film were determined and tested using the ANN model. The results demonstrate the power and robustness of ANNs for obtaining fast on-line responses to changing input conditions. This capability of ANNs is particularly important for implementing run-to-run and on-line control of the MOCVD process.

  9. On-line sequential injection dispersive liquid-liquid microextraction system for flame atomic absorption spectrometric determination of copper and lead in water samples.

    PubMed

    Anthemidis, Aristidis N; Ioannou, Kallirroy-Ioanna G

    2009-06-30

    A simple, sensitive and powerful on-line sequential injection (SI) dispersive liquid-liquid microextraction (DLLME) system was developed as an alternative approach for on-line metal preconcentration and separation, using extraction solvent at microlitre volume. The potentials of this novel schema, coupled to flame atomic absorption spectrometry (FAAS), were demonstrated for trace copper and lead determination in water samples. The stream of methanol (disperser solvent) containing 2.0% (v/v) xylene (extraction solvent) and 0.3% (m/v) ammonium diethyldithiophosphate (chelating agent) was merged on-line with the stream of sample (aqueous phase), resulting a cloudy mixture, which was consisted of fine droplets of the extraction solvent dispersed entirely into the aqueous phase. By this continuous process, metal chelating complexes were formed and extracted into the fine droplets of the extraction solvent. The hydrophobic droplets of organic phase were retained into a microcolumn packed with PTFE-turnings. A portion of 300 microL isobutylmethylketone was used for quantitative elution of the analytes, which transported directly to the nebulizer of FAAS. All the critical parameters of the system such as type of extraction solvent, flow-rate of disperser and sample, extraction time as well as the chemical parameters were studied. Under the optimum conditions the enhancement factor for copper and lead was 560 and 265, respectively. For copper, the detection limit and the precision (R.S.D.) were 0.04 microg L(-1) and 2.1% at 2.0 microg L(-1) Cu(II), respectively, while for lead were 0.54 microg L(-1) and 1.9% at 30.0 microg L(-1) Pb(II), respectively. The developed method was evaluated by analyzing certified reference material and applied successfully to the analysis of environmental water samples. PMID:19376348

  10. The penetration of a soft solid by a liquid jet, with application to the administration of a needle-free injection.

    PubMed

    Shergold, Oliver A; Fleck, Norman A; King, Toby S

    2006-01-01

    Liquid jet injections have been performed on human skin in vivo and silicone rubber using Intraject needle-free injectors. The discharge characteristics of the liquid jet were measured using a custom-built test instrument. The experiments reveal that a high-speed liquid jet penetrates a soft solid by the formation and opening of a planar crack. The fluid stagnation pressure required for skin penetration decreases with increasing diameter of the liquid jet. These findings are consistent with the slow-speed penetration of a soft solid by a sharp-tipped punch. It is demonstrated that the Shergold-Fleck sharp-tipped punch penetration model [Shergold, O.A., Fleck, N.A., 2004. Mechanisms of deep penetration of soft solids. Proc. Roy. Soc. Lond. A 460, 3037-3058.] gives adequate predictions for the pressure required to penetrate a soft solid by a high-speed liquid jet. PMID:16277987

  11. Ionic liquid and aqueous two-phase extraction based on salting-out coupled with high-performance liquid chromatography for the determination of seven rare ginsenosides in Xue-Sai-Tong injection.

    PubMed

    Li, Lan-Jie; Jin, Yong-Ri; Wang, Xiao-Zhong; Liu, Ying; Wu, Qian; Shi, Xiao-Lei; Li, Xu-Wen

    2015-09-01

    A method of ionic liquid salt aqueous two-phase extraction coupled with high-performance liquid chromatography has been developed for the analysis of seven rare ginsenosides including Rg6 , F4 , 20(S)-Rg3 , 20(R)-Rg3 , Rk3 , Rk1 , and Rg5 in Xue-Sai-Tong injection. The injection was mixed with ionic liquid 1-butyl-3-methylimidazolium bromide aqueous solution, and a mixture was obtained. With the addition of sodium dodecyl sulfate and dipotassium phosphate into the mixture, the aqueous two-phase mixture was formed after ultrasonic treatment and centrifuged. Rare ginsenosides were extracted into the upper phase. To obtain a high extraction factors, various influences were considered systematically, such as the volume of ionic liquid, the category and amount of salts, the amount of sodium dodecyl sulfate, the pH value of system, and the time of ultrasonic treatment. Under the optimal condition, rare ginsenosides in Xue-Sai-Tong injection were enriched and detected, the recoveries of seven rare ginsenosides ranged from 90.05 to 112.55%, while relative standard deviations were lower than 2.50%. The developed method was reliable, rapid and sensitive for the determination of seven rare ginsenosides in the injections. PMID:26081987

  12. Analysis of Androgenic Steroids in Environmental Waters by Large-volume Injection Liquid Chromatography Tandem Mass Spectrometry

    PubMed Central

    Backe, Will J.; Ort, Christoph; Brewer, Alex J.; Field, Jennifer A.

    2014-01-01

    A new method was developed for the analysis of natural and synthetic androgenic steroids and their selected metabolites in aquatic environmental matrices using direct large-volume injection (LVI) high performance liquid chromatography (HPLC) tandem mass spectrometry (MS/MS). Method accuracy ranged from 88 to 108% for analytes with well-matched internal standards. Precision, quantified by relative standard deviation (RSD), was less than 12%. Detection limits for the method ranged from 1.2 to 360 ng/L. The method was demonstrated on a series of 1-hr composite wastewater influent samples collected over a day with the purpose of assessing temporal profiles of androgen loads in wastewater. Testosterone, androstenedione, boldenone, and nandrolone were detected in the sample series at concentrations up to 290 ng/L and loads up to 535 mg. Boldenone, a synthetic androgen, had a temporal profile that was strongly correlated to testosterone, a natural human androgen, suggesting its source may be endogenous. An analysis of the sample particulate fraction revealed detectable amounts of sorbed testosterone and androstenedione. Androstenedione sorbed to the particulate fraction accounted for an estimated five to seven percent of the total androstenedione mass. PMID:21391574

  13. [Determination of trace mercury in wastewater by a flow injection analysis composed of immobilized ionic liquid enrichment and colorimetric detection].

    PubMed

    Zhang, Jun; Mao, Li-li; Yang, Gui-peng; Gao, Xian-chi; Tang, Xu-li

    2010-07-01

    Amberlite XAD-7 resin was modified by room temperature ionic liquid (1-hexyl-3-methylimidazolium hexafluorophosphate, [C6 mim]PF6) coating through a maceration method, gaining a new sort of hydrophobic adsorbent for the solid phase extraction mini-column. Trace inorganic mercury in wastewater samples was preconcentrated and determined by flow injection online mini-column sampling coupled with spectrophotometric determination. In acid medium, dithizone was employed as chelator with cetyltrimethylammonium bromide (CTMAB) to form a red neutral mercury-dithizone complex, which could be extracted quantificationally by solid phase extraction technique on the mini-column. Under the optimized conditions, the linearity and the detection limit of the proposed method were found to be 0.35 to 50.0 microg x L(-1) Hg2+ and 0.067 microg x L(-1) Hg2+, respectively. The enrichment factor of 25 times could be achieved with a 50 mL sampling volume and the developed procedure was successfully applied for the determination of mercury in the certified reference material (GSBZ50016-90) and the spiked dock wastewater samples with the recovery of 99%-103%. PMID:20828014

  14. Molecular orientation distributions during injection molding of liquid crystalline polymers: Ex situ investigation of partially filled moldings

    SciTech Connect

    Fang, Jun; Burghardt, Wesley R.; Bubeck, Robert A.

    2013-01-10

    The development of molecular orientation in thermotropic liquid crystalline polymers (TLCPs) during injection molding has been investigated using two-dimensional wide-angle X-ray scattering coordinated with numerical computations employing the Larson-Doi polydomain model. Orientation distributions were measured in 'short shot' moldings to characterize structural evolution prior to completion of mold filling, in both thin and thick rectangular plaques. Distinct orientation patterns are observed near the filling front. In particular, strong extension at the melt front results in nearly transverse molecular alignment. Far away from the flow front shear competes with extension to produce complex spatial distributions of orientation. The relative influence of shear is stronger in the thin plaque, producing orientation along the filling direction. Exploiting an analogy between the Larson-Doi model and a fiber orientation model, we test the ability of process simulation tools to predict TLCP orientation distributions during molding. Substantial discrepancies between model predictions and experimental measurements are found near the flow front in partially filled short shots, attributed to the limits of the Hele-Shaw approximation used in the computations. Much of the flow front effect is however 'washed out' by subsequent shear flow as mold filling progresses, leading to improved agreement between experiment and corresponding numerical predictions.

  15. Determination of pesticides in vegetables using large-volume injection column liquid chromatography-electrospray tandem mass spectrometry.

    PubMed

    Hogenboom, A C; Hofman, M P; Kok, S J; Niessen, W M; Brinkman, U A

    2000-09-15

    Direct injection of a large volume (900 microl) of a sample extract onto a liquid chromatographic (LC) column, LC separation and electrospray tandem mass spectrometric detection were used for the quantitative analysis of a wide polarity range of pesticides in carrots and potatoes. Rapid sample preparation involved extraction of a small amount of sample (2 g) with a small volume of organic solvent (3 ml), clean-up over a filter and dilution of the organic extract with the aqueous LC eluent. The extraction efficiency for the selected pesticides was studied using methanol, acetone and acetonitrile as solvents. Evaluation of the performance of the overall method, using extraction with acetonitrile and detection in the selected-reaction-monitoring mode, showed excellent linearity in the range of 2-100 microg/kg with limits of detection of 0.5-2 microg/kg for both types of vegetable. With relative standard deviations of the MS peak area measurements of less than 6.5% (n=8) the repeatability of the method was fully satisfactory. PMID:11045499

  16. Global analysis of chemical constituents in Shengmai injection using high performance liquid chromatography coupled with tandem mass spectrometry.

    PubMed

    Li, Fei; Cheng, Tao-fang; Dong, Xin; Li, Ping; Yang, Hua

    2016-01-01

    This study aimed to develop a specific and reliable method to comprehensively analyze the chemical constituents in Shengmai injection (SMI) using high performance liquid chromatography coupled with tandem mass spectrometry. The qualitative analysis of SMI was achieved on a Kromasil 100-5C18 column, and the results demonstrated that a total of sixty-two compounds in SMI were unambiguously assigned or tentatively identified, and further, twenty-one compounds including fourteen saponins, six lignans and one L-borneol-7-O-[β-D-apiofuranosyl (1→6)]-β-D-gluco-pyranoside were quantified by HPLC-MS. Furthermore, L-borneol-7-O-[β-D-apio-furanosyl (1→6)]-β-D-glucopyranoside, originated from Radix ophiopogonis, was identified and quantified in SMI for the first time. The method validation results indicated that the methods were simple, specific and reliable. All the investigated compounds showed good linearity (r(2)≥0.9992) with a relatively wide concentration range and acceptable recovery at 90.13-109.09%. Consequently, the developed methods were successfully applied to ten batches of SMI samples analysis. The proposed methods may provide a useful and comprehensive reference for the quality control of SMI, and thus to provide supporting data for the quality control and application of SMI clinically. PMID:26342447

  17. MOCVD growth of AlGaN UV LEDs

    SciTech Connect

    Han, J.; Crawford, M.H.

    1998-09-01

    Issues related to the MOCVD growth of AlGaN, specifically the gas-phase parasitic reactions among TMG, TMA, and NH{sub 3}, are studied using an in-situ optical reflectometer. It is observed that the presence of the well-known gas phase adduct (TMA: NH{sub 3}) could seriously hinder the incorporation behavior of TMGa. Relatively low reactor pressures (30--50 Torr) are employed to grow an AlGaN/GaN SCH QW p-n diode structure. The UV emission at 360 nm (FWHM {approximately} 10 nm) represents the first report of LED operation from an indium-free GaN QW diode.

  18. MOCVD manifold switching effects on growth and characterization

    NASA Astrophysics Data System (ADS)

    Clark, Ivan O.; Fripp, Archibald L.; Jesser, William A.

    1991-02-01

    A combined modeling and experimental approach is used to quantify the effects of various manifold components on the switching speed in metalorganic chemical vapor deposition (MOCVD). In particular, two alternative vent-run high-speed switching manifold designs suitable for either continuous or interrupted growth have been investigated. Both designs are incorporated in a common manifold, instrumented with a mass spectrometer. The experiments have been performed using nitrogen as the transport gas and argon as the simulated source gas. The advantages and limitations of two designs are discussed. It is found that while constant flow manifold switching systems may have fluid dynamic advantages, care must be taken to minimize sections of the supply manifold with low flow rates if rapid changes in alloy composition are required.

  19. Effect of crystal orientation on anisotropic etching and MOCVD growth of grooves on GaAs

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila G.; Landis, Geoffrey A.; Wilt, David M.

    1989-01-01

    Grooves can be formed on GaAs by wet-chemical anisotropic etching of surfaces masked by photoresist stripes. The effect of crystal orientation on the shape of the grooves etched and on subsequent epitaxial growth by MOCVD is presented. The polar lattice increases the complexity of the etching and growth processes. The slow-etch planes defined by anisotropic etching are not always the same as the growth facets produced during MOCVD deposition, especially for deposition on higher order planes.

  20. Study of TiO2 nanomembranes obtained by an induction heated MOCVD reactor

    NASA Astrophysics Data System (ADS)

    Crisbasan, A.; Chaumont, D.; Sacilotti, M.; Crisan, A.; Lazar, A. M.; Ciobanu, I.; Lacroute, Y.; Chassagnon, R.

    2015-12-01

    Nanostructures of TiO2 were grown using the metal oxide chemical vapor deposition (MOCVD) technique. The procedure used induction heating on a graphite susceptor. This specific feature and the use of cobalt and ferrocene catalysts resulted in nanomembranes never obtained by common MOCVD reactors. The present study discusses the preparation of TiO2 nanomembranes and the dependence of nanomembrane structure and morphology on growth parameters.

  1. Silicone Granuloma in the Buttocks Incidentally Detected by 18F-FDG PET/CT 30 Years After Free Liquid Silicone Injections.

    PubMed

    Ohnona, Jessica; Durand, Pauline; Amegnizin, Jean-Louis; Kerrou, Khaldoun

    2016-06-01

    A 59-year-old transexual (male to female) patient presented with a squamous cell carcinoma of the larynx. She underwent an F-FDG PET/CT for initial staging. The examination showed high F-FDG uptake of the primary lesion and a homolateral lymphadenopathy. Incidental heterogeneous uptake of round hyperdense lesions in the gluteal muscles and subcutaneous fat was visualized. The medical history revealed secondly that the patient had had free liquid silicone injections 30 years before the examination. Although the injection of free silicone is not practised since the 1980s, this incidental finding should prompt to check the patient's medical history over several decades. PMID:26975013

  2. Rapid determination of benzodiazepines, zolpidem and their metabolites in urine using direct injection liquid chromatography-tandem mass spectrometry.

    PubMed

    Jeong, Yu-Dong; Kim, Min Kyung; Suh, Sung Ill; In, Moon Kyo; Kim, Jin Young; Paeng, Ki-Jung

    2015-12-01

    Benzodiazepines and zolpidem are generally prescribed as sedative, hypnotics, anxiolytics or anticonvulsants. These drugs, however, are frequently misused in drug-facilitated crime. Therefore, a rapid and simple liquid chromatography-tandem mass spectrometric (LC-MS/MS) method was developed for identification and quantification of benzodiazepines, zolpidem and their metabolites in urine using deuterium labeled internal standards (IS). Urine samples (120 μL) mixed with 80 μL of the IS solution were centrifuged. An aliquot (5 μL) of the sample solution was directly injected into the LC-MS/MS system for analysis. The mobile phases consisted of water and acetonitrile containing 2mM ammonium trifluoroacetate and 0.2% acetic acid. The analytical column was a Zorbax SB-C18 (100 mm × 2.1 mm i.d., 3.5 μm, Agilent). The separation and detection of 18 analytes were achieved within 10 min. Calibration curves were linear over the concentration ranges of 0.5-20 ng/mL (zolpidem), 1.0-40 ng/mL (flurazepam and temazepam), 2.5-100 ng/mL (7-aminoclonazepam, 1-hydroxymidazolam, midazolam, flunitrazepam and alprazolam), 5.0-200 ng/mL (zolpidem phenyl-4-carboxylic acid, α-hydroxyalprazolam, oxazepam, nordiazepam, triazolam, diazepam and α-hydroxytriazolam), 10-400 ng/mL (lorazepam and desalkylflurazepam) and 10-100 ng/mL (N-desmethylflunitrazepam) with the coefficients of determination (r(2)) above 0.9971. The dilution integrity of the analytes was examined for supplementation of short linear range. Dilution precision and accuracy were tested using two, four and ten-folds dilutions and they ranged from 3.7 to 14.4% and -12.8 to 12.5%, respectively. The process efficiency for this method was 63.0-104.6%. Intra- and inter-day precisions were less than 11.8% and 9.1%, while intra- and inter-day accuracies were less than -10.0 to 8.2%, respectively. The lower limits of quantification were lower than 10 ng/mL for each analyte. The applicability of the developed method was successfully

  3. Multicomponent liquid and vapor fuel distribution measurements in the cylinder of a port-injected, spark- ignition engine

    NASA Astrophysics Data System (ADS)

    Styron, Joshua Putman

    Over the last twenty years, much of the innovation in automotive engine design has been directed towards meeting lower emissions standards as required by the federal government. Correlations used to tune engines that are based on engine-out hydrocarbon measurements alone often fail to be portable to other engine designs because the testing procedures provide little information on in-cylinder fuel/air mixing and combustion processes. A better understanding of in-cylinder processes should improve the applicability of emissions correlations, reducing the amount of engine testing required and providing additional emissions improvements. A 2.5 L, V-6, port-injected engine was modified for optical access by separating one head from the block. The engine could be fitted with one of two heads that produced either a swirling flow or a tumbling flow in the engine. An extended piston with a window in its crown rides in a transparent cylinder liner of fused silica. This arrangement is suitable for laser imaging techniques. Planar laser-induced exciplex fluorescence, which allows the simultaneous, but separate, imaging of liquid and vapor fuel, was extended to capture components of different volatilities in a model fuel designed to simulate the distillation curve of a typical gasoline. Accurate representation of both phases and more than one volatility was demonstrated to be necessary for drawing complete conclusions from fuel distribution data. The exciplex fluorescence technique was calibrated in a separate, calibration cell where careful control of mixture composition, temperature, and pressure was possible. Fluorescence was measured as a function of total pressure from 0 to 1450 kPa, temperature from 18 to 200°C, and fuel-to-air ratio from 0 to twice stoichiometric. The calibrated technique applied to the engine provided both qualitative and quantitative data for improving our understanding of in-cylinder mixing and comparison with engine simulation codes. The engine

  4. Deoxycholic Acid Injection

    MedlinePlus

    ... severe submental fat ('double chin'; fatty tissue located under the chin). Deoxycholic acid injection is in a ... as a liquid to be injected subcutaneously (just under the skin) by a doctor. Your doctor will ...

  5. Determination of phosphodiesterase type V inhibitors in wastewater by direct injection followed by liquid chromatography coupled to tandem mass spectrometry.

    PubMed

    Causanilles, Ana; Emke, Erik; de Voogt, Pim

    2016-09-15

    A simple, fast and reliable analytical method for the determination of phosphodiesterase type V inhibitors in wastewater was developed and validated. The method was based on direct injection followed by liquid chromatography coupled to tandem mass spectrometry with triple quadrupole as mass analyzer. Transformation products and analogues were included in the target list besides the three active pharmaceutical ingredients (sildenafil, vardenafil and tadalafil). The method performance was thoroughly investigated, including the analyte stability in wastewater and matrix effect. All target compounds presented linear fits between their LOD and 500ng/L. The quantification limits ranged from 1.6 to 30ng/L for all compounds except for n-octylnortadalafil (LOQ: 100ng/L); precision calculated as intraday repeatability was lower than 30%; accuracy calculated as procedural recovery ranged successfully between 85 and 105% in all cases. The method was applied to samples collected during three week-long monitoring campaigns performed in 2013, 2014 and 2015 in three Dutch cities. Only sildenafil and its two metabolites, desmethyl- and desethylsildenafil, were present with normalized loads ranging from LOQ to 8.3, 11.8 and 21.6mg/day/1000 inh, respectively. Two additional week-long sets of samples were collected in Amsterdam at the time that a festival event took place, bringing around 350,000 visitors to the city. The difference in drug usage patterns was statistically studied: "weekday" versus "weekend", "normal" versus "atypical" week; and results discussed. The metabolite to parent drug concentration ratio evolution during consecutive years was discussed, leading to several possible explanations that should be further investigated. Finally, wastewater-based epidemiology approach was applied to back-calculate sildenafil consumption. PMID:27161135

  6. Status of the Oak Ridge National Laboratory new hydrofracture facility: Implications for the disposal of liquid low-level radioactive wastes by underground injection

    SciTech Connect

    Haase, C.S.; Stow, S.H.

    1987-01-01

    From 1982 to 1984, Oak Ridge National Laboratory (ORNL) disposed of approximately 2.8 x 10/sup 16/ Bq (7.5 x 10/sup 5/ Ci) of liquid low-level radioactive wastes by underground injection at its new hydrofracture facility. This paper summarizes the regulatory and operational status of that ORNL facility and discusses its future outlook. Operational developments and regulatory changes that have raised major questions about the continued operation of the new hydrofracture facility include: (1) significant /sup 90/Sr contamination of some groundwater in the injection formation; (2) questions about the design of the injection well, completed prior to the application of the underground injection control (UIC) regulations to the ORNL facility; (3) questions about the integrity of the reconfigured injection well put into service following the loss of the initial injection well; and (4) implementation of UIC regulations. Ultimately, consideration of the regulatory and operational factors led to the decision in early 1986 not to proceed with a UIC permit application for the ORNL facility. Subsequent to the decision not to proceed with a UIC permit application, closure activities were initiated for the ORNL hydrofracture facility. Closure of the facility will occur under both state of Tennessee and federal UIC regulations. The facility also falls under the provisions of part 3004(u) of the Resource Conservation and Recovery Act pertaining to corrective actions. Nationally, there is an uncertain outlook for the disposal of wastes by underground injection. All wells used for the injection of hazardous wastes (Class I wells) are being reviewed. 8 refs., 4 figs., 2 tabs.

  7. Insulin Lispro Injection

    MedlinePlus

    ... a solution (liquid) and a suspension (liquid with particles that will settle on standing) to inject subcutaneously ( ... if it is colored, cloudy, or contains solid particles. If you are using insulin lispro suspension, the ...

  8. Intravitreal injection

    MedlinePlus

    Retinal vein occlusion-intravitreal injection; Triamcinolone-intravitreal injection; Dexamethasone-intravitreal injection; Lucentis-intravitreal injection; Avastin-intravitreal injection; Bevacizumab-intravitreal injection; Ranibizumab- ...

  9. MOCVD of very thin films of lead lanthanum titanate

    SciTech Connect

    Beach, D.B.; Vallet, C.E.

    1995-12-31

    Films of lead lanthanum titanate were deposited using metal-organic chemical vapor deposition (MOCVD) at temperatures between 500 and 550{degrees}C in a hot-wall reactor. The precursors used were Pb(THD){sub 2}, La(THD){sub 3}, and Ti(THD){sub 2}(I-OPr){sub 2} where THD = 2,2,6,6-tetramethyl-3,5-heptanedionate, O{sub 2}C{sub 11}H{sub 19}, and I-OPr = isopropoxide, OC{sub 3}H{sub 7}. The three precursors were delivered to the reactor using a single solution containing all three precursors dissolved in tetraglyme and the precursor solution was volatilized at 225{degrees}C. Films were deposited on Si and Si/Ti/Pt substrates, and characterized using Rutherford Backscattering Spectroscopy (RPS) and X-ray diffraction(XRD). Films deposited at 550{degrees}C had a composition which was close to that of the precursor solution while films deposited at 500{degrees}C were deficient in lanthanum. Even at 500{degrees}C, the desired perovskite phase showed an increase in the intensity of the X-ray lines, but did not change the width of these lines, implying the grain sizes had remained unchanged.

  10. Method for the quantification of vanadyl porphyrins in fractions of crude oils by High Performance Liquid Chromatography-Flow Injection-Inductively Coupled Plasma Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Wandekoken, Flávia G.; Duyck, Christiane B.; Fonseca, Teresa C. O.; Saint'Pierre, Tatiana D.

    2016-05-01

    High performance liquid chromatography hyphenated by flow injection to inductively coupled plasma mass spectrometry (HPLC-FI-ICP-MS) was used to investigate V linked to porphyrins present in fractions of crude oil. First, the crude oil sample was submitted to fractionation by preparative liquid chromatography with UV detection, at the porphyrin Soret band wavelength (400 nm). The obtained porphyrin fractions were then separated in a 250 mm single column, in the HPLC, and eluted with different mobile phases (methanol or methanol:toluene (80:20; v:v)). The quantification of V-porphyrins in the fractions eluted from HPLC was carried out by online measuring the 51V isotope in the ICP-MS, against vanadyl octaethylporphine standard solutions (VO-OEP), prepared in the same solvent as the mobile phase, and injected post-column directly into the plasma. A 20 μg L- 1 Ge in methanol was used as internal standard for minimizing non-spectral interference, such as short-term variations due to injection. The mathematical treatment of the signal based on Fast Fourier Transform smoothing algorithm was employed to improve the precision. The concentrations of V as V-porphyrins were between 2.7 and 11 mg kg- 1 in the fractions, which were close to the total concentration of V in the porphyrin fractions of the studied crude oil.

  11. MOCVD process technology for affordable, high-yield, high-performance MESFET structures. Phase 3: MIMIC

    NASA Astrophysics Data System (ADS)

    1993-01-01

    Under the MIMIC Program, Spire has pursued improvements in the manufacturing of low cost, high quality gallium arsenide MOCVD wafers for advanced MIMIC FET applications. As a demonstration of such improvements, Spire was tasked to supply MOCVD wafers for comparison to MBE wafers in the fabrication of millimeter and microwave integrated circuits. In this, the final technical report for Spire's two-year MIMIC contract, we report the results of our work. The main objectives of Spire's MIMIC Phase 3 Program, as outlined in the Statement of Work, were as follows: Optimize the MOCVD growth conditions for the best possible electrical and morphological gallium arsenide. Optimization should include substrate and source qualification as well as determination of the optimum reactor growth conditions; Perform all work on 75 millimeter diameter wafers, using a reactor capable of at least three wafers per run; and Evaluate epitaxial layers using electrical, optical, and morphological tests to obtain thickness, carrier concentration, and mobility data across wafers.

  12. Deposition studies and coordinated characterization of MOCVD YBCO films on IBAD-MgO templates.

    SciTech Connect

    Aytug, Tolga; Paranthaman, Mariappan Parans; Heatherly Jr, Lee; Zhang, Yifei; Kim, Kyunghoon; Goyal, Amit; Maroni, V. A.; List III, Frederick Alyious

    2009-01-01

    A recently installed research metal organic chemical vapor deposition (MOCVD) system at Oak Ridge National Laboratory, provided by SuperPower, Inc., has been used to investigate the processing variables of MOCVD YBCO precursors and trends in the resulting properties. Systematic studies of film growth were carried out by optimizing deposition temperature and oxygen flow rate. Structural and superconducting properties of the YBCO films were analyzed by extensive X-ray diffraction, scanning electron microspcopy and transport measurements. The identification of intermediate phase formations after the YBCO precursor transformation was investigated with coordinated reel-to-reel Raman microprobe analysis. With the combination of these characterization techniques, an improved understanding of the growth characteristics of MOCVD YBCO films was established. Finally, critical current densities greater than 2 MA/cm2 for film thicknesses of 0.8 m have been demonstrated.

  13. Photographic Study of Combustion in a Rocket Engine I : Variation in Combustion of Liquid Oxygen and Gasoline with Seven Methods of Propellant Injection

    NASA Technical Reports Server (NTRS)

    Bellman, Donald R; Humphrey, Jack C

    1948-01-01

    Motion pictures at camera speeds up to 3000 frames per second were taken of the combustion of liquid oxygen and gasoline in a 100-pound-thrust rocket engine. The engine consisted of thin contour and injection plates clamped between two clear plastic sheets forming a two-dimensional engine with a view of the entire combustion chamber and nozzle. A photographic investigation was made of the effect of seven methods of propellant injection on the uniformity of combustion. From the photographs, it was found that the flame front extended almost to the faces of the injectors with most of the injection methods, all the injection systems resulted in a considerable nonuniformity of combustion, and luminosity rapidly decreased in the divergent part of the nozzle. Pressure vibration records indicated combustion vibrations that approximately corresponded to the resonant frequencies of the length and the thickness of the chamber. The combustion temperature divided by the molecular weight of the combustion gases as determined from the combustion photographs was about 50 to 70 percent of the theoretical value.

  14. Single column comprehensive analysis of pharmaceutical preparations using dual-injection mixed-mode (ion-exchange and reversed-phase) and hydrophilic interaction liquid chromatography.

    PubMed

    Kazarian, Artaches A; Taylor, Mark R; Haddad, Paul R; Nesterenko, Pavel N; Paull, Brett

    2013-12-01

    The comprehensive separation and detection of hydrophobic and hydrophilic active pharmaceutical ingredients (APIs), their counter-ions (organic, inorganic) and excipients, using a single mixed-mode chromatographic column, and a dual injection approach is presented. Using a mixed-mode Thermo Fisher Acclaim Trinity P1 column, APIs, their counter-ions and possible degradants were first separated using a combination of anion-exchange, cation-exchange and hydrophobic interactions, using a mobile phase consisting of a dual organic modifier/salt concentration gradient. A complementary method was also developed using the same column for the separation of hydrophilic bulk excipients, using hydrophilic interaction liquid chromatography (HILIC) under high organic solvent mobile phase conditions. These two methods were then combined within a single gradient run using dual sample injection, with the first injection at the start of the applied gradient (mixed-mode retention of solutes), followed by a second sample injection at the end of the gradient (HILIC retention of solutes). Detection using both ultraviolet absorbance and refractive index enabled the sensitive detection of APIs and UV-absorbing counter-ions, together with quantitative determination of bulk excipients. The developed approach was applied successfully to the analysis of a dry powder inhalers (Flixotide(®), Spiriva(®)), enabling comprehensive quantification of all APIs and excipients in the sample. PMID:24001905

  15. Influence of Natural Convection and Thermal Radiation Multi-Component Transport in MOCVD Reactors

    NASA Technical Reports Server (NTRS)

    Lowry, S.; Krishnan, A.; Clark, I.

    1999-01-01

    The influence of Grashof and Reynolds number in Metal Organic Chemical Vapor (MOCVD) reactors is being investigated under a combined empirical/numerical study. As part of that research, the deposition of Indium Phosphide in an MOCVD reactor is modeled using the computational code CFD-ACE. The model includes the effects of convection, conduction, and radiation as well as multi-component diffusion and multi-step surface/gas phase chemistry. The results of the prediction are compared with experimental data for a commercial reactor and analyzed with respect to the model accuracy.

  16. Synchrotron radiation assistant MOCVD deposition of ZnO films on Si substrate

    NASA Astrophysics Data System (ADS)

    Guangtao, Yang; Guobin, Zhang; Hongjun, Zhou; Zeming, Qi

    2009-06-01

    The growth of ZnO film on Si(1 0 0) substrate has been studied with synchrotron radiation (SR) assisted MOCVD method. The diethylzinc (DEZn) and CO 2 are used as source materials, while Nitrogen is employed as a carrier gas for DEZn. With the assistance of SR the ZnO film can be deposited even at room temperature. XRD, SEM and photoluminescence (PL) studies show that the crystal quality of ZnO films grown with the assistance of SR is higher than that of those without SR assistance. The growth mechanism of ZnO film with the SR assistant MOCVD system is primarily discussed.

  17. A Needleless Liquid Jet Injection Delivery Method for Cardiac Gene Therapy: A Comparative Evaluation Versus Standard Routes of Delivery Reveals Enhanced Therapeutic Retention and Cardiac Specific Gene Expression

    PubMed Central

    Fargnoli, AS; Katz, MG; Williams, RD; Margulies, KB; Bridges, CR

    2014-01-01

    Background This study evaluates needleless liquid jet method and compares it with three common experimental methods: (1) Intramuscular injection (IM) (2) Left ventricular intracavitary infusion (LVIC) (3) LV intracavitary infusion with aortic and pulmonary occlusion (LVIC-OCCL). Methods and Results Two protocols were executed. First, [n=24 rats], retention of dye was evaluated 10 minutes after delivery in an acute model. The acute study revealed the following: significantly higher dye retention (expressed as % myocardial cross section area) in the left ventricle in both the Liquid Jet [52±4] % and LVIC-OCCL [58±3] % groups p<0.05 compared with IM [31±8] % and LVIC [35±4] %. In the second, [n=16 rats], each animal received AAV.EGFP at a single dose with terminal 6 week endpoint. In the second phase with AAV.EGFP at 6 weeks post-delivery, a similar trend was found with Liquid Jet [54±5] % and LVIC-OCCL [60±8] % featuring more LV expression as compared with IM [30±9] % and LVIC [23±9] %. The IM and LVIC-OCCL cross sections revealed myocardial fibrosis. Conclusions With more detailed development in future model studies, needleless liquid jet delivery offers a promising strategy to improve direct myocardial delivery. PMID:25315468

  18. A Comparative Study of a Series of Dimethylgold(III) Complexes with S,S Chelating Ligands Used as MOCVD Precursors

    NASA Astrophysics Data System (ADS)

    Turgambaeva, Asiya; Parkhomenko, Roman; Aniskin, Vladimir; Krisyuk, Vladislav; Igumenov, Igor

    Dimethylgold(III) complexes with S,S donor ligands having AuC2S2 coordination core are compared as precursors for gold MOCVD. Three of them are liquids, the fourth one is low-melting compound. They are non-sensitive to air and light, stable under storage, do not require special handling conditions, and show a good volatility and sufficient vaporization stability. Based on monitoring of the gas phase during the programmed heating of the compound vapor in vacuum, in hydrogen and in oxygen presence, the information concerning stability of the precursor in the gas phase and gaseous products of thermolysis was obtained. It was established that decomposition mechanism in the presence of the studied gas- reactants changed in comparison with vacuum only for diethyldithiocarbamate complex. MOCVD experiments have been performed within the temperature range 210-300 oC with and without hydrogen or oxygen. The films obtained in hydrogen presence were more thick indicating higher growth rate. Effect of gas-reactant on the morphology of the films deposited is discussed.

  19. Pre-column dilution large volume injection ultra-high performance liquid chromatography-tandem mass spectrometry for the analysis of multi-class pesticides in cabbages.

    PubMed

    Zhong, Qisheng; Shen, Lingling; Liu, Jiaqi; Yu, Dianbao; Li, Siming; Yao, Jinting; Zhan, Song; Huang, Taohong; Hashi, Yuki; Kawano, Shin-ichi; Liu, Zhaofeng; Zhou, Ting

    2016-04-15

    Pre-column dilution large volume injection (PD-LVI), a novel sample injection technique for reverse phase ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS), was developed in this study. The PD-LVI UHPLC-MS/MS system was designed by slightly modifying the commercial UHPLC-MS/MS equipment with a mixer chamber. During the procedure of PD-LVI, sample solution of 200μL was directly carried by the organic mobile phase to the mixer and diluted with the aqueous mobile phase. After the mixture was introduced to the UHPLC column in a mobile phase of acetonitrile-water (15/85, v/v), the target analytes were stacked on the head of the column until following separation. Using QuEChERS extraction, no additional steps such as solvent evaporation or residue redissolution were needed before injection. The features of PD-LVI UHPLC-MS/MS system were systematically investigated, including the injection volume, the mixer volume, the precondition time and the gradient elution. The efficiency of this approach was demonstrated by direct analysis of 24 pesticides in cabbages. Under the optimized conditions, low limits of detection (0.00074-0.8 ng/kg) were obtained. The recoveries were in the range of 63.3-109% with relative standard deviations less than 8.1%. Compared with common UHPLC-MS/MS technique, PD-LVI UHPLC-MS/MS showed significant advantages such as excellent sensitivity and reliability. The mechanism of PD-LVI was demonstrated to be based on the column-head stacking effect with pre-column dilution. Based on the results, PD-LVI as a simple and effective sample injection technique of reverse phase UHPLC-MS/MS for the analysis of trace analytes in complex samples showed a great promising prospect. PMID:26979268

  20. Hot air injection for removal of dense, non-aqueous-phase liquid contaminants from low-permeability soils

    SciTech Connect

    Payne, F.C.

    1996-08-01

    The performance of soil vapor extraction systems for the recovery of volatile and semi-volatile organic compounds is potentially enhanced by the injection of heated air to increase soil temperatures. The soil temperature increase is expected to improve soil vapor extraction (SVE) performance by increasing target compound vapor pressures and by increasing soil permeability through drying. The vapor pressure increase due to temperature rise relieves the vapor pressure limit on the feasibility of soil vapor extraction. However, the system still requires an air flow through the soil system to deliver heat and to recover mobilized contaminants. Although the soil permeability can be increased through drying, very low permeability soils and low permeability soils adjacent to high permeability air flow pathways will be treated slowly, if at all. AR thermal enhancement methods face this limitation. Heated air injection offers advantages relative to other thermal techniques, including low capital and operation costs. Heated air injection is at a disadvantage relative to other thermal techniques due to the low heat capacity of air. To be effective, heated air injection requires that higher air flows be established than for steam injection or radio frequency heating. Heated air injection is not economically feasible for the stratified soil system developed as a standard test for this document. This is due to the inability to restrict heated air flow to the clay stratum when a low-resistance air flow pathway is available in the adjoining sand. However, the technology should be especially attractive, both technically and economically, for low-volatile contaminant recovery from relatively homogeneous soil formations. 16 refs., 2 tabs.

  1. Hydrogen no-vent testing in a 5 cubic foot (142 liter) tank using spray nozzle and spray bar liquid injection

    NASA Technical Reports Server (NTRS)

    Moran, Matthew E.; Nyland, Ted W.

    1992-01-01

    A total of 38 hydrogen no-vent fill tests were performed in this test series using various size spray nozzles and a spray bar with different hole sizes in a 5 cubic foot receiver tank. Fill levels of 90 percent by volume or greater were achieved in 26 of the tests while maintaining a receiver tank pressure below 30 psia. Spray nozzles were mounted at the top of the tank, whereas, the spray bar was centered in the tank axially. The spray nozzle no-vent fills demonstrated tank pressure and temperature responses comparable to previous test series. Receiver tank pressure responses for the spray bar configuration were similar to the spray nozzle tests with the pressure initially rising rapidly, then leveling off as vapor condenses onto the discharging liquid streams, and finally ramping up near the end of the test due to ullage compression. Both liquid injection techniques tested were capable of filling the receiver tank to 90 percent under variable test conditions. Comparisons between the spray nozzle and spray bar configurations for well matched test conditions indicate the spray nozzle injection technique is more effective in minimizing the receiving tank pressure throughout a no-vent fill compared to the spray bar under normal gravity conditions.

  2. Hydrogen no-vent fill testing in a 5 cubic foot (142 liter) tank using spray nozzle and spray bar liquid injection

    NASA Technical Reports Server (NTRS)

    Moran, Matthew E.; Nyland, Ted W.

    1992-01-01

    A total of 38 hydrogen no-vent fill tests were performed in this test series using various size spray nozzles and a spray bar with different hole sizes in a 5 cubic foot receiver tank. Fill levels of 90 percent by volume or greater were achieved in 26 of the tests while maintaining a receiver tank pressure below 30 psia. Spray nozzles were mounted at the top of the tank, whereas, the spray bar was centered in the tank axially. The spray nozzle no-vent fills demonstrated tank pressure and temperature responses comparable to previous test series. Receiver tank pressure responses for the spray bar configuration were similar to the spray nozzle tests with the pressure initially rising rapidly, then leveling off as vapor condenses onto the discharging liquid streams, and finally ramping up near the end of the test due to ullage compression. Both liquid injection techniques tested were capable of filling the receiver tank to 90 percent under variable test conditions. Comparisons between the spray nozzle and spray bar configurations for well matched test conditions indicate the spray nozzle injection technique is more effective in minimizing the receiving tank pressure throughout a no-vent fill compared to the spray bar under normal gravity conditions.

  3. Flow-injection in-line complexation for ion-pair reversed phase high performance liquid chromatography of some metal-4-(2-pyridylazo) resorcinol chelates.

    PubMed

    Srijaranai, Supalax; Chanpaka, Saiphon; Kukusamude, Chutima; Grudpan, Kate

    2006-02-28

    Flow injection (FI) was coupled to ion-pair reversed phase high performance liquid chromatography (IP-RPHPLC) for the simultaneous analysis of some metal-4-(2-pyridylazo) resorcinol (PAR) chelates. A simple reverse flow injection (rFI) set-up was used for in-line complexation of metal-PAR chelates prior to their separation by IP-RPHPLC. The rFI conditions were: injection volume of PAR 85muL, flow rate of metal stream 4.5mLmin(-1), concentration of PAR 1.8x10(-4)molL(-1) and the mixing coil length of 150cm. IP-RPHPLC was carried out using a C(18)muBondapak column with the mobile phase containing 37% acetonitrile, 3.0mmolL(-1) acetate buffer pH 6.0 and 6.2mmolL(-1) tetrabutylammonium bromide (TBABr) at a flow rate of 1.0mLmin(-1) and visible detection at 530 and 440nm. The analysis cycle including in-line complexation and separation by IP-RPHPLC was 16min, which able to separate Cr(VI) and the PAR chelates of Co(II), Ni(II) and Cu(II). PMID:18970520

  4. Validation of a Stability-Indicating Hydrophilic Interaction Liquid Chromatographic Method for the Quantitative Determination of Vitamin K3 (Menadione Sodium Bisulfite) in Injectable Solution Formulation

    PubMed Central

    Ghanem, Mashhour M.; Abu-Lafi, Saleh A.; Hallak, Hussein O.

    2013-01-01

    A simple, specific, accurate, and stability-indicating method was developed and validated for the quantitative determination of menadione sodium bisulfite in the injectable solution formulation. The method is based on zwitterionic hydrophilic interaction liquid chromatography (ZIC-HILIC) coupled with a photodiode array detector. The desired separation was achieved on the ZIC-HILIC column (250 mm × 4.6 mm, 5 μm) at 25°C temperature. The optimized mobile phase consisted of an isocratic solvent mixture of 200mM ammonium acetate (NH4AC) solution and acetonitrile (ACN) (20:80; v/v) pH-adjusted to 5.7 by glacial acetic acid. The mobile phase was fixed at 0.5 ml/min and the analytes were monitored at 261 nm using a photodiode array detector. The effects of the chromatographic conditions on the peak retention, peak USP tailing factor, and column efficiency were systematically optimized. Forced degradation experiments were carried out by exposing menadione sodium bisulfite standard and the injectable solution formulation to thermal, photolytic, oxidative, and acid-base hydrolytic stress conditions. The degradation products were well-resolved from the main peak and the excipients, thus proving that the method is a reliable, stability-indicating tool. The method was validated as per ICH and USP guidelines (USP34/NF29) and found to be adequate for the routine quantitative estimation of menadione sodium bisulfite in commercially available menadione sodium bisulfite injectable solution dosage forms. PMID:24106670

  5. Method for Improving Mg Doping During Group-III Nitride MOCVD

    DOEpatents

    Creighton, J. Randall; Wang, George T.

    2008-11-11

    A method for improving Mg doping of Group III-N materials grown by MOCVD preventing condensation in the gas phase or on reactor surfaces of adducts of magnesocene and ammonia by suitably heating reactor surfaces between the location of mixing of the magnesocene and ammonia reactants and the Group III-nitride surface whereon growth is to occur.

  6. Photoluminescence of Nitrogen-Doped Zinc Selenide by Photo-Assisted Mocvd.

    NASA Astrophysics Data System (ADS)

    Gillespie, Paul Matthew

    Zinc selenide is a wide band-gap (2.67 eV) II -VI compound semiconductor with potential use as a blue electro-optic device material. Problems with obtaining suitable p-type conductivity have limited device development. Zinc selenide epitaxial films, doped with nitrogen from NH _3, have been grown on gallium arsenide substrates by laser-assisted metal organic chemical vapor deposition (MOCVD). The effect of nitrogen doping was investigated with and without direct surface irradiation incident on the surface from a broad-band light source. Low temperature (8 K) photoluminescence spectroscopy has confirmed the incorporation of nitrogen as a shallow acceptor by the presence of acceptor-bound-excitons and associated donor -acceptor-pair recombination emissions. The MOCVD growth parameters have been optimized based on the presence of characteristic features in the photoluminescence spectra. Growth rate mechanisms have been proposed for both laser-assisted MOCVD and direct-irradiation MOCVD. Simultaneous interaction of the two photo-assisted techniques show that direct irradiation of the surface does not enhance the growth rate under the laser-assisted condition. This confirms that direct surface irradiation growth mechanisms involve the interaction of photo-generated carriers with alkyl groups from the precursors.

  7. A review on development of analytical methods to determine monitorable drugs in serum and urine by micellar liquid chromatography using direct injection.

    PubMed

    Esteve-Romero, Josep; Albiol-Chiva, Jaume; Peris-Vicente, Juan

    2016-07-01

    Therapeutic drug monitoring is a common practice in clinical studies. It requires the quantification of drugs in biological fluids. Micellar liquid chromatography (MLC), a well-established branch of Reverse Phase-High Performance Liquid Chromatography (RP-HPLC), has been proven by many researchers as a useful tool for the analysis of these matrices. This review presents several analytical methods, taken from the literature, devoted to the determination of several monitorable drugs in serum and urine by micellar liquid chromatography. The studied groups are: anticonvulsants, antiarrhythmics, tricyclic antidepressants, selective serotonin reuptake inhibitors, analgesics and bronchodilators. We detail the optimization strategy of the sample preparation and the main chromatographic conditions, such as the type of column, mobile phase composition (surfactant, organic solvent and pH), and detection. The finally selected experimental parameters, the validation, and some applications have also been described. In addition, their performances and advantages have been discussed. The main ones were the possibility of direct injection, and the efficient chromatographic elution, in spite of the complexity of the biological fluids. For each substance, the measured concentrations were accurate and precise at their respective therapeutic range. It was found that the MLC-procedures are fast, simple, inexpensive, ecofriendly, safe, selective, enough sensitive and reliable. Therefore, they represent an excellent alternative for the determination of drugs in serum and urine for monitoring purposes. PMID:27216388

  8. Liquid carry-over in an injection moulded all-polymer chip system for immiscible phase magnetic bead-based solid-phase extraction

    NASA Astrophysics Data System (ADS)

    Kistrup, Kasper; Skotte Sørensen, Karen; Wolff, Anders; Fougt Hansen, Mikkel

    2015-04-01

    We present an all-polymer, single-use microfluidic chip system produced by injection moulding and bonded by ultrasonic welding. Both techniques are compatible with low-cost industrial mass-production. The chip is produced for magnetic bead-based solid-phase extraction facilitated by immiscible phase filtration and features passive liquid filling and magnetic bead manipulation using an external magnet. In this work, we determine the system compatibility with various surfactants. Moreover, we quantify the volume of liquid co-transported with magnetic bead clusters from Milli-Q water or a lysis-binding buffer for nucleic acid extraction (0.1 (v/v)% Triton X-100 in 5 M guanidine hydrochloride). A linear relationship was found between the liquid carry-over and mass of magnetic beads used. Interestingly, similar average carry-overs of 1.74(8) nL/μg and 1.72(14) nL/μg were found for Milli-Q water and lysis-binding buffer, respectively.

  9. WETTABILITY ALTERATION OF POROUS MEDIA TO GAS-WETTING FOR IMPROVING PRODUCTIVITY AND INJECTIVITY IN GAS-LIQUID FLOWS

    SciTech Connect

    Abbas Firoozabadi

    2002-10-21

    The authors have performed a number of imbibition tests with the treated and untreated cores in nC{sub 10}, nC{sub 14}, and nC{sub 16} and a natural gas condensate liquid. Imbibition tests for nC{sub 14} and nC{sub 16} were also carried out at elevated temperatures of 100 C and 140 C. An experimental polymer synthesized for the purpose of this project was used in core treatment. Imbibition results are very promising and imply liquid condensate mobility enhancement in the treated core. They also performed flow tests to quantify the increase in well deliverability and to simulate flow under realistic field conditions. In the past we have performed extensive testing of wettability alteration in intermediate gas wetting for polymer FC759 at temperatures of 24 C and 90 C. The results were promising for the purpose of gas well deliverability improvement in gas condensate wells. We used FC759 to lower the surface energy of various rocks. The model fluids nC{sub 10}, and nC{sub 14} were used to represent condensate liquid, and air was used as the gas phase. A new (L-16349) polymer, which has been recently synthesized for the purpose of the project, was used in the work to be presented here. L-16349 is a water-soluble fluorochemical polymer, with low order, neutral PH and very low volatile organic compound (VOC < 9.1 g/l). It is light yellow in appearance and density in 25% solution is 1.1 g/cc. Polymer L-16349 is very safe from environmental considerations and it is economical for our purpose. In this work, in addition to nC{sub 10}, and nC{sub 14}, we used two other liquids nC{sub 16}, and a liquid condensate in order to study the effect of wettability alteration with a broader range of fluids.

  10. Vortex-assisted liquid-liquid extraction combined with field-amplified sample injection and sweeping micellar electrokinetic chromatography for improved determination of β-blockers in human urine.

    PubMed

    Jouyban, Abolghasem; Sorouraddin, Mohammad Hossein; Farajzadeh, Mir Ali; Somi, Mohammad Hossein; Fazeli-Bakhtiyari, Rana

    2016-03-01

    A new micellar electrokinetic chromatography (MEKC) method was developed and validated for the analysis of carvedilol and propranolol in human urine samples. In this study, vortex-assisted liquid-liquid extraction (VALLE) coupled with field-amplified sample injection and sweeping was employed for biological sample clean-up and sensitivity enhancement in MEKC. After VALLE, the urine samples were analyzed by MEKC. Tris-phosphate buffer (60mmolL(-1), pH 2.0) containing 40% (v/v) methanol was first filled into an uncoated fused-silica capillary (56cm, 50µm i.d.). The pretreated urine sample was loaded by electrokinetic injection (10kV, 250s). The stacking and separation were performed using Tris-phosphate buffer (30mmolL(-1), pH 3.0) containing 30% (v/v) methanol and 50mmolL(-1) sodium dodecyl sulfate (SDS) at -25kV. Detection was carried out at 195 and 214nm for carvedilol and propranolol, respectively. The suggested method is linear (r(2)≥0.997) over a dynamic range of 0.005-1µgmL(-1) in urine. The intra- and inter-day relative standard deviation and relative error values of the method were below 20%, which shows good precision and accuracy. Finally, this method was successfully applied to the analysis of real urine samples. PMID:26717845

  11. Au-catalyzed synthesis and characterisation of phase change Ge-doped Sb-Te nanowires by MOCVD

    NASA Astrophysics Data System (ADS)

    Longo, M.; Stoycheva, T.; Fallica, R.; Wiemer, C.; Lazzarini, L.; Rotunno, E.

    2013-05-01

    The interest in the Ge doped Sb-Te chalcogenide alloy is mainly related to phase change memory applications. In view of phase change device scaling and reduction of programming energy, Sb-Te nanowires (NWs) become an attractive option. In this work, in order to investigate their potential transferability to industrial implementation, the self-assembly of Sb2Te3 NWs and Ge-Sb-Te NWs with Ge content in the range of 1-13% (Ge doping) was studied by coupling the advantages of MOCVD and the Vapour-Liquid-Solid (VLS) mechanism. The results show the structural and compositional gradual changes occurring from pure Sb2Te3 NWs to the previously reported, stoichiometric Ge1Sb2Te4 NWs [[12] M. Longo et al., Nano Lett., 12 (2012) 1509]. The typical diameter of the obtained NWs resulted to be 50 nm, with lengths up to 3 μm. The typology of Au catalyst nanoislands influenced both the NW morphology and the Ge incorporation during the VLS self-assembly; the Ge metalorganic precursor partial pressure affected the NW morphology and their structure. Finally, TEM observations revealed that defect-free, monocrystalline Sb2Te3 and Ge-doped Sb-Te phase change NWs could be obtained.

  12. Simultaneous enantioselective quantification of fluoxetine and norfluoxetine in human milk by direct sample injection using 2-dimensional liquid chromatography-tandem mass spectrometry.

    PubMed

    Alvim-Jr, Joel; Lopes, Bianca Rebelo; Cass, Quezia Bezerra

    2016-06-17

    A two-dimensional liquid chromatography system coupled to triple quadrupole tandem mass spectrometer (2D LC-MS/MS) was employed for the simultaneously quantification of fluoxetine (FLX) and norfluoxetine (NFLX) enantiomers in human milk by direct injection of samples. A restricted access media of bovine serum albumin octadecyl column (RAM-BSAC18) was used in the first dimension for the milk proteins depletion, while an antibiotic-based chiral column was used in the second dimension. The results herein described show good selectivity, extraction efficiency, accuracy, and precision with limits of quantification in the order of 7.5ngmL(-1)for the FLX enantiomers and 10.0ngmL(-1) for NFLX enantiomers. Furthermore, it represents a practical tool in terms of sustainability for the sample preparation of such a difficult matrix. PMID:27208983

  13. Development of a novel high-throughput analytical methodology, multiple injection method, for quantitative analysis in drug metabolism and pharmacokinetic studies using liquid chromatography with tandem mass spectrometry.

    PubMed

    Tanaka, Yukari; Ohkawa, Tomoyuki; Yasui, Hiroyuki

    2011-01-01

    In this study, we developed a novel methodology, multiple injection method (MIM), for higher-throughput screening of compounds by liquid chromatography-tandem mass spectrometry (LC-MS/MS). MIM involves continuous injections of multiple samples containing a different compound respectively into the column, and then temporarily trapping of analytes at the column head in high-pressure liquid chromatography (HPLC) system. This is followed by elution of all the compounds from the column and detection of them by MS/MS. In this study, fexofenadine, verapamil, risperidone, ondansetron, and imipramine were used as model compounds to investigate the effectiveness of MIM in pharmacokinetic studies. Analytical time of validation samples of these model compounds could be shortened to one third by MIM, compared with the conventional method. In addition, both the accuracy and precision of MIM met the general criteria for quantitative analysis. The peak intensity was found to be unaffected by overlapping compounds even if they have wide range of ionization efficiency. As a result of the comparison of MIM and conventional method in the analysis of samples in pharmacokinetic studies using model compounds, no difference was shown in the quantification values. Consequently, this method has some advantages, reduction of analytical time, the improvement of sensitivity, and the simplicity of system, compared to the conventional methods. MIM should be very useful and powerful method for drug development without an additional hardware and can be used for the measurement of compounds in biological samples for pharmacokinetic studies, especially it greatly contributes to accelerating drug development in its discovery stages. PMID:21804204

  14. Direct large volume injection ultra-high performance liquid chromatography-tandem mass spectrometry determination of artificial sweeteners sucralose and acesulfame in well water.

    PubMed

    Wu, Minghuo; Qian, Yichao; Boyd, Jessica M; Hrudey, Steve E; Le, X Chris; Li, Xing-Fang

    2014-09-12

    Acesulfame (ACE) and sucralose (SUC) have become recognized as ideal domestic wastewater contamination indicators. Liquid chromatography-electrospray ionization mass spectrometry (LC-ESI-MS) analysis is commonly used; however, the sensitivity of SUC is more than two orders of magnitude lower than that of ACE, limiting the routine monitoring of SUC. To address this issue, we examined the ESI behavior of both ACE and SUC under various conditions. ACE is ionic in aqueous solution and efficiently produces simple [M-H](-) ions, but SUC produces multiple adduct ions, limiting its sensitivity. The formic acid (FA) adducts of SUC [M+HCOO](-) are sensitively and reproducibly generated under the LC-MS conditions. When [M+HCOO](-) is used as the precursor ion for SUC detection, the sensitivity increases approximately 20-fold compared to when [M-H](-) is the precursor ion. To further improve the limit of detection (LOD), we integrated the large volume injection approach (500μL injection) with ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS), which reduced the method detection limit (MDL) to 0.2ng/L for ACE and 5ng/L for SUC. To demonstrate the applicability of this method, we analyzed 100 well water samples collected in Alberta. ACE was detected in 24 wells at concentrations of 1-1534ng/L and SUC in 8 wells at concentrations of 65-541ng/L. These results suggest that wastewater is the most likely source of ACE and SUC impacts in these wells, suggesting the need for monitoring the quality of domestic well water. PMID:25085815

  15. Large-scale qualitative and quantitative characterization of components in Shenfu injection by integrating hydrophilic interaction chromatography, reversed phase liquid chromatography, and tandem mass spectrometry.

    PubMed

    Song, Yuelin; Zhang, Na; Shi, Shepo; Li, Jun; Zhang, Qian; Zhao, Yunfang; Jiang, Yong; Tu, Pengfei

    2015-08-14

    It is of great importance to clarify in depth the chemical composition, including qualitative and quantitative aspects, of traditional Chinese medicine (TCM) injection that contains a great number of hydrophilic and hydrophobic ingredients to guarantee its safe medication in clinic. Column-switching hydrophilic interaction liquid chromatography-reversed phase liquid chromatography coupled with tandem mass spectrometry (HILIC-RPLC-MS/MS) has been revealed to be advantageous at simultaneous measurement of compounds covering a broad polarity range. Previous studies have profiled the hydrophobic components, mainly aconite alkaloids and ginsenosides, in Shenfu Injection (SFI); however, the hydrophilic substances haven't been taken into account. In the present study, we aim to holistically characterize the hydrophilic constituents and to simultaneously quantitate both hydrophilic and hydrophobic components in SFI. A strategy integrating predefined multiple reaction monitoring, step-wise multiple ion monitoring, and enhanced product ion scans was proposed to universally screen the hydrophilic substances using a hybrid triple quadrupole-linear ion trap mass spectrometer. Structural identification was carried out by comparing with authentic compounds, analyzing MS(2) spectra, and referring to accessible databases (e.g., MassBank, METLIN and HMDB). A total of 157 hydrophilic compounds were detected from SFI, and 154 ones were identified as amino acids, nucleosides, organic acid, carbohydrates, etc. A column-switching HILIC-RPLC-MS/MS system was developed and validated for simultaneously quantitative analysis of 40 primary hydrophilic and hydrophobic ingredients in SFI, including eleven amino acids, nine nucleosides, nine aconite alkaloids, and eleven ginsenosides. Taken together, the findings obtained could provide meaningful information for comprehensively understanding the chemical composition and offer a reliable approach for the quality control of SFI. PMID:26143607

  16. Injection Principles from Combustion Studies in a 200-Pound-Thrust Rocket Engine Using Liquid Oxygen and Heptane

    NASA Technical Reports Server (NTRS)

    Heidmann, M. F.; Auble, C. M.

    1955-01-01

    The importance of atomizing and mixing liquid oxygen and heptane was studied in a 200-pound-thrust rocket engine. Ten injector elements were used with both steel and transparent chambers. Characteristic velocity was measured over a range of mixture ratios. Combustion gas-flow and luminosity patterns within the chamber were obtained by photographic methods. The results show that, for efficient combustion, the propellants should be both atomized and mixed. Heptane atomization controlled the combustion rate to a much larger extent than oxygen atomization. Induced mixing, however, was required to complete combustion in the smallest volume. For stable, high-efficiency combustion and smooth engine starts, mixing after atomization was most promising.

  17. Characterization of metabolites in rats after intravenous administration of salvianolic acid for injection by ultra-performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry.

    PubMed

    Miao, Jingzhuo; Sun, Wanyang; Huang, Jingyi; Liu, Xiaolin; Li, Shuming; Han, Xiaoping; Tong, Ling; Sun, Guoxiang

    2016-09-01

    It is an essential requirement to clarify the metabolites of traditional Chinese medicine (TCM) injections, which contain numerous ingredients, to assess their safe and effective use in clinic. Salvianolic acid for injection (SAFI), made from hydrophilic phenolic acids in Salvia miltiorrhiza Bunge, has been widely used for the treatment of cerebrovascular diseases, but information on its metabolites in vivo is still lacking. In the present study, we aimed to holistically characterize the metabolites of the main active ingredients in rat plasma, bile, urine and feces following intravenous administration of SAFI. An ultra-performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry (UPLC/Q-TOF-MS) method was developed. Combining information on retention behaviors, multistage mass spectra and literature data, a total of eight prototypes and 52 metabolites were tentatively characterized. Metabolites originated from rosmarinic acid and salvianolic acid B comprised the majority of identified compounds. Meanwhile, four metabolites derived from salvianolic acid D and five from salvianolic acid B are reported for the first time. This study revealed that methylation, sulfation and glucuronidation were the major metabolic pathways of phenolic acids in SAFI in vivo. Furthermore, the developed UPLC/Q-TOF-MS method could also benefit the metabolic investigation of extracts and preparations in TCM with hydrophilic ingredients. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26910272

  18. Simultaneous determination of seven ginsenosides in rat plasma by high-performance liquid chromatography coupled to time-of-flight mass spectrometry: application to pharmacokinetics of Shenfu injection.

    PubMed

    Li, Zhengguang; Zhang, Rui; Wang, Xiuping; Hu, Xiaofei; Chen, Yuguo; Liu, Qingfei

    2015-02-01

    A high-performance liquid chromatography coupled to time-of-flight mass spectrometry (HPLC-TOF MS) method was successfully developed and validated for the identification and determination of seven ginsenosides, Re , Rf , Rb1 , Rc , Rb2 , Ro and Rd , in a Chinese herbal preparation, Shenfu injection, and rat plasma. Based on the method, the pharmacokinetic profiles of the seven ginsenosides were investigated following intravenous administration of single dose of Shenfu injection to six rats. The established method had high linearity, selectivity, sensitivity, accuracy and precision. The pharmacokinetic results showed that Rb1 , Rc and Rb2 had similar pharmacokinetic profiles and relatively long half-life values (19.29 ± 6.36, 29.54 ± 22.91 and 35.60 ± 30.66 h). The half-lives of Rf and Rd were 4.21 ± 3.68 and 8.49 ± 5.20 h, respectively, indicating that they could be metabolized more rapidly than Rb1 , Rc and Rb2 . PMID:24935437

  19. A novel MOCVD reactor for growth of high-quality GaN-related LED layers

    NASA Astrophysics Data System (ADS)

    Hu, Shaolin; Liu, Sheng; Zhang, Zhi; Yan, Han; Gan, Zhiyin; Fang, Haisheng

    2015-04-01

    Gallium nitride (GaN), a direct bandgap semiconductor widely used in bright light-emitting diodes (LEDs), is mostly grown by metal-organic chemical vapor deposition (MOCVD) method. A good reactor design is critical for the production of high-quality GaN thin films. In this paper, we presented a novel buffered distributed spray (BDS) MOCVD reactor with vertical gas sprayers and horizontal gas inlets. Experiments based on a 36×2″ BDS reactor were conducted to examine influence of the process parameters, such as the operating pressure and the gas flow rate, on the growth efficiency and on the layer thickness uniformity. Transmission electron microscopy (TEM) and photoluminescence (PL) are further conducted to evaluate quality of the epitaxial layers and to check performance of the reactor. Results show that the proposed novel reactor is of high performance in growing high-quality thin films, including InGaN/GaN multiquantum wells (MQWs) structures.

  20. Structural and optical characterization of MOCVD-grown ZnO thin films

    NASA Astrophysics Data System (ADS)

    Pagni, O.; James, G. R.; Leitch, A. W. R.

    2004-03-01

    We report on the characterization of ZnO thin films grown by metal organic chemical vapor deposition (MOCVD) using diethyl zinc (DEZ) and tert-butanol (TBOH) as precursors. Substrate temperature proved to be a crucial factor in the crystallization process, as it vastly impacted the structural properties of the samples studied. Highly c-axis oriented films with large grain size (52 nm), low tensile strain (0.6%), uniform substrate coverage and a columnar structure devoid of hexagonal needles were successfully deposited on n-Si (100) substrates. The temperature-dependent luminescence spectra recorded confirmed the excellent quality of the material obtained in this work. Our results so far set TBOH apart as an outstanding oxygen source for the MOCVD growth of ZnO.

  1. RF plasma enhanced MOCVD of yttria stabilized zirconia thin films using octanedionate precursors and their characterization

    NASA Astrophysics Data System (ADS)

    Chopade, S. S.; Nayak, C.; Bhattacharyya, D.; Jha, S. N.; Tokas, R. B.; Sahoo, N. K.; Deo, M. N.; Biswas, A.; Rai, Sanjay; Thulasi Raman, K. H.; Rao, G. M.; Kumar, Niranjan; Patil, D. S.

    2015-11-01

    Yttria stabilized zirconia thin films have been deposited by RF plasma enhanced MOCVD technique on silicon substrates at substrate temperature of 400 °C. Plasma of precursor vapors of (2,7,7-trimethyl-3,5-octanedionate) yttrium (known as Y(tod)3), (2,7,7-trimethyl-3,5-octanedionate) zirconium (known as Zr(tod)4), oxygen and argon gases is used for deposition. To the best of our knowledge, plasma assisted MOCVD of YSZ films using octanediaonate precursors have not been reported in the literature so far. The deposited films have been characterized by GIXRD, FTIR, XPS, FESEM, AFM, XANES, EXAFS, EDAX and spectroscopic ellipsometry. Thickness of the films has been measured by stylus profilometer while tribological property measurement has been done to study mechanical behavior of the coatings. Characterization by different techniques indicates that properties of the films are dependent on the yttria content as well as on the structure of the films.

  2. Photoreflectance for in-situ characterization of MOCVD growth of semiconductors under micro-gravity conditions

    NASA Technical Reports Server (NTRS)

    Pollak, Fred H.

    1990-01-01

    A contactless electromodulation technique of photoreflectance (PR) was developed for in-situ monitoring of metal-organic chemical vapor deposition (MOCVD) semiconductor growth for micro-gravity applications. PR can be employed in a real MOCVD reactor including rotating substrate (approximately 500 rev/min) in flowing gases and through a diffuser plate. Measurements on GaAs and Ga(0.82)Al(0.18)As were made up to 690 C. The direct band gaps of In(x)Ga(1-x)As (x = 0.07 and 0.16) were evaluated up to 600 C. In order to address the question of real time measurement, the spectra of the direct gap of GaAs at 650 C was obtained in 30 seconds and 15 seconds seems feasible.

  3. Final report on LDRD project : outstanding challenges for AlGaInN MOCVD.

    SciTech Connect

    Mitchell, Christine Charlotte; Follstaedt, David Martin; Russell, Michael J.; Cross, Karen Charlene; Wang, George T.; Creighton, James Randall; Allerman, Andrew Alan; Koleske, Daniel David; Lee, Stephen Roger; Coltrin, Michael Elliott

    2005-03-01

    The AlGaInN material system is used for virtually all advanced solid state lighting and short wavelength optoelectronic devices. Although metal-organic chemical vapor deposition (MOCVD) has proven to be the workhorse deposition technique, several outstanding scientific and technical challenges remain, which hinder progress and keep RD&A costs high. The three most significant MOCVD challenges are: (1) Accurate temperature measurement; (2) Reliable and reproducible p-doping (Mg); and (3) Low dislocation density GaN material. To address challenge (1) we designed and tested (on reactor mockup) a multiwafer, dual wavelength, emissivity-correcting pyrometer (ECP) for AlGaInN MOCVD. This system simultaneously measures the reflectance (at 405 and 550 nm) and emissivity-corrected temperature for each individual wafer, with the platen signal entirely rejected. To address challenge (2) we measured the MgCp{sub 2} + NH{sub 3} adduct condensation phase diagram from 65-115 C, at typical MOCVD concentrations. Results indicate that it requires temperatures of 80-100 C in order to prevent MgCp{sub 2} + NH{sub 3} adduct condensation. Modification and testing of our research reactor will not be complete until FY2005. A new commercial Veeco reactor was installed in early FY2004, and after qualification growth experiments were conducted to improve the GaN quality using a delayed recovery technique, which addresses challenge (3). Using a delayed recovery technique, the dislocation densities determined from x-ray diffraction were reduced from 2 x 10{sup 9} cm{sup -2} to 4 x 10{sup 8} cm{sup -2}. We have also developed a model to simulate reflectance waveforms for GaN growth on sapphire.

  4. MOCVD growth of gallium nitride with indium surfactant

    NASA Astrophysics Data System (ADS)

    Won, Dong Jin

    In this thesis research, the effect of indium surfactant on Ga-polar and N-polar GaN films grown at 950 °C by MOCVD on various substrates such as Si-face SiC, bulk GaN, Si(111), and C-face SiC was studied to investigate the stress relaxation mechanism, structural, and optical properties of GaN films which were modified by the indium surfactant. The effect of indium surfactant on GaN films grown on SiC was studied first. In the 1.8 microm thick Ga-polar GaN films grown on lattice-mismatched Si-face SiC substrates utilizing indium surfactant at 950 °C, inverted hexagonal pyramid surface defects, so-called V-defects which consist of six (1011) planes, formed at threading dislocations on the GaN surface, which gave rise to the relaxation of compressive misfit stress in an elastic way. Simultaneously, enhanced surface mobility of Ga and N adatoms with indium surfactant lead to improved 2D growth, which may be contradictory to the formation of surface defects like V-defects. In order to find the driving force for V-defect formation in the presence of indium, a nucleation and growth model was developed, taking into consideration the strain, surface, and dislocation energies modified by indium surfactant. This model found that the V-defect formation can be energetically preferred since indium reduces the surface energy of the (1011) plane, which gives rise to the V-defect formation and growth that can overcome the energy barrier at the critical radius of the V-defect. These Ga-polar GaN films were found to be unintentionally doped with Si. Thus, an investigation into the effect of intentional Si doping at a constant TMIn flow rate on GaN films was also performed. Si turned out to be another important factor in the generation of V-defects because Si may be captured at the threading dislocation cores by forming Si -- N bonds, acting as a mask to locally prevent GaN growth. This behavior appeared to assist the initiation of the V-defect which enables V-defects to easily

  5. Progress in MOCVD growth of HgCdTe epilayers for HOT infrared detectors

    NASA Astrophysics Data System (ADS)

    Kebłowski, A.; Gawron, W.; Martyniuk, P.; Stepień, D.; Kolwas, K.; Piotrowski, J.; Madejczyk, P.; Kopytko, M.; Piotrowski, A.; Rogalski, A.

    2016-05-01

    In this paper we present progress in MOCVD growth of (100) HgCdTe epilayers achieved recently at the Institute of Applied Physics, Military University of Technology and Vigo System S.A. It is shown that MOCVD technology is an excellent tool in fabrication of different HgCdTe detector structures with a wide range of composition, donor/acceptor doping and without post grown annealing. Particular progress has been achieved in the growth of (100) HgCdTe epilayers for long wavelength infrared photoconductors operated in HOT conditions. The (100) HgCdTe photoconductor optimized for 13-μm attain detectivity equal to 6.5x109 Jones and therefore outperform its (111) counterpart. The paper also presents technological progress in fabrication of MOCVD-grown (111) HgCdTe barrier detectors. The barrier device performance is comparable with state-of-the-art of HgCdTe photodiodes. The detectivity of HgCdTe detectors is close to the value marked HgCdTe photodiodes. Dark current densities are close to the values given by "Rule 07".

  6. MOCVD for solar cells, a transition towards a chamberless inline process

    NASA Astrophysics Data System (ADS)

    Barrioz, V.; Monir, S.; Kartopu, G.; Lamb, D. A.; Brooks, W.; Siderfin, P.; Jones, S.; Clayton, A. J.; Irvine, S. J. C.

    2015-03-01

    MOCVD has been associated with batch processing of III-V opto-electronic devices for decades, with epitaxial structures deposited on up to 200 mm diameter wafers. Recent development in thin film PV has seen the gap in conversion efficiencies closing in on that of the commonly found multicrystalline Si wafer based PV. To further improve the conversion efficiency of thin film PV towards the theoretical limits of single junction solar cells requires a technique such as MOCVD with scalability potential. Preliminary results on the development of a chamberless inline process are reported for up to 15 cm wide float glass, progressively coating each layer in the CdTe solar cell as the heated substrate passes under each coating head in turn and entirely at atmospheric pressure. Emphasis is made on ensuring that the chamberless coating heads can be operated safely using a combination of nitrogen curtain flows and a balanced exhaust pressure system. Results are also presented on the exclusion of oxygen and moisture from the coating area, achieved using the same gas flow isolation process. This paper also reviews the achievements made to-date in the transfer of the high efficiency batch MOCVD produced CdTe solar cell to the chamberless inline process demonstrating device quality thin films deposition.

  7. Recent progress in MOCVD growth for thermoelectrically cooled HgCdTe medium wavelength infrared photodetectors

    NASA Astrophysics Data System (ADS)

    Gawron, W.; Martyniuk, P.; Kębłowski, A.; Kolwas, K.; Stępień, D.; Piotrowski, J.; Madejczyk, P.; Pędzińska, M.; Rogalski, A.

    2016-04-01

    The authors report on advanced metalorganic chemical vapour deposition (MOCVD) of Hg1-xCdxTe (HgCdTe) structures for high operating temperature, medium wavelength infrared (MWIR) detector application. MOCVD technology with wide range of composition and donor/acceptor doping and without post grown annealing was proved to be an excellent tool for HgCdTe heterostructure epitaxial growth used for uncooled photodetector design. The interdiffused multilayer process (IMP) technique was applied for the HgCdTe deposition. HgCdTe epilayers were grown at 350 °C with Hg source kept at 210 °C. The II/VI mole ratio was assumed in the range from 1.5 to 3 during CdTe/HgTe cycles of the IMP process. The MWIR detectors grown by MOCVD exhibit detectivity ∼7.3 × 1011 Jones at λPEAK = 3.5 μm and T = 230 K being determined by background limited photodetector (BLIP) condition.

  8. Polymer-supported ionic liquid solid phase extraction for trace inorganic and organic mercury determination in water samples by flow injection-cold vapor atomic absorption spectrometry.

    PubMed

    Escudero, Leticia B; Olsina, Roberto A; Wuilloud, Rodolfo G

    2013-11-15

    A simple and green technique named polymer-supported ionic liquid solid phase extraction (PSIL-SPE) was developed for mercury (Hg) species determination. Inorganic Hg (InHg) species was complexed with chloride ions followed by its introduction into a flow injection on-line system to quantitatively retain the anionic chlorocomplex (HgCl4(2-)) in a column packed with CYPHOS(®) IL 101-impregnated resin. The trapped InHg was then reduced with stannous chloride (SnCl2) and eluted with the same flow of reducing agent followed by cold vapor atomic absorption spectrometry (CV-AAS) detection. Organic mercury species (OrgHg) did not interact with the impregnated resin and were not retained into the column. Total concentration of OrgHg was evaluated by difference between total Hg and InHg concentration. A 95% extraction efficiency was achieved for InHg when the procedure was developed under optimal experimental conditions. The limit of detection obtained for preconcentration of 40 mL of sample was 2.4 ng L(-1) InHg. The relative standard deviation (RSD) was 2.7% (at 1 µg L(-1) InHg and n=10) calculated from the peak height of absorbance signals (Gaussian-shape and reproducible peaks). This work reports the first polymer-supported IL solid phase extraction approach implemented in a flow injection on-line system for determination of Hg species in mineral, tap and river water samples. PMID:24148384

  9. Simultaneous determination of citalopram, fluoxetine, paroxetine and their metabolites in plasma by temperature-programmed packed capillary liquid chromatography with on-column focusing of large injection volumes.

    PubMed

    Molander, P; Thomassen, A; Kristoffersen, L; Greibrokk, T; Lundanes, E

    2002-01-01

    A miniaturized temperature-programmed packed capillary liquid chromatographic method with on-column large volume injection and UV detection for the simultaneous determination of the three selective serotonin reuptake inhibitors citalopram, fluoxetine, paroxetine and their metabolites in plasma is presented. An established reversed-phase C8 solid-phase extraction method was employed, and the separation was carried out on a 3.5-microm Kromasil C18 0.32x300 mm column with temperature-programming from 35 (3 min) to 100 degrees C (10 min) at 1.3 degrees C/min. The mobile phase consisted of acetonitrile-45 mM ammonium formate (pH 4.00) (25:75, v/v). The non-eluting sample focusing solvent composition acetonitrile-45 mM ammonium formate (pH 4.00) (3:97, v/v) allowed injection of 10 microl or more of the plasma extracts. The method was validated for the concentration range 0.05-5.0 microM, and the calibration curves were linear with coefficients of correlation >0.993. The limits of quantification for the antidepressants and their metabolites ranged from 0.05 to 0.26 microM. The within and between assay precision of relative peak height were in the range 2-22 and 2-15% relative standard deviation, respectively. The within and between assay recoveries were in the 61-99 and 54-92% range for the antidepressants, respectively, and between 52-102 and 51-102% for the metabolites. PMID:11820298

  10. Flow injection of liquid samples to a mass spectrometer with ionization under vacuum conditions: a combined ion source for single-photon and electron impact ionization.

    PubMed

    Schepler, Claudia; Sklorz, Martin; Passig, Johannes; Famiglini, Giorgio; Cappiello, Achille; Zimmermann, Ralf

    2013-09-01

    Electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI), and atmospheric pressure photo-ionization (APPI) are the most important techniques for the ionization of liquid samples. However, working under atmospheric pressure conditions, all these techniques involve some chemical rather than purely physical processes, and therefore, side reactions often yield to matrix-dependent ionization efficiencies. Here, a system is presented that combines both soft single-photon ionization (SPI) and hard 70 eV electron impact ionization (EI) of dissolved compounds under vacuum conditions. A quadrupole mass spectrometer was modified to enable direct EI, a technique developed by Cappiello et al. to obtain library-searchable EI mass spectra as well as soft SPI mass spectra of sample solutions. An electron beam-pumped rare gas excimer lamp working at 126 nm was used as well as a focusable vacuum UV light source for single-photon ionization. Both techniques, EI and SPI, were applied successfully for flow injection experiments providing library-matchable EI fragment mass spectra and soft SPI mass spectra, showing dominant signals for the molecular ion. Four model compounds were analyzed: hexadecane, propofol, chlorpropham, and eugenol, with detection limits in the picomolar range. This novel combination of EI and SPI promises great analytical benefits, thanks to the possibility of combining database alignment for EI data and molecular mass information provided by SPI. Possible applications for the presented ionization technology system are a matrix-effect-free detection and a rapid screening of different complex mixtures without time-consuming sample preparation or separation techniques (e.g., for analysis of reaction solutions in combinatorial chemistry) or a switchable hard (EI) and soft (SPI) MS method as detection step for liquid chromatography. PMID:23812882

  11. Golimumab Injection

    MedlinePlus

    ... it.Golimumab injection comes in prefilled syringes and auto-injection devices for subcutaneous injection. Use each syringe ... method.Do not remove the cap from the auto-injection device or the cover from the prefilled ...

  12. Gaseous Fuel Injection Modeling using a Gaseous Sphere Injection Methodology

    SciTech Connect

    Hessel, R P; Aceves, S M; Flowers, D L

    2006-03-06

    The growing interest in gaseous fuels (hydrogen and natural gas) for internal combustion engines calls for the development of computer models for simulation of gaseous fuel injection, air entrainment and the ensuing combustion. This paper introduces a new method for modeling the injection and air entrainment processes for gaseous fuels. The model uses a gaseous sphere injection methodology, similar to liquid droplet in injection techniques used for liquid fuel injection. In this paper, the model concept is introduced and model results are compared with correctly- and under-expanded experimental data.

  13. Trace analysis of pesticides in paddy field water by direct injection using liquid chromatography-quadrupole-linear ion trap-mass spectrometry.

    PubMed

    Pareja, Lucía; Martínez-Bueno, M J; Cesio, Verónica; Heinzen, Horacio; Fernández-Alba, A R

    2011-07-29

    A multiresidue method was developed for the quantification and confirmation of 70 pesticides in paddy field water. After its filtration, water was injected directly in a liquid chromatograph coupled to a hybrid triple quadrupole-linear ion trap-mass spectrometer (QqLIT). The list of target analytes included organophosphates, phenylureas, sulfonylureas, carbamates, conazoles, imidazolinones and others compounds widely used in different countries where rice is cropped. Detection and quantification limits achieved were in the range from 0.4 to 80 ng L(-1) and from 2 to 150 ng L(-1), respectively. Correlation coefficients for the calibration curves in the range 0.1-50 μg L(-1) were higher than 0.99 except for diazinon (0.1-25 μg L(-1)). Only 9 pesticides presented more than 20% of signal suppression/enhancement, no matrix effect was observed in the studied conditions for the rest of the target pesticides. The method developed was used to investigate the occurrence of pesticides in 59 water samples collected in paddy fields located in Spain and Uruguay. The study shows the presence of bensulfuron methyl, tricyclazole, carbendazim, imidacloprid, tebuconazole and quinclorac in a concentration range from 0.08 to 7.20 μg L(-1). PMID:21397903

  14. Direct analysis of eight chlorophenols in urine by large volume injection online turbulent flow solid-phase extraction liquid chromatography with multiple wavelength ultraviolet detection.

    PubMed

    Guo, Feng; Liu, Qian; Shi, Jian-bo; Wei, Fu-sheng; Jiang, Gui-bin

    2014-02-01

    A novel method for determining eight chlorophenols (CPs) by large volume injection online turbulent flow solid-phase extraction high performance liquid chromatography in urine samples was developed. An aliquot of 1.0 mL urine sample could be analyzed directly after centrifugation. The analytes were preconcentrated online on a Turboflow C18-P SPE column, eluted in back-flush mode, and then separated on an Acclaim PA2 analytical column. Major parameters such as SPE column type, sample loading flow rate and elution time were optimized in detail. Eight CPs from monochlorophenol to pentacholophenol were measured by multiple-wavelength UV detection at four different wavelengths. The limits of detection (LODs) were between 0.5 and 2 ng/mL. The linearity range was from the limit of quantification to 1000 ng/mL for each compound, with the coefficients of determination (r(2)) ranging from 0.9990 to 0.9996. The reproducibility of intraday and interday relative standard deviations (RSDs) ranged from 0.6% to 4.5% (n=5). The method was successfully applied to analyze eight CPs in urine samples. Good recoveries, ranging from 76.3% to 122.9%, were obtained. This simple, sensitive and accurate method provides an alternative way to rapidly analyze and monitor CPs in urine samples, especially for matters of occupational exposure. PMID:24401430

  15. A simple and rapid screening method for sulfonamides in honey using a flow injection system coupled to a liquid waveguide capillary cell.

    PubMed

    Catelani, Tiago Augusto; Tóth, Ildikó Vargáné; Lima, José L F C; Pezza, Leonardo; Pezza, Helena Redigolo

    2014-04-01

    A rapid and simple screening method was developed for the determination of sulfonamides in honey samples by flow injection analysis (FIA) coupled to a liquid waveguide capillary cell. The proposed method is based on the reaction between sulfonamides and p-dimethylaminocinnamaldehyde (p-DAC) in the presence of sodium dodecylsulate (SDS) in dilute acid medium (hydrochloric acid), with the reaction product being measured spectrophotometrically at λ(max) = 565 nm. Experimental design methodology was used to optimize the analytical conditions. The proposed technique was applied to the determination of sulfonamides (sulfaquinoxaline, sulfadimethoxine, and sulfathiazole) in honey samples, in a concentration range from 6.00 × 10(-3) to 1.15 × 10(-1)mg L(-1). The detection (LOD) and quantification (LOQ) limits were 1.66 × 10(-3) and 5.54 × 10(-3)mg L(-1), respectively. Positive and false positive samples were also analyzed by a confirmatory HPLC method. The proposed system enables the screening of sulfonamides in honey samples with a low number of false positive results, with fast response therefore offers a new tool for consumer protection. PMID:24607139

  16. Simplifying and expanding the screening for peptides <2 kDa by direct urine injection, liquid chromatography, and ion mobility mass spectrometry.

    PubMed

    Thomas, Andreas; Görgens, Christian; Guddat, Sven; Thieme, Detlef; Dellanna, Frank; Schänzer, Wilhelm; Thevis, Mario

    2016-01-01

    The analysis of low-molecular-mass peptides in doping controls has become a mandatory aspect in sports drug testing and, thus, the number of samples that has to be tested for these analytes has been steadily increasing. Several peptides <2 kDa with performance-enhancing properties are covered by the list of prohibited substances of the World Anti-Doping Agency including Desmopressin, LH-RH, Buserelin, Triptorelin, Leuprolide, GHRP-1, GHRP-2, GHRP-3, GHRP-4, GHRP-5,GHRP-6, Alexamorelin, Ipamorelin, Hexarelin, ARA-290, AOD-9604, TB-500 and Anamorelin. With the presented method employing direct urine injection into a liquid chromatograph followed by ion-mobility time-of-flight mass spectrometry, a facile, specific and sensitive assay for the aforementioned peptidic compounds is provided. The accomplished sensitivity allows for limits of detection between 50 and 500 pg/mL and thus covers the minimum required performance level of 2 ng/mL accordingly. The method is precise (imprecision <20%) and linear in the estimated working range between 0 and 10 ng/mL. The stability of the peptides in urine was tested, and -20°C was found to be the appropriate storage temperature for sports drug testing. Finally, proof-of-concept was shown by analysing elimination study urine samples collected from individuals having administered GHRP-6, GHRP-2, or LHRH. PMID:26578461

  17. Dioctyl sulfosuccinate analysis in near-shore Gulf of Mexico water by direct-injection liquid chromatography-tandem mass spectrometry.

    PubMed

    Mathew, Johnson; Schroeder, David L; Zintek, Lawrence B; Schupp, Caitlin R; Kosempa, Michael G; Zachary, Adam M; Schupp, George C; Wesolowski, Dennis J

    2012-03-30

    Dioctyl sulfosuccinate (DOSS) was a major component of the dispersants most used in the 2010 Deepwater Horizon Oil Spill incident response. This analytical method quantifies salt water DOSS concentrations to a reporting limit of 20 μg/L, which was below the United States Environmental Protection Agency's (U.S. EPA) 40 μg/L DOSS Aquatic Life Benchmark. DOSS in Gulf of Mexico water samples were analyzed by direct-injection reversed-phase liquid chromatography-tandem mass spectrometry (LC-MS/MS). Sample preparation with 50% acetonitrile (ACN) enabled quantitative transfer of DOSS and increased DOSS response 20-fold by reducing aggregation. This increased sensitivity enabled the detection of a confirmatory transition over the calibration range of 10-200 μg/L. U.S. EPA Region 5 and Region 6 laboratories analyzed hundreds of near-shore surface Gulf of Mexico water samples, none contained more than the 20 ppb reporting limit. The matrix spike DOSS/deuterated surrogate (DOSS-D34) correlation of determination varied with mobile phase modifier (ammonium formate R(2)=0.95 and formic acid R(2)=0.27). Using ammonium formate, DOSS-D34 accurately measured DOSS matrix effect. The near-shore sodium concentrations varied more than 10,000-fold, but were not strongly correlated with DOSS recovery. DOSS detection by LC-MS/MS enabled rapid analysis which was valuable in guiding incident response. PMID:22365569

  18. Synthesis of (Hg,Pb)(Sr,Ba) 2Ca 2Cu 3O z superconducting films via MOCVD and PLD

    NASA Astrophysics Data System (ADS)

    Klimonsky, S. O.; Samoilenkov, S. V.; Gorbenko, O. Yu.; Emelianov, D. A.; Lyashenko, A. V.; Lee, S. R.; Kaul, A. R.; Tretyakov, Yu. D.; Andrianov, D. G.; Kalinov, A. V.; Voloshin, I. F.

    2002-12-01

    (0 0 1)-oriented Sr-containing (Hg,Pb)-1223 films have been synthesised for the first time using the two-step procedure. Hg-free precursor films with the thickness up to 1 μm have been deposited by metalorganic chemical vapor deposition (MOCVD) or pulsed infra-red laser ablation (PLD) and then the films were annealed in a mercury-containing atmosphere in sealed quartz ampoules. No post-annealing in oxygen was used. The phase composition of the PLD-derived films depended crucially on the deposition temperature of the precursor films. MOCVD-derived films contained only very small amounts of non-superconducting phases according to XRD. The Tc=118 K and j c(77 K,0.01 T)=2.5×10 6A/cm 2 have been measured for the MOCVD-derived samples.

  19. Significance of microstructure for a MOCVD-grown YSZ thin film gas sensor

    SciTech Connect

    Vetrone, J.; Foster, C.; Bai, G.

    1996-11-01

    The authors report the fabrication and characterization of a low temperature (200--400 C) thin film gas sensor constructed from a MOCVD-grown yttria-stabilized zirconia (YSZ) layer sandwiched between two platinum thin film electrodes. A reproducible gas-sensing response is produced by applying a cyclic voltage which generates voltammograms with gas-specific current peaks and shapes. Growth conditions are optimized for preparing YSZ films having dense microstructures, low leakage currents, and maximum ion conductivities. In particular, the effect of growth temperature on film morphology and texture is discussed and related to the electrical and gas-sensing properties of the thin film sensor device.

  20. Morphology of ZnO grown by MOCVD on sapphire substrates

    NASA Astrophysics Data System (ADS)

    Munuera, C.; Zúñiga-Pérez, J.; Rommeluere, J. F.; Sallet, V.; Triboulet, R.; Soria, F.; Muñoz-Sanjosé, V.; Ocal, C.

    2004-03-01

    A quantitative roughness and microstructural analysis of ZnO grown on sapphire by atmospheric metalorganic chemical vapor deposition (MOCVD) is presented. In order to investigate the influence of the substrate on the morphology, different sapphire orientations have been employed. Scanning force microscopy data have been analyzed for a variety of thicknesses to elucidate, if possible, the growth mechanisms involved in the growth process. Our study reveals significant differences between morphologies depending on whether the substrate surface exhibits steps (misoriented a-, c- and r-planes) or not ( m-plane); however, no major differences on the calculated roughness coefficients have been found.

  1. Investigation of GaP/Si Heteroepitaxy on MOCVD Prepared Si(100) Surfaces

    SciTech Connect

    Warren, Emily L.; Kibbler, Alan E.; France, Ryan M.; Norman, Andrew G.; Olson, Jerry M.; McMahon, William E.

    2015-06-14

    Antiphase-domain (APD) free growth of GaP on Si has been achieved on Si surfaces prepared in situ by etching with AsH3. The pre-nucleation AsH3 etching removes O and C contaminants at a relatively low temperature, and creates a single-domain arsenic-terminated Si surface. The As-As dimer rows are all parallel to the step edges, and subsequent GaP growth by MOCVD retains this dimerization orientation. Both LEED and TEM indicate that the resulting epilayer is APD-free, and could thereby serve as a template for III-V/Si multijunction solar cells.

  2. Suspect screening and target quantification of multi-class pharmaceuticals in surface water based on large-volume injection liquid chromatography and time-of-flight mass spectrometry.

    PubMed

    Vergeynst, Leendert; Van Langenhove, Herman; Joos, Pieter; Demeestere, Kristof

    2014-04-01

    The ever-growing number of emerging micropollutants such as pharmaceuticals requests rapid and sensitive full-spectrum analytical techniques. Time-of-flight high-resolution mass spectrometry (TOF-HRMS) is a promising alternative for the state-of-the-art tandem mass spectrometry instruments because of its ability to simultaneously screen for a virtually unlimited number of suspect analytes and to perform target quantification. The challenge for such suspect screening is to develop a strategy, which minimizes the false-negative rate without restraining numerous false-positives. At the same time, omitting laborious sample enrichment through large-volume injection ultra-performance liquid chromatography (LVI-UPLC) avoids selective preconcentration. A suspect screening strategy was developed using LVI-UPLC-TOF-MS aiming the detection of 69 multi-class pharmaceuticals in surface water without the a priori availability of analytical standards. As a novel approach, the screening takes into account the signal-intensity-dependent accurate mass error of TOF-MS, hereby restraining 95 % of the measured suspect pharmaceuticals present in surface water. Application on five Belgian river water samples showed the potential of the suspect screening approach, as exemplified by a false-positive rate not higher than 15 % and given that 30 out of 37 restrained suspect compounds were confirmed by the retention time of analytical standards. Subsequently, this paper discusses the validation and applicability of the LVI-UPLC full-spectrum HRMS method for target quantification of the 69 pharmaceuticals in surface water. Analysis of five Belgian river water samples revealed the occurrence of 17 pharmaceuticals in a concentration range of 17 ng L(-1) up to 3.1 μg L(-1). PMID:24633561

  3. Direct injection of tissue extracts in liquid chromatography/tandem mass spectrometry for the determination of pharmaceuticals and other contaminants of emerging concern in mollusks.

    PubMed

    Bayen, Stéphane; Estrada, Elvagris Segovia; Juhel, Guillaume; Kelly, Barry C

    2015-07-01

    In the present study, a straightforward approach was validated for the analysis of pharmaceutically active compounds and endocrine-disrupting chemicals in the mollusk tissues, with a focus on two species commonly consumed in Southeast Asia (green mussels: Perna viridis; lokan clams: Polymesoda expansa). This approach relied on a simple solvent extraction (shaker table) followed by direct injection in liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). This "cleanup-free" approach was made possible by the use of isotopically labeled surrogates (to correct for matrix effects) and a post-column switch on the LC-MS/MS system (to remove potential interfering material). Altogether, relative recoveries were satisfactory for 36 out of 44 compounds (26-163% range) and excellent for 27 out of 44 compounds (79-107% range). Method detection limits (MDLs) were usually expressed in the nanogram per gram wet weight (ww) range and below. The method was successfully applied to 16 batches of green mussel samples collected in Singapore coastal waters. Trace levels of six compounds were detected in mussel tissues: caffeine (0.22-1.55 ng g(-1) ww), carbamazepine (

  4. Analysis of thiabendazole, 4-tert-octylphenol and chlorpyrifos in waste and sewage water by direct injection – micellar liquid chromatography.

    PubMed

    Romero-Cano, Ricard; Kassuha, Diego; Peris-Vicente, Juan; Roca-Genovés, Pasqual; Carda-Broch, Samuel; Esteve-Romero, Josep

    2015-03-01

    A micellar liquid chromatographic method has been developed for the simultaneous quantification of the pesticides thiabendazole and chlorpyrifos, as well as an alkylphenol, which is included in pesticide formulations, i.e., 4-tert-octylphenol, in water. A sample was filtered and directly injected, avoiding large extraction steps using toxic solvents, thus expediting the experimental procedure. The contaminants were eluted without interferences in <17 min, using a mobile phase of 0.15 M sodium dodecyl sulfate – 6% 1-pentanol buffered at pH 3, running through a C18 column at 1 mL min(-1) under the isocratic mode. This optimal mobile phase was selected using a statistical approach, which considers the retention factor, efficiency and peak shape of the analytes measured in only a few mobile phases. The detection was carried out by measuring absorbance at 220 nm. The method was successfully validated in terms of specificity, calibration range (0.5-10 mg L(-1)), linearity (r(2) > 0.994), limit of detection and quantification (0.2-0.3; and 0.5-0.8 mg L(-1), respectively), intra- and interday accuracy (95.2-102.9%), precision (<8.3%), and ruggedness (<9.3%). The stability in storage conditions (at least 14 days) was studied. The method was safe, inexpensive, produced little pollutant and has a short analysis time, thus it is useful for the routine analysis of samples. Finally, the method was applied to analyse wastewater from the fruit-processing industry, wastewater treatment plants, and in sewage water belonging to the Castelló area (Spain). The results were similar to those obtained by an already reliable method. PMID:25604004

  5. Determination of salivary cotinine through solid phase extraction using a bead-injection lab-on-valve approach hyphenated to hydrophilic interaction liquid chromatography.

    PubMed

    Ramdzan, Adlin N; Barreiros, Luísa; Almeida, M Inês G S; Kolev, Spas D; Segundo, Marcela A

    2016-01-15

    Cotinine, the first metabolite of nicotine, is often used as a biomarker in the monitoring of environmental tobacco smoke (ETS) exposure due to its long half-life. This paper reports on the development of an at-line automatic micro-solid phase extraction (μSPE) method for the determination of salivary cotinine followed by its analysis via hydrophilic interaction liquid chromatography (HILIC). The SPE methodology is based on the bead injection (BI) concept in a mesofluidic lab-on-valve (LOV) flow system to automatically perform all SPE steps. Three commercially available reversed-phase sorbents were tested, namely, Oasis HLB, Lichrolut EN and Focus, and the spherically shaped sorbents (i.e., Oasis HLB and Focus) provided better packing within the SPE column and hence higher column efficiency. An HILIC column was chosen based on its potential for achieving higher sensitivity and better retention of polar compounds such as cotinine. The method uses an isocratic program with acetonitrile:100mM ammonium acetate buffer, pH 5.8 in 95:5 v/v ratio as the mobile phase at a flow rate of 1.0 mL min(-1). Using this approach, the linear calibration range was from 10 to 1000 ng which corresponded to 5-500 μg L(-1). The corresponding μSPE-BI-LOV system was proven to be reliable in the handing and analysis of viscous biological samples such as saliva, achieving a sampling rate of 6h(-1) and a limit of detection and quantification of 1.5 and 3μgL(-1), respectively. PMID:26747690

  6. Golimumab Injection

    MedlinePlus

    ... at golimumab injection before injecting it. Check the expiration date printed on the auto-injection device or carton and do not use the medication if the expiration date has passed. Do not use a prefilled syringe ...

  7. A novel needleless liquid jet injection methodology for improving direct cardiac gene delivery: An optimization of parameters, AAV mediated therapy and investigation of host responses in ischemic heart failure

    NASA Astrophysics Data System (ADS)

    Fargnoli, Anthony Samuel

    Heart disease remains the leading cause of mortality and morbidity worldwide, with 22 million new patients diagnosed annually. Essentially, all present therapies have significant cost burden to the healthcare system, yet fail to increase survival rates. One key employed strategy is the genetic reprogramming of cells to increase contractility via gene therapy, which has advanced to Phase IIb Clinical Trials for advanced heart failure patients. It has been argued that the most significant barrier preventing FDA approval are resolving problems with safe, efficient myocardial delivery, whereby direct injection in the infarct and remote tissue areas is not clinically feasible. Here, we aim to: (1) Improve direct cardiac gene delivery through the development of a novel liquid jet device approach (2) Compare the new method against traditional IM injection with two different vector constructions and evaluate outcome (3) Evaluate the host response resulting from both modes of direct cardiac injection, then advance a drug/gene combination with controlled release nanoparticle formulations.

  8. Fabrication of GaN nanotubular material using MOCVD with aluminum oxide membrane

    NASA Astrophysics Data System (ADS)

    Jung, Woo-Gwang; Jung, Se-Hyuck; Kung, Patrick; Razeghi, Manijeh

    2006-02-01

    GaN nanotubular material is fabricated with aluminum oxide membrane in MOCVD. SEM, XRD, TEM and PL are employed to characterize the fabricated GaN nanotubular material. An aluminum oxide membrane with ordered nano holes is used as template. Gallium nitride is deposited at the inner wall of the nano holes in aluminum oxide template, and the nanotubular material with high aspect ratio is synthesized using the precursors of TMG and ammonia gas. Optimal synthesis condition in MOCVD is obtained successfully for the gallium nitride nanotubular material in this research. The diameter of GaN nanotube fabricated is approximately 200 ~ 250 nm and the wall thickness is about 40 ~ 50 nm. GaN nanotubular material consists of numerous fine GaN particulates with sizes ranging 15 to 30 nm. The composition of gallium nitride is confirmed to be stoichiometrically 1:1 for Ga and N by EDS. XRD and TEM analyses indicate that grains in GaN nanotubular material have nano-crystalline structure. No blue shift is found in the PL spectrum on the GaN nanotubular material fabricated in aluminum oxide template.

  9. Fabrication of GaN nanotubular material using MOCVD with an aluminium oxide membrane

    NASA Astrophysics Data System (ADS)

    Jung, Woo-Gwang; Jung, Se-Hyuck; Kung, Patrick; Razeghi, Manijeh

    2006-01-01

    GaN nanotubular material is fabricated with an aluminium oxide membrane in MOCVD. SEM, XRD, TEM and PL are employed to characterize the fabricated GaN nanotubular material. An aluminium oxide membrane with ordered nanoholes is used as a template. Gallium nitride is deposited at the inner wall of the nanoholes in the aluminium oxide template, and the nanotubular material with high aspect ratio is synthesized using the precursors of TMG and ammonia gas. Optimal synthesis conditions in MOCVD are obtained successfully for the gallium nitride nanotubular material in this research. The diameter of the GaN nanotube fabricated is approximately 200-250 nm and the wall thickness is about 40-50 nm. GaN nanotubular material consists of numerous fine GaN particulates with size range 15-30 nm. The composition of gallium nitride is confirmed to be stoichiometrically 1:1 for Ga and N by EDS. XRD and TEM analyses indicate that the grains in GaN nanotubular material have a nano-crystalline structure. No blue shift is found in the PL spectrum on the GaN nanotubular material fabricated in an aluminium oxide template.

  10. Measurement of elemental speciation by liquid chromatography -- inductively coupled plasma mass spectrometry (LC-ICP-MS) with the direct injection nebulizer (DIN)

    SciTech Connect

    Shum, S.

    1993-05-01

    This thesis is divided into 4 parts: elemental speciation, speciation of mercury and lead compounds by microbore column LC-ICP-MS with direct injection nebulization, spatially resolved measurements of size and velocity distributions of aerosol droplets from a direct injection nebulizer, and elemental speciation by anion exchange and size exclusion chromatography with detection by ICP-MS with direct injection nebulization. Tabs, figs, refs.

  11. Determination of human-use pharmaceuticals in filtered water by direct aqueous injection: high-performance liquid chromatography/tandem mass spectrometry

    USGS Publications Warehouse

    Furlong, Edward T.; Noriega, Mary C.; Kanagy, Christopher J.; Kanagy, Leslie K.; Coffey, Laura J.; Burkhardt, Mark R.

    2014-01-01

    This report describes a method for the determination of 110 human-use pharmaceuticals using a 100-microliter aliquot of a filtered water sample directly injected into a high-performance liquid chromatograph coupled to a triple-quadrupole tandem mass spectrometer using an electrospray ionization source operated in the positive ion mode. The pharmaceuticals were separated by using a reversed-phase gradient of formic acid/ammonium formate-modified water and methanol. Multiple reaction monitoring of two fragmentations of the protonated molecular ion of each pharmaceutical to two unique product ions was used to identify each pharmaceutical qualitatively. The primary multiple reaction monitoring precursor-product ion transition was quantified for each pharmaceutical relative to the primary multiple reaction monitoring precursor-product transition of one of 19 isotope-dilution standard pharmaceuticals or the pesticide atrazine, using an exact stable isotope analogue where possible. Each isotope-dilution standard was selected, when possible, for its chemical similarity to the unlabeled pharmaceutical of interest, and added to the sample after filtration but prior to analysis. Method performance for each pharmaceutical was determined for reagent water, groundwater, treated drinking water, surface water, treated wastewater effluent, and wastewater influent sample matrixes that this method will likely be applied to. Each matrix was evaluated in order of increasing complexity to demonstrate (1) the sensitivity of the method in different water matrixes and (2) the effect of sample matrix, particularly matrix enhancement or suppression of the precursor ion signal, on the quantitative determination of pharmaceutical concentrations. Recovery of water samples spiked (fortified) with the suite of pharmaceuticals determined by this method typically was greater than 90 percent in reagent water, groundwater, drinking water, and surface water. Correction for ambient environmental

  12. OPTIMIZED DETERMINATION OF TRACE JET FUEL VOLATILE ORGANIC COMPOUNDS IN HUMAN BLOOD USING IN-FIELD LIQUID-LIQUID EXTRACTION WITH SUBSEQUENT LABORATORY GAS CHROMATOGRAPHIC-MASS SPECTROMETRIC ANALYSIS AND ON-COLUMN LARGE VOLUME INJECTION

    EPA Science Inventory

    A practical and sensitive method to assess volatile organic compounds (VOCs) from JP-8 jet fuel in human whole blood was developed by modifying previously established liquid-liquid extraction procedures, optimizing extraction times, solvent volume, specific sample processing te...

  13. Porous media heat transfer for injection molding

    DOEpatents

    Beer, Neil Reginald

    2016-05-31

    The cooling of injection molded plastic is targeted. Coolant flows into a porous medium disposed within an injection molding component via a porous medium inlet. The porous medium is thermally coupled to a mold cavity configured to receive injected liquid plastic. The porous medium beneficially allows for an increased rate of heat transfer from the injected liquid plastic to the coolant and provides additional structural support over a hollow cooling well. When the temperature of the injected liquid plastic falls below a solidifying temperature threshold, the molded component is ejected and collected.

  14. Insulin Aspart (rDNA Origin) Injection

    MedlinePlus

    ... a solution (liquid) and a suspension (liquid with particles that will settle on standing) to inject subcutaneously ( ... it is colored, cloudy, thickened, or contains solid particles. If you are using insulin aspart suspension, the ...

  15. Sequential injection-bead injection-lab-on-valve coupled to high-performance liquid chromatography for online renewable micro-solid-phase extraction of carbamate residues in food and environmental samples.

    PubMed

    Vichapong, Jitlada; Burakham, Rodjana; Srijaranai, Supalax; Grudpan, Kate

    2011-07-01

    A sequential injection-bead injection-lab-on-valve system was hyphenated to HPLC for online renewable micro-solid-phase extraction of carbamate insecticides. The carbamates studied were isoprocarb, methomyl, carbaryl, carbofuran, methiocarb, promecarb, and propoxur. LiChroprep(®) RP-18 beads (25-40 μm) were employed as renewable sorbent packing in a microcolumn situated inside the LOV platform mounted above the multiposition valve of the sequential injection system. The analytes sorbed by the microcolumn were eluted using 80% acetonitrile in 0.1% acetic acid before online introduction to the HPLC system. Separation was performed on an Atlantis C-18 column (4.6 × 150 mm, 5 μm) utilizing gradient elution with a flow rate of 1.0 mL/min and a detection wavelength at 270 nm. The sequential injection system offers the means of performing automated handling of sample preconcentration and matrix removal. The enrichment factors ranged between 20 and 125, leading to limits of detection (LODs) in the range of 1-20 μg/L. Good reproducibility was obtained with relative standard deviations of <0.7 and 5.4% for retention time and peak area, respectively. The developed method has been successfully applied to the determination of carbamate residues in fruit, vegetable, and water samples. PMID:21557471

  16. MOCVD Growth of High-Quality and Density-Tunable GaAs Nanowires on ITO Catalyzed by Au Nanoparticles Deposited by Centrifugation.

    PubMed

    Wu, Dan; Tang, Xiaohong; Yoon, Ho Sup; Wang, Kai; Olivier, Aurelien; Li, Xianqiang

    2015-12-01

    High-quality and density-tunable GaAs nanowires (NWs) are directly grown on indium tin oxide (ITO) using Au nanoparticles (NPs) as catalysts by metal organic chemical vapor deposition (MOCVD). Au catalysts were deposited on ITO glass substrate using a centrifugal method. Compared with the droplet-only method, high-area density Au NPs were uniformly distributed on ITO. Tunable area density was realized through variation of the centrifugation time, and the highest area densities were obtained as high as 490 and 120 NP/μm(2) for 10- and 20-nm diameters of Au NPs, respectively. Based on the vapor-liquid-solid growth mechanism, the growth rates of GaAs NWs at 430 °C were 18.2 and 21.5 nm/s for the highest area density obtained of 10- and 20-nm Au NP-catalyzed NWs. The growth rate of the GaAs NWs was reduced with the increase of the NW density due to the competition of precursor materials. High crystal quality of the NWs was also obtained with no observable planar defects. 10-nm Au NP-induced NWs exhibit wurtzite structure whereas zinc-blende is observed for 20-nm NW samples. Controllable density and high crystal quality of the GaAs NWs on ITO demonstrate their potential application in hybrid a solar cell. PMID:26487507

  17. Monitoring and Controlling of Strain During MOCVD of AlGaN for UV Optoelectronics

    SciTech Connect

    Han, J.; Crawford, M.H.; Shul, R.J.; Hearne, S.J.; Chason, E.; Figiel, J.J.; Banas, M.

    1999-01-14

    The grown-in tensile strain, due to a lattice mismatch between AlGaN and GaN, is responsible for the observed cracking that seriously limits the feasibility of nitride-based ultraviolet (UV) emitters. We report in-situ monitoring of strain/stress during MOCVD of AlGaN based on a wafer-curvature measurement technique. The strain/stress measurement confirms the presence of tensile strain during growth of AlGaN pseudomorphically on a thick GaN layer. Further growth leads to the onset of stress relief through crack generation. We find that the growth of AlGaN directly on low-temperature (LT) GaN or AlN buffer layers results in a reduced and possibly controllable strain.

  18. Low ohmic contact AlN/GaN HEMTs grown by MOCVD

    NASA Astrophysics Data System (ADS)

    Guodong, Gu; Shaobo, Dun; Yuanjie, Lü; Tingting, Han; Peng, Xu; Jiayun, Yin; Zhihong, Feng

    2013-11-01

    AlN/GaN high-electron-mobility transistors (HEMTs) on SiC substrates were fabricated by metal-organic chemical vapor deposition (MOCVD) and then characterized. An Si/Ti/Al/Ni/Au stack was used to reduce ohmic contact resistance (0.33 Ω·mm) at a low annealing temperature. The fabricated devices exhibited a maximum drain current density of 1.07 A/mm (VGS = 1 V) and a maximum peak extrinsic transconductance of 340 mS/mm. The off-state breakdown voltage of the device was 64 V with a gate—drain distance of 1.9 μm. The current gain extrinsic cutoff frequency fT and the maximum oscillation frequency fmax were 36 and 80 GHz with a 0.25 μm gate length, respectively.

  19. Raman spectra of MOCVD-grown ferroelectric PbTiO{sub 3} thin films

    SciTech Connect

    Feng, Z.C.; Kwak, B.S. |; Erbil, A.; Boatner, L.A.

    1993-12-31

    Lead titanate (PbTiO{sub 3}) has been grown on a variety of substrates by using the metalorganic chemical vapor deposition (MOCVD) technique. The substrates employed included Si, GaAs, MgO, fused-quartz, sapphire, and KTaO{sub 3}. Raman spectra from these heterostructures are presented. All of the films exhibited the strong, narrow spectral features characteristic of PbTiO{sub 3} perovskite-oxide crystals and indicative of high crystalline quality. The temperature behavior of the Raman modes, including the so-called ``soft-mode,`` was studied. A ``difference-Raman`` technique was used to distinguish the contributions of the PbTiO{sub 3} film and the KTaO{sub 3} single-crystal substrate.

  20. Microstructure of GaN Grown on (111) Si by MOCVD

    SciTech Connect

    Fleming, J.G.; Follstaedt, D.M.; Han, J.; Provencio, P.

    1998-12-17

    Gallium nitride was grown on (111) Si by MOCVD by depositing an AIN buffer at 108O"C and then GaN at 1060 {degrees}C. The 2.2pm layer cracked along {1-100} planes upon cooling to room temperature, but remained adherent. We were able to examine the microstructure of material between cracks with TEM. The character and arrangement of dislocation are much like those of GaN grown on Al{sub 2}O{sub 3}: -2/3 pure edge and - 1/3 mixed (edge + screw), arranged in boundaries around domains of GaN that are slightly disoriented with respect to neighboring material. The 30 nm AIN buffer is continuous, indicating that AIN wets the Si, in contrast to GaN on Al{sub 2}O{sub 3}.

  1. The role of impurities in LP-MOCVD grown gallium nitride

    SciTech Connect

    Hwang, C.Y.; Li, Y.; Schurman, M.J.; Mayo, W.E.; Lu, Y.; Stall, R.A.

    1996-11-01

    The authors have investigated the relationship of the Hall electron mobility to the background carrier concentration in low pressure MOCVD grown GaN. The highest electron mobility (400 cm{sup 2}/V{center_dot}s) of the unintentionally doped GaN was obtained at a carrier concentration of 1 {times} 10{sup 17} cm{sup {minus}3} and samples with carrier concentrations lower than this exhibited lower mobilities. SIMS analysis shows C and O concentrations in the range of 2--3 {times} 10{sup 16} cm{sup {minus}3} and H in the 2--3 {times} 10{sup 17} cm{sup {minus}3} range. Structural defects, stoichiometry and impurities in the GaN films grown under different conditions are investigated to understand their relationship to the electron Hall mobilities. In particular, different growth temperatures and pressures were used to grow undoped GaN and modify the background doping effect of the impurities.

  2. Three-dimensional modelling of horizontal chemical vapor deposition. I - MOCVD at atmospheric pressure

    NASA Technical Reports Server (NTRS)

    Ouazzani, Jalil; Rosenberger, Franz

    1990-01-01

    A systematic numerical study of the MOCVD of GaAs from trimethylgallium and arsine in hydrogen or nitrogen carrier gas at atmospheric pressure is reported. Three-dimensional effects are explored for CVD reactors with large and small cross-sectional aspect ratios, and the effects on growth rate uniformity of tilting the susceptor are investigated for various input flow rates. It is found that, for light carrier gases, thermal diffusion must be included in the model. Buoyancy-driven three-dimensional flow effects can greatly influence the growth rate distribution through the reactor. The importance of the proper design of the lateral thermal boundary conditions for obtaining layers of uniform thickness is emphasized.

  3. Free-standing GaAs nanowires growth on ITO glass by MOCVD

    NASA Astrophysics Data System (ADS)

    Wu, D.; Tang, X. H.; Olivier, A.; Li, X. Q.

    2015-04-01

    GaAs nanowires (NWs) are directly grown on indium tin oxide (ITO) glass substrate by metalorganic chemical vapour deposition (MOCVD), using Au nanoparticles (NPs) as catalyst. By functionalization of the ITO glass and optimization of the Au NPs deposition time, the Au NPs area density deposited on the ITO glass reaches 92 NP μm-2. Uniform and free-standing GaAs NWs without kinking or worm-shape defects have been grown at 430 °C. More than 96% of the NWs have tilt angles larger than 45° with respect of the substrate. The effects of the growth temperature and the Au NPs size on the GaAs NWs growth rate, the NW diameter, and tapering effect are investigated. These results of GaAs NWs growth are the essential step for understanding III-V NWs integration on transparent conductive oxide coated low cost substrate and developing high efficiencyhybrid solar cells.

  4. Growth of AlN nanostructure on GaN using MOCVD

    SciTech Connect

    Loganathan, R.; Ramesh, R.; Jayasakthi, M.; Prabakaran, K.; Kuppulingam, B.; Sankaranarayanan, M.; Balaji, M.; Arivazhagan, P.; Singh, Subra; Baskar, K.

    2015-06-24

    Aluminum nitride (AlN) nanowalls have been epitaxially grown on dislocation assisted GaN/Al{sub 2}O{sub 3} template by metal organic chemical vapor deposition (MOCVD) without any help of metal catalysts. A large number of nanowalls with thicknesses of 1.5-2.0 µm and height 400 nm have been deposited. The AlN nanowalls were found to have a preferred c-axis oriented with a hexagonal crystal structure. The AlN nanowalls and GaN/Al{sub 2}O{sub 3} template have been characterize at room temperature photoluminescence (PL) and high resolution X-ray diffraction (HRXRD)

  5. Enhanced flux pinning in MOCVD-YBCO films through Zr-additions:Systematic feasibility studies

    SciTech Connect

    Aytug, Tolga; Paranthaman, Mariappan Parans; Specht, Eliot D; Kim, Kyunghoon; Zhang, Yifei; Cantoni, Claudia; Zuev, Yuri L; Goyal, Amit; Christen, David K; Maroni, Victor A.

    2009-01-01

    Systematic effects of Zr additions on the structural and flux pinning properties of YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} (YBCO) films deposited by metal-organic chemical vapor deposition (MOCVD) have been investigated. Detailed characterization, conducted by coordinated transport, x-ray diffraction, scanning and transmission electron microscopy analyses, and imaging Raman microscopy have revealed trends in the resulting property/performance correlations of these films with respect to varying mole percentages (mol%) of added Zr. For compositions {le} 7.5 mol%, Zr additions lead to improved in-field critical current density, as well as extra correlated pinning along the c-axis direction of the YBCO films via the formation of columnar, self-assembled stacks of BaZrO{sub 3} nanodots.

  6. Enhanced flux pinning in MOCVD-YBCO films through Zr additions : systematic feasibility studies.

    SciTech Connect

    Aytug, T.; Paranthaman, M.; Specht, E. D.; Zhang, Y.; Kim, K.; Zuev, Y. L.; Cantoni, C.; Goyal, A.; Christen, D. K.; Maroni, V. A.; Chen, Y.; Selvamanickam, V.; ORNL; SuperPower, Inc.

    2010-01-01

    Systematic effects of Zr additions on the structural and flux pinning properties of YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} (YBCO) films deposited by metal-organic chemical vapor deposition (MOCVD) have been investigated. Detailed characterization, conducted by coordinated transport, x-ray diffraction, scanning and transmission electron microscopy analyses, and imaging Raman microscopy have revealed trends in the resulting property/performance correlations of these films with respect to varying mole percentages (mol%) of added Zr. For compositions {le} 7.5 mol%, Zr additions lead to improved in-field critical current density, as well as extra correlated pinning along the c-axis direction of the YBCO films via the formation of columnar, self-assembled stacks of BaZrO{sub 3} nanodots.

  7. A mathematical representation of a modified stagnation flow reactor for MOCVD applications

    NASA Astrophysics Data System (ADS)

    Dilawari, A. H.; Szekely, J.

    1991-02-01

    Computed results are presented describing the behavior of a modified stagnation point reactor for an MOCVD system, employing a showerhead type gas distributor. The principal findings of the work are the following: (a) By this arrangement, it is possible to obtain a very high spatial uniformity in the deposition rate, in cases better than 0.35% for a five inch diameter wafer. (b) Both the absolute values of the gas velocity and the standoff distance were found to play a critical role in affecting the uniformity of the deposition rate. Indeed a small standoff distance was found to be an essential ingredient in obtaining a good spatial uniformity of the deposit. (c) "An upside down" orientation was found to be helpful in minimizing thermal natural convection and a further refinement was found to be possible by imposing a desired radial distribution on the gas inlet velocity profile.

  8. Medroxyprogesterone Injection

    MedlinePlus

    ... Medroxyprogesterone subcutaneous injection is also used to treat endometriosis (a condition in which the type of tissue ... parts of the body in women who have endometriosis. Medroxyprogesterone injection is a very effective method of ...

  9. Chloramphenicol Injection

    MedlinePlus

    Chloramphenicol injection is used to treat certain types of serious infections caused by bacteria when other antibiotics cannot be used. Chloramphenicol injection is in a class of medications called ...

  10. Levoleucovorin Injection

    MedlinePlus

    ... injection is used to prevent harmful effects of methotrexate (Rheumatrex, Trexall) when methotrexate is used to to treat certain types of ... people who have accidentally received an overdose of methotrexate or similar medications. Levoleucovorin injection is in a ...