Science.gov

Sample records for liquid phase cyclohexane

  1. Mild ring-opening coupling of liquid-phase cyclohexane to diesel components using sulfated metal oxides.

    PubMed

    Mao, Wei; Ma, Hongzhu; Wang, Bo

    2010-04-15

    We have investigated a mild simple synthesis method for ring-opening coupling of liquid-phase cyclohexane to diesel components using various sulfated metal oxides [SO(4)(2-)/Fe(2)O(3) (SF), SO(4)(2-)/TiO(2) (ST) and SO(4)(2-)/ZrO(2) (SZ)] under low temperature (333K) and atmospheric pressure. Neither solvent nor promoters are needed in the reaction system so as to be a clean approach. Operating under these reaction conditions, a maximum activity of 6% was obtained with SF as catalyst, and a significantly high selectivity of 74.5% for nicer diesel components (n-C(14)-C(18)) was obtained simultaneously. Whereas, ST and SZ displayed low activity for cyclohexane reaction. By utilization of the temperature-programmed desorption of ammonia (NH(3)-TPD) measurement and the N(2) adsorption method, the results suggested that a satisfied acid strength distribution and high density of acid sites appeared in SF catalyst in comparison with other catalysts, which may play an important role in the reaction. PMID:19962237

  2. A shock pressure induced phase transition from liquid to solid of cyclohexane using time-resolved coherent anti-Stokes Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Oguchi, Shiro; Sato, Akira; Kondo, Ken-Ichi; Nakamura, Kazutaka

    2007-06-01

    The liquid-solid phase transition of cyclohexane has been studied under laser shock compression up to 3.8 GPa by using nanosecond time-resolved Coherent Anti-stokes Raman Spectroscopy (CARS) and laser shock compression. The shock wave is generated by irradiation of 10 ns pulsed laser beam on the plasma confinement target and its pressure is estimated from a particle velocity, which is measured by optically recording velocity interferometer system (ORVIS). Higher frequency shift of the Raman peaks (ring-breathing, C-C stretching, and CH2 twist modes) was observed at high pressure. At 3.8 GPa, splitting of the peak (CH2 twist mode) due to change in symmetry of surrounding molecules, which corresponds to phase transition to solid IV, was observed at delay time of 20 ns. Rapid liquid-solid phase transition has been directly observed to occur within 20 ns.

  3. Cyclohexane

    Integrated Risk Information System (IRIS)

    Cyclohexane ; CASRN 110 - 82 - 7 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effec

  4. Phase behavior study of polystyrene and deuterated polystyrene in alkyl-cyclohexanes

    NASA Astrophysics Data System (ADS)

    Norman, Zachariah; Powers, Wayne; Ryu, Chang

    2009-03-01

    To advance the controlled chemical modification of polystyrene (PS) and deuterated polystyrene (dPS) in solution, the phase behavior of PS and dPS in alkyl-cyclohexane solvents has been studied. Cloud point measurements have been performed by a house-made turbidity instrument using a picolog thermistor and a laser with a photoelectric cell converted to interface with a picolog TH-03 three channel thermistor converter. Solution phase diagrams for molecular weights of PS varying from 67 thousand to 1.8 million have been presented for methyl cyclohexane, propyl cyclohexane, isopropyl cyclohexane, butyl cyclohexane and isobutyl cyclohexane for the measurements of critical solution temperatures as a function of molecular weight. The theta temperature of polystyrene in each of these solvents has been estimated through extrapolation from the molecular weight dependence of the critical temperatures from the cloud point measurements.

  5. Volumetric, Viscometric, and Ultrasonic Properties of Liquid Mixtures of Cyclohexane with Alkanols at Different Temperatures

    NASA Astrophysics Data System (ADS)

    Ali, Anwar; Tasneem, Shadma; Nabi, Firdosa

    2010-09-01

    The densities (ρ), viscosities (η), and ultrasonic speeds (u) of pure cyclohexane, 1-butanol, 2- butanol, and those of their binary mixtures, with cyclohexane as common component, covering the whole composition range have been measured at 293.15, 298.15, 303.15, 308.15, 313.15, and 318.15 K. From the experimental data the excess molar volume (VE), deviations in isentropic compressibility (Δks), deviations in viscosity (Δη), deviations in ultrasonic speed (Δu), deviations in acoustic impedance (ΔZ), deviations in internal pressure (ΔPi), excess Gibbs free energy of activation (ΔG*E), entropies (ΔS*), and enthalpies (ΔH*) of activation of viscous flow have been determined. The sign and magnitude of these parameters were found to be sensitive towards interactions prevailing in the studied systems. Partial molar volumes (V0φ,2) and partial molar compressibilities (K0φ,2) of 1-butanol and 2-butanol in cyclohexane have also been evaluated. Moreover, VE values were theoretically predicted by using Flory's statistical theory. The variations of derived parameters mentioned above with composition offer a convenient method to study the nature and extent of interactions between the component molecules of the liquid mixtures, not easily obtained by other means

  6. Saturated liquid densities of benzene, cyclohexane, and hexane from 298. 15 to 473. 15 K

    SciTech Connect

    Beg, Shafkat; Tukur, N.M.; Al-Harbi, D.K.; Hamad, E.Z. . Dept. of Chemical Engineering)

    1993-07-01

    The results of measurements of saturated liquid densities using a high-pressure stainless steel pycnometer system over a wide variation of temperature from 298.15 to 473.15 K are presented for benzene, cyclohexane, and hexane. Experimental densities were compared with those predicted by the Spencer-Danner-modified Rackett equation (SDR) and the Hankinson-Brobst-Thompson correlation (HBT). The SDR showed an average deviation of 0.22% while the HBT predicted the densities of the three organic solvents with an average deviation of 0.28%. The data obtained have also been compared with the available data reported in the literature.

  7. Microemulsions with surfactant TX100, cyclohexane, and an ionic liquid investigated by conductance, DLS, FTIR measurements, and study of solvent and rotational relaxation within this microemulsion.

    PubMed

    Pramanik, Rajib; Sarkar, Souravi; Ghatak, Chiranjib; Rao, Vishal Govind; Setua, Palash; Sarkar, Nilmoni

    2010-06-10

    Room-temperature ionic liquids (RTILs), N,N,N-trimethyl-N-propyl ammonium bis(trifluoromethanesulfonyl) imide ([N(3111)][Tf(2)N]), were substituted for polar water and formed nonaqueous microemulsions with cyclohexane by the aid of nonionic surfactant TX-100. The phase behavior of the ternary system was investigated, and microregions of [N(3111)][Tf(2)N]-in-cyclohexane (IL/O), bicontinuous, and cyclohexane-in-[N(3111)][Tf(2)N] (O/IL) were identified by traditional electrical conductivity measurements. Dynamic light scattering (DLS) revealed the formation of the IL microemulsions. The FTIR study of O-H stretching band of TX100 also supports this finding. The dynamics of solvent and rotational relaxation have been investigated in [N(3111)][Tf(2)N]/TX100/cyclohexane microemulsions using steady-state and time-resolved fluorescence spectroscopy as a tool and coumarin 480 (C-480) as a fluorescence probe. The size of the microemulsions increases with gradual addition of [N(3111)][Tf(2)N], which revealed from DLS measurement. This leads to the faster collective motions of cation and anions of [N(3111)][Tf(2)N], which contributes to faster solvent relaxation in microemulsions. PMID:20469906

  8. Mutual diffusion of binary liquid mixtures containing methanol, ethanol, acetone, benzene, cyclohexane, toluene, and carbon tetrachloride.

    PubMed

    Guevara-Carrion, Gabriela; Janzen, Tatjana; Muñoz-Muñoz, Y Mauricio; Vrabec, Jadran

    2016-03-28

    Mutual diffusion coefficients of all 20 binary liquid mixtures that can be formed out of methanol, ethanol, acetone, benzene, cyclohexane, toluene, and carbon tetrachloride without a miscibility gap are studied at ambient conditions of temperature and pressure in the entire composition range. The considered mixtures show a varying mixing behavior from almost ideal to strongly non-ideal. Predictive molecular dynamics simulations employing the Green-Kubo formalism are carried out. Radial distribution functions are analyzed to gain an understanding of the liquid structure influencing the diffusion processes. It is shown that cluster formation in mixtures containing one alcoholic component has a significant impact on the diffusion process. The estimation of the thermodynamic factor from experimental vapor-liquid equilibrium data is investigated, considering three excess Gibbs energy models, i.e., Wilson, NRTL, and UNIQUAC. It is found that the Wilson model yields the thermodynamic factor that best suits the simulation results for the prediction of the Fick diffusion coefficient. Four semi-empirical methods for the prediction of the self-diffusion coefficients and nine predictive equations for the Fick diffusion coefficient are assessed and it is found that methods based on local composition models are more reliable. Finally, the shear viscosity and thermal conductivity are predicted and in most cases favorably compared with experimental literature values. PMID:27036455

  9. Mutual diffusion of binary liquid mixtures containing methanol, ethanol, acetone, benzene, cyclohexane, toluene, and carbon tetrachloride

    NASA Astrophysics Data System (ADS)

    Guevara-Carrion, Gabriela; Janzen, Tatjana; Muñoz-Muñoz, Y. Mauricio; Vrabec, Jadran

    2016-03-01

    Mutual diffusion coefficients of all 20 binary liquid mixtures that can be formed out of methanol, ethanol, acetone, benzene, cyclohexane, toluene, and carbon tetrachloride without a miscibility gap are studied at ambient conditions of temperature and pressure in the entire composition range. The considered mixtures show a varying mixing behavior from almost ideal to strongly non-ideal. Predictive molecular dynamics simulations employing the Green-Kubo formalism are carried out. Radial distribution functions are analyzed to gain an understanding of the liquid structure influencing the diffusion processes. It is shown that cluster formation in mixtures containing one alcoholic component has a significant impact on the diffusion process. The estimation of the thermodynamic factor from experimental vapor-liquid equilibrium data is investigated, considering three excess Gibbs energy models, i.e., Wilson, NRTL, and UNIQUAC. It is found that the Wilson model yields the thermodynamic factor that best suits the simulation results for the prediction of the Fick diffusion coefficient. Four semi-empirical methods for the prediction of the self-diffusion coefficients and nine predictive equations for the Fick diffusion coefficient are assessed and it is found that methods based on local composition models are more reliable. Finally, the shear viscosity and thermal conductivity are predicted and in most cases favorably compared with experimental literature values.

  10. Fluid Phase Topology of Benzene + Cyclohexane + 1-Propanol at 101.3 kPa

    NASA Astrophysics Data System (ADS)

    Andrade, R. S.; Iglesias, M.

    2015-07-01

    Isobaric vapor-liquid equilibria for the benzene + cyclohexane + 1-propanol ternary mixture were experimentally investigated at atmospheric pressure. Data were tested and considered thermodynamically consistent by means of the McDermott and Ellis method. The experimental results showed that this ternary mixture is completely miscible and exhibits three binary minimum homogeneous azeotropes and a ternary minimum azeotrope at the studied conditions. Satisfactory results were obtained for correlation of equilibrium compositions with the UNIQUAC equation and also for prediction with the UNIFAC method. In both cases, low root-mean-square deviations of the vapor mole fraction and temperature were calculated. The capability of 1-propanol as a modified distillation agent at atmospheric conditions is discussed in terms of thermodynamic topological analysis. However, because of the complex topology of the ternary mixture, it leads to a distillation scheme with two columns specifying ternary azeotrope recycling and difficult operation. Thus, this compound is not recommended as a separation agent for the binary benzene + cyclohexane azeotrope.

  11. The intermolecular vibrational dynamics of substituted benzene and cyclohexane liquids, studied by femtosecond OHD-RIKES

    SciTech Connect

    Castner, E.W. Jr.; Chang, Yong Joon

    1995-06-01

    By using the femtosecond optical-heterodyne detected, Raman-induced Kerr effect spectroscopy (OHD-RIKES), we have studied the intermolecular dynamics of toluene, benzyl alcohol, benzonitrile, cyclohexane, and methylcyclohexane in both the time and frequency domains.

  12. Solubility dynamic of methyl yellow and carbon black in microemulsions and lamellar liquid crystal of water, non ionic surfactants and cyclohexane system

    NASA Astrophysics Data System (ADS)

    Amran, A.; Harfianto, R.; Dewi, W. Y.; Beri, D.; Putra, A.

    2016-02-01

    Solubility dynamics of methyl yellow and carbon black in microemulsions and liquid crystals of water, non-ionic surfactants and cyclohexane system, have been investigated. Actually, solubility dynamics of these dyes both in microemulsion (w/o microemulsions) and the lamellar liquid crystal (LLC) were strongly related to the chemical composition, nature and characteristics of microemulsions and the lamellar liquid crystals.

  13. Gas-phase chemistry during the conversion of cyclohexane to carbon: Flow reactor studies at low and intermediate pressure

    SciTech Connect

    Osterheld, T.H.; Allendorf, M.D.; Larson, R.

    1995-07-01

    The gas-phase branching during the conversion of cyclohexane to solid carbon has been measured in a high-temperature-flow reactor. The experiments show that cyclohexane decomposes into a broad distribution of hydrocarbons that further decompose into the more kinetically stable products hydrogen, methane, acetylene, ethylene, benzene, and PAH. At 1363 K, the evolution to these species occurs quickly. We also observe the buildup of significant amounts of aromatic molecules at later stages in the decomposition, with as much as 15% of the total carbon in PAH and 25% in benzene. At later stages, the gas-phase molecules react slowly, even though the system is not at equilibrium, because of their kinetic stability and the smaller radical pool. The decomposition does not appear to depend sensitively on pressure in the regime of 25 to 250 torr. Thus, to a first approximation, these results can be extrapolated to atmospheric pressure.

  14. Second virial coefficient of bmimBF4/triton X-100/ cyclohexane ionic liquid microemulsion as investigated by microcalorimetry.

    PubMed

    Li, Na; Zhang, Shaohua; Zheng, Liqiang; Gao, Yan'an; Yu, Li

    2008-04-01

    The second virial coefficient of the ionic liquid (IL) microemulsion was obtained for the first time using microcalorimetry. The heat of dilution of the microemulsion solutions was measured by isothermal titration microcalorimetry (ITC), and the second virial coefficient was derived from the heat of dilution and the number density of the IL microemulsion solutions on the basis of a hard-sphere interaction potential assumption and as a function of the second-order polynomial. The validity of the second virial coefficient was confirmed by the percolation behavior of different ionic liquid microemulsion solutions of Triton X-100 in cyclohexane with or without added salts. The information obtained from the second virial coefficient shows that the interactions between ionic liquid microemulsion droplets are much stronger than those for traditional microemulsions, which may be attributed to the relatively larger size of the microemulsion droplets. PMID:18312017

  15. Mise en évidence d'états excités dans les spectres de photoionisation du cyclohexane et du diméthyl 2-2-butane liquides

    NASA Astrophysics Data System (ADS)

    Casanovas, J.; Guelfucci, J. P.; Caselles, O.

    1991-07-01

    Excited states are probably occurring, at an intermediate stage, in the VUV photoionization process of liquid hydrocarbons, as suggested by a Stern-Volmer behaviour when interacting with electron quenchers. They are here detected in the VUV photoionization spectrum of cyclohexane and dimethyl-2-2-butane in liquid phase. Some of the discernable peaks can be assigned as valence and Rydberg states, yet observed in gas phase. Supplementary peaks are observed, the existence of which is to be interpretated. L'existence d'états excités dans le processus de photoionisation VUV des hydrocarbures en phase liquide - précédemment suggérée par l'observation de la loi de Stern-Volmer lors de l'interaction avec des capteurs d'électrons - est ici détectée en traçant le spectre de photoionisation VUV du cyclohexane et du diméthyl-2-2-butane purs en phase liquide. Certains des pics observés coïncident avec les états de valence et de Rydberg de ces mêmes corps en phase gaz. Il apparaît des pics supplémentaires dont la nature doit être précisée.

  16. LIGHT NONAQUEOUS PHASE LIQUIDS

    EPA Science Inventory

    Nonaqueous phase liquids (NAPLS) are hydrocarbons that exist as a separate, immiscible phase when in contact with water and/or air. ifferences in the physical and chemical properties of water and NAPL result in the formation of a physical interface between the liquids which preve...

  17. Dynamic Kerr effect study on six-membered-ring molecular liquids: benzene, 1,3-cyclohexadiene, 1,4-cyclohexadiene, cyclohexene, and cyclohexane.

    PubMed

    Kakinuma, Shohei; Shirota, Hideaki

    2015-04-01

    The intermolecular dynamics of five six-membered-ring molecular liquids having different aromaticities-benzene, 1,3-cyclohexadiene, 1,4-cyclohexadiene, cyclohexene, and cyclohexane-measured by femtosecond Raman-induced Kerr effect spectroscopy have been compared in this study. The line shapes of the Fourier transform low-frequency spectra, which arise from the intermolecular vibrational dynamics, are trapezoidal for benzene and 1,3-cyclohexadiene, triangular for 1,4-cyclohexadiene and cyclohexene, and monomodal for cyclohexane. The trapezoidal shapes of the low-frequency spectra of benzene and 1,3-cyclohexadiene are due to the librational motions of their aromatic planar structures, which cause damped nuclear response features. The time integrals of the nuclear responses of the five liquids correlate to the squares of the polarizability anisotropies of the molecules calculated on the basis of density functional theory. The first moments of the low-frequency spectra roughly linearly correlate to the bulk parameters of the square roots of the surface tensions divided by the densities and the square roots of the surface tensions divided by the molecular weights, but the plots for cyclohexene deviate slightly from the correlations. The picosecond overdamped transients of the liquids are well fitted by a biexponential function. The fast time constants of all of the liquids are approximately 1.1-1.4 ps, and they do not obey the Stokes-Einstein-Debye hydrodynamic model. On the other hand, the slow time constants are roughly linearly proportional to the products of the shear viscosities and the molar volumes. The observed intramolecular vibrational modes at less than 700 cm(-1) for all of the liquids are also assigned on the basis of quantum chemistry calculations. PMID:25741755

  18. Syntheses and crystal structures of benzene-sulfonate and -carboxylate copper polymers and their application in the oxidation of cyclohexane in ionic liquid under mild conditions.

    PubMed

    Hazra, Susanta; Ribeiro, Ana P C; Guedes da Silva, M Fátima C; Nieto de Castro, Carlos A; Pombeiro, Armando J L

    2016-09-21

    The syntheses, crystal structures and catalytic activities of the polymers derived from 2-(2-pyridylmethyleneamino)benzenesulfonic acid (HL), viz. [CuL(H2tma)]n (1) and [{Cu2L2(H2pma)}·(8H2O)]n (2) [H3tma = benzene-1,3,5-tricarboxylic (trimesic) acid and H4pma = benzene-1,2,4,5-tetracarboxylic (pyromellitic) acid], are presented. Despite the comparable combinations and compositions of ligands (sulfonate and carboxylate) in these two polymers the bridging moiety in 1 is sulfonate while in 2 it is carboxylate. Complexes 1 and 2 act as catalysts in the peroxidative oxidation of cyclohexane under mild conditions using either the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate [bmim][PF6] or acetonitrile as the solvent. The ionic liquid medium leads to increases in the yields and in the turnover numbers, achieved in shorter reaction times in comparison with those when using the conventional acetonitrile solvent. A simple recycling of the catalysts in the ionic liquid medium is achieved without loss of activity and selectivity. PMID:27529408

  19. New statistical mechanical model for calculating Kirkwood factors in self-associating liquid systems and its application to alkanol+cyclohexane mixtures

    NASA Astrophysics Data System (ADS)

    Vasiltsova, Tatiana; Heintz, Andreas

    2007-09-01

    A new statistical mechanical model for calculating Kirkwood factors in self-associating molecular liquids and their mixtures with nonassociating components has been developed in a consistent way which is based on an extended version of the Flory-Huggins model taking into account chemical association equilibria. The majority of molecular parameters involved into the theory has been fixed by independent quantum mechanical ab initio calculations of associated molecular clusters. The model is also able to predict other thermodynamic mixture properties such as the enthalpy of mixing and also the infrared absorbance of monomer alcohol species as function of concentration. Experimental results of nine alcohol+cyclohexane mixtures taken from the literature have been used to test the new model. The Kirkwood correlation factor gK, the molar enthalpy of mixing HmE, and the monomer IR absorbance can be described simultaneously in excellent agreement with experimental data covering the whole range of mole fraction including temperature dependence of gK, HmE, and the IR absorbance. Two parameters have been adjusted freely for each system. A third parameter for the nonspecific intermolecular dispersion interactions has been adjusted within a limited range of possible values given by physical arguments. The model opens a new way of a more reliable understanding of structures and equilibrium properties of hydrogen bonded systems in the condensed liquid state.

  20. PHASE CHANGE LIQUIDS

    SciTech Connect

    Susan S. Sorini; John F. Schabron

    2006-03-01

    Work is being performed to develop a new shipping system for frozen environmental samples (or other materials) that uses an optimal phase change liquid (PCL) formulation and an insulated shipping container with an on-board digital temperature data logger to provide a history of the temperature profile within the container during shipment. In previous work, several PCL formulations with temperatures of fusion ranging from approximately -14 to -20 C were prepared and evaluated. Both temperature of fusion and heat of fusion of the formulations were measured, and an optimal PCL formulation was selected. The PCL was frozen in plastic bags and tested for its temperature profile in a cooler using a digital temperature data logger. This testing showed that the PCL formulation can maintain freezer temperatures (< -7 to -20 C) for an extended period, such as the time for shipping samples by overnight courier. The results of the experiments described in this report provide significant information for use in developing an integrated freezer system that uses a PCL formulation to maintain freezer temperatures in coolers for shipping environmental samples to the laboratory. Experimental results show the importance of the type of cooler used in the system and that use of an insulating material within the cooler improves the performance of the freezer system. A new optimal PCL formulation for use in the system has been determined. The new formulation has been shown to maintain temperatures at < -7 to -20 C for 47 hours in an insulated cooler system containing soil samples. These results are very promising for developing the new technology.

  1. Liquid-Phase Adsorption Fundamentals.

    ERIC Educational Resources Information Center

    Cooney, David O.

    1987-01-01

    Describes an experiment developed and used in the unit operations laboratory course at the University of Wyoming. Involves the liquid-phase adsorption of an organic compound from aqueous solution on activated carbon, and is relevant to adsorption processes in general. (TW)

  2. Liquid liquid phase transition in Stillinger Weber silicon

    NASA Astrophysics Data System (ADS)

    Beaucage, Philippe; Mousseau, Normand

    2005-04-01

    It was recently demonstrated that Stillinger-Weber silicon undergoes a liquid-liquid first-order phase transition deep into the supercooled region (Sastry and Angell 2003 Nat. Mater. 2 739). Here we study the effects of perturbations on this phase transition. We show that the order of the liquid-liquid transition changes with negative pressure. We also find that the liquid-liquid transition disappears when the three-body term of the potential is strengthened by as little as 5%. This implies that the details of the potential could affect strongly the nature and even the existence of the liquid-liquid phase.

  3. Effect of water on the solvent relaxation dynamics in an ionic liquid containing microemulsion of 1-butyl-3-methyl imidazolium tetrafluoroborate/TritonX-100/cyclohexane

    NASA Astrophysics Data System (ADS)

    Pramanik, Rajib; Sarkar, Souravi; Ghatak, Chiranjib; Setua, Palash; Rao, Vishal Govind; Sarkar, Nilmoni

    2010-04-01

    The dynamics of solvent and rotational relaxation have been investigated in [bmim][BF 4]/TX-100/cyclohexane microemulsions with addition of water-using steady state and time-resolved fluorescence spectroscopy as a tool and coumarin 480 (C-480) as a fluorescence probe. The added water decreases the size of the microemulsions; consequently solvent relaxation time increases. The rotational relaxation time of C-480 in microemulsions is almost unchanged with increase in amount of water in microemulsions.

  4. Phase equilibria and modeling of pyridinium-based ionic liquid solutions.

    PubMed

    Domańska, Urszula; Królikowski, Marek; Ramjugernath, Deresh; Letcher, Trevor M; Tumba, Kaniki

    2010-11-25

    The phase diagrams of the ionic liquid (IL) N-butyl-4-methylpyridinium bis{(trifluoromethyl)sulfonyl}imide ([BM(4)Py][NTf(2)]) with water, an alcohol (1-butanol, 1-hexanol, 1-octanol, 1-decanol), an aromatic hydrocarbon (benzene, toluene, ethylbenzene, n-propylbenzene), an alkane (n-hexane, n-heptane, n-octane), or cyclohexane have been measured at atmospheric pressure using a dynamic method. This work includes the characterization of the synthesized compound by water content and also by differential scanning calorimetry. Phase diagrams for the binary systems of [BM(4)Py][NTf(2)] with all solvents reveal eutectic systems with regards to (solid-liquid) phase equilibria and show immiscibility in the liquid phase region with an upper critical solution temperature (UCST) in most of the mixtures. The phase equilibria (solid, or liquid-liquid) for the binary systems containing aliphatic hydrocarbons reported here exhibit the lowest solubility and the highest immiscibility gap, a trend which has been observed for all ILs. The reduction of experimental data has been carried out using the nonrandom two-liquid (NRTL) correlation equation. The phase diagrams reported here have been compared with analogous phase diagrams reported previously for systems containing the IL N-butyl-4-methylpyridinium tosylate and other pyridinium-based ILs. The influence of the anion of the IL on the phase behavior has been discussed. PMID:20964426

  5. Liquid-phase chromatography detector

    DOEpatents

    Voigtman, Edward G.; Winefordner, James D.; Jurgensen, Arthur R.

    1983-01-01

    A liquid-phase chromatography detector comprising a flow cell having an inlet tubular conduit for receiving a liquid chromatographic effluent and discharging it as a flowing columnar stream onto a vertically adjustable receiving surface spaced apart from and located vertically below and in close proximity to the discharge end of the tubular conduit; a receiver adapted to receive liquid overflowing from the receiving surface; an exit conduit for continuously removing liquid from the receiver; a light source for focussing fluorescence-producing light pulses on the flowing columnar stream as it passes from the outlet of the conduit to the receiving surface and a fluorescence detector to detect the produced fluorescence; a source of light pulse for producing acoustic waves in the columnar stream as it passes from the conduit outlet to the receiving surface; and a piezoelectric transducer adapted to detect those waves; and a source of bias voltage applied to the inlet tubular conduit and adapted to produce ionization of the liquid flowing through the flow cell so as to produce photocurrents therein and an electrical system to detect and record the photocurrents. This system is useful in separating and detecting individual chemical compounds from mixtures thereof.

  6. Liquid-phase chromatography detector

    DOEpatents

    Voigtman, E.G.; Winefordner, J.D.; Jurgensen, A.R.

    1983-11-08

    A liquid-phase chromatography detector comprises a flow cell having an inlet tubular conduit for receiving a liquid chromatographic effluent and discharging it as a flowing columnar stream onto a vertically adjustable receiving surface spaced apart from and located vertically below and in close proximity to the discharge end of the tubular conduit; a receiver adapted to receive liquid overflowing from the receiving surface; an exit conduit for continuously removing liquid from the receiver; a light source for focusing fluorescence-producing light pulses on the flowing columnar stream as it passes from the outlet of the conduit to the receiving surface and a fluorescence detector to detect the produced fluorescence; a source of light pulse for producing acoustic waves in the columnar stream as it passes from the conduit outlet to the receiving surface; and a piezoelectric transducer adapted to detect those waves; and a source of bias voltage applied to the inlet tubular conduit and adapted to produce ionization of the liquid flowing through the flow cell so as to produce photocurrents therein and an electrical system to detect and record the photocurrents. This system is useful in separating and detecting individual chemical compounds from mixtures thereof. 5 figs.

  7. Models for a liquid-liquid phase transition

    NASA Astrophysics Data System (ADS)

    Buldyrev, S. V.; Franzese, G.; Giovambattista, N.; Malescio, G.; Sadr-Lahijany, M. R.; Scala, A.; Skibinsky, A.; Stanley, H. E.

    2002-02-01

    We use molecular dynamics simulations to study two- and three-dimensional models with the isotropic double-step potential which in addition to the hard core has a repulsive soft core of larger radius. Our results indicate that the presence of two characteristic repulsive distances (hard core and soft core) is sufficient to explain liquid anomalies and a liquid-liquid phase transition, but these two phenomena may occur independently. Thus liquid-liquid transitions may exist in systems like liquid metals, regardless of the presence of the density anomaly. For 2D, we propose a model with a specific set of hard core and soft core parameters, that qualitatively reproduces the phase diagram and anomalies of liquid water. We identify two solid phases: a square crystal (high density phase), and a triangular crystal (low density phase) and discuss the relation between the anomalies of liquid and the polymorphism of the solid. Similarly to real water, our 2D system may have the second critical point in the metastable liquid phase beyond the freezing line. In 3D, we find several sets of parameters for which two fluid-fluid phase transition lines exist: the first line between gas and liquid and the second line between high-density liquid (HDL) and low-density liquid (LDL). In all cases, the LDL phase shows no density anomaly in 3D. We relate the absence of the density anomaly with the positive slope of the LDL-HDL phase transition line.

  8. Novel Detection Method of Liquid-Liquid Phase Separation

    NASA Astrophysics Data System (ADS)

    Kato, Hitoshi; Katayanagi, Hideki; Koga, Yoshikata; Nishikawa, Keiko

    2004-12-01

    A novel method of determining a liquid-liquid phase boundary was developed. This method is based on our discovery that a nascent low-density phase is attracted to the center of a Rankine vortex at the onset of phase separation. Thus a liquid-liquid phase boundary is detected easily, rapidly, and accurately. The phase diagrams of the ternary systems NaCl-H2O-1-propanol and NaCl-H2O-1-butanol were obtained by this method. The results matched well with literature values.

  9. Mixed Stationary Liquid Phases for Gas-Liquid Chromatography.

    ERIC Educational Resources Information Center

    Koury, Albert M.; Parcher, Jon F.

    1979-01-01

    Describes a laboratory technique for use in an undergraduate instrumental analysis course that, using the interpretation of window diagrams, prepares a mixed liquid phase column for gas-liquid chromatography. A detailed procedure is provided. (BT)

  10. Spontaneous liquid-liquid phase separation of water.

    PubMed

    Yagasaki, Takuma; Matsumoto, Masakazu; Tanaka, Hideki

    2014-02-01

    We report a molecular dynamics simulation demonstrating a fast spontaneous liquid-liquid phase separation of water and a subsequent slow crystallization to ice. It is found that supercooled water separates rapidly into low- and high-density domains so as to reduce the surface energy in the rectangular simulation cell at certain thermodynamic states. The liquid-liquid phase separation, which is about two orders of magnitude faster than the crystallization, suggests a possibility to observe this phenomenon experimentally. PMID:25353404

  11. Liquid Phase Miscibility Gap Materials

    NASA Technical Reports Server (NTRS)

    Gelles, S. H.; Markworth, A. J.

    1985-01-01

    The manner in which the microstructural features of liquid-phase miscibility gap alloys develop was determined. This will allow control of the microstructures and the resultant properties of these alloys. The long-duration low gravity afforded by the shuttle will allow experiments supporting this research to be conducted with minimal interference from buoyancy effects and gravitationally driven convection currents. Ground base studies were conducted on Al-In, Cu-Pb, and Te-Tl alloys to determine the effect of cooling rate, composition, and interfacial energies on the phase separation and solidification processes that influence the development of microstructure in these alloys. Isothermal and directional cooling experiments and simulations are conducted. The ground based activities are used as a technological base from which flight experiments formulated and to which these flight experiments are compared.

  12. Transient liquid phase ceramic bonding

    DOEpatents

    Glaeser, Andreas M.

    1994-01-01

    Ceramics are joined to themselves or to metals using a transient liquid phase method employing three layers, one of which is a refractory metal, ceramic or alloy. The refractory layer is placed between two metal layers, each of which has a lower melting point than the refractory layer. The three layers are pressed between the two articles to be bonded to form an assembly. The assembly is heated to a bonding temperature at which the refractory layer remains solid, but the two metal layers melt to form a liquid. The refractory layer reacts with the surrounding liquid and a single solid bonding layer is eventually formed. The layers may be designed to react completely with each other and form refractory intermetallic bonding layers. Impurities incorporated into the refractory metal may react with the metal layers to form refractory compounds. Another method for joining ceramic articles employs a ceramic interlayer sandwiched between two metal layers. In alternative embodiments, the metal layers may include sublayers. A method is also provided for joining two ceramic articles using a single interlayer. An alternate bonding method provides a refractory-metal oxide interlayer placed adjacent to a strong oxide former. Aluminum or aluminum alloys are joined together using metal interlayers.

  13. An Equation of State for the Thermodynamic Properties of Cyclohexane

    SciTech Connect

    Zhou, Yong Liu, Jun; Penoncello, Steven G.; Lemmon, Eric W.

    2014-12-15

    An equation of state for cyclohexane has been developed using the Helmholtz energy as the fundamental property with independent variables of density and temperature. Multi-property fitting technology was used to fit the equation of state to data for pρT, heat capacities, sound speeds, virial coefficients, vapor pressures, and saturated densities. The equation of state was developed to conform to the Maxwell criteria for two-phase vapor-liquid equilibrium states, and is valid from the triple-point temperature to 700 K, with pressures up to 250 MPa and densities up to 10.3 mol dm{sup −3}. In general, the uncertainties (k = 2, indicating a level of confidence of 95%) in density for the equation of state are 0.1% (liquid and vapor) up to 500 K, and 0.2% above 500 K, with higher uncertainties within the critical region. Between 283 and 473 K with pressures lower than 30 MPa, the uncertainty is as low as 0.03% in density in the liquid phase. The uncertainties in the speed of sound are 0.2% between 283 and 323 K in the liquid, and 1% elsewhere. Other uncertainties are 0.05% in vapor pressure and 2% in heat capacities. The behavior of the equation of state is reasonable within the region of validity and at higher and lower temperatures and pressures. A detailed analysis has been performed in this article.

  14. Enhanced mineralization of organic compounds in nonaqueous-phase liquids

    SciTech Connect

    Labare, M.P.; Alexander, M.

    1995-11-01

    Biodegradation of phenanthrene, biphenyl, or di(2-ethylhexyl) phthalate initially present in a variety of nonaqueous-phase liquids (NAPLs) was slow in samples of soil and aquifer solids. The NAPLs were hexadecane, dibutyl phthalate, 2, 2, 4 ,4, 6, 8, 8-heptamethylnonane, cyclohexane, commercial oils, crude oil, creosote, and kerosene. Slurrying the soil or aquifer solids markedly enhanced the rate and extent of mineralization of the test compounds initially in many of the NAPLs. Both the low rate and extent of mineralization of the three compounds initially in dibutyl phthalate in soil slurries and of di(2- ethylhexyl) phthalate in heptamethylnonane present in slurries of aquifer solids were increased by inoculation of acclimated microbial cultures. Increasing the NAPL volume decreased phenanthrene biodegradation in soil, but the effect of larger NAPL volume could be alleviated by slurrying and inoculation. The rate or extent of mineralization in aquifer slurries of di(2-ethylhexyi) phthalate initially in some NAPLs was increased by addition of N and P, and inoculation further enhanced the degradation.

  15. Liquid phase sintering of silicon carbide

    DOEpatents

    Cutler, R.A.; Virkar, A.V.; Hurford, A.C.

    1989-05-09

    Liquid phase sintering is used to densify silicon carbide based ceramics using a compound comprising a rare earth oxide and aluminum oxide to form liquids at temperatures in excess of 1,600 C. The resulting sintered ceramic body has a density greater than 95% of its theoretical density and hardness in excess of 23 GPa. Boron and carbon are not needed to promote densification and silicon carbide powder with an average particle size of greater than one micron can be densified via the liquid phase process. The sintered ceramic bodies made by the present invention are fine grained and have secondary phases resulting from the liquid phase. 4 figs.

  16. Liquid phase sintering of silicon carbide

    DOEpatents

    Cutler, Raymond A.; Virkar, Anil V.; Hurford, Andrew C.

    1989-01-01

    Liquid phase sintering is used to densify silicon carbide based ceramics using a compound comprising a rare earth oxide and aluminum oxide to form liquids at temperatures in excess of 1600.degree. C. The resulting sintered ceramic body has a density greater than 95% of its theoretical density and hardness in excess of 23 GPa. Boron and carbon are not needed to promote densification and silicon carbide powder with an average particle size of greater than one micron can be densified via the liquid phase process. The sintered ceramic bodies made by the present invention are fine grained and have secondary phases resulting from the liquid phase.

  17. Liquid-phase combinatorial synthesis.

    PubMed Central

    Han, H; Wolfe, M M; Brenner, S; Janda, K D

    1995-01-01

    A concept termed liquid-phase combinatorial synthesis (LPCS) is described. The central feature of this methodology is that it combines the advantages that classic organic synthesis in solution offers with those that solid-phase synthesis can provide, through the application of a linear homogeneous polymer. To validate this concept two libraries were prepared, one of peptide and the second of nonpeptide origin. The peptide-based library was synthesized by a recursive deconvolution strategy [Erb, E., Janda, K. D. & Brenner, S. (1994) Proc. Natl. Acad. Sci. USA 91, 11422-11426] and several ligands were found within this library to bind a monoclonal antibody elicited against beta-endorphin. The non-peptide molecules synthesized were arylsulfonamides, a class of compounds of known clinical bactericidal efficacy. The results indicate that the reaction scope of LPCS should be general, and its value to multiple, high-throughput screening assays could be of particular merit, since multimilligram quantities of each library member can readily be attained. PMID:7541541

  18. Modeling liquid-liquid phase transitions and quasicrystal formation

    NASA Astrophysics Data System (ADS)

    Skibinsky, Anna

    In this thesis, studies which concern two different subjects related to phase transitions in fluids and crystalline solids are presented. Condensed matter formation, structure, and phase transitions are modeled using molecular dynamics simulations of simple discontinuous potentials with attractive and repulsive interactions. Novel phase diagrams are proposed for quasicrystals, crystals, and liquids. In the first part of the thesis, the formation of a quasicrystal in a two dimensional monodisperse system is investigated using molecular dynamics simulations of hard sphere particles interacting via a two-dimensional square-well potential. It is found that for certain values of the square-well parameters more than one stable crystalline phase can form. By quenching the liquid phase at a very low temperature, an amorphous phase is obtained. When this the amorphous phase is heated, a quasicrystalline structure with five-fold symmetry forms. From estimations of the Helmholtz potentials of the stable crystalline phases and of the quasicrystal, it is concluded that within a specific temperature range, the observed quasicrystal phase can be the stable phase. The second part of the thesis concerns a study of the liquid-liquid phase transition for a single-component system in three dimensions, interacting via an isotropic potential with a repulsive soft-core shoulder at short distance and an attractive well at an intermediate distance. The potential is similar to potentials used to describe such liquid systems as colloids, protein solutions, or liquid metals. It is shown that the phase diagram for such a potential can have two lines of first-order fluid-fluid phase transitions: one separating a gas and a low-density liquid (LDL), and another between the LDL and a high-density liquid (HDL). Both phase transition lines end in a critical point, a gas-LDL critical point and, depending on the potential parameters, either a gas-HDL critical point or a LDL-HDL critical point. A

  19. Critical behaviour of ionic solutions in non-polar solvents with a liquid - liquid phase transition

    NASA Astrophysics Data System (ADS)

    Schröer, W.; Kleemeier, M.; Plikat, M.; Weiss, V.; Wiegand, S.

    1996-11-01

    Turbidity measurements showing crossover from mean-field to Ising criticality have been reported by Narayanan and Pitzer for the liquid - liquid phase transition in ionic solutions of alkyl-ammonium picrates in higher alcohols. The Ising region was found to increase with the dielectric permittivity D for solvents with 4 < D < 8. It was conjectured that the Ising region becomes too small to be observed for lower values of D, which is in accordance with the finding of mean-field criticality in the system triethylhexylammonium triethylhexylborate 0953-8984/8/47/023/img1 in diphenyl ether 0953-8984/8/47/023/img2, where 0953-8984/8/47/023/img3. In order to check this hypothesis, we investigate solutions of salts in non-protonating solvents with D<2.5. The systems are tetrabutylammonium naphthyl sulphonate 0953-8984/8/47/023/img4 in toluene and tributylheptylammonium dodecyl sulphate 0953-8984/8/47/023/img5 in cyclohexane. The location of the critical points in the corresponding state diagram is in general agreement with the model system of charged hard spheres in a dielectric continuum, i.e. the restricted primitive model (RPM). However, changes of 0953-8984/8/47/023/img6 by minute variations of the salt and of the solvent (toluene, xylene, ethylbenzene) cannot be explained by the RPM. We report measurements of the phase diagram and light-scattering results. The amplitudes of the correlation length are up to an order of magnitude larger than those typically found in non-ionic fluids. For the new systems, but also for the solution of 0953-8984/8/47/023/img7 in 0953-8984/8/47/023/img8, Ising criticality is found in the region of 0953-8984/8/47/023/img9.

  20. Operation with three liquid phases in a staged liquid-liquid contactor

    SciTech Connect

    Leonard, R.A.; Ziegler, A.A.; Wigeland, R.A.; Bane, R.W.; Steindler, M.J.

    1983-03-01

    Operation with three liquid phases was demonstrated in a staged liquid-liquid contactor. The possibility that three liquid phases could be handled in a liquid-liquid contactor normally used with two liquid phases was initially established using a laboratory batch test. Tht three liquid phases were obtained using a thorium flow sheet having high concentrations of both acid and thorium. To analyze the batch test, the concept of a dimensionless dispersion number for use with two liquid phases was extended so that it could be applied to three liquid phases. Based on the batch tests, continuous flow tests were run in a staged liquid-liquid contactor used for solvent extraction. A critical factor in the success of these tests was determining the position of the liquid-liquid interface in the contactor. Thus, a contactor was used which allows the position of the liquid-liquid interface to be adjusted. Actual three-phase operation was demonstrated using a 4-cm annular centrifugal contactor, albeit with a somewhat greater (3 to 4 vol. %) aqueous-phase contamination of the organic exit stream than normal (< 1 vol. %).

  1. A Cu(ii) MOF with a flexible bifunctionalised terpyridine as an efficient catalyst for the single-pot hydrocarboxylation of cyclohexane to carboxylic acid in water/ionic liquid medium.

    PubMed

    Paul, Anup; Ribeiro, Ana P C; Karmakar, Anirban; Guedes da Silva, M Fátima C; Pombeiro, Armando J L

    2016-08-01

    The copper(ii) metal-organic framework (MOF) [Cu(η-1κN,N',N'':2κO,O'-L)(NO3)]n (1) [L = 4-((4-([2,2':6',2''-terpyridin]-4'-yl)benzyl)oxy)benzoate] has been synthesized from a flexible bifunctionalised terpyridine species (HL). It was characterized by elemental, FT-IR, powder and single crystal X-ray diffraction analyses. Single crystal X-ray crystallography of 1 shows a 1D polymeric architecture, whose topological analysis illustrates a uninodal (2)-connected net having topological type 2C1. 1 shows good catalytic activity and selectivity towards the hydrocarboxylation of cyclohexane to cyclohexanecarboxylic acid in water/acetonitrile or water/ionic liquid [BMPyr][NTf2] [BMPyr = 1-butyl-1 methylpyrrolidinium; NTf2 = bis(trifluoromethanesulfonyl)imide] medium. It can be recycled and reused without any significant loss of catalytic efficiency. This study provides the first example of an efficient alkane hydrocarboxylation to carboxylic acid, in an ionic liquid and under mild conditions. PMID:27460349

  2. Randomized Grain Boundary Liquid Crystal Phase

    NASA Astrophysics Data System (ADS)

    Chen, D.; Wang, H.; Li, M.; Glaser, M.; Maclennan, J.; Clark, N.

    2012-02-01

    The formation of macroscopic, chiral domains, in the B4 and dark conglomerate phases, for example, is a feature of bent-core liquid crystals resulting from the interplay of chirality, molecular bend and molecular tilt. We report a new, chiral phase observed in a hockey stick-like liquid crystal molecule. This phase appears below a smectic A phase and cools to a crystal phase. TEM images of the free surface of the chiral phase show hundreds of randomly oriented smectic blocks several hundred nanometers in size, similar to those seen in the twist grain boundary (TGB) phase. However, in contrast to the TGB phase, these blocks are randomly oriented. The characteristic defects in this phase are revealed by freeze-fracture TEM images. We will show how these defects mediate the randomized orientation and discuss the intrinsic mechanism driving the formation of this phase. This work is supported by NSF MRSEC Grant DMR0820579 and NSF Grant DMR0606528.

  3. Phase behavior of ionic liquid crystals

    NASA Astrophysics Data System (ADS)

    Kondrat, S.; Bier, M.; Harnau, L.

    2010-05-01

    Bulk properties of ionic liquid crystals are investigated using density functional theory. The liquid crystal molecules are represented by ellipsoidal particles with charges located in their center or at their tails. Attractive interactions are taken into account in terms of the Gay-Berne pair potential. Rich phase diagrams involving vapor, isotropic and nematic liquid, as well as smectic phases are found. The dependence of the phase behavior on various parameters such as the length of the particles and the location of charges on the particles is studied.

  4. Generic mechanism for generating a liquid-liquid phase transition

    NASA Astrophysics Data System (ADS)

    Franzese, Giancarlo; Malescio, Gianpietro; Skibinsky, Anna; Buldyrev, Sergey V.; Stanley, H. Eugene

    2001-02-01

    Recent experimental results indicate that phosphorus-a single-component system-can have a high-density liquid (HDL) and a low-density liquid (LDL) phase. A first-order transition between two liquids of different densities is consistent with experimental data for a variety of materials, including single-component systems such as water, silica and carbon. Molecular dynamics simulations of very specific models for supercooled water, liquid carbon and supercooled silica predict a LDL-HDL critical point, but a coherent and general interpretation of the LDL-HDL transition is lacking. Here we show that the presence of a LDL and a HDL can be directly related to an interaction potential with an attractive part and two characteristic short-range repulsive distances. This kind of interaction is common to other single-component materials in the liquid state (in particular, liquid metals), and such potentials are often used to describe systems that exhibit a density anomaly. However, our results show that the LDL and HDL phases can occur in systems with no density anomaly. Our results therefore present an experimental challenge to uncover a liquid-liquid transition in systems like liquid metals, regardless of the presence of a density anomaly.

  5. Ionic liquid-in-oil microemulsions.

    PubMed

    Eastoe, Julian; Gold, Sarah; Rogers, Sarah E; Paul, Alison; Welton, Tom; Heenan, Richard K; Grillo, Isabelle

    2005-05-25

    Phase stability and small-angle neutron scattering (SANS) data show that surfactant-stabilized nanodomains of a typical ionic liquid (1-butyl-3-methylimidazolium tetrafluoroborate [bmim][BF4]) may be dispersed by the nonionic surfactant Triton-X100 in cyclohexane. Analyses of these SANS data are consistent with the formation of ionic liquid-in-oil microemulsion droplets. PMID:15898765

  6. Phase changes in liquid face seals

    NASA Technical Reports Server (NTRS)

    Hughes, W. F.

    1980-01-01

    Computer program predicts boiling (phase change) in liquid face seals. Program determines if and when boiling occurs, and calculates location of boiling interface, pressure and temperature profiles, and load.

  7. Correlation of three-liquid-phase equilibria involving ionic liquids.

    PubMed

    Rodríguez-Escontrela, I; Arce, A; Soto, A; Marcilla, A; Olaya, M M; Reyes-Labarta, J A

    2016-08-01

    The difficulty in achieving a good thermodynamic description of phase equilibria is finding a model that can be extended to a large variety of chemical families and conditions. This problem worsens in the case of systems containing more than two phases or involving complex compounds such as ionic liquids. However, there are interesting applications that involve multiphasic systems, and the promising features of ionic liquids suggest that they will play an important role in many future processes. In this work, for the first time, the simultaneous correlation of liquid-liquid and liquid-liquid-liquid equilibrium data for ternary systems involving ionic liquids has been carried out. To that end, the phase diagram of the water + [P6 6 6 14][DCA] + hexane system has been determined at 298.15 K and 323.15 K and atmospheric pressure. The importance of this system lies in the possibility of using the surface active ionic liquid to improve surfactant enhanced oil recovery methods. With those and previous measurements, thirteen sets of equilibrium data for water + ionic liquid + oil ternary systems have been correlated. The isoactivity equilibrium condition, using the NRTL model, and some pivotal strategies are proposed to correlate these complex systems. Good agreement has been found between experimental and calculated data in all the regions (one triphasic and two biphasic) of the diagrams. The geometric aspects related to the Gibbs energy of mixing function obtained using the model, together with the minor common tangent plane equilibrium condition, are valuable tools to check the consistency of the obtained correlation results. PMID:27427420

  8. Vapor-liquid phase separator studies

    NASA Technical Reports Server (NTRS)

    Yuan, S. W. K.; Lee, J. M.; Kim, Y. I.; Hepler, W. A.; Frederking, T. H. K.

    1983-01-01

    Porous plugs serve as both entropy rejection devices and phase separation components separating the vapor phase on the downstream side from liquid Helium 2 upstream. The liquid upstream is the cryo-reservoir fluid needed for equipment cooling by means of Helium 2, i.e Helium-4 below its lambda temperature in near-saturated states. The topics outlined are characteristic lengths, transport equations and plug results.

  9. Effect of gravity on liquid phase sintering

    NASA Technical Reports Server (NTRS)

    Mookherji, T.; Mcanelly, W. B.; Mckannan, E. C.

    1974-01-01

    The unique conditions offered by the earth orbital environment in material processing involving both solid and liquid phases, such as liquid phase sintering, were studied. An experimental development program involving both test and theoretical work was initiated. Experimental work using material combinations selected such that maximum information about the effect of gravity can be derived has been conducted. Wetting of the solid phase by the liquid during sintering is an important phenomenon in liquid phase sintering, and gravity has influence on both capillary phenomenon and density segregation; hence, material combinations were selected such that these two effects can be suitably studies. The experimental work is meant to form the basis for similar comparative work done under low-g conditions. The part of the model dealing with the capillary phenomenon, as related to liquid phase sintering and the effect of gravity on it, suggest that gravity will have negligible effect on the Bond number and that the cohesive force is dependent on both the amount of liquid phase and the angle of contact.

  10. Liquid-Liquid Phase Transition in Nanoconfined Silicon Carbide.

    PubMed

    Wu, Weikang; Zhang, Leining; Liu, Sida; Ren, Hongru; Zhou, Xuyan; Li, Hui

    2016-03-01

    We report theoretical evidence of a liquid-liquid phase transition (LLPT) in liquid silicon carbide under nanoslit confinement. The LLPT is characterized by layering transitions induced by confinement and pressure, accompanying the rapid change in density. During the layering transition, the proportional distribution of tetracoordinated and pentacoordinated structures exhibits remarkable change. The tricoordinated structures lead to the microphase separation between silicon (with the dominant tricoordinated, tetracoordinated, and pentacoordinated structures) and carbon (with the dominant tricoordinated structures) in the layer close to the walls. A strong layer separation between silicon atoms and carbon atoms is induced by strong wall-liquid forces. Importantly, the pressure confinement phase diagram with negative slopes for LLPT lines indicates that, under high pressure, the LLPT is mainly confinement-induced, but under low pressure, it becomes dominantly pressure-induced. PMID:26859609

  11. Solid-liquid phase transition in argon

    NASA Technical Reports Server (NTRS)

    Tsang, T.; Tang, H. T.

    1978-01-01

    Starting from the Lennard-Jones interatomic potential, a modified cell theory has been used to describe the solid-liquid phase transition in argon. The cell-size variations may be evaluated by a self-consistent condition. With the inclusion of cell-size variations, the transition temperature, the solid and liquid densities, and the liquid-phase radial-distribution functions have been calculated. These ab initio results are in satisfactory agreement with molecular-dynamics calculations as well as experimental data on argon.

  12. Comment on "Spontaneous liquid-liquid phase separation of water".

    PubMed

    Limmer, David T; Chandler, David

    2015-01-01

    Yagasaki et al. [Phys. Rev. E 89, 020301 (2014)] present results from a molecular dynamics trajectory illustrating coarsening of ice, which they interpret as evidence of transient coexistence between two distinct supercooled phases of liquid water. We point out that neither two distinct liquids nor criticality are demonstrated in this simulation study. Instead, the illustrated trajectory is consistent with coarsening behaviors analyzed and predicted in earlier work by others. PMID:25679744

  13. Liquid-phase compositions from vapor-phase analyses

    SciTech Connect

    Davis, W. Jr. ); Cochran, H.D. )

    1990-02-01

    Arsenic normally is not considered to be a contaminant. However, because arsenic was found in many cylinders of UF{sub 6}, including in corrosion products, a study was performed of the distribution of the two arsenic fluorides, AsF{sub 3} and AsF{sub 5}, between liquid and vapor phases. The results of the study pertain to condensation or vaporization of liquid UF{sub 6}. This study includes use of various experimental data plus many extrapolations necessitated by the meagerness of the experimental data. The results of this study provide additional support for the vapor-liquid equilibrium model of J.M. Prausnitz and his coworkers as a means of describing the distribution of various impurities between vapor and liquid phases of UF{sub 6}. Thus, it is concluded that AsF{sub 3} will tend to concentrate in the liquid phase but that the concentration of AsF{sub 5} in the vapor phase will exceed its liquid-phase concentration by a factor of about 7.5, which is in agreement with experimental data. Because the weight of the liquid phase in a condensation operation may be in the range of thousands of times that of the vapor phase, most of any AsF{sub 5} will be in the liquid phase in spite of this separation factor of 7.5. It may also be concluded that any arsenic fluorides fed into a uranium isotope separation plant will either travel with other low-molecular-weight gases or react with materials present in the plant. 25 refs., 3 figs., 6 tabs.

  14. Coexisting Liquid Phases Underlie Nucleolar Subcompartments.

    PubMed

    Feric, Marina; Vaidya, Nilesh; Harmon, Tyler S; Mitrea, Diana M; Zhu, Lian; Richardson, Tiffany M; Kriwacki, Richard W; Pappu, Rohit V; Brangwynne, Clifford P

    2016-06-16

    The nucleolus and other ribonucleoprotein (RNP) bodies are membrane-less organelles that appear to assemble through phase separation of their molecular components. However, many such RNP bodies contain internal subcompartments, and the mechanism of their formation remains unclear. Here, we combine in vivo and in vitro studies, together with computational modeling, to show that subcompartments within the nucleolus represent distinct, coexisting liquid phases. Consistent with their in vivo immiscibility, purified nucleolar proteins phase separate into droplets containing distinct non-coalescing phases that are remarkably similar to nucleoli in vivo. This layered droplet organization is caused by differences in the biophysical properties of the phases-particularly droplet surface tension-which arises from sequence-encoded features of their macromolecular components. These results suggest that phase separation can give rise to multilayered liquids that may facilitate sequential RNA processing reactions in a variety of RNP bodies. PAPERCLIP. PMID:27212236

  15. Existence of a liquid-liquid phase transition in methanol.

    PubMed

    Huš, Matej; Urbic, Tomaz

    2014-12-01

    A simple model is constructed to study the phase diagram and thermodynamic properties of methanol, which is described as a dimer of an apolar sphere mimicking the methyl group and a sphere with core-softened potential as the hydroxyl group. Performing classical Monte Carlo simulations, we obtained the phase diagram, showing a second critical point between two different liquid phases. Evaluating systems with a different number of particles, we extrapolate to infinite size in accordance with Ising universality class to obtain bulk values for critical temperature, pressure, and density. Strong evidence that the structure of the liquid changes upon transition from high- to low-density phase was provided. From the experimentally determined hydrogen bond strength and length in methanol and water, we propose where the second critical point of methanol should be. PMID:25615092

  16. Phase separation in transparent liquid-liquid miscibility gap systems

    NASA Technical Reports Server (NTRS)

    Gelles, S. H.; Bhat, B. N.; Laub, R. J.

    1979-01-01

    A program to be carried out on transparent liquid-phase miscibility gap materials was developed for the purpose of acquiring additional insight into the separation process occurring in these systems. The transparency feature allows the reaction to be viewed directly through light scattering and holographic methods.

  17. Liquid-Liquid phase transition in a single component system

    NASA Astrophysics Data System (ADS)

    Franzese, Giancarlo; Skibinsky, Anna; Buldyrev, Sergey; Stanley, H. Eugene

    2001-06-01

    Recent experimental results indicate that phosphorus, a single-component system, can have a high-density liquid (HDL) and a low-density liquid (LDL) phase. A first-order LDL-HDL transition line ending in a critical point is consistent with experimental data and Molecular Dynamics (MD) simulations for a variety of single-component systems such as water, silica and carbon, but a coherent and general interpretation of the LDL-HDL transition is lacking. By means of MD, we show that the LDL-HDL transition can be directly related to an interaction potential with an attractive part and with not one but `two' preferred short-range repulsive distances. This kind of interaction is common to other single-component materials in the liquid state, in particular liquid metals. For the fisrt time, we show that the LDL-HDL transition can occur in systems with no density anomaly, opening an experimental challenge to uncover a liquid-liquid transition in systems like liquid metals, regardless of the presence of the density anomaly.

  18. Phase separation kinetics in immiscible liquids

    NASA Technical Reports Server (NTRS)

    Sadoway, D. R.

    1986-01-01

    The kinetics of phase separation in the succinonitrile-water system are being investigated. Experiments involve initial physical mixing of the two immiscible liquids at a temperature above the consolute, decreasing the temperature into the miscibility gap, followed by imaging of the resultant microstructure as it evolves with time. Refractive index differences allow documentation of the changing microstructures by noninvasive optical techniques without the need to quench the liquid structures for analysis.

  19. Phase separation kinetics in immiscible liquids

    NASA Technical Reports Server (NTRS)

    Ng, Lee H.; Sadoway, Donald R.

    1987-01-01

    The kinetics of phase separation in the succinonitrile-water system are being investigated. Experiments involve initial physical mixing of the two immiscible liquids at a temperature above the consolute, decreasing the temperature into the miscibility gap, followed by iamging of the resultant microstructure as it evolves with time. Refractive index differences allow documentation of the changing microstructures by noninvasive optical techniques without the need to quench the liquid structures for analysis.

  20. Liquid crystal phase shifters for space applications

    NASA Astrophysics Data System (ADS)

    Woehrle, Christopher D.

    Space communication satellites have historically relied heavily on high gain gimbal dish antennas for performing communications. Reflector dish antennas lack flexibility in anti-jamming capabilities, and they tend to have a high risk associated to them given the need for mechanical mechanisms to beam steer. In recent years, a great amount of investment has been made into phased array antenna technologies. Phased arrays offer increased signal flexibility at reduced financial cost and in system risk. The problem with traditional phased arrays is the significant program cost and overall complexity added to the satellite by integrating antenna elements that require many dedicated components to properly perform adaptive beam steering. Several unique methods have been proposed to address the issues that plague traditional phase shifters slated for space applications. Proposed approaches range from complex mechanical switches (MEMS) and ferroelectric devices to more robust molecular changes. Nematic liquid crystals offer adaptive beam steering capabilities that traditional phased arrays have; however, with the added benefit of reduced system cost, complexity, and increased resilience to space environmental factors. The objective of the work presented is to investigate the feasibility of using nematic liquid crystals as a means of phase shifting individual phased array elements slated for space applications. Significant attention is paid to the survivability and performance of liquid crystal and associated materials in the space environment. Performance regarding thermal extremes and interactions with charged particles are the primary factors addressed.

  1. Polymorphism in glassy silicon: Inherited from liquid-liquid phase transition in supercooled liquid

    NASA Astrophysics Data System (ADS)

    Zhang, Shiliang; Wang, Li-Min; Zhang, Xinyu; Qi, Li; Zhang, Suhong; Ma, Mingzhen; Liu, Riping

    2015-02-01

    Combining molecular dynamics (MD) simulation and Voronoi polyhedral analyses, we discussed the microstructure evolution in liquid and glassy silicon during cooling by focusing on the fraction of various clusters. Liquid-liquid phase transition (LLPT) is detected in supercooled liquid silicon However, freezing the high-density liquid (HDL) to the glassy state is not achieved as the quenching rate goes up to 1014 K/s. The polyamorphism in glassy silicon is found to be mainly associated with low-density liquid (LDL).

  2. Polymorphism in glassy silicon: Inherited from liquid-liquid phase transition in supercooled liquid

    PubMed Central

    Zhang, Shiliang; Wang, Li-Min; Zhang, Xinyu; Qi, Li; Zhang, Suhong; Ma, Mingzhen; Liu, Riping

    2015-01-01

    Combining molecular dynamics (MD) simulation and Voronoi polyhedral analyses, we discussed the microstructure evolution in liquid and glassy silicon during cooling by focusing on the fraction of various clusters. Liquid-liquid phase transition (LLPT) is detected in supercooled liquid silicon However, freezing the high-density liquid (HDL) to the glassy state is not achieved as the quenching rate goes up to 1014 K/s. The polyamorphism in glassy silicon is found to be mainly associated with low-density liquid (LDL). PMID:25716054

  3. Liquid phase sintered compacts in space

    NASA Technical Reports Server (NTRS)

    Mookherji, T. K.; Mcanelly, W. B.

    1974-01-01

    A model that will explain the effect of gravity on liquid phase sintering was developed. Wetting characteristics and density segregation which are the two important phenomena in liquid phase sintering are considered in the model development. Experiments were conducted on some selected material combinations to study the gravity effects on liquid phase sintering, and to verify the validity of the model. It is concluded that: (1) The surface tension forces acting on solid particles in a one-g environment are not appreciably different from those anticipated in a 0.00001g/g sub 0 (or lower) environment. (2) The capillary forces are dependent on the contact angle, the quantity of the liquid phase, and the distance between solid particles. (3) The pores (i.e., bubbles) do not appear to be driven to the surface by gravity-produced buoyancy forces. (4) The length of time to produce the same degree of settling in a low-gravity environment will be increased significantly. (5) A low gravity environment would appear to offer a unique means of satisfactorily infiltrating a larger and/or complex shaped compact.

  4. Vapor-liquid phase separator permeability results

    NASA Technical Reports Server (NTRS)

    Yuan, S. W. K.; Frederking, T. H. K.

    1981-01-01

    Continued studies are described in the area of vapor-liquid phase separator work with emphasis on permeabilities of porous sintered plugs (stainless steel, nominal pore size 2 micrometer). The temperature dependence of the permeability has been evaluated in classical fluid using He-4 gas at atmospheric pressure and in He-2 on the basis of a modified, thermosmotic permeability of the normal fluid.

  5. DENSE NONAQUEOUS PHASE LIQUIDS -- A WORKSHOP SUMMARY

    EPA Science Inventory

    site characterization, and, therefore, DNAPL remediation, can be expected. Dense nonaqueous phase liquids (DNAPLs) in the subsurface are long-term sources of ground-water contamination, and may persist for centuries before dissolving completely in adjacent ground water. In respo...

  6. Centrifugal Liquid/Gas Separator With Phase Detectors

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.

    1994-01-01

    Centrifugal liquid/gas separator that includes phase (liquid or gas) detectors helps ensure exclusiveness of each phase at its assigned outlet. Acoustic sensors in centrifugal liquid/gas separator measure speeds of sound in nominally pure liquid and nominally pure gas at liquid and gas outlets respectively. When speed of sound is that of pure liquid or gas, valve opens to let liquid or gas flow out.

  7. Gravitational Role in Liquid Phase Sintering

    NASA Technical Reports Server (NTRS)

    Upadhyaya, Anish; Iacocca, Ronald G.; German, Randall M.

    1998-01-01

    To comprehensively understand the gravitational effects on the evolution of both the microstructure and the macrostructure during liquid phase sintering, W-Ni-Fe alloys with W content varying from 35 to 98 wt.% were sintered in microgravity. Compositions that slump during ground-based sintering also distort when sintered under microgravity. In ground-based sintering, low solid content alloys distort with a typical elephant-foot profile, while in microgravity, the compacts tend to spheroidize. This study shows that microstructural segregation occurs in both ground-based as well as microgravity sintering. In ground-based experiments, because of the density difference between the solid and the liquid phase, the solid content increases from top to the bottom of the sample. In microgravity, the solid content increases from periphery to the center of the samples. This study also shows that the pores during microgravity sintering act as a stable phase and attain anomalous shapes.

  8. Solid drop based liquid-phase microextraction.

    PubMed

    Ganjali, Mohammad Reza; Sobhi, Hamid Reza; Farahani, Hadi; Norouzi, Parviz; Dinarvand, Rassoul; Kashtiaray, Amir

    2010-04-16

    Solid drop based liquid-phase microextraction (SDLPME) is a novel sample preparation technique possessing obvious advantages of simple operation with a high pre-concentration factor, low cost and low consumption of organic solvent. SDLPME coupled with gas chromatography (GC), high-performance liquid chromatography (HPLC), and atomic absorption spectrometry (AAS) has been widely applied to the analyses of a different variety of samples. The basic principles, parameters affecting the extraction efficiency, and the latest applications of SDLPME are reviewed in this article. PMID:19962710

  9. Volumetric Properties of the Mixture 1,3-Dioxane C4H8O2 + C6H12 Cyclohexane (VMSD1511, LB5121_V)

    NASA Astrophysics Data System (ADS)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume B 'Binary Liquid Systems of Nonelectrolytes II' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture 1,3-Dioxane C4H8O2 + C6H12 Cyclohexane (VMSD1511, LB5121_V)' providing data from direct measurement of low-pressure thermodynamic speed of sound at variable mole fraction and constant temperature, in the single-phase region(s).

  10. Volumetric Properties of the Mixture 1,3-Dioxane C4H8O2 + C6H12 Cyclohexane (VMSD1111, LB5124_V)

    NASA Astrophysics Data System (ADS)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume B 'Binary Liquid Systems of Nonelectrolytes II' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture 1,3-Dioxane C4H8O2 + C6H12 Cyclohexane (VMSD1111, LB5124_V)' providing data from direct low-pressure measurement of mass density at variable mole fraction and constant temperature, in the single-phase region(s).

  11. Liquid-phase compositions from vapor-phase analyses

    SciTech Connect

    Davis, W. Jr.; Cochran, H.D.; Leitnaker, J.M.

    1989-09-01

    In the safe handling and processing of uranium hexafluoride (UF{sub 6}), it is often desirable to calculate vapor composition and pressure from known liquid composition and temperature. Furthermore, the ability to use analyses of equilibrium vapor-phase samples to calculate liquid-phase compositions would be economically advantageous to the International Atomic Energy Agency (IAEA) in its international safeguards program and to uranium enrichment operators. The latter technique is projected to save the IAEA on the order of $1500 or more per sample. Either type of calculation could be performed with a multicomponent vapor-liquid equilibrium (VLE) model if this model were shown to apply to UF{sub 6} and its common impurities. This report is concerned with the distribution of four potential impurities in UF{sub 6} between liquid and vapor phases. The impurities are carbon dioxide, sulfur hexafluoride, chloryl fluoride, and Freon-114 (CClF{sub 2}CClF{sub 2}). There are no binary equilibrium data on the first three of these impurities; hence, the VLE calculations are based entirely on the thermodynamic properties of the pure components. There are two sets of binary equilibrium data for the system Freon-114-UF{sub 6} that are analyzed in terms of the model of Prausnitz et al. Calculations based on these data are compared with those based solely on the thermodynamic properties of pure Freon-114 and pure UF{sub 6}. 23 refs., 3 figs., 5 tabs.

  12. Vapor-liquid phase separator studies

    NASA Technical Reports Server (NTRS)

    Yuan, S. W. K.; Hepler, W. A.; Frederking, T. H. K.

    1985-01-01

    A study of porous plug use for vapor-liquid phase seperation in spaceborne cryogenic systems was conducted. The three main topics addressed were: (1) the usefulness of porous media in designs that call for variable areas and flow rates; (2) the possibility of prediction of main parameters of porous plugs for a given material; and (3) prediction of all parameters of the plug, including secondary parameters.

  13. Phase Behavior of Perturbed Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Kralj, S.; Kutnjak, Z.; Lahajnar, G.; Svetec, M.

    We study theoretically the combined effect of confinement and randomness on LC phase transitions in orientational (isotropic-nematic) and translational (nematic-smectic A) degrees of ordering. We focus to cases where these transitions are of (very) weakly 1st order. An adequate experimental realisation is, e.g., 8CB liquid crystal confined to a Controlled-Pore Glass matrix. Based on universal responses of "hard" and "soft" continuum fields to distortions we derive how different mechanisms influence qualitative and quantitative characteristics of phase transitions under consideration.

  14. Liquid-phase electroepitaxy - Dopant segregation

    NASA Technical Reports Server (NTRS)

    Lagowski, J.; Jastrzebski, L.; Gatos, H. C.

    1980-01-01

    A theoretical model is presented which accounts for the dopant segregation in liquid-phase electroepitaxy in terms of dopant transport in the liquid phase (by electromigration and diffusion), the growth velocity, and the Peltier effect at the substrate-solution interface. The contribution of dopant electromigration to the magnitude of the effective segregation coefficient is dominant in the absence of convection; the contribution of the Peltier effect becomes significant only in the presence of pronounced convection. Quantitative expressions which relate the segregation coefficient to the growth parameters also permit the determination of the diffusion constant and electromigration mobility of the dopant in the liquid phase. The model was found to be in good agreement with the measured segregation characteristics of Sn in the electroepitaxial growth of GaAs from Ga-As solutions. For Sn in Ga-As solution at 900 C the diffusion constant was found to be 4 x 10 to the -5 sq cm/s and the electromigration velocity (toward the substrate with a positive polarity 2 x 10 to the -5 cm/s current density of 10 A/sq cm.

  15. Phase Segregation at the Liquid-Air Interface Prior to Liquid-Liquid Equilibrium.

    PubMed

    Bermúdez-Salguero, Carolina; Gracia-Fadrique, Jesús

    2015-08-13

    Binary systems with partial miscibility segregate into two liquid phases when their overall composition lies within the interval defined by the saturation points; out of this interval, there is one single phase, either solvent-rich or solute-rich. In most systems, in the one-phase regions, surface tension decreases with increasing solute concentration due to solute adsorption at the liquid-air interface. Therefore, the solute concentration at the surface is higher than in the bulk, leading to the hypothesis that phase segregation starts at the liquid-air interface with the formation of two surface phases, before the liquid-liquid equilibrium. This phenomenon is called surface segregation and is a step toward understanding liquid segregation at a molecular level and detailing the constitution of fluid interfaces. Surface segregation of aqueous binary systems of alkyl acetates with partial miscibility was theoretically demonstrated by means of a thermodynamic stability test based on energy minimization. Experimentally, the coexistence of two surface regions was verified through Brewster's angle microscopy. The observations were further interpreted with the aid of molecular dynamics simulations, which show the diffusion of the acetates from the bulk toward the liquid-air interface, where acetates aggregate into acetate-rich domains. PMID:26189700

  16. Liquid-liquid and liquid-solid phase separation and flocculation for a charged colloidal dispersion.

    PubMed

    Lai, S K; Wu, K L

    2002-10-01

    We model the intercolloidal interaction by a hard-sphere Yukawa repulsion to which is added the long-range van der Waals attraction. In comparison with the Derjaguin-Landau-Verwey-Overbeek repulsion, the Yukawa repulsion explicitly incorporates the spatial correlations between colloids and small ions. As a result, the repulsive part can be expressed analytically and has a coupling strength depending on the colloidal volume fraction. By use of this two-body potential of mean force and in conjunction with a second-order thermodynamic perturbation theory, we construct the colloidal Helmholtz free energy and use it to calculate the thermodynamic quantities, pressure and chemical potential, needed in the determination of the liquid-liquid and liquid-solid phase diagrams. We examine, in an aqueous charged colloidal dispersion, the effects of the Hamaker constant and particle size on the conformation of a stable liquid-liquid phase transition calculated with respect to the liquid-solid coexistence phases. We find that there exists a threshold Hamaker constant or particle size whose value demarcates the stable liquid-liquid coexistence phases from their metastable counterparts. Applying the same technique and using the energetic criterion, we extend our calculations to study the flocculation phenomenon in aqueous charged colloids. Here, we pay due attention to determining the loci of a stability curve stipulated for a given temperature T0, and obtain the parametric phase diagram of the Hamaker constant vs the coupling strength or, at given surface potential, the particle size. By imposing T0 to be the critical temperature T(c), i.e., setting k(B)T0 (=k(B)T(c)) equal to a reasonable potential barrier, we arrive at the stability curve that marks the irreversible/reversible phase transition. The interesting result is that there occurs a minimum size for the colloidal particles below (above) which the colloidal dispersion is driven to an irreversible (reversible) phase

  17. Liquid-Liquid Phase Separation of Oil Bodies from Seeds.

    PubMed

    Nykiforuk, Cory L

    2016-01-01

    Fundamentally, oil bodies are discrete storage organelles found in oilseeds, comprising a hydrophobic triacylglycerol core surrounded by a half-unit phospholipid membrane and an outer shell of specialized proteins known as oleosins. Oil bodies possess a number of attributes that were exploited by SemBioSys Genetics to isolate highly enriched fractions of oil bodies through liquid-liquid phase separation for a number of commercial applications. The current chapter provides a general guide for the isolation of oil bodies from Arabidopsis and/or safflower seed, from which protocols can be refined for different oilseed sources. For SemBioSys Genetic's recombinant technology, therapeutic proteins were covalently attached to oleosins or fused in-frame with ligands which bound oil bodies, facilitating their recovery to high levels of purity during "upstream processing" of transformed seed. Core to this technology was oil body isolation consisting of simple manipulation including homogenization of seeds to free the oil bodies, followed by the removal of insoluble fractions, and phase separation to recover the oil bodies. During oil body enrichment (an increase in oil body content concomitant with removal of impurities), a number of options and tips are provided to aid researchers in the manipulation and monitoring of these robust organelles. PMID:26614290

  18. Non-Aqueous Phase Liquid Calculator

    Energy Science and Technology Software Center (ESTSC)

    2004-02-19

    Non-Aqueous Phase Liquid or "NPAL" is a term that most environmental professionals are familiar with because NAPL has been recognized in the literature as a significant source of groundwater contamination. There are two types of NAPL: DNAPL and LNAPL. DNAPL is a ‘dense’ non-aqueous phase liquid. In this context, dense means having a density greater than water (1.0 kg/L). Trichloroethylene (TCE) and tetrachioroethylene (PCE) are examples of DNAPL compounds. A compound that is heaver thanmore » water means this type of NAPL will sink in an aquifer. Conversely, LNAPL is a ‘light’ non-aqueous phase liquid with a density less than water, and will float on top of the aquifer. Examples of LNAPL’s are benzene and toluene. LNAPL or DNAPL often manifest as a complex, multi-component mixture of organic compounds that can occur in environmental media. Complex multi-component mixtures distributed in soil pore-air, pore-water, soil particles and in free phase complicate residual saturation of single and multi component NAPL compounds in soil samples. The model output also includes estimates of the NAPL mass and volume and other physical and chemical properties that may be useful for characterization, modeling, and remedial system design and operation. The discovery of NAPL in the aquifer usually leads to a focused characterization for possible sources of NAPL in the vadose zone using a variety of innovative technologies and characterization methods. Often, the analytical data will indicated the presence of NAPL, yet, the NAPL will go unrecognized. Failure to recognize the NAPL can be attributed to the complicated processes of inter-media transfer or a general lack of knowledge about the physical characteristics of complex organic mixtures in environmental samples.« less

  19. Blue-phase liquid crystal droplets

    PubMed Central

    Martínez-González, José A.; Zhou, Ye; Rahimi, Mohammad; Bukusoglu, Emre; Abbott, Nicholas L.; de Pablo, Juan J.

    2015-01-01

    Blue phases of liquid crystals represent unique ordered states of matter in which arrays of defects are organized into striking patterns. Most studies of blue phases to date have focused on bulk properties. In this work, we present a systematic study of blue phases confined into spherical droplets. It is found that, in addition to the so-called blue phases I and II, several new morphologies arise under confinement, with a complexity that increases with the chirality of the medium and with a nature that can be altered by surface anchoring. Through a combination of simulations and experiments, it is also found that one can control the wavelength at which blue-phase droplets absorb light by manipulating either their size or the strength of the anchoring, thereby providing a liquid–state analog of nanoparticles, where dimensions are used to control absorbance or emission. The results presented in this work also suggest that there are conditions where confinement increases the range of stability of blue phases, thereby providing intriguing prospects for applications. PMID:26460039

  20. MSPD sample preparation approach for reversed-phase liquid chromatographic analysis of pesticide residues in stem of coconut palm.

    PubMed

    Ferreira, Jordana Alves; Santos, Luís Fabrício Santana; Souza, Nicaellen Roberta da Silva; Navickiene, Sandro; de Oliveira, Frederico Alberto; Talamini, Viviane

    2013-08-01

    A method was developed using matrix solid-phase dispersion, together with liquid chromatography with ultraviolet diode array detector for determination of carbofuran, difenoconazole, β-cyfluthrin, spirodiclofen and thiophanate-methyl in stem of coconut palm. The best results were obtained using 2.0 g of stem, 1.6 g of Florisil as sorbent and cyclohexane:acetone mixture (4:1). The method was validated using stem samples spiked with pesticides at four concentration levels (0.05-2.0 μg/g). Average recoveries ranged from 70 % to 114.3 %, with relative standard deviations between 1.2 % and 19.2 %. Detection and quantification limits were in the ranges 0.02-0.03 and 0.05-0.1 μg/g, respectively. PMID:23722654

  1. Wide Angle Liquid Crystal Optical Phased Array

    NASA Technical Reports Server (NTRS)

    Wang, Xing-Hua; Wang, Bin; Bos, Philip J.; Anderson, James E.; Pouch, John J.; Miranda, Felix A.; McManamon, Paul F.

    2004-01-01

    Accurate modeling of a high resolution, liquid crystal (LC) based, optical phased array (OPA) is shown. The simulation shows excellent agreement with a test 2-D LC OPA. The modeling method is extendable to cases where the array element size is close to the wavelength of light. The fringing fields of such a device are first studied, and subsequently reduced. This results in a device that demonstrates plus or minus 7.4 degrees of continuous beam steering at a wavelength of 1550 nm, and a diffraction efficiency (DE) higher than 72%.

  2. Liquid Crystal Phases of Semiflexible Polymers

    NASA Astrophysics Data System (ADS)

    Mackay, Ian; Sullivan, Don

    2012-02-01

    Liquid crystal polymers exhibit orientational order (nematic phase) and position order (smectic phase). Previous work on semiflexible polymers using self consistent field theory studied the isotropic-nematic and nematic-smectic transition for homogenous and diblock copolymers. The nematic phase is stabilized by excluded-volume effects between wormlike cylindrical segments. The smectic phase is further stabilized by excluded-volume effects between terminal end segments. Because models of semiflexible polymers include orientational degrees of freedom, in addition to the usual positional degrees of freedom, they are computationally more demanding to study. Spectral decomposition applied to segment orientations has previously been used to make computation feasible. However this method does not converge well for strongly ordered states, which arise in many real systems. I describe a Crank-Nicolson finite difference method applied to the orientations which is expected to converge well for highly ordered systems. This method also exhibits better numerical stability and accuracy and may thus serve as a better foundation for further studies of highly ordered systems. I also describe a modification to the spectral method which can compute the tilted Smectic C phase.

  3. Liquid-liquid phase transitions and water-like anomalies in liquids

    NASA Astrophysics Data System (ADS)

    Lascaris, Erik

    In this thesis we employ computer simulations and statistical physics to understand the origin of liquid-liquid phase transitions and their relationship with anomalies typical of liquid water. Compared with other liquids, water has many anomalies. For example the density anomaly: when water is cooled below 4 °C the density decreases rather than increases. This and other anomalies have also been found to occur in a few other one-component liquids, sometimes in conjunction with the existence of a liquid-liquid phase transition (LLPT) between a low-density liquid (LDL) and a high-density liquid (HDL). Using simple models we explain how these anomalies arise from the presence of two competing length scales. As a specific example we investigate the cut ramp potential, where we show the importance of "competition" in this context, and how one length scale can sometimes be zero. When there is a clear energetic preference for either LDL or HDL for all pressures and temperatures, then there is insufficient competition between the two liquid structures and no anomalies occur. From the simple models it also follows that anomalies can occur without the presence of a LLPT and vice versa. It remains therefore unclear if water has a LLPT that ends in a liquid-liquid critical point (LLCP), a hypothesis that was first proposed based on simulations of the ST2 water model. We confirm the existence of a LLCP in this model using finite size scaling and the Challa-Landau-Binder parameter, and show that the LLPT is not a liquid-crystal transition, as has recently been suggested. Previous research has indicated the possible existence of a LLCP in liquid silica. We perform a detailed analysis of two different silica models (WAC and BKS) at temperatures much lower than was previously simulated. Within the accessible temperature range we find no LLCP in either model, although in the case of WAC potential it is closely approached. We compare our results with those obtained for other

  4. Detailed Chemical Kinetic Modeling of Cyclohexane Oxidation

    SciTech Connect

    Silke, E J; Pitz, W J; Westbrook, C K; Ribaucour, M

    2006-11-10

    A detailed chemical kinetic mechanism has been developed and used to study the oxidation of cyclohexane at both low and high temperatures. Reaction rate constant rules are developed for the low temperature combustion of cyclohexane. These rules can be used for in chemical kinetic mechanisms for other cycloalkanes. Since cyclohexane produces only one type of cyclohexyl radical, much of the low temperature chemistry of cyclohexane is described in terms of one potential energy diagram showing the reaction of cyclohexyl radical + O{sub 2} through five, six and seven membered ring transition states. The direct elimination of cyclohexene and HO{sub 2} from RO{sub 2} is included in the treatment using a modified rate constant of Cavallotti et al. Published and unpublished data from the Lille rapid compression machine, as well as jet-stirred reactor data are used to validate the mechanism. The effect of heat loss is included in the simulations, an improvement on previous studies on cyclohexane. Calculations indicated that the production of 1,2-epoxycyclohexane observed in the experiments can not be simulated based on the current understanding of low temperature chemistry. Possible 'alternative' H-atom isomerizations leading to different products from the parent O{sub 2}QOOH radical were included in the low temperature chemical kinetic mechanism and were found to play a significant role.

  5. On liquid phases in cometary nuclei

    NASA Astrophysics Data System (ADS)

    Miles, Richard; Faillace, George A.

    2012-06-01

    In this paper we review the relevant literature and investigate conditions likely to lead to melting of H2O ice, methanol (CH3OH) ice, ethane (C2H6) ice and other volatile ices in cometary nuclei. On the basis of a heat balance model which takes account of volatiles loss, we predict the formation of occasional aqueous and hydrocarbon liquid phases in subsurface regions at heliocentric distances, rh of 1-3 AU, and 5-12 AU, respectively. Low triple-point temperatures and low vapour pressures of C2H6, C3H8, and some higher-order alkanes and alkenes, favour liquid phase formation in cometary bodies at high rh. Microporosity and the formation of a stabilization crust occluding the escape of volatiles facilitate liquid-phase formation. Characteristics of the near-surface which favour subsurface melting include; low effective surface emissivity (at low rh), high amorphous carbon content, average pore sizes of ˜10 μm or less, presence of solutes (e.g. CH3OH), mixtures of C2-C6 hydrocarbons (for melting at high rh), diurnal thermal cycling, and slow rotation rate. Applying the principles of soil mechanics, capillary forces are shown to initiate pre-melting phenomena and subsequent melting, which is expected to impart considerable strength of ˜104 Pa in partially saturated layers, reducing porosity and permeability, enhancing thermal conductivity and heat transfer. Diurnal thermal cycling is expected to have a marked effect on the composition and distribution of H2O ice in the near-surface leading to frost heave-type phenomena even where little if any true melting occurs. Where melting does take place, capillary suction in the wetted zone has the potential to enhance heat transfer via capillary wetting in a low-gravity environment, and to modify surface topography creating relatively smooth flat-bottomed features, which have a tendency to be located within small depressions. An important aspect of the "wetted layer" model is the prediction that diurnal melt-freeze cycles

  6. Liquid phase stability under an extreme temperature gradient.

    PubMed

    Liang, Zhi; Sasikumar, Kiran; Keblinski, Pawel

    2013-11-27

    Using nonequilibrium molecular dynamics simulations, we subject bulk liquid to a very high-temperature gradient and observe a stable liquid phase with a local temperature well above the boiling point. Also, under this high-temperature gradient, the vapor phase exhibits condensation into a liquid at a temperature higher than the saturation temperature, indicating that the observed liquid stability is not caused by nucleation barrier kinetics. We show that, assuming local thermal equilibrium, the phase change can be understood from the thermodynamic analysis. The observed elevation of the boiling point is associated with the interplay between the "bulk" driving force for the phase change and surface tension of the liquid-vapor interface that suppresses the transformation. This phenomenon is analogous to that observed for liquids in confined geometries. In our study, however, a low-temperature liquid, rather than a solid, confines the high-temperature liquid. PMID:24329454

  7. Liquid Phase Stability Under an Extreme Temperature Gradient

    NASA Astrophysics Data System (ADS)

    Liang, Zhi; Sasikumar, Kiran; Keblinski, Pawel

    2013-11-01

    Using nonequilibrium molecular dynamics simulations, we subject bulk liquid to a very high-temperature gradient and observe a stable liquid phase with a local temperature well above the boiling point. Also, under this high-temperature gradient, the vapor phase exhibits condensation into a liquid at a temperature higher than the saturation temperature, indicating that the observed liquid stability is not caused by nucleation barrier kinetics. We show that, assuming local thermal equilibrium, the phase change can be understood from the thermodynamic analysis. The observed elevation of the boiling point is associated with the interplay between the “bulk” driving force for the phase change and surface tension of the liquid-vapor interface that suppresses the transformation. This phenomenon is analogous to that observed for liquids in confined geometries. In our study, however, a low-temperature liquid, rather than a solid, confines the high-temperature liquid.

  8. Stable liquid crystalline phases of colloidally dispersed exfoliated layered niobates.

    PubMed

    Nakato, Teruyuki; Miyamoto, Nobuyoshi; Harada, Akiko

    2004-01-01

    Colloidally dispersed niobium oxide nanosheets obtained by exfoliation of layered niobates HNb(3)O(8) and HTiNbO(5) formed stable liquid crystalline phases; their liquid crystallinity was dependent on the niobate species exfoliated. PMID:14737341

  9. Quantum Liquid Crystal Phases in Strongly Correlated Fermionic Systems

    ERIC Educational Resources Information Center

    Sun, Kai

    2009-01-01

    This thesis is devoted to the investigation of the quantum liquid crystal phases in strongly correlated electronic systems. Such phases are characterized by their partially broken spatial symmetries and are observed in various strongly correlated systems as being summarized in Chapter 1. Although quantum liquid crystal phases often involve…

  10. Surfactant mediated liquid phase exfoliation of graphene

    NASA Astrophysics Data System (ADS)

    Narayan, Rekha; Kim, Sang Ouk

    2015-10-01

    Commercialization of graphene based applications inevitably requires cost effective mass production. From the early days of research on graphene, direct liquid phase exfoliation (LPE) of graphite has been considered as the most promising strategy to produce high-quality mono or few-layer graphene sheets in solvent dispersion forms. Substantial success has been achieved thus far in the LPE of graphene employing numerous solvent systems and suitable surfactants. This invited review article principally showcase the recent research progress as well as shortcomings of surfactant assisted LPE of graphene. In particular, a comprehensive assessment of the quality and yield of the graphene sheets produced by different categories of the surfactants are summarized. Future direction of LPE methods is also proposed for the eventual success of commercial applications.

  11. Replication Experiments in Microgravity Liquid Phase Sintering

    NASA Astrophysics Data System (ADS)

    German, Randall M.; Johnson, John L.

    2016-05-01

    Although considerable experience exists with sintering on Earth, the behavior under reduced gravity conditions is poorly understood. This study analyzes replica microgravity liquid phase sintering data for seven tungsten alloys (35 to 88 wt pct tungsten) sintered for three hold times (1, 180, or 600 minutes) at 1773 K (1500 °C) using 0.002 pct of standard gravity. Equivalent sintering is performed on Earth using the same heating cycles. Microgravity sintering results in a lower density and more shape distortion. For Earth-based sintering, minimized distortion is associated with low liquid contents to avoid solid settling and slumping. Distortion in microgravity sintering involves viscous spreading of the component at points of contact with the containment crucible. Distortion in microgravity is minimized by short hold times; long hold times allow progressive component reshaping toward a spherical shape. Microgravity sintering also exhibits pore coalescence into large, stable voids that cause component swelling. The microgravity sintering results show good replication in terms of mass change and sintered density. Distortion is scattered but statistically similar between the replica microgravity runs. However, subtle factors, not typically of concern on Earth, emerge to influence microgravity sintering, such that ground experiments do not provide a basis to predict microgravity behavior.

  12. Two-phase liquid-liquid flows generated by impinging liquid jets

    NASA Astrophysics Data System (ADS)

    Tsaoulidis, Dimitrios; Li, Qi; Angeli, Panagiota

    2015-11-01

    Two-phase flows in intensified small-scale systems find increasing applications in (bio)chemical analysis and synthesis, fuel cells, polymerisation, and separation processes (solvent extraction). Current nuclear spent fuel reprocessing separation technologies have been developed many decades ago and have not taken account recent advances on process intensification which can drive down plant size and economics. In this work, intensified impinging jets will be developed to create dispersions by bringing the two liquid phases into contact through opposing small channels. A systematic set of experiments has been undertaken, to investigate the hydrodynamic characteristics, to develop predictive models, and enable comparisons with other contactors. Drop size distribution and mixing intensity will be investigated for liquid-liquid mixtures as a function of various parameters using high speed imaging and conductivity probes.

  13. Protein Phase Behavior in Aqueous Solutions: Crystallization, Liquid-Liquid Phase Separation, Gels, and Aggregates

    PubMed Central

    Dumetz, André C.; Chockla, Aaron M.; Kaler, Eric W.; Lenhoff, Abraham M.

    2008-01-01

    The aggregates and gels commonly observed during protein crystallization have generally been considered disordered phases without further characterization. Here their physical nature is addressed by investigating protein salting-out in ammonium sulfate and sodium chloride for six proteins (ovalbumin, ribonuclease A, soybean trypsin inhibitor, lysozyme, and β-lactoglobulin A and B) at 4°C, 23°C, and 37°C. When interpreted within the framework of a theoretical phase diagram obtained for colloidal particles displaying short-range attractive interactions, the results show that the formation of aggregates can be interpreted theoretically in terms of a gas-liquid phase separation for aggregates that are amorphous or gel-like. A notable additional feature is the existence of a second aggregation line observed for both ovalbumin and ribonuclease A in ammonium sulfate, interpreted theoretically as the spinodal. Further investigation of ovalbumin and lysozyme reveals that the formation of aggregates can be interpreted, in light of theoretical results from mode-coupling theory, as a kinetically trapped state or a gel phase that occurs through the intermediate of a gas-liquid phase separation. Despite the limitations of simple theoretical models of short-range attractive interactions, such as their inability to reproduce the effect of temperature, they provide a framework useful to describe the main features of protein phase behavior. PMID:18160663

  14. Safety in the Chemical Laboratory: Cyclohexane as a Cryoscopic Solvent.

    ERIC Educational Resources Information Center

    Steffel, Margaret J.

    1981-01-01

    Suggests that cyclohexane be used as a solvent in experiments usually using benzene, which has been placed on the list of chemicals that are confirmed carcinogens. Reasons for selection of cyclohexane and experimental procedures using this solvent are described. (CS)

  15. Dynamic Percolation and Swollen Behavior of Nanodroplets in 1-Ethyl-3-methylimidazolium Trifluoromethanesulfonate/Triton X-100/Cyclohexane Microemulsions.

    PubMed

    Rahman, Adhip; Rahman, M Muhibur; Mollah, M Yousuf A; Susan, Md Abu Bin Hasan

    2016-07-21

    Microemulsions comprising an ionic liquid (IL), 1-ethyl-3-methylimidazolium trifluoromethanesulfonate ([emim][OTf]), as the polar component, Triton X-100 as a surfactant, and cyclohexane as the nonpolar medium were prepared and characterized. Conductivity and dynamic viscosity data were critically analyzed to confirm dynamic percolation among the droplets that are in continuous motion, aggregation, and fission. The transition from oil-continuous phase to bicontinuous phase was observed at the conductance and viscosity percolation thresholds and sharp changes in the values of conductivity and dynamic viscosity could be identified. Dynamic light scattering measurements revealed swelling of the droplets, which varied within the hydrodynamic diameter range of 10-100 nm. Diffusivity of the droplets suggested less Brownian movement with increased amount of the IL. Moreover, changes in the droplet sizes and diffusivity with increase in IL content supported dynamic percolation within the systems. PMID:27355977

  16. Liquid plasmonics: manipulating surface plasmon polaritons via phase transitions.

    PubMed

    Vivekchand, S R C; Engel, Clifford J; Lubin, Steven M; Blaber, Martin G; Zhou, Wei; Suh, Jae Yong; Schatz, George C; Odom, Teri W

    2012-08-01

    This paper reports the manipulation of surface plasmon polaritons (SPPs) in a liquid plasmonic metal by changing its physical phase. Dynamic properties were controlled by solid-to-liquid phase transitions in 1D Ga gratings that were fabricated using a simple molding process. Solid and liquid phases were found to exhibit different plasmonic properties, where light coupled to SPPs more efficiently in the liquid phase. We exploited the supercooling characteristics of Ga to access plasmonic properties associated with the liquid phase over a wider temperature range (up to 30 °C below the melting point of bulk Ga). Ab initio density functional theory-molecular dynamic calculations showed that the broadening of the solid-state electronic band structure was responsible for the superior plasmonic properties of the liquid metal. PMID:22823536

  17. Computer simulations of liquid silica: Equation of state and liquid-liquid phase transition

    NASA Astrophysics Data System (ADS)

    Saika-Voivod, Ivan; Sciortino, Francesco; Poole, Peter H.

    2001-01-01

    We conduct extensive molecular dynamics computer simulations of two models for liquid silica [the model of Woodcock, Angell and Cheeseman, J. Phys. Chem. 65, 1565 (1976); and that of van Beest, Kramer, and van Santen, Phys. Rev. Lett. 64, 1955 (1990)] to determine their thermodynamic properties at low temperature T across a wide density range. We find for both models a wide range of states in which isochores of the potential energy U are a linear function of T3/5, as recently proposed for simple liquids [Rosenfeld and P. Tarazona, Mol. Phys. 95, 141 (1998)]. We exploit this behavior to fit an accurate equation of state to our thermodynamic data. Extrapolation of this equation of state to low T predicts the occurrence of a liquid-liquid phase transition for both models. We conduct simulations in the region of the predicted phase transition, and confirm its existence by direct observation of phase separating droplets of atoms with distinct local density and coordination environments.

  18. Defects and order in liquid crystal phases

    NASA Astrophysics Data System (ADS)

    Jain, Shilpa

    This thesis investigates the partial destruction of ordering in liquid crystalline systems due to the influence of defects and thermal fluctuations. The systems under consideration are hexagonal columnar crystals with crystalline order perpendicular to the columns, and two-dimensional smectics with order perpendicular to the layers. We first study the possibility of reentrant melting of a hexagonal columnar crystal of flexible charged polymers at high enough densities. The Lindemann criterion is employed in determining the melting point. Lattice fluctuations are calculated in the Debye model, and an analogy with the Abrikosov vortex lattice in superconductors is exploited in estimating both the elastic constants of the hexagonal lattice, and the appropriate Lindemann constant. We also discuss the unusual functional integral describing the statistical mechanics of a single polymer in an Einstein cage model using the path-integral formulation. A crossover as a function of an external field along the column axis is discussed as well. Next, we study defects in a columnar crystal in the form of vacancy/interstitial loops or strings of vacancies and interstitials bounded by column "heads" and "tails". These defect strings are oriented by the columnar lattice and can change size and shape by movement of the ends and forming kinks along the length. Hence an analysis in terms of directed living polymers is appropriate to study their size and shape distribution, volume fraction, etc. If the entropy of transverse fluctuations overcomes the string line tension in the crystalline phase, a string proliferation transition occurs, leading to a "supersolid" phase with infinitely long vacancy or interstitial strings. We estimate the wandering entropy and examine the behaviour in the transition regime. We also calculate numerically the line tension of various species of vacancies and interstitials in a triangular lattice for power-law potentials as well as for a modified Bessel

  19. Coal-Face Fracture With A Two-Phase Liquid

    NASA Technical Reports Server (NTRS)

    Collins, E. R., Jr.

    1985-01-01

    In new method for mining coal without explosive, two-phase liquid such as CO2 and water, injected at high pressure into deeper ends of holes drilled in coal face. Liquid permeates coal seam through existing microfractures; as liquid seeps back toward face, pressure eventually drops below critical value at which dissolved gas flashvaporizes, breaking up coal.

  20. Encapsulated ionic liquids (ENILs): from continuous to discrete liquid phase.

    PubMed

    Palomar, Jose; Lemus, Jesus; Alonso-Morales, Noelia; Bedia, Jorge; Gilarranz, Miguel A; Rodriguez, Juan J

    2012-10-14

    Encapsulated ionic liquid (ENIL) material was developed, consisting of ionic liquid (IL) introduced into carbon submicrocapsules. ENILs contain >85% w/w of IL but discretized in submicroscopic encapsulated drops, drastically increasing the surface contact area with respect to the neat fluid. ENIL materials were here tested for gas separation processes, obtaining a drastic increase in mass transfer rate. PMID:22935733

  1. Liquid-Liquid Phase Transition and Glass Transition in a Monoatomic Model System

    PubMed Central

    Xu, Limei; Buldyrev, Sergey V.; Giovambattista, Nicolas; Stanley, H. Eugene

    2010-01-01

    We review our recent study on the polyamorphism of the liquid and glass states in a monatomic system, a two-scale spherical-symmetric Jagla model with both attractive and repulsive interactions. This potential with a parametrization for which crystallization can be avoided and both the glass transition and the liquid-liquid phase transition are clearly separated, displays water-like anomalies as well as polyamorphism in both liquid and glassy states, providing a unique opportunity to study the interplay between the liquid-liquid phase transition and the glass transition. Our study on a simple model may be useful in understanding recent studies of polyamorphism in metallic glasses. PMID:21614201

  2. Liquid Crystals: The Phase of the Future.

    ERIC Educational Resources Information Center

    Ondris-Crawford, Renate; And Others

    1992-01-01

    Liquid crystal displays are currently utilized to convey information via graphic displays. Presents experiments and explanations that employ the concept of liquid crystals to learn concepts related to the various states of matter, electric and magnetic forces, refraction of light, and optics. Discusses applications of liquid crystal technology.…

  3. Images reveal that atmospheric particles can undergo liquid-liquid phase separations.

    PubMed

    You, Yuan; Renbaum-Wolff, Lindsay; Carreras-Sospedra, Marc; Hanna, Sarah J; Hiranuma, Naruki; Kamal, Saeid; Smith, Mackenzie L; Zhang, Xiaolu; Weber, Rodney J; Shilling, John E; Dabdub, Donald; Martin, Scot T; Bertram, Allan K

    2012-08-14

    A large fraction of submicron atmospheric aerosol particles contains both organic material and inorganic salts. As the relative humidity cycles in the atmosphere and the water content of the particles correspondingly changes, these mixed particles can undergo a range of phase transitions, possibly including liquid-liquid phase separation. If liquid-liquid phase separation occurs, the gas-particle partitioning of atmospheric semivolatile organic compounds, the scattering and absorption of solar radiation, and the reactive uptake of gas species on atmospheric particles may be affected, with important implications for climate predictions. The actual occurrence of liquid-liquid phase separation within individual atmospheric particles has been considered uncertain, in large part because of the absence of observations for real-world samples. Here, using optical and fluorescence microscopy, we present images that show the coexistence of two noncrystalline phases for real-world samples collected on multiple days in Atlanta, GA as well as for laboratory-generated samples under simulated atmospheric conditions. These results reveal that atmospheric particles can undergo liquid-liquid phase separations. To explore the implications of these findings, we carried out simulations of the Atlanta urban environment and found that liquid-liquid phase separation can result in increased concentrations of gas-phase NO(3) and N(2)O(5) due to decreased particle uptake of N(2)O(5). PMID:22847443

  4. Effects of Liquid-Phase Composition on Its Migration during Liquid-Phase Sintering of Cemented Carbide

    NASA Astrophysics Data System (ADS)

    Fan, Peng; Guo, Jun; Fang, Zhigang Zak; Prichard, Paul

    2009-08-01

    Functionally graded composite materials (FGM composites) with a gradient of matrix phase can offer improved properties. Liquid-phase sintering is one of the approaches for making such materials with a desired gradient of the matrix phase by controlling the redistribution of the liquid phase during sintering. The present study on cemented carbide, WC-Co, demonstrates that the composition of the liquid phase (cobalt phase) is one of the key factors controlling the liquid redistribution. The dependence of the final gradient of the cobalt phase after sintering on its own chemical composition profile is quantitatively established, enabling the design and manufacture of WC-Co with a cobalt-phase-volume gradient via predesigned gradients of carbon content in the system.

  5. Methods to control phase inversions and enhance mass transfer in liquid-liquid dispersions

    DOEpatents

    Tsouris, Constantinos; Dong, Junhang

    2002-01-01

    The present invention is directed to the effects of applied electric fields on liquid-liquid dispersions. In general, the present invention is directed to the control of phase inversions in liquid-liquid dispersions. Because of polarization and deformation effects, coalescence of aqueous drops is facilitated by the application of electric fields. As a result, with an increase in the applied voltage, the ambivalence region is narrowed and shifted toward higher volume fractions of the dispersed phase. This permits the invention to be used to ensure that the aqueous phase remains continuous, even at a high volume fraction of the organic phase. Additionally, the volume fraction of the organic phase may be increased without causing phase inversion, and may be used to correct a phase inversion which has already occurred. Finally, the invention may be used to enhance mass transfer rates from one phase to another through the use of phase inversions.

  6. Solid-liquid phase boundaries of lens protein solutions.

    PubMed Central

    Berland, C R; Thurston, G M; Kondo, M; Broide, M L; Pande, J; Ogun, O; Benedek, G B

    1992-01-01

    We report measurement of the solid-liquid phase boundary, or liquidus line, for aqueous solutions of three pure calf gamma-crystallin proteins: gamma II, gamma IIIa, and gamma IIIb. We also studied the liquidus line for solutions of native gamma IV-crystallin calf lens protein, which consists of 85% gamma IVa/15% gamma IVb. In all four proteins the liquidus phase boundaries lie higher in temperature than the previously determined liquid-liquid coexistence curves. Thus, over the range of concentration and temperature for which liquid-liquid phase separation occurs, the coexistence of a protein crystal phase with a protein liquid solution phase is thermodynamically stable relative to the metastable separated liquid phases. The location of the liquidus lines clearly divides these four crystallin proteins into two groups: those in which liquidus lines flatten at temperatures greater than 70 degrees C: gamma IIIa and gamma IV, and those in which liquidus lines flatten at temperatures less than 50 degrees C: gamma II and gamma IIIb. We have analyzed the form of the liquidus lines by using specific choices for the structures of the Gibbs free energy in solution and solid phases. By applying the thermodynamic conditions for equilibrium between the two phases to the resulting chemical potentials, we can estimate the temperature-dependent free energy change upon binding of protein and water into the solid phase. PMID:1741375

  7. Structure of liquid phosphorus: A liquid-liquid phase transition via constant-pressure first-principles molecular dynamics

    NASA Astrophysics Data System (ADS)

    Morishita, Tetsuya

    2001-12-01

    Constant-pressure first-principles molecular dynamics simulations have been carried out to study structural phase transitions of liquid black phosphorus. By compressing the tetrahedral molecular liquid (a low-pressure phase), a structural phase transition from the molecular to polymeric liquid (a high-pressure phase) was successfully realized just as observed in the recent experiment by Katayama et al. [Nature 170 (2000) 403]. Structural properties in the polymeric liquid were investigated and it is found that the covalent p-state bonds are dominant within the first nearest neighbors of each atom. However, further compression of the polymeric liquid shows that the covalent bonding is weakened as pressure is increased. As a result, liquid phosphorus becomes similar to the simple liquid in which atoms form a close-packed structure at very high pressure.

  8. Phase behavior of lysozyme solutions in the liquid-liquid phase coexistence region at high hydrostatic pressures.

    PubMed

    Schulze, Julian; Möller, Johannes; Weine, Jonathan; Julius, Karin; König, Nico; Nase, Julia; Paulus, Michael; Tolan, Metin; Winter, Roland

    2016-05-25

    We present results from small-angle X-ray scattering and turbidity measurements on the effect of high hydrostatic pressure on the phase behavior of dense lysozyme solutions in the liquid-liquid phase separation region, and characterize the underlying intermolecular protein-protein interactions as a function of temperature and pressure under charge-screening conditions (0.5 M NaCl). A reentrant liquid-liquid phase separation region is observed at elevated pressures, which may originate in the pressure dependence of the solvent-mediated protein-protein interaction. A temperature-pressure-concentration phase diagram was constructed for highly concentrated lysozyme solutions over a wide range of temperatures, pressures and protein concentrations including the critical region of the liquid-liquid miscibility gap. PMID:27165990

  9. Comparing two tetraalkylammonium ionic liquids. I. Liquid phase structure

    NASA Astrophysics Data System (ADS)

    Lima, Thamires A.; Paschoal, Vitor H.; Faria, Luiz F. O.; Ribeiro, Mauro C. C.; Giles, Carlos

    2016-06-01

    X-ray scattering experiments at room temperature were performed for the ionic liquids n-butyl-trimethylammonium bis(trifluoromethanesulfonyl)imide, [N1114][NTf2], and methyl-tributylammonium bis(trifluoromethanesulfonyl)imide, [N1444][NTf2]. The peak in the diffraction data characteristic of charge ordering in [N1444][NTf2] is shifted to longer distances in comparison to [N1114][NTf2], but the peak characteristic of short-range correlations is shifted in [N1444][NTf2] to shorter distances. Molecular dynamics (MD) simulations were performed for these ionic liquids using force fields available from the literature, although with new sets of partial charges for [N1114]+ and [N1444]+ proposed in this work. The shifting of charge and adjacency peaks to opposite directions in these ionic liquids was found in the static structure factor, S(k), calculated by MD simulations. Despite differences in cation sizes, the MD simulations unravel that anions are allowed as close to [N1444]+ as to [N1114]+ because anions are located in between the angle formed by the butyl chains. The more asymmetric molecular structure of the [N1114]+ cation implies differences in partial structure factors calculated for atoms belonging to polar or non-polar parts of [N1114][NTf2], whereas polar and non-polar structure factors are essentially the same in [N1444][NTf2]. Results of this work shed light on controversies in the literature on the liquid structure of tetraalkylammonium based ionic liquids.

  10. Comparing two tetraalkylammonium ionic liquids. I. Liquid phase structure.

    PubMed

    Lima, Thamires A; Paschoal, Vitor H; Faria, Luiz F O; Ribeiro, Mauro C C; Giles, Carlos

    2016-06-14

    X-ray scattering experiments at room temperature were performed for the ionic liquids n-butyl-trimethylammonium bis(trifluoromethanesulfonyl)imide, [N1114][NTf2], and methyl-tributylammonium bis(trifluoromethanesulfonyl)imide, [N1444][NTf2]. The peak in the diffraction data characteristic of charge ordering in [N1444][NTf2] is shifted to longer distances in comparison to [N1114][NTf2], but the peak characteristic of short-range correlations is shifted in [N1444][NTf2] to shorter distances. Molecular dynamics (MD) simulations were performed for these ionic liquids using force fields available from the literature, although with new sets of partial charges for [N1114](+) and [N1444](+) proposed in this work. The shifting of charge and adjacency peaks to opposite directions in these ionic liquids was found in the static structure factor, S(k), calculated by MD simulations. Despite differences in cation sizes, the MD simulations unravel that anions are allowed as close to [N1444](+) as to [N1114](+) because anions are located in between the angle formed by the butyl chains. The more asymmetric molecular structure of the [N1114](+) cation implies differences in partial structure factors calculated for atoms belonging to polar or non-polar parts of [N1114][NTf2], whereas polar and non-polar structure factors are essentially the same in [N1444][NTf2]. Results of this work shed light on controversies in the literature on the liquid structure of tetraalkylammonium based ionic liquids. PMID:27306015

  11. Liquid-Phase Electroepitaxy of Semiconductors

    NASA Astrophysics Data System (ADS)

    Dost, Sadik

    The chapter presents a review of the growth of single-crystal bulk semiconductors by liquid-phase electroepitaxy (LPEE). Following a short introduction, early modeling and theoretical studies on LPEE are briefly introduced. Recent experimental results on LPEE growth of GaAs/GaInAs single crystals under a static applied magnetic field are discussed in detail. The results of three-dimensional numerical simulations carried out for LPEE growth of GaAs under various electric and magnetic field levels are presented. The effect of magnetic field nonuniformities is numerically examined. Crystal growth experiments show that the application of a static magnetic field in LPEE growth of GaAs increases the growth rate very significantly. A continuum model to predict such high growth rates is also presented. The introduction of a new electric mobility in the model, i.e., the electromagnetic mobility, allows accurate predictions of both the growth rate and the growth interface shape. Space limitation required the citation of a limited number of references related to LPEE [29.1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73]. For details of many aspects of the LPEE growth process and its historical developments, the reader is referred to these references and also others cited therein.

  12. Ferrofluid-based liquid-phase microextraction.

    PubMed

    Shi, Zhi-Guo; Zhang, Yufeng; Lee, Hian Kee

    2010-11-19

    A new mode of liquid-phase microextraction based on a ferrofluid has been developed. The ferrofluid was composed of silica-coated magnetic particles and 1-octanol as the extractant solvent. The 1-octanol was firmly confined within the silica-coated particles, preventing it from being lost during extraction. Sixteen polycyclic aromatic hydrocarbons (PAHs) were used as model compounds in the development and evaluation of the extraction procedure in combination with gas chromatography-mass spectrometry. Parameters affecting the extraction efficiency were investigated in detail. The optimal conditions were as follows: 20mL sample volume, 10mg of the silica-coated magnetic particles (28mg of ferrofluid), agitation at 20Hz, 20min extraction time, and 2min by sonication with 100μL acetonitrile as the final extraction solvent. Under optimal extraction conditions, enrichment factors ranging from 102- to 173-fold were obtained for the analytes. The limits of detection and the limits of quantification were in the range of 16.8 and 56.7pgmL(-1) and 0.06 and 0.19ngmL(-1), respectively. The linearities were between 0.5-100 and 1-100ngmL(-1) for different PAHs. As the ferrofluid can respond to and be attracted by a magnet, the extraction can be easily achieved by reciprocating movement of an external magnet that served to agitate the sample. No other devices were needed in this new approach of extraction. This new technique is affordable, efficient and convenient for microextraction, and offers portability for potential onsite extraction. PMID:20961552

  13. Liquid-Liquid Phase Transformation in Silicon: Evidence from First-Principles Molecular Dynamics Simulations

    NASA Astrophysics Data System (ADS)

    Jakse, N.; Pasturel, A.

    2007-11-01

    We report results of first principles molecular dynamics simulations that confirm early speculations on the presence of liquid-liquid phase transition in undercooled silicon. However, we find that structural and electronic properties of both low-density liquid (LDL) and high-density liquid (HDL) phases are quite different from those obtained by empirical calculations, the difference being more pronounced for the HDL phase. The discrepancy between quantum and classical simulations is attributed to the inability of empirical potentials to describe changes in chemical bonds induced by density and temperature variations.

  14. Phase Diagram Characterization Using Magnetic Beads as Liquid Carriers.

    PubMed

    Blumenschein, Nicholas; Han, Daewoo; Steckl, Andrew J

    2015-01-01

    Magnetic beads with ~1.9 µm average diameter were used to transport microliter volumes of liquids between contiguous liquid segments with a tube for the purpose of investigating phase change of those liquid segments. The magnetic beads were externally controlled using a magnet, allowing for the beads to bridge the air valve between the adjacent liquid segments. A hydrophobic coating was applied to the inner surface of the tube to enhance the separation between two liquid segments. The applied magnetic field formed an aggregate cluster of magnetic beads, capturing a certain liquid amount within the cluster that is referred to as carry-over volume. A fluorescent dye was added to one liquid segment, followed by a series of liquid transfers, which then changed the fluorescence intensity in the neighboring liquid segment. Based on the numerical analysis of the measured fluorescence intensity change, the carry-over volume per mass of magnetic beads has been found to be ~2 to 3 µl/mg. This small amount of liquid allowed for the use of comparatively small liquid segments of a couple hundred microliters, enhancing the feasibility of the device for a lab-in-tube approach. This technique of applying small compositional variation in a liquid volume was applied to analyzing the binary phase diagram between water and the surfactant C12E5 (pentaethylene glycol monododecyl ether), leading to quicker analysis with smaller sample volumes than conventional methods. PMID:26381055

  15. Transient-Liquid-Phase and Liquid-Film-Assisted Joining ofCeramics

    SciTech Connect

    Sugar, Joshua D.; McKeown, Joseph T.; Akashi, Takaya; Hong, SungM.; Nakashima, Kunihiko; Glaeser, Andreas M.

    2005-02-09

    Two joining methods, transient-liquid-phase (TLP) joining and liquid-film-assisted joining (LFAJ), have been used to bond alumina ceramics. Both methods rely on multilayer metallic interlayers designed to form thin liquid films at reduced temperatures. The liquid films either disappear by interdiffusion (TLP) or promote ceramic/metal interface formation and concurrent dewetting of the liquid film (LFAJ). Progress on extending the TLP method to lower temperatures by combining low-melting-point (<450 C) liquids and commercial reactive-metal brazes is described. Recent LFAJ work on joining alumina to niobium using copper films is presented.

  16. The effect of graphene on liquid-crystalline blue phases

    NASA Astrophysics Data System (ADS)

    Lavrič, M.; Tzitzios, V.; Kralj, S.; Cordoyiannis, G.; Lelidis, I.; Nounesis, G.; Georgakilas, V.; Amenitsch, H.; Zidanšek, A.; Kutnjak, Z.

    2013-09-01

    The stabilization of liquid-crystalline blue phases is recently attracting considerable interest because of the envisioned applications in fast optical displays and tunable photonic crystals. We report on the effect of surface-functionalized graphene nanosheets on the blue phase range of a chiral liquid crystal. Calorimetric and optical measurements, reproducible on heating and cooling, demonstrate that the resulting soft nanocomposite exhibits an increased blue phase temperature stability range for a minute concentration of dispersed graphene. The impact is stronger on the ordered, cubic structured blue phase I. These findings suggest that anisotropic nanoparticles may be of great usefulness for stabilizing blue phases.

  17. Ultra fast polymer network blue phase liquid crystals

    NASA Astrophysics Data System (ADS)

    Hussain, Zakir; Masutani, Akira; Danner, David; Pleis, Frank; Hollfelder, Nadine; Nelles, Gabriele; Kilickiran, Pinar

    2011-06-01

    Polymer-stabilization of blue phase liquid crystal systems within a host polymer network are reported, which enables ultrafast switching flexible displays. Our newly developed method to stabilize the blue phase in an existing polymer network (e.g., that of a polymer network liquid crystal; PNLC) has shown wide temperature stability and fast response speeds. Systems where the blue phase is stabilized in an already existing polymer network are attractive candidates for ultrafast LCDs. The technology also promises to be applied to flexible PNLC and/or polymer dispersed liquid crystal (PDLC) displays using plastic substrate such as polyethylene terephthalate (PET).

  18. Measurements of liquid-phase turbulence in gas-liquid two-phase flows using particle image velocimetry

    NASA Astrophysics Data System (ADS)

    Zhou, Xinquan; Doup, Benjamin; Sun, Xiaodong

    2013-12-01

    Liquid-phase turbulence measurements were performed in an air-water two-phase flow loop with a circular test section of 50 mm inner diameter using a particle image velocimetry (PIV) system. An optical phase separation method--planar laser-induced fluorescence (PLIF) technique—which uses fluorescent particles and an optical filtration technique, was employed to separate the signals of the fluorescent seeding particles from those due to bubbles and other noises. An image pre-processing scheme was applied to the raw PIV images to remove the noise residuals that are not removed by the PLIF technique. In addition, four-sensor conductivity probes were adopted to measure the radial distribution of the void fraction. Two benchmark tests were performed: the first was a comparison of the PIV measurement results with those of similar flow conditions using thermal anemometry from previous studies; the second quantitatively compared the superficial liquid velocities calculated from the local liquid velocity and void fraction measurements with the global liquid flow rate measurements. The differences of the superficial liquid velocity obtained from the two measurements were bounded within ±7% for single-phase flows and two-phase bubbly flows with the area-average void fraction up to 18%. Furthermore, a preliminary uncertainty analysis was conducted to investigate the accuracy of the two-phase PIV measurements. The systematic uncertainties due to the circular pipe curvature effects, bubble surface reflection effects and other potential uncertainty sources of the PIV measurements were discussed. The purpose of this work is to facilitate the development of a measurement technique (PIV-PLIF) combined with image pre-processing for the liquid-phase turbulence in gas-liquid two-phase flows of relatively high void fractions. The high-resolution data set can be used to more thoroughly understand two-phase flow behavior, develop liquid-phase turbulence models, and assess high

  19. Electron-solid and electron-liquid phases in graphene

    NASA Astrophysics Data System (ADS)

    Knoester, M. E.; Papić, Z.; Morais Smith, C.

    2016-04-01

    We investigate the competition between electron-solid and quantum-liquid phases in graphene, which arise in partially filled Landau levels. The differences in the wave function describing the electrons in the presence of a perpendicular magnetic field in graphene with respect to the conventional semiconductors, such as GaAs, can be captured in a form factor which carries the Landau-level index. This leads to a quantitative difference in the electron-solid and -liquid energies. For the lowest Landau level, there is no difference in the wave function of relativistic and nonrelativistic systems. We compute the cohesive energy of the solid phase analytically using a Hartree-Fock Hamiltonian. The liquid energies are computed analytically as well as numerically, using exact diagonalization. We find that the liquid phase dominates in the n =1 Landau level, whereas the Wigner crystal and electron-bubble phases become more prominent in the n =2 and 3 Landau level.

  20. Apparatus for the premixed gas phase combustion of liquid fuels

    SciTech Connect

    Roffe, G.A.; Trucco, H.A.

    1981-04-21

    This invention relates to improvements in the art of liquid fuel combustion and, more particularly, concerns a method and apparatus for the controlled gasification of liquid fuels, the thorough premixing of the then gasified fuel with air and the subsequent gas-phase combustion of the mixture to produce a flame substantially free of soot, carbon monoxide, nitric oxide and unburned fuel.

  1. Solid–Liquid Phase Change Driven by Internal Heat Generation

    SciTech Connect

    John Crepeau; Ali s. Siahpush

    2012-07-01

    This article presents results of solid-liquid phase change, the Stefan Problem, where melting is driven internal heat generation, in a cylindrical geometry. The comparison between a quasi-static analytical solution for Stefan numbers less than one and numerical solutions shows good agreement. The computational results of phase change with internal heat generation show how convection cells form in the liquid region. A scale analysis of the same problem shows four distinct regions of the melting process.

  2. Diffusion mass transport in liquid phase epitaxial growth of semiconductors

    SciTech Connect

    Dost, S.; Qin, Z.; Kimura, M.

    1996-12-01

    A numerical simulation model for the mass transport occurring during the liquid phase epitaxial growth of AlGaAs is presented. The mass transport equations in the liquid and solid phases, and the relationships between concentrations and temperature obtained from the phase diagram constitute the governing equations. These equations together with appropriate interface and boundary conditions were solved numerically by the Finite Element Method. Numerical results show the importance of diffusion into the solid phase, affecting the composition of grown layers. Simulation results agree with experiments.

  3. Gas-Liquid Flows and Phase Separation

    NASA Technical Reports Server (NTRS)

    McQuillen, John

    2004-01-01

    Common issues for space system designers include:Ability to Verify Performance in Normal Gravity prior to Deployment; System Stability; Phase Accumulation & Shedding; Phase Separation; Flow Distribution through Tees & Manifolds Boiling Crisis; Heat Transfer Coefficient; and Pressure Drop.The report concludes:Guidance similar to "A design that operates in a single phase is less complex than a design that has two-phase flow" is not always true considering the amount of effort spent on pressurizing, subcooling and phase separators to ensure single phase operation. While there is still much to learn about two-phase flow in reduced gravity, we have a good start. Focus now needs to be directed more towards system level problems .

  4. Comparison of liquid-phase and gas-phase pure thermal cracking on n-hexadecane

    SciTech Connect

    Wu, G.; Katsumura, Yosuke; Matsuura, Chihiro; Ishigure, Kenkichi; Kubo, Junichi

    1996-12-01

    Thermal cracking of n-hexadecane in the mild temperature (330--375 C) range has been investigated in liquid and gas phases. The kinetic data of liquid-phase cracking are shown to be very similar to those of gas-phase cracking. However, the pattern and distribution of the products are greatly phase dependent. In liquid-phase cracking, there is an equimolar distribution of n-alkane and 1-alkene products in the C{sub 3}--C{sub 13} range at low conversion; when the conversion is increased, more alkanes than alkenes are produced. To the contrary, more alkenes than alkanes are always determined in products from gas-phase cracking. Liquid-phase cracking gives a low selectivity of gas products and a high selectivity of addition compounds (C{sub 18}--C{sub 30}), whereas gas-phase cracking produces a large amount of gas products and no addition compounds. The phase dependence of products can be interpreted in terms of a low concentration of hexadecane, under which {beta}-scission occurs more preferentially than in liquid phase. Reaction mechanisms are suggested based on the product analysis to account for cracking behaviors of liquid-phase and gas-phase cracking.

  5. Liquid phase reaction-bonding of structural ceramics and composites

    SciTech Connect

    Chiang, Y.M. . Dept. of Materials Science and Engineering)

    1988-01-01

    Synthesis of ceramics via the reaction of a solid precursor with either a gas or liquid phase has a number of advantages compared to conventional sintering technology. These advantages are known for gas-phase processes. The authors have explored the potential for synthesizing high performance ceramics in the model system reaction-bonded silicon carbide, in which liquid silicon is used to infiltrate carbonaceous preforms. In this paper results are presented that illustrate the use of alloyed-melts to obtain dense silicon carbide composites with residual refractory silicide phases, such as MoSi/sub 2/, rather than the residual silicon phase which has heretofore limited high temperature properties. Infiltration processing considerations, such as the ultimate infiltration dimensions possible in the presence of simultaneous reaction, are discussed. Microstructure and mechanical properties characterization in the SIC-MoSi/sub 2/ system are presented. Other refractory ceramics systems to which liquid-phase reaction-bonding may be applied are discussed.

  6. The liquid to vapor phase transition in excited nuclei

    SciTech Connect

    Elliott, J.B.; Moretto, L.G.; Phair, L.; Wozniak, G.J.; Beaulieu, L.; Breuer, H.; Korteling, R.G.; Kwiatkowski, K.; Lefort, T.; Pienkowski, L.; Ruangma, A.; Viola, V.E.; Yennello, S.J.

    2001-05-08

    For many years it has been speculated that excited nuclei would undergo a liquid to vapor phase transition. For even longer, it has been known that clusterization in a vapor carries direct information on the liquid-vapor equilibrium according to Fisher's droplet model. Now the thermal component of the 8 GeV/c pion + 197 Au multifragmentation data of the ISiS Collaboration is shown to follow the scaling predicted by Fisher's model, thus providing the strongest evidence yet of the liquid to vapor phase transition.

  7. Structural crossover in a supercooled metallic liquid and the link to a liquid-to-liquid phase transition

    NASA Astrophysics Data System (ADS)

    Lan, S.; Blodgett, M.; Kelton, K. F.; Ma, J. L.; Fan, J.; Wang, X.-L.

    2016-05-01

    Time-resolved synchrotron measurements were carried out to capture the structure evolution of an electrostatically levitated metallic-glass-forming liquid during free cooling. The experimental data shows a crossover in the liquid structure at ˜1000 K, about 115 K below the melting temperature and 150 K above the crystallization temperature. The structure change is characterized by a dramatic growth in the extended-range order below the crossover temperature. Molecular dynamics simulations have identified that the growth of the extended-range order was due to an increased correlation between solute atoms. These results provide structural evidence for a liquid-to-liquid-phase-transition in the supercooled metallic liquid.

  8. Relationship between the liquid liquid phase transition and dynamic behaviour in the Jagla model

    NASA Astrophysics Data System (ADS)

    Xu, Limei; Ehrenberg, Isaac; Buldyrev, Sergey V.; Stanley, H. Eugene

    2006-09-01

    Using molecular dynamics simulations, we study a spherically symmetric 'two-scale' Jagla potential with both repulsive and attractive ramps. This potential displays a liquid-liquid phase transition with a positively sloped coexistence line ending at a critical point well above the equilibrium melting line. We study the dynamic behaviour in the vicinity of this liquid-liquid critical point. Below the critical point, we find that the dynamics in the more ordered high density liquid (HDL) are much slower then the dynamics in the less ordered low density liquid (LDL). Moreover, the behaviour of the diffusion constant and relaxation time in the HDL phase follows approximately an Arrhenius law, while in the LDL phase the slope of the Arrhenius fit increases upon cooling. Above the critical pressure, as we cool the system at constant pressure, the behaviour of the dynamics smoothly changes with temperature. It resembles the behaviour of the LDL at high temperatures and resembles the behaviour of the HDL at low temperatures. This dynamic crossover happens in the vicinity of the Widom line (the extension of the coexistence line into the one-phase region) which also has a positive slope. Our work suggests a possible general relation between a liquid-liquid phase transition and the change in dynamics.

  9. Green aspects, developments and perspectives of liquid phase microextraction techniques.

    PubMed

    Spietelun, Agata; Marcinkowski, Łukasz; de la Guardia, Miguel; Namieśnik, Jacek

    2014-02-01

    Determination of analytes at trace levels in complex samples (e.g. biological or contaminated water or soils) are often required for the environmental assessment and monitoring as well as for scientific research in the field of environmental pollution. A limited number of analytical techniques are sensitive enough for the direct determination of trace components in samples and, because of that, a preliminary step of the analyte isolation/enrichment prior to analysis is required in many cases. In this work the newest trends and innovations in liquid phase microextraction, like: single-drop microextraction (SDME), hollow fiber liquid-phase microextraction (HF-LPME), and dispersive liquid-liquid microextraction (DLLME) have been discussed, including their critical evaluation and possible application in analytical practice. The described modifications of extraction techniques deal with system miniaturization and/or automation, the use of ultrasound and physical agitation, and electrochemical methods. Particular attention was given to pro-ecological aspects therefore the possible use of novel, non-toxic extracting agents, inter alia, ionic liquids, coacervates, surfactant solutions and reverse micelles in the liquid phase microextraction techniques has been evaluated in depth. Also, new methodological solutions and the related instruments and devices for the efficient liquid phase micoextraction of analytes, which have found application at the stage of procedure prior to chromatographic determination, are presented. PMID:24401382

  10. Suppression of phase transitions in a confined rodlike liquid crystal.

    PubMed

    Grigoriadis, Christos; Duran, Hatice; Steinhart, Martin; Kappl, Michael; Butt, Hans-Jürgen; Floudas, George

    2011-11-22

    The nematic-to-isotropic, crystal-to-nematic, and supercooled liquid-to-glass temperatures are studied in the liquid crystal 4-pentyl-4'-cyanobiphenyl (5CB) confined in self-ordered nanoporous alumina. The nematic-to-isotropic and the crystal-to-nematic transition temperatures are reduced linearly with the inverse pore diameter. The finding that the crystalline phase is completely suppressed in pores having diameters of 35 nm and below yields an estimate of the critical nucleus size. The liquid-to-glass temperature is reduced in confinement as anticipated by the model of rotational diffusion within a cavity. These results provide the pertinent phase diagram for a confined liquid crystal and are of technological relevance for the design of liquid crystal-based devices with tunable optical, thermal, and dielectric properties. PMID:21974835

  11. Ambient temperature liquefaction using liquid clathrates: Final technical report

    SciTech Connect

    Atwood, J.L.

    1988-06-22

    New air-stable liquid clathrates based on simple salts were used to effect liquefaction. The quantity of the liquefied products from the liquid clathrates based on (organic base/center dot/H)/sup + -/(Cl-H-Cl)/sup minus/ is among the highest yet observed. Indeed, liquid clathrates based on classic room temperature molten salts such as (pyridinium)(AlCl/sub 4/) have afforded yields of liquid material which may go as high as 70%. The work-up scheme for the (NBu/sub 4/)(Cl-H-Br) liquefaction products has afforded excellent mass balance. The first model hydrogenation runs in a liquid clathrate have been successfully carried out. In the liquid clathrate based on (NBu/sub 4/)(BF/sub 4/) and benzene, Wilkinson's catalyst has given almost complete conversion of cyclohexene to cyclohexane. Studies on the retention of cyclohexene and cyclohexane in the liquid clathrate phase are in progress. Initial indications are that cyclohexene is more compatible with the lower liquid layer than is cyclohexane.

  12. Liquid jet pumps for two-phase flows

    SciTech Connect

    Cunningham, R.G.

    1995-06-01

    Isothermal compression of a bubbly secondary fluid in a mixing-throat and diffuser is described by a one-dimensional flow model of a liquid-jet pump. Friction-loss coefficients used in the four equations may be determined experimentally, or taken from the literature. The model reduces to the liquid-jet gas compressor case if the secondary liquid is zero. Conversely, a zero secondary-gas flow reduces the liquid-jet gas and liquid (LJGL) model to that of the familiar liquid-jet liquid pump. A ``jet loss`` occurs in liquid-jet pumps if the nozzle tip is withdrawn from the entrance plane of the throat, and jet loss is included in the efficiency equations. Comparisons are made with published test data for liquid-jet liquid pumps and for liquid-jet gas compressors. The LJGL model is used to explore jet pump responses to two-phase secondary flows, nozzle-to-throat area ratio, and primary-jet velocity. The results are shown in terms of performance curves versus flow ratios. Predicted peak efficiencies are approximately 50 percent. Under sever operating conditions, LJGL pump performance curves exhibit maximum-flow ratios or cut-offs. Cut-offs occurs when two-phase secondary-flow steams attain sonic values at the entry of the mixing throat. A dimensionless number correlates flow-ratio cut-offs with pump geometry and operating conditions. Throat-entry choking of the secondary flow can be predicted, hence avoided, in designing jet pumps to hand two-phase fluids.

  13. Cyclo-hexane-1-spiro-2'-imidazolidine-5'-spiro-1''-cyclo-hexan-4'-one.

    PubMed

    Kavitha, T; Ponnuswamy, S; Vijayalakshmi, R; Thenmozhi, M; Ponnuswamy, M N

    2010-01-01

    In the title compound, C(13)H(22)N(2)O, the central imidazolidine ring is in an envelope conformation and the two cyclo-hexane rings adopt chair conformations. In the crystal structure, the mol-ecules are linked into centrosymmetric R(2) (2)(8) dimers by pairs of N-H⋯O hydrogen bonds. PMID:21579127

  14. Entropy Calculations for a Supercooled Liquid Crystalline Blue Phase

    ERIC Educational Resources Information Center

    Singh, U.

    2007-01-01

    We observed, using polarized light microscopy, the supercooling of the blue phase (BPI) of cholesteryl proprionate and measured the corresponding liquid crystalline phase transition temperatures. From these temperatures and additional published data we have provided, for the benefit of undergraduate physics students, a nontraditional example…

  15. Polarization-phase filtering of laser images of biological liquids

    NASA Astrophysics Data System (ADS)

    Ushenko, Yu. A.; Sidor, M.

    2013-06-01

    Our work is aimed at searching the possibilities to perform diagnostics and differentiation of structures inherent to liquid-crystal networks of blood plasma with various pathologies (health - breast cancer) by using the method to determine the coordinate distributions of phase shifts (phase maps) between orthogonal components of laser radiation amplitudes with the following statistical, fractal and singular analyses of these distributions.

  16. Low voltage blue phase liquid crystal for spatial light modulators.

    PubMed

    Peng, Fenglin; Lee, Yun-Han; Luo, Zhenyue; Wu, Shin-Tson

    2015-11-01

    We demonstrated a low-voltage polymer-stabilized blue phase liquid crystal (BPLC) for phase-only modulation with a liquid-crystal-on-silicon (LCoS). A new device configuration was developed, which allows the incident laser beam to traverse the BPLC layer four times before exiting the LCoS. As a result, the 2π phase change voltage is reduced to below 24 V in the visible region. The response time remains relatively fast (∼3  ms). The proposed device configuration enables widespread applications of BPLC spatial light modulators. PMID:26512528

  17. Fabrication of Janus droplets by evaporation driven liquid-liquid phase separation.

    PubMed

    Zhang, Qingquan; Xu, Meng; Liu, Xiaojun; Zhao, Wenfeng; Zong, Chenghua; Yu, Yang; Wang, Qi; Gai, Hongwei

    2016-04-11

    We present a universal and scalable method to fabricate Janus droplets based on evaporation driven liquid-liquid phase separation. In this work, the morphologies and chemical properties of separate parts of the Janus droplets can be flexibly regulated, and more complex Janus droplets (such as core-shell Janus droplets, ternary Janus droplets, and multiple Janus droplets) can be constructed easily. PMID:26983706

  18. Phase behavior and dynamics of a cholesteric liquid crystal

    SciTech Connect

    Roy, D.; Fragiadakis, D.; Roland, C. M.; Dabrowski, R.; Dziaduszek, J.; Urban, S.

    2014-02-21

    The synthesis, equation of state, phase diagram, and dielectric relaxation properties are reported for a new liquid crystal, 4{sup ′}-butyl-4-(2-methylbutoxy)azoxybenzene (4ABO5*), which exhibits a cholesteric phase at ambient temperature. The steepness of the intermolecular potential was characterized from the thermodynamic potential parameter, Γ = 4.3 ± 0.1 and the dynamic scaling exponent, γ = 3.5 ± 0.2. The difference between them is similar to that seen previously for nematic and smectic liquid crystals, with the near equivalence of Γ and γ consistent with the near constancy of the relaxation time of 4ABO5* at the cholesteric to isotropic phase transition (i.e., the clearing line). Thus, chirality does not cause deviations from the general relationship between thermodynamics and dynamics in the ordered phase of liquid crystals. The ionic conductivity of 4ABO5* shows strong coupling to the reorientational dynamics.

  19. Fast Method for Computing Chemical Potentials and Liquid-Liquid Phase Equilibria of Macromolecular Solutions.

    PubMed

    Qin, Sanbo; Zhou, Huan-Xiang

    2016-08-25

    Chemical potential is a fundamental property for determining thermodynamic equilibria involving exchange of molecules, such as between two phases of molecular systems. Previously, we developed the fast Fourier transform (FFT)-based method for Modeling Atomistic Protein-crowder interactions (FMAP) to calculate excess chemical potentials according to the Widom insertion. Intermolecular interaction energies were expressed as correlation functions and evaluated via FFT. Here, we extend this method to calculate liquid-liquid phase equilibria of macromolecular solutions. Chemical potentials are calculated by FMAP over a wide range of molecular densities, and the condition for coexistence of low- and high-density phases is determined by the Maxwell equal-area rule. When benchmarked on Lennard-Jones fluids, our method produces an accurate phase diagram at 18% of the computational cost of the current best method. Importantly, the gain in computational speed increases dramatically as the molecules become more complex, leading to many orders of magnitude in speed up for atomistically represented proteins. We demonstrate the power of FMAP by reporting the first results for the liquid-liquid coexistence curve of γII-crystallin represented at the all-atom level. Our method may thus open the door to accurate determination of phase equilibria for macromolecular mixtures such as protein-protein mixtures and protein-RNA mixtures, that are known to undergo liquid-liquid phase separation, both in vitro and in vivo. PMID:27327881

  20. Microgravity Studies of Liquid-Liquid Phase Transitions in Alumina-Yttria Melts

    NASA Technical Reports Server (NTRS)

    Guynes, Buddy (Technical Monitor); Weber, Richard; Nordine, Paul

    2004-01-01

    The scientific objective of this research is to increase the fundamental knowledge base for liquid- phase processing of technologically important oxide materials. The experimental objective is to define conditions and hardware requirements for microgravity flight experiments to test and expand the experimental hypotheses that: 1. Liquid phase transitions can occur in undercooled melts by a diffusionless process. 2. Onset of the liquid phase transition is accompanied by a large change in the temperature dependence of melt viscosity. Experiments on undercooled YAG (Y3A15012)- and rare earth oxide aluminate composition liquids demonstrated a large departure from an Arrhenian temperature dependence of viscosity. Liquid YAG is nearly inviscid at its 2240 K melting point. Glass fibers were pulled from melts undercooled by ca. 600 K indicating that the viscosity is on the order of 100 Pans (1000 Poise) at 1600 K. This value of viscosity is 500 times greater than that obtained by extrapolation of data for temperatures above the melting point of YAG. These results show that the liquids are extremely fragile and that the onset of the highly non-Arrhenian viscosity-temperature relationship occurs at a temperature considerably below the equilibrium melting point of the solid phases. Further results on undercooled alumina-yttria melts containing 23-42 mole % yttrium oxide indicate that a congruent liquid-liquid phase transition occurs in the undercooled liquids. The rates of transition are inconsistent with a diffusion-limited process. This research is directed to investigation of the scientifically interesting phenomena of polyamorphism and fragility in undercooled rare earth oxide aluminum oxide liquids. The results bear on the technologically important problem of producing high value rare earth-based optical materials.

  1. Determination of organochlorine pesticides in water using solvent cooling assisted dynamic hollow-fiber-supported headspace liquid-phase microextraction.

    PubMed

    Huang, Shih-Pin; Huang, Shang-Da

    2007-12-28

    The organic solvent film formed within a hollow fiber was used as an extraction interface in the headspace liquid-phase microextraction (HS-LPME) of organochlorine pesticides. Some common organic solvents with different vapor pressures (9.33-12,918.9 Pa) were studied as extractants. The results indicated that even the solvent with the highest vapor pressure (cyclohexane) can be used to carry out the extraction successfully. However, those compounds (analytes) with low vapor pressures could not be extracted successfully. In general, the large surface area of the hollow fiber can hasten the extraction speed, but it can increase the risk of solvent loss. Lowering the temperature of the extraction solvent could not only reduce solvent loss (by lowering its vapor pressure) but also extend the feasible extraction time to improve extraction efficiency. In this work, a solvent cooling assisted dynamic hollow-fiber-supported headspace liquid-phase microextraction (SC-DHF-HS-LPME) approach was developed. By lowering the temperature of the solvent, the evaporation can be decreased, the extraction time can be lengthened, and, on the contrary, the equilibrium constant between headspace phase and extraction solvent can be increased. In dynamic LPME, the extracting solvent is held within a hollow fiber, affixed to a syringe needle and placed in the headspace of the sample container. The extracting solvent within the fiber is moved to-and-fro by using a programmable syringe pump. The movement facilitates mass transfer of analyte(s) from the sample to the solvent. Analysis of the extract was carried out by gas chromatography-mass spectrometry (GC-MS). The effects of identity of extraction solvent, extraction temperature, sample agitation, extraction time, and salt concentration on extraction performance were also investigated. Good enrichments were achieved (65-211-fold) with this method. Good repeatabilities of extraction were obtained, with RSD values below 15.2%. Detection

  2. Micellar hexagonal phases in lyotropic liquid crystals

    NASA Astrophysics Data System (ADS)

    Amaral, L. Q.; Gulik, A.; Itri, R.; Mariani, P.

    1992-09-01

    The hexagonal cell parameter a of the system sodium dodecyl lauryl sulfate and water as a function of volume concentration cv in phase Hα shows the functional behavior expected for micelles of finite length: a~c-1/3v. The interpretation of x-ray data based on finite micelles leads to an alternative description of the hexagonal phase Hα: spherocylindrical micelles of constant radius with length that may grow along the range of the Hα phase. Results are compared with recent statistical-mechanical calculations for the isotropic I-Hα transition. The absence of diffraction in the direction perpendicular to the hexagonal plane is ascribed to polydispersity of micellar length, which also is a necessary condition for the occurrence of direct I-Hα transitions.

  3. Liquid and Solid Phases of 3He on Graphite

    NASA Astrophysics Data System (ADS)

    Gordillo, M. C.; Boronat, J.

    2016-04-01

    Recent heat-capacity experiments show quite unambiguously the existence of a liquid 3He phase adsorbed on graphite. This liquid is stable at an extremely low density, possibly one of the lowest found in nature. Previous theoretical calculations of the same system, and in strictly two dimensions, agree with the result that this liquid phase is not stable and the system is in the gas phase. We calculated the phase diagram of normal 3He adsorbed on graphite at T =0 using quantum Monte Carlo methods. Considering a fully corrugated substrate, we observe that at densities lower than 0.006 Å-2 the system is a very dilute gas that, at that density, is in equilibrium with a liquid of density 0.014 Å-2 . Our prediction matches very well the recent experimental findings on the same system. On the contrary, when a flat substrate is considered, no gas-liquid coexistence is found, in agreement with previous calculations. We also report results on the different solid structures, and on the corresponding phase transitions that appear at higher densities.

  4. Toward Consistent Terminology for Cyclohexane Conformers in Introductory Organic Chemistry

    ERIC Educational Resources Information Center

    Nelson, Donna J.; Brammer, Christopher N.

    2011-01-01

    Recommended changes in use of cyclohexane conformers and their nomenclature will remedy inconsistencies in cyclohexane conformers and their nomenclature that exist across currently used organic chemistry textbooks. These inconsistencies prompted this logical analysis and the resulting recommendations. Recommended conformer names are "chair",…

  5. Nature of the first-order liquid-liquid phase transition in supercooled silicon

    NASA Astrophysics Data System (ADS)

    Zhao, G.; Yu, Y. J.; Tan, X. M.

    2015-08-01

    The first-order liquid-liquid phase transition in supercooled Si is revisited by long-time first-principle molecular dynamics simulations. As the focus of the present paper, its nature is revealed by analyzing the inherent structures of low-density liquid (LDL) and high-density liquid (HDL). Our results show that it is a transition between a sp3-hybridization LDL and a white-tin-like HDL. This uncovers the origin of the semimetal-metal transition accompanying it and also proves that HDL is the metastable extension of high temperature equilibrium liquid into the supercooled regime. The pressure-temperature diagram of supercooled Si thus can be regarded in some respects as shifted reflection of its crystalline phase diagram.

  6. Containerless Liquid-Phase Processing of Ceramic Materials

    NASA Technical Reports Server (NTRS)

    Weber, J. K. Richard (Principal Investigator); Nordine, Paul C.

    1996-01-01

    The present project builds on the results of research supported under a previous NASA grant to investigate containerless liquid-phase processing of molten ceramic materials. The research used an aero-acoustic levitator in combination with cw CO2 laser beam heating to achieve containerless melting, superheating, undercooling, and solidification of poorly-conducting solids and liquids. Experiments were performed on aluminum oxide, binary aluminum oxide-silicon dioxide materials, and oxide superconductors.

  7. Liquid-phase mixing of bipropellant doublets

    NASA Technical Reports Server (NTRS)

    Hoehn, F. W.; Rupe, J. H.; Sotter, J. G.

    1972-01-01

    Experimental results of unlike doublet mixing are correlated with an analytically derived equation predicting fluid cavitation. The correlation relates the minimum orifice pressure drop required to initiate cavitation, with the system back pressure, cold flow simulant vapor pressure, and the orifice flow discharge and contraction coefficients. Stream flow instabilities are also visually correlated with the onset of cavitation and orifice discharge coefficient measurements. The influence of cavitation on the characteristic phenomenon of hydraulic flip is observed for both circular and noncircular shaped orifices. For certain intermediate orifice lengths, some noncircular shapes are shown to produce more fully developed flows (shorter recovery lengths) and therefore a more cohesive jet, which in turn yields slightly higher cold flow mixing uniformities than circular shaped orifices of equal absolute length. The particular noncircular shaped elements evaluated are shown to be more sensitive to liquid stream misimpingement than the corresponding circular orifices.

  8. Microstructural development in transient liquid-phase bonding

    NASA Astrophysics Data System (ADS)

    Gale, W. F.; Wallach, E. R.

    1991-10-01

    The applicability of conventional models of the transient liquid-phase (TLP) bonding process to the joining of nickel using ternary Ni-Si-B insert metals is considered in this article. It is suggested that diffusion of boron out of the liquid and into the solid substrate before the equilibration of the liquid and solid phases can result in the development of significant boron concentrations in the substrate. This, in turn, leads to the precipitation of boride phases in the substrate during holding at bonding temperatures below the binary nickel-boron eutectic temperature. The formation of boride phases during holding at the bonding temperature is of importance, because first, it is not predicted by the standard models of the TLP process, and second, the borides are not removed by prolonged holding at the bonding temperature and therefore may influence the in-service properties of the joint. In contrast, when bonding above the binary nickel-boron eutectic temperature, localized liquation of the substrate takes place. This liquid region resolidifies following prolonged holding and does not result in the formation of persistent boride phases. Experimental support is presented for the formation of borides during bonding, and characterization of the boride phases formed in the substrate is described.

  9. The Molecular Structure of the Liquid Ordered Phase

    NASA Astrophysics Data System (ADS)

    Lyman, Edward

    2014-03-01

    Molecular dynamics simulations reveal substructures within the liquid-ordered phase of lipid bilayers. These substructures, identified in a 10 μsec all-atom trajectory of liquid-ordered/liquid-disordered coexistence (Lo/Ld) , are composed of saturated hydrocarbon chains packed with local hexagonal order, and separated by interstitial regions enriched in cholesterol and unsaturated chains. Lipid hydrocarbon chain order parameters calculated from the Lo phase are in excellent agreement with 2H NMR measurements; the local hexagonal packing is also consistent with 1H-MAS NMR spectra of the Lo phase, NMR diffusion experiments, and small angle X-ray- and neutron scattering. The balance of cholesterol-rich to local hexagonal order is proposed to control the partitioning of membrane components into the Lo regions. The latter have been frequently associated with formation of so-called rafts, platforms in the plasma membranes of cells that facilitate interaction between components of signaling pathways.

  10. Manipulating Liquids With Acoustic Radiation Pressure Phased Arrays

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C.

    1999-01-01

    High-intensity ultrasound waves can produce the effects of "Acoustic Radiation Pressure" (ARP) and "acoustic streaming." These effects can be used to propel liquid flows and to apply forces that can be used to move or manipulate floating objects or liquid surfaces. NASA's interest in ARP includes the remote-control agitation of liquids and the manipulation of bubbles and drops in liquid experiments and propellant systems. A high level of flexibility is attained by using a high-power acoustic phased array to generate, steer, and focus a beam of acoustic waves. This is called an Acoustic Radiation Pressure Phased Array, or ARPPA. In this approach, many acoustic transducer elements emit wavelets that converge into a single beam of sound waves. Electronically coordinating the timing, or "phase shift," of the acoustic waves makes it possible to form a beam with a predefined direction and focus. Therefore, a user can direct the ARP force at almost any desired point within a liquid volume. ARPPA lets experimenters manipulate objects anywhere in a test volume. This flexibility allow it to be used for multiple purposes, such as to agitate liquids, deploy and manipulate drops or bubbles, and even suppress sloshing in spacecraft propellant tanks.

  11. Liquid-liquid phase separation in supersaturated lysozyme solutions and associated precipitate formation/crystallization

    NASA Astrophysics Data System (ADS)

    Muschol, Martin; Rosenberger, Franz

    1997-08-01

    Using cloud point determinations, the phase boundaries (binodals) for metastable liquid-liquid (L-L) separation in supersaturated hen egg white lysozyme solutions with 3%, 5%, and 7% (w/v) NaCl at pH=4.5 and protein concentrations c between 40 and 400 mg/ml were determined. The critical temperature for the binodal increased approximately linearly with salt concentration. The coexisting liquid phases both remained supersaturated but differed widely in protein concentration. No salt repartitioning was observed between the initial and the two separated liquid phases. After the L-L separation, due to the presence of the high protein concentration phase, crystallization occurred much more rapidly than in the initial solution. At high initial protein concentrations, a metastable gel phase formed at temperatures above the liquid binodal. Both crystal nucleation and gel formation were accelerated in samples that had been cycled through the binodal. Solutions in the gel and L-L regions yielded various types of precipitates. Based on theoretical considerations, previous observations with other proteins, and our experimental results with lysozyme, a generic phase diagram for globular proteins is put forth. A limited region in the (T,c) plane favorable for the growth of protein single crystals is delineated.

  12. Liquid-Liquid Phase Separation in Supersaturated Lysozyme Solutions and Associated Precipitate Formation/Crystallization

    NASA Technical Reports Server (NTRS)

    Muschol, Martin; Rosenberger, Franz

    1997-01-01

    Using cloud point determinations, the phase boundaries (binodals) for metastable liquid-liquid (L-L) separation in supersaturated hen egg white lysozyme solutions with 3%, 5%, and 7% (wlv) NaCl at pH= 4.5 and protein concentrations c between 40 and 400 mg/ml were determined. The critical temperature for the binodal increased approximately linearly with salt concentration. The coexisting liquid phases both remained supersaturated but differed widely in protein concentration. No salt repartitioning was observed between the initial and the two separated liquid phases. After the L-L separation, due to the presence of the high protein concentration phase, crystallization occurred much more rapidly than in the initial solution. At high initial protein concentrations, a metastable gel phase formed at temperatures above the liquid binodal. Both crystal nucleation and gel formation were accelerated in samples that had been cycled through the binodal. Solutions in the gel and L-L regions yielded various types of precipitates. Based on theoretical considerations, previous observations with other proteins, and our experimental results with lysozyme, a generic phase diagram for globular proteins is put forth. A limited region in the (T,c) plane favorable for the growth of protein single crystals is delineated.

  13. Effect of liquid viscosity on wave behavior in gas-liquid two-phase flow

    SciTech Connect

    Kondo, Yoshiyuki; Mori, Koji; Yagishita, Takuya; Nakabo, Akinobu

    1999-07-01

    Measurements of time-spatial distributions of liquid holdups for the vertical upward gas-liquid two-phase flow were carried out by using the supermultiple cross-sectional mean liquid holdup probes (S-CHOP) and the semi-supermultiple point-electrode probes (SS-PEP) in the wide range of superficial gas and liquid velocity, j{sub g} and j{sub {ell}}, and the liquid kinematic viscosities were {nu}{sub {ell}} = 1 x 10{sup {minus}6}, 10 x 10{sup {minus}6} and 20 x 10{sup {minus}6} m{sup 1}/s. The time-spatial maps of wave behavior and the interfacial profiles were presented. Close inspection of these results reveals that there also exist huge waves and disturbance waves in the higher liquid viscosity conditions. To clarify the characteristics of these waves, the wave-vein analysis and the cluster analysis by K-mean algorithm were applied. These methods distinguished huge wave and disturbance wave objectively. The appearance regions of liquid slug, huge wave, and disturbance wave for each liquid viscosity condition were presented and the effects of liquid viscosity on them were discussed. Furthermore, velocity, width and height of these waves were determined, and the effects of liquid viscosity on them were clarified.

  14. Adaptive optics fundus camera using a liquid crystal phase modulator

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Tatsuo; Nakazawa, Naoki; Bessho, Kenichiro; Kitaguchi, Yoshiyuki; Maeda, Naoyuki; Fujikado, Takashi; Mihashi, Toshifumi

    2008-05-01

    We have developed an adaptive optics (AO) fundus camera to obtain high resolution retinal images of eyes. We use a liquid crystal phase modulator to compensate the aberrations of the eye for better resolution and better contrast in the images. The liquid crystal phase modulator has a wider dynamic range to compensate aberrations than most mechanical deformable mirrors and its linear phase generation makes it easy to follow eye movements. The wavefront aberration was measured in real time with a sampling rate of 10 Hz and the closed loop system was operated at around 2 Hz. We developed software tools to align consecutively obtained images. From our experiments with three eyes, the aberrations of normal eyes were reduced to less than 0.1 μm (RMS) in less than three seconds by the liquid crystal phase modulator. We confirmed that this method was adequate for measuring eyes with large aberrations including keratoconic eyes. Finally, using the liquid crystal phase modulator, high resolution images of retinas could be obtained.

  15. A novel urea-functionalized surface-confined octadecylimidazolium ionic liquid silica stationary phase for reversed-phase liquid chromatography.

    PubMed

    Zhang, Mingliang; Tan, Ting; Li, Zhan; Gu, Tongnian; Chen, Jia; Qiu, Hongdeng

    2014-10-24

    One-pot synthesis of surface-confined ionic liquid functionalized silica spheres was proposed using N-(3-aminopropyl)imidazole, γ-isopropyltriethoxysilane and 1-bromooctadecane as starting materials. The surface modification of the silica spheres was successful with a high surface density of octadecylimidazolium, enabling the utilization of this new urea-functionalized ionic liquid-grafted silica material as stationary phase for high-performance liquid chromatography in reversed-phase mode. The long aliphatic chain combined with the multiple polar group embedded in the ligands imparted the new stationary phase fine selectivity towards PAH isomers and polar aromatics and higher affinity for phenolic compounds. The unique features of the new material, especially the effect of the urea group on the retention were elucidated by mathematic modeling. PMID:25249489

  16. Two-phase flow characteristics of liquid oxygen flow in low pressure liquid rocket engine

    NASA Astrophysics Data System (ADS)

    Cho, Namkyung; Kim, Seunghan; Kim, Youngmog; Jeong, Sangkwon; Jung, Jeheon

    2004-06-01

    In most cryogenic liquid rocket engines, liquid oxygen manifold and injector are not thermally insulated from room temperature environment for the purpose of reducing system complexity and weight. This feature of cryogenic liquid supply system results in the situation that liquid oxygen flow is vaporized especially in the vicinity of the manifold and the injector wall. The transient two-phase flow tendency is severe for low combustion pressure rocket engine without using turbo-pump. This paper focuses on the two-phase flow phenomena of liquid oxygen in low combustion pressure rocket engine. The KSR-III (Korea Sounding Rocket) engine test data is thoroughly analyzed to estimate the vapor fraction of liquid oxygen flow near the engine manifold and the injector. During the cold flow and the combustion tests of the KSR-III Engine, the static and dynamic pressures are measured at the engine inlet, the liquid oxygen manifold and the combustion chamber. The manifold outer wall and the inner wall temperatures are also measured. In this paper, we present the experimental investigation on the vapor generation, the vapor mass fraction, and the boiling characteristics of the liquid oxygen flow in the engine manifold and injector.

  17. Intrinsic response of polymer liquid crystals in photochemical phase transition

    SciTech Connect

    Ikeda, Tomiki; Sasaki, Takeo; Kim, Haengboo )

    1991-01-24

    Time-resolved measurements were performed on the photochemically induced isothermal phase transition of polymer liquid crystals (PLC) with mesogenic side chains of phenyl benzoate (PAPB3) and cyanobiphenyl (PACB3) under conditions wherein the photochemical reaction of the doped photoresponsive molecule (4-butyl-4-{prime}-methoxyazobenzene, BMAB) was completed within {approximately} 10 ns, and the subsequent phase transition of the matrix PLC from nematic (N) to isotropic (I) state was followed by time-resolved measurements of the birefringence of the system. Formation of a sufficient amount of the cis isomer of BMAB with a single pulse of a laser lowered the N-I phase transition temperature of the mixture, inducing the N-I phase transition of PLCs isothermally in a time range of {approximately} 200 ms. This time range is comparable to that of low molecular weight liquid crystals, indicating that suppression in mobility of mesogens in PLCs does not affect significantly the thermodynamically controlled process.

  18. A model of liquid phase sintering by the homogenization

    NASA Astrophysics Data System (ADS)

    Pernin, Jean-Noël; Clementz, Philippe

    We study the first stage of liquid phase sintering, when the particles rearrangement due to capillary forces is over. We give the boundary value problem satisfied by the displacement field of points of the medium in the phase of elastic compression of solid particles, for given capillary forces acting as a density of external forces, by using the homogenization method and we characterize the mechanical behavior of this constrained medium from the material properties of each elementary components.

  19. Phase behavior and local structure of liquid crystalline polymers

    NASA Astrophysics Data System (ADS)

    Fynewever, Herb

    In this work we use a combination of theory and computer simulation to study the phase behavior of liquid crystalline polymers and the local structure of polymer melts. We review experimental and simulation evidence which shows that long and stiff molecules form orientationally ordered phases at packing fractions intermediate between the liquid and the solid. With the aid of a two-molecule simulation, we are able to apply Onsager's theory [Ann. N. Y. Acad. Sci. 51, 627 (1949)] for liquid crystal formation to flexible molecules without any additional approximations. Our results have a quantitative advantage over other theories in comparison with computer simulation data such as for the liquid-liquid crystal phase diagram. We also study the local structure of polymer melts using a two-molecule simulation to apply the density functional theories of Donley, Curro, and McCoy [J. Chem. Phys. 101 , 3205 (1994)1; and Yethiraj and Woodward [J. Chem. Phys 102 , 5499 (1995)]. The accuracy of these methods rivals that of integral equation theories in their predictions of local order. Further, the two-molecule simulation facilitates a more direct calculation of the equation of state via the monitoring of orientational correlations.

  20. On the phase-field modelling of a miscible liquid/liquid boundary.

    PubMed

    Xie, Ruilin; Vorobev, Anatoliy

    2016-02-15

    Mixing of miscible liquids is essential for numerous processes in industry and nature. Mixing, i.e. interpenetration of molecules through the liquid/liquid boundary, occurs via interfacial diffusion. Mixing can also involve externally or internally driven hydrodynamic flows, and can lead to deformation or disintegration of the liquid/liquid boundary. At the moment, the mixing dynamics remains poorly understood. The classical Fick's law, generally accepted for description of the diffusion process, does not explain the experimental observations, in particular, the recent experiments with dissolution of a liquid solute by a liquid solvent within a horizontal capillary (Stevar and Vorobev, 2012). We present the results of the numerical study aimed at development of an advanced model for the dissolution dynamics of liquid/liquid binary mixtures. The model is based on the phase-field (Cahn-Hilliard) approach that is used as a physics-based model for the thermo- and hydrodynamic evolution of binary mixtures. Within this approach, the diffusion flux is defined through the gradient of chemical potential, and, in particular, includes the effect of barodiffusion. The dynamic interfacial stresses at the miscible interface are also taken into account. The simulations showed that such an approach can accurately reproduce the shape of the solute/solvent boundary, and some aspects of the diffusion dynamics. Nevertheless, all experimentally-observed features of the diffusion motion of the solute/solvent boundary, were not reproduced. PMID:26609922

  1. Stretchable liquid-crystal blue-phase gels

    NASA Astrophysics Data System (ADS)

    Castles, F.; Morris, S. M.; Hung, J. M. C.; Qasim, M. M.; Wright, A. D.; Nosheen, S.; Choi, S. S.; Outram, B. I.; Elston, S. J.; Burgess, C.; Hill, L.; Wilkinson, T. D.; Coles, H. J.

    2014-08-01

    Liquid-crystalline polymers are materials of considerable scientific interest and technological value. An important subset of these materials exhibit rubber-like elasticity, combining the optical properties of liquid crystals with the mechanical properties of rubber. Moreover, they exhibit behaviour not seen in either type of material independently, and many of their properties depend crucially on the particular mesophase employed. Such stretchable liquid-crystalline polymers have previously been demonstrated in the nematic, chiral-nematic, and smectic mesophases. Here, we report the fabrication of a stretchable gel of blue phase I, which forms a self-assembled, three-dimensional photonic crystal that remains electro-optically switchable under a moderate applied voltage, and whose optical properties can be manipulated by an applied strain. We also find that, unlike its undistorted counterpart, a mechanically deformed blue phase exhibits a Pockels electro-optic effect, which sets out new theoretical challenges and possibilities for low-voltage electro-optic devices.

  2. Depositing spacing layers on magnetic film with liquid phase epitaxy

    NASA Technical Reports Server (NTRS)

    Moody, J. W.; Shaw, R. W.; Sanfort, R. M.

    1975-01-01

    Liquid phase epitaxy spacing layer is compatible with systems which are hard-bubble proofed by use of second magnetic garnet film as capping layer. Composite is superior in that: circuit fabrication time is reduced; adherence is superior; visibility is better; and, good match of thermal expansion coefficients is provided.

  3. pH Variance in Aerosols Undergoing Liquid-Liquid Phase Separation

    NASA Astrophysics Data System (ADS)

    Eddingsaas, N. C.; Dallemagne, M.; Huang, X.

    2014-12-01

    The water content of aerosols is largely governed by relative humidity (RH). As the relative humidity decreases, and thus the water content of aerosols, a number of processes occur including the shrinking of aerosols, the increase in concentration of components, and potentially the formation of liquid liquid phase separation (llps) due to the salting out of inorganic salts. The most ubiquitous salt in atmospheric aerosols is ammonium sulfate which results in many aerosols to be at least mildly acidic. However, during llps, the pH of the different phases is not necessarily the same. Many reactions that take place within atmospheric aerosols are acid catalyzed so a better understanding of the pH of the individual phases as well as the interface between the phases is important to understanding aerosol processing and aging. Through the use of pH sensitive dyes and confocal microscopy we have directly measured the pH of micron sized model aerosols during high RH where the aerosols are in a single phase, at intermediate while the aerosols are in llps, and low RH where the aerosols consist of one liquid phase and one solid phase. We will discuss the variation in RH during these different phase states in the presence and absence of excess sulfuric acid. We will also discuss how this variation in pH affects aging of aerosols.

  4. Novel biodegradation pathways of cyclohexane by Rhodococcus sp. EC1.

    PubMed

    Yi, Taewoo; Lee, Eun-Hee; Ahn, Yun Gyong; Hwang, Geum-Sook; Cho, Kyung-Suk

    2011-07-15

    The metabolism of cyclohexanes by Rodococcus sp. EC1 was investigated using a sequential tracking method of degradation intermediate. Evidence for the formation of cyclohexanol, cyclohexaone, 2-cyclohexen-1-one, and phenol was presented. EC1 metabolized cyclohexane to phenol by aromatization of 2-cyclohexen-1-one, and furthermore gamma-butyrolactone as an intermediate of 2-cyclohexen-1-one was formed. Aromatization by EC1 was confirmed using tetrahydrofuran. Tetrahydrofuran was metabolized through aromatization reaction, involving furan and 2,3-dihydrofuran as key intermediates. EC1 can degrade cyclohexane and tetrahydrofuran in aromatization via desaturation. PMID:21571424

  5. Cyclohexane triones, novel membrane-active antibacterial agents.

    PubMed Central

    Lloyd, W J; Broadhurst, A V; Hall, M J; Andrews, K J; Barber, W E; Wong-Kai-In, P

    1988-01-01

    The cyclohexane triones are a novel group of synthetic antibacterial agents that are active against gram-positive bacteria, Haemophilus influenzae, and Mycobacterium smegmatis. In general, these compounds behaved in a manner similar to that of hexachlorophene, inhibiting the transport of low-molecular-weight hydrophilic substances into bacteria. Unlike cationic detergents, such as chlorhexidine, they did not cause disruption of the bacterial cytoplasmic membrane over a short time period. The most potent antibacterial cyclohexane trione studied had a reduced ability to inhibit solute transport in comparison with certain less active analogs. Cyclohexane triones may express more than a single type of antibacterial effect. PMID:3137860

  6. Liquid-liquid phase separation in heavy-metal fluoride glass

    SciTech Connect

    Suscavaye, M.J.; El-Bayoumi, O.H.

    1985-09-01

    The microstructure of heavy-metal fluoride glass of composition 28.5CdF/sub 2/. 5.0LiF.28.5AlF/sub 3/.38PbF/sub 2/ was investigated using scanning electron microscopy and energy-dispersive X-ray techniques. Liquid-liquid phase separation was observed in crucible-cooled glass samples. The volume fraction of the dispersed glass phase increased substantially as a result of heating the sample at 309/sup 0/C for 1 h.

  7. Liquid-gas phase transition in nuclear matter including strangeness

    SciTech Connect

    Wang, P.; Leinweber, D.B.; Williams, A.G.; Thomas, A.W.

    2004-11-01

    We apply the chiral SU(3) quark mean field model to study the properties of strange hadronic matter at finite temperature. The liquid-gas phase transition is studied as a function of the strangeness fraction. The pressure of the system cannot remain constant during the phase transition, since there are two independent conserved charges (baryon and strangeness number). In a range of temperatures around 15 MeV (precise values depending on the model used) the equation of state exhibits multiple bifurcates. The difference in the strangeness fraction f{sub s} between the liquid and gas phases is small when they coexist. The critical temperature of strange matter turns out to be a nontrivial function of the strangeness fraction.

  8. Anomalous properties and the liquid-liquid phase transition in gallium.

    PubMed

    Li, Renzhong; Sun, Gang; Xu, Limei

    2016-08-01

    A group of materials including water and silicon exhibit many anomalous behaviors, e.g., density anomaly and diffusivity anomaly (increase upon compression). These materials are hypothesized to have a liquid-liquid phase transition (LLPT) and the critical fluctuation in the vicinity of the liquid-liquid critical point is considered as the origin of different anomalies. Liquid gallium was also reported to have a LLPT, yet whether it shows similar water-like anomalies is not yet studied. Using molecular dynamics simulations on a modified embedded-atom model, we study the thermodynamic, dynamic, and structural properties of liquid gallium as well as its LLPT. We find that, similar to water-like materials predicted to have the LLPT, gallium also shows different anomalous behaviors (e.g., density anomaly, diffusivity anomaly, and structural anomaly). We also find that its thermodynamic and structural response functions are continuous and show maxima in the supercritical region, the loci of which asymptotically approach to the other and merge to the Widom line. These phenomena are consistent with the supercritical phenomenon in a category of materials with a liquid-liquid critical point, which could be common features in most materials with a LLPT. PMID:27497564

  9. Anomalous properties and the liquid-liquid phase transition in gallium

    NASA Astrophysics Data System (ADS)

    Li, Renzhong; Sun, Gang; Xu, Limei

    2016-08-01

    A group of materials including water and silicon exhibit many anomalous behaviors, e.g., density anomaly and diffusivity anomaly (increase upon compression). These materials are hypothesized to have a liquid-liquid phase transition (LLPT) and the critical fluctuation in the vicinity of the liquid-liquid critical point is considered as the origin of different anomalies. Liquid gallium was also reported to have a LLPT, yet whether it shows similar water-like anomalies is not yet studied. Using molecular dynamics simulations on a modified embedded-atom model, we study the thermodynamic, dynamic, and structural properties of liquid gallium as well as its LLPT. We find that, similar to water-like materials predicted to have the LLPT, gallium also shows different anomalous behaviors (e.g., density anomaly, diffusivity anomaly, and structural anomaly). We also find that its thermodynamic and structural response functions are continuous and show maxima in the supercritical region, the loci of which asymptotically approach to the other and merge to the Widom line. These phenomena are consistent with the supercritical phenomenon in a category of materials with a liquid-liquid critical point, which could be common features in most materials with a LLPT.

  10. Liquid-liquid phase separation of freely falling undercooled ternary Fe-Cu-Sn alloy

    PubMed Central

    Wang, W .L.; Wu, Y. H.; Li, L. H.; Zhai, W.; Zhang, X. M.; Wei, B.

    2015-01-01

    The active modulation and control of the liquid phase separation for high-temperature metallic systems are still challenging the development of advanced immiscible alloys. Here we present an attempt to manipulate the dynamic process of liquid-liquid phase separation for ternary Fe47.5Cu47.5Sn5 alloy. It was firstly dispersed into numerous droplets with 66 ~ 810 μm diameters and then highly undercooled and rapidly solidified under the containerless microgravity condition inside drop tube. 3-D phase field simulation was performed to explore the kinetic evolution of liquid phase separation. Through regulating the combined effects of undercooling level, phase separation time and Marangoni migration, three types of separation patterns were yielded: monotectic cell, core shell and dispersive structures. The two-layer core-shell morphology proved to be the most stable separation configuration owing to its lowest chemical potential. Whereas the monotectic cell and dispersive microstructures were both thermodynamically metastable transition states because of their highly active energy. The Sn solute partition profiles of Fe-rich core and Cu-rich shell in core-shell structures varied only slightly with cooling rate. PMID:26552711

  11. Liquid-liquid phase separation of freely falling undercooled ternary Fe-Cu-Sn alloy.

    PubMed

    Wang, W L; Wu, Y H; Li, L H; Zhai, W; Zhang, X M; Wei, B

    2015-01-01

    The active modulation and control of the liquid phase separation for high-temperature metallic systems are still challenging the development of advanced immiscible alloys. Here we present an attempt to manipulate the dynamic process of liquid-liquid phase separation for ternary Fe47.5Cu47.5Sn5 alloy. It was firstly dispersed into numerous droplets with 66 ~ 810 μm diameters and then highly undercooled and rapidly solidified under the containerless microgravity condition inside drop tube. 3-D phase field simulation was performed to explore the kinetic evolution of liquid phase separation. Through regulating the combined effects of undercooling level, phase separation time and Marangoni migration, three types of separation patterns were yielded: monotectic cell, core shell and dispersive structures. The two-layer core-shell morphology proved to be the most stable separation configuration owing to its lowest chemical potential. Whereas the monotectic cell and dispersive microstructures were both thermodynamically metastable transition states because of their highly active energy. The Sn solute partition profiles of Fe-rich core and Cu-rich shell in core-shell structures varied only slightly with cooling rate. PMID:26552711

  12. Liquid-liquid phase separation of freely falling undercooled ternary Fe-Cu-Sn alloy

    NASA Astrophysics Data System (ADS)

    Wang, W. L.; Wu, Y. H.; Li, L. H.; Zhai, W.; Zhang, X. M.; Wei, B.

    2015-11-01

    The active modulation and control of the liquid phase separation for high-temperature metallic systems are still challenging the development of advanced immiscible alloys. Here we present an attempt to manipulate the dynamic process of liquid-liquid phase separation for ternary Fe47.5Cu47.5Sn5 alloy. It was firstly dispersed into numerous droplets with 66 ~ 810 μm diameters and then highly undercooled and rapidly solidified under the containerless microgravity condition inside drop tube. 3-D phase field simulation was performed to explore the kinetic evolution of liquid phase separation. Through regulating the combined effects of undercooling level, phase separation time and Marangoni migration, three types of separation patterns were yielded: monotectic cell, core shell and dispersive structures. The two-layer core-shell morphology proved to be the most stable separation configuration owing to its lowest chemical potential. Whereas the monotectic cell and dispersive microstructures were both thermodynamically metastable transition states because of their highly active energy. The Sn solute partition profiles of Fe-rich core and Cu-rich shell in core-shell structures varied only slightly with cooling rate.

  13. Electrically tunable holographic polymer templated blue phase liquid crystal grating

    NASA Astrophysics Data System (ADS)

    He, Zheng-Hong; Chen, Chao-Ping; Zhu, Ji-Liang; Yuan, Ya-Chao; Li, Yan; Hu, Wei; Li, Xiao; Li, Hong-Jing; Lu, Jian-Gang; Su, Yi-Kai

    2015-06-01

    In this paper, we demonstrate an alternative approach to fabricating an electrically tunable holographic polymer templated blue phase liquid crystal grating. This grating is obtained by preforming a polymer template comprised of periodic fringes, and then refilling it with a blue phase liquid crystal. Compared with conventional holographic polymer dispersed liquid crystal gratings, our grating can remarkably reduce its switching voltage from 200 V to 43 V while maintaining a sub-millisecond response time. The holographic polymer templated blue phase liquid crystal (HPTBPLC) grating is free from electrode patterning, thus leading to a lower cost and more flexible applications. Project supported by the National Basic Research Program of China (Grant No. 2013CB328804), the National Natural Science Foundation of China (Grant No. 61307028), the Funds from the Science and Technology Commission of Shanghai Municipality (Grant Nos. 11JC1405300, 13ZR1420000, and 14ZR1422300), and the Fundamental Research Funds for the Central Universities, China (Grant No. XDJK 2011C047).

  14. Gravitational contributions to microstructural coarsening in liquid phase sintering

    NASA Technical Reports Server (NTRS)

    Kipphut, C. M.; Kishi, T.; Bose, A.; German, R. M.

    1987-01-01

    Preliminary experiments for determining the role of gravity in liquid phase sintering have been carried out. Tungsten heavy alloys were selected for this investigation because of the large density difference between solid and liquid, extensive interest in the alloys and considerable data on these alloys. By identifying and isolating the role that gravity plays in shape distortion and microstructural coarsening, further insight into the mechanisms of coarsening kinetics may be realized. Improvements in mechanical properties, shape complexity, and dimensional stability may be realized in the future from low gravity sintering.

  15. 4He glass phase: A model for liquid elements

    NASA Astrophysics Data System (ADS)

    Tournier, Robert F.; Bossy, Jacques

    2016-08-01

    The specific heat of liquid helium confined under pressure in nanoporous material and the formation, in these conditions, of a glass phase accompanied by latent heat are known. These properties are in good agreement with a recent model predicting, in liquid elements, the formation of ultrastable glass having universal thermodynamic properties. The third law of thermodynamics involves that the specific heat decreases at low temperatures and consequently the effective transition temperature of the glass increases up to the temperature where the frozen enthalpy becomes equal to the predicted value. The glass residual entropy is about 23.6% of the melting entropy.

  16. String theory, quantum phase transitions, and the emergent Fermi liquid.

    PubMed

    Cubrović, Mihailo; Zaanen, Jan; Schalm, Koenraad

    2009-07-24

    A central problem in quantum condensed matter physics is the critical theory governing the zero-temperature quantum phase transition between strongly renormalized Fermi liquids as found in heavy fermion intermetallics and possibly in high-critical temperature superconductors. We found that the mathematics of string theory is capable of describing such fermionic quantum critical states. Using the anti-de Sitter/conformal field theory correspondence to relate fermionic quantum critical fields to a gravitational problem, we computed the spectral functions of fermions in the field theory. By increasing the fermion density away from the relativistic quantum critical point, a state emerges with all the features of the Fermi liquid. PMID:19556462

  17. Thermal Vibrational Convection in a Two-phase Stratified Liquid

    NASA Technical Reports Server (NTRS)

    Chang, Qingming; Alexander, J. Iwan D.

    2007-01-01

    The response of a two-phase stratified liquid system subject to a vibration parallel to an imposed temperature gradient is analyzed using a hybrid thermal lattice Boltzmann method (HTLB). The vibrations considered correspond to sinusoidal translations of a rigid cavity at a fixed frequency. The layers are thermally and mechanically coupled. Interaction between gravity-induced and vibration-induced thermal convection is studied. The ability of applied vibration to enhance the flow, heat transfer and interface distortion is investigated. For the range of conditions investigated, the results reveal that the effect of vibrational Rayleigh number and vibrational frequency on a two-phase stratified fluid system is much different than that for a single-phase fluid system. Comparisons of the response of a two-phase stratified fluid system with a single-phase fluid system are discussed.

  18. Superfluid helium 2 liquid-vapor phase separation: Technology assessment

    NASA Technical Reports Server (NTRS)

    Lee, J. M.

    1984-01-01

    A literature survey of helium 2 liquid vapor phase separation is presented. Currently, two types of He 2 phase separators are being investigated: porous, sintered metal plugs and the active phase separator. The permeability K(P) shows consistency in porous plug geometric characterization. Both the heat and mass fluxes increase with K(P). Downstream pressure regulation to adjust for varying heat loads and both temperatures is possible. For large dynamic heat loads, the active phase separator shows a maximum heat rejection rate of up to 2 W and bath temperature stability of 0.1 mK. Porous plug phase separation performance should be investigated for application to SIRTF and, in particular, that plugs of from 10 to the minus ninth square centimeters to 10 to the minus eighth square centimeters in conjunction with downstream pressure regulation be studied.

  19. Elastic response and phase behavior in binary liquid crystal mixtures.

    PubMed

    Sidky, Hythem; Whitmer, Jonathan K

    2016-05-11

    Utilizing density-of-states simulations, we perform a full mapping of the phase behavior and elastic responses of binary liquid crystalline mixtures represented by the multicomponent Lebwohl-Lasher model. Our techniques are able to characterize the complete phase diagram, including nematic-nematic phase separation predicted by mean-field theories, but previously not observed in simulations. Mapping this phase diagram permits detailed study of elastic properties across the miscible nematic region. Importantly, we observe for the first time local phase separation and disordering driven by the application of small linear perturbations near the transition temperature and more significantly through nonlinear stresses. These findings are of key importance in systems of blended nematics which contain particulate inclusions, or are otherwise confined. PMID:27093188

  20. Induced smectic phases of stoichiometric liquid crystal mixtures.

    PubMed

    Sugisawa, Shin-Ya; Tabe, Yuka

    2016-03-16

    We revealed the detailed structures of induced smectic liquid crystal (LC) phases composed of a binary mixture of charge-transfer (CT) LC substances. Although neither of the constituents had highly ordered smectic phases, the mixture exhibited smectic-E (SmE) or smectic-B (SmB) phases when mixed at ratios of 1 : 1 and 2 : 3, respectively. The results of polarized optical microscopy, differential scanning calorimetry, X-ray diffraction, and infrared spectroscopy indicated that the induced smectic phases were stabilized by an exquisite balance between the CT interactions, dipolar interactions, and excluded volume effects. We proposed a possible model for the molecular arrangements in the SmE and SmB phases, which consistently explained the experimental results including the stoichiometric ratios. PMID:26898174

  1. Polycontinuous Lyotropic Liquid Crystalline Network Phases from Gemini Dicarboxylate Surfactants

    NASA Astrophysics Data System (ADS)

    Mahanthappa, Mahesh; Sorenson, Gregory; Schmitt, Adam

    2015-03-01

    Arising from the water concentration-dependent self-assembly of amphiphilic molecules, lyotropic liquid crystals (LLCs) form a wide variety of structurally periodic nanoscale morphologies including discontinuous micellar phases (I), hexagonally-packed cylinders (C), and lamellar (L) phases. In intermediate amphiphile concentration windows between the L and C phases, one typically observes three bicontinuous cubic network phases: gyroid (G), diamond (D), and primitive (P). Recent theoretical work has suggested the possible stability of a variety of non-cubic network phase LLCs, yet none of these phases have been previously observed. In this presentation, we describe the experimental discovery of the first triply periodic network phase LLC with 3D-hexagonal symmetry (space group #193) in binary mixtures of water with a simple gemini dicarboxylate surfactant based on dodecanoic acid. Using a combination of SAXS and rheological methods, we structurally characterize this new phase and show that it is comprised of three interpenetrating lipidic networks of 3-fold connectors in a matrix of water. This finding highlights the unusual aqueous phase behavior of gemini surfactants and suggests new methods for discovering and stabilizing new network phase LLCs beyond the gyroid.

  2. Glass and liquid phase diagram of a polyamorphic monatomic system.

    PubMed

    Reisman, Shaina; Giovambattista, Nicolas

    2013-02-14

    We perform out-of-equilibrium molecular dynamics (MD) simulations of a monatomic system with Fermi-Jagla (FJ) pair potential interactions. This model system exhibits polyamorphism both in the liquid and glass state. The two liquids, low-density (LDL) and high-density liquid (HDL), are accessible in equilibrium MD simulations and can form two glasses, low-density (LDA) and high-density amorphous (HDA) solid, upon isobaric cooling. The FJ model exhibits many of the anomalous properties observed in water and other polyamorphic liquids and thus, it is an excellent model system to explore qualitatively the thermodynamic properties of such substances. The liquid phase behavior of the FJ model system has been previously characterized. In this work, we focus on the glass behavior of the FJ system. Specifically, we perform systematic isothermal compression and decompression simulations of LDA and HDA at different temperatures and determine "phase diagrams" for the glass state; these phase diagrams varying with the compression/decompression rate used. We obtain the LDA-to-HDA and HDA-to-LDA transition pressure loci, P(LDA-HDA)(T) and P(HDA-LDA)(T), respectively. In addition, the compression-induced amorphization line, at which the low-pressure crystal (LPC) transforms to HDA, P(LPC-HDA)(T), is determined. As originally proposed by Poole et al. [Phys. Rev. E 48, 4605 (1993)] simulations suggest that the P(LDA-HDA)(T) and P(HDA-LDA)(T) loci are extensions of the LDL-to-HDL and HDL-to-LDL spinodal lines into the glass domain. Interestingly, our simulations indicate that the P(LPC-HDA)(T) locus is an extension, into the glass domain, of the LPC metastability limit relative to the liquid. We discuss the effects of compression/decompression rates on the behavior of the P(LDA-HDA)(T), P(HDA-LDA)(T), P(LPC-HDA)(T) loci. The competition between glass polyamorphism and crystallization is also addressed. At our "fast rate," crystallization can be partially suppressed and the glass

  3. Glass and liquid phase diagram of a polyamorphic monatomic system

    NASA Astrophysics Data System (ADS)

    Reisman, Shaina; Giovambattista, Nicolas

    2013-02-01

    We perform out-of-equilibrium molecular dynamics (MD) simulations of a monatomic system with Fermi-Jagla (FJ) pair potential interactions. This model system exhibits polyamorphism both in the liquid and glass state. The two liquids, low-density (LDL) and high-density liquid (HDL), are accessible in equilibrium MD simulations and can form two glasses, low-density (LDA) and high-density amorphous (HDA) solid, upon isobaric cooling. The FJ model exhibits many of the anomalous properties observed in water and other polyamorphic liquids and thus, it is an excellent model system to explore qualitatively the thermodynamic properties of such substances. The liquid phase behavior of the FJ model system has been previously characterized. In this work, we focus on the glass behavior of the FJ system. Specifically, we perform systematic isothermal compression and decompression simulations of LDA and HDA at different temperatures and determine "phase diagrams" for the glass state; these phase diagrams varying with the compression/decompression rate used. We obtain the LDA-to-HDA and HDA-to-LDA transition pressure loci, PLDA-HDA(T) and PHDA-LDA(T), respectively. In addition, the compression-induced amorphization line, at which the low-pressure crystal (LPC) transforms to HDA, PLPC-HDA(T), is determined. As originally proposed by Poole et al. [Phys. Rev. E 48, 4605 (1993)], 10.1103/PhysRevE.48.4605 simulations suggest that the PLDA-HDA(T) and PHDA-LDA(T) loci are extensions of the LDL-to-HDL and HDL-to-LDL spinodal lines into the glass domain. Interestingly, our simulations indicate that the PLPC-HDA(T) locus is an extension, into the glass domain, of the LPC metastability limit relative to the liquid. We discuss the effects of compression/decompression rates on the behavior of the PLDA-HDA(T), PHDA-LDA(T), PLPC-HDA(T) loci. The competition between glass polyamorphism and crystallization is also addressed. At our "fast rate," crystallization can be partially suppressed and the

  4. Evidence of a liquid-liquid phase transition in hot dense hydrogen.

    PubMed

    Dzyabura, Vasily; Zaghoo, Mohamed; Silvera, Isaac F

    2013-05-14

    We use pulsed-laser heating of hydrogen at static pressures in the megabar pressure region to search for the plasma phase transition to liquid atomic metallic hydrogen. We heat our samples substantially above the melting line and observe a plateau in a temperature vs. laser power curve that otherwise increases with power. This anomaly in the heating curve appears correlated with theoretical predictions for the plasma phase transition. PMID:23630287

  5. Plasmas in Multiphase Media: Bubble Enhanced Discharges in Liquids and Plasma/Liquid Phase Boundaries

    SciTech Connect

    Kushner, Mark Jay

    2014-07-10

    In this research project, the interaction of atmospheric pressure plasmas with multi-phase media was computationally investigated. Multi-phase media includes liquids, particles, complex materials and porous surfaces. Although this investigation addressed fundamental plasma transport and chemical processes, the outcomes directly and beneficially affected applications including biotechnology, medicine and environmental remediation (e.g., water purification). During this project, we made advances in our understanding of the interaction of atmospheric pressure plasmas in the form of dielectric barrier discharges and plasma jets with organic materials and liquids. We also made advances in our ability to use computer modeling to represent these complex processes. We determined the method that atmospheric pressure plasmas flow along solid and liquid surfaces, and through endoscopic like tubes, deliver optical and high energy ion activation energy to organic and liquid surfaces, and produce reactivity in thin liquid layers, as might cover a wound. We determined the mechanisms whereby plasmas can deliver activation energy to the inside of liquids by sustaining plasmas in bubbles. These findings are important to the advancement of new technology areas such as plasma medicine

  6. Phase-Changing Ionic Liquids: CO2 Capture with Ionic Liquids Involving Phase Change

    SciTech Connect

    2010-07-01

    IMPACCT Project: Notre Dame is developing a new CO2 capture process that uses special ionic liquids (ILs) to remove CO2 from the gas exhaust of coal-fired power plants. ILs are salts that are normally liquid at room temperature, but Notre Dame has discovered a new class of ILs that are solid at room temperature and change to liquid when they bind to CO2. Upon heating, the CO2 is released for storage, and the ILs re-solidify and donate some of the heat generated in the process to facilitate further CO2 release. These new ILs can reduce the energy required to capture CO2 from the exhaust stream of a coal-fired power plant when compared to state-ofthe- art technology.

  7. Surface order at surfactant-laden interfaces between isotropic liquid crystals and liquid phases with different polarity

    NASA Astrophysics Data System (ADS)

    Feng, Xunda; Bahr, Christian

    2011-03-01

    We present an ellipsometry study of the interface between thermotropic liquid crystals and liquid phases consisting of various binary mixtures of water and glycerol. The liquid-crystal samples contain a small constant amount of a surfactant which induces a homeotropic anchoring at the interface. We determine the smectic or nematic order at the interface in the temperature range above the liquid-crystal-isotropic transition while the water to glycerol ratio is varied, corresponding to a systematic modification of the polarity of the liquid phase. The surface-induced order becomes less pronounced with increasing glycerol concentration in the liquid phase. The observed behavior is compared with previous studies in which the surfactant concentration in the liquid-crystal bulk phase was varied. The results indicate that in both cases the magnitude of the surfactant coverage at the interface is the key quantity which determines the liquid-crystal surface order at the interface.

  8. Structure, Hydrodynamics, and Phase Transition of Freely Suspended Liquid Crystals

    NASA Technical Reports Server (NTRS)

    Clark, Noel A.

    2000-01-01

    Smectic liquid crystals are phases of rod shaped molecules organized into one dimensionally (1D) periodic arrays of layers, each layer being between one and two molecular lengths thick. In the least ordered smectic phases, the smectics A and C, each layer is a two dimensional (2D) liquid. Additionally there are a variety of more ordered smectic phases having hexatic short range translational order or 2D crystalline quasi long range translational order within the layers. The inherent fluid-layer structure and low vapor pressure of smectic liquid crystals enable the long term stabilization of freely suspended, single component, layered fluid films as thin as 30A, a single molecular layer. The layering forces the films to be an integral number of smectic layers thick, quantizing their thickness in layer units and forcing a film of a particular number of layers to be physically homogeneous with respect to its layer structure over its entire area. Optical reflectivity enables the precise determination of the number of layers. These ultrathin freely suspended liquid crystal films are structures of fundamental interest in condensed matter and fluid physics. They are the thinnest known stable condensed phase fluid structures and have the largest surface-to-volume ratio of any stable fluid preparation, making them ideal for the study of the effects of reduced dimensionality on phase behavior and on fluctuation and interface phenomena. Their low vapor pressure and quantized thickness enable the effective use of microgravity to extend the study of basic capillary phenomena to ultrathin fluid films. Freely suspended films have been a wellspring of new liquid crystal physics. They have been used to provide unique experimental conditions for the study of condensed phase transitions in two dimensions. They are the only system in which the hexatic has been unambiguously identified as a phase of matter, and the only physical system in which fluctuations of a 2D XY system and

  9. Common path point diffraction interferometer using liquid crystal phase shifting

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R. (Inventor)

    1997-01-01

    A common path point diffraction interferometer uses dyed, parallel nematic liquid crystals which surround an optically transparent microsphere. Coherent, collimated and polarized light is focused on the microsphere at a diameter larger than that of the microsphere. A portion of the focused light passes through the microsphere to form a spherical wavefront reference beam and the rest of the light is attenuated by the dyed liquid crystals to form an object beam. The two beams form an interferogram which is imaged by a lens onto an electronic array sensor and into a computer which determines the wavefront of the object beam. The computer phase shifts the interferogram by stepping up an AC voltage applied across the liquid crystals without affecting the reference beam.

  10. Dynamical and structural heterogeneities close to liquid-liquid phase transitions: The case of gallium

    NASA Astrophysics Data System (ADS)

    Antonelli, Alex; Cajahuaringa, Samuel; de Koning, Maurice

    2013-03-01

    Liquid-liquid phase transitions (LLPT) have been proposed in order to explain the thermodynamic anomalies exhibited by some liquids. Recently, it was found, through molecular dynamics simulations, that liquid elemental gallium, described by a modified embedded-atom model, exhibits a LLPT between a high-density liquid (HDL) and a low-density liquid (LDL), about 60 K below the melting temperature. In this work, we studied the dynamics of supercooled liquid gallium close to the LLPT. Our results show a large increase in the plateau of the self-intermediate scattering function (β-relaxation process) and in the non-Gaussian parameter, indicating a pronounced dynamical heterogeneity upon the onset of the LLPT. The dynamical heterogeneity of the LDL is closely correlated to its structural heterogeneity, since the fast diffusing atoms belong to high-density domains of predominantly 9-fold coordinated atoms, whereas the slow diffusing ones are mostly in low-density domains of 8-fold coordinated atoms. The energetics suggests that the reason for the sluggish dynamics of LDL is due to its larger cohesive energy as compared to that of the HDL. Work supported by FAPESP, CNPq, CAPES, and FAEPEX/UNICAMP

  11. Densification and shape distortion in liquid-phase sintering

    SciTech Connect

    Liu, J.; German, R.M.

    1999-12-01

    Densification and dimensional control are important aspects of liquid-phase sintering. The capillary force and the solid bonding affect both densification and shape preservation. Capillarity, which is orientated isotropically, causes uniform shrinkage and holds grains together to preserve the component shape in the early stage of sintering. On the other hand, solid bonding resists viscous flow and inhibits densification and shape distortion. The capillary force decreases with densification and approaches zero as pores are eliminated. Thus, shape retention eventually requires solid-grain bonding. The solid-grain bonding provides compact rigidity, which is represented by compact strength. Shape distortion occurs when the compact loses its strength. For every situation, there is a critical compact strength above which no shape distortion occurs. Distortion in liquid-phase sintering indicates that the compact strength passed below a critical level.

  12. Transport Phenomena in Liquid Phase Diffusion Growth of Silicon Germanium

    NASA Astrophysics Data System (ADS)

    Armour, Neil Alexander

    Silicon Germanium, SiGe, is an important emerging semiconductor material. In order to optimize growth techniques for SiGe production, such as Liquid Phase Diffusion, LPD, or Melt Replenishment Czochralski, a good understanding of the transport phenomena in the melt is required. In the context of the Liquid Phase Diffusion growth technique, the transport phenomena of silicon in a silicon-germanium melt has been explored. Experiments isolating the dissolution and transport of silicon into a germanium melt have been conducted under a variety of flow conditions. Preliminary modeling of these experiments has also been conducted and agreement with experiments has been shown. In addition, full LPD experiments have also been conducted under varying flow conditions. Altered flow conditions were achieved through the application of a variety of magnetic fields. Through the experimental and modeling work better understanding of the transport mechanisms at work in a silicon-germanium melt has been achieved.

  13. Liquid-phase sintering of iron aluminide-bonded ceramics

    SciTech Connect

    Schneibel, J.H.; Carmichael, C.A.

    1995-12-31

    Iron aluminide intermetallics exhibit excellent oxidation and sulfidation resistance and are therefore considered as the matrix in metal matrix composites, or the binder in hard metals or cermets. In this paper the authors discuss the processing and properties of liquid-phase sintered iron aluminide-bonded ceramics. It is found that ceramics such as TiB{sub 2}, ZrB{sub 2}, TiC, and WC may all be liquid phase-sintered. nearly complete densification is achieved for ceramic volume fractions ranging up to 60%. Depending on the composition, room temperature three point-bend strengths and fracture toughnesses reaching 1,500 MPa and 30 MPa m{sup 1/2}, respectively, have been found. Since the processing was carried out in a very simple manner, optimized processing is likely to result in further improvements.

  14. Liquid phase oxidation chemistry in continuous-flow microreactors.

    PubMed

    Gemoets, Hannes P L; Su, Yuanhai; Shang, Minjing; Hessel, Volker; Luque, Rafael; Noël, Timothy

    2016-01-01

    Continuous-flow liquid phase oxidation chemistry in microreactors receives a lot of attention as the reactor provides enhanced heat and mass transfer characteristics, safe use of hazardous oxidants, high interfacial areas, and scale-up potential. In this review, an up-to-date overview of both technological and chemical aspects of liquid phase oxidation chemistry in continuous-flow microreactors is given. A description of mass and heat transfer phenomena is provided and fundamental principles are deduced which can be used to make a judicious choice for a suitable reactor. In addition, the safety aspects of continuous-flow technology are discussed. Next, oxidation chemistry in flow is discussed, including the use of oxygen, hydrogen peroxide, ozone and other oxidants in flow. Finally, the scale-up potential for continuous-flow reactors is described. PMID:26203551

  15. Powder metallurgy: Solid and liquid phase sintering of copper

    NASA Technical Reports Server (NTRS)

    Sheldon, Rex; Weiser, Martin W.

    1993-01-01

    Basic powder metallurgy (P/M) principles and techniques are presented in this laboratory experiment. A copper based system is used since it is relatively easy to work with and is commercially important. In addition to standard solid state sintering, small quantities of low melting metals such as tin, zinc, lead, and aluminum can be added to demonstrate liquid phase sintering and alloy formation. The Taguchi Method of experimental design was used to study the effect of particle size, pressing force, sintering temperature, and sintering time. These parameters can be easily changed to incorporate liquid phase sintering effects and some guidelines for such substitutions are presented. The experiment is typically carried out over a period of three weeks.

  16. Study on the mechanism of liquid phase sintering (M-12)

    NASA Technical Reports Server (NTRS)

    Kohara, S.

    1993-01-01

    The objectives were to (1) obtain the data representing the growth rate of solid particles in a liquid matrix without the effect of gravity; and (2) reveal the growth behavior of solid particles during liquid phase sintering using the data obtained. Nickel and tungsten are used as the constituent materials in liquid phase sintering. The properties of the constituent metals are given. When a compact of the mixture of tungsten and nickel powders is heated and kept at 1550 C, nickel melts down but tungsten stays solid. As the density of tungsten is much greater than that of nickel, the sedimentation of tungsten particles occurs in the experiment on Earth. The difference between the experiments on Earth and in space is illustrated. The tungsten particles sink to the bottom and are brought into contact with each other. The resulting pressure at the contact point causes the accelerated dissolution of tungsten. Consequently, flat surfaces are formed at the contact sites. As a result of dissolution and reprecipitation of tungsten, the shape of particles changes to a polygon. This phenomenon is called 'flattening.' An example of flattening of tungsten particles is shown. Thus, the data obtained by the experiment on Earth may not represent the exact growth behavior of the solid particles in a liquid matrix. If the experiments were done in a microgravity environment, the data corresponding to the theoretical growth behavior of solid particles could be achieved.

  17. Phase-locked measurements of gas-liquid horizontal flows

    NASA Astrophysics Data System (ADS)

    Zadrazil, Ivan; Matar, Omar; Markides, Christos

    2014-11-01

    A flow of gas and liquid in a horizontal pipe can be described in terms of various flow regimes, e.g. wavy stratified, annular or slug flow. These flow regimes appear at characteristic gas and liquid Reynolds numbers and feature unique wave phenomena. Wavy stratified flow is populated by low amplitude waves whereas annular flow contains high amplitude and long lived waves, so called disturbance waves, that play a key role in a liquid entrainment into the gas phase (droplets). In a slug flow regime, liquid-continuous regions travel at high speeds through a pipe separated by regions of stratified flow. We use a refractive index matched dynamic shadowgraphy technique using a high-speed camera mounted on a moving robotic linear rail to track the formation and development of features characteristic for the aforementioned flow regimes. We show that the wave dynamics become progressively more complex with increasing liquid and gas Reynolds numbers. Based on the shadowgraphy measurements we present, over a range of conditions: (i) phenomenological observations of the formation, and (ii) statistical data on the downstream velocity distribution of different classes of waves. EPSRC Programme Grant, MEMPHIS, EP/K0039761/1.

  18. Confinement-driven phase separation of quantum liquid mixtures.

    PubMed

    Prisk, T R; Pantalei, C; Kaiser, H; Sokol, P E

    2012-08-17

    We report small-angle neutron scattering studies of liquid helium mixtures confined in Mobil Crystalline Material-41 (MCM-41), a porous silica glass with narrow cylindrical nanopores (d=3.4 nm). MCM-41 is an ideal model adsorbent for fundamental studies of gas sorption in porous media because its monodisperse pores are arranged in a 2D triangular lattice. The small-angle scattering consists of a series of diffraction peaks whose intensities are determined by how the imbibed liquid fills the pores. Pure (4)He adsorbed in the pores show classic, layer-by-layer film growth as a function of pore filling, leaving the long range symmetry of the system intact. In contrast, the adsorption of (3)He-(4)He mixtures produces a structure incommensurate with the pore lattice. Neither capillary condensation nor preferential adsorption of one helium isotope to the pore walls can provide the symmetry-breaking mechanism. The scattering is consistent with the formation of randomly distributed liquid-liquid microdomains ∼2.3 nm in size, providing evidence that confinement in a nanometer scale capillary can drive local phase separation in quantum liquid mixtures. PMID:23006380

  19. Vortex motion phase separator for zero gravity liquid transfer

    NASA Technical Reports Server (NTRS)

    Howard, Frank S. (Inventor); Fraser, Wilson M., Jr. (Inventor)

    1989-01-01

    A vortex motion phase separator is disclosed for transferring a liquid in a zero gravity environment while at the same time separating the liquid from vapors found within either the sender or the receiving tanks. The separator comprises a rigid sender tank having a circular cross-section and rigid receiver tank having a circular cross-section. A plurality of ducts connects the sender tank and the receiver tank. Disposed within the ducts connecting the receiver tank and the sender tank is a pump and a plurality of valves. The pump is powered by an electric motor and is adapted to draw either the liquid or a mixture of the liquid and the vapor from the sender tank. Initially, the mixture drawn from the sender tank is directed through a portion of the ductwork and back into the sender tank at a tangent to the inside surface of the sender tank, thereby creating a swirling vortex of the mixture within the sender tank. As the pumping action increases, the speed of the swirling action within the sender tank increases creating an increase in the centrifugal force operating on the mixture. The effect of the centrifugal force is to cause the heavier liquid to migrate to the inside surface of the sender tank and to separate from the vapor. When this separation reaches a predetermined degree, control means is activated to direct the liquid conveyed by the pump directly into the receiver tank. At the same time, the vapor within the receiver tank is directed from the receiver tank back into the sender tank. This flow continues until substantially all of the liquid is transferred from the sender tank to the receiver tank.

  20. Dynamic evolution of liquid-liquid phase separation during continuous cooling

    SciTech Connect

    Imhoff, S. D.; Gibbs, P. J.; Katz, M. R.; Ott, T. J.; Patterson, B. M.; Lee, W. -K.; Fezzaa, K.; Cooley, J. C.; Clarke, A. J.

    2015-03-01

    Solidification from a multiphase fluid involves many unknown quantities due to the difficulty of predicting the impact of fluid flow on chemical partitioning. Real-time x-ray radiography has been used to observe liquideliquid phase separation in Al90In10 prior to solidification. Quantitative image analysis has been used to measure the motion and population characteristics of the dispersed indium-rich liquid phase during cooling. Here we determine that the droplet growth characteristics resemble well known steady-state coarsening laws with likely enhancement by concurrent growth due to supersaturation. Simplistic views of droplet motion are found to be insufficient until late in the reaction due to a hydrodynamic instability caused by the large density difference between the dispersed and matrix liquid phases.

  1. Oxidation Protection of Uranium Nitride Fuel using Liquid Phase Sintering

    SciTech Connect

    Dr. Paul A. Lessing

    2012-03-01

    Two methods are proposed to increase the oxidation resistance of uranium nitride (UN) nuclear fuel. These paths are: (1) Addition of USi{sub x} (e.g. U3Si2) to UN nitride powder, followed by liquid phase sintering, and (2) 'alloying' UN nitride with various compounds (followed by densification via Spark Plasma Sintering or Liquid Phase Sintering) that will greatly increase oxidation resistance. The advantages (high thermal conductivity, very high melting point, and high density) of nitride fuel have long been recognized. The sodium cooled BR-10 reactor in Russia operated for 18 years on uranium nitride fuel (UN was used as the driver fuel for two core loads). However, the potential advantages (large power up-grade, increased cycle lengths, possible high burn-ups) as a Light Water Reactor (LWR) fuel are offset by uranium nitride's extremely low oxidation resistance (UN powders oxidize in air and UN pellets decompose in hot water). Innovative research is proposed to solve this problem and thereby provide an accident tolerant LWR fuel that would resist water leaks and high temperature steam oxidation/spalling during an accident. It is proposed that we investigate two methods to increase the oxidation resistance of UN: (1) Addition of USi{sub x} (e.g. U{sub 3}Si{sub 2}) to UN nitride powder, followed by liquid phase sintering, and (2) 'alloying' UN nitride with compounds (followed by densification via Spark Plasma Sintering) that will greatly increase oxidation resistance.

  2. Liquid phase coating to produce controlled-release alginate microspheres.

    PubMed

    Chan, Lai Wah; Liu, Xiaohua; Heng, Paul Wan Sia

    2005-12-01

    This study explored a liquid phase coating technique to produce polymethyl methacrylate (PMMA)-coated alginate microspheres. Alginate microspheres with a mean diameter of 85.6 microm were prepared using an emulsification method. The alginate microspheres, as cores, were then coated with different types of PMMA by a liquid phase coating technique. The release characteristics of these coated microspheres in simulated gastric (SGF) and intestinal (SIF) fluids and the influence of drug load on encapsulation efficiency were studied. The release of paracetamol, as a model hydrophilic drug, from the coated microspheres in SGF and SIF was greatly retarded. Release rates of Eudragit RS100-coated microspheres in SGF and SIF were similar as the rate-controlling polymer coat was insoluble in both media. Drug release from Eudragit S100-coated microspheres was more sustained in SGF than in SIF, due to the greater solubility of the coating polymer in media with pH greater than 7.0. The drug release rate was affected by the core:coat ratio. Drug release from the coated microspheres was best described by the Higuchi's square root model. The liquid phase coating technique developed offers an efficient method of coating small microspheres with markedly reduced drug loss and possible controlled drug release. PMID:16423760

  3. ENHANCED SOURCE REMOVAL OF NONAQUEOUS PHASE LIQUID CONTAMINANTS BY CHEMICAL-BASED FLOODING

    EPA Science Inventory

    Nonaqueous phase liquids (NAPLs) such as gasoline and halogenated solvents (trichloroethylene (TCE) and teterachloroethylene (PCE), etc) enter the subsurface after a spill, or from leaking underground storage tanks. The presence of residual dense nonaqueous phase liquids (DNAPL) ...

  4. Modeling the solid-liquid phase transition in saturated triglycerides

    NASA Astrophysics Data System (ADS)

    Pink, David A.; Hanna, Charles B.; Sandt, Christophe; MacDonald, Adam J.; MacEachern, Ronald; Corkery, Robert; Rousseau, Dérick

    2010-02-01

    We investigated theoretically two competing published scenarios for the melting transition of the triglyceride trilaurin (TL): those of (1) Corkery et al. [Langmuir 23, 7241 (2007)], in which the average state of each TL molecule in the liquid phase is a discotic "Y" conformer whose three chains are dynamically twisted, with an average angle of ˜120° between them, and those of (2) Cebula et al. [J. Am. Oil Chem. Soc. 69, 130 (1992)], in which the liquid-state conformation of the TL molecule in the liquid phase is a nematic h∗-conformer whose three chains are in a modified "chair" conformation. We developed two competing models for the two scenarios, in which TL molecules are in a nematic compact-chair (or "h") conformation, with extended, possibly all-trans, chains at low-temperatures, and in either a Y conformation or an h∗ conformation in the liquid state at temperatures higher than the phase-transition temperature, T∗=319 K. We defined an h-Y model as a realization of the proposal of Corkery et al. [Langmuir 23, 7241 (2007)], and explored its predictions by mapping it onto an Ising model in a temperature-dependent field, performing a mean-field approximation, and calculating the transition enthalpy ΔH. We found that the most plausible realization of the h-Y model, as applied to the solid-liquid phase transition in TL, and likely to all saturated triglycerides, gave a value of ΔH in reasonable agreement with the experiment. We then defined an alternative h-h∗ model as a realization of the proposal of Cebula et al. [J. Am. Oil Chem. Soc. 69, 130 (1992)], in which the liquid phase exhibits an average symmetry breaking similar to an h conformation, but with twisted chains, to see whether it could describe the TL phase transition. The h-h∗ model gave a value of ΔH that was too small by a factor of ˜3-4. We also predicted the temperature dependence of the 1132 cm-1 Raman band for both models, and performed measurements of the ratios of three TL Raman

  5. Electrostatic levitation studies of supercooled liquids and metastable solid phases

    NASA Astrophysics Data System (ADS)

    Rustan, Gustav Errol

    been carried out to study the metastable phase formation in an Fe83B17 near eutectic alloy. Initial supercooling measurements using the ISU-ESL identified the formation of three metastable phases: a precipitate phase that shows stable coexistence with the deeply supercooled liquid, and two distinct bulk solidification phases. To identify the structure of the metastable phases, the Washington University Beamline ESL (WU-BESL) has been used to perform in-situ high energy x-ray diffraction measurements of the metastable phases. Based on the x-ray results, the precipitate phase has been identified as bcc-Fe, and the more commonly occurring bulk solidification product has been found to be a two-phase mixture of Fe23B6 plus fcc-Fe, which appears, upon cooling, to transform into a three phase mixture of Fe23B6, bcc-Fe, and an as-yet unidentified phase, with the transformation occurring at approximately the expected fcc-to-bcc transformation temperature of pure Fe. To further characterize the multi-phase metastable alloy, the ISU-ESL has been used to perform measurements of volume thermal expansion via the videographic technique, as well as RF susceptibility via the TDO technique. The results of the thermal expansion and susceptibility data have been found to be sensitive indicators of additional structural changes that may be occurring in the metastable solid at temperatures below 1000 K, and the susceptibility data has revealed that three distinct ferromagnetic phase transitions take place within the multi-phase mixture. Based on these results, it has been hypothesized that there may be an additional transformation taking place that leads to the formation of either bct- or o-Fe3B in addition to the Fe23B6 phase, although further work is required to test this hypothesis.

  6. Ionic liquids in refinery desulfurization: comparison between biphasic and supported ionic liquid phase suspension processes.

    PubMed

    Kuhlmann, Esther; Haumann, Marco; Jess, Andreas; Seeberger, Andreas; Wasserscheid, Peter

    2009-01-01

    The desulfurization of fuel compounds in the presence of ionic liquids is reported. For this purpose, the desulfurization efficiency of a variety of imidazolium phosphate ionic liquids has been tested. Dibenzothiophene/dodecane and butylmercaptan/decane mixtures were used as model systems. Single-stage extractions reduced the sulfur content from 500 ppm to 200 ppm. In multistage extractions the sulfur content could be lowered to less than 10 ppm within seven stages. Regeneration of the ionic liquid was achieved by distillation or re-extraction procedures. Supported ionic liquid phase (SILP) materials, obtained by dispersing the ionic liquid as a thin film on highly porous silica, exhibited a significantly higher extraction performance owing to their larger surface areas, reducing the sulfur content to less than 100 ppm in one stage. Multistage extraction with these SILP materials reduced the sulfur level to 50 ppm in the second stage. The SILP technology offers very efficient utilization of ionic liquids and circumvents mass transport limitations because of the small film thickness and large surface area, and allows application of the simple packed-bed column extraction technique. PMID:19798713

  7. Pressure-energy correlations in liquids. IV. ``Isomorphs'' in liquid phase diagrams

    NASA Astrophysics Data System (ADS)

    Gnan, Nicoletta; Schrøder, Thomas B.; Pedersen, Ulf R.; Bailey, Nicholas P.; Dyre, Jeppe C.

    2009-12-01

    This paper is the fourth in a series devoted to identifying and explaining the properties of strongly correlating liquids, i.e., liquids where virial and potential energy correlate better than 90% in their thermal equilibrium fluctuations in the N V T ensemble. For such liquids we here introduce the concept of "isomorphic" curves in the phase diagram. A number of thermodynamic, static, and dynamic isomorph invariants are identified. These include the excess entropy, the isochoric specific heat, reduced-unit static and dynamic correlation functions, as well as reduced-unit transport coefficients. The dynamic invariants apply for both Newtonian and Brownian dynamics. It is shown that after a jump between isomorphic state points the system is instantaneously in thermal equilibrium; consequences of this for generic aging experiments are discussed. Selected isomorph predictions are validated by computer simulations of the Kob-Andersen binary Lennard-Jones mixture, which is a strongly correlating liquid. The final section of the paper relates the isomorph concept to phenomenological melting rules, Rosenfeld's excess entropy scaling, Young and Andersen's approximate scaling principle, and the two-order parameter maps of Debenedetti and co-workers. This section also shows how the existence of isomorphs implies an "isomorph filter" for theories for the non-Arrhenius temperature dependence of viscous liquids' relaxation time, and it explains isochronal superposition for strongly correlating viscous liquids.

  8. Influence of phase delay profile on diffraction efficiency of liquid crystal optical phased array

    NASA Astrophysics Data System (ADS)

    Xu, Lin; Zhang, Jian; Wu, Li Ying

    2009-06-01

    The hardware structure and driving voltage of liquid crystal optical phased array (LCOPA) devices determine the produced phase delay characteristics. The phase delay profile influences directly the device's diffraction efficiency. In this paper, a sawtooth-shaped phase delay model of LCOPA was proposed to analyze quantitatively the influence factors of diffraction efficiency employing Fourier optics theory. Analysis results show that flyback region size is the main factor that affects diffraction efficiency. The influence extent varies with different maximum-phase-delays and grating periods. There exists an optimized curve between maximum-phase-delay and flyback region, and between maximum-phase-delay and grating period, individually. The smaller the grating period is or the larger the flyback region is, the more evident the optimization effect becomes, and the maximum increase ratio is up to 16%. Some feasible experiments were done to test theoretical analysis, and the experimental results agreed with the analysis results.

  9. Variation in pH of Model Secondary Organic Aerosol during Liquid-Liquid Phase Separation.

    PubMed

    Dallemagne, Magda A; Huang, Xiau Ya; Eddingsaas, Nathan C

    2016-05-12

    The majority of atmospheric aerosols consist of both organic and inorganic components. At intermediate relative humidity (RH), atmospheric aerosol can undergo liquid-liquid phase separation (LLPS) in which the organic and inorganic fractions segregate from each other. We have extended the study of LLPS to the effect that phase separation has on the pH of the overall aerosols and the pH of the individual phases. Using confocal microscopy and pH sensitive dyes, the pH of internally mixed model aerosols consisting of polyethylene glycol 400 and ammonium sulfate as well as the pH of the organic fraction during LLPS have been directly measured. During LLPS, the pH of the organic fraction was observed to increase to 4.2 ± 0.2 from 3.8 ± 0.1 under high RH when the aerosol was internally mixed. In addition, the high spatial resolution of the confocal microscope allowed us to characterize the composition of each of the phases, and we have observed that during LLPS the organic shell still contains large quantities of water and should be characterized as an aqueous organic-rich phase rather than simply an organic phase. PMID:27082856

  10. Metabolism of Cyclohexane Carboxylic Acid by Alcaligenes Strain W1

    PubMed Central

    Taylor, David G.; Trudgill, Peter W.

    1978-01-01

    Thirty-three microorganisms capable of growth with cyclohexane carboxylate as the sole source of carbon were isolated from mud, water, and soil samples from the Aberystwyth area. Preliminary screening and whole-cell oxidation studies suggested that, with one exception, all of the strains metabolized the growth substrate by beta-oxidation of the coenzyme A ester. This single distinctive strain, able to oxidize rapidly trans-4-hydroxycyclohexane carboxylate, 4-ketocyclohexane carboxylate, p-hydroxybenzoate, and protocatechuate when grown with cyclohexane carboxylate, was classified as a strain of Alcaligenes and given the number W1. Enzymes capable of converting cyclohexane carboxylate to p-hydroxybenzoate were induced by growth with the alicyclic acid and included the first unambiguous specimen of a cyclohexane carboxylate hydroxylase. Because it is a very fragile protein, attempts to stabilize the cyclohexane carboxylate hydroxylase so that a purification procedure could be developed have consistently failed. In limited studies with crude cell extracts, we found that hydroxylation occurred at the 4 position, probably yielding the trans isomer of 4-hydroxycyclohexane carboxylate. Simultaneous measurement of oxygen consumption and reduced nicotinamide adenine dinucleotide oxidation, coupled with an assessment of reactant stoichiometry, showed the enzyme to be a mixed-function oxygenase. Mass spectral analysis enabled the conversion of cyclohexane carboxylate to p-hydroxybenzoate by cell extracts to be established unequivocally, and all of our data were consistent with the pathway: cyclohexane carboxylate → trans-4-hydroxycyclohexane carboxylate → 4-ketocyclohexane carboxylate → p-hydroxybenzoate. The further metabolism of p-hydroxybenzoate proceeded by meta fission and by the oxidative branch of the 2-hydroxy-4-carboxymuconic semialde-hyde-cleaving pathway. PMID:207665

  11. Liquid-Liquid Phase Transition and Its Phase Diagram in Deeply-Cooled Heavy Water Confined in a Nanoporous Silica Matrix.

    PubMed

    Wang, Zhe; Ito, Kanae; Leão, Juscelino B; Harriger, Leland; Liu, Yun; Chen, Sow-Hsin

    2015-06-01

    Using neutron diffraction technique, we measure the average density of the heavy water confined in a nanoporous silica matrix, MCM-41, over the pressure-temperature plane. The result suggests the existence of a line of liquid-liquid phase transition with its end point at 1.29 ± 0.34 kbar and 213 ± 3 K in a fully hydrated sample. This point would be the liquid-liquid critical point (LLCP) according to the "liquid-liquid critical point" scenario. The phase diagram of the deeply cooled confined heavy water is then discussed. Moreover, in a partially hydrated sample, the phase transition completely disappears. This result shows that it is the free water part, rather than the bound water part, of the confined water that undergoes a liquid-liquid transition. PMID:26266493

  12. Viscosity of the entangled-vortex-liquid phase

    SciTech Connect

    Cates, M.E. )

    1992-06-01

    The entangled-flux-line liquid phase of high-temperature superconductors is considered. This is a phase of directed, mutually avoiding polymerlike flux lines which are strongly entangled. However, there is a finite rate constant for topological reconnection of the flux lines. The viscosity {eta} of the phase is discussed using a simplified model, following that recently developed by Marchetti and Nelson (Phys. Rev. B 42, 9938 (1990)). We find, as did these authors, a result of the form {eta}={eta}{sub 0}{ital e}{sup {ital U}/{ital k}{ital T}}. However, our estimate for {ital U} is one-third of their value; the difference could be significant when the activation energy for flux-line reconnection is large.

  13. Luttinger liquid with complex forward scattering: Robustness and Berry phase

    NASA Astrophysics Data System (ADS)

    Dóra, Balázs; Moessner, Roderich

    2016-02-01

    Luttinger liquids (LLs) are one-dimensional systems with well-understood instabilities due to Umklapp or backscattering. We study a generalization of the Luttinger model, which incorporates a time reversal symmetry breaking interaction producing a complex forward scattering amplitude (g2 process). The resulting low energy state is still a LL and belongs to the family of interacting Schulz-Shastry models. Remarkably, it becomes increasingly robust against additional perturbations—for purely imaginary g2, both Umklapp and local backscattering are always irrelevant. Changing the phase of the interaction generates a nontrivial Berry phase, with a universal geometric phase difference between ground and a one boson excited state depending only on the LL parameter.

  14. Printing nanoparticles from the liquid and gas phases using nanoxerography

    NASA Astrophysics Data System (ADS)

    Barry, Chad R.; Steward, Michael G.; Lwin, Nyein Z.; Jacobs, Heiko O.

    2003-10-01

    This paper reports on the directed self-assembly of nanoparticles onto charged surface areas with a resolution of 200 nm from the liquid phase and 100 nm from the gas phase. The charged areas required for this type of nanoxerographic printing were fabricated using a parallel method that employs a flexible, electrically conductive, electrode to charge a thin-film electret. As electrodes, we used metal-coated polymeric stamps and 10 µm thick doped silicon wafers carrying a pattern in topography. Each electrode was brought in contact with a thin-film electret on an n-doped silicon substrate. The charge pattern was transferred into the thin-film electret by applying a voltage pulse between the conductive electrode and the silicon substrate. Areas as large as 1 cm2 were patterned with charge with 100 nm scale resolution in 10 s. These charge patterns attract nanoparticles. A liquid-phase assembly process where electrostatic forces compete with disordering forces due to ultrasonication has been developed to assemble nanoparticles onto charged based receptors in 10 s from a liquid suspension. A gas-phase assembly process was developed that uses a transparent particle assembly module to direct particles towards the charged surface while monitoring the total charge of assembled particles. Nanoparticles were generated using a tube furnace by evaporation and condensation at the outlet. The electrostatically directed assembly of 10-100 nm sized metal (gold, silver) and 30 nm sized carbon particles was accomplished with a resolution 500-1000 times greater than the resolution of existing xerographic printers.

  15. Stretchable liquid-crystal blue-phase gels.

    PubMed

    Castles, F; Morris, S M; Hung, J M C; Qasim, M M; Wright, A D; Nosheen, S; Choi, S S; Outram, B I; Elston, S J; Burgess, C; Hill, L; Wilkinson, T D; Coles, H J

    2014-08-01

    Liquid-crystalline polymers are materials of considerable scientific interest and technological value. An important subset of these materials exhibit rubber-like elasticity, combining the optical properties of liquid crystals with the mechanical properties of rubber. Moreover, they exhibit behaviour not seen in either type of material independently, and many of their properties depend crucially on the particular mesophase employed. Such stretchable liquid-crystalline polymers have previously been demonstrated in the nematic, chiral-nematic, and smectic mesophases. Here, we report the fabrication of a stretchable gel of blue phase I, which forms a self-assembled, three-dimensional photonic crystal that remains electro-optically switchable under a moderate applied voltage, and whose optical properties can be manipulated by an applied strain. We also find that, unlike its undistorted counterpart, a mechanically deformed blue phase exhibits a Pockels electro-optic effect, which sets out new theoretical challenges and possibilities for low-voltage electro-optic devices. PMID:24880732

  16. Amphitropic liquid crystal phases from polyhydroxy sugar surfactants: Fundamental studies

    NASA Astrophysics Data System (ADS)

    Abou Zied, Osama K.; Hashim, Rauzah; Timimi, B. A.

    2015-03-01

    The self-assembly phenomena on a special class of poly-hydroxy sugar surfactant have been studied extensively. This class of material is classified as amphitropic liquid crystals since they exhibit both thermotropic and lyotropic liquid crystalline properties. Hence the potential applications of these non-ionic surfactants are more versatile than those from the conventional lyotropic liquid crystals including those from thermotropic phases, but the latters are yet to be realized. Unfortunately, due to the lack of interest (or even awareness), fundamental studies in thermotropic glycolipids are scanty to support application development, and any tangible progress is often mired by the complexity of the sugar stereochemistry. However, some applications may be pursued from these materials by taking the advantage of the sugar chirality and the tilted structure of the lipid organization which implies ferroelectric behavior. Here, we present our studies on the stereochemical diversity of the sugar units in glycosides that form the thermotropic/lyotropic phases. The structure to property relationship compares different chain designs and other popular polyhydroxy compounds, such as monooleins and alkylpolyglucosides. Different structural properties of these glycosides are discussed with respect to their self-assembly organization and potential applications, such as delivery systems and membrane mimetic study.

  17. Modified phase-field-crystal model for solid-liquid phase transitions

    NASA Astrophysics Data System (ADS)

    Guo, Can; Wang, Jincheng; Wang, Zhijun; Li, Junjie; Guo, Yaolin; Tang, Sai

    2015-07-01

    A modified phase-field-crystal (PFC) model is proposed to describe solid-liquid phase transitions by reconstructing the correlation function. The effects of fitting parameters of our modified PFC model on the bcc-liquid phase diagram, numerical stability, and solid-liquid interface properties during planar interface growth are examined carefully. The results indicate that the increase of the correlation function peak width at k =km will enhance the stability of the ordered phase, while the increase of peak height at k =0 will narrow the two-phase coexistence region. The third-order term in the free-energy function and the short wave-length of the correlation function have significant influences on the numerical stability of the PFC model. During planar interface growth, the increase of peak width at k =km will decrease the interface width and the velocity coefficient C , but increase the anisotropy of C and the interface free energy. Finally, the feasibility of the modified phase-field-crystal model is demonstrated with a numerical example of three-dimensional dendritic growth of a body-centered-cubic structure.

  18. Modified phase-field-crystal model for solid-liquid phase transitions.

    PubMed

    Guo, Can; Wang, Jincheng; Wang, Zhijun; Li, Junjie; Guo, Yaolin; Tang, Sai

    2015-07-01

    A modified phase-field-crystal (PFC) model is proposed to describe solid-liquid phase transitions by reconstructing the correlation function. The effects of fitting parameters of our modified PFC model on the bcc-liquid phase diagram, numerical stability, and solid-liquid interface properties during planar interface growth are examined carefully. The results indicate that the increase of the correlation function peak width at k=k(m) will enhance the stability of the ordered phase, while the increase of peak height at k=0 will narrow the two-phase coexistence region. The third-order term in the free-energy function and the short wave-length of the correlation function have significant influences on the numerical stability of the PFC model. During planar interface growth, the increase of peak width at k=k(m) will decrease the interface width and the velocity coefficient C, but increase the anisotropy of C and the interface free energy. Finally, the feasibility of the modified phase-field-crystal model is demonstrated with a numerical example of three-dimensional dendritic growth of a body-centered-cubic structure. PMID:26274309

  19. Microstructural control of silicon carbide via liquid phase sintering

    NASA Astrophysics Data System (ADS)

    Mrotek, Sharon Robinson

    Silicon carbide ceramics with various microstructures were fabricated by controlling the amount and composition of a Y2O3-Al 2O3 liquid phase, crystallographic phase of the starting powders, trace impurities in those powders, and time and temperature of sintering and post- sintering heat-treatments. Alpha and beta SiC "seeds" were used to control grain growth during sintering. The grain size distribution and aspect ratio of the grains were determined through microstructural analysis of polished and etched samples. TEM was used in conjunction with EDS to determine the distribution of the sintering aids in the grains and the grain boundaries. Additionally, the final phase content of the samples was determined via x-ray diffraction. The fracture toughness and hardness were measured to evaluate the relative effects of the microstructural variations on the mechanical properties. Alpha silicon carbide samples exhibited a fine grained, equiaxed microstructure. Under appropriate conditions, samples prepared from beta-SiC powders underwent a phase transformation to alpha-SiC accompanied by the growth of elongated platelet grains. The addition of alpha seeds to the beta powder reduced the size of the platelets compared to unseeded samples of the same composition. If the beta to alpha phase transformation did not occur, the beta samples developed an equiaxed microstructure. The grain size of all samples decreased with increasing amounts of sintering additives. The beta to alpha phase transformation, required to obtain an elongated grain microstructure, was catalyzed by the presence of sufficient amounts of aluminum. If insufficient Al impurity was present in the powder, purposeful additions of Al metal could induce the phase transformation. Examination of the sintering progression over time indicated that the phase transformation occurred late in the sintering process and appeared to occur via a solution/reprecipitation mechanism. Post-sintering heat treatments were also used

  20. Effect of dimensionality on vapor-liquid phase transition

    NASA Astrophysics Data System (ADS)

    Singh, Sudhir Kumar

    2014-04-01

    Dimensionality play significant role on `phase transitions'. Fluids in macroscopic confinement (bulk or 3-Dimensional, 3D) do not show significant changes in their phase transition properties with extent of confinement, since the number of molecules away from the surrounding surfaces is astronomically higher than the number of molecules in close proximity of the confining surfaces. In microscopic confinement (quasi 3D to quasi-2D), however, the number of molecules away from the close proximity of the surface is not as high as is the case with macroscopic (3D) confinement. Hence, under the same thermodynamic conditions `phase transition' properties at microscopic confinement may not remain the same as the macroscopic or 3D values. Phase transitions at extremely small scale become very sensitive to the dimensions as well as the surface characteristics of the system. In this work our investigations reveal the effect of dimensionality on the phase transition from 3D to quasi-2D to 2D behavior. We have used grand canonical transition matrix Monte Carlo simulation to understand the vapor-liquid phase transitions from 3D to quasi-2D behavior. Such studies can be helpful in understanding and controlling the fluid film behaviour confined between solid surfaces of few molecular diameters, for example, in lubrication applications.

  1. Liquid Crystal Phase Behaviour of Attractive Disc-Like Particles

    PubMed Central

    Wu, Liang; Jackson, George; Müller, Erich A.

    2013-01-01

    We employ a generalized van der Waals-Onsager perturbation theory to construct a free energy functional capable of describing the thermodynamic properties and orientational order of the isotropic and nematic phases of attractive disc particles. The model mesogen is a hard (purely repulsive) cylindrical disc particle decorated with an anisotropic square-well attractive potential placed at the centre of mass. Even for isotropic attractive interactions, the resulting overall inter-particle potential is anisotropic, due to the orientation-dependent excluded volume of the underlying hard core. An algebraic equation of state for attractive disc particles is developed by adopting the Onsager trial function to characterize the orientational order in the nematic phase. The theory is then used to represent the fluid-phase behaviour (vapour-liquid, isotropic-nematic, and nematic-nematic) of the oblate attractive particles for varying values of the molecular aspect ratio and parameters of the attractive potential. When compared to the phase diagram of their athermal analogues, it is seen that the addition of an attractive interaction facilitates the formation of orientationally-ordered phases. Most interestingly, for certain aspect ratios, a coexistence between two anisotropic nematic phases is exhibited by the attractive disc-like fluids. PMID:23965962

  2. Effect of dimensionality on vapor-liquid phase transition

    SciTech Connect

    Singh, Sudhir Kumar

    2014-04-24

    Dimensionality play significant role on ‘phase transitions’. Fluids in macroscopic confinement (bulk or 3-Dimensional, 3D) do not show significant changes in their phase transition properties with extent of confinement, since the number of molecules away from the surrounding surfaces is astronomically higher than the number of molecules in close proximity of the confining surfaces. In microscopic confinement (quasi 3D to quasi-2D), however, the number of molecules away from the close proximity of the surface is not as high as is the case with macroscopic (3D) confinement. Hence, under the same thermodynamic conditions ‘phase transition’ properties at microscopic confinement may not remain the same as the macroscopic or 3D values. Phase transitions at extremely small scale become very sensitive to the dimensions as well as the surface characteristics of the system. In this work our investigations reveal the effect of dimensionality on the phase transition from 3D to quasi-2D to 2D behavior. We have used grand canonical transition matrix Monte Carlo simulation to understand the vapor–liquid phase transitions from 3D to quasi-2D behavior. Such studies can be helpful in understanding and controlling the fluid film behaviour confined between solid surfaces of few molecular diameters, for example, in lubrication applications.

  3. A polarization independent liquid crystal phase modulation adopting surface pinning effect of polymer dispersed liquid crystals

    NASA Astrophysics Data System (ADS)

    Lin, Yi-Hsin; Tsou, Yu-Shih

    2011-12-01

    A polarization-independent liquid crystal (LC) phase modulation using the surface pinning effect of polymer dispersed liquid crystals (SP-PDLC) is demonstrated. In the bulk region of the SP-PDLC, the orientations of LC directors are randomly dispersed; thus, any polarization of incident light experiences the same averaged refractive index. In the regions near glass substrates, the LC droplets are pinned. The orientations of top and bottom droplets are orthogonal. Two eigen-polarizations of an incident light experience the same phase shift. As a result, the SP-PDLC is polarization independent. Polarizer-free microlens arrays of SP-PDLC are also demonstrated. The SP-PDLC has potential for application in spatial light modulators, laser beam steering, and electrically tunable microprisms.

  4. Metastable liquid-liquid phase separation and criticality in water-like models

    NASA Astrophysics Data System (ADS)

    Singh, Rakesh; Biddle, John; Debenedetti, Pablo; Anisimov, Mikhail

    Water shows intriguing thermodynamic and dynamic anomalies in the supercooled liquid state. A possible explanation of the origin of these anomalies lies in the existence of a metastable first order liquid-liquid phase transition (LLPT) between two (high and low density) forms of liquid water. Unambiguous experimental proof of existence of LLPT in bulk supercooled water is so far hampered by ultra-fast ice crystallization. Computer simulations of water models are therefore crucial for exploring the possibility of LLPT in deeply supercooled water. We present computer simulation results that elucidate the possibility of a metastable LLPT in one of the most accurate atomistic models of water, TIP4P/2005. To describe the computed properties, we have applied two-state thermodynamics, viewing water as a non-ideal mixture of two inter-convertible states. The thermodynamic behavior of the model in the one-phase region suggests the existence of energy-driven LLPT. We compare the behavior of TIP4P/2005 with other popular water models, and with real water, all of which are well-described by two-state thermodynamics. Additionally, we also elucidate the relation between the phenomenological order parameter of the two-state thermodynamics and the microscopic nature of the low-density structure.

  5. Supercritical phenomenon of hydrogen beyond the liquid-liquid phase transition

    NASA Astrophysics Data System (ADS)

    Li, Renzhong; Chen, Ji; Li, Xinzheng; Wang, Enge; Xu, Limei

    2015-06-01

    Using ab initio molecular dynamics simulation, we investigate the supercritical phenomenon associated with the liquid-liquid phase transition of hydrogen by studying the isothermal response functions, such as electric conductivity, molecular dissociation coefficient and isothermal compressibility, with respect to pressure. We find that, along each isotherm in the supercritical region, each of these response functions shows a maximum, the location of which is different for different response functions. As temperature decreases, the loci of these maxima asymptotically converge to a line of zero ordering field, known as the Widom line along which the magnitude of the response function maxima becomes larger and larger until it diverges as the critical point is approached. Thus, our study provides a possible way to locate the liquid-liquid critical point of hydrogen from the supercritical region at lower pressures. It also indicates that the supercritical phonomenon near the critical point of hydrogen is a rather general feature of second-order phase transition, it is not only true for classical systems with weak interactions but also true for highly condensed system with strong inter-atomic interactions.

  6. Crystallization and Phase Changes in Paracetamol from the Amorphous Solid to the Liquid Phase

    PubMed Central

    2014-01-01

    For the case of paracetamol, we show how terahertz time-domain spectroscopy can be used to characterize the solid and liquid phase dynamics. Heating of supercooled amorphous paracetamol from 295 K in a covered sample under vacuum leads to its crystallization at 330 K. First, form III is formed followed by the transformation of form III to form II at 375 K, to form I at 405 K, and finally melting is observed around 455 K. We discuss the difference between the featureless spectra of the supercooled liquid and its liquid melt. Lastly, we studied the onset of crystallization from the supercooled liquid in detail and quantified its kinetics based on the Avrami–Erofeev model. We determined an effective rate constant of k = 0.056 min–1 with a corresponding onset of crystallization at T = 329.5 K for a heating rate of 0.4 K min–1. PMID:24579729

  7. Crystallization and phase changes in paracetamol from the amorphous solid to the liquid phase.

    PubMed

    Sibik, Juraj; Sargent, Michael J; Franklin, Miriam; Zeitler, J Axel

    2014-04-01

    For the case of paracetamol, we show how terahertz time-domain spectroscopy can be used to characterize the solid and liquid phase dynamics. Heating of supercooled amorphous paracetamol from 295 K in a covered sample under vacuum leads to its crystallization at 330 K. First, form III is formed followed by the transformation of form III to form II at 375 K, to form I at 405 K, and finally melting is observed around 455 K. We discuss the difference between the featureless spectra of the supercooled liquid and its liquid melt. Lastly, we studied the onset of crystallization from the supercooled liquid in detail and quantified its kinetics based on the Avrami-Erofeev model. We determined an effective rate constant of k = 0.056 min(-1) with a corresponding onset of crystallization at T = 329.5 K for a heating rate of 0.4 K min(-1). PMID:24579729

  8. Phase transition dynamics of liquid phase precipitation from a supersaturated gas mixture.

    PubMed

    Pines, V; Zlatkowski, M; Chait, A

    2004-11-01

    This work presents a self-consistent description of phase transition dynamics of disperse liquid phase precipitating from a supersaturated gas mixture. The unified approach integrates the macroscale transport phenomena of cloud dynamics with the essential microphysical kinetic processes of droplet condensation, evaporation, and droplet collisions simultaneously taking place in stochastic population of liquid droplets. A complete set of governing equations with well-defined dissipative fluxes and kinetic rates is derived for phase transition dynamics from nucleation to postnucleation to coarsening stages. The local thermodynamics of precipitating system, which is considered as ternary mixture of disperse liquid phase and water vapor with dry air, is redefined to explicitly include on equal basis both the vapor content and liquid content into the fundamental thermodynamic relations and equation of state. The molecular kinetic flux regularization method for growth of submicron droplets is reexamined to include, among others, significant contribution of vapor molecular energy flux into total heat flux, resulting in new expressions for the droplet temperature, growth rate, and effective diffusion coefficients. The local kinetic rates are determined on the basis of microscale kinetic equation for the droplet distribution function. This is in contrast to commonly used semiempirical parametrization schemes for kinetic rates with adjustable parameters, wherein the probabilistic aspects of microphysical processes are not rigorously addressed. Stochastic diffusion interactions among droplets competing for the available water vapor and modifications in the kinetic equation for droplets growing in stochastic population with direct long-range diffusion interactions amongst them are discussed and formulated as well. PMID:15527359

  9. Phase-Shifting Liquid Crystal Interferometers for Microgravity Fluid Physics

    NASA Technical Reports Server (NTRS)

    Griffin, DeVon W.; Marshall, Keneth L.

    2002-01-01

    The initial focus of this project was to eliminate both of these problems in the Liquid Crystal Point-Diffraction Interferometer (LCPDI). Progress toward that goal will be described, along with the demonstration of a phase shifting Liquid Crystal Shearing Interferometer (LCSI) that was developed as part of this work. The latest LCPDI, other than a lens to focus the light from a test section onto a diffracting microsphere within the interferometer and a collimated laser for illumination, the pink region contained within the glass plates on the rod-mounted platform is the complete interferometer. The total width is approximately 1.5 inches with 0.25 inches on each side for bonding the electrical leads. It is 1 inch high and there are only four diffracting microspheres within the interferometer. As a result, it is very easy to align, achieving the first goal. The liquid crystal electro-optical response time is a function of layer thickness, with thinner devices switching faster due to a reduction in long-range viscoelastic forces between the LC molecules. The LCPDI has a liquid crystal layer thickness of 10 microns, which is controlled by plastic or glass microspheres embedded in epoxy 'pads' at the corners of the device. The diffracting spheres are composed of polystyrene/divinyl benzene polymer with an initial diameter of 15 microns. The spheres deform slightly when the interferometer is assembled to conform to the spacing produced by the microsphere-filled epoxy spacer pads. While the speed of this interferometer has not yet been tested, previous LCPDIs fabricated at the Laboratory for Laser Energetics switched at a rate of approximately 3.3 Hz, a factor of 10 slower than desired. We anticipate better performance when the speed of these interferometers is tested since they are approximately three times thinner. Phase shifting in these devices is a function of the AC voltage level applied to the liquid crystal. As the voltage increases, the dye in the liquid crystal

  10. Phase-Shifting Liquid Crystal Interferometers for Microgravity Fluid Physics

    NASA Astrophysics Data System (ADS)

    Griffin, DeVon W.; Marshall, Keneth L.

    2002-11-01

    The initial focus of this project was to eliminate both of these problems in the Liquid Crystal Point-Diffraction Interferometer (LCPDI). Progress toward that goal will be described, along with the demonstration of a phase shifting Liquid Crystal Shearing Interferometer (LCSI) that was developed as part of this work. The latest LCPDI, other than a lens to focus the light from a test section onto a diffracting microsphere within the interferometer and a collimated laser for illumination, the pink region contained within the glass plates on the rod-mounted platform is the complete interferometer. The total width is approximately 1.5 inches with 0.25 inches on each side for bonding the electrical leads. It is 1 inch high and there are only four diffracting microspheres within the interferometer. As a result, it is very easy to align, achieving the first goal. The liquid crystal electro-optical response time is a function of layer thickness, with thinner devices switching faster due to a reduction in long-range viscoelastic forces between the LC molecules. The LCPDI has a liquid crystal layer thickness of 10 microns, which is controlled by plastic or glass microspheres embedded in epoxy 'pads' at the corners of the device. The diffracting spheres are composed of polystyrene/divinyl benzene polymer with an initial diameter of 15 microns. The spheres deform slightly when the interferometer is assembled to conform to the spacing produced by the microsphere-filled epoxy spacer pads. While the speed of this interferometer has not yet been tested, previous LCPDIs fabricated at the Laboratory for Laser Energetics switched at a rate of approximately 3.3 Hz, a factor of 10 slower than desired. We anticipate better performance when the speed of these interferometers is tested since they are approximately three times thinner. Phase shifting in these devices is a function of the AC voltage level applied to the liquid crystal. As the voltage increases, the dye in the liquid crystal

  11. Supersolidus Liquid Phase Sintering Modeling of Inconel 718 Superalloy

    NASA Astrophysics Data System (ADS)

    Levasseur, David; Brochu, Mathieu

    2016-02-01

    Powder metallurgy of Inconel 718 superalloy is advantageous as a near-net shape process for complex parts to reduce the buy-to-fly ratio and machining cost. However, sintering Inconel 718 requires the assistance of supersolidus liquid formation to achieve near full density and involves the risk of distortion at high temperatures. The present work is focused on modeling the onset of sintering and distortion as a function of temperature, grain size, and part geometry for Inconel 718. Using experimental sintering results and data available in the literature, the supersolidus liquid phase sintering of Inconel 718 was modeled. The model was used to define a processing window where part distortion would be avoided.

  12. Droplet ignition and combustion including liquid-phase heating

    SciTech Connect

    Shaygan, N.; Prakash, S.

    1995-07-01

    Heating, ignition, and the subsequent combustion of a liquid droplet are studied in a hot stagnant environment. The transient, coupled liquid-gas phase problem of droplet combustion in one dimension is solved numerically. The pressure is assumed to be uniform and constant. This assumption is utilized in a novel way to formulate and solve the continuity equation. It is found that ignition occurs as soon as suitable conditions develop in the neighborhood of the droplet. In fact, the droplet surface heating is intimately connected with ignition. These general conclusions are found to be true for a volatile (n-heptane) as well as for a less volatile fuel (n-hexadecane). It is also found that the radial velocity produced by the evaporation and combustion of the droplet, leads to a local Reynolds number of order one. Hence, convective effects are as important as diffusion effects.

  13. Disappearance of Widom Line for Liquid-Liquid Phase Transition with Horizontal Coexistence Line

    NASA Astrophysics Data System (ADS)

    Luo, Jiayuan; Xu, Limei; Buldyrev, Sergey; Angell, Austen; Stanley, Gene

    2012-02-01

    The study of spherically symmetric two-scale Jagla model with both repulsive and attractive ramps has been very successful in demonstrating the anomalous behavior of liquids (especially water) and its relation with respect to the existence of a liquid-liquid (LL) critical point. However, the co-existence line of Jagla model shows a positive slope, which is opposite to what has been found in the simulations of water. To more convincingly link the result of the study on Jagla model with that of water, we applied discrete molecular dynamics to Gibson and Wilding's modified Jagla model and found that by shrinking both the attractive and repulsive ramps, the slope of the coexistence line can be reduced to zero. However, at these values of the parameters, the LL critical point becomes completely unstable with respect to crystal and glass. We further studied the Widom line, defined as extreme of response functions and also continuation of the coexistence line into one phase region, and found Widom line disappeared in the case of zero slope of the coexistence line, due to the equal enthalpy of low-density liquid (LDL) and high-density liquid (HDL).

  14. Quantum Control of Femtochemistry in the Gas Phase, Liquid Phase and on Surfaces

    NASA Astrophysics Data System (ADS)

    Gerber, Gustav

    2008-03-01

    By using coherent control techniques we control the behavior of quantum systems on their natural fs-time scale by applying ultrashort coherent light fields in the wavelength range from the IR to the UV. These laser pulses can be variably shaped in space and time using a laser pulse shaper consisting of a liquid-crystal display [1]. Laser-optimized femtochemistry in the gas phase and liquid phase is one field in which this new technique is successfully employed. Automated optimization of branching ratios and total product yields of gas phase photodissociation reactions as well as chemically selective molecular excitation in the liquid phase is performed [2][3]. Structural changes of a molecule in the liquid phase have been controlled by laser-optimized photoisomerization of a cyanine dye molecule [4] and of retinal in bacteriorhodopsin [5]. So far, optimal control techniques have been restricted to gas phase and condensed phase optimization experiments. Recently we have demonstrated femtosecond laser-assisted catalytic reactions on a Pd(100) single crystal surface. By applying a closed-loop optimal control scheme, we manipulate these reactions and selectively optimize the ratio of different bond-forming reaction channels, in contrast to previous quantum control experiments aiming at bond-cleavage. The results represent a first step towards selective photocatalysis of molecules. [1] T. Baumert et al, Appl. Phys. B 65, 779 (1997) [2] A. Assion et al, Science 282, 919(1998); T. Brixner et al, J. Mod. Opt. 50, 539 (2003) [3] T. Brixner et al, Nature, Vol. 414, 57 (2001) and J. Chem. Phys. 118, 3692 (2003) [4] G. Krampert et al, Phys. Rev. Lett. 94, 068305 (2005) [5] G. Vogt et al, Chem. Phys. Lett. 433, 211 (2006) P. Nuernberger et al, Phys. Chem. Chem. Phys. 9, 2470 (2007)

  15. Liquid-phase chemical sensing using lateral mode resonant cantilevers.

    PubMed

    Beardslee, L A; Demirci, K S; Luzinova, Y; Mizaikoff, B; Heinrich, S M; Josse, F; Brand, O

    2010-09-15

    Liquid-phase operation of resonant cantilevers vibrating in an out-of-plane flexural mode has to date been limited by the considerable fluid damping and the resulting low quality factors (Q factors). To reduce fluid damping in liquids and to improve the detection limit for liquid-phase sensing applications, resonant cantilever transducers vibrating in their in-plane rather than their out-of-plane flexural resonant mode have been fabricated and shown to have Q factors up to 67 in water (up to 4300 in air). In the present work, resonant cantilevers, thermally excited in an in-plane flexural mode, are investigated and applied as sensors for volatile organic compounds in water. The cantilevers are fabricated using a complementary metal oxide semiconductor (CMOS) compatible fabrication process based on bulk micromachining. The devices were coated with chemically sensitive polymers allowing for analyte sorption into the polymer. Poly(isobutylene) (PIB) and poly(ethylene-co-propylene) (EPCO) were investigated as sensitive layers with seven different analytes screened with PIB and 12 analytes tested with EPCO. Analyte concentrations in the range of 1-100 ppm have been measured in the present experiments, and detection limits in the parts per billion concentration range have been estimated for the polymer-coated cantilevers exposed to volatile organics in water. These results demonstrate significantly improved sensing properties in liquids and indicate the potential of cantilever-type mass-sensitive chemical sensors operating in their in-plane rather than out-of-plane flexural modes. PMID:20715842

  16. Liquid-Liquid Phase Transitions of Phosphorus via Constant-Pressure First-Principles Molecular Dynamics Simulations

    NASA Astrophysics Data System (ADS)

    Morishita, Tetsuya

    2001-09-01

    Pressure-induced phase transitions in liquid phosphorus have been studied by constant-pressure first-principles molecular dynamics simulations. By compressing a low-pressure liquid which consists of the tetrahedral P4 molecules, a structural phase transition from the molecular to polymeric liquid (a high-pressure phase) observed in the recent experiment by Katayama et al. [Nature (London) 403, 170 (2000)] was successfully realized. It is found that this transition is caused by a breakup of the tetrahedral molecules with large volume contraction. The same transition is also realized by heating. This indicates that only the polymeric liquid can stably exist at high temperature.

  17. Two-phase, gas-liquid flows in static mixers

    SciTech Connect

    Shah, N.F.; Kale, D.D. )

    1992-02-01

    This paper reports that static mixers are used for many gas-liquid two-phase operations. some of the typical applications are processing of natural gas to remove hydrogen sulfide or carbon dioxide, waste water treatment, dissolution of gases, hydrogenation, chlorination, and so on. They have experimentally studied the pressure drop for oxygen-water system in a bubble column packed with Sulzer-Koch-type mixing elements. They observed that the ratio of pressure drop through the packed bubble column to that through the unpacked one was slightly greater than one. The suitability of static mixers to mix fluids of very widely different viscosities has been demonstrated. Two-phase operations in polymer industry involve very viscous fluids. Due to the high viscosity of these fluids, the flow will be predominantly in laminar region for both fluids. There are no data on gas-liquid two-phase systems incorporating viscous Newtonian and non-Newtonian fluids where flows are predominantly in laminar region.

  18. An experimental investigation of two-phase liquid oxygen pumping

    NASA Technical Reports Server (NTRS)

    Gross, L. A.

    1973-01-01

    The results of an experimental program to explore the feasibility of pumping two-phase oxygen (liquid and gas) at the pump inlet are reported. Twenty-one cavitation tests were run on a standard J-2 oxygen pump at the MSFC Components Test Laboratory. All tests were run with liquid oxygen 5 to 10 K above the normal boiling point temperature. During ten tests run at approximately at the pump inlet were noted before complete pump performance 50 percent of the nominal operating speed, two phase conditions were achieved. Vapor volumes of 40 to 50 percent at the pump inlet were noted before complete pump performance loss. The experimental results compared to predictions. Nine cavitation tests run at the nominal pump speed over a 5 K temperature range showed progressively lower net positive suction head (NPSH) requirements as temperature was increased. Two-phase operation was not achieved. The temperature varying NPSH data were used to calculate thermodynamic effects on NPSH, and the results were compared to existing data.

  19. System for exchange of hydrogen between liquid and solid phases

    DOEpatents

    Reilly, J.J.; Grohse, E.W.; Johnson, J.R.; Winsche, W.E.

    1985-02-22

    The reversible reaction M + x/2 H/sub 2/ reversible MH/sub x/, wherein M is a reversible metal hydride former that forms a hydride MH/sub x/ in the presence of H/sub 2/, generally used to store and recall H/sub 2/, is found to proceed under an inert liquid, thereby reducing contamination, providing better temperature control, providing in situ mobility of the reactants, and increasing flexibility in process design. Thus, a slurry of particles of a metal hydride former with an inert solvent is subjected to a temperature and pressure controlled atmosphere containing H/sub 2/, to store hydrogen and to release previously stored hydrogen. The direction of the flow of the H/sub 2/ through the liquid is dependent upon the H/sub 2/ pressure in the gas phase at a given temperature. When the actual H/sub 2/ pressure is above the equilibrium absorption pressure of the respective hydride the reaction proceeds to the right, i.e., the metal hydride is formed and hydrogen is stored in the solid particle. When the actual pressure in the gas phase is below the equilibrium dissociation pressure of the respective hydride the reaction proceeds to the left, the metal hydride is decomposed and hydrogen is released into the gas phase.

  20. System for exchange of hydrogen between liquid and solid phases

    DOEpatents

    Reilly, James J.; Grohse, Edward W.; Johnson, John R.; Winsche, deceased, Warren E.

    1988-01-01

    The reversible reaction M+x/2 H.sub.2 .rarw..fwdarw.MH.sub.x, wherein M is a reversible metal hydride former that forms a hydride MH.sub.x in the presence of H.sub.2, generally used to store and recall H.sub.2, is found to proceed under an inert liquid, thereby reducing contamination, providing better temperature control, providing in situ mobility of the reactants, and increasing flexibility in process design. Thus, a slurry of particles of a metal hydride former with an inert solvent is subjected to a temperature and pressure controlled atmosphere containing H.sub.2, to store hydrogen and to release previously stored hydrogen. The direction of the flow of the H.sub.2 through the liquid is dependent upon the H.sub.2 pressure in the gas phase at a given temperature. When the actual H.sub.2 pressure is above the equilibrium absorption pressure of the respective hydride the reaction proceeds to the right, i.e., the metal hydride is formed and hydrogen is stored in the solid particles. When the actual pressure in the gas phase is below the equilibrium dissociation pressure of the respective hydride the reaction proceeds to the left, the metal hydride is decomposed and hydrogen is released into the gas phase.

  1. Ionic liquid based hollow fiber supported liquid phase microextraction of ultraviolet filters.

    PubMed

    Ge, Dandan; Lee, Hian Kee

    2012-03-16

    Hollow fiber protected liquid phase microextraction using an ionic liquid as supported phase and acceptor phase (IL-HF-LPME) is proposed for the determination of four ultraviolet (UV) filters (benzophenone, 3-(4-methylbenzylidene)-camphor, 2-hydroxy-4-methoxybenzophenone and 2,4-dihydroxybenzophenone) in water samples for the first time. In the present study, four different ILs 1-hexyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate) [HMIM][FAP], 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate [BMPL][FAP], 1-butyl-3-methylimidazolium phosphate ([BMIM][PO(4)]) and 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF(6)]) were evaluated as extraction solvent. Only [HMIM][FAP] showed high chemical affinity to the analytes which permits a selective isolation of the UV filters from the sample matrix, allowing also their preconcentration. IL-HF-LPME and high performance liquid chromatography provides repeatability from 1.1% to 8.2% and limits of detection between 0.3 and 0.5 ng/ml. Real water samples spiked with the analytes extracted were analyzed, and yielded relative recoveries ranging from 82.6% to 105.9%. PMID:22307149

  2. Glucose- and Cellulose-Derived Ni/C-SO3H Catalysts for Liquid Phase Phenol Hydrodeoxygenation

    SciTech Connect

    Kasakov, Stanislav; Zhao, Chen; Barath, Eszter; Chase, Zizwe A.; Fulton, John L.; Camaioni, Donald M.; Vjunov, Aleksei; Shi, Hui; Lercher, Johannes A.

    2015-01-19

    Sulfonated carbons were explored as functionalized supports for Ni nanoparticles to hydrodeoxygenate (HDO) phenol. Both hexadecane and water were used as solvents. The dual-functional Ni catalysts supported on sulfonated carbon (Ni/C-SO3H) showed high rates for phenol hydrodeoxygenation in liquid hexadecane, but not in water. Glucose and cellulose were precursors to the carbon supports. Changes in the carbons resulting from sulfonation of the carbons resulted in variations of carbon sheet structures, morphologies and the surface concentrations of acid sites. While the C-SO3H supports were active for cyclohexanol dehydration in hexadecane and water, Ni/C-SO3H only catalyzed the reduction of phenol to cyclohexanol in water. The state of 3 – 5 nm grafted Ni particles was analyzed by in situ X-ray absorption spectroscopy. The results show that the metallic Ni was rapidly formed in situ without detectable leaching to the aqueous phase, suggesting that just the acid functions on Ni/C-SO3H are inhibited in presence of water. Using in situ IR spectroscopy, it was shown that even in hexadecane, phenol HDO is limited by the dehydration step. Thus, phenol HDO catalysis was further improved by physically admixing C-SO3H with the Ni/C-SO3H catalyst to balance the two catalytic functions. The minimum addition of 7 wt.% C-SO3H to the most active of the Ni/C-SO3H catalysts enabled nearly quantitative conversion of phenol and the highest selectivity (90%) towards cyclohexane in 6 h, at temperatures as low as 473 K, suggesting that the proximity to Ni limits the acid properties of the support.

  3. NGNP Process Heat Utilization: Liquid Metal Phase Change Heat Exchanger

    SciTech Connect

    Piyush Sabharwall; Mike Patterson; Vivek Utgikar; Fred Gunnerson

    2008-09-01

    One key long-standing issue that must be overcome to fully realize the successful growth of nuclear power is to determine other benefits of nuclear energy apart from meeting the electricity demands. The Next Generation Nuclear Plant (NGNP) will most likely be producing electricity and heat for the production of hydrogen and/or oil retrieval from oil sands and oil shale to help in our national pursuit of energy independence. For nuclear process heat to be utilized, intermediate heat exchange is required to transfer heat from the NGNP to the hydrogen plant or oil recovery field in the most efficient way possible. Development of nuclear reactor - process heat technology has intensified the interest in liquid metals as heat transfer media because of their ideal transport properties. Liquid metal heat exchangers are not new in practical applications. An important rational for considering liquid metals is the potential convective heat transfer is among the highest known. Thus explains the interest in liquid metals as coolant for intermediate heat exchange from NGNP. For process heat it is desired that, intermediate heat exchangers (IHX) transfer heat from the NGNP in the most efficient way possible. The production of electric power at higher efficiency via the Brayton Cycle, and hydrogen production, requires both heat at higher temperatures and high effectiveness compact heat exchangers to transfer heat to either the power or process cycle. Compact heat exchangers maximize the heat transfer surface area per volume of heat exchanger; this has the benefit of reducing heat exchanger size and heat losses. High temperature IHX design requirements are governed in part by the allowable temperature drop between the outlet and inlet of the NGNP. In order to improve the characteristics of heat transfer, liquid metal phase change heat exchangers may be more effective and efficient. This paper explores the overall heat transfer characteristics and pressure drop of the phase change

  4. Phase Behavior and Collective Dynamics of Liquid Water

    NASA Astrophysics Data System (ADS)

    Sastry, Srikanth

    The unusual properties of liquid water have been analyzed predominantly in terms of the hydrogen bond network which characterizes its microscopic structure. Properties of the hydrogen bond network, with physically motivated additional assumptions, have been shown to describe well most static and dynamic properties of water. However, there are important exceptions where no conclusive analysis in terms of the hydrogen bond network has been carried out. Two such exceptions are addressed in this thesis. The phase behaviour of water--in particular the limiting behavior of the metastable continuations of the liquid--is an open question. To explain the apparent divergence of many thermodynamic and microscopic quantities on supercooling, Speedy and Angell proposed that these divergences are due to an absolute limit of stability of the liquid phase, conjecturing further that such limits of stability form a continuous reentrant locus in the P-T plane. In an attempt to address this conjecture on the basis of microscopic behavior in water, a lattice gas model is developed, which exhibits water-like behavior and has phases corresponding to the real system. The liquid gas spinodal is seen to be reentrant, in accordance with the stability limit conjecture. However, the limit of stability upon supercooling in the model, while consistent with experiments, is found to differ qualitatively from the prediction, displaying no singular behavior of thermodynamic quantities. In computer and experimental studies of sound propagation in water at high wavenumbers, the sound velocity is found to be about twice the hydrodynamic value. It was proposed that this mode propagates on the hydrogen bond network and occurs due to the connectivity properties of the network. This question is studied through Molecular Dynamics simulations of the liquid and normal model analysis of inherent structures. The results show that only one longitudinal sound mode is present. However, an attempt is made to go

  5. A novel procedure for phase separation in dispersive liquid-liquid microextraction based on solidification of the aqueous phase.

    PubMed

    March, J G; Cerdà, V

    2016-08-15

    In this paper, an alternative for handling the organic phase after a dispersive liquid-liquid microextraction using organic solvents lighter than water is presented. It is based on solidification (at -18°C) of the aqueous phase obtained after centrifugation, and the decantation, collection and analysis of the liquid organic layer. The extraction of nicotine in toluene, and its determination in eggplant samples was conducted as a proof of concept. The study has been carried out using standards prepared in water and the formation of the dispersion was assisted by sonication. The organic extract was analysed using gas chromatography coupled to mass spectrometry. Satisfactory analytical figures of merit as: limit of detection (0.4µgL(-1), 2ngg(-1) wet sample), limit of quantification (1.2µgL(-1), 6.5ngg(-1) wet sample), within-day precision (RSD=7%), and linearity interval (up to 384µgL(-1) nicotine) were achieved. It constituted a contribution to the handling of organic extracts after microextraction processes. PMID:27260454

  6. Liquid phase synthesis of copper indium diselenide nanoparticles

    SciTech Connect

    Jakhmola, Priyanka; Agarwal, Garima; Jha, Prafulla K.; Bhatnagar, S. P.

    2014-04-24

    Nanoparticles of Copper Indium diselenide (CuInSe{sub 2}), belongs to I-III-VI{sub 2} family has been synthesized via liquid phase route using ethylenediamine as a solvent. Characterization of as-grown particles is done by XRD, HRTEM, DLS, optical microscopy and UV-Vis spectroscopy. X-ray diffraction pattern confirmed that the CuInSe2 nanoparticles obtained reveals chalcopyrite structure. Particle size evaluated from dynamic light scattering of as grown particle possessing radius of 90 nm. The bandgap of 1.05eV is obtained from UV-Vis spectrum which will applicable to the solar cell devices.

  7. Liquid/solid/dual phase xenon γ-ray detectors

    NASA Astrophysics Data System (ADS)

    van Sonsbeek, R.; Bom, V. R.; van Eijk, C. W. E.; Hollander, R. W.; Meijvogel, K.; Okx, W. J. C.

    1994-09-01

    It is recognized by various groups in the world that liquid xenon (LXe) is an interesting medium for the detection of γ-rays. In spite of all the experimental and theoretical effort expended during recent years, the processes that take place in this medium are not yet fully understood. We have obtained some preliminary results using an ionization chamber with a Frisch grid. This chamber could be filled with LXe and with solid xenon (SXe). We also investigated dual phase (GXe/SXe) systems. Our study will be continued with a newly developed detection cell described in this article.

  8. Vapors-liquid phase separator. [infrared telescope heat sink

    NASA Technical Reports Server (NTRS)

    Frederking, T. H. K.; Brown, G. S.; Chuang, C.; Kamioka, Y.; Kim, Y. I.; Lee, J. M.; Yuan, S. W. K.

    1980-01-01

    The use of porous plugs, mostly with in the form of passive devices with constant area were considered as vapor-liquid phase separators for helium 2 storage vessels under reduced gravity. The incorporation of components with variable cross sectional area as a method of flow rate modification was also investigated. A particular device which uses a shutter-type system for area variation was designed and constructed. This system successfully permitted flor rate changes of up to plus or minus 60% from its mean value.

  9. Environmental information volume: Liquid Phase Methanol (LPMEOH{trademark}) project

    SciTech Connect

    1996-05-01

    The purpose of this project is to demonstrate the commercial viability of the Liquid Phase Methanol Process using coal-derived synthesis gas, a mixture of hydrogen and carbon monoxide. This report describes the proposed actions, alternative to the proposed action, the existing environment at the coal gasification plant at Kingsport, Tennessee, environmental impacts, regulatory requirements, offsite fuel testing, and DME addition to methanol production. Appendices include the air permit application, solid waste permits, water permit, existing air permits, agency correspondence, and Eastman and Air Products literature.

  10. Investigating materials formation with liquid-phase and cryogenic TEM

    NASA Astrophysics Data System (ADS)

    de Yoreo, J. J.; N. A. J. M., Sommerdijk

    2016-08-01

    The recent advent of liquid-phase transmission electron microscopy (TEM) and advances in cryogenic TEM are transforming our understanding of the physical and chemical mechanisms underlying the formation of materials in synthetic, biological and geochemical systems. These techniques have been applied to study the dynamic processes of nucleation, self-assembly, crystal growth and coarsening for metallic and semiconductor nanoparticles, (bio)minerals, electrochemical systems, macromolecular complexes, and organic and inorganic self-assembling systems. New instrumentation and methodologies that are currently on the horizon promise new opportunities for advancing the science of materials synthesis.