Sample records for liquid water polymorphism

  1. Investigating the dependence of polymorphic liquid-liquid transitions on the concentration of amphiphiles in water

    NASA Astrophysics Data System (ADS)

    Mirgorod, Yu. A.

    2015-01-01

    A way of identifying polymorphic transitions via the hydrolysis of S-decylisothiuronium chloride and other properties of water in solutions of amphiphiles is described. Features of amphiphile transitions (smoothness, micelle bistability, solubilization hysteresis, the autooscillation of micelles, and fluctuations in the extensive properties of a water and micelle nanosystem ensemble) are discussed.

  2. Cloud Liquid Water Measurements

    E-print Network

    Delene, David J.

    #12;Wet Power Term Energy is transferred to heat droplets to to the boiling point and vaporize of Vaporization · cw - Specific Heat of Water · Tv - Boiling Temperature of Water · Ta ­ Ambient Temperature #12 of Vaporization · cw - Specific Heat of Water · Tv ­ Water Boiling Temperature Solve for Liquid Water Content · P

  3. Life's Little Essential: Liquid Water

    NSDL National Science Digital Library

    Without liquid water, terrestrial life could not exist. All living organisms on Earth depend on water and its unique chemical and physical properties. In the search for life beyond Earth, scientists have focused their efforts on looking for signs of liquid water. This essay discusses the properties of liquid water that are conducive to life, pointing out that the biochemical reactions that sustain life need a fluid in order to operate, and that water is probably the best solvent in the universe.

  4. Liquid Assets: Sustainable Water Use

    NSDL National Science Digital Library

    2008-11-20

    This video from a WPSU documentary Liquid Assets shows the transformation of Las Vegas’ water infrastructure. A desert community, Las Vegas is reducing water consumption and re-using wastewater, making optimal use of limited water resources.

  5. Liquid to quasicrystal transition in bilayer water.

    PubMed

    Johnston, Jessica C; Kastelowitz, Noah; Molinero, Valeria

    2010-10-21

    The phase behavior of confined water is a topic of intense and current interest due to its relevance in biology, geology, and materials science. Nevertheless, little is known about the phases that water forms even when confined in the simplest geometries, such as water confined between parallel surfaces. Here we use molecular dynamics simulations to compute the phase diagram of two layers of water confined between parallel non hydrogen bonding walls. This study shows that the water bilayer forms a dodecagonal quasicrystal, as well as two previously unreported bilayer crystals, one tiled exclusively by pentagonal rings. Quasicrystals, structures with long-range order but without periodicity, have never before been reported for water. The dodecagonal quasicrystal is obtained from the bilayer liquid through a reversible first-order phase transition and has diffusivity intermediate between that of the bilayer liquid and ice phases. The water quasicrystal and the ice polymorphs based on pentagons are stabilized by compression of the bilayer and are not templated by the confining surfaces, which are smooth. This demonstrates that these novel phases are intrinsically favored in bilayer water and suggests that these structures could be relevant not only for confined water but also for the wetting and properties of water at interfaces. PMID:20969412

  6. Quinaldine: Accessing two crystalline polymorphs via the supercooled liquid

    NASA Astrophysics Data System (ADS)

    Kahlau, Robert; Gnutzmann, Tanja; Emmerling, Franziska; Rademann, Klaus; Rössler, Ernst A.

    2012-08-01

    Quinaldine (2-methyl quinoline) is a liquid at room temperature, which can be supercooled to reach finally the glassy state. By heating the glass above the glass transition temperature Tg = 180 K the sample performs two subsequent transitions into, likewise, dielectrically active phases. Thus, the reorientational relaxations of these phases as well as the kinetics of the phase transitions can be tracked in a highly resolved way by dielectric spectroscopy. X-ray diffraction analysis clearly shows two structurally different crystalline phases in addition to the supercooled liquid. Calorimetric measurements support the notion of first order phase transitions, occurring irreversibly in the supercooled regime, and suggest that the intermediate crystalline phase is metastable, too. Analyzing the quite distinct dielectric relaxation strengths, we discuss the possible nature of the two crystalline phases. Additionally, a very similar behavior to quinaldine is observed for 3-methyl quinoline, indicating a broad field of polymorphism among the quinoline derivatives.

  7. Polymorphism, mesomorphism, and metastability of monoelaidin in excess water.

    PubMed Central

    Chung, H; Caffrey, M

    1995-01-01

    The polymorphic and metastable phase behavior of monoelaidin dry and in excess water was studied by using high-sensitivity differential scanning calorimetry and time-resolved x-ray diffraction in the temperature range of 4 degrees C to 60 degrees C. To overcome problems associated with a pronounced thermal history-dependent phase behavior, simultaneous calorimetry and time-resolved x-ray diffraction measurements were performed on individual samples. Monoelaidin/water samples were prepared at room temperature and stored at 4 degrees C for up to 1 week before measurement. The initial heating scan from 4 degrees C to 60 degrees C showed complex phase behavior with the sample in the lamellar crystalline (Lc0) and cubic (Im3m, Q229) phases at low and high temperatures, respectively. The Lc0 phase transforms to the lamellar liquid crystalline (L alpha) phase at 38 degrees C. At 45 degrees C, multiple unresolved lines appeared that coexisted with those from the L alpha phase in the low-angle region of the diffraction pattern that have been assigned previously to the so-called X phase (Caffrey, 1987, 1989). With further heating the X phase converts to the Im3m cubic phase. Regardless of previous thermal history, cooling calorimetric scans revealed a single exotherm at 22 degrees C, which was assigned to an L alpha+cubic (Im3m, Q229)-to-lamellar gel (L beta) phase transition. The response of the sample to a cooling followed by a reheating or isothermal protocol depended on the length of time the sample was incubated at 4 degrees C. A model is proposed that reconciles the complex polymorphic, mesomorphic, and metastability interrelationships observed with this lipid/water system. Dry monoelaidin exists in the lamellar crystalline (beta) phase in the 4 degrees C to 45 degrees C range. The beta phase transforms to a second lamellar crystalline polymorph identified as beta* at 45 degrees C that subsequently melts at 57 degrees C. The beta phase observed with dry monoelaidin is identical to the LcO phase formed by monoelaidin that was dispersed in excess water and that had not been previously heated. Images FIGURE 3 PMID:8580338

  8. Liquid Assets: A Water System

    NSDL National Science Digital Library

    WPSU

    2008-11-20

    This segment from a WPSU documentary Liquid Assets succinctly explains how water in New York journeys from its source to our faucets. Although water flows under our feet everyday, we are blissfully unaware of this service and take it for granted.

  9. Nonamphiphilic assembly in water: polymorphic nature, thread structure, and thermodynamic incompatibility.

    PubMed

    Wu, Lei; Lal, Jyotsana; Simon, Karen A; Burton, Erik A; Luk, Yan-Yeung

    2009-06-01

    Self-assembly of large quantities of entirely water-soluble molecules is entropically challenging. In this work, we describe the design and synthesis of water-soluble aromatic (dichromonyl) molecules that can form nonamphiphilic assemblies and the so-called chromonic liquid crystal phase in water. We discover a new molecule, 5'DSCG-diviol, that exhibits a large birefringent phase, and we show that the formation of this unique class of nonamphiphilic lyotropic liquid crystal shares enormous similarity to the polymorphism observed for crystal formation. Small-angle neutron scattering (SANS) revealed a concentration-independent rod-shaped assembly at concentrations below and above the formation of liquid crystal phase. Adding a small percentage of monoanionic aromatic molecules to the liquid crystal resulted in the elimination of the liquid crystal phase, but addition of dianionic aromatic molecules retained the liquid crystal phase. Together, these results suggest a new assembly structure for nonamphiphilic molecules in water, which is comprised of long threads of small molecules connected by salt bridges stacked over aromatic groups, with the molecular threads heavily hydrated with solvent water. Furthermore, mixing molecules with different structures can result in new liquid crystalline materials, or in segregation of the molecules into different solvation volumes, each of which contains only one type of molecule. The unusual thermodynamic incompatibility of entirely water-soluble molecules also supports the model of molecular threads, in which two polymer-like assemblies do not mix. PMID:19422237

  10. Static heterogeneities in liquid water

    NASA Astrophysics Data System (ADS)

    Stanley, H. Eugene; Buldyrev, Sergey V.; Giovambattista, Nicolas

    2004-10-01

    The thermodynamic behavior of water seems to be closely related to static heterogeneities. These static heterogeneities are related to the local structure of water molecules, and when properly characterized, may offer an economical explanation of thermodynamic data. The key feature of liquid water is not so much that the existence of hydrogen bonds, first pointed out by Linus Pauling, but rather the local geometry of the liquid molecules is not spherical or oblong but tetrahedral. In the consideration of static heterogeneities, this local geometry is critical. Recent experiments suggested more than one phase of amorphous solid water, while simulations suggest that one of these phases is metastable with respect to another, so that in fact there are only two stable phases.

  11. Flow-assisted 2D polymorph selection: stabilizing metastable monolayers at the liquid-solid interface.

    PubMed

    Lee, Shern-Long; Yuan, Zhongyi; Chen, Long; Mali, Kunal S; Müllen, Klaus; De Feyter, Steven

    2014-05-28

    Controlling crystal polymorphism constitutes a formidable challenge in contemporary chemistry. Two-dimensional (2D) crystals often provide model systems to decipher the complications in 3D crystals. In this contribution, we explore a unique way of governing 2D polymorphism at the organic liquid-solid interface. We demonstrate that a directional solvent flow could be used to stabilize crystalline monolayers of a metastable polymorph. Furthermore, flow fields active within the applied flow generate millimeter-sized domains of either polymorph in a controlled and reproducible fashion. PMID:24867142

  12. Polymorphism in glassy silicon: Inherited from liquid-liquid phase transition in supercooled liquid

    NASA Astrophysics Data System (ADS)

    Zhang, Shiliang; Wang, Li-Min; Zhang, Xinyu; Qi, Li; Zhang, Suhong; Ma, Mingzhen; Liu, Riping

    2015-02-01

    Combining molecular dynamics (MD) simulation and Voronoi polyhedral analyses, we discussed the microstructure evolution in liquid and glassy silicon during cooling by focusing on the fraction of various clusters. Liquid-liquid phase transition (LLPT) is detected in supercooled liquid silicon However, freezing the high-density liquid (HDL) to the glassy state is not achieved as the quenching rate goes up to 1014 K/s. The polyamorphism in glassy silicon is found to be mainly associated with low-density liquid (LDL).

  13. Role of water in Protein Aggregation and Amyloid Polymorphism

    E-print Network

    D. Thirumalai; Govardhan Reddy; John E. Straub

    2011-07-25

    A variety of neurodegenerative diseases are associated with the formation of amyloid plaques. Our incomplete understanding of this process underscores the need to decipher the principles governing protein aggregation. Most experimental and simulation studies have been interpreted largely from the perspective of proteins: the role of solvent has been relatively overlooked. In this Account, we provide a perspective on how interactions with water affect folding landscapes of A$\\beta$ monomers, A$\\beta_{16-22}$ oligomer formation, and protofilament formation in a Sup35 peptide. Simulations show that the formation of aggregation-prone structures (N$^*$) similar to the structure in the fibril requires overcoming high desolvation barrier. The mechanism of protofilament formation in a polar Sup35 peptide fragment illustrates that water dramatically slows down self-assembly. Release of water trapped in the pores as water wires creates protofilament with a dry interface. Similarly, one of the main driving force for addition of a solvated monomer to a preformed fibril is the entropy gain of released water. We conclude by postulating that two-step model for protein crystallization must also hold for higher order amyloid structure formation starting from N$^*$. Multiple N$^*$ structures with varying water content results in a number of distinct water-laden polymorphic structures. In predominantly hydrophobic sequences, water accelerates fibril formation. In contrast, water-stabilized metastable intermediates dramatically slow down fibril growth rates in hydrophilic sequences.

  14. Electrokinetic Power Generation from Liquid Water Microjets

    SciTech Connect

    Duffin, Andrew M.; Saykally, Richard J.

    2008-02-15

    Although electrokinetic effects are not new, only recently have they been investigated for possible use in energy conversion devices. We have recently reported the electrokinetic generation of molecular hydrogen from rapidly flowing liquid water microjets [Duffin et al. JPCC 2007, 111, 12031]. Here, we describe the use of liquid water microjets for direct conversion of electrokinetic energy to electrical power. Previous studies of electrokinetic power production have reported low efficiencies ({approx}3%), limited by back conduction of ions at the surface and in the bulk liquid. Liquid microjets eliminate energy dissipation due to back conduction and, measuring only at the jet target, yield conversion efficiencies exceeding 10%.

  15. Polymorphs

    E-print Network

    Prankerd, Richard

    2006-10-26

    ? but this convention is not always followed 3 5 Polymorphism types ? There are two ways in which different crystal structures can arise ? Arrangement polymorphism ? Rigid molecules with the same conformation packed in different ways > Acetaminophen orthorhombic....9 ? 3 Z = 4 1.332 g/cm 3 Arrangement polymorphism Acetaminophen ? same conformation Orthorhombic Pbca a = 17.17 b = 11.78 c = 7.21 ? = 90.00 ? = 90.00 ? = 90.00 V = 1458.1 ? 3 Z = 8 1.377 g/cm 3 System Space group Unit cell dimensions Volume Molecules...

  16. Simple physical model of liquid water

    Microsoft Academic Search

    Hajime Tanaka

    2000-01-01

    We propose a simple two-state model of water to explain the unusual thermodynamic and dynamic behavior of liquid water. Our model is based on a physical picture that there exist two competing orderings in water, namely, density ordering and bond ordering. Short-range bond ordering leads to the formation of a rather stable locally favored structure (in a ground state) in

  17. Comment on "Spontaneous liquid-liquid phase separation of water".

    PubMed

    Limmer, David T; Chandler, David

    2015-01-01

    Yagasaki et al. [Phys. Rev. E 89, 020301 (2014)] present results from a molecular dynamics trajectory illustrating coarsening of ice, which they interpret as evidence of transient coexistence between two distinct supercooled phases of liquid water. We point out that neither two distinct liquids nor criticality are demonstrated in this simulation study. Instead, the illustrated trajectory is consistent with coarsening behaviors analyzed and predicted in earlier work by others. PMID:25679744

  18. Liquid Hot Water Pretreatment of Cellulosic Biomass

    Microsoft Academic Search

    Youngmi Kim; Rick Hendrickson; Nathan S. Mosier; Michael R. Ladisch

    2009-01-01

    Lignocellulosic biomass is an abundant and renewable resource for fuel ethanol production. However, the lignocellulose is recalcitrant to enzymatic hydrolysis because of its structural complexity. Controlled-pH liquid hot water (LHW) pretreatment of cellulosic feedstock improves its enzymatic digestibility by removing hemicellulose and making the cellulose more accessible to cellulase enzymes. The removed hemicellulose is solubilized in the liquid phase of

  19. Re-sequencing of multiple single nucleotide polymorphisms by liquid chromatography-electrospray ionization mass spectrometry

    Microsoft Academic Search

    H. Oberacher; P. J. Oefner; G. Holzl; A. Premstaller; K. Davis; C. G. Huber

    2002-01-01

    Allelic discrimination of single nucleotide poly- morphisms (SNPs) and, particularly, determination of the phase of multiple variations are of utmost importance in genetics. The physicochemical separ- ation of alleles by completely denaturing ion-pair reversed-phase high-performance liquid chromato- graphy and their on-line sequence determination by electrospray ionization mass spectrometry is dem- onstrated. Simultaneous genotyping of two and three simple sequence polymorphisms

  20. Evidence for Liquid Water on Comets

    NASA Technical Reports Server (NTRS)

    Sheldon, Robert; Hoover, Richard

    2005-01-01

    We have reexamined the arguments for the existence of liquid water on comets, and believe that recent cometary flybys along with pre-Giotto data support its presence on short-period comets. Liquid water would affect cometary dynamics, leaving distinct signatures in precession, orbital dynamics, and potential splitting of comets. Liquid water geysers would affect cometary atmosphere, dust evolution, and non-gravitational forces that perturb the orbit. Liquid water would affect the composition of both the interior and exterior of the comet, producing geologic effects consistent with recent flyby photographs. And most importantly, liquid water suppork the growth of lifeforms, which would make a comet a biofriendly incubator for interplanetary transport. The major objection against liquid water is the necessity of a pressure vessel to prevent sublimation into space. We discuss how such a pressure vessel could naturally evolve as a pristine comet makes its first journey inside the orbit of Mars, and suggest that this type of vessel was observed by Giotto, Deep Space I, and Stardust.

  1. Properties of Water Confined in Ionic Liquids

    PubMed Central

    Saihara, Koji; Yoshimura, Yukihiro; Ohta, Soichi; Shimizu, Akio

    2015-01-01

    The varying states of water confined in the nano-domain structures of typical room temperature ionic liquids (ILs) were investigated by 1H NMR and by measurements of self-diffusion coefficients while systematically varying the IL cations and anions. The NMR peaks for water in BF4-based ILs were clearly split, indicating the presence of two discrete states of confined water (H2O and HOD). Proton and/or deuterium exchange rate among the water molecules was very slowly in the water-pocket. Notably, no significant changes were observed in the chemical shifts of the ILs. Self-diffusion coefficient results showed that water molecules exhibit a similar degree of mobility, although their diffusion rate is one order of magnitude faster than that of the IL cations and anions. These findings provide information on a completely new type of confinement, that of liquid water in soft matter. PMID:26024339

  2. Properties of water confined in ionic liquids.

    PubMed

    Saihara, Koji; Yoshimura, Yukihiro; Ohta, Soichi; Shimizu, Akio

    2015-01-01

    The varying states of water confined in the nano-domain structures of typical room temperature ionic liquids (ILs) were investigated by (1)H NMR and by measurements of self-diffusion coefficients while systematically varying the IL cations and anions. The NMR peaks for water in BF4-based ILs were clearly split, indicating the presence of two discrete states of confined water (H2O and HOD). Proton and/or deuterium exchange rate among the water molecules was very slowly in the water-pocket. Notably, no significant changes were observed in the chemical shifts of the ILs. Self-diffusion coefficient results showed that water molecules exhibit a similar degree of mobility, although their diffusion rate is one order of magnitude faster than that of the IL cations and anions. These findings provide information on a completely new type of confinement, that of liquid water in soft matter. PMID:26024339

  3. Liquid Water Oceans in Ice Giants

    E-print Network

    Sloane J. Wiktorowicz; Andrew P. Ingersoll

    2006-09-26

    Aptly named, ice giants such as Uranus and Neptune contain significant amounts of water. While this water cannot be present near the cloud tops, it must be abundant in the deep interior. We investigate the likelihood of a liquid water ocean existing in the hydrogen-rich region between the cloud tops and deep interior. Starting from an assumed temperature at a given upper tropospheric pressure (the photosphere), we follow a moist adiabat downward. The mixing ratio of water to hydrogen in the gas phase is small in the photosphere and increases with depth. The mixing ratio in the condensed phase is near unity in the photosphere and decreases with depth; this gives two possible outcomes. If at some pressure level the mixing ratio of water in the gas phase is equal to that in the deep interior, then that level is the cloud base. Alternately, if the mixing ratio of water in the condensed phase reaches that in the deep interior, then the surface of a liquid ocean will occur. We find that Neptune is both too warm (photospheric temperature too high) and too dry (mixing ratio of water in the deep interior too low) for liquid oceans to exist at present. To have a liquid ocean, Neptune's deep interior water to gas ratio would have to be higher than current models allow, and the density at 19 kbar would have to be ~ 0.8 g/cm^3. Such a high density is inconsistent with gravitational data obtained during the Voyager flyby. As Neptune cools, the probability of a liquid ocean increases. Extrasolar "hot Neptunes," which presumably migrate inward toward their parent stars, cannot harbor liquid water oceans unless they have lost almost all of the hydrogen and helium from their deep interiors.

  4. Boiler water liquid level control

    Microsoft Academic Search

    1993-01-01

    In a boiling water boiler having a boiler tank which is externally fired by a burner under control of a fuel supply valve, and is supplied with make-up water through a make-up water valve, both of the valves being under the control of a control system, the control system including an upper control level sensor disposed at an elevation in

  5. Liquid water: The helical perspective of structure

    NASA Astrophysics Data System (ADS)

    Lozynski, Marek

    2015-07-01

    The structure of water, especially the bulk liquid, is a fundamental question. We show that the infinite network of perfectly tetragonal oxygen atoms in ice Ih can be converted into the helical geometry, retaining the four-fold connectivity but being non-tetrahedral with respect to neighboring oxygen atoms. Thus, liquid water appears as a racemic mixture of two types of discrete, helical clusters of water molecules joined tightly together by two types of hydrogen bonds, which are very similar in all cluster entities.

  6. Interactions of ionic liquids and water.

    PubMed

    Ficke, Lindsay E; Brennecke, Joan F

    2010-08-19

    Experimental excess enthalpies of ionic liquid and water mixtures in combination with calculated CHELPG atomic charges were used to investigate the interactions between the species in solution. The excess enthalpies of ionic liquids in water were obtained by calorimetry, using a Setaram C80 calorimeter, including temperatures from (313.15 to 348.15) K and the entire range of composition. The ionic liquids investigated all contain the 1-ethyl-3-methylimidazolium cation except one, which has an added hydroxyl group on the cation (1-(2-hydroxyethyl)-3-methylimidazolium cation). The anions investigated are ethylsulfate, methylsulfate, hydrogensulfate, trifluoromethanesulfonate, methanesulfonate, and trifluoroacetate, and these will demonstrate the effect of systematically varying the substituents on the anion. The CHELPG atomic charges on the cations and anions were calculated using the Gaussian 03 program. The CHELPG atomic charges are consistent with the observed trends in excess enthalpy and provide insight into cation/water, anion/water, and cation/anion interactions. PMID:20701381

  7. Liquid Water Oceans in Ice Giants

    NASA Technical Reports Server (NTRS)

    Wiktorowicz, Sloane J.; Ingersoll, Andrew P.

    2007-01-01

    Aptly named, ice giants such as Uranus and Neptune contain significant amounts of water. While this water cannot be present near the cloud tops, it must be abundant in the deep interior. We investigate the likelihood of a liquid water ocean existing in the hydrogen-rich region between the cloud tops and deep interior. Starting from an assumed temperature at a given upper tropospheric pressure (the photosphere), we follow a moist adiabat downward. The mixing ratio of water to hydrogen in the gas phase is small in the photosphere and increases with depth. The mixing ratio in the condensed phase is near unity in the photosphere and decreases with depth; this gives two possible outcomes. If at some pressure level the mixing ratio of water in the gas phase is equal to that in the deep interior, then that level is the cloud base. The gas below the cloud base has constant mixing ratio. Alternately, if the mixing ratio of water in the condensed phase reaches that in the deep interior, then the surface of a liquid ocean will occur. Below this ocean surface, the mixing ratio of water will be constant. A cloud base occurs when the photospheric temperature is high. For a family of ice giants with different photospheric temperatures, the cooler ice giants will have warmer cloud bases. For an ice giant with a cool enough photospheric temperature, the cloud base will exist at the critical temperature. For still cooler ice giants, ocean surfaces will result. A high mixing ratio of water in the deep interior favors a liquid ocean. We find that Neptune is both too warm (photospheric temperature too high) and too dry (mixing ratio of water in the deep interior too low) for liquid oceans to exist at present. To have a liquid ocean, Neptune s deep interior water to gas ratio would have to be higher than current models allow, and the density at 19 kbar would have to be approx. equal to 0.8 g/cu cm. Such a high density is inconsistent with gravitational data obtained during the Voyager flyby. In our model, Neptune s water cloud base occurs around 660 K and 11 kbar, and the density there is consistent with Voyager gravitational data. As Neptune cools, the probability of a liquid ocean increases. Extrasolar "hot Neptunes," which presumably migrate inward toward their parent stars, cannot harbor liquid water oceans unless they have lost almost all of the hydrogen and helium from their deep interiors.

  8. Liquid chromatographic determination of water

    DOEpatents

    Fortier, Nancy E. (Fairfield, OH); Fritz, James S. (Ames, IA)

    1990-11-13

    A sensitive method for the determination of water in the presence of common interferences is presented. The detection system is based on the effect of water on the equilibrium which results from the reaction aryl aldehydes, such as cinnamaldehyde and methanol in the eluent to form cinnamaldehyde dimethylacetal, plus water. This equilibrium is shifted in a catalytic atmosphere of a hydrogen ion form past column reactor. The extent of the shift and the resulting change in absorbance are proportional to the amount of water present.

  9. Liquid chromatographic determination of water

    DOEpatents

    Fortier, N.E.; Fritz, J.S.

    1990-11-13

    A sensitive method for the determination of water in the presence of common interferences is presented. The detection system is based on the effect of water on the equilibrium which results from the reaction aryl aldehydes, such as cinnamaldehyde and methanol in the eluent to form cinnamaldehyde dimethylacetal, plus water. This equilibrium is shifted in a catalytic atmosphere of a hydrogen ion form past column reactor. The extent of the shift and the resulting change in absorbance are proportional to the amount of water present. 1 fig.

  10. THz reflection spectroscopy of liquid water

    Microsoft Academic Search

    L. Thrane; R. H. Jacobsen; P. Uhd Jepsen; S. R. Keiding

    1995-01-01

    We report an investigation of the temperature-dependent far-infrared spectrum of liquid water. We have employed a new experimental technique based on ultrashort electromagnetic pulses (THz pulses). This technique allows for fast and reliable data of both index of refraction and absorption coefficient for highly absorbing liquids. The temperature dependence reveals an enthalpy of activation corresponding to 2.5 kcal\\/mol, in agreement

  11. Network defects and molecular mobility in liquid water Francesco Sciortino

    E-print Network

    Sciortino, Francesco

    Network defects and molecular mobility in liquid water Francesco Sciortino Centerfor Polymer between the structure and mobility of liquid water, we analyze quenched molecular dynamics configurations tetrahedral local arrangements. INTRODUCTION Two decades of computer simulation studies on water and aqueous

  12. Water Contaminant Mitigation in Ionic Liquid Propellant

    NASA Technical Reports Server (NTRS)

    Conroy, David; Ziemer, John

    2009-01-01

    Appropriate system and operational requirements are needed in order to ensure mission success without unnecessary cost. Purity requirements applied to thruster propellants may flow down to materials and operations as well as the propellant preparation itself. Colloid electrospray thrusters function by applying a large potential to a room temperature liquid propellant (such as an ionic liquid), inducing formation of a Taylor cone. Ions and droplets are ejected from the Taylor cone and accelerated through a strong electric field. Electrospray thrusters are highly efficient, precise, scaleable, and demonstrate low thrust noise. Ionic liquid propellants have excellent properties for use as electrospray propellants, but can be hampered by impurities, owing to their solvent capabilities. Of foremost concern is the water content, which can result from exposure to atmosphere. Even hydrophobic ionic liquids have been shown to absorb water from the air. In order to mitigate the risks of bubble formation in feed systems caused by water content of the ionic liquid propellant, physical properties of the ionic liquid EMI-Im are analyzed. The effects of surface tension, material wetting, physisorption, and geometric details of the flow manifold and electrospray emitters are explored. Results are compared to laboratory test data.

  13. Remote sensing of liquid water target operations

    SciTech Connect

    Ferrieri, R.A.; Alexoff, D.L.; Schlyer, D.J.

    1993-12-31

    One of the key considerations in the design of automated liquid water target systems for reliable {sup 18}F{sup {minus}} production is the inclusion of adequate sensing devices for remote feedback of individual process operation status. The process operations needed to generate, extract and deliver {sup 18}F{sup {minus}} to the Hot Lab for subsequent chemistry are not very complex. These involve configuring target valves for access during loading of enriched water, filling the target with water, reconfiguring the target valves so that it is sealed during irradiation, and finally emptying the target contents after irradiation. At the lowest level of remote sensing of these operations is the act of determining whether target valves are actually in their correct configuration for a specific step. Sensing the filling or emptying status of the target is perhaps the most crucial feedback for reliable target performance. Sensing the presence, or absence, of liquid water can be accomplished by measuring some physical property of the substance in that phase. The use of electrical conductivity meters is one method we have discussed in the past in relation to the remote sensing of metal cations to determine the presence of water. Likewise, refractive index is another property of water that can be harnessed for sensing the liquid`s presence. The performance of an optical sensor in the BNL JSW beamline for routine production of {sup 18}F{sup {minus}} is discussed.

  14. Vapor deposition of water on graphitic surfaces: Formation of amorphous ice, bilayer ice, ice I, and liquid water

    SciTech Connect

    Lupi, Laura; Kastelowitz, Noah; Molinero, Valeria, E-mail: Valeria.Molinero@utah.edu [Department of Chemistry, The University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850 (United States)

    2014-11-14

    Carbonaceous surfaces are a major source of atmospheric particles and could play an important role in the formation of ice. Here we investigate through molecular simulations the stability, metastability, and molecular pathways of deposition of amorphous ice, bilayer ice, and ice I from water vapor on graphitic and atomless Lennard-Jones surfaces as a function of temperature. We find that bilayer ice is the most stable ice polymorph for small cluster sizes, nevertheless it can grow metastable well above its region of thermodynamic stability. In agreement with experiments, the simulations predict that on increasing temperature the outcome of water deposition is amorphous ice, bilayer ice, ice I, and liquid water. The deposition nucleation of bilayer ice and ice I is preceded by the formation of small liquid clusters, which have two wetting states: bilayer pancake-like (wetting) at small cluster size and droplet-like (non-wetting) at larger cluster size. The wetting state of liquid clusters determines which ice polymorph is nucleated: bilayer ice nucleates from wetting bilayer liquid clusters and ice I from non-wetting liquid clusters. The maximum temperature for nucleation of bilayer ice on flat surfaces, T{sub B}{sup max} is given by the maximum temperature for which liquid water clusters reach the equilibrium melting line of bilayer ice as wetting bilayer clusters. Increasing water-surface attraction stabilizes the pancake-like wetting state of liquid clusters leading to larger T{sub B}{sup max} for the flat non-hydrogen bonding surfaces of this study. The findings of this study should be of relevance for the understanding of ice formation by deposition mode on carbonaceous atmospheric particles, including soot.

  15. Vapor deposition of water on graphitic surfaces: Formation of amorphous ice, bilayer ice, ice I, and liquid water

    NASA Astrophysics Data System (ADS)

    Lupi, Laura; Kastelowitz, Noah; Molinero, Valeria

    2014-11-01

    Carbonaceous surfaces are a major source of atmospheric particles and could play an important role in the formation of ice. Here we investigate through molecular simulations the stability, metastability, and molecular pathways of deposition of amorphous ice, bilayer ice, and ice I from water vapor on graphitic and atomless Lennard-Jones surfaces as a function of temperature. We find that bilayer ice is the most stable ice polymorph for small cluster sizes, nevertheless it can grow metastable well above its region of thermodynamic stability. In agreement with experiments, the simulations predict that on increasing temperature the outcome of water deposition is amorphous ice, bilayer ice, ice I, and liquid water. The deposition nucleation of bilayer ice and ice I is preceded by the formation of small liquid clusters, which have two wetting states: bilayer pancake-like (wetting) at small cluster size and droplet-like (non-wetting) at larger cluster size. The wetting state of liquid clusters determines which ice polymorph is nucleated: bilayer ice nucleates from wetting bilayer liquid clusters and ice I from non-wetting liquid clusters. The maximum temperature for nucleation of bilayer ice on flat surfaces, TBmax is given by the maximum temperature for which liquid water clusters reach the equilibrium melting line of bilayer ice as wetting bilayer clusters. Increasing water-surface attraction stabilizes the pancake-like wetting state of liquid clusters leading to larger TBmax for the flat non-hydrogen bonding surfaces of this study. The findings of this study should be of relevance for the understanding of ice formation by deposition mode on carbonaceous atmospheric particles, including soot.

  16. Vapor deposition of water on graphitic surfaces: formation of amorphous ice, bilayer ice, ice I, and liquid water.

    PubMed

    Lupi, Laura; Kastelowitz, Noah; Molinero, Valeria

    2014-11-14

    Carbonaceous surfaces are a major source of atmospheric particles and could play an important role in the formation of ice. Here we investigate through molecular simulations the stability, metastability, and molecular pathways of deposition of amorphous ice, bilayer ice, and ice I from water vapor on graphitic and atomless Lennard-Jones surfaces as a function of temperature. We find that bilayer ice is the most stable ice polymorph for small cluster sizes, nevertheless it can grow metastable well above its region of thermodynamic stability. In agreement with experiments, the simulations predict that on increasing temperature the outcome of water deposition is amorphous ice, bilayer ice, ice I, and liquid water. The deposition nucleation of bilayer ice and ice I is preceded by the formation of small liquid clusters, which have two wetting states: bilayer pancake-like (wetting) at small cluster size and droplet-like (non-wetting) at larger cluster size. The wetting state of liquid clusters determines which ice polymorph is nucleated: bilayer ice nucleates from wetting bilayer liquid clusters and ice I from non-wetting liquid clusters. The maximum temperature for nucleation of bilayer ice on flat surfaces, T(B)(max) is given by the maximum temperature for which liquid water clusters reach the equilibrium melting line of bilayer ice as wetting bilayer clusters. Increasing water-surface attraction stabilizes the pancake-like wetting state of liquid clusters leading to larger T(B)(max) for the flat non-hydrogen bonding surfaces of this study. The findings of this study should be of relevance for the understanding of ice formation by deposition mode on carbonaceous atmospheric particles, including soot. PMID:25399173

  17. Drinking Water Contaminants, Gene Polymorphisms, and Fetal Growth

    PubMed Central

    Infante-Rivard, Claire

    2004-01-01

    There are still many uncertainties regarding the risk of adverse pregnancy outcomes associated with exposure to drinking water disinfection by-products. In Montréal, Québec, Canada, we carried out a hospital-based case–control study including 493 cases of intrauterine growth restriction defined as birth weight below the 10th percentile for gestational age and sex, according to Canadian standards. Controls were babies (n = 472) delivered at the same hospital whose birth weight was at or above the 10th percentile, matched for gestational age, race, and sex. Exposure to total and specific trihalomethanes was measured using regulatory data collected by municipalities and the provincial Ministry of Environment. Residential history, water drinking, and shower habits during pregnancy, as well as known risk factors for intrauterine growth restriction, were measured with a face-to-face interview with all mothers. Mothers and newborns were characterized for two genetic polymorphisms, one in the CYP2E1 gene (G1259C), and another in the 5,10-methylenetetrahydrofolate reductase (MTHFR) gene (C677T). Exposure to specific and total trihalomethanes from drinking water, determined for 458 cases and 426 controls, did not result in an increased risk of intrauterine growth restriction. However, significant effect modification was observed between newborns with and without the CYP2E1 variant; among newborns with the variant, the adjusted odds ratio for intrauterine growth restriction associated with exposure to average total trihalomethanes above the 90th percentile (corresponding to 29.4 ?g/L) was 13.20 (95% confidence interval, 1.19–146.72). These findings suggest that exposure to trihalomethanes at the highest levels can affect fetal growth but only in genetically susceptible newborns. PMID:15289170

  18. Effect of liquid fat on melting point and polymorphic behavior of cocoa butter and a cocoa butter fraction

    Microsoft Academic Search

    N. V. Lovegren; M. S. Gray; R. O. Feuge

    1976-01-01

    The polymorphic behavior of cocoa butter and a high-melting fraction of cocoa butter (CBF) was investigated by differential\\u000a scanning calorimetry. The effect of liquid fat on melting point and polymorphic behavior was established for six mixtures:\\u000a 83.5% cocoa butter and 16.5% of a low-melting fraction of cocoa butter (CBF-LM), 90% cocoa butter and 10% olive oil, and four\\u000a mixtures of

  19. Cubic ice from liquid water

    Microsoft Academic Search

    Erwin Mayer; Andreas Hallbrucker

    1987-01-01

    Hexagonal ice (ice Ih) is the only form of ice that is known to occur naturally on the Earth. Recently it has been suggested that small droplets of water in the upper atmosphere may often freeze first to cubic ice (ice Ic), which is metastable relative to ice Ih. The evidence is Scheiner's halo, a rare halo that occurs at

  20. Water in Olivine and its High-Pressure Polymorphs

    NASA Astrophysics Data System (ADS)

    Thomas, S. M.; Jacobsen, S. D.; Bina, C. R.; Reichart, P.; Moser, M.; Dollinger, G.; Hauri, E. H.

    2014-12-01

    Theory and high-pressure experiments imply a significant water storage capacity of nominally anhydrous minerals (NAMs), such as olivine, wadsleyite and ringwoodite, composing the Earth's upper mantle and transition zone to a depth of 660 km. The presence of water, dissolved as OH into such nominally anhydrous high-pressure silicates, notably influences phase relations, melting behavior, conductivity, elasticity, viscosity and rheology. The first direct evidence for hydration of the transition zone has recently been reported by Pearson et al. (2014) and Schmandt et al. (2014). Knowledge of absolute water contents in NAMs is essential for modeling the Earth's interior water cycle. To take advantage of IR spectroscopy as highly sensitive water quantification tool, mineral-specific absorption coefficients are required. Such calibration constants can be derived from hydrogen concentrations determined by independent techniques, such as secondary ion mass spectrometry (SIMS), Raman spectroscopy or proton-proton(pp)-scattering. Broad beam pp-scattering has been performed on double-polished mm-sized mineral platelets (Thomas et al. 2008), but until recently analysis was not feasible for smaller samples synthetized in high-pressure apparati. Here we present first results from pp-scattering microscopy studies on ?m-sized single crystals of hydrous olivine, wadsleyite and ringwoodite, which were synthesized at various pressure-temperature conditions in a multi-anvil press. The method allows us to quantify 3D distributions of atomic hydrogen in ?m dimensions. These self-calibrating measurements were carried out at the nuclear microprobe SNAKE at the Munich tandem accelerator lab using a 25 MeV proton microbeam. We provide hydrogen depth-profiles, hydrogen maps and H2O concentrations. Pp-scattering data and results from independent Raman and SIMS analyses are in good agreement. Water contents for a set of high-pressure polymorphs with varying Fe-concentrations range from 0.8 wt% to 2.5 wt% H2O. From experimental data for Fo83, Fo87, Fo90 and Fo100 compositions we calculate mineral-specific absorption coefficients for the quantification of H2O using IR-spectroscopy, compare them with previously estimated values and discuss IR calibrations for major phases of the Earth's mantle.

  1. Local Environment Distribution in Ab Initio Liquid Water

    NASA Astrophysics Data System (ADS)

    Santra, Biswajit; Distasio, Robert A., Jr.; Car, Roberto

    2013-03-01

    We have analyzed the distribution of local environments in liquid water at ambient conditions and its inherent potential energy surface (IPES) based on state-of-the-art ab initio molecular dynamics simulations performed on 128 molecules implementing hybrid PBE0 exchange [PRB 79, 085102 (2009)] and van der Waals (vdW) interactions [PRL 102, 073005 (2009)]. The local environments of molecules are characterized in terms of the local structure index (LSI) [JCP 104, 7671 (1996)] which is able to distinguish high- and low-density molecular environments. In agreement with simulations based on model potentials, we find that the distribution of LSI is unimodal at ambient conditions and bimodal in the IPES, consistent with the existence of polymorphism in amorphous phases of water. At ambient conditions spatial LSI fluctuations extend up to ~7 Å and their dynamical correlation decays on a time scale of ~3 ps, as found for density fluctuations in a recent study [PRL 106, 037801 (2011)]. We have analyzed the distribution of local environments in liquid water at ambient conditions and its inherent potential energy surface (IPES) based on state-of-the-art ab initio molecular dynamics simulations performed on 128 molecules implementing hybrid PBE0 exchange [PRB 79, 085102 (2009)] and van der Waals (vdW) interactions [PRL 102, 073005 (2009)]. The local environments of molecules are characterized in terms of the local structure index (LSI) [JCP 104, 7671 (1996)] which is able to distinguish high- and low-density molecular environments. In agreement with simulations based on model potentials, we find that the distribution of LSI is unimodal at ambient conditions and bimodal in the IPES, consistent with the existence of polymorphism in amorphous phases of water. At ambient conditions spatial LSI fluctuations extend up to ~7 Å and their dynamical correlation decays on a time scale of ~3 ps, as found for density fluctuations in a recent study [PRL 106, 037801 (2011)]. DOE: DE-SC0008626, DOE: DE-SC0005180, NSF: CHE-0956500

  2. Ship-based liquid water path estimates in marine stratocumulus

    E-print Network

    Zuidema, Paquita

    Ship-based liquid water path estimates in marine stratocumulus Paquita Zuidema Rosenstiel School October 2005. [1] We examine liquid water paths (LWPs) derived from ship-based microwave radiometer, and D. Hazen (2005), Ship-based liquid water path estimates in marine stratocumulus, J. Geophys. Res

  3. Liquid Hot Water Pretreatment of Cellulosic Biomass

    NASA Astrophysics Data System (ADS)

    Kim, Youngmi; Hendrickson, Rick; Mosier, Nathan S.; Ladisch, Michael R.

    Lignocellulosic biomass is an abundant and renewable resource for fuel ethanol production. However, the lignocellulose is recalcitrant to enzymatic hydrolysis because of its structural complexity. Controlled-pH liquid hot water (LHW) pretreatment of cellulosic feedstock improves its enzymatic digestibility by removing hemicellulose and making the cellulose more accessible to cellulase enzymes. The removed hemicellulose is solubilized in the liquid phase of the pretreated feedstock as oligosaccharides. Formation of monomeric sugars during the LHW pretreatment is minimal. The LHW pretreatment is carried out by cooking the feedstock in process water at temperatures between 160 and 190°C and at a pH of 4-7. No additional chemicals are needed. This chapter presents the detailed procedure of the LHW pretreatment of lignocellulosic biomass.

  4. Recent Images Suggesting Liquid Water on Mars

    NSDL National Science Digital Library

    Recently, the press reported that the Mars Orbiter Camera (MOC) had captured compelling images of gullies and slope failures that might be associated with the presence of liquid water on Mars. Now you can see these famous images at Malin Space Science Systems' MOC Website. These sharp, beautiful, color images (.jpeg, .gif) are featured on pages containing descriptions of how such physical features are formed on earth. The images are available in two sizes (small = 360K, large = 690K). Highlights include the "gully landform" compared to channel and apron features on Mount Saint Helens on Earth, a 3-D image (3-D glasses required) of a "weeping" alcove in an impact crater, and clues suggesting that the suspected liquid water on Mars is relatively young.

  5. Metastable liquid-liquid transition in a molecular model of water.

    PubMed

    Palmer, Jeremy C; Martelli, Fausto; Liu, Yang; Car, Roberto; Panagiotopoulos, Athanassios Z; Debenedetti, Pablo G

    2014-06-19

    Liquid water's isothermal compressibility and isobaric heat capacity, and the magnitude of its thermal expansion coefficient, increase sharply on cooling below the equilibrium freezing point. Many experimental, theoretical and computational studies have sought to understand the molecular origin and implications of this anomalous behaviour. Of the different theoretical scenarios put forward, one posits the existence of a first-order phase transition that involves two forms of liquid water and terminates at a critical point located at deeply supercooled conditions. Some experimental evidence is consistent with this hypothesis, but no definitive proof of a liquid-liquid transition in water has been obtained to date: rapid ice crystallization has so far prevented decisive measurements on deeply supercooled water, although this challenge has been overcome recently. Computer simulations are therefore crucial for exploring water's structure and behaviour in this regime, and have shown that some water models exhibit liquid-liquid transitions and others do not. However, recent work has argued that the liquid-liquid transition has been mistakenly interpreted, and is in fact a liquid-crystal transition in all atomistic models of water. Here we show, by studying the liquid-liquid transition in the ST2 model of water with the use of six advanced sampling methods to compute the free-energy surface, that two metastable liquid phases and a stable crystal phase exist at the same deeply supercooled thermodynamic condition, and that the transition between the two liquids satisfies the thermodynamic criteria of a first-order transition. We follow the rearrangement of water's coordination shell and topological ring structure along a thermodynamically reversible path from the low-density liquid to cubic ice. We also show that the system fluctuates freely between the two liquid phases rather than crystallizing. These findings provide unambiguous evidence for a liquid-liquid transition in the ST2 model of water, and point to the separation of time scales between crystallization and relaxation as being crucial for enabling it. PMID:24943954

  6. Metastable liquid-liquid transition in a molecular model of water

    NASA Astrophysics Data System (ADS)

    Palmer, Jeremy C.; Martelli, Fausto; Liu, Yang; Car, Roberto; Panagiotopoulos, Athanassios Z.; Debenedetti, Pablo G.

    2014-06-01

    Liquid water's isothermal compressibility and isobaric heat capacity, and the magnitude of its thermal expansion coefficient, increase sharply on cooling below the equilibrium freezing point. Many experimental, theoretical and computational studies have sought to understand the molecular origin and implications of this anomalous behaviour. Of the different theoretical scenarios put forward, one posits the existence of a first-order phase transition that involves two forms of liquid water and terminates at a critical point located at deeply supercooled conditions. Some experimental evidence is consistent with this hypothesis, but no definitive proof of a liquid-liquid transition in water has been obtained to date: rapid ice crystallization has so far prevented decisive measurements on deeply supercooled water, although this challenge has been overcome recently. Computer simulations are therefore crucial for exploring water's structure and behaviour in this regime, and have shown that some water models exhibit liquid-liquid transitions and others do not. However, recent work has argued that the liquid-liquid transition has been mistakenly interpreted, and is in fact a liquid-crystal transition in all atomistic models of water. Here we show, by studying the liquid-liquid transition in the ST2 model of water with the use of six advanced sampling methods to compute the free-energy surface, that two metastable liquid phases and a stable crystal phase exist at the same deeply supercooled thermodynamic condition, and that the transition between the two liquids satisfies the thermodynamic criteria of a first-order transition. We follow the rearrangement of water's coordination shell and topological ring structure along a thermodynamically reversible path from the low-density liquid to cubic ice. We also show that the system fluctuates freely between the two liquid phases rather than crystallizing. These findings provide unambiguous evidence for a liquid-liquid transition in the ST2 model of water, and point to the separation of time scales between crystallization and relaxation as being crucial for enabling it.

  7. Liquid-liquid equilibrium of cholinium-derived bistriflimide ionic liquids with water and octanol.

    PubMed

    Costa, Anabela J L; Soromenho, Mário R C; Shimizu, Karina; Marrucho, Isabel M; Esperança, José M S S; Canongia Lopes, J N; Rebelo, Luís Paulo N

    2012-08-01

    The liquid-liquid equilibria of mixtures of cholinum-based ionic liquids (N-alkyl-N,N-dimethylhydroxyethylammonium bis(trifluoromethane)sulfonylimide, [N(11n2OH)][Ntf(2)], n = 1, 2, 3, 4, and 5) plus water or 1-octanol were investigated at atmospheric pressure over the entire composition range. The experiments were conducted between 265 and 385 K using the cloud-point method. The systems exhibit phase diagrams consistent with the existence of upper critical solution temperatures. The solubility of [N(1 1 n 2OH)][Ntf(2)] in water is lower for cations with longer alkyl side chains (larger n values). The corresponding trend in the octanol mixtures is reversed. The ([N(1 1 1 2OH)][Ntf(2)] + water + octanol) ternary system shows triple liquid-liquid immiscibility at room temperature and atmospheric pressure. A combined analytic/synthetic method was used to estimate the corresponding phase diagram under those conditions. Auxiliary molecular dynamics simulation data were used to interpret the experimental results at a molecular level. PMID:22770438

  8. Liquid water sill emplacement on Europa?

    NASA Astrophysics Data System (ADS)

    Craft, K.; Patterson, G. W.; Lowell, R. P.

    2013-12-01

    Recent work has suggested that lithospheric flexure and flanking fractures observed along some ridges on Europa are best explained by the initial presence of a shallow liquid water sill. The emplacement of a sill suggests certain conditions existed that were favorable to water flow from the ocean to the subsurface, stresses that allowed horizontal fracturing for sill emplacement, and liquid water replenishment to enable a sill lifetime of ~ 1000s of years. Here, we investigate whether these conditions could occur and result in sill formation. Previous models of the stresses resulting from ice shell thickening on Europa indicated that fractures can initiate within the shell and propagate both upward toward the surface and downward to the ice-ocean interface. For an ~10 km thick ice shell, we determined that flow velocities for ocean water driven up a vertical fracture by the release of lithostatic pressures are adequate for reaching the subsurface before freezing occurs (LPSC #3033). We propose the next step for sill emplacement could occur through horizontal fracturing. Nominally, the stress field in a material under lithostatic load is conducive to vertical crack propagation. However, factors exist that can cause the stress field to change and propagate cracks horizontally. Seismically imaged terrestrial sills beneath mid-ocean ridges often occur in areas with extensive cracking and/or faulting, suggesting crack interactions may play a key role. Through application of a finite element program, we modeled four stress changing mechanisms and the resulting fracture propagation in a 10 km thick ice shell on Europa: (1) mechanical layering, (2) shallow cracks to the surface, (3) deep cracks from the ocean-ice interface and (4) shallow and deep cracks combined. Results determined that all mechanisms cause some turn in propagation direction, with Model 4 (both shallow and deep cracks) enabling the greatest turn to ~ horizontal. The horizontal extent of the fracture propagation, however, only reaches a width of ~ 100s meters, whereas a sill of ~ 4 km width is necessary for formation of the flanking fractures at their observed locations on the ridges. Future work will explore the effect of crack spacing on fracture propagation and will study mechanical layering and lateral stress gradients in greater detail in an effort to enable wider sill emplacement. Assessment of the sill lifetime finds that a 10 - 100 m thick sill will convect and transfer its heat away over ~ hours to a few days, respectively. According to recent work, a liquid sill would need to exist for 1000s of years to enable the lithosphere flexure. One possible mechanism to extend the sill lifetime could involve liquid water replenishment from the ocean driven by brine migration, although the lifetime may still prove challenging to achieve. Overall, our analyses suggest sill emplacement may be possible by liquid ocean water flow up an open vertical fracture to the subsurface and fracture propagation turned horizontal by stress field change factors such as shallow and deep cracks. However, sill width and lifetime must both be extended to enable flexure and flanking fracture formation.

  9. Liquid-liquid transition in ST2 water

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Palmer, Jeremy C.; Panagiotopoulos, Athanassios Z.; Debenedetti, Pablo G.

    2012-12-01

    We use the weighted histogram analysis method [S. Kumar, D. Bouzida, R. H. Swendsen, P. A. Kollman, and J. M. Rosenberg, J. Comput. Chem. 13, 1011 (1992), 10.1002/jcc.540130812] to calculate the free energy surface of the ST2 model of water as a function of density and bond-orientational order. We perform our calculations at deeply supercooled conditions (T = 228.6 K, P = 2.2 kbar; T = 235 K, P = 2.2 kbar) and focus our attention on the region of bond-orientational order that is relevant to disordered phases. We find a first-order transition between a low-density liquid (LDL, ? ? 0.9 g/cc) and a high-density liquid (HDL, ? ? 1.15 g/cc), confirming our earlier sampling of the free energy surface of this model as a function of density [Y. Liu, A. Z. Panagiotopoulos, and P. G. Debenedetti, J. Chem. Phys. 131, 104508 (2009), 10.1063/1.3229892]. We demonstrate the disappearance of the LDL basin at high pressure and of the HDL basin at low pressure, in agreement with independent simulations of the system's equation of state. Consistency between directly computed and reweighted free energies, as well as between free energy surfaces computed using different thermodynamic starting conditions, confirms proper equilibrium sampling. Diffusion and structural relaxation calculations demonstrate that equilibration of the LDL phase, which exhibits slow dynamics, is attained in the course of the simulations. Repeated flipping between the LDL and HDL phases in the course of long molecular dynamics runs provides further evidence of a phase transition. We use the Ewald summation with vacuum boundary conditions to calculate long-ranged Coulombic interactions and show that conducting boundary conditions lead to unphysical behavior at low temperatures.

  10. Liquid-liquid transition in ST2 water.

    PubMed

    Liu, Yang; Palmer, Jeremy C; Panagiotopoulos, Athanassios Z; Debenedetti, Pablo G

    2012-12-01

    We use the weighted histogram analysis method [S. Kumar, D. Bouzida, R. H. Swendsen, P. A. Kollman, and J. M. Rosenberg, J. Comput. Chem. 13, 1011 (1992)] to calculate the free energy surface of the ST2 model of water as a function of density and bond-orientational order. We perform our calculations at deeply supercooled conditions (T = 228.6 K, P = 2.2 kbar; T = 235 K, P = 2.2 kbar) and focus our attention on the region of bond-orientational order that is relevant to disordered phases. We find a first-order transition between a low-density liquid (LDL, ? ? 0.9 g/cc) and a high-density liquid (HDL, ? ? 1.15 g/cc), confirming our earlier sampling of the free energy surface of this model as a function of density [Y. Liu, A. Z. Panagiotopoulos, and P. G. Debenedetti, J. Chem. Phys. 131, 104508 (2009)]. We demonstrate the disappearance of the LDL basin at high pressure and of the HDL basin at low pressure, in agreement with independent simulations of the system's equation of state. Consistency between directly computed and reweighted free energies, as well as between free energy surfaces computed using different thermodynamic starting conditions, confirms proper equilibrium sampling. Diffusion and structural relaxation calculations demonstrate that equilibration of the LDL phase, which exhibits slow dynamics, is attained in the course of the simulations. Repeated flipping between the LDL and HDL phases in the course of long molecular dynamics runs provides further evidence of a phase transition. We use the Ewald summation with vacuum boundary conditions to calculate long-ranged Coulombic interactions and show that conducting boundary conditions lead to unphysical behavior at low temperatures. PMID:23231249

  11. DERIVING PROGNOSTIC EQUATIONS FOR CLOUD FRACTION AND LIQUID WATER CONTENT

    E-print Network

    DERIVING PROGNOSTIC EQUATIONS FOR CLOUD FRACTION AND LIQUID WATER CONTENT Vincent E. Larson1 1-negative everywhere and is normalized. Gregory et al. (2002), Wilson and Gregory (2003), and Bushell et al. (2003 that accounts for how liquid water varies with both total water content and temperature. The variable s has

  12. Cryovolcanism and the Recent Flow of Liquid Water on Mars

    Microsoft Academic Search

    Eric J. Gaidos

    2001-01-01

    The surface of Mars is too cold and dry to permit stable liquid water, yet fresh, apparently water-carved gullies and seepage features have been identified in high-resolution imaging of canyon and crater walls by the Mars Global Surveyor spacecraft. Here, a model of nonequilibrium hydrological activity and liquid water cryovolcanism explains the paradoxical appearance and observed properties of these landforms:

  13. Liquid-liquid and liquid-solid equilibria of systems containing water and selected chlorophenols

    SciTech Connect

    Jaoui, M.; Luszczyk, M.; Rogalski, M.

    1999-12-01

    Chlorinated phenols are present in effluents of oil refinery, coal mining, plastic, leather, paint, and pharmaceutical industrial plants. The solubilities of phenol, 4-chlorophenol, 2,4-dichlorophenol, 2,4,6-trichlorophenol, and pentachlorophenol in water were determined in the temperature range between 270 K and 423 K. Dynamic thermal analysis and a visual static method were used to establish the phase diagrams. Results obtained over a wide temperature and concentration range were used to model the liquid-liquid coexistence curve of the systems studied.

  14. Reply to "Comment on 'Spontaneous liquid-liquid phase separation of water'?".

    PubMed

    Yagasaki, Takuma; Matsumoto, Masakazu; Tanaka, Hideki

    2015-01-01

    Two different scenarios have been proposed on the phase separation occurring in the deeply supercooled liquid water. We discuss what we can derive from our simulation results for the two scenarios and propose a way for future investigation. We also demonstrate that the phase separation in the supercooled liquid water looks like the separation of liquid water and vapor just below the conventional critical point. PMID:25679745

  15. Preparation of glycine polymorphs crystallized in water and physicochemical characterizations

    NASA Astrophysics Data System (ADS)

    Rabesiaka, Mihasina; Sghaier, Mehrez; Fraisse, Bernard; Porte, Catherine; Havet, Jean-Louis; Dichi, Emma

    2010-05-01

    This study shows that it is possible to obtain pure ?-glycine or a mixture of glycine polymorphs (? and ?) in aqueous solution, depending on the mode of preparation, either continuous or semi-continuous. The differences between the two samples of glycine in solid state and in aqueous solution have been studied, using the following techniques: X-ray analysis, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), thermal microscopy, calorimetric analysis, thermally stimulated current (TSC) analysis and electrochemical impedance analysis. These analyses show that the presence of ?-glycine significantly modifies the physico-chemical properties of these two samples.

  16. Evidence for liquid water during the high-density to low-density amorphous ice transition

    PubMed Central

    Kim, Chae Un; Barstow, Buz; Tate, Mark W.; Gruner, Sol M.

    2009-01-01

    Polymorphism of water has been extensively studied, but controversy still exists over the phase transition between high-density amorphous (HDA) and low-density amorphous (LDA) ice. We report the phase behavior of HDA ice inside high-pressure cryocooled protein crystals. Using X-ray diffraction, we demonstrate that the intermediate states in the temperature range from 80 to 170 K can be reconstructed as a linear combination of HDA and LDA ice, suggesting a first-order transition. We found evidence for a liquid state of water during the ice transition based on the protein crystallographic data. These observations open the possibility that the HDA ice induced by high-pressure cryocooling is a genuine glassy form of high-density liquid. PMID:19258453

  17. Routine Use of PCR-Restriction Fragment Length Polymorphism Analysis for Identification of Mycobacteria Growing in Liquid Media

    Microsoft Academic Search

    THERESA B. TAYLOR; CANDY PATTERSON; YVONNE HALE; ANDWILLIAM W. SAFRANEK

    1997-01-01

    A PCR-restriction fragment length polymorphism (PCR-RFLP) procedure capable of rapidly identifying 28 species of clinically encountered mycobacteria was evaluated for use in the routine identification of acid-fast isolates growing in BACTEC 12B and 13A liquid media. PCR-RFLP identified 100 of 103 acid-fast isolates recovered from 610 patient specimens submitted for culture during the study. The three isolates unidentifiable by PCR-RFLP

  18. Aircraft Measurements of Cloud Liquid Water Content using the Forward

    E-print Network

    Delene, David J.

    Citation Flight 4 Hz averaged FSSP and King Probe cloud liquid water content data. #12;4 Hz averaged FSSP and King Probe cloud liquid water content data. September 24, 2004 Citation Flight #12;How well do) On the Right Wing of the Citation Research Aircraft #12;The beam splitter divides the scattered light onto two

  19. The physics of liquid water Bernard Cabane1

    E-print Network

    Paris-Sud XI, Université de

    are found in other fluids, but the combination of all these anomalies makes liquid water unique among all words : Water, cohesion, H-bond, hydrogen bond, dipole moment, dielectric constant, structure #12 that traces of water were found on Mars. Water is also one of the essential constituent of comets: it probably

  20. On the polymorphism of a sapogenin monohydrate induced by different rotations of water molecules.

    PubMed

    Fábián; Argay; Kálmán

    1999-10-01

    The structure of 1beta,3beta,11alpha-trihydroxyspirosta-5,25(27)-diene (C(27)H(40)O(5); a steroidal sapogenin) isolated from Helleborus serbicus Adam 1906 (Ranunculaceae) and crystallized from absolute ethanol as a monohydrate (melting point 519-522 K) had been characterized by two symmetry-independent binary (steroid-water) layers, cross-linked by hydrogen bonds [Kálmán et al. (1985). Acta Cryst. C41, 1645-1647]. Recently, a novel monohydrate was crystallized again from absolute ethanol (source: Helleborus multifidus subspecies serbicus) with a somewhat higher melting point of 525-526 K. X-ray analysis of these crystals [Argay et al. (1998). Acta Chim. Hung. 135, 449-456] revealed a novel polymorph (hereinafter denoted polymorph B), which is also built up by two binary layers of C(27)H(40)O(5) and H(2)O, but in which the relative position of these layers differs from that found in the first modification (polymorph A). Comparing the two polymorphs, layers of one type are found to be similar, displaying identical hydrogen bonding, whereas layers of the second type differ with respect to the orientations adopted by the water molecules; these orientations also differ from those in the layers of the first type. Consequently, by these water rotations, hydrogen bonds, at least partly, are reversed. This leads to two different close packings: in form A four consecutive layers are cross-linked by two homomolecular (hydroxyl.hydroxyl and water.water) hydrogen-bond pairs, while in B there are only heteromolecular hydroxyl.water bonds. These hydrogen-bond dissimilarities together with the differences in the weak CH.X etc. interactions explain the greater stability of the higher melting-point form B. PMID:10927418

  1. Recent gullies on Mars and the source of liquid water

    Microsoft Academic Search

    Michael T. Mellon; Roger J. Phillips

    2001-01-01

    Geologic features resembling terrestrial water-carved gullies imply that liquid water has flowed recently on the surface of Mars and challenge our views of the present-day low-temperature environment. We evaluate two possible mechanisms for the formation of liquid water under environmental conditions that we expect to have existed on Mars in its recent past. First, we examine the stability of ground

  2. Evidence for Recent Liquid Water on Mars

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This image, acquired by the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) in May 2000 shows numerous examples of martian gullies that all start--or head--in a specific layer roughly a hundred meters beneath the surface of Mars. These features are located on the south-facing wall of a trough in the Gorgonum Chaos region, an area found to have many examples of gullies proposed to have formed by seepage and runoff of liquid water in recent martian times. The layer from which the gullies emanate has recessed backward to form an overhang beneath a harder layer of rock. The larger gullies have formed an alcove--an area above the overhang from which debris has collapsed to leave a dark-toned scar. Below the layer of seepage is found a dark, narrow channel that runs down the slope to an apron of debris. The small, bright, parallel features at the base of the cliff at the center-right of the picture is a series of large windblown ripples. Although the dark tone of the alcoves and channels in this image is not likely to be the result of wet ground (the contrast in this image has been enhanced), it does suggest that water has seeped out of the ground and moved down the slope quite recently. Sharp contrasts between dark and light areas are hard to maintain on Mars for very long periods of time because dust tends to coat surfaces and reduce brightness differences. To keep dust from settling on a surface, it has to have undergone some process of erosion (wind, landslides, water runoff) relatively recently. There is no way to know how recent this activity was, but educated guesses center between a few to tens of years, and it is entirely possible that the area shown in this image has water seeping out of the ground today. Centered near 37.9S, 170.2W, sunlight illuminates the MOC image from the upper left, north is toward the upper right. The context view above is from the Viking 1 orbiter and was acquired in 1977. The Viking picture is illuminated from the upper right; north is up. The small white box in the context frame shows the location of the high resolution MOC view.

  3. Searching for springtime zonal liquid interfacial water on Mars

    NASA Astrophysics Data System (ADS)

    Kereszturi, Akos; Appéré, Thomas

    2014-08-01

    We analyzed the spatial and temporal characteristics of the surface temperature at the northern water ice annulus on Mars that is left behind the receding seasonal carbon dioxide cap in springtime. Using OMEGA hyperspectral images we show that water ice without carbon dioxide ice coverage lasts for 10-30 days between 55° and 70°N. The longest water ice coverage without CO2 ice is observed between 40-55°N and 300-330°E and lasts 80-110 days in ideal case. Using TES temperature data, we show that thin interfacial liquid water may be present at the water ice annulus. Higher spatial resolution THEMIS temperature data shows that the above mentioned finding is relevant to a spatial scale of 100 m. Although the exact near surface water vapor concentration is not known, beside the average 10 pr-?m we used two elevated values and corresponding threshold temperatures for interfacial liquid water formation: 190 and 199 K beside the average 180 K. While the area of interfacial liquid water is substantially smaller in the case of higher threshold temperature values, even for 199 K terrains exist at THEMIS and OMEGA scale of resolution where such thin interfacial liquid water could be present on the surface. Summarizing: good chance exists for the presence of liquid interfacial water in the warmest part of the day on at the northern hemisphere of Mars at extended areas - although firm evidence requires better targeted future observations.

  4. VAPOR + LIQUID EQUILIBRIUM OF WATER, CARBON DIOXIDE, AND THE BINARY SYSTEM WATER + CARBON DIOXIDE FROM

    E-print Network

    VAPOR + LIQUID EQUILIBRIUM OF WATER, CARBON DIOXIDE, AND THE BINARY SYSTEM WATER + CARBON DIOXIDE the vapor-liquid equilibrium of water (between 323 and 573 K), carbon dioxide (between 230 and 290 K) and their binary mixtures (between 348 and 393 K). The properties of supercritical carbon dioxide were determined

  5. Liquid-liquid transition in supercooled water suggested by microsecond simulations.

    PubMed

    Li, Yaping; Li, Jicun; Wang, Feng

    2013-07-23

    The putative liquid-liquid phase transition in supercooled water has been used to explain many anomalous behaviors of water. However, no direct experimental verification of such a phase transition has been accomplished, and theoretical studies from different simulations contradict each other. We investigated the putative liquid-liquid phase transition using the Water potential from Adaptive Force Matching for Ice and Liquid (WAIL). The simulation reveals a first-order phase transition in the supercooled regime with the critical point at ~207 K and 50 MPa. Normal water is high-density liquid (HDL). Low-density liquid (LDL) emerges at lower temperatures. The LDL phase has a density only slightly larger than that of the ice-Ih and shows more long-range order than HDL. However, the transformation from LDL to HDL is spontaneous across the first-order phase transition line, suggesting the LDL configuration is not poorly formed nanocrystalline ice. It has been demonstrated in the past that the WAIL potential provides reliable predictions of water properties such as melting temperature and temperature of maximum density. Compared with other simple water potentials, WAIL is not biased by fitting to experimental properties, and simulation with this potential reflects the prediction of a high-quality first-principle potential energy surface. PMID:23836647

  6. Liquid chromatography–electrospray ionization mass spectrometry for simultaneous detection of mtDNA length and nucleotide polymorphisms

    Microsoft Academic Search

    Herbert Oberacher; Harald Niederstätter; Walther Parson

    2007-01-01

    We demonstrate the applicability of ion-pair reversed-phase high-performance liquid chromatography—electrospray ionization\\u000a time-of-flight mass spectrometry (ICEMS) for the simultaneous characterization of length and nucleotide polymorphisms. Two\\u000a sections within the first (HVS-I) and second (HVS-II) hypervariable segments of the mitochondrial (mt)DNA control region were\\u000a selected as targets, both containing poly-cytosine (C) tracts, which display length heteroplasmy at a substantial frequency in the

  7. Adsorbed water and thin liquid films on Mars

    NASA Astrophysics Data System (ADS)

    Boxe, C. S.; Hand, K. P.; Nealson, K. H.; Yung, Y. L.; Yen, A. S.; Saiz-Lopez, A.

    2012-07-01

    At present, bulk liquid water on the surface and near-subsurface of Mars does not exist due to the scarcity of condensed- and gas-phase water, pressure and temperature constraints. Given that the nuclei of soil and ice, that is, the soil solid and ice lattice, respectively, are coated with adsorbed and/or thin liquid films of water well below 273 K and the availability of water limits biological activity, we quantify lower and upper limits for the thickness of such adsorbed/water films on the surface of the Martian regolith and for subsurface ice. These limits were calculated based on experimental and theoretical data for pure water ice and water ice containing impurities, where water ice containing impurities exhibit thin liquid film enhancements, ranging from 3 to 90. Close to the cold limit of water stability (i.e. 273 K), thin liquid film thicknesses at the surface of the Martian regolith is 0.06 nm (pure water ice) and ranges from 0.2 to 5 nm (water ice with impurities). An adsorbed water layer of 0.06 nm implies a dessicated surface as the thickness of one monolayer of water is 0.3 nm but represents 0.001-0.02% of the Martian atmospheric water vapour inventory. Taking into account the specific surface area (SSA) of surface-soil (i.e. top 1 mm of regolith and 0.06 nm adsorbed water layer), shows Martian surface-soil may contain interfacial water that represents 6-66% of the upper- and lower-limit atmospheric water vapour inventory and almost four times and 33%, the lower- and upper-limit Martian atmospheric water vapour inventory. Similarly, taking the SSA of Martian soil, the top 1 mm or regolith at 5 nm thin liquid water thickness, yields 1.10×1013 and 6.50×1013 litres of waters, respectively, 55-325 times larger than Mars' atmospheric water vapour inventory. Film thicknesses of 0.2 and 5 nm represent 2.3×104-1.5×106 litres of water, which is 6.0×10-7-4.0×10-4%, respectively, of a 10 pr ?m water vapour column, and 3.0×10-6-4.0×10-4% and 6.0×10-6-8.0×10-4%, respectively, of the Martian atmospheric water vapour inventory. Thin liquid film thicknesses on/in subsurface ice were investigated via two scenarios: (i) under the idealistic case where it is assumed that the diurnal thermal wave is equal to the temperature of ice tens of centimetres below the surface, allowing for such ice to experience temperatures close to 273 K and (ii) under the, likely, realistic scenario where the diurnal thermal wave allows for the maximum subsurface ice temperature of 235 K at 1 m depth between 30°N and 30°S. Scenario 1 yields thin liquid film thicknesses ranging from 11 to 90 nm; these amounts represent 4×106-3.0×107 litres of water. For pure water ice, Scenario 2 reveals that the thickness of thin liquid films contained on/within Martian subsurface is less than 1.2 nm, several molecular layers thick. Conversely, via the effect of impurities at 235 K allows for a thin liquid film thickness on/within subsurface ice of 0.5 nm, corresponding to 6.0×104 litres of water. The existence of thin films on Mars is supported by data from the Mars Exploration Rovers (MERs) Spirit and Opportunity's Alpha Proton X-ray Spectrometer instrumentation, which have detected increased levels of bromine beneath the immediate surface, suggestive of the mobilization of soluble salts by thin films of liquid water towards local cold traps. These findings show that biological activity on the Martian surface and subsurface is not limited by nanometre dimensions of available water.

  8. Spectroscopic investigations of hydrogen bond dynamics in liquid water

    E-print Network

    Fecko, Christopher J., 1975-

    2004-01-01

    Many of the remarkable physical and chemical properties of liquid water are due to the strong influence hydrogen bonds have on its microscopic dynamics. However, because of the fast timescales involved, there are relatively ...

  9. Crystal polymorphism of hexylammonium chloride and structural properties of its mixtures with water.

    PubMed

    Migliorati, Valentina; Ballirano, Paolo; Gontrani, Lorenzo; Caminiti, Ruggero

    2012-02-23

    The thermal stability of hexylammonium chloride (HeAC) has been investigated in situ real time by high-temperature X-ray powder diffraction. A phase transition from a low-temperature (LT) tetragonal to a high-temperature (HT) cubic polymorph has been detected at 473 K. A first sharp diffraction peak (FSDP) starts to grow at the same temperature and disappears at 493 K, just before melting starts to occur. The dependence of cell parameters from temperature has been quantified for the LT polymorph and shown to be very anisotropic. In particular, the tetragonal a parameter expands, while the c parameter contracts, and as a net result, the volume increases. The HT polymorph shows features reminiscent of that of plastic phases of molecular crystals and is characterized by a less efficient packing as compared to the LT polymorph as indicated by a volume expansion of ca. 11%. Moreover, the structural properties of HeAC/water mixtures, up to very high dilution, have been investigated by combining MD simulations and X-ray diffraction experiments. By using a Cl-water Lennard-Jones parameter previously refined for a similar system, a very good agreement between the theoretical and experimental diffraction patterns was obtained for all the studied systems. The Cl(-) ions in the mixtures were found to form both a first and second shell of water molecules. Moreover, a complex structural behavior has been highlighted, in which a strong interaction between cations and anions survives also in conditions of very high dilution. As a consequence, cations and anions do not always possess a completely closed hydration shell of their own, but rather solvent-shared ion pairs are formed to some extent in all the investigated mixtures. PMID:22272664

  10. Vapor-liquid equilibrium of amine-water systems 

    E-print Network

    Chun, Kil Whan

    1966-01-01

    VAPOR-LIQUID EQUILIBRIUM OF AMINE-WATER SYSTEMS A Thesis By KIL WHAN CHUN Submitted to the Graduate College of the Texas AS, M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE January 1966 Major... Subject: Chemical Engineering VAPOR-LIQUID EQUILIBRIUM OF AMINE-WATER SYSTEMS A Thesis By KIL WHAN CHUN Approved as to style and content by: C airman of Committee) ead of D partment) (V ember) (Member ) (M ember) January 1966 ACKNOWLEDGMENTS...

  11. Determination of Estrogens in Water Samples by Ionic Liquid-Based Dispersive Liquid-Liquid Microextraction Combined with High Performance Liquid Chromatography

    Microsoft Academic Search

    Cui-Qin Wu; Di-Yun Chen; Yin-Si Feng; Hong-Mei Deng; Yong-Hui Liu; Ai-Ju Zhou

    2012-01-01

    Using 1-hexyl-3-methylimidazolium hexafluorophosphate ([C6MIM][PF6]) ionic liquid as extraction solvent, five estrogens including estrone (E1), 17?-estradiol (E2), estriol (E3), 17? -ethynylestradiol (EE2), and diethylstilbestrol (DES) in water samples were determined by dispersive liquid-liquid microextraction (DLLME) followed by high performance liquid chromatography with a photodiode array detector and a fluorescence detector (HPLC-DAD-FLD). The extraction procedure was induced by the formation of cloudy

  12. Ice-Crystal Fallstreaks from Supercooled Liquid Water Parent Clouds

    NASA Technical Reports Server (NTRS)

    Campbell, James R.; O'C. Starr, David; Welton, Ellsworth J.; Spinhirne, James D.; Ferrare, Richard A.

    2003-01-01

    On 31 December 2001, ice-crystal fallstreaks (e.g., cirrus uncinus, or colloquially "Mare's Tails") from supercooled liquid water parent clouds were observed by ground-based lidars pointed vertically from the Atmospheric Radiation Measurement Southern Great Plains (SGP) facility near Lamont, Oklahoma. The incidence of liquid phase cloud with apparent ice-phase precipitation is investigated. Scenarios for mixed-phase particle nucleation, and fallstreak formation and sustenance are discussed. The observations are unique in the context of the historical reverence given to the commonly observed c h s uncinus fallstreak (wholly ice) versus this seemingly contradictory coincidence of liquid water begetting ice-crystal streaks.

  13. Evidence for Recent Liquid Water on Mars

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Gullies eroded into the wall of a meteor impact crater in Noachis Terra. This high resolution view (top left) from the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) shows channels and associated aprons of debris that are interpreted to have formed by groundwater seepage, surface runoff, and debris flow. The lack of small craters superimposed on the channels and apron deposits indicates that these features are geologically young. It is possible that these gullies indicate that liquid water is present within the martian subsurface today. The MOC image was acquired on September 28, 1999. The scene covers an area approximately 3 kilometers (1.9 miles) wide by 6.7 km (4.1 mi) high (note, the aspect ratio is 1.5 to 1.0). Sunlight illuminates this area from the upper left. The image is located near 54.8S, 342.5W. The context image (above) shows the location of the MOC image on the south-facing wall of an impact crater approximately 20 kilometers (12 miles) in diameter. The context picture was obtained by the Viking 1 orbiter in 1980 and is illuminated from the upper left. The large mound on the floor of the crater in the context view is a sand dune field. The Mars Orbiter Camera high resolution images are taken black-and-white (grayscale); the color seen here has been synthesized from the colors of Mars observed by the MOC wide angle cameras and by the Viking Orbiters in the late 1970s. A brief description of how the color was generated: The MOC narrow angle camera only takes grayscale (black and white) pictures. To create the color versions seen here, we have taken much lower resolution red and blue images acquired by the MOC's wide angle cameras, and by the Viking Orbiter cameras in the 1970s, synthesized a green image by averaging red and blue, and created a pallete of colors that represent the range of colors on Mars. We then use a relationship that correlates color and brightness to assign a color to each gray level. This is only a crude approximation of martian color. It is likely Mars would not look like this to a human observer at Mars.

  14. Recommended Liquid-Liquid Equilibrium Data. Part 3. Alkylbenzene-Water Systems

    NASA Astrophysics Data System (ADS)

    Góral, Marian; Wi?niewska-Goc?owska, Barbara; Ma̧czy?ski, Andrzej

    2004-12-01

    The recommended liquid-liquid equilibrium (LLE) data for 21 binary alkylbenzene-water systems have been obtained after critical evaluation of all data (392 data sets) reported in the open literature up to the middle of 2003. An equation for prediction of the alkylbenzene solubilities was developed. The predicted alkylbenzene solubilities were used for calculation of water solubility in the second liquid phase. The LLE calculations were done with the equation of state appended with a chemical term proposed by Góral. The recommended data were presented in the form of individual pages containing tables, all the references, and optionally figures.

  15. Recommended Liquid-Liquid Equilibrium Data. Part 2. Unsaturated Hydrocarbon-Water Systems.

    NASA Astrophysics Data System (ADS)

    Góral, Marian; Ma̧czy?ski, Andrzej; Wi?niewska-Goc?owska, Barbara

    2004-06-01

    The recommended liquid-liquid equilibrium (LLE) data for 24 binary unsaturated hydrocarbon-water systems have been obtained after critical evaluation of all data (80 data sets) reported in the open literature up to the middle of 2003. A new equation was developed for prediction of the unsaturated hydrocarbon solubility. Using the predicted hydrocarbon solubilities the concentration of water in the second liquid phase was calculated. The LLE calculations were performed with the equation of state appended with a chemical term (EoSC). The recommended data were presented in the form of individual pages containing tables, all the references, and optionally figures.

  16. Recommended Liquid-Liquid Equilibrium Data. Part 4. 1-Alkanol-Water Systems

    NASA Astrophysics Data System (ADS)

    Góral, Marian; Wi?niewska-Goc?owska, Barbara; Måczy?ski, Andrzej

    2006-09-01

    The recommended liquid-liquid equilibrium (LLE) data for 19 binary 1-alkanol-water systems have been obtained after critical evaluation of all data (527 data sets) reported in the open literature up to the end of 2004. An equation for prediction of the 1-alkanol solubility was developed. The predicted 1-alkanol solubility was used for calculation of water solubility in the second liquid phase. The LLE calculations were done with the equation of state appended with a chemical term proposed by Góral. The recommended data were presented in the form of individual pages containing tables and all the references.

  17. Behavior of Supercooled Aqueous Solutions Stemming from Hidden Liquid-Liquid Transition in Water

    E-print Network

    John W. Biddle; Vincent Holten; Mikhail A. Anisimov

    2014-08-21

    A popular hypothesis that explains the anomalies of supercooled water is the existence of a metastable liquid-liquid transition hidden below the line of homogeneous nucleation. If this transition exists and if it is terminated by a critical point, the addition of a solute should generate a line of liquid-liquid critical points emanating from the critical point of pure metastable water. We have analyzed thermodynamic consequences of this scenario. In particular, we consider the behavior of two systems, H2O-NaCl and H2O-glycerol. We find the behavior of the heat capacity in supercooled aqueous solutions of NaCl, as reported by Archer and Carter, to be consistent with the presence of the metastable liquid-liquid transition. We suggest an interpretation of the liquid-liquid transition in aqueous solutions of glycerol, recently observed by Murata and Tanaka, elucidating the non-conserved nature of the order parameter, its coupling with density and concentration, and the peculiarity of "spinodal decomposition without phase separation". We also show how the shape of the critical line in a solution controls the difference in concentration of the coexisting liquid phases.

  18. Crystal polymorphism of propylammonium chloride and structural properties of its mixture with water.

    PubMed

    Migliorati, Valentina; Ballirano, Paolo; Gontrani, Lorenzo; Russina, Olga; Caminiti, Ruggero

    2011-10-20

    The thermal behavior of propylammonium chloride (PAC) has been investigated by parallel beam X-ray powder diffraction in the 303-463 K thermal range. A polymorphic transition has been observed at 403 K, whereas the melting process starts at 438 K. The low-temperature (LT) polymorph is tetragonal, P4/n or P4/nmm, and a = 6.2429(2) Å, c = 7.3830(3) Å, and Z = 2. Thermal expansion is isotropic as the N···Cl interactions have components along the three crystallographic axes. At the transition temperature, a high-temperature (HT) polymorph was observed, with candidate space groups P23, Pm3, P432, P43m, and Pm3m and cell parameter a = 11.715(3) Å, consistent with Z = 12. This phase has features reminiscent of those of plastic phases of molecular crystals. The structural properties of a PAC/water mixture at ambient conditions were also studied by using an integrated approach, which combines X-ray diffraction measurements and molecular dynamics simulations carried out with the SPC/E and TIP5P water models. By using a Cl-water Lennard-Jones parameter previously refined for a similar system, a very good agreement between the theoretical and experimental diffraction patterns was obtained, especially in the case of the TIP5P simulation. A complex structural behavior has been highlighted, in which cations and anions do not possess a completely closed hydration shell of their own, but rather "solvent-shared ion pairs" are formed, where one or more water molecules act as a bridge between the chloride and propylammonium ions. PMID:21895008

  19. Ionic Liquid Lubrication Effects on Ceramics in a Water Environment

    Microsoft Academic Search

    B. S. Phillips; J. S. Zabinski

    2004-01-01

    Ionic liquids were studied to determine their effectiveness as boundary lubricant additives for water. The chemical and tribochemical reactions that govern their behavior were probed to understand lubrication mechanisms. Under water lubricated conditions, silicon nitride ceramics are characterized by a running-in period of high friction, during which time the surface is modified causing a dramatic decrease in friction and wear.

  20. Searching for liquid water in Europa by using surface observatories.

    PubMed

    Khurana, Krishan K; Kivelson, Margaret G; Russell, Christopher T

    2002-01-01

    Liquid water, as far as we know, is an indispensable ingredient of life. Therefore, locating reservoirs of liquid water in extraterrestrial bodies is a necessary prerequisite to searching for life. Recent geological and geophysical observations from the Galileo spacecraft, though not unambiguous, hint at the possibility of a subsurface ocean in the Jovian moon Europa. After summarizing present evidence for liquid water in Europa, we show that electromagnetic and seismic observations made from as few as two surface observatories comprising a magnetometer and a seismometer offer the best hope of unambiguous characterization of the three-dimensional structure of the ocean and the deeper interior of this icy moon. The observatories would also help us infer the composition of the icy crust and the ocean water. PMID:12449858

  1. The putative liquid-liquid transition is a liquid-solid transition in atomistic models of water. II

    SciTech Connect

    Limmer, David T.; Chandler, David, E-mail: chandler@berkeley.edu [Department of Chemistry, University of California, Berkeley, California 94720 (United States)

    2013-06-07

    This paper extends our earlier studies of free energy functions of density and crystalline order parameters for models of supercooled water, which allows us to examine the possibility of two distinct metastable liquid phases [D. T. Limmer and D. Chandler, J. Chem. Phys.135, 134503 (2011) and preprint http://arxiv.org/abs/arXiv:1107.0337 (2011)]. Low-temperature reversible free energy surfaces of several different atomistic models are computed: mW water, TIP4P/2005 water, Stillinger-Weber silicon, and ST2 water, the last of these comparing three different treatments of long-ranged forces. In each case, we show that there is one stable or metastable liquid phase, and there is an ice-like crystal phase. The time scales for crystallization in these systems far exceed those of structural relaxation in the supercooled metastable liquid. We show how this wide separation in time scales produces an illusion of a low-temperature liquid-liquid transition. The phenomenon suggesting metastability of two distinct liquid phases is actually coarsening of the ordered ice-like phase, which we elucidate using both analytical theory and computer simulation. For the latter, we describe robust methods for computing reversible free energy surfaces, and we consider effects of electrostatic boundary conditions. We show that sensible alterations of models and boundary conditions produce no qualitative changes in low-temperature phase behaviors of these systems, only marginal changes in equations of state. On the other hand, we show that altering sampling time scales can produce large and qualitative non-equilibrium effects. Recent reports of evidence of a liquid-liquid critical point in computer simulations of supercooled water are considered in this light.

  2. A Mechanism for Recent Production of Liquid Water on Mars

    NASA Technical Reports Server (NTRS)

    Hecht, M. H.; Bridges, N. T.

    2003-01-01

    Though Mars is a cold, dry planet, with respect to the thermal stability of liquid water at low altitudes it is not terribly different from comparably cold places on Earth. In dry air such water would evaporate faster on Mars, at a rate comparable to a 60 C hot spring on Earth, but the heat loss associated with that evaporation would be mitigated by the poor thermal convection in the thin Martian air. Even at higher altitudes where the atmospheric pressure does not reach the triple point of water, liquid water might theoretically exist in a low-vapor pressure form such as wet soil, in a briny solution, or simply under a layer of dust or snow. The theoretical stability of liquid water does not suggest its occurrence, either on Mars or in Antarctica. In fact, global models have suggested that locations capable of providing sufficient heat for melting are, precisely for that reason, too dry for water to be present. However, the temperature of irregular local structures such as trenches or craters can be markedly warmer than those of the uniform surfaces of global models. The work described here suggests a plausible scenario in which seasonal liquid water might be produced locally, in sheltered locations, through a process of condensation, cold-trapping, buffering, and melting. While the amounts produced in the present climate would be small, copious amounts of meltwater may have been produced at other phases of the orbital cycle, as recently as 20,000 years ago.

  3. Behavior of supercooled aqueous solutions stemming from hidden liquid-liquid transition in water.

    PubMed

    Biddle, John W; Holten, Vincent; Anisimov, Mikhail A

    2014-08-21

    A popular hypothesis that explains the anomalies of supercooled water is the existence of a metastable liquid-liquid transition hidden below the line of homogeneous nucleation. If this transition exists and if it is terminated by a critical point, the addition of a solute should generate a line of liquid-liquid critical points emanating from the critical point of pure metastable water. We have analyzed thermodynamic consequences of this scenario. In particular, we consider the behavior of two systems, H2O-NaCl and H2O-glycerol. We find the behavior of the heat capacity in supercooled aqueous solutions of NaCl, as reported by Archer and Carter [J. Phys. Chem. B 104, 8563 (2000)], to be consistent with the presence of the metastable liquid-liquid transition. We elucidate the non-conserved nature of the order parameter (extent of "reaction" between two alternative structures of water) and the consequences of its coupling with conserved properties (density and concentration). We also show how the shape of the critical line in a solution controls the difference in concentration of the coexisting liquid phases. PMID:25149798

  4. Fluctuating selection by water level on gynoecium colour polymorphism in an aquatic plant

    PubMed Central

    Tang, Xiao-Xin; Huang, Shuang-Quan

    2010-01-01

    Background and Aims It has been proposed that variation in pollinator preferences or a fluctuating environment can act to maintain flower colour polymorphism. These two hypotheses were tested in an aquatic monocot Butomus umbellatus (Butomaceae) with a pink or white gynoecium in the field population. Methods Pollinator visitation was compared in experimental arrays of equivalent flowering cymes from both colour morphs. Seed set was compared between inter- and intramorph pollination under different water levels to test the effect of fluctuating environment on seed fertility. Key Results Overall, the major pollinator groups did not discriminate between colour morphs. Compared with the white morph, seed production in the pink morph under intermorph, intramorph and open pollination treatments was significantly higher when the water level was low but not when it was high. Precipitation in July was correlated with yearly seed production in the pink morph but not in the white morph. Conclusions The results indicated that the two colour morphs differed in their tolerance to water level. Our study on this aquatic plant provides additional evidence to support the hypothesis that flower colour polymorphism can be preserved by environmental heterogeneity. PMID:20802049

  5. Experimental evidence for a liquid-liquid crossover in deeply cooled confined water.

    PubMed

    Cupane, Antonio; Fomina, Margarita; Piazza, Irina; Peters, Judith; Schirò, Giorgio

    2014-11-21

    In this work we investigate, by means of elastic neutron scattering, the pressure dependence of mean square displacements (MSD) of hydrogen atoms of deeply cooled water confined in the pores of a three-dimensional disordered SiO2 xerogel; experiments have been performed at 250 and 210 K from atmospheric pressure to 1200 bar. The "pressure anomaly" of supercooled water (i.e., a mean square displacement increase with increasing pressure) is observed in our sample at both temperatures; however, contrary to previous simulation results and to the experimental trend observed in bulk water, the pressure effect is smaller at lower (210 K) than at higher (250 K) temperature. Elastic neutron scattering results are complemented by differential scanning calorimetry data that put in evidence, besides the glass transition at about 170 K, a first-order-like endothermic transition occurring at about 230 K that, in view of the neutron scattering results, can be attributed to a liquid-liquid crossover. Our results give experimental evidence for the presence, in deeply cooled confined water, of a crossover occurring at about 230 K (at ambient pressure) from a liquid phase predominant at 210 K to another liquid phase predominant at 250 K; therefore, they are fully consistent with the liquid-liquid transition hypothesis. PMID:25479506

  6. Solid + liquid phase equilibria in the hydroxylammonium nitrate + water system

    Microsoft Academic Search

    Johanne I. Artman; J. Bevan Ott

    1989-01-01

    The binary solid + liquid phase diagram has been measured for the water + hydroxylammonium nitrate (HAN) system. The phase diagram is a simple eutectic type with the eutectic at 231.5 K (41.7°C) and a mole fraction HAN of 0.281 (wt fraction HAN - 0.676).The enthalpy of fusion of the HAN was determined from the solid + liquid results to

  7. TOPICAL REVIEW: Liquid water and ices: understanding the structure and physical properties

    NASA Astrophysics Data System (ADS)

    Malenkov, George

    2009-07-01

    A review of the structure and some properties of condensed phases of water is given. Since the discovery of the polymorphism of crystalline ice (beginning of the twentieth century), 15 ice modifications have been found and their structures have been determined. If we do not take into consideration proton ordering or disordering, nine distinct crystalline ice modifications in which water molecules retain their individuality are known. In the tenth, ice X, there are no H2O molecules. It contains ions (or atoms) of oxygen and hydrogen. The structure of all these modifications is described and information about their fields of stability and about the transition between them is given. It is emphasized that there are ice modifications which are metastable at any temperature and pressure (ices Ic, IV and XII), and many modifications can exist as metastable phases beyond their fields of stability. The ability of water to exist in metastable states is one of its remarkable properties. Several amorphous ice modifications (all of them are metastable) are known. Brief information about their properties and transitions between them is given. At the end of the 1960s the conception of the water structure as a three-dimensional hydrogen-bonded network was conclusively formed. Discovery of the polymorphism of amorphous ices awakened interest in the heterogeneity of the water network. Structural and dynamical heterogeneity of liquid water is discussed in detail. Computer simulation showed that the diffusion coefficient of water molecules in dense regions of the network is lower than in the loose regions, while an increase of density of the entire network gives rise to an increase of diffusion coefficient. This finding contradicts the conceptions associated with the primitive two-state models and can be explained from pressure dependences of melting temperature and of homogeneous nucleation temperature. A brief discussion of the picture of molecular motions in liquid water based on experiment and on computer simulation is given. This picture is still very incomplete. The most fascinating idea that was put forward during the last 20 years was the second critical point conjecture. It is still not clear whether this conjecture corresponds to reality.

  8. Standard model for liquid water withstands x-ray probe

    E-print Network

    David Prendergast; Giulia Galli

    2005-12-17

    We present a series of ab-initio calculations of spectroscopic properties of liquid water at ambient conditions. Our results show that all available theoretical and experimental evidence is consistent with the standard model of the liquid as comprising molecules with approximately four hydrogen bonds. In particular, this model cannot be discounted on the basis of comparisons between measured and computed x-ray absorption spectra (XAS), as recently suggested. Our simulations of ice XAS including the lowest lying excitonic state are in excellent agreement with experiment and those of the TIP4P model of water are in reasonable agreement with recent measurements. Hence we propose that the standard, quasi-tetrahedral model of water, although approximate, represents a reasonably accurate description of the local structure of the liquid.

  9. Bond orientational order in liquids: Towards a unified description of water-like anomalies, liquid-liquid transition, glass transition, and crystallization: Bond orientational order in liquids.

    PubMed

    Tanaka, Hajime

    2012-10-01

    There are at least three fundamental states of matter, depending upon temperature and pressure: gas, liquid, and solid (crystal). These states are separated by first-order phase transitions between them. In both gas and liquid phases a complete translational and rotational symmetry exist, whereas in a solid phase both symmetries are broken. In intermediate phases between liquid and solid, which include liquid crystal and plastic crystal phases, only one of the two symmetries is preserved. Among the fundamental states of matter, the liquid state is the most poorly understood. We argue that it is crucial for a better understanding of liquids to recognize that a liquid generally has the tendency to have a local structural order and its presence is intrinsic and universal to any liquid. Such structural ordering is a consequence of many-body correlations, more specifically, bond angle correlations, which we believe are crucial for the description of the liquid state. We show that this physical picture may naturally explain difficult unsolved problems associated with the liquid state, such as anomalies of water-type liquids (water, Si, Ge, ...), liquid-liquid transition, liquid-glass transition, crystallization and quasicrystal formation, in a unified manner. In other words, we need a new order parameter representing a low local free-energy configuration, which is a bond orientational order parameter in many cases, in addition to a density order parameter for the physical description of these phenomena. Here we review our two-order-parameter model of liquid and consider how transient local structural ordering is linked to all of the above-mentioned phenomena. The relationship between these phenomena is also discussed. PMID:23104614

  10. Diffusion-controlled and ``diffusionless'' crystal growth near the glass transition temperature: Relation between liquid dynamics and growth kinetics of seven ROY polymorphs

    NASA Astrophysics Data System (ADS)

    Sun, Ye; Xi, Hanmi; Ediger, M. D.; Richert, Ranko; Yu, Lian

    2009-08-01

    The liquid dynamics of 5-methyl-2-[(2-nitrophenyl)amino]-3-thiophenecarbonitrile, named ROY for its red, orange, and yellow crystal polymorphs, was characterized by dielectric spectroscopy and differential scanning calorimetry. Four of these polymorphs show fast "diffusionless" crystal growth at low temperatures while three others do not. ROY was found to be a typical fragile organic liquid. Its ? relaxation process has time-temperature superposition symmetry across the viscous range (??=100 s-100 ns) with the width of the relaxation peak characterized by a constant ?KWW of 0.73. No secondary relaxation peak was observed, even with glasses made by fast quenching. For the polymorphs not showing fast crystal growth in the glassy state, the growth rate has a power-law relation with ??, u ???-?, where ? ?0.7. For the polymorphs showing fast crystal growth in the glassy state, the growth is so fast near and below the glass transition temperature Tg that thousands of molecular layers can be added to the crystalline phase during one structural relaxation time of the liquid. In the glassy state, this mode of growth slows slightly over time. This slowdown is not readily explained by the effect of physical aging on the thermodynamic driving force of crystallization, the glass vapor pressure, or the rate of structural relaxation. This study demonstrates that from the same liquid or glass, the growth of some polymorphs is accurately described as being limited by the rate of structural relaxation or bulk diffusion, whereas the growth of other polymorphs is too fast to be under such control.

  11. Ternary liquid–liquid equilibrium: Nitric acid–water–anisole\\/4-methyl anisole

    Microsoft Academic Search

    Chhayarani Jana; Parthasarathi Ray; Parameswar De

    Nitration of anisole and 4-methyl anisole with aqueous nitric acid involves liquid–liquid two phase (organic phase and aqueous acid phase) mixtures of nitric acid–water–anisole\\/4-methyl anisole. Nitric acid is not dissociated completely into nitronium ion, which is the nitrating agent and knowledge of its concentration in both phases is very important to study nitration reaction. The e-NRTL model modified for incomplete

  12. Order-parameter-aided temperature-accelerated sampling for the exploration of crystal polymorphism and solid-liquid phase transitions

    PubMed Central

    Yu, Tang-Qing; Chen, Pei-Yang; Chen, Ming; Samanta, Amit; Vanden-Eijnden, Eric; Tuckerman, Mark

    2014-01-01

    The problem of predicting polymorphism in atomic and molecular crystals constitutes a significant challenge both experimentally and theoretically. From the theoretical viewpoint, polymorphism prediction falls into the general class of problems characterized by an underlying rough energy landscape, and consequently, free energy based enhanced sampling approaches can be brought to bear on the problem. In this paper, we build on a scheme previously introduced by two of the authors in which the lengths and angles of the supercell are targeted for enhanced sampling via temperature accelerated adiabatic free energy dynamics [T. Q. Yu and M. E. Tuckerman, Phys. Rev. Lett. 107, 015701 (2011)]. Here, that framework is expanded to include general order parameters that distinguish different crystalline arrangements as target collective variables for enhanced sampling. The resulting free energy surface, being of quite high dimension, is nontrivial to reconstruct, and we discuss one particular strategy for performing the free energy analysis. The method is applied to the study of polymorphism in xenon crystals at high pressure and temperature using the Steinhardt order parameters without and with the supercell included in the set of collective variables. The expected fcc and bcc structures are obtained, and when the supercell parameters are included as collective variables, we also find several new structures, including fcc states with hcp stacking faults. We also apply the new method to the solid-liquid phase transition in copper at 1300 K using the same Steinhardt order parameters. Our method is able to melt and refreeze the system repeatedly, and the free energy profile can be obtained with high efficiency. PMID:24907992

  13. Order-parameter-aided temperature-accelerated sampling for the exploration of crystal polymorphism and solid-liquid phase transitions

    SciTech Connect

    Yu, Tang-Qing, E-mail: tangqing.yu@nyu.edu; Vanden-Eijnden, Eric, E-mail: eve2@cims.nyu.edu [Courant Institute of Mathematical Sciences, New York University, New York, New York 10012 (United States); Chen, Pei-Yang; Chen, Ming [Department of Chemistry, New York University, New York, New York 10003 (United States); Samanta, Amit [Program in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey 08544, USA and Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Tuckerman, Mark, E-mail: mark.tuckerman@nyu.edu [Courant Institute of Mathematical Sciences, New York University, New York, New York 10012 (United States); Department of Chemistry, New York University, New York, New York 10003 (United States); NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062 (China)

    2014-06-07

    The problem of predicting polymorphism in atomic and molecular crystals constitutes a significant challenge both experimentally and theoretically. From the theoretical viewpoint, polymorphism prediction falls into the general class of problems characterized by an underlying rough energy landscape, and consequently, free energy based enhanced sampling approaches can be brought to bear on the problem. In this paper, we build on a scheme previously introduced by two of the authors in which the lengths and angles of the supercell are targeted for enhanced sampling via temperature accelerated adiabatic free energy dynamics [T. Q. Yu and M. E. Tuckerman, Phys. Rev. Lett. 107, 015701 (2011)]. Here, that framework is expanded to include general order parameters that distinguish different crystalline arrangements as target collective variables for enhanced sampling. The resulting free energy surface, being of quite high dimension, is nontrivial to reconstruct, and we discuss one particular strategy for performing the free energy analysis. The method is applied to the study of polymorphism in xenon crystals at high pressure and temperature using the Steinhardt order parameters without and with the supercell included in the set of collective variables. The expected fcc and bcc structures are obtained, and when the supercell parameters are included as collective variables, we also find several new structures, including fcc states with hcp stacking faults. We also apply the new method to the solid-liquid phase transition in copper at 1300 K using the same Steinhardt order parameters. Our method is able to melt and refreeze the system repeatedly, and the free energy profile can be obtained with high efficiency.

  14. Breakdown Voltage Scaling in Gas Bubbles Immersed in Liquid Water

    NASA Astrophysics Data System (ADS)

    Gucker, Sarah; Sommers, Bradley; Foster, John

    2013-09-01

    Radicals produced by the interaction of plasma with liquid water have the capacity to rapidly oxidize organic contaminants. This interaction is currently being investigated as a means to purify water. Direct plasma creation in water typically requires very high voltages to achieve breakdown. Igniting plasma in individual gas bubbles in liquid water on the other hand requires much less voltage. Furthermore, the use of an electrode-less plasma initiation in such bubbles is attractive in that it eliminates electrode erosion thereby circumventing the contamination issue. The breakdown physics of isolated bubbles in liquid water is still poorly understood. In this work, we investigate the relationship between applied voltage for breakdown and the associated pd. This is achieved by locating the breakdown voltage over a range of bubble sizes. This approach allows for the generation of a Paschen-type breakdown curve for isolated bubbles. Such a relationship yields insight into breakdown mechanics and even streamer propagation through water. Radicals produced by the interaction of plasma with liquid water have the capacity to rapidly oxidize organic contaminants. This interaction is currently being investigated as a means to purify water. Direct plasma creation in water typically requires very high voltages to achieve breakdown. Igniting plasma in individual gas bubbles in liquid water on the other hand requires much less voltage. Furthermore, the use of an electrode-less plasma initiation in such bubbles is attractive in that it eliminates electrode erosion thereby circumventing the contamination issue. The breakdown physics of isolated bubbles in liquid water is still poorly understood. In this work, we investigate the relationship between applied voltage for breakdown and the associated pd. This is achieved by locating the breakdown voltage over a range of bubble sizes. This approach allows for the generation of a Paschen-type breakdown curve for isolated bubbles. Such a relationship yields insight into breakdown mechanics and even streamer propagation through water. This material is based upon work supported by the National Science Foundation (CBET 1033141) and the National Science Foundation Graduate Student Research Fellowship under Grant No. DGE 0718128.

  15. Model potentials in liquid water ionization by fast electron impact

    NASA Astrophysics Data System (ADS)

    de Sanctis, M. L.; Politis, M.-F.; Vuilleumier, R.; Stia, C. R.; Fojón, O. A.

    2015-01-01

    We study the ionization of water molecules in liquid phase by fast electron impact. We use our previous first-order model within an independent electron approximation that allows the reduction of the multielectronic problem into a monoelectronic one. The initial molecular states of the liquid water are represented in a realistic way through a Wannier orbital formalism. We complete our previous study by taking into account approximately the influence of the passive electrons of the target by means of different model potentials. We compute multiple differential cross sections for the most external orbital 1B1 and compare them with other results.

  16. Solid-liquid critical behavior of water in nanopores.

    PubMed

    Mochizuki, Kenji; Koga, Kenichiro

    2015-07-01

    Nanoconfined liquid water can transform into low-dimensional ices whose crystalline structures are dissimilar to any bulk ices and whose melting point may significantly rise with reducing the pore size, as revealed by computer simulation and confirmed by experiment. One of the intriguing, and as yet unresolved, questions concerns the observation that the liquid water may transform into a low-dimensional ice either via a first-order phase change or without any discontinuity in thermodynamic and dynamic properties, which suggests the existence of solid-liquid critical points in this class of nanoconfined systems. Here we explore the phase behavior of a model of water in carbon nanotubes in the temperature-pressure-diameter space by molecular dynamics simulation and provide unambiguous evidence to support solid-liquid critical phenomena of nanoconfined water. Solid-liquid first-order phase boundaries are determined by tracing spontaneous phase separation at various temperatures. All of the boundaries eventually cease to exist at the critical points and there appear loci of response function maxima, or the Widom lines, extending to the supercritical region. The finite-size scaling analysis of the density distribution supports the presence of both first-order and continuous phase changes between solid and liquid. At around the Widom line, there are microscopic domains of two phases, and continuous solid-liquid phase changes occur in such a way that the domains of one phase grow and those of the other evanesce as the thermodynamic state departs from the Widom line. PMID:26100904

  17. On the Stability of Liquid Water on Present Day Mars

    NASA Technical Reports Server (NTRS)

    Haberle, Robert M.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    The mean annual surface pressure and temperature on present day Mars do not allow for the long term stability of liquid water on the surface. However, theoretical arguments have been advanced that suggest liquid water could form in transient events even though it would not be in equilibrium with the environment. Using a Mars General Circulation Model, we calculate where and for how long the surface pressure and surface temperature meet the minimum requirements for this metastability of liquid water. These requirements are that the pressure and temperature must be above the triple point of water, but below its boiling point. We find that there are five regions on Mars where these requirements are periodically satisfied: in the near equatorial regions of Amazonis, Arabia, and Elysium, and in the Hellas and Argyre impact basins. Whether liquid water ever forms in these regions depends on the availability of ice and heat, and on the evaporation rate. The latter is poorly understood for low pressure CO2 environments, but is likely to be so high that melting occurs rarely, if at all. However, in the relatively recent past, surface pressures may have been higher than they are today perhaps by as much as a factor of 2 or 3. Under these circumstances melting would have been easier to achieve. We plan to undertake laboratory experiments to better understand the potential for melting in low pressure environments.

  18. On the Fluctuations that Order and Frustrate Liquid Water

    NASA Astrophysics Data System (ADS)

    Limmer, David Tyler

    At ambient conditions, water sits close to phase coexistence with its crystal. More so than in many other materials, this fact is manifested in the fluctuations that maintain a large degree of local order in the liquid. These fluctuations and how they result in long-ranged order, or its absence, are emergent features of many interacting molecules. Their study therefore requires using the tools of statistical mechanics for their their systematic understanding. In this dissertation we develop such an understanding. In particular, we focus on collective behavior that emerges in liquid and solid water. At room temperatures, the thermophysical properties of water are quantified and rationalized with simple molecular models. A key feature of these models is the correct characterization of the competition between entropic forces of packing and the energetic preference for tetrahedral order. At cold temperatures, the properties of ice surfaces are studied with statistical field theory. The theory we develop for the long wavelength features of ice interfaces allows us to explain the existence of a premelting layer on the surface of ice and the stability of ice in confinement. In between these extremes, the dynamics of supercooled water are considered. A detailed theory for the early stages of coarsening is developed and used to explain the peculiar observation of a transient second liquid state of water. When coarsening dynamics are arrested, the result is the formation of a glassy states of water. We show that out-of-equilibrium the phase diagram for supercooled water exhibits a rich amount of structure, including a triple point between two glass phases of water and the liquid. At the end, we explore possible technological implications for the interplay between ordering and frustration in studies of water at metal interfaces.

  19. Local Structure Analysis in $Ab$ $Initio$ Liquid Water

    E-print Network

    Santra, Biswajit; Martelli, Fausto; Car, Roberto

    2015-01-01

    Within the framework of density functional theory, the inclusion of exact exchange and non-local van der Waals/dispersion (vdW) interactions is crucial for predicting a microscopic structure of ambient liquid water that quantitatively agrees with experiment. In this work, we have used the local structure index (LSI) order parameter to analyze the local structure in such highly accurate $ab$ $initio$ liquid water. At ambient conditions, the LSI probability distribution, P($I$), was unimodal with most water molecules characterized by more disordered high-density-like local environments. With thermal excitations removed, the resultant bimodal P($I$) in the inherent potential energy surface (IPES) exhibited a 3:1 ratio between high- and low-density-like molecules, with the latter forming small connected clusters amid the predominant population. By considering the spatial correlations and hydrogen bond network topologies $among$ water molecules with the same LSI identities, we demonstrate that the signatures of th...

  20. A quantitative account of quantum effects in liquid water

    Microsoft Academic Search

    Georgios S. Fanourgakis; Gregory K. Schenter; Sotiris S. Xantheas

    2006-01-01

    We report converged quantum statistical mechanical simulations of liquid water with the Thole-type Model (version 2.1), Flexible, polarizable (TTM2.1-F) interaction potential for water. Simulations of total length of 600 ps with a 0.05 fs time step for a periodic unit cell of 256 molecules with up to 32 replicas per atom suggest that the quantum effects contribute 1.01+\\/-0.02 kcal\\/mol to

  1. A quantitative account of quantum effects in liquid water

    Microsoft Academic Search

    G. S. Fanourgakis; G. K. Schenter; S. S. Xantheas

    2006-01-01

    We report converged quantum statistical mechanical simulations of liquid water with the Thole-type Model (version 2.1), Flexible, polarizable (TTM2.1-F) interaction potential for water. Simulations of total length of 600 ps with a 0.05 fs time step for a periodic unit cell of 256 molecules with up to 32 replicas per atom suggest that the quantum effects contribute 1.01±0.02 kcal?mol to

  2. Semi-continuous liquid hot water pretreatment of rye straw

    Microsoft Academic Search

    Thomas Ingram; Tim Rogalinski; Vera Bockemühl; Garabed Antranikian; Gerd Brunner

    2009-01-01

    This article is based upon the findings of our recent publication dealing with the liquid hot water (LHW) hydrolysis of lignocellulosic materials (LCM) in different reactor types [T. Rogalinski, T. Ingram, G. Brunner, Hydrolysis of lignocellulosic biomass in water under elevated temperatures and pressures, J. Supercrit. Fluids (2008), doi:10.1016\\/j.supflu.2008.05.003.]. As an advancement of these results, semi-continuous fixed-bed reactors were constructed

  3. Molecular dynamics of the water liquid-vapor interface

    NASA Technical Reports Server (NTRS)

    Wilson, M. A.; Pohorille, A.; Pratt, L. R.; MacElroy, R. D. (Principal Investigator)

    1987-01-01

    The results of molecular dynamics calculations on the equilibrium interface between liquid water and its vapor at 325 K are presented. For the TIP4P model of water intermolecular pair potentials, the average surface dipole density points from the vapor to the liquid. The most common orientations of water molecules have the C2 nu molecular axis roughly parallel to the interface. The distributions are quite broad and therefore compatible with the intermolecular correlations characteristic of bulk liquid water. All near-neighbor pairs in the outermost interfacial layers are hydrogen bonded according to the common definition adopted here. The orientational preferences of water molecules near a free surface differ from those near rigidly planar walls which can be interpreted in terms of patterns found in hexagonal ice 1. The mean electric field in the interfacial region is parallel to the mean polarization which indicates that attention cannot be limited to dipolar charge distributions in macroscopic descriptions of the electrical properties of this interface. The value of the surface tension obtained is 132 +/- 46 dyn/cm, significantly different from the value for experimental water of 68 dyn/cm at 325 K.

  4. On the Fluctuations that Order and Frustrate Liquid Water

    E-print Network

    Limmer, David

    2013-01-01

    field theory, parameterized as above from bulk properties, to develop a consistent description of liquid-crystala crystal. However, we will show 4.1. EFFECTIVE FIELD THEORYcrystal-like state. For bulk water, the two states 4.1. EFFECTIVE FIELD THEORY

  5. Enzymic saccharification of alfalfa fibre after liquid hot water pretreatment

    Microsoft Academic Search

    Hassan K Sreenath; Richard G Koegel; Ana B Moldes; Thomas W Jeffries; Richard J Straub

    1999-01-01

    Liquid hot water (LHW) at a high temperature has been advocated as a pretreatment for herbaceous and lignocellulosic materials prior to enzymic saccharification. The focus of our research was the suitability of LHW pretreatment of alfalfa (Medicago saliva) fibre in the presence and absence of mild acid for optimum saccharification using enzymes. Enzymic saccharification was optimised in terms of substrate

  6. Long range optical phonons in liquid water

    E-print Network

    Elton, Daniel C

    2015-01-01

    In this work we show that on subpicosecond time scales optical phonon modes can propagate through the H-bond network of water over relatively long distances (2-4 nm). Using molecular dynamics simulation we find propagating optical phonons in the librational and OH stretching bands. The OH stretching phonon only appears when a polarizable model (TTM3-F) is employed. Both of these phonon modes exhibit LO-TO splitting at $k = 0$, indicating long range dipole-dipole interactions in the system. We study the LO-TO splitting as a function of temperature, finding that the splitting increases for the librational mode at higher temperatures but decreases for the stretching mode. Since LO-TO splitting is intimately connected to structure, this analysis opens the door for new insights into how the local structure of water changes with temperature. Our results also explain a previously unnoticed discrepancy one encounters when comparing the librational peaks found in Raman and IR/dielectric spectra. Previously the three R...

  7. Thin liquid film technique — application to water–oil–water bitumen emulsion films

    Microsoft Academic Search

    Khr Khristov; S. D Taylor; J Czarnecki; J Masliyah

    2000-01-01

    We describe an adaptation of the thin liquid film-pressure balance technique (TLF-PBT) for a systematic study of water\\/diluted-bitumen\\/water thin films. Recent research into the stability of water-in-oil emulsions, particularly those occurring in the oil industry, has not properly addressed the dependence of the emulsion stability on the thin films that are formed between approaching water droplets. The objective of this

  8. Probing Hydrophilic Interface of Solid/Liquid-Water by Nanoultrasonics

    PubMed Central

    Mante, Pierre-Adrien; Chen, Chien-Cheng; Wen, Yu-Chieh; Chen, Hui-Yuan; Yang, Szu-Chi; Huang, Yu-Ru; -Ju Chen, I.; Chen, Yun-Wen; Gusev, Vitalyi; Chen, Miin-Jang; Kuo, Jer-Lai; Sheu, Jinn-Kong; Sun, Chi-Kuang

    2014-01-01

    Despite the numerous devoted studies, water at solid interfaces remains puzzling. An ongoing debate concerns the nature of interfacial water at a hydrophilic surface, whether it is more solid-like, ice-like, or liquid-like. To answer this question, a complete picture of the distribution of the water molecule structure and molecular interactions has to be obtained in a non-invasive way and on an ultrafast time scale. We developed a new experimental technique that extends the classical acoustic technique to the molecular level. Using nanoacoustic waves with a femtosecond pulsewidth and an ångström resolution to noninvasively diagnose the hydration structure distribution at ambient solid/water interface, we performed a complete mapping of the viscoelastic properties and of the density in the whole interfacial water region at hydrophilic surfaces. Our results suggest that water in the interfacial region possesses mixed properties and that the different pictures obtained up to now can be unified. Moreover, we discuss the effect of the interfacial water structure on the abnormal thermal transport properties of solid/liquid interfaces. PMID:25176017

  9. Probing Hydrophilic Interface of Solid/Liquid-Water by Nanoultrasonics

    NASA Astrophysics Data System (ADS)

    Mante, Pierre-Adrien; Chen, Chien-Cheng; Wen, Yu-Chieh; Chen, Hui-Yuan; Yang, Szu-Chi; Huang, Yu-Ru; -Ju Chen, I.; Chen, Yun-Wen; Gusev, Vitalyi; Chen, Miin-Jang; Kuo, Jer-Lai; Sheu, Jinn-Kong; Sun, Chi-Kuang

    2014-09-01

    Despite the numerous devoted studies, water at solid interfaces remains puzzling. An ongoing debate concerns the nature of interfacial water at a hydrophilic surface, whether it is more solid-like, ice-like, or liquid-like. To answer this question, a complete picture of the distribution of the water molecule structure and molecular interactions has to be obtained in a non-invasive way and on an ultrafast time scale. We developed a new experimental technique that extends the classical acoustic technique to the molecular level. Using nanoacoustic waves with a femtosecond pulsewidth and an ångström resolution to noninvasively diagnose the hydration structure distribution at ambient solid/water interface, we performed a complete mapping of the viscoelastic properties and of the density in the whole interfacial water region at hydrophilic surfaces. Our results suggest that water in the interfacial region possesses mixed properties and that the different pictures obtained up to now can be unified. Moreover, we discuss the effect of the interfacial water structure on the abnormal thermal transport properties of solid/liquid interfaces.

  10. Recommended Liquid-Liquid Equilibrium Data. Part 5. Ether-Water Systems

    NASA Astrophysics Data System (ADS)

    Góral, Marian; Måczy?ski, Andrzej; Oracz, Pawe?

    2007-12-01

    Recommended liquid-liquid equilibrium (LLE) data for 12 binary ether-water systems have been obtained after the critical evaluation of all data (168 data sets) reported for 17 systems in the open literature up to the end of 2006. An equation for the prediction of the ether solubilities in water was developed. The predicted ether solubilities were used for the calculation of water solubility in the ether-rich phase. The LLE calculations were done with the equation of state appended with a chemical term (EoSC) proposed by Góral [Fluid Phase Equilib. 118, 27 (1996)]. The recommended data are presented in the form of individual tables with references. Using these recommended data, predictive ability has been tested for several UNIFAC and ASOG group-contribution methods.

  11. Recommended Liquid-Liquid Equilibrium Data. Part 1. Binary Alkane-Water Systems

    NASA Astrophysics Data System (ADS)

    Ma̧czy?ski, Andrzej; Wi?niewska-Goc?owska, Barbara; Góral, Marian

    2004-06-01

    The recommended liquid-liquid equilibrium (LLE) data for 32 binary n-alkane, isoalkane, and cycloalkane-water systems have been obtained after critical evaluation of all data (345 data sets) reported in the open literature up to the end of 2002. The evaluation of the alkane solubility data was based on a generalized equation, which allows prediction of the alkane solubility as a function of temperature. Using the predicted alkane solubilities the concentration of water in the alkane rich phase was calculated. The LLE calculations were performed with the equation of state appended with a chemical term (EoSC) proposed by Góral. The experimental solubilities of water in various alkanes were compared to each other and to the calculated values. The recommended data are presented in the form of individual pages containing tables, all the references, and optionally figures.

  12. Liquid water transport in fuel cell gas diffusion layers Aimy Ming Jii Bazylak

    E-print Network

    Victoria, University of

    Liquid water transport in fuel cell gas diffusion layers by Aimy Ming Jii Bazylak Bachelor means, without the permission of the author. #12;ii Liquid water transport in fuel cell gas diffusion State University) Abstract Liquid water management has a major impact on the performance and durability

  13. Liquid Hot Water Pretreatment of Olive Tree Pruning Residues

    NASA Astrophysics Data System (ADS)

    Cara, Cristóbal; Romero, Inmaculada; Oliva, Jose Miguel; Sáez, Felicia; Castro, Eulogio

    Olive tree pruning generates an abundant, renewable lignocellulose residue, which is usually burnt on fields to prevent propagation of vegetal diseases, causing economic costs and environmental concerns. As a first step in an alternative use to produce fuel ethanol, this work is aimed to study the pretreatment of olive tree pruning residues by liquid hot water. Pretreatment was carried out at seven temperature levels in the range 170-230°C for 10 or 60 min. Sugar recoveries in both solid and liquid fractions resulting from pretreatment as well as enzymatic hydrolysis yield of the solid were used to evaluate pretreatment performance. Results show that the enzyme accessibility of cellulose in the pretreated solid fraction increased with pretreatment time and temperature, although sugar degradation in the liquid fraction was concomitantly higher.

  14. Solvation Dynamics in Liquid Water. 1. Ultrafast Energy Fluxes.

    PubMed

    Rey, Rossend; Hynes, James T

    2015-06-18

    Solvation dynamics in liquid water is addressed via nonequilibrium energy-transfer pathways activated after a neutral atomic solute acquires a unit charge, either positive or negative. It is shown that the well-known nonequilibrium frequency shift relaxation function can be expressed in a novel fashion in terms of energy fluxes, providing a clear-cut and quantitative account of the processes involved. Roughly half of the initial excess energy is transferred into hindered rotations of first hydration shell water molecules, i.e., librational motions, specifically those rotations around the lowest moment of inertia principal axis. After integration over all water solvent molecules, rotations account for roughly 80% of the energy transferred, while translations have a secondary role; transfer to intramolecular water stretch and bend vibrations is negligible. This picture is similar to that for relaxation of a single vibrationally or rotationally excited water molecule in neat liquid water, although solvation relaxation is more nonlocal. In addition, we find a remarkable independence of the main relaxation channels on the newly created charge's sign. Although the methodology is applied here to the simplest solute case, the approach is rather general, and it should be at least equally useful in more realistic and complex scenarios. PMID:25635521

  15. Reaction of catalytic oxidation by liquid water and its application to waste water purification

    SciTech Connect

    Ioffe, I.I. [All-Union Inst. of Pulp and Paper Industry, Leningrad (Russian Federation)] [All-Union Inst. of Pulp and Paper Industry, Leningrad (Russian Federation); Rubinskaya, E.V. [All-Union Inst. of Petrochemical Processes, Leningrad (Russian Federation)] [All-Union Inst. of Petrochemical Processes, Leningrad (Russian Federation)

    1997-06-01

    In this paper the results of experiments and some considerations of theoretical and practical problems devoted to a new type of chemical reaction--oxidation of organic substances by liquid water with the aid of noble metal catalyst--are given. Some problems of application such as reaction to self-purification of industrial waste waters are also considered.

  16. Temporal and spatial relationships between topography, atmospheric water vapor, liquid water and vegetation endmember fractions determined using AVIRIS

    Microsoft Academic Search

    D. A. Roberts; R. O. Green; J. B. Adams; J. S. Cothern; D. E. Sabol; M. O. Smith

    1994-01-01

    Temporal and spatial changes in water vapor, liquid water and endmember fractions were investigated using AVIRIS data collected in the vicinity of Jasper Ridge, CA, on three dates in 1992. Water vapor and liquid water were mapped using a Modtran-II based atmospheric model that accounts for spatially varying atmospheric properties. Spectral mixture analysis (SMA) was used to model vegetation as

  17. Liquid water transport in fuel cell gas diffusion layers

    NASA Astrophysics Data System (ADS)

    Bazylak, Aimy Ming Jii

    Liquid water management has a major impact on the performance and durability of the polymer electrolyte membrane fuel cell (PEMFC). The gas diffusion layer (GDL) of a PEMFC provides pathways for mass, heat, and electronic transport to and from the catalyst layers and bipolar plates. When the GDL becomes flooded with liquid water, the PEMFC undergoes mass transport losses that can lead to decreased performance and durability. The work presented in this thesis includes contributions that provide insight into liquid water transport behaviour in and on the surface of the GDL, as well as insight into how future GDLs could be designed to enhance water management. The effects of compression on liquid water transport in the GDL and on the microstructure of the GDL are presented. It was found that compressed regions of the GDL provided preferential locations for water breakthrough, while scanning electron microscopy (SEM) imaging revealed irreversible damage to the GDL due to compression at typical fuel cell assembly pressures. The dynamic behaviour of droplet emergence and detachment in a simulated gas flow channel are also presented. It was found that on an initially dry and hydrophobic GDL, small droplets emerged and detached quickly from the GDL surface. However, over time, this water transport regime transitioned into that of slug formation and channel flooding. It was observed that after being exposed to a saturated environment, the GDL surface became increasingly prone to droplet pinning, which ultimately hindered droplet detachment and encouraged slug formation. A pore network model featuring invasion percolation with trapping was employed to evaluate the breakthrough pattern predictions of designed porous media. These designed pore networks consisted of randomized porous media with applied diagonal and radial gradients. Experimental microfluidic pore networks provided validation for the designed networks. Diagonal biasing provided a means of directing water transport in the pore network, while radially biased networks provided the additional feature of reducing the overall network saturation. Since directed water transport and reduced saturation are both beneficial for the PEMFC GDL, it was proposed that biasing of this nature could be applied to improved GDL designs. Lastly, recommendations for future extensions of this research are proposed at the end of this thesis.

  18. Crystal structure of an anhydrous form of trehalose: structure of water channels of trehalose polymorphism.

    PubMed

    Nagase, H; Ogawa, N; Endo, T; Shiro, M; Ueda, H; Sakurai, M

    2008-07-31

    alpha, alpha-Trehalose (trehalose) is a nonreducing disaccharide of glucose and is accumulated at high concentrations in some anhydrobiotic organisms, which can survive without water for long periods and rapidly resume active metabolism upon hydration. Although it has been proposed that the intriguing mechanism of bioprotection in anhydrobiosis is conferred by a water channel, details of such a channel have yet to be revealed. We determined the crystal structure of a trehalose anhydrate to further understand the relationship between the structure of water channels and the trehalose polymorph. The space group was identical to that of the dihydrate and the lattice constants were also very similar. Among the five intermolecular hydrogen bonds between the trehalose molecules, four were preserved in the anhydrate. If dehydration of the dihydrate is slow and/or gentle enough to preserve the hydrogen bonds, transformation from the dihydrate to the anhydrate may occur. There are two different holes, hole-1 and hole-2, along one crystal axis. Hole-1 is constructed by trehalose molecules with a screw diad at its center, while hole-2 has a smaller diameter and is without a symmetry operator. Because of the screw axis at the center of hole-1, hollows are present at the side of the hole with diameters roughly equal to that of hole-1. Hole-1 and side pockets followed by hollows correspond to the positions of two water molecules of the dihydrate. The side hollows of the water channel are also observed in the water-filled hole of the dihydrate. Consequently, hole-1 is considered to be a one-dimensional water channel with side pockets. We also calculated molecular and crystal energies to examine the rapid water uptake of the anhydrate. It was demonstrated that the intermolecular interactions in the anhydrate were weaker than in the other anhydrous form, and probably also than those in amorphous trehalose. The anhydrate provides water capture for another solid form and gives protection from water uptake. These structural properties of the anhydrate may elucidate bioprotection in anhydrobiosis. PMID:18605683

  19. A quantitative account of quantum effects in liquid water

    NASA Astrophysics Data System (ADS)

    Fanourgakis, G. S.; Schenter, G. K.; Xantheas, S. S.

    2006-10-01

    We report converged quantum statistical mechanical simulations of liquid water with the Thole-type Model (version 2.1), Flexible, polarizable (TTM2.1-F) interaction potential for water. Simulations of total length of 600ps with a 0.05fs time step for a periodic unit cell of 256 molecules with up to 32 replicas per atom suggest that the quantum effects contribute 1.01±0.02kcal/mol to the liquid enthalpy of formation at 298.15K. They furthermore demonstrate for the first time a quantitative agreement with experiment for the heights and broadening of the intramolecular OH and HH peaks in the radial distribution functions.

  20. Improved simulation of liquid water by molecular dynamics

    Microsoft Academic Search

    Frank H. Stillinger; Aneesur Rahman

    1974-01-01

    Molecular dynamics calculations on a classical model for liquid water have been carried out at mass density 1 g\\/cm3 and at four temperatures. The effective pair potential employed is based on a four-charge model for each molecule and represents a modification of the prior ``BNS'' interaction. Results for molecular structure and thermodynamic properties indicate that the modification improves the fidelity

  1. Fractionation of sugar cane with hot, compressed, liquid water

    Microsoft Academic Search

    Stephen Glen Allen; Lance Cameron Kam; Andreas Joseph Zemann; Michael Jerry Antal

    1996-01-01

    Sugar-cane bagasse and leaves (10--15 g oven-dry basis) were fractionated without size reduction by a rapid (45 s to 4 min), immersed percolation using only hot (190--230 C), compressed (P > P{sub sat}), liquid water (0.6--1.2 kg). Over 50% of the biomass could be solubilized. All of the hemicellulose, together with much of the acid-insoluble lignin in the bagasse (>60%),

  2. Liquid Hot Water Pretreatment of Olive Tree Pruning Residues

    Microsoft Academic Search

    Cristóbal Cara; Inmaculada Romero; Jose Miguel Oliva; Felicia Sáez; Eulogio Castro

    2007-01-01

    Olive tree pruning generates an abundant, renewable lignocellulose residue, which is usually burnt on fields to prevent propagation\\u000a of vegetal diseases, causing economic costs and environmental concerns. As a first step in an alternative use to produce fuel\\u000a ethanol, this work is aimed to study the pretreatment of olive tree pruning residues by liquid hot water. Pretreatment was\\u000a carried out

  3. Liquid hot water pretreatment of olive tree pruning residues

    Microsoft Academic Search

    Cristóbal Cara; Inmaculada Romero; Jose Miguel Oliva; Felicia Sáez; Eulogio Castro

    2007-01-01

    Olive tree pruning generates an abundant, renewable lignocellulose residue, which is usually burnt on fields to prevent propagation\\u000a of vegetal diseases, causing economic costs and environmental concerns. As a first step in an alternative use to produce fuel\\u000a ethanol, this work is aimed to study the pretreatment of olive tree pruning residues by liquid hot water. Pretreatment was\\u000a carried out

  4. Conversion of lignocellulosics pretreated with liquid hot water to ethanol

    Microsoft Academic Search

    G. Peter van Walsum; Stephen G. Allen; Mark J. Spencer; Mark S. Laser; Michael J. Antal; Lee R. Lynd

    1996-01-01

    Lignocellulosic materials pretreated using liquid hot water (LHW) (220°C, 5 MPa, 120 s) were fermented to ethanol by batch\\u000a simultaneous saccharification and fermentation (SSF) usingSaccharomyces cerevisiae in the presence ofTrichoderma reesei cellulase. SSF of sugarcane bagasse (as received), aspen chips (smallest dimension 3 mm), and mixed hardwood flour (?60 +70\\u000a mesh) resulted in 90% conversion to ethanol in 2–5 d

  5. Measuring Low Concentrations of Liquid Water in Soil

    NASA Technical Reports Server (NTRS)

    Buehler, Martin

    2009-01-01

    An apparatus has been developed for measuring the low concentrations of liquid water and ice in relatively dry soil samples. Designed as a prototype of instruments for measuring the liquidwater and ice contents of Lunar and Martian soils, the apparatus could also be applied similarly to terrestrial desert soils and sands. The apparatus is a special-purpose impedance spectrometer: Its design is based on the fact that the electrical behavior of a typical soil sample is well approximated by a network of resistors and capacitors in which resistances decrease and capacitances increase (and, hence, the magnitude of impedance decreases) with increasing water content.

  6. Optically Thin Liquid Water Clouds: Their Importance and Our Challenge

    NASA Technical Reports Server (NTRS)

    Turner, D. D.; Vogelmann, A. M.; Austin, R. T.; Barnard, J. C.; Cady-Pereira, K.; Chiu, J. C.; Clough, S. A.; Flynn, C.; Khaiyer, M. M.; Liljegren, J.; Johnson, K.; Lin, B.; Long, C.; Marshak, A.; Matrosov, S. Y.; McFarlane, S. A.; Miller, M.; Min, Q.; Minnis, P.; O'Hirok, W.; Wang, Z.; Wiscombe, W.

    2006-01-01

    Many of the clouds important to the Earth's energy balance, from the tropics to the Arctic, are optically thin and contain liquid water. Longwave and shortwave radiative fluxes are very sensitive to small perturbations of the cloud liquid water path (LWP) when the liquid water path is small (i.e., < g/sq m) and, thus, the radiative properties of these clouds must be well understood to capture them correctly in climate models. We review the importance of these thin clouds to the Earth's energy balance, and explain the difficulties in observing them. In particular, because these clouds are optically thin, potentially mixed-phase, and often (i.e., have large 3-D variability), it is challenging to retrieve their microphysical properties accurately. We describe a retrieval algorithm intercomparison that was conducted to evaluate the issues involved. The intercomparison included eighteen different algorithms to evaluate their retrieved LWP, optical depth, and effective radii. Surprisingly, evaluation of the simplest case, a single-layer overcast cloud, revealed that huge discrepancies exist among the various techniques, even among different algorithms that are in the same general classification. This suggests that, despite considerable advances that have occurred in the field, much more work must be done, and we discuss potential avenues for future work.

  7. Temperature dependence of the structure of protein hydration water and the liquid-liquid transition

    NASA Astrophysics Data System (ADS)

    Accordino, S. R.; Malaspina, D. C.; Rodriguez Fris, J. A.; Alarcón, L. M.; Appignanesi, G. A.

    2012-03-01

    We study the temperature dependence of the structure and orientation of the first hydration layers of the protein lysozyme and compare it with the situation for a model homogeneous hydrophobic surface, a graphene sheet. We show that in both cases these layers are significantly better structured than bulk water. The geometrical constraint of the interface makes the water molecules adjacent to the surface lose one water-water hydrogen bond and expel the fourth neighbors away from the surface, lowering local density. We show that a decrease in temperature improves the ordering of the hydration water molecules, preserving such a geometrical effect. For the case of graphene, this favors an ice Ih-like local structuring, similar to the water-air interface but in the opposite way along the c axis of the basal plane (while the vicinal water molecules of the air interface orient a hydrogen atom toward the surface, the oxygens of the water molecules close to the graphene plane orient a lone pair in such a direction). In turn, the case of the first hydration layers of the lysozyme molecule is shown to be more complicated, but still displaying signs of both kinds of behavior, together with a tendency of the proximal water molecules to hydrogen bond to the protein both as donors and as acceptors. Additionally, we make evident the existence of signatures of a liquid-liquid transition (Widom line crossing) in different structural parameters at the temperature corresponding to the dynamic transition incorrectly referred to as “the protein glass transition.”

  8. Temperature dependence of the structure of protein hydration water and the liquid-liquid transition.

    PubMed

    Accordino, S R; Malaspina, D C; Rodriguez Fris, J A; Alarcón, L M; Appignanesi, G A

    2012-03-01

    We study the temperature dependence of the structure and orientation of the first hydration layers of the protein lysozyme and compare it with the situation for a model homogeneous hydrophobic surface, a graphene sheet. We show that in both cases these layers are significantly better structured than bulk water. The geometrical constraint of the interface makes the water molecules adjacent to the surface lose one water-water hydrogen bond and expel the fourth neighbors away from the surface, lowering local density. We show that a decrease in temperature improves the ordering of the hydration water molecules, preserving such a geometrical effect. For the case of graphene, this favors an ice Ih-like local structuring, similar to the water-air interface but in the opposite way along the c axis of the basal plane (while the vicinal water molecules of the air interface orient a hydrogen atom toward the surface, the oxygens of the water molecules close to the graphene plane orient a lone pair in such a direction). In turn, the case of the first hydration layers of the lysozyme molecule is shown to be more complicated, but still displaying signs of both kinds of behavior, together with a tendency of the proximal water molecules to hydrogen bond to the protein both as donors and as acceptors. Additionally, we make evident the existence of signatures of a liquid-liquid transition (Widom line crossing) in different structural parameters at the temperature corresponding to the dynamic transition incorrectly referred to as "the protein glass transition." PMID:22587099

  9. Effect of ionic liquids on (vapor + liquid) equilibrium behavior of (water + 2-methyl-2-propanol)

    Microsoft Academic Search

    Lianzhong Zhang; Bingbang Qiao; Yun Ge; Dongshun Deng; Jianbing Ji

    2009-01-01

    Isobaric T, x, y data were reported for ternary systems of {water+2-methyl-2-propanol (tert-butyl alcohol, TBA)+ionic liquid (IL)} at p=100kPa. When the mole fraction of TBA on IL-free basis was fixed at 0.95, measurements were performed at IL mass fractions from 0.6 down to 0.05, in a way of repeated synthesis. The vapor-phase compositions were obtained by analytical methods and the

  10. Combustion of Liquid Fuels Spilled on Water. Prediction of Time to Start of Boilover

    Microsoft Academic Search

    J. P. GARO; P. GILLARD; J. P. VANTELON; A. C. FERNANDEZ-PELLO

    1999-01-01

    The combustion of a liquid fuel floating on water is a problem of interest because of its potential environmental and safety consequences. When a liquid fuel is burning under these conditions, the presence of the water may cause some particular effects due to heat transfer to the water. If the fuel layer is thin, heat losses to the water may

  11. Ab initio liquid water from PBE0 hybrid functional simulations

    NASA Astrophysics Data System (ADS)

    Li, Zhaofeng; Wu, Xifan; Car, Roberto

    2010-03-01

    For reasons of computational efficiency, so far most ab initio molecular dynamics simulations of liquid water have been based on semi-local density functional approximations, such as PBE and BLYP. These approaches yield a liquid structure that, albeit qualitatively correct, is overstructured compared to experiment, even after nuclear quantum effects have been taken into account.footnotetextJ. A. Morrone and R. Car, Phys. Rev. Lett. 101, 017801(2008) A major cause of this inaccuracy is the delocalization error associated to semi-local density functional approximations, which, as a consequence, overestimate slightly the hydrogen bond strength in the liquid. In this work we adopt the PBE0 hybrid functional approximation, which, by mixing a fraction of exact (Hartree-Fock) exchange, reduces significantly the delocalization error of semi-local functionals. Our approach is based on a numerically efficient order-N implementation of exact exchange.footnotetextX. Wu, A. Selloni, and R. Car, Phys. Rev. B 79, 085102(2009) We find that PBE0 systematically improves the agreement of the simulated liquid with experiment. Our conclusion is substantiated by the calculated radial distribution functions, H-bond statistics, and molecular dipole distribution.

  12. Shock wave initiated by an ion passing through liquid water

    NASA Astrophysics Data System (ADS)

    Surdutovich, Eugene; Solov'Yov, Andrey V.

    2010-11-01

    We investigate the shock wave produced by an energetic ion in liquid water. This wave is initiated by a rapid energy loss when the ion moves through the Bragg peak. The energy is transferred from the ion to secondary electrons, which then transfer it to the water molecules. The pressure in the overheated water increases by several orders of magnitude and drives a cylindrical shock wave on a nanometer scale. This wave eventually weakens as the front expands further; but before that, it may contribute to DNA damage due to large pressure gradients developed within a few nanometers from the ion’s trajectory. This mechanism of DNA damage may be a very important contribution to the direct chemical effects of low-energy electrons and holes.

  13. Structure and dynamics of complex liquid water: Molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    S, Indrajith V.; Natesan, Baskaran

    2015-06-01

    We have carried out detailed structure and dynamical studies of complex liquid water using molecular dynamics simulations. Three different model potentials, namely, TIP3P, TIP4P and SPC-E have been used in the simulations, in order to arrive at the best possible potential function that could reproduce the structure of experimental bulk water. All the simulations were performed in the NVE micro canonical ensemble using LAMMPS. The radial distribution functions, gOO, gOH and gHH and the self diffusion coefficient, Ds, were calculated for all three models. We conclude from our results that the structure and dynamical parameters obtained for SPC-E model matched well with the experimental values, suggesting that among the models studied here, the SPC-E model gives the best structure and dynamics of bulk water.

  14. Lake morphometry and resource polymorphism determine niche segregation between cool- and cold-water-adapted fish.

    PubMed

    Hayden, Brian; Harrod, Chris; Kahilaineni, Kimmo K

    2014-02-01

    Climate change is increasing ambient temperatures in Arctic and subarctic regions, facilitating latitudinal range expansions of freshwater fishes adapted to warmer water temperatures. The relative roles of resource availability and interspecific interactions between resident and invading species in determining the outcomes of such expansions has not been adequately evaluated. Ecological interactions between a cool-water adapted fish, the perch (Perca fluviatilis), and the cold-water adapted European whitefish (Coregonus lavaretus), were studied in both shallow and deep lakes with fish communities dominated by (1) monomorphic whitefish, (2) monomorphic whitefish and perch, and (3) polymorphic whitefish and perch. A combination of stomach content, stable-isotope, and invertebrate prey availability data were used to identify resource use and niche overlap among perch, the trophic generalist large sparsely rakered (LSR) whitefish morph, and the pelagic specialist densely rakered (DR) whitefish morph in 10 subarctic lakes at the contemporary distribution limit of perch in northern Scandinavia. Perch utilized its putative preferred littoral niche in all lakes. LSR whitefish utilized both littoral and pelagic resources in monomorphic whitefish-dominated lakes. When found in sympatry with perch, LSR whitefish exclusively utilized pelagic prey in deep lakes, but displayed niche overlap with perch in shallow littoral lakes. DR whitefish was a specialist zooplanktivore, relegating LSR whitefish from pelagic habitats, leading to an increase in niche overlap between LSR whitefish and perch in deep lakes. Our results highlight how resource availability (lake depth and fish community) governs ecological interactions between native and invading species, leading to different outcomes even at the same latitudes. These findings suggest that lake morphometry and fish community structure data should be included in bioclimate envelope-based models of species distribution shifts following predicted climate change. PMID:24669746

  15. Rapid micro liquid-liquid extraction method for trace analysis of organic contaminants in drinking water.

    PubMed

    Zapf, A; Heyer, R; Stan, H J

    1995-03-10

    The applicability and performance of a micro liquid-liquid extraction method for trace analysis of organic compounds in drinking water is reported. Tap water samples of 400 ml are saturated with sodium chloride and extracted once with 500 microliters of toluene. Extracts are analyzed directly without further treatment by gas chromatography using simultaneous electron-capture and nitrogen-phosphorus detection. Recoveries of 82 organic compounds, including organochlorine and organophosphorus insecticides, triazine and acetanilide pesticides, chlorinated anilines and phenols from tap water samples spiked at 50 to 500 ng/l were determined and relative standard deviations were calculated. For 68 compounds the recoveries were higher than 50%. The mean relative standard deviations were calculated. For 68 compounds the recoveries were higher than 50%. The mean relative standard deviations were calculated. For 68 compounds the recoveries were higher than 50%. The mean relative standard deviations at spiking levels of 50, 100 and 500 ng/l were 7.9, 6.6 and 5.2%, respectively. The extraction method proved to be rapid, simple and inexpensive. In most cases compounds were reproducibly detected well below the European Union maximum tolerance level for pesticide residues in drinking water of 100 ng/l. PMID:7704192

  16. Diurnal cycle of liquid water path over the subtropical and tropical oceans

    E-print Network

    Wood, Robert

    Diurnal cycle of liquid water path over the subtropical and tropical oceans R. Wood, C. S.1029/ 2002GL015371, 2002. 1. Introduction [2] The diurnal cycle of cloud cover and liquid water has important; revised 26 June 2002; accepted 11 July 2002; published XX Month 2002. [1] The diurnal cycle of liquid

  17. Development of a liquid-fed water resistojet

    NASA Technical Reports Server (NTRS)

    Morren, W. Earl; Stone, James R.

    1988-01-01

    A concept for a forced-flow once-through water vaporizer for application to resistojet thrusters was evaluated as an element of a laboratory model thruster and tested to investigate its operating characteristics. The vaporizer design concept employs flow swirling to attach the liquid flow to the boiler chamber wall, providing for separation of the two liquid phases. This vaporizer was modified with a nozzle and a centrally-located heater to facilitatite vaporization, superheating, and expansion of the propellant, allowing it to function as a resistojet. Performance was measured at thrust levels ranging from 170 to 360 mN and at power levels ranging from 443 to 192 W. Maximum measured specific impulse was 192 sec.

  18. Development of a liquid-fed water resistojet

    NASA Technical Reports Server (NTRS)

    Morren, W. Earl; Stone, James R.

    1988-01-01

    A concept for a forced-flow once-through water vaporizer for application to resistojet thrusters was evaluated as an element of a laboratory model thruster and tested to investigate its operating characteristics. The vaporizer design concept employs flow swirling to attach the liquid flow to the boiler chamber wall, providing for separation of the two liquid phases. This vaporizer was modified with a nozzle and a centrally-located heater to facilitate vaporization, superheating, and expansion of the propellant, allowing it to function as a resistojet. Performance was measured at thrust levels ranging from 170 to 360 mN and at power levels ranging from 443 to 192 W. Maximum measured specific impulse was 192 sec.

  19. Thermodynamic properties of liquid water from a polarizable intermolecular potential

    NASA Astrophysics Data System (ADS)

    Yigzawe, Tesfaye M.; Sadus, Richard J.

    2013-01-01

    Molecular dynamics simulation results are reported for the pressure, isothermal pressure coefficient, thermal expansion coefficient, isothermal and adiabatic compressibilities, isobaric and isochoric heat capacities, Joule-Thomson coefficient and speed of sound of liquid water using a polarizable potential [Li et al., J. Chem. Phys. 127, 154509 (2007)]. These properties were obtained for a wide range of temperatures and pressures at a common liquid density using the treatment of Lustig [J. Chem. Phys. 100, 3048 (1994)] and Meier and Kabelac [J. Chem. Phys. 124, 064104 (2006)], whereby thermodynamic state variables are expressible in terms of phase-space functions determined directly from molecular dynamics simulations. Comparison with experimental data indicates that the polarizable potential can be used to predict most thermodynamic properties with a very good degree of accuracy.

  20. An SCC-DFTB Repulsive Potential for Various ZnO Polymorphs and the ZnO–Water System

    PubMed Central

    2013-01-01

    We have developed an efficient scheme for the generation of accurate repulsive potentials for self-consistent charge density-functional-based tight-binding calculations, which involves energy-volume scans of bulk polymorphs with different coordination numbers. The scheme was used to generate an optimized parameter set for various ZnO polymorphs. The new potential was subsequently tested for ZnO bulk, surface, and nanowire systems as well as for water adsorption on the low-index wurtzite (101?0) and (112?0) surfaces. By comparison to results obtained at the density functional level of theory, we show that the newly generated repulsive potential is highly transferable and capable of capturing most of the relevant chemistry of ZnO and the ZnO/water interface. PMID:23991228

  1. Liquid-liquid coexistence and crystallization in supercooled ST2 water

    NASA Astrophysics Data System (ADS)

    Martelli, Fausto; Palmer, Jeremy; Debenedetti, Pablo; Car, Roberto

    2014-03-01

    We have computed the free energy landscape of ST2 water in the supercooled regime (228.6 K and 2.4 kbar) using several state-of-the-art computational techniques, including umbrella sampling and metadynamics. Such results conclusively demonstrate coexistence between two liquid phases, a high-density liquid (HDL) and a low-density liquid (HDL), which are metastable with respect to cubic ice. We show that the three phases have distinct structural features characterized by the local structure index and ring statistics. We also find that ice nucleation, should it occur, does so from the low-density liquid. Interestingly, we find that the number of 6-member rings increases monotonically along the path from HDL to LDL, while non-monotonic behavior is observed near the saddle point along the LDL-ice Ic path. This behavior indicates a complex re-arrangement of the H-bond network, followed by progressive crystallization. DOE: DE-SC0008626 (F. M. and R.C.)

  2. Ultrafast librational relaxation of H2O in liquid water.

    PubMed

    Petersen, Jakob; Møller, Klaus B; Rey, Rossend; Hynes, James T

    2013-04-25

    The ultrafast librational (hindered rotational) relaxation of a rotationally excited H2O molecule in pure liquid water is investigated by means of classical nonequilibrium molecular dynamics simulations and a power and work analysis. This analysis allows the mechanism of the energy transfer from the excited H2O to its water neighbors, which occurs on a sub-100 fs time scale, to be followed in molecular detail, i.e., to determine which water molecules receive the energy and in which degrees of freedom. It is found that the dominant energy flow is to the four hydrogen-bonded water partners in the first hydration shell, dominated by those partners' rotational motion, in a fairly symmetric fashion over the hydration shell. The minority component of the energy transfer, to these neighboring waters' translational motion, exhibits an asymmetry in energy reception between hydrogen-bond-donating and -accepting water molecules. The variation of the energy flow characteristics with rotational axis, initial rotational energy excitation magnitude, method of excitation, and temperature is discussed. Finally, the relation of the nonequilibrium results to equilibrium time correlations is investigated. PMID:23131075

  3. A continuous polymorphic transition of coordinating water molecules in CuSO 4·5H 2O

    Microsoft Academic Search

    A. Saig; A. Danon; Y. Finkelstein; G. Kimmel; J. E Koresh

    2003-01-01

    Water molecules in freshly as-grown crystal of copper sulfate pentahydrate undergo continuous relocations between two effective lattice binding sites, before the stable polymorphic form is attained. The kinetics of such rearrangements was observed by high resolution temperature programmed desorption mass spectrometer (TPD-MS) fitted with a supersonic molecular-beam inlet which enables the probing of the sample at atmospheric pressure. By monitoring

  4. Learning science through guided discovery: liquid water and molecular networks

    NASA Astrophysics Data System (ADS)

    Ostrovsky, Boris; Poole, Peter H.; Sciortino, Francesco; Eugene Stanley, H.; Trunfio, Paul

    1991-09-01

    In every drop of water, down at the scale of atoms and molecules, there is a world that can fascinate anyone. The objective of “Learning science through guided discovery: liquid water and molecular networks” is to use advanced technology to provide a window into the submicroscopic, and thereby allow students to discover by themselves an entire new world. We are developing a coordinated two-fold approach to high school science teaching in which a cycle of hands-on activities, games, and experimentation is followed by a cycle of computer simulations employing the full power of computer animation to “ZOOM” into the depths of this newly discovered world. Pairing of laboratory experiments with corresponding simulations challenges students to understand multiple representations of concepts. We thereby provide students with the opportunity to work in a fashion analogous to that in which practicing scientists work - e.g., by “building up” to general principles from specific experiences. Moreover, the ability to visualize “real-time” dynamic motions allows for student-controlled graphic simulations on the molecular scale, and interactive guided lessons superior to those afforded by even the most artful of texts. While our general approach could be applied to a variety of topics, we have chosen to focus first on the most familiar of molecular networks, that of liquid water. Later we will test the generality of the approach by exploring macromolecules such as proteins and DNA.

  5. Gas hydrate inhibition by perturbation of liquid water structure

    PubMed Central

    Sa, Jeong-Hoon; Kwak, Gye-Hoon; Han, Kunwoo; Ahn, Docheon; Lee, Kun-Hong

    2015-01-01

    Natural gas hydrates are icy crystalline materials that contain hydrocarbons, which are the primary energy source for this civilization. The abundance of naturally occurring gas hydrates leads to a growing interest in exploitation. Despite their potential as energy resources and in industrial applications, there is insufficient understanding of hydrate kinetics, which hinders the utilization of these invaluable resources. Perturbation of liquid water structure by solutes has been proposed to be a key process in hydrate inhibition, but this hypothesis remains unproven. Here, we report the direct observation of the perturbation of the liquid water structure induced by amino acids using polarized Raman spectroscopy, and its influence on gas hydrate nucleation and growth kinetics. Amino acids with hydrophilic and/or electrically charged side chains disrupted the water structure and thus provided effective hydrate inhibition. The strong correlation between the extent of perturbation by amino acids and their inhibition performance constitutes convincing evidence for the perturbation inhibition mechanism. The present findings bring the practical applications of gas hydrates significantly closer, and provide a new perspective on the freezing and melting phenomena of naturally occurring gas hydrates. PMID:26082291

  6. Gas hydrate inhibition by perturbation of liquid water structure.

    PubMed

    Sa, Jeong-Hoon; Kwak, Gye-Hoon; Han, Kunwoo; Ahn, Docheon; Lee, Kun-Hong

    2015-01-01

    Natural gas hydrates are icy crystalline materials that contain hydrocarbons, which are the primary energy source for this civilization. The abundance of naturally occurring gas hydrates leads to a growing interest in exploitation. Despite their potential as energy resources and in industrial applications, there is insufficient understanding of hydrate kinetics, which hinders the utilization of these invaluable resources. Perturbation of liquid water structure by solutes has been proposed to be a key process in hydrate inhibition, but this hypothesis remains unproven. Here, we report the direct observation of the perturbation of the liquid water structure induced by amino acids using polarized Raman spectroscopy, and its influence on gas hydrate nucleation and growth kinetics. Amino acids with hydrophilic and/or electrically charged side chains disrupted the water structure and thus provided effective hydrate inhibition. The strong correlation between the extent of perturbation by amino acids and their inhibition performance constitutes convincing evidence for the perturbation inhibition mechanism. The present findings bring the practical applications of gas hydrates significantly closer, and provide a new perspective on the freezing and melting phenomena of naturally occurring gas hydrates. PMID:26082291

  7. Molecular-dynamics simulation of liquid water with an ab initio flexible water-water interaction potential

    Microsoft Academic Search

    G. C. Lie; E. Clementi

    1986-01-01

    The Matsuoka-Clementi-Yoshimine (MCY) configuration interaction potential for rigid water-water interactions has been extended to include the intramolecular vibrations. The extended potential (MCYL), using no empirical parameters other than the atomic masses, electron charge, and Planck constant, is used in a molecular-dynamics simulation study of the static and dynamic properties of liquid water. Among the properties studied are internal energy, heat

  8. Homogeneous liquid-liquid solvent extraction. [Propylene carbonate-water system

    SciTech Connect

    Ting, C.S.; Williams, E.T.; Finston, H.L.

    1980-01-01

    This investigation was undertaken to extend the technique of homogeneous liquid-liquid solvent extraction into propylene carbonate. The mutual solubilities of propylene carbonate in water and vice-versa are shown in the phase diagram. The extraction of a variety of monodentate and bidentate ligand complexes with Fe(III) as a function of ligand concentration and pH were investigated. The monodentate ligands studied include, thiocyanate, chloride, bromide, benzoate, and bathophenanthrolines. The bidentate ligands studied include the various ..beta..-diketones, 8-quinolinol, and also cupferron which was studied under normal conditions, i.e., not under conditions of homogeneous extraction. The homogeneous extraction proved effective for a variety of chelate complexes and ion association complexes of iron giving, in all cases, very rapid extraction as compared with the slow rate of conventional extraction methods.

  9. Reaction of water vapor with a clean liquid uranium surface

    SciTech Connect

    Siekhaus, W.

    1985-10-24

    To study the reaction of water vapor with uranium, we have exposed clean liquid uranium surfaces to H/sub 2/O under UHV conditions. We have measured the surface concentration of oxygen as a function of exposure, and determined the maximum attainable surface oxygen concentration X/sub 0//sup s/ as a function of temperature. We have used these measurements to estimate, close to the melting point, the solubility of oxygen (X/sub 0//sup b/, < 10/sup -4/) and its surface segregation coefficient ..beta../sup s/(> 10/sup 3/). 8 refs., 5 figs., 1 tab.

  10. Distribution of binding energies of a water molecule in the water liquid-vapor interface

    SciTech Connect

    Chempath, Shaji [Los Alamos National Laboratory; Pratt, Lawrence R [TULANE UNIV

    2008-01-01

    Distributions of binding energies of a water molecule in the water liquid-vapor interface are obtained on the basis of molecular simulation with the SPC/E model of water. These binding energies together with the observed interfacial density profile are used to test a minimally conditioned Gaussian quasi-chemical statistical thermodynamic theory. Binding energy distributions for water molecules in that interfacial region clearly exhibit a composite structure. A minimally conditioned Gaussian quasi-chemical model that is accurate for the free energy of bulk liquid water breaks down for water molecules in the liquid-vapor interfacial region. This breakdown is associated with the fact that this minimally conditioned Gaussian model would be inaccurate for the statistical thermodynamics of a dilute gas. Aggressive conditioning greatly improves the performance of that Gaussian quasi-chemical model. The analogy between the Gaussian quasi-chemical model and dielectric models of hydration free energies suggests that naive dielectric models without the conditioning features of quasi-chemical theory will be unreliable for these interfacial problems. Multi-Gaussian models that address the composite nature of the binding energy distributions observed in the interfacial region might provide a mechanism for correcting dielectric models for practical applications.

  11. Forecast model applications of retrieved three dimensional liquid water fields

    NASA Technical Reports Server (NTRS)

    Raymond, William H.; Olson, William S.

    1990-01-01

    Forecasts are made for tropical storm Emily using heating rates derived from the SSM/I physical retrievals described in chapters 2 and 3. Average values of the latent heating rates from the convective and stratiform cloud simulations, used in the physical retrieval, are obtained for individual 1.1 km thick vertical layers. Then, the layer-mean latent heating rates are regressed against the slant path-integrated liquid and ice precipitation water contents to determine the best fit two parameter regression coefficients for each layer. The regression formulae and retrieved precipitation water contents are utilized to infer the vertical distribution of heating rates for forecast model applications. In the forecast model, diabatic temperature contributions are calculated and used in a diabatic initialization, or in a diabatic initialization combined with a diabatic forcing procedure. Our forecasts show that the time needed to spin-up precipitation processes in tropical storm Emily is greatly accelerated through the application of the data.

  12. LIQUID AND GAS CHROMATOGRAPHIC ANALYSIS OF DIETHYL PHTHALATE IN WATER AND SEDIMENT

    EPA Science Inventory

    Diethyl phthalate was determined in water and sediment by high performance liquid chromatography (HPLC) and in water by gas-liquid chromatography with electron capture detection (GLC-ECD). Water samples were extracted with hexane, using a high-speed homogenizer-ultrasonic apparat...

  13. The Effects of Dissolved Halide Anions on Hydrogen Bonding in Liquid Water

    E-print Network

    Cohen, Ronald C.

    The Effects of Dissolved Halide Anions on Hydrogen Bonding in Liquid Water Jared D. Smith,, Richard halides in liquid water result instead from the actions of ions' electric fields on adjacent water. Introduction The physical and chemical properties of ions in aqueous solution are centrally important for many

  14. Regime based investigation of the second aerosol indirect effect for liquid water clouds using satellite data

    NASA Astrophysics Data System (ADS)

    Unglaub, Claudia; Quaas, Johannes

    2015-04-01

    Anthropogenic aerosols may affect cloud micro physical processes and subsequently cloud liquid water path via the so-called "second aerosol indirect effects". To obtain a better quantification of such effects the variability of the liquid water path is investigated to study the sensitivity of liquid water clouds to perturbations in the cloud droplet number concentration. For the statistical analysis the A-Train satellite constellation CCCM data product is used. We will analyze the ISCCP cloud class based correlation between the satellite-derived liquid water path and cloud droplet number concentration for liquid water clouds. Furthermore a possible new cloud classification for the high resolution CCCM data set will be presented. The goal of these studies is a better understanding and the assessment of the radiative forcing by the second aerosol indirect effects on liquid water clouds.

  15. The BALTEX Cloud Liquid Water Network: CLIWA-NET

    NASA Astrophysics Data System (ADS)

    Crewell, S.; Cliwa-Net Team

    2003-04-01

    The focus of the BALTEX Cloud Liquid Water Network (CLIWA-NET) is the observation of cloud liquid water and vertical cloud structures, and the evaluation and improvement of model cloud parameterizations. The prototype of a European Cloud observation Network consisting of a network of advanced ground-based remote sensing stations and satellite observations was successfully established within three measurement campaigns. While the first two campaigns (CNN I and II) were performed on a continental scale the third, the BALTEX BRIDGE CAMPAIGN (BBC) performed in conjunction with the 4D-Clouds project (see contribution by Venema et al.), concentrated on a regional network in the Netherlands. Macro- and microphysical cloud parameters were derived from AVHRR and AMSU satellite data. The BALTRAD radar network provided precipitation fields. All measurements were used to evaluate predictions of cloud parameters of four leading atmospheric models. Special focus was put on boundary layer clouds, the aspect of model resolution (vertical and horizontal), cloud overlap assumptions, and the daily cycle of cloudiness.

  16. 30 CFR 550.248 - What solid and liquid wastes and discharges information and cooling water intake information must...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...solid and liquid wastes and discharges...and cooling water intake information...OCEAN ENERGY MANAGEMENT, DEPARTMENT...solid and liquid wastes and discharges...and cooling water intake information...and domestic wastes, produced waters, and...

  17. 30 CFR 550.248 - What solid and liquid wastes and discharges information and cooling water intake information must...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...solid and liquid wastes and discharges...and cooling water intake information...OCEAN ENERGY MANAGEMENT, DEPARTMENT...solid and liquid wastes and discharges...and cooling water intake information...and domestic wastes, produced waters, and...

  18. 30 CFR 250.248 - What solid and liquid wastes and discharges information and cooling water intake information must...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...solid and liquid wastes and discharges...and cooling water intake information...OCEAN ENERGY MANAGEMENT, REGULATION...solid and liquid wastes and discharges...and cooling water intake information...and domestic wastes, produced waters, and...

  19. 30 CFR 550.248 - What solid and liquid wastes and discharges information and cooling water intake information must...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...solid and liquid wastes and discharges...and cooling water intake information...OCEAN ENERGY MANAGEMENT, DEPARTMENT...solid and liquid wastes and discharges...and cooling water intake information...and domestic wastes, produced waters, and...

  20. Quantitation of antioxidants in water samples using ionic liquid dispersive liquid-liquid microextraction followed by high-performance liquid chromatography-ultraviolet detection.

    PubMed

    Sobhi, Hamid Reza; Kashtiaray, Amir; Farahani, Hadi; Farahani, Mohammad Reza

    2011-01-01

    A simple and efficient method, ionic liquid-based dispersive liquid-liquid microextraction combined with high-performance liquid chromatography-ultraviolet detection (HPLC-UV), has been applied for the extraction and determination of some antioxidants (Irganox 1010, Irganox 1076 and Irgafos 168) in water samples. The microextraction efficiency factors were investigated and optimized: 1-hexyl-3-methylimidazolium hexafluorophosphate [C(6)MIM][PF(6)] (0.06 g) as extracting solvent, methanol (0.5 mL) as disperser solvent without salt addition. Under the selected conditions, enrichment factors up to 48-fold, limits of detection (LODs) of 5.0-10.0 ng/mL and dynamic linear ranges of 25-1500 ng/mL were obtained. A reasonable repeatability (RSD?11.8%, n=5) with satisfactory linearity (r(2)?0.9954) of the results illustrated a good performance of the presented method. The accuracy of the method was tested by the relative recovery experiments on spiked samples, with results ranging from 85 to 118%. Finally, the method was successfully applied for determination of the analytes in several real water samples. PMID:21171179

  1. Use of spacecraft data to derive regions on Mars where liquid water would be stable

    PubMed Central

    Lobitz, Brad; Wood, Byron L.; Averner, Maurice M.; McKay, Christopher P.

    2001-01-01

    Combining Viking pressure and temperature data with Mars Orbital Laser Altimeter topography data, we have computed the fraction of the martian year during which pressure and temperature allow for liquid water to be stable on the martian surface. We find that liquid water would be stable within the Hellas and Argyre basin and over the northern lowlands equatorward of about 40°. The location with the maximum period of stable conditions for liquid water is in the southeastern portion of Utopia Planitia, where 34% of the year liquid water would be stable if it were present. Locations of stability appear to correlate with the distribution of valley networks. PMID:11226204

  2. Liquid-metal/water interactions in a shock tube

    SciTech Connect

    Vukovic, G.; Corradini, M.L. [Univ. of Wisconsin, Madison, WI (United States). Nuclear Engineering and Engineering Physics Dept.

    1996-07-01

    To investigate liquid-metal (fuel)/water (coolant) interactions, a vertical shock tube has been designed and constructed. A series of tests was conducted with gallium, indium, lead, and tin as the fuel materials at either low (T{sub f} {approximately} 300 C) or high fuel temperature (T{sub f} {approximately} 600 C), with water at room temperature (low {Tc}) and in the range of T{sub c} = 56 to 67 C (high {Tc}), and with driving pressures from 0.25 to 1.22 MPa. These materials were tested to determine their compatibility for potential use in liquid-metal divertor systems for fusion power plants. The increase in fuel and water temperature, as well as the increase of driving pressure, caused more energetic interactions to occur. High T{sub f} tin and lead interactions, and high T{sub f} and {Tc} gallium and indium interactions were the most energetic. Stronger interactions produced finer debris fragments. In high T{sub f} gallium and indium interactions, small superficial oxidation was observed. For the first two pulses, larger ratios of compression-(compression of expansion vessel gas)to-expansion work correspond to the experiments with higher fuel and coolant temperatures. For the first pulse, only work ratio values of the most energetic experiments are larger than those of isothermal experiments. Consequently, for such experiments, the impulse values of second pulses are the largest. Higher values of the conversion ratio for the first pulse correspond to more energetic interactions. Even for the most energetic experiments, the conversion ratio is no higher than 1.2%, and no more than 15% (or a few millimeters-thick surface layer) of the initially loaded fuel participated in the interaction, assuming equal initial volumes of fuel and coolant.

  3. Determination of phthalate esters in bottled water using dispersive liquid–liquid microextraction coupled with GC-MS.

    PubMed

    Mousa, Amayreh; Basheer, Chanbasha; Al-Arfaj, Abdul Rahman

    2013-06-01

    Dispersive liquid-liquid microextraction method was developed for the determination of the amount of phthalate esters in bottled drinking water samples and dispersive liquid-liquid microextraction samples were analyzed by GC-MS. Various experimental conditions influencing the extraction were optimized. Under the optimized conditions, very good linearity was observed for all analytes in a range between 0.05 and 150 ?g/L with coefficient of determination (R²) between 0.995 and 0.999. The LODs based on S/N = 3 were 0.005-0.22 ?g/L. The reproducibility of dispersive liquid-liquid microextraction was evaluated. The RSDs were 1.3-5.2% (n = 3). The concentrations of phthalates were determined in bottled samples available in half shell. To understand the leaching profile of these phthalates from bottled water, bottles were exposed to direct sunlight during summer (temperature from 34-57°C) and sampled at different intervals. Result showed that the proposed dispersive liquid-liquid microextraction is suitable for rapid determination of phthalates in bottled water and di-n-butyl, butyl benzyl, and bis-2-ethylhexyl phthalate compounds leaching from bottles up to 36 h. Thereafter, degradation of phthalates was observed. PMID:23936915

  4. The oxygen isotope partition function ratio of water and the structure of liquid water

    USGS Publications Warehouse

    O'Neil, J.R.; Adami, L.H.

    1969-01-01

    By means of the CO2-equilibration technique, the temperature dependence and absolute values of the oxygen isotope partition function ratio of liquid water have been determined, often at 1?? intervals, from -2 to 85??. A linear relationship between In (Q2/Q1) (H2O) and T-1 was obtained that is explicable in terms of the Bigeleisen-Mayer theory of isotopic fractionation. The data are incompatible with conventional, multicomponent mixture models of water because liquid water behaves isotopically as a singly structured homogeneous substance over the entire temperature range studied. A two-species model of water is proposed in which approximately 30% of the hydrogen bonds in ice are broken on melting at 0?? and in which this per cent of monomer changes by only a small amount over the entire liquid range. Because of the high precision and the fundamental property determined, the isotopic fractionation technique is particularly well suited to the detection of thermal anomalies. No anomalies were observed and those previously reported are ascribed to under-estimates of experimental error.

  5. Ionic liquids for improving the extraction of NSAIDs in water samples using dispersive liquid-liquid microextraction by high performance liquid chromatography-diode array-fluorescence detection.

    PubMed

    Toledo-Neira, Carla; Álvarez-Lueje, Alejandro

    2015-03-01

    A rapid, sensitive and efficient analytical method based on the use of ionic liquids for determination of non-steroidal anti-inflammatory drugs (NSAIDs) in water samples was developed. High-performance liquid chromatography equipped with a diode array and fluorescence detector was used for quantification of ketoprofen, ibuprofen and diclofenac in tap and river water samples. This new method relies on the use of two ionic liquids with multiple functionalities: one functions as an extraction solvent (1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]), and the other changes the polarity in the aqueous medium (1-butyl-3-methylimidazolium tetrafluoroborate, ([BMIM][BF4]). Factors such as the type and volume of the ILs and dispersive solvent, sample volume, and centrifugation time were investigated and optimized. The optimized method exhibited good precision, with relative standard deviation values between 2% and 3%, for the three NSAIDs. Limits of detection achieved for all of the analytes were between 17 and 95 ng mL(-1), and the recoveries ranged from 89% to 103%. Furthermore, the enrichment factors ranged from 49 to 57. The proposed method was successfully applied to the analysis of NSAIDs in tap and river water samples. PMID:25618715

  6. Crystal polymorphism of a room-temperature ionic liquid, 1,3-dimethylimidazolium hexafluorophosphate: Calorimetric and structural studies of two crystal phases having melting points of ˜50 K difference

    NASA Astrophysics Data System (ADS)

    Endo, Takatsugu; Morita, Takeshi; Nishikawa, Keiko

    2011-12-01

    We found crystal polymorphism of a room-temperature ionic liquid (RTIL), 1,3-dimethylimidazolium hexafluorophosphate, by a laboratory-built calorimeter with a precise temperature controller. This polymorphism differs from hitherto reported phase behavior of other RTILs that the present RTIL lacks conformational flexibility in the associated ions. In addition, the observed difference between the melting points of two crystals, 364.3 and 314.3 K, is much larger than those reported for other polymorphic RTIL crystals. Their crystal structures were studied by Raman spectroscopy and X-ray powder diffraction. The origin of these characteristics is discussed in terms of entropy and cation-anion interactions.

  7. Monte Carlo simulation of electron dynamics in liquid water

    NASA Astrophysics Data System (ADS)

    Huthmacher, Klaus; Herzwurm, André; Gnewuch, Michael; Ritter, Klaus; Rethfeld, Baerbel

    2015-07-01

    We present a stochastic model for the energy loss of low-energy electrons (<100 eV) in water in the liquid phase. More precisely, we treat the electrons as independent particles and are thus able to model the time evolution of the kinetic energy of a single electron as a so-called pure jump process. Free electrons are created due to irradiation of an extreme ultraviolet femtosecond laser pulse. In our model, free electrons may interact with water molecules via elastic scattering and impact ionization. Moreover, we present numerical results for the kinetic energy of electrons during and after laser irradiation. Furthermore, we distinguish between primary and secondary electrons, where the latter are created by impact ionization. The numerical results show that creation of secondary electrons due to impact ionization occurs almost entirely during laser irradiation. After irradiation, only a small amount of the laser pulse energy remains in the electron system, while the majority is stored in holes of water molecules.

  8. DETERMINATION OF THE INSECT GROWTH REGULATOR METHOPRENE IN NATURAL WATERS BY CAPILLARY GAS-LIQUID CHROMATOGRAPHY

    EPA Science Inventory

    Residues of methoprene were measured in natural waters by capillary as liquid chromatography (GLG). Methoprene was extracted in the field by liquid-liquid partitioning with dichloromethane, transPorted to the laboratory, and extracted a second time with hexane. The extracts were ...

  9. Detection and characterization of liquid|solid and liquid|liquid|solid interfacial gradients of water nanodroplets in wet N-octyl-2-pyrrolidone.

    PubMed

    Hay, Christine E; Marken, Frank; Blanchard, G J

    2014-08-26

    We report on the rotational diffusion dynamics and fluorescence lifetime of lissamine rhodamine B sulfonyl chloride (LRSC) in two thin-film experimental configurations. These are liquid|solid interfaces, where N-octyl-2-pyrrolidone (NOP) containing water and ethylene glycol (EG) thin films are each supported on glass, and a liquid|liquid|solid interface where thin films of water and NOP, both supported on glass, are in contact with one another, forming an NOP|water interface. The reorientation dynamics and fluorescence lifetime of LRSC are measured as a function of distance from the NOP|glass and EG|glass interfaces and from the NOP|water and NOP|glass interfaces in the liquid|liquid|solid experimental configuration. Fluorescence anisotropy decay data from the liquid|solid systems reveal a liquid film depth-dependent gradient spanning tens of micrometers from the NOP|glass interface into the wet NOP phase, while this gradient is absent in EG. We interpret these findings in the context of a compositional gradient in the NOP phase. The spatially resolved fluorescence lifetime and anisotropy decay data for an NOP|water|glass interfacial structure exhibits the absence of a gradient in the anisotropy decay profile normal to the NOP|water interface and the presence of a fluorescence lifetime gradient as a function of distance from the NOP|water interface. The compositional heterogeneity for both interfacial systems is in the form of water nanodroplets in the NOP phase. We understand this compositional gradient in the context of the relative surface energies of the water, NOP, and glass components. PMID:25101792

  10. Conversion of lignocellulosics pretreated with liquid hot water to ethanol

    SciTech Connect

    Walsum, G.P. van; Laser, M.S.; Lynd, L.R. [Dartmouth College, Hanover, NH (United States)] [and others

    1996-12-31

    Lignocellulosic materials pretreated using liquid hot water (LHW) (220{degrees}C, 5 MPa, 120 s) were fermented to ethanol by batch simultaneous saccharification and fermentation (SSF) using Saccharomyces cerevisiae in the presence of Trichoderma reesei cellulose. SSF of sugarcane bagasse (as received), aspen chips (smallest dimension 3 mm), and mixed hardwood flour (-60 +70 mesh) resulted in 90% conversion to ethanol in 2-5 d at enzyme loadings of 15-30 FPU/g. In most cases, 90% of the final conversion was achieved within 75 h of inoculation. Comminution of the pretreated substrates did not affect the conversion to ethanol. The hydrolysate produced from the LHW pretreatment showed slight inhibition of batch growth of S. cerevisiae. Solids pretreated at a concentration of 100 g/L were as reactive as those pretreated at a lower concentration, provided that the temperature was maintained at 220{degrees}C. 51 refs., 3 figs., 4 tabs.

  11. Electrokinetic Hydrogen Generation from Liquid WaterMicrojets

    SciTech Connect

    Duffin, Andrew M.; Saykally, Richard J.

    2007-05-31

    We describe a method for generating molecular hydrogen directly from the charge separation effected via rapid flow of liquid water through a metal orifice, wherein the input energy is the hydrostatic pressure times the volume flow rate. Both electrokinetic currents and hydrogen production rates are shown to follow simple equations derived from the overlap of the fluid velocity gradient and the anisotropic charge distribution resulting from selective adsorption of hydroxide ions to the nozzle surface. Pressure-driven fluid flow shears away the charge balancing hydronium ions from the diffuse double layer and carries them out of the aperture. Downstream neutralization of the excess protons at a grounded target electrode produces gaseous hydrogen molecules. The hydrogen production efficiency is currently very low (ca. 10-6) for a single cylindrical jet, but can be improved with design changes.

  12. Green methodology based on dispersive liquid-liquid microextraction and micellar electrokinetic chromatography for 5-nitroimidazole analysis in water samples.

    PubMed

    Hernández-Mesa, Maykel; Cruces-Blanco, Carmen; García-Campaña, Ana M

    2013-09-01

    Dispersive liquid-liquid microextraction has been proposed as an extraction technique combined with micellar electrokinetic chromatography (MEKC) for the analysis of eight 5-nitroimidazole compounds, including some metabolites, in water samples. Determination has been carried out using a diode array detector, employing 20 mM sodium phosphate and 150 mM SDS as separation buffer. Separation has taken place under a voltage of 25 kV and a temperature of 20°C. Samples were prepared in a buffer without micelles and they were hydrodynamically injected at 50 mbar for 25 s, producing a sweeping effect on the analytes for increasing sensitivity. Different factors involved in the dispersive liquid-liquid microextraction procedure were optimized, such as sample pH, nature, and volume of extraction and dispersive solvents in the mixture, percentage of NaCl added to sample and shaking time after the injection of the extraction and dispersive solvents. The method was characterized for water samples, achieving detection limits lower than 2.4 ?g/L. Trueness was checked in river, tap, and bottled water. Dispersive liquid-liquid microextraction combined with MEKC constitutes an easy, cheap, and green alternative for 5-nitroimidazole analysis in environmental water samples. PMID:23857677

  13. Turbulence, Condensation, and Liquid Water Transport in Numerically Simulated Nonprecipitating Stratocumulus Clouds

    Microsoft Academic Search

    Shouping Wang; Qing Wang; Graham Feingold

    2003-01-01

    Condensation and turbulent liquid water transport in stratocumulus clouds involve complicated interactions between turbulence dynamics and cloud microphysical processes, and play essential roles in defining the cloud structure. This work aims at understanding this dynamical-microphysical interaction and providing information necessary for parameterizations of the ensemble mean condensation rate and turbulent fluxes of liquid water variables in a coupled turbulence-microphysics model.

  14. ASSESSMENT OF THE LIQUID WATER CONTENT OF SUMMERTIME AEROSOL IN THE SOUTHEAST UNITED STATES

    EPA Science Inventory

    The concentration of aerosol liquid water mass represents an important parameter for understanding the physical properties of PM2.5 in the atmosphere. Increases in ambient relative humidity can increase aerosol liquid water and thus the composite particle mass and particle volu...

  15. Pore-Level Liquid Water Transport Through Composite Diffusion Media of PEMFC

    E-print Network

    Pore-Level Liquid Water Transport Through Composite Diffusion Media of PEMFC Yan Ji, Gang Luo, The Pennsylvania State University, University Park, Pennsylvania 16802, USA Liquid water transport at the pore of carbon paper GDL and a regular MPL made of carbon black and poly tetrafluoroethylene , the TEPN

  16. A single-bond approach to orientation-dependent interactions and its implications for liquid water

    E-print Network

    Torquato, Salvatore

    structure, at least in the vicinity of the triple point, is dominated by repulsive interactions. In contrastA single-bond approach to orientation-dependent interactions and its implications for liquid water of state reproduces the distinguishing thermodynamic features of liquid water. In contrast to previous

  17. A Fixed Point Charge Model for Water Optimized to the Vapor-Liquid Coexistence Properties

    E-print Network

    A Fixed Point Charge Model for Water Optimized to the Vapor-Liquid Coexistence Properties Jeffrey R@ipst.umd.edu #12;1 Abstract A new fixed-point charge potential model for water has been developed, targeting the accurate prediction of the vapor-liquid coexistence properties over a broad temperature range. The model

  18. Living in a physical world IX. Making and maintaining liquid water

    Microsoft Academic Search

    Steven Vogel

    2006-01-01

    Metabolically active organisms contain water in its liquid phase – I believe no exceptions are known. Life’s domain consists of the intersection of the circumstances under which liquid water will persist and those at the earth’s surface – except as we artifi cially maintain some bit of that domain elsewhere. No single phase of a single compound so characterizes the

  19. John Arthur McLees, Jr. Vapor-Liquid Equilibrium of Monoethanolamine/Piperazine/Water at

    E-print Network

    Rochelle, Gary T.

    Copyright by John Arthur McLees, Jr. 2006 #12;Vapor-Liquid Equilibrium of Monoethanolamine/Piperazine/Water in Engineering The University of Texas at Austin May, 2006 #12;Vapor-Liquid Equilibrium of Monoethanolamine/Piperazine/Water games, and road trips that I am very excited to be staying here in Austin to watch him progress through

  20. Near-Global Survey of Effective Droplet Radii in Liquid Water Clouds Using ISCCP Data

    Microsoft Academic Search

    Qingyuan Han; William B. Rossow; Andrew A. Lacis

    1994-01-01

    A global survey of cloud particle size variations can provide crucial constraints on how cloud processes determine cloud liquid water contents and their variation with temperature, and further, may indicate the magnitude of aerosol effects on clouds. A method, based on a complete radiative transfer model for AVHRR-measured radiances, is described for retrieving cloud particle radii in liquid water clouds

  1. Research Paper Searching for Liquid Water in Europa by Using Surface Observatories

    Microsoft Academic Search

    KRISHAN K. KHURANA; MARGARET G. KIVELSON; CHRISTOPHER T. RUSSELL

    Liquid water, as far as we know, is an indispensable ingredient of life. Therefore, locating reservoirs of liquid water in extraterrestrial bodies is a necessary prerequisite to searching for life. Recent geological and geophysical observations from the Galileo spacecraft, though not unambiguous, hint at the possibility of a subsurface ocean in the Jovian moon Europa. After summarizing present evidence for

  2. Liquid Crystalline Properties of Amyloid Protein Fibers in Water

    NASA Astrophysics Data System (ADS)

    Mezzenga, Raffaele; Jung, Jin-Mi

    2010-03-01

    We have studied the liquid crystalline features of two colloidal systems consisting of food protein amyloid fibrils in water, obtained by heat-denaturation and aggregation of ?-lactoglobulin, a globular dairy protein. The resulting fibrils, have a monodisperse cross section of about 4 nm and two groups of polydisperse contour lengths: (i) fibrils 1-10 ?m long, showing semiflexible polyeletrolyte-like behaviour and (ii) rigid rods 100-200 nm long. In both systems, the fibers are highly charged (+5 e/nm) and stable in water at low ionic strength (0.01 M) and low pH (pH 2). The physical properties of these systems are studied using a polymer physics approach and phase diagrams of these two systems are obtained by changing concentration and pH. Both systems exhibit rich phase behaviours. Interestingly, the experimentally measured isotropic-nematic phase transition was found to occur at concentrations more than one order of magnitude lower than what expected based on Onsager theory. Experimental results are revisited in terms of the Flory theory developed for rigid polymers in solvent of varying conditions.

  3. Development of a dispersive liquid–liquid microextraction method for organophosphorus flame retardants and plastizicers determination in water samples

    Microsoft Academic Search

    M. García-López; I. Rodríguez; R. Cela

    2007-01-01

    A fast, inexpensive and efficient sample preparation method for the determination of 10 organophosphorus compounds in water samples is presented. Analytes were extracted using the dispersive liquid–liquid microextraction (DLLME) technique and determined by gas chromatography with nitrogen–phosphorus detection (GC-NPD). The influence of several variables (e.g. type and volume of dispersant and extraction solvents, ionic strength, shaking time and mode, etc.)

  4. Model for the structure of the liquid water network

    SciTech Connect

    Grunwald, E.

    1986-09-17

    The state of a water molecule in liquid water is defined by its time-average network environment. Two states are characterized. State A is the familiar four-coordinated state of the Bernal-Fowler model with tetrahedral hydrogen bonds. State B is five-coordinated. Reexamination of the static dielectric constant by the method of Oster and Kirkwood confirms the marked polar character of the four-coordinated state but shows that the five-coordinated state is only about half as polar. Explicit five-coordinated models are proposed which are consistent with polarity and satisfy constraints of symmetry and hydrogen-bond stoichiometry. The potential energy due to the dipole-dipole interaction of the central water molecule with its time-average solvent network is derived without additional parameters. This permits prediction of barriers to rotation, frequencies for hindered rotation and liberation in the network, and ..delta..H/sub A,B/ and ..delta..S/sub A,B/. The results are in substantial agreement with relevant experiments. In particular, the barriers to rotation permit a consistent interpretation of the dielectric relaxation spectrum. The relative importance of the two states varies predictably with the property being examined, and this can account for some of the schizophrenia of aqueous properties. Since the two-state model is based on time-average network configurations, it does not apply when the time scale of observation is short compared to network frequencies, i.e., at infrared frequencies where continuum models may be successful.

  5. Simulating liquid water for determining its structural and transport properties.

    PubMed

    Arismendi-Arrieta, Daniel; Medina, Juan S; Fanourgakis, George S; Prosmiti, Rita; Delgado-Barrio, Gerardo

    2014-01-01

    Molecular dynamics simulations are carried out for calculating structural and transport properties of pure liquid water, such as radial distribution functions and self-diffusion and viscosity coefficients, respectively. We employed reparameterized versions of the ab initio water potential by Niesar, Clementi and Corongiu (NCC). In order to investigate the role of the electrostatic contribution, the partial charges of the NCC model are adjusted so that to reproduce the dipole moment values of the SPC/E, SPC/Fw and TIP4P/2005 water models. The single and collective transport coefficients are obtained by employing the Green-Kubo relations at various temperatures. Additionally, in order to overcome convergence difficulties arising from the long correlation times of the stress-tensor autocorrelation functions, a previously reported fitting scheme was employed. The present results indicate that there is a significant relationship between the dipole moment value of the model, and the calculated transport coefficients. We found that by adjusting the molecular dipole moment of the NCC to the value of the TIP4P/2005, the obtained values for the self-diffusion and viscosity coefficients are in better agreement with experiment, compared to the values obtained with the original NCC model. Even though the predictions of the present model exhibits an overall correct behavior, we conclude that further improvements are still required. In order to achieve that, a careful reparameterization of the repulsion-dispersion terms of the potential model is proposed. Also, the effect of the inclusion of many-body effects such as polarizability, should also be investigated. PMID:23415103

  6. Occurrence, liquid water content, and fraction of supercooled water clouds from combined CALIOP\\/IIR\\/MODIS measurements

    Microsoft Academic Search

    Yongxiang Hu; Sharon Rodier; Kuan-man Xu; Wenbo Sun; Jianping Huang; Bing Lin; Pengwang Zhai; Damien Josset

    2010-01-01

    The CALIOP depolarization measurements, combined with backscatter intensity measurements, are effective in discriminating between water clouds and ice clouds. The same depolarization measurements can also be used for estimating liquid water content information. Using cloud temperature information from the collocated infrared imaging radiometer measurements and cloud water paths from collocated MODIS measurements, this study compiles global statistics of the occurrence

  7. Improved compensation of liquid water spectral effects in the DOAS analysis (410-500 nm)

    NASA Astrophysics Data System (ADS)

    Peters, Enno; Wittrock, Folkard; Richter, Andreas; Burrows, John P.

    2014-05-01

    It is well known that spectral effects of liquid water are present in DOAS measurements above the ocean. Usually, the effects of surface reflectance are successfully compensated by a broadband polynomial. In addition, the absorption of liquid water and Vibrational Raman Scattering (VRS) in the water body can be considered in the DOAS fit by including the respective (literature) cross-sections. Here, ship-based MAX-DOAS measurements collected during the TransBrom campaign across the Western Pacific in October 2009 are presented. For these observations, the telescope of the instrument was pointing directly into very clear natural sea-water. These measurements were performed in a way minimizing atmospheric contributions to the resulting optical depth while at the same time maximizing the liquid water influence. Average light paths of up to 50 m under water were achieved. Systematic structures were found to remain in DOAS fit residuals in the visible wavelength range even if liquid water spectral effects are included in the fit. It can therefore be concluded that currently available cross-sections compensate liquid water effects only insufficiently in DOAS applications. Thus, empirical correction spectra for uncertainties of currently available liquid water absorption and VRS cross-sections were determined from the MAX-DOAS measurements. The influence of the retrieved correction spectra on fit quality and NO2 slant columns is estimated in MAX-DOAS measurements, both towards the water surface and at small elevation angles above the horizon.

  8. Liquid-liquid phase transition model incorporating evidence for ferroelectric state near the lambda-point anomaly in supercooled water

    E-print Network

    Peter O. Fedichev; Leonid I. Menshikov

    2012-01-30

    We propose a unified model combining the first-order liquid-liquid and the second-order ferroelectric phase transitions models and explaining various features of the $\\lambda$-point of liquid water within a single theoretical framework. It becomes clear within the proposed model that not only does the long-range dipole-dipole interaction of water molecules yield a large value of dielectric constant $\\epsilon$ at room temperatures, our analysis shows that the large dipole moment of the water molecules also leads to a ferroelectric phase transition at a temperature close to the lambda-point. Our more refined model suggests that the phase transition occurs only in the low density component of the liquid and is the origin of the singularity of the dielectric constant recently observed in experiments with supercooled liquid water at temperature T~233K. This combined model agrees well with nearly every available set of experiments and explains most of the well-known and even recently obtained results of MD simulations.

  9. Pressure Dependence of the Liquid–Liquid Phase Transition of Nanopore Water Doped Slightly with Hydroxylamine, and a Phase Behavior Predicted for Pure Water

    NASA Astrophysics Data System (ADS)

    Nagoe, Atsushi; Iwaki, Shinji; Oguni, Masaharu; Tôzaki, Ken-ichi

    2014-09-01

    Phase transition behaviors of confined pure water and confined water doped with a small amount of hydroxylamine (HA) with a mole fraction of xHA = 0.03 were examined by high-pressure differential thermal analyses at 0.1, 50, 100, and 150 MPa; the average diameters of silica pores used were 2.0 and 2.5 nm. A liquid–liquid phase transition (LLPT) of the confined HA-doped water was clearly observed and its pressurization effect could be evaluated, unlike in the experiments on undoped water. It was found that pressurization causes the transition temperature (Ttrs) to linearly decrease, indicating that the low-temperature phase has a lower density than the high-temperature one. Transition enthalpy (?trsH) decreased steeply with increasing pressure. Considering the linear decrease in Ttrs with increasing pressure, the steep decrease in ?trsH indicates that the LLPT effect of the HA-doped water attenuates with pressure. We present a new scenario of the phase behavior concerning the LLPT of pure water based on the analogy from the behavior of slightly HA-doped water, where a liquid–liquid critical point (LLCP) and a coexistence line are located in a negative-pressure regime but not in a positive-pressure one. It is reasonably understood that doping a small amount of HA into water results in negative chemical pressurization and causes the LLPT to occur even at ambient pressure.

  10. Boson Peak in Deeply Cooled Confined Water: A Possible Way to Explore the Existence of the Liquid-to-Liquid Transition in Water

    NASA Astrophysics Data System (ADS)

    Wang, Zhe; Liu, Kao-Hsiang; Le, Peisi; Li, Mingda; Chiang, Wei-Shan; Leão, Juscelino B.; Copley, John R. D.; Tyagi, Madhusudan; Podlesnyak, Andrey; Kolesnikov, Alexander I.; Mou, Chung-Yuan; Chen, Sow-Hsin

    2014-06-01

    The boson peak in deeply cooled water confined in nanopores is studied with inelastic neutron scattering. We show that in the (P, T) plane, the locus of the emergence of the boson peak is nearly parallel to the Widom line below ˜1600 bar. Above 1600 bar, the situation is different and from this difference the end pressure of the Widom line is estimated. The frequency and width of the boson peak correlate with the density of water, which suggests a method to distinguish the hypothetical "low-density liquid" and "high-density liquid" phases in deeply cooled water.

  11. Determination of water in room temperature ionic liquids by cathodic stripping voltammetry at a gold electrode.

    PubMed

    Zhao, Chuan; Bond, Alan M; Lu, Xunyu

    2012-03-20

    An electrochemical method based on cathodic stripping voltammetry at a gold electrode has been developed for the determination of water in ionic liquids. The technique has been applied to two aprotic ionic liquids, (1-butyl-3-ethylimidazolium tetrafluoroborate and 1-butyl-3-methylimidazolium hexafluorophosphate), and two protic ionic liquids, (bis(2-hydroxyethyl)ammonium acetate and triethylammonium acetate). When water is present in an ionic liquid, electrooxidation of a gold electrode forms gold oxides. Thus, application of an anodic potential scan or holding the potential of the electrode at a very positive value leads to accumulation of an oxide film. On applying a cathodic potential scan, a sensitive stripping peak is produced as a result of the reduction of gold oxide back to gold. The magnitude of the peak current generated from the stripping process is a function of the water concentration in an ionic liquid. The method requires no addition of reagents and can be used for the sensitive and in situ determination of water present in small volumes of ionic liquids. Importantly, the method allows the determination of water in the carboxylic acid-based ionic liquids, such as acetate-based protic ionic liquids, where the widely used Karl Fischer titration method suffering from an esterification side reaction which generates water as a side product. PMID:22372467

  12. PCR-Restriction Fragment Length Polymorphism Method for Detection of Cyclospora cayetanensis in Environmental Waters without Microscopic Confirmation

    PubMed Central

    Shields, Joan M.; Olson, Betty H.

    2003-01-01

    We developed an alternative nested-PCR-restriction fragment length polymorphism (RFLP) protocol for the detection of Cyclospora cayetanensis in environmental samples that obviates the need for microscopic examination. The RFLP method, with the restriction enzyme AluI, differentiates the amplified target sequence from C. cayetanensis from those that may cross-react. This new protocol was used to reexamine a subset (121 of 180) of surface water samples. Samples previously positive when the CYCF3E and CYCR4B primers (33) and RFLP with MnlI (20) were used were also PCR positive with the new primers; however, they were RFLP negative. We verified, by sequencing these amplicons, that while two were most likely other Cyclospora species, they were not C. cayetanensis. We can detect as few as one oocyst seeded into an autoclaved pellet flocculated from 10 liters of surface water. This new protocol should be of great use for environmental microbiologists and public health laboratories. PMID:12902255

  13. Water in ionic liquids at electrified interfaces: the anatomy of electrosorption.

    PubMed

    Feng, Guang; Jiang, Xikai; Qiao, Rui; Kornyshev, Alexei A

    2014-11-25

    Complete removal of water from room-temperature ionic liquids is nearly impossible. For the electrochemical applications of ionic liquids, how water is distributed in the electrical double layers when the bulk liquids are not perfectly dry can potentially determine whether key advantages of ionic liquids, such as a wide electrochemical window, can be harnessed in practical systems. In this paper, we study the adsorption of water on electrode surfaces in contact with humid, imidazolium-based ionic liquids using molecular dynamics simulations. The results revealed that water molecules tend to accumulate within sub-nanometer distance from charged electrodes. At low amount of water in the bulk, the distributions of ions and of electrostatic potential in the double layer are affected weakly by the presence of water, but the spatial distribution of water molecules is strongly dependent on both. The preferential positions of water molecules in double layers are determined by the balance of several factors: the tendency to follow the positions of the maximal absolute value of the electrical field, the association with their ionic surroundings, and the propensity to settle at positions where more free space is available. The balance between these factors changes with charging the electrode, but the adsorption of water generally increases with voltage. The ion specificity of water electrosorption is manifested in the stronger presence of water near positive electrodes (where anions are the counterions) than near negative electrodes (where cations are counterions). These predictions await experimental verification. PMID:25341189

  14. Dissociative ionization of liquid water induced by vibrational overtone excitation

    SciTech Connect

    Natzle, W.C.

    1983-03-01

    Photochemistry of vibrationally activated ground electronic state liquid water to produce H/sup +/ and OH/sup -/ ions has been initiated by pulsed, single-photon excitation of overtone and combination transitions. Transient conductivity measurements were used to determine quantum yields as a function of photon energy, isotopic composition, and temperature. The equilibrium relaxation rate following perturbation by the vibrationally activated reaction was also measured as a function of temperature reaction and isotopic composition. In H/sub 2/O, the quantum yield at 283 +- 1 K varies from 2 x 10/sup -9/ to 4 x 10/sup -5/ for wave numbers between 7605 and 18140 cm/sup -1/. In D/sub 2/O, the dependence of quantum yield on wavelength has the same qualitative shape as for H/sub 2/O, but is shifted to lower quantum yields. The position of a minimum in the quantum yield versus hydrogen mole fraction curve is consistent with a lower quantum yield for excitation of HOD in D/sub 2/O than for excitation of D/sub 2/O. The ionic recombination distance of 5.8 +- 0.5 A is constant within experimental error with temperature in H/sub 2/O and with isotopic composition at 25 +- 1/sup 0/C.

  15. 30 CFR 550.217 - What solid and liquid wastes and discharges information and cooling water intake information must...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...solid and liquid wastes and discharges...information and cooling water intake information...OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF...solid and liquid wastes and discharges...information and cooling water intake information...solid and liquid wastes and discharges...information and cooling water intake...

  16. 30 CFR 250.217 - What solid and liquid wastes and discharges information and cooling water intake information must...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...solid and liquid wastes and discharges...information and cooling water intake information...OF OCEAN ENERGY MANAGEMENT, REGULATION...solid and liquid wastes and discharges...information and cooling water intake information...solid and liquid wastes and discharges...information and cooling water intake...

  17. 30 CFR 250.217 - What solid and liquid wastes and discharges information and cooling water intake information must...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...solid and liquid wastes and discharges...information and cooling water intake information...Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT...solid and liquid wastes and discharges...information and cooling water intake information...solid and liquid wastes and discharges...information and cooling water intake...

  18. Revisiting a many-body model for water based on a single polarizable site: From gas phase clusters to liquid and air/liquid water systems

    NASA Astrophysics Data System (ADS)

    Réal, Florent; Vallet, Valérie; Flament, Jean-Pierre; Masella, Michel

    2013-09-01

    We present a revised version of the water many-body model TCPE [M. Masella and J.-P. Flament, J. Chem. Phys. 107, 9105 (1997)], which is based on a static three charge sites and a single polarizable site to model the molecular electrostatic properties of water, and on an anisotropic short range many-body energy term specially designed to accurately model hydrogen bonding in water. The parameters of the revised model, denoted TCPE/2013, are here developed to reproduce the ab initio energetic and geometrical properties of small water clusters (up to hexamers) and the repulsive water interactions occurring in cation first hydration shells. The model parameters have also been refined to reproduce two liquid water properties at ambient conditions, the density and the vaporization enthalpy. Thanks to its computational efficiency, the new model range of applicability was validated by performing simulations of liquid water over a wide range of temperatures and pressures, as well as by investigating water liquid/vapor interfaces over a large range of temperatures. It is shown to reproduce several important water properties at an accurate enough level of precision, such as the existence liquid water density maxima up to a pressure of 1000 atm, the water boiling temperature, the properties of the water critical point (temperature, pressure, and density), and the existence of a "singularity" temperature at about 225 K in the supercooled regime. This model appears thus to be particularly well-suited for characterizing ion hydration properties under different temperature and pressure conditions, as well as in different phases and interfaces.

  19. Free energy surface of ST2 water near the liquid-liquid phase transition Peter H. Poole, Richard K. Bowles, Ivan Saika-Voivod, and Francesco Sciortino

    E-print Network

    Sciortino, Francesco

    Free energy surface of ST2 water near the liquid-liquid phase transition Peter H. Poole, Richard K://jcp.aip.org/about/rights_and_permissions #12;THE JOURNAL OF CHEMICAL PHYSICS 138, 034505 (2013) Free energy surface of ST2 water near umbrella sampling Monte Carlo simulations to evaluate the free energy surface of the ST2 model of water

  20. Simulating water with the SCCDFTB method: from molecular clusters to the liquid state

    PubMed Central

    Hu, Hao; Lu, Zhenyu; Elstner, Marcus; Hermans, Jan; Yang, Weitao

    2008-01-01

    The recently developed self-consistent-charge density functional tight binding (SCCDFTB) method provides an accurate and inexpensive quantum mechanical solution to many molecular systems of interests. To examine the performance of the SCCDFTB method on (liquid) water, the most fundamental yet indispensable molecule in biological systems, we have reported here the simulation results of water in sizes ranging from molecular clusters to the liquid state. The latter simulation was achieved through the use of the linear scaling divide-and-conquer approach. The results of liquid water simulation indicated that the SCCDFTB method can describe the structural and energetics of liquid water in qualitative agreement with experiments, while the results of water clusters suggested potential future improvements that may apply to the SCCDFTB method. PMID:17474727

  1. Estimated accuracy of ground-based liquid water measurements during FIRE

    NASA Technical Reports Server (NTRS)

    Snider, Jack B.

    1990-01-01

    Since on goal of the First ISCCP Regional Experiment (FIRE) project is to improve our understanding of the relationships between cloud microphysics and cloud reflectivity, it is important that the accuracy of remote liquid measurements by microwave radiometry be thoroughly understood. The question is particularly relevant since the uncertainty in the absolute value of the radiometric liquid measurement is greatest at low liquid water contents (less than 0.1 mm). However it should be stressed that although uncertainty exists in the absolute value of liquid, it is well known that the observed radiometric signal is proportional to the amount of liquid in the antenna beam. As a result, changes in amounts of liquid are known to greater accuracy than the absolute value, which may contain a bias. Here, an assessment of the liquid measurement accuracy attained at San Nicolas Island (SNI) is presented. The vapor and liquid water data shown were computed from the radiometric brightness temperatures using statistical retrieval algorithms. The retrieval coefficients were derived from the 69 soundings made by Colorado State University during the SNI observations. Sources of error in the vapor and liquid measurements include cross-talk in the retrieval algorithms (not a factor at low liquid contents), uncertainties in the brightness temperature measurement, and uncertainties in the vapor and liquid attenuation coefficients. The relative importance of these errors is discussed. For the retrieval of path-integrated liquid water, the greatest uncertainty is caused by the temperature dependence of the absorption at microwave frequencies. As a result, the accuracy of statistical retrieval of liquid depends to large measure upon how representative the a priori radiosonde data are of the conditions prevailing during the measurements. The microwave radiometer measurements at SNI were supplemented by an infrared (IR) radiometer modified for measurement of cloud-base temperature. Thus, the IR system provides the means to incorporate continuous measurements of the liquid temperature into the retrieval process.

  2. Water-saving liquid-gas conditioning system

    DOEpatents

    Martin, Christopher; Zhuang, Ye

    2014-01-14

    A method for treating a process gas with a liquid comprises contacting a process gas with a hygroscopic working fluid in order to remove a constituent from the process gas. A system for treating a process gas with a liquid comprises a hygroscopic working fluid comprising a component adapted to absorb or react with a constituent of a process gas, and a liquid-gas contactor for contacting the working fluid and the process gas, wherein the constituent is removed from the process gas within the liquid-gas contactor.

  3. Measurements of the total transmittance of the solar radiation through an absorbing black liquid water

    Microsoft Academic Search

    B. J. Huang; S. Nieh

    1979-01-01

    The transmittance of black liquids is important to studies of solar radiation absorbers for solar energy applications and in studies of water quality in lakes and rivers. The paper presents measurements of the total transmittance of solar radiation through a layer of black water. Sunlight which has passed through a layer of black dyed water held in an open container

  4. NATURAL RADIONUCLIDES MEASUREMENTS IN DRINKING WATER BY LIQUID SCINTILLATION COUNTING. METHODS AND RESULTS

    E-print Network

    been used in this work. Some brands of bottled water were examined too, both for testing methodsNATURAL RADIONUCLIDES MEASUREMENTS IN DRINKING WATER BY LIQUID SCINTILLATION COUNTING. METHODS content in water intended for human consumption has been brought to public attention by the recent Council

  5. Reference Correlations for Thermophysical Properties of Liquid Water Jaroslav Ptek, Jan Hrub,a...

    E-print Network

    Magee, Joseph W.

    Reference Correlations for Thermophysical Properties of Liquid Water at 0.1 MPa Jaroslav Pátek, Jan Association for the Properties of Water and Steam IAPWS . The equations presented here are simple enough capacity; speed of sound; thermal conductivity; ther- modynamic properties; viscosity; water. CONTENTS 1

  6. The Role of Confined Water in Ionic Liquid Electrolytes for Dye-Sensitized Solar Cells

    E-print Network

    Goddard III, William A.

    The Role of Confined Water in Ionic Liquid Electrolytes for Dye- Sensitized Solar Cells Jiwon Jeon School of Energy Environment Water Sustainability (EEWS), Korea Advanced Institute of Science. discovered that 4-10 wt % water absorbs into ILs that contain bulky anions, and Cammarata et al. found

  7. A high-quality x-ray scattering experiment on liquid water

    Microsoft Academic Search

    G. L. Hura; J. M. Sorenson; R. M. Glaeser; T. Head-Gordon

    The structural investigation of water has a strong historical precedence, tracing roots at least as far back as Roentgen's early paper on the structure of water and the explanation of its density maximum. In principle, an accurate characterization of the molecular structure of liquid water can be found from solution scattering experiments. The structural information can be derived by back-

  8. Laser-based diagnostics for the measurement of liquid water film thickness.

    PubMed

    Greszik, Daniel; Yang, Huinan; Dreier, Thomas; Schulz, Christof

    2011-02-01

    Three different diagnostic techniques are investigated for measurement of the thickness of liquid water films deposited on a transparent quartz plate. The methods are based on laser-induced fluorescence (LIF) from low concentrations of a dissolved tracer substance and spontaneous Raman scattering of liquid water, respectively, both excited with 266?nm of radiation, and diode laser absorption spectroscopy (DLAS) in the near-infrared spectral region. Signal intensities are calibrated using liquid layers of known thickness between 0 and 1000??m. When applied to evaporating liquid water films, the thickness values derived from the direct DLAS and Raman scattering measurements correlate well with each other as a function of time after the start of data recording, while the LIF signal derived thickness values decrease faster with time due to selective tracer evaporation from the liquid. The simultaneous application of the LIF with a tracer-free detection technique can serve as an in situ reference for quantitative film thickness measurements. PMID:21283221

  9. Macroemulsions of liquid and supercritical CO{sub 2}-in-water and water-in-liquid CO{sub 2} stabilized by fine particles

    SciTech Connect

    Golomb, D.; Barry, E.; Ryan, D.; Swett, P.; Duan, H. [University of Massachusetts Lowell, Lowell, MA (United States)

    2006-04-12

    Liquid and supercritical carbon dioxide-in-water (C/W) and water-in-carbon dioxide (W/C) macroemulsions (Pickering emulsions) stabilized by fine particles were created in a high-pressure batch reactor. C/W macroemulsions form when hydrophilic particles, such as pulverized limestone, sand, flyash, shale, and lizardite, a rock rich in magnesium silicate, are used as stabilizers; W/C macroemulsions form when hydrophobic particles, such as Teflon powder, activated carbon, carbon black, and pulverized coal, are used as stabilizers. C/W macroemulsions form with both liquid and supercritical CO{sub 2}, C/W macroemulsions consist of dispersed droplets of liquid or supercritical CO{sub 2} sheathed with particles in water; W/C macroemulsions consist of droplets of water sheathed with particles dispersed in liquid CO{sub 2}. The sheathed droplets are called globules. The globule diameter is largely dependent on the shear force imparted by mixing the two fluids, CO{sub 2} and H{sub 2O. The particle size needs to be adjusted to the dispersed droplet diameter; a practical ratio was found to be 1:20. In a batch reactor with a magnetic stir bar rotating at 1300 rpm, liquid CO{sub 2} produced typical globule diameters in the 200-300 mu m range, whereas supercritical CO{sub 2} produced smaller globules, in the 100-150 mu m range.

  10. Quaternary liquid/liquid equilibria of sodium sulfate, sodium sulfite and water with two solvents: Acetone and 2-propanol

    SciTech Connect

    Schiozer, A.L.

    1994-03-01

    Aqueous solutions of sodium sulfate and sodium sulfite are produced from sodium carbonate in flue-gas scrubbers; recovery of these salts often requires multi-effect evaporators; however, a new energy-efficient unit operation called extractive crystallization has been shown to have reduced energy costs. In this process, an organic solvent is added to the aqueous salt solution to precipitate salt. Acetone is a suitable solvent for this process, better than 2-propanol. Liquid/liquid/solid equilibria for ternary systems containing a salt, water, and an organic solvent were measured. Systems investigated were sodium sulfite/water/acetone and sodium sulfite/water/2-propanol. Experiments were conducted at salt saturation covering a temperature range between the lower consolute temperature and 48.6{degrees}C. In the attempt to improve the extractive crystallization process for recovery of sodium sulfate from flue-gas scrubbers, attention was given to a feed containing a mixture of sodium sulfite and sodium sulfate. Liquid-liquid equilibria for quaternary systems containing two salts, water, and an organic solvent were experimentally determined at 35{degrees}C. The systems investigated were sodium sulfate/sodium sulfite/water/acetone and sodium sulfate/sodium sulfite/water/2propanol. The systems were studied at three salt ratios. For each salt ratio, experiments were conducted starting at saturation, water was then added until the one-phase region was reached. Mixtures of the two salts proved to have a small disadvantage relative to the 100 % sulfate feed process. Therefore, a sulfate-based extractive crystallization process is recommended.

  11. Coating permits use of strain gage in water and liquid hydrogen

    NASA Technical Reports Server (NTRS)

    Berven, B. B.

    1966-01-01

    Strain gage installation covered with a three-layer coating of commercial materials makes measurements in water and liquid hydrogen. It consists of a selected foil strain gage bonded with a modified commercial heat-curring epoxy cement. The outer protective layer of the gage installation may develop cracks when immersed in liquid hydrogen.

  12. Thermodynamics of Icing Cylinder for Measurements of Liquid Water Content in Supercooled Clouds

    Microsoft Academic Search

    I. P. Mazin; A. V. Korolev; A. Heymsfield; G. A. Isaac; S. G. Cober

    2001-01-01

    The Rosemount Icing Detector (RICE) has been used extensively over the last three decades for aircraft measurements of the rate of ice riming in supercooled liquid and mixed clouds. Because of difficulties related to calibration and postprocessing, the RICE probe was mainly used as an indicator of the presence of supercooled liquid water. The accuracy of the RICE probe for

  13. Dynamics of Isolated Water Molecules in a Sea of Ions in a Room Temperature Ionic Liquid

    E-print Network

    Fayer, Michael D.

    Dynamics of Isolated Water Molecules in a Sea of Ions in a Room Temperature Ionic Liquid Daryl B2O molecules in the room temperature ionic liquid (RTIL) 1-butyl-3-methylimidazolium resolved in the IR absorption spectrum in spite of the fact that the D2O is surrounded by a sea of ions

  14. Further Comparisons of Simultaneous Airborne and Radiometric Measurements of Supercooled Liquid Water.

    NASA Astrophysics Data System (ADS)

    Hill, Geoffrey E.

    1992-04-01

    Simultaneous measurements of supercooled liquid water were made by an instrumented aircraft and a microwave radiometer at Muskegon, Michigan during wintertime. The purpose was to confirm recent findings that there is good agreement between the two measuring systems. The flight paths were over the radiometer site from cloud base through the cloud top and back down. Ten flights were made; supercooled liquid water was measured by a calibrated Rosemount icing meter.It is found that when the temperature in the entire viewing path of the radiometer is below 0°C the radiometric measurements generally agree with those of the airborne measurements. It is concluded that under these conditions the liquid water measured by the radiometer will be a valid measurement of supercooled liquid water.

  15. Numerical modeling of liquid water motion in a polymer electrolyte fuel cell

    E-print Network

    cells (PEFCs). Optical visualization experiments [1e5] have corrobo- rated the existence of liquid water@yahoo.com (F. Jiang). Available online at www.sciencedirect.com ScienceDirect journal homepage: www

  16. Excited state dynamics of liquid water: Insight from the dissociation reaction following two-photon excitation

    E-print Network

    Elles, Christopher G.; Shkrob, Ilya A.; Crowell, Robert A.; Bradforth, Stephen E.

    2007-04-25

    The authors use transient absorption spectroscopy to monitor the ionization and dissociation products following two-photon excitation of pure liquid water. The primary decay mechanism changes from dissociation at an excitation energy of 8.3e...

  17. Chasing charge localization and chemical reactivity following photoionization in liquid water

    E-print Network

    Marsalek, Ondrej; Elles, Christopher G.; Pieniazek, Piotr A.; Pluha?ová , Eva; VandeVondele, Joost; Bradforth, Stephen E.; Jungwirth, Pavel

    2011-11-08

    The ultrafast dynamics of the cationic hole formed in bulk liquid water following ionization is investigated by ab initio molecular dynamics simulations and an experimentally accessible signature is suggested that might ...

  18. IDENTIFICATION OF POLAR DRINKING WATER DISINFECTION BY-PRODUCTS USING LIQUID CHROMATOGRAPHY - MASS SPECTROMETRY

    EPA Science Inventory

    A qualitative method using 2,4-dinitrophenylhydrazine (DNPH) derivatization followed by analysis with liquid chromatography (LC)/negative ion-electrospray mass spectrometry (MS) was developed for identifying polar aldehydes and ketones in ozonated drinking water. This method offe...

  19. Use of Amplified-Fragment Length Polymorphism To Study the Ecology of Campylobacter jejuni in Environmental Water and To Predict Multilocus Sequence Typing Clonal Complexes

    PubMed Central

    Lévesque, Simon; St-Pierre, Karen; Frost, Eric; Arbeit, Robert D.

    2012-01-01

    We determined the genetic variability among water isolates of Campylobacter jejuni by using amplified-fragment length polymorphism (AFLP) and multilocus sequence typing (MLST). Across a highly diverse collection of isolates, AFLP clusters did not correlate with MLST clonal complexes, suggesting that AFLP is not reliable for deciphering population genetic relationships and may be problematic for larger epidemiologic analyses. PMID:22267674

  20. Ab initio calculation of the electronic absorption spectrum of liquid water

    SciTech Connect

    Martiniano, Hugo F. M. C.; Galamba, Nuno [Grupo de Física Matemática da Universidade de Lisboa, Av. Professor Gama Pinto 2, 1649-003 Lisboa (Portugal)] [Grupo de Física Matemática da Universidade de Lisboa, Av. Professor Gama Pinto 2, 1649-003 Lisboa (Portugal); Cabral, Benedito J. Costa, E-mail: ben@cii.fc.ul.pt [Grupo de Física Matemática da Universidade de Lisboa, Av. Professor Gama Pinto 2, 1649-003 Lisboa (Portugal) [Grupo de Física Matemática da Universidade de Lisboa, Av. Professor Gama Pinto 2, 1649-003 Lisboa (Portugal); Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa (Portugal); Instituto de Física da Universidade de São Paulo, CP 66318, 05314-970 São Paulo, SP (Brazil)

    2014-04-28

    The electronic absorption spectrum of liquid water was investigated by coupling a one-body energy decomposition scheme to configurations generated by classical and Born-Oppenheimer Molecular Dynamics (BOMD). A Frenkel exciton Hamiltonian formalism was adopted and the excitation energies in the liquid phase were calculated with the equation of motion coupled cluster with single and double excitations method. Molecular dynamics configurations were generated by different approaches. Classical MD were carried out with the TIP4P-Ew and AMOEBA force fields. The BLYP and BLYP-D3 exchange-correlation functionals were used in BOMD. Theoretical and experimental results for the electronic absorption spectrum of liquid water are in good agreement. Emphasis is placed on the relationship between the structure of liquid water predicted by the different models and the electronic absorption spectrum. The theoretical gas to liquid phase blue-shift of the peak positions of the electronic absorption spectrum is in good agreement with experiment. The overall shift is determined by a competition between the O–H stretching of the water monomer in liquid water that leads to a red-shift and polarization effects that induce a blue-shift. The results illustrate the importance of coupling many-body energy decomposition schemes to molecular dynamics configurations to carry out ab initio calculations of the electronic properties in liquid phase.

  1. Use of switchable hydrophilicity solvents for the homogeneous liquid-liquid microextraction of triazine herbicides from environmental water samples.

    PubMed

    Lasarte-Aragonés, Guillermo; Lucena, Rafael; Cárdenas, Soledad; Valcárcel, Miguel

    2015-03-01

    A homogeneous liquid-liquid microextraction alternative, based on the use of switchable hydrophilicity solvents, is presented. The extraction technique makes use of 125 ?L of a water-immiscible solvent (N,N-dimethylcyclohexylamine) that can be solubilized in the aqueous phase in 1:1 ratio using CO2 as a reagent. After the extraction, phase separation is induced by the addition of sodium hydroxide that produces a change on the ionization state of the amine, and centrifugation was not necessary. The extraction technique has been optimized and characterized using the determination of triazine herbicides by gas chromatography with mass spectrometry in water samples. The presence of metallic ions in environmental waters as interferents is easily avoided by the addition of ethylenediaminetetraacetic acid before the microextraction procedure. The proposed method allows the determination of the target analytes at the low microgram per liter range with good precision (relative standard deviation lower than 12.5%). PMID:25641871

  2. Nearest-neighbor distributions of free radicals produced within charged-particle tracks in liquid water 

    E-print Network

    Smith, Miles Clay

    1990-01-01

    NEAREST-NEIGHBOR DISTRIBUTIONS OF FREE RADICALS PRODUCED WITHIN CHARGED-PARTICLE TRACKS IN LIQUID WATER A Thesis by MILES CLAY SMITH Submitted to the Office of Graduate Studies of Texas A & M University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE May 1990 Major Subject: Health Physics NEAREST-NEIGHBOR DISTRIBUTIONS OF FREE RADICALS PRODUCED WITHIN CHARGED-PARTICLE TRACKS IN LIQUID WATER A Thesis by MILES CLAY SMITH Approved as to style...

  3. Single- and dual-wavelength radar determination of liquid-water content in a Texas thunderstorm

    E-print Network

    Linn, Charles Theodore

    1976-01-01

    SINGLE- AND DUAL-WAVELENGTH RADAR DETERMINATION OF LIQUID-WATER CONTENT IN A TEXAS THUNDERSTORM A Thesis by CHARLES THEODORE LINN l Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirement... for the degree of MASTER OF SCIENCE May 1976 Major Subject: Meteorology SINGLE-AND DUAL-WAVELENGTH RADAR DETERMINATION OF LIQUID-WATER CONTENT IN A TEXAS THUNDERSTORM A Thesis by CHARLES THEODORE LINN Approved as to style and content by: (Ch rman...

  4. Polymer formulation for removing hydrogen and liquid water from an enclosed space

    DOEpatents

    Shepodd, Timothy J. (Livermore, CA)

    2006-02-21

    This invention describes a solution to the particular problem of liquid water formation in hydrogen getters exposed to quantities of oxygen. Water formation is usually desired because the recombination reaction removes hydrogen without affecting gettering capacity and the oxygen removal reduces the chances for a hydrogen explosion once free oxygen is essentially removed. The present invention describes a getter incorporating a polyacrylate compound that can absorb up to 500% of its own weight in liquid water without significantly affecting its hydrogen gettering/recombination properties, but that also is insensitive to water vapor.

  5. Case Studies of Water Vapor and Surface Liquid Water from AVIRIS Data Measured Over Denver, CO and Death Valley, CA

    NASA Technical Reports Server (NTRS)

    Gao, B.-C.; Kierein-Young, K. S.; Goetz, A. F. H.; Westwater, E. R.; Stankov, B. B.; Birkenheuer, D.

    1991-01-01

    High spatial resolution column atmospheric water vapor amounts and equivalent liquid water thicknesses of surface targets are retrieved from spectral data collected by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). The retrievals are made using a nonlinear least squares curve fitting technique. Two case studies from AVIRIS data acquired over Denver-Platteville area, Colorado and over Death Valley, California are presented. The column water vapor values derived from AVIRIS data over the Denver-Platteville area are compared with those obtained from radiosondes, ground level upward-looking microwave radiometers, and geostationary satellite measurements. The column water vapor image shows spatial variation patterns related to the passage of a weather front system. The column water vapor amounts derived from AVIRIS data over Death Valley decrease with increasing surface elevation. The derived liquid water image clearly shows surface drainage patterns.

  6. Nuclear tanker producing liquid fuels from air and water

    E-print Network

    Galle-Bishop, John Michael

    2011-01-01

    Emerging technologies in CO? air capture, high temperature electrolysis, microchannel catalytic conversion, and Generation IV reactor plant systems have the potential to create a shipboard liquid fuel production system ...

  7. Dielectric spectroscopy: a technique for the determination of water coordination within ionic liquids.

    PubMed

    Dimitrakis, Georgios; Villar-Garcia, Ignacio J; Lester, Edward; Licence, Peter; Kingman, Samuel

    2008-05-28

    The presence of water can have a significant influence upon both the physical and dielectric properties of ionic liquids and consequently their ability to interact with microwaves. Herein we show that complex permittivity initially decreases as low concentrations of water are added to the system, the continued addition of water gives rise to an inversion in this trend. We propose that this minimum point may be used to identify water dimer formation. PMID:18473042

  8. Simulation of water vapor condensation on LOX droplet surface using liquid nitrogen

    NASA Technical Reports Server (NTRS)

    Powell, Eugene A.

    1988-01-01

    The formation of ice or water layers on liquid oxygen (LOX) droplets in the Space Shuttle Main Engine (SSME) environment was investigated. Formulation of such ice/water layers is indicated by phase-equilibrium considerations under conditions of high partial pressure of water vapor (steam) and low LOX droplet temperature prevailing in the SSME preburner or main chamber. An experimental investigation was begun using liquid nitrogen as a LOX simulant. A monodisperse liquid nitrogen droplet generator was developed which uses an acoustic driver to force the stream of liquid emerging from a capillary tube to break up into a stream of regularly space uniformly sized spherical droplets. The atmospheric pressure liquid nitrogen in the droplet generator reservoir was cooled below its boiling point to prevent two phase flow from occurring in the capillary tube. An existing steam chamber was modified for injection of liquid nitrogen droplets into atmospheric pressure superheated steam. The droplets were imaged using a stroboscopic video system and a laser shadowgraphy system. Several tests were conducted in which liquid nitrogen droplets were injected into the steam chamber. Under conditions of periodic droplet formation, images of 600 micron diameter liquid nitrogen droplets were obtained with the stroboscopic video systems.

  9. Liquid-Vapor Equilibrium Isotopic Fractionation of Water. How well can classical water models predict it?

    SciTech Connect

    Chialvo, Ariel A [ORNL; Horita, Juske [ORNL

    2009-01-01

    The liquid-vapor equilibrium isotopic fractionation of water is determined by molecular-based simulation, via Gibbs Ensemble Monte Carlo and isothermal-isochoric molecular dynamics involving two radically different but realistic models, the extended simple point charge (SPC/E) and the Gaussian charge polarizable (GCP) models. The predicted temperature dependence of the liquid-vapor equilibrium isotopic fractionation factors for H 2 18O / H 2 16O, H 2 17O / H 2 16O, and 2H 1H 16O / 1H 2 16O are compared against the most accurate experimental datasets to assess the ability of these intermolecular potential models to describe quantum effects according to the Kirkwood-Wigner free energy perturbation ! 2 !expansion. Predictions of the vapor pressure isotopic effect for the H 2 18O / H 2 16O and H 2 17O / H 2 16O pairs are also presented in comparison with experimental data and two recently proposed thermodynamic modeling approaches. Finally, the simulation results are used to discuss some approximations behind the microscopic interpretation of isotopic fractionation based on the underlying roto-translational coupling.

  10. Interfacial effects on the band edges of functionalized si surfaces in liquid water.

    PubMed

    Pham, Tuan Anh; Lee, Donghwa; Schwegler, Eric; Galli, Giulia

    2014-12-10

    By combining ab initio molecular dynamics simulations and many-body perturbation theory calculations of electronic energy levels, we determined the band edge positions of functionalized Si(111) surfaces in the presence of liquid water, with respect to vacuum and to water redox potentials. We considered surface terminations commonly used for Si photoelectrodes in water splitting experiments. We found that, when exposed to water, the semiconductor band edges were shifted by approximately 0.5 eV in the case of hydrophobic surfaces, irrespective of the termination. The effect of the liquid on band edge positions of hydrophilic surfaces was much more significant and determined by a complex combination of structural and electronic effects. These include structural rearrangements of the semiconductor surfaces in the presence of water, changes in the orientation of interfacial water molecules with respect to the bulk liquid, and charge transfer at the interfaces, between the solid and the liquid. Our results showed that the use of many-body perturbation theory is key to obtain results in agreement with experiments; they also showed that the use of simple computational schemes that neglect the detailed microscopic structure of the solid-liquid interface may lead to substantial errors in predicting the alignment between the solid band edges and water redox potentials. PMID:25402590

  11. FTS Measurements of Submillimeter-Wave Atmospheric Opacity at Pampa la Bola III. Water Vapor, Liquid Water, and 183 GHz Water Vapor Line Opacities

    E-print Network

    Satoki Matsushita; Hiroshi Matsuo

    2003-02-03

    Further analysis has been made on the millimeter and submillimeter-wave (100-1600 GHz or 3 mm - 188 micron) atmospheric opacity data taken with the Fourier Transform Spectrometer (FTS) at Pampa la Bola, 4800 m above sea level in northern Chile, which is the site of the Atacama Large Millimeter/submillimeter Array (ALMA). Time-sequence plots of millimeter and submillimeter-wave opacities show similar variations to each other, except for during the periods with liquid water (fog or clouds) in the atmosphere. Using millimeter and submillimeter-wave opacity correlations under two conditions, which are affected and not affected by liquid water, we succeeded to separate the measured opacity into water vapor and liquid water opacity components. The water vapor opacity shows good correlation with the 183 GHz water vapor line opacity, which is also covered in the measured spectra. On the other hand, the liquid water opacity and the 183 GHz line opacity show no correlation. Since only the water vapor component is expected to affect the phase of interferometers significantly, and the submillimeter-wave opacity is less affected by the liquid water component, it may be possible to use the submillimeter-wave opacity for a phase-correction of submillimeter interferometers.

  12. A Convolution Algorithm of Differential Coefficients of liquid water Based on Vibrational Raman Scattering

    NASA Astrophysics Data System (ADS)

    Han, Dong; Chen, Liangfu; Tao, Jinhua; Su, Lin; Li, Shenshen; Yu, Chao; Yan, Huanhuan

    Inelastic Vibrational Raman Scattering (VRS) by liquid water is one significant limitation to the accuracy of the retrieval of trace gas constituents in atmosphere over waters, particularly over clear ocean waters, while using satellite data with Differential Optical Absorption Spec-troscopy technique (DOAS).The effect which is similar to the Ring effect in atmosphere results in the filling in of Fraunhofer lines, which is known as solar absorption lines. The inelastic component of the liquid water scattering causes a net increase of radiance in the line because more radiation is shifted to the wavelength of an absorption line than shifted from this wave-length to other wavelengths. The spectrum at the top of the atmosphere over land measured by OMI (Ozone Monitoring Instrument)/AURA is convolved with Vibrational Raman Scat-tering coefficients of liquid water, divided by the original measured spectrum, with a cubic polynomial subtracted off, to create differential water Ring spectrum. The OMI spectrum over land is chosen to avoid the effect of VRS by liquid water. This method has been suggested in order to obtain an effective differential water Ring coeffients for the DOAS fitting process.The differential water Ring spectrum could be used to improve the accuracy of the retrieval of the trace gases concentration. The method is not relying on RTM, which would be time-consuming and depending on lot of parameters. Therefore, it is very fast and convenient.

  13. Selective extraction of copper, mercury, silver and palladium ionsfrom water using hydrophobic ionic liquids.

    SciTech Connect

    Papaiconomou, Nicolas; Lee, Jong-Min; Salminen, Justin; VonStosch, Moritz; Prausnitz, John M.

    2007-06-25

    Extraction of dilute metal ions from water was performed near room temperature with a variety of ionic liquids. Distribution coefficients are reported for fourteen metal ions extracted with ionic liquids containing cations 1-octyl-4-methylpyridinium [4MOPYR]{sup +}, 1-methyl-1-octylpyrrolidinium [MOPYRRO]{sup +} or 1-methyl-1-octylpiperidinium [MOPIP]{sup +}, and anions tetrafluoroborate [BF{sub 4}]{sup +}, trifluoromethyl sulfonate [TfO]{sup +} or nonafluorobutyl sulfonate [NfO]{sup +}. Ionic liquids containing octylpyridinium cations are very good for extracting mercury ions. However, other metal ions were not significantly extracted by any of these ionic liquids. Extractions were also performed with four new task-specific ionic liquids. Such liquids containing a disulfide functional group are efficient and selective for mercury and copper, whereas those containing a nitrile functional group are efficient and selective for silver and palladium.

  14. Screen-printed electrode based electrochemical detector coupled with ionic liquid dispersive liquid-liquid microextraction and microvolume back-extraction for determination of mercury in water samples.

    PubMed

    Fernández, Elena; Vidal, Lorena; Martín-Yerga, Daniel; Blanco, María del Carmen; Canals, Antonio; Costa-García, Agustín

    2015-04-01

    A novel approach is presented, whereby gold nanostructured screen-printed carbon electrodes (SPCnAuEs) are combined with in-situ ionic liquid formation dispersive liquid-liquid microextraction (in-situ IL-DLLME) and microvolume back-extraction for the determination of mercury in water samples. In-situ IL-DLLME is based on a simple metathesis reaction between a water-miscible IL and a salt to form a water-immiscible IL into sample solution. Mercury complex with ammonium pyrrolidinedithiocarbamate is extracted from sample solution into the water-immiscible IL formed in-situ. Then, an ultrasound-assisted procedure is employed to back-extract the mercury into 10 µL of a 4 M HCl aqueous solution, which is finally analyzed using SPCnAuEs. Sample preparation methodology was optimized using a multivariate optimization strategy. Under optimized conditions, a linear range between 0.5 and 10 µg L(-1) was obtained with a correlation coefficient of 0.997 for six calibration points. The limit of detection obtained was 0.2 µg L(-1), which is lower than the threshold value established by the Environmental Protection Agency and European Union (i.e., 2 µg L(-1) and 1 µg L(-1), respectively). The repeatability of the proposed method was evaluated at two different spiking levels (3 and 10 µg L(-1)) and a coefficient of variation of 13% was obtained in both cases. The performance of the proposed methodology was evaluated in real-world water samples including tap water, bottled water, river water and industrial wastewater. Relative recoveries between 95% and 108% were obtained. PMID:25640123

  15. Liquid water dynamics in unsaturated snow: the role of lateral flow

    NASA Astrophysics Data System (ADS)

    Marshall, H. P.; Heilig, A.; Evans, S.; Robertson, M. E.; Hetrick, H. F.; Eiriksson, D.; Dean, J.; Karlson, A.; Hedrick, A. R.; Bradford, J.; McNamara, J. P.; Flores, A. N.; Kohn, M. J.; Rodriguez, C.

    2014-12-01

    The movement of liquid water in unsaturated snow is a complex and highly heterogeneous process, due to positive feedback mechanisms that lead to distinct flow pathways. A combination of gravitational and capillary forces, combined with small scale spatial variability, causes liquid water to concentrate into sub-meter vertical channels and along stratigraphic boundaries that lead to complicated patterns of volumetric water content. Hydraulic conductivity increases significantly with liquid water content, leading to preferential flow along established pathways. We designed controlled experiments to explore the role of slope-parallel flow of liquid water in unsaturated snow, along layer boundaries, to improve understanding of potential lateral mass redistribution during rapid melt and rain-on-snow events on ice sheets, glaciers and in seasonal snow. We characterized snow structure and monitored the spatiotemporal distribution of liquid water during snowmelt and rain-on-snow events using high-resolution radars, micropenetrometry, near-infrared and time-lapse photography, in-situ dielectric probes, and stable isotopes. We used the seasonal snowpack as a natural laboratory, and collected water outflow with lysimeter arrays designed to quantify the amount of water moving laterally. A co-located full energy-balance weather station provides forcing inputs for modeling, and the degree of lateral flow is also evaluated by monitoring the evolution of soil moisture with a permenantly installed ERT array and multiple dielectric probes in the soil at the base of the snowpack. Improved understanding of liquid water dynamics in unsaturated snow and firn is required for accurate modeling of the percolation zone mass balance on ice sheets and polar glaciers, the timing of wet snow avalanches, and flooding caused by mid-winter rain on seasonal snow.

  16. Liquid-liquid equilibria of the ternary systems water + acetic acid + ethyl acetate and water + acetic acid + isophorene (3,5,5-trimethyl-2-cyclohexen-1-one)

    SciTech Connect

    Colombo, A.; Battilana, P.; Ragaini, V.; Bianchi, C.L. [Milan Univ. (Italy). Dept. of Physical Chemistry and Electrochemistry] [Milan Univ. (Italy). Dept. of Physical Chemistry and Electrochemistry; Carvoli, G. [Chemial S.p.A., Cavaglia (Italy)] [Chemial S.p.A., Cavaglia (Italy)

    1999-01-01

    Liquid-liquid equilibria for the ternary systems water + acetic acid + ethyl acetate and water + acetic acid + isophorone (3,5,5-trimethyl-2-cyclohexen-1-one) were measured over the temperature range (283 to 313) K. The results were used to estimate the interaction parameters between each of the three compounds of the systems studied for the NRTL and UNIQUAC models. The estimated interaction parameters were successfully used to predict the equilibrium compositions by the two models; experimental data were successfully reproduced. The UNIQUAC model was the most accurate in correlating the overall equilibrium composition of the studied systems. Also the NRTL model satisfactorily predicted the equilibrium composition. Isophorone experimentally resulted in a better extraction capacity for acetic acid and in a lower miscibility with water.

  17. Rich polymorphism of a rod-like liquid crystal (8CB) confined in two types of unidirectional nanopores.

    PubMed

    Guégan, R; Morineau, D; Lefort, R; Béziel, W; Guendouz, M; Noirez, L; Henschel, A; Huber, P

    2008-07-01

    We present a neutron and X-rays scattering study of the phase transitions of 4-n-octyl-4' -cyanobiphenyl (8CB) confined in unidirectional nanopores of porous alumina and porous silicon (PSi) membranes with an average diameter of 30 nm. Spatial confinement reveals a rich polymorphism, with at least four different low temperature phases in addition to the smectic A phase. The structural study as a function of thermal treatments and conditions of spatial confinement allows us to get insights into the formation of these phases and their relative stability. It gives the first description of the complete phase behavior of 8CB confined in PSi and provides a direct comparison with results obtained in bulk conditions and in similar geometric conditions of confinement but with reduced quenched disorder effects using alumina anopore membranes. PMID:18509593

  18. Experimental Observation of Bulk Liquid Water Structure in ``No Man's Land''

    NASA Astrophysics Data System (ADS)

    Sellberg, Jonas; McQueen, Trevor; Huang, Congcong; Loh, Duane; Laksmono, Hartawan; Sierra, Raymond; Hampton, Christina; Starodub, Dmitri; Deponte, Daniel; Martin, Andrew; Barty, Anton; Wikfeldt, Thor; Schlesinger, Daniel; Pettersson, Lars; Beye, Martin; Nordlund, Dennis; Weiss, Thomas; Feldkamp, Jan; Caronna, Chiara; Seibert, Marvin; Messerschmidt, Marc; Williams, Garth; Boutet, Sebastien; Bogan, Michael; Nilsson, Anders

    2013-03-01

    Experiments on pure bulk water below about 235 K have so far been difficult: water crystallization occurs very rapidly below the homogeneous nucleation temperature of 232 K and above 160 K, leading to a ``no man's land'' devoid of experimental results regarding the structure. Here, we demonstrate a new, general experimental approach to study the structure of liquid states at supercooled conditions below their limit of homogeneous nucleation. We use femtosecond x-ray pulses generated by the LCLS x-ray laser to probe evaporatively cooled droplets of supercooled bulk water and find experimental evidence for the existence of metastable bulk liquid water down to temperatures of 223 K in the previously largely unexplored ``no man's land''. Experiments on pure bulk water below about 235 K have so far been difficult: water crystallization occurs very rapidly below the homogeneous nucleation temperature of 232 K and above 160 K, leading to a ``no man's land'' devoid of experimental results regarding the structure. Here, we demonstrate a new, general experimental approach to study the structure of liquid states at supercooled conditions below their limit of homogeneous nucleation. We use femtosecond x-ray pulses generated by the LCLS x-ray laser to probe evaporatively cooled droplets of supercooled bulk water and find experimental evidence for the existence of metastable bulk liquid water down to temperatures of 223 K in the previously largely unexplored ``no man's land''. We acknoweledge NSF (CHE-0809324), Office of Basic Energy Sciences, and the Swedish Research Council for financial support.

  19. Comparison of Copper Speciation in Estuarine Water Measured Using Analytical Voltammetry and Supported Liquid Membrane Techniques

    Microsoft Academic Search

    KURIA N DUNGU; MATTHEW P. H URST; KENNETH W. B RULAND

    2005-01-01

    The supported liquid membrane (SLM) is a promising separation and preconcentration technique that is well- suited for trace metal speciation in natural waters. The technique is based on the selective complexation of metal ions by a hydrophobic ligand (carrier) dissolved in a water- immiscible organic solvent immobilized in a porous, inert membrane. This membrane separates two aqueous solutions: the test

  20. Studies on passive remote sensing of vapor, liquid, and ice water paths

    Microsoft Academic Search

    L. Li; J. Vivekanandan; C. H. Chan; L. Tsang; J. N. Hwang

    1994-01-01

    Ground-based dual-channel radiometers can be used to monitor water vapor and cloud liquid water. Radiometers can provide measurements automatically and continuously. Westwater (1978) and Staelin (1966) investigated the microwave spectrum of the atmosphere and its sensitivities to atmospheric components and these investigations provided the basis for most radiometric retrieval methods. During their investigations, statistical tools were more or less utilized

  1. Liquid water: obtaining the right answer for the right reasons

    Microsoft Academic Search

    Edoardo Aprà; Alistair P. Rendell; Robert J. Harrison; Vinod Tipparaju; Wibe A. Dejong; Sotiris S. Xantheas

    2009-01-01

    Water is ubiquitous on our planet and plays an essential role in several key chemical and biological processes. Accurate models for water are crucial in understanding, controlling and predicting the physical and chemical properties of complex aqueous systems. Over the last few years we have been developing a molecular-level based approach for a macroscopic model for water that is based

  2. Mixed reverse micelles facilitated downstream processing of lipase involving water-oil-water liquid emulsion membrane.

    PubMed

    Bhowal, Saibal; Priyanka, B S; Rastogi, Navin K

    2014-01-01

    Our earlier work for the first time demonstrated that liquid emulsion membrane (LEM) containing reverse micelles could be successfully used for the downstream processing of lipase from Aspergillus niger. In the present work, we have attempted to increase the extraction and purification fold of lipase by using mixed reverse micelles (MRM) consisting of cationic and nonionic surfactants in LEM. It was basically prepared by addition of the internal aqueous phase solution to the organic phase followed by the redispersion of the emulsion in the feed phase containing enzyme, which resulted in globules of water-oil-water (WOW) emulsion for the extraction of lipase. The optimum conditions for maximum lipase recovery (100%) and purification fold (17.0-fold) were CTAB concentration 0.075 M, Tween 80 concentration 0.012 M, at stirring speed of 500 rpm, contact time 15 min, internal aqueous phase pH 7, feed pH 9, KCl concentration 1 M, NaCl concentration 0.1 M, and ratio of membrane emulsion to feed volume 1:1. Incorporation of the nonionic surfactant (e.g., Tween 80) resulted in remarkable improvement in the purification fold (3.1-17.0) of the lipase. LEM containing a mixture of nonionic and cationic surfactants can be successfully used for the enhancement in the activity recovery and purification fold during downstream processing of enzymes/proteins. PMID:24930827

  3. Dosimetric characterization of a 131Cs brachytherapy source by thermoluminescence dosimetry in liquid water.

    PubMed

    Tailor, Ramesh; Ibbott, Geoffrey; Lampe, Stephanie; Warren, Whitney Bivens; Tolani, Naresh

    2008-12-01

    Dosimetry measurements of a 131Cs brachytherapy source have been performed in liquid water employing thermoluminescence dosimeters. A search of the literature reveals that this is the first time a complete set of dosimetric parameters for a brachytherapy "seed" source has been measured in liquid water. This method avoids the medium correction uncertainties introduced by the use of water-equivalent plastic phantoms. To assure confidence in the results, four different sources were employed for each parameter measured, and measurements were performed multiple times. The measured dosimetric parameters presented here are based on the AAPM Task Group 43 formalism. The dose-rate constant measured in liquid water was (1.063 +/- 0.023) cGy h(-1) U(-1) and was based on the air-kerma strength standard for this source established by the National Institute of Standards and Technology. Measured values for the 2D anisotropy function and the radial dose function are presented. PMID:19175142

  4. Formation of Martian Gullies by the Flow of Simultaneously Freezing and Boiling Liquid Water

    NASA Technical Reports Server (NTRS)

    Heldmann, Jennifer L.; Mellon, Michael T.; Toon, Owen B.; Pollard, Wayne H.; Mellon, Michael T.; Pitlick, John; McKay, Christopher P.; Andersen, Dale T.

    2004-01-01

    Geomorphic evidence suggests that recent gullies on Mars were formed by fluvial activity. The Martian gully features are significant because their existence implies the presence of liquid water near the surface on Mars in geologically recent times. Irrespective of the ultimate source of the fluid carving the gullies, we seek to understand the behavior of this fluid after it reaches the Martian surface. We find that, contrary to popular belief, the fluvially-carved Martian gullies require formation conditions such as now occur on Mars, outside of the temperature-pressure stability regime of liquid water. Mars Global Surveyor observations of gully length and our modeling of water stability are consistent with gully formation from the action of pure liquid water that is simultaneously boiling and freezing.

  5. Dosimetric characterization of a {sup 131}Cs brachytherapy source by thermoluminescence dosimetry in liquid water

    SciTech Connect

    Tailor, Ramesh; Ibbott, Geoffrey; Lampe, Stephanie; Bivens Warren, Whitney; Tolani, Naresh [Radiation Physics, UT MD Anderson Cancer Center, 1515 Holcombe Boulevard, Box 94, Houston, Texas 77030 (United States); Radiological Physics Center, UT M.D. Anderson Cancer Center, 7515 Main Street, Suite 300, Houston, Texas 77030-4519 (United States); Radiation Physics, M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Box 94, Houston, Texas 77030 (United States); Harrington Cancer Center, 1500 Wallace Boulevard, Amarillo, Texas 76106 (United States); Radiation Physics, U.T. M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Box 94, Houston, Texas 77030 (United States)

    2008-12-15

    Dosimetry measurements of a {sup 131}Cs brachytherapy source have been performed in liquid water employing thermoluminescence dosimeters. A search of the literature reveals that this is the first time a complete set of dosimetric parameters for a brachytherapy ''seed'' source has been measured in liquid water. This method avoids the medium correction uncertainties introduced by the use of water-equivalent plastic phantoms. To assure confidence in the results, four different sources were employed for each parameter measured, and measurements were performed multiple times. The measured dosimetric parameters presented here are based on the AAPM Task Group 43 formalism. The dose-rate constant measured in liquid water was (1.063{+-}0.023) cGy h{sup -1} U{sup -1} and was based on the air-kerma strength standard for this source established by the National Institute of Standards and Technology. Measured values for the 2D anisotropy function and the radial dose function are presented.

  6. Ionic liquid-based ultrasound-assisted dispersive liquid-liquid microextraction combined with electrothermal atomic absorption spectrometry for a sensitive determination of cadmium in water samples

    NASA Astrophysics Data System (ADS)

    Li, Shengqing; Cai, Shun; Hu, Wei; Chen, Hao; Liu, Hanlan

    2009-07-01

    A new method was developed for the determination of cadmium in water samples using ionic liquid-based ultrasound-assisted dispersive liquid-liquid microextraction (IL-based USA-DLLME) followed by electrothermal atomic absorption spectrometry (ETAAS). The IL-based USA-DLLME procedure is free of volatile organic solvents, and there is no need for a dispersive solvent, in contrast to conventional DLLME. The ionic liquid, 1-hexyl-3-methylimidazolium hexafluorophosphate (HMIMPF 6), was quickly disrupted by an ultrasonic probe for 1 min and dispersed in water samples like a cloud. At this stage, a hydrophobic cadmium-DDTC complex was formed and extracted into the fine droplets of HMIMPF 6. After centrifugation, the concentration of the enriched cadmium in the sedimented phase was determined by ETAAS. Some effective parameters of the complex formation and microextraction, such as the concentration of the chelating agent, the pH, the volume of the extraction solvent, the extraction time, and the salt effect, have been optimized. Under optimal conditions, a high extraction efficiency and selectivity were reached for the extraction of 1.0 ng of cadmium in 10.0 mL of water solution employing 73 µL of HMIMPF 6 as the extraction solvent. The enrichment factor of the method is 67. The detection limit was 7.4 ng L - 1 , and the characteristic mass ( m0, 0.0044 absorbance) of the proposed method was 0.02 pg for cadmium (Cd). The relative standard deviation (RSD) for 11 replicates of 50 ng L - 1 Cd was 3.3%. The method was applied to the analysis of tap, well, river, and lake water samples and the Environmental Water Reference Material GSBZ 50009-88 (200921). The recoveries of spiked samples were in the range of 87.2-106%.

  7. Transcriptome sequencing of Eucalyptus camaldulensis seedlings subjected to water stress reveals functional single nucleotide polymorphisms and genes under selection

    PubMed Central

    2012-01-01

    Background Water stress limits plant survival and production in many parts of the world. Identification of genes and alleles responding to water stress conditions is important in breeding plants better adapted to drought. Currently there are no studies examining the transcriptome wide gene and allelic expression patterns under water stress conditions. We used RNA sequencing (RNA-seq) to identify the candidate genes and alleles and to explore the evolutionary signatures of selection. Results We studied the effect of water stress on gene expression in Eucalyptus camaldulensis seedlings derived from three natural populations. We used reference-guided transcriptome mapping to study gene expression. Several genes showed differential expression between control and stress conditions. Gene ontology (GO) enrichment tests revealed up-regulation of 140 stress-related gene categories and down-regulation of 35 metabolic and cell wall organisation gene categories. More than 190,000 single nucleotide polymorphisms (SNPs) were detected and 2737 of these showed differential allelic expression. Allelic expression of 52% of these variants was correlated with differential gene expression. Signatures of selection patterns were studied by estimating the proportion of nonsynonymous to synonymous substitution rates (Ka/Ks). The average Ka/Ks ratio among the 13,719 genes was 0.39 indicating that most of the genes are under purifying selection. Among the positively selected genes (Ka/Ks > 1.5) apoptosis and cell death categories were enriched. Of the 287 positively selected genes, ninety genes showed differential expression and 27 SNPs from 17 positively selected genes showed differential allelic expression between treatments. Conclusions Correlation of allelic expression of several SNPs with total gene expression indicates that these variants may be the cis-acting variants or in linkage disequilibrium with such variants. Enrichment of apoptosis and cell death gene categories among the positively selected genes reveals the past selection pressures experienced by the populations used in this study. PMID:22853646

  8. Ordering of liquid water at metal surfaces in tunnel junction devices

    SciTech Connect

    Porter, J.D.; Zinn, A.S. (Lawrence Berkeley Lab., CA (United States))

    1993-02-11

    A tunnel junction device was made by immersing mercury electrodes in an aqueous nitrate solution. The junction conductance was measured at zero bias as the two mercury surfaces were brought together in the solution. Changes in separation between the mercury surfaces were calculated from changes in the junction conductance using a simple model of elastic electron tunneling, due to Simmons. An absolute distance scale was established using the estimated hard-sphere diameter of water as an internal standard. Discrete changes in junction conductance were observed when the metal surfaces were separated by less than about 1 nm. The authors interpret this behavior to be due to the presence of quasi-equilibrium junction geometries which are themselves due to time-averaged structuring of liquid water near the metal surfaces. The longitudinal structuring in the water was found to decay normal to the metal surface with a characteristic length on the order of the molecular diameter. The time-averaged structures of the liquid water domains appear to be similar to the structure of hexagonal ice Ih and do not resemble hard-sphere packing. At zero bias, there appears to be no strong preference for one type of ordered water structure over another, suggesting that hydrogen bonding is the dominant factor determining structure in the liquid water near the metal surface and not metal-water bonding in this case. The experimental data are in substantial agreement with recent molecular dynamics and Monte Carlo simulations and with analytic theory. There are significant differences between the authors' results for ordering of liquid water at metal surfaces and the results reported previously for local ordering of liquid water in the mica/water/mica surface force-balance apparatus. 182 refs., 7 figs.

  9. The effect of an external electric field on the structure of liquid water using molecular dynamics simulations

    Microsoft Academic Search

    Dong Hyun Jung; Jung Hwan Yang; Mu Shik Jhon

    1999-01-01

    Using molecular dynamics simulations with the rigid TIP4P water model, we have analyzed the structural change of liquid water induced by an external electric field. The temperature was controlled with a Nosé–Hoover thermostat. In this paper, we report the acquisition of liquid water with the enhanced structural regularity by applying an electric field. From the simulations under various strengths of

  10. Long time fluctuation of liquid water: l/f spectrum of energy fluctuation in hydrogen bond network rearrangement dynamics

    E-print Network

    Ramaswamy, Ram

    Long time fluctuation of liquid water: l/f spectrum of energy fluctuation in hydrogen bond network of the potential energy fluctuation of liquid water is examined and found to yield so-called l/f frequency bond network. `,* This rearrangement dynamics involves collective motion of water molecules and energy

  11. Volatile liquid hydrocarbons in waters of the Gulf of Mexico and Caribbean Seal

    Microsoft Academic Search

    Theodor C. Sauer

    Concentrations of volatile liquid hydrocarbons (VLH), C,-C,, hydrocarbons, wcrc deter- mined in 1977 in coastal, shelf, and open-ocean surface waters of the Gulf of Mexico and Caribbean Sea. In open-ocean, nonpetroleum-polluted surface water, VLH concentrations were ~60 ngalitcr-' while in heavily polluted Louisiana shelf and coastal water values reached ==500 ng* liter-'. Caribbean surface samples had very low concentrations, -30

  12. Volatile liquid hydrocarbons in waters of the Gulf of Mexico and Caribbean Sea

    Microsoft Academic Search

    THEODOR C. SAUER; T. C. Jr

    1980-01-01

    Concentrations of volatile liquid hydrocarbons (VLH), Câ-Cââ hydrocarbons, were determined in 1977 in coastal, shelf, and open-ocean surface waters of the Gulf of Mexico and Caribbean Sea. In open-ocean, nonpetroleum-polluted surface water, VLH concentrations were 60 ng.liter⁻¹ while in heavily polluted Louisiana shelf and coastal water values reached 500 ng.liter⁻¹. Caribbean surface samples had very low concentrations, 30 ng.liter⁻¹. The

  13. Comparison of Simultaneous Airborne and Radiometric Measurements of Supercooled Liquid Water.

    NASA Astrophysics Data System (ADS)

    Hill, Geoffrey E.

    1991-07-01

    Simultaneous measurements of supercooled liquid water by an instrumented aircraft and a dual-frequency microwave radiometer were made at Lake Ontario, New York, during wintertime. The geographic location and typical meteorological conditions for making the measurements were specifically selected to facilitate the comparisons. Flight paths from below cloud base to above cloud tops were made over the radiometer site. Seven flights were made; supercooled liquid water was measured by a calibrated Rosemount icing meter.The primary finding is that when the temperature of the atmosphere in the viewing path of the radiometer is below the melting point of ice, the airborne liquid-water measurements are in general agreement with the radiometric measurements. When an inversion with the temperature above the melting point is present, the radiometric readings of liquid water are much larger than the values found from the aircraft. Also, the, possibility is raised that in very heavy snowfall with large ice particles the amount of supercooled liquid water will appear too large according to the radiometer.

  14. Isobaric first-principles molecular dynamics of liquid water with nonlocal van der Waals interactions.

    PubMed

    Miceli, Giacomo; de Gironcoli, Stefano; Pasquarello, Alfredo

    2015-01-21

    We investigate the structural properties of liquid water at near ambient conditions using first-principles molecular dynamics simulations based on a semilocal density functional augmented with nonlocal van der Waals interactions. The adopted scheme offers the advantage of simulating liquid water at essentially the same computational cost of standard semilocal functionals. Applied to the water dimer and to ice Ih, we find that the hydrogen-bond energy is only slightly enhanced compared to a standard semilocal functional. We simulate liquid water through molecular dynamics in the NpH statistical ensemble allowing for fluctuations of the system density. The structure of the liquid departs from that found with a semilocal functional leading to more compact structural arrangements. This indicates that the directionality of the hydrogen-bond interaction has a diminished role as compared to the overall attractions, as expected when dispersion interactions are accounted for. This is substantiated through a detailed analysis comprising the study of the partial radial distribution functions, various local order indices, the hydrogen-bond network, and the selfdiffusion coefficient. The explicit treatment of the van der Waals interactions leads to an overall improved description of liquid water. PMID:25612714

  15. Supported liquid membrane-liquid chromatography-mass spectrometry analysis of cyanobacterial toxins in fresh water systems

    NASA Astrophysics Data System (ADS)

    Mbukwa, Elbert A.; Msagati, Titus A. M.; Mamba, Bhekie B.

    Harmful algal blooms (HABs) are increasingly becoming of great concern to water resources worldwide due to indiscriminate waste disposal habits resulting in water pollution and eutrophication. When cyanobacterial cells lyse (burst) they release toxins called microcystins (MCs) that are well known for their hepatotoxicity (causing liver damage) and have been found in eutrophic lakes, rivers, wastewater ponds and other water reservoirs. Prolonged exposure to low concentrated MCs are equally of health importance as they are known to be bioaccumulative and even at such low concentration do exhibit toxic effects to aquatic animals, wildlife and human liver cells. The application of common treatment processes for drinking water sourced from HABs infested reservoirs have the potential to cause algal cell lyses releasing low to higher amounts of MCs in finished water. Trace microcystins in water/tissue can be analyzed and quantified using Liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS) following solid-phase extraction (SPE) sample clean-up procedures. However, extracting MCs from algal samples which are rich in chlorophyll pigments and other organic matrices the SPE method suffers a number of drawbacks, including cartridge clogging, long procedural steps and use of larger volumes of extraction solvents. We applied a supported liquid membrane (SLM) based technique as an alternative sample clean-up method for LC-ESI-MS analysis of MCs from both water and algal cells. Four (4) MC variants (MC-RR, -YR, -LR and -WR) from lyophilized cells of Microcystis aeruginosa and water collected from a wastewater pond were identified) and quantified using LC-ESI-MS following a SLM extraction and liquid partitioning step, however, MC-WR was not detected from water extracts. Within 45 min of SLM extraction all studied MCs were extracted and pre-concentrated in approximately 15 ?L of an acceptor phase at an optimal pH 2.02 of the donor phase (sample). The highest total quantifiable intracellular and extracellular MCs were 37.039 ± 0.087 ?g/g DW and 5.123 ± 0.018 ?g/L, respectively. The concentrations of MC-RR were the highest from all samples studied recording maximum values of 21.579 ± 0.066 ?g/g DW and 3.199 ± 0.012 ?g/L for intracellular and extracellular quantities, respectively.

  16. Ionic liquid based dispersive liquid-liquid microextraction coupled with micro-solid phase extraction of antidepressant drugs from environmental water samples.

    PubMed

    Ge, Dandan; Lee, Hian Kee

    2013-11-22

    Ionic liquid-dispersive liquid-liquid microextraction combined with micro-solid phase extraction (IL-DLLME-?-SPE), and high-performance liquid chromatography (HPLC) was developed for the determination of tricyclic antidepressants (TCAs) in water samples. Two hundred microliters of an organic solvent (as disperser solvent) and 20 ?l of 1-hexyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate were injected into a 5.0 ml sample for sonication-assisted DLLME. After this, a ?-SPE device, containing a novel material zeolite imidazolate framework 4 (ZIF-4), was added into the sample solution and 1 min of vortex-assisted extraction was performed. After 5 min of sonication-assisted desorption, 10 ?l of desorption solvent was injected into a HPLC system for analysis. A characteristic property of DLLME-VA-?-SPE is that any organic solvent and solid sorbent immiscible with water can be used. Special apparatus, or conical-bottom test tubes, and tedious procedures conventionally associated with DLLME such as centrifugation, or refrigeration of solvent are not necessary in the present approach. A novel material, ZIF-4 was employed as ?-SPE sorbent. Under the optimized conditions, the calibration curves were linear in the range of 1-1000 ?g/L. The relative standard deviations and the limits of detection were in the range of 1.5% and 7.8% and 0.3 and 1 ?g/L, respectively. The relative recoveries of canal water samples, spiked with drugs, were in the range of 94.3% and 114.7%. The results showed that IL-DLLME-?-SPE was suitable for the determination of TCAs in water samples. PMID:23639124

  17. Dynamic Crossover Phenomenon in Confined Supercooled Water and Its Relation to the Existence of a Liquid-Liquid Critical Point in Water

    NASA Astrophysics Data System (ADS)

    Chen, Sow-Hsin; Mallamace, F.; Liu, L.; Liu, D. Z.; Chu, X. Q.; Zhang, Y.; Kim, C.; Faraone, A.; Mou, C.-Y.; Fratini, E.; Baglioni, P.; Kolesnikov, A. I.; Garcia-Sakai, V.

    2008-02-01

    We have observed a Fragile-to-Strong Dynamic Crossover (FSC) phenomenon of the ?-relaxation time and self-diffusion constant in confined supercooled water. The ?-relaxation time is measured by Quasielastic Neutron Scattering (QENS) experiments and the self-diffusion constant by Nuclear Magnetic Resonance (NMR) experiments. Water is confined in 1-d geometry in cylindrical pores of nanoscale silica materials, MCM-41-S and in Double-Wall Carbon Nanotubes (DWNT). The crossover phenomenon can also be observed from appearance of a Boson peak in Incoherent Inelastic Neutron Scattering experiments. We observe a pronounced violation of the Stokes-Einstein Relation at and below the crossover temperature at ambient pressure. Upon applying pressure to the confined water, the crossover temperature is shown to track closely the Widom line emanating from the existence of a liquid-liquid critical point in an unattainable deeply supercooled state of bulk water. Relation of the dynamic crossover phenomenon to the existence of a density minimum in supercooled confined water is discussed. Finally, we discuss a role of the FSC of the hydration water in a biopolymer that controls the biofunctionality of the biopolymer.

  18. Determination of triazine pesticides and related compounds in environmental water by liquid chromatography-mass spectrometry.

    PubMed

    Tanabe, Akiko; Kawata, Kuniaki

    2004-01-01

    A method for the determination of 5 triazine herbicides and 12 degradation products in environmental water samples using liquid chromatography-electrospray ionization mass spectrometry (LC/ESI/MS) has been developed. The pesticides in water were extracted with two types of solid phase: a styrene-divinylbenzene copolymer and a graphitized carbon black. Desorption solvents for the extracted compounds were acetone for the styrene-divinylbenzene copolymer and methanol for the graphitized carbon black. Overall recoveries from ground water and river water ranged from 73% to 111%. The limits of detection (LODs) were 0.2 to 28 ng l(-1). This method was applied to several ground water samples. PMID:14753289

  19. Phase equilibria of didecyldimethylammonium nitrate ionic liquid with water and organic solvents

    Microsoft Academic Search

    Urszula Doma?ska; Katarzyna ?ugowska; Juliusz Pernak

    2007-01-01

    The phase diagrams for binary mixtures of an ammonium ionic liquid, didecyldimethylammonium nitrate, [DDA][NO3], with: alcohols (propan-1-ol, butan-1-ol, octan-1-ol, and decan-1-ol): hydrocarbons (toluene, propylbenzene, hexane, and hexadecane) and with water were determined in our laboratory. The phase equilibria were measured by a dynamic method from T=220K to either the melting point of the ionic liquid, or to the boiling point

  20. Is the ionic liquid 1-ethyl-3-methylimidazolium methanesulfonate [emim][MeSO 3] capable of rigidly binding water?

    Microsoft Academic Search

    Annegret Stark; Anthony W. Zidell; Markus M. Hoffmann

    2011-01-01

    The binary system of water and the ionic liquid 1-ethyl-3-methylimidazolium methanesulfonate, [emim][MeSO3], was carefully studied with the initial hypothesis that water might be tightly bound to the ionic liquid up to water mole fractions of 0.5, which would explain why water has been observed to seemingly be deactivated for interfering with water sensitive chemical reactions. Measurement results as a function

  1. Simulations of the Effects of Water Vapor, Cloud Liquid Water, and Ice on AMSU Moisture Channel Brightness Temperatures

    Microsoft Academic Search

    Bradley M. Muller; Henry E. Fuelberg; Xuwu Xiang

    1994-01-01

    Radiative transfer simulations are performed to determine how water vapor and nonprecipitating cloud liquid water and ice particles within typical midlatitude atmospheres affect brightness temperatures TB's of moisture sounding channels used in the Advanced Microwave Sounding Unit (AMSU) and AMSU-like instruments. The purpose is to promote a general understanding of passive top-of-atmosphere TB's for window frequencies at 23.8, 89.0, and

  2. Application of dispersion-solidification liquid-liquid microextraction for the determination of triazole fungicides in environmental water samples by high-performance liquid chromatography.

    PubMed

    Wang, Chun; Wu, Qiuhua; Wu, Chunxia; Wang, Zhi

    2011-01-15

    A simple, rapid and environmentally friendly method has been developed for the determination of four triazole fungicides (myclobutanil, tebuconazole, triadimenol, hexaconazole) in water samples by dispersion-solidification liquid-liquid microextraction coupled with high performance liquid chromatography-diode array detection. Several variables that affect the extraction efficiencies, including the type and volume of the extraction solvent and dispersive solvent, extraction time, effect of pH and salt addition, were investigated and optimized. Under the optimum conditions, the proposed method is sensitive and shows a good linearity within a range of 0.5-200 ng mL(-1), with the correlation coefficients (r) varying from 0.9992 to 0.9998. High enrichment factors were achieved ranging from 190 to 450. The recoveries of the target analytes from water samples at spiking levels of 1.0, 5.0 and 50.0 ng mL(-1) were between 84.8% and 110.2%. The limits of detection (LODs) for the analytes were ranged in 0.06-0.1 ng mL(-1), and the relative standard deviations (RSD) varied from 3.9% to 5.7%. The proposed method has been successfully applied for the determination of the triazole fungicides in real water samples. PMID:20875927

  3. Environmental Impact of Mine Liquidation on Groundwater and Surface Water

    Microsoft Academic Search

    Nadia Rapantova; A. Grmela

    \\u000a The possibility of disposing of selected kinds of industrial waste into abandoned mines, or into the exploited parts of active\\u000a mines, belongs at present to topical problems in the Czech Republic. In the Czech part of the Lower Silesian Basin, the mining\\u000a activities have stopped in 1995 and the mines are now under a process of liquidation. Mine workings in

  4. Autoionization in Liquid Water Phillip L. Geissler,1

    E-print Network

    Dellago, Christoph

    electric fields, the tran- sient ionic species produced in this case may provide an experimentally de, they imag- ined that dissociation of a water molecule is driven by rearrangement of solvating water. This insight is obtained by using Car and Par- rinello's molecular dynamics (CPMD) (5) and transition path

  5. Measurement and Estimation of Organic-Liquid/Water Interfacial Areas for Several Natural Porous Media

    PubMed Central

    Narter, M.; Schnaar, G.; Marble, J.

    2011-01-01

    The objective of this study was to quantitatively characterize the impact of porous-medium texture on interfacial area between immiscible organic liquid and water residing within natural porous media. Synchrotron X-ray microtomography was used to obtain high-resolution, three-dimensional images of solid and liquid phases in packed columns. The image data were processed to generate quantitative measurements of organic-liquid/water interfacial area and of organic-liquid blob sizes. Ten porous media, comprising a range of median grain sizes, grain-size distributions, and geochemical properties, were used to evaluate the impact of porous-medium texture on interfacial area. The results show that fluid-normalized specific interfacial area (Af) and maximum specific interfacial area (Am) correlate very well to inverse median grain diameter. These functionalities were shown to result from a linear relationship between effective organic-liquid blob diameter and median grain diameter. These results provide the basis for a simple method for estimating specific organic-liquid/water interfacial area as a function of fluid saturation for a given porous medium. The availability of a method for which the only parameter needed is the simple-to-measure median grain diameter should be of great utility for a variety of applications. PMID:19544863

  6. Measurement and Estimation of Organic-Liquid/Water Interfacial Areas for Several Natural Porous Media

    SciTech Connect

    Brusseau, M.L.; Narter, M.; Schnaar, G.; Marble, J.; (Ariz)

    2009-06-01

    The objective of this study was to quantitatively characterize the impact of porous-medium texture on interfacial area between immiscible organic liquid and water residing within natural porous media. Synchrotron X-ray microtomography was used to obtain high-resolution, three-dimensional images of solid and liquid phases in packed columns. The image data were processed to generate quantitative measurements of organic-liquid/water interfacial area and of organic-liquid blob sizes. Ten porous media, comprising a range of median grain sizes, grain-size distributions, and geochemical properties, were used to evaluate the impact of porous-medium texture on interfacial area. The results show that fluid-normalized specific interfacial area (A{sub f}) and maximum specific interfacial area (A{sub m}) correlate very well to inverse median grain diameter. These functionalities were shown to result from a linear relationship between effective organic-liquid blob diameter and median grain diameter. These results provide the basis for a simple method for estimating specific organic-liquid/water interfacial area as a function of fluid saturation for a given porous medium. The availability of a method for which the only parameter needed is the simple-to-measure median grain diameter should be of great utility for a variety of applications.

  7. Revisiting the total ion yield x-ray absorption spectra of liquid water microjets

    SciTech Connect

    Saykally, Richard J; Cappa, Chris D.; Smith, Jared D.; Wilson, Kevin R.; Saykally, Richard J.

    2008-02-16

    Measurements of the total ion yield (TIY) x-ray absorption spectrum (XAS) of liquid water by Wilson et al. (2002 J. Phys.: Condens. Matter 14 L221 and 2001 J. Phys. Chem. B 105 3346) have been revisited in light of new experimental and theoretical efforts by our group. Previously, the TIY spectrum was interpreted as a distinct measure of the electronic structure of the liquid water surface. However, our new results indicate that the previously obtained spectrum may have suffered from as yet unidentified experimental artifacts. Although computational results indicate that the liquid water surface should exhibit a TIY-XAS that is fundamentally distinguishable from the bulk liquid XAS, the new experimental results suggest that the observable TIY-XAS is actually nearly identical in appearance to the total electron yield (TEY-)XAS, which is a bulk probe. This surprising similarity between the observed TIY-XAS and TEY-XAS likely results from large contributions from x-ray induced electron stimulated desorption of ions, and does not necessarily indicate that the electronic structure of the bulk liquid and liquid surface are identical.

  8. FTS Measurements of Submillimeter-Wave Atmospheric Opacity at Pampa la Bola III. Water Vapor, Liquid Water, and 183 GHz Water Vapor Line Opacities

    E-print Network

    Matsushita, S; Matsushita, Satoki; Matsuo, Hiroshi

    2003-01-01

    Further analysis has been made on the millimeter and submillimeter-wave (100-1600 GHz or 3 mm - 188 micron) atmospheric opacity data taken with the Fourier Transform Spectrometer (FTS) at Pampa la Bola, 4800 m above sea level in northern Chile, which is the site of the Atacama Large Millimeter/submillimeter Array (ALMA). Time-sequence plots of millimeter and submillimeter-wave opacities show similar variations to each other, except for during the periods with liquid water (fog or clouds) in the atmosphere. Using millimeter and submillimeter-wave opacity correlations under two conditions, which are affected and not affected by liquid water, we succeeded to separate the measured opacity into water vapor and liquid water opacity components. The water vapor opacity shows good correlation with the 183 GHz water vapor line opacity, which is also covered in the measured spectra. On the other hand, the liquid water opacity and the 183 GHz line opacity show no correlation. Since only the water vapor component is expec...

  9. The Association of Liquid Water Springs With Permafrost Regions on Earth and Mars

    NASA Astrophysics Data System (ADS)

    Heldmann, J. L.; Mellon, M. T.; Pollard, W. H.; Andersen, D. T.; McKay, C. P.

    2003-12-01

    Recent space missions have confirmed the presence of ice-rich ground in the middle and high latitudes of Mars. Geologically recent gully features on Mars show a geographic distribution that is correlated with theoretical models of ground ice stability which is suggestive of a genetic relationship between ground ice and gully activity. Possible mechanisms of gully formation are thus examined. A liquid water aquifer on Mars activated by freezing cycles is the favored model of gully formation based on an analysis of Mars Global Surveyor spacecraft data. Additionally, liquid water spring activity occurs in regions of continuous permafrost on Earth. Spring systems in the Canadian High Arctic (Axel Heiberg Island) as well as the Norwegian Arctic (Spitsbergen) demonstrate different morphologies and mechanisms of formation for spring systems in polar desert environments. On both Earth and Mars, liquid water springs in permafrost regions provide a unique setting for the possible preservation of biological signatures.

  10. Raman Thermometry Measurements of Free Evaporation from LiquidWater Droplets

    SciTech Connect

    Smith, Jared D.; Cappa, Christopher D.; Drisdell, Walter S.; Cohen, Ron ald C.; Saykally, Richard J.

    2006-05-22

    Recent theoretical and experimental studies of evaporation have suggested that on average, molecules in the higher-energy tail of the Boltzmann distribution are more readily transferred into the vapor during evaporation. To test these conclusions, the evaporative cooling rates of a droplet train of liquid water injected into vacuum have been studied via Raman thermometry. The resulting cooling rates are fit to an evaporative cooling model based on Knudsen's maximum rate of evaporation, in which we explicitly account for surface cooling. We have determined that the value of the evaporation coefficient ({gamma}{sub e}) of liquid water is 0.62 {+-} 0.09, confirming that a rate-limiting barrier impedes the evaporation rate. Such insight will facilitate the formulation of a microscopic mechanism for the evaporation of liquid water.

  11. Formation of Martian Gullies by the Action of Liquid Water Flowing Under Current Martian Environmental Conditions

    NASA Technical Reports Server (NTRS)

    Heldmann, J. L.; Toon, O. B.; Pollard, W. H.; Mellon, M. T.; Pitlick, J.; McKay, C. P.; Andersen, D. T.

    2005-01-01

    Images from the Mars Orbiter Camera (MOC) on the Mars Global Surveyor (MGS) spacecraft show geologically young small-scale features resembling terrestrial water-carved gullies. An improved understanding of these features has the potential to reveal important information about the hydrological system on Mars, which is of general interest to the planetary science community as well as the field of astrobiology and the search for life on Mars. The young geologic age of these gullies is often thought to be a paradox because liquid water is unstable at the Martian surface. Current temperatures and pressures are generally below the triple point of water (273 K, 6.1 mbar) so that liquid water will spontaneously boil and/or freeze. We therefore examine the flow of water on Mars to determine what conditions are consistent with the observed features of the gullies.

  12. Liquid water from first principles: The importance of exact exchange, dispersion interactions, and nuclear quantum effects

    NASA Astrophysics Data System (ADS)

    Distasio, Robert; Li, Zhaofeng; Santra, Biswajit; Wu, Xifan; Car, Roberto

    2013-03-01

    Quantitative agreement between theory and experiment on the structure of liquid water at ambient conditions has been quite difficult to achieve to date. In this work, we report that highly accurate ab initio molecular dynamics simulations of liquid water that account for exact exchange (via the hybrid PBE0 functional [PRB 79, 085102 (2009)]), dispersion interactions [PRL 102, 073005 (2009)], and nuclear quantum effects (presently approximated by a 30K increase in the simulation temperature) result in excellent agreement with experiments [PRL 101, 065502 (2008)]. The importance of each of these effects in the theoretical prediction of the structure of liquid water will be demonstrated by a detailed comparative analysis of the predicted and experimental oxygen-oxygen radial distribution functions. In addition, we will discuss the connection between the experimentally observed scattering intensity, I(k), and the final radial distribution function, g(r), via the structure and form factors. Quantitative agreement between theory and experiment on the structure of liquid water at ambient conditions has been quite difficult to achieve to date. In this work, we report that highly accurate ab initio molecular dynamics simulations of liquid water that account for exact exchange (via the hybrid PBE0 functional [PRB 79, 085102 (2009)]), dispersion interactions [PRL 102, 073005 (2009)], and nuclear quantum effects (presently approximated by a 30K increase in the simulation temperature) result in excellent agreement with experiments [PRL 101, 065502 (2008)]. The importance of each of these effects in the theoretical prediction of the structure of liquid water will be demonstrated by a detailed comparative analysis of the predicted and experimental oxygen-oxygen radial distribution functions. In addition, we will discuss the connection between the experimentally observed scattering intensity, I(k), and the final radial distribution function, g(r), via the structure and form factors. This work was supported by NSF CHE-0956500, DOE-DE- SC0005180, and DOE: DE-SC0008626.

  13. An attempt to monitor liquid water content in seasonal snow using capacitance probes

    NASA Astrophysics Data System (ADS)

    Avanzi, Francesco; Caruso, Marco; Jommi, Cristina; De Michele, Carlo; Ghezzi, Antonio

    2015-04-01

    Liquid water dynamics in snow are a key factor in wet snow avalanche triggering, in ruling snowmelt runoff timing and amounts, and in remote sensing interpretation. It follows that a continuous-time monitoring of this variable would be very desirable. Nevertheless, such an operation is nowadays hampered by the difficulty in obtaining direct, precise and continuous-time measurements of this quantity without perturbing the snowpack itself. As a result, only a few localized examples exist of continuous-time measurements of this variable. In this framework, we tried to get undisturbed measurements of liquid water content using capacitance probes. These instruments were originally designed to obtain liquid water content data in soils. After being installed on a support and driven in the snow, they include part of the medium under investigation in a LC circuit. The resonant frequency of the circuit depends on liquid water content, hence its measurement. To test these sensors, we designed two different field surveys (in April 2013 and April 2014) at a medium elevation site (around 1980 m a.s.l.). In both the cases, a profile of sensors was inserted in the snowpack, and undisturbed measurements of liquid water content were obtained using time-domain-reflectometry based devices. To assist in the interpretation of the readings from these sensors, some laboratory tests were run, and a FEM model of a sensor was implemented. Results show that sensors are sensitive to increasing liquid water content in snow. Nonetheless, long-term tests in snow cause the systematic development of an air gap between the instrument and the surrounding snow, that hampers the interpretation. Perspectives on future investigation are discussed to bring the proposed procedure towards long-term applications in snowpacks.

  14. Homogeneous liquid-liquid extraction coupled to ion mobility spectrometry for the determination of p-toluidine in water samples.

    PubMed

    Ashori, Amin; Sheibani, Ali

    2015-04-01

    In this research, homogeneous liquid-liquid extraction followed by ion mobility spectrometry (HLLE-IMS) with corona discharge ionization source has been developed for the determination of p-toluidine. The analyte was extracted by single-phase extraction in a ternary solvent system and then the extracted p-toluidine was injected into IMS for analysis. Optimization of different parameters which could influence HLLE-IMS was performed. Under optimum conditions, the dynamic linear range was obtained over 2.0-40.0 ng/mL with R (2) = 0.9966 while relative standard deviation was below 10 %. The limits of detection and quantification were 0.6 and 2.0 ng/mL of p-toluidine, respectively. The proposed method was applied to determine p-toluidine in environmental water samples which resulted in acceptable recoveries of the analyte, ranging from 85.3 %-90 %. PMID:25427773

  15. Accurate Optical Detection of Amphiphiles at Liquid-Crystal-Water Interfaces

    NASA Astrophysics Data System (ADS)

    Popov, Piotr; Mann, Elizabeth K.; Jákli, Antal

    2014-04-01

    Liquid-crystal-based biosensors utilize the high sensitivity of liquid-crystal alignment to the presence of amphiphiles adsorbed to one of the liquid-crystal surfaces from water. They offer inexpensive, easy optical detection of biologically relevant molecules such as lipids, proteins, and cells. Present techniques use linear polarizers to analyze the alignment of the liquid crystal. The resulting images contain information not only about the liquid-crystal tilt with respect to the surface normal, the quantity which is controlled by surface adsorption, but also on the uncontrolled in-plane liquid-crystal alignment, thus making the detection largely qualitative. Here we show that detecting the liquid-crystal alignment between circular polarizers, which are only sensitive to the liquid-crystal tilt with respect to the interface normal, makes possible quantitative detection by measuring the transmitted light intensity with a spectrophotometer. Following a new procedure, not only the concentration dependence of the optical path difference but also the film thickness and the effective birefringence can be determined accurately. We also introduce a new "dynamic" mode of sensing, where (instead of the conventional "steady" mode, which detects the concentration dependence of the steady-state texture) we increase the concentration at a constant rate.

  16. Rheological properties of ammonia-water liquids and crystal-liquid slurries - Planetological applications

    Microsoft Academic Search

    J. S. Kargel; S. K. Croft; J. I. Lunine; J. S. Lewis

    1991-01-01

    The laboratory-measured viscosities of liquid mixtures representative of the variety of cryovolcanic substances of the icy satellites are presently noted to be much greater than could be expected on the assumption that end-member molecules are noninteractive; this observation is supported by others concerning molar volumes and vapor pressure relations, which indicate the presence of strong molecular-interaction forces that fundamentally affect

  17. Generation of liquid water on Mars through the melting of a dusty snowpack

    NASA Astrophysics Data System (ADS)

    Clow, G. D.

    1987-10-01

    An optical/thermal model for dusty snowpacks at temperate Martian latitudes is used to investigate the possibility of valley network formation by liquid water that was provided by snowmelts, assuming insolation absorption under clear-sky conditions. The mean-annual surface temperatures for snow and the atmospheric exchange terms of the surface energy balance are constrained by global climate model results. Under favorable conditions, liquid water is generated at atmospheric pressures as low as 30-100 mbar, provided that the substrate is composed of regolith; this condition is in keeping with the cratered terrain expected in an ancient Martian surface.

  18. Bubbles in liquids with phase transition. Part 1. On phase change of a single vapor bubble in liquid water

    NASA Astrophysics Data System (ADS)

    Dreyer, Wolfgang; Duderstadt, Frank; Hantke, Maren; Warnecke, Gerald

    2012-11-01

    In the forthcoming second part of this paper a system of balance laws for a multi-phase mixture with many dispersed bubbles in liquid is derived where phase transition is taken into account. The exchange terms for mass, momentum and energy explicitly depend on evolution laws for total mass, radius and temperature of single bubbles. Therefore in the current paper we consider a single bubble of vapor and inert gas surrounded by the corresponding liquid phase. The creation of bubbles, e.g. by nucleation is not taken into account. We study the behavior of this bubble due to condensation and evaporation at the interface. The aim is to find evolution laws for total mass, radius and temperature of the bubble, which should be as simple as possible but consider all relevant physical effects. Special attention is given to the effects of surface tension and heat production on the bubble dynamics as well as the propagation of acoustic elastic waves by including slight compressibility of the liquid phase. Separately we study the influence of the three phenomena heat conduction, elastic waves and phase transition on the evolution of the bubble. We find ordinary differential equations that describe the bubble dynamics. It turns out that the elastic waves in the liquid are of greatest importance to the dynamics of the bubble radius. The phase transition has a strong influence on the evolution of the temperature, in particular at the interface. Furthermore the phase transition leads to a drastic change of the water content in the bubble. It is shown that a rebounding bubble is only possible, if it contains in addition an inert gas. In Part 2 of the current paper the equations derived are sought in order to close the system of equations for multi-phase mixture balance laws for dispersed bubbles in liquids involving phase change.

  19. Heating-induced glass-glass and glass-liquid transformations in computer simulations of water.

    PubMed

    Chiu, Janet; Starr, Francis W; Giovambattista, Nicolas

    2014-03-21

    Water exists in at least two families of glassy states, broadly categorized as the low-density (LDA) and high-density amorphous ice (HDA). Remarkably, LDA and HDA can be reversibly interconverted via appropriate thermodynamic paths, such as isothermal compression and isobaric heating, exhibiting first-order-like phase transitions. We perform out-of-equilibrium molecular dynamics simulations of glassy water using the ST2 model to study the evolution of LDA and HDA upon isobaric heating. Depending on pressure, glass-to-glass, glass-to-crystal, glass-to-vapor, as well as glass-to-liquid transformations are found. Specifically, heating LDA results in the following transformations, with increasing heating pressures: (i) LDA-to-vapor (sublimation), (ii) LDA-to-liquid (glass transition), (iii) LDA-to-HDA-to-liquid, (iv) LDA-to-HDA-to-liquid-to-crystal, and (v) LDA-to-HDA-to-crystal. Similarly, heating HDA results in the following transformations, with decreasing heating pressures: (a) HDA-to-crystal, (b) HDA-to-liquid-to-crystal, (c) HDA-to-liquid (glass transition), (d) HDA-to-LDA-to-liquid, and (e) HDA-to-LDA-to-vapor. A more complex sequence may be possible using lower heating rates. For each of these transformations, we determine the corresponding transformation temperature as function of pressure, and provide a P-T "phase diagram" for glassy water based on isobaric heating. Our results for isobaric heating dovetail with the LDA-HDA transformations reported for ST2 glassy water based on isothermal compression/decompression processes [Chiu et al., J. Chem. Phys. 139, 184504 (2013)]. The resulting phase diagram is consistent with the liquid-liquid phase transition hypothesis. At the same time, the glass phase diagram is sensitive to sample preparation, such as heating or compression rates. Interestingly, at least for the rates explored, our results suggest that the LDA-to-liquid (HDA-to-liquid) and LDA-to-HDA (HDA-to-LDA) transformation lines on heating are related, both being associated with the limit of kinetic stability of LDA (HDA). PMID:24655190

  20. Liquid Water: Obtaining the right answer for the right reasons

    SciTech Connect

    Apra, Edoardo; Rendell, Alistair P.; Harrison, Robert J.; Tipparaju, Vinod; De Jong, Wibe A.; Xantheas, Sotiris S.

    2009-11-14

    Water is ubiquitous on our planet and plays an essential role in many chemical and biological processes. Accurate models for water are crucial in understanding, controlling and predicting the physical and chemical properties of complex aqueous systems. Over the last few years we have been developing a molecular-level based approach for a macroscopic model for water that is based on the explicit description of the underlying intermolecular interactions between molecules in water clusters. In the absence of detailed experimental data for small water clusters, highly-accurate theoretical results are required to validate and parameterize model potentials. As an example of the benchmarks needed for the development of accurate models for the interaction between water molecules, for the most stable structure of (H2O)20 we ran a coupled-cluster calculation on the ORNL’s Jaguar petaflop computer that used over 100 TB of memory for a sustained performance of 487 TFLOP/s (double precision) on 96,000 processors, lasting for 2 hours. By this summer we will have studied multiple structures of both (H2O)20 and (H2O)30 and completed basis set and other convergence studies and anticipate the sustained performance rising close to 1 PFLOP/s.

  1. Liquid Water: Obtaining the right answer for the right reasons

    SciTech Connect

    Apra, Edoardo [ORNL; Harrison, Robert J [ORNL; de Jong, Wibe A [Pacific Northwest National Laboratory (PNNL); Rendell, Alistair P [Australian National University, Canberra, Australia; Tipparaju, Vinod [ORNL; Xantheas, Sotiris [Pacific Northwest National Laboratory (PNNL)

    2009-01-01

    Water is ubiquitous on our planet and plays an essential role in many chemical and biological processes. Accurate models for water are crucial in understanding, controlling and predicting the physical and chemical properties of complex aqueous systems. Over the last few years we have been developing a molecular-level based approach for a macroscopic model for water that is based on the explicit description of the underlying intermolecular interactions between molecules in water clusters. In the absence of detailed experimental data for small water clusters, highly-accurate theoretical results are required to validate and parameterize model potentials. As an example of the benchmarks needed for the development of accurate models for the interaction between water molecules, for the most stable structure of (H$_2$O)$_{20}$ we ran a coupled-cluster calculation on the ORNL's Jaguar petaflop computer that used over 100 TB of memory for a sustained performance of 487 TFLOP/s (double precision) on 96,000 processors, lasting for 2 hours. By this summer we will have studied multiple structures of both (H$_2$O)$_{20}$ and (H$_2$O)$_{30}$ and completed basis set and other convergence studies and anticipate the sustained performance rising close to 1 PFLOP/s.

  2. Network equilibration and first-principles liquid water

    E-print Network

    Artacho, Emilio; Fernandez-Serra, M V

    2004-12-08

    on the preparation model and initial temperature. It is tempting at this stage to relate our equilibration time with the one observed by inelastic UV scattering41 for the structural relaxation probed by sound modes in the liquid, which, from values lower than 1 ps... and effi- ciency. For this system it means two 2s orbitals, two 2p shells, and one 3d shell for oxygen, and two 1s orbitals and one 2p shell for hydrogen. Three basis sets were tried at this level, differing in the cutoff radii of the support regions...

  3. Remote sensing of total integrated water vapor, wind speed, and cloud liquid water over the ocean using the Special Sensor Microwave/Imager (SSM/I) 

    E-print Network

    Manning, Norman Willis William

    1997-01-01

    A modified D-matrix retrieval method is the basis of the refined total integrated water vapor (TIWV), total integrated cloud liquid water (CLW), and surface wind speed (WS) retrieval methods that are developed. The 85 GHZ polarization difference...

  4. Gas-liquid-liquid equilibria in mixtures of water, light gases, and hydrocarbons

    SciTech Connect

    Chao, K.C.

    1990-01-01

    Phase equilibrium in mixtures of water + light gases and water + heavy hydrocarbons has been investigated with the development of new local composition theory, new equations of state, and new experimental data. The preferential segregation and orientation of molecules due to different energies of molecular interaction has been simulated with square well molecules. Extensive simulation has been made for pure square well fluids and mixtures to find the local composition at wide ranges of states. A theory of local composition has been developed and an equation of state has been obtained for square well fluids. The new local composition theory has been embedded in several equations of state. The pressure of water is decoupled into a polar pressure and non-polar pressure according to the molecular model of water of Jorgensen et al. The polar pressure of water is combined with the BACK equation for the general description of polar fluids and their mixtures. Being derived from the steam table, the Augmented BACK equation is particularly suited for mixtures of water + non-polar substances such as the hydrocarbons. The hydrophobic character of the hydrocarbons had made their mixtures with water a special challenge. A new group contribution equation of state is developed to describe phase equilibrium and volumetric behavior of fluids while requiring only to know the molecular structure of the components. 15 refs., 1 fig.

  5. Vapor-liquid equilibria of the water + 1,3-propanediol and water + 1,3-propanediol + lithium bromide systems

    SciTech Connect

    Mun, S.Y.; Lee, H.

    1999-12-01

    Vapor-liquid equilibrium data of the water + 1,3-propanediol and water + 1,3-propanediol + lithium bromide systems were measured at 60, 160, 300, and 760 mmHg at temperatures ranging from 315 to 488 K. The apparatus used in this work is a modified still especially designed for the measurement of low-pressure VLE, in which both liquid and vapor are continuously recirculated. For the analysis of salt-containing solutions, a method incorporating refractometry and gravimetry was used. From the experimental measurements, the effect of lithium bromide on the VLE behavior of water + 1,3-propanediol was investigated. The experimental data of the salt-free system were successfully correlated using the Wilson, NRTL, and UNIQUAC models. In addition, the extended UNIQUAC model of Sander et al. was applied to the VLE calculation of salt-containing mixtures.

  6. On the existence and stability of liquid water on the surface of mars today.

    PubMed

    Kuznetz, L H; Gan, D C

    2002-01-01

    The recent discovery of high concentrations of hydrogen just below the surface of Mars' polar regions by Mars Odyssey has enlivened the debate about past or present life on Mars. The prevailing assumption prior to the discovery was that the liquid water essential for its existence is absent. That assumption was based largely on the calculation of heat and mass transfer coefficients or theoretical climate models. This research uses an experimental approach to determine the feasibility of liquid water under martian conditions, setting the stage for a more empirical approach to the question of life on Mars. Experiments were conducted in three parts: Liquid water's existence was confirmed by droplets observed under martian conditions in part 1; the evolution of frost melting on the surface of various rocks under martian conditions was observed in part 2; and the evaporation rate of water in Petri dishes under Mars-like conditions was determined and compared with the theoretical predictions of various investigators in part 3. The results led to the conclusion that liquid water can be stable for extended periods of time on the martian surface under present-day conditions. PMID:12469367

  7. An Interatomic Potential Model for H2O: Applications to Water and Ice Polymorphs

    Microsoft Academic Search

    Naoki Kumagai; Katsuyuki Kawamura; Toshio Yokokawa

    1994-01-01

    A new interatomic potential model for H2O which consists of 2-body central (O-H, O-O and H-H) and 3-body teams and does not contain artificial constraints on the motions of oxygen and hydrogen atoms is proposed. The interatomic potential function parameters were determined empirically so as to reproduce the fundamental and essential features of water and ice Ih using molecular dynamics

  8. Estimating the entropy of liquids from atom-atom radial distribution functions: silica, beryllium fluoride and water

    Microsoft Academic Search

    Ruchi Sharma; Manish Agarwal; Charusita Chakravarty

    2008-01-01

    Molecular dynamics simulations of water, liquid beryllium fluoride and silica melt are used to study the accuracy with which the entropy of ionic and molecular liquids can be estimated from atom-atom radial distribution function data. All three systems are known to display similar liquid-state thermodynamic and kinetic anomalies due to a region of anomalous excess entropy behaviour where entropy rises

  9. A Combined Experimental and Molecular Dynamics Study of Iodide-Based Ionic Liquid and Water Mixtures.

    PubMed

    Nickerson, Stella D; Nofen, Elizabeth M; Chen, Haobo; Ngan, Miranda; Shindel, Benjamin; Yu, Hongyu; Dai, Lenore L

    2015-07-16

    Iodide-based ionic liquids have been widely employed as iodide sources in electrolytes for applications utilizing the triiodide/iodide redox couple. While adding a low-viscosity solvent such as water to ionic liquids can greatly enhance their usefulness, mixtures of highly viscous iodide-containing ILs with water have never been studied. This paper investigates, for the first time, mixtures of water and the ionic liquid 1-butyl-3-methylimidazolium iodide ([BMIM][I]) through a combined experimental and molecular dynamics study. The density, melting point, viscosity, and conductivity of these mixtures were measured by experiment. The composition region below 50% water by mole was found to differ dramatically from the region above 50% water, with trends in density and melting point differing before and after that point. Water was found to have a profound effect on viscosity and conductivity of the IL, and the effect of hydrogen bonding was discussed. Molecular dynamics simulations representing the same mixture compositions were performed. Molecular ordering was observed, as were changes in this ordering corresponding to water content. Molecular ordering was related to the experimentally measured mixture properties, providing a possible explanation for the two distinct composition regions identified by experiment. PMID:26090562

  10. Self-aggregation of cationic dimeric surfactants in water-ionic liquid binary mixtures.

    PubMed

    Martín, Victoria Isabel; Rodríguez, Amalia; Laschewsky, André; Moyá, María Luisa

    2014-09-15

    The micellization of four dimeric cationic surfactants ("gemini surfactants") derived from N-dodecyl-N,N,N-trimethylammonium chloride was studied in pure water and in water-ionic liquid (IL) solutions by a wide range of techniques. The dimeric surfactants are distinguished by their rigid spacer groups separating the two surfactant motifs, which range from C3 to C5 in length. In order to minimize organic ion pairing effects as well as the role of the ionic liquids as potential co-surfactants, ILs with inorganic hydrophilic anions and organic cations of limited hydrophobicity were chosen, namely ethyl, butyl, and hexyl-3-imidazolium chlorides. (1)H NMR two-dimensional, 2D, rotating frame nuclear Overhauser effect spectroscopy measurements, ROESY, supported this premise. The spacer nature hardly affects the micellization process, neither in water nor in water-IL solutions. However, it does influence the tendency of the dimeric surfactants to form elongated micelles when surfactant concentration increases. In order to have a better understanding of the ternary water-IL surfactant systems, the micellization of the surfactants was also studied in aqueous NaCl solutions, in water-ethylene glycol and in water-formamide binary mixtures. The combined results show that the ionic liquids play a double role in the mixed systems, operating simultaneously as background electrolytes and as polar organic solvents. The IL role as organic co-solvent becomes more dominant when its concentration increases, and when the IL alkyl chain length augments. PMID:24974245

  11. Comment on "Structure and dynamics of liquid water on rutile TiO2(110)

    SciTech Connect

    Wesolowski, David J [ORNL; Sofo, Jorge O. [Pennsylvania State University; Bandura, Andrei V. [St. Petersburg State University, St. Petersburg, Russia; Zhang, Zhan [Argonne National Laboratory (ANL); Mamontov, Eugene [ORNL; Predota, M. [University of South Bohemia, Czech Republic; Kumar, Nitin [ORNL; Kubicki, James D. [Pennsylvania State University; Kent, Paul R [ORNL; Vlcek, Lukas [ORNL; Machesky, Michael L. [Illinois State Water Survey, Champaign, IL; Fenter, Paul [Argonne National Laboratory (ANL); Cummings, Peter T [ORNL; Anovitz, Lawrence {Larry} M [ORNL; Skelton, A A [Vanderbilt University; Rosenqvist, Jorgen K [ORNL

    2012-01-01

    Liu and co-workers [Phys. Rev. B 82, 161415 (2010)] discussed the long-standing debate regarding whether H2O molecules on the defect-free (110) surface of rutile ( -TiO2) sorb associatively, or there is dissociation of some or all first-layer water to produce hydroxyl surface sites. They conducted static density functional theory (DFT) and DFT molecular dynamics (DFT-MD) investigations using a range of cell configurations and functionals. We have reproduced their static DFT calculations of the influence of crystal slab thickness on water sorption energies. However, we disagree with several assertions made by these authors: (a) that second-layer water structuring and hydrogen bonding to surface oxygens and adsorbed water molecules are weak ; (b) that translational diffusion of water molecules in direct contact with the surface approaches that of bulk liquid water; and (c) that there is no dissociation of adsorbed water at this surface in contact with liquid water. These assertions directly contradict our publishedwork, which compared synchrotron x-ray crystal truncation rod, second harmonic generation, quasielastic neutron scattering, surface charge titration, and classical MD simulations of rutile (110) single-crystal surfaces and (110)-dominated powders in contact with bulk water, and (110)-dominated rutile nanoparticles with several monolayers of adsorbed water.

  12. An Integrated Approach toward Retrieving Physically Consistent Profiles of Temperature, Humidity, and Cloud Liquid Water.

    NASA Astrophysics Data System (ADS)

    Löhnert, Ulrich; Crewell, Susanne; Simmer, Clemens

    2004-09-01

    A method is presented for deriving physically consistent profiles of temperature, humidity, and cloud liquid water content. This approach combines a ground-based multichannel microwave radiometer, a cloud radar, a lidar-ceilometer, the nearest operational radiosonde measurement, and ground-level measurements of standard meteorological properties with statistics derived from results of a microphysical cloud model. All measurements are integrated within the framework of optimal estimation to guarantee a retrieved profile with maximum information content. The developed integrated profiling technique (IPT) is applied to synthetic cloud model output as a test of accuracy. It is shown that the liquid water content profiles obtained with the IPT are significantly more accurate than common methods that use the microwave-derived liquid water path to scale the radar reflectivity profile. The IPT is also applied to 2 months of the European Cloud Liquid Water Network (CLIWA-NET) Baltic Sea Experiment (BALTEX) BRIDGE main experiment (BBC) campaign data, considering liquid-phase, nonprecipitating clouds only. Error analysis indicates root-mean-square uncertainties of less than 1 K in temperature and less than 1 g m-3 in humidity, where the relative error in liquid water content ranges from 15% to 25%. A comparison of the vertically integrated humidity profile from the IPT with the nearest operational radiosonde shows an acceptable bias error of 0.13 kg m-2 when the Rosenkranz gas absorption model is used. However, if the Liebe gas absorption model is used, this systematic error increases to -1.24 kg m-2, showing that the IPT humidity retrieval is significantly dependent on the chosen gas absorption model.


  13. Fatty-acid monolayers at the nematic/water interface: phases and liquid-crystal alignment.

    PubMed

    Price, Andrew D; Schwartz, Daniel K

    2007-02-01

    The two-dimensional (2D) phases of fatty-acid monolayers (hexadecanoic, octadecanoic, eicosanoic, and docosanoic acids) have been studied at the interface of a nematic liquid crystal (LC) and water. When observed between crossed polarizers, the LC responds to monolayer structure owing to mesoscopic alignment of the LC by the adsorbed molecules. Similar to Langmuir monolayers at the air/water interface, the adsorbed monolayer at the nematic/water interface displays distinct thermodynamic phases. Observed are a 2D gas, isotropic liquid, and two condensed mesophases, each with a characteristic anchoring of the LC zenithal tilt and azimuth. By varying the monolayer temperature and surface concentration we observe reversible first-order phase transitions from vapor to liquid and from liquid to condensed. A temperature-dependent transition between two condensed phases appears to be a reversible swiveling transition in the tilt azimuth of the monolayer. Similar to monolayers at the air/water interface, the temperature of the gas/liquid/condensed triple-point temperature increased by about 10 degrees C for a two methylene group increase in chain length. However, the absolute value of the triple-point temperatures are depressed by about 40 degrees C compared to those of analogous monolayers at the air/water interface. We also observe a direct influence by the LC layer on the mesoscopic and macroscopic structure of the monolayer by analyzing the shapes and internal textures of gas domains in coexistence with a 2D liquid. An effective anisotropic line tension arises from elastic forces owing to deformation of the nematic director across phase boundaries. This results in the deformation of the domain from circular to elongated, with a distinct singularity. The LC elastic energy also gives rise to transition zones displaying mesoscopic realignment of the director tilt or azimuth between adjacent regions with a sudden change in anchoring. PMID:17266255

  14. Effect of direct liquid water injection and interdigitated flow field on the performance of proton exchange membrane fuel cells

    E-print Network

    Wood, D. L.; Yi, Y. S.; Van Nguyen, Trung

    1998-01-01

    Proper water management is vital to ensuring successful performance of proton exchange membrane fuel cells. The effectiveness of the direct liquid water injection scheme and the interdigitated flow field design towards ...

  15. In-syringe demulsified dispersive liquid-liquid microextraction and high performance liquid chromatography-mass spectrometry for the determination of trace fungicides in environmental water samples.

    PubMed

    Xia, Yating; Cheng, Min; Guo, Feng; Wang, Xiangfang; Cheng, Jing

    2012-04-29

    An in-syringe demulsified dispersive liquid-liquid microextraction (ISD-DLLME) technique was developed using low-density extraction solvents for the highly sensitive determination of the three trace fungicides (azoxystrobin, diethofencarb and pyrimethanil) in water samples by high performance liquid chromatography-mass spectrometry chromatography-diode array detector/electrospray ionisation mass spectrometry. In the proposed technique, a 5-mL syringe was used as an extraction, separation and preconcentration container. The emulsion was obtained after the mixture of toluene (extraction solvent) and methanol (dispersive solvent) was injected into the aqueous bulk of the syringe. The obtained emulsion cleared into two phases without centrifugation, when an aliquot of methanol was introduced as a demulsifier. The separated floating organic extraction solvent was impelled and collected into a pipette tip fitted to the tip of the syringe. Under the optimal conditions, the enrichment factors for azoxystrobin, diethofencarb and pyrimethanil were 239, 200, 195, respectively. The limits of detection, calculated as three times the signal-to-noise ratio (SN(-1)), were 0.026 ?g L(-1) for azoxystrobin, 0.071 ?g L(-1) for diethofencarb and 0.040 ?g L(-1) for pyrimethanil. The repeatability study was carried out by extracting the spiked water samples at concentration levels of 0.02 ?g mL(-1) for all the three fungicides. The relative standard deviations varied between 4.9 and 8.2% (n=5). The recoveries of all the three fungicides from tap, lake and rain water samples at spiking levels of 0.2, 1, 5 ?g L(-1) were in the range of 90.0-105.0%, 86.0-114.0% and 88.6-110.0%, respectively. The proposed ISD-DLLME technique was demonstrated to be simple, practical and efficient for the determination of different kinds of fungicide residues in real water samples. PMID:22483208

  16. Comment on "Spontaneous liquid-liquid phase separation of water" by T. Yagasaki, M. Matsumoto and H. Tanaka, Phys. Rev. E 89, 020301 (2014)

    E-print Network

    Limmer, David T

    2014-01-01

    Yagasaki et al. present results from a molecular dynamics trajectory illustrating coarsening of ice, which they interpret as evidence of transient coexistence between two distinct supercooled phases of liquid water. We point out that neither two distinct liquids nor criticality are demonstrated in this simulation study. Instead, the illustrated trajectory is consistent with coarsening behaviors analyzed and predicted in earlier works by others.

  17. Rheological properties of ammonia-water liquids and crystal-liquid slurries - Planetological applications

    NASA Technical Reports Server (NTRS)

    Kargel, J. S.; Croft, S. K.; Lunine, J. I.; Lewis, J. S.

    1991-01-01

    The laboratory-measured viscosities of liquid mixtures representative of the variety of cryovolcanic substances of the icy satellites are presently noted to be much greater than could be expected on the assumption that end-member molecules are noninteractive; this observation is supported by others concerning molar volumes and vapor pressure relations, which indicate the presence of strong molecular-interaction forces that fundamentally affect the mixtures' physical properties. Since the rheological effects of partial crystallization parallel the characteristics of silicate lavas, icy satellite cryovolcanic morphologies are similarly interpretable with allowances for differences in surface gravities and lava densities.

  18. Estimating the lunar mantle water budget from phosphates: Complications associated with silicate-liquid-immiscibility

    NASA Astrophysics Data System (ADS)

    Pernet-Fisher, J. F.; Howarth, G. H.; Liu, Y.; Chen, Y.; Taylor, L. A.

    2014-11-01

    The discovery of water within the lunar mantle has broad implications for the formation of the Earth-Moon system, differentiation of the Moon, and the magmatic evolution of lunar basalts, as well as the highland rocks. Recently, there has been considerable interest in using combined water abundances and H-isotope systematics of lunar apatites from mare basalts to quantify the origin and extent of water within the Moon's mantle. However, the petrologic and geochemical conditions that govern apatite crystallization are not well-constrained, especially for high-FeO basaltic melts that crystallize at fO2 values below the iron-wüstite buffer. Apatites are typically located within the late-stage interstitial regions. In this contribution, we present detailed textural descriptions of late-stage inter-cumulus, residual-liquid pockets (i.e., mesostasis pockets), in order to understand the petrogenesis of lunar apatite. Results from five mare basalts demonstrate that the majority of the residual liquids in mesostasis regions have undergone silicate-liquid immiscibility (SLI) splitting into Si-K-rich (felsic) and Fe-rich (Fe-basaltic) conjugate liquids. We demonstrate the complexity of these residual liquids by documenting a wide range of water contents for apatites in several mesostasis pockets within a single mare basalt, a complexity common to many basalts. These data illustrate that individual apatite-hosting mesostasis pockets behave as independent sub-systems, even within a single rock. Furthermore, we present water concentrations for another phosphate phase, merrillite, indicating additional uncertainties during considerations of water partitioning into apatite. Fractional crystallization trends have been used in order to assess the conditions under which magmas are likely to undergo SLI. Predicted liquid lines of descent indicate that it is the late-stage residual liquids of lunar basalts with relatively low-Mg# (e.g., liquid field during crystallization, forming conjugate liquids that are chemically and mineralogically distinct. However, residual liquids for basaltic magmas with high-Mg# (e.g., >?50) may not intersect the two-liquid field depending upon the fractionation trends in the late-stage mesostasis pockets. For samples that undergo SLI, the apatite/melt-partition coefficients required for back-calculating water abundances of the parental melts are compromised by the generation of two populations of apatites-merrillites from conjugate immiscible liquids. This process highlights an important complexity inherent to all water back-calculations that use apatite, as this requires an additional set of partition coefficients. We emphasize that the complex petrologic nature and common development of SLI of apatite-bearing, late-stage mesostasis pockets have not been considered in published apatite-volatile data. These factors, in additional to other considerations, illustrate why water back-calculations to model the primary melts from such data must be viewed with caution.

  19. Ionic liquid and water molecules diluted in hydrophobic solvent matrix investigated by infrared absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Kim, Doseok; Sung, Woongmo; Lee, Jonggwan

    2015-03-01

    Pure ionic liquids ([BMIM]: 1-butyl-3-methylimidazolium, X: Cl and I) and their aqueous solutions were loaded on top of non-polar solvent CCl4, and the infrared spectra of CCl4 phase were taken as a function of time for in-situ probing of the transfer of the ionic liquid and water molecules. We observed clear vibrational bands of methyl and methylene groups of the cations similar to that of bulk ionic liquids. On the other hand, normally strong infrared absorption from C(2)-H and C(4,5)-H vibrations was hardly observable. As these bands work as indicators of specific interaction between the imidazolium core and the halide anions, we concluded that ion pairs are fully dissociated and [BMIM] cations exist as monomers in CCl4. For 1 M of [BMIM]Cl and [BMIM]I aqueous solutions, water molecules transferred into CCl4 also exist mostly as monomers, with a possible existence of anion-bound water molecules inferred from the new band at 3421 cm-1 for [BMIM]Cl, and at 3452 cm- 1 for [BMIM]I. Both transfer rate and saturation amount of ionic liquid molecules are larger for [BMIM]I. For this, we propose that this difference in transfer rate originates from excess ionic liquid molecules at the interface between hydrophlic (aqueous solution) and hydrophobic (CCl4) medium.

  20. Potential transient liquid water flow features in fresh craters on Vesta

    NASA Astrophysics Data System (ADS)

    Scully, J. E.; Yin, A.; Russell, C. T.; Denevi, B. W.; Reddy, V.

    2012-12-01

    Observations made by the Dawn spacecraft reveal unexpected potential transient liquid water flow features (PTFs) in fresh craters on Vesta. The PTFs have features similar to the headward alcoves, channels and distal aprons of the Martian gullies and related features on Earth (e.g. Malin & Edgett 2000), and have been identified in multiple Vestan craters. All of the craters have relatively fresh rims, which suggests that they, and the PTFs, formed relatively recently in the history of Vesta's evolution. There is some correlation between craters that contain PTFs and craters that contain pitted terrain, which Denevi et al. (2012) propose formed as volatile-bearing material degassed after being heated by an impact. Cornelia crater contains good examples of PTFs and a geological map was made of Cornelia crater based on ~20 m/pixel resolution images. Cross-cutting relationships derived from the map make it is possible to discern a geological history: firstly, an early damp stage, during which the PTFs formed; secondly, a transitional damp to dry stage, during which the pitted terrain formed and thirdly, a dry stage. There is considerable morphological evidence that the formation of the PTFs in Cornelia was by flow of liquid water and not by dry granular flow, flow of impact melt or flow of liquid CO2. The channels are not as sinuous as those on the Earth and Mars, but the fact that the PTFs formed on the relatively high slopes of the crater walls and under conditions of Vesta's low gravity, means that the channels may not need to divert around obstacles. The PTFs in Cornelia crater tend to form in the dark material dominated areas of the crater, which Reddy et al. (2012) conclude has a composition similar to carbonaceous chondrite (CC) and think originates from the impactor that formed Vesta's Veneneia impact basin. Vesta's current surface temperatures and pressures make it an inhospitable environment for liquid water. But, energy from a high velocity impactor that impacts an area of CC could release the mineralogically bound water from the CC and provide temporarily increased temperatures and pressures in the newly formed crater, which would allow liquid water to briefly flow and form the PTFs before it spontaneously boils and evaporates. Results from Dawn's Gamma Ray and Neutron Detector imply up to 106 kg of water within the 150 g/cm2 top portion of Vesta's regolith that the instrument senses (Prettyman et al. 2012). The potential for transient flow of liquid water on the classically "dry" Vesta illuminates the possibility that liquid water could be present in previously unconsidered locations and have previously unconsidered influences on the history of our solar system.

  1. Determination of diquat and paraquat in water by liquid chromatography-(electrospray ionization) mass spectrometry

    Microsoft Academic Search

    Vince Y. Taguchi; Steve W. D. Jenkins; Patrick W. Crozier; David T. Wang

    1998-01-01

    A method for the determination of the herbicides diquat and paraquat in water was developed using liquid chromatography-(electrospray\\u000a ionization) mass spectrometry [LC-(ESI)MS]. The analytes were isolated on an ENVI-8 DSK solid phase extraction (SPE) disk\\u000a and eluted with 5-M trifluoroacetic acid (TFA). The eluate was evaporated to dryness and the analytes were redissolved in\\u000a the mobile phase (7% methanol\\/93% water\\/25-mM

  2. Distributed Reforming of Renewable Liquids via Water Splitting using

    E-print Network

    -print area #12;BILIWG Meeting, Nov. 6, 2007 3 Reforming of Fuels via Water Splitting using OTM No electrical Splitting using OTM Oxygen is removed by membrane. Non-galvanic (no electrodes/ electrical circuitry) High p 6 Schematic of Experimental Setup ­ Ambient pressure Disk-type Membrane Steam/N2 Al2O3 Disk Membrane

  3. Extinction of gas and liquid pool fires with water sprays

    Microsoft Academic Search

    Gunnar Heskestad

    2003-01-01

    Extinction in open space of flames from pool fires by downwardly directed water sprays has been investigated on two linear scales, one three times larger than the other. Circular pool fires were employed as fire sources, mostly in the form of gas discharge (methane) from a horizontal sand surface but also, to a limited extent, in the form of heptane

  4. Liquid chromatography and differential scanning calorimetry studies on the states of water in polystyrene–divinylbenzene copolymer gels

    Microsoft Academic Search

    Takayuki Baba; Masami Shibukawa; Tomoyuki Heya; Shin-ichiro Abe; Koichi Oguma

    2003-01-01

    The thermal phase transition behavior of water incorporated in crosslinked polystyrene–divinylbenzene copolymer (PS–DVB) gel packings for liquid chromatography was investigated by differential scanning calorimetry. Free or bulk water, freezable bound or intermediate water, and nonfreezing water were observed for TSKgel Styrene-250 samples, while only free water and nonfreezing water were observed for TSKgel Styrene-60 samples. Freezable bound water and nonfreezing

  5. Communication: The Effect of Dispersion Corrections on the Melting Temperature of Liquid Water

    SciTech Connect

    Yoo, Soohaeng; Xantheas, Sotiris S.

    2011-03-28

    We report the results of the melting temperature (Tm) of liquid water for the Becke-Lee- Yang-Parr (BLYP) density functional including Dispersion corrections (BLYP-D) and the TTM3-F ab-initio based classical potential via constant pressure and constant enthalpy (NPH) ensemble molecular dynamics simulations of an ice Ih-liquid coexisting system. The inclusion of dispersion corrections to BLYP lowers the melting temperature of liquid water to Tm=360 K, which is a large improvement over the value of Tm > 400 K obtained with the original BLYP functional. The ab-initio based flexible, polarizable Thole-type model (TTM3-F) produces Tm=248 K from classical molecular dynamics simulations.

  6. Simulations of the effects of water vapor, cloud liquid water, and ice on AMSU moisture channel brightness temperatures

    NASA Technical Reports Server (NTRS)

    Muller, Bradley M.; Fuelberg, Henry E.; Xiang, Xuwu

    1994-01-01

    Radiative transfer simulations are performed to determine how water vapor and nonprecipitating cloud liquid water and ice particles within typical midlatitude atmospheres affect brightness temperatures T(sub B)'s of moisture sounding channels used in the Advanced Microwave Sounding Unit (AMSU) and AMSU-like instruments. The purpose is to promote a general understanding of passive top-of-atmosphere T(sub B)'s for window frequencies at 23.8, 89.0, and 157.0 GHz, and water vapor frequencies at 176.31, 180.31, and 182.31 GHz by documenting specific examples. This is accomplished through detailed analyses of T(sub B)'s for idealized atmospheres, mostly representing temperate conditions over land. Cloud effects are considered in terms of five basic properties: droplet size distribution, phase, liquid or ice water content, altitude, and thickness. Effects on T(sub B) of changing surface emissivity also are addressed. The brightness temperature contribution functions are presented as an aid to physically interpreting AMSU T(sub B)'s. Both liquid and ice clouds impact the T(sub B)'s in a variety of ways. The T(sub B)'s at 23.8 and 89 GHz are more strongly affected by altostratus liquid clouds than by cirrus clouds for equivalent water paths. In contrast, channels near 157 and 183 GHz are more strongly affected by ice clouds. Higher clouds have a greater impact on 157- and 183-GHz T(sub B)'s than do lower clouds. Clouds depress T(sub B)'s of the higher-frequency channels by suppressing, but not necessarily obscuring, radiance contributions from below. Thus, T(sub B)'s are less closely associated with cloud-top temperatures than are IR radiometric temperatures. Water vapor alone accounts for up to 89% of the total attenuation by a midtropospheric liquid cloud for channels near 183 GHz. The Rayleigh approximation is found to be adequate for typical droplet size distributions; however, Mie scattering effects from liquid droplets become important for droplet size distribution functions with modal radii greater than 20 micrometers near 157 and 183 GHz, and greater than 30-40 micrometers at 89 GHz. This is due mainly to the relatively small concentrations of droplets much larger than the mode radius. Orographic clouds and tropical cumuli have been observed to contain droplet size distributions with mode radii in the 30-40 micrometers range. Thus, as new instruments bridge the gap between microwave and infrared to frequencies even higher than 183 GHz, radiative transfer modelers are cautioned to explicitly address scattering characteristics of such clouds.

  7. Experimental study of discharge with liquid non-metallic (tap-water) electrodes in air at atmospheric pressure

    Microsoft Academic Search

    P. Andre; Yu Barinov; G. Faure; V. Kaplan; A. Lefort; S. Shkol'nik; D. Vacher

    2001-01-01

    The discharge with liquid non-metallic electrodes (DLNME) was investigated. The discharge burnt steadily with a DC power supply between two streams of weakly conducting liquid (tap water) in open air at atmospheric pressure. The metallic current leads were inserted into the streams and were covered by a 5 mm thick water layer. The discharge burnt in volumetric (diffuse) form with

  8. Optical Kerr effect of liquid and supercooled water: The experimental and data analysis perspective

    NASA Astrophysics Data System (ADS)

    Taschin, A.; Bartolini, P.; Eramo, R.; Righini, R.; Torre, R.

    2014-08-01

    The time-resolved optical Kerr effect spectroscopy (OKE) is a powerful experimental tool enabling accurate investigations of the dynamic phenomena in molecular liquids. We introduced innovative experimental and fitting procedures, that enable a safe deconvolution of sample response function from the instrumental function. This is a critical issue in order to measure the dynamics of liquid water. We report OKE data on water measuring intermolecular vibrations and the structural relaxation processes in an extended temperature range, inclusive of the supercooled states. The unpreceded data quality makes possible a solid comparison with few theoretical models: the multi-mode Brownian oscillator model, the Kubo's discrete random jump model, and the schematic mode-coupling model. All these models produce reasonable good fits of the OKE data of stable liquid water, i.e., over the freezing point. The features of water dynamics in the OKE data becomes unambiguous only at lower temperatures, i.e., for water in the metastable supercooled phase. We found that the schematic mode-coupling model provides the more rigorous and complete model for water dynamics, even if its intrinsic hydrodynamic approach does not give a direct access to the molecular information.

  9. Biphase photoelectrochemistry: A novel cell with a liquid-liquid phase boundary for water photoelectrolysis

    SciTech Connect

    Cheng, I.F. (Seton Hall Univ., South Orange, NJ (United States)); Jordan, J. (Pennsylvania State Univ., University Park (United States))

    1991-05-02

    A new approach is described that overcomes the problems of photocorrosion and slow heterogeneous electron-transfer kinetics associated with light-assisted water oxidation at semiconductor electrodes. The photoanode, n-MoS{sub 2}, was immersed in an immiscible organic phase, nitromethane, or 1,2-dichloroethane, which insulated it from the aqueous catholyte. Tetrabutylammonium chloride provided ion environment that stabilized n-MoS{sub 2} in the unavoidably water-saturated nitromethane (or dichloroethane) phase. Chemical water oxidation by photoelectrogenerated Cl{sub 2} proceeded through a hypochlorite intermediate that was broken down with the help of RuO{sub 2} colloid catalysts, releasing O{sub 2}, H{sup +}, and Cl{sup {minus}}. Significant reduction of oxygen overvoltage was attained, corresponding to a photoanodic efficiency of 3%. Combined with efficient photocathodes developed in recent years, this could provide prospective foundations for hydrogen fuel generation by photoelectrochemical solar energy conversion.

  10. Interfacial Thermodynamics of Water and Six Other Liquid Solvents Tod A. Pascal*,

    E-print Network

    Goddard III, William A.

    as the potential energy difference between a bulk (three-dimensional (3D) periodic) and slab (2D periodic) geometry of the liquid-vapor interface by direct calculation of the surface entropy, enthalpy, and free energy from water molecules,3-7 the surface potential,8-10 and the propensity and population of interfacial ions11

  11. Electronic structure of liquid water from polarization-dependent two-photon absorption spectroscopy

    E-print Network

    Elles, Christopher G.; Rivera, Christopher A.; Zhang, Yuyuan; Pieniazek, Piotr A.; Bradforth, Stephen E.

    2009-02-26

    Two-photon absorption (2PA) spectroscopy in the range from 7 to 10 eV provides new insight on the electronic structure of liquid water. Continuous 2PA spectra are obtained via the pump-probe technique, using broadband probe pulses to record...

  12. Validating the validation: the influence of liquid water distribution in clouds on the intercomparison

    E-print Network

    Stoffelen, Ad

    Validating the validation: the influence of liquid water distribution in clouds observations has received much attention, relatively lit- tle is known about its impact on validation studies. This paper quantifies the various validation uncertainties due to cloud inhomo- geneities and proposes

  13. Simultaneous determination of three surfactants and water in shampoo and liquid soap by ATR-FTIR

    Microsoft Academic Search

    Luciano Carolei; Ivano G. R. Gutz

    2005-01-01

    It is demonstrated for the first time that the principal constituents of a shampoo as well as of a liquid soap –three surfactants and water– can be determined directly, simultaneously and quickly in undiluted samples by attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy in the middle infrared region, despite the broad absorption bands of the solvent. Two of the

  14. Comparison of gas and liquid chromatography for analysing polar pesticides in water samples

    Microsoft Academic Search

    I. Liška; J. Slobodník

    1996-01-01

    This review describes the applications of gas chromatography (GC) and liquid chromatography (LC) in the analysis of selected groups of pesticides in water. The attention is focussed on the most popular (in terms of amounts produced and applied) pesticide classes, i.e., carbamates, phenylureas, triazines, phenoxy acetic acid derivatives and chlorinated phenols. The use of GC and LC for the analysis

  15. Dielectric signatures of adsorbed and salty liquid water at the Phoenix landing site, Mars

    E-print Network

    Stillman, David E.

    are believed to have formed via salt deliquescence on a landing strut of the spacecraft [Rennó et al., 2009Dielectric signatures of adsorbed and salty liquid water at the Phoenix landing site, Mars David E these data using laboratory measurements of permittivity as a function of H2O and salt content, soil type

  16. Formation of Martian gullies by the action of liquid water flowing under current Martian environmental conditions

    Microsoft Academic Search

    Jennifer L. Heldmann; Owen B. Toon; Wayne H. Pollard; Michael T. Mellon; John Pitlick; Christopher P. McKay; Dale T. Andersen

    2005-01-01

    (1) Geomorphic evidence suggests that recent gullies on Mars were formed by fluvial activity. The Martian gully features are significant because their existence implies the presence of liquid water near the surface on Mars in geologically recent times. Irrespective of the ultimate source of the fluid carving the gullies, we seek to understand the behavior of this fluid after it

  17. Formation of Martian gullies by the action of liquid water flowing under current Martian environmental conditions

    Microsoft Academic Search

    Jennifer L. Heldmann; Owen B. Toon; Wayne H. Pollard; Michael T. Mellon; John Pitlick; Christopher P. McKay; Dale T. Andersen

    2005-01-01

    Geomorphic evidence suggests that recent gullies on Mars were formed by fluvial activity. The Martian gully features are significant because their existence implies the presence of liquid water near the surface on Mars in geologically recent times. Irrespective of the ultimate source of the fluid carving the gullies, we seek to understand the behavior of this fluid after it reaches

  18. Standardization of tritiated water and 204Tl by TDCR liquid scintillation counting

    Microsoft Academic Search

    Anamaria Cristina Razdolescu; Ph. Cassette

    2004-01-01

    The triple to double coincidence ratio method was used with a combined uncertainty of 1–2% to standardize tritiated water and a solution of 204Tl. The vial with liquid scintillator, in which the sample to be measured was dissolved, is optically coupled to three photomultipliers. The electronic module MAC-3 assures the selection of double and triple coincidences count rates, D and

  19. Liquid Water Content of Fogs and Hazes from Visible Light Scattering

    Microsoft Academic Search

    H. E. Gerber

    1984-01-01

    A new method is proposed for measuring the liquid water content of fogs and hazes. It consists of a planar circular light sensor placed perpendicular to and coaxial with a narrow collimated light beam of a visible wavelength. The direct light from the beam, which is narrower than the width of the sensor, is blocked near the sensor, so that

  20. Expected magnitude of the aerosol shortwave indirect effect in springtime Arctic liquid water clouds

    Microsoft Academic Search

    Dan Lubin; Andrew M. Vogelmann

    2007-01-01

    Radiative transfer simulations are used to assess the expected magnitude of the diurnally-averaged shortwave aerosol first indirect effect in Arctic liquid water clouds, in the context of recently discovered longwave surface heating of order 3 to 8 W m-2 by this same aerosol effect detected at the Barrow, Alaska, ARM Site. We find that during March and April, shortwave surface

  1. Expected magnitude of the aerosol shortwave indirect effect in springtime Arctic liquid water clouds

    Microsoft Academic Search

    Dan Lubin; Andrew M. Vogelmann

    2007-01-01

    Radiative transfer simulations are used to assess the expected magnitude of the diurnally-averaged shortwave aerosol first indirect effect in Arctic liquid water clouds, in the context of recently discovered longwave surface heating of order 3 to 8 W m?2 by this same aerosol effect detected at the Barrow, Alaska, ARM Site. We find that during March and April, shortwave surface

  2. Global Survey of Effective Particle Size in Liquid Water Clouds by Satellite Observations

    Microsoft Academic Search

    Qingyuan Han; Qingyuan

    1992-01-01

    A global survey of cloud particle size is needed for climate change studies. This can supply crucial information for parameterizing cloud optical properties on a global scale as well as to estimate variation in cloud liquid water content with environmental temperature, a relationship that has been suggested as being important for climate feedback. Cloud particle size is also helpful in

  3. Thermal bonding of light water reactor fuel using nonalkaline liquid-metal alloy

    Microsoft Academic Search

    R. F. Wright; J. S. Tulenko; G. J. Schoessow; R. G. Jr. Connell; M. A. Dubecky; T. Adams

    1996-01-01

    Light water reactor (LWR) fuel performance is limited by thermal and mechanical constraints associated with the design, fabrication, and operation of fuel in a nuclear reactor. A technique is explored that extends fuel performance by thermally bonding LWR fuel with a nonalkaline liquid-metal alloy. Current LWR fuel rod designs consist of enriched uranium oxide fuel pellets enclosed in a zirconium

  4. IMPACT OF ORGANIC COMPOUNDS ON THE CONCENTRATIONS OF LIQUID WATER IN AMBIENT PM2.5

    EPA Science Inventory

    A field study was undertaken during the summer of 2000 to assess the impact of the presence of organic compounds on the liquid water concentrations of PM2.5 samples. The selected site, located in Research Triangle Park, North Carolina, was in a semi-rural environment with expe...

  5. Separation of Phenol from Waste Water by the Liquid Membrane Technique

    Microsoft Academic Search

    R. P. Cahn; N. N. Li

    1974-01-01

    The removal of phenol and other weakly ionized acids and bases from waste water is described when using the liquid membrane emulsion technique. Mathematical relationships are derived for the theoretical distribution and for the rate of permeation of phenol into the emulsion.

  6. MODELING AND TRAJECTORY OPTIMIZATION OF WATER SPRAY COOLING IN A LIQUID PISTON AIR COMPRESSOR

    E-print Network

    Li, Perry Y.

    Storage (CAES) system for offshore wind turbine that has recently been proposed in [1,2]. Since the airMODELING AND TRAJECTORY OPTIMIZATION OF WATER SPRAY COOLING IN A LIQUID PISTON AIR COMPRESSOR is compressing or expanding. In this paper, the air compression cycle is modeled by considering one

  7. New Mexico cloud super cooled liquid water survey final report 2009.

    SciTech Connect

    Beavis, Nick; Roskovensky, John K.; Ivey, Mark D.

    2010-02-01

    Los Alamos and Sandia National Laboratories are partners in an effort to survey the super-cooled liquid water in clouds over the state of New Mexico in a project sponsored by the New Mexico Small Business Assistance Program. This report summarizes the scientific work performed at Sandia National Laboratories during the 2009. In this second year of the project a practical methodology for estimating cloud super-cooled liquid water was created. This was accomplished through the analysis of certain MODIS sensor satellite derived cloud products and vetted parameterizations techniques. A software code was developed to analyze multiple cases automatically. The eighty-one storm events identified in the previous year effort from 2006-2007 were again the focus. Six derived MODIS products were obtained first through careful MODIS image evaluation. Both cloud and clear-sky properties from this dataset were determined over New Mexico. Sensitivity studies were performed that identified the parameters which most influenced the estimation of cloud super-cooled liquid water. Limited validation was undertaken to ensure the soundness of the cloud super-cooled estimates. Finally, a path forward was formulized to insure the successful completion of the initial scientific goals which include analyzing different of annual datasets, validation of the developed algorithm, and the creation of a user-friendly and interactive tool for estimating cloud super-cooled liquid water.

  8. Automated high performance liquid chromatography and liquid scintillation counting determination of pesticide mixture octanol/water partition rates

    SciTech Connect

    Moody, R.P.; Carroll, J.M.; Kresta, A.M.

    1987-12-01

    Two novel methods are reported for measuring octanol/water partition rates of pesticides. A liquid scintillation counting (LSC) method was developed for automated monitoring of /sup 14/C-labeled pesticides partitioning in biphasic water/octanol cocktail systems with limited success. A high performance liquid chromatography (HPLC) method was developed for automated partition rate monitoring of several constituents in a pesticide mixture, simultaneously. The mean log Kow +/- SD determined from triplicate experimental runs were for: 2,4-D-DMA (2,4-dichlorophenoxyacetic acid dimethylamine), 0.65 +/- .17; Deet (N,N-diethyl-m-toluamide), 2.02 +/- .01; Guthion (O,O-dimethyl-S-(4-oxo-1,2,3-benzotriazin-3(4H)-ylmethyl) phosphorodithioate), 2.43 +/- .03; Methyl-Parathion (O,O-dimethyl-O-(p-nitrophenyl) phosphorothioate), 2.68 +/- .05; and Fenitrothion (O,O-dimethyl O-(4-nitro-m-tolyl) phosphorothioate), 3.16 +/- .03. A strong positive linear correlation (r = .9979) was obtained between log Kow and log k' (log Kow = 2.35 (log k') + 0.63). The advantages that this automated procedure has in comparison with the standard manual shake-flask procedure are discussed.

  9. Mars Gully: No Mineral Trace of Liquid Water

    NASA Technical Reports Server (NTRS)

    2007-01-01

    This image of the Centauri-Hellas Montes region was taken by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) at 2107 UTC (4:07 p.m. EST) on Jan. 9, 2007, near 38.41 degrees south latitude, 96.81 degrees east longitude. CRISM's image was taken in 544 colors covering 0.36-3.92 micrometers, and shows features as small as 20 meters (66 feet) across. The region covered is slightly wider than 10 kilometers (6.2 miles) at its narrowest point.

    Narrow gullies found on hills and crater walls in many mid-latitude regions of Mars have been interpreted previously as cut by geologically 'recent' running water, meaning water that flowed on Mars long after impact cratering, tectonic forces, volcanism or other processes created the underlying landforms. Some gullies even eroded into sand dunes, which would date their formation at thousands to millions of years ago, or less. In fact, Mars Orbiter Camera (MOC) images showed two of the gullies have bright deposits near their downslope ends - but those deposits were absent in images taken just a few years earlier. The bright deposits must have formed within the period 1999-2004.

    Has there been running water on Mars so recently? To address that question, CRISM and MRO's other instruments observed the bright gully deposits. CRISM's objective was to determine if the bright deposits contained salts left behind from water evaporating into Mars' thin air. The high-resolution imager's (HiRISE's) objective was to determine if the small-scale morphology was consistent with formation by running water.

    This CRISM image of a bright gully deposit was constructed by showing 2.53, 1.50, and 1.08 micrometer light in the red, green, and blue image planes. CRISM can just resolve the deposits (highlighted by arrows in the inset), which are only a few tens of meters (about 150 feet) across. The spectrum of the deposits barely differs from that of the surrounding material, and is just a little brighter. This difference could simply be explained by a slightly greater content of dust than in the surrounding soil. In contrast, older deposits elsewhere on Mars ( such as Valles Marineris) that do contain hydrated salts have distinctive spectral features near 1.9 and 3.0 microns. The gully deposits lack these features, and exhibit no evidence for water-deposited salts. Just-published HiRISE images of this and other bright gully deposits do not rule out water, but they do suggest that the bright deposits could also have formed by dust that slid downslope and accumulated in the gullies.

    The Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) is one of six science instruments on NASA's Mars Reconnaissance Orbiter. Led by The Johns Hopkins University Applied Physics Laboratory, the CRISM team includes expertise from universities, government agencies and small businesses in the United States and abroad.

  10. Exploring the Vapour-Liquid Equilibrium and Mass Transport Dynamics of Water in Aerosol

    NASA Astrophysics Data System (ADS)

    Davies, J. F.; Miles, R. E. H.; Haddrell, A. E.; Reid, J.

    2014-12-01

    In order to fully interpret the chemistry occuring in aqueous aerosol, one must first explore how water influences the physical state of the condensed particle phase. Both the chemical dynamics and physical properties of aqueous aerosol are significantly influenced by the vapour-liquid partitioning of water. Furthermore, the rate of evaporation and condensation of water in atmospheric aerosol plays an important role in governing the size distribution and number concentration of aqueous particles and cloud droplets. We present a study on single aerosol particles undergoing evaporation while confined in an electrodynamic balance. Precise time-resolved measurements of the particle radius allow us to elucidate the microphysical factors influencing water partitioning over a range of temperatures (248 - 330 K) and relative humidities (0 - 95 %). Specifically, we explore the vapour pressure of pure water in supercooled conditions, establishing values over the widest range of supercooled temperatures assessed experimentally. We show that the mass accommodation and evaporation coefficients, analogous parameters describing the influence of the gas-liquid interface on mass transport, must be greater than 0.5 for uncontaminated water surfaces over the temperature range analysed. We go on to report the impact of insoluble organic monolayers at the gas / liquid interface in retarding the rate of evaporation of water, reducing the evaporation coefficient by up to five orders of magnitude. Such monolayers may also influence the uptake of reactive species from the gas phase, affecting the chemistry occuring at the droplet surface and in the bulk. Finally, we discuss how the water activity of aqueous organic solution droplets may be determined using the measured evaporation dynamics, allowing the hygroscopicity of aerosol at water activities approaching unity to be established with unprecedented accuracy. Compositional measurements under these conditions allow the chemistry occuring in dilute aerosol droplets to be interpreted more fully.

  11. Nanofluid of zinc oxide nanoparticles in ionic liquid for single drop liquid microextraction of fungicides in environmental waters prior to high performance liquid chromatographic analysis.

    PubMed

    Amde, Meseret; Tan, Zhi-Qiang; Liu, Rui; Liu, Jing-Fu

    2015-05-22

    Using a nanofluid obtained by dispersing ZnO nanoparticles (ZnO NPs) in 1-hexyl-3-methylimidazolium hexafluorophosphate, new single drop microextraction method was developed for simultaneous extraction of three fungicides (chlorothalonil, kresoxim-methyl and famoxadone) in water samples prior to their analysis by high performance liquid chromatography (HPLC-VWD). The parameters affecting the extraction efficiency such as amount of ZnO NPs in the nanofluid, solvent volume, extraction time, stirring rate, pH and ionic strength of the sample solution were optimized. Under the optimized conditions, the limits of detection were in the range of 0.13-0.19ng/mL, the precision of the method assessed with intra-day and inter-day relative standard deviations were <4.82% and <7.04%, respectively. The proposed method was successfully applied to determine the three fungicides in real water samples including lake water, river water, as well as effluent and influent of wastewater treatment plant, with recoveries in the range of 74.94-96.11% at 5ng/mL spiking level. Besides to being environmental friendly, the high enrichment factor and the data quality obtained with the proposed method demonstrated its potential for application in multi residue analysis of fungicides in actual water samples. PMID:25857539

  12. Duration of liquid water habitats on early Mars

    NASA Astrophysics Data System (ADS)

    McKay, C. P.; Davis, W. L.

    1991-04-01

    The duration of ice-covered lakes after the initial freezing of the early Mars is presently estimated via a climate model whose critical parameter is the existence of peak seasonal temperatures above freezing, and in which the variability of insolation is included. Under conditions in which meltwater was supplied by an ice source, it is found that water habitats could have been maintained under relatively thin ice sheets for as many as 700 million years after the onset of below-freezing global temperatures. The duration of such habitats on the early Mars therefore exceeds the upper limit of the time envisioned for the emergence of aquatic life on earth.

  13. Its Just a Phase: Water as a Solid, Liquid, and Gas

    NSDL National Science Digital Library

    In this lesson, students will construct models of the way water molecules arrange themselves in the three physical states. They will come to understand that matter can be found in three forms or phases (solid, liquid, and gas). Using physical models, students will be able to explain the molecular behavior of ice, water, and water vapor. The instructor guide contains detailed background material, learning goals, alignment to national standards, grade level/time, details on materials and preparation, procedure, assessment ideas, and modifications for alternative learners.

  14. The initial responses of hot liquid water released under low atmospheric pressures: Experimental insights

    NASA Astrophysics Data System (ADS)

    Bargery, Alistair Simon; Lane, Stephen J.; Barrett, Alexander; Wilson, Lionel; Gilbert, Jennie S.

    2010-11-01

    Experiments have been performed to simulate the shallow ascent and surface release of water and brines under low atmospheric pressure. Atmospheric pressure was treated as an independent variable and water temperature and vapor pressure were examined as a function of total pressure variation down to low pressures. The physical and thermal responses of water to reducing pressure were monitored with pressure transducers, temperature sensors and visible imaging. Data were obtained for pure water and for solutions with dissolved NaCl or CO 2. The experiments showed the pressure conditions under which the water remained liquid, underwent a rapid phase change to the gas state by boiling, and then solidified because of removal of latent heat. Liquid water is removed from phase equilibrium by decompression. Solid, liquid and gaseous water are present simultaneously, and not at the 611 Pa triple point, because dynamic interactions between the phases maintain unstable temperature gradients. After phase changes stop, the system reverts to equilibrium with its surroundings. Surface and shallow subsurface pressure conditions were simulated for Mars and the icy satellites of the outer Solar System. Freezing by evaporation in the absence of wind on Mars is shown to be unlikely for pure water at pressures greater than c. 670 Pa, and for saline solutions at pressures greater than c. 610 Pa. The physical nature of ice that forms depends on the salt content. Ice formed from saline water at pressures less than c. 610 Pa could be similar to terrestrial sea ice. Ice formed from pure water at pressures less than c. 100 Pa develops a low thermal conductivity and a 'honeycomb' structure created by sublimation. This ice could have a density as low as c. 450 kg m -3 and a thermal conductivity as low as 1.6 W m -1 K -1, and is highly reflective, more akin to snow than the clear ice from which it grew. The physical properties of ice formed from either pure or saline water at low pressures will act to reduce the surface temperature, and hence rate of sublimation, thereby prolonging the lifespan of any liquid water beneath.

  15. Vortex-assisted low density solvent based demulsified dispersive liquid-liquid microextraction and high-performance liquid chromatography for the determination of organophosphorus pesticides in water samples.

    PubMed

    Seebunrueng, Ketsarin; Santaladchaiyakit, Yanawath; Srijaranai, Supalax

    2014-05-01

    A simple, rapid, effective and eco-friendly preconcentration method, vortex-assisted low density solvent based solvent demulsified dispersive liquid-liquid microextraction (VLDS-SD-DLLME), followed by high performance liquid chromatography-diode array detector (HPLC-DAD) analysis, has been developed for the first time for the determination of four organophosphorus pesticides (OPPs) (e.g., azinphos-methyl, parathion-methyl, fenitrothion and diazinon) in environmental water samples. In this preconcentration procedure, an emulsion was obtained after the mixture of extraction solvent (1-dodecanol) and dispersive solvent (acetonitrile, ACN) was injected rapidly into 10 mL of the sample solution. The vortex agitator aided the dispersion of the extraction solvent into the sample solution. After the formation of an emulsion, the demulsifier (ACN) was added, resulting in the rapid separation of the mixture into two phases without centrifugation. Under optimal conditions, the proposed method provided high extraction efficiency (90-99%), good linearity range (0.5-500 ng mL(-1)), low limits of detection (0.25-1 ng mL(-1)) and good repeatability and recoveries were obtained. PMID:24332733

  16. The vibrational proton potential in bulk liquid water and ice.

    PubMed

    Burnham, C J; Anick, D J; Mankoo, P K; Reiter, G F

    2008-04-21

    We present an empirical flexible and polarizable water model which gives an improved description of the position, momentum, and dynamical (spectroscopic) distributions of H nuclei in water. We use path integral molecular dynamics techniques in order to obtain momentum and position distributions and an approximate solution to the Schrodinger equation to obtain the infrared (IR) spectrum. We show that when the calculated distributions are compared to experiment the existing empirical models tend to overestimate the stiffness of the H nuclei involved in H bonds. Also, these models vastly underestimate the enormous increase in the integrated IR intensity observed in the bulk over the gas-phase value. We demonstrate that the over-rigidity of the OH stretch and the underestimation of intensity are connected to the failure of existing models to reproduce the correct monomer polarizability surface. A new model, TTM4-F, is parametrized against electronic structure results in order to better reproduce the polarizability surface. It is found that TTM4-F gives a superior description of the observed spectroscopy, showing both the correct redshift and a much improved intensity. TTM4-F also has a somewhat improved dielectric constant and OH distribution function. It also gives an improved match to the experimental momentum distribution, although some discrepancies remain. PMID:18433247

  17. MWRRET Value-Added Product: The Retrieval of Liquid Water Path and Precipitable Water Vapor from Microwave Radiometer (MWR) Datasets

    SciTech Connect

    KL Gaustad; DD Turner

    2007-09-30

    This report provides a short description of the Atmospheric Radiation Measurement (ARM) microwave radiometer (MWR) RETrievel (MWRRET) Value-Added Product (VAP) algorithm. This algorithm utilizes complimentary physical and statistical retrieval methods and applies brightness temperature offsets to reduce spurious liquid water path (LWP) bias in clear skies resulting in significantly improved precipitable water vapor (PWV) and LWP retrievals. We present a general overview of the technique, input parameters, output products, and describe data quality checks. A more complete discussion of the theory and results is given in Turner et al. (2007b).

  18. Molecular dynamics study of polysaccharides in binary solvent mixtures of an ionic liquid and water.

    PubMed

    Liu, Hanbin; Sale, Kenneth L; Simmons, Blake A; Singh, Seema

    2011-09-01

    Some ionic liquids (ILs) have great promise as effective solvents for biomass pretreatment, and there are several that have been reported that can dissolve large amounts of cellulose. The solubilized cellulose can then be recovered by addition of antisolvents, such as water or ethanol, and this regeneration process plays an important role in the subsequent enzymatic saccharification reactions and in the recovery of the ionic liquid. To date, little is known about the fundamental intermolecular interactions that drive the dissolution and subsequent regeneration of cellulose in complex mixtures of ionic liquids, water, and cellulose. To investigate these interactions, in this work, molecular dynamics (MD) simulations were carried out to study binary and ternary mixtures of the ionic liquid 1-ethyl-3-methylimidazolium acetate ([C2mim][OAc]) with water and a cellulose oligomer. Simulations of a cellulose oligomer dissolved in three concentrations of binary mixtures of [C2mim][OAc] and water were used to represent the ternary system in the dissolution phase (high [C2mim][OAc] concentration) and present during the initial phase of the regeneration step (intermediate and low [C2mim][OAc] concentrations). The MD analysis of the structure and dynamics that exist in these binary and ternary mixtures provides information on the key intermolecular interactions between cellulose and [C2mim][OAc] that lead to dissolution of cellulose and the key intermolecular interactions in the intermediate states of cellulose precipitation as a function of water content in the cellulose/IL/water system. The analysis of this intermediate state provides new insight into the molecular driving forces present in this ternary system. PMID:21827163

  19. Ultrafast soft X-ray photoelectron spectroscopy at liquid water microjets.

    PubMed

    Faubel, M; Siefermann, K R; Liu, Y; Abel, B

    2012-01-17

    Since the pioneering work of Kai Siegbahn, electron spectroscopy for chemical analysis (ESCA) has been developed into an indispensable analytical technique for surface science. The value of this powerful method of photoelectron spectroscopy (PES, also termed photoemission spectroscopy) and Siegbahn's contributions were recognized in the 1981 Nobel Prize in Physics. The need for high vacuum, however, originally prohibited PES of volatile liquids, and only allowed for investigation of low-vapor-pressure molecules attached to a surface (or close to a surface) or liquid films of low volatility. Only with the invention of liquid beams of volatile liquids compatible with high-vacuum conditions was PES from liquid surfaces under vacuum made feasible. Because of the ubiquity of water interfaces in nature, the liquid water-vacuum interface became a most attractive research topic, particularly over the past 10 years. PES studies of these important aqueous interfaces remained significantly challenging because of the need to develop high-pressure PES methods. For decades, ESCA or PES (termed XPS, for X-ray photoelectron spectroscopy, in the case of soft X-ray photons) was restricted to conventional laboratory X-ray sources or beamlines in synchrotron facilities. This approach enabled frequency domain measurements, but with poor time resolution. Indirect access to time-resolved processes in the condensed phase was only achieved if line-widths could be analyzed or if processes could be related to a fast clock, that is, reference processes that are fast enough and are also well understood in the condensed phase. Just recently, the emergence of high harmonic light sources, providing short-wavelength radiation in ultrashort light pulses, added the dimension of time to the classical ESCA or XPS technique and opened the door to (soft) X-ray photoelectron spectroscopy with ultrahigh time resolution. The combination of high harmonic light sources (providing radiation with laserlike beam qualities) and liquid microjet technology recently enabled the first liquid interface PES experiments in the IR/UV-pump and extreme ultraviolet-probe (EUV-probe) configuration. In this Account, we highlight features of the technology and a number of recent applications, including extreme states of matter and the discovery and detection of short-lived transients of the solvated electron in water. Properties of the EUV radiation, such as its controllable polarization and features of the liquid microjet, will enable unique experiments in the near future. PES measures electron binding energies and angular distributions of photoelectrons, which comprise unique information about electron orbitals and their involvement in chemical bonding. One of the future goals is to use this information to trace molecular orbitals, over time, in chemical reactions or biological transformations. PMID:22075058

  20. Formation of H-type liquid crystal dimer at air-water interface

    SciTech Connect

    Karthik, C., E-mail: karthik.c@pilani.bits-pilani.ac.in; Gupta, Adbhut, E-mail: karthik.c@pilani.bits-pilani.ac.in; Joshi, Aditya, E-mail: karthik.c@pilani.bits-pilani.ac.in; Manjuladevi, V., E-mail: karthik.c@pilani.bits-pilani.ac.in; Gupta, Raj Kumar, E-mail: karthik.c@pilani.bits-pilani.ac.in [Department of Physics, Birla Institute of Technology and Science, Pilani, Rajasthan -333031 (India); Varia, Mahesh C.; Kumar, Sandeep [Raman Research Institute, Sadashivanagar, Bangalore - 560080 (India)

    2014-04-24

    We have formed the Langmuir monolayer of H-shaped Azo linked liquid crystal dimer molecule at the air-water interface. Isocycles of the molecule showed hysteresis suggesting the ir-reversible nature of the monolayer formed. The thin film deposited on the silicon wafer was characterized using Atomic Force Microscopy (AFM) and Field Emission Scanning Electron Microscopy (FESEM). The images showed uniform domains of the dimer molecule. We propose that these molecules tend to take book shelf configuration in the liquid phase.

  1. Purification of inkjet ink from water using liquid phase, electric discharge polymerization and cellulosic membrane filtration.

    PubMed

    Jordan, Alexander T; Hsieh, Jeffery S; Lee, Daniel T

    2013-01-01

    A method to separate inkjet ink from water was developed using a liquid phase, electric discharge process. The liquid phase, electric discharge process with filtration or sedimentation was shown to remove 97% of inkjet ink from solutions containing between 0.1-0.8 g/L and was consistent over a range of treatment conditions. Additionally, particle size analysis of treated allyl alcohol and treated propanol confirmed the electric discharge treatment has a polymerization mechanism, and small molecule analysis of treated methanol using gas chromatography and mass spectroscopy confirmed the mechanism was free radical initiated polymerization. PMID:24225106

  2. Communication: The effect of dispersion corrections on the melting temperature of liquid water

    NASA Astrophysics Data System (ADS)

    Yoo, Soohaeng; Xantheas, Sotiris S.

    2011-03-01

    The melting temperature (Tm) of liquid water with the Becke-Lee-Yang-Parr (BLYP) density functional including dispersion corrections (BLYP-D) and the Thole-type, version 3 (TTM3-F) ab-initio based flexible, polarizable classical potential is reported via constant pressure and constant enthalpy (NPH) molecular dynamics simulations of an ice Ih-liquid coexisting system. Dispersion corrections to BLYP lower Tm to about 360 K, a large improvement over the value of Tm > 400 K previously obtained with the original BLYP functional under the same simulation conditions. For TTM3-F, Tm = 248 K from classical molecular dynamics simulations.

  3. Transient Numerical Modeling of the Combustion of Bi-Component Liquid Droplets: Methanol/Water Mixture

    NASA Technical Reports Server (NTRS)

    Marchese, A. J.; Dryer, F. L.

    1994-01-01

    This study shows that liquid mixtures of methanol and water are attractive candidates for microgravity droplet combustion experiments and associated numerical modeling. The gas phase chemistry for these droplet mixtures is conceptually simple, well understood and substantially validated. In addition, the thermodynamic and transport properties of the liquid mixture have also been well characterized. Furthermore, the results obtained in this study predict that the extinction of these droplets may be observable in ground-based drop to tower experiments. Such experiments will be conducted shortly followed by space-based experiments utilizing the NASA FSDC and DCE experiments.

  4. Line broadening in the collective dynamics of liquid and solid water

    SciTech Connect

    Ruocco, G. [Universita di L`Aquila and Istituto Nazionale di Fisica della Materia, I-67100, L`Aquila (Italy)] [Universita di L`Aquila and Istituto Nazionale di Fisica della Materia, I-67100, L`Aquila (Italy); Sette, F.; Krisch, M.; Bergmann, U.; Masciovecchio, C.; Verbeni, R. [European Synchrotron Radiation Facility, Boite Postale 220, F-38043 Grenoble, Cedex (France)] [European Synchrotron Radiation Facility, Boite Postale 220, F-38043 Grenoble, Cedex (France)

    1996-12-01

    The linewidth of collective acousticlike modes of liquid and solid (ice {ital Ih}) water, measured by inelastic x-ray scattering at momentum transfers ({ital Q}) larger than 2 nm{sup {minus}1}, shows a large increase at the {ital Q} value of {approx_equal}7.5 nm{sup {minus}1}. This result, together with previous observations on both acousticlike and opticlike excitations, further emphasizes the analogies in the whole high-frequency collective dynamics of liquid and solid H{sub 2}O, and challenges our present understanding of these dynamical phenomena. {copyright} {ital 1996 The American Physical Society.}

  5. Linking Europa's plume activity to tides, tectonics, and liquid water

    E-print Network

    Rhoden, Alyssa R; Roth, Lorenz; Retherford, Kurt

    2015-01-01

    Much of the geologic activity preserved on Europa's icy surface has been attributed to tidal deformation, mainly due to Europa's eccentric orbit. Although the surface is geologically young (30 - 80 Myr), there is little information as to whether tidally-driven surface processes are ongoing. However, a recent detection of water vapor near Europa's south pole suggests that it may be geologically active. Initial observations indicated that Europa's plume eruptions are time-variable and may be linked to its tidal cycle. Saturn's moon, Enceladus, which shares many similar traits with Europa, displays tidally-modulated plume eruptions, which bolstered this interpretation. However, additional observations of Europa at the same time in its orbit failed to yield a plume detection, casting doubt on the tidal control hypothesis. The purpose of this study is to analyze the timing of plume eruptions within the context of Europa's tidal cycle to determine whether such a link exists and examine the inferred similarities and...

  6. Self-assembly of azobenzene bilayer membranes in binary ionic liquid-water nanostructured media.

    PubMed

    Kang, Tejwant Singh; Ishiba, Keita; Morikawa, Masa-aki; Kimizuka, Nobuo

    2014-03-11

    Anionic azobenzene-containing amphiphile 1 (sodium 4-[4-(N-methyl-N-dodecylamino)phenylazo]benzenesulfonate) forms ordered bilayer membranes in binary ionic liquid (1-ethyl-3-methylimidazolium ethyl sulfate, [C2mim][C2OSO3])-water mixtures. The binary [C2mim][C2OSO3]-water mixture is macroscopically homogeneous at any mixing ratio; however, it possesses fluctuating nanodomains of [C2mim][C2OSO3] molecules as observed by dynamic light scattering (DLS). These nanodomains show reversible heat-induced mixing behavior with water. Although the amphiphile 1 is substantially insoluble in pure water, it is dispersible in the [C2mim][C2OSO3]-water mixtures. The concentration of [C2mim][C2OSO3] and temperature exert significant influences on the self-assembling characteristics of 1 in the binary media, as shown by DLS, transmission electron microscopy (TEM), UV-vis spectroscopy, and zeta-potential measurements. Bilayer membranes with rod- or dotlike nanostructures were formed at a lower content of [C2mim][C2OSO3] (2-30 v/v %), in which azobenzene chromophores adopt parallel molecular orientation regardless of temperature. In contrast, when the content of [C2mim][C2OSO3] is increased above 60 v/v %, azobenzene bilayers showed thermally reversible gel-to-liquid crystalline phase transition. The self-assembly of azobenzene amphiphiles is tunable depending on the volume fraction of [C2mim][C2OSO3] and temperature, which are associated with the solvation by nanoclusters in the binary [C2mim][C2OSO3]-water media. These observations clearly indicate that mixtures of water-soluble ionic liquids and water provide unique and valiant environments for ordered molecular self-assembly. PMID:24528277

  7. ESR evidence for 2 coexisting liquid phases in deeply supercooled bulk water

    PubMed Central

    Banerjee, D.; Bhat, S. N.; Bhat, S. V.; Leporini, D.

    2009-01-01

    Using electron spin resonance spectroscopy (ESR), we measure the rotational mobility of probe molecules highly diluted in deeply supercooled bulk water and negligibly constrained by the possible ice fraction. The mobility increases above the putative glass transition temperature of water, Tg = 136 K, and smoothly connects to the thermodynamically stable region by traversing the so called “no man's land” (the range 150–235 K), where it is believed that the homogeneous nucleation of ice suppresses the liquid water. Two coexisting fractions of the probe molecules are evidenced. The 2 fractions exhibit different mobility and fragility; the slower one is thermally activated (low fragility) and is larger at low temperatures below a fragile-to-strong dynamic cross-over at ?225 K. The reorientation of the probe molecules decouples from the viscosity below ?225 K. The translational diffusion of water exhibits a corresponding decoupling at the same temperature [Chen S-H, et al. (2006) The violation of the Stokes–Einstein relation in supercooled water. Proc Natl Acad Sci USA 103:12974–12978]. The present findings are consistent with key issues concerning both the statics and the dynamics of supercooled water, namely the large structural fluctuations [Poole PH, Sciortino F, Essmann U, Stanley HE (1992) Phase behavior of metastable water. Nature 360:324–328] and the fragile-to-strong dynamic cross-over at ?228 K [Ito K, Moynihan CT, Angell CA (1999) Thermodynamic determination of fragility in liquids and a fragile-to-strong liquid transition in water. Nature 398:492–494]. PMID:19556546

  8. Interfacial spreading effects on one-dimensional organic liquid imbibition in water-wetted porous media

    NASA Astrophysics Data System (ADS)

    McBride, J. F.; Simmons, C. S.; Cary, J. W.

    1992-10-01

    The spreading coefficient, Csp, determines whether an organic immiscible liquid, OIL, will form a lens ( Csp < 0) or will spread spontaneously ( Csp > 0) on a water surface. An OIL that forms a lens does not perfectly wet the water surface and therefore has a contact angle greater than 0°. The one-dimensional rate at which an OIL spreads spontaneously on a water surface is proportional to the square root of Csp. Of the OIL's that pose a contaminant threat to the subsurface, the majority has a non-zero Csp. To test the influence of such interfacial spreading phenomena on OIL infiltration in a pristine vadose zone, upward OIL and water imbibition infiltration experiments were performed in glass-bead columns, moistened with water, by using OIL's with different Csp. An analytical model for saturated liquid front rise was used to inversely estimate the effective capillary pressure head at the front and the average liquid conductivity. A nonspreading OIL ( Csp ? 0) exhibited a reduced capillary pressure head in the water-wetted glass beads. A spontaneously spreading OIL ( Csp ?0) manifested an enhanced capillary pressure head. Reduced capillary pressure head was associated with an increase in average conductivity, and enhanced capillary pressure head was associated with a decrease in average conductivity when compared to the average water conductivity during water imbibition. The employed experimental method and mathematical analysis of dynamic flow, subject to interfacial spreading phenomena, are practical for quantifying parameters for use in sharp-front OIL infiltration models, but more research is needed to determine how to incorporate the spreading coefficient in numerical multiphase flow models.

  9. The molecular structure of the interface between water and a hydrophobic substrate is liquid-vapor like

    E-print Network

    Adam P. Willard; David Chandler

    2014-07-16

    With molecular simulation for water and a tunable hydrophobic substrate, we apply the instantaneous interface construction [A. P. Willard and D. Chandler, J. Phys. Chem. B, 114, 1954 (2010)] to examine the similarity between a water-vapor interface and a water-hydrophobic surface interface. The intrinsic interface refers to molecular structure in terms of distances from the instantaneous interface. We show that attractive interactions between a hydrophobic surface and water affect capillary wave fluctuations of the instantaneous liquid interface, but these attractive interactions have essentially no effect on the intrinsic interface. Further, the intrinsic interface of liquid water and a hydrophobic substrate differs little from that of water and its vapor.The same is not true, we show, for an interface between water and a hydrophilic substrate. In that case, strong directional substrate-water interactions disrupt the liquid-vapor-like interfacial hydrogen bonding network.

  10. Seasonally-Active Water on Mars: Vapour, Ice, Adsorbate, and the Possibility of Liquid

    NASA Astrophysics Data System (ADS)

    Richardson, M. I.

    2002-12-01

    Seasonally-active water can be defined to include any water reservoir that communicates with other reservoirs on time scales of a year or shorter. It is the interaction of these water reservoirs, under the influence of varying solar radiation and in conjunction with surface and atmospheric temperatures, that determines the phase-stability field for water at the surface, and the distribution of water in various forms below, on, and above the surface. The atmosphere is the critical, dynamical link in this cycling system, and also (fortunately) one of the easiest to observe. Viking and Mars Global Surveyor observations paint a strongly asymmetric picture of the global seasonal water cycle, tied proximately to planetary eccentricity, and the existence of residual ice caps of different composition at the two poles. The northern summer experiences the largest water vapour columns, and is associated with sublimation from the northern residual water ice cap. The southern summer residual carbon dioxide ice cap is cold trap for water. Asymmetry in the water cycle is an unsolved problem. Possible solutions may involve the current timing of perihelion (the water cap resides at the pole experiencing the longer but cooler summer), the trapping of water ice in the northern hemisphere by tropical water ice clouds, and the bias in the annual-average, zonal-mean atmospheric circulation resulting from the zonal-mean difference in the elevation of the northern and southern hemispheres. Adsorbed and frozen water have proven harder to constrain. Recent Odyssey Gamma Ray Spectrometer results suggest substantial ground ice in the mid- and high-latitudes, but this water is likely below the seasonal skin depth for two reasons: the GRS results are best fit with such a model, and GCM models of the water cycle produce dramatically unrealistic atmospheric vapour distributions when such a very near surface, GRS-like distribution is initialized - ultimately removing the water to the northern and southern caps. Similar climate-models of the water cycle also do not need much exchangeable adsorbed water in order to explain the observed vapour distributions. The possibility of liquid water is tantalizing, but difficult to definitively judge. On scales greater than a meter or so, Mars is most definitely well away from the water triple point--although the surface pressure can exceed 6.1 mbars, the partial pressure of water vapor (to which the triple point refers) is at best orders of magnitude lower. Several careful studies have shown, however, that locally transient (meta-stable) liquid is possible, if the net heating of ice deposits is high enough. This process is aided if the total surface pressure exceeds 6.1mbar (this prevents boiling, or the explosive loss of vapour into the atmosphere) or if the liquid is covered by a thin ice shell, and is only possible if surface temperatures exceed 273K (for pure water, or the appropriate eutectic for brines) and if ice is present. The former challenge is much easier to meet than the latter. The melt scenario requires that ice deposited in winter must be protected from sublimation as surface temperatures increase in spring, but then exposed to the peak of solar heating in summer. Available spacecraft observations of seasonal water will be discussed with the aid of GCM model simulations, and examined in the context of water distributions and phases.

  11. Air-Assisted Liquid Liquid-Microextraction for the Analysis of Fungicides from Environmental Water and Juice Samples.

    PubMed

    Wu, Shiju; Jin, Tingting; Cheng, Jing; Zhou, Hongbin; Cheng, Min

    2015-07-01

    In this work, a rapid method based on air-assisted liquid liquid microextraction (AALLME) was developed for the determination of three fungicides (azoxystrobin, diethofencarb and pyrimethanil) in water and juice samples. A narrow-neck glass tube was made to facilitate collection of the low-density extractant. The mixture of extractant and sample solution is rapidly sucked into a 5-mL glass syringe and then is injected into the narrow-neck glass tube and the procedure is repeated six times. A homogeneous solution was formed and then with the continuous injection of air by a 20-mL glass syringe, phase separation happened and the extractant was collected on the top of the sample solution. No centrifugation separation step was involved. It took only 90 s to complete the pretreatment process. The influence of main factors on the extraction efficiency is studied. Under optimal conditions, enrichment factors for the three fungicides varied from 145 to 178. The limits of detection for azoxystrobin, diethofencarb and pyrimethanil were 0.08, 0.16 and 0.25 µg L(-1), respectively. Reasonable relative recoveries were varied from 72.3 to 108.0%. And satisfactory intra-assay (5.3-6.2%, n = 6) and inter-assay (6.8-9.3%, n = 6) precision illustrated good performance of the analytical procedure. PMID:25355900

  12. Radiometric Determination of Uranium in Natural Waters after Enrichment and Separation by Cation-Exchange and Liquid-Liquid Extraction

    E-print Network

    I. Pashalidis; H. Tsertos

    2003-04-28

    The alpha-radiometric determination of uranium after its pre-concentration from natural water samples using the cation-exchange resin Chelex-100, its selective extraction by tributylphosphate and electrodeposition on stainless steel discs is reported. The validity of the separation procedure and the chemical recoveries were checked by addition of uranium standard solution as well as by tracing with U-232. The average uranium yield was determined to be (97 +- 2) % for the cation-exchange, (95 +- 2) % for the liquid-liquid extraction, and more than 99% for the electrodeposition. Employing high-resolution alpha-spectroscopy, the measured activity of the U-238 and U-234 radioisotopes was found to be of similar magnitude; i.e. ~7 mBq/L and ~35 mBq/L for ground- and seawater samples, respectively. The energy resolution (FWHM) of the alpha-peaks was 22 keV, while the Minimum Detectable Activity (MDA) was estimated to be 1 mBq/L (at the 95% confidence limit).

  13. Water-in-ionic liquid microemulsion formation in solvent mixture of aprotic and protic imidazolium-based ionic liquids.

    PubMed

    Kusano, Takumi; Fujii, Kenta; Hashimoto, Kei; Shibayama, Mitsuhiro

    2014-10-14

    We report that water-in-ionic liquid microemulsions (MEs) are stably formed in an organic solvent-free system, i.e., a mixture of aprotic (aIL) and protic (pIL) imidazolium-based ionic liquids (ILs) containing the anionic surfactant dioctyl sulfosuccinate sodium salt (AOT). Structural investigations using dynamic light, small-angle X-ray, and small-angle neutron scatterings were performed for MEs formed in mixtures of aprotic 1-octyl-3-methylimidazolium ([C8mIm(+)]) and protic 1-alkylimidazolium ([CnImH(+)], n = 4 or 8) IL with a common anion, bis(trifluoromethanesulfonyl)amide ([TFSA(-)]). It was found that the ME structure strongly depends on the mixing composition of the aIL/pIL in the medium. The ME size appreciably increases with increasing pIL content in both [C8mIm(+)][TFSA(-)]/[C8ImH(+)][TFSA(-)] and [C8mIm(+)][TFSA(-)]/[C4ImH(+)][TFSA(-)] mixtures. The size is larger for the n = 8 system than that for the n = 4 system. These results indicate that the shell part of MEs is composed of both AOT and pIL cation, and the ME size can be tuned by pIL content in the aIL/pIL mixtures. PMID:25226398

  14. The liquid-liquid transition in supercooled ST2 water: a comparison between umbrella sampling and well-tempered metadynamics.

    PubMed

    Palmer, Jeremy C; Car, Roberto; Debenedetti, Pablo G

    2013-01-01

    We investigate the metastable phase behaviour of the ST2 water model under deeply supercooled conditions. The phase behaviour is examined using umbrella sampling (US) and well-tempered metadynamics (WT-MetaD) simulations to compute the reversible free energy surface parameterized by density and bond-orientation order. We find that free energy surfaces computed with both techniques clearly show two liquid phases in coexistence, in agreement with our earlier US and grand canonical Monte Carlo calculations [Y. Liu, J. C. Palmer, A. Z. Panagiotopoulos and P. G. Debenedetti, J Chem Phys, 2012, 137, 214505; Y. Liu, A. Z. Panagiotopoulos and P. G. Debenedetti, J Chem Phys, 2009, 131, 104508]. While we demonstrate that US and WT-MetaD produce consistent results, the latter technique is estimated to be more computationally efficient by an order of magnitude. As a result, we show that WT-MetaD can be used to study the finite-size scaling behaviour of the free energy barrier separating the two liquids for systems containing 192, 300 and 400 ST2 molecules. Although our results are consistent with the expected N(2/3) scaling law, we conclude that larger systems must be examined to provide conclusive evidence of a first-order phase transition and associated second critical point. PMID:24640486

  15. Experimental determination of cavitation thresholds in liquid water and mercury

    SciTech Connect

    Taleyarkhan, R.P.; Gulec, K.; West, C.D.; Haines, J. [Oak Ridge National Lab., TN (United States)

    1998-09-01

    It is well-known that fluids (like solids) will break apart or form voids when put under sufficient tension. The present study has been motivated by the need to evaluate the impact of fluid cavitation in spallation neutron source target systems, more specifically for the proposed 1-MW Spallation Neutron Source (SNS) project, which is being designed in collaboration between Oak Ridge National Laboratory (ORNL), Los Alamos National Laboratory, Lawrence Berkeley National Laboratory, Brookhaven National Laboratory, and Argonne National Laboratory. Indeed, results of SNS-specific simulations have indicated that the onset of cavitation could play a very significant role in reducing imposed stresses in structural components of the SNS. In general, the cavitation of fluids is target systems is important to consider for a variety of reasons. Its occurrence can have significant impact on heat transfer, pressure pulse generation, fluid jetting on to structures, surface erosion, stresses induced in enclosures, etc. Therefore, it is important to evaluate the threshold pressure under which the fluid in tension will undergo cavitation. Another major aspect concerns the possible onset of cavitation in an oscillating pressure field; i.e., one would need to know if fluids such as mercury and water will cavitate if the imposed tensile pressure in the fluid is of short duration. If indeed it takes sufficiently long for cavitation bubbles to nucleate, then it would be possible to disregard the complexities involved with addressing cavitation-related issues. This paper provides an overview of preliminary work done to date to derive information on cavitation onset in a relatively static and in a high-frequency environment.

  16. Sum-frequency generation analyses of the structure of water at amphoteric SAM-liquid water interfaces.

    PubMed

    Nomura, Kouji; Nakaji-Hirabayashi, Tadashi; Gemmei-Ide, Makoto; Kitano, Hiromi; Noguchi, Hidenori; Uosaki, Kohei

    2014-09-01

    Surfaces of both a cover glass and the flat plane of a semi-cylindrical quartz prism were modified with a mixture of positively and negatively charged silane coupling reagents (3-aminopropyltriethoxysilane (APTES) and 3-(trihydroxysilyl)propylmethylphosphonate (THPMP), respectively). The glass surface modified with a self-assembled monolayer (SAM) prepared at a mixing ratio of APTES:THPMP=4:6 was electrically almost neutral and was resistant to non-specific adsorption of proteins, whereas fibroblasts gradually adhered to an amphoteric (mixed) SAM surface probably due to its stiffness, though the number of adhered cells was relatively small. Sum frequency generation (SFG) spectra indicated that total intensity of the OH stretching region (3000-3600cm(-1)) for the amphoteric SAM-modified quartz immersed in liquid water was smaller than those for the positively and negatively charged SAM-modified quartz prisms and a bare quartz prism in contact with liquid water. These results suggested that water molecules at the interface of water and an amphoteric SAM-modified quartz prism are not strongly oriented in comparison with those at the interface of a lopsidedly charged SAM-modified quartz prism and bare quartz. The importance of charge neutralization for the anti-biofouling properties of solid materials was strongly suggested. PMID:25001187

  17. Accurate Liquid Water Path Retrieval from Low-Cost Microwave Radiometers Using Additional Information from a Lidar Ceilometer and Operational Forecast Models

    Microsoft Academic Search

    Nicolas Gaussiat; Robin J. Hogan; Anthony J. Illingworth

    2007-01-01

    Water clouds have an important impact on the radiative balance of the earth. The use of ground-based dual-frequency microwave radiometers to derive both liquid water path (LWP) and water vapor path (WVP) is well established, but uncertainties over the dry, water vapor, and liquid water absorption coef- ficients and the radiometric calibration can lead to errors in the retrieved LWP.

  18. Characterization of the Local Structure in Liquid Water by Various Order Parameters.

    PubMed

    Duboué-Dijon, Elise; Laage, Damien

    2015-07-01

    A wide range of geometric order parameters have been suggested to characterize the local structure of liquid water and its tetrahedral arrangement, but their respective merits have remained elusive. Here, we consider a series of popular order parameters and analyze molecular dynamics simulations of water, in the bulk and in the hydration shell of a hydrophobic solute, at 298 and 260 K. We show that these parameters are weakly correlated and probe different distortions, for example the angular versus radial disorders. We first combine these complementary descriptions to analyze the structural rearrangements leading to the density maximum in liquid water. Our results reveal no sign of a heterogeneous mixture and show that the density maximum arises from the depletion in interstitial water molecules upon cooling. In the hydration shell of the hydrophobic moiety of propanol, the order parameters suggest that the water local structure is similar to that in the bulk, with only a very weak depletion in ordered configurations, thus confirming the absence of any iceberg-type structure. Finally, we show that the main structural fluctuations that affect water reorientation dynamics in the bulk are angular distortions, which we explain by the jump hydrogen-bond exchange mechanism. PMID:26054933

  19. Liquid-Water Uptake and Removal in PEM Fuel-Cell Components

    SciTech Connect

    Das, Prodip K.; Gunterman, Haluna P.; Kwong, Anthony; Weber, Adam Z.

    2011-09-23

    Management of liquid water is critical for optimal fuel-cell operation, especially at low temperatures. It is therefore important to understand the wetting properties and water holdup of the various fuel-cell layers. While the gas-diffusion layer is relatively hydrophobic and exhibits a strong intermediate wettability, the catalyst layer is predominantly hydrophilic. In addition, the water content of the ionomer in the catalyst layer is lower than that of the bulk membrane, and is affected by platinum surfaces. Liquid-water removal occurs through droplets on the surface of the gas-diffusion layer. In order to predict droplet instability and detachment, a force balance is used. While the pressure or drag force on the droplet can be derived, the adhesion or surface-tension force requires measurement using a sliding-angle approach. It is shown that droplets produced by forcing water through the gas-diffusion layer rather than placing them on top of it show much stronger adhesion forces owing to the contact to the subsurface water.

  20. Subcritical water chromatography: A green approach to high-temperature liquid chromatography.

    PubMed

    Yang, Yu

    2007-05-01

    At temperatures and pressures lower than 374 degrees C and 218 atm, subcritical water has widely tunable properties such as dielectric constant, surface tension, viscosity, and dissociation constant achieved by simply adjusting the temperature with a moderate pressure to keep water in the liquid state. At elevated temperatures, water acts like a weak polar organic solvent. Thus, subcritical water has been used as a green eluent to replace hazardous solvents commonly used as organic modifiers in RPLC. Subcritical water chromatography (SBWC) is capable of separating polar, moderately polar, and even some nonpolar analytes. Most of these low molecular weight solutes are stable at elevated temperatures during a chromatographic run. Some new packing materials are also quite stable and robust at mild temperatures ranging from 80 to 150 degrees C. Advantages of SBWC include the elimination of hazardous organic solvents used in traditional RPLC, rapid analysis time, improved selectivity, temperature-dependent separation efficiency, temperature-programmed elution, and compatibility with both gas- and liquid-phase detectors. In this paper, the technical aspects as well as the applications of SBWC are reviewed. Topics addressed in this review include the unique characteristics of subcritical water, analytes separated by SBWC, packing materials tested for SBWC, the application of GC and LC detection techniques in SBWC, SBWC instrumentation development, temperature effects on SBWC separation, and models developed for separation in SBWC. PMID:17595948

  1. Water reuse and zero liquid discharge: a sustainable water resource solution

    Microsoft Academic Search

    B. Durham; M. Mierzejewski

    Increased water demand from population and economic growth, environmental needs, change in rainfall, flood contamination of good quality water and over abstraction of groundwater are all factors that will continue to create water shortage problems. This paper considers alternative solutions, which conform to sustainable solution premises whilst being economically beneficial to the community. The importance of pilot studies is reviewed

  2. Linking Europa's plume activity to tides, tectonics, and liquid water

    NASA Astrophysics Data System (ADS)

    Rhoden, Alyssa Rose; Hurford, Terry A.; Roth, Lorenz; Retherford, Kurt

    2015-06-01

    Much of the geologic activity preserved on Europa's icy surface has been attributed to tidal deformation, mainly due to Europa's eccentric orbit. Although the surface is geologically young (30-80 Myr), there is little information as to whether tidally-driven surface processes are ongoing. However, a recent detection of water vapor near Europa's south pole suggests that it may be geologically active. Initial observations indicated that Europa's plume eruptions are time-variable and may be linked to its tidal cycle. Saturn's moon, Enceladus, which shares many similar traits with Europa, displays tidally-modulated plume eruptions, which bolstered this interpretation. However, additional observations of Europa at the same time in its orbit failed to yield a plume detection, casting doubt on the tidal control hypothesis. The purpose of this study is to analyze the timing of plume eruptions within the context of Europa's tidal cycle to determine whether such a link exists and examine the inferred similarities and differences between plume activity on Europa and Enceladus. To do this, we determine the locations and orientations of hypothetical tidally-driven fractures that best match the temporal variability of the plumes observed at Europa. Specifically, we identify model faults that are in tension at the time in Europa's orbit when a plume was detected and in compression at times when the plume was not detected. We find that tidal stress driven solely by eccentricity is incompatible with the observations unless additional mechanisms are controlling the eruption timing or restricting the longevity of the plumes. The addition of obliquity tides, and corresponding precession of the spin pole, can generate a number of model faults that are consistent with the pattern of plume detections. The locations and orientations of these hypothetical source fractures are robust across a broad range of precession rates and spin pole directions. Analysis of the stress variations across the fractures suggests that the plumes would be best observed earlier in the orbit (true anomaly ?120°). Our results indicate that Europa's plumes, if confirmed, differ in many respects from the Enceladean plumes and that either active fractures or volatile sources are rare.

  3. Thermal transport coefficients for liquid and glassy water computed from a harmonic aqueous glass

    NASA Astrophysics Data System (ADS)

    Yu, Xin; Leitner, David M.

    2005-09-01

    We compute thermal transport coefficients for liquid and glassy water in terms of the vibrations of the quenched liquid. The thermal conductivity and thermal diffusivity are computed for H2O and D2O at densities from 0.93to1.2gcm-3. The computed thermal diffusivity of liquid water is in reasonable agreement with measured values and is found to increase with increasing temperature due largely to the thermal accessibility of delocalized librational modes. The influence of structure and density on the thermal conductivity of amorphous ices is investigated. The calculations reveal that density alone is unable to explain the measured thermal conductivity of amorphous ices, particularly low-density amorphous ices, for which the thermal conductivity decreases with increasing temperature near 100K. To investigate the influence of structure on thermal transport in amorphous ices we have computed the thermal transport coefficients for low-density amorphous ices prepared in two different ways, one formed by quenching the liquid at 0.93gcm-3 and the other by distortion of cubic ice at the same density. The computed thermal conductivity of the latter is higher, but the structures of both forms are too disordered for the thermal conductivity to exhibit the unusual variation observed experimentally.

  4. Prognostic precipitation with three liquid water classes in the ECHAM5-HAM GCM

    NASA Astrophysics Data System (ADS)

    Sant, V.; Posselt, R.; Lohmann, U.

    2015-03-01

    In order to improve the global representation of rain formation in marine stratiform clouds a new parameterization with three prognostic liquid water classes was implemented into the general circulation model ECHAM5 with the aerosol module HAM. The additionally introduced drizzle class improves the physical representation of the droplet spectrum and more importantly, improves the microphysical processes relevant for precipitation formation compared to the standard parameterization. In order to avoid a mismatch of the liquid and ice phase, the prognostic treatment of snow has been introduced too. This has a significant effect on the amount and altitude of ice clouds, which in turn does not only affect in- and outgoing radiation, but also the parameterized collection rates. With the introduction of a prognostic precipitation scheme a more realistic representation of both liquid and ice phase large-scale precipitation is achieved compared to a diagnostic treatment. An encouraging finding is that the sensitivity of the liquid water path to the anthropogenic aerosol forcing with the prognostic treatment is reduced by about 25%. Although the total net radiative forcing is increased from 1.4±0.4 to 1.6±0.4 W m-2 from the control to the prognostic model version, the difference is within the interannual variability. Altogether the results suggest that the treatment of precipitation in global circulation models has a significant influence on the phase and lifetime of clouds, but also hints towards the uncertainties related to a prognostic precipitation scheme.

  5. Simulations of solid-liquid friction at ice-Ih/water interfaces

    NASA Astrophysics Data System (ADS)

    Louden, Patrick B.; Gezelter, J. Daniel

    2013-11-01

    We have investigated the structural and dynamic properties of the basal and prismatic facets of the ice Ih/water interface when the solid phase is drawn through the liquid (i.e., sheared relative to the fluid phase). To impose the shear, we utilized a velocity-shearing and scaling approach to reverse non-equilibrium molecular dynamics. This method can create simultaneous temperature and velocity gradients and allow the measurement of transport properties at interfaces. The interfacial width was found to be independent of the relative velocity of the ice and liquid layers over a wide range of shear rates. Decays of molecular orientational time correlation functions gave similar estimates for the width of the interfaces, although the short- and longer-time decay components behave differently closer to the interface. Although both facets of ice are in "stick" boundary conditions in liquid water, the solid-liquid friction coefficients were found to be significantly different for the basal and prismatic facets of ice.

  6. Simulations of solid-liquid friction at ice-I(h)/water interfaces.

    PubMed

    Louden, Patrick B; Gezelter, J Daniel

    2013-11-21

    We have investigated the structural and dynamic properties of the basal and prismatic facets of the ice Ih/water interface when the solid phase is drawn through the liquid (i.e., sheared relative to the fluid phase). To impose the shear, we utilized a velocity-shearing and scaling approach to reverse non-equilibrium molecular dynamics. This method can create simultaneous temperature and velocity gradients and allow the measurement of transport properties at interfaces. The interfacial width was found to be independent of the relative velocity of the ice and liquid layers over a wide range of shear rates. Decays of molecular orientational time correlation functions gave similar estimates for the width of the interfaces, although the short- and longer-time decay components behave differently closer to the interface. Although both facets of ice are in "stick" boundary conditions in liquid water, the solid-liquid friction coefficients were found to be significantly different for the basal and prismatic facets of ice. PMID:24320347

  7. Low-Dimensional Water on Ru(0001)Model System for X-ray Absorption Spectroscopy Studies of Liquid Water

    SciTech Connect

    Nordlund, D

    2012-02-14

    We present an x-ray absorption spectroscopy results for fully broken to a complete H-bond network of water molecules on Ru(0001) by varying the morphology from isolated water molecules via two-dimensional clusters to a fully covered monolayer as probed by scanning tunneling microscopy. The sensitivity of x-ray absorption to the symmetry of H-bonding is further elucidated for the amino (-NH{sub 2}) group in glycine adsorbed on Cu(110) where the E-vector is parallel either to the NH donating an H-bond or to the non-H-bonded NH. The results give further evidence for the interpretation of the various spectral features of liquid water and for the general applicability of x-ray absorption spectroscopy to analyze H-bonded systems.

  8. Ab initio molecular dynamics simulation of liquid water by quantum Monte Carlo.

    PubMed

    Zen, Andrea; Luo, Ye; Mazzola, Guglielmo; Guidoni, Leonardo; Sorella, Sandro

    2015-04-14

    Although liquid water is ubiquitous in chemical reactions at roots of life and climate on the earth, the prediction of its properties by high-level ab initio molecular dynamics simulations still represents a formidable task for quantum chemistry. In this article, we present a room temperature simulation of liquid water based on the potential energy surface obtained by a many-body wave function through quantum Monte Carlo (QMC) methods. The simulated properties are in good agreement with recent neutron scattering and X-ray experiments, particularly concerning the position of the oxygen-oxygen peak in the radial distribution function, at variance of previous density functional theory attempts. Given the excellent performances of QMC on large scale supercomputers, this work opens new perspectives for predictive and reliable ab initio simulations of complex chemical systems. PMID:25877566

  9. Ab initio molecular dynamics simulation of liquid water by quantum Monte Carlo

    NASA Astrophysics Data System (ADS)

    Zen, Andrea; Luo, Ye; Mazzola, Guglielmo; Guidoni, Leonardo; Sorella, Sandro

    2015-04-01

    Although liquid water is ubiquitous in chemical reactions at roots of life and climate on the earth, the prediction of its properties by high-level ab initio molecular dynamics simulations still represents a formidable task for quantum chemistry. In this article, we present a room temperature simulation of liquid water based on the potential energy surface obtained by a many-body wave function through quantum Monte Carlo (QMC) methods. The simulated properties are in good agreement with recent neutron scattering and X-ray experiments, particularly concerning the position of the oxygen-oxygen peak in the radial distribution function, at variance of previous density functional theory attempts. Given the excellent performances of QMC on large scale supercomputers, this work opens new perspectives for predictive and reliable ab initio simulations of complex chemical systems.

  10. Nuclear spin optical rotation and Faraday effect in gaseous and liquid water

    NASA Astrophysics Data System (ADS)

    Pennanen, Teemu S.; Ikäläinen, Suvi; Lantto, Perttu; Vaara, Juha

    2012-05-01

    Nuclear spin optical rotation (NSOR) of linearly polarized light, due to the nuclear spins through the Faraday effect, provides a novel probe of molecular structure and could pave the way to optical detection of nuclear magnetization. We determine computationally the effects of the liquid medium on NSOR and the Verdet constant of Faraday rotation (arising from an external magnetic field) in water, using the recently developed theory applied on a first-principles molecular dynamics trajectory. The gas-to-liquid shifts of the relevant antisymmetric polarizability and, hence, NSOR magnitude are found to be -14% and -29% for 1H and 17O nuclei, respectively. On the other hand, medium effects both enhance the local electric field in water and, via bulk magnetization, the local magnetic field. Together these two effects partially cancel the solvation influence on the single-molecular property. We find a good agreement for the hydrogen NSOR with a recent pioneering experiment on H2O(l).

  11. Acousto-optic method used to control water pollution by miscible liquids

    NASA Astrophysics Data System (ADS)

    Ferria, Kouider; Griani, Lazhar; Laouar, Naamane

    2012-05-01

    An acousto-optic (A.O.) method has been developed for controlling the quality of water mixed by miscible liquids like acetone or ethanol… The liquid mixture is filled in a rectangular glass cell, which is placed orthogonally to the incident collimated beam of light. This cell consists of a piezoelectric transducer for generating ultrasonic waves. The collimated light while passing through this cell undergoes a diffraction phenomenon. The diffracted dots are collected by a converging photographic objective and displayed in its back focal plane. The location of the diffracted dots and their intensity are sensitive to any variation of the interaction medium. This result leads to decide about the quality of the water.

  12. The Effect of van der Waals Interactions on the Structure of Liquid Water.

    NASA Astrophysics Data System (ADS)

    Distasio, Robert, Jr.; Li, Zhaofeng; Car, Roberto

    2012-02-01

    In this work, we demonstrate the importance of including van der Waals (vdW) interactions in the theoretical prediction of the structure of liquid water. These effects are investigated by computing and analyzing the oxygen-oxygen, oxygen-hydrogen, and hydrogen-hydrogen radial distribution functions (RDFs) obtained from highly accurate ab initiomolecular dynamic simulations that explicitly account for vdW interactions. In particular, we utilize an efficient order(N) algorithmic implementation of the self-consistent energy and analytical forces of the density functional based vdW correction proposed by Tkatchenko and Scheffler (PRL 102, 073005 (2009)) to demonstrate the importance of vdW interactions in obtaining RDFs that are in close agreement with experiment. In addition, we also provide an analysis of finite size effects in vdW-based liquid water simulations as well as a comparison to several other competitive theoretical methods for treating vdW interactions.

  13. A focused liquid jet formed by a water hammer in a test tube

    E-print Network

    Kiyama, Akihito; Ando, Keita; Kameda, Masaharu

    2015-01-01

    We investigate motion of a gas-liquid interface in a test tube induced by a large acceleration via impulsive force. We conduct simple experiments in which the tube partially filled with a liquid falls under gravity and impacts a rigid floor. A curved gas-liquid interface inside the tube reverses and eventually forms an elongated jet (i.e. the so-called a focused jet). In our experiments, there arises either vibration of the interface or increment in the velocity of a liquid jet accompanied by the onset of cavitation in the liquid column. These phenomena cannot be explained by considering pressure impulse in a classical potential flow analysis, which does not account for finite speeds of sound as well as phase change. Here we model such water-hammer events as a result of one-dimensional pressure wave propagation and its interaction with boundaries through acoustic impedance mismatching. The method of characteristics is applied to describe pressure wave interactions and the subsequent cavitation. The proposed m...

  14. IR and SFG vibrational spectroscopy of the water bend in the bulk liquid and at the liquid-vapor interface, respectively.

    PubMed

    Ni, Yicun; Skinner, J L

    2015-07-01

    Vibrational spectroscopy of the water bending mode has been investigated experimentally to study the structure of water in condensed phases. In the present work, we calculate the theoretical infrared (IR) and sum-frequency generation (SFG) spectra of the HOH bend in liquid water and at the water liquid/vapor interface using a mixed quantum/classical approach. Classical molecular dynamics simulation is performed by using a recently developed water model that explicitly includes three-body interactions and yields a better description of the water surface. Ab-initio-based transition frequency, dipole, polarizability, and intermolecular coupling maps are developed for the spectral calculations. The calculated IR and SFG spectra show good agreement with the experimental measurements. In the theoretical imaginary part of the SFG susceptibility for the water liquid/vapor interface, we find two features: a negative band centered at 1615 cm(-1) and a positive band centered at 1670 cm(-1). We analyze this spectrum in terms of the contributions from molecules in different hydrogen-bond classes to the SFG spectral density and also compare to SFG results for the OH stretch. SFG of the water bending mode provides a complementary picture of the heterogeneous hydrogen-bond configurations at the water surface. PMID:26156483

  15. Evidence of water-in-ionic liquid microemulsion formation by nonionic surfactant Brij-35.

    PubMed

    Rai, Rewa; Pandey, Siddharth

    2014-09-01

    Brij-35, a common and popular nonionic surfactant, is shown to form water-in-ionic liquid (w/IL) microemulsions with IL 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6]) as the bulk phase. The presence of w/[bmim][PF6] microemulsions is hinted by the significantly increased solubility of water in Brij-35 solution of [bmim][PF6]. The formation of w/[bmim][PF6] microemulsions by Brij-35 is confirmed using dynamic light scattering (DLS) and small-angle X-ray scattering (SAXS) measurements. Brij-35 forms reverse micelle-type aggregates within [bmim][PF6] in the absence of added-water. These reverse micelles become w/[bmim][PF6] microemulsions as the water is added to the system. As the water loading (w0) is increased, the average diameter of the aggregates increases. Fourier transform infrared (FTIR) absorbance data reveal the presence of both "bound" and "free" water within the system. The "bound" water is associated with the water pools of the w/[bmim][PF6] microemulsions. Excited-state proton transfer (ESPT) involving probe pyranine shows deprotonation of pyranine within the water pools of the w/[bmim][PF6] microemulsions. PMID:25121578

  16. Femtosecond Dynamics of Hydrogen Bonds in Liquid Water: A Real Time Study

    Microsoft Academic Search

    G. M. Gale; G. Gallot; F. Hache; N. Lascoux; S. Bratos; J.-Cl. Leicknam

    1999-01-01

    A pump-probe experiment is described to study femtosecond dynamics of hydrogen bonds in liquid water. The key element of the experimental setup is a laser source emitting 150 fs pulses in the 2.5-4.4 mum spectral region, at a 10 muJ power level. The OH-stretching band is recorded for different excitation frequencies and different pump-probe delay times. Time-dependent solvatochromic shifts are

  17. Generic component failure data base for light water and liquid sodium reactor PRAs (probabilistic risk assessments)

    SciTech Connect

    Eide, S.A.; Chmielewski, S.V.; Swantz, T.D.

    1990-02-01

    A comprehensive generic component failure data base has been developed for light water and liquid sodium reactor probabilistic risk assessments (PRAs). The Nuclear Computerized Library for Assessing Reactor Reliability (NUCLARR) and the Centralized Reliability Data Organization (CREDO) data bases were used to generate component failure rates. Using this approach, most of the failure rates are based on actual plant data rather than existing estimates. 21 refs., 9 tabs.

  18. Plutonium breeding in liquid-metal fast breeder reactors and light water reactors

    Microsoft Academic Search

    Vendryes

    1985-01-01

    The possibilities of breeding in liquid-metal fast breeder reactors (LMFBRs) and light water reactors (LWRs) are compared in two ways. The feasibility of breeding has been demonstrated in the Phenix reactor with a measured gain of 0.14. The gain in Superphenix will amount to about0.20. The studies show that while maintaining the performance of commercial reactors their breeding gain can

  19. Reactivation of Partially Sulphated CFBC Ash and Limestone with Steam and Liquid Water

    Microsoft Academic Search

    Yinghai Wu; Edward J. Anthony; Lufei Jia

    It is not unusual for ashes produced from fluidized bed combustion technology to contain 20-30% of unreacted CaO following limestone addition to remove SO2 in situ. In order to improve the sorbent utilization, reactivating the unused CaO with liquid water or steam is a promising technique. This study presents the results of reactivating partially sulphated CFBC ash (both bed ash

  20. Determination of water-soluble UV-filters in sunscreen sprays by liquid chromatography

    Microsoft Academic Search

    Alberto Chisvert; Amparo Salvador

    2002-01-01

    Liquid chromatography was used for the determination of the three most used water-soluble UV filters, benzophenone-4 (BZ4), terephthalylidene dicamphor sulfonic acid (TDS), and phenylbenzimidazole sulphonic acid (PBS), in aqueous sunscreen sprays. A C18 stationary phase and an isocratic mobile phase of EtOH–20 mM sodium acetate buffer of pH 4.6 (30:70, v\\/v) were used at a flow-rate of 0.5 ml min?1.

  1. Liquid-solid contact measurements using a surface thermocouple temperature probe in atmospheric pool boiling water

    Microsoft Academic Search

    L. Y. W. Lee; J. C. Chen; R. A. Nelson

    1984-01-01

    Objective was to apply the technique of using a microthermocouple flush-mounted at the boiling surface for the measurement of the local-surface-temperature history in film and transition boiling on high temperature surfaces. From this measurement direct liquid-solid contact in film and transition boiling regimes was observed. In pool boiling of saturated, distilled, deionized water on an aluminum-coated copper surface, the time-averaged,

  2. Towards a standard procedure for validation of satellite- derived cloud liquid water path

    Microsoft Academic Search

    W. Greuell; R. A. Roebeling

    Abstract Differences between satellite-derived and ground-based values of cloud liquid water path (LWPsat and LWPgr) in validation studies are partly caused by,issues associated with the validation itself, in particular scale differences and the parallax. This paper aims at establishing standards for validation procedures so that contributions by the ,validation issues to the differences are minimized. To study this topic we

  3. How do hybrid functionals, dispersion interactions and quantum nuclei affect the structure of liquid water?

    NASA Astrophysics Data System (ADS)

    Li, Zhaofeng; Distasio, Robert A., Jr.; Car, Roberto; Wu, Xifan

    2011-03-01

    We report ab-initio molecular dynamics simulations of liquid water at STP and at the volume corresponding to experimental equilibrium density. These simulations are based on the hybrid functional PBE0 for the electrons and include approximate dispersion interactions according to Ref. Nuclear quantum corrections were included as estimated by Ref. We find that all of these components are important to significantly improve the agreement of the simulated structure with recent experimental analyses based on neutron and X-ray diffraction.

  4. Stabilized Liquid Membrane Device (SLMD) for the Passive, Integrative Sampling of Labile Metals in Water

    Microsoft Academic Search

    W. G. Brumbaugh; J. D. Petty; J. N. Huckins; S. E. Manahan

    2002-01-01

    A stabilized liquid membrane device (SLMD) is described forpotential use as an in situ, passive, integrative samplerfor cadmium (Cd), cobalt (Co), copper (Cu), nickel (Ni), lead(Pb), and zinc (Zn) in natural waters. The SLMD (patent pending)consists of a 2.5-cm-wide by 15-cm-long strip of low-density polyethylene (LDPE) layflat tubing containing 1 mL of an equalmixture (v\\/v) of oleic acid (cis-9-octadecenoic acid)

  5. Membrane-assisted liquid–liquid extraction coupled with gas chromatography–mass spectrometry for determination of selected polycyclic musk compounds and drugs in water samples

    Microsoft Academic Search

    T. Einsle; H. Paschke; K. Bruns; S. Schrader; P. Popp; M. Moeder

    2006-01-01

    Selected polycyclic musk compounds and drugs were extracted from water samples by membrane-assisted micro liquid–liquid extraction. The two-phase extraction system consisted of polyethylene membrane bags filled with an organic solvent. Chloroform proved to be most suited as acceptor phase to extract caffeine, Galaxolide, Tonalide, phenazone and carbamazepine from aqueous samples. The compounds were enriched from 50mL sample into a volume

  6. Analysis and Calibration of CRF Raman Lidar Cloud Liquid Water Measurements

    SciTech Connect

    Turner, D.D.

    2007-10-31

    The Atmospheric Radiation Measurement (ARM) Raman lidar (RL), located at the Southern Great Plains (SGP) Climate Research Facility (CRF), is a unique state-of-the-art active remote sensor that is able to measure profiles of water vapor, aerosol, and cloud properties at high temporal and vertical resolution throughout the diurnal cycle. In October 2005, the capability of the RL was extended by the addition of a new detection channel that is sensitive to the Raman scattering of liquid water. This new channel permits the system, in theory, to measure profiles of liquid water content (LWC) by the RL. To our knowledge, the ARM RL is the only operation lidar with this capability. The liquid water Raman backscattering cross-section is a relatively weak and spectrally broad feature, relative to the water vapor Raman backscatter signal. The wide bandpass required to achieve reasonable signal-to-noise in the liquid water channel essentially eliminates the ability to measure LWC profiles during the daytime in the presence of large solar background, and thus all LWC observations are nighttime only. Additionally, the wide bandpass increases the probability that other undesirable signals, such as fluorescence from aerosols, may contaminate the observation. The liquid water Raman cross-section has a small amount of overlap with the water vapor Raman cross-section, and thus there will be a small amount of ‘cross-talk’ between the two signals, with water vapor contributing a small amount of signal to the LWC observation. And finally, there is significant uncertainty in the actual strength of the liquid water Raman cross-section in the literature. The calibrated LWC profiles, together with the coincident cloud backscatter observations also made by the RL, can be used to derive profiles of cloud droplet effective radius. By combining these profiles of effective radius in the lower portion of the cloud with the aerosol extinction measurements made below the cloud by the RL, the first aerosol indirect effect can be investigated using a single instrument, thereby reducing the uncertainty associated with aligning the different sampling periods and fields of view of multiple instruments. We have applied a “first principles” calibration to the LWC profiles. This approach requires that the relative differences in optical efficiency between the water vapor and liquid water channels be known; this relative difference is easily computed using the efficiency values of the beam splitters and interference filters in the lidar that were provided by the vendors of these components. The first principles approach then transfers the calibration from the water vapor mixing ratio to the LWC using the difference in the optical efficiency and an interpolated value of the liquid water Raman cross section from the literature, and the better established water vapor Raman cross section. After accounting for all known error sources, the vertical integral of LWC was compared against a similar value retrieved from a co-located ground-based infrared radiometer. The RL and infrared radiometer have significantly different fields of view; thus to compare the two sensors the data were averaged to 5 min intervals where only cloudy samples were included in the average of each. While there is fair scatter in the data (r=0.47), there is also a clear indication of a positive correlation between the infrared and the RL values. The value of the slope of the regression is 0.49, which indicates a tendency of the RL measurements to underestimate the total liquid amount with respect to the infrared retrieval. Research continues to investigate the source of the bias, but the most likely candidate is the large uncertainty in the liquid water Raman cross-section as there have been no direct measurements made of this parameter at the lidar’s laser wavelength of 355 nm. The calibrated LWC profile was then used together with the cloud backscatter coefficient profile from the RL to derive profiles of cloud droplet effective radius and cloud droplet number density. These profiles o

  7. Investigation of Uranium Polymorphs

    SciTech Connect

    Sweet, Lucas E.; Henager, Charles H.; Hu, Shenyang Y.; Johnson, Timothy J.; Meier, David E.; Peper, Shane M.; Schwantes, Jon M.

    2011-08-01

    The UO3-water system is complex and has not been fully characterized, even though these species are common throughout the nuclear fuel cycle. As an example, most production schemes for UO3 result in a mixture of up to six or more different polymorphic phases, and small differences in these conditions will affect phase genesis that ultimately result in measureable changes to the end product. As a result, this feature of the UO3-water system may be useful as a means for determining process history. This research effort attempts to better characterize the UO3-water system with a variety of optical techniques for the purpose of developing some predictive capability for estimating process history in polymorphic phases of unknown origin. Three commercially relevant preparation methods for the production of UO3 were explored. Previously unreported low temperature routes to ?- and ?-UO3 were discovered. Raman and fluorescence spectroscopic libraries were established for pure and mixed polymorphic forms of UO3 in addition to the common hydrolysis products of UO3. An advantage of the sensitivity of optical fluorescence microscopy over XRD has been demonstrated. Preliminary aging studies of the ? and ? forms of UO3 have been conducted. In addition, development of a 3-D phase field model used to predict phase genesis of the system was initiated. Thermodynamic and structural constants that will feed the model have been gathered from the literature for most of the UO3 polymorphic phases.

  8. Ultrafast dynamics of liquid water: Frequency fluctuations of the OH stretch and the HOH bend

    SciTech Connect

    Imoto, Sho; Xantheas, Sotiris S.; Saito, Shinji

    2013-07-28

    Frequency fluctuations of the OH stretch and the HOH bend in liquid water are reported from the third-order response function evaluated using the TTM3-F potential for water. The simulated two-dimensional infrared (IR) spectra of the OH stretch are similar to previously reported theoretical results. The present study suggests that the frequency fluctuation of the HOH bend is faster than that of the OH stretch. The ultrafast loss of the frequency correlation of the HOH bend is due to the strong couplings with the OH stretch as well as the intermolecular hydrogen bond bend.

  9. Electronic structure effects in liquid water studied by photoelectron spectroscopy and density functional theory

    SciTech Connect

    Nordlund, Dennis; Odelius, Michael; Bluhm, Hendrik; Ogasawara, Hirohito; Pettersson, Lars G.M.; Nilsson, Anders

    2008-04-29

    We present valence photoelectron emission spectra of liquid water in comparison with gas-phase water, ice close to the melting point, low temperature amorphous and crystalline ice. All aggregation states have major electronic structure changes relative to the free molecule, with rehybridization and development of bonding and anti-bonding states accompanying the hydrogen bond formation. Sensitivity to the local structural order, most prominent in the shape and splitting of the occupied 3a{sub 1} orbital, is understood from the electronic structure averaging over various geometrical structures, and reflects the local nature of the orbital interaction.

  10. Liquid phase-enabled reaction of AleGa and AleGaeIneSn alloys with water

    E-print Network

    Woodall, Jerry M.

    Liquid phase-enabled reaction of AleGa and AleGaeIneSn alloys with water Jeffrey T. Ziebarth aGaeIneSn alloys is investigated as a means to utilize the chemical potential energy of Al to split water for the production of H2. Al in bulk quantities of these alloys participates in a heterogeneous reaction with water

  11. Interaction of Water Vapor with the Surfaces of Imidazolium-Based Ionic Liquid Nanoparticles and Thin Films

    E-print Network

    Nizkorodov, Sergey

    Interaction of Water Vapor with the Surfaces of Imidazolium-Based Ionic Liquid Nanoparticles techniques, water vapor's interaction with aerosolized nanoparticles and thin films of [C2MIM][Cl] and [C2MIM. The particles' small size allows true IL-water vapor equilibrium achieved quickly. Growth curves for both ILs

  12. Liquid-vapor fractionation of oxygen and hydrogen isotopes of water from the freezing to the critical temperature

    Microsoft Academic Search

    Juske Horita; David J. Wesolowski

    1994-01-01

    The equilibrium fractionation factors of oxygen and hydrogen isotopes between liquid water and water vapor have been precisely determined from 25 to 350°C on the VSMOW-SLAP scale, using three different types of apparatus with static or dynamic techniques for the sampling of water vapor. Our results for both oxygen and hydrogen isotope fractionation factors between 25 and 100°C are in

  13. Satellite observation of winter season subsurface liquid melt water retention on the Greenland ice sheet using spectroradiometer and scatterometer data

    NASA Astrophysics Data System (ADS)

    Miller, J. Z.; Forster, R. R.; Long, D. G.; Brewer, S.

    2013-12-01

    The recently discovered perennial firn aquifer (PFA) represents a new glacier facie and a previously undefined liquid water storage mechanism on the Greenland ice sheet (GrIS). The current hypothesis suggests that at least two geophysical processes control the formation of the PFA: 1) high melt rates that saturate snow and firn layers with liquid water during the melt season, and 2) high snow accumulation rates that subsequently insulate this saturated layer allowing it to be retained in liquid form during the winter season. The PFA is potentially an important component in ice sheet mass and energy budget calculations, however, large-scale observations linking surface melt, subsurface liquid melt water retention, and the PFA currently do not exist. Satellite-borne spectroradiometers and scatterometers are frequently used to detect the presence of liquid water content over the GrIS. The sensor's penetration depth is dependent on the frequency (which determines wavelength) and time-varying geophysical properties (which determine absorption and scattering characteristics). At shorter spectral wavelengths, penetration depths are limited at the interface between the ice sheet surface and the atmosphere. Spectroradiometer-derived retrievals of liquid water content represent an integrated response on the order of a few millimeters. At longer microwave wavelengths (C- and Ku-band), penetration depths are increased. Scatterometer-derived retrievals of liquid water content represent an integrated response on the order of a few centimeters to several meters. We combine spectroradiometer data acquired from the Moderate Resolution Imaging Spectroradiometer aboard Terra and Aqua (MODIS) and C- and Ku-band scatterometer data acquired from MetOP-A (ASCAT) and OceanSAT-2 (OSCAT) to investigate the spatiotemporal variability of subsurface liquid water content on the GrIS. Penetration depth differences are exploited to distinguish between the detection of liquid water content controlled by surface heat flux and the detection of subsurface liquid water content controlled by the retention process. Surface freeze-up is identified using MODIS-derived ice surface temperatures. We then identify distinct microwave signatures suggesting the presence of subsurface liquid water content, characterize the stratigraphy and geophysical processes controlling the observed response, and derive a retrieval algorithm using a simple radiative transfer model. Over the 4 year time series (2009-2013), results indicate subsurface liquid melt water persists within Ku-band penetration depth up to ~1 month and within C-band penetration depth between ~1-5 months following surface-freeze-up. Detection occurs exclusively in regions where the PFA has previously been mapped using field (Arctic Circle Traverse) and airborne (IceBridge) observations and the spatial extent is consistent with regional climate model (RACMO2) simulations.

  14. Water at the cavitation limit: Density of the metastable liquid and size of the critical bubble

    NASA Astrophysics Data System (ADS)

    Davitt, Kristina; Arvengas, Arnaud; Caupin, Frédéric

    2010-04-01

    The ability of a liquid to sustain mechanical tension is a spectacular manifestation of the cohesion of matter. Water is a paradigmatic example, because of its high cohesion due to hydrogen bonds. The knowledge of its limit of rupture by cavitation can bring valuable information about its structure. Up to now, this limit has been obscured by the diversity of experimental results based on different physical measures of the degree of metastability of the liquid. We have built a fiber optic probe hydrophone to provide the missing data on the density of the liquid at the acoustic cavitation limit. Our measurements between 0 and 50°C allow a clear-cut comparison with another successful method where tension is produced in micron-sized inclusions of water in quartz. We also extend previous acoustic measurements of the limiting pressure to 190°C, and we consider a simple modification of classical nucleation theory to describe our data. Applying the nucleation theorem gives the first experimental value for the size of the critical bubble, which lies in the nanometer range. The results suggest the existence of either a stabilizing impurity in the inclusion experiments, or an ubiquitous impurity essential to the physics of water.

  15. Liquid Water on Enceladus from Observations of Ammonia and Ar-40 in the Plume

    NASA Technical Reports Server (NTRS)

    Waite, J. H., Jr.; Lewis, W. S.; Magee, B. A.; Lunine, J. I.; McKinnon, W. B.; Glein, C. R.; Mousis, O.; Young, D. T.; Brockwell, T.; Westlake, J.; Nguyen, M.-J.; Teolis, B. D.; Niemann, H. B.; McNutt, R. L., Jr.; Perry, M.; Ip, W.-H.

    2009-01-01

    Jets of water ice from surface fractures near the south pole of Saturn's icy moon Enceladus produce a plume of gas and particles. The source of the jets may be a liquid water region under the ice shell-as suggested most recently by the discovery of salts in E-ring particles derived from the plume-or warm ice that is heated, causing dissociation of clathrate hydrates. Here we report that ammonia is present in the plume, along with various organic compounds, deuterium and, very probably, Ar-40. The presence of ammonia provides strong evidence for the existence of at least some liquid water, given that temperatures in excess of 180 K have been measured near the fractures from which the jets emanate. We conclude, from the overall composition of the material, that the plume derives from both a liquid reservoir (or from ice that in recent geological time has been in contact with such a reservoir) as well as from degassing, volatile-charged ice. As part of a general comprehensive review of the midsize saturnian satellites at the conclusion of the prime Cassini mission, PI McKinnon and co-I Barr contributed to three review chapters.

  16. Liquid-vapor oscillations of water nanoconfined between hydrophobic disks: thermodynamics and kinetics.

    PubMed

    Xu, Limei; Molinero, Valeria

    2010-06-01

    We use extensive molecular dynamics simulations with the monatomic model of water (mW) to characterize the thermodynamics and kinetics of the liquid-vapor (wetting-drying) equilibrium of water confined between nanoscopic hydrophobic plates. The transition in confined water is first-order-like, with two well-defined states (wet and dry) separated by a free energy barrier. Different from its bulk counterpart, the confined system oscillates between liquid and vapor: the two phases coexist in time but not in space. Also different from the phase behavior in bulk, there is a finite range of the thermodynamic variables (e.g., temperature or separation between the plates) for which the liquid and vapor state coexist in dynamical equilibrium. We determine the range of temperatures and plate separations for which reversible oscillations can be observed between a stable and metastable phase, compute the time scales of the phase transition along the equilibrium coexistence line, and investigate the pathway for drying along simple collective coordinates that describe the opening of a vapor bubble. The results of the simulations are compared with a simple capillary model for the thermodynamics and transition state theory for the kinetics of phase oscillations. PMID:20446704

  17. Emissions Prediction and Measurement for Liquid-Fueled TVC Combustor with and without Water Injection

    NASA Technical Reports Server (NTRS)

    Brankovic, A.; Ryder, R. C., Jr.; Hendricks, R. C.; Liu, N.-S.; Shouse, D. T.; Roquemore, W. M.

    2005-01-01

    An investigation is performed to evaluate the performance of a computational fluid dynamics (CFD) tool for the prediction of the reacting flow in a liquid-fueled combustor that uses water injection for control of pollutant emissions. The experiment consists of a multisector, liquid-fueled combustor rig operated at different inlet pressures and temperatures, and over a range of fuel/air and water/fuel ratios. Fuel can be injected directly into the main combustion airstream and into the cavities. Test rig performance is characterized by combustor exit quantities such as temperature and emissions measurements using rakes and overall pressure drop from upstream plenum to combustor exit. Visualization of the flame is performed using gray scale and color still photographs and high-frame-rate videos. CFD simulations are performed utilizing a methodology that includes computer-aided design (CAD) solid modeling of the geometry, parallel processing over networked computers, and graphical and quantitative post-processing. Physical models include liquid fuel droplet dynamics and evaporation, with combustion modeled using a hybrid finite-rate chemistry model developed for Jet-A fuel. CFD and experimental results are compared for cases with cavity-only fueling, while numerical studies of cavity and main fueling was also performed. Predicted and measured trends in combustor exit temperature, CO and NOx are in general agreement at the different water/fuel loading rates, although quantitative differences exist between the predictions and measurements.

  18. Properties of injectable ready-to-use calcium phosphate cement based on water-immiscible liquid.

    PubMed

    Heinemann, S; Rössler, S; Lemm, M; Ruhnow, M; Nies, B

    2013-04-01

    Calcium phosphate cements (CPCs) are highly valuable materials for filling bone defects and bone augmentation by minimal invasive application via percutaneous injection. In the present study some key features were significantly improved by developing a novel injectable ready-to-use calcium phosphate cement based on water-immiscible carrier liquids. A combination of two surfactants was identified to facilitate the targeted discontinuous exchange of the liquid for water after contact with aqueous solutions, enabling the setting reaction to take place at distinct ratios of cement components to water. This prolonged the shelf life of the pre-mixed paste and enhanced reproducibility during application and setting reactions. The developed paste technology is applicable for different CPC formulations. Evaluations were performed for the formulation of an ?-TCP-based CPC as a representative example for the preparation of injectable pastes with a powder-to-carrier liquid ratio of up to 85:15. We demonstrate that the resulting material retains the desirable properties of conventional CPC counterparts for fast setting, mechanical strength and biocompatibility, shows improved cohesion and will most probably show a similar degree of resorbability due to identical mineral structure of the set products. PMID:23261920

  19. Molecular density functional theory for water with liquid-gas coexistence and correct pressure

    NASA Astrophysics Data System (ADS)

    Jeanmairet, Guillaume; Levesque, Maximilien; Sergiievskyi, Volodymyr; Borgis, Daniel

    2015-04-01

    The solvation of hydrophobic solutes in water is special because liquid and gas are almost at coexistence. In the common hypernetted chain approximation to integral equations, or equivalently in the homogenous reference fluid of molecular density functional theory, coexistence is not taken into account. Hydration structures and energies of nanometer-scale hydrophobic solutes are thus incorrect. In this article, we propose a bridge functional that corrects this thermodynamic inconsistency by introducing a metastable gas phase for the homogeneous solvent. We show how this can be done by a third order expansion of the functional around the bulk liquid density that imposes the right pressure and the correct second order derivatives. Although this theory is not limited to water, we apply it to study hydrophobic solvation in water at room temperature and pressure and compare the results to all-atom simulations. The solvation free energy of small molecular solutes like n-alkanes and hard sphere solutes whose radii range from angstroms to nanometers is now in quantitative agreement with reference all atom simulations. The macroscopic liquid-gas surface tension predicted by the theory is comparable to experiments. This theory gives an alternative to the empirical hard sphere bridge correction used so far by several authors.

  20. Investigating the solid-liquid phase transition of water nanofilms using the generalized replica exchange method

    SciTech Connect

    Lu, Qing [Division of Materials Science and Engineering, Boston University, Brookline, Massachusetts 02446 (United States); Kim, Jaegil; Straub, John E., E-mail: straub@bu.edu [Department of Chemistry, Boston University, Boston, Massachusetts 02215 (United States); Farrell, James D.; Wales, David J. [University Chemical Laboratories, Lensfield Road, Cambridge CB2 1EW (United Kingdom)

    2014-11-14

    The generalized Replica Exchange Method (gREM) was applied to study a solid-liquid phase transition in a nanoconfined bilayer water system using the monatomic water (mW) model. Exploiting optimally designed non-Boltzmann sampling weights with replica exchanges, gREM enables an effective sampling of configurations that are metastable or unstable in the canonical ensemble via successive unimodal energy distributions across phase transition regions, often characterized by S-loop or backbending in the statistical temperature. Extensive gREM simulations combined with Statistical Temperature Weighted Histogram Analysis Method (ST-WHAM) for nanoconfined mW water at various densities provide a comprehensive characterization of diverse thermodynamic and structural properties intrinsic to phase transitions. Graph representation of minimized structures of bilayer water systems determined by the basin-hopping global optimization revealed heterogeneous ice structures composed of pentagons, hexagons, and heptagons, consistent with an increasingly ordered solid phase with decreasing density. Apparent crossover from a first-order solid-liquid transition to a continuous one in nanoconfined mW water with increasing density of the system was observed in terms of a diminishing S-loop in the statistical temperature, smooth variation of internal energies and heat capacities, and a characteristic variation of lateral radial distribution functions, and transverse density profiles across transition regions.

  1. Solid/Liquid phase diagram of the ammonium sulfate/succinic acid/water system.

    PubMed

    Pearson, Christian S; Beyer, Keith D

    2015-05-14

    We have studied the low-temperature phase diagram and water activities of the ammonium sulfate/succinic acid/water system using differential scanning calorimetry and infrared spectroscopy of thin films. Using the results from our experiments, we have mapped the solid/liquid ternary phase diagram, determined the water activities based on the freezing point depression, and determined the ice/succinic acid phase boundary as well as the ternary eutectic composition and temperature. We also compared our results to the predictions of the extended AIM aerosol thermodynamics model (E-AIM) and found good agreement for the ice melting points in the ice primary phase field of this system; however, differences were found with respect to succinic acid solubility temperatures. We also compared the results of this study with those of previous studies that we have published on ammonium sulfate/dicarboxylic acid/water systems. PMID:25431860

  2. Design and evaluation of a new thermospray liquid/liquid extractor for the extraction of semivolatile and non-volatile organic compounds from water

    SciTech Connect

    Farrell, E.S.; Pacey, G.E. [Miami Univ., Oxford, OH (United States)

    1995-12-31

    USEPA water quality monitoring programs require the extraction of nonvolatile and semivolatile organic compounds (SVOCs) from water. Two methods commonly used for this purpose are EPA SW846 methods 3520 and 3510. Quantitative extraction of SVOCs by method 3520 requires 18-24 hours of continuous liquid/liquid extraction. If reextraction at a secondary pH is warranted, an additional 18-24 hours will be required. Method 3510 is a batch method which entails separate multiple extractions or concentrations under different pH conditions, and is generally not recommended. Thermospray nebulizers appear to have found greater utility in applications which involve thermally-sensitive metabolites and nonvolatile organic compounds. Based on this compatibility, a continuous liquid/liquid extraction system equipped with thermospray nozzles was designed for the preconcentration of SVOCs and nonvolatiles from water. The base system includes a 300 mL, multipart extraction vessel jacketed in a 500 mL cooling flask, a dual-stage condenser for progressive cooling, several thermospray probes, and solvent/sample delivery systems. Aqueous mixtures of SVOCs, pesticides, and charged organic compounds were used to evaluate the extractor. For most compounds, recovery values of 80-100% were obtained during a single extraction cycle in less than one hour. The design, evaluation, and extraction capabilities of the new thermospray liquid/liquid extractor (TSLLE) will be discussed.

  3. Characterization of lyotropic liquid crystals formed in the mixtures of 1-alkyl-3-methylimidazolium bromide\\/p-xylene\\/water

    Microsoft Academic Search

    Xin-Wei Li; Jin Zhang; Bin Dong; Li-Qiang Zheng; Chen-Ho Tung

    2009-01-01

    1-Alkyl-3-methylimidazolium bromide (CnmimBr), are substituted for surfactants and formed lyotropic liquid crystalline phases with p-xylene and water. Small angle X-ray scattering (SAXS), polarized optical microscopy (POM), 2H nuclear magnetic response (2H NMR) and rheological measurement were performed to investigate the lyotropic liquid crystalline phases. A lyotropic bicontinuous cubic phase formed in imidazolium-type ionic liquid (IL) system was found for the

  4. Activity coefficients at infinite dilution measurements for organic solutes and water in the ionic liquid 1-ethyl-3-methylimidazolium tetracyanoborate

    Microsoft Academic Search

    Urszula Doma?ska; Marta Królikowska; William E. Acree; Gary A. Baker

    2011-01-01

    The activity coefficients at infinite dilution, ?13?, for 36 solutes, including alkanes, cycloalkanes, alkenes, alkynes, aromatic hydrocarbons, alcohols, thiophene, tetrahydrofuran, ethers, acetone, and water, in the ionic liquid 1-ethyl-3-methylimidazolium tetracyanoborate, [EMIM][TCB], were determined by gas–liquid chromatography at temperatures from 298.15K to 358.15K. These values are compared to those previously published for selected solutes in the same ionic liquid. The values

  5. The Partitioning Behavior of Tyramine and 2?Methoxyphenethylamine in a Room Temperature Ionic Liquid–Water System Compared to Traditional Organic–Water System

    Microsoft Academic Search

    Kelly K. L. Yung; Jilska M. Perera; Craig D. Smith; Geoffrey W. Stevens

    2005-01-01

    Ionic liquids have been proposed as replacements for volatile organic solvents (VOSs) by a range of authors, due to their very low vapor pressure, ability to dissolve a range of organic, inorganic, and organometallic compounds, immiscibility with water, and ability to form biphasic systems depending on the choice of cation\\/anion combination making up the ionic liquid. In this study the

  6. Improved prediction of octanol-water partition coefficients from liquid-solute water solubilities and molar volumes

    USGS Publications Warehouse

    Chiou, C.T.; Schmedding, D.W.; Manes, M.

    2005-01-01

    A volume-fraction-based solvent-water partition model for dilute solutes, in which the partition coefficient shows a dependence on solute molar volume (V??), is adapted to predict the octanol-water partition coefficient (K ow) from the liquid or supercooled-liquid solute water solubility (Sw), or vice versa. The established correlation is tested for a wide range of industrial compounds and pesticides (e.g., halogenated aliphatic hydrocarbons, alkylbenzenes, halogenated benzenes, ethers, esters, PAHs, PCBs, organochlorines, organophosphates, carbamates, and amidesureas-triazines), which comprise a total of 215 test compounds spanning about 10 orders of magnitude in Sw and 8.5 orders of magnitude in Kow. Except for phenols and alcohols, which require special considerations of the Kow data, the correlation predicts the Kow within 0.1 log units for most compounds, much independent of the compound type or the magnitude in K ow. With reliable Sw and V data for compounds of interest, the correlation provides an effective means for either predicting the unavailable log Kow values or verifying the reliability of the reported log Kow data. ?? 2005 American Chemical Society.

  7. The melting point of ice Ih for common water models calculated from direct coexistence of the solid-liquid interface

    Microsoft Academic Search

    Ramón García Fernández; José L. F. Abascal; Carlos Vega

    2006-01-01

    In this work we present an implementation for the calculation of the melting point of ice Ih from direct coexistence of the solid-liquid interface. We use molecular dynamics simulations of boxes containing liquid water and ice in contact. The implementation is based on the analysis of the evolution of the total energy along NpT simulations at different temperatures. We report

  8. The interplay between dynamic heterogeneities and structure of bulk liquid water: A molecular dynamics simulation study.

    PubMed

    Demontis, Pierfranco; Gulín-González, Jorge; Masia, Marco; Sant, Marco; Suffritti, Giuseppe B

    2015-06-28

    In order to study the interplay between dynamical heterogeneities and structural properties of bulk liquid water in the temperature range 130-350 K, thus including the supercooled regime, we use the explicit trend of the distribution functions of some molecular properties, namely, the rotational relaxation constants, the atomic mean-square displacements, the relaxation of the cross correlation functions between the linear and squared displacements of H and O atoms of each molecule, the tetrahedral order parameter q and, finally, the number of nearest neighbors (NNs) and of hydrogen bonds (HBs) per molecule. Two different potentials are considered: TIP4P-Ew and a model developed in this laboratory for the study of nanoconfined water. The results are similar for the dynamical properties, but are markedly different for the structural characteristics. In particular, for temperatures higher than that of the dynamic crossover between "fragile" (at higher temperatures) and "strong" (at lower temperatures) liquid behaviors detected around 207 K, the rotational relaxation of supercooled water appears to be remarkably homogeneous. However, the structural parameters (number of NNs and of HBs, as well as q) do not show homogeneous distributions, and these distributions are different for the two water models. Another dynamic crossover between "fragile" (at lower temperatures) and "strong" (at higher temperatures) liquid behaviors, corresponding to the one found experimentally at T(?) ? 315 ± 5 K, was spotted at T(?) ? 283 K and T(?) ? 276 K for the TIP4P-Ew and the model developed in this laboratory, respectively. It was detected from the trend of Arrhenius plots of dynamic quantities and from the onset of a further heterogeneity in the rotational relaxation. To our best knowledge, it is the first time that this dynamical crossover is detected in computer simulations of bulk water. On the basis of the simulation results, the possible mechanisms of the two crossovers at molecular level are discussed. PMID:26133441

  9. Laboratory Studies of the Liquid Water Content and the Degradation Rates of Organic Biomarkers in the Shallow Martian Subsurface

    NASA Astrophysics Data System (ADS)

    Pavlov, A. A.; Glavin, D. P.; Eigenbrode, J. L.; Pavlov, A. K.; Johnson, C. S.; Mahaffy, P. R.

    2010-04-01

    We determined the fraction of the liquid water and the rates of organic degradation in a simulated martian shallow subsurface layer as a function of ice table depth, atmospheric pressure, surface temperature, salt and oxidants' content.

  10. Simultaneous determination of three surfactants and water in shampoo and liquid soap by ATR-FTIR.

    PubMed

    Carolei, Luciano; Gutz, Ivano G R

    2005-03-31

    It is demonstrated for the first time that the principal constituents of a shampoo as well as of a liquid soap -three surfactants and water- can be determined directly, simultaneously and quickly in undiluted samples by attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy in the middle infrared region, despite the broad absorption bands of the solvent. Two of the surfactants, sodium lauryl ether sulfate (SLES) and cocoamidopropyl betaine (CAPB), are common to both formulations; alkylpolyglucoside (APG) is the third surfactant of the liquid soap and cocodiethanolamide (CDEA), the corresponding ingredient of the shampoo. Absorbance data of the undiluted samples and of the calibration standards was collected in the middle infrared region of the spectrum (800-1600 and 1900-3000cm(-1)). Two methods of multivariate quantification were compared: classical least squares (CLS), where absorbance data measured at 200 wavenumbers was processed, and inverse least squares (ILS), where data at 10 selected wavenumbers was analyzed. A spectra normalization procedure, based on a dominating water band, was examined. Twenty-seven standard mixtures were used for each application, consisting of all combinations at three concentration levels of each surfactant, respectively the lower limit, the expected value and the upper limit accepted in quality control. By favoring wavenumbers where absorption bands of the minor components (APG in the liquid soap and CDEA in the shampoo) are more intense, good results were obtained for 18 simulated samples of shampoo and 18 samples of liquid soap, no matter if calculations were made by CLS or ILS. The relative errors for water (major component, 84-88%) and SLES (7-10%) were always below 2%; for CAPB (2-4%), APG (<2%) and CDEA (<2%), they occasionally reached 5% of the component, an uncertainty of less than 0.07% in terms of the sample weight. PMID:18969970

  11. Estimating Entropy of Liquids from Atom-Atom Radial Distribution Functions: Silica, Beryllium Fluoride and Water

    E-print Network

    Ruchi Sharma; Manish Agarwal; Charusita Chakravarty

    2008-09-24

    Molecular dynamics simulations of water, liquid beryllium fluoride and silica melt are used to study the accuracy with which the entropy of ionic and molecular liquids can be estimated from atom-atom radial distribution function data. All three systems are known to display similar liquid-state thermodynamic and kinetic anomalies due to a region of anomalous excess entropy behaviour where entropy rises on isothermal compression. The pair correlation entropy is demonstrated to be sufficiently accurate that the density-temperature regime of anomalous behaviour as well as the strength of the entropy anomaly can be predicted reliably for both ionic melts as well as different rigid-body pair potentials for water. Errors in the total thermodynamic entropy for ionic melts due to the pair correlation approximation are of the order of 10% or less for most state points but can be significantly larger in the anomalous regime at very low temperatures. In the case of water, as expected given the rigid-body constraints for a molecular liquids, the pair correlation approximation causes significantly larger errors, between 20 and 30%, for most state points. Comparison of the excess entropy, Se, of ionic melts with the pair correlation entropy, S2, shows that the temperature dependence of Se is well described by T ??2=5 scaling across both the normal and anomalous regimes, unlike in the case of S2. As a function of density, the Se(rho) curves shows only a single maximum while the S2(rho) curves show both a maximum and a minimum. These differences in the behaviour of S2 and Se are due to the fact that the residual multiparticle entropy, delta(S) = Se - S2, shows a strong negative correlation with tetrahedral order in the anomalous regime.

  12. Radar based remote sensing of cloud liquid water—application of various techniques—a case study

    NASA Astrophysics Data System (ADS)

    Meywerk, J.; Quante, M.; Sievers, O.

    2005-05-01

    During the BALTEX BRIDGE Campaign (BBC) of CLIWA-NET, conducted at Cabauw, The Netherlands, from 1 August through 31 September 2001, cloud radar parameters like reflectivity, linear depolarization ratio and Doppler velocities have been observed using a 95 GHz cloud radar. These observations along with other remotely sensed parameters from the ground, have been used to derive the liquid water content of clouds which is one of the most important parameters to be known when the radiative transfer of clouds needs to be calculated. Simultaneously a multi-channel passive microwave radiometer and a lidar ceilometer have been operated close to the radar. While drizzle could be ruled out to have a significant impact on the return signal, corrections due to atmospheric absorption (gaseous) and attenuation due to clouds (mainly loss of signal due to absorption) had to be applied to the radar data. The corrections will be discussed in detail and have been applied to the radar reflectivity profiles before estimating cloud liquid water profiles. After the liquid water content profile has been calculated (for a fixed integrated liquid water path) the maximum in liquid water content of the cloud increased by about 14% and shifted upward within the cloud. The applied corrections bring the liquid water profile closer to adiabatic in the middle and upper part of the cloud. Examples of time series of corrected vertical profiles and average profiles are shown and are discussed. The ground based remotely sensed liquid water profiles show, on average, excellent agreement with simultaneously in situ measured liquid water content from aircraft measurements.

  13. Dynamic hydrocarbon separation in high-temperature, high-pressure, liquid n-alkane water vapor systems by steam distillation

    E-print Network

    Vlierboom, Casper-Maarten

    1987-01-01

    DYNAMIC HYDROCARBON SEPARA1'ION IN HIGH-TEMPERATURE, HIGH-PRESSURE, LIQUID N-ALKANE ? WATER ? VAPOR SYSTEMS BY STEAM DISTILLATION A Thesis by CASPER-MAARTEN VLIERBOOM Submitted to the Graduate College of Texas AGM University in partial... fulfillment of the requirements for the degree of MASTER OF SCIENCE December 1987 Major Subject: Petroleum Engineering DYNAMIC HYDROCARBON SEPARATION IN HIGH TEMPERATURE HIGH PRESSURE, LIQUID N-ALKANE ? WATER ? VAPOR SYSTEMS BY STEAM DISTILLATION A...

  14. Similarity of coupled heat and mass transfer between air–water and air–liquid desiccant direct-contact systems

    Microsoft Academic Search

    Xiao-Hua Liu; Zhen Li; Yi Jiang

    2009-01-01

    Packed-bed heat and mass transfer devices are widely used in air-conditioning systems, such as cooling tower, evaporative cooler of air–water direct-contact devices, dehumidifier and regenerator of air–liquid desiccant direct-contact devices. Similarities of heat and mass transfer characteristics between air–water and air–liquid desiccant devices are considered and investigated in this paper. Same reachable handling region of outlet air can be obtained

  15. Molecular origin of the difference in the HOH bend of the IR spectra between liquid water and ice

    SciTech Connect

    Imoto, Sho; Xantheas, Sotiris S.; Saito, Shinji

    2013-02-07

    The intensity of the HOH bend in the IR spectrum of ice is significantly smaller than the corresponding one in liquid water. This difference in the IR intensities of the HOH bend in the two systems is investigated using MD simulations with the flexible, polarizable, ab-initio based TTM3-F model for water, a potential that correctly reproduces the experimentally observed increase of the HOH bend in liquid water and ice from the water monomer value. We have identified two factors that are responsible for the difference in the intensity of the HOH bend in liquid water and ice: (i) the decrease of the intensity of the HOH bend in ice caused by the strong anti-correlation between the permanent dipole moment of a molecule and the induced dipole moment of a neighboring hydrogen bond acceptor molecule and (ii) the weakening of this anti-correlation by the disordered hydrogen bond network in liquid water. The presence of the anti-correlation in ice is further confirmed by ab initio electronic structure calculations of water pentamer clusters extracted from the trajectories of the MD simulations for ice and liquid water.

  16. Properties of liquid water from a systematic refinement of a high-rank multipolar electrostatic potential.

    PubMed

    Shaik, Majeed S; Liem, Steven Y; Popelier, Paul L A

    2010-05-01

    We build on previous work [S. Y. Liem and P. L. A. Popelier, J. Chem. Theory Comput. 4, 353 (2008)], where for the first time, a high-rank multipolar electrostatic potential was used in molecular dynamics simulations of liquid water at a wide range of pressures and temperatures, and using a multipolar Ewald summation. Water is represented as a rigid body, with atomic multipole moments defined by quantum chemical topology partitioning its gas phase electron density. The effect of the level of theory on the local structure of liquid water is systematically addressed. Values for Lennard-Jones (LJ) parameters are optimized, for both oxygen and hydrogen atoms, against bulk properties. The best LJ parameters were then used in a set of simulations at 30 different temperatures (1 atm) and another set at 11 different pressures (at 298 K). Inclusion of the hydrogen LJ parameters significantly increases the self-diffusion coefficient. The behavior of bulk properties was studied and the local water structure analyzed by both radial and spatial distribution functions. Comparisons with familiar point-charge potentials, such as TIP3P, TIP4P, TIP5P, and simple point charge, show the benefits of multipole moments. PMID:20459171

  17. Aircraft millimeter-wave retrievals of cloud liquid water path during VOCALS-REx

    NASA Astrophysics Data System (ADS)

    Zuidema, P.; Leon, D.; Pazmany, A.; Cadeddu, M.

    2011-07-01

    A unique feature of the VOCALS Regional Experiment was the inclusion of a small, inexpensive, zenith-pointing millimeter-wavelength passive radiometer on the fourteen research flights of the NCAR C-130 plane, the G-band (183 GHz) Vapor Radiometer (GVR). The radiometer permitted above-cloud retrievals of water vapor path, and cloud liquid water path retrievals at 1 Hz resolution for the sub-cloud and cloudbase aircraft legs when combined with in-situ thermodynamic data. Retrieved free-tropospheric (above-cloud) water vapor paths possessed a strong longitudinal gradient, with off-shore values of one to two mm and near-coastal values reaching one cm. Overall the free-troposphere was drier than that sampled by radiosondes in previous years. For the sub-cloud legs, the absolute (between-leg) and relative (within-leg) LWP accuracy was estimated at 20-25 and 5 g m-2 respectively for well-mixed conditions, with greater uncertainties expected for decoupled conditions. Clouds with retrieved liquid water paths between 200 to 400 g m-2 matched adiabatic values derived from coincident cloud thickness measurements exceedingly well. A significant contribution of the GVR dataset is the extended information on the thin clouds, with 66 % of the retrieved LWPs < 100 g m-2. Nevertheless, the overall LWP cloud fraction of 62 % was less than the 92 % cloud cover determined by airborne cloud lidar and radar combined.

  18. Experimental evidence for the formation of liquid saline water on Mars

    PubMed Central

    Fischer, Erik; Martínez, Germán M; Elliott, Harvey M; Rennó, Nilton O

    2014-01-01

    Evidence for deliquescence of perchlorate salts has been discovered in the Martian polar region while possible brine flows have been observed in the equatorial region. This appears to contradict the idea that bulk deliquescence is too slow to occur during the short periods of the Martian diurnal cycle during which conditions are favorable for it. We conduct laboratory experiments to study the formation of liquid brines at Mars environmental conditions. We find that when water vapor is the only source of water, bulk deliquescence of perchlorates is not rapid enough to occur during the short periods of the day during which the temperature is above the salts' eutectic value, and the humidity is above the salts' deliquescence value. However, when the salts are in contact with water ice, liquid brine forms in minutes, indicating that aqueous solutions could form temporarily where salts and ice coexist on the Martian surface and in the shallow subsurface. Key Points The formation of brines at Martian conditions was studied experimentally Bulk deliquescence from water vapor is too slow to occur diurnally on Mars Brines form in minutes when salts are placed in direct contact with ice PMID:25821267

  19. Water Reactivity in the Liquid and Supercritical CO2 Phase: Has Half the Story Been Neglected?

    SciTech Connect

    McGrail, B. Peter; Schaef, Herbert T.; Glezakou, Vassiliki Alexandra; Dang, Liem X.; Owen, Antionette T.

    2009-02-01

    Aqueous-phase mediated chemical reactions with dissolved CO2 have long been considered the principal if not only reactive process supporting mineralization reactions with basalt and other reactive reservoir rocks and caprocks in deep geologic sequestration systems. This is not surprising given the quite high solubility of CO2 in the aqueous phase and ample evidence from natural systems of the reactivity of CO2-charged waters with a variety of silicate minerals. In contrast, comparatively scant attention has been directed at reactivity of water solvated in liquid and supercritical CO2, with the exception of interest in the impacts of water in CO2 on the corrosion of pipeline steels. The results presented in this paper show that the most interesting and important aspects of water reactivity with metal and oxide surfaces of interest in geologic sequestration systems actually occurs in the liquid or supercritical CO2 phase. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  20. Water-Exclusion and Liquid-Structure Forces in Implicit Solvation

    PubMed Central

    Hassan, Sergio A.; Steinbach, Peter J.

    2012-01-01

    A continuum model of solvation is proposed to describe: i) long-range electrostatic effects of water exclusion resulting from incomplete and anisotropic hydration in crowded environments, and ii) short-range effects of liquid-structure forces on the hydrogen-bond interactions at solute/water interfaces. The model is an extension of the phenomenological screened Coulomb potential-based implicit model of solvation. The developments reported here allow a more realistic representation of highly crowded and spatially heterogeneous environments, such as those in the interior of a living cell. Only the solvent is treated as a continuum medium. It is shown that the electrostatic effects of long-range water-exclusion can strongly affect protein-protein binding energies and are then related to the thermodynamics of binding. Hydrogen-bond interactions modulated by the liquid structure at interfaces are calibrated based on systematic calculations of potentials of mean force in explicit water. The electrostatic component of the model is parameterized for monovalent, divalent and trivalent ions. The conceptual and practical aspects of the model are discussed based on simulations of protein complexation and peptide folding. The current implementation is ~1.5 times slower than the gas-phase force field and exhibits good parallel performance. PMID:22007697

  1. Method and apparatus for electrokinetic co-generation of hydrogen and electric power from liquid water microjets

    DOEpatents

    Saykally, Richard J; Duffin, Andrew M; Wilson, Kevin R; Rude, Bruce S

    2013-02-12

    A method and apparatus for producing both a gas and electrical power from a flowing liquid, the method comprising: a) providing a source liquid containing ions that when neutralized form a gas; b) providing a velocity to the source liquid relative to a solid material to form a charged liquid microjet, which subsequently breaks up into a droplet spay, the solid material forming a liquid-solid interface; and c) supplying electrons to the charged liquid by contacting a spray stream of the charged liquid with an electron source. In one embodiment, where the liquid is water, hydrogen gas is formed and a streaming current is generated. The apparatus comprises a source of pressurized liquid, a microjet nozzle, a conduit for delivering said liquid to said microjet nozzle, and a conductive metal target sufficiently spaced from said nozzle such that the jet stream produced by said microjet is discontinuous at said target. In one arrangement, with the metal nozzle and target electrically connected to ground, both hydrogen gas and a streaming current are generated at the target as it is impinged by the streaming, liquid spray microjet.

  2. Comparisons of Calculations with PARTRAC and NOREC: Transport of Electrons in Liquid Water

    PubMed Central

    Dingfelder, M.; Ritchie, R. H.; Turner, J. E.; Friedland, W.; Paretzke, H. G.; Hamm, R. N.

    2013-01-01

    Monte Carlo computer models that simulate the detailed, event-by-event transport of electrons in liquid water are valuable for the interpretation and understanding of findings in radiation chemistry and radiation biology. Because of the paucity of experimental data, such efforts must rely on theoretical principles and considerable judgment in their development. Experimental verification of numerical input is possible to only a limited extent. Indirect support for model validity can be gained from a comparison of details between two independently developed computer codes as well as the observable results calculated with them. In this study, we compare the transport properties of electrons in liquid water using two such models, PARTRAC and NOREC. Both use interaction cross sections based on plane-wave Born approximations and a numerical parameterization of the complex dielectric response function for the liquid. The models are described and compared, and their similarities and differences are highlighted. Recent developments in the field are discussed and taken into account. The calculated stopping powers, W values, and slab penetration characteristics are in good agreement with one another and with other independent sources. PMID:18439039

  3. Sound speed in liquid-gas mixtures: Water-air and water-steam

    Microsoft Academic Search

    Susan Werner Kieffer

    1977-01-01

    The sound speed of a two-phase fluid, such as a magma-gas, water-air, or water-steam mixture, is dramatically different from the sound speed of either pure component. In numerous geologic situations the sound speed of such two-phase systems may be of interest: in the search for magma reservoirs, in seismic exploration of geothermal areas, in prediction of P wave velocity decreases

  4. Kerogen pyrolysis in the presence and absence of water and minerals: Amounts and compositions of bitumen and liquid hydrocarbons

    Microsoft Academic Search

    Changchun Pan; Ansong Geng; Ningning Zhong; Jingzhong Liu; Linping Yu

    2009-01-01

    The confined pyrolysis experiments of Kukersite kerogen in the presence and absence of minerals and water revealed the effects of mineral acidity and water\\/OC ratio on the conversion of kerogen into petroleum. The amount of bitumen and liquid hydrocarbons demonstrate that organic maturation rate increase with mineral acidity even in the presence of a large amount of water (water\\/OC 7–10).

  5. The effect of an external electric field on the structure of liquid water using molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Jung, Dong Hyun; Yang, Jung Hwan; Jhon, Mu Shik

    1999-06-01

    Using molecular dynamics simulations with the rigid TIP4P water model, we have analyzed the structural change of liquid water induced by an external electric field. The temperature was controlled with a Nosé-Hoover thermostat. In this paper, we report the acquisition of liquid water with the enhanced structural regularity by applying an electric field. From the simulations under various strengths of the electric field, we can see that the threshold for the significant structural change is thought to be between 0.2 and 0.15 V/Å. When the number of six-membered rings is increased by the external electric field, so that water is forced to have structural regularity, we calculate the diffusion coefficients and discover that water we make in the simulations is not solid but still liquid under the electric field.

  6. A novel mechanism for the extraction of metals from water to ionic liquids.

    PubMed

    Janssen, Camiel H C; Sánchez, Antonio; Witkamp, Geert-Jan; Kobrak, Mark N

    2013-11-11

    We present a novel mechanism for the extraction of metals from aqueous phases to room-temperature ionic liquids (ILs) by use of a high-temperature salt as an extraction agent. The mechanism capitalizes on the fact that charged metal complexes are soluble in ILs; this allows for extraction of charged complexes rather than the neutral species, which are formed by conventional approaches. The use of a well-chosen extraction agent also suppresses the competing ion-exchange mechanism, thus preventing degradation of the ionic liquid. The approach permits the use of excess extractant to drive the recovery of metals in high yield. This work presents both a thermodynamic framework for understanding the approach and experimental verification of the process in a range of different ILs. The method has great potential value in the recovery of metals, water purification and nuclear materials processing. PMID:24590618

  7. Salting-out assisted liquid-liquid extraction combined with capillary HPLC for the determination of sulfonylurea herbicides in environmental water and banana juice samples.

    PubMed

    Gure, Abera; Lara, Francisco J; Moreno-González, David; Megersa, Negussie; del Olmo-Iruela, Monsalud; García-Campaña, Ana M

    2014-09-01

    A salting-out assisted liquid-liquid extraction (SALLE) combined with capillary high performance liquid chromatography with diode array detector (capillary HPLC-DAD) was proposed for extraction and determination of residues of nine sulfonylurea herbicides (SUHs) in environmental water and banana juice samples. Various parameters affecting the extraction process such as the type and volume of the organic solvent, sample volume, type and amount of salt, pH of the sample and vortex time were optimized. Under optimum conditions, matrix matched calibration curves were established using river water and banana juice samples. Good linear relationships as well as low limits of detection, LODs (0.4-1.3 and 3-13 µg/L) and quantification, LOQs (1.3-4.3 and 10-43 µg/L) were obtained in water and banana juice samples, respectively. The precision (intra- and inter-day) of the peak areas expressed as relative standard deviations (%, RSD), at two concentration levels were below 10 % in both matrices. Recoveries obtained from spiked environmental waters (river water and groundwater) and banana juice samples, at two concentration levels, ranged from 72 to 115%. The results of the analysis revealed that the proposed SALLE-capillary HPLC method is simple, rapid, cheap and environmentally friendly, being successfully applicable for the determination of SUH residues in waters and banana juices. PMID:24913856

  8. Experimental and theoretical investigation of water removal from DMAZ liquid fuel by an adsorption process

    NASA Astrophysics Data System (ADS)

    Ghanbari, Shahram; Vaferi, Behzad

    2015-07-01

    2-dimethylaminoethylazide (DMAZ) is a new liquid fuel that has made significant progress in bio/mono propellant rocket engines in recent years. Purification of DMAZ fuel by reducing its water content using various adsorbents including zeolites, calcium chloride and nano-particles is experimentally and theoretically investigated. The highest water adsorption of 92.6% from the DMAZ solution is obtained by the CaCl2 adsorbent within 10 min. Four different artificial neural networks (ANN) are examined to correlate an extent of removed water from the DMAZ solution to its affecting parameters. The performed regression analysis indicated that water initial concentration (WIC), adsorbent types, solution temperature, contact time and adsorbent dosage are the most important affecting variables for water sorption from the DMAZ solution. The accomplished statistical analysis demonstrated a multi-layer perceptron neural network (MLPNN) with seven hidden neurons and is the most accurate approach for modeling the considered task. The obtained results showed that the proposed MLPNN model could be successfully employed for accurate prediction of an amount of water removal from the DMAZ fuel solution by the adsorption process.

  9. Method for reprocessing and recycling of aqueous rinsing liquids from car painting with water-based paints in automobile industry

    NASA Astrophysics Data System (ADS)

    Baumann, Walter; Dinglreiter, Udo

    2011-08-01

    In the paint processes of modern car plants the paint to be applied on the car bodies change after every few numbers. In order to avoid intermixtures of different lacquers the application systems has to be cleaned before every change by means of a rinsing liquid. Water based lacquers require water based cleaning agents. For these rinsing waters a new recycling process based on an evaporation process, a fractionated condensation and an after treatment of the condensates is described. The compatibility of the recycled system for lacquers is investigated. After a test with ten recycling loops no accumulation of harmful substances occurs. In comparison to original agents the recycled rinsing liquids show comparable or better cleaning abilities. The comparison of the energy consumption and the disposal of CO2 and of volatile organic compounds between the application of fresh rinsing liquid with disposal after usage and recycled rinsing liquid show major advantages of the recycling process.

  10. X-ray emission spectroscopy of bulk liquid water in "no-man's land".

    PubMed

    Sellberg, Jonas A; McQueen, Trevor A; Laksmono, Hartawan; Schreck, Simon; Beye, Martin; DePonte, Daniel P; Kennedy, Brian; Nordlund, Dennis; Sierra, Raymond G; Schlesinger, Daniel; Tokushima, Takashi; Zhovtobriukh, Iurii; Eckert, Sebastian; Segtnan, Vegard H; Ogasawara, Hirohito; Kubicek, Katharina; Techert, Simone; Bergmann, Uwe; Dakovski, Georgi L; Schlotter, William F; Harada, Yoshihisa; Bogan, Michael J; Wernet, Philippe; Föhlisch, Alexander; Pettersson, Lars G M; Nilsson, Anders

    2015-01-28

    The structure of bulk liquid water was recently probed by x-ray scattering below the temperature limit of homogeneous nucleation (TH) of ?232 K [J. A. Sellberg et al., Nature 510, 381-384 (2014)]. Here, we utilize a similar approach to study the structure of bulk liquid water below TH using oxygen K-edge x-ray emission spectroscopy (XES). Based on previous XES experiments [T. Tokushima et al., Chem. Phys. Lett. 460, 387-400 (2008)] at higher temperatures, we expected the ratio of the 1b1' and 1b1? peaks associated with the lone-pair orbital in water to change strongly upon deep supercooling as the coordination of the hydrogen (H-) bonds becomes tetrahedral. In contrast, we observed only minor changes in the lone-pair spectral region, challenging an interpretation in terms of two interconverting species. A number of alternative hypotheses to explain the results are put forward and discussed. Although the spectra can be explained by various contributions from these hypotheses, we here emphasize the interpretation that the line shape of each component changes dramatically when approaching lower temperatures, where, in particular, the peak assigned to the proposed disordered component would become more symmetrical as vibrational interference becomes more important. PMID:25637993

  11. New Technique for Retrieving Liquid Water Path over Land using Satellite Microwave Observations

    SciTech Connect

    Deeter, M.N.; Vivekanandan, J.

    2005-03-18

    We present a new methodology for retrieving liquid water path over land using satellite microwave observations. As input, the technique exploits the Advanced Microwave Scanning Radiometer for earth observing plan (EOS) (AMSR-E) polarization-difference signals at 37 and 89 GHz. Regression analysis performed on model simulations indicates that over variable atmospheric and surface conditions the polarization-difference signals can be simply parameterized in terms of the surface emissivity polarization difference ({Delta}{var_epsilon}), surface temperature, liquid water path (LWP), and precipitable water vapor (PWV). The resulting polarization-difference parameterization (PDP) enables fast and direct (noniterative) retrievals of LWP with minimal requirements for ancillary data. Single- and dual-channel retrieval methods are described and demonstrated. Data gridding is used to reduce the effects of instrumental noise. The methodology is demonstrated using AMSR-E observations over the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site during a six day period in November and December, 2003. Single- and dual-channel retrieval results mostly agree with ground-based microwave retrievals of LWP to within approximately 0.04 mm.

  12. X-ray emission spectroscopy of bulk liquid water in "no-man's land"

    NASA Astrophysics Data System (ADS)

    Sellberg, Jonas A.; McQueen, Trevor A.; Laksmono, Hartawan; Schreck, Simon; Beye, Martin; DePonte, Daniel P.; Kennedy, Brian; Nordlund, Dennis; Sierra, Raymond G.; Schlesinger, Daniel; Tokushima, Takashi; Zhovtobriukh, Iurii; Eckert, Sebastian; Segtnan, Vegard H.; Ogasawara, Hirohito; Kubicek, Katharina; Techert, Simone; Bergmann, Uwe; Dakovski, Georgi L.; Schlotter, William F.; Harada, Yoshihisa; Bogan, Michael J.; Wernet, Philippe; Föhlisch, Alexander; Pettersson, Lars G. M.; Nilsson, Anders

    2015-01-01

    The structure of bulk liquid water was recently probed by x-ray scattering below the temperature limit of homogeneous nucleation (TH) of ˜232 K [J. A. Sellberg et al., Nature 510, 381-384 (2014)]. Here, we utilize a similar approach to study the structure of bulk liquid water below TH using oxygen K-edge x-ray emission spectroscopy (XES). Based on previous XES experiments [T. Tokushima et al., Chem. Phys. Lett. 460, 387-400 (2008)] at higher temperatures, we expected the ratio of the 1b1' and 1b1? peaks associated with the lone-pair orbital in water to change strongly upon deep supercooling as the coordination of the hydrogen (H-) bonds becomes tetrahedral. In contrast, we observed only minor changes in the lone-pair spectral region, challenging an interpretation in terms of two interconverting species. A number of alternative hypotheses to explain the results are put forward and discussed. Although the spectra can be explained by various contributions from these hypotheses, we here emphasize the interpretation that the line shape of each component changes dramatically when approaching lower temperatures, where, in particular, the peak assigned to the proposed disordered component would become more symmetrical as vibrational interference becomes more important.

  13. Measuring Snow Liquid Water Content with Low-Cost GPS Receivers

    PubMed Central

    Koch, Franziska; Prasch, Monika; Schmid, Lino; Schweizer, Jürg; Mauser, Wolfram

    2014-01-01

    The amount of liquid water in snow characterizes the wetness of a snowpack. Its temporal evolution plays an important role for wet-snow avalanche prediction, as well as the onset of meltwater release and water availability estimations within a river basin. However, it is still a challenge and a not yet satisfyingly solved issue to measure the liquid water content (LWC) in snow with conventional in situ and remote sensing techniques. We propose a new approach based on the attenuation of microwave radiation in the L-band emitted by the satellites of the Global Positioning System (GPS). For this purpose, we performed a continuous low-cost GPS measurement experiment at the Weissfluhjoch test site in Switzerland, during the snow melt period in 2013. As a measure of signal strength, we analyzed the carrier-to-noise power density ratio (C/N0) and developed a procedure to normalize these data. The bulk volumetric LWC was determined based on assumptions for attenuation, reflection and refraction of radiation in wet snow. The onset of melt, as well as daily melt-freeze cycles were clearly detected. The temporal evolution of the LWC was closely related to the meteorological and snow-hydrological data. Due to its non-destructive setup, its cost-efficiency and global availability, this approach has the potential to be implemented in distributed sensor networks for avalanche prediction or basin-wide melt onset measurements. PMID:25384007

  14. Liquid water on Mars - An energy balance climate model for CO2/H2O atmospheres

    NASA Technical Reports Server (NTRS)

    Hoffert, M. I.; Callegari, A. J.; Hsieh, C. T.; Ziegler, W.

    1981-01-01

    A simple climatic model is developed for a Mars atmosphere containing CO2 and sufficient liquid water to account for the observed hydrologic surface features by the existence of a CO2/H2O greenhouse effect. A latitude-resolved climate model originally devised for terrestrial climate studies is applied to Martian conditions, with the difference between absorbed solar flux and emitted long-wave flux to space per unit area attributed to the divergence of the meridional heat flux and the poleward heat flux assumed to equal the atmospheric eddy heat flux. The global mean energy balance is calculated as a function of atmospheric pressure to assess the CO2/H2O greenhouse liquid water hypothesis, and some latitude-resolved cases are examined in detail in order to clarify the role of atmospheric transport and temperature-albedo feedback. It is shown that the combined CO2/H2O greenhouse at plausible early surface pressures may account for climates hot enough to support a hydrological cycle and running water at present-day insolation and visible albedo levels.

  15. Characterization of Super-Cooled Liquid Water Clouds Using the Research Scanning Polarimeter Measurements

    NASA Astrophysics Data System (ADS)

    Alexandrov, M. D.; Cairns, B.; van Diedenhoven, B.; Wasilewski, A. P.; Ackerman, A. S.

    2014-12-01

    Super-cooled liquid water (SCW) clouds, where liquid droplets exist at temperatures below 0oC, impact both the radiative budget and the development of precipitation. They also present an aviation hazard due to their role in aircraft icing. The two recent NASA's field campaigns POlarimeter Definition EXperiment (PODEX, based in Palmdale, California, January - February 2013) and Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS, based in Houston, Texas in August - September 2013) provided a unique opportunity to observe SCW clouds from the high-altitude airborne platform of NASA's ER-2 aircraft. We present an analysis of the measurements made by the Research Scanning Polarimeter (RSP) during these experiments. This instrument measures both polarized and total reflectance in 9 spectral channels with central wavelengths of 410, 470, 555, 670, 865, 960, 1590, 1880 and 2250 nm. The RSP is a scanning sensor taking samples at 0.8o intervals within 60o from nadir in both forward and backward directions. This unique high angular resolution allows for characterization of liquid water droplet size using the rainbow structure observed in the polarized reflectances in the scattering angle range between 135o and 165o for every pixel independently. Simple parametric fitting algorithms applied to the polarized reflectance provide retrievals of the droplet effective radius and variance assuming a prescribed size distribution shape (gamma distribution). In addition to this, we use a non-parametric method, Rainbow Fourier Transform (RFT), which allows us to retrieve the droplet size distribution itself. The latter is important in the case of SCW clouds, which often have complex spatial and microphysical structure. For example the measurements made on 22 September 2013 during SEAC4RS indicate a cloud that alternates between being in glaciated and liquid phases, with super-cooled liquid drops at altitudes as high as 10 km, which correspond to temperatures close to the homogeneous freezing temperature of pure water drops (about -38oC). The multi-modal droplet size distributions retrieved from RSP data in this case are consistent with the multi-layer cloud structure observed by correlative Cloud Profiling Lidar measurements.

  16. Photoinduced Four-State Three-Step Ordering Transformation of Photochromic Terthiophene at a Liquid/Solid Interface Based on Two Principles: Photochromism and Polymorphism.

    PubMed

    Yokoyama, Soichi; Hirose, Takashi; Matsuda, Kenji

    2015-06-16

    We have investigated photoinduced ordering transformation of a photochromic terthiophene derivative by scanning tunneling microscopy (STM) at the trichlorobenzene (TCB)/highly oriented pyrolytic graphite (HOPG) interface. The open-ring and annulated isomers of the terthiophene formed two-dimensional molecular orderings with different patterns while the closed-ring isomer did not form any ordering. The ordering of the open-ring isomer exhibited polymorphism depending on the concentration of supernatant solution. Upon UV light irradiation to a solution of the open-ring isomer or the closed-ring isomer, ordering composed of the annulated isomer was irreversibly formed. Upon visible light irradiation or thermal stimulus to the closed-ring isomer, the two kinds of polymorph composed of the open-ring isomer were formed due to the polymorphism. By controlling photochromism and polymorphism among four states made of three photochemical isomers, four-state three-step transformation was achieved by in situ photoirradiation from a solution of the closed-ring isomer (no ordering) into the ordering composed of the open-ring isomer (ordering ? and ?) followed by the orderings composed of the annulated isomer (ordering ?). PMID:26005903

  17. Determination of precipitable water and cloud liquid water over oceans from the NOAA 15 advanced microwave

    E-print Network

    Haak, Hein

    band and five channels around the 183 GHz water vapor line. In order to improve the sou (CLW) over oceans using the AMSU measurements at 23.8 and 31.4 GHz. Extensive comparisons are made, where one is a dual-frequency radiometer operating at 23.8 and 31.4 GHz. This dual-frequency radiometer

  18. Thermal and photochemical properties of 4?-hydroxyflavylium in water–ionic liquid biphasic systems

    Microsoft Academic Search

    Damián Fernandez; A. Jorge Parola; Lu??s C. Branco; Carlos. A. M. Afonso; Fernando Pina

    2004-01-01

    The multistate\\/multifunctional properties of 4?-hydroxyflavylium in a water\\/1-n-butyl-3-methyl-imidazolium hexafluorophosphate ([bmim][PF6]) biphasic system are described. The kinetics and thermodynamics of this flavylium salt have been fully characterised in aqueous solutions and compared to those obtained in [bmim][PF6]. The trans-chalcone is thermally more stable in the ionic liquid but shows efficient photoisomerisation to the cis-chalcone, allowing to define write–read–erase cycles in this

  19. Onset of ice VII phase of liquid water: role of filamentation in stimulated Raman scattering.

    PubMed

    Rakesh Kumar, V; Prem Kiran, P

    2015-06-15

    Energy dependent evolution of Stokes and anti-Stokes lines of ice VII via forward stimulated Raman scattering (FSRS) during propagation of a 30 ps laser pulse through liquid water, confirming structural change over GPa pressure range, is studied. Self-focusing of the intense laser pulses is observed to ionize the medium generating free electrons that dominate the evolution of SRS signals. The confinement of plasma-generated free electrons by filamentation is observed to enhance the signature Raman modes of ice VII by reducing the SRS threshold. PMID:26076266

  20. Lyotropic chromonic liquid crystal semiconductors for water-solution processable organic electronics

    NASA Astrophysics Data System (ADS)

    Nazarenko, V. G.; Boiko, O. P.; Anisimov, M. I.; Kadashchuk, A. K.; Nastishin, Yu. A.; Golovin, A. B.; Lavrentovich, O. D.

    2010-12-01

    We propose lyotropic chromonic liquid crystals (LCLCs) as a distinct class of materials for organic electronics. In water, the chromonic molecules stack on top of each other into elongated aggregates that form orientationally ordered phases. The aligned aggregated structure is preserved when the material is deposited onto a substrate and dried. The dried LCLC films show a strongly anisotropic electric conductivity of semiconductor type. The field-effect carrier mobility measured along the molecular aggregates in unoptimized films of LCLC V20 is 0.03 cm2 V-1 s-1. Easy processibility, low cost, and high mobility demonstrate the potential of LCLCs for microelectronic applications.

  1. Room temperature compressibility and diffusivity of liquid water from first principles

    NASA Astrophysics Data System (ADS)

    Corsetti, Fabiano; Artacho, Emilio; Soler, José M.; Alexandre, S. S.; Fernández-Serra, M.-V.

    2013-11-01

    The isothermal compressibility of water is essential to understand its anomalous properties. We compute it by ab initio molecular dynamics simulations of 200 molecules at five densities, using two different van der Waals density functionals. While both functionals predict compressibilities within ˜30% of experiment, only one of them accurately reproduces, within the uncertainty of the simulation, the density dependence of the self-diffusion coefficient in the anomalous region. The discrepancies between the two functionals are explained in terms of the low- and high-density structures of the liquid.

  2. Room temperature compressibility and diffusivity of liquid water from first principles.

    PubMed

    Corsetti, Fabiano; Artacho, Emilio; Soler, José M; Alexandre, S S; Fernández-Serra, M-V

    2013-11-21

    The isothermal compressibility of water is essential to understand its anomalous properties. We compute it by ab initio molecular dynamics simulations of 200 molecules at five densities, using two different van der Waals density functionals. While both functionals predict compressibilities within ~30% of experiment, only one of them accurately reproduces, within the uncertainty of the simulation, the density dependence of the self-diffusion coefficient in the anomalous region. The discrepancies between the two functionals are explained in terms of the low- and high-density structures of the liquid. PMID:24320334

  3. Stimulated Raman scattering from ice-VIII by shock-induced compression in liquid water

    NASA Astrophysics Data System (ADS)

    Men, Zhiwei; Li, Zuowei; Zhou, Mi; Lu, Guohui; Zou, Bo; Li, Zhanlong; Sun, Chenglin

    2012-03-01

    Stimulated Raman scattering (SRS) from ice-VIII was investigated using shock-induced compression (SIC) generated by laser-induced breakdown in liquid water. Three backward SRS peaks of OH stretching vibrations and one backward SRS characteristic peak of lattice translation were observed. The SRS spectra indicated that the ice-VIII structure is formed by SIC, as the trajectory of the SIC passes through the stable pressure-temperature range of ice-VIII. The static electric field generated by electron jets protects proton-ordered structure. The laser-induced shock wave mechanism is also discussed.

  4. Dynamics of Soft Nanomaterials Captured by Transmission Electron Microscopy in Liquid Water

    PubMed Central

    Proetto, Maria T.; Rush, Anthony M.; Chien, Miao-Ping; Baeza, Patricia Abellan; Patterson, Joseph P.; Thompson, Matthew P.; Olson, Norman H.; Moore, Curtis E.; Rheingold, Arnold L.; Andolina, Christopher; Millstone, Jill; Howell, Stephen B.; Browning, Nigel D.; Evans, James E.; Gianneschi, Nathan C.

    2014-01-01

    In this paper we present in situ transmission electron microscopy (TEM) of synthetic polymeric nanoparticles with emphasis on capturing motion in a solvated, aqueous state. The nanoparticles studied were obtained from the direct polymerization of a Pt(II)-containing monomer. The resulting structures provided sufficient contrast for facile imaging in situ. We contend that this technique will quickly become essential in the characterization of analogous systems, especially where dynamics are of interest in the solvated state. We describe the preparation of the synthetic micellar nanoparticles together with their characterization and motion in liquid water with comparison to conventional electron microscopy analyses. PMID:24422495

  5. Reaction of water vapour with a clean liquid uranium surface. Revised 1

    SciTech Connect

    McLean, W. II; Siekhaus, W.

    1986-01-14

    To study the reaction of water vapour with uranium, we have exposed clean liquid uranium surfaces to H/sub 2/O under UHV conditions. We have measured the surface concentration of oxygen as a function of exposure, and determined the maximum attainable surface oxygen concentration X/sup s//sub O/ as a function of temperature. We have used these measurements to estimate, close to the melting point, the solubility of oxygen (X/sup b//sub O/, < 10/sup -4/) and its surface segregation coefficient ..beta../sup s/(> 10/sup 3/). 11 refs., 5 figs.

  6. Ab-inito liquid water with hybrid functionals and dispersion interactions

    NASA Astrophysics Data System (ADS)

    Li, Zhaofeng; Wu, Xifan; Distasio, Robert, Jr.; Car, Roberto

    2012-02-01

    We report ab-initio molecular dynamics simulations of liquid water using the hybrid PBE0 functional plus self-consistent dispersion forces based on the scheme of Ref.ootnotetextA. Tkatchenko and M. Scheffler, Phys. Rev. Lett. 102, 073005 (2009). Simulations were performed at T=300K and at T=330K to approximately account for nuclear quantum effect on the oxygen-oxygen(O-O) RDF, as suggested by previous path integral simulations. Focusing on O-O RDF, we find that the combined effect of the hybrid functional and of the dispersion interactions significantly improves the agreement of the simulated structure with experiment.

  7. Polarizable interaction potential for water from coupled cluster calculations. II. Applications to dimer spectra, virial coefficients, and simulations of liquid water.

    PubMed

    Bukowski, Robert; Szalewicz, Krzysztof; Groenenboom, Gerrit C; van der Avoird, Ad

    2008-03-01

    The six-dimensional CC-pol interaction potential for the water dimer was used to predict properties of the dimer and of liquid water, in the latter case after being supplemented by a nonadditive potential. All the results were obtained purely from first principles, i.e., without any fitting to experimental data. Calculations of the vibration-rotation-tunneling levels of (H(2)O)(2) and (D(2)O)(2), a very sensitive test of the potential surface, gave results in good agreement with experimental high-resolution spectra. Also the virial coefficients and properties of liquid water agree well with measured values. The present model performs better than published force fields for water in a simultaneous reproduction of experimental data for dimer spectra, virials, and properties of the liquid. PMID:18331100

  8. Polarizable interaction potential for water from coupled cluster calculations. II. Applications to dimer spectra, virial coefficients, and simulations of liquid water

    NASA Astrophysics Data System (ADS)

    Bukowski, Robert; Szalewicz, Krzysztof; Groenenboom, Gerrit C.; van der Avoird, Ad

    2008-03-01

    The six-dimensional CC-pol interaction potential for the water dimer was used to predict properties of the dimer and of liquid water, in the latter case after being supplemented by a nonadditive potential. All the results were obtained purely from first principles, i.e., without any fitting to experimental data. Calculations of the vibration-rotation-tunneling levels of (H2O)2 and (D2O)2, a very sensitive test of the potential surface, gave results in good agreement with experimental high-resolution spectra. Also the virial coefficients and properties of liquid water agree well with measured values. The present model performs better than published force fields for water in a simultaneous reproduction of experimental data for dimer spectra, virials, and properties of the liquid.

  9. Lattice Boltzmann simulation of liquid water transport in microporous and gas diffusion layers of polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Kim, Kwang Nam; Kang, Jung Ho; Lee, Sang Gun; Nam, Jin Hyun; Kim, Charn-Jung

    2015-03-01

    In this study, the lattice Boltzmann method (LBM) is used to investigate liquid water transport in the microporous layer (MPL) and gas diffusion layer (GDL) of polymer electrolyte membrane fuel cells (PEMFCs). Two-phase LB simulations are performed with modeled porous geometries that imitate multi-layer porous transport layers (PTLs) consisting of an MPL and a GDL. The simulation conditions are closely matched to the actual liquid water transport conditions in the PEMFCs. The results indicate that invasion-percolation processes due to strong capillary effects govern liquid water transport in PEMFCs. In addition, LB simulations are conducted by varying the intrusion thickness of the MPL and the surface wettability of the PTL. The results clearly show that the liquid water content can be reduced in the PTL by employing a thicker MPL and/or more hydrophobic surfaces. The steady-state water distribution is observed to occur more rapidly as the MPL becomes thicker or as the solid surfaces become more hydrophobic. Furthermore, several dynamic liquid water transport behaviors are identified from the results and explained in detail.

  10. Theoretical Studies of Solid-Liquid Interfaces: Molecular Interactions at the MgO(001)-Water Interface

    E-print Network

    Truong, Thanh N.

    Theoretical Studies of Solid-Liquid Interfaces: Molecular Interactions at the MgO(001)-Water chemistry are needed. A few quantum mechanical calculations concerning the properties of water and hydroxyl for Theoretical Chemistry, Department of Chemistry, UniVersity of Utah, Salt Lake City, Utah 84112 ReceiVed: March

  11. Collective dynamics of water in the living cell and in bulk liquid. New physical models and biological inferences

    Microsoft Academic Search

    Eugen A. Preoteasa; Marian V. Apostol

    2008-01-01

    In the frame of collective dynamics in water, models built on elementary excitations and long-range electromagnetic interactions in the cell and bulk liquid are presented. Making use of the low effective mass of water coherence domains (CDs), we examined the relevance of simple quantum models to cellular characteristics. A hypothesis of CDs Bose-type condensation, and models of CD in spherical

  12. Spatiotemporal Evolution of Thin Liquid Films during Impact of Water Bubbles on Glass on a Micrometer to Nanometer Scale

    E-print Network

    Chan, Derek Y C

    Spatiotemporal Evolution of Thin Liquid Films during Impact of Water Bubbles on Glass) Collisions between millimeter-size bubbles in water against a glass plate are studied using high-speed video. Bubble trajectory and shape are tracked simultaneously with laser interferometry between the glass

  13. Intermolecular vibrational study in liquid water and ice by using far infrared spectroscopy with synchrotron radiation of MIRRORCLE 20.

    PubMed

    Miura, Nobuhiro; Yamada, Hironari; Moon, Ahsa

    2010-12-01

    Far infrared absorption measurements for distilled water and ice Ih were performed in the frequency range from 20 cm(-1) to 1000 cm(-1) with Fourier Transform Infrared Spectrometer (FTIR) utilizing SR of a portable synchrotron. Four vibrational bands were separated from measured spectra in liquid water. We found that a peak frequency of 40±1 cm(-1) did not depend on the temperature in a range between 10.0°C and 70.0°C; however, any low energy excitation modes were not observed in the ice spectrum. It is concluded that this band is caused by collective vibrations specific to the dynamical structure in liquid water. PMID:20869910

  14. Amphiphile micelle structures in the protic ionic liquid ethylammonium nitrate and water.

    PubMed

    Chen, Zhengfei; Greaves, Tamar L; Caruso, Rachel A; Drummond, Calum J

    2015-01-01

    Micelles formed by amphiphiles in a protic ionic liquid (PIL), ethylammonium nitrate (EAN), were investigated using synchrotron small-angle X-ray scattering and contrasted with those that formed in water. The amphiphiles studied were cationic hexadecyltrimethylammonium chloride (CTAC) and hexadecylpyridinium bromide (HDPB) and nonionic poly(oxyethylene) (10) oleyl ether (Brij 97) and Pluronic ethylene oxide-propylene oxide-ethylene oxide block copolymer (P123). The scattering patterns were analyzed using spherical, core-shell, and cylindrical scattering models. The apparent micelle shape and size of the surfactants and the block copolymer in the PIL have been reported. At low amphiphile concentrations (<10 wt %) spherical micelles were preferentially formed for all the amphiphiles in EAN. The micelles formed by the two cationic amphiphiles in EAN and water were similar, though different scattering models were required predominantly due to the ionic nature of EAN. The two nonionic amphiphiles formed micelles with similar core radii in water and in EAN. However, the micelle shells composed of ethylene oxide groups fitted to a significantly thicker layer in water compared to EAN. At high concentrations (>10 wt %) in EAN and water, there was a preference for cylindrical micelles for CTAC, HDPB, and Brij 97; however, the P123 micelles remained spherical. PMID:25490177

  15. A comparison of classical and quantum analyses of electron localization sites in liquid water

    NASA Astrophysics Data System (ADS)

    Motakabbir, Kazi A.; Schnitker, Jurgen; Rossky, Peter J.

    1992-08-01

    The results of an earlier study [Schnitker, Rossky, and Kenney-Wallace, J. Chem. Phys. 85, 2986 (1986)] in which likely sites for electron localization in pure liquid water were identified and characterized via a physically motivated purely classical analysis are statistically compared to a corresponding fully quantum mechanical treatment of the excess electronic ground state. It is shown that the most energetically favorable localization sites identified by the classical treatment correspond reasonably to the quantum mechanical result both energetically and spatially. It is found that the existence and location of a physically localized ground state can be determined from the classical results if both the minimum of the estimated absolute total electronic energy and the difference between this minimum and the alternative local minima identified within a solvent configuration are considered. Further, the results confirm that the concentration of such effective sites is relatively high in the liquid (˜0.01 M). Hence, the classical approach has merit as a qualitative tool for the analysis of the electronic states supported by the preexisting configurational order in a liquid.

  16. Neutrinoless Double Beta Decay Sensitivity in Water-based Liquid Scintillator Detectors

    NASA Astrophysics Data System (ADS)

    Mastbaum, Andrew; Advanced Scintillator Detector Concept (ASDC) Team

    2015-04-01

    The recent development of Water-based Liquid Scintillators (WbLS) and high-resolution photosensors opens up new possibilities for large-scale detectors with sensitivity to a broad range of interesting physics. In particular, by optimizing the concentration of scintillator in a WbLS, it may be possible to achieve Water Cherenkov-like direction reconstruction with dramatically improved energy resolution. Studies by the ASDC interest group suggest that a single, large WbLS detector in a long-baseline beam could simultaneously achieve good sensitivity to the mass hierarchy; CP violation; several proton decay modes; solar, geo- and supernova neutrinos; and neutrino-less double-beta decay (0 ???). We present here a preliminary study of the 0 ??? sensitivity of such WbLS detectors.

  17. Numerical Simulation of Sodium-Water Reaction Products Transport in Steam Generator of Liquid Metal Fast Breeder Reactor on Small Water\\/Steam Leak

    Microsoft Academic Search

    Riqiang DUAN; Zhou WANG; Xianyong YANG; Rui LUO

    2001-01-01

    The paper presents a three-dimensional model of sodium-water reaction product transport in steam generators with a small water\\/steam leak. The model is used to study the effects of thermodynamic parameters of steam generators of Liquid Metal Fast Breeder Reactor (LMFBR) on the leak response of a small water leak detection system and to optimize the leak detection system design. A

  18. Production and Depletion of Supercooled Liquid Water in a Colorado Winter Storm.

    NASA Astrophysics Data System (ADS)

    Politovich, Marcia K.; Bernstein, Ben C.

    1995-12-01

    During the 1990 Winter Icing and Storms Project (WISP), a shallow cold front passed through northeastern Colorado, followed by a secondary cold front. A broad high pressure area behind the initial front set up a Denver cyclone circulation within a well-mixed boundary layer, which was capped by a stable, nearly saturated layer of air left in place by the initial cold front. As the secondary cold front passed through the WISP domain, these layers of air were lifted. The lifted boundary layer formed only broken cloud, but the lifted moist layer formed a stratiform cloud that contained high liquid water contents. Cloud characteristics were measured in situ with a research aircraft, and remotely by ground-based radars, microwave radiometers, and a lidar ceilometer. Moderate to severe icing conditions were reported by aircraft flying in the area during the event and also affected the flight of the research aircraft through an increase in drag on the airframe. Liquid water was depleted in portions of the lower stratiform cloud as ice crystals, produced in midlevel clouds embedded in westerly flow, fell into the lower cloud, and quickly rimed to form showers of graupel at the ground. After these midlevel clouds passed over the area, liquid production resumed. Supercooled liquid cloud persisted for 36 h as cloud formed within the surface cold air mass behind the secondary cold front as it entered the Denver area and was lifted over the local terrain.The evolution of weather events is discussed using a variety of datasets, including radar, surface mesonet, balloon-borne soundings, research aircraft, satellite imagery, microwave radiometers, and standard National Weather Service observations. By combining information from these varied sources, processes governing the production and depletion of supercooled liquid from the synoptic to the microscale are examined. The storm is also discussed in terms of its potential for causing moderate to severe aircraft icing. The effect of accreted ice on the research aircraft is described, as are implications of the meteorology for detection and forecasting inflight icing.

  19. Probing Properties of Glassy Water and Other Liquids with Site Selective Spectroscopies

    SciTech Connect

    Nhan Chuong Dang

    2005-08-12

    The standard non-photochemical hole burning (NPHB) mechanism, which involves phonon-assisted tunneling in the electronically excited state, was originally proposed to explain the light-induced frequency change of chemically stable molecules in glassy solids at liquid helium temperatures by this research group more than two decades ago. The NPHB mechanism was then further elucidated and the concept of intrinsic to glass configurational relaxation processes as pre-mediating step to the hole burning process was introduced. The latter provided the theoretical basis for NPHB to evolve into a powerful tool probing the dynamics and nature of amorphous media, which aside from ''simple'' inorganic glasses may include also ''complex'' biological systems such as living cells and cancerous/normal tissues. Presented in this dissertation are the experimental and theoretical results of hole burning properties of aluminum phthalocyanine tetrasulphonate (APT) in several different matrices: (1) hyperquenched glassy water (HGW); (2) cubic ice (I{sub c}); and (3) water confined into poly(2-hydroxyethylmethacrylate) (poly-HEMA). In addition, results of photochemical hole burning (PHB) studies obtained for phthalocyanine tetrasulphonate (PcT) in HGW and free base phthalocyanine (Pc) in ortho-dichlorobenzene (DCB) glass are reported. The goal of this dissertation was to provide further evidence supporting the NPHB mechanism and to provide more insight that leads to a better understanding of the kinetic events (dynamics) in glasses, and various dynamical processes of different fluorescent chromorphores in various amorphous solids and the liquid that exist above the glass transition temperature (T{sub g}). The following issues are addressed in detail: (1) time evolution of hole being burned under different conditions and in different hole burning systems; (2) temperature dependent hole profile; and (3) the structure/dynamics of water in confined space, which has been studied, in part because of the importance of non-freezable water in biological systems.

  20. Computational studies of atmospherically-relevant chemical reactions in water clusters and on liquid water and ice surfaces.

    PubMed

    Gerber, R Benny; Varner, Mychel E; Hammerich, Audrey D; Riikonen, Sampsa; Murdachaew, Garold; Shemesh, Dorit; Finlayson-Pitts, Barbara J

    2015-02-17

    CONSPECTUS: Reactions on water and ice surfaces and in other aqueous media are ubiquitous in the atmosphere, but the microscopic mechanisms of most of these processes are as yet unknown. This Account examines recent progress in atomistic simulations of such reactions and the insights provided into mechanisms and interpretation of experiments. Illustrative examples are discussed. The main computational approaches employed are classical trajectory simulations using interaction potentials derived from quantum chemical methods. This comprises both ab initio molecular dynamics (AIMD) and semiempirical molecular dynamics (SEMD), the latter referring to semiempirical quantum chemical methods. Presented examples are as follows: (i) Reaction of the (NO(+))(NO3(-)) ion pair with a water cluster to produce the atmospherically important HONO and HNO3. The simulations show that a cluster with four water molecules describes the reaction. This provides a hydrogen-bonding network supporting the transition state. The reaction is triggered by thermal structural fluctuations, and ultrafast changes in atomic partial charges play a key role. This is an example where a reaction in a small cluster can provide a model for a corresponding bulk process. The results support the proposed mechanism for production of HONO by hydrolysis of NO2 (N2O4). (ii) The reactions of gaseous HCl with N2O4 and N2O5 on liquid water surfaces. Ionization of HCl at the water/air interface is followed by nucleophilic attack of Cl(-) on N2O4 or N2O5. Both reactions proceed by an SN2 mechanism. The products are ClNO and ClNO2, precursors of atmospheric atomic chlorine. Because this mechanism cannot result from a cluster too small for HCl ionization, an extended water film model was simulated. The results explain ClNO formation experiments. Predicted ClNO2 formation is less efficient. (iii) Ionization of acids at ice surfaces. No ionization is found on ideal crystalline surfaces, but the process is efficient on isolated defects where it involves formation of H3O(+)-acid anion contact ion pairs. This behavior is found in simulations of a model of the ice quasi-liquid layer corresponding to large defect concentrations in crystalline ice. The results are in accord with experiments. (iv) Ionization of acids on wet quartz. A monolayer of water on hydroxylated silica is ordered even at room temperature, but the surface lattice constant differs significantly from that of crystalline ice. The ionization processes of HCl and H2SO4 are of high yield and occur in a few picoseconds. The results are in accord with experimental spectroscopy. (v) Photochemical reactions on water and ice. These simulations require excited state quantum chemical methods. The electronic absorption spectrum of methyl hydroperoxide adsorbed on a large ice cluster is strongly blue-shifted relative to the isolated molecule. The measured and calculated adsorption band low-frequency tails are in agreement. A simple model of photodynamics assumes prompt electronic relaxation of the excited peroxide due to the ice surface. SEMD simulations support this, with the important finding that the photochemistry takes place mainly on the ground state. In conclusion, dynamics simulations using quantum chemical potentials are a useful tool in atmospheric chemistry of water media, capable of comparison with experiment. PMID:25647299

  1. Dose Point Kernels in liquid water:1 an intra-comparison between GEANT4-DNA and a variety of Monte Carlo codes2

    E-print Network

    Paris-Sud XI, Université de

    1 Dose Point Kernels in liquid water:1 an intra-comparison between GEANT4-DNA and a variety water, the simulation of electron Dose Point Kernels remains the27 preferential test. In this work: Dose Point Kernel; Geant4-DNA; Monte Carlo codes; liquid water.134 135 136 PACS: 87.53.Bn; 02.70.Ss; 87

  2. Water Flow Performance of a Superscale Model of the Fastrac Liquid Oxygen Pump

    NASA Technical Reports Server (NTRS)

    Skelley, Stephen; Zoladz, Thomas

    1999-01-01

    As part of the National Aeronautics and Space Administration's ongoing effort to lower the cost of access to space, the Marshall Space Flight Center has developed a rocket engine with 60,000 pounds of thrust for use on the Reusable Launch Vehicle technology demonstrator slated for launch in 2000. This gas generator cycle engine, known as the Fastrac engine, uses liquid oxygen and RP-1 for propellants and includes single stage liquid oxygen and RP-1 pumps and a single stage supersonic turbine on a common shaft. The turbopump design effort included the first use and application of new suction capability prediction codes and three-dimensional blade generation codes in an attempt to reduce the turbomachinery design and certification costs typically associated with rocket engine development. To verify the pump's predicted cavitation performance, a water flow test of a superscale model of the Fastrac liquid oxygen pump was conducted to experimentally evaluate the liquid oxygen pump's performance at and around the design point. The water flow test article replicated the flow path of the Fastrac liquid oxygen pump in a 1.582x scale model, including scaled seal clearances for correct leakage flow at a model operating speed of 5000 revolutions per minute. Flow entered the 3-blade axial-flow inducer, transitioned to a shrouded, 6-blade radial impeller, and discharged into a vaneless radial diffuser and collection volute. The test article included approximately 50 total and static pressure measurement locations as well as flush-mounted, high frequency pressure transducers for complete mapping of the pressure environment. The primary objectives of the water flow test were to measure the steady-state and dynamic pressure environment of the liquid oxygen pump versus flow coefficient, suction specific speed, and back face leakage flow rate. Results showed excellent correlation between the predicted and experimentally measured pump head rise at low suction specific speeds. Likewise, only small circumferential variations in steady-state impeller exit and radial diffuser pressure distributions were observed from 80% to 120% of the design flow coefficient, matching the computational predictions and confirming that the integrated design approach has minimized any exit volute-induced distortions. The test article exhibited suction performance trends typically observed in inducer designs with virtually constant head rise with decreasing inlet pressure until complete pump head breakdown. Unfortunately, the net positive suction head at 3% head fall-off occurred far below that predicted at all tested flow coefficients, resulting in a negative net positive suction head margin at the design point in water. Additional testing to map the unsteady pressure environment was conducted and interesting rotating phenomena at the inducer inlet were observed. These rotating phenomena's cell numbers, direction, and speed were correlated with pump operating parameters. The impact of the unsteady phenomena and their corresponding energy losses on the unexpectedly poor pump performance is also discussed.

  3. Water Flow Performance of a Superscale Model of the Fastrac Liquid Oxygen Pump

    NASA Technical Reports Server (NTRS)

    Skelley, Stephen; Zoladz, Thomas

    2001-01-01

    As part of the National Aeronautics and Space Administration's ongoing effort to lower the cost of access to space, the Marshall Space Flight Center has developed a rocket engine with 60,000 pounds of thrust for use on the Reusable Launch Vehicle technology demonstrator slated for launch in 2000. This gas generator cycle engine, known as the Fastrac engine, uses liquid oxygen and RP-1 for propellants and includes single stage liquid oxygen and RP-1 pumps and a single stage supersonic turbine on a common shaft. The turbopump design effort included the first use and application of new suction capability prediction codes and three-dimensional blade generation codes in an attempt to reduce the turbomachinery design and certification costs typically associated with rocket engine development. To verify the pump's predicted cavitation performance, a water flow test of a superscale model of the Fastrac liquid oxygen pump was conducted to experimentally evaluate the liquid oxygen pump's performance at and around the design point. The water flow test article replicated the flow path of the Fastrac liquid oxygen pump in a 1.582x scale model, including scaled seal clearances for correct leakage flow at a model operating speed of 5000 revolutions per minute. Flow entered the 3-blade axial-flow inducer, transitioned to a shrouded, 6- blade radial impeller, and discharged into a vaneless radial diffuser and collection volute. The test article included approximately 50 total and static pressure measurement locations as well as flush-mounted, high frequency pressure transducers for complete mapping of the pressure environment. The primary objectives of the water flow test were to measure the steady-state and dynamic pressure environment of the liquid oxygen pump versus flow coefficient, suction specific speed, and back face leakage flow rate. Initial results showed acceptable correlation between the predicted and experimentally measured pump head rise at low suction specific speeds. Likewise, only small circumferential variations in steady-state were observed from 80% to 120% of the design flow coefficient, matching the computational predictions and confirming that the integrated design approach has minimized any exit volute-induced distortions. The test article exhibited suction performance trends typically observed in inducer designs with virtually constant head rise with decreasing inlet pressure until complete pump head breakdown. Unfortunately, the net positive suction head at 3% head fall-off occurred far below that predicted at all tested flow coefficients, resulting in a negative net positive suction head margin at the design point in water. Additional testing to map the unsteady pressure environment was conducted and cavitation-induced flow disturbances at the inducer inlet were observed. Two distinct disturbances were identified, one rotating and one stationary relative to the fixed frame of reference, while the transition from one regime to the next produced significant effects on the steady state pump performance. The impact of the unsteady phenomena and the corresponding energy losses on the unexpectedly poor pump performance is also discussed.

  4. Dielectric constant and low-frequency infrared spectra for liquid water and ice Ih within the E3B model.

    PubMed

    Shi, L; Ni, Y; Drews, S E P; Skinner, J L

    2014-08-28

    Two intrinsic difficulties in modeling condensed-phase water with conventional rigid non-polarizable water models are: reproducing the static dielectric constants for liquid water and ice Ih, and generating the peak at about 200 cm(-1) in the low-frequency infrared spectrum for liquid water. The primary physical reason for these failures is believed to be the missing polarization effect in these models, and consequently various sophisticated polarizable water models have been developed. However, in this work we pursue a different strategy and propose a simple empirical scheme to include the polarization effect only on the dipole surface (without modifying a model's intermolecular interaction potential). We implement this strategy for our explicit three-body (E3B) model. Our calculated static dielectric constants and low-frequency infrared spectra are in good agreement with experiment for both liquid water and ice Ih over wide temperature ranges, albeit with one fitting parameter for each phase. The success of our modeling also suggests that thermal fluctuations about local minima and the energy differences between different proton-disordered configurations play minor roles in the static dielectric constant of ice Ih. Our analysis shows that the polarization effect is important in resolving the two difficulties mentioned above and sheds some light on the origin of several features in the low-frequency infrared spectra for liquid water and ice Ih. PMID:25173022

  5. Dielectric constant and low-frequency infrared spectra for liquid water and ice Ih within the E3B model

    NASA Astrophysics Data System (ADS)

    Shi, L.; Ni, Y.; Drews, S. E. P.; Skinner, J. L.

    2014-08-01

    Two intrinsic difficulties in modeling condensed-phase water with conventional rigid non-polarizable water models are: reproducing the static dielectric constants for liquid water and ice Ih, and generating the peak at about 200 cm-1 in the low-frequency infrared spectrum for liquid water. The primary physical reason for these failures is believed to be the missing polarization effect in these models, and consequently various sophisticated polarizable water models have been developed. However, in this work we pursue a different strategy and propose a simple empirical scheme to include the polarization effect only on the dipole surface (without modifying a model's intermolecular interaction potential). We implement this strategy for our explicit three-body (E3B) model. Our calculated static dielectric constants and low-frequency infrared spectra are in good agreement with experiment for both liquid water and ice Ih over wide temperature ranges, albeit with one fitting parameter for each phase. The success of our modeling also suggests that thermal fluctuations about local minima and the energy differences between different proton-disordered configurations play minor roles in the static dielectric constant of ice Ih. Our analysis shows that the polarization effect is important in resolving the two difficulties mentioned above and sheds some light on the origin of several features in the low-frequency infrared spectra for liquid water and ice Ih.

  6. Investigation of one inverse problem in case of modeling water areas with "liquid" boundaries

    NASA Astrophysics Data System (ADS)

    Sheloput, Tatiana; Agoshkov, Valery

    2015-04-01

    In hydrodynamics often appears the problem of modeling water areas (oceans, seas, rivers, etc.) with "liquid" boundaries. "Liquid" boundary means set of those parts of boundary where impermeability condition is broken (for example, straits, bays borders, estuaries, interfaces of oceans). Frequently such effects are ignored: for "liquid" boundaries the same conditions are used as for "solid" ones, "material boundary" approximation is applied [1]. Sometimes it is possible to interpolate the results received from models of bigger areas. Moreover, approximate estimates for boundary conditions are often used. However, those approximations are not always valid. Sometimes errors in boundary condition determination could lead to a significant decrease in the accuracy of the simulation results. In this work one way of considering the problem mentioned above is described. According to this way one inverse problem on reconstruction of boundary function in convection-reaction-diffusion equations which describe transfer of heat and salinity is solved. The work is based on theory of adjoint equations [2] and optimal control, as well as on common methodology of investigation inverse problems [3]. The work contains theoretical investigation and the results of computer simulation applied for the Baltic Sea. Moreover, conditions and restrictions that should be satisfied for solvability of the problem are entered and justified in the work. Submitted work could be applied for the solution of more complicated inverse problems and data assimilation problems in the areas with "liquid" boundaries; also it is a step for developing algorithms on computing level, speed, temperature and salinity that could be applied for real objects. References 1. A. E. Gill. Atmosphere-ocean dynamics. // London: Academic Press, 1982. 2. G. I. Marchuk. Adjoint equations. // Moscow: INM RAS, 2000, 175 p. (in Russian). 3. V.I. Agoshkov. The methods of optimal control and adjoint equations in problems of mathematical physics. // Moscow: INM RAS, 2003, 256 p. (in Russian).

  7. Method for reprocessing and recycling of aqueous rinsing liquids from car painting with water-based paints in automobile industry

    Microsoft Academic Search

    Walter Baumann; Udo Dinglreiter

    2011-01-01

    In the paint processes of modern car plants the paint to be applied on the car bodies change after every few numbers. In order\\u000a to avoid intermixtures of different lacquers the application systems has to be cleaned before every change by means of a rinsing\\u000a liquid. Water based lacquers require water based cleaning agents. For these rinsing waters a new

  8. Gas- and aqueous-phase chemistry of HO/sub 2/ in liquid water clouds

    SciTech Connect

    Schwartz, S.E.

    1998-12-20

    A model for reversible mass transport of HO/sub 2/ between the gas and aqueous phases of liquid water clouds is used to examine the coupling of reaction kinetics of this species in the two phases. The Henry's law coefficient of HO/sub 2/ necessary for this analysis is evaluated by means of a thermochemical cycle involving O/sup -//sub 2/(aq) to be (1--3) x 10/sup 3/ M atm/sup -1/. The mass accommodation coefficient ..cap alpha.. for uptake of HO/sub 2/ by liquid water is not known and is treated as an adjustable parameter. Results are expressed in terms of yields of HNO/sub 3/(g),H/sub 2/O/sub 2/(aq) relative to the initial photochemical generation rate of OH(g). For large values of ..cap alpha..(> or approx. =10/sup -3/) aqueous-phase H/sub 2/O/sub 2/ formation may be a major radical sink process, but the rate of aqueous-phase H/sub 2/O/sub 2/ production decreases strongly with ..cap alpha..< or approx. =10/sup -3/. Substantial difference, e.g., a factor of as much as 50 in gas-phase HO/sub 2/ concentraiton, is found between kinetic calculations where uptake of HO/sub 2/ by cloud droplets is treated reversibly versus irreversibly. Such differences demonstrate the need to treat the dissolution process as reversible, even for reactive free-radical species.

  9. Standardization of tritiated water and 204Tl by TDCR liquid scintillation counting.

    PubMed

    Razdolescu, Anamaria Cristina; Cassette, Ph

    2004-01-01

    The triple to double coincidence ratio method was used with a combined uncertainty of 1-2% to standardize tritiated water and a solution of 204Tl. The vial with liquid scintillator, in which the sample to be measured was dissolved, is optically coupled to three photomultipliers. The electronic module MAC-3 assures the selection of double and triple coincidences count rates, D and T, from the three counting channels. It contains the gating circuits, necessary to obtain the livetime value and the extended deadtime circuit. Specific computer programs were used to calculate the free parameter value, the efficiency of D and so, the value of the activity. The optimal value of the Birks ionisation-quenching parameter, kB, was evaluated by changing the detection efficiency with grey filters. Three types of liquid scintillators, namely InstaGel, PPO+POPOP+Triton in toluene and Ultima Gold, were employed. 204Tl was measured in the frame of an international comparison organized by BIPM. For tritiated water a comparison was made with LNHB-Saclay; the relative difference between the obtained values for the massic activity was only 0.2%. PMID:14987691

  10. Test of prototype liquid-water-content meter for aircraft use

    NASA Technical Reports Server (NTRS)

    Gerber, Hermann E.

    1993-01-01

    This report describes the effort undertaken to meet the objectives of National Science Foundation Grant ATM-9207345 titled 'Test of Prototype Liquid-Water-Content Meter for Aircraft Use.' Three activities were proposed for testing the new aircraft instrument, PVM-100A: (1) Calibrate the PVM-100A in a facility where the liquid-water-content (LWC) channel, and the integrated surface area channel (PSA) could be compared to standard means for LWC and PSA measurements. Scaling constant for the channels were to be determined in this facility. The fog/wind tunnel at ECN, Petten, The Netherlands was judged the most suitable facility for this effort. (2) Expose the PVM-100A to high wind speeds similar to those expected on research aircraft, and test the anti-icing heaters on the PVM-100A under typical icing conditions expected in atmospheric clouds. The high-speed icing tunnel at NRC, Ottawa, Canada was to be utilized. (3) Operate the PVM-100A on an aircraft during cloud penetrations to determine its stability and practicality for such measurements. The C-131A aircraft of the University of Washington was the aircraft of opportunity for these-tests, which were to be conducted during the 4-week Atlantic Stratocumulus Transition Experiment (ASTEX) in June of 1992.

  11. Nuclear spin optical rotation and Faraday effect in gaseous and liquid water.

    PubMed

    Pennanen, Teemu S; Ikäläinen, Suvi; Lantto, Perttu; Vaara, Juha

    2012-05-14

    Nuclear spin optical rotation (NSOR) of linearly polarized light, due to the nuclear spins through the Faraday effect, provides a novel probe of molecular structure and could pave the way to optical detection of nuclear magnetization. We determine computationally the effects of the liquid medium on NSOR and the Verdet constant of Faraday rotation (arising from an external magnetic field) in water, using the recently developed theory applied on a first-principles molecular dynamics trajectory. The gas-to-liquid shifts of the relevant antisymmetric polarizability and, hence, NSOR magnitude are found to be -14% and -29% for (1)H and (17)O nuclei, respectively. On the other hand, medium effects both enhance the local electric field in water and, via bulk magnetization, the local magnetic field. Together these two effects partially cancel the solvation influence on the single-molecular property. We find a good agreement for the hydrogen NSOR with a recent pioneering experiment on H(2)O(l). PMID:22583295

  12. A Monte Carlo program for the analysis of low-energy electron tracks in liquid water.

    PubMed

    Wiklund, Kristin; Fernández-Varea, José M; Lind, Bengt K

    2011-04-01

    A Monte Carlo code for the event-by-event simulation of electron transport in liquid water is presented. The code, written in C++, can accommodate different interaction models. Currently it implements cross sections for ionizing collisions calculated with the model developed by Dingfelder et al (1998 Radiat. Phys. Chem. 53 1-18, 2008 Radiat. Res. 169 584-94) and cross sections for elastic scattering computed within the static-exchange approximation (Salvat et al 2005 Comput. Phys. Commun. 165 157-90). The latter cross sections coincide with those recommended in ICRU Report 77 (2007). Other included interaction mechanisms are excitation by electron impact and dissociative attachment. The main characteristics of the code are summarized. Various track penetration parameters, including the detour factor, are defined as useful tools to quantify the geometrical extent of electron tracks in liquid water. Results obtained with the present microdosimetry code are given in the form of probability density functions for initial electron kinetic energies ranging from 0.1 to 10 keV. The sensitivity of the simulated distributions to the choice of alternative physics models has been briefly explored. The discrepancies with equivalent simulations reported by Wilson et al (2004 Radiat. Res. 161 591-6) stem from the adopted cross sections for elastic scattering, which determine largely the spatial evolution of low-energy electron tracks. PMID:21364263

  13. Characterization of volcanic aerosol properties over liquid water clouds from combined Infrared and Polarized observations

    NASA Astrophysics Data System (ADS)

    Josset, D. B.; Pelon, J.; Garnier, A.; Hu, Y.; Waquet, F.; Doppler, L.; Riedi, J.; Fischer, J.; Zhai, P.

    2013-12-01

    After the Eyjafjallajökull eruption in spring 2010, the emitted plumes were advected over the Atlantic Ocean, thousands of kilometers away from the sources and sometime in areas covered with low level clouds. The retrieval of these volcanic plume properties which are of uncertain composition and overlying a surface of high and variable reflectance is a challenge for standard radiometric observations based on visible wavelengths. The A-Train provides an unprecedented observational environment, which includes polarized observations from both active and passive instruments onboard CALIPSO and PARASOL. Polarized observations offer the possibility to retrieve the aerosol optical depth above liquid water clouds with a limited error induced by the cloud reflectance variability. Infrared (IR) observations have long been used to characterize volcanic emitted material and it is one of the advantages of the CALIPSO mission to combine IR and lidar instruments to provide co-located observations directly exploitable to improve the characterization of aerosol and clouds. We will describe the underlying principle of the different methodologies based on Polarized and Infrared A-Train observations as well as their applications on a few case studies where we characterize the properties of various kinds of aerosols above liquid water clouds with an emphasis on volcanic ash optical and microphysical properties retrieval.

  14. The complete optical spectrum of liquid water measured by inelastic x-ray scattering

    PubMed Central

    Hayashi, Hisashi; Watanabe, Noboru; Udagawa, Yasuo; Kao, C.-C.

    2000-01-01

    Interaction of light with matter is of paramount importance in nature. The most fundamental property of a material in relation to light is its oscillator strength distribution, i.e., how strongly it absorbs light as a function of wavelength. Once the oscillator strength distribution is determined precisely for a wide enough energy range, the optical constants such as absorbance and reflectance as well as a number of other properties of the material, some of which are seemingly unrelated to photoabsorption, can be deduced. Most important of all is the fact that the interaction of matter with fast charged particles can be described by its complete optical spectra [Inokuti, M. (1986) Photochem. Photobiol. 44, 279–285]. Despite their importance, however, the complete optical spectra of volatile liquids including water have never been obtained accurately because of experimental difficulties inherent in vacuum UV spectroscopy. Inelastic x-ray scattering spectroscopy can provide quantitative data equivalent to those from vacuum UV absorption spectra. Herein, we show the complete optical spectrum of liquid water determined by making use of intense monochromatic x-rays supplied by the wiggler line X21 of the National Synchrotron Light Source. PMID:10829074

  15. Trends in particle-phase liquid water during the Southern Oxidant and Aerosol Study

    NASA Astrophysics Data System (ADS)

    Nguyen, T. K. V.; Petters, M. D.; Suda, S. R.; Guo, H.; Weber, R. J.; Carlton, A. G.

    2014-10-01

    We present in situ measurements of particle-phase liquid water. Measurements were conducted from 3 June to 15 July 2013 during the Southern Oxidant and Aerosol Study (SOAS) in the southeastern US. The region is photochemically active, humid, dominated by biogenic emissions, impacted by anthropogenic pollution, and known to contain high concentrations of organic aerosol mass. Measurements characterized mobility number size distributions of ambient atmospheric aerosols in three states: unperturbed, dry, and dry-humidified. Unperturbed measurements describe the aerosol distribution at ambient temperature and relative humidity. For the dry state, the sample was routed through a cold trap upstream of the inlet then reheated, while for the dry-humidified state the sample was rehumidified after drying. The total volume of water and semi-volatile compounds lost during drying was quantified by differencing dry and unperturbed volumes from the integrated size spectra, while semi-volatile volumes lost during drying were quantified differencing unperturbed and dry-humidified volumes. Results indicate that particle-phase liquid water was always present. Throughout the SOAS campaign, median water mass concentrations at the relative humidity (RH) encountered in the instrument typically ranged from 1 to 5 ?g m-3 but were as high as 73 ?g m-3. On non-raining days, morning time (06:00-09:00) median mass concentrations exceeded 15 ?g m-3. Hygroscopic growth factors followed a diel cycle and exceed 2 from 07:00 to 09:00 local time. The hygroscopicity parameter kappa ranged from 0.14 to 0.46 and hygroscopicity increased with increasing particle size. An observed diel cycle in kappa is consistent with changes in aerosol inorganic content and a dependency of the hygroscopicity parameter on water content. Unperturbed and dry-humidified aerosol volumes did not result in statistically discernible differences, demonstrating that drying did not lead to large losses in dry particle volume. We anticipate that our results will help improve the representation of aerosol water content and aqueous-phase-mediated partitioning of atmospheric water-soluble gases in photochemical models.

  16. Testing the recent charge-on-spring type polarizable water models. II. Vapor-liquid equilibrium

    NASA Astrophysics Data System (ADS)

    Kiss, Péter T.; Baranyai, András

    2012-11-01

    We studied the vapor-liquid coexistence region of seven molecular models of water. All models use the charge-on-spring (COS) method to express polarization. The studied models were the COS/G2, COS/G3 [H. Yu and W. F. van Gunsteren, J. Chem. Phys. 121, 9549 (2004), 10.1063/1.1805516], the SWM4-DP [G. Lamoureux, A. D. MacKerell, Jr., and B. Roux, J. Chem. Phys. 119, 5185 (2003), 10.1063/1.1598191], the SWM4-NDP [G. Lamoureux, E. Harder, I. V. Vorobyov, B. Roux, and A. D. MacKerell, Jr., Chem. Phys. Lett. 418, 245 (2006), 10.1016/j.cplett.2005.10.135], and three versions of our model, the BKd1, BKd2, and BKd3. The BKd1 is the original Gaussian model [P. T. Kiss, M. Darvas, A. Baranyai, and P. Jedlovszky, J. Chem. Phys. 136, 114706 (2012), 10.1063/1.3692602] with constant polarization and with a simple exponential repulsion. The BKd2 applies field-dependent polarizability [A. Baranyai and P. T. Kiss, J. Chem. Phys. 135, 234110 (2011), 10.1063/1.3670962], while the BKd3 model has variable size to approximate the temperature-density (T-?) curve of water [P. T. Kiss and A. Baranyai, J. Chem. Phys. 137, 194102 (2012), 10.1063/1.4767063]. We calculated the second virial coefficient, the heat of vaporization, equilibrium vapor pressure, the vapor-liquid coexistence curve, and the surface tension in terms of the temperature. We determined and compared the critical temperatures, densities, and pressures of the models. We concluded that the high temperature slope of the (T-?) curve accurately predicts the critical temperature. We found that Gaussian charge distributions have clear advantages over the point charges describing the critical region. It is impossible to describe the vapor-liquid coexistence properties consistently with nonpolarizable models, even if their critical temperature is correct.

  17. View angle dependence of MODIS liquid water path retrievals in warm oceanic clouds

    PubMed Central

    Horváth, Ákos; Seethala, Chellappan; Deneke, Hartwig

    2014-01-01

    We investigated the view angle dependence of domain mean Moderate Resolution Imaging Spectroradiometer (MODIS) liquid water path (LWP) and that of corresponding cloud optical thickness, effective radius, and liquid cloud fraction as proxy for plane-parallel retrieval biases. Independent Advanced Microwave Scanning Radiometer–EOS LWP was used to corroborate that the observed variations with sun-view geometry were not severely affected by seasonal/latitudinal changes in cloud properties. Microwave retrievals showed generally small (<10%) cross-swath variations. The view angle (cross-swath) dependence of MODIS optical thickness was weaker in backscatter than forward scatter directions and transitioned from mild ? shape to stronger ? shape as heterogeneity, sun angle, or latitude increased. The 2.2 µm effective radius variations always had a ? shape, which became pronounced and asymmetric toward forward scatter in the most heterogeneous clouds and/or at the lowest sun. Cloud fraction had the strongest and always ?-shaped view angle dependence. As a result, in-cloud MODIS cloud liquid water path (CLWP) showed surprisingly good view angle (cross-swath) consistency, usually comparable to that of microwave retrievals, due to cancelation between optical thickness and effective radius biases. Larger (20–40%) nadir-relative increases were observed in the most extreme heterogeneity and sun angle bins, that is, typically in the polar regions, which, however, constituted only 3–8% of retrievals. The good consistency of MODIS in-cloud CLWP was lost for gridbox mean LWP, which was dominated by the strong cloud fraction increase with view angle. More worryingly, MODIS LWP exhibited significant and systematic absolute increases with heterogeneity and sun angle that is not present in microwave LWP. Key Points Microwave LWP shows small overall and cross-swath variations MODIS in-cloud LWP also shows good view angle consistency in most cases MODIS retrievals show strong overall increase with heterogeneity and sun angle PMID:25821665

  18. Atomistic Insight into Tetraalkylphosphonium-Bis(oxalato)borate Ionic Liquid/Water Mixtures. I. Local Microscopic Structure.

    PubMed

    Wang, Yong-Lei; Sarman, Sten; Glavatskih, Sergei; Antzutkin, Oleg N; Rutland, Mark W; Laaksonen, Aatto

    2015-04-23

    Atomistic simulations have been performed to investigate the microscopic structural organization of aqueous solutions of trihexyltetradecylphosphonium bis(oxalato)borate ([P6,6,6,14][BOB]) ionic liquid (IL). The evolution of the microscopic liquid structure and the local ionic organization of IL/water mixtures as a function of the water concentration is visualized and systematically analyzed via radial and spatial distribution functions, coordination numbers, hydrogen bond network, and water clustering analysis. The microscopic liquid structure in neat IL is characterized by a connected apolar network composed of the alkyl chains of [P6,6,6,14] cations and isolated polar domains consisting of the central segments of [P6,6,6,14] cations and [BOB] anions, and the corresponding local ionic environment is described by direct contact ion pairs. In IL/water mixtures with lower water mole fractions, the added water molecules are dispersed and embedded in cavities between neighboring ionic species and the local ionic structure is characterized by solvent-shared ion pairs through cation-water-anion triple complexes. With a gradual increase in the water concentration in IL/water mixtures, the added water molecules tend to aggregate and form small clusters, intermediate chain-like structures, large aggregates, and eventually a water network in water concentrated simulation systems. A further progressive dilution of IL/water mixtures leads to the formation of self-organized micelle-like aggregates characterized by a hydrophobic core and hydrophilic shell consisting of the central polar segments in [P6,6,6,14] cations and [BOB] anions in a highly branched water network. The striking structural evolution of the [P6,6,6,14][BOB] IL/water mixtures is rationalized by the competition between favorable hydrogen bonded interactions and strong electrostatic interactions between the polar segments in ionic species and the dispersion interactions between the hydrophobic alkyl chains in [P6,6,6,14] cations. PMID:25826623

  19. The liquid-vapor equilibria of TIP4P/2005 and BLYPSP-4F water models determined through direct simulations of the liquid-vapor interface

    NASA Astrophysics Data System (ADS)

    Hu, Hongyi; Wang, Feng

    2015-06-01

    In this paper, the surface tension and critical properties for the TIP4P/2005 and BLYPSP-4F models are reported. A clear dependence of surface tension on the van der Waals cutoff radius (rvdw) is shown when van der Waals interactions are modeled with a simple cutoff scheme. A linear extrapolation formula is proposed that can be used to determine the infinite rvdw surface tension through a few simulations with finite rvdw. A procedure for determining liquid and vapor densities is proposed that does not require fitting to a profile function. Although the critical temperature of water is also found to depend on the choice of rvdw, the dependence is weaker. We argue that a rvdw of 1.75 nm is a good compromise for water simulations when long-range van der Waals correction is not applied. Since the majority of computational programs do not support rigorous treatment of long-range dispersion, the establishment of a minimal acceptable rvdw is important for the simulation of a variety of inhomogeneous systems, such as water bubbles, and water in confined environments. The BLYPSP-4F model predicts room temperature surface tension marginally better than TIP4P/2005 but overestimates the critical temperature. This is expected since only liquid configurations were fit during the development of the BLYPSP-4F potential. The potential is expected to underestimate the stability of vapor and thus overestimate the region of stability for the liquid.

  20. The liquid-vapor equilibria of TIP4P/2005 and BLYPSP-4F water models determined through direct simulations of the liquid-vapor interface.

    PubMed

    Hu, Hongyi; Wang, Feng

    2015-06-01

    In this paper, the surface tension and critical properties for the TIP4P/2005 and BLYPSP-4F models are reported. A clear dependence of surface tension on the van der Waals cutoff radius (rvdw) is shown when van der Waals interactions are modeled with a simple cutoff scheme. A linear extrapolation formula is proposed that can be used to determine the infinite rvdw surface tension through a few simulations with finite rvdw. A procedure for determining liquid and vapor densities is proposed that does not require fitting to a profile function. Although the critical temperature of water is also found to depend on the choice of rvdw, the dependence is weaker. We argue that a rvdw of 1.75 nm is a good compromise for water simulations when long-range van der Waals correction is not applied. Since the majority of computational programs do not support rigorous treatment of long-range dispersion, the establishment of a minimal acceptable rvdw is important for the simulation of a variety of inhomogeneous systems, such as water bubbles, and water in confined environments. The BLYPSP-4F model predicts room temperature surface tension marginally better than TIP4P/2005 but overestimates the critical temperature. This is expected since only liquid configurations were fit during the development of the BLYPSP-4F potential. The potential is expected to underestimate the stability of vapor and thus overestimate the region of stability for the liquid. PMID:26049508

  1. Lignin dissolution in dialkylimidazolium-based ionic liquid-water mixtures.

    PubMed

    Wang, Yantao; Wei, Ligang; Li, Kunlan; Ma, Yingchong; Ma, Ningning; Ding, Shan; Wang, Linlin; Zhao, Deyang; Yan, Bing; Wan, Wenying; Zhang, Qian; Wang, Xin; Wang, Junmei; Li, Hui

    2014-10-01

    Lignin dissolution in dialkylimidazolium-based ionic liquid (IL)-water mixtures (40wt%-100wt% IL content) at 60°C was investigated. The IL content and type are found to considerably affect lignin solubility. For the IL-water mixtures except 1-butyl-3-methylimidazolium tetrafluoroborate ([C4C1im]BF4), the maximum lignin solubility can be achieved at 70wt% IL content. Lignin solubility in IL-water mixtures with different cations follows the order 1-butyl-3-methylimidazolium ([C4C1im](+))>1-hexyl-3-methylimidazolium ([C6C1im](+))>1-ethyl-3-methylimidazolium ([C2C1im](+))>1-octyl-3-methylimidazolium ([C8C1im](+))>1-butyl-3-ethylimidazolium ([C4C2im](+))>1-butyl-3-propylimidazolium ([C4C3im](+)). For IL mixtures with different anions, lignin solubility decreases in the following order: methanesulfonate (MeSO3(-))>acetate (MeCO2(-))>bromide (Br(-))>dibutylphosphate (DBP(-)). Evaluation using the theory of Hansen solubility parameter (HSP) is consistent with the experimental results, suggesting that HSP can aid in finding the appropriate range of IL content for IL-water mixtures. However, HSP cannot be used to evaluate the effect of IL type on lignin solubility. PMID:25164342

  2. The effect of an external magnetic field on the structure of liquid water using molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Chang, Kai-Tai; Weng, Cheng-I.

    2006-08-01

    Through a series of molecular dynamics simulations based on the flexible three-centered water model, this study analyzes the structural changes induced in liquid water by the application of a magnetic field with a strength ranging from 1to10T. It is found that the number of hydrogen bonds increases slightly as the strength of the magnetic field is increased. This implies that the size of a water cluster can be controlled by the application of an external magnetic field. The structure of the water is analyzed by calculating the radial distribution function of the water molecules. The results reveal that the structure of the water is more stable and the ability of the water molecules to form hydrogen bonds is enhanced when a magnetic field is applied. In addition, the behavior of the water molecules changes under the influence of a magnetic field; for example, the self-diffusion coefficient of the water molecules decreases.

  3. Fluctuational equation of state and hypothetical phase diagram of superheated water and two imidazolium-based ionic liquids

    Microsoft Academic Search

    V. B. Rogankov; V. I. Levchenko; Y. K. Kornienko

    2009-01-01

    The particular low-temperature variant of fluctuational EOS with constant excluded volume b and temperature-dependent-coefficient a(T) is applied to water and two imidazolium-based ionic liquids: [bmim][PF6] and [pmmim][Tf2N]. The former demonstrates the regular linear correlations of liquid density ?(T) (decreasing) and isobaric heat capacity (increasing) at atmospheric pressure P=101,325 kPa. The latter has some trend to density maxima near the melting point

  4. On the fatigue fracture at adsorption\\/desorption of water in\\/from liquid-repellent nanoporous silica

    Microsoft Academic Search

    Claudiu Valentin Suciu; Shingo Tani; Kazuhiko Yaguchi

    2010-01-01

    In this work, fatigue fracture tests on liquid-repellent nanoporous silica micro-particles dispersed in water are reported;\\u000a then, models of the grain cracking and fragmentation are proposed. Such tests can be regarded, from an external standpoint,\\u000a as conducted under temporally variable but spatially uniform pressure distribution in the liquid surrounding the silica grains,\\u000a or from an internal standpoint, as surface fatigue

  5. Vapor-liquid equilibrium calculation of the system water-nitric acid over the entire concentration range

    Microsoft Academic Search

    Stefano Brandani; Vincenzo Brandani

    1996-01-01

    The vapor-liquid equilibrium of the system water-nitric acid has been described. The activity coefficients in the liquid phase are evaluated according to a new model. This model combines the effect of the long range forces expressed by a Debye-Hückel contribution on a mole fraction basis, with the effect of short range forces expressed by a virial expansion of the NRTL

  6. Evidence for Recent Liquid Water on Mars: Channeled Aprons in a Small Crater within Newton Crater

    NASA Technical Reports Server (NTRS)

    2000-01-01

    [figure removed for brevity, see original site]

    Newton Crater is a large basin formed by an asteroid impact that probably occurred more than 3 billion years ago. It is approximately 287 kilometers (178 miles) across. The picture shown here (top) highlights the north wall of a specific, smaller crater located in the southwestern quarter of Newton Crater (above). The crater of interest was also formed by an impact; it is about 7 km (4.4 mi) across, which is about 7 times bigger than the famous Meteor Crater in northern Arizona in North America.

    The north wall of the small crater has many narrow gullies eroded into it. These are hypothesized to have been formed by flowing water and debris flows. Debris transported with the water created lobed and finger-like deposits at the base of the crater wall where it intersects the floor (bottom center top image). Many of the finger-like deposits have small channels indicating that a liquid--most likely water--flowed in these areas. Hundreds of individual water and debris flow events might have occurred to create the scene shown here. Each outburst of water from higher upon the crater slopes would have constituted a competition between evaporation, freezing, and gravity.

    The individual deposits at the ends of channels in this MOC image mosaic were used to get a rough estimate of the minimum amount of water that might be involved in each flow event. This is done first by assuming that the deposits are like debris flows on Earth. In a debris flow, no less than about 10% (and no more than 30%) of their volume is water. Second, the volume of an apron deposit is estimated by measuring the area covered in the MOC image and multiplying it by a conservative estimate of thickness, 2 meters (6.5 feet). For a flow containing only 10% water, these estimates conservatively suggest that about 2.5 million liters (660,000 gallons) of water are involved in each event; this is enough to fill about 7 community-sized swimming pools or enough to supply 20 people with their water needs for a year.

    The MOC high resolution view is located near 41.1oS, 159.8oW and is a mosaic of three different pictures acquired between January and May 2000. The MOC scene is illuminated from the left; north is up. The context picture was acquired in 1977 by the Viking 1 orbiter and is illuminated from the upper right.

  7. Remote sensing of atmospheric water vapor, liquid water and wind speed at the ocean surface by passive microwave techniques from the Nimbus-5 satellite

    NASA Technical Reports Server (NTRS)

    Chang, A. T. C.; Wilheit, T. T.

    1977-01-01

    The microwave brightness temperature measurements for Nimbus-5 electrically scanned microwave radiometer and Nimbus E microwave spectrometer are used to retrieve the atmospheric water vapor, liquid water and wind speed by a quasi-statistical retrieval technique. It is shown that the brightness temperature can be utilized to yield these parameters under various weather conditions. Observations at 19.35 GHz, 22.235 GHz and 31.4 GHz were input to the regression equations. The retrieved values of these parameters for portions of two Nimbus-5 orbits are presented. Then comparison between the retrieved parameters and the available observations on the total water vapor content and the surface wind speed are made. The estimated errors for retrieval are approximately 0.15 g/sq cm for water vapor content, 6.5 mg/sq cm for liquid water content and 6.6 m/sec for surface wind speed.

  8. Effect of liquid municipal biosolid application method on tile and ground water quality.

    PubMed

    Lapen, D R; Topp, E; Edwards, M; Sabourin, L; Curnoe, W; Gottschall, N; Bolton, P; Rahman, S; Ball-Coelho, B; Payne, M; Kleywegt, S; McLaughlin, N

    2008-01-01

    This study examined bacteria and nutrient quality in tile drainage and shallow ground water resulting from a fall land application of liquid municipal biosolids (LMB), at field application rates of 93,500 L ha(-1), to silt-clay loam agricultural field plots using two different land application approaches. The land application methods were a one-pass AerWay SSD approach (A), and surface spreading plus subsequent incorporation (SS). For both treatments, it took between 3 and 39 min for LMB to reach tile drains after land application. The A treatment significantly (p < 0.1) reduced application-induced LMB contamination of tile drains relative to the SS treatment, as shown by mass loads of total Kjeldahl N (TKN), NH(4)-N, Total P (TP), PO(4)-P, E. coli., and Clostridium perfringens. E. coli contamination resulting from application occurred to at least 2.0-m depth in ground water, but was more notable in ground water immediately beneath tile depth (1.2 m). Treatment ground water concentrations of selected nutrients and bacteria for the study period ( approximately 46 d) at 1.2-m depth were significantly higher in the treatment plots, relative to control plots. The TKN and TP ground water concentrations at 1.2-m depth were significantly (p < 0.1) higher for the SS treatment, relative to the A treatment, but there were no significant (p > 0.1) treatment differences for the bacteria. For the macroporous field conditions observed, pre-tillage by equipment such as the AerWay SSD, will reduce LMB-induced tile and shallow ground water contamination compared to surface spreading over non-tilled soil, followed by incorporation. PMID:18453415

  9. Understanding the structural disorganization of starch in water-ionic liquid solutions.

    PubMed

    Zhang, Binjia; Chen, Ling; Xie, Fengwei; Li, Xiaoxi; Truss, Rowan W; Halley, Peter J; Shamshina, Julia L; Rogers, Robin D; McNally, Tony

    2015-06-01

    Using synchrotron X-ray scattering analyses and Fourier transform infrared spectroscopy, this work provides insights into the solvent effects of water?:?[C2mim][OAc] solutions on the disorganization of a starch semi-crystalline structure. When a certain ratio (10.2?:?1 mol/mol) of water?:?[C2mim][OAc] solution is used, the preferential hydrogen bonding between starch hydroxyls and [OAc](-) anions results in the breakage of the hydrogen bonding network of starch and thus the disruption of starch lamellae. This greatly facilitates the disorganization of starch, which occurs much easier than in pure water. In contrast, when 90.8?:?1 (mol/mol) water?:?[C2mim][OAc] solution is used, the interactions between [OAc](-) anions and water suppress the solvent effects on starch, thereby making the disorganization of starch less easy than in pure water. All these differences can be shown by changes in the lamellar and fractal structures: firstly, a preferable increase in the thickness of the crystalline lamellae rather than that of the amorphous lamellae causes an overall increase in the thickness of the semi-crystalline lamellae; then, the amorphous lamellae start to decrease probably due to the out-phasing of starch molecules from them; this forms a fractal gel on a larger scale (than the lamellae) which gradually decreases to a stable value as the temperature increases further. It is noteworthy that these changes occur at temperatures far below the transition temperature that is thermally detectable as is normally described. This hints to our future work that using certain aqueous ionic liquids for destructuration of the starch semi-crystalline structure is the key to realize green processes to obtain homogeneous amorphous materials. PMID:25899721

  10. Simultaneous determination of gross alpha, gross beta and ²²?Ra in natural water by liquid scintillation counting.

    PubMed

    Fons, J; Zapata-García, D; Tent, J; Llauradó, M

    2013-11-01

    The determination of gross alpha, gross beta and (226)Ra activity in natural waters is useful in a wide range of environmental studies. Furthermore, gross alpha and gross beta parameters are included in international legislation on the quality of drinking water [Council Directive 98/83/EC]. In this work, a low-background liquid scintillation counter (Wallac, Quantulus 1220) was used to simultaneously determine gross alpha, gross beta and (226)Ra activity in natural water samples. Sample preparation involved evaporation to remove (222)Rn and its short-lived decay daughters. The evaporation process concentrated the sample ten-fold. Afterwards, a sample aliquot of 8 mL was mixed with 12 mL of Ultima Gold AB scintillation cocktail in low-diffusion vials. In this study, a theoretical mathematical model based on secular equilibrium conditions between (226)Ra and its short-lived decay daughters is presented. The proposed model makes it possible to determine (226)Ra activity from two measurements. These measurements also allow determining gross alpha and gross beta simultaneously. To validate the proposed model, spiked samples with different activity levels for each parameter were analysed. Additionally, to evaluate the model's applicability in natural water, eight natural water samples from different parts of Spain were analysed. The eight natural water samples were also characterised by alpha spectrometry for the naturally occurring isotopes of uranium ((234)U, (235)U and (238)U), radium ((224)Ra and (226)Ra), (210)Po and (232)Th. The results for gross alpha and (226)Ra activity were compared with alpha spectrometry characterization, and an acceptable concordance was obtained. PMID:23415246

  11. Structure and dynamics of POPC bilayers in water solutions of room temperature ionic liquids.

    PubMed

    Benedetto, Antonio; Bingham, Richard J; Ballone, Pietro

    2015-03-28

    Molecular dynamics simulations in the NPT ensemble have been carried out to investigate the effect of two room temperature ionic liquids (RTILs), on stacks of phospholipid bilayers in water. We consider RTIL compounds consisting of chloride ([bmim][Cl]) and hexafluorophosphate ([bmim][PF6]) salts of the 1-buthyl-3-methylimidazolium ([bmim](+)) cation, while the phospholipid bilayer is made of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC). Our investigations focus on structural and dynamical properties of phospholipid and water molecules that could be probed by inelastic and quasi-elastic neutron scattering measurements. The results confirm the fast incorporation of [bmim](+) into the lipid phase already observed in previous simulations, driven by the Coulomb attraction of the cation for the most electronegative oxygens in the POPC head group and by sizeable dispersion forces binding the neutral hydrocarbon tails of [bmim](+) and of POPC. The [bmim](+) absorption into the bilayer favours the penetration of water into POPC, causes a slight but systematic thinning of the bilayer, and further stabilises hydrogen bonds at the lipid/water interface that already in pure samples (no RTIL) display a lifetime much longer than in bulk water. On the other hand, the effect of RTILs on the diffusion constant of POPC (DPOPC) does not reveal a clearly identifiable trend, since DPOPC increases upon addition of [bmim][Cl] and decreases in the [bmim][PF6] case. Moreover, because of screening, the electrostatic signature of each bilayer is only moderately affected by the addition of RTIL ions in solution. The analysis of long wavelength fluctuations of the bilayers shows that RTIL sorption causes a general decrease of the lipid/water interfacial tension and bending rigidity, pointing to the destabilizing effect of RTILs on lipid bilayers. PMID:25833602

  12. Spectral contaminant identifier for off-axis integrated cavity output spectroscopy measurements of liquid water isotopes

    SciTech Connect

    Brian Leen, J.; Berman, Elena S. F.; Gupta, Manish [Los Gatos Research, 67 East Evelyn Avenue, Suite 3, Mountain View, California 94041-1518 (United States); Liebson, Lindsay [Department of Mechanical Engineering, Stanford University, Stanford, California 94305 (United States)

    2012-04-15

    Developments in cavity-enhanced absorption spectrometry have made it possible to measure water isotopes using faster, more cost-effective field-deployable instrumentation. Several groups have attempted to extend this technology to measure water extracted from plants and found that other extracted organics absorb light at frequencies similar to that absorbed by the water isotopomers, leading to {delta}{sup 2}H and {delta}{sup 18}O measurement errors ({Delta}{delta}{sup 2}H and {Delta}{delta}{sup 18}O). In this note, the off-axis integrated cavity output spectroscopy (ICOS) spectra of stable isotopes in liquid water is analyzed to determine the presence of interfering absorbers that lead to erroneous isotope measurements. The baseline offset of the spectra is used to calculate a broadband spectral metric, m{sub BB}, and the mean subtracted fit residuals in two regions of interest are used to determine a narrowband metric, m{sub NB}. These metrics are used to correct for {Delta}{delta}{sup 2}H and {Delta}{delta}{sup 18}O. The method was tested on 14 instruments and {Delta}{delta}{sup 18}O was found to scale linearly with contaminant concentration for both narrowband (e.g., methanol) and broadband (e.g., ethanol) absorbers, while {Delta}{delta}{sup 2}H scaled linearly with narrowband and as a polynomial with broadband absorbers. Additionally, the isotope errors scaled logarithmically with m{sub NB}. Using the isotope error versus m{sub NB} and m{sub BB} curves, {Delta}{delta}{sup 2}H and {Delta}{delta}{sup 18}O resulting from methanol contamination were corrected to a maximum mean absolute error of 0.93 per mille and 0.25 per mille respectively, while {Delta}{delta}{sup 2}H and {Delta}{delta}{sup 18}O from ethanol contamination were corrected to a maximum mean absolute error of 1.22 per mille and 0.22 per mille . Large variation between instruments indicates that the sensitivities must be calibrated for each individual isotope analyzer. These results suggest that the properly calibrated interference metrics can be used to correct for polluted samples and extend off-axis ICOS measurements of liquid water to include plant waters, soil extracts, wastewater, and alcoholic beverages. The general technique may also be extended to other laser-based analyzers including methane and carbon dioxide isotope sensors.

  13. Application of In-Syringe Dispersive Liquid-Liquid Microextraction and Narrow-Bore Tube Dispersive Liquid-Liquid Microextraction for the Determination of Trace Amounts of BTEX in Water Samples.

    PubMed

    Rahmani, Mashaallah; Kaykhaii, Massoud; Ghasemi, Elham; Tahernejad, Mohadeseh

    2015-08-01

    Two new simple and effective methods based on dispersive liquid-liquid microextraction (DLLME) procedure, termed "in-syringe DLLME (IS-DLLME)" and "narrow-bore tube DLLME (NB-DLLME)", were developed and applied for rapid and simultaneous separation and preconcentration of trace amounts of benzene, toluene, ethylbenzene and xylene isomers in water samples followed by gas chromatographic analysis. Different parameters influencing the extraction efficiency of both methods such as type and volume of the extraction solvent and the disperser solvent; pH, temperature and volume of sample solution and ionic strength of samples were investigated and optimized. Under optimal condition, the limits of detection ranged from 1.7 to 2.4 µg L(-1) for IS-DLLME and 1.5 to 2.2 µg L(-1) for NB-DLLME. Precision (as relative standard deviation) of the two techniques was between 2.1 and 4.6% for IS-DLLME and between 1.5 and 4.5% for NB-DLLME. The enrichment factors found to be between 20-29 and 31-73 for IS- and NB-DLLME, respectively. The applicability of the proposed methods was investigated by analyzing real water samples. PMID:25595286

  14. The individual and collective effects of exact exchange and dispersion interactions on the ab initio structure of liquid water.

    PubMed

    DiStasio, Robert A; Santra, Biswajit; Li, Zhaofeng; Wu, Xifan; Car, Roberto

    2014-08-28

    In this work, we report the results of a series of density functional theory (DFT) based ab initio molecular dynamics (AIMD) simulations of ambient liquid water using a hierarchy of exchange-correlation (XC) functionals to investigate the individual and collective effects of exact exchange (Exx), via the PBE0 hybrid functional, non-local van der Waals/dispersion (vdW) interactions, via a fully self-consistent density-dependent dispersion correction, and an approximate treatment of nuclear quantum effects, via a 30 K increase in the simulation temperature, on the microscopic structure of liquid water. Based on these AIMD simulations, we found that the collective inclusion of Exx and vdW as resulting from a large-scale AIMD simulation of (H2O)128 significantly softens the structure of ambient liquid water and yields an oxygen-oxygen structure factor, SOO(Q), and corresponding oxygen-oxygen radial distribution function, gOO(r), that are now in quantitative agreement with the best available experimental data. This level of agreement between simulation and experiment demonstrated herein originates from an increase in the relative population of water molecules in the interstitial region between the first and second coordination shells, a collective reorganization in the liquid phase which is facilitated by a weakening of the hydrogen bond strength by the use of a hybrid XC functional, coupled with a relative stabilization of the resultant disordered liquid water configurations by the inclusion of non-local vdW/dispersion interactions. This increasingly more accurate description of the underlying hydrogen bond network in liquid water also yields higher-order correlation functions, such as the oxygen-oxygen-oxygen triplet angular distribution, POOO(?), and therefore the degree of local tetrahedrality, as well as electrostatic properties, such as the effective molecular dipole moment, that are in much better agreement with experiment. PMID:25173016

  15. The individual and collective effects of exact exchange and dispersion interactions on the ab initio structure of liquid water

    NASA Astrophysics Data System (ADS)

    DiStasio, Robert A.; Santra, Biswajit; Li, Zhaofeng; Wu, Xifan; Car, Roberto

    2014-08-01

    In this work, we report the results of a series of density functional theory (DFT) based ab initio molecular dynamics (AIMD) simulations of ambient liquid water using a hierarchy of exchange-correlation (XC) functionals to investigate the individual and collective effects of exact exchange (Exx), via the PBE0 hybrid functional, non-local van der Waals/dispersion (vdW) interactions, via a fully self-consistent density-dependent dispersion correction, and an approximate treatment of nuclear quantum effects, via a 30 K increase in the simulation temperature, on the microscopic structure of liquid water. Based on these AIMD simulations, we found that the collective inclusion of Exx and vdW as resulting from a large-scale AIMD simulation of (H2O)128 significantly softens the structure of ambient liquid water and yields an oxygen-oxygen structure factor, SOO(Q), and corresponding oxygen-oxygen radial distribution function, gOO(r), that are now in quantitative agreement with the best available experimental data. This level of agreement between simulation and experiment demonstrated herein originates from an increase in the relative population of water molecules in the interstitial region between the first and second coordination shells, a collective reorganization in the liquid phase which is facilitated by a weakening of the hydrogen bond strength by the use of a hybrid XC functional, coupled with a relative stabilization of the resultant disordered liquid water configurations by the inclusion of non-local vdW/dispersion interactions. This increasingly more accurate description of the underlying hydrogen bond network in liquid water also yields higher-order correlation functions, such as the oxygen-oxygen-oxygen triplet angular distribution, POOO(?), and therefore the degree of local tetrahedrality, as well as electrostatic properties, such as the effective molecular dipole moment, that are in much better agreement with experiment.

  16. Resonant x-ray emission spectroscopy of liquid water: novel instrumentation, high resolution, and the"map" approach

    SciTech Connect

    Weinhardt, L.; Fuchs, O.; Blum, M.; Bär, M.; Weigand, M.; Denlinger, J.D.; Zubavichus, Y.; Zharnikov, M.; Grunze, M.; Heske, C.; Umbach, E.

    2008-06-17

    Techniques to study the electronic structure of liquids are rare. Most recently, resonant x-ray emission spectroscopy (XES) has been shown to be an extremely versatile spectroscopy to study both occupied and unoccupied electronic states for liquids in thermodynamic equilibrium. However, XES requires high-brilliance soft x-ray synchrotron radiation and poses significant technical challenges to maintain a liquid sample in an ultra-high vacuum environment. Our group has therefore developed and constructed a novel experimental setup for the study of liquids, with the long-term goal of investigating the electronic structure of biological systems in aqueous environments. We have developed a flow-through liquid cell in which the liquid is separated from vacuum by a thin Si3N4 or SiC window and which allows a precise control of temperature. This approach has significant advantages compared to static liquids cells used in the past. Furthermore, we have designed a dedicated high-transmission, high-resolution soft x-ray spectrometer. The high transmission makes it possible to measure complete resonant XES"maps" in less than an hour, giving unprecedented detailed insight into the electronic structure of the investigated sample. Using this new equipment we have investigated the electronic structure of liquid water. Furthermore, our XES spectra and maps give information about ultra-fast dissociation on the timescale of the O 1s core hole lifetime, which is strongly affected by the initial state hydrogen bonding configuration.

  17. Headspace liquid-phase microextraction using ionic liquid as extractant for the preconcentration of dichlorodiphenyltrichloroethane and its metabolites at trace levels in water samples.

    PubMed

    Ye, Cun-Ling; Zhou, Qing-Xiang; Wang, Xin-Ming

    2006-07-21

    A novel technique, high temperature headspace liquid-phase microextraction (HS-LPME) with room temperature ionic liquid (RTIL), 1-butyl-3-methylimidazolium hexafluorophosphate ([C4MIM][PF6]) as extractant, was developed for the analysis of dichlorodiphenyltrichloroethane (p,p'-DDT and o,p'-DDT) and its metabolites including 4,4'-dichlorodiphenyldichloroethylene (p,p'-DDE) and 4,4'-dichlorodiphenyldichloroethane (p,p'-DDD) in water samples by high performance liquid chromatography with ultraviolet detection. The parameters such as salt content, sample pH and temperature, stirring rate, extraction time, microdrop volume, and sample volume, were found to have significant influence on the HS-LPME. The conditions optimized for extraction of target compounds were as follows: 35% NaCl (w/v), neutral pH condition, 70 degrees C, 800 rpm, 30 min, 10 microL [C4MIM][PF6], and 25 mL sample solutions. Under the optimized conditions, the linear range, detection limit (S/N=3), and precision (R.S.D., n=6) were 0.3-30 microg L(-1), 0.07 microg L(-1), and 8.0% for p,p'-DDD, 0.3-30 microg L(-1), 0.08 microg L(-1), and 7.1% for p,p'-DDT, 0.3-30 microg L(-1), 0.08 microg L(-1), and 7.2% for o,p'-DDT, and 0.2-30 microg L(-1), 0.05 microg L(-1), and 6.8% for p,p'-DDE, respectively. Water samples including tap water, well water, snow water, reservoir water, and wastewater were analyzed by the proposed procedure and the recoveries at 5 microg L(-1) spiked level were in the range of 86.8-102.6%. PMID:17723474

  18. Observations of the Global Characteristics and Regional Radiative Effects of Marine Cloud Liquid Water

    NASA Technical Reports Server (NTRS)

    Greenwald, Thomas J.; Stephens, Graeme L.; Christopher, Sundar A.; Vonder Harr, Thomas H.

    1995-01-01

    The large-scale spatial distribution and temporal variability of cloud liquid water path (LWP) over the world's oceans and the relationship of cloud LWP to temperature and the radiation budget are investigated using recent satellite measurements from the Special Sensor Microwave/Imager (SSM/I), the Earth Radiation Budget Experiment (ERBE), and the International Satellite Cloud Climatology Project (ISCCP). Observations of cloud liquid water on a 2.5 deg x 2.5 deg and are used over a 53-month period beginning July 1987 and ending in December 1991. The highest values of cloud liquid water (greater than 0.13 kg/sq m) occur largely along principal routes of northern midlatitude storms and in areas dominated by tropical convection. The zonally averaged structure is distinctly trimodal, where maxima appear in the midlatitudes and near the equator. The average marine cloud LWP over the globe is estimated to be about 0.113 kg/sq m. Its highest seasonal variability is typically between 15% and 25% of the annual mean but in certain locations can exceed 30%. Comparisons of cloud LWP to temperature for low clouds during JJA and DJF of 1990 show significant positive correlations at colder temperatures and negative correlations at warmer temperatures. The correlations also exhibit strong seasonal and regional variation. Coincident and collocated observations of cloud LWP from the SSM/I and albedo measurements from the Earth Radiation Budget Satellite (ERBS) and the NOAA-10 satellite are compared for low clouds in the North Pacific and North Atlantic. The observed albedo-LWP relationships correspond reasonably well with theory, where the average cloud effective radius (r(sub e)) is 11.1 microns and the standard deviation is 5.2 microns. The large variability in the inferred values of r(sub e) suggests that other factors may be important in the albedo-LWP relationships. In terms of the effect of the LWP on the net cloud forcing, the authors find that a 0.05 kg/sq m increase in LWP (for LWP less than 0.2 kg/sq m) results in a -25 W/sq m change in the net cloud forcing at a solar zenith angle of 75 deg.

  19. Robust prototypical anti-icing coatings with a self-lubricating liquid water layer between ice and substrate.

    PubMed

    Chen, Jing; Dou, Renmei; Cui, Dapeng; Zhang, Qiaolan; Zhang, Yifan; Xu, Fujian; Zhou, Xin; Wang, Jianjun; Song, Yanlin; Jiang, Lei

    2013-05-22

    A robust prototypical anti-icing coating with a self-lubricating liquid water layer (SLWL) is fabricated via grafting cross-linked hygroscopic polymers inside the micropores of silicon wafer surfaces. The ice adhesion on the surface with SLWL is 1 order of magnitude lower than that on the superhydrophobic surfaces and the ice formed atop of it can be blown off by an action of strong breeze. The surface with self-lubricating liquid water layer exhibits excellent capability of self-healing and abrasion resistance. The SLWL surface should also find applications in antifogging and self-cleaning by rainfall, in addition to anti-icing and antifrosting. PMID:23642212

  20. Numerical simulation of the water bubble rising in a liquid column using the combination of level set and moving mesh methods in the collocated grids

    E-print Network

    Frey, Pascal

    of bubble rising in a liquid column is critical in the investigation of the waterevapour two phase flow in the nuclear industry, more than 90% power generated by nuclear is from water-cooled nuclear reactors either Pressurized Water Reactor (PWR) or Boiling Water Reactor (BWR). Water boils inside the BWRs. Although water