Sample records for liquids condensed disordered

  1. Molecular dynamics study on condensation/evaporation coefficients of chain molecules at liquid-vapor interface

    NASA Astrophysics Data System (ADS)

    Nagayama, Gyoko; Takematsu, Masaki; Mizuguchi, Hirotaka; Tsuruta, Takaharu

    2015-07-01

    The structure and thermodynamic properties of the liquid-vapor interface are of fundamental interest for numerous technological implications. For simple molecules, e.g., argon and water, the molecular condensation/evaporation behavior depends strongly on their translational motion and the system temperature. Existing molecular dynamics (MD) results are consistent with the theoretical predictions based on the assumption that the liquid and vapor states in the vicinity of the liquid-vapor interface are isotropic. Additionally, similar molecular condensation/evaporation characteristics have been found for long-chain molecules, e.g., dodecane. It is unclear, however, whether the isotropic assumption is valid and whether the molecular orientation or the chain length of the molecules affects the condensation/evaporation behavior at the liquid-vapor interface. In this study, MD simulations were performed to study the molecular condensation/evaporation behavior of the straight-chain alkanes, i.e., butane, octane, and dodecane, at the liquid-vapor interface, and the effects of the molecular orientation and chain length were investigated in equilibrium systems. The results showed that the condensation/evaporation behavior of chain molecules primarily depends on the molecular translational energy and the surface temperature and is independent of the molecular chain length. Furthermore, the orientation at the liquid-vapor interface was disordered when the surface temperature was sufficiently higher than the triple point and had no significant effect on the molecular condensation/evaporation behavior. The validity of the isotropic assumption was confirmed, and we conclude that the condensation/evaporation coefficients can be predicted by the liquid-to-vapor translational length ratio, even for chain molecules.

  2. Molecular dynamics study on condensation/evaporation coefficients of chain molecules at liquid-vapor interface.

    PubMed

    Nagayama, Gyoko; Takematsu, Masaki; Mizuguchi, Hirotaka; Tsuruta, Takaharu

    2015-07-07

    The structure and thermodynamic properties of the liquid-vapor interface are of fundamental interest for numerous technological implications. For simple molecules, e.g., argon and water, the molecular condensation/evaporation behavior depends strongly on their translational motion and the system temperature. Existing molecular dynamics (MD) results are consistent with the theoretical predictions based on the assumption that the liquid and vapor states in the vicinity of the liquid-vapor interface are isotropic. Additionally, similar molecular condensation/evaporation characteristics have been found for long-chain molecules, e.g., dodecane. It is unclear, however, whether the isotropic assumption is valid and whether the molecular orientation or the chain length of the molecules affects the condensation/evaporation behavior at the liquid-vapor interface. In this study, MD simulations were performed to study the molecular condensation/evaporation behavior of the straight-chain alkanes, i.e., butane, octane, and dodecane, at the liquid-vapor interface, and the effects of the molecular orientation and chain length were investigated in equilibrium systems. The results showed that the condensation/evaporation behavior of chain molecules primarily depends on the molecular translational energy and the surface temperature and is independent of the molecular chain length. Furthermore, the orientation at the liquid-vapor interface was disordered when the surface temperature was sufficiently higher than the triple point and had no significant effect on the molecular condensation/evaporation behavior. The validity of the isotropic assumption was confirmed, and we conclude that the condensation/evaporation coefficients can be predicted by the liquid-to-vapor translational length ratio, even for chain molecules.

  3. Liquid-Infused Smooth Surface for Improved Condensation Heat Transfer.

    PubMed

    Tsuchiya, Hirotaka; Tenjimbayashi, Mizuki; Moriya, Takeo; Yoshikawa, Ryohei; Sasaki, Kaichi; Togasawa, Ryo; Yamazaki, Taku; Manabe, Kengo; Shiratori, Seimei

    2017-09-12

    Control of vapor condensation properties is a promising approach to manage a crucial part of energy infrastructure conditions. Heat transfer by vapor condensation on superhydrophobic coatings has garnered attention, because dropwise condensation on superhydrophobic surfaces with rough structures leads to favorable heat-transfer performance. However, pinned condensed water droplets within the rough structure and a high thermodynamic energy barrier for nucleation of superhydrophobic surfaces limit their heat-transfer increase. Recently, slippery liquid-infused surfaces (SLIPS) have been investigated, because of their high water sliding ability and surface smoothness originating from the liquid layer. However, even on SLIPS, condensed water droplets are eventually pinned to degrade their heat-transfer properties after extended use, because the rough base layer is exposed as infused liquid is lost. Herein, we report a liquid-infused smooth surface named "SPLASH" (surface with π electron interaction liquid adsorption, smoothness, and hydrophobicity) to overcome the problems derived from the rough structures in previous approaches to obtain stable, high heat-transfer performance. The SPLASH displayed a maximum condensation heat-transfer coefficient that was 175% higher than that of an uncoated substrate. The SPLASH also showed higher heat-transfer performance and more stable dropwise condensation than superhydrophobic surfaces and SLIPS from the viewpoints of condensed water droplet mobility and the thermodynamic energy barrier for nucleation. The effects of liquid-infused surface roughness and liquid viscosity on condensation heat transfer were investigated to compare heat-transfer performance. This research will aid industrial applications using vapor condensation.

  4. Interfacial condensation induced by sub-cooled liquid jet

    NASA Astrophysics Data System (ADS)

    Rame, Enrique; Balasubramaniam, R.

    2016-11-01

    When a sub-cooled liquid jet impinges on the free surface between a liquid and its vapor, vapor will condense at a rate dependent on the sub-cooling, the jet strength and fluid properties. In 1966 and during the examination of a different type of condensation flow, Shekriladeze found an approximate result, valid at large condensation rates, that decouples the flow in the liquid phase from that of the vapor, without putting it in the context of a formal asymptotic approximation. In this talk we will develop an asymptotic approximation that contains Shekriladze's result, and extend the calculations to the case when a non-condensable gas is present in the vapor phase.

  5. Liquid oil production from shale gas condensate reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheng, James J.

    A process of producing liquid oil from shale gas condensate reservoirs and, more particularly, to increase liquid oil production by huff-n-puff in shale gas condensate reservoirs. The process includes performing a huff-n-puff gas injection mode and flowing the bottom-hole pressure lower than the dew point pressure.

  6. Condensation with two constraints and disorder

    NASA Astrophysics Data System (ADS)

    Barré, J.; Mangeolle, L.

    2018-04-01

    We consider a set of positive random variables obeying two additive constraints, a linear and a quadratic one; these constraints mimic the conservation laws of a dynamical system. In the simplest setting, without disorder, it is known that such a system may undergo a ‘condensation’ transition, whereby one random variable becomes much larger than the others; this transition has been related to the spontaneous appearance of non linear localized excitations in certain nonlinear chains, called breathers. Motivated by the study of breathers in a disordered discrete nonlinear Schrödinger equation, we study different instances of this problem in presence of a quenched disorder. Unless the disorder is too strong, the phase diagram looks like the one without disorder, with a transition separating a fluid phase, where all variables have the same order of magnitude, and a condensed phase, where one variable is much larger than the others. We then show that the condensed phase exhibits various degrees of ‘intermediate symmetry breaking’: the site hosting the condensate is chosen neither uniformly at random, nor is it fixed by the disorder realization. Throughout the article, our heuristic arguments are complemented with direct Monte Carlo simulations.

  7. Buoyancy effects on the vapor condensation rate on a horizontal liquid surface

    NASA Technical Reports Server (NTRS)

    Hasan, Mohammad M.; Lin, Chin-Shun

    1989-01-01

    The results are presented of a numerical study of the effects of buoyancy on the direct condensation of saturated or nearly saturated vapor on a horizontal liquid surface in a cylindrical tank. The liquid motion beneath the liquid-vapor interface is induced by an axisymmetric laminar jet of subcooled liquid. Analysis and numerical results show that the dominant parameter which determines the influence of buoyancy on the condensation rate is the Richardson number. However, the effect of buoyancy on the condensation rate cannot be quantified in terms of the Richardson number alone. The critical value of the Richardson number below which the condensation rate is not significantly reduced depends on the Reynolds number as well as the Prandtl number.

  8. Synchronization crossover of polariton condensates in weakly disordered lattices

    NASA Astrophysics Data System (ADS)

    Ohadi, H.; del Valle-Inclan Redondo, Y.; Ramsay, A. J.; Hatzopoulos, Z.; Liew, T. C. H.; Eastham, P. R.; Savvidis, P. G.; Baumberg, J. J.

    2018-05-01

    We demonstrate that the synchronization of a lattice of solid-state condensates when intersite tunneling is switched on depends strongly on the weak local disorder. This finding is vital for implementation of condensate arrays as computation devices. The condensates here are nonlinear bosonic fluids of exciton-polaritons trapped in a weakly disordered Bose-Hubbard potential, where the nearest-neighboring tunneling rate (Josephson coupling) can be dynamically tuned. The system can thus be tuned from a localized to a delocalized fluid as the number density or the Josephson coupling between nearest neighbors increases. The localized fluid is observed as a lattice of unsynchronized condensates emitting at different energies set by the disorder potential. In the delocalized phase, the condensates synchronize and long-range order appears, evidenced by narrowing of momentum and energy distributions, new diffraction peaks in momentum space, and spatial coherence between condensates. Our paper identifies similarities and differences of this nonequilibrium crossover to the traditional Bose-glass to superfluid transition in atomic condensates.

  9. Pressurization of a Flightweight, Liquid Hydrogen Tank: Evaporation & Condensation at a Liquid/Vapor Interface

    NASA Technical Reports Server (NTRS)

    Stewart, Mark E. M.

    2017-01-01

    This paper presents an analysis and simulation of evaporation and condensation at a motionless liquid/vapor interface. A 1-D model equation, emphasizing heat and mass transfer at the interface, is solved in two ways, and incorporated into a subgrid interface model within a CFD simulation. Simulation predictions are compared with experimental data from the CPST Engineering Design Unit tank, a cryogenic fluid management test tank in 1-g. The numerical challenge here is the physics of the liquid/vapor interface; pressurizing the ullage heats it by several degrees, and sets up an interfacial temperature gradient that transfers heat to the liquid phase-the rate limiting step of condensation is heat conducted through the liquid and vapor. This physics occurs in thin thermal layers O(1 mm) on either side of the interface which is resolved by the subgrid interface model. An accommodation coefficient of 1.0 is used in the simulations which is consistent with theory and measurements. This model is predictive of evaporation/condensation rates, that is, there is no parameter tuning.

  10. Effect of Liquid Surface Turbulent Motion on the Vapor Condensation in a Mixing Tank

    NASA Technical Reports Server (NTRS)

    Lin, C. S.; Hasan, M. M.

    1991-01-01

    The effect of liquid surface motion on the vapor condensation in a tank mixed by an axial turbulent jet is numerically investigated. The average value (over the interface area) of the root-mean-squared (rms) turbulent velocity at the interface is shown to be linearly increasing with decreasing liquid height and increasing jet diameter for a given tank size. The average rms turbulent velocity is incorporated in Brown et al. (1990) condensation correlation to predict the condensation of vapor on a liquid surface. The results are in good agreement with available condensation data.

  11. Evaporation and condensation at a liquid surface. II. Methanol

    NASA Astrophysics Data System (ADS)

    Matsumoto, Mitsuhiro; Yasuoka, Kenji; Kataoka, Yosuke

    1994-11-01

    The rates of evaporation and condensation of methanol under the vapor-liquid equilibrium condition at the temperature of 300 and 350 K are investigated with a molecular dynamics computer simulation. Compared with the argon system (reported in part I), the ratio of self-reflection is similar (˜10%), but the ratio of molecule exchange is several times larger than the argon, which suggests that the conventional assumption of condensation as a unimolecular process completely fails for associating fluids. The resulting total condensation coefficient is 20%-25%, and has a quantitative agreement with a recent experiment. The temperature dependence of the evaporation-condensation behavior is not significant.

  12. Mixing and transient interface condensation of a liquid hydrogen tank

    NASA Technical Reports Server (NTRS)

    Lin, C. S.; Hasan, M. M.; Nyland, T. W.

    1993-01-01

    Experiments were conducted to investigate the effect of axial jet-induced mixing on the pressure reduction of a thermally stratified liquid hydrogen tank. The tank was nearly cylindrical, having a volume of about 0.144 cu m with 0.559 m in diameter and 0.711 m length. A mixer/pump unit, which had a jet nozzle outlet of 0.0221 m in diameter was located 0.178 m from the tank bottom and was installed inside the tank to generate the axial jet mixing and tank fluid circulation. Mixing tests began with the tank pressures at which the thermal stratification results in 4.9-6.2 K liquid subcooling. The mixing time and transient vapor condensation rate at the liquid-vapor interface are determined. Two mixing time correlations, based on the thermal equilibrium and pressure equilibrium, are developed and expressed as functions of system and buoyancy parameters. The limited liquid hydrogen data of the present study shows that the modified steady state condensation rate correlation may be used to predict the transient condensation rate in a mixing process if the instantaneous values of jet sub cooling and turbulence intensity at the interface are employed.

  13. Rate correlation for condensation of pure vapor on turbulent, subcooled liquid

    NASA Technical Reports Server (NTRS)

    Brown, J. Steven; Khoo, Boo Cheong; Sonin, Ain A.

    1990-01-01

    An empirical correlation is presented for the condensation of pure vapor on a subcooled, turbulent liquid with a shear-free interface. The correlation expresses the dependence of the condensation rate on fluid properties, on the liquid-side turbulence (which is imposed from below), and on the effects of buoyancy in the interfacial thermal layer. The correlation is derived from experiments with steam and water, but under conditions which simulate typical cryogenic fluids.

  14. Mixing and transient interface condensation of a liquid hydrogen tank

    NASA Technical Reports Server (NTRS)

    Lin, C. S.; Hasan, M. M.; Nyland, T. W.

    1993-01-01

    Experiments were conducted to investigate the effect of axial jet-induced mixing on the pressure reduction of a thermally stratified liquid hydrogen tank. The tank was nearly cylindrical, having a volume of about 0.144 cu m with 0.559 m in diameter and 0.711 m long. A mixer/pump unit, which had a jet nozzle outlet of 0.0221 m in diameter was located 0.178 m from the tank bottom and was installed inside the tank to generate the axial jet mixing and tank fluid circulation. The liquid fill and jet flow rate ranged from 42 to 85 percent (by volume) and 0.409 to 2.43 cu m/hr, respectively. Mixing tests began with the tank pressure ranging from 187.5 to 238.5 kPa at which the thermal stratification results in 4.9 to 6.2 K liquid sub cooling. The mixing time and transient vapor condensation rate at the liquid-vapor interface are determined. Two mixing time correlations, based on the thermal equilibrium and pressure equilibrium, are developed. Both mixing time correlations are expressed as functions of system and buoyancy parameters and compared well with other experimental data. The steady state condensation rate correlation of Sonin et al. based on steam-water data is modified and expressed as a function of jet subcooling. The limited liquid hydrogen data of the present study shows that the modified steady state condensation rate correlation may be used to predict the transient condensation rate in a mixing process if the instantaneous values of jet sub cooling and turbulence intensity at the interface are employed.

  15. Pressurization of a Flightweight, Liquid Hydrogen Tank: Evaporation and Condensation at a Liquid Vapor Interface

    NASA Technical Reports Server (NTRS)

    Stewart, Mark

    2017-01-01

    Evaporation and condensation at a liquid-vapor interface is important for long-term, in-space cryogenic propellant storage. Yet the current understanding of inter-facial physics does not consistently predict behavior of evaporation or condensation rates. The proposed paper will present a physical model, based on the 1-D Heat equation and Schrage's equation, which demonstrates thin thermal layers at the fluid vapor interface.

  16. The use of chilled condensers for the recovery of perfluorocarbon liquid in an experimental model of perfluorocarbon vapour loss during neonatal partial liquid ventilation

    PubMed Central

    Dunster, Kimble R; Davies, Mark W; Fraser, John F

    2007-01-01

    Background Perfluorocarbon (PFC) vapour in the expired gases during partial liquid ventilation should be prevented from entering the atmosphere and recovered for potential reuse. This study aimed to determine how much PFC liquid could be recovered using a conventional humidified neonatal ventilator with chilled condensers in place of the usual expiratory ventilator circuit and whether PFC liquid could be recovered when using the chilled condensers at the ventilator exhaust outlet. Methods Using a model lung, perfluorocarbon vapour loss during humidified partial liquid ventilation of a 3.5 kg infant was approximated. For each test 30 mL of FC-77 was infused into the model lung. Condensers were placed in the expiratory limb of the ventilator circuit and the amounts of PFC (FC-77) and water recovered were measured five times. This was repeated with the condensers placed at the ventilator exhaust outlet. Results When the condensers were used as the expiratory limb, the mean (± SD) volume of FC77 recovered was 16.4 mL (± 0.18 mL). When the condensers were connected to the ventilator exhaust outlet the mean (± SD) volume of FC-77 recovered was 7.6 mL (± 1.14 mL). The volume of FC-77 recovered was significantly higher when the condenser was used as an expiratory limb. Conclusion Using two series connected condensers in the ventilator expiratory line 55% of PFC liquid (FC-77) can be recovered during partial liquid ventilation without altering the function of the of the ventilator circuit. This volume of PFC recovered was just over twice that recovered with the condensers connected to the ventilator exhaust outlet. PMID:17537270

  17. Method for analyzing the chemical composition of liquid effluent from a direct contact condenser

    DOEpatents

    Bharathan, Desikan; Parent, Yves; Hassani, A. Vahab

    2001-01-01

    A computational modeling method for predicting the chemical, physical, and thermodynamic performance of a condenser using calculations based on equations of physics for heat, momentum and mass transfer and equations of equilibrium thermodynamics to determine steady state profiles of parameters throughout the condenser. The method includes providing a set of input values relating to a condenser including liquid loading, vapor loading, and geometric characteristics of the contact medium in the condenser. The geometric and packing characteristics of the contact medium include the dimensions and orientation of a channel in the contact medium. The method further includes simulating performance of the condenser using the set of input values to determine a related set of output values such as outlet liquid temperature, outlet flow rates, pressures, and the concentration(s) of one or more dissolved noncondensable gas species in the outlet liquid. The method may also include iteratively performing the above computation steps using a plurality of sets of input values and then determining whether each of the resulting output values and performance profiles satisfies acceptance criteria.

  18. Condensation on a noncollapsing vapor bubble in a subcooled liquid

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.; Simoneau, R. J.

    1979-01-01

    An experimental procedure is presented by which an estimate can be made of the condensation coefficient on a noncollapsing stationary vapor bubble in subcooled liquid nitrogen. Film boiling from a thin wire was used to generate vapor bubbles which remain fixed to the wire at their base. A balance was established between the evaporation in the thin annular region along the wire and the condensation in the vapor bubbles.

  19. Vapor condensation onto a non-volatile liquid drop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inci, Levent; Bowles, Richard K., E-mail: richard.bowles@usask.ca

    2013-12-07

    Molecular dynamics simulations of miscible and partially miscible binary Lennard–Jones mixtures are used to study the dynamics and thermodynamics of vapor condensation onto a non-volatile liquid drop in the canonical ensemble. When the system volume is large, the driving force for condensation is low and only a submonolayer of the solvent is adsorbed onto the liquid drop. A small degree of mixing of the solvent phase into the core of the particles occurs for the miscible system. At smaller volumes, complete film formation is observed and the dynamics of film growth are dominated by cluster-cluster coalescence. Mixing into the coremore » of the droplet is also observed for partially miscible systems below an onset volume suggesting the presence of a solubility transition. We also develop a non-volatile liquid drop model, based on the capillarity approximations, that exhibits a solubility transition between small and large drops for partially miscible mixtures and has a hysteresis loop similar to the one observed in the deliquescence of small soluble salt particles. The properties of the model are compared to our simulation results and the model is used to study the formulation of classical nucleation theory for systems with low free energy barriers.« less

  20. Evaporation and condensation at a liquid surface. I. Argon

    NASA Astrophysics Data System (ADS)

    Yasuoka, Kenji; Matsumoto, Mitsuhiro; Kataoka, Yosuke

    1994-11-01

    Molecular dynamics computer simulations were carried out to investigate the dynamics of evaporation and condensation for argon at the temperature of 80 and 100 K. From the decrease of the survival probability of vapor molecules, the ratio of self reflection to collision is estimated to be 12%-15%, only weakly dependent on the temperature. This suggests that argon vapor molecules are in the condition of almost complete capture, and the condensation is considered to be a barrierless process. The total ratio of reflection which is evaluated with the flux correlation of condensation and evaporation is 20% at both temperature. The difference between these two ratios of reflection is ascribed to a phenomenon that vapor molecules colliding with the surface drive out other liquid molecules. This molecule exchange at the surface is as important as the self-reflection, and the conventional picture of condensation as a unimolecular chemical reaction is not appropriate.

  1. Quantum gas-liquid condensation in an attractive Bose gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koh, Shun-ichiro

    Gas-liquid condensation (GLC) in an attractive Bose gas is studied on the basis of statistical mechanics. Using some results in combinatorial mathematics, the following are derived. (1) With decreasing temperature, the Bose-statistical coherence grows in the many-body wave function, which gives rise to the divergence of the grand partition function prior to Bose-Einstein condensation. It is a quantum-mechanical analogue to the GLC in a classical gas (quantum GLC). (2) This GLC is triggered by the bosons with zero momentum. Compared with the classical GLC, an incomparably weaker attractive force creates it. For the system showing the quantum GLC, we discussmore » a cold helium 4 gas at sufficiently low pressure.« less

  2. Vapor condensation on liquid surface due to laminar jet-induced mixing: The effects of system parameters

    NASA Technical Reports Server (NTRS)

    Lin, Chin-Shun; Hasan, Mohammad M.

    1989-01-01

    The effects of system parameters on the interface condensation rate in a laminar jet induced mixing tank are numerically studied. The physical system consists of a partially filled cylindrical tank with a slightly subcooled jet discharged from the center of the tank bottom toward the liquid-vapor interface which is at a saturation temperature corresponding to the constant tank pressure. Liquid is also withdrawn from the outer part of the tank bottom to maintain the constant liquid level. The jet velocity is selected to be low enough such that the free surface is approximately flat. The effect of vapor superheat is assumed to be negligible. Therefore, the interface condensation rate can be determined from the resulting temperature field in the liquid region alone. The nondimensional form of the steady state conservation equations are solved by a finite difference method for various system parameters including liquid height to tank diameter ratio, tank to jet diameter ratio, liquid inflow to outflow area ratio, and a heat leak parameter which characterizes the uniform wall heat flux. Detailed analyses based on the numerical solutions are performed and simplified equations are suggested for the prediction of condensation rate.

  3. Condensation of acetol and acetic acid vapor with sprayed liquid

    USDA-ARS?s Scientific Manuscript database

    A cellulose-derived fraction of biomass pyrolysis vapor was simulated by evaporating acetol and acetic acid (AA) from flasks on a hot plate. The liquid in the flasks was infused with heated nitrogen. The vapor/nitrogen stream was superheated in a tube oven and condensed by contact with a cloud of ...

  4. Numerical studies of the effects of jet-induced mixing on liquid-vapor interface condensation

    NASA Technical Reports Server (NTRS)

    Lin, Chin-Shun

    1989-01-01

    Numerical solutions of jet-induced mixing in a partially full cryogenic tank are presented. An axisymmetric laminar jet is discharged from the central part of the tank bottom toward the liquid-vapor interface. Liquid is withdrawn at the same volume flow rate from the outer part of the tank. The jet is at a temperature lower than the interface, which is maintained at a certain saturation temperature. The interface is assumed to be flat and shear-free and the condensation-induced velocity is assumed to be negligibly small compared with radial interface velocity. Finite-difference method is used to solve the nondimensional form of steady state continuity, momentum, and energy equations. Calculations are conducted for jet Reynolds numbers ranging from 150 to 600 and Prandtl numbers ranging from 0.85 to 2.65. The effects of above stated parameters on the condensation Nusselt and Stanton numbers which characterize the steady-state interface condensation process are investigated. Detailed analysis to gain a better understanding of the fundamentals of fluid mixing and interface condensation is performed.

  5. Colloidal gas-liquid condensation of polystyrene latex particles with intermediate kappa a values (5 to 160, a > kappa(-1)).

    PubMed

    Ishikawa, Masamichi; Kitano, Ryota

    2010-02-16

    Polystyrene latex particles showed gas-liquid condensation under the conditions of large particle radius (a > kappa(-1)) and intermediate kappa a, where kappa is the Debye-Hückel parameter and a is the particle radius. The particles were dissolved in deionized water containing ethanol from 0 to 77 vol %, settled to the bottom of the glass plate within 1 h, and then laterally moved toward the center of a cell over a 20 h period in reaching a state of equilibrium condensation. All of the suspensions that were 1 and 3 microm in diameter and 0.01-0.20 vol % in concentration realized similar gas-liquid condensation with clear gas-liquid boundaries. In 50 vol % ethanol solvent, additional ethanol was added to enhance the sedimentation force so as to restrict the particles in a monoparticle layer thickness. The coexistence of gas-liquid-solid (crystalline solid) was microscopically recognized from the periphery to the center of the condensates. A phase diagram of the gas-liquid condensation was created as a function of KCl concentration at a particle diameter of 3 microm, 0.10 vol % concentration, and 50:50 water/ethanol solvent at room temperature. The miscibility gap was observed in the concentration range from 1 to 250 microM. There was an upper limit of salt concentration where the phase separation disappeared, showing nearly critical behavior of macroscopic density fluctuation from 250 microM to 1 mM. These results add new experimental evidence to the existence of colloidal gas-liquid condensation and specify conditions of like-charge attraction between particles.

  6. Harvesting liquid from unsaturated vapor - nanoflows induced by capillary condensation

    NASA Astrophysics Data System (ADS)

    Vincent, Olivier; Marguet, Bastien; Stroock, Abraham

    2016-11-01

    A vapor, even subsaturated, can spontaneously form liquid in nanoscale spaces. This process, known as capillary condensation, plays a fundamental role in various contexts, such as the formation of clouds or the dynamics of hydrocarbons in the geological subsurface. However, large uncertainties remain on the thermodynamics and fluid mechanics of the phenomenon, due to experimental challenges as well as outstanding questions about the validity of macroscale physics at the nanometer scale. We studied experimentally the spatio-temporal dynamics of water condensation in a model nanoporous medium (pore radius 2 nm), taking advantage of the color change of the material upon hydration. We found that at low relative humidities (< 60 % RH), capillary condensation progressed in a diffusive fashion, while it occurred through a well-defined capillary-viscous imbibition front at > 60 % RH, driven by a balance between the pore capillary pressure and the condensation stress given by Kelvin equation. Further analyzing the imbibition dynamics as a function of saturation allowed us to extract detailed information about the physics of nano-confined fluids. Our results suggest excellent extension of macroscale fluid dynamics and thermodynamics even in pores 10 molecules in diameter.

  7. Quantum liquid droplets in a mixture of Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Cabrera, C. R.; Tanzi, L.; Sanz, J.; Naylor, B.; Thomas, P.; Cheiney, P.; Tarruell, L.

    2018-01-01

    Quantum droplets are small clusters of atoms self-bound by the balance of attractive and repulsive forces. Here, we report on the observation of droplets solely stabilized by contact interactions in a mixture of two Bose-Einstein condensates. We demonstrate that they are several orders of magnitude more dilute than liquid helium by directly measuring their size and density via in situ imaging. We show that the droplets are stablized against collapse by quantum fluctuations and that they require a minimum atom number to be stable. Below that number, quantum pressure drives a liquid-to-gas transition that we map out as a function of interaction strength. These ultradilute isotropic liquids remain weakly interacting and constitute an ideal platform to benchmark quantum many-body theories.

  8. Dynamic d-symmetry Bose condensate of a planar-large-bipolaron liquid in cuprate superconductors

    NASA Astrophysics Data System (ADS)

    Emin, David

    2017-11-01

    Planar-large-bipolarons can form if the ratio of the surrounding mediums' static to high-frequency dielectric constants is especially large, ε0/ε∞ >> 2. A large-bipolaron in p-doped La2CuO4 is modelled as two electrons being removed from the out-of-plane orbitals of four oxygen ions circumscribed by four copper ions of a CuO2 layer. These oxygen dianions relax inwardly as they donate electrons to the surrounding outwardly relaxing copper cations. This charge transfer generates the strong in-plane electron-lattice interaction needed to stabilise a large-bipolaron with respect to decomposing into polarons. The lowest-energy radial in-plane optic vibration of a large-bipolaron's four core oxygen ions with their associated electronic charges has d-symmetry. Electronic relaxation in response to multiple large-bipolarons' atomic vibrations lowers their frequencies to generate a phonon-mediated attraction among them which fosters their condensation into a liquid. This liquid features distinctive transport and optical properties. A large-bipolaron liquid's superconductivity can result when it undergoes a Bose condensation yielding macroscopic occupation of its ground state. The synchronised vibrations of large-bipolarons' core-oxygen ions with their electronic charges generate this Bose condensate's dynamic global d-symmetry.

  9. Bio-oil fractionation and condensation

    DOEpatents

    Brown, Robert C; Jones, Samuel T; Pollard, Anthony

    2013-07-02

    A method of fractionating bio-oil vapors which involves providing bio-oil vapors comprising bio-oil constituents is described. The bio-oil vapors are cooled in a first stage which comprises a condenser having passages for the bio-oil separated by a heat conducting wall from passages for a coolant. The coolant in the condenser of the first stage is maintained at a substantially constant temperature, set at a temperature in the range of 75 to 100.degree. C., to condense a first liquid fraction of liquefied bio-oil constituents in the condenser of the first stage. The first liquid fraction of liquified bio-oil constituents from the condenser in the first stage is collected. Also described are steps for subsequently recovering further liquid fractions of liquefied bio-oil constituents. Particular compositions of bio-oil condensation products are also described.

  10. The Stationary Condensation and Radial Outflow of a Liquid Film on a Horizontal Disk

    NASA Technical Reports Server (NTRS)

    Bolshinskiy, Leonid; Frenkel, Alexander

    2008-01-01

    The application of capillary screen liquid acquisition devices to space-based cryogenic propulsion systems is expected to necessitate thermodynamic conditioning in order to stabilize surface tension retention characteristics. The present results have been obtained in the framework of the research of low gravity condensation-flow processes for conditioning cryogenic liquid acquisition devices. The following system is studied: On the top of a subcooled horizontal disk, a liquid film condenses from the ambient saturated vapor. The liquid is forcedly removed at the disk edge, and there is an outward radial flow of the film. Stationary regimes of the flow are uncovered such that (i) the gravity is negligible, being eclipsed by the capillary forces; (ii) the film thickness is everywhere much smaller than the disk radius; and (iii) the slow-flow lubrication approximation is valid. A nonlinear differential equation for the film thickness as a function of the radial coordinate is obtained. The (two-dimensional) fields of velocities, temperature and pressure in the film are explicitly determined by the radial profile of its thickness. The equilibrium is controlled by two parameters: (i) the vapor-disk difference of temperatures and (ii) the liquid exhaust rate. For the flow regimes with a nearly uniform film thickness, the governing equation linearizes, and the film interface is analytically predicted to have a concave-up quartic parabola profile. Thus, perhaps counter-intuitively, the liquid film is thicker at the edge and thinner at the center of the disk.

  11. Bio-oil fractionation and condensation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Robert C.; Jones, Samuel T.; Pollard, Anthony

    The present invention relates to a method of fractionating bio-oil vapors which involves providing bio-oil vapors comprising bio-oil constituents. The bio-oil vapors are cooled in a first stage which comprises a condenser having passages for the bio-oil separated by a heat conducting wall from passages for a coolant. The coolant in the condenser of the first stage is maintained at a substantially constant temperature, set at a temperature in the range of 75 to 100.degree. C., to condense a first liquid fraction of liquefied bio-oil constituents in the condenser of the first stage. The first liquid fraction of liquified bio-oilmore » constituents from the condenser in the first stage is collected. Also disclosed are steps for subsequently recovering further liquid fractions of liquefied bio-oil constituents. Particular compositions of bio-oil condensation products are also described.« less

  12. WARM-LIQUID DEFROST FOR COMMERCIAL FOOD DISPLAY CASES: EXPERIMENTAL INVESTIGATION AT 32.2 DEGREES C CONDENSING

    EPA Science Inventory

    The paper gives results of an experimental investigation at 32.2 C condensing of warm-liquid defrost for commercial food display cases. A refrigeration test rig with two open cases and two reach-in cases was tested using warm-liquid defrost (WLD) at -34.4 C evaporating, 32.2 C co...

  13. Direct condensation refrigerant recovery and restoration system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grant, D.C.H.

    1992-03-10

    This patent describes a refrigerant recovery and purification system for removing gaseous refrigerant from a disabled refrigeration unit, cleaning the refrigerant of contaminants, and converting the gaseous refrigerant to a liquid state for storage. It comprises a low pressure inlet section; a high pressure storage section; the low pressure inlet section comprising: an oil and refrigerant gas separator, including a separated oil removal means, first conduit means for connecting an inlet of the separator to the disabled refrigerant unit, a slack-sided accumulator, second conduit means connecting the separator to the slack-sided accumulator, a reclaim condenser, third conduit means connecting themore » separator and the reclaim condenser in series, an evaporator coil in the reclaim condenser connectable to a conventional operating refrigeration system for receiving a liquid refrigerant under pressure for expansion therein, the evaporator coil forming a condensing surface for condensing the refrigerant gas at near atmospheric pressure in the condenser, a liquid receiver, a reclaimed refrigerant storage tank, fourth conduit means further connecting the liquid receiver in series with the reclaim condenser, downstream thereof, means between the reclaim condenser and the liquid receiver.« less

  14. Simulation of condensation and liquid break-up on a micro-object with upper and lower movable walls using Lattice Boltzmann Method

    NASA Astrophysics Data System (ADS)

    Asadollahi, Arash; Esmaeeli, Asghar

    2018-05-01

    In this paper, two-dimensional condensation, liquid behavior on the micro-object with moving walls, and breaking up have been investigated by the Shan and Chen multiphase Lattice Boltzmann Method (LBM), which has the ability to incorporate interactions such as fluid-fluid, and also fluid-solid. Four test cases with low, medium, high, and very high Weber numbers are investigated considering the velocity control of walls in detail. Vertical spread fraction n / h (where n is the minimum liquid thickness after deformation and h is the maximum length of liquid deformation in each time) decreases quickly indicating the liquid tendency to breakup in all cases. Except for the case of a very high Weber number, the separation will not happen and finally after fluctuation the fixed bulk of condensed liquid will be placed on the side of the micro-object. The maximum value of reaction parameter h / d becomes larger as the Weber number increases. It is shown that an increase in the Weber number leads to liquid breakup and this mechanism provides an effective way for removing the condensed liquid from micro-devices surfaces. The results by LBM reveal the liquid evolutionary behavior and breaking up over time and show that it is a controllable situation by manipulating the walls velocity. Moreover, it can be used in order to centralize and aggregate all the liquid to a specific direction.

  15. Method and apparatus for high-efficiency direct contact condensation

    DOEpatents

    Bharathan, Desikan; Parent, Yves; Hassani, A. Vahab

    1999-01-01

    A direct contact condenser having a downward vapor flow chamber and an upward vapor flow chamber, wherein each of the vapor flow chambers includes a plurality of cooling liquid supplying pipes and a vapor-liquid contact medium disposed thereunder to facilitate contact and direct heat exchange between the vapor and cooling liquid. The contact medium includes a plurality of sheets arranged to form vertical interleaved channels or passageways for the vapor and cooling liquid streams. The upward vapor flow chamber also includes a second set of cooling liquid supplying pipes disposed beneath the vapor-liquid contact medium which operate intermittently in response to a pressure differential within the upward vapor flow chamber. The condenser further includes separate wells for collecting condensate and cooling liquid from each of the vapor flow chambers. In alternate embodiments, the condenser includes a cross-current flow chamber and an upward flow chamber, a plurality of upward flow chambers, or a single upward flow chamber. The method of use of the direct contact condenser of this invention includes passing a vapor stream sequentially through the downward and upward vapor flow chambers, where the vapor is condensed as a result of heat exchange with the cooling liquid in the contact medium. The concentration of noncondensable gases in the resulting condensate-liquid mixtures can be minimized by controlling the partial pressure of the vapor, which depends in part upon the geometry of the vapor-liquid contact medium. In another aspect of this invention, the physical and chemical performance of a direct contact condenser can be predicted based on the vapor and coolant compositions, the condensation conditions. and the geometric properties of the contact medium.

  16. Method and apparatus for high-efficiency direct contact condensation

    DOEpatents

    Bharathan, D.; Parent, Y.; Hassani, A.V.

    1999-07-20

    A direct contact condenser having a downward vapor flow chamber and an upward vapor flow chamber, wherein each of the vapor flow chambers includes a plurality of cooling liquid supplying pipes and a vapor-liquid contact medium disposed thereunder to facilitate contact and direct heat exchange between the vapor and cooling liquid. The contact medium includes a plurality of sheets arranged to form vertical interleaved channels or passageways for the vapor and cooling liquid streams. The upward vapor flow chamber also includes a second set of cooling liquid supplying pipes disposed beneath the vapor-liquid contact medium which operate intermittently in response to a pressure differential within the upward vapor flow chamber. The condenser further includes separate wells for collecting condensate and cooling liquid from each of the vapor flow chambers. In alternate embodiments, the condenser includes a cross-current flow chamber and an upward flow chamber, a plurality of upward flow chambers, or a single upward flow chamber. The method of use of the direct contact condenser of this invention includes passing a vapor stream sequentially through the downward and upward vapor flow chambers, where the vapor is condensed as a result of heat exchange with the cooling liquid in the contact medium. The concentration of noncondensable gases in the resulting condensate-liquid mixtures can be minimized by controlling the partial pressure of the vapor, which depends in part upon the geometry of the vapor-liquid contact medium. In another aspect of this invention, the physical and chemical performance of a direct contact condenser can be predicted based on the vapor and coolant compositions, the condensation conditions, and the geometric properties of the contact medium. 39 figs.

  17. Acoustically-Enhanced Direct Contact Vapor Bubble Condensation

    NASA Astrophysics Data System (ADS)

    Boziuk, Thomas; Smith, Marc; Glezer, Ari

    2017-11-01

    Rate-limited, direct contact vapor condensation of vapor bubbles that are formed by direct steam injection through a nozzle in a quiescent subcooled liquid bath is accelerated using ultrasonic (MHz-range) actuation. A submerged, low power actuator produces an acoustic beam whose radiation pressure deforms the liquid-vapor interface, leading to the formation of a liquid spear that penetrates the vapor bubble to form a vapor torus with a significantly larger surface area and condensation rate. Ultrasonic focusing along the spear leads to the ejection of small, subcooled droplets through the vapor volume that impact the vapor-liquid interface and further enhance the condensation. High-speed Schlieren imaging of the formation and collapse of the vapor bubbles in the absence and presence of actuation shows that the impulse associated with the collapse of the toroidal volume leads to the formation of a turbulent vortex ring in the liquid phase. Liquid motions near the condensing vapor volume are investigated in the absence and presence of acoustic actuation using high-magnification PIV and show the evolution of a liquid jet through the center of the condensing toroidal volume and the formation and advection of vortex ring structures whose impulse appear to increase with temperature difference between the liquid and vapor phases. High-speed image processing is used to assess the effect of the actuation on the temporal and spatial variations in the characteristic scales and condensation rates of the vapor bubbles.

  18. On the early and developed stages of surface condensation: competition mechanism between interfacial and condensate bulk thermal resistances.

    PubMed

    Sun, Jie; Wang, Hua Sheng

    2016-10-10

    We use molecular dynamics simulation to investigate the early and developed stages of surface condensation. We find that the liquid-vapor and solid-liquid interfacial thermal resistances depend on the properties of solid and fluid, which are time-independent, while the condensate bulk thermal resistance depends on the condensate thickness, which is time-dependent. There exists intrinsic competition between the interfacial and condensate bulk thermal resistances in timeline and the resultant total thermal resistance determines the condensation intensity for a given vapor-solid temperature difference. We reveal the competition mechanism that the interfacial thermal resistance dominates at the onset of condensation and holds afterwards while the condensate bulk thermal resistance gradually takes over with condensate thickness growing. The weaker the solid-liquid bonding, the later the takeover occurs. This competition mechanism suggests that only when the condensate bulk thermal resistance is reduced after it takes over the domination can the condensation be effectively intensified. We propose a unified theoretical model for the thermal resistance analysis by making dropwise condensation equivalent to filmwise condensation. We further find that near a critical point (contact angle being ca. 153°) the bulk thermal resistance has the least opportunity to take over the domination while away from it the probability increases.

  19. On the early and developed stages of surface condensation: competition mechanism between interfacial and condensate bulk thermal resistances

    PubMed Central

    Sun, Jie; Wang, Hua Sheng

    2016-01-01

    We use molecular dynamics simulation to investigate the early and developed stages of surface condensation. We find that the liquid-vapor and solid-liquid interfacial thermal resistances depend on the properties of solid and fluid, which are time-independent, while the condensate bulk thermal resistance depends on the condensate thickness, which is time-dependent. There exists intrinsic competition between the interfacial and condensate bulk thermal resistances in timeline and the resultant total thermal resistance determines the condensation intensity for a given vapor-solid temperature difference. We reveal the competition mechanism that the interfacial thermal resistance dominates at the onset of condensation and holds afterwards while the condensate bulk thermal resistance gradually takes over with condensate thickness growing. The weaker the solid-liquid bonding, the later the takeover occurs. This competition mechanism suggests that only when the condensate bulk thermal resistance is reduced after it takes over the domination can the condensation be effectively intensified. We propose a unified theoretical model for the thermal resistance analysis by making dropwise condensation equivalent to filmwise condensation. We further find that near a critical point (contact angle being ca. 153°) the bulk thermal resistance has the least opportunity to take over the domination while away from it the probability increases. PMID:27721397

  20. Freeze-Tolerant Condensers

    NASA Technical Reports Server (NTRS)

    Crowley, Christopher J.; Elkouhk, Nabil

    2004-01-01

    Two condensers designed for use in dissipating heat carried by working fluids feature two-phase, self-adjusting configurations such that their working lengths automatically vary to suit their input power levels and/or heat-sink temperatures. A key advantage of these condensers is that they can function even if the temperatures of their heat sinks fall below the freezing temperatures of their working fluids and the fluids freeze. The condensers can even be restarted from the frozen condition. The top part of the figure depicts the layout of the first condenser. A two-phase (liquid and vapor) condenser/vapor tube is thermally connected to a heat sink typically, a radiatively or convectively cooled metal panel. A single-phase (liquid) condensate-return tube (return artery) is also thermally connected to the heat sink. At intervals along their lengths, the condenser/vapor tube and the return artery are interconnected through porous plugs. This condenser configuration affords tolerance of freezing, variable effective thermal conductance (such that the return temperature remains nearly constant, independently of the ultimate sink temperature), and overall pressure drop smaller than it would be without the porous interconnections. An additional benefit of this configuration is that the condenser can be made to recover from the completely frozen condition either without using heaters, or else with the help of heaters much smaller than would otherwise be needed. The second condenser affords the same advantages and is based on a similar principle, but it has a different configuration that affords improved flow of working fluid, simplified construction, reduced weight, and faster recovery from a frozen condition.

  1. Propagation of a dark soliton in a disordered Bose-Einstein condensate.

    PubMed

    Bilas, Nicolas; Pavloff, Nicolas

    2005-09-23

    We consider the propagation of a dark soliton in a quasi-1D Bose-Einstein condensate in presence of a random potential. This configuration involves nonlinear effects and disorder, and we argue that, contrarily to the study of stationary transmission coefficients through a nonlinear disordered slab, it is a well-defined problem. It is found that a dark soliton decays algebraically, over a characteristic length which is independent of its initial velocity, and much larger than both the healing length and the 1D scattering length of the system. We also determine the characteristic decay time.

  2. Propagation of a Dark Soliton in a Disordered Bose-Einstein Condensate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bilas, Nicolas; Pavloff, Nicolas

    2005-09-23

    We consider the propagation of a dark soliton in a quasi-1D Bose-Einstein condensate in presence of a random potential. This configuration involves nonlinear effects and disorder, and we argue that, contrarily to the study of stationary transmission coefficients through a nonlinear disordered slab, it is a well-defined problem. It is found that a dark soliton decays algebraically, over a characteristic length which is independent of its initial velocity, and much larger than both the healing length and the 1D scattering length of the system. We also determine the characteristic decay time.

  3. Visualization investigation on flowing condensation in horizontal small channels with liquid separator

    NASA Astrophysics Data System (ADS)

    Zhang, Xuan; Jia, Li; Dang, Chao; Peng, Qi

    2018-02-01

    A simultaneous visualization and measurement experiment was carried out to investigate condensation flow patterns and condensing heat transfer characteristics of refrigerant R141b in parallel horizontal multi-channels with liquid-vapor separator. The hydraulic diameter of each channel was 1.5 mm and the channel length was 100 mm. The refrigerant vapor flowing in the small channels was cooled by cooling water. The parallel horizontal multi- channels were covered with a transparent silica glass for visualization of flow patterns. Experiments were performed at different inlet superheat temperatures (ranging from 3°C to 7°C). Mass velocity was in the range of 82.37 kg m-2s-1 to 35.56 kg m-2s-1. It was found that there were three different flow patterns through the multi- channels with the increase of mass velocity. The flow patterns in each channel pass almost tended to be same and all of them were annular flows. The efficiency of the liquid-vapor separator with U-type was related to vapor mass velocity and the pressure in the small channels. It was also found that the heat transfer coefficient increased with the increase of the mass velocity while the cooling water mass flow rate increased. It increased to a top point and then decreased. It increased with the increase of superheat in the low superheat temperature region.

  4. Organization out of disorder: liquid-liquid phase separation in plants.

    PubMed

    Cuevas-Velazquez, Cesar L; Dinneny, José R

    2018-05-30

    Membraneless compartments are formed from the dynamic physical association of proteins and RNAs through liquid-liquid phase separation, and have recently emerged as an exciting new mechanism to explain the dynamic organization of biochemical processes in the cell. In this review, we provide an overview of the current knowledge of the process of phase separation in plants and other eukaryotes. We discuss specific examples of liquid-like membraneless compartments found in green plants, their composition, and the intriguing prevalence of proteins with intrinsically disordered domains. Finally, we speculate on the function of disordered proteins in regulating the formation of membraneless compartments and how their conformational flexibility may be important for molecular memory and for sensing perturbations in the physicochemical environment of the cell, particularly important processes in sessile organisms. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. An extensive study of Bose-Einstein condensation in liquid helium using Tsallis statistics

    NASA Astrophysics Data System (ADS)

    Guha, Atanu; Das, Prasanta Kumar

    2018-05-01

    Realistic scenario can be represented by general canonical ensemble way better than the ideal one, with proper parameter sets involved. We study the Bose-Einstein condensation phenomena of liquid helium within the framework of Tsallis statistics. With a comparatively high value of the deformation parameter q(∼ 1 . 4) , the theoretically calculated value of the critical temperature (Tc) of the phase transition of liquid helium is found to agree with the experimentally determined value (Tc = 2 . 17 K), although they differs from each other for q = 1 (undeformed scenario). This throws a light on the understanding of the phenomenon and connects temperature fluctuation(non-equilibrium conditions) with the interactions between atoms qualitatively. More interactions between atoms give rise to more non-equilibrium conditions which is as expected.

  6. Loss of superhydrophobicity of hydrophobic micro/nano structures during condensation.

    PubMed

    Jo, HangJin; Hwang, Kyung Won; Kim, DongHyun; Kiyofumi, Moriyama; Park, Hyun Sun; Kim, Moo Hwan; Ahn, Ho Seon

    2015-04-23

    Condensed liquid behavior on hydrophobic micro/nano-structured surfaces is a subject with multiple practical applications, but remains poorly understood. In particular, the loss of superhydrophobicity of hydrophobic micro/nanostructures during condensation, even when the same surface shows water-repellant characteristics when exposed to air, requires intensive investigation to improve and apply our understanding of the fundamental physics of condensation. Here, we postulate the criterion required for condensation to form from inside the surface structures by examining the grand potentials of a condensation system, including the properties of the condensed liquid and the conditions required for condensation. The results imply that the same hydrophobic micro/nano-structured surface could exhibit different liquid droplet behavior depending on the conditions. Our findings are supported by the observed phenomena: the initiation of a condensed droplet from inside a hydrophobic cavity, the apparent wetted state changes, and the presence of sticky condensed droplets on the hydrophobic micro/nano-structured surface.

  7. Interfacial Dynamics of Condensing Vapor Bubbles in an Ultrasonic Acoustic Field

    NASA Astrophysics Data System (ADS)

    Boziuk, Thomas; Smith, Marc; Glezer, Ari

    2016-11-01

    Enhancement of vapor condensation in quiescent subcooled liquid using ultrasonic actuation is investigated experimentally. The vapor bubbles are formed by direct injection from a pressurized steam reservoir through nozzles of varying characteristic diameters, and are advected within an acoustic field of programmable intensity. While kHz-range acoustic actuation typically couples to capillary instability of the vapor-liquid interface, ultrasonic (MHz-range) actuation leads to the formation of a liquid spout that penetrates into the vapor bubble and significantly increases its surface area and therefore condensation rate. Focusing of the ultrasonic beam along the spout leads to ejection of small-scale droplets from that are propelled towards the vapor liquid interface and result in localized acceleration of the condensation. High-speed video of Schlieren images is used to investigate the effects of the ultrasonic actuation on the thermal boundary layer on the liquid side of the vapor-liquid interface and its effect on the condensation rate, and the liquid motion during condensation is investigated using high-magnification PIV measurements. High-speed image processing is used to assess the effect of the actuation on the dynamics and temporal variation in characteristic scale (and condensation rate) of the vapor bubbles.

  8. Continuous condensation in nanogrooves

    NASA Astrophysics Data System (ADS)

    Malijevský, Alexandr

    2018-05-01

    We consider condensation in a capillary groove of width L and depth D , formed by walls that are completely wet (contact angle θ =0 ), which is in a contact with a gas reservoir of the chemical potential μ . On a mesoscopic level, the condensation process can be described in terms of the midpoint height ℓ of a meniscus formed at the liquid-gas interface. For macroscopically deep grooves (D →∞ ), and in the presence of long-range (dispersion) forces, the condensation corresponds to a second-order phase transition, such that ℓ ˜(μcc-μ ) -1 /4 as μ →μcc - where μc c is the chemical potential pertinent to capillary condensation in a slit pore of width L . For finite values of D , the transition becomes rounded and the groove becomes filled with liquid at a chemical potential higher than μc c with a difference of the order of D-3. For sufficiently deep grooves, the meniscus growth initially follows the power law ℓ ˜(μcc-μ ) -1 /4 , but this behavior eventually crosses over to ℓ ˜D -(μ-μc c) -1 /3 above μc c, with a gap between the two regimes shown to be δ ¯μ ˜D-3 . Right at μ =μc c , when the groove is only partially filled with liquid, the height of the meniscus scales as ℓ*˜(D3L) 1 /4 . Moreover, the chemical potential (or pressure) at which the groove is half-filled with liquid exhibits a nonmonotonic dependence on D with a maximum at D ≈3 L /2 and coincides with μc c when L ≈D . Finally, we show that condensation in finite grooves can be mapped on the condensation in capillary slits formed by two asymmetric (competing) walls a distance D apart with potential strengths depending on L . All these predictions, based on mesoscopic arguments, are confirmed by fully microscopic Rosenfeld's density functional theory with a reasonable agreement down to surprisingly small values of both L and D .

  9. Demonstration of Nautilus Centripetal Capillary Condenser Technology

    NASA Technical Reports Server (NTRS)

    Wheeler, RIchard; Tang, Linh; Wambolt, Spencer; Golliher, Eric; Agui, Juan

    2016-01-01

    This paper describes the results of a proof of concept effort for development of a Nautilus Centripetal Capillary Condenser (NCCC or NC3) used for microgravity compatible water recovery from moist air with integral passive phase separation. Removal of liquid condensate from the air stream exiting a condenser is readily performed here on Earth. In order to perform this function in space however, without gravity or mechanical action, other tactics including utilization of inertial, drag and capillary forces are required. Within the NC3, liquid water forms via condensation on cold condenser surfaces as humid air passes along multiple spiral channels, each in its own plane, all together forming a stacked plate assembly. Non-mechanical inertial forces are employed to transfer condensate, as it forms, via centripetal action to the outer perimeter of each channel. A V-shaped groove, constructed on this outer edge of the spiral channel, increases local capillary forces thereby retaining the liquid. Air drag then pulls the liquid along to a collection region near the center of the device. Dry air produced by each parallel spiral channel is combined in a common orthogonal, out-of-plane conduit passing down the axial center of the stacked device. Similarly, the parallel condensate streams are combined and removed from the condenser/separator through yet another out-of-plane axial conduit. NC3 is an integration of conventional finned condenser operation, combined with static phase separation and capillary transport phenomena. A Mars' transit mission would be a logical application for this technology where gravity is absent and the use of vibrating, energy-intensive, motor-driven centrifugal separators is undesired. Here a vapor stream from either the Heat Melt Compactor or the Carbon dioxide Reduction Assembly, for example, would be dried to a dew point of 10 deg using a passive NC3 condenser/separator with the precious water condensate recycled to the water bus.

  10. Investigation of the interaction between liquid and micro/nanostructured surfaces during condensation with quartz crystal microbalance

    NASA Astrophysics Data System (ADS)

    Su, Junwei

    Dropwise condensation (DWC) on hydrophobic surfaces is attracting attention for its great potential in many industrial applications, such as steam power plants, water desalination, and de-icing of aerodynamic surfaces, to list a few. The direct dynamic characterization of liquid/solid interaction can significantly accelerate the progress toward a full understanding of the thermal and mass transport mechanisms during DWC processes. The research focuses on the development of a novel acoustic-based technique for analyzing the liquid/solid interactions of different condensations on micro- and nanostructured surfaces including DWC. hi addition. the newly developed technology was demonstrated for quantitatively sensing different wetting states of liquid on rough surfaces. First, different micro/nanostructures were fabricated on the quartz crystal microbalance (QCM), which serves as acoustic sensor. Polymethyl methacrylate (PMMA) micropillars, with varying heights from 6.03 to 25.02 microm, were fabricated on a quartz crystal microbalance (QCM) substrate by thermal nanoimprinting lithography to form pillar-based QCM (QCM-P). For nanostructured QCM. a copper layer was deposited on the QCM surface and then nanostructures of copper oxide (CuO) films were formed via chemical oxidation in an alkaline solution. Then, these surfaces were treated to make them superhydrophilic or superhydrophobic using oxygen plasma treatment or with coating of 1H,1 H,2H,2H-perfluorooctyl-trichlorosilane (PFOTS). Based on the geometry of these micro/nanostructures, the relationship between the frequency responses of QCM and the wetting states of these surfaces was theoretically investigated. Different theoretical models were established to describing the frequency shift of the micro- and nanostructured QCM in different wetting states. For the microstructured surface, the cantilever based model and a two-degree-of-freedom dynamic model were applied to predict the frequency shift of the QCM-P in

  11. Condensation of Forced Convection Two-Phase Flow in a Miniature Tube

    NASA Technical Reports Server (NTRS)

    Begg, E.; Faghri, A.; Krustalev, D.

    1999-01-01

    A physical/mathematical model of annular film condensation at the inlet of a miniature tube has been developed. In the model, the liquid flow is coupled with the vapor flow along the liquid-vapor interface through the interfacial temperature, heat flux, shear stress, and pressure jump conditions due to surface tension effects. The model predicts the shape of the liquid-vapor interface along the condenser and leads to the conclusion that there is complete condensation at a certain distance from the condenser inlet. The numerical results show that complete condensation of the incoming vapor is possible at comparatively low heat loads and that this is a special case of a more general condensation regime with two-phase bubbly flow downstream of the initial annular film condensation region. Observations from the flow visualization experiment confirm the existence and qualitative features of annular film condensation leading to the complete condensation phenomenon in a small diameter (3.25 mm) circular tube condenser.

  12. Molecular dynamics study on condensation/evaporation coefficients of chain molecules at liquid–vapor interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagayama, Gyoko, E-mail: nagayama@mech.kyutech.ac.jp; Takematsu, Masaki; Mizuguchi, Hirotaka

    2015-07-07

    The structure and thermodynamic properties of the liquid–vapor interface are of fundamental interest for numerous technological implications. For simple molecules, e.g., argon and water, the molecular condensation/evaporation behavior depends strongly on their translational motion and the system temperature. Existing molecular dynamics (MD) results are consistent with the theoretical predictions based on the assumption that the liquid and vapor states in the vicinity of the liquid–vapor interface are isotropic. Additionally, similar molecular condensation/evaporation characteristics have been found for long-chain molecules, e.g., dodecane. It is unclear, however, whether the isotropic assumption is valid and whether the molecular orientation or the chain lengthmore » of the molecules affects the condensation/evaporation behavior at the liquid–vapor interface. In this study, MD simulations were performed to study the molecular condensation/evaporation behavior of the straight-chain alkanes, i.e., butane, octane, and dodecane, at the liquid–vapor interface, and the effects of the molecular orientation and chain length were investigated in equilibrium systems. The results showed that the condensation/evaporation behavior of chain molecules primarily depends on the molecular translational energy and the surface temperature and is independent of the molecular chain length. Furthermore, the orientation at the liquid–vapor interface was disordered when the surface temperature was sufficiently higher than the triple point and had no significant effect on the molecular condensation/evaporation behavior. The validity of the isotropic assumption was confirmed, and we conclude that the condensation/evaporation coefficients can be predicted by the liquid-to-vapor translational length ratio, even for chain molecules.« less

  13. Molecular dynamics study on evaporation and condensation characteristics of thin film liquid Argon on nanostructured surface in nano-scale confinement

    NASA Astrophysics Data System (ADS)

    Hasan, Mohammad Nasim; Rabbi, Kazi Fazle; Sabah, Arefiny; Ahmed, Jannat; Kuri, Subrata Kumar; Rakibuzzaman, S. M.

    2017-06-01

    Investigation of Molecular level phase change phenomena are becoming important in heat and mass transfer research at a very high rate, driven both by the need to understand certain fundamental phenomena as well as by a plethora of new and forthcoming applications in the areas of micro- and nanotechnologies. Molecular dynamics simulation has been carried out to go through the evaporation and condensation characteristics of thin liquid argon film in Nano-scale confinement. In the present study, a cuboid system is modeled for understanding the Nano-scale physics of simultaneous evaporation and condensation. The cuboid system consists of hot and cold parallel platinum plates at the bottom and top ends. The fluid comprised of liquid argon film at the bottom plate and vapor argon in between liquid argon and upper plate of the domain. Three different simulation domains have been created here: (i) Both platinum plates are considered flat, (ii) Upper plate consisting of transverse slots of low height and (iii) Upper plate consisting of transverse slots of bigger height. Considering hydrophilic nature of top and bottom plates, two different high temperatures of the hot wall was set and an observation was made on normal and explosive vaporizations and their impacts on thermal transport. For all the structures, equilibrium molecular dynamics (EMD) was performed to reach equilibrium state at 90 K. Then the lower wall is set to two different temperatures like 110 K and 250 K for all three models to perform non-equilibrium molecular dynamics (NEMD). For vaporization, higher temperature of the hot wall led to faster transport of the liquid argon as a cluster moving from hot wall to cold wall. But excessive temperature causes explosive boiling which seems not good for heat transportation because of less phase change. In case of condensation, an observation was made which indicates that the nanostructured transverse slots facilitate condensation. Two factors affect the rate of

  14. Condensed Matter Theories - Volume 22

    NASA Astrophysics Data System (ADS)

    Reinholz, Heidi; Röpke, Gerd; de Llano, Manuel

    2007-09-01

    pt. A. Fermi liquids. Pressure comparison between the spherical cellular model and the Thomas-Fermi model / G.A. Baker, Jr. Pair excitations and vertex corrections in Fermi fluids and the dynamic structure function of two-dimension 3He / H.M. Böhm, H. Godfrin, E. Krotscheck, H.J. Lauter, M. Meschke and M. Panholzer. Condensation of helium in wedges / E.S. Hernádez ... [et al.]. Non-Fermi liquid behavior from the Fermi-liquid approach / V.A. Khodel ... [et al.]. Theory of third sound and stability of thin 3He-4He superfluid films / E. Krotscheck and M.D. Miller. Pairing in asymmetrical Fermi systems / K.F. Quader and R. Liao. Ground-state properties of small 3He drops from quantum Monte Carlo simulations / E. Sola, J. Casulleras and J. Boronat. Ground-state energy and compressibility of a disordered two-dimensional electron gas / Tanatar ... [et al.]. Quasiexcitons in photoluminescence of incompressible quantum liquids / A. Wójs, A.G ladysiewicz and J.J. Quinn -- pt. B. Bose liquids. Quantum Boltzmann liquids / K.A. Gernoth, M L. Ristig and T. Lindenau. Condensate fraction in the dynamic structure function of Bose fluids / M. Saarela, F. Mazzanti and V. Apaja -- pt. C. Strongly-correlated electronic systems. Electron gas in high-field nanoscopic transport: metallic carbon nanotubes / F. Green and D. Neilson. Evolution and destruction of the Kondo effect in a capacitively coupled double dot system / D.E. Logan and M.R. Galpin. The method of increments-a wavefunction-based Ab-Initio correlation method for solids / B. Paulus. Fractionally charged excitations on frustrated lattices / E. Runge, F. Pollmann and P. Fulde. 5f Electrons in actinides: dual nature and photoemission spectra / G. Zwicknagl -- pt. D. Magnetism. Magnetism in disordered two-dimensional Kondo-Necklace / W. Brenig. On the de Haas-can Alphen oscillation in 2D / S. Fujita and D.L. Morabito. Dynamics in one-dimensional spin systems-density matrix reformalization group study / S. Nishimoto and M

  15. CFD simulation of water vapour condensation in the presence of non-condensable gas in vertical cylindrical condensers.

    PubMed

    Li, Jun-De

    2013-02-01

    This paper presents the simulation of the condensation of water vapour in the presence of non-condensable gas using computational fluid dynamics (CFD) for turbulent flows in a vertical cylindrical condenser tube. The simulation accounts for the turbulent flow of the gas mixture, the condenser wall and the turbulent flow of the coolant in the annular channel with no assumptions of constant wall temperature or heat flux. The condensate film is assumed to occupy a negligible volume and its effect on the condensation of the water vapour has been taken into account by imposing a set of boundary conditions. A new strategy is used to overcome the limitation of the currently available commercial CFD package to solve the simultaneous simulation of flows involving multispecies and fluids of gas and liquid in separate channels. The results from the CFD simulations are compared with the experimental results from the literature for the condensation of water vapour with air as the non-condensable gas and for inlet mass fraction of the water vapour from 0.66 to 0.98. The CFD simulation results in general agree well with the directly measured quantities and it is found that the variation of heat flux in the condenser tube is more complex than a simple polynomial curve fit. The CFD results also show that, at least for flows involving high water vapour content, the axial velocity of the gas mixture at the interface between the gas mixture and the condensate film is in general not small and cannot be neglected.

  16. CFD simulation of water vapour condensation in the presence of non-condensable gas in vertical cylindrical condensers

    PubMed Central

    Li, Jun-De

    2013-01-01

    This paper presents the simulation of the condensation of water vapour in the presence of non-condensable gas using computational fluid dynamics (CFD) for turbulent flows in a vertical cylindrical condenser tube. The simulation accounts for the turbulent flow of the gas mixture, the condenser wall and the turbulent flow of the coolant in the annular channel with no assumptions of constant wall temperature or heat flux. The condensate film is assumed to occupy a negligible volume and its effect on the condensation of the water vapour has been taken into account by imposing a set of boundary conditions. A new strategy is used to overcome the limitation of the currently available commercial CFD package to solve the simultaneous simulation of flows involving multispecies and fluids of gas and liquid in separate channels. The results from the CFD simulations are compared with the experimental results from the literature for the condensation of water vapour with air as the non-condensable gas and for inlet mass fraction of the water vapour from 0.66 to 0.98. The CFD simulation results in general agree well with the directly measured quantities and it is found that the variation of heat flux in the condenser tube is more complex than a simple polynomial curve fit. The CFD results also show that, at least for flows involving high water vapour content, the axial velocity of the gas mixture at the interface between the gas mixture and the condensate film is in general not small and cannot be neglected. PMID:24850953

  17. APPARATUS FOR CONDENSATION AND SUBLIMATION

    DOEpatents

    Schmidt, R.J.; Fuis, F. Jr.

    1958-10-01

    An apparatus is presented for the sublimation and condensation of uranium compounds in order to obtain an improved crystalline structure of this material. The apparatus comprises a vaporizing chamber and condensing structure connected thereto. There condenser is fitted with a removable liner having a demountable baffle attached to the liner by means of brackets and a removable pin. The baffle is of spiral cross-section and is provided with cooling coils disposed between the surfaces of the baffle for circulation of a temperature controlling liquid within the baffle. The cooling coll provides for controlllng the temperature of the baffle to insure formatlon of a satisfactory condensate, and the removable liner facilitates the removal of condensate formed during tbe sublimation process.

  18. Deposition Nucleation or Pore Condensation and Freezing?

    NASA Astrophysics Data System (ADS)

    David, Robert O.; Mahrt, Fabian; Marcolli, Claudia; Fahrni, Jonas; Brühwiler, Dominik; Lohmann, Ulrike; Kanji, Zamin A.

    2017-04-01

    Ice nucleation plays an important role in moderating Earth's climate and precipitation formation. Over the last century of research, several mechanisms for the nucleation of ice have been identified. Of the known mechanisms for ice nucleation, only deposition nucleation occurs below water saturation. Deposition nucleation is defined as the formation of ice from supersaturated water vapor on an insoluble particle without the prior formation of liquid. However, recent work has found that the efficiency of so-called deposition nucleation shows a dependence on the homogeneous freezing temperature of water even though no liquid phase is presumed to be present. Additionally, the ability of certain particles to nucleate ice more efficiently after being pre-cooled (pre-activation) raises questions on the true mechanism when ice nucleation occurs below water saturation. In an attempt to explain the dependence of the efficiency of so-called deposition nucleation on the onset of homogeneous freezing of liquid water, pore condensation and freezing has been proposed. Pore condensation and freezing suggests that the liquid phase can exist under sub-saturated conditions with respect to liquid in narrow confinements or pores due to the inverse Kelvin effect. Once the liquid-phase condenses, it is capable of nucleating ice either homogeneously or heterogeneously. The role of pore condensation and freezing is assessed in the Zurich Ice Nucleation Chamber, a continuous flow diffusion chamber, using spherical nonporous and mesoporous silica particles. The mesoporous silica particles have a well-defined particle size range of 400 to 600nm with discreet pore sizes of 2.5, 2.8, 3.5 and 3.8nm. Experiments conducted between 218K and 238K show that so-called deposition nucleation only occurs below the homogenous freezing temperature of water and is highly dependent on the presence of pores and their size. The results strongly support pore condensation and freezing, questioning the role of

  19. Gravitationally Driven Wicking for Enhanced Condensation Heat Transfer.

    PubMed

    Preston, Daniel J; Wilke, Kyle L; Lu, Zhengmao; Cruz, Samuel S; Zhao, Yajing; Becerra, Laura L; Wang, Evelyn N

    2018-04-17

    Vapor condensation is routinely used as an effective means of transferring heat or separating fluids. Filmwise condensation is prevalent in typical industrial-scale systems, where the condensed fluid forms a thin liquid film due to the high surface energy associated with many industrial materials. Conversely, dropwise condensation, where the condensate forms discrete liquid droplets which grow, coalesce, and shed, results in an improvement in heat transfer performance of an order of magnitude compared to filmwise condensation. However, current state-of-the-art dropwise technology relies on functional hydrophobic coatings, for example, long chain fatty acids or polymers, which are often not robust and therefore undesirable in industrial conditions. In addition, low surface tension fluid condensates, such as hydrocarbons, pose a unique challenge because common hydrophobic condenser coatings used to shed water (with a surface tension of 73 mN/m) often do not repel fluids with lower surface tensions (<25 mN/m). We demonstrate a method to enhance condensation heat transfer using gravitationally driven flow through a porous metal wick, which takes advantage of the condensate's affinity to wet the surface and also eliminates the need for condensate-phobic coatings. The condensate-filled wick has a lower thermal resistance than the fluid film observed during filmwise condensation, resulting in an improved heat transfer coefficient of up to an order of magnitude and comparable to that observed during dropwise condensation. The improved heat transfer realized by this design presents the opportunity for significant energy savings in natural gas processing, thermal management, heating and cooling, and power generation.

  20. Condensation of vapor bubble in subcooled pool

    NASA Astrophysics Data System (ADS)

    Horiuchi, K.; Koiwa, Y.; Kaneko, T.; Ueno, I.

    2017-02-01

    We focus on condensation process of vapor bubble exposed to a pooled liquid of subcooled conditions. Two different geometries are employed in the present research; one is the evaporation on the heated surface, that is, subcooled pool boiling, and the other the injection of vapor into the subcooled pool. The test fluid is water, and all series of the experiments are conducted under the atmospheric pressure condition. The degree of subcooling is ranged from 10 to 40 K. Through the boiling experiment, unique phenomenon known as microbubble emission boiling (MEB) is introduced; this phenomenon realizes heat flux about 10 times higher than the critical heat flux. Condensation of the vapor bubble is the key phenomenon to supply ambient cold liquid to the heated surface. In order to understand the condensing process in the MEB, we prepare vapor in the vapor generator instead of the evaporation on the heated surface, and inject the vapor to expose the vapor bubble to the subcooled liquid. Special attention is paid to the dynamics of the vapor bubble detected by the high-speed video camera, and on the enhancement of the heat transfer due to the variation of interface area driven by the condensation.

  1. Comparative study during condensation of R152 a and R134 a with presence of non-condensable gas inside a vertical tube

    NASA Astrophysics Data System (ADS)

    Charef, Adil; Feddaoui, M'barek; Najim, Monssif; Meftah, Hicham

    2018-04-01

    A computational study of the liquid film condensation from vapour-gas mixtures of HFC refrigerants inside a vertical tube is performed. The external wall of the tube is subjected to constant temperature. The model uses an implicit finite difference method to solve the governing equations for the liquid film and gas flow together including the boundary and interfacial matching conditions. Parametric computations were realised to examine the effects of inlet Reynolds number, tube length, and inlet temperature of the gas mixtures on the condensation mechanism. A comparative study between the results obtained for studied R152 a and R134 a with presence of non-condensable gas is made. The predicted results indicate that the condensation of R152 a-air corresponds to a higher accumulated condensation m c d and local heat transfer coefficient h T when compared to R134 a-air in the same conditions. Increasing the inlet Reynolds number or the tube length improve the condensation. Additionally, lower non-condensable gas in R152 a - a i r substantially enhances the heat and mass exchanges.

  2. Dipole oscillations of a Bose-Einstein condensate in the presence of defects and disorder.

    PubMed

    Albert, M; Paul, T; Pavloff, N; Leboeuf, P

    2008-06-27

    We consider dipole oscillations of a trapped dilute Bose-Einstein condensate in the presence of a scattering potential consisting either in a localized defect or in an extended disordered potential. In both cases the breaking of superfluidity and the damping of the oscillations are shown to be related to the appearance of a nonlinear dissipative flow. At supersonic velocities the flow becomes asymptotically dissipationless.

  3. Treatment of evaporator condensates by pervaporation

    DOEpatents

    Blume, Ingo; Baker, Richard W.

    1990-01-01

    A pervaporation process for separating organic contaminants from evaporator condensate streams is disclosed. The process employs a permselective membrane that is selectively permeable to an organic component of the condensate. The process involves contacting the feed side of the membrane with a liquid condensate stream, and withdrawing from the permeate side a vapor enriched in the organic component. The driving force for the process is the in vapor pressure across the membrane. This difference may be provided for instance by maintaining a vacuum on the permeate side, or by condensing the permeate. The process offers a simple, economic alternative to other separation techniques.

  4. W-007H B Plant Process Condensate Treatment Facility. Revision 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rippy, G.L.

    1995-01-20

    B Plant Process Condensate (BCP) liquid effluent stream is the condensed vapors originating from the operation of the B Plant low-level liquid waste concentration system. In the past, the BCP stream was discharged into the soil column under a compliance plan which expired January 1, 1987. Currently, the BCP stream is inactive, awaiting restart of the E-23-3 Concentrator. B Plant Steam Condensate (BCS) liquid effluent stream is the spent steam condensate used to supply heat to the E-23-3 Concentrator. The tube bundles in the E-23-3 Concentrator discharge to the BCS. In the past, the BCS stream was discharged into themore » soil column. Currently, the BCS stream is inactive. This project shall provide liquid effluent systems (BCP/BCS/BCE) capable of operating for a minimum of 20 years, which does not include the anticipated decontamination and decommissioning (D and D) period.« less

  5. Numerical simulation of condensation on structured surfaces.

    PubMed

    Fu, Xiaowu; Yao, Zhaohui; Hao, Pengfei

    2014-11-25

    Condensation of liquid droplets on solid surfaces happens widely in nature and industrial processes. This phase-change phenomenon has great effect on the performance of some microfluidic devices. On the basis of micro- and nanotechnology, superhydrophobic structured surfaces can be well-fabricated. In this work, the nucleating and growth of droplets on different structured surfaces are investigated numerically. The dynamic behavior of droplets during the condensation is simulated by the multiphase lattice Boltzmann method (LBM), which has the ability to incorporate the microscopic interactions, including fluid-fluid interaction and fluid-surface interaction. The results by the LBM show that, besides the chemical properties of surfaces, the topography of structures on solid surfaces influences the condensation process. For superhydrophobic surfaces, the spacing and height of microridges have significant influence on the nucleation sites. This mechanism provides an effective way for prevention of wetting on surfaces in engineering applications. Moreover, it suggests a way to prevent ice formation on surfaces caused by the condensation of subcooled water. For hydrophilic surfaces, however, microstructures may be submerged by the liquid films adhering to the surfaces. In this case, microstructures will fail to control the condensation process. Our research provides an optimized way for designing surfaces for condensation in engineering systems.

  6. Superfluidity, Bose-Einstein condensation, and structure in one-dimensional Luttinger liquids

    NASA Astrophysics Data System (ADS)

    Vranješ Markić, L.; Vrcan, H.; Zuhrianda, Z.; Glyde, H. R.

    2018-01-01

    We report diffusion Monte Carlo (DMC) and path integral Monte Carlo (PIMC) calculations of the properties of a one-dimensional (1D) Bose quantum fluid. The equation of state, the superfluid fraction ρS/ρ0 , the one-body density matrix n (x ) , the pair distribution function g (x ) , and the static structure factor S (q ) are evaluated. The aim is to test Luttinger liquid (LL) predictions for 1D fluids over a wide range of fluid density and LL parameter K . The 1D Bose fluid examined is a single chain of 4He atoms confined to a line in the center of a narrow nanopore. The atoms cannot exchange positions in the nanopore, the criterion for 1D. The fluid density is varied from the spinodal density where the 1D liquid is unstable to droplet formation to the density of bulk liquid 4He. In this range, K varies from K >2 at low density, where a robust superfluid is predicted, to K <0.5 , where fragile 1D superflow and solidlike peaks in S (q ) are predicted. For uniform pore walls, the ρS/ρ0 scales as predicted by LL theory. The n (x ) and g (x ) show long range oscillations and decay with x as predicted by LL theory. The amplitude of the oscillations is large at high density (small K ) and small at low density (large K ). The K values obtained from different properties agree well verifying the internal structure of LL theory. In the presence of disorder, the ρS/ρ0 does not scale as predicted by LL theory. A single vJ parameter in the LL theory that recovers LL scaling was not found. The one body density matrix (OBDM) in disorder is well predicted by LL theory. The "dynamical" superfluid fraction, ρSD/ρ0 , is determined. The physics of the deviation from LL theory in disorder and the "dynamical" ρSD/ρ0 are discussed.

  7. Condensation in Nanoporous Packed Beds.

    PubMed

    Ally, Javed; Molla, Shahnawaz; Mostowfi, Farshid

    2016-05-10

    In materials with tiny, nanometer-scale pores, liquid condensation is shifted from the bulk saturation pressure observed at larger scales. This effect is called capillary condensation and can block pores, which has major consequences in hydrocarbon production, as well as in fuel cells, catalysis, and powder adhesion. In this study, high pressure nanofluidic condensation studies are performed using propane and carbon dioxide in a colloidal crystal packed bed. Direct visualization allows the extent of condensation to be observed, as well as inference of the pore geometry from Bragg diffraction. We show experimentally that capillary condensation depends on pore geometry and wettability because these factors determine the shape of the menisci that coalesce when pore filling occurs, contrary to the typical assumption that all pore structures can be modeled as cylindrical and perfectly wetting. We also observe capillary condensation at higher pressures than has been done previously, which is important because many applications involving this phenomenon occur well above atmospheric pressure, and there is little, if any, experimental validation of capillary condensation at such pressures, particularly with direct visualization.

  8. Condensation in One-Dimensional Dead-End Nanochannels.

    PubMed

    Zhong, Junjie; Zandavi, Seyed Hadi; Li, Huawei; Bao, Bo; Persad, Aaron H; Mostowfi, Farshid; Sinton, David

    2017-01-24

    Phase change at the nanoscale is at the heart of many biological and geological phenomena. The recent emergence and global implications of unconventional oil and gas production from nanoporous shale further necessitate a higher understanding of phase behavior at these scales. Here, we directly observe condensation and condensate growth of a light hydrocarbon (propane) in discrete sub-100 nm (∼70 nm) channels. Two different condensation mechanisms at this nanoscale are distinguished, continuous growth and discontinuous growth due to liquid bridging ahead of the meniscus, both leading to similar net growth rates. The growth rates agree well with those predicted by a suitably defined thermofluid resistance model. In contrast to phase change at larger scales (∼220 and ∼1000 nm cases), the rate of liquid condensate growth in channels of sub-100 nm size is found to be limited mainly by vapor flow resistance (∼70% of the total resistance here), with interface resistance making up the difference. The condensation-induced vapor flow is in the transitional flow regime (Knudsen flow accounting for up to 13% of total resistance here). Collectively, these results demonstrate that with confinement at sub-100 nm scales, such as is commonly found in porous shale and other applications, condensation conditions deviate from the microscale and larger bulk conditions chiefly due to vapor flow and interface resistances.

  9. Stability and Metastability of Trapless Bose-Einstein Condensates and Quantum Liquids

    NASA Astrophysics Data System (ADS)

    Zloshchastiev, Konstantin G.

    2017-07-01

    Various kinds of Bose-Einstein condensates are considered, which evolve without any geometric constraints or external trap potentials including gravitational. For studies of their collective oscillations and stability, including the metastability and macroscopic tunneling phenomena, both the variational approach and the Vakhitov-Kolokolov (VK) criterion are employed; calculations are done for condensates of an arbitrary spatial dimension. It is determined that that the trapless condensate described by the logarithmic wave equation is essentially stable, regardless of its dimensionality, while the trapless condensates described by wave equations of a polynomial type with respect to the wavefunction, such as the Gross-Pitaevskii (cubic), cubic-quintic, and so on, are at best metastable. This means that trapless "polynomial" condensates are unstable against spontaneous delocalization caused by fluctuations of their width, density and energy, leading to a finite lifetime.

  10. Condensation phenomenon detection through surface plasmon resonance.

    PubMed

    Ibrahim, Joyce; Al Masri, Mostafa; Veillas, Colette; Celle, Frédéric; Cioulachtjian, Serge; Verrier, Isabelle; Lefèvre, Frédéric; Parriaux, Olivier; Jourlin, Yves

    2017-10-02

    The aim of this work is to optically detect the condensation of acetone vapor on an aluminum plate cooled down in a two-phase environment (liquid/vapor). Sub-micron period aluminum based diffraction gratings with appropriate properties, exhibiting a highly sensitive plasmonic response, were successfully used for condensation experiments. A shift in the plasmonic wavelength resonance has been measured when acetone condensation on the aluminum surface takes place due to a change of the surrounding medium close to the surface, demonstrating that the surface modification occurs at the very beginning of the condensation phenomenon. This paper presents important steps in comprehending the incipience of condensate droplet and frost nucleation (since both mechanisms are similar) and thus to control the phenomenon by using an optimized engineered surface.

  11. Film condensation in a horizontal rectangular duct

    NASA Technical Reports Server (NTRS)

    Lu, Qing; Suryanarayana, N. V.

    1993-01-01

    Condensation heat transfer in a horizontal rectangular duct was experimentally and analytically investigated. To prevent the dripping of condensate on the film, the experiment was conducted inside a horizontal rectangular duct with vapor condensing only on the bottom cooled plate of the duct. R-113 and FC-72 (Fluorinert Electronic Fluid developed by the 3M Company) were used as the condensing fluids. The experimental program included measurements of film thickness, local and average heat transfer coefficients, wave length, wave speed, and a study of wave initiation. The measured film thickness was used to obtain the local heat transfer coefficient. The wave initiation was studied both with condensation and with an adiabatic air-liquid flow. The test sections used in both experiments were identical.

  12. Analytical methodologies for broad metabolite coverage of exhaled breath condensate.

    PubMed

    Aksenov, Alexander A; Zamuruyev, Konstantin O; Pasamontes, Alberto; Brown, Joshua F; Schivo, Michael; Foutouhi, Soraya; Weimer, Bart C; Kenyon, Nicholas J; Davis, Cristina E

    2017-09-01

    Breath analysis has been gaining popularity as a non-invasive technique that is amenable to a broad range of medical uses. One of the persistent problems hampering the wide application of the breath analysis method is measurement variability of metabolite abundances stemming from differences in both sampling and analysis methodologies used in various studies. Mass spectrometry has been a method of choice for comprehensive metabolomic analysis. For the first time in the present study, we juxtapose the most commonly employed mass spectrometry-based analysis methodologies and directly compare the resultant coverages of detected compounds in exhaled breath condensate in order to guide methodology choices for exhaled breath condensate analysis studies. Four methods were explored to broaden the range of measured compounds across both the volatile and non-volatile domain. Liquid phase sampling with polyacrylate Solid-Phase MicroExtraction fiber, liquid phase extraction with a polydimethylsiloxane patch, and headspace sampling using Carboxen/Polydimethylsiloxane Solid-Phase MicroExtraction (SPME) followed by gas chromatography mass spectrometry were tested for the analysis of volatile fraction. Hydrophilic interaction liquid chromatography and reversed-phase chromatography high performance liquid chromatography mass spectrometry were used for analysis of non-volatile fraction. We found that liquid phase breath condensate extraction was notably superior compared to headspace extraction and differences in employed sorbents manifested altered metabolite coverages. The most pronounced effect was substantially enhanced metabolite capture for larger, higher-boiling compounds using polyacrylate SPME liquid phase sampling. The analysis of the non-volatile fraction of breath condensate by hydrophilic and reverse phase high performance liquid chromatography mass spectrometry indicated orthogonal metabolite coverage by these chromatography modes. We found that the metabolite coverage

  13. A New Experiment for Investigating Evaporation and Condensation of Cryogenic Propellants.

    PubMed

    Bellur, K; Médici, E F; Kulshreshtha, M; Konduru, V; Tyrewala, D; Tamilarasan, A; McQuillen, J; Leao, J; Hussey, D S; Jacobson, D L; Scherschligt, J; Hermanson, J C; Choi, C K; Allen, J S

    2016-03-01

    Passive and active technologies have been used to control propellant boil-off, but the current state of understanding of cryogenic evaporation and condensation in microgravity is insufficient for designing large cryogenic depots critical to the long-term space exploration missions. One of the key factors limiting the ability to design such systems is the uncertainty in the accommodation coefficients (evaporation and condensation), which are inputs for kinetic modeling of phase change. A novel, combined experimental and computational approach is being used to determine the accommodation coefficients for liquid hydrogen and liquid methane. The experimental effort utilizes the Neutron Imaging Facility located at the National Institute of Standards and Technology (NIST) in Gaithersburg, Maryland to image evaporation and condensation of hydrogenated propellants inside of metallic containers. The computational effort includes numerical solution of a model for phase change in the contact line and thin film regions as well as an CFD effort for determining the appropriate thermal boundary conditions for the numerical solution of the evaporating and condensing liquid. Using all three methods, there is the possibility of extracting the accommodation coefficients from the experimental observations. The experiments are the first known observation of a liquid hydrogen menisci condensing and evaporating inside aluminum and stainless steel cylinders. The experimental technique, complimentary computational thermal model and meniscus shape determination are reported. The computational thermal model has been shown to accurately track the transient thermal response of the test cells. The meniscus shape determination suggests the presence of a finite contact angle, albeit very small, between liquid hydrogen and aluminum oxide.

  14. A New Experiment for Investigating Evaporation and Condensation of Cryogenic Propellants

    PubMed Central

    Bellur, K.; Médici, E. F.; Kulshreshtha, M.; Konduru, V.; Tyrewala, D.; Tamilarasan, A.; McQuillen, J.; Leao, J.; Hussey, D. S.; Jacobson, D. L.; Scherschligt, J.; Hermanson, J. C.; Choi, C. K.; Allen, J. S.

    2016-01-01

    Passive and active technologies have been used to control propellant boil-off, but the current state of understanding of cryogenic evaporation and condensation in microgravity is insufficient for designing large cryogenic depots critical to the long-term space exploration missions. One of the key factors limiting the ability to design such systems is the uncertainty in the accommodation coefficients (evaporation and condensation), which are inputs for kinetic modeling of phase change. A novel, combined experimental and computational approach is being used to determine the accommodation coefficients for liquid hydrogen and liquid methane. The experimental effort utilizes the Neutron Imaging Facility located at the National Institute of Standards and Technology (NIST) in Gaithersburg, Maryland to image evaporation and condensation of hydrogenated propellants inside of metallic containers. The computational effort includes numerical solution of a model for phase change in the contact line and thin film regions as well as an CFD effort for determining the appropriate thermal boundary conditions for the numerical solution of the evaporating and condensing liquid. Using all three methods, there is the possibility of extracting the accommodation coefficients from the experimental observations. The experiments are the first known observation of a liquid hydrogen menisci condensing and evaporating inside aluminum and stainless steel cylinders. The experimental technique, complimentary computational thermal model and meniscus shape determination are reported. The computational thermal model has been shown to accurately track the transient thermal response of the test cells. The meniscus shape determination suggests the presence of a finite contact angle, albeit very small, between liquid hydrogen and aluminum oxide. PMID:28154426

  15. Turboexpanders aid condensate recovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Houghton, J.; McLay, J.D.

    1973-03-05

    Turboexpander plants built by Fluor are operating in 18 locations throughout the world, with the first one having been built in 1963. These plants, plus those under construction, account for a combined gas capacity or more than 4,000 MMscfd. In both gas-processing and cryogenic operations, the turboexpander is gaining wide acceptance in such areas as North and South America, the Middle East, and N. Africa. In a typical plant, feed gas is first dehydrated before being chilled by heat exchange with the gas product from the turboexpander. Condensate liquids are separated from the gas stream which is then expanded. Furthermore » condensed liquids resulting from the expansion-cooling effect are separated for fractionation. The degree of expansion can be varied to recover up to 60 to 90% of the ethane contained in the feed gas. The most efficient use of turboexpander refrigeration is dependent upon the product required.« less

  16. Theoretical study on bubble formation and flow condensation in downflow channel with horizontal gas injection

    NASA Astrophysics Data System (ADS)

    Zhu, Kang; Li, Yanzhong; Wang, Jiaojiao; Ma, Yuan; Wang, Lei; Xie, Fushou

    2018-05-01

    Bubble formation and condensation in liquid pipes occur widely in industrial systems such as cryogenic propellant feeding system. In this paper, an integrated theoretical model is established to give a comprehensive description of the bubble formation, motion and condensation process. The model is validated by numerical simulations and bubble condensation experiments from references, and good agreements are achieved. The bubble departure diameter at the orifice and the flow condensation length in the liquid channel are predicted by the model, and effects of various influencing parameters on bubble behaviors are analyzed. Prediction results indicate that the orifice diameter, the gas feeding rate, and the liquid velocity are the primary influence factors on the bubble departure diameter. The interfacial heat transfer as well as the bubble departure diameter has a direct impact on the bubble flow condensation length, which increases by 2.5 times over a system pressure range of 0.1 0.4 MPa, and decreases by 85% over a liquid subcooling range of 5 30 K. This work could be beneficial to the prediction of bubble formation and flow condensation processes and the design of cryogenic transfer pipes.

  17. Design and performance evaluation of a cryogenic condenser for an in-pile experiment

    NASA Technical Reports Server (NTRS)

    Graham, R. W.; Crum, R. J.; Hsu, Y.

    1972-01-01

    An apparatus was designed to enable in-pile irradiation of materials in liquid hydrogen at cryogenic temperatures. One of the principal components of this apparatus was a horizontal tube condenser. The performance of the condenser was evaluated by running a liquid-nitrogen prototype of the apparatus at heat loads comparable to or greater than those expected during the irradiation. The test showed that the condenser was capable of handling the design heat load and that the design procedure was sound.

  18. No-go theorem for boson condensation in topologically ordered quantum liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neupert, Titus; He, Huan; Keyserlingk, Curt von

    Certain phase transitions between topological quantum field theories (TQFTs) are driven by the condensation of bosonic anyons. However, as bosons in a TQFT are themselves nontrivial collective excitations, there can be topological obstructions that prevent them from condensing. Here we formulate such an obstruction in the form of a no-go theorem. We use it to show that no condensation is possible in SO(3) k TQFTs with odd k. We further show that a 'layered' theory obtained by tensoring SO(3) k TQFT with itself any integer number of times does not admit condensation transitions either. Furthermore, this includes (as the casemore » k = 3) the noncondensability of any number of layers of the Fibonacci TQFT.« less

  19. No-go theorem for boson condensation in topologically ordered quantum liquids

    DOE PAGES

    Neupert, Titus; He, Huan; Keyserlingk, Curt von; ...

    2016-12-07

    Certain phase transitions between topological quantum field theories (TQFTs) are driven by the condensation of bosonic anyons. However, as bosons in a TQFT are themselves nontrivial collective excitations, there can be topological obstructions that prevent them from condensing. Here we formulate such an obstruction in the form of a no-go theorem. We use it to show that no condensation is possible in SO(3) k TQFTs with odd k. We further show that a 'layered' theory obtained by tensoring SO(3) k TQFT with itself any integer number of times does not admit condensation transitions either. Furthermore, this includes (as the casemore » k = 3) the noncondensability of any number of layers of the Fibonacci TQFT.« less

  20. Pressurization of a Flightweight, Liquid Hydrogen Tank: Evaporation and Condensation at a Liquid Vapor Interface

    NASA Technical Reports Server (NTRS)

    Stewart, Mark E.

    2017-01-01

    Evaporation and condensation at a liquidvapor interface is important for long-term, in-space cryogenic propellant storage. Yet the current understanding of interfacial physics does not predict behavior or evaporation condensation rates. The proposed paper will present a physical model, based on the 1-D Heat equation and Schrages equation which demonstrates thin thermal layers at the fluidvapor interface.

  1. Random matrices and condensation into multiple states

    NASA Astrophysics Data System (ADS)

    Sadeghi, Sina; Engel, Andreas

    2018-03-01

    In the present work, we employ methods from statistical mechanics of disordered systems to investigate static properties of condensation into multiple states in a general framework. We aim at showing how typical properties of random interaction matrices play a vital role in manifesting the statistics of condensate states. In particular, an analytical expression for the fraction of condensate states in the thermodynamic limit is provided that confirms the result of the mean number of coexisting species in a random tournament game. We also study the interplay between the condensation problem and zero-sum games with correlated random payoff matrices.

  2. Mixing-induced fluid destratification and ullage condensation

    NASA Technical Reports Server (NTRS)

    Meserole, Jere S.; Jones, Ogden S.; Fortini, Anthony F.

    1987-01-01

    In many applications, on-orbit storage and transfer of cryogens will require forced mixing to control tank pressure without direct venting to space. During a no-vent transfer or during operation of a thermodynamic vent system in a cryogen storage tank, pressure control is achieved by circulating cool liquid to the liquid-vapor interface to condense some of the ullage vapor. To measure the pressure and temperature response rates in mixing-induced condensation, an experiment has been developed using Freon 11 to simulate the two-phase behavior of a cryogen. A thin layer at the liquid surface is heated to raise the tank pressure, and then a jet mixer is turned on to circulate the liquid, cool the surface, and reduce the pressure. Many nozzle configurations and flow rates are used. Tank pressure and the temperature profiles in the ullage and the liquid are measured. Initial data from this ground test are shown correlated with normal-gravity and drop-tower dye-mixing data. Pressure collapse times are comparable to the dye-mixing times, whereas the times needed for complete thermal mixing are much longer than the dye-mixing times.

  3. Convergent strand array liquid pumping system

    NASA Technical Reports Server (NTRS)

    Collins, Earl R., Jr. (Inventor)

    1989-01-01

    A surface-tension liquid pumping system is provided by one or more arrays of converging solid monofilament fibers or metal wires (strands) spaced apart at an input end to gather liquid, and gathered close together at the opposite end where menisci forms between wetted strands to force liquid in the direction of convergence of the strands. The liquid pumping system is independent of gravity. It is illustrated as being used in a heat pump having a heating box to vaporize the liquid and a condensing chamber. Condensed liquid is returned by the pumping system to the heating box where it is again vaporized. A vapor tube carries the vapor to the condensing chamber. In that way, a closed system pumps heat from the heating box to the evaporating chamber and from there radiated to the atmosphere.

  4. A Local Condensation Analysis Representing Two-phase Annular Flow in Condenser/radiator Capillary Tubes

    NASA Technical Reports Server (NTRS)

    Karimi, Amir

    1991-01-01

    NASA's effort for the thermal environmental control of the Space Station Freedom is directed towards the design, analysis, and development of an Active Thermal Control System (ATCS). A two phase, flow through condenser/radiator concept was baselined, as a part of the ATCS, for the radiation of space station thermal load into space. The proposed condenser rejects heat through direct condensation of ATCS working fluid (ammonia) in the small diameter radiator tubes. Analysis of the condensation process and design of condenser tubes are based on the available two phase flow models for the prediction of flow regimes, heat transfer, and pressure drops. The prediction formulas use the existing empirical relationships of friction factor at gas-liquid interface. An attempt is made to study the stability of interfacial waves in two phase annular flow. The formulation is presented of a stability problem in cylindrical coordinates. The contribution of fluid viscosity, surface tension, and transverse radius of curvature to the interfacial surface is included. A solution is obtained for Kelvin-Helmholtz instability problem which can be used to determine the critical and most dangerous wavelengths for interfacial waves.

  5. Theory of thermal conductivity in the disordered electron liquid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwiete, G., E-mail: schwiete@uni-mainz.de; Finkel’stein, A. M.

    2016-03-15

    We study thermal conductivity in the disordered two-dimensional electron liquid in the presence of long-range Coulomb interactions. We describe a microscopic analysis of the problem using the partition function defined on the Keldysh contour as a starting point. We extend the renormalization group (RG) analysis developed for thermal transport in the disordered Fermi liquid and include scattering processes induced by the long-range Coulomb interaction in the sub-temperature energy range. For the thermal conductivity, unlike for the electrical conductivity, these scattering processes yield a logarithmic correction that may compete with the RG corrections. The interest in this correction arises from themore » fact that it violates the Wiedemann–Franz law. We checked that the sub-temperature correction to the thermal conductivity is not modified either by the inclusion of Fermi liquid interaction amplitudes or as a result of the RG flow. We therefore expect that the answer obtained for this correction is final. We use the theory to describe thermal transport on the metallic side of the metal–insulator transition in Si MOSFETs.« less

  6. Spark gap switch system with condensable dielectric gas

    DOEpatents

    Thayer, III, William J.

    1991-01-01

    A spark gap switch system is disclosed which is capable of operating at a high pulse rate comprising an insulated switch housing having a purging gas entrance port and a gas exit port, a pair of spaced apart electrodes each having one end thereof within the housing and defining a spark gap therebetween, an easily condensable and preferably low molecular weight insulating gas flowing through the switch housing from the housing, a heat exchanger/condenser for condensing the insulating gas after it exits from the housing, a pump for recirculating the condensed insulating gas as a liquid back to the housing, and a heater exchanger/evaporator to vaporize at least a portion of the condensed insulating gas back into a vapor prior to flowing the insulating gas back into the housing.

  7. Film condensation in a horizontal rectangular duct

    NASA Technical Reports Server (NTRS)

    Lu, Qing; Suryanarayana, N. V.

    1992-01-01

    Condensation heat transfer in an annular flow regime with and without interfacial waves was experimentally investigated. The study included measurements of heat transfer rate with condensation of vapor flowing inside a horizontal rectangular duct and experiments on the initiation of interfacial waves in condensation, and adiabatic air-liquid flow. An analytical model for the condensation was developed to predict condensate film thickness and heat transfer coefficients. Some conclusions drawn from the study are that the condensate film thickness was very thin (less than 0.6 mm). The average heat transfer coefficient increased with increasing the inlet vapor velocity. The local heat transfer coefficient decreased with the axial distance of the condensing surface, with the largest change at the leading edge of the test section. The interfacial shear stress, which consisted of the momentum shear stress and the adiabatic shear stress, appeared to have a significant effect on the heat transfer coefficients. In the experiment, the condensate flow along the condensing surface experienced a smooth flow, a two-dimensional wavy flow, and a three-dimensional wavy flow. In the condensation experiment, the local wave length decreased with the axial distance of the condensing surface and the average wave length decreased with increasing inlet vapor velocity, while the wave speed increased with increasing vapor velocity. The heat transfer measurements are reliable. And, the ultrasonic technique was effective for measuring the condensate film thickness when the surface was smooth or had waves of small amplitude.

  8. Condensed matter analogues of cosmology

    NASA Astrophysics Data System (ADS)

    Kibble, Tom; Srivastava, Ajit

    2013-10-01

    It is always exciting when developments in one branch of physics turn out to have relevance in a quite different branch. It would be hard to find two branches farther apart in terms of energy scales than early-universe cosmology and low-temperature condensed matter physics. Nevertheless ideas about the formation of topological defects during rapid phase transitions that originated in the context of the very early universe have proved remarkably fruitful when applied to a variety of condensed matter systems. The mathematical frameworks for describing these systems can be very similar. This interconnection has led to a deeper understanding of the phenomena in condensed matter systems utilizing ideas from cosmology. At the same time, one can view these condensed matter analogues as providing, at least in a limited sense, experimental access to the phenomena of the early universe for which no direct probe is possible. As this special issue well illustrates, this remains a dynamic and exciting field. The basic idea is that when a system goes through a rapid symmetry-breaking phase transition from a symmetric phase into one with spontaneously broken symmetry, the order parameter may make different choices in different regions, creating domains that when they meet can trap defects. The scale of those domains, and hence the density of defects, is constrained by the rate at which the system goes through the transition and the speed with which order parameter information propagates. This is what has come to be known as the Kibble-Zurek mechanism. The resultant scaling laws have now been tested in a considerable variety of different systems. The earliest experiments illustrating the analogy between cosmology and condensed matter were in liquid crystals, in particular on the isotropic-to-nematic transition, primarily because it is very easy to induce the phase transition (typically at room temperature) and to image precisely what is going on. This field remains one of the

  9. Condenser design for AMTEC power conversion

    NASA Technical Reports Server (NTRS)

    Crowley, Christopher J.

    1991-01-01

    The condenser and the electrodes are the two elements of an alkali metal thermal-to-electric conversion (AMTEC) cell which most greatly affect the energy conversion performance. A condenser is described which accomplishes two critical functions in an AMTEC cell: management of the fluid under microgravity conditions and optimization of conversion efficiency. The first function is achieved via the use of a controlled surface shape, along with drainage grooves and arteries to collect the fluid. Capillary forces manage the fluid in microgravity and dominate hydrostatic effects on the ground so the device is ground-testable. The second function is achieved via a smooth film of highly reflective liquid sodium on the condensing surface, resulting in minimization of parasitic heat losses due to radiation heat transfer. Power conversion efficiencies of 25 percent to 30 percent are estimated with this condenser using present technology for the electrodes.

  10. Local-order metric for condensed-phase environments

    NASA Astrophysics Data System (ADS)

    Martelli, Fausto; Ko, Hsin-Yu; Oǧuz, Erdal C.; Car, Roberto

    2018-02-01

    We introduce a local order metric (LOM) that measures the degree of order in the neighborhood of an atomic or molecular site in a condensed medium. The LOM maximizes the overlap between the spatial distribution of sites belonging to that neighborhood and the corresponding distribution in a suitable reference system. The LOM takes a value tending to zero for completely disordered environments and tending to one for environments that perfectly match the reference. The site-averaged LOM and its standard deviation define two scalar order parameters, S and δ S , that characterize with excellent resolution crystals, liquids, and amorphous materials. We show with molecular dynamics simulations that S , δ S , and the LOM provide very insightful information in the study of structural transformations, such as those occurring when ice spontaneously nucleates from supercooled water or when a supercooled water sample becomes amorphous upon progressive cooling.

  11. Experimental investigation of CO2 condensation process using cryogen

    NASA Astrophysics Data System (ADS)

    Lee, Cheonkyu; Yoo, Junghyun; Lee, Jisung; Park, Hana; Jeong, Sangkwon

    2014-01-01

    Carbon dioxide (CO2) is one of the dominant gas molecules that causes greenhouse effect, i.e. global warming. Numerous studies have been carried out to regulate the emission of CO2 to reduce greenhouse gas. The liquid CO2 is a convenient form of transportation compared to high-pressurized gaseous CO2. Therefore, the direct liquefaction mechanism of CO2 at low temperature draws technical attention recently. In particular, cold thermal energy of Liquefied Natural Gas (LNG) could be a candidate to condense gaseous CO2, especially in the LNG powered ship. In this paper, the detailed direct condensation process of CO2 using LN2 with intermittent solidification is investigated. Pressurized CO2 at 600 kPa is directly liquefied in a vessel by liquid nitrogen which is supplied into the coiled tube heat exchanger inside the CO2 vessel. The heat exchanger temperature is controlled from 130 K to 205 K to regulate the solidification and sublimation of CO2 by duty control with cryogenic solenoid valve. The characteristics of CO2 condensation process with cryogen are analyzed from the measurement results. The results show that the solidification causes the significant degradation of CO2 condensation heat transfer. Finally, the condensation rate with and without solidification is compared.

  12. Low-temperature Condensation of Carbon

    NASA Astrophysics Data System (ADS)

    Krasnokutski, S. A.; Goulart, M.; Gordon, E. B.; Ritsch, A.; Jäger, C.; Rastogi, M.; Salvenmoser, W.; Henning, Th.; Scheier, P.

    2017-10-01

    Two different types of experiments were performed. In the first experiment, we studied the low-temperature condensation of vaporized graphite inside bulk liquid helium, while in the second experiment, we studied the condensation of single carbon atoms together with H2, H2O, and CO molecules inside helium nanodroplets. The condensation of vaporized graphite leads to the formation of partially graphitized carbon, which indicates high temperatures, supposedly higher than 1000°C, during condensation. Possible underlying processes responsible for the instant rise in temperature during condensation are discussed. This suggests that such processes cause the presence of partially graphitized carbon dust formed by low-temperature condensation in the diffuse interstellar medium. Alternatively, in the denser regions of the ISM, the condensation of carbon atoms together with the most abundant interstellar molecules (H2, H2O, and CO), leads to the formation of complex organic molecules (COMs) and finally organic polymers. Water molecules were found not to be involved directly in the reaction network leading to the formation of COMs. It was proposed that COMs are formed via the addition of carbon atoms to H2 and CO molecules ({{C}}+{{{H}}}2\\to {HCH},{HCH}+{CO}\\to {{OCCH}}2). Due to the involvement of molecular hydrogen, the formation of COMs by carbon addition reactions should be more efficient at high extinctions compared with the previously proposed reaction scheme with atomic hydrogen.

  13. Ionic Liquid Fuels for Chemical Propulsion

    DTIC Science & Technology

    2016-10-31

    nucleophilicity in the ionic liquid is critical. Both gas -phase and condensed-phase (CPCM-GIL) density functional theory calculations support the...stability trends in dialkylimidazolium ionic liquids and could be used as a higher accuracy method than the gas -phase DFT approach for predicting thermal...stabilities of ionic liquids in general. One important finding from the comparison of the gas -phase basicities relative to the GIL condensed- phase

  14. Toward the theory of fermionic condensation

    NASA Astrophysics Data System (ADS)

    Khodel, V. A.

    2017-04-01

    The diagrammatic technique elaborated by Belyaev for the theory of a Fermi liquid has been implemented to analyze the behavior of Fermi systems beyond the topological phase transition point, where the fermionic condensate appears. It has been shown that the inclusion of the interaction between the condensate and above-condensate particles leads to the emergence of a gap in the single-particle excitation spectrum of these particles even in the absence of Cooper pairing. Hence, the emergence of this gap in homogeneous electron systems of silicon field-effect structures leads to a metal-insulator phase transition rather than to superconductivity. It has been shown that the same interaction explains the nature of the Fermi arc structure in twodimensional electron systems of cuprates.

  15. Capillary Condensation in 8 nm Deep Channels.

    PubMed

    Zhong, Junjie; Riordon, Jason; Zandavi, Seyed Hadi; Xu, Yi; Persad, Aaron H; Mostowfi, Farshid; Sinton, David

    2018-02-01

    Condensation on the nanoscale is essential to understand many natural and synthetic systems relevant to water, air, and energy. Despite its importance, the underlying physics of condensation initiation and propagation remain largely unknown at sub-10 nm, mainly due to the challenges of controlling and probing such small systems. Here we study the condensation of n-propane down to 8 nm confinement in a nanofluidic system, distinct from previous studies at ∼100 nm. The condensation initiates significantly earlier in the 8 nm channels, and it initiates from the entrance, in contrast to channels just 10 times larger. The condensate propagation is observed to be governed by two liquid-vapor interfaces with an interplay between film and bridging effects. We model the experimental results using classical theories and find good agreement, demonstrating that this 8 nm nonpolar fluid system can be treated as a continuum from a thermodynamic perspective, despite having only 10-20 molecular layers.

  16. Thermocapillary flow with evaporation and condensation and its effect on liquid retention in low-G fluid acquisition devices

    NASA Technical Reports Server (NTRS)

    Schmidt, George R.

    1994-01-01

    The steady motion, thermal and free surface behavior of a volatile, wetting liquid in microgravity are studied using scaling and numerical techniques. The objective is to determine whether the thermocapillary and two-phase convection arising from thermodynamic nonequilibrium along the porous surfaces of spacecraft liquid acquisition devices could cause the retention failures observed with liquid hydrogen and heated vapor pressurant. Why these devices seem immune to retention loss when pressurized with heated helium or heated directly through the porous structure was also examined. Results show that highly wetting fluids exhibit large negative and positive dynamic pressure gradients towards the meniscus interline when superheated and subcooled, respectively. With superheating, the pressure variation and recoil force arising from liquid/vapor phase change exert the same influence on surface morphology and promote retention. With subcooling, however, the pressure distribution produces a suction that degrades mechanical equilibrium of the surface. This result indicates that thermocapillary-induced deformation arising from subcooling and condensation is the likely cause for retention loss. In addition, increasing the level of nonequilibrium by reducing accommodation coefficient suppresses deformation and explains why this failure mode does not occur in instances of direct screen heating or pressurization with a heated inert gas.

  17. Gas-Liquid Processing in Microchannels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    TeGrotenhuis, Ward E.; Stenkamp, Victoria S.; Twitchell, Alvin

    Processing gases and liquids together in microchannels having at least one dimension <1 mm has unique advantages for rapid heat and mass transfer. One approach for managing the two phases is to use porous structures as wicks within microchannels to segregate the liquid phase from the gas phase. Gas-liquid processing is accomplished by providing a gas flow path and inducing flow of the liquid phase through or along the wick under an induced pressure gradient. A variety of unit operations are enabled, including phase separation, partial condensation, absorption, desorption, and distillation. Results are reported of an investigation of microchannel phasemore » separation in a transparent, single-channel device. Next, heat exchange is integrated with the microchannel wick approach to create a partial condenser that also separates the condensate. Finally, the scale-up to a multi-channel phase separator is described.« less

  18. Different Material States of Pub1 Condensates Define Distinct Modes of Stress Adaptation and Recovery.

    PubMed

    Kroschwald, Sonja; Munder, Matthias C; Maharana, Shovamayee; Franzmann, Titus M; Richter, Doris; Ruer, Martine; Hyman, Anthony A; Alberti, Simon

    2018-06-12

    How cells adapt to varying environmental conditions is largely unknown. Here, we show that, in budding yeast, the RNA-binding and stress granule protein Pub1 has an intrinsic property to form condensates upon starvation or heat stress and that condensate formation is associated with cell-cycle arrest. Release from arrest coincides with condensate dissolution, which takes minutes (starvation) or hours (heat shock). In vitro reconstitution reveals that the different dissolution rates of starvation- and heat-induced condensates are due to their different material properties: starvation-induced Pub1 condensates form by liquid-liquid demixing and subsequently convert into reversible gel-like particles; heat-induced condensates are more solid-like and require chaperones for disaggregation. Our data suggest that different physiological stresses, as well as stress durations and intensities, induce condensates with distinct physical properties and thereby define different modes of stress adaptation and rates of recovery. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Molecular simulation of steady-state evaporation and condensation in the presence of a non-condensable gas

    NASA Astrophysics Data System (ADS)

    Liang, Zhi; Keblinski, Pawel

    2018-02-01

    Using molecular dynamics simulations, we study evaporation and condensation of fluid Ar in the presence of a non-condensable Ne gas in a nanochannel. The evaporation and condensation are driven by the temperature difference, ΔTL, between the evaporating and condensing liquid surfaces. The steady-state evaporation and condensation fluxes (JMD) are also affected by the Ne concentration, ρNe, and the nanochannel length. We find that across a wide range of ΔTL and ρNe, JMD is in good agreement with the prediction from Stefan's law and from Schrage relationships. Furthermore, for ΔTL less than ˜20% of the absolute average temperature, we find that both steady-state heat and mass fluxes are proportional to ΔTL. This allows us to determine the interfacial resistance to the heat and mass transfer and compare it with the corresponding resistances in the gas phase. In this context, we derive an analytical expression for the effective thermal conductivity of the gas region in the nanochannel and the mass transport interfacial resistance equivalent length, i.e., the length of the nanochannel for which the resistance to the mass flow is the same as the interfacial resistance to the mass flow.

  20. Description of Liquid Nitrogen Experimental Test Facility

    NASA Technical Reports Server (NTRS)

    Jurns, John M.; Jacobs, Richard E.; Saiyed, Naseem H.

    1991-01-01

    The Liquid Nitrogen Test Facility is a unique test facility for ground-based liquid nitrogen experimentation. The test rig consists of an insulated tank of approximately 12.5 cubic ft in volume, which is supplied with liquid nitrogen from a 300 gal dewar via a vacuum jacketed piping system. The test tank is fitted with pressure and temperature measuring instrumentation, and with two view ports which allow visual observation of test conditions. To demonstrate the capabilities of the facility, the initial test program is briefly described. The objective of the test program is to measure the condensation rate by injecting liquid nitrogen as a subcooled spray into the ullage of a tank 50 percent full of liquid nitrogen at saturated conditions. The condensation rate of the nitrogen vapor on the subcooled spray can be analytically modeled, and results validated and corrected by experimentally measuring the vapor condensation on liquid sprays.

  1. Description of liquid nitrogen experimental test facility

    NASA Technical Reports Server (NTRS)

    Jurns, J. M.; Jacobs, R. E.; Saiyed, N. H.

    1992-01-01

    The Liquid Nitrogen Test Facility is a unique test facility for ground-based liquid nitrogen experimentation. The test rig consists of an insulated tank of approximately 12.5 cubic ft in volume, which is supplied with liquid nitrogen from a 300 gal dewar via a vacuum jacketed piping system. The test tank is fitted with pressure and temperature measuring instrumentation, and with two view ports which allow visual observation of test conditions. To demonstrate the capabilities of the facility, the initial test program is briefly described. The objective of the test program is to measure the condensation rate by injecting liquid nitrogen as a subcooled spray into the ullage of a tank 50 percent full of liquid nitrogen at saturated conditions. The condensation rate of the nitrogen vapor on the subcooled spray can be analytically modeled, and results validated and corrected by experimentally measuring the vapor condensation on liquid sprays.

  2. Polymorphism of Lysozyme Condensates.

    PubMed

    Safari, Mohammad S; Byington, Michael C; Conrad, Jacinta C; Vekilov, Peter G

    2017-10-05

    Protein condensates play essential roles in physiological processes and pathological conditions. Recently discovered mesoscopic protein-rich clusters may act as crucial precursors for the nucleation of ordered protein solids, such as crystals, sickle hemoglobin polymers, and amyloid fibrils. These clusters challenge settled paradigms of protein condensation as the constituent protein molecules present features characteristic of both partially misfolded and native proteins. Here we employ the antimicrobial enzyme lysozyme and examine the similarities between mesoscopic clusters, amyloid structures, and disordered aggregates consisting of chemically modified protein. We show that the mesoscopic clusters are distinct from the other two classes of aggregates. Whereas cluster formation and amyloid oligomerization are both reversible, aggregation triggered by reduction of the intramolecular S-S bonds is permanent. In contrast to the amyloid structures, protein molecules in the clusters retain their enzymatic activity. Furthermore, an essential feature of the mesoscopic clusters is their constant radius of less than 50 nm. The amyloid and disordered aggregates are significantly larger and rapidly grow. These findings demonstrate that the clusters are a product of limited protein structural flexibility. In view of the role of the clusters in the nucleation of ordered protein solids, our results suggest that fine-tuning the degree of protein conformational stability is a powerful tool to control and direct the pathways of protein condensation.

  3. Real-space imaging of fractional quantum Hall liquids

    NASA Astrophysics Data System (ADS)

    Hayakawa, Junichiro; Muraki, Koji; Yusa, Go

    2013-01-01

    Electrons in semiconductors usually behave like a gas--as independent particles. However, when confined to two dimensions under a perpendicular magnetic field at low temperatures, they condense into an incompressible quantum liquid. This phenomenon, known as the fractional quantum Hall (FQH) effect, is a quantum-mechanical manifestation of the macroscopic behaviour of correlated electrons that arises when the Landau-level filling factor is a rational fraction. However, the diverse microscopic interactions responsible for its emergence have been hidden by its universality and macroscopic nature. Here, we report real-space imaging of FQH liquids, achieved with polarization-sensitive scanning optical microscopy using trions (charged excitons) as a local probe for electron spin polarization. When the FQH ground state is spin-polarized, the triplet/singlet intensity map exhibits a spatial pattern that mirrors the intrinsic disorder potential, which is interpreted as a mapping of compressible and incompressible electron liquids. In contrast, when FQH ground states with different spin polarization coexist, domain structures with spontaneous quasi-long-range order emerge, which can be reproduced remarkably well from the disorder patterns using a two-dimensional random-field Ising model. Our results constitute the first reported real-space observation of quantum liquids in a class of broken symmetry state known as the quantum Hall ferromagnet.

  4. Condensation on Highly Superheated Surfaces: Unstable Thin Films in a Wickless Heat Pipe

    NASA Astrophysics Data System (ADS)

    Kundan, Akshay; Nguyen, Thao T. T.; Plawsky, Joel L.; Wayner, Peter C.; Chao, David F.; Sicker, Ronald J.

    2017-03-01

    A wickless heat pipe was operated on the International Space Station to provide a better understanding of how the microgravity environment might alter the physical and interfacial forces driving evaporation and condensation. Traditional heat pipes are divided into three zones: evaporation at the heated end, condensation at the cooled end, and intermediate or adiabatic in between. The microgravity experiments reported herein show that the situation may be dramatically more complicated. Beyond a threshold heat input, there was a transition from evaporation at the heated end to large-scale condensation, even as surface temperatures exceeded the boiling point by 160 K. The hotter the surface, the more vapor was condensed onto it. The condensation process at the heated end is initiated by thickness and temperature disturbances in the thin liquid film that wet the solid surface. Those disturbances effectively leave the vapor "superheated" in that region. Condensation is amplified and sustained by the high Marangoni stresses that exist near the heater and that drive liquid to cooler regions of the device.

  5. Condensation on Highly Superheated Surfaces: Unstable Thin Films in a Wickless Heat Pipe.

    PubMed

    Kundan, Akshay; Nguyen, Thao T T; Plawsky, Joel L; Wayner, Peter C; Chao, David F; Sicker, Ronald J

    2017-03-03

    A wickless heat pipe was operated on the International Space Station to provide a better understanding of how the microgravity environment might alter the physical and interfacial forces driving evaporation and condensation. Traditional heat pipes are divided into three zones: evaporation at the heated end, condensation at the cooled end, and intermediate or adiabatic in between. The microgravity experiments reported herein show that the situation may be dramatically more complicated. Beyond a threshold heat input, there was a transition from evaporation at the heated end to large-scale condensation, even as surface temperatures exceeded the boiling point by 160 K. The hotter the surface, the more vapor was condensed onto it. The condensation process at the heated end is initiated by thickness and temperature disturbances in the thin liquid film that wet the solid surface. Those disturbances effectively leave the vapor "superheated" in that region. Condensation is amplified and sustained by the high Marangoni stresses that exist near the heater and that drive liquid to cooler regions of the device.

  6. Gas adsorption and capillary condensation in nanoporous alumina films.

    PubMed

    Casanova, Fèlix; Chiang, Casey E; Li, Chang-Peng; Roshchin, Igor V; Ruminski, Anne M; Sailor, Michael J; Schuller, Ivan K

    2008-08-06

    Gas adsorption and capillary condensation of organic vapors are studied by optical interferometry, using anodized nanoporous alumina films with controlled geometry (cylindrical pores with diameters in the range of 10-60 nm). The optical response of the film is optimized with respect to the geometric parameters of the pores, for potential performance as a gas sensor device. The average thickness of the adsorbed film at low relative pressures is not affected by the pore size. Capillary evaporation of the liquid from the nanopores occurs at the liquid-vapor equilibrium described by the classical Kelvin equation with a hemispherical meniscus. Due to the almost complete wetting, we can quantitatively describe the condensation for isopropanol using the Cohan model with a cylindrical meniscus in the Kelvin equation. This model describes the observed hysteresis and allows us to use the adsorption branch of the isotherm to calculate the pore size distribution of the sample in good agreement with independent structural measurements. The condensation for toluene lacks reproducibility due to incomplete surface wetting. This exemplifies the relevant role of the fluid-solid (van der Waals) interactions in the hysteretic behavior of capillary condensation.

  7. Short-pulse laser interactions with disordered materials and liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phinney, L.M.; Goldman, C.H.; Longtin, J.P.

    High-power, short-pulse lasers in the picosecond and subpicosecond range are utilized in an increasing number of technologies, including materials processing and diagnostics, micro-electronics and devices, and medicine. In these applications, the short-pulse radiation interacts with a wide range of media encompassing disordered materials and liquids. Examples of disordered materials include porous media, polymers, organic tissues, and amorphous forms of silicon, silicon nitride, and silicon dioxide. In order to accurately model, efficiently control, and optimize short-pulse, laser-material interactions, a thorough understanding of the energy transport mechanisms is necessary. Thus, fractals and percolation theory are used to analyze the anomalous diffusion regimemore » in random media. In liquids, the thermal aspects of saturable and multiphoton absorption are examined. Finally, a novel application of short-pulse laser radiation to reduce surface adhesion forces in microstructures through short-pulse laser-induced water desorption is presented.« less

  8. Calorimetry of a Bose–Einstein-condensed photon gas

    PubMed Central

    Damm, Tobias; Schmitt, Julian; Liang, Qi; Dung, David; Vewinger, Frank; Weitz, Martin; Klaers, Jan

    2016-01-01

    Phase transitions, as the condensation of a gas to a liquid, are often revealed by a discontinuous behaviour of thermodynamic quantities. For liquid helium, for example, a divergence of the specific heat signals the transition from the normal fluid to the superfluid state. Apart from liquid helium, determining the specific heat of a Bose gas has proven to be a challenging task, for example, for ultracold atomic Bose gases. Here we examine the thermodynamic behaviour of a trapped two-dimensional photon gas, a system that allows us to spectroscopically determine the specific heat and the entropy of a nearly ideal Bose gas from the classical high temperature to the Bose-condensed quantum regime. The critical behaviour at the phase transition is clearly revealed by a cusp singularity of the specific heat. Regarded as a test of quantum statistical mechanics, our results demonstrate a quantitative agreement with its predictions at the microscopic level. PMID:27090978

  9. Modeling the Phase Composition of Gas Condensate in Pipelines

    NASA Astrophysics Data System (ADS)

    Dudin, S. M.; Zemenkov, Yu D.; Shabarov, A. B.

    2016-10-01

    Gas condensate fields demonstrate a number of thermodynamic characteristics to be considered when they are developed, as well as when gas condensate is transported and processed. A complicated phase behavior of the gas condensate system, as well as the dependence of the extracted raw materials on the phase state of the deposit other conditions being equal, is a key aspect. Therefore, when designing gas condensate lines the crucial task is to select the most appropriate methods of calculating thermophysical properties and phase equilibrium of the transported gas condensate. The paper describes a physical-mathematical model of a gas-liquid flow in the gas condensate line. It was developed based on balance equations of conservation of mass, impulse and energy of the transported medium within the framework of a quasi-1D approach. Constitutive relationships are given separately, and practical recommendations on how to apply the research results are provided as well.

  10. Successive disorder to disorder phase transitions in ionic liquid [HMIM][BF4] under high pressure

    NASA Astrophysics Data System (ADS)

    Zhu, Xiang; Yuan, Chaosheng; Li, Haining; Zhu, Pinwen; Su, Lei; Yang, Kun; Wu, Jie; Yang, Guoqiang; Liu, Jing

    2016-02-01

    In situ high-pressure Raman spectroscopy and synchrotron X-ray diffraction have been employed to investigate the phase behavior of ionic liquid, 1-hexyl-3-methylimidazolium tetrafluoroborate ([HMIM][BF4]) under high pressure up to 20 GPa at room temperature. With increasing pressure, some characteristic bands of [HMIM][BF4] disappear, and some characteristic bands of [HMIM][BF4] display non-monotonic pressure-induced frequency shift and non-monotonic variation of full width at half-maximum. Two successive phase transitions at ˜1.7 GPa and 7.3 GPa have been corroborated by the results above. The glass transition pressure (Pg) of [HMIM][BF4] at ˜7.3 GPa has been obtained by ruby R1 line broadening measurements and analysis of synchrotron X-ray diffraction patterns, and its glass transition mechanism is also analyzed in detail. These facts are suggestive of two successive disorder to disorder phase transitions induced by compression, that is, [HMIM][BF4] serves as a superpressurized glass under the pressure above 7.3 GPa, which is similar to the glassy state at low temperature, and a compression-induced liquid to liquid phase transition in [HMIM][BF4] occurs at ˜1.7 GPa. Besides, the conformational equilibrium of the GAAA conformer and AAAA conformer was converted easily in liquid [HMIM][BF4], while it was difficult to be influenced in glassy state.

  11. Polariton condensation in a strain-compensated planar microcavity with InGaAs quantum wells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cilibrizzi, Pasquale; Askitopoulos, Alexis, E-mail: Alexis.Askitopoulos@soton.ac.uk; Silva, Matteo

    2014-11-10

    The investigation of intrinsic interactions in polariton condensates is currently limited by the photonic disorder of semiconductor microcavity structures. Here, we use a strain compensated planar GaAs/AlAs{sub 0.98}P{sub 0.02} microcavity with embedded InGaAs quantum wells having a reduced cross-hatch disorder to overcome this issue. Using real and reciprocal space spectroscopic imaging under non-resonant optical excitation, we observe polariton condensation and a second threshold marking the onset of photon lasing, i.e., the transition from the strong to the weak-coupling regime. Condensation in a structure with suppressed photonic disorder is a necessary step towards the implementation of periodic lattices of interacting condensates,more » providing a platform for on chip quantum simulations.« less

  12. Physics through the 1990s: Condensed-matter physics

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The volume presents the current status of condensed-matter physics from developments since the 1970s to opportunities in the 1990s. Topics include electronic structure, vibrational properties, critical phenomena and phase transitions, magnetism, semiconductors, defects and diffusion, surfaces and interfaces, low-temperature physics, liquid-state physics, polymers, nonlinear dynamics, instabilities, and chaos. Appendices cover the connections between condensed-matter physics and applications of national interest, new experimental techniques and materials, laser spectroscopy, and national facilities for condensed-matter physics research. The needs of the research community regarding support for individual researchers and for national facilities are presented, as are recommendations for improved government-academic-industrial relations.

  13. Grand Canonical Investigation of the Quasi Liquid Layer of Ice: Is It Liquid?

    PubMed

    Pickering, Ignacio; Paleico, Martin; Sirkin, Yamila A Perez; Scherlis, Damian A; Factorovich, Matías H

    2018-05-10

    In this study, the solid-vapor equilibrium and the quasi liquid layer (QLL) of ice Ih exposing the basal and primary prismatic faces were explored by means of grand canonical molecular dynamics simulations with the monatomic mW potential. For this model, the solid-vapor equilibrium was found to follow the Clausius-Clapeyron relation in the range examined, from 250 to 270 K, with a Δ H sub of 50 kJ/mol in excellent agreement with the experimental value. The phase diagram of the mW model was constructed for the low pressure region around the triple point. The analysis of the crystallization dynamics during condensation and evaporation revealed that, for the basal face, both processes are highly activated, and in particular cubic ice is formed during condensation, producing stacking-disordered ice. The basal and primary prismatic surfaces of ice Ih were investigated at different temperatures and at their corresponding equilibrium vapor pressures. Our results show that the region known as QLL can be interpreted as the outermost layers of the solid where a partial melting takes place. Solid islands in the nanometer length scale are surrounded by interconnected liquid areas, generating a bidimensional nanophase segregation that spans throughout the entire width of the outermost layer even at 250 K. Two approaches were adopted to quantify the QLL and discussed in light of their ability to reflect this nanophase segregation phenomena. Our results in the μVT ensemble were compared with NPT and NVT simulations for two system sizes. No significant differences were found between the results as a consequence of model system size or of the working ensemble. Nevertheless, certain advantages of performing μVT simulations in order to reproduce the experimental situation are highlighted. On the one hand, the QLL thickness measured out of equilibrium might be affected because of crystallization being slower than condensation. On the other, preliminary simulations of AFM

  14. Numerical Study on the Effects of Gravity and Surface Tension on Condensation Process in Square Minichannel

    NASA Astrophysics Data System (ADS)

    Li, Panpan; Chen, Zhenqian; Shi, Juan

    2018-02-01

    A volume of fluid (VOF) method is adopted to simulate the condensation of R134a in a horizontal single square minichannel with 1 mm side length. The effect of gravity, surface tension and gas-liquid interfacial shear stress are taken into account. The result denotes that condensation is first appeared at the corner of channel, and then the condensation is stretched at the effect of surface tension until the whole channel boundary covered. The effect of gravity on the distribution of the liquid film depends on the channel length. In short channel, the gravity shows no significant effect, the distribution shape of steam in the cross section of the channel is approximately circular. In long channel, due to the influence of gravity, the liquid converges at the bottom under the effect of gravity, and the thickness of the liquid film at the bottom is obviously higher than that of the upper part of the channel. The effect of surface tension on condensation is also analysed. The surface tension can enhance the condensation heat transfer significantly when the inlet mass flux is low. Whilst, at high mass flux, the enhancement of surface tension on heat transfer is unobvious and can be neglected.

  15. Enhanced Condensation Heat Transfer On Patterned Surfaces

    NASA Astrophysics Data System (ADS)

    Alizadeh-Birjandi, Elaheh; Kavehpour, H. Pirouz

    2017-11-01

    Transition from film to drop wise condensation can improve the efficiency of thermal management applications and result in considerable savings in investments and operating costs by millions of dollars every year. The current methods available are either hydrophobic coating or nanostructured surfaces. The former has little adhesion to the structure which tends to detach easily under working conditions, the fabrication techniques of the latter are neither cost-effective nor scalable, and both are made with low thermal conductivity materials that would negate the heat transfer enhancement by drop wise condensation. Therefore, the existing technologies have limitations in enhancing vapor-to-liquid condensation. This work focuses on development of surfaces with wettability contrast to boost drop wise condensation, which its overall heat transfer efficiency is 2-3 times film wise condensation, while maintaining high conduction rate through the surface at low manufacturing costs. The variation in interfacial energy is achieved through crafting hydrophobic patterns to the surface of the metal via scalable fabrication techniques. The results of experimental and surface optimization studies are also presented.

  16. BES-HEP Connections: Common Problems in Condensed Matter and High Energy Physics, Round Table Discussion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fradkin, Eduardo; Maldacena, Juan; Chatterjee, Lali

    2015-02-02

    On February 2, 2015 the Offices of High Energy Physics (HEP) and Basic Energy Sciences (BES) convened a Round Table discussion among a group of physicists on ‘Common Problems in Condensed Matter and High Energy Physics’. This was motivated by the realization that both fields deal with quantum many body problems, share many of the same challenges, use quantum field theoretical approaches and have productively interacted in the past. The meeting brought together physicists with intersecting interests to explore recent developments and identify possible areas of collaboration.... Several topics were identified as offering great opportunity for discovery and advancement inmore » both condensed matter physics and particle physics research. These included topological phases of matter, the use of entanglement as a tool to study nontrivial quantum systems in condensed matter and gravity, the gauge-gravity duality, non-Fermi liquids, the interplay of transport and anomalies, and strongly interacting disordered systems. Many of the condensed matter problems are realizable in laboratory experiments, where new methods beyond the usual quasi-particle approximation are needed to explain the observed exotic and anomalous results. Tools and techniques such as lattice gauge theories, numerical simulations of many-body systems, and tensor networks are seen as valuable to both communities and will likely benefit from collaborative development.« less

  17. DROPWISE CONDENSATION ON MICRO- AND NANOSTRUCTURED SURFACES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Enright, R; Miljkovic, N; Alvarado, JL

    In this review we cover recent developments in the area of surface-enhanced dropwise condensation against the background of earlier work. The development of fabrication techniques to create surface structures at the micro-and nanoscale using both bottom-up and top-down approaches has led to increased study of complex interfacial phenomena. In the heat transfer community, researchers have been extensively exploring the use of advanced surface structuring techniques to enhance phase-change heat transfer processes. In particular, the field of vapor-to-liquid condensation and especially that of water condensation has experienced a renaissance due to the promise of further optimizing this process at the micro-andmore » nanoscale by exploiting advances in surface engineering developed over the last several decades.« less

  18. Ferroelectricity by Bose-Einstein condensation in a quantum magnet.

    PubMed

    Kimura, S; Kakihata, K; Sawada, Y; Watanabe, K; Matsumoto, M; Hagiwara, M; Tanaka, H

    2016-09-26

    The Bose-Einstein condensation is a fascinating phenomenon, which results from quantum statistics for identical particles with an integer spin. Surprising properties, such as superfluidity, vortex quantization or Josephson effect, appear owing to the macroscopic quantum coherence, which spontaneously develops in Bose-Einstein condensates. Realization of Bose-Einstein condensation is not restricted in fluids like liquid helium, a superconducting phase of paired electrons in a metal and laser-cooled dilute alkali atoms. Bosonic quasi-particles like exciton-polariton and magnon in solids-state systems can also undergo Bose-Einstein condensation in certain conditions. Here, we report that the quantum coherence in Bose-Einstein condensate of the magnon quasi particles yields spontaneous electric polarization in the quantum magnet TlCuCl 3 , leading to remarkable magnetoelectric effect. Very soft ferroelectricity is realized as a consequence of the O(2) symmetry breaking by magnon Bose-Einstein condensation. The finding of this ferroelectricity will open a new window to explore multi-functionality of quantum magnets.

  19. PERVAPORATION SEPARATION IMPROVEMENTS VIA FRACTIONAL CONDENSATION (DEPHLEGMATION): IMPACT OF DEPHLEGMATOR DESIGN ON PERFORMANCE

    EPA Science Inventory

    Traditionally, pervaporation systems have been operated using a total condenser to deliver the final permeate liquid product. Over the past two years, we have investigated the use of a condensation process called "dephlegmation" to enhance the separation performance of pervapora...

  20. Coulomb spin liquid in anion-disordered pyrochlore Tb 2Hf 2O 7

    DOE PAGES

    Sibille, Romain; Lhotel, Elsa; Hatnean, Monica Ciomaga; ...

    2017-10-12

    Here, the charge ordered structure of ions and vacancies characterizing rare-earth pyrochlore oxides serves as a model for the study of geometrically frustrated magnetism. The organization of magnetic ions into networks of corner-sharing tetrahedra gives rise to highly correlated magnetic phases with strong fluctuations, including spin liquids and spin ices. It is an open question how these ground states governed by local rules are affected by disorder. Here we demonstrate in the pyrochlore Tb 2Hf 2O 7, that the vicinity of the disordering transition towards a defective fluorite structure translates into a tunable density of anion Frenkel disorder while cationsmore » remain ordered. Quenched random crystal fields and disordered exchange interactions can therefore be introduced into otherwise perfect pyrochlore lattices of magnetic ions. We show that disorder can play a crucial role in preventing long-range magnetic order at low temperatures, and instead induces a strongly fluctuating Coulomb spin liquid with defect-induced frozen magnetic degrees of freedom.« less

  1. Disorder from the Bulk Ionic Liquid in Electric Double Layer Transistors

    DOE PAGES

    Petach, Trevor A.; Reich, Konstantin V.; Zhang, Xiao; ...

    2017-07-28

    Ionic liquid gating has a number of advantages over solid-state gating, especially for flexible or transparent devices and for applications requiring high carrier densities. But, the large number of charged ions near the channel inevitably results in Coulomb scattering, which limits the carrier mobility in otherwise clean systems. We develop a model for this Coulomb scattering. We then validate our model experimentally using ionic liquid gating of graphene across varying thicknesses of hexagonal boron nitride, demonstrating that disorder in the bulk ionic liquid often dominates the scattering.

  2. High gliding fluid power generation system with fluid component separation and multiple condensers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahmoud, Ahmad M; Lee, Jaeseon; Radcliff, Thomas D

    2014-10-14

    An example power generation system includes a vapor generator, a turbine, a separator and a pump. In the separator, the multiple components of the working fluid are separated from each other and sent to separate condensers. Each of the separate condensers is configured for condensing a single component of the working fluid. Once each of the components condense back into a liquid form they are recombined and exhausted to a pump that in turn drives the working fluid back to the vapor generator.

  3. Refrigerant pressurization system with a two-phase condensing ejector

    DOEpatents

    Bergander, Mark [Madison, CT

    2009-07-14

    A refrigerant pressurization system including an ejector having a first conduit for flowing a liquid refrigerant therethrough and a nozzle for accelerating a vapor refrigerant therethrough. The first conduit is positioned such that the liquid refrigerant is discharged from the first conduit into the nozzle. The ejector includes a mixing chamber for condensing the vapor refrigerant. The mixing chamber comprises at least a portion of the nozzle and transitions into a second conduit having a substantially constant cross sectional area. The condensation of the vapor refrigerant in the mixing chamber causes the refrigerant mixture in at least a portion of the mixing chamber to be at a pressure greater than that of the refrigerant entering the nozzle and greater than that entering the first conduit.

  4. Experimental Study of the Exciton Gas-Liquid Transition in Coupled Quantum Wells

    NASA Astrophysics Data System (ADS)

    Misra, Subhradeep; Stern, Michael; Joshua, Arjun; Umansky, Vladimir; Bar-Joseph, Israel

    2018-01-01

    We study the exciton gas-liquid transition in GaAs /AlGaAs coupled quantum wells. Below a critical temperature, TC=4.8 K , and above a threshold laser power density the system undergoes a phase transition into a liquid state. We determine the density-temperature phase diagram over the temperature range 0.1-4.8 K. We find that the latent heat increases linearly with temperature at T ≲1.1 K , similarly to a Bose-Einstein condensate transition, and becomes constant at 1.1 ≲T <4.8 K . Resonant Rayleigh scattering measurements reveal that the disorder in the sample is strongly suppressed and the diffusion coefficient sharply increases with decreasing temperature at T liquid to spread over large distances away from the excitation region. We suggest that our findings are manifestations of a quantum liquid behavior.

  5. Experimental investigation of CO{sub 2} condensation process using cryogen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Cheonkyu; Yoo, Junghyun; Lee, Jisung

    2014-01-29

    Carbon dioxide (CO{sub 2}) is one of the dominant gas molecules that causes greenhouse effect, i.e. global warming. Numerous studies have been carried out to regulate the emission of CO{sub 2} to reduce greenhouse gas. The liquid CO{sub 2} is a convenient form of transportation compared to high-pressurized gaseous CO{sub 2}. Therefore, the direct liquefaction mechanism of CO{sub 2} at low temperature draws technical attention recently. In particular, cold thermal energy of Liquefied Natural Gas (LNG) could be a candidate to condense gaseous CO{sub 2}, especially in the LNG powered ship. In this paper, the detailed direct condensation process ofmore » CO{sub 2} using LN{sub 2} with intermittent solidification is investigated. Pressurized CO{sub 2} at 600 kPa is directly liquefied in a vessel by liquid nitrogen which is supplied into the coiled tube heat exchanger inside the CO{sub 2} vessel. The heat exchanger temperature is controlled from 130 K to 205 K to regulate the solidification and sublimation of CO{sub 2} by duty control with cryogenic solenoid valve. The characteristics of CO{sub 2} condensation process with cryogen are analyzed from the measurement results. The results show that the solidification causes the significant degradation of CO{sub 2} condensation heat transfer. Finally, the condensation rate with and without solidification is compared.« less

  6. Characterisation of aerosol combustible mixtures generated using condensation process

    NASA Astrophysics Data System (ADS)

    Saat, Aminuddin; Dutta, Nilabza; Wahid, Mazlan A.

    2012-06-01

    An accidental release of a liquid flammable substance might be formed as an aerosol (droplet and vapour mixture). This phenomenon might be due to high pressure sprays, pressurised liquid leaks and through condensation when hot vapour is rapidly cooled. Such phenomena require a fundamental investigation of mixture characterisation prior to any subsequent process such as evaporation and combustion. This paper describes characterisation study of droplet and vapour mixtures generated in a fan stirred vessel using condensation technique. Aerosol of isooctane mixtures were generated by expansion from initially a premixed gaseous fuel-air mixture. The distribution of droplets within the mixture was characterised using laser diagnostics. Nearly monosized droplet clouds were generated and the droplet diameter was defined as a function of expansion time. The effect of changes in pressure, temperature, fuel-air fraction and expansion ratio on droplet diameter was evaluated. It is shown that aerosol generation by expansion was influenced by the initial pressure and temperature, equivalence ratio and expansion rates. All these parameters affected the onset of condensation which in turn affected the variation in droplet diameter.

  7. Signatures of exciton condensation in a transition metal dichalcogenide

    NASA Astrophysics Data System (ADS)

    Kogar, Anshul; Rak, Melinda S.; Vig, Sean; Husain, Ali A.; Flicker, Felix; Joe, Young Il; Venema, Luc; MacDougall, Greg J.; Chiang, Tai C.; Fradkin, Eduardo; van Wezel, Jasper; Abbamonte, Peter

    2017-12-01

    Bose condensation has shaped our understanding of macroscopic quantum phenomena, having been realized in superconductors, atomic gases, and liquid helium. Excitons are bosons that have been predicted to condense into either a superfluid or an insulating electronic crystal. Using the recently developed technique of momentum-resolved electron energy-loss spectroscopy (M-EELS), we studied electronic collective modes in the transition metal dichalcogenide semimetal 1T-TiSe2. Near the phase-transition temperature (190 kelvin), the energy of the electronic mode fell to zero at nonzero momentum, indicating dynamical slowing of plasma fluctuations and crystallization of the valence electrons into an exciton condensate. Our study provides compelling evidence for exciton condensation in a three-dimensional solid and establishes M-EELS as a versatile technique sensitive to valence band excitations in quantum materials.

  8. Liquid methane gelled with methanol and water reduces rate of nitrogen absorption

    NASA Technical Reports Server (NTRS)

    Vanderwall, E. M.

    1972-01-01

    Dilution of gelant vapor with inert carrier gas accomplishes gelation. Mixture is injected through heated tube and orifice into liquid methane for immediate condensation within bulk of liquid. Direct dispersion of particles in liquid avoids condensation on walls of vessel and eliminates additional mixing.

  9. Enhancement of Condensation Heat Transfer by Counter-Corrent Wavy Flow in a Vertical Tube

    NASA Astrophysics Data System (ADS)

    Teranishi, Tsunenobu; Ozawa, Takanori; Takimoto, Akira

    As a basic research for the development of a high-performance and environment-friendly thermal energy recovery system, detailed experiments have been conducted to investigate the mechanism of the enhancement of condensation heat transfer by the counter-current moist air flow in a vertical tube. From the results of visual observation of the phenomena by using a high-speed video recorder and the measurement of condensate rate respectively from an upper and a bottom end of a cooled tube, in which various humidity vapor of air and water flowed upward or downward, the dynamic behavior of liquid film condensed on cooled surface and moist air flow was classified into four distinctive patterns in quality and quantity. Further, the effect of the scale and the operating condition such as the diameter and the length of tube, the vapor concentration and the moist air temperature, on the condensation rate of counter-current wavy flow was clarified in relation to the pattern and condition of occurrence of the wavy flow of liquid film and flooding due to the shear forces between the interface of liquid and moist air flow.

  10. Collecting and recirculating condensate in a nuclear reactor containment

    DOEpatents

    Schultz, Terry L.

    1993-01-01

    An arrangement passively cools a nuclear reactor in the event of an emergency, condensing and recycling vaporized cooling water. The reactor is surrounded by a containment structure and has a storage tank for cooling liquid, such as water, vented to the containment structure by a port. The storage tank preferably is located inside the containment structure and is thermally coupleable to the reactor, e.g. by a heat exchanger, such that water in the storage tank is boiled off to carry away heat energy. The water is released as a vapor (steam) and condenses on the cooler interior surfaces of the containment structure. The condensed water flows downwardly due to gravity and is collected and routed back to the storage tank. One or more gutters are disposed along the interior wall of the containment structure for collecting the condensate from the wall. Piping is provided for communicating the condensate from the gutters to the storage tank.

  11. Collecting and recirculating condensate in a nuclear reactor containment

    DOEpatents

    Schultz, T.L.

    1993-10-19

    An arrangement passively cools a nuclear reactor in the event of an emergency, condensing and recycling vaporized cooling water. The reactor is surrounded by a containment structure and has a storage tank for cooling liquid, such as water, vented to the containment structure by a port. The storage tank preferably is located inside the containment structure and is thermally coupleable to the reactor, e.g. by a heat exchanger, such that water in the storage tank is boiled off to carry away heat energy. The water is released as a vapor (steam) and condenses on the cooler interior surfaces of the containment structure. The condensed water flows downwardly due to gravity and is collected and routed back to the storage tank. One or more gutters are disposed along the interior wall of the containment structure for collecting the condensate from the wall. Piping is provided for communicating the condensate from the gutters to the storage tank. 3 figures.

  12. Immersion Condensation on Oil-Infused Heterogeneous Surfaces for Enhanced Heat Transfer

    PubMed Central

    Xiao, Rong; Miljkovic, Nenad; Enright, Ryan; Wang, Evelyn N.

    2013-01-01

    Enhancing condensation heat transfer is important for broad applications from power generation to water harvesting systems. Significant efforts have focused on easy removal of the condensate, yet the other desired properties of low contact angles and high nucleation densities for high heat transfer performance have been typically neglected. In this work, we demonstrate immersion condensation on oil-infused micro and nanostructured surfaces with heterogeneous coatings, where water droplets nucleate immersed within the oil. The combination of surface energy heterogeneity, reduced oil-water interfacial energy, and surface structuring enabled drastically increased nucleation densities while maintaining easy condensate removal and low contact angles. Accordingly, on oil-infused heterogeneous nanostructured copper oxide surfaces, we demonstrated approximately 100% increase in heat transfer coefficient compared to state-of-the-art dropwise condensation surfaces in the presence of non-condensable gases. This work offers a distinct approach utilizing surface chemistry and structuring together with liquid-infusion for enhanced condensation heat transfer. PMID:23759735

  13. Film Condensation with and Without Body Force in Boundary-Layer Flow of Vapor Over a Flat Plate

    NASA Technical Reports Server (NTRS)

    Chung, Paul M.

    1961-01-01

    Laminar film condensation under the simultaneous influence of gas-liquid interface shear and body force (g force) is analyzed over a flat plate. Important parameters governing condensation and heat transfer of pure vapor are determined. Mixtures of condensable vapor and noncondensable gas are also analyzed. The conditions under which the body force has a significant influence on condensation are determined.

  14. Unconventional Bose—Einstein Condensations from Spin-Orbit Coupling

    NASA Astrophysics Data System (ADS)

    Wu, Cong-Jun; Ian, Mondragon-Shem; Zhou, Xiang-Fa

    2011-09-01

    According to the “no-node" theorem, the many-body ground state wavefunctions of conventional Bose—Einstein condensations (BEC) are positive-definite, thus time-reversal symmetry cannot be spontaneously broken. We find that multi-component bosons with spin-orbit coupling provide an unconventional type of BECs beyond this paradigm. We focus on a subtle case of isotropic Rashba spin-orbit coupling and the spin-independent interaction. In the limit of the weak confining potential, the condensate wavefunctions are frustrated at the Hartree—Fock level due to the degeneracy of the Rashba ring. Quantum zero-point energy selects the spin-spiral type condensate through the “order-from-disorder" mechanism. In a strong harmonic confining trap, the condensate spontaneously generates a half-quantum vortex combined with the skyrmion type of spin texture. In both cases, time-reversal symmetry is spontaneously broken. These phenomena can be realized in both cold atom systems with artificial spin-orbit couplings generated from atom-laser interactions and exciton condensates in semi-conductor systems.

  15. Experimental Study of the Exciton Gas-Liquid Transition in Coupled Quantum Wells.

    PubMed

    Misra, Subhradeep; Stern, Michael; Joshua, Arjun; Umansky, Vladimir; Bar-Joseph, Israel

    2018-01-26

    We study the exciton gas-liquid transition in GaAs/AlGaAs coupled quantum wells. Below a critical temperature, T_{C}=4.8  K, and above a threshold laser power density the system undergoes a phase transition into a liquid state. We determine the density-temperature phase diagram over the temperature range 0.1-4.8 K. We find that the latent heat increases linearly with temperature at T≲1.1  K, similarly to a Bose-Einstein condensate transition, and becomes constant at 1.1≲T<4.8  K. Resonant Rayleigh scattering measurements reveal that the disorder in the sample is strongly suppressed and the diffusion coefficient sharply increases with decreasing temperature at Tliquid to spread over large distances away from the excitation region. We suggest that our findings are manifestations of a quantum liquid behavior.

  16. Simulating condensation on microstructured surfaces using Lattice Boltzmann Method

    NASA Astrophysics Data System (ADS)

    Alexeev, Alexander; Vasyliv, Yaroslav

    2017-11-01

    We simulate a single component fluid condensing on 2D structured surfaces with different wettability. To simulate the two phase fluid, we use the athermal Lattice Boltzmann Method (LBM) driven by a pseudopotential force. The pseudopotential force results in a non-ideal equation of state (EOS) which permits liquid-vapor phase change. To account for thermal effects, the athermal LBM is coupled to a finite volume discretization of the temperature evolution equation obtained using a thermal energy rate balance for the specific internal energy. We use the developed model to probe the effect of surface structure and surface wettability on the condensation rate in order to identify microstructure topographies promoting condensation. Financial support is acknowledged from Kimberly-Clark.

  17. Variability of breath condensate pH may contribute to the better understanding of non-allergic seasonal respiratory diseases

    NASA Astrophysics Data System (ADS)

    Kullmann, Tamás; Szipőcs, Annamária

    2017-09-01

    The seasonal variability of certain non-allergic respiratory diseases is not clearly understood. Analysis of the breath condensate, the liquid that can be collected by breathing into a cold tube, has been proposed to bring closer to the understanding of airway pathologies. It has been assumed, that (1) airway lining fluid was a stable body liquid and (2) the breath condensate samples were representative of the airway lining fluid. Research was focussed on the identification of biomarkers indicative of respiratory pathologies. Despite 30 years of extended investigations breath condensate analysis has not gained any clinical implementation so far. The pH of the condensate is the characteristic that can be determined with the highest reproducibility. The present paper shows, that contrary to the initial assumptions, breath condensate is not a representative of the airway lining fluid, and the airway lining fluid is not a stable body liquid. Condensate pH shows baseline variability and it is influenced by drinking and by the ambient temperature. The changes in condensate pH are linked to changes in airway lining fluid pH. The variability of airway lining fluid pH may explain seasonal incidence of certain non-allergic respiratory diseases such as the catching of a common cold and the increased incidence of COPD exacerbations and exercise-induced bronchoconstriction in cold periods.

  18. Condensation and Wetting Dynamics on Micro/Nano-Structured Surfaces

    NASA Astrophysics Data System (ADS)

    Olceroglu, Emre

    Because of their adjustable wetting characteristics, micro/nanostructured surfaces are attractive for the enhancement of phase-change heat transfer where liquid-solid-vapor interactions are important. Condensation, evaporation, and boiling processes are traditionally used in a variety of applications including water harvesting, desalination, industrial power generation, HVAC, and thermal management systems. Although they have been studied by numerous researchers, there is currently a lack of understanding of the underlying mechanisms by which structured surfaces improve heat transfer during phase-change. This PhD dissertation focuses on condensation onto engineered surfaces including fabrication aspect, the physics of phase-change, and the operational limitations of engineered surfaces. While superhydrophobic condensation has been shown to produce high heat transfer rates, several critical issues remain in the field. These include surface manufacturability, heat transfer coefficient measurement limitations at low heat fluxes, failure due to surface flooding at high supersaturations, insufficient modeling of droplet growth rates, and the inherent issues associated with maintenance of non-wetted surface structures. Each of these issues is investigated in this thesis, leading to several contributions to the field of condensation on engineered surfaces. A variety of engineered surfaces have been fabricated and characterized, including nanostructured and hierarchically-structured superhydrophobic surfaces. The Tobacco mosaic virus (TMV) is used here as a biological template for the fabrication of nickel nanostructures, which are subsequently functionalized to achieve superhydrophobicity. This technique is simple and sustainable, and requires no applied heat or external power, thus making it easily extendable to a variety of common heat transfer materials and complex geometries. To measure heat transfer rates during superhydrophobic condensation in the presence of non-condensable

  19. Instability in a system of two interacting liquid films: Formation of liquid bridges between solid surfaces

    NASA Astrophysics Data System (ADS)

    Forcada, Mikel L.

    1993-01-01

    A theoretical study of systems composed of two solid-supported liquid films that are subject to a mutual attractive interaction reveals the existence of a mechanical instability: for distances closer than a certain threshold value, the system composed by two separate liquid films has no stable equilibrium configurations, and the system collapses to form a single liquid body. The sudden condensation of a connecting liquid bridge when two solid surfaces are brought to close proximity inside an undersaturated medium has been observed experimentally using the surface-force apparatus [see, e.g., Christenson et al., Phys. Rev. B 39, 11750 (1989)]. In this paper, these results are explained as follows: first, liquid films condense on the surfaces; then, if the distance is short enough, the films jump to contact, because of a mechanical instability due to attractive interactions.

  20. Condensed Plasmas under Microgravity

    NASA Technical Reports Server (NTRS)

    Morfill, G. E.; Thomas, H. M.; Konopka, U.; Rothermel, H.; Zuzic, M.; Ivlev, A.; Goree, J.; Rogers, Rick (Technical Monitor)

    1999-01-01

    Experiments under microgravity conditions were carried out to study 'condensed' (liquid and crystalline) states of a colloidal plasma (ions, electrons, and charged microspheres). Systems with approximately 10(exp 6) microspheres were produced. The observed systems represent new forms of matter--quasineutral, self-organized plasmas--the properties of which are largely unexplored. In contrast to laboratory measurements, the systems under microgravity are clearly three dimensional (as expected); they exhibit stable vortex flows, sometimes adjacent to crystalline regions, and a central 'void,' free of microspheres.

  1. Disorder-induced Revival of the Bose-Einstein Condensation at High Magnetic Fields in Ni(Cl1-xBrx)2- 4SC(NH2)2

    NASA Astrophysics Data System (ADS)

    Laflorencie, Nicolas; Dupont, Maxime; Capponi, Sylvain

    Building on recent NMR experiments, we theoretically investigate the high magnetic field regime of the disordered quasi-one-dimensional S = 1 antiferromagnetic material Ni(Cl1-xBrx)2- 4SC(NH2)2. The interplay between disorder, chemically controlled by Br-doping, interactions, and the external magnetic field, leads to a very rich phase diagram. Beyond the well-known antiferromagnetically ordered regime, analog of a Bose condensate of magnons, which disappears when H >= 12 . 3 T, we unveil a resurgence of phase coherence at higher field H 13 . 6 T, induced by the doping. Interchain couplings stabilize finite temperature long-range order whose extension in the field - temperature space is governed by the concentration of impurities x. Such a ``mini-condensation'' contrasts with previously reported Bose-glass physics in the same regime by Yu et al., and should be accessible to future experiments. Work supported by the French ANR program BOLODISS and by Region Midi-Pyrenees.

  2. SEPARATION OF VAPOR-PHASE ALCOHOL/WATER MIXTURES VIA FRACTIONAL CONDENSATION USING A PILOT-SCALE DEPHLEGMATOR: ENHANCEMENT OF THE PREVAPORATION PROCESS SEPARATION FACTOR

    EPA Science Inventory

    In prevaporation, a liquid mixture contacts a membrane surface that preferentially permeates one of the liquid components as a vapor. Our approach to improving pervaporation performance is to replace the one-stage condenser traditionally used to condense the permeate with a frac...

  3. Analysis of heat and mass transfer during condensation over a porous substrate.

    PubMed

    Balasubramaniam, R; Nayagam, V; Hasan, M M; Khan, L

    2006-09-01

    Condensing heat exchangers are important in many space applications for thermal and humidity control systems. The International Space Station uses a cooled fin surface to condense moisture from humid air that is blown over it. The condensate and the air are "slurped" into a system that separates air and water by centrifugal forces. The use of a cooled porous substrate is an attractive alternative to the fin where condensation and liquid/gas separation can be achieved in a single step. We analyze the heat and mass transfer during condensation of moisture from flowing air over such a cooled, flat, porous substrate. A fully developed regime is investigated for coupled mass, momentum and energy transport in the gas phase, and momentum and energy transport in the condensate layer on the porous substrate and through the porous medium.

  4. Condensation model for the ESBWR passive condensers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Revankar, S. T.; Zhou, W.; Wolf, B.

    2012-07-01

    In the General Electric's Economic simplified boiling water reactor (GE-ESBWR) the passive containment cooling system (PCCS) plays a major role in containment pressure control in case of an loss of coolant accident. The PCCS condenser must be able to remove sufficient energy from the reactor containment to prevent containment from exceeding its design pressure following a design basis accident. There are three PCCS condensation modes depending on the containment pressurization due to coolant discharge; complete condensation, cyclic venting and flow through mode. The present work reviews the models and presents model predictive capability along with comparison with existing data frommore » separate effects test. The condensation models in thermal hydraulics code RELAP5 are also assessed to examine its application to various flow modes of condensation. The default model in the code predicts complete condensation well, and basically is Nusselt solution. The UCB model predicts through flow well. None of condensation model in RELAP5 predict complete condensation, cyclic venting, and through flow condensation consistently. New condensation correlations are given that accurately predict all three modes of PCCS condensation. (authors)« less

  5. A sensitivity study of the effects of evaporation/condensation accommodation coefficients on transient heat pipe modeling

    NASA Astrophysics Data System (ADS)

    Hall, Michael L.; Doster, J. Michael

    1990-03-01

    The dynamic behavior of liquid metal heat pipe models is strongly influenced by the choice of evaporation and condensation modeling techniques. Classic kinetic theory descriptions of the evaporation and condensation processes are often inadequate for real situations; empirical accommodation coefficients are commonly utilized to reflect nonideal mass transfer rates. The complex geometries and flow fields found in proposed heat pipe systems cause considerable deviation from the classical models. the THROHPUT code, which has been described in previous works, was developed to model transient liquid metal heat pipe behavior from frozen startup conditions to steady state full power operation. It is used here to evaluate the sensitivity of transient liquid metal heat pipe models to the choice of evaporation and condensation accommodation coefficients. Comparisons are made with experimental liquid metal heat pipe data. It is found that heat pipe behavior can be predicted with the proper choice of the accommodation coefficients. However, the common assumption of spatially constant accommodation coefficients is found to be a limiting factor in the model.

  6. Topological framework for local structure analysis in condensed matter

    PubMed Central

    Lazar, Emanuel A.; Han, Jian; Srolovitz, David J.

    2015-01-01

    Physical systems are frequently modeled as sets of points in space, each representing the position of an atom, molecule, or mesoscale particle. As many properties of such systems depend on the underlying ordering of their constituent particles, understanding that structure is a primary objective of condensed matter research. Although perfect crystals are fully described by a set of translation and basis vectors, real-world materials are never perfect, as thermal vibrations and defects introduce significant deviation from ideal order. Meanwhile, liquids and glasses present yet more complexity. A complete understanding of structure thus remains a central, open problem. Here we propose a unified mathematical framework, based on the topology of the Voronoi cell of a particle, for classifying local structure in ordered and disordered systems that is powerful and practical. We explain the underlying reason why this topological description of local structure is better suited for structural analysis than continuous descriptions. We demonstrate the connection of this approach to the behavior of physical systems and explore how crystalline structure is compromised at elevated temperatures. We also illustrate potential applications to identifying defects in plastically deformed polycrystals at high temperatures, automating analysis of complex structures, and characterizing general disordered systems. PMID:26460045

  7. Heat Transfer Enhancement During Water and Hydrocarbon Condensation on Lubricant Infused Surfaces.

    PubMed

    Preston, Daniel J; Lu, Zhengmao; Song, Youngsup; Zhao, Yajing; Wilke, Kyle L; Antao, Dion S; Louis, Marcel; Wang, Evelyn N

    2018-01-11

    Vapor condensation is routinely used as an effective means of transferring heat or separating fluids. Dropwise condensation, where discrete droplets form on the condenser surface, offers a potential improvement in heat transfer of up to an order of magnitude compared to filmwise condensation, where a liquid film covers the surface. Low surface tension fluid condensates such as hydrocarbons pose a unique challenge since typical hydrophobic condenser coatings used to promote dropwise condensation of water often do not repel fluids with lower surface tensions. Recent work has shown that lubricant infused surfaces (LIS) can promote droplet formation of hydrocarbons. In this work, we confirm the effectiveness of LIS in promoting dropwise condensation by providing experimental measurements of heat transfer performance during hydrocarbon condensation on a LIS, which enhances heat transfer by ≈450% compared to an uncoated surface. We also explored improvement through removal of noncondensable gases and highlighted a failure mechanism whereby shedding droplets depleted the lubricant over time. Enhanced condensation heat transfer for low surface tension fluids on LIS presents the opportunity for significant energy savings in natural gas processing as well as improvements in thermal management, heating and cooling, and power generation.

  8. Control of VOCs emissions by condenser pre-treatment in a semiconductor fab.

    PubMed

    Lin, Yu-Chih; Chang, Feng-Tang; Bai, Hsunling; Pei, Bau-Shei

    2005-04-11

    The performance of a modified design of local condensers to pre-treat a variety of volatile organic compounds (VOCs) emitted from the stripping process of a semiconductor fab was tested in this study. The reaction temperature of the condensers was controlled at around 10 degrees C, it is relatively higher than the traditional condenser reaction temperature. Both VOCs and water vapors were condensed and formed liquid films. This resulted in an enhancement of the VOCs removals, especially for VOCs of high boiling points or solubility. This can help to prevent the follow up zeolite concentrator from damage. The performance of the integrated system of condenser/zeolite concentrator could, therefore, remain highly efficient for a longer operation time. Its annualized cost would also be lower than installing the zeolite concentrator only.

  9. Universal Themes of Bose-Einstein Condensation

    NASA Astrophysics Data System (ADS)

    Proukakis, Nick P.; Snoke, David W.; Littlewood, Peter B.

    2017-04-01

    -Einstein condensation of photons and grand-canonical condensate fluctuations J. Klaers and M. Weitz; 20. Laser operation and Bose-Einstein condensation: analogies and differences A. Chiocchetta, A. Gambassi and I. Carusotto; 21. Vortices in resonant polariton condensates in semiconductor microcavities D. N. Krizhanovskii, K. Guda, M. Sich, M. S. Skolnick, L. Dominici and D. Sanvitto; 22. Optical control of polariton condensates G. Christmann, P. G. Savvidis and J. J. Baumberg; 23. Disorder, synchronization and phase-locking in non-equilibrium Bose-Einstein condensates P. R. Eastham and B. Rosenow; 24. Collective topological excitations in 1D polariton quantum fluids H. Terças, D. D. Solnyshkov and G. Malpuech; 25. Microscopic theory of Bose-Einstein condensation of magnons at room temperature H. Salman, N. G. Berloff and S. O. Demokritov; 26. Spintronics and magnon Bose-Einstein condensation R. A. Duine, A. Brataas, S. A. Bender and Y. Tserkovnyak; 27. Spin-superfluidity and spin-current mediated non-local transport H. Chen and A. H. MacDonald; 28. Bose-Einstein condensation in quantum magnets C. Kollath, T. Giamarchi and C. Rüegg; Part V. Condensates in Astrophysics and Cosmology: Editorial notes; 29. Bose-Einstein condensates in neutron stars C. J. Pethick, T. Schäfer and A. Schwenk; 30. A simulated cosmological metric: the superfluid 3He condensate G. R. Pickett; 31. Cosmic axion Bose-Einstein condensation N. Banik and P. Sikivie; 32. Graviton BECs: a new approach to quantum gravity G. Dvali and C. Gomez; Universal Bose-Einstein condensation workshop; Index.

  10. Non-Fermi liquids in oxide heterostructures

    NASA Astrophysics Data System (ADS)

    Stemmer, Susanne; Allen, S. James

    2018-06-01

    Understanding the anomalous transport properties of strongly correlated materials is one of the most formidable challenges in condensed matter physics. For example, one encounters metal-insulator transitions, deviations from Landau Fermi liquid behavior, longitudinal and Hall scattering rate separation, a pseudogap phase, and bad metal behavior. These properties have been studied extensively in bulk materials, such as the unconventional superconductors and heavy fermion systems. Oxide heterostructures have recently emerged as new platforms to probe, control, and understand strong correlation phenomena. This article focuses on unconventional transport phenomena in oxide thin film systems. We use specific systems as examples, namely charge carriers in SrTiO3 layers and interfaces with SrTiO3, and strained rare earth nickelate thin films. While doped SrTiO3 layers appear to be a well behaved, though complex, electron gas or Fermi liquid, the rare earth nickelates are a highly correlated electron system that may be classified as a non-Fermi liquid. We discuss insights into the underlying physics that can be gained from studying the emergence of non-Fermi liquid behavior as a function of the heterostructure parameters. We also discuss the role of lattice symmetry and disorder in phenomena such as metal-insulator transitions in strongly correlated heterostructures.

  11. Self-cleaning of superhydrophobic surfaces by self-propelled jumping condensate

    PubMed Central

    Wisdom, Katrina M.; Qu, Xiaopeng; Liu, Fangjie; Watson, Gregory S.; Chen, Chuan-Hua

    2013-01-01

    The self-cleaning function of superhydrophobic surfaces is conventionally attributed to the removal of contaminating particles by impacting or rolling water droplets, which implies the action of external forces such as gravity. Here, we demonstrate a unique self-cleaning mechanism whereby the contaminated superhydrophobic surface is exposed to condensing water vapor, and the contaminants are autonomously removed by the self-propelled jumping motion of the resulting liquid condensate, which partially covers or fully encloses the contaminating particles. The jumping motion off the superhydrophobic surface is powered by the surface energy released upon coalescence of the condensed water phase around the contaminants. The jumping-condensate mechanism is shown to spontaneously clean superhydrophobic cicada wings, where the contaminating particles cannot be removed by gravity, wing vibration, or wind flow. Our findings offer insights for the development of self-cleaning materials. PMID:23630277

  12. Zero point energy leakage in condensed phase dynamics: An assessment of quantum simulation methods for liquid water

    NASA Astrophysics Data System (ADS)

    Habershon, Scott; Manolopoulos, David E.

    2009-12-01

    The approximate quantum mechanical ring polymer molecular dynamics (RPMD) and linearized semiclassical initial value representation (LSC-IVR) methods are compared and contrasted in a study of the dynamics of the flexible q-TIP4P/F water model at room temperature. For this water model, a RPMD simulation gives a diffusion coefficient that is only a few percent larger than the classical diffusion coefficient, whereas a LSC-IVR simulation gives a diffusion coefficient that is three times larger. We attribute this discrepancy to the unphysical leakage of initially quantized zero point energy (ZPE) from the intramolecular to the intermolecular modes of the liquid as the LSC-IVR simulation progresses. In spite of this problem, which is avoided by construction in RPMD, the LSC-IVR may still provide a useful approximation to certain short-time dynamical properties which are not so strongly affected by the ZPE leakage. We illustrate this with an application to the liquid water dipole absorption spectrum, for which the RPMD approximation breaks down at frequencies in the O-H stretching region owing to contamination from the internal modes of the ring polymer. The LSC-IVR does not suffer from this difficulty and it appears to provide quite a promising way to calculate condensed phase vibrational spectra.

  13. Zero point energy leakage in condensed phase dynamics: an assessment of quantum simulation methods for liquid water.

    PubMed

    Habershon, Scott; Manolopoulos, David E

    2009-12-28

    The approximate quantum mechanical ring polymer molecular dynamics (RPMD) and linearized semiclassical initial value representation (LSC-IVR) methods are compared and contrasted in a study of the dynamics of the flexible q-TIP4P/F water model at room temperature. For this water model, a RPMD simulation gives a diffusion coefficient that is only a few percent larger than the classical diffusion coefficient, whereas a LSC-IVR simulation gives a diffusion coefficient that is three times larger. We attribute this discrepancy to the unphysical leakage of initially quantized zero point energy (ZPE) from the intramolecular to the intermolecular modes of the liquid as the LSC-IVR simulation progresses. In spite of this problem, which is avoided by construction in RPMD, the LSC-IVR may still provide a useful approximation to certain short-time dynamical properties which are not so strongly affected by the ZPE leakage. We illustrate this with an application to the liquid water dipole absorption spectrum, for which the RPMD approximation breaks down at frequencies in the O-H stretching region owing to contamination from the internal modes of the ring polymer. The LSC-IVR does not suffer from this difficulty and it appears to provide quite a promising way to calculate condensed phase vibrational spectra.

  14. Characterization of On-Orbit U.S. Lab Condensate Vacuum Venting

    NASA Astrophysics Data System (ADS)

    Schmidl, W. D.; Alred, J. A.; Mikatarian, R.; Soares, C.; Miles, E.

    2002-01-01

    The venting of liquid streams into a vacuum has been studied extensively for many years. An experiment was performed aboard the International Space Station (ISS) to video tape the U.S. Lab's condensate venting event with cameras located on the Space Station Remote Manipulator System (SSRMS). Images of the vent plume were acquired close to both the port and starboard vent nozzles. The imaging started with a wider view and then zoomed in closer before the shutdown phase of the vent event occurred. The objective of this experiment was to extend our understanding of the properties of venting liquids into space. Data from the video images were analyzed to obtain the approximate cone angle encompassing the core of the vent plume. The condensate vent plume was characterized as having three phases, a startup phase, a nominal phase, and a shutdown phase. The startup phase consisted of the initial period when the vent first started and the liquid first entered the heated line. The nominal phase was the period when the majority of the liquid was vented. The shutdown phase occurs close to the end of the vent event. The shutdown phase was further divided into two parts, the shutdown initial phase, and a later shutdown sputtering phase. The shutdown initial phase occurs when gas becomes entrained in the condensate liquid being vented. The sputtering phase occurred after the vent valve was closed, and the liquid/ice in the line was removed by continuing to heat the line to bake it out. It was determined that the ice particles were ejected at higher angles, but lower velocities, during the startup and shutdown phases. The number and velocities of ice particles ejected outside of the core region, during the startup, initial shutdown and shutdown sputtering phases were determined. The core of liquid ejected during the startup and shutdown phases was contained within a half cone angle of less than 60 degrees. The startup phase took approximately 36 seconds, the shutdown initial phase

  15. Quantum mechanical force fields for condensed phase molecular simulations

    NASA Astrophysics Data System (ADS)

    Giese, Timothy J.; York, Darrin M.

    2017-09-01

    Molecular simulations are powerful tools for providing atomic-level details into complex chemical and physical processes that occur in the condensed phase. For strongly interacting systems where quantum many-body effects are known to play an important role, density-functional methods are often used to provide the model with the potential energy used to drive dynamics. These methods, however, suffer from two major drawbacks. First, they are often too computationally intensive to practically apply to large systems over long time scales, limiting their scope of application. Second, there remain challenges for these models to obtain the necessary level of accuracy for weak non-bonded interactions to obtain quantitative accuracy for a wide range of condensed phase properties. Quantum mechanical force fields (QMFFs) provide a potential solution to both of these limitations. In this review, we address recent advances in the development of QMFFs for condensed phase simulations. In particular, we examine the development of QMFF models using both approximate and ab initio density-functional models, the treatment of short-ranged non-bonded and long-ranged electrostatic interactions, and stability issues in molecular dynamics calculations. Example calculations are provided for crystalline systems, liquid water, and ionic liquids. We conclude with a perspective for emerging challenges and future research directions.

  16. Statistical mechanics of monatomic liquids

    NASA Astrophysics Data System (ADS)

    Wallace, Duane C.

    1997-10-01

    Two key experimental properties of elemental liquids, together with an analysis of the condensed-system potential-energy surface, lead us logically to the dynamical theory of monatomic liquids. Experimentally, the ion motional specific heat is approximately 3Nk for N ions, implying the normal modes of motion are approximately 3N independent harmonic oscillators. This implies the potential surface contains nearly harmonic valleys. The equilibrium configuration at the bottom of each valley is a ``structure.'' Structures are crystalline or amorphous, and amorphous structures can have a remnant of local crystal symmetry, or can be random. The random structures are by far the most numerous, and hence dominate the statistical mechanics of the liquid state, and their macroscopic properties are uniform over the structure class, for large-N systems. The Hamiltonian for any structural valley is the static structure potential, a sum of harmonic normal modes, and an anharmonic correction. Again from experiment, the constant-density entropy of melting contains a universal disordering contribution of NkΔ, suggesting the random structural valleys are of universal number wN, where lnw=Δ. Our experimental estimate for Δ is 0.80. In quasiharmonic approximation, the liquid theory for entropy agrees with experiment, for all currently analyzable experimental data at elevated temperatures, to within 1-2% of the total entropy. Further testable predictions of the theory are mentioned.

  17. Wettability modified nanoporous ceramic membrane for simultaneous residual heat and condensate recovery.

    PubMed

    Hu, H W; Tang, G H; Niu, D

    2016-06-07

    Recovery of both latent heat and condensate from boiler flue gas is significant for improving boiler efficiency and water conservation. The condensation experiments are carried out to investigate the simultaneous heat and mass transfer across the nanoporous ceramic membranes (NPCMs) which are treated to be hydrophilic and hydrophobic surfaces using the semicontinuous supercritical reactions. The effects of typical parameters including coolant flow rate, vapor/nitrogen gas mixture temperature, water vapor volume fraction and transmembrane pressure on heat and mass transfer performance are studied. The experimental results show that the hydrophilic NPCM exhibits higher performances of condensation heat transfer and condensate recovery. However, the hydrophobic modification results in remarkable degradation of heat and condensate recovery from the mixture. Molecular dynamics simulations are conducted to establish a hydrophilic/hydrophobic nanopore/water liquid system, and the infiltration characteristics of the single hydrophilic/hydrophobic nanopore is revealed.

  18. Wettability modified nanoporous ceramic membrane for simultaneous residual heat and condensate recovery

    NASA Astrophysics Data System (ADS)

    Hu, H. W.; Tang, G. H.; Niu, D.

    2016-06-01

    Recovery of both latent heat and condensate from boiler flue gas is significant for improving boiler efficiency and water conservation. The condensation experiments are carried out to investigate the simultaneous heat and mass transfer across the nanoporous ceramic membranes (NPCMs) which are treated to be hydrophilic and hydrophobic surfaces using the semicontinuous supercritical reactions. The effects of typical parameters including coolant flow rate, vapor/nitrogen gas mixture temperature, water vapor volume fraction and transmembrane pressure on heat and mass transfer performance are studied. The experimental results show that the hydrophilic NPCM exhibits higher performances of condensation heat transfer and condensate recovery. However, the hydrophobic modification results in remarkable degradation of heat and condensate recovery from the mixture. Molecular dynamics simulations are conducted to establish a hydrophilic/hydrophobic nanopore/water liquid system, and the infiltration characteristics of the single hydrophilic/hydrophobic nanopore is revealed.

  19. Heat and Mass Transfer with Condensation in Capillary Porous Bodies

    PubMed Central

    2014-01-01

    The purpose of this present work is related to wetting process analysis caused by condensation phenomena in capillary porous material by using a numerical simulation. Special emphasis is given to the study of the mechanism involved and the evaluation of classical theoretical models used as a predictive tool. A further discussion will be given for the distribution of the liquid phase for both its pendular and its funicular state and its consequence on diffusion coefficients of the mathematical model used. Beyond the complexity of the interaction effects between vaporisation-condensation processes on the gas-liquid interfaces, the comparison between experimental and numerical simulations permits to identify the specific contribution and the relative part of mass and energy transport parameters. This analysis allows us to understand the contribution of each part of the mathematical model used and to simplify the study. PMID:24688366

  20. Superhydrophobic coated apparatus for liquid purification by evaporative condensation

    DOEpatents

    Simpson, John T; McNeany, Steve R; Dinsmore, Thomas V; Hunter, Scott R; Ivanov, Ilia N

    2014-03-11

    Disclosed are examples of apparatuses for evaporative purification of a contaminated liquid. In each example, there is a first vessel for storing the contaminated fluid. The first vessel includes a surface coated with a layer of superhydrophobic material and the surface is at least partially in contact with the contaminated liquid. The contaminants do not adhere to the surface as the purified liquid evaporates, thus simplifying maintenance of the apparatus.

  1. Effect of nanostructured surface configuration on evaporation and condensation characteristics of thin film liquid argon in a nano-scale confinement

    NASA Astrophysics Data System (ADS)

    Kuri, Subrata Kumar; Rakibuzzaman, S. M.; Sabah, Arefiny; Ahmed, Jannat; Hasan, Mohammad Nasim

    2017-12-01

    Molecular dynamics simulation has been carried out to go through the evaporation and condensation characteristics of thin liquid argon film in nanoscale confinement having nanostructured boundary. Nanoscale confinement under consideration consists of hot and cold parallel platinum plates at the bottom and top end of a model cuboid inside which the fluid domain comprised of liquid argon film at the bottom plate and vapor argon in between liquid argon and upper plate of the confinement. Three different confinement configurations have been considered here: (i) Both platinum plates are flat, (ii) Upper plate consisting of transverse slots and (iii) Both plates consisting of transverse slots. The height of the slots is 1.5 nm. Considering hydrophilic nature of top and bottom plates, two different high temperatures of the hot wall was set and an observation was made. For all the structures, equilibrium molecular dynamics (EMD) was performed to reach equilibrium state at 90 K. Then the lower wall is set to two different temperatures like 110 K and 250 K for all three models to perform non-equilibrium molecular dynamics (NEMD). Various system characteristics such as atomic distribution, wall heat flux, evaporative mass flux etc. have been obtained and discussed to have a clear understanding of the effect of nanotextured surface on phase change phenomena.

  2. Dropwise Condensation of Low Surface Tension Fluids on Omniphobic Surfaces

    PubMed Central

    Rykaczewski, Konrad; Paxson, Adam T.; Staymates, Matthew; Walker, Marlon L.; Sun, Xiaoda; Anand, Sushant; Srinivasan, Siddarth; McKinley, Gareth H.; Chinn, Jeff; Scott, John Henry J.; Varanasi, Kripa K.

    2014-01-01

    Compared to the significant body of work devoted to surface engineering for promoting dropwise condensation heat transfer of steam, much less attention has been dedicated to fluids with lower interfacial tension. A vast array of low-surface tension fluids such as hydrocarbons, cryogens, and fluorinated refrigerants are used in a number of industrial applications, and the development of passive means for increasing their condensation heat transfer coefficients has potential for significant efficiency enhancements. Here we investigate condensation behavior of a variety of liquids with surface tensions in the range of 12 to 28 mN/m on three types of omniphobic surfaces: smooth oleophobic, re-entrant superomniphobic, and lubricant-impregnated surfaces. We demonstrate that although smooth oleophobic and lubricant-impregnated surfaces can promote dropwise condensation of the majority of these fluids, re-entrant omniphobic surfaces became flooded and reverted to filmwise condensation. We also demonstrate that on the lubricant-impregnated surfaces, the choice of lubricant and underlying surface texture play a crucial role in stabilizing the lubricant and reducing pinning of the condensate. With properly engineered surfaces to promote dropwise condensation of low-surface tension fluids, we demonstrate a four to eight-fold improvement in the heat transfer coefficient. PMID:24595171

  3. Dropwise condensation of low surface tension fluids on omniphobic surfaces.

    PubMed

    Rykaczewski, Konrad; Paxson, Adam T; Staymates, Matthew; Walker, Marlon L; Sun, Xiaoda; Anand, Sushant; Srinivasan, Siddarth; McKinley, Gareth H; Chinn, Jeff; Scott, John Henry J; Varanasi, Kripa K

    2014-03-05

    Compared to the significant body of work devoted to surface engineering for promoting dropwise condensation heat transfer of steam, much less attention has been dedicated to fluids with lower interfacial tension. A vast array of low-surface tension fluids such as hydrocarbons, cryogens, and fluorinated refrigerants are used in a number of industrial applications, and the development of passive means for increasing their condensation heat transfer coefficients has potential for significant efficiency enhancements. Here we investigate condensation behavior of a variety of liquids with surface tensions in the range of 12 to 28 mN/m on three types of omniphobic surfaces: smooth oleophobic, re-entrant superomniphobic, and lubricant-impregnated surfaces. We demonstrate that although smooth oleophobic and lubricant-impregnated surfaces can promote dropwise condensation of the majority of these fluids, re-entrant omniphobic surfaces became flooded and reverted to filmwise condensation. We also demonstrate that on the lubricant-impregnated surfaces, the choice of lubricant and underlying surface texture play a crucial role in stabilizing the lubricant and reducing pinning of the condensate. With properly engineered surfaces to promote dropwise condensation of low-surface tension fluids, we demonstrate a four to eight-fold improvement in the heat transfer coefficient.

  4. Transonic flow of steam with non-equilibrium and homogenous condensation

    NASA Astrophysics Data System (ADS)

    Virk, Akashdeep Singh; Rusak, Zvi

    2017-11-01

    A small-disturbance model for studying the physical behavior of a steady transonic flow of steam with non-equilibrium and homogeneous condensation around a thin airfoil is derived. The steam thermodynamic behavior is described by van der Waals equation of state. The water condensation rate is calculated according to classical nucleation and droplet growth models. The current study is based on an asymptotic analysis of the fluid flow and condensation equations and boundary conditions in terms of the small thickness of the airfoil, small angle of attack, closeness of upstream flow Mach number to unity and small amount of condensate. The asymptotic analysis gives the similarity parameters that govern the problem. The flow field may be described by a non-homogeneous transonic small-disturbance equation coupled with a set of four ordinary differential equations for the calculation of the condensate mass fraction. An iterative numerical scheme which combines Murman & Cole's (1971) method with Simpson's integration rule is applied to solve the coupled system of equations. The model is used to study the effects of energy release from condensation on the aerodynamic performance of airfoils operating at high pressures and temperatures and near the vapor-liquid saturation conditions.

  5. Utilization of Porous Media for Condensing Heat Exchangers

    NASA Technical Reports Server (NTRS)

    Tuan, George C.

    2006-01-01

    The use of porous media as a mean of separating liquid condensate from the air stream in condensing heat exchangers has been explored in the past inside small plant growth chambers and in the Apollo Command Module. Both applications used a cooled porous media made of sintered stainless steel to cool and separate condensation from the air stream. However, the main issues with the utilization of porous media in the past have been the deterioration of the porous media over long duration, such as clogging and changes in surface wetting characteristics. In addition, for long duration usage, biofilm growth from microorganisms on the porous medial would also be an issue. In developing Porous Media Condensing Heat Exchangers (PMCHX) for future space applications, different porous materials and microbial growth control methods will need to be explored. This paper explores the work performed at JSC and GRC to evaluate different porous materials and microbial control methods to support the development of a Porous Media Condensing Heat Exchanger. It outlines the basic principles for designing a PMCHX and issues that were encountered and ways to resolve those issues. The PMCHX has potential of mass, volume, and power savings over current CHX and water separator technology and would be beneficial for long duration space missions.

  6. PREFACE: Topics in the application of scattering methods to investigate the structure and dynamics of soft condensed matter

    NASA Astrophysics Data System (ADS)

    Chen, Sow-Hsin; Baglioni, Piero

    2006-09-01

    This special issue of Journal of Physics: Condensed Matter gathers together a series of contributions presented at the workshop entitled `Topics in the Application of Scattering Methods to Investigate the Structure and Dynamics of Soft Condensed Matter' held at Pensione Bencista, Fiesole, Italy, a wonderful Italian jewel tucked high in the hills above Florence. This immaculate 14th century villa is a feast for the eyes with antiques and original artwork everywhere you turn, and a stunning view of Florence, overlooking numerous villas and groves of olive trees. The meeting consisted of about 40 invited talks delivered by a selected group of prominent physicists and chemists from the USA, Mexico, Europe and Asia working in the fields of complex and glassy liquids. The topics covered by the talks included: simulations on the liquid-liquid transition phenomenon dynamic crossover in deeply supercooled confined water thermodynamics and dynamics of complex fluids dynamics of interfacial water structural arrest transitions in colloidal systems structure and dynamics in complex systems structure of supramolecular assemblies The choice of topics is obviously heavily biased toward the current interests of the two organizers of the workshop, in view of the fact that one of the incentives for organizing the meeting was to celebrate Sow-Hsin Chen’s life-long scientific activities on the occasion of his 70th birthday. The 21 articles presented in this issue are a state-of-the-art description of the different aspects reported at the workshop from all points of view---experimental, theoretical and numerical. The interdisciplinary nature of the talks should make this special issue of interest to a broad community of scientists involved in the study of the properties of complex fluids, soft condensed matter and disordered glassy systems. We are grateful to the Consorzio per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), Florence, Italy and to the Materials Science Program of

  7. The influence of liquid/vapor phase change onto the Nusselt number

    NASA Astrophysics Data System (ADS)

    Popescu, Elena-Roxana; Colin, Catherine; Tanguy, Sebastien

    2017-11-01

    In spite of its significant interest in various fields, there is currently a very few information on how an external flow will modify the evaporation or the condensation of a liquid surface. Although most applications involve turbulent flows, the simpler configuration where a laminar superheated or subcooled vapor flow is shearing a saturated liquid interface has still never been solved. Based on a numerical approach, we propose to characterize the interaction between a laminar boundary layer of a superheated or subcooled vapor flow and a static liquid pool at saturation temperature. By performing a full set of simulations sweeping the parameters space, correlations are proposed for the first time on the Nusselt number depending on the dimensionless numbers that characterize both vaporization and condensation. As attended, the Nusselt number decreases or increases in the configurations involving respectively vaporization or condensation. More unexpected is the behaviour of the friction of the vapor flow on the liquid pool, for which we report that it is weakly affected by the phase change, despite the important variation of the local flow structure due to evaporation or condensation.

  8. Wettability modified nanoporous ceramic membrane for simultaneous residual heat and condensate recovery

    PubMed Central

    Hu, H. W.; Tang, G. H.; Niu, D.

    2016-01-01

    Recovery of both latent heat and condensate from boiler flue gas is significant for improving boiler efficiency and water conservation. The condensation experiments are carried out to investigate the simultaneous heat and mass transfer across the nanoporous ceramic membranes (NPCMs) which are treated to be hydrophilic and hydrophobic surfaces using the semicontinuous supercritical reactions. The effects of typical parameters including coolant flow rate, vapor/nitrogen gas mixture temperature, water vapor volume fraction and transmembrane pressure on heat and mass transfer performance are studied. The experimental results show that the hydrophilic NPCM exhibits higher performances of condensation heat transfer and condensate recovery. However, the hydrophobic modification results in remarkable degradation of heat and condensate recovery from the mixture. Molecular dynamics simulations are conducted to establish a hydrophilic/hydrophobic nanopore/water liquid system, and the infiltration characteristics of the single hydrophilic/hydrophobic nanopore is revealed. PMID:27270997

  9. Application of the string method to the study of critical nuclei in capillary condensation.

    PubMed

    Qiu, Chunyin; Qian, Tiezheng; Ren, Weiqing

    2008-10-21

    We adopt a continuum description for liquid-vapor phase transition in the framework of mean-field theory and use the string method to numerically investigate the critical nuclei for capillary condensation in a slit pore. This numerical approach allows us to determine the critical nuclei corresponding to saddle points of the grand potential function in which the chemical potential is given in the beginning. The string method locates the minimal energy path (MEP), which is the most probable transition pathway connecting two metastable/stable states in configuration space. From the MEP, the saddle point is determined and the corresponding energy barrier also obtained (for grand potential). Moreover, the MEP shows how the new phase (liquid) grows out of the old phase (vapor) along the most probable transition pathway, from the birth of a critical nucleus to its consequent expansion. Our calculations run from partial wetting to complete wetting with a variable strength of attractive wall potential. In the latter case, the string method presents a unified way for computing the critical nuclei, from film formation at solid surface to bulk condensation via liquid bridge. The present application of the string method to the numerical study of capillary condensation shows the great power of this method in evaluating the critical nuclei in various liquid-vapor phase transitions.

  10. Analysis of the Pressure Rise in a Partially Filled Liquid Tank in Microgravity with Low Wall Heat Flux and Simultaneous Boiling and Condensation

    NASA Technical Reports Server (NTRS)

    Hasan, Mohammad M.; Balasubramaniam, R.

    2012-01-01

    Experiments performed with Freon 113 in the space shuttle have shown that in a pro- cess of very slow heating, high liquid superheats can be sustained for a long period in microgravity. In a closed system explosive vaporization of superheated liquid resulted in pressure spikes of varying magnitudes. In this paper, we analyze the pressure rise in a partially lled closed tank in which a large vapor bubble (i.e., ullage) is initially present, and the liquid is subjected to a low wall heat ux. The liquid layer adjacent to the wall becomes superheated until the temperature for nucleation of the bubbles (or the incipience of boiling) is achieved. In the absence of the gravity-induced convection large quantities of superheated liquid can accumulate over time near the heated surface. Once the incipience temperature is attained, explosive boiling occurs and the vapor bubbles that are produced on the heater surface tend to quickly raise the tank pressure. The liquid-vapor saturation temperature increases as well. These two e ects tend to induce condensation of the large ullage bubble that is initially present, and tends to mitigate the tank pressure rise. As a result, the tank pressure is predicted to rise sharply, attain a maximum, and subsequently decay slowly. The predicted pressure rise is compared with experimental results obtained in the microgravity environments of the space shuttle for Freon 113. The analysis is appli- cable, in general to heating of liquid in closed containers in microgravity and to cryogenic fuel tanks, in particular where small heat leaks into the tank are unavoidable.

  11. Calcium-aluminum-rich inclusions in the Allende meteorite - Evidence for a liquid origin

    NASA Technical Reports Server (NTRS)

    Blander, M.; Fuchs, L. H.

    1975-01-01

    We have made a detailed examination of the mineralogy, textures, and assemblages of six calcium-aluminum-rich inclusions (CAI) in the Allende meteorite. They can be classified into four types - hibonite-bearing, fassaite- and olivine-bearing, feldspathoid-bearing and fassaite-bearing CAI that are hibonite and olivine free. Examples of each type appear to have crystallized from a liquid rather than by agglomeration of solid nebular condensates. Some lines of evidence for a liquid origin are the presence of spherical and ovoid shapes and rims containing minerals that are more refractory than minerals inside the inclusion. Thermodynamic calculations and comparisons with liquidus phase diagrams indicate that the CAI could have been produced by direct condensation to metastable subcooled liquids that subsequently crystallized or by remelting of an equilibrium high-temperature condensate by impact. The diopside rims in some hibonite-bearing CAI and the paucity of metal in fassaite-olivine-bearing CAI are more consistent with direct condensation of a liquid.

  12. Line tension controls liquid-disordered + liquid-ordered domain size transition in lipid bilayers

    DOE PAGES

    Usery, Rebecca D.; Enoki, Thais A.; Wickramasinghe, Sanjula P.; ...

    2017-04-11

    To better understand animal cell plasma membranes, we studied simplified models, namely four-component lipid bilayer mixtures. Here we describe the domain size transition in the region of coexisting liquid-disordered (Ld) + liquid-ordered (Lo) phases. This transition occurs abruptly in composition space with domains increasing in size by two orders of magnitude, from tens of nanometers to microns. We measured the line tension between coexisting Ld and Lo domains close to the domain size transition for a variety of lipid mixtures, finding that in every case the transition occurs at a line tension of ~0.3 pN. A computational model incorporating linemore » tension and dipole repulsion indicated that even small changes in line tension can result in domains growing in size by several orders of magnitude, consistent with experimental observations. Lastly, we find that other properties of the coexisting Ld and Lo phases do not change significantly in the vicinity of the abrupt domain size transition.« less

  13. Line tension controls liquid-disordered + liquid-ordered domain size transition in lipid bilayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Usery, Rebecca D.; Enoki, Thais A.; Wickramasinghe, Sanjula P.

    To better understand animal cell plasma membranes, we studied simplified models, namely four-component lipid bilayer mixtures. Here we describe the domain size transition in the region of coexisting liquid-disordered (Ld) + liquid-ordered (Lo) phases. This transition occurs abruptly in composition space with domains increasing in size by two orders of magnitude, from tens of nanometers to microns. We measured the line tension between coexisting Ld and Lo domains close to the domain size transition for a variety of lipid mixtures, finding that in every case the transition occurs at a line tension of ~0.3 pN. A computational model incorporating linemore » tension and dipole repulsion indicated that even small changes in line tension can result in domains growing in size by several orders of magnitude, consistent with experimental observations. Lastly, we find that other properties of the coexisting Ld and Lo phases do not change significantly in the vicinity of the abrupt domain size transition.« less

  14. Controlling condensation and frost growth with chemical micropatterns.

    PubMed

    Boreyko, Jonathan B; Hansen, Ryan R; Murphy, Kevin R; Nath, Saurabh; Retterer, Scott T; Collier, C Patrick

    2016-01-22

    In-plane frost growth on chilled hydrophobic surfaces is an inter-droplet phenomenon, where frozen droplets harvest water from neighboring supercooled liquid droplets to grow ice bridges that propagate across the surface in a chain reaction. To date, no surface has been able to passively prevent the in-plane growth of ice bridges across the population of supercooled condensate. Here, we demonstrate that when the separation between adjacent nucleation sites for supercooled condensate is properly controlled with chemical micropatterns prior to freezing, inter-droplet ice bridging can be slowed and even halted entirely. Since the edge-to-edge separation between adjacent supercooled droplets decreases with growth time, deliberately triggering an early freezing event to minimize the size of nascent condensation was also necessary. These findings reveal that inter-droplet frost growth can be passively suppressed by designing surfaces to spatially control nucleation sites and by temporally controlling the onset of freezing events.

  15. Controlling condensation and frost growth with chemical micropatterns

    DOE PAGES

    Boreyko, Jonathan B.; Hansen, Ryan R.; Murphy, Kevin R.; ...

    2016-01-22

    Frost growth on chilled hydrophobic surfaces is an inter-droplet phenomenon, where frozen droplets harvest water from supercooled liquid droplets to grow ice bridges that propagate across the surface in a chain reaction. To date, no surface has been able to passively prevent the in-plane growth of frost across the population of supercooled condensate. Here, we demonstrate that when the nucleation sites for supercooled condensate are properly controlled with chemical micropatterns, the speed of frost growth can be slowed and even halted entirely. This stoppage of frost growth is attributed to the large interdroplet separation between condensate upon the onset ofmore » freezing, which was controlled by the pitch of the chemical patterns and by deliberately triggering an early freezing event. Lastly, these findings reveal that frost growth can be passively suppressed by designing surfaces to spatially control nucleation sites and/or temporally control the onset of freezing events.« less

  16. Controlling condensation and frost growth with chemical micropatterns

    PubMed Central

    Boreyko, Jonathan B.; Hansen, Ryan R.; Murphy, Kevin R.; Nath, Saurabh; Retterer, Scott T.; Collier, C. Patrick

    2016-01-01

    In-plane frost growth on chilled hydrophobic surfaces is an inter-droplet phenomenon, where frozen droplets harvest water from neighboring supercooled liquid droplets to grow ice bridges that propagate across the surface in a chain reaction. To date, no surface has been able to passively prevent the in-plane growth of ice bridges across the population of supercooled condensate. Here, we demonstrate that when the separation between adjacent nucleation sites for supercooled condensate is properly controlled with chemical micropatterns prior to freezing, inter-droplet ice bridging can be slowed and even halted entirely. Since the edge-to-edge separation between adjacent supercooled droplets decreases with growth time, deliberately triggering an early freezing event to minimize the size of nascent condensation was also necessary. These findings reveal that inter-droplet frost growth can be passively suppressed by designing surfaces to spatially control nucleation sites and by temporally controlling the onset of freezing events. PMID:26796663

  17. Methods of forming and using porous structures for energy efficient separation of light gases by capillary condensation

    DOEpatents

    Calamur, Narasimhan; Carrera, Martin E.; Devlin, David J.; Archuleta, Tom

    2000-01-01

    The present invention relates to an improved method and apparatus for separating one or more condensable compounds from a mixture of two or more gases of differing volatilities by capillary fractionation in a membrane-type apparatus, and a method of forming porous structures therefor. More particularly, the invention includes methods of forming and using an apparatus consisting, at least in part, of a porous structure having capillary-type passages extending between a plurality of small openings on the first side and larger openings on a second side of the structure, the passages being adapted to permit a condensed liquid to flow therethrough substantially by capillary forces, whereby vapors from the mixture are condensed, at least in part, and substantially in and adjacent to the openings on the first side, and are caused to flow in a condensed liquid state, substantially in the absence of vapor, from the openings on the first side to the openings on the second side.

  18. Modeling condensation with a noncondensable gas for mixed convection flow

    NASA Astrophysics Data System (ADS)

    Liao, Yehong

    2007-05-01

    This research theoretically developed a novel mixed convection model for condensation with a noncondensable gas. The model developed herein is comprised of three components: a convection regime map; a mixed convection correlation; and a generalized diffusion layer model. These components were developed in a way to be consistent with the three-level methodology in MELCOR. The overall mixed convection model was implemented into MELCOR and satisfactorily validated with data covering a wide variety of test conditions. In the development of the convection regime map, two analyses with approximations of the local similarity method were performed to solve the multi-component two-phase boundary layer equations. The first analysis studied effects of the bulk velocity on a basic natural convection condensation process and setup conditions to distinguish natural convection from mixed convection. It was found that the superimposed velocity increases condensation heat transfer by sweeping away the noncondensable gas accumulated at the condensation boundary. The second analysis studied effects of the buoyancy force on a basic forced convection condensation process and setup conditions to distinguish forced convection from mixed convection. It was found that the superimposed buoyancy force increases condensation heat transfer by thinning the liquid film thickness and creating a steeper noncondensable gas concentration profile near the condensation interface. In the development of the mixed convection correlation accounting for suction effects, numerical data were obtained from boundary layer analysis for the three convection regimes and used to fit a curve for the Nusselt number of the mixed convection regime as a function of the Nusselt numbers of the natural and forced convection regimes. In the development of the generalized diffusion layer model, the driving potential for mass transfer was expressed as the temperature difference between the bulk and the liquid-gas interface

  19. Topological defects in mixtures of superconducting condensates with different charges

    NASA Astrophysics Data System (ADS)

    Garaud, Julien; Babaev, Egor

    2014-06-01

    We investigate the topological defects in phenomenological models describing mixtures of charged condensates with commensurate electric charges. Such situations are expected to appear for example in liquid metallic deuterium. This is modeled by a multicomponent Ginzburg-Landau theory where the condensates are coupled to the same gauge field by different coupling constants whose ratio is a rational number. We also briefly discuss the case where electric charges are incommensurate. Flux quantization and finiteness of the energy per unit length dictate that the different condensates have different winding and thus different number of (fractional) vortices. Competing attractive and repulsive interactions lead to molecule-like bound states between fractional vortices. Such bound states have finite energy and carry integer flux quanta. These can be characterized by the CP1 topological invariant that motivates their denomination as skyrmions.

  20. Conceptual Design of a Condensing Heat Exchanger for Space Systems Using Porous Media

    NASA Technical Reports Server (NTRS)

    Hasan, Mohammad M.; Khan, Lutful I.; Nayagam, Vedha; Balasubramaniam, Ramaswamy

    2006-01-01

    Condensing heat exchangers are used in many space applications in the thermal and humidity control systems. In the International Space Station (ISS), humidity control is achieved by using a water cooled fin surface over which the moist air condenses, followed by "slurper bars" that take in both the condensate and air into a rotary separator and separates the water from air. The use of a cooled porous substrate as the condensing surface provides and attractive alternative that combines both heat removal as well as liquid/gas separation into a single unit. By selecting the pore sizes of the porous substrate a gravity independent operation may also be possible with this concept. Condensation of vapor into and on the porous surface from the flowing air and the removal of condensate from the porous substrate are the critical processes involved in the proposed concept. This paper describes some preliminary results of the proposed condensate withdrawal process and discusses the on-going design and development work of a porous media based condensing heat exchanger at the NASA Glenn Research Center in collaboration with NASA Johnson Space Center.

  1. Bose-Einstein Condensation of a Stochastic Liquid

    NASA Astrophysics Data System (ADS)

    Maćkowiak, Jan

    The Bogoliubov-Lee-Huang theory of superfluid 4He is modified by introducing an effective temperature scale (which accounts for the deep well of the interatomic potential) and by incorporating into the Hamiltonian a stochastic term Vl, which simulates liquidity of HeI and liquidity of the normal and superfluid component of HeII. Vl depends on two independent random angles αn, αs ∈ [0, π], which characterize the locally ordered motion of the two fluids (the normal fluid and superfluid) comprising HeII. The resulting thermodynamics improves the thermodynamic functions and excitation spectrum Ep(αn, αs) of the superfluid phase, obtained previously, leaving the heat capacity CV (T) of the normal phase, with a minimum at Tmin > 2.17K, unchanged. The theoretical velocity of sound in HeII, equal to the initial slope of Ep(π, π), agrees with experiment.

  2. Heat exchanger with intermediate evaporating and condensing fluid

    DOEpatents

    Fraas, Arthur P.

    1978-01-01

    A shell and tube-type heat exchanger, such as a liquid sodium-operated steam generator for use in nuclear reactors, comprises a shell containing a primary fluid tube bundle, a secondary fluid tube bundle at higher elevation, and an intermediate fluid vaporizing at the surface of the primary fluid tubes and condensing at the surface of the secondary fluid tubes.

  3. Quantification of 16 polycyclic aromatic hydrocarbons in cigarette smoke condensate using stable isotope dilution liquid chromatography with atmospheric-pressure photoionization tandem mass spectrometry.

    PubMed

    Zhang, Xiaotao; Hou, Hongwei; Chen, Huan; Liu, Yong; Wang, An; Hu, Qingyuan

    2015-09-17

    A stable isotope dilution liquid chromatography with tandem mass spectrometry method for the analysis of 16 polycyclic aromatic hydrocarbons in cigarette smoke condensate was developed and validated. Compared with previously reported methods, this method has lower limits of detection (0.04-1.35 ng/cig). Additionally, the proposed method saves time, reduces the number of separation steps, and reduces the quantity of solvent needed. The new method was applied to evaluate polycyclic aromatic hydrocarbon content in 213 commercially available cigarettes in China, under the International Standardization Organization smoking regime and the Health Canadian intense smoking regime. The results showed that the total polycyclic aromatic hydrocarbon content was more than two times higher in samples from the Health Canadian intense smoking regime than in samples from the International Standardization Organization smoking regime (1189.23 vs. 2859.50 ng/cig, p<0.05). Meanwhile, the concentration of individual polycyclic aromatic hydrocarbons (and total polycyclic aromatic hydrocarbons) increased with labeled tar content in both of the tested smoking regimes. There was a positive correlation between total polycyclic aromatic hydrocarbons under the International Standardization Organization smoking regime with that under the Health Canadian intense smoking regime. The proposed liquid chromatography with tandem mass spectrometry method is satisfactory for the rapid, sensitive, and accurately quantitative evaluation of polycyclic aromatic hydrocarbon content in cigarette smoke condensate, and it can be applied to assess potential health risks from smoking. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  4. NMR studies of non-Fermi-liquid behavior in disordered Kondo systems

    NASA Astrophysics Data System (ADS)

    Liu, Chia-Ying

    A number of heavy-fermion alloys have been discovered to have non-Fermi-liquid (NFL) properties in contrast to the Fermi-liquid behavior expected for normal metals. Since nuclear magnetic resonance (NMR) studies in the heavy-fermion UCusb{5-x}Pdsb{x} by our group, the "Kondo disorder" model has been recognized as one of the possible origins of NFL behavior. This dissertation describes the use of NMR to study NFL behavior in the two heavy-fermion systems Ce(Rusb{1-x}Rhsb{x})sb2Sisb2 (x = 0.5) and Usb{1-x}Thsb{x}Pdsb2Alsb3\\ (x > 0.6). The cerium compound is disordered on non-f atoms (ligand disordered), whereas the uranium system is disordered on the f sublattice. Both exhibit complex phase diagrams and NFL behavior. sp{29}Si powder-pattern NMR spectra from a randomly-oriented powder sample of CeRhRuSisb2 show broad linewidths at low temperature, consistent with disorder-induced NFL behavior. The spectra from a field-aligned sample further confirm that these broad linewidths are due to distributions of local susceptibilities. The NMR widths are in good agreement with the distribution P(Tsb{K}) of Kondo temperatures Tsb{K} derived from the previous analysis of Graf et al., Phys. Rev. Lett. 78, 3769 (1997), including a "hole" in P(Tsb{K}) for small Tsb{K}\\ lbrack P(Tsb{K} = 0) = 0rbrack which describes the return to Fermi-liquid behavior below 1 K observed in the specific heat. The Kondo disorder model successfully explains the NMR linewidth and the NFL behavior in CeRhRuSisb2 either with or without consideration of RKKY interaction between Ce moments. In Usb{1-x}Thsb{x}Pdsb2Alsb3 (x = 0.7, 0.8, 0.9) the sp{27}Al NMR spectra in unaligned powders were initially thought to indicate a metallugical problem, namely, the existence of a second phase. After careful comparison of the behavior of Knight shifts in different concentrations, those extra lines were recognized as impurity satellites instead of coming from a second phase. These impurity satellites are due to

  5. Recovery of condensate water quality in power generator's surface condenser

    NASA Astrophysics Data System (ADS)

    Kurniawan, Lilik Adib

    2017-03-01

    In PT Badak NGL Plant, steam turbines are used to drive major power generators, compressors, and pumps. Steam exiting the turbines is condensed in surface condensers to be returned to boilers. Therefore, surface condenser performance and quality of condensate water are very important. One of the recent problem was caused by the leak of a surface condenser of Steam Turbine Power Generator. Thesteam turbine was overhauled, leaving the surface condenser idle and exposed to air for more than 1.5 years. Sea water ingress due to tube leaks worsens the corrosionof the condenser shell. The combination of mineral scale and corrosion product resulting high conductivity condensate at outlet condenser when we restarted up, beyond the acceptable limit. After assessing several options, chemical cleaning was the best way to overcome the problem according to condenser configuration. An 8 hour circulation of 5%wt citric acid had succeed reducing water conductivity from 50 μmhos/cm to below 5 μmhos/cm. The condensate water, then meets the required quality, i.e. pH 8.3 - 9.0; conductivity ≤ 5 μmhos/cm, therefore the power generator can be operated normally without any concern until now.

  6. Universal Behavior of Quantum Spin Liquid and Optical Conductivity in the Insulator Herbertsmithite

    NASA Astrophysics Data System (ADS)

    Shaginyan, V. R.; Msezane, A. Z.; Stephanovich, V. A.; Popov, K. G.; Japaridze, G. S.

    2018-04-01

    We analyze optical conductivity with the goal to demonstrate experimental manifestation of a new state of matter, the so-called fermion condensate. Fermion condensates are realized in quantum spin liquids, exhibiting typical behavior of heavy-fermion metals. Measurements of the low-frequency optical conductivity collected on the geometrically frustrated insulator herbertsmithite provide important experimental evidence of the nature of its quantum spin liquid composed of spinons. To analyze recent measurements of the herbertsmithite optical conductivity at different temperatures, we employ a model of strongly correlated quantum spin liquid located near the fermion condensation phase transition. Our theoretical analysis of the optical conductivity allows us to expose the physical mechanism of its temperature dependence. We also predict a dependence of the optical conductivity on a magnetic field. We consider an experimental manifestation (optical conductivity) of a new state of matter (so-called fermion condensate) realized in quantum spin liquids, for, in many ways, they exhibit typical behavior of heavy-fermion metals. Measurements of the low-frequency optical conductivity collected on the geometrically frustrated insulator herbertsmithite produce important experimental evidence of the nature of its quantum spin liquid composed of spinons. To analyze recent measurements of the herbertsmithite optical conductivity at different temperatures, we employ a model of a strongly correlated quantum spin liquid located near the fermion condensation phase transition. Our theoretical analysis of the optical conductivity allows us to reveal the physical mechanism of its temperature dependence. We also predict a dependence of the optical conductivity on a magnetic field.

  7. Modeling of Bulk Evaporation and Condensation

    NASA Technical Reports Server (NTRS)

    Anghaie, S.; Ding, Z.

    1996-01-01

    This report describes the modeling and mathematical formulation of the bulk evaporation and condensation involved in liquid-vapor phase change processes. An internal energy formulation, for these phase change processes that occur under the constraint of constant volume, was studied. Compared to the enthalpy formulation, the internal energy formulation has a more concise and compact form. The velocity and time scales of the interface movement were obtained through scaling analysis and verified by performing detailed numerical experiments. The convection effect induced by the density change was analyzed and found to be negligible compared to the conduction effect. Two iterative methods for updating the value of the vapor phase fraction, the energy based (E-based) and temperature based (T-based) methods, were investigated. Numerical experiments revealed that for the evaporation and condensation problems the E-based method is superior to the T-based method in terms of computational efficiency. The internal energy formulation and the E-based method were used to compute the bulk evaporation and condensation processes under different conditions. The evolution of the phase change processes was investigated. This work provided a basis for the modeling of thermal performance of multi-phase nuclear fuel elements under variable gravity conditions, in which the buoyancy convection due to gravity effects and internal heating are involved.

  8. Producing Liquid Oxygen in the Classroom

    ERIC Educational Resources Information Center

    Williams, David; Warden, Nicole; Wharton, Barry

    2016-01-01

    A number of organisations have provided instructions on how to produce small quantities of liquid oxygen in the classroom using liquid nitrogen and a copper condensation coil (Lister 1995 "Classic Chemistry Demonstrations" (London: Royal Society of Chemistry) pp 61-2, French and Hibbert 2010 "Phys. Educ." 45 221-2). The method…

  9. Effects of Evaporation/Condensation on Spreading and Contact Angle of a Volatile Liquid Drop

    NASA Technical Reports Server (NTRS)

    Zhang, Nengli; Chao, David F.; Singh, Bhim S. (Technical Monitor)

    2000-01-01

    Effects of evaporation/condensation on spreading and contact angle were experimentally studied. A sessile drop of R-113 was tested at different vapor environments to determine the effects of evaporation/condensation on the evolution of contact diameter and contact angle of the drop. Condensation on the drop surface occurs at both the saturated and a nonsaturated vapor environments and promotes the spreading. When the drop is placed in the saturated vapor environment it tends to completely wetting and spreads rapidly. In a nonsaturated vapor environment, the evolution of the sessile drop is divided three stages: condensation-spreading stage, evaporation-retracting stage and rapid contracting stage. In the first stage the drop behaves as in the saturated environment. In the evaporation -retracting stage, the competition between spreading and evaporation of the drop determines the evolution characteristics of the contact diameter and the contact angle. A lower evaporation rate struggles against the spreading power to turn the drop from spreading to retracting with a continuous increase of the contact angle. The drop placed in open air has a much higher evaporation rate. The strong evaporation suppresses the spreading and accelerates the retraction of the drop with a linear decrease of the contact diameter. The contraction of the evaporating drops is gradually accelerated when the contact diameter decreases to 3 min and less till drying up, though the evaporation rate is gradually slowing down.

  10. Out-of-equilibrium processes in suspensions of oppositely charged colloids: liquid-to-crystal nucleation and gel formation

    NASA Astrophysics Data System (ADS)

    Sanz, Eduardo

    2009-03-01

    We study the kinetics of the liquid-to-crystal transformation and of gel formation in colloidal suspensions of oppositely charged particles. We analyse, by means of both computer simulations and experiments, the evolution of a fluid quenched to a state point of the phase diagram where the most stable state is either a homogeneous crystalline solid or a solid phase in contact with a dilute gas. On the one hand, at high temperatures and high packing fractions, close to an ordered-solid/disordered-solid coexistence line, we find that the fluid-to-crystal pathway does not follow the minimum free energy route. On the other hand, a quench to a state point far from the ordered-crystal/disordered-crystal coexistence border is followed by a fluid-to-solid transition through the minimum free energy pathway. At low temperatures and packing fractions we observe that the system undergoes a gas-liquid spinodal decomposition that, at some point, arrests giving rise to a gel-like structure. Both our simulations and experiments suggest that increasing the interaction range favors crystallization over vitrification in gel-like structures. [4pt] In collaboration with Chantal Valeriani, Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands and SUPA, School of Physics, University of Edinburgh, JCMB King's Buildings, Mayfield Road, Edinburgh EH9 3JZ, UK; Teun Vissers, Andrea Fortini, Mirjam E. Leunissen, and Alfons van Blaaderen, Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University; Daan Frenke, FOM Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam, The Netherlands and Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, UK; and Marjolein Dijkstra, Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University.

  11. Zwitterion radicals and anion radicals from electron transfer and solvent condensation with the fingerprint developing agent ninhydrin.

    PubMed

    Schertz, T D; Reiter, R C; Stevenson, C D

    2001-11-16

    Ninhydrin (the fingerprint developing agent) spontaneously dehydrates in liquid ammonia and in hexamethylphosphoramide (HMPA) to form indantrione, which has a sufficiently large solution electron affinity to extract an electron from the solvent (HMPA) to produce the indantrione anion radical. In liquid NH(3), the presence of trace amounts of amide ion causes the spontaneous formation of an anion radical condensation product, wherein the no. 2 carbon (originally a carbonyl carbon) becomes substituted with -NH(2) and -OH groups. In HMPA, the indantrione anion radical spontaneously forms condensation products with the HMPA to produce a variety of zwitterionic radicals, wherein the no. 2 carbon becomes directly attached to a nitrogen of the HMPA. The mechanisms for the formation of the zwitterionic paramagnetic condensation products are analogous to that observed in the reaction of ninhydrin with amino acids to yield Ruhemann's Purple, the contrast product in fingerprint development. The formation of anion and zwitterionic radical condensation products from ninhydrin and nitrogen-containing solvents may represent an example of a host of analogous polyketone-solvent reactions.

  12. Thermocapillary flow contribution to dropwise condensation heat transfer

    NASA Astrophysics Data System (ADS)

    Phadnis, Akshay; Rykaczewski, Konrad

    2017-11-01

    With recent developments of durable hydrophobic materials potentially enabling industrial applications of dropwise condensation, accurate modeling of heat transfer during this phase change process is becoming increasingly important. Classical steady state models of dropwise condensation are based on the integration of heat transfer through individual droplets over the entire drop size distribution. These models consider only the conduction heat transfer inside the droplets. However, simple scaling arguments suggest that thermocapillary flows might exist in such droplets. In this work, we used Finite Element heat transfer model to quantify the effect of Marangoni flow on dropwise condensation heat transfer of liquids with a wide range of surface tensions ranging from water to pentane. We confirmed that the Marangoni flow is present for a wide range of droplet sizes, but only has quantifiable effects on heat transfer in drops larger than 10 µm. By integrating the single drop heat transfer simulation results with drop size distribution for the cases considered, we demonstrated that Marangoni flow contributes a 10-30% increase in the overall heat transfer coefficient over conduction only model.

  13. Research of the cold shield in cryogenic liquid storage

    NASA Astrophysics Data System (ADS)

    Chen, L. B.; Zheng, J. P.; Wu, X. L.; Cui, C.; Zhou, Y.; Wang, J. J.

    2017-12-01

    To realize zero boil-off storage of cryogenic liquids, a cryocooler that can achieve a temperature below the boiling point temperature of the cryogenic liquid is generally needed. Taking into account that the efficiency of the cryocooler will be higher at a higher operating temperature, a novel thermal insulation system using a sandwich container filled with cryogenic liquid with a higher boiling point as a cold radiation shield between the cryogenic tank and the vacuum shield in room temperature is proposed to reduce the electricity power consumption. A two-stage cryocooler or two separate cryocoolers are adopted to condense the evaporated gas from the cold shield and the cryogenic tank. The calculation result of a 55 liter liquid hydrogen tank with a liquid nitrogen shield shows that only 14.4 W of electrical power is needed to make all the evaporated gas condensation while 121.7 W will be needed without the liquid nitrogen shield.

  14. Floating Loop System For Cooling Integrated Motors And Inverters Using Hot Liquid Refrigerant

    DOEpatents

    Hsu, John S [Oak Ridge, TN; Ayers, Curtis W [Kingston, TN; Coomer, Chester [Knoxville, TN; Marlino, Laura D [Oak Ridge, TN

    2006-02-07

    A floating loop vehicle component cooling and air-conditioning system having at least one compressor for compressing cool vapor refrigerant into hot vapor refrigerant; at least one condenser for condensing the hot vapor refrigerant into hot liquid refrigerant by exchanging heat with outdoor air; at least one floating loop component cooling device for evaporating the hot liquid refrigerant into hot vapor refrigerant; at least one expansion device for expanding the hot liquid refrigerant into cool liquid refrigerant; at least one air conditioning evaporator for evaporating the cool liquid refrigerant into cool vapor refrigerant by exchanging heat with indoor air; and piping for interconnecting components of the cooling and air conditioning system.

  15. Condensation induced water hammer driven sterilization

    DOEpatents

    Kullberg, Craig M.

    2004-05-11

    A method and apparatus (10) for treating a fluid or materials therein with acoustic energy has a vessel (14) for receiving the fluid with inner walls shaped to focus acoustic energy to a target zone within the vessel. One or more nozzles (26) are directed into the vessel (14) for injecting a condensable vapor, such as steam, into the vessel (14). The system may include a steam source (18) for providing steam as the condensable vapor from an industrial waste heat source. Steam drums (88) are disposed between the steam source (18) and nozzles (26) to equalize and distribute the vapor pressure. A cooling source (30) provides a secondary fluid for maintaining the liquid in the vessel (14) in subcooled conditions. A heating jacket (32) surrounds the vessel (14) to heat the walls of the vessel (14) and prevent biological growth thereon. A pressurizer (33) may operate the system at elevated pressures.

  16. Thermo-optical interactions in a dye-microcavity photon Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Alaeian, Hadiseh; Schedensack, Mira; Bartels, Clara; Peterseim, Daniel; Weitz, Martin

    2017-11-01

    Superfluidity and Bose-Einstein condensation are usually considered as two closely related phenomena. Indeed, in most macroscopic quantum systems, like liquid helium, ultracold atomic Bose gases, and exciton-polaritons, condensation and superfluidity occur in parallel. In photon Bose-Einstein condensates realized in the dye microcavity system, thermalization does not occur by direct interaction of the condensate particles as in the above described systems, i.e. photon-photon interactions, but by absorption and re-emission processes on the dye molecules, which act as a heat reservoir. Currently, there is no experimental evidence for superfluidity in the dye microcavity system, though effective photon interactions have been observed from thermo-optic effects in the dye medium. In this work, we theoretically investigate the implications of effective thermo-optic photon interactions, a temporally delayed and spatially non-local effect, on the photon condensate, and derive the resulting Bogoliubov excitation spectrum. The calculations suggest a linear photon dispersion at low momenta, fulfilling the Landau’s criterion of superfluidity. We envision that the temporally delayed and long-range nature of the thermo-optic photon interaction offer perspectives for novel quantum fluid phenomena.

  17. Polarizable molecular interactions in condensed phase and their equivalent nonpolarizable models.

    PubMed

    Leontyev, Igor V; Stuchebrukhov, Alexei A

    2014-07-07

    Earlier, using phenomenological approach, we showed that in some cases polarizable models of condensed phase systems can be reduced to nonpolarizable equivalent models with scaled charges. Examples of such systems include ionic liquids, TIPnP-type models of water, protein force fields, and others, where interactions and dynamics of inherently polarizable species can be accurately described by nonpolarizable models. To describe electrostatic interactions, the effective charges of simple ionic liquids are obtained by scaling the actual charges of ions by a factor of 1/√(ε(el)), which is due to electronic polarization screening effect; the scaling factor of neutral species is more complicated. Here, using several theoretical models, we examine how exactly the scaling factors appear in theory, and how, and under what conditions, polarizable Hamiltonians are reduced to nonpolarizable ones. These models allow one to trace the origin of the scaling factors, determine their values, and obtain important insights on the nature of polarizable interactions in condensed matter systems.

  18. Numerical simulation of submicron particles formation by condensation at coals burning

    NASA Astrophysics Data System (ADS)

    Kortsenshteyn, N. M.; Petrov, L. V.

    2017-11-01

    The thermodynamic analysis of the composition of the combustion products of 15 types of coals was carried out with consideration for the formation of potassium and sodium aluminosilicates and solid and liquid slag removal. Based on the results of the analysis, the approximating temperature dependences of the concentrations of condensed components (potassium and sodium sulfates) were obtained for the cases of two-phase and single-phase equilibriums; conclusions on the comparative influence of solid and liquid slag removal on the probability of the formation of submicron particles on the combustion of coals were made. The found dependences was make it possible to perform a numerical simulation of the bulk condensation of potassium and sodium sulfate vapors upon the cooling of coal combustion products in a process flow. The number concentration and size distribution of the formed particles have been determined. Agreement with experimental data on the fraction composition of particles has been reached at a reasonable value of a free parameter of the model.

  19. ENHANCED PERVAPORATION SEPARATION EFFICIENCY VIA STAGED FRACTIONAL CONDENSATION (DEPHLEGMATION) OF PERMEATE VAPOR

    EPA Science Inventory

    In traditional pervaporation systems, the permeate vapor is completely condensed to obtain a liquid permeate stream. For example, in the recovery of ethanol from a 5-wt% aqueous stream (such as a biomass fermentation broth), the permeate from a silicone rubber pervaporation membr...

  20. An HPLC-DAD and LC-MS study of condensation oscillations with S(+)-ketoprofen dissolved in acetonitrile.

    PubMed

    Sajewicz, Mieczysław; Gontarska, Monika; Kronenbach, Dorota; Berry, Etienne; Kowalska, Teresa

    2012-03-01

    In our earlier studies, a spontaneous chiral conversion of the selected low-molecular-weight carboxylic acids (i.e., amino acids, hydroxy acids, and profen drugs) dissolved in aqueous ethanol medium, running in vitro was described. Then it became clear that this spontaneous chiral conversion is accompanied by the spontaneous condensation of the discussed compounds. With several acids, it was established that this condensation is also oscillatory in nature. The theoretical models were developed aiming to give a rough explanation of the observed non-linear processes. In this paper, the results of these studies on the dynamics of condensation with S(+)-ketoprofen, a very popular profen drug, when stored for certain amount of time dissolved in a non-aqueous medium (i.e., acetonitrile) is presented. These investigations were carried out with the aid of two independent high-performance liquid chromatographic systems with the diode array detection and of a third high-performance liquid chromatographic system equipped with mass spectrometric detection. In one cycle of chromatographic measurements, it was possible to monitor condensation of S(+)-ketoprofen in 25-min intervals for 30 h, thus obtaining kinetic information on the progress of this process. Mass spectrometric detection confirmed the presence of new species in the stored solution with molecular weights much higher than that of S(+)-ketoprofen, which can be attributed to the condensation products. The obtained data show that condensation of S(+)-ketoprofen dissolved in acetonitrile progresses in a rapid manner, and that the observed oscillatory concentration changes with S(+)-ketoprofen and with the main condensation product characterize with an irregularity and shallow amplitudes. A theoretical model was referenced that jointly describes the oscillatory chiral conversion and the oscillatory condensation with the low-molecular-weight chiral carboxylic acids.

  1. Condensation of binary mixtures on horizontal tubes

    NASA Astrophysics Data System (ADS)

    Büchner, A.; Reif, A.; Rehfeldt, S.; Klein, H.

    2017-12-01

    The two most common models to describe the condensation of binary mixtures are the equilibrium model by Silver (Trans Inst Chem Eng 25:30-42, 1947) and the film model by Colburn and Drew (Transactions of the American Institute of Chemical Engineers 33:197-215, 1937), which is stated by Webb et al. (Int J Heat Mass Transf 39:3147-3156, 1996) as more accurate. The film model describes the outer heat transfer coefficient by subdividing it into two separate resistances against the heat transfer. The resistance of the liquid condensate film on the tube can be calculated with equations for the condensation of pure substances for the analogous flow pattern and geometry using the property data of the mixture. The resistance in the gas phase can be described by a thermodynamic parameter Z and the single phase heat transfer coefficient α G . In this work measurements for condensation of the binary mixtures n-pentane/iso-octane and iso-propanol/water on horizontal tubes for free convection are carried out. The obtained results are compared with the film model by Colburn and Drew (Transactions of the American Institute of Chemical Engineers 33:197-215, 1937). The comparison shows a rather big deviation between the theoretical model and the experimental results. To improve the prediction quality an own model based on dimensionless numbers is proposed, which describes the experimental results of this work significantly better than the film model.

  2. Two-component Fermi-liquid theory - Equilibrium properties of liquid metallic hydrogen

    NASA Technical Reports Server (NTRS)

    Oliva, J.; Ashcroft, N. W.

    1981-01-01

    It is reported that the transition of condensed hydrogen from an insulating molecular crystal phase to a metallic liquid phase, at zero temperature and high pressure, appears possible. Liquid metallic hydrogen (LMH), comprising interpenetrating proton and electron fluids, would constitute a two-component Fermi liquid with both a very high component-mass ratio and long-range, species-dependent bare interactions. The low-temperature equilibrium properties of LMH are examined by means of a generalization to the case of two components of the phenomenological Landau Fermi-liquid theory, and the low-temperature specific heat, compressibility, thermal expansion coefficient and spin susceptibility are given. It is found that the specific heat and the thermal expansion coefficient are vastly greater in the liquid than in the corresponding solid, due to the presence of proton quasiparticle excitations in the liquid.

  3. Retardation effect of nitrogen compounds and condensed aromatics on shale oil catalytic cracking processing and their characterization.

    PubMed

    Li, Nan; Chen, Chen; Wang, Bin; Li, Shaojie; Yang, Chaohe; Chen, Xiaobo

    Untreated shale oil, shale oil treated with HCl aqueous solution and shale oil treated with HCl and furfural were used to do comparative experiments in fixed bed reactors. Nitrogen compounds and condensed aromatics extracted by HCl and furfural were characterized by electrospray ionization Fourier transform cyclotron resonance mass spectrometry and gas chromatography and mass spectrometry, respectively. Compared with untreated shale oil, the conversion and yield of liquid products increased considerably after removing basic nitrogen compounds by HCl extraction. Furthermore, after removing nitrogen compounds and condensed aromatics by both HCl and furfural, the conversion and yield of liquid products further increased. In addition, N 1 class species are predominant in both basic and non-basic nitrogen compounds, and they are probably indole, carbazole, cycloalkyl-carbazole, pyridine and cycloalkyl-pyridine. As for the condensed aromatics, most of them possess aromatic rings with two to three rings and zero to four carbon atom.

  4. Effects of non-condensable gas on the dynamic oscillations of cavitation bubbles

    NASA Astrophysics Data System (ADS)

    Zhang, Yuning

    2016-11-01

    Cavitation is an essential topic of multiphase flow with a broad range of applications. Generally, there exists non-condensable gas in the liquid and a complex vapor/gas mixture bubble will be formed. A rigorous prediction of the dynamic behavior of the aforementioned mixture bubble is essential for the development of a complete cavitation model. In the present paper, effects of non-condensable gas on the dynamic oscillations of the vapor/gas mixture bubble are numerically investigated in great detail. For the completeness, a large parameter zone (e.g. bubble radius, frequency and ratio between gas and vapor) is investigated with many demonstrating examples. The mechanisms of mass diffusion are categorized into different groups with their characteristics and dominated regions given. Influences of non-condensable gas on the wave propagation (e.g. wave speed and attenuation) in the bubbly liquids are also briefly discussed. Specifically, the minimum wave speed is quantitatively predicted in order to close the pressure-density coupling relationship usually employed for the cavitation modelling. Finally, the application of the present finding on the development of cavitation model is demonstrated with a brief discussion of its influence on the cavitation dynamics. This work was financially supported by the National Natural Science Foundation of China (Project No.: 51506051).

  5. The influence of surface-active agents in gas mixture on the intensity of jet condensation

    NASA Astrophysics Data System (ADS)

    Yezhov, YV; Okhotin, VS

    2017-11-01

    The report presents: the methodology of calculation of contact condensation of steam from the steam-gas mixture into the stream of water, taking into account: the mass flow of steam through the boundary phase, particularly the change in turbulent transport properties near the interface and their connection to the interface perturbations due to the surface tension of the mixture; the method of calculation of the surface tension at the interface water - a mixture of fluorocarbon vapor and water, based on the previously established analytical methods we calculate the surface tension for simple one - component liquid-vapor systems. The obtained analytical relation to calculate the surface tension of the mixture is a function of temperature and volume concentration of the fluorocarbon gas in the mixture and is true for all sizes of gas molecules. On the newly created experimental stand is made verification of experimental studies to determine the surface tension of pure substances: water, steam, C3F8 pair C3F8, produced the first experimental data on surface tension at the water - a mixture of water vapor and fluorocarbon C3F8. The obtained experimental data allow us to refine the values of the two constants used in the calculated model of the surface tension of the mixture. Experimental study of jet condensation was carried out with the flow in the zone of condensation of different gases. The condensation process was monitored by measurement of consumption of water flowing from the nozzle, and the formed condensate. When submitting C3F8, there was a noticeable, intensification condensation process compared with the condensation of pure water vapor. The calculation results are in satisfactory agreement with the experimental data on surface tension of the mixture and steam condensation from steam-gas mixture. Analysis of calculation results shows that the presence of surfactants in the condensation zone affects the partial vapor pressure on the interfacial surface, and

  6. BOOK REVIEW: Soft Condensed Matter

    NASA Astrophysics Data System (ADS)

    Jones, Richard A. L.

    2002-11-01

    phenomenologically and formulated through the current percolation model and the Flory-Stockmayer model. The next two chapters consider the molecular order in soft condensed matter. The rich complexity of liquid crystals is emphasized and the Frederiks transition is described in relation to liquid crystal displays. The crystallinity in polymers is discussed and its usual semi-crystallinity presented as a consequence of entanglement and timescales. The next chapter describes the self-assembly of phases and the great importance of the self-assembly phenomenon in solutions of amphiphilic molecules is largely discussed in several specific phenomena. The book ends with a chapter devoted to the description of soft matter realizations in nature. Special attention is paid to the components and structure of life: nucleic acids, proteins, polysaccharides and membranes. There are two appendixes recalling the basic concepts of thermodynamics and statistical mechanics. In each chapter, several problems are included, and solutions to a selection of them are given. The bibliography proposed is pertinent and each chapter gives details of further reading, mostly addressed to known books on the topic. iii) The presentation of the book is good. Throughout the book, the relevant, basic or new concepts of each topic are typed in bold characters and succinctly defined. The figures are abundant and adequately illustrate the text either by plots of experimental data or by computed predictions from models. Many schematic representations of structures, molecular distributions or arrangements are also included. In summary, the author has succeeded in producing a scientifically rigorous book of affordable size (around 200 pages) that is well illustrated (about 120 figures) and written in a fluent style that describes the many different physical phenomena involved in soft condensed matter. N Clavaguera

  7. Kinetic transition in the order-disorder transformation at a solid/liquid interface

    NASA Astrophysics Data System (ADS)

    Galenko, P. K.; Nizovtseva, I. G.; Reuther, K.; Rettenmayr, M.

    2018-01-01

    Phase-field analysis for the kinetic transition in an ordered crystal structure growing from an undercooled liquid is carried out. The results are interpreted on the basis of analytical and numerical solutions of equations describing the dynamics of the phase field, the long-range order parameter as well as the atomic diffusion within the crystal/liquid interface and in the bulk crystal. As an example, the growth of a binary A50B50 crystal is described, and critical undercoolings at characteristic changes of growth velocity and the long-range order parameter are defined. For rapidly growing crystals, analogies and qualitative differences are found in comparison with known non-equilibrium effects, particularly solute trapping and disorder trapping. The results and model predictions are compared qualitatively with results of the theory of kinetic phase transitions (Chernov 1968 Sov. Phys. JETP 26, 1182-1190) and with experimental data obtained for rapid dendritic solidification of congruently melting alloy with order-disorder transition (Hartmann et al. 2009 Europhys. Lett. 87, 40007 (doi:10.1209/0295-5075/87/40007)). This article is part of the theme issue `From atomistic interfaces to dendritic patterns'.

  8. Heat-transfer enhancement of two-phase closed thermosyphon using a novel cross-flow condenser

    NASA Astrophysics Data System (ADS)

    Aghel, Babak; Rahimi, Masoud; Almasi, Saeed

    2017-03-01

    The present study reports the heat-transfer performance of a two-phase closed thermosyphon (TPCT) equipped with a novel condenser. Distillated water was used as working fluid, with a volumetric liquid filling ratio of 75 %. An increase in heat flux was used to measure the response of the TPCT, including variations in temperature distribution, thermal resistance, average temperature of each section of TPCT and overall thermal difference. Results show that for various power inputs from 71 to 960 W, the TPCT with the novel condenser had a lower wall-temperature difference between the evaporator and condenser sections than did the unmodified TPCT. Given the experimental data for heat-transfer performance, it was found that the thermal resistance in the TPCT equipped with the proposed condenser was between 10 and 17 % lower than in the one without.

  9. On the onset of surface condensation: formation and transition mechanisms of condensation mode

    PubMed Central

    Sheng, Qiang; Sun, Jie; Wang, Qian; Wang, Wen; Wang, Hua Sheng

    2016-01-01

    Molecular dynamics simulations have been carried out to investigate the onset of surface condensation. On surfaces with different wettability, we snapshot different condensation modes (no-condensation, dropwise condensation and filmwise condensation) and quantitatively analyze their characteristics by temporal profiles of surface clusters. Two different types of formation of nanoscale droplets are identified, i.e. the formations with and without film-like condensate. We exhibit the effect of surface tensions on the formations of nanoscale droplets and film. We reveal the formation mechanisms of different condensation modes at nanoscale based on our simulation results and classical nucleation theory, which supplements the ‘classical hypotheses’ of the onset of dropwise condensation. We also reveal the transition mechanism between different condensation modes based on the competition between surface tensions and reveal that dropwise condensation represents the transition states from no-condensation to filmwise condensation. PMID:27481071

  10. On the onset of surface condensation: formation and transition mechanisms of condensation mode.

    PubMed

    Sheng, Qiang; Sun, Jie; Wang, Qian; Wang, Wen; Wang, Hua Sheng

    2016-08-02

    Molecular dynamics simulations have been carried out to investigate the onset of surface condensation. On surfaces with different wettability, we snapshot different condensation modes (no-condensation, dropwise condensation and filmwise condensation) and quantitatively analyze their characteristics by temporal profiles of surface clusters. Two different types of formation of nanoscale droplets are identified, i.e. the formations with and without film-like condensate. We exhibit the effect of surface tensions on the formations of nanoscale droplets and film. We reveal the formation mechanisms of different condensation modes at nanoscale based on our simulation results and classical nucleation theory, which supplements the 'classical hypotheses' of the onset of dropwise condensation. We also reveal the transition mechanism between different condensation modes based on the competition between surface tensions and reveal that dropwise condensation represents the transition states from no-condensation to filmwise condensation.

  11. Study of condensation of refrigerants in a micro-channel for development of future compact micro-channel condensers

    NASA Astrophysics Data System (ADS)

    Chowdhury, Sourav

    2009-12-01

    channel tends to collect the condensate in the corners of its cross-section leaving only a thin liquid film on the flat side surfaces for better heat transfer than in circular or low aspect ratio channels.

  12. Quantum Field Theory Approach to Condensed Matter Physics

    NASA Astrophysics Data System (ADS)

    Marino, Eduardo C.

    2017-09-01

    Preface; Part I. Condensed Matter Physics: 1. Independent electrons and static crystals; 2. Vibrating crystals; 3. Interacting electrons; 4. Interactions in action; Part II. Quantum Field Theory: 5. Functional formulation of quantum field theory; 6. Quantum fields in action; 7. Symmetries: explicit or secret; 8. Classical topological excitations; 9. Quantum topological excitations; 10. Duality, bosonization and generalized statistics; 11. Statistical transmutation; 12. Pseudo quantum electrodynamics; Part III. Quantum Field Theory Approach to Condensed Matter Systems: 13. Quantum field theory methods in condensed matter; 14. Metals, Fermi liquids, Mott and Anderson insulators; 15. The dynamics of polarons; 16. Polyacetylene; 17. The Kondo effect; 18. Quantum magnets in 1D: Fermionization, bosonization, Coulomb gases and 'all that'; 19. Quantum magnets in 2D: nonlinear sigma model, CP1 and 'all that'; 20. The spin-fermion system: a quantum field theory approach; 21. The spin glass; 22. Quantum field theory approach to superfluidity; 23. Quantum field theory approach to superconductivity; 24. The cuprate high-temperature superconductors; 25. The pnictides: iron based superconductors; 26. The quantum Hall effect; 27. Graphene; 28. Silicene and transition metal dichalcogenides; 29. Topological insulators; 30. Non-abelian statistics and quantum computation; References; Index.

  13. An advanced expiratory circuit for the recovery of perfluorocarbon liquid from non-saturated perfluorocarbon vapour during partial liquid ventilation: an experimental model

    PubMed Central

    Dunster, Kimble R; Davies, Mark W; Fraser, John F

    2006-01-01

    Background The loss of perfluorocarbon (PFC) vapour in the expired gases during partial liquid ventilation should be minimized both to prevent perfluorocarbon vapour entering the atmosphere and to re-use the recovered PFC liquid. Using a substantially modified design of our previously described condenser, we aimed to determine how much perfluorocarbon liquid could be recovered from gases containing PFC and water vapour, at concentrations found during partial liquid ventilation, and to determine if the amount recovered differed with background flow rate (at flow rates suitable for use in neonates). Methods The expiratory line of a standard ventilator circuit set-up was mimicked, with the addition of two condensers. Perfluorocarbon (30 mL of FC-77) and water vapour, at concentrations found during partial liquid ventilation, were passed through the circuit at a number of flow rates and the percentage recovery of the liquids measured. Results From 14.2 mL (47%) to 27.3 mL (91%) of the infused 30 mL of FC-77 was recovered at the flow rates studied. Significantly higher FC-77 recovery was obtained at lower flow rates (ANOVA with Bonferroni's multiple comparison test, p < 0.0001). As a percentage of the theoretical maximum recovery, 64 to 95% of the FC-77 was recovered. Statistically significantly less FC-77 was recovered at 5 Lmin-1 (ANOVA with Bonferroni's multiple comparison test, p < 0.0001). Amounts of perfluorocarbon vapour recovered were 47%, 50%, 81% and 91% at flow rates of 10, 5, 2 and 1 Lmin-1, respectively. Conclusion Using two condensers in series 47% to 91% of perfluorocarbon liquid can be recovered, from gases containing perfluorocarbon and water vapour, at concentrations found during partial liquid ventilation. PMID:16457722

  14. Time-resolved observation of thermally activated rupture of a capillary-condensed water nanobridge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bak, Wan; Sung, Baekman; Kim, Jongwoo

    2015-01-05

    The capillary-condensed liquid bridge is one of the most ubiquitous forms of liquid in nature and contributes significantly to adhesion and friction of biological molecules as well as microscopic objects. Despite its important role in nanoscience and technology, the rupture process of the bridge is not well understood and needs more experimental works. Here, we report real-time observation of rupture of a capillary-condensed water nanobridge in ambient condition. During slow and stepwise stretch of the nanobridge, we measured the activation time for rupture, or the latency time required for the bridge breakup. By statistical analysis of the time-resolved distribution ofmore » activation time, we show that rupture is a thermally activated stochastic process and follows the Poisson statistics. In particular, from the Arrhenius law that the rupture rate satisfies, we estimate the position-dependent activation energies for the capillary-bridge rupture.« less

  15. Design of a Helium Vapor Shroud for Liquid Hydrogen Fueling of an Unmanned Aerial Vehicle (UAV)

    NASA Astrophysics Data System (ADS)

    Cavender, K.; Evans, C.; Haney, J.; Leachman, J.

    2017-12-01

    Filling a vehicular liquid hydrogen fuel tank presents the potential for flammable mixtures due to oxygen concentration from liquid air condensation. Current liquid hydrogen tank designs utilize insulating paradigms such as aerogel/fiberglass materials, vacuum jackets, or inert gas purge systems to keep the outer surface from reaching the condensation temperature of air. This work examines the heat transfer at the refuelling connection of the tank to identify potential areas of condensation, as well as the surface temperature gradient. A shrouded inert gas purge was designed to minimize vehicle weight and refuelling time. The design of a shrouded inert gas purge system is presented to displace air preventing air condensation. The design investigates 3D printed materials for an inert gas shroud, as well as low-temperature sealing designs. Shroud designs and temperature profiles were measured and tested by running liquid nitrogen through the filling manifold. Materials for the inert gas shroud are discussed and experimental results are compared to analytical model predictions. Suggestions for future design improvements are made.

  16. Theoretical and Computational Studies of Condensed-Phase Phenomena: The Origin of Biological Homochirality, and the Liquid-Liquid Phase Transition in Network-Forming Fluids

    NASA Astrophysics Data System (ADS)

    Ricci, Francesco

    This dissertation describes theoretical and computational studies of the origin of biological homochirality, and the existence of a liquid-liquid phase transition in pure-component network-forming fluids. A common theme throughout these studies is the use of sophisticated computer simulation and statistical mechanics techniques to study complex condensed-phase phenomena. In the first part of this dissertation, we use an elementary lattice model with molecular degrees of freedom, and satisfying microscopic reversibility, to investigate the effect of reaction reversibility on the evolution of stochastic symmetry breaking via autocatalysis and mutual inhibition in a closed system. We identify conditions under which the system's evolution towards racemic equilibrium becomes extremely slow, allowing for long-time persistence of a symmetry-broken state. We also identify a "monomer purification" mechanism, due to which a nearly homochiral state can persist for long times, even in the presence of significant reverse reaction rates. Order of magnitude estimates show that with reasonable physical parameters a symmetry broken state could persist over geologically-relevant time scales. In the second part of this dissertation, we study a chiral-symmetry breaking mechanism known as Viedma ripening. We develop a Monte Carlo model to gain further insights into the mechanisms capable of reproducing key experimental signatures associated with this phenomenon. We also provide a comprehensive investigation of how the model parameters impact the system's overall behavior. It is shown that size-dependent crystal solubility alone is insufficient to reproduce most experimental signatures, and that some form of a solid-phase chiral feedback mechanism (e.g., agglomeration) must be invoked in our model. In the third part of this dissertation, we perform rigorous free energy calculations to investigate the possibility of a liquid-liquid phase transition (LLPT) in the Stillinger-Weber (SW

  17. Quick estimate of oil discovery from gas-condensate reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarem, A.M.

    1966-10-24

    A quick method of estimating the depletion performance of gas-condensate reservoirs is presented by graphical representations. The method is based on correlations reported in the literature and expresses recoverable liquid as function of gas reserves, producing gas-oil ratio, and initial and final reservoir pressures. The amount of recoverable liquid reserves (RLR) under depletion conditions, is estimated from an equation which is given. Where the liquid-reserves are in stock-tank barrels the gas reserves are in Mcf, with the arbitrary constant, N calculated from one graphical representation by dividing fractional oil recovery by the initial gas-oil ratio and multiplying 10U6D for convenience.more » An equation is given for estimating the coefficient C. These factors (N and C) can be determined from the graphical representations. An example calculation is included.« less

  18. Isolation and purification of condensed tannins from flamboyant tree and their antioxidant and antityrosinase activities.

    PubMed

    Feng, Hui-Ling; Tian, Ling; Chai, Wei-Ming; Chen, Xiao-Xin; Shi, Yan; Gao, Yu-Sen; Yan, Chong-Ling; Chen, Qing-Xi

    2014-05-01

    Flamboyant tree, a kind of medicinal plant, was studied as a source of condensed tannins. The antioxidant activities of the condensed tannins from the leaf, fruit, and stem bark of flamboyant tree were screened by ABTS radical and hydroxyl radical scavenging activity methods. The results indicated that these compounds possessed potent antioxidant activity. Their structures were then characterized by high-performance liquid chromatography-electrospray ionization mass spectrometry (HPLC-ESI-MS) after thiolytic degradation. The results showed that the leaf condensed tannins were composed of afzelechin/epiafzelechin, catechin/epicatechin, and gallocatechin/epigallocatechin, while the fruit and stem bark condensed tannins had afzelechin/epiafzelechin and catechin/epicatechin. In addition, the condensed tannins were evaluated for their antityrosinase ability. They were found to have significant antityrosinase activity. The IC50 values were 35 ± 2.0 and 40 ± 0.5 μg/ml for the condensed tannins of fruit and stem bark, respectively. Further, fluorescence quenching and copper interacting techniques were utilized to unravel the molecular mechanisms of the inhibition. The results showed that the hydroxyl group of the condensed tannins could chelate the dicopper center of the enzyme and interact with tryptophan residues. Our studies revealed that condensed tannins might be suitable for use in food, agriculture, cosmetic, nutraceutical, and pharmaceutical applications.

  19. Direct observation of growth and collapse of a Bose-Einstein condensate with attractive interactions

    NASA Astrophysics Data System (ADS)

    Gerton, Jordan M.; Strekalov, Dmitry; Prodan, Ionut; Hulet, Randall G.

    2000-12-01

    Quantum theory predicts that Bose-Einstein condensation of a spatially homogeneous gas with attractive interactions is precluded by a conventional phase transition into either a liquid or solid. When confined to a trap, however, such a condensate can form, provided that its occupation number does not exceed a limiting value. The stability limit is determined by a balance between the self-attractive forces and a repulsion that arises from position-momentum uncertainty under conditions of spatial confinement. Near the stability limit, self-attraction can overwhelm the repulsion, causing the condensate to collapse. Growth of the condensate is therefore punctuated by intermittent collapses that are triggered by either macroscopic quantum tunnelling or thermal fluctuation. Previous observations of growth and collapse dynamics have been hampered by the stochastic nature of these mechanisms. Here we report direct observations of the growth and subsequent collapse of a 7Li condensate with attractive interactions, using phase-contrast imaging. The success of the measurement lies in our ability to reduce the stochasticity in the dynamics by controlling the initial number of condensate atoms using a two-photon transition to a diatomic molecular state.

  20. Metastable liquid lamellar structures in binary and ternary mixtures of Lennard-Jones fluids

    NASA Astrophysics Data System (ADS)

    Díaz-Herrera, Enrique; Ramírez-Santiago, Guillermo; Moreno Razo, José A.

    2004-03-01

    We have carried out extensive equilibrium MD simulations to investigate the Liquid-Vapor coexistence in partially miscible binary and ternary mixtures LJ fluids. We have studied in detail the time evolution of the density profiles and the interfacial properties in a temperature region of the phase diagram where the condensed phase is demixed. The composition of the mixtures are fixed, 50% for the binary mixture and 33.33% for the ternary mixture. The results of the simulations clearly indicate that in the range of temperatures 78 < T < 102 ^oK,--in the scale of argon-- the system evolves towards a metastable alternated liquid-liquid lamellar state in coexistence with its vapor phase. These states can be achieved if the initial configuration is fully disordered, that is, when the particles of the fluids are randomly placed on the sites of an FCC crystal or the system is completely mixed. As temperature decreases these states become very well defined and more stable in time. We find that below 90 ^oK, the alternated liquid-liquid lamellar state remains alive for 80 ns, in the scale of argon, the longest simulation we have carried out. Nonetheless, we believe that in this temperature region these states will be alive for even much longer times.

  1. Breath condenser coatings affect measurement of biomarkers in exhaled breath condensate.

    PubMed

    Rosias, P P; Robroeks, C M; Niemarkt, H J; Kester, A D; Vernooy, J H; Suykerbuyk, J; Teunissen, J; Heynens, J; Hendriks, H J; Jöbsis, Q; Dompeling, E

    2006-11-01

    Exhaled breath condensate collection is not yet standardised and biomarker measurements are often close to lower detection limits. In the current study, it was hypothesised that adhesive properties of different condenser coatings interfere with measurements of eicosanoids and proteins in breath condensate. In vitro, condensate was derived from a collection model using two test solutions (8-isoprostane and albumin) and five condenser coatings (silicone, glass, aluminium, polypropylene and Teflon). In vivo, condensate was collected using these five coatings and the EcoScreen condenser to measure 8-isoprostane, and three coatings (silicone, glass, EcoScreen) to measure albumin. In vitro, silicone and glass coatings had significantly higher albumin recovery compared with the other coatings. A similar trend was observed for 8-isoprostane recovery. In vivo, median (interquartile range) 8-isoprostane concentrations were significantly higher using silicone (9.2 (18.8) pg.mL(-1)) or glass (3.0 (4.5) pg.mL(-1)) coating, compared with aluminium (0.5 (2.4) pg.mL(-1)), polypropylene (0.5 (0.5) pg.mL(-1)), Teflon (0.5 (0.0) pg.mL(-1)), and EcoScreen (0.5 (2.0) pg.mL(-1)). Albumin in vivo was mainly detectable using glass coating. In conclusion, a condenser with silicone or glass coating is more efficient for measurement of 8-isoprostane or albumin in exhaled breath condensate, than EcoScreen, aluminium, polypropylene or Teflon. Guidelines for exhaled breath condensate standardisation should include the most valid condenser coating to measure a specific biomarker.

  2. Liquid over-feeding air conditioning system and method

    DOEpatents

    Mei, Viung C.; Chen, Fang C.

    1993-01-01

    A refrigeration air conditioning system utilizing a liquid over-feeding operation is described. A liquid refrigerant accumulator-heat exchanger is placed in the system to provide a heat exchange relationship between hot liquid refrigerant discharged from condenser and a relatively cool mixture of liquid and vaporous refrigerant discharged from the evaporator. This heat exchange relationship substantially sub-cools the hot liquid refrigerant which undergoes little or no evaporation across the expansion device and provides a liquid over-feeding operation through the evaporator for effectively using 100 percent of evaporator for cooling purposes and for providing the aforementioned mixture of liquid and vaporous refrigerant.

  3. Drying of pulverized material with heated condensible vapor

    DOEpatents

    Carlson, L.W.

    1984-08-16

    Apparatus for drying pulverized material utilizes a high enthalpy condensable vapor such as steam for removing moisture from the individual particles of the pulverized material. The initially wet particulate material is tangentially delivered by a carrier vapor flow to an upper portion of a generally vertical cylindrical separation drum. The lateral wall of the separation drum is provided with a plurality of flow guides for directing the vapor tangentially therein in the direction of particulate material flow. Positioned concentrically within the separation drum and along the longitudinal axis thereof is a water-cooled condensation cylinder which is provided with a plurality of collection plates, or fines, on the outer lateral surface thereof. The cooled collection fines are aligned counter to the flow of the pulverized material and high enthalpy vapor mixture to maximize water vapor condensation thereon. The condensed liquid which includes moisture removed from the pulverized materials then flows downward along the outer surface of the coolant cylinder and is collected and removed. The particles travel in a shallow helix due to respective centrifugal and vertical acceleration forces applied thereto. The individual particles of the pulverized material are directed outwardly by the vortex flow where they contact the inner cylindrical surface of the separation drum and are then deposited at the bottom thereof for easy collection and removal. The pulverized material drying apparatus is particularly adapted for drying coal fines and facilitates the recovery of the pulverized coal. 2 figs.

  4. Drying of pulverized material with heated condensible vapor

    DOEpatents

    Carlson, Larry W.

    1986-01-01

    Apparatus for drying pulverized material utilizes a high enthalpy condensable vapor such as steam for removing moisture from the individual particles of the pulverized material. The initially wet particulate material is tangentially delivered by a carrier vapor flow to an upper portion of a generally vertical cylindrical separation drum. The lateral wall of the separation drum is provided with a plurality of flow guides for directing the vapor tangentially therein in the direction of particulate material flow. Positioned concentrically within the separation drum and along the longitudinal axis thereof is a water-cooled condensation cylinder which is provided with a plurality of collection plates, or fins, on the outer lateral surface thereof. The cooled collection fins are aligned counter to the flow of the pulverized material and high enthalpy vapor mixture to maximize water vapor condensation thereon. The condensed liquid which includes moisture removed from the pulverized material then flows downward along the outer surface of the coolant cylinder and is collected and removed. The particles travel in a shallow helix due to respective centrifugal and vertical acceleration forces applied thereto. The individual particles of the pulverized material are directed outwardly by the vortex flow where they contact the inner cylindrical surface of the separation drum and are then deposited at the bottom thereof for easy collection and removal. The pulverized material drying apparatus is particularly adapted for drying coal fines and facilitates the recovery of the pulverized coal.

  5. Shock wave induced condensation in fuel-rich gaseous and gas-particles mixtures

    NASA Astrophysics Data System (ADS)

    Fomin, P. A.

    2018-03-01

    The possibility of fuel vapor condensation in shock waves in fuel-rich (cyclohexane-oxygen) gaseous mixtures and explosion safety aspects of this effect are discussed. It is shown, that condensation process can essentially change the chemical composition of the gas. For example, the molar fraction of the oxidizer can increase in a few times. As a result, mixtures in which the initial concentration of fuel vapor exceeds the Upper Flammability Limit can, nevertheless, explode, if condensation shifts the composition of the mixture into the ignition region. The rate of the condensation process is estimated. This process can be fast enough to significantly change the chemical composition of the gas and shift it into the flammable range during the compression phase of blast waves, generated by explosions of fuel-vapor clouds or rapture of pressurized chemical reactors, with characteristic size of a few meters. It is shown that the presence of chemically inert microparticles in the gas mixtures under consideration increases the degree of supercooling and the mass of fuel vapors that have passed into the liquid and reduces the characteristic condensation time in comparison with the gas mixture without microparticles. The fuel vapor condensation should be taken into account in estimation the explosion hazard of chemical reactors, industrial and civil constructions, which may contain fuel-rich gaseous mixtures of heavy hydrocarbons with air.

  6. Condensed Tannins from Ficus virens as Tyrosinase Inhibitors: Structure, Inhibitory Activity and Molecular Mechanism

    PubMed Central

    Chai, Wei-Ming; Feng, Hui-Ling; Zhuang, Jiang-Xing; Chen, Qing-Xi

    2014-01-01

    Condensed tannins from Ficus virens leaves, fruit, and stem bark were isolated and their structures characterized by 13C nuclear magnetic resonance spectrometry, high performance liquid chromatography electrospray ionization mass spectrometry, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The results showed that the leaves, fruit, and stem bark condensed tannins were complex mixtures of homo- and heteropolymers of B-type procyanidins and prodelphinidins with degrees of polymerization up to hexamer, dodecamer, and pentadecamer, respectively. Antityrosinase activities of the condensed tannins were studied. The results indicated that the condensed tannins were potent tyrosinase inhibitors. The concentrations for the leaves, fruit, and stem bark condensed tannins leading to 50% enzyme activity were determined to be 131.67, 99.89, and 106.22 μg/ml on monophenolase activity, and 128.42, 43.07, and 74.27 μg/ml on diphenolase activity. The inhibition mechanism, type, and constants of the condensed tannins on the diphenolase activity were further investigated. The results indicated that the condensed tannins were reversible and mixed type inhibitors. Fluorescence quenching, copper interacting, and molecular docking techniques were utilized to unravel the molecular mechanisms of the inhibition. The results showed that the hydroxyl group on the B ring of the condensed tannins could chelate the dicopper irons of the enzyme. Moreover, the condensed tannins could reduce the enzyme product o-quinones into colourless compounds. These results would contribute to the development and design of antityrosinase agents. PMID:24637701

  7. Continuous Droplet Removal upon Dropwise Condensation of Humid Air on a Hydrophobic Micropatterned Surface

    PubMed Central

    2015-01-01

    Combination of two physical phenomena, capillary pressure gradient and wettability gradient, allows a simple two-step fabrication process that yields a reliable hydrophobic self-cleaning condenser surface. The surface is fabricated with specific microscopic topography and further treatment with a chemically inert low-surface-energy material. This process does not require growth of nanofeatures (nanotubes) or hydrophilic–hydrophobic patterning of the surface. Trapezoidal geometry of the microfeatures facilitates droplet transfer from the Wenzel to the Cassie state and reduces droplet critical diameter. The geometry of the micropatterns enhances local coalescence and directional movement for droplets with diameter much smaller than the radial length of the micropatterns. The hydrophobic self-cleaning micropatterned condenser surface prevents liquid film formation and promotes continuous dropwise condensation cycle. Upon dropwise condensation, droplets follow a designed wettability gradient created with micropatterns from the most hydrophobic to the least hydrophobic end of the surface. The surface has higher condensation efficiency, due to its directional self-cleaning property, than a plain hydrophobic surface. We explain the self-actuated droplet collection mechanism on the condenser surface and demonstrate experimentally the creation of an effective wettability gradient over a 6 mm radial distance. In spite of its fabrication simplicity, the fabricated surface demonstrates self-cleaning property, enhanced condensation performance, and reliability over time. Our work enables creation of a hydrophobic condenser surface with the directional self-cleaning property that can be used for collection of biological (chemical, environmental) aerosol samples or for condensation enhancement. PMID:25073014

  8. Continuous droplet removal upon dropwise condensation of humid air on a hydrophobic micropatterned surface.

    PubMed

    Zamuruyev, Konstantin O; Bardaweel, Hamzeh K; Carron, Christopher J; Kenyon, Nicholas J; Brand, Oliver; Delplanque, Jean-Pierre; Davis, Cristina E

    2014-08-26

    Combination of two physical phenomena, capillary pressure gradient and wettability gradient, allows a simple two-step fabrication process that yields a reliable hydrophobic self-cleaning condenser surface. The surface is fabricated with specific microscopic topography and further treatment with a chemically inert low-surface-energy material. This process does not require growth of nanofeatures (nanotubes) or hydrophilic-hydrophobic patterning of the surface. Trapezoidal geometry of the microfeatures facilitates droplet transfer from the Wenzel to the Cassie state and reduces droplet critical diameter. The geometry of the micropatterns enhances local coalescence and directional movement for droplets with diameter much smaller than the radial length of the micropatterns. The hydrophobic self-cleaning micropatterned condenser surface prevents liquid film formation and promotes continuous dropwise condensation cycle. Upon dropwise condensation, droplets follow a designed wettability gradient created with micropatterns from the most hydrophobic to the least hydrophobic end of the surface. The surface has higher condensation efficiency, due to its directional self-cleaning property, than a plain hydrophobic surface. We explain the self-actuated droplet collection mechanism on the condenser surface and demonstrate experimentally the creation of an effective wettability gradient over a 6 mm radial distance. In spite of its fabrication simplicity, the fabricated surface demonstrates self-cleaning property, enhanced condensation performance, and reliability over time. Our work enables creation of a hydrophobic condenser surface with the directional self-cleaning property that can be used for collection of biological (chemical, environmental) aerosol samples or for condensation enhancement.

  9. Elementary Excitations in Quantum Liquids.

    ERIC Educational Resources Information Center

    Pines, David

    1981-01-01

    Discusses elementary excitations and their role in condensed matter physics, focusing on quantum plasma, helium liquids, and superconductors. Considers research primarily conducted in the 1950s and concludes with a brief survey of some closely related further developments. (Author/JN)

  10. Freeze-tolerant condenser for a closed-loop heat-transfer system

    NASA Technical Reports Server (NTRS)

    Crowley, Christopher J. (Inventor); Elkouh, Nabil A. (Inventor)

    2002-01-01

    A freeze tolerant condenser (106) for a two-phase heat transfer system is disclosed. The condenser includes an enclosure (110) and a porous artery (112) located within and extending along the length of the enclosure. A vapor space (116) is defined between the enclosure and the artery, and a liquid space (114) is defined by a central passageway within the artery. The artery includes a plurality of laser-micromachined capillaries (130) extending from the outer surface of the artery to its inner surface such that the vapor space is in fluid communication with the liquid space. In one embodiment of the invention, the capillaries (130) are cylindrical holes having a diameter of no greater than 50 microns. In another embodiment, the capillaries (130') are slots having widths of no greater than 50 microns. A method of making an artery in accordance with the present invention is also disclosed. The method includes providing a solid-walled tube and laser-micromachining a plurality of capillaries into the tube along a longitudinal axis, wherein each capillary has at least one cross-sectional dimension transverse to the longitudinal axis of less than 50 microns.

  11. CONDENSATION CAN

    DOEpatents

    Booth, E.T. Jr.; Pontius, R.B.; Jacobsohn, B.A.; Slade, C.B.

    1962-03-01

    An apparatus is designed for condensing a vapor to a solid at relatively low back pressures. The apparatus comprises a closed condensing chamber, a vapor inlet tube extending to the central region of the chamber, a co-axial tubular shield surrounding the inlet tube, means for heating the inlet tube at a point outside the condensing chamber, and means for refrigeratirg the said chamber. (AEC)

  12. Simulation of water vapor condensation on LOX droplet surface using liquid nitrogen

    NASA Technical Reports Server (NTRS)

    Powell, Eugene A.

    1988-01-01

    The formation of ice or water layers on liquid oxygen (LOX) droplets in the Space Shuttle Main Engine (SSME) environment was investigated. Formulation of such ice/water layers is indicated by phase-equilibrium considerations under conditions of high partial pressure of water vapor (steam) and low LOX droplet temperature prevailing in the SSME preburner or main chamber. An experimental investigation was begun using liquid nitrogen as a LOX simulant. A monodisperse liquid nitrogen droplet generator was developed which uses an acoustic driver to force the stream of liquid emerging from a capillary tube to break up into a stream of regularly space uniformly sized spherical droplets. The atmospheric pressure liquid nitrogen in the droplet generator reservoir was cooled below its boiling point to prevent two phase flow from occurring in the capillary tube. An existing steam chamber was modified for injection of liquid nitrogen droplets into atmospheric pressure superheated steam. The droplets were imaged using a stroboscopic video system and a laser shadowgraphy system. Several tests were conducted in which liquid nitrogen droplets were injected into the steam chamber. Under conditions of periodic droplet formation, images of 600 micron diameter liquid nitrogen droplets were obtained with the stroboscopic video systems.

  13. Condensation polyimides

    NASA Technical Reports Server (NTRS)

    Hergenrother, P. M.

    1989-01-01

    Polyimides belong to a class of polymers known as polyheterocyclics. Unlike most other high temperature polymers, polyimides can be prepared from a variety of inexpensive monomers by several synthetic routes. The glass transition and crystalline melt temperature, thermooxidative stability, toughness, dielectric constant, coefficient of thermal expansion, chemical stability, mechanical performance, etc. of polyimides can be controlled within certain boundaries. This versatility has permitted the development of various forms of polyimides. These include adhesives, composite matrices, coatings, films, moldings, fibers, foams and membranes. Polyimides are synthesized through both condensation (step-polymerization) and addition (chain growth polymerization) routes. The precursor materials used in addition polyimides or imide oligomers are prepared by condensation method. High molecular weight polyimide made via polycondensation or step-growth polymerization is studied. The various synthetic routes to condensation polyimides, structure/property relationships of condensation polyimides and composite properties of condensation polyimides are all studied. The focus is on the synthesis and chemical structure/property relationships of polyimides with particular emphasis on materials for composite application.

  14. Refrigeration system with a compressor-pump unit and a liquid-injection desuperheating line

    DOEpatents

    Gaul, Christopher J.

    2001-01-01

    The refrigeration system includes a compressor-pump unit and/or a liquid-injection assembly. The refrigeration system is a vapor-compression refrigeration system that includes an expansion device, an evaporator, a compressor, a condenser, and a liquid pump between the condenser and the expansion device. The liquid pump improves efficiency of the refrigeration system by increasing the pressure of, thus subcooling, the liquid refrigerant delivered from the condenser to the expansion device. The liquid pump and the compressor are driven by a single driving device and, in this regard, are coupled to a single shaft of a driving device, such as a belt-drive, an engine, or an electric motor. While the driving device may be separately contained, in a preferred embodiment, the liquid pump, the compressor, and the driving device (i.e., an electric motor) are contained within a single sealable housing having pump and driving device cooling paths to subcool liquid refrigerant discharged from the liquid pump and to control the operating temperature of the driving device. In another aspect of the present invention, a liquid injection assembly is included in a refrigeration system to divert liquid refrigerant from the discharge of a liquid pressure amplification pump to a compressor discharge pathway within a compressor housing to desuperheat refrigerant vapor to the saturation point within the compressor housing. The liquid injection assembly includes a liquid injection pipe with a control valve to meter the volume of diverted liquid refrigerant. The liquid injection assembly may also include a feedback controller with a microprocessor responsive to a pressure sensor and a temperature sensor both positioned between the compressor to operate the control valve to maintain the refrigerant at or near saturation.

  15. Subgrid-scale Condensation Modeling for Entropy-based Large Eddy Simulations of Clouds

    NASA Astrophysics Data System (ADS)

    Kaul, C. M.; Schneider, T.; Pressel, K. G.; Tan, Z.

    2015-12-01

    An entropy- and total water-based formulation of LES thermodynamics, such as that used by the recently developed code PyCLES, is advantageous from physical and numerical perspectives. However, existing closures for subgrid-scale thermodynamic fluctuations assume more traditional choices for prognostic thermodynamic variables, such as liquid potential temperature, and are not directly applicable to entropy-based modeling. Since entropy and total water are generally nonlinearly related to diagnosed quantities like temperature and condensate amounts, neglecting their small-scale variability can lead to bias in simulation results. Here we present the development of a subgrid-scale condensation model suitable for use with entropy-based thermodynamic formulations.

  16. Anomalous interfacial tension temperature dependence of condensed phase drops in magnetic fluids

    NASA Astrophysics Data System (ADS)

    Ivanov, Aleksey S.

    2018-05-01

    Interfacial tension temperature dependence σ(T) of the condensed phase (drop-like aggregates) in magnetic fluids undergoing field induced phase transition of the "gas-liquid" type was studied experimentally. Numerical analysis of the experimental data has revealed the anomalous (if compared to ordinary one-component fluids) behavior of the σ(T) function for all tested magnetic colloid samples: the condensed phase drops at high T ≈ 75 C exhibit higher σ(T) than the drops condensed at low T ≈ 20 C. The σ(T) behavior is explained by the polydispersity of magnetic colloids: at high T, only the largest colloidal particles are able to take part in the field induced condensation; thus, the increase of T causes the growth of the average particle diameters inside the drop-like aggregates, what in its turn results in the growth of σ(T). The result is confirmed by qualitative theoretical estimations and qualitative experimental observation of the condensed phase "evaporation" process after the applied magnetic field is removed: the drops that are formed due to capillary instability of the drop-like aggregates retract by one order of magnitude faster at high T, and the evaporation of the drops slows down at high T.

  17. Experimental and analytical investigation of 0 G condensation in a mechanical refrigeration system application

    NASA Technical Reports Server (NTRS)

    Keshock, E. G.

    1975-01-01

    Basic equations of momentum and energy are presented and discussed with respect to heat transfer and pressure drop for forced flow condensation in horizontal tubes under 1-g and 0-g conditions. Some experimental results are presented for condensing refrigerant-12 in a system of three parallel-connected quartz tubes (3-mm inside diameter, G = 1.037 to 3.456 x 105 lbm/hr-sq. ft). From high speed photographs, measurements were obtained of film thickness, phase velocities, disturbance wavelengths, and flow regimes and their transitions. Based upon these measurements various dimensionless force ratios (flow and instability parameters) were calculated. Under 0-g conditions a uniformly thick redistribution of liquid condensate about the tube walls was found to result in a lowered heat transfer coefficient as compared with 1-g conditions, based upon fundamental heat transfer theory. A model is proposed that takes into account the difference in heat transfer due to condensate distribution under 1-g and 0-g conditions.

  18. Gas-liquid chromatography with a volatile "stationary" liquid phase.

    PubMed

    Wells, P S; Zhou, S; Parcher, J F

    2002-05-01

    A unique type of gas-liquid chromatography is described in which both mobile and "stationary" phases are composed of synthetic mixtures of helium and carbon dioxide. At temperatures below the critical point of the binary mixture and pressures above the vapor pressure of pure liquid carbon dioxide, helium and carbon dioxide can form two immiscible phases over extended composition ranges. A binary vapor phase enriched in helium can act as the mobile phase for chromatographic separations, whereas a CO2-rich liquid in equilibrium with the vapor phase, but condensed on the column wall, can act as a pseudostationary phase. Several examples of chromatographic separations obtained in "empty" capillary columns with no ordinary stationary liquid phase illustrate the range of conditions that produce such separations. In addition, several experiments are reported that confirm the proposed two-phase hypothesis. The possible consequences of the observed chromatographic phenomenon in the field of supercritical fluid chromatography with helium headspace carbon dioxide are discussed.

  19. In Situ Visualization of the Growth and Fluctuations of Nanoparticle Superlattice in Liquids

    NASA Astrophysics Data System (ADS)

    Ou, Zihao; Shen, Bonan; Chen, Qian

    We use liquid phase transmission electron microscopy to image and understand the crystal growth front and interfacial fluctuation of a nanoparticle superlattice. With single particle resolution and hundreds of nanoscale building blocks in view, we are able to identify the interface between ordered lattice and disordered structure and visualize the kinetics of single building block attachment at the lattice growth front. The spatial interfacial fluctuation profiles support the capillary wave theory, from which we derive a surface stiffness value consistent with scaling analysis. Our experiments demonstrate the potential of extending model study on collective systems to nanoscale with single particle resolution and testing fundamental theories of condensed matter at a length scale linking atoms and micron-sized colloids.

  20. Liquid over-feeding air conditioning system and method

    DOEpatents

    Mei, V.C.; Chen, F.C.

    1993-09-21

    A refrigeration air conditioning system utilizing a liquid over-feeding operation is described. A liquid refrigerant accumulator-heat exchanger is placed in the system to provide a heat exchange relationship between hot liquid refrigerant discharged from condenser and a relatively cool mixture of liquid and vaporous refrigerant discharged from the evaporator. This heat exchange relationship substantially sub-cools the hot liquid refrigerant which undergoes little or no evaporation across the expansion device and provides a liquid over-feeding operation through the evaporator for effectively using 100 percent of evaporator for cooling purposes and for providing the aforementioned mixture of liquid and vaporous refrigerant. 1 figure.

  1. [Aspects of aetiology of neuro-psychic disorders in male liquidators of Chernobyl nuclear power accident consequences].

    PubMed

    Skavysh, V A

    2009-01-01

    The author considered aetiology of neuro-psychic disorders in liquidators of Chernobyl nuclear power accident consequences, demonstrated scientific value of studying the liquidators cohort, as they were protected from internal radiation factors and reside on radiation "pure" territories. External radiation doses in those liquidators vary from 16 cGy to 18.7 +/- 10.8 cGy, according to the author. Catamnesis enabled to doubt radiation aetiology of psychic organic syndrome revealed in 1991-1994 by clinical and instrumental studies among 53.6% of 213 male examinees. According to the author, prolonged over 1-2 months external radiation of low dose could not cause health deterioration in adult males. Diagnosed psychic organic syndrome and vascular encephalopathy in some cases could have alcohol aetiology. This conclusion is not extrapolated to the whole liquidators cohort.

  2. Producing liquid oxygen in the classroom

    NASA Astrophysics Data System (ADS)

    Williams, David; Warden, Nicole; Wharton, Barry

    2016-09-01

    A number of organisations have provided instructions on how to produce small quantities of liquid oxygen in the classroom using liquid nitrogen and a copper condensation coil (Lister 1995 Classic Chemistry Demonstrations (London: Royal Society of Chemistry) pp 61-2, French and Hibbert 2010 Phys. Educ. 45 221-2). The method presented below describes a process which is believed to be safer as it contains the oxygen during production and produces a controllable amount of the liquid. The method also has the advantage that it can be conducted using cheap and easily available materials.

  3. Acoustically Forced Coaxial Hydrogen/Liquid Oxygen Jet Flames

    DTIC Science & Technology

    2016-05-15

    Briefing Charts 3. DATES COVERED (From - To) 25 April 2016 - 15 May 2016 4. TITLE AND SUBTITLE Acoustically Forced Coaxial Hydrogen / Liquid Oxygen Jet...area code) N/A Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. 239.18 1 Acoustically Forced Coaxial Hydrogen / Liquid Oxygen Jet Flames...propellants be stored in condensed form – e.g., kerosene, liquid oxygen in rockets • Combustion systems can no longer be designed to meet modern

  4. Enhanced Condensation Heat Transfer

    NASA Astrophysics Data System (ADS)

    Rose, John Winston

    The paper gives some personal observations on various aspects of enhanced condensation heat transfer. The topics discussed are external condensation (horizontal low-finned tubes and wire-wrapped tubes), internal condensation (microfin tubes and microchannels) and Marangoni condensation of binary mixtures.

  5. Functionality of liquid smoke as an all-natural antimicrobial in food preservation.

    PubMed

    Lingbeck, Jody M; Cordero, Paola; O'Bryan, Corliss A; Johnson, Michael G; Ricke, Steven C; Crandall, Philip G

    2014-06-01

    The smoking of foods, especially meats, has been used as a preservation technique for centuries. Today, smoking methods often involve the use of wood smoke condensates, commonly known as liquid smoke. Liquid smoke is produced by condensing wood smoke created by the pyrolysis of sawdust or wood chips followed by removal of the carcinogenic polyaromatic hydrocarbons. The main products of wood pyrolysis are phenols, carbonyls and organic acids which are responsible for the flavor, color and antimicrobial properties of liquid smoke. Several common food-borne pathogens such as Listeria monocytogenes, Salmonella, pathogenic Escherichia coli and Staphylococcus have shown sensitivity to liquid smoke in vitro and in food systems. Therefore liquid smoke has potential for use as an all-natural antimicrobial in commercial applications where smoke flavor is desired. This review will cover the application and effectiveness of liquid smoke and fractions of liquid smoke as an all-natural food preservative. This review will be valuable for the industrial and research communities in the food science and technology areas. Copyright © 2014. Published by Elsevier Ltd.

  6. LTCS (Laser Thermal Control System) Test Supporting the Improvement of DeCoM (Deepak Condenser Model)

    NASA Technical Reports Server (NTRS)

    Patel, Deepak

    2014-01-01

    Thermal and Fluids Analysis Workshop, Cleveland OH. NCTS 19701-14. On Dec 2013 a Loop Heat Pipe (LHP) test was performed as part of the integral Laser Thermal Control System (LTCS). During the balance portion of this testing it was noticed that the LHP was not going to be able to maintain temperature on the operational thermal mass. The test was stopped. After multiple meetings with the LTCS designers, LHP experts (in house and external) it was concluded that gravity was preventing the control heaters to maintain control on the reservoir. A heater was installed onto the liquid return line as part of the fix. After implementing the fix on the liquid return line, the test on May 2014 proved that the system works in vertical orientation using the liquid line heater. Through this testing, the correlation of the Deepak Condenser Model (DeCoM) was possible. This paper describes how well DeCoM predicts the condenser behavior in comparison to the test results of LTCS test.

  7. Room-temperature superfluidity in a polariton condensate

    NASA Astrophysics Data System (ADS)

    Lerario, Giovanni; Fieramosca, Antonio; Barachati, Fábio; Ballarini, Dario; Daskalakis, Konstantinos S.; Dominici, Lorenzo; de Giorgi, Milena; Maier, Stefan A.; Gigli, Giuseppe; Kéna-Cohen, Stéphane; Sanvitto, Daniele

    2017-09-01

    Superfluidity--the suppression of scattering in a quantum fluid at velocities below a critical value--is one of the most striking manifestations of the collective behaviour typical of Bose-Einstein condensates. This phenomenon, akin to superconductivity in metals, has until now been observed only at prohibitively low cryogenic temperatures. For atoms, this limit is imposed by the small thermal de Broglie wavelength, which is inversely related to the particle mass. Even in the case of ultralight quasiparticles such as exciton-polaritons, superfluidity has been demonstrated only at liquid helium temperatures. In this case, the limit is not imposed by the mass, but instead by the small binding energy of Wannier-Mott excitons, which sets the upper temperature limit. Here we demonstrate a transition from supersonic to superfluid flow in a polariton condensate under ambient conditions. This is achieved by using an organic microcavity supporting stable Frenkel exciton-polaritons at room temperature. This result paves the way not only for tabletop studies of quantum hydrodynamics, but also for room-temperature polariton devices that can be robustly protected from scattering.

  8. The Momentum Distribution of Liquid ⁴He

    DOE PAGES

    Prisk, T. R.; Bryan, M. S.; Sokol, P. E.; ...

    2017-07-24

    We report a high-resolution neutron Compton scattering study of liquid ⁴He under milli-Kelvin temperature control. To interpret the scattering data, we performed Quantum Monte Carlo calculations of the atomic momentum distribution and final state effects for the conditions of temperature and density considered in the experiment. There is excellent agreement between the observed scattering and ab initio calculations of its lineshape at all temperatures. We also used model fit functions to obtain from the scattering data empirical estimates of the average atomic kinetic energy and Bose condensate fraction. These quantities are also in excellent agreement with ab initio calculations. Wemore » conclude that contemporary Quantum Monte Carlo methods can furnish accurate predictions for the properties of Bose liquids, including the condensate fraction, close to the superfluid transition temperature.« less

  9. Local Order-Disorder Transition Driving by Structural Heterogeneity in a Benzyl Functionalized Ionic Liquid.

    PubMed

    Faria, Luiz F O; Paschoal, Vitor H; Lima, Thamires A; Ferreira, Fabio F; Freitas, Rafael S; Ribeiro, Mauro C C

    2017-10-26

    A local order-disorder transition has been disclosed in the thermophysical behavior of the ionic liquid 1-benzyl-3-methylimidazolium dicyanamide, [Bzmim][N(CN) 2 ], and its microscopic nature revealed by spectroscopic techniques. Differential scanning calorimetry and specific heat measurements show a thermal event of small enthalpy variation taking place in the range 250-260 K, which is not due to crystallization or melting. Molecular dynamic simulations and X-ray diffraction measurements have been used to discuss the segregation of domains in the liquid structure of [Bzmim][N(CN) 2 ]. Raman and NMR spectroscopy measurements as a function of temperature indicate that the microscopic origin of the event observed in the calorimetric measurements comes from structural rearrangement involving the benzyl group. The results indicate that the characteristic structural heterogeneity allow for rearrangements within local domains implying the good glass-forming ability for the low viscosity ionic liquid [Bzmim][N(CN) 2 ]. This work sheds light on our understanding of the microscopic origin behind complex thermal behavior of ionic liquids.

  10. Condensation Temperature in Non-Equilibrium Condensation.

    NASA Astrophysics Data System (ADS)

    Tanaka, K. K.; Tanaka, H.; Nakazawa, K.

    1999-09-01

    In investigation of the origins of the presolar grains, it is important to clear the formation process of grains in ejecta of AGB stars or supernovae, where most presolar grains are suggested to be formed. The grain formation has been investigated based on the classical nucleation theory in many previous studies. On the other hand it has been pointed out that the classical nucleation rate is significantly different from that obtained by experiments, and should not be applied to grain formation in astrophysical environments (Donn and Nuth, 1985, ApJ 288, 187-190). Recently Dillmann and Meier (1991, J. Chem. Phys. 94, 3872-3884) proposed new semi-phenomological nucleation model, which achieved excellent agreements with experiments. In this study we applied the nucleation rate in the semi-phenomological model to the grain formation in astrophysical environment in order to make it clear how the grain formation changes due to the new nucleation rate. For various parameters determined by surface energy of grain and cooling time of vapor, we solved equations describing the grain formation. From the comparison between the results obtained by new nucleation rate and that by classical one we found that there is no significant difference in grain number density and grain size, but the condensation temperature is considerably different from the previous one. For example in carbon rich AGB star the condensation temperature of graphite is lower than that obtained by classical one by a few hundreds Kelvin: this means the condensation temperature is lower than the equilibrium condensation temperature by about 500 Kelvin. Furthermore we investigated the condensation of vapor in which grain impurities are already present. We obtained the condition for formation of core-mantle type grains. Our obtained condition would give constraint on the formation of core-mantle type presolar grains.

  11. An Experimental Study of Filmwise Condensation on Horizontal Enhanced Condenser Tubing.

    DTIC Science & Technology

    1979-12-01

    with a 51 mm thick sheet of Johns - Manville Aerotube insulation. 22 D. CONDENSATE AND FEEDWATER SYSTEMS The condensate and feedwater systems are shown...desuperheater. The condensate and feedwater lines are insulated with 25.4 mm thick Johns - Manville Aerotube insulation. E. COOLING WATER SYSTEM The cooling

  12. Pyrolysis process for producing condensed stabilized hydrocarbons utilizing a beneficially reactive gas

    DOEpatents

    Durai-Swamy, Kandaswamy

    1982-01-01

    In a process for recovery of values contained in solid carbonaceous material, the solid carbonaceous material is comminuted and then subjected to pyrolysis, in the presence of a carbon containing solid particulate source of heat and a beneficially reactive transport gas in a transport flash pyrolysis reactor, to form a pyrolysis product stream. The pyrolysis product stream contains a gaseous mixture and particulate solids. The solids are separated from the gaseous mixture to form a substantially solids-free gaseous stream which comprises volatilized hydrocarbon free radicals newly formed by pyrolysis. Preferably the solid particulate source of heat is formed by oxidizing part of the separated particulate solids. The beneficially reactive transport gas inhibits the reactivity of the char product and the carbon-containing solid particulate source of heat. Condensed stabilized hydrocarbons are obtained by quenching the gaseous mixture stream with a quench fluid which contains a capping agent for stabilizing and terminating newly formed volatilized hydrocarbon free radicals. The capping agent is partially depleted of hydrogen by the stabilization and termination reaction. Hydrocarbons of four or more carbon atoms in the gaseous mixture stream are condensed. A liquid stream containing the stabilized liquid product is then treated or separated into various fractions. A liquid containing the hydrogen depleted capping agent is hydrogenated to form a regenerated capping agent. At least a portion of the regenerated capping agent is recycled to the quench zone as the quench fluid. In another embodiment capping agent is produced by the process, separated from the liquid product mixture, and recycled.

  13. Heat and mass transfer analogy for condensation of humid air in a vertical channel

    NASA Astrophysics Data System (ADS)

    Desrayaud, G.; Lauriat, G.

    This study examines energy transport associated with liquid film condensation in natural convection flows driven by differences in density due to temperature and concentration gradients. The condensation problem is based on the thin-film assumptions. The most common compositional gradient, which is encountered in humid air at ambient temperature is considered. A steady laminar Boussinesq flow of an ideal gas-vapor mixture is studied for the case of a vertical parallel plate channel. New correlations for the latent and sensible Nusselt numbers are established, and the heat and mass transfer analogy between the sensible Nusselt number and Sherwood number is demonstrated.

  14. Condensation of helium in aerogel and athermal dynamics of the random-field Ising model.

    PubMed

    Aubry, Geoffroy J; Bonnet, Fabien; Melich, Mathieu; Guyon, Laurent; Spathis, Panayotis; Despetis, Florence; Wolf, Pierre-Etienne

    2014-08-22

    High resolution measurements reveal that condensation isotherms of (4)He in high porosity silica aerogel become discontinuous below a critical temperature. We show that this behavior does not correspond to an equilibrium phase transition modified by the disorder induced by the aerogel structure, but to the disorder-driven critical point predicted for the athermal out-of-equilibrium dynamics of the random-field Ising model. Our results evidence the key role of nonequilibrium effects in the phase transitions of disordered systems.

  15. Statistical Mechanics and Applications in Condensed Matter

    NASA Astrophysics Data System (ADS)

    Di Castro, Carlo; Raimondi, Roberto

    2015-08-01

    Preface; 1. Thermodynamics: a brief overview; 2. Kinetics; 3. From Boltzmann to Gibbs; 4. More ensembles; 5. The thermodynamic limit and its thermodynamic stability; 6. Density matrix and quantum statistical mechanics; 7. The quantum gases; 8. Mean-field theories and critical phenomena; 9. Second quantization and Hartree-Fock approximation; 10. Linear response and fluctuation-dissipation theorem in quantum systems: equilibrium and small deviations; 11. Brownian motion and transport in disordered systems; 12. Fermi liquids; 13. The Landau theory of the second order phase transitions; 14. The Landau-Wilson model for critical phenomena; 15. Superfluidity and superconductivity; 16. The scaling theory; 17. The renormalization group approach; 18. Thermal Green functions; 19. The microscopic foundations of Fermi liquids; 20. The Luttinger liquid; 21. Quantum interference effects in disordered electron systems; Appendix A. The central limit theorem; Appendix B. Some useful properties of the Euler Gamma function; Appendix C. Proof of the second theorem of Yang and Lee; Appendix D. The most probable distribution for the quantum gases; Appendix E. Fermi-Dirac and Bose-Einstein integrals; Appendix F. The Fermi gas in a uniform magnetic field: Landau diamagnetism; Appendix G. Ising and gas-lattice models; Appendix H. Sum over discrete Matsubara frequencies; Appendix I. Hydrodynamics of the two-fluid model of superfluidity; Appendix J. The Cooper problem in the theory of superconductivity; Appendix K. Superconductive fluctuations phenomena; Appendix L. Diagrammatic aspects of the exact solution of the Tomonaga Luttinger model; Appendix M. Details on the theory of the disordered Fermi liquid; References; Author index; Index.

  16. Excitations in the quantum liquid 4He: A review

    NASA Astrophysics Data System (ADS)

    Glyde, H. R.

    2018-01-01

    Progress made in measuring and interpreting the elementary excitations of superfluid and normal liquid {\\hspace{0pt}}^4He in the past 25 years is reviewed. The goal is to bring up to date the data, calculations and our understanding of the excitations since the books and reviews of the early 1990s. Only bulk liquid {\\hspace{0pt}}^4He is considered. Reference to liquid {\\hspace{0pt}}^3He , mixtures, reduced dimensions (films and confined helium) is made where useful to enhance interpretation. The focus is on the excitations as measured by inelastic neutron scattering methods. The review covers the dynamical response of liquid {\\hspace{0pt}}^4He from the collective excitations at low energy and long wavelength (i.e. phonon-roton modes) to the single particle excitations at high energy from which the atomic momentum distribution and Bose-Einstein condensate fraction are determined. A goal is to show the interplay of these excitations with other spectacular properties such as superfluidity and the test of fundamental calculations of quantum liquids that is possible. The role of Bose-Einstein condensation in determining the nature of the \

  17. Dose-Response Effects of Long-Acting Liquid Methylphenidate in Children with Attention Deficit/Hyperactivity Disorder (ADHD) and Autism Spectrum Disorder (ASD): A Pilot Study.

    PubMed

    Kim, Soo-Jeong; Shonka, Sophia; French, William P; Strickland, Jennifer; Miller, Lindsey; Stein, Mark A

    2017-08-01

    Attention deficit/hyperactivity disorder (ADHD) symptoms are common in youth with autism spectrum disorders (ASD) and are frequently treated with stimulant medications. Twenty-seven children were randomized to different dose titration schedules, and ADHD symptoms, tolerability, and aberrant behaviors were assessed weekly during a 6-week trial with long-acting liquid methylphenidate (MPH). MPH at low to moderate doses was effective in reducing ADHD symptoms and was well tolerated in young children with ASD and ADHD. Future studies are needed to assess generalization and maintenance of efficacy.

  18. Design and Fabrication of a Hybrid Superhydrophobic-Hydrophilic Surface That Exhibits Stable Dropwise Condensation.

    PubMed

    Mondal, Bikash; Mac Giolla Eain, Marc; Xu, QianFeng; Egan, Vanessa M; Punch, Jeff; Lyons, Alan M

    2015-10-28

    Condensation of water vapor is an essential process in power generation, water collection, and thermal management. Dropwise condensation, where condensed droplets are removed from the surface before coalescing into a film, has been shown to increase the heat transfer efficiency and water collection ability of many surfaces. Numerous efforts have been made to create surfaces which can promote dropwise condensation, including superhydrophobic surfaces on which water droplets are highly mobile. However, the challenge with using such surfaces in condensing environments is that hydrophobic coatings can degrade and/or water droplets on superhydrophobic surfaces transition from the mobile Cassie to the wetted Wenzel state over time and condensation shifts to a less-effective filmwise mechanism. To meet the need for a heat-transfer surface that can maintain stable dropwise condensation, we designed and fabricated a hybrid superhydrophobic-hydrophilic surface. An array of hydrophilic needles, thermally connected to a heat sink, was forced through a robust superhydrophobic polymer film. Condensation occurs preferentially on the needle surface due to differences in wettability and temperature. As the droplet grows, the liquid drop on the needle remains in the Cassie state and does not wet the underlying superhydrophobic surface. The water collection rate on this surface was studied using different surface tilt angles, needle array pitch values, and needle heights. Water condensation rates on the hybrid surface were shown to be 4 times greater than for a planar copper surface and twice as large for silanized silicon or superhydrophobic surfaces without hydrophilic features. A convection-conduction heat transfer model was developed; predicted water condensation rates were in good agreement with experimental observations. This type of hybrid superhydrophobic-hydrophilic surface with a larger array of needles is low-cost, robust, and scalable and so could be used for heat

  19. The Planck-Benzinger thermal work function in the condensation of water vapor

    NASA Astrophysics Data System (ADS)

    Chun, Paul W.

    Based on the Planck-Benzinger thermal work function using Chun's method, the innate temperature-invariant enthalpy at 0 K, ?H0(T0), for the condensation of water vapor as well as the dimer, trimer, tetramer, and pentamer form in the vapor phase, was determined to be 0.447 kcal mol-1 for vapor, 1.127 for the dimer, 0.555 for the trimer, 0.236 for the tetramer, and 0.079 kcal mol-1 for the pentamer using ?G(T) data reported by Kell et al. in 1968 and Kell and McLaurin in 1969. These results suggest that the predominant dimeric form is the most stable of these n-mers. Using Nemethy and Scheraga's 1962 data for the Helmholtz free energy of liquid water, the value of ?H0(T0) was determined to be 1.21 kcal mol-1. This is very close to the value for the energy of the hydrogen bond EH of 1.32 kcal mol-1 reported by Nemethy and Scheraga, using statistical thermodynamics. It seems clear that very little energy is required for interconversion between the hypothetical supercooled water vapor and glassy water at 0 K. A hypothetical supercooled water vapor at 0 K is apparently almost as highly associated as glassy water at that temperature, suggesting a dynamic equilibrium between vapor and liquid. This water vapor condensation is highly similar in its thermodynamic behavior to that of sequence-specific pairwise (dipeptide) hydrophobic interaction, except that the negative Gibbs free energy change minimum at ?Ts?, the thermal setpoint for vapor condensation, where T?S = 0, occurs at a considerably lower temperature, 270 K (below 0°C) compared with ?350 K. The temperature of condensation ?Tcond? at which ?G(T) = 0, where water vapor begins to condense, was found to be 383 K. In the case of a sequence-specific pairwise hydrophobic interaction, the melting temperature, ?Tm?, where ?G(Tm) = 0 was found to be 460 K. Only between two temperature limits, ?Th? = 99 K and ?Tcond? = 383 K, where ?G(Tcond) = 0, is the net chemical driving force favorable for polymorphism of glassy water

  20. Effects of liquid feeding of corn condensed distiller's solubles and whole stillage on growth performance, carcass characteristics, and sensory traits of pigs.

    PubMed

    Yang, Xiaojian; Nath, Carissa; Doering, Alan; Goihl, John; Baidoo, Samuel Kofi

    2017-01-01

    The immense growth in global bioethanol production has greatly increased the supply of by-products such as whole stillage and condensed distiller's solubles, which could be potentially used for animal feeding. The objective of this study was to investigate effects of liquid feeding high levels of corn condensed distiller's solubles (CCDS) and whole stillage (CWS) on growth performance, carcass characteristics, belly firmness and meat sensory traits of pigs. A total of 256 pigs were blocked by sex and initial BW (13.5 ± 2.5 kg), and pens of pigs (8 pigs/pen) were randomly allocated to 1 of 4 dietary treatments (8 pens/treatment): 1) corn-soybean meal based diet as control, 2) 25% CWS + 5% CCDS, 3) 19.5% CWS + 10.5% CCDS, and 4) 19.5, 26, and 32.5% CWS + 10.5, 14, and 17.5% CCDS in phases 1 (28 d), 2 (38 d), and 3 (60 d), respectively. Inclusion levels of CCDS and CWS for Treatments 1, 2, and 3 were fixed during all the three phases of the experiment. Inclusion levels of CWS and CCDS were on 88% dry matter basis. The liquid feeding system delivered feed from the mixing tank to feed troughs by high-pressure air, had sensors inside feed troughs, and recorded daily feed intake on the basis of a reference feed intake curve. The pigs were fed 5 to 10 times per day with increasing frequency during the experiment. Control pigs had greater ( P  < 0.05) average daily gain (0.91 vs. 0.84, 0.85, 0.85 kg/d) and gain to feed ratio (0.37 vs. 0.33, 0.34, 0.34) than pigs in the other three treatments during the overall period. Compared with the control, the other three groups had ( P  < 0.05) or tended to have ( P  < 0.10) lower carcass weight and backfat depth due to lighter ( P  < 0.05) slaughter body weight, but similar ( P  > 0.10) dressing percentage, loin muscle depth, and lean percentage were observed among the four treatments. Inclusion of CWS and CCDS reduced ( P  < 0.05) or tended to reduce ( P  < 0.10) belly firmness but did

  1. Microscopic droplet formation and energy transport analysis of condensation on scalable superhydrophobic nanostructured copper oxide surfaces.

    PubMed

    Li, GuanQiu; Alhosani, Mohamed H; Yuan, ShaoJun; Liu, HaoRan; Ghaferi, Amal Al; Zhang, TieJun

    2014-12-09

    Utilization of nanotechnologies in condensation has been recognized as one opportunity to improve the efficiency of large-scale thermal power and desalination systems. High-performance and stable dropwise condensation in widely-used copper heat exchangers is appealing for energy and water industries. In this work, a scalable and low-cost nanofabrication approach was developed to fabricate superhydrophobic copper oxide (CuO) nanoneedle surfaces to promote dropwise condensation and even jumping-droplet condensation. By conducting systematic surface characterization and in situ environmental scanning electron microscope (ESEM) condensation experiments, we were able to probe the microscopic formation physics of droplets on irregular nanostructured surfaces. At the early stages of condensation process, the interfacial surface tensions at the edge of CuO nanoneedles were found to influence both the local energy barriers for microdroplet growth and the advancing contact angles when droplets undergo depinning. Local surface roughness also has a significant impact on the volume of the condensate within the nanostructures and overall heat transfer from the vapor to substrate. Both our theoretical analysis and in situ ESEM experiments have revealed that the liquid condensate within the nanostructures determines the amount of the work of adhesion and kinetic energy associated with droplet coalescence and jumping. Local and global droplet growth models were also proposed to predict how the microdroplet morphology within nanostructures affects the heat transfer performance of early-stage condensation. Our quantitative analysis of microdroplet formation and growth within irregular nanostructures provides the insight to guide the anodization-based nanofabrication for enhancing dropwise and jumping-droplet condensation performance.

  2. Development of a wet vapor homogeneous liquid metal MHD power system

    NASA Astrophysics Data System (ADS)

    1989-04-01

    During the period covered by this report (October 1988 to March 1989), the following work was done: the mixing stream condensation process was analyzed, and a theoretical model for simulating this process was modified. A parametric study is being conducted at the present time; the separation processes were analyzed; and the experimental system was specified and its design is at present in an advanced stage. The mixing stream condensation process was analyzed. For the parameters defined in the SOW of this project the process was found to be a mist flow direct contact condensation, where the hot gas mixture consisting of inert gas and vapor is the continuous phase, and the subcooled liquid on which the vapor is condensed if the droplets dispersed phase. Two possibilities of creating the mist flow were considered. The first, injecting the cold Liquid Metal (LM) into the Mixing Streams Condenser (MSC) entrance as a jet and breaking it into LM fragments and the fragments into droplets by momentum transfer breakup mechanism. The second, atomizing the cooled LM stream into little droplets (approximately 100 micrometers in diameter) and accelerating them by the gas. The second possibility was preferred due to its much higher heat and mass transfer surface and coefficients relative to the first one.

  3. Lung Toxicity of Condensed Aerosol from E-CIG Liquids: Influence of the Flavor and the In Vitro Model Used

    PubMed Central

    Bengalli, Rossella; Ferri, Emanuele; Labra, Massimo; Mantecca, Paride

    2017-01-01

    The diffusion of e-cigarette (e-CIG) opens a great scientific and regulatory debate about its safety. The huge number of commercialized devices, e-liquids with almost infinite chemical formulations and the growing market demand for a rapid and efficient toxicity screen system that is able to test all of these references and related aerosols. A consensus on the best protocols for the e-CIG safety assessment is still far to be achieved, since the huge number of variables characterizing these products (e.g., flavoring type and concentration, nicotine concentration, type of the device, including the battery and the atomizer). This suggests that more experimental evidences are needed to support the regulatory frameworks. The present study aims to contribute in this field by testing the effects of condensed aerosols (CAs) from three main e-liquid categories (tobacco, mint, and cinnamon as food-related flavor), with (18 mg/mL) or without nicotine. Two in vitro models, represented by a monoculture of human epithelial alveolar cells and a three-dimensional (3D) co-culture of alveolar and lung microvascular endothelial cells were used. Cell viability, pro-inflammatory cytokines release and alveolar-blood barrier (ABB) integrity were investigated as inhalation toxicity endpoints. Results showed that nicotine itself had almost no influence on the modulation of the toxicity response, while flavor composition did have. The cell viability was significantly decreased in monoculture and ABB after exposure to the mints and cinnamon CAs. The barrier integrity was significantly affected in the ABB after exposure to cytotoxic CAs. With the exception of the significant IL-8 release in the monoculture after Cinnamon exposure, no increase of inflammatory cytokines (IL-8 and MCP-1) release was observed. These findings point out that multiple assays with different in vitro models are able to discriminate the acute inhalation toxicity of CAs from liquids with different flavors, providing the

  4. Lung Toxicity of Condensed Aerosol from E-CIG Liquids: Influence of the Flavor and the In Vitro Model Used.

    PubMed

    Bengalli, Rossella; Ferri, Emanuele; Labra, Massimo; Mantecca, Paride

    2017-10-20

    The diffusion of e-cigarette (e-CIG) opens a great scientific and regulatory debate about its safety. The huge number of commercialized devices, e-liquids with almost infinite chemical formulations and the growing market demand for a rapid and efficient toxicity screen system that is able to test all of these references and related aerosols. A consensus on the best protocols for the e-CIG safety assessment is still far to be achieved, since the huge number of variables characterizing these products (e.g., flavoring type and concentration, nicotine concentration, type of the device, including the battery and the atomizer). This suggests that more experimental evidences are needed to support the regulatory frameworks. The present study aims to contribute in this field by testing the effects of condensed aerosols (CAs) from three main e-liquid categories (tobacco, mint, and cinnamon as food-related flavor), with (18 mg/mL) or without nicotine. Two in vitro models, represented by a monoculture of human epithelial alveolar cells and a three-dimensional (3D) co-culture of alveolar and lung microvascular endothelial cells were used. Cell viability, pro-inflammatory cytokines release and alveolar-blood barrier (ABB) integrity were investigated as inhalation toxicity endpoints. Results showed that nicotine itself had almost no influence on the modulation of the toxicity response, while flavor composition did have. The cell viability was significantly decreased in monoculture and ABB after exposure to the mints and cinnamon CAs. The barrier integrity was significantly affected in the ABB after exposure to cytotoxic CAs. With the exception of the significant IL-8 release in the monoculture after Cinnamon exposure, no increase of inflammatory cytokines (IL-8 and MCP-1) release was observed. These findings point out that multiple assays with different in vitro models are able to discriminate the acute inhalation toxicity of CAs from liquids with different flavors, providing the

  5. Integral Reactor Containment Condensation Model and Experimental Validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Qiao; Corradini, Michael

    noncondensable gas mass fraction. (4) The average condensation heat transfer coefficients measured from the water condensation rates through energy balance analysis are appropriate, however, with considerable uncertainties due to the heat loss and temperature distribution on the containment wall. With the consideration of the side wall conduction effects, the results indicate that the measured heat transfer coefficients in the tests is about 20% lower than the prediction of Dehbi’s correlation, mainly due to the side wall conduction effects. The investigation also indicates an increase in the condensation heat transfer coefficient at high containment pressure conditions, but the uncertainties invoked with this method appear to be substantial. (5) Non-condensable gas in the tests has little effects on the condensation heat transfer at high elevation measurement ports. It does affect the bottom measurements near the water level position. The results suggest that the heavier non-condensable gas is accumulated in the lower portion of the containment due to stratification in the narrow containment space. The overall effects of the non-condensable gas on the heat transfer process should thus be negligible for tall containments of narrow condensation spaces in most SMR designs. Therefore, the previous correlations with noncondensable gas effects are not appropriate to those small SMR containments due to the very poor mixing of steam and non-condensable gas. The MELCOR simulation results agree with the experimental data reasonably well. However, it is observed that the MELCOR overpredicts the heat flux for all analyzed tests. The MELCOR predicts that the heat fluxes for CCT’s approximately range from 30 to 45 kW/m2 whereas the experimental data (averaged) ranges from about 25 to 40 kW/m2. This may be due to the limited availability of liquid film models included in MELCOR. Also, it is believed that due to complex test geometry, measured temperature gradients across the heat transfer

  6. A review on wetting and water condensation - Perspectives for CO2 condensation.

    PubMed

    Snustad, Ingrid; Røe, Ingeborg T; Brunsvold, Amy; Ervik, Åsmund; He, Jianying; Zhang, Zhiliang

    2018-06-01

    Liquefaction of vapor is a necessary, but energy intensive step in several important process industries. This review identifies possible materials and surface structures for promoting dropwise condensation, known to increase efficiency of condensation heat transfer. Research on superhydrophobic and superomniphobic surfaces promoting dropwise condensation constitutes the basis of the review. In extension of this, knowledge is extrapolated to condensation of CO 2 . Global emissions of CO 2 need to be minimized in order to reduce global warming, and liquefaction of CO 2 is a necessary step in some carbon capture, transport and storage (CCS) technologies. The review is divided into three main parts: 1) An overview of recent research on superhydrophobicity and promotion of dropwise condensation of water, 2) An overview of recent research on superomniphobicity and dropwise condensation of low surface tension substances, and 3) Suggested materials and surface structures for dropwise CO 2 condensation based on the two first parts. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Detail of Bright Angel stone vault, containing condenser, Hoffman condensation ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of Bright Angel stone vault, containing condenser, Hoffman condensation pump, Jennings vacuum heating pump, and misc. pipes and valves. - Grand Canyon Village Utilities, Grand Canyon National Park, Grand Canyon Village, Coconino County, AZ

  8. 3D Imaging of Water-Drop Condensation on Hydrophobic and Hydrophilic Lubricant-Impregnated Surfaces

    PubMed Central

    Kajiya, Tadashi; Schellenberger, Frank; Papadopoulos, Periklis; Vollmer, Doris; Butt, Hans-Jürgen

    2016-01-01

    Condensation of water from the atmosphere on a solid surface is an ubiquitous phenomenon in nature and has diverse technological applications, e.g. in heat and mass transfer. We investigated the condensation kinetics of water drops on a lubricant-impregnated surface, i.e., a micropillar array impregnated with a non-volatile ionic liquid. Growing and coalescing drops were imaged in 3D using a laser scanning confocal microscope equipped with a temperature and humidity control. Different stages of condensation can be discriminated. On a lubricant-impregnated hydrophobic micropillar array these are: (1) Nucleation on the lubricant surface. (2) Regular alignment of water drops between micropillars and formation of a three-phase contact line on a bottom of the substrate. (3) Deformation and bridging by coalescence which eventually leads to a detachment of the drops from the bottom substrate. The drop-substrate contact does not result in breakdown of the slippery behaviour. Contrary, on a lubricant-impregnated hydrophilic micropillar array, the condensed water drops replace the lubricant. Consequently, the surface loses its slippery property. Our results demonstrate that a Wenzel-like to Cassie transition, required to maintain the facile removal of condensed water drops, can be induced by well-chosen surface hydrophobicity. PMID:27040483

  9. 3D Imaging of Water-Drop Condensation on Hydrophobic and Hydrophilic Lubricant-Impregnated Surfaces

    NASA Astrophysics Data System (ADS)

    Kajiya, Tadashi; Schellenberger, Frank; Papadopoulos, Periklis; Vollmer, Doris; Butt, Hans-Jürgen

    2016-04-01

    Condensation of water from the atmosphere on a solid surface is an ubiquitous phenomenon in nature and has diverse technological applications, e.g. in heat and mass transfer. We investigated the condensation kinetics of water drops on a lubricant-impregnated surface, i.e., a micropillar array impregnated with a non-volatile ionic liquid. Growing and coalescing drops were imaged in 3D using a laser scanning confocal microscope equipped with a temperature and humidity control. Different stages of condensation can be discriminated. On a lubricant-impregnated hydrophobic micropillar array these are: (1) Nucleation on the lubricant surface. (2) Regular alignment of water drops between micropillars and formation of a three-phase contact line on a bottom of the substrate. (3) Deformation and bridging by coalescence which eventually leads to a detachment of the drops from the bottom substrate. The drop-substrate contact does not result in breakdown of the slippery behaviour. Contrary, on a lubricant-impregnated hydrophilic micropillar array, the condensed water drops replace the lubricant. Consequently, the surface loses its slippery property. Our results demonstrate that a Wenzel-like to Cassie transition, required to maintain the facile removal of condensed water drops, can be induced by well-chosen surface hydrophobicity.

  10. 3D Imaging of Water-Drop Condensation on Hydrophobic and Hydrophilic Lubricant-Impregnated Surfaces.

    PubMed

    Kajiya, Tadashi; Schellenberger, Frank; Papadopoulos, Periklis; Vollmer, Doris; Butt, Hans-Jürgen

    2016-04-04

    Condensation of water from the atmosphere on a solid surface is an ubiquitous phenomenon in nature and has diverse technological applications, e.g. in heat and mass transfer. We investigated the condensation kinetics of water drops on a lubricant-impregnated surface, i.e., a micropillar array impregnated with a non-volatile ionic liquid. Growing and coalescing drops were imaged in 3D using a laser scanning confocal microscope equipped with a temperature and humidity control. Different stages of condensation can be discriminated. On a lubricant-impregnated hydrophobic micropillar array these are: (1) Nucleation on the lubricant surface. (2) Regular alignment of water drops between micropillars and formation of a three-phase contact line on a bottom of the substrate. (3) Deformation and bridging by coalescence which eventually leads to a detachment of the drops from the bottom substrate. The drop-substrate contact does not result in breakdown of the slippery behaviour. Contrary, on a lubricant-impregnated hydrophilic micropillar array, the condensed water drops replace the lubricant. Consequently, the surface loses its slippery property. Our results demonstrate that a Wenzel-like to Cassie transition, required to maintain the facile removal of condensed water drops, can be induced by well-chosen surface hydrophobicity.

  11. Condensed-matter research at the Los Alamos pulsed neutron source (WNR)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eckert, J.

    1982-01-01

    The experimental program at the WNR in condensed matter research at present is aimed principally at utilizing the high epithermal neutron flux available at a spallation neutron source. Interesting new results have been obtained in several areas including hydrogen vibrations in metals, chemical vibrational spectroscopy and the structure of liquids. For example, extensive vibrational spectra were obtained of hydrogen in Nb which could be described in terms of a three-dimensional localized anharmonic oscillator, deuterium substitution methods were used to determine the variation with 0-0 distance of the hydrogen bending mode frequency in extremely short intramolecular hydrogen bonds, and model-independent partialmore » structure factors were determined for liquid water.« less

  12. Dropwise Condensation on Soft Hydrophobic Coatings.

    PubMed

    Phadnis, Akshay; Rykaczewski, Konrad

    2017-10-31

    Promoting dropwise condensation (DWC) could improve the efficiency of many industrial systems. Consequently, a lot of effort has been dedicated to finding durable materials that could sustainably promote DWC as well as finding routes to enhance the heat transfer rate during this phase change process. Motivated by previous reports of substrate softening increasing droplet nucleation rate, here we investigated how mechanical properties of a substrate impact relevant droplet-surface interactions and DWC heat transfer rate. Specifically, we experimentally quantified the effect of hydrophobic elastomer's shear modulus on droplet nucleation density and shedding radius. To quantify the impact of substrate softening on heat transfer through individual droplets, we combined analytical solution of elastomer deformation induced by droplets with finite element modeling of the heat transfer process. By substituting these experimentally and theoretically derived values into DWC heat transfer model, we quantified the compounding effect of the substrate's mechanical properties on the overall heat transfer rate. Our results show that softening of the substrates below a shear modulus of 500 kPa results in a significant reduction in the condensation heat transfer rate. This trend is primarily driven by additional thermal resistance of the liquid posed by depression of the soft substrate.

  13. Warm Pressurant Gas Effects on the Liquid Hydrogen Bubble Point

    NASA Technical Reports Server (NTRS)

    Hartwig, Jason W.; McQuillen, John B.; Chato, David J.

    2013-01-01

    This paper presents experimental results for the liquid hydrogen bubble point tests using warm pressurant gases conducted at the Cryogenic Components Cell 7 facility at the NASA Glenn Research Center in Cleveland, Ohio. The purpose of the test series was to determine the effect of elevating the temperature of the pressurant gas on the performance of a liquid acquisition device. Three fine mesh screen samples (325 x 2300, 450 x 2750, 510 x 3600) were tested in liquid hydrogen using cold and warm noncondensible (gaseous helium) and condensable (gaseous hydrogen) pressurization schemes. Gases were conditioned from 0 to 90 K above the liquid temperature. Results clearly indicate a degradation in bubble point pressure using warm gas, with a greater reduction in performance using condensable over noncondensible pressurization. Degradation in the bubble point pressure is inversely proportional to screen porosity, as the coarsest mesh demonstrated the highest degradation. Results here have implication on both pressurization and LAD system design for all future cryogenic propulsion systems. A detailed review of historical heated gas tests is also presented for comparison to current results.

  14. Dropwise condensation

    PubMed Central

    Leach, R. N.; Stevens, F.; Langford, S. C.; Dickinson, J. T.

    2008-01-01

    Dropwise condensation of water vapor from a naturally cooling, hot water reservoir onto a hydrophobic polymer film and a silanized glass slide was studied by direct observation and simulations. The observed drop growth kinetics suggest that smallest drops grow principally by the diffusion of water adsorbed on the substrate to the drop perimeter, while drops larger than 50 μm in diameter grow principally by direct deposition from the vapor onto the drop surface. Drop coalescence plays a critical role in determining the drop size distribution, and stimulates the nucleation of new, small drops on the substrates. Simulations of drop growth incorporating these growth mechanisms provide a good description of the observed drop size distribution. Because of the large role played by coalescence, details of individual drop growth make little difference to the final drop size distribution. The rate of condensation per unit substrate area is especially high for the smallest drops, and may help account for the high heat transfer rates associated with dropwise condensation relative to filmwise condensation in heat exchange applications. PMID:17014129

  15. The Liquid Argon Purity Demonstrator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adamowski, M.; Carls, B.; Dvorak, E.

    2014-07-01

    The Liquid Argon Purity Demonstrator was an R&D test stand designed to determine if electron drift lifetimes adequate for large neutrino detectors could be achieved without first evacuating the cryostat. We describe here the cryogenic system, its operations, and the apparatus used to determine the contaminant levels in the argon and to measure the electron drift lifetime. The liquid purity obtained by this system was facilitated by a gaseous argon purge. Additionally, gaseous impurities from the ullage were prevented from entering the liquid at the gas-liquid interface by condensing the gas and filtering the resulting liquid before returning to themore » cryostat. The measured electron drift lifetime in this test was greater than 6 ms, sustained over several periods of many weeks. Measurements of the temperature profile in the argon, to assess convective flow and boiling, were also made and are compared to simulation.« less

  16. Experimental study on steam condensation with non-condensable gas in horizontal microchannels

    NASA Astrophysics Data System (ADS)

    Ma, Xuehu; Fan, Xiaoguang; Lan, Zhong; Jiang, Rui; Tao, Bai

    2013-07-01

    This paper experimentally studied steam condensation with non-condensable gas in trapezoidal microchannels. The effect of noncondensable gas on condensation two-phase flow patterns and the characteristics of heat transfer and frictional pressure drop were investigated. The visualization study results showed that the special intermittent annular flow was found in the microchannel under the condition of larger mole fraction of noncondensable gas and lower steam mass flux; the apical area of injection was much larger and the neck of injection was longer for mixture gas with lower mole fraction of noncondensable gas in comparison with pure steam condensation; meanwhile, the noncondensable gas resulted in the decrease of flow patterns transitional steam mass flux and quality. The experimental results also indicated that the frictional pressure drop increased with the increasing mole fraction of noncondensable gas when the steam mass flux was fixed. Unlike nature convective condensation heat transfer, the mole fraction of noncondensable gas had little effect on Nusselt number. Based on experimental data, the predictive correlation of Nusselt number for mixture gas condensation in microchannels was established showed good agreement with experimental data.

  17. Geothermal steam condensate reinjection

    NASA Technical Reports Server (NTRS)

    Chasteen, A. J.

    1974-01-01

    Geothermal electric generating plants which use condensing turbines and generate and excess of condensed steam which must be disposed of are discussed. At the Geysers, California, the largest geothermal development in the world, this steam condensate has been reinjected into the steam reservoir since 1968. A total of 3,150,000,000 gallons of steam condensate has been reinjected since that time with no noticeable effect on the adjacent producing wells. Currently, 3,700,000 gallons/day from 412 MW of installed capacity are being injected into 5 wells. Reinjection has also proven to be a satisfactory method of disposing of geothermal condensate a Imperial Valley, California, and at the Valles Caldera, New Mexico.

  18. Physical-mathematical model of condensation process of the sub-micron dust capture in sprayer scrubber

    NASA Astrophysics Data System (ADS)

    Shilyaev, M. I.; Khromova, E. M.; Grigoriev, A. V.; Tumashova, A. V.

    2011-09-01

    A physical-mathematical model of the heat and mass exchange process and condensation capture of sub-micron dust particles on the droplets of dispersed liquid in a sprayer scrubber is proposed and analysed. A satisfactory agreement of computed results and experimental data on soot capturing from the cracking gases is obtained.

  19. Condenser assembly system for an appliance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Litch, Andrew David

    2017-10-17

    An appliance includes a compact condenser assembly formed with at least two separately and independently produced wire on tube condensers. Each of the at least two wire on tube condensers has a condenser inlet and a condenser outlet. The at least two wire on tube condensers are at least substantially locked and positioned in a matingly engaged configuration forming a compact condenser assembly. The at least two wire on tube condensers are configured to be operationally connected in at least one of a parallel configuration, a series configuration, a selectable configuration, and a bypass configuration.

  20. Vapor-liquid equilibrium thermodynamics of N2 + CH4 - Model and Titan applications

    NASA Technical Reports Server (NTRS)

    Thompson, W. R.; Zollweg, John A.; Gabis, David H.

    1992-01-01

    A thermodynamic model is presented for vapor-liquid equilibrium in the N2 + CH4 system, which is implicated in calculations of the Titan tropospheric clouds' vapor-liquid equilibrium thermodynamics. This model imposes constraints on the consistency of experimental equilibrium data, and embodies temperature effects by encompassing enthalpy data; it readily calculates the saturation criteria, condensate composition, and latent heat for a given pressure-temperature profile of the Titan atmosphere. The N2 content of condensate is about half of that computed from Raoult's law, and about 30 percent greater than that computed from Henry's law.

  1. US crude oil, natural gas, and natural gas liquids reserves, 1992 annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-10-18

    This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1992, as well as production volumes for the United States, and selected States and State subdivisions for the year 1992. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), its two major components (nonassociated and associated-dissolved gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, two components of natural gas liquids, lease condensate and natural gas plant liquids, have their reservesmore » and production data presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1992 is provided.« less

  2. Defects and spatiotemporal disorder in a pattern of falling liquid columns

    NASA Astrophysics Data System (ADS)

    Brunet, Philippe; Limat, Laurent

    2004-10-01

    Disordered regimes of a one-dimensional pattern of liquid columns hanging below an overflowing circular dish are investigated experimentally. The interaction of two basic dynamical modes (oscillations and drift) combined with the occurrence of defects (birth of new columns, disappearances by coalescences of two columns) leads to spatiotemporal chaos. When the flow rate is progressively increased, a continuous transition between transient and permanent chaos is pointed into evidence. We introduce the rate of defects as the sole relevant quantity to quantify this “turbulence” without ambiguity. Statistics on both transient and endlessly chaotic regimes enable to define a critical flow rate around which exponents are extracted. Comparisons are drawn with other interfacial pattern-forming systems, where transition towards chaos follows similar steps. Qualitatively, careful examinations of the global dynamics show that the contamination processes are nonlocal and involve the propagation of blocks of elementary laminar states (such as propagative domains or local oscillations), emitted near the defects, which turn out to be essential ingredients of this self-sustained disorder.

  3. Influence of condensing equipment and temperature on exhaled breath condensate pH, total protein and leukotriene concentrations.

    PubMed

    Czebe, Krisztina; Barta, Imre; Antus, Balázs; Valyon, Márta; Horváth, Ildikó; Kullmann, Tamás

    2008-05-01

    Exhaled breath condensate analysis is an attractive but still not fully standardised method for investigating airway pathology. Adherence of biomarkers to various condensing surfaces and changes in condensing temperature has been considered to be responsible for the variability of the results. Our aims were to compare the efficacy of different types of condensers and to test the influence of condensing temperature on condensate composition. Breath condensates from 12 healthy persons were collected in two settings: (1) by using three condensers of different type (EcoScreen, R-Tube, Anacon) and (2) by using R-Tube condenser either cooled to -20 or -70 degrees C. Condensate pH at standardised CO(2) level was determined; protein content was measured by the Bradford method and leukotrienes by EIA. Breath condensates collected using EcoScreen were more alkaline (6.45+/-0.20 vs. 6.19+/-0.23, p<0.05 and 6.10+/-0.26, p<0.001) and contained more protein (3.89+/-2.03 vs. 2.65+/-1.98, n.s. and 1.88+/-1.99 microg/ml, p<0.004) as compared to the other devices. Only parameters obtained with R-Tube and Anacon correlated. Condensing temperature affected condensate pH (5.99+/-0.20 at -20 degrees C and 5.82+/-0.07 at -70 degrees C, p<0.05) but not protein content. Leukotriene B(4) was not found in any sample and cysteinyl-leukotriene was not found in condensates collected with R-Tube or Anacon. Condenser type influences sample pH, total protein content and cysteinyl-leukotriene concentration. Condensing temperature influences condensate pH but not total protein content. These results suggest that adherence of the biomarkers to condenser surface and condensing temperature may play a role but does not fully explain the variability of EBC biomarker levels.

  4. Finite-size effects in Anderson localization of one-dimensional Bose-Einstein condensates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cestari, J. C. C.; Foerster, A.; Gusmao, M. A.

    We investigate the disorder-induced localization transition in Bose-Einstein condensates for the Anderson and Aubry-Andre models in the noninteracting limit using exact diagonalization. We show that, in addition to the standard superfluid fraction, other tools such as the entanglement and fidelity can provide clear signatures of the transition. Interestingly, the fidelity exhibits good sensitivity even for small lattices. Effects of the system size on these quantities are analyzed in detail, including the determination of a finite-size-scaling law for the critical disorder strength in the case of the Anderson model.

  5. Waste Treatment And Immobilization Plant U. S. Department Of Energy Office Of River Protection Submerged Bed Scrubber Condensate Disposition Project - Abstract # 13460

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yanochko, Ronald M; Corcoran, Connie

    The Hanford Waste Treatment and Immobilization Plant (WTP) will generate an off-gas treatment system secondary liquid waste stream [submerged bed scrubber (SBS) condensate], which is currently planned for recycle back to the WTP Low Activity Waste (LAW) melter. This SBS condensate waste stream is high in Tc-99, which is not efficiently captured in the vitrified glass matrix. A pre-conceptual engineering study was prepared in fiscal year 2012 to evaluate alternate flow paths for melter off-gas secondary liquid waste generated by the WTP LAW facility. This study evaluated alternatives for direct off-site disposal of this SBS without pre-treatment, which mitigates potentialmore » issues associated with recycling.« less

  6. A Study of Drop-Microstructured Surface Interactions during Dropwise Condensation with Quartz Crystal Microbalance

    PubMed Central

    Su, Junwei; Charmchi, Majid; Sun, Hongwei

    2016-01-01

    Dropwise condensation (DWC) on hydrophobic surfaces is attracting attention for its great potential in many industrial applications, such as steam power plants, water desalination, and de-icing of aerodynamic surfaces, to list a few. The direct dynamic characterization of liquid/solid interaction can significantly accelerate the progress toward a full understanding of the thermal and mass transport mechanisms during DWC processes. This work reports a novel Quartz Crystal Microbalance (QCM) based method that can quantitatively analyze the interaction between water droplets and micropillar surfaces during different condensation states such as filmwise, Wenzel, and partial Cassie states. A combined nanoimprinting lithography and chemical surface treatment approach was utilized to fabricate the micropillar based superhydrophobic and superhydrophilic surfaces on the QCM substrates. The normalized frequency shift of the QCM device together with the microscopic observation of the corresponding drop motion revealed the droplets growth and their coalescence processes and clearly demonstrated the differences between the three aforementioned condensation states. In addition, the transition between Cassie and Wenzel states was successfully captured by this method. The newly developed QCM system provides a valuable tool for the dynamic characterization of different condensation processes. PMID:27739452

  7. Pressure-Induced Dissolution and Reentrant Formation of Condensed, Liquid-Liquid Phase-Separated Elastomeric α-Elastin.

    PubMed

    Cinar, Hasan; Cinar, Süleyman; Chan, Hue Sun; Winter, Roland

    2018-05-08

    We investigated the combined effects of temperature and pressure on liquid-liquid phase separation (LLPS) phenomena of α-elastin up to the multi-kbar regime. FT-IR spectroscopy, CD, UV/Vis absorption, phase-contrast light and fluorescence microscopy techniques were employed to reveal structural changes and mesoscopic phase states of the system. A novel pressure-induced reentrant LLPS was observed in the intermediate temperature range. A molecular-level picture, in particular on the role of hydrophobic interactions, hydration, and void volume in controlling LLPS phenomena is presented. The potential role of the LLPS phenomena in the development of early cellular compartmentalization is discussed, which might have started in the deep sea, where pressures up to the kbar level are encountered. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Variational Approach in the Theory of Liquid-Crystal State

    NASA Astrophysics Data System (ADS)

    Gevorkyan, E. V.

    2018-03-01

    The variational calculus by Leonhard Euler is the basis for modern mathematics and theoretical physics. The efficiency of variational approach in statistical theory of liquid-crystal state and in general case in condensed state theory is shown. The developed approach in particular allows us to introduce correctly effective pair interactions and optimize the simple models of liquid crystals with help of realistic intermolecular potentials.

  9. Numerical simulation of superheated vapor bubble rising in stagnant liquid

    NASA Astrophysics Data System (ADS)

    Samkhaniani, N.; Ansari, M. R.

    2017-09-01

    In present study, the rising of superheated vapor bubble in saturated liquid is simulated using volume of fluid method in OpenFOAM cfd package. The surface tension between vapor-liquid phases is considered using continuous surface force method. In order to reduce spurious current near interface, Lafaurie smoothing filter is applied to improve curvature calculation. Phase change is considered using Tanasawa mass transfer model. The variation of saturation temperature in vapor bubble with local pressure is considered with simplified Clausius-Clapeyron relation. The couple velocity-pressure equation is solved using PISO algorithm. The numerical model is validated with: (1) isothermal bubble rising and (2) one-dimensional horizontal film condensation. Then, the shape and life time history of single superheated vapor bubble are investigated. The present numerical study shows vapor bubble in saturated liquid undergoes boiling and condensation. It indicates bubble life time is nearly linear proportional with bubble size and superheat temperature.

  10. Revisiting shape selectivity in liquid chromatography for polycyclic aromatic hydrocarbons (PAHs) - six-ring and seven-ring Cata-condensed PAH isomers of molecular mass 328 Da and 378 Da.

    PubMed

    Oña-Ruales, Jorge O; Sander, Lane C; Wilson, Walter B; Wise, Stephen A

    2018-01-01

    The relationship of reversed-phase liquid chromatography (RPLC) retention on a polymeric C 18 stationary phase and the shape of polycyclic aromatic hydrocarbons (PAHs) was investigated for three-ring to seven-ring cata-condensed isomers. We report the first RPLC separation for six-ring and seven-ring cata-condensed PAH isomers. Correlations of LC retention and shape parameters (length-to-breath ratio, L/B and thickness, T) were investigated for 2 three-ring isomers (molecular mass 178 Da), 5 four-ring isomers (molecular mass 228 Da), 11 five-ring isomers (molecular mass 278 Da), 17 six-ring isomers (molecular mass 328 Da), and 20 seven-ring isomers (molecular mass 378 Da). Significant linear correlations were found for all isomer groups (r = 0.71 to 0.94). Nonplanarity of the PAH isomers was found to influence retention (i.e., nonplanar isomers eluting earlier than expected based on L/B) and linear correlations of retention vs. T for isomer groups containing nonplanar isomers were significant (r = 0.71 to 0.86). Graphical abstract.

  11. Theory of Fermi Liquid with Flat Bands

    NASA Astrophysics Data System (ADS)

    Khodel, V. A.

    2018-04-01

    A self-consistent theory of Fermi systems hosting flat bands is developed. Compared with an original model of fermion condensation, its key point consists in proper accounting for mixing between condensate and non-condensate degrees of freedom that leads to formation of a non-BCS gap Υ (p) in the single-particle spectrum. The results obtained explain: (1) the two-gap structure of spectra of single-particle excitations of electron systems of copper oxides, revealed in ARPES studies, (2) the role of violation of the topological stability of the Landau state in the arrangement of the T-x phase diagram of this family of high-T_c superconductors, (3) the topological nature of a metal-insulator transition, discovered in homogeneous two-dimensional low-density electron liquid of MOSFETs more than 20 years ago.

  12. Electrolyte vapor condenser

    DOEpatents

    Sederquist, Richard A.; Szydlowski, Donald F.; Sawyer, Richard D.

    1983-01-01

    A system is disclosed for removing electrolyte from a fuel cell gas stream. The gas stream containing electrolyte vapor is supercooled utilizing conventional heat exchangers and the thus supercooled gas stream is passed over high surface area passive condensers. The condensed electrolyte is then drained from the condenser and the remainder of the gas stream passed on. The system is particularly useful for electrolytes such as phosphoric acid and molten carbonate, but can be used for other electrolyte cells and simple vapor separation as well.

  13. Electrolyte vapor condenser

    DOEpatents

    Sederquist, R.A.; Szydlowski, D.F.; Sawyer, R.D.

    1983-02-08

    A system is disclosed for removing electrolyte from a fuel cell gas stream. The gas stream containing electrolyte vapor is supercooled utilizing conventional heat exchangers and the thus supercooled gas stream is passed over high surface area passive condensers. The condensed electrolyte is then drained from the condenser and the remainder of the gas stream passed on. The system is particularly useful for electrolytes such as phosphoric acid and molten carbonate, but can be used for other electrolyte cells and simple vapor separation as well. 3 figs.

  14. Sedimentary condensation and authigenesis

    NASA Astrophysics Data System (ADS)

    Föllmi, Karl

    2016-04-01

    Most marine authigenic minerals form in sediments, which are subjected to condensation. Condensation processes lead to the formation of well individualized, extremely thin (< 1m) beds, which were accumulated during extremely long time periods (> 100ky), and which experienced authigenesis and the precipitation of glaucony, verdine, phosphate, iron and manganese oxyhydroxides, iron sulfide, carbonate and/or silica. They usually show complex internal stratigraphies, which result from an interplay of sediment accumulation, halts in sedimentation, sediment winnowing, erosion, reworking and bypass. They may include amalgamated faunas of different origin and age. Hardgrounds may be part of condensed beds and may embody strongly condensed beds by themselves. Sedimentary condensation is the result of a hydrodynamically active depositional regime, in which sediment accumulation, winnowing, erosion, reworking and bypass are processes, which alternate as a function of changes in the location and intensity of currents, and/or as the result of episodic high-energy events engendered by storms and gravity flow. Sedimentary condensation has been and still is a widespread phenomenon in past and present-day oceans. The present-day distribution of glaucony and verdine-rich sediments on shelves and upper slopes, phosphate-rich sediments and phosphorite on outer shelves and upper slopes, ferromanganese crusts on slopes, seamounts and submarine plateaus, and ferromanganese nodules on abyssal seafloors is a good indication of the importance of condensation processes today. In the past, we may add the occurrence of oolitic ironstone, carbonate hardgrounds, and eventually also silica layers in banded iron formations as indicators of the importance of condensation processes. Besides their economic value, condensed sediments are useful both as a carrier of geochemical proxies of paleoceanographic and paleoenvironmental change, as well as the product of episodes of paleoceanographic and

  15. On Localized Vapor Pressure Gradients Governing Condensation and Frost Phenomena.

    PubMed

    Nath, Saurabh; Boreyko, Jonathan B

    2016-08-23

    Interdroplet vapor pressure gradients are the driving mechanism for several phase-change phenomena such as condensation dry zones, interdroplet ice bridging, dry zones around ice, and frost halos. Despite the fundamental nature of the underlying pressure gradients, the majority of studies on these emerging phenomena have been primarily empirical. Using classical nucleation theory and Becker-Döring embryo formation kinetics, here we calculate the pressure field for all possible modes of condensation and desublimation in order to gain fundamental insight into how pressure gradients govern the behavior of dry zones, condensation frosting, and frost halos. Our findings reveal that in a variety of phase-change systems the thermodynamically favorable mode of nucleation can switch between condensation and desublimation depending upon the temperature and wettability of the surface. The calculated pressure field is used to model the length of a dry zone around liquid or ice droplets over a broad parameter space. The long-standing question of whether the vapor pressure at the interface of growing frost is saturated or supersaturated is resolved by considering the kinetics of interdroplet ice bridging. Finally, on the basis of theoretical calculations, we propose that there exists a new mode of frost halo that is yet to be experimentally observed; a bimodal phase map is developed, demonstrating its dependence on the temperature and wettability of the underlying substrate. We hope that the model and predictions contained herein will assist future efforts to exploit localized vapor pressure gradients for the design of spatially controlled or antifrosting phase-change systems.

  16. Vapor deposition and condensate flow on combustion turbine blades - Theoretical model to predict/understand some corrosion rate consequences of molten alkali sulfate deposition in the field or laboratory

    NASA Technical Reports Server (NTRS)

    Rosner, Daniel E.; Nagarajan, R.

    1987-01-01

    An analysis is undertaken of aerodynamically- and centrifugally-driven liquid condensate layers on nonisothermal combustion turbines' stator vanes and rotor blades. Attention is given to the quantitative consequences of one possible mechanism for the initiation of 'hot corrosion' in the underlying blade material through a 'fluxing' of the protective oxide coating by the molten salt of the Newtonian condensate film. Illustrative calculations are presented for the condensate streamline pattern and the distributions of the steady-state condensate layer thickness, together with the corresponding oxide dissolution rate, for a test turbine blade.

  17. Indoor air condensate as a novel matrix for monitoring inhalable organic contaminants.

    PubMed

    Roll, Isaac B; Halden, Rolf U; Pycke, Benny F G

    2015-05-15

    With the population of developed nations spending nearly 90% of their time indoors, indoor air quality (IAQ) is a critical indicator of human health risks from inhalation of airborne contaminants. We present a novel approach for qualitative monitoring of IAQ through the collection and analysis of indoor air condensate discharged from heat exchangers of heating, ventilation, and air conditioning (HVAC) systems. Condensate samples were collected from six suburban homes and one business in Maricopa County, Arizona, concentrated via solid-phase extraction, analyzed for 10 endocrine disrupting chemicals (EDCs) by liquid chromatography-tandem mass spectrometry (LC-MS/MS), and screened for additional organic compounds by gas chromatography-mass spectrometry (GC-MS). All 10 EDCs were detected in at least one of the sampled buildings. More than 100 additional compounds were detected by GC-MS, of which 40 were tentatively identified using spectral database searches. Twelve compounds listed as designated chemicals for biomonitoring by the California Environmental Contaminant Biomonitoring Program were detected. Microfiltration of condensate samples prior to extraction had no discernable effect on contaminant concentration, suggesting that contaminants were freely dissolved or associated with inhalable, submicron particles. This study is the first to document the utility of HVAC condensate for the qualitative assessment of indoor air for pollutants. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Thermal Decomposition Mechanisms of Alkylimidazolium Ionic Liquids with CN-containing Anions

    DTIC Science & Technology

    2014-11-01

    anion calculated at the M06/6-31+G(d,p) level of theory and using the generic ionic liquid (GIL) model to simulate the condensed phase methyl...decomposition mechanisms of alkylimidazolium ionic liquids with CN-containing anions 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d...perform, display, or disclose the work. 14. ABSTRACT Due to the unusually high heats of vaporization of room-temperature ionic liquids (RTILs

  19. Condensation and Evaporation of Solar System Materials

    NASA Astrophysics Data System (ADS)

    Davis, A. M.; Richter, F. M.

    2003-12-01

    It is widely believed that the materials making up the solar system were derived from a nebular gas and dust cloud that went through an early high-temperature stage during which virtually all of the material was in the gas phase. At one time, it was thought that the entire inner solar nebula was hot, but it is now believed that most material was processed through regions where high temperatures were achieved. Certainly some material, such as presolar grains (cf., Mendybaev et al., 2002a), has never been exposed to high temperatures. As the system cooled, solids and perhaps liquids began to condense, but at some point the partially condensed materials became isolated from the remaining gas. Various lines of evidence support this view. At the largest scale, there is the observation that the Earth, Moon, Mars, and all chondritic meteorites except for the CI chondrites are depleted to varying degrees in the abundances of moderately volatile elements relative to bulk solar system composition. The CI chondrites reflect the bulk composition of the solar system for all but hydrogen, carbon, nitrogen, oxygen, and the rare gases, the most volatile elements (see Chapter 1.03; Palme et al., 1988; McDonough and Sun, 1995; Humayun and Cassen, 2000). The depletions in moderately volatile elements are, to a significant degree, correlated with condensation temperature, suggesting progressive removal of gas as condensation proceeded ( Cassen, 1996). Additional observations that can be explained by partial condensation are that various particularly primitive components of meteorites (e.g., calcium-, aluminum-rich refractory inclusions, and certain metal grains) have mineralogy and/or details of their chemical composition that are remarkably similar to what is calculated for equilibrium condensates from a solar composition gas. For example, the calcium-, aluminum-rich inclusions (CAIs) in chondritic meteorites have compositions very similar to that calculated for the first 5% of total

  20. Effect of flow velocity on the process of air-steam condensation in a vertical tube condenser

    NASA Astrophysics Data System (ADS)

    Havlík, Jan; Dlouhý, Tomáš

    2018-06-01

    This article describes the influence of flow velocity on the condensation process in a vertical tube. For the case of condensation in a vertical tube condenser, both the pure steam condensation process and the air-steam mixture condensation process were theoretically and experimentally analyzed. The influence of steam flow velocity on the value of the heat transfer coefficient during the condensation process was evaluated. For the condensation of pure steam, the influence of flow velocity on the value of the heat transfer coefficient begins to be seen at higher speeds, conversely, this effect is negligible at low values of steam velocity. On the other hand, for the air-steam mixture condensation, the influence of flow velocity must always be taken into account. The flow velocity affects the water vapor diffusion process through non-condensing air. The presence of air significantly reduces the value of the heat transfer coefficient. This drop in the heat transfer coefficient is significant at low velocities; on the contrary, the decrease is relatively small at high values of the velocity.

  1. The Effect of Condensate Inundation on Steam Condensation Heat Transfer in a Tube Bundle.

    DTIC Science & Technology

    1985-06-01

    predicted by Nusselt [Ref. 10] were measured. This increase was attributed to the effect of surface tension drawing the condensate to the wire and acting...analysis of film condensation on a horizontal tube was set forth by Nusselt in 1916. His analy- sis was, however, for laminar film condensation on a single...temperature. Jakob [Ref. 17] extended the Nusselt analysis to film condensation on a vertical in-line column of horizontal tubes by assuming that all

  2. Modified Kelvin Equations for Capillary Condensation in Narrow and Wide Grooves

    NASA Astrophysics Data System (ADS)

    Malijevský, Alexandr; Parry, Andrew O.

    2018-03-01

    We consider the location and order of capillary condensation transitions occurring in deep grooves of width L and depth D . For walls that are completely wet by liquid (contact angle θ =0 ) the transition is continuous and its location is not sensitive to the depth of the groove. However, for walls that are partially wet by liquid, where the transition is first order, we show that the pressure at which it occurs is determined by a modified Kelvin equation characterized by an edge contact angle θE describing the shape of the meniscus formed at the top of the groove. The dependence of θE on the groove depth D relies, in turn, on whether corner menisci are formed at the bottom of the groove in the low density gaslike phase. While for macroscopically wide grooves these are always present when θ <45 ° we argue that their formation is inhibited in narrow grooves. This has a number of implications including that the local pinning of the meniscus and location of the condensation transition is different depending on whether the contact angle is greater or less than a universal value θ*≈31 °. Our arguments are supported by detailed microscopic density functional theory calculations that show that the modified Kelvin equation remains highly accurate even when L and D are of the order of tens of molecular diameters.

  3. Droplets As Liquid Robots.

    PubMed

    Čejková, Jitka; Banno, Taisuke; Hanczyc, Martin M; Štěpánek, František

    2017-01-01

    Liquid droplets are very simple objects present in our everyday life. They are extremely important for many natural phenomena as well as for a broad variety of industrial processes. The conventional research areas in which the droplets are studied include physical chemistry, fluid mechanics, chemical engineering, materials science, and micro- and nanotechnology. Typical studies include phenomena such as condensation and droplet formation, evaporation of droplets, or wetting of surfaces. The present article reviews the recent literature that employs droplets as animated soft matter. It is argued that droplets can be considered as liquid robots possessing some characteristics of living systems, and such properties can be applied to unconventional computing through maze solving or operation in logic gates. In particular, the lifelike properties and behavior of liquid robots, namely (i) movement, (ii) self-division, and (iii) group dynamics, will be discussed.

  4. DNA condensation and size effects of DNA condensation agent

    NASA Astrophysics Data System (ADS)

    Liu, Yan-Hui; Jiang, Chong-Ming; Guo, Xin-Miao; Tang, Yan-Lin; Hu, Lin

    2013-08-01

    Based on the model of the strong correlation of counterions condensed on DNA molecule, by tailoring interaction potential, interduplex spacing and correlation spacing between condensed counterions on DNA molecule and interduplex spacing fluctuation strength, toroidal configuration, rod-like configuration and two-hole configurations are possible. The size effects of counterion structure on the toroidal structure can be detected by this model. The autocorrelation function of the tangent vectors is found as an effective way to detect the structure of toroidal conformations and the generic pathway of the process of DNA condensation. The generic pathway of all of the configurations involves an initial nucleation loop, and the next part of the DNA chain is folded on the top of the initial nucleation loop with different manners, in agreement with the recent experimental results.

  5. Shock Interaction of Metal Particles in Condensed Explosive Detonation

    NASA Astrophysics Data System (ADS)

    Ripley, Robert; Zhang, Fan; Lien, Fue-Sang

    2005-07-01

    For detonation propagation in a condensed explosive with metal particles, a macro-scale physical model describing the momentum transfer between the explosive and particles has yet to be completely established. Previous 1D and 2D meso-scale modeling studies indicated that significant momentum transfer from the explosive to the particles occurs as the leading shock front crosses the particles, thus influencing the initiation and detonation structure. In this work, 3D meso-scale modeling is conducted to further study the two-phase momentum transfer during the shock diffraction and subsequent detonation in liquid nitromethane containing packed metal particles. Detonation of the condensed explosive is computed using an Arrhenius reaction model and a hybrid EOS model that combines the Mie-Gruneisen equation for reactants and the JWL equation for products. The compressible particles are modeled using the Tait EOS, where the material strength is negligible. The effect of particle packing configuration and inter-particle spacing is shown by parametric studies. Finally, a physical description of the momentum transfer is discussed.

  6. Implementation of non-condensable gases condensation suppression model into the WCOBRA/TRAC-TF2 LOCA safety evaluation code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao, J.; Cao, L.; Ohkawa, K.

    2012-07-01

    The non-condensable gases condensation suppression model is important for a realistic LOCA safety analysis code. A condensation suppression model for direct contact condensation was previously developed by Westinghouse using first principles. The model is believed to be an accurate description of the direct contact condensation process in the presence of non-condensable gases. The Westinghouse condensation suppression model is further revised by applying a more physical model. The revised condensation suppression model is thus implemented into the WCOBRA/TRAC-TF2 LOCA safety evaluation code for both 3-D module (COBRA-TF) and 1-D module (TRAC-PF1). Parametric study using the revised Westinghouse condensation suppression model ismore » conducted. Additionally, the performance of non-condensable gases condensation suppression model is examined in the ACHILLES (ISP-25) separate effects test and LOFT L2-5 (ISP-13) integral effects test. (authors)« less

  7. Method and apparatus for destroying organic contaminants in aqueous liquids

    DOEpatents

    Donaldson, T.L.; Wilson, J.H.

    1993-09-21

    A method and apparatus for destroying organic contaminants, such as trichloroethylene, in aqueous liquids, such as groundwater, utilizing steam stripping integrated with biodegradation. The contaminated aqueous liquid is fed into a steam stripper causing the volatilization of essentially all of the organic contaminants and a portion of the aqueous liquid. The majority of the aqueous liquid is discharged from the steam stripper. The volatilized vapors are then condensed to the liquid phase and introduced into a bioreactor. The bioreactor contains methanotrophic microorganisms which convert the organic contaminants into mainly carbon dioxide. The effluent from the bioreactor is then recycled back to the steam stripper for further processing. 2 figures.

  8. Method and apparatus for destroying organic contaminants in aqueous liquids

    DOEpatents

    Donaldson, Terrence L.; Wilson, James H.

    1993-01-01

    A method and apparatus for destroying organic contaminants, such as trichloroethylene, in aqueous liquids, such as groundwater, utilizing steam stripping integrated with biodegradation. The contaminated aqueous liquid is fed into a steam stripper causing the volatilization of essentially all of the organic contaminants and a portion of the aqueous liquid. The majority of the aqueous liquid is discharged from the steam stripper. The volatilized vapors are then condensed to the liquid phase and introduced into a bioreactor. The bioreactor contains methanotrophic microorganisms which convert the organic contaminants into mainly carbon dioxide. The effluent from the bioreactor is then recycled back to the steam stripper for further processing.

  9. Heat Transfer through a Condensate Droplet on Hydrophobic and Nanostructured Superhydrophobic Surfaces.

    PubMed

    Chavan, Shreyas; Cha, Hyeongyun; Orejon, Daniel; Nawaz, Kashif; Singla, Nitish; Yeung, Yip Fun; Park, Deokgeun; Kang, Dong Hoon; Chang, Yujin; Takata, Yasuyuki; Miljkovic, Nenad

    2016-08-09

    Understanding the fundamental mechanisms governing vapor condensation on nonwetting surfaces is crucial to a wide range of energy and water applications. In this paper, we reconcile classical droplet growth modeling barriers by utilizing two-dimensional axisymmetric numerical simulations to study individual droplet heat transfer on nonwetting surfaces (90° < θa < 170°). Incorporation of an appropriate convective boundary condition at the liquid-vapor interface reveals that the majority of heat transfer occurs at the three phase contact line, where the local heat flux can be up to 4 orders of magnitude higher than at the droplet top. Droplet distribution theory is incorporated to show that previous modeling approaches underpredict the overall heat transfer by as much as 300% for dropwise and jumping-droplet condensation. To verify our simulation results, we study condensed water droplet growth using optical and environmental scanning electron microscopy on biphilic samples consisting of hydrophobic and nanostructured superhydrophobic regions, showing excellent agreement with the simulations for both constant base area and constant contact angle growth regimes. Our results demonstrate the importance of resolving local heat transfer effects for the fundamental understanding and high fidelity modeling of phase change heat transfer on nonwetting surfaces.

  10. Water condensation: a multiscale phenomenon.

    PubMed

    Jensen, Kasper Risgaard; Fojan, Peter; Jensen, Rasmus Lund; Gurevich, Leonid

    2014-02-01

    The condensation of water is a phenomenon occurring in multiple situations in everyday life, e.g., when fog is formed or when dew forms on the grass or on windows. This means that this phenomenon plays an important role within the different fields of science including meteorology, building physics, and chemistry. In this review we address condensation models and simulations with the main focus on heterogeneous condensation of water. The condensation process is, at first, described from a thermodynamic viewpoint where the nucleation step is described by the classical nucleation theory. Further, we address the shortcomings of the thermodynamic theory in describing the nucleation and emphasize the importance of nanoscale effects. This leads to the description of condensation from a molecular viewpoint. Also presented is how the nucleation can be simulated by use of molecular models, and how the condensation process is simulated on the macroscale using computational fluid dynamics. Finally, examples of hybrid models combining molecular and macroscale models for the simulation of condensation on a surface are presented.

  11. Gravity Effects in Condensing and Evaporating Films

    NASA Technical Reports Server (NTRS)

    Hermanson, J. C.; Som, S. M.; Allen, J. S.; Pedersen, P. C.

    2004-01-01

    A general overview of gravity effects in condensing and evaporating films is presented. The topics include: 1) Research Overview; 2) NASA Recognizes Critical Need for Condensation & Evaporation Research to Enable Human Exploration of Space; 3) Condensation and Evaporation Research in Reduced Gravity is Enabling for AHST Technology Needs; 4) Differing Role of Surface Tension on Condensing/Evaporating Film Stability; 5) Fluid Mechanisms in Condensing and Evaporating Films in Reduced Gravity; 6) Research Plan; 7) Experimental Configurations for Condensing Films; 8) Laboratory Condensation Test Cell; 9) Aircraft Experiment; 10) Condensation Study Current Test Conditions; 11) Diagnostics; 12) Shadowgraph Images of Condensing n- pentane Film in Unstable (-1g) Configuration; 13) Condensing n-Pentane Film in Normal Gravity (-1g) at Constant Pressure; 14) Condensing n-Pentane Film in Normal Gravity (-1g) with Cyclic Pressure; 15) Non-condensing Pumped Film in Normal Gravity (-1g); 16) Heat Transfer Coefficient in Developing, Unstable Condensing Film in Normal Gravity; 17) Heat Transfer for Unsteady Condensing Film (-1g); 18) Ultrasound Measurement of Film Thickness N-pentane Film, Stable (+1g) Configuration; and 19) Ultrasound Measurement of Film Thickness N-pentane Film, Unstable (-1g) Configuration.

  12. U.S. crude oil, natural gas, and natural gas liquids reserves 1997 annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, John H.; Grape, Steven G.; Green, Rhonda S.

    1998-12-01

    This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1997, as well as production volumes for the US and selected States and State subdivisions for the year 1997. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, leasemore » condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1997 is provided. 21 figs., 16 tabs.« less

  13. Differential solvation of intrinsically disordered linkers drives the formation of spatially organized droplets in ternary systems of linear multivalent proteins

    NASA Astrophysics Data System (ADS)

    Harmon, Tyler S.; Holehouse, Alex S.; Pappu, Rohit V.

    2018-04-01

    Intracellular biomolecular condensates are membraneless organelles that encompass large numbers of multivalent protein and nucleic acid molecules. The bodies assemble via a combination of liquid–liquid phase separation and gelation. A majority of condensates included multiple components and show multilayered organization as opposed to being well-mixed unitary liquids. Here, we put forward a simple thermodynamic framework to describe the emergence of spatially organized droplets in multicomponent systems comprising of linear multivalent polymers also known as associative polymers. These polymers, which mimic proteins and/or RNA have the architecture of domains or motifs known as stickers that are interspersed by flexible spacers known as linkers. Using a minimalist numerical model for a four-component system, we have identified features of linear multivalent molecules that are necessary and sufficient for generating spatially organized droplets. We show that differences in sequence-specific effective solvation volumes of disordered linkers between interaction domains enable the formation of spatially organized droplets. Molecules with linkers that are preferentially solvated are driven to the interface with the bulk solvent, whereas molecules that have linkers with negligible effective solvation volumes form cores in the core–shell architectures that emerge in the minimalist four-component systems. Our modeling has relevance for understanding the physical determinants of spatially organized membraneless organelles.

  14. Endurance and Heat-Transfer Performance of Polymer Coatings for the Promotion of Dropwise Condensation of Steam.

    DTIC Science & Technology

    1984-12-01

    34Relation of Egailibrium Contact Angle to Liquid and Solid Constitution," Advances in Chemislrj Series, v.43, 1964. 10. Hannemann R.J._, and Mikic B.B... Hannemann , R.J. "Condensing Surface Thickness Effects in Dropwise Conhensation" I . eat Mass Transfer, v.21, 1o.1, January, 1976. 15. Naas P. Straub

  15. Mixed Convective Condensation in Enclosures with Noncondensable Gases

    NASA Astrophysics Data System (ADS)

    Fox, Richard John

    1994-01-01

    A transient, two-dimensional, numerical model was developed in order to study the laminar flow, heat, and mass transfer in a vertical reflux condenser loaded with vapor and noncondensable gas. The simplified model treats the two-component (gas/vapor), two-phase (vapor/liquid) mixture as a continuum by making use of conservation equations for mass continuity, momentum, species, and energy. The liquid mist phase is formed in such a way as to obey one of three conditions: thermodynamic equilibrium, complete nonequilibrium (no mist formation), or partial equilibrium (partial supersaturation). In developing the model, special attention was paid to the formulation of the boundary conditions, global continuity, and numerical efficiency. Two different mixture combinations were used in order to create stable and unstable systems. Steam-helium mixtures (Mv, = 18, Mg = 4) were found to exhibit stable flows with the lighter helium trapped in the upper portion of the condenser, shutting off condensation in that region. Steam-air mixtures (M_ {v}, = 18, Mg = 28) were found to exhibit varying degrees of instability, depending on the noncondensable gas and heat load, owing to the accumulation of the heavy gas near the condensing surface. Under low gas loading cases (Pg = 0.031 kg/m^3) the natural convective fluctuations were found to be weak and the flow was more easily dominated by the forced convective inlet flow and wall suction. At such low gas loadings, stable, asymmetric flow patterns persisted up to high powers. Large gas loadings (Pg = 0.196 kg/m^3) showed much stronger natural convective effects. Regions of counterflowing vapor and gas were found to promote stronger mixing as the power was increased. Regions of noncondensing gas were found to blanket the condenser walls as the suction velocity increased, resulting in a strong resistance to heat and mass transfer and consequent increase in system pressure. Moderate gas loadings (Pg = 0.065 kg/m ^3) were found to exhibit

  16. Topologically Diverse Human Membrane Proteins Partition to Liquid-Disordered Domains in Phase-Separated Lipid Vesicles.

    PubMed

    Schlebach, Jonathan P; Barrett, Paul J; Day, Charles A; Kim, Ji Hun; Kenworthy, Anne K; Sanders, Charles R

    2016-02-23

    The integration of membrane proteins into "lipid raft" membrane domains influences many biochemical processes. The intrinsic structural properties of membrane proteins are thought to mediate their partitioning between membrane domains. However, whether membrane topology influences the targeting of proteins to rafts remains unclear. To address this question, we examined the domain preference of three putative raft-associated membrane proteins with widely different topologies: human caveolin-3, C99 (the 99 residue C-terminal domain of the amyloid precursor protein), and peripheral myelin protein 22. We find that each of these proteins are excluded from the ordered domains of giant unilamellar vesicles containing coexisting liquid-ordered and liquid-disordered phases. Thus, the intrinsic structural properties of these three topologically distinct disease-linked proteins are insufficient to confer affinity for synthetic raft-like domains.

  17. Mechanical Stability Criterion, Triple-Phase Condition, and Pressure Differences of Matter Condensed in a Porous Matrix.

    PubMed

    Setzer, Max J.

    2001-03-01

    In contrast to the triple-point condition of bulk material, condensed matter in porous media can coexist stably as liquid, solid, and vapor over a wide temperature range. The necessary conditions are found by a thermodynamic approach starting with the potential which reflects the grand canonical distribution and is characterized by heat and matter exchange. The other parameters are volume and surface. Therefore, it is designated the free mechanical potential. General expressions for mechanical stability are given. On condensation and melting the nonwetting phases vanish. These are thermodynamically stable phase transitions. For the opposing effects evaporation and fusion, an energy barrier must be transgressed either by nucleation or by intrusion as discussed here. These are metastable states. Phase transitions are the conditions which limit the triple-phase region. Within this region high negative pressures are generated in the unfrozen liquid independent of the pore size where it exists. The findings are applied to water in the disperse matrix of hardened cement paste. They are the basis for "micro ice lens pumping". Copyright 2001 Academic Press.

  18. Two-phase flow pressure drop and heat transfer during condensation in microchannels with uniform and converging cross-sections

    NASA Astrophysics Data System (ADS)

    Kuo, Ching Yi; Pan, Chin

    2010-09-01

    This study experimentally investigates steam condensation in rectangular microchannels with uniform and converging cross-sections and a mean hydraulic diameter of 135 µm. The steam flow in the microchannels was cooled by water cross-flowing along its bottom surface, which is different from other methods reported in the literature. The flow patterns, two-phase flow pressure drop and condensation heat transfer coefficient are determined. The microchannels with the uniform cross-section design have a higher heat transfer coefficient than those with the converging cross-section under condensation in the mist/annular flow regimes, although the latter work best for draining two-phase fluids composed of uncondensed steam and liquid water, which is consistent with the result of our previous study. From the experimental results, dimensionless correlations of condensation heat transfer for the mist and annular flow regions and a two-phase frictional multiplier are developed for the microchannels with both types of cross-section designs. The experimental data agree well with the obtained correlations, with the maximum mean absolute errors of 6.4% for the two-phase frictional multiplier and 6.0% for the condensation heat transfer.

  19. Liquid over-feeding refrigeration system and method with integrated accumulator-expander-heat exchanger

    DOEpatents

    Mei, Viung C.; Chen, Fang C.

    1997-01-01

    A refrigeration system having a vapor compression cycle utilizing a liquid over-feeding operation with an integrated accumulator-expander-heat exchanger. Hot, high-pressure liquid refrigerant from the condenser passes through one or more lengths of capillary tubing substantially immersed in a pool liquid refrigerant in the accumulator-expander-heat exchanger for simultaneously sub-cooling and expanding the liquid refrigerant while vaporizing liquid refrigerant from the pool for the return thereof to the compressor as saturated vapor. The sub-cooling of the expanded liquid provides for the flow of liquid refrigerant into the evaporator for liquid over-feeding the evaporator and thereby increasing the efficiency of the evaporation cycle.

  20. Similar local order in disordered fluorite and aperiodic pyrochlore structures

    DOE PAGES

    Shamblin, Jacob; Tracy, Cameron; Palomares, Raul; ...

    2017-10-01

    A major challenge to understanding the response of materials to extreme environments (e.g., nuclear fuels/waste forms and fusion materials) is to unravel the processes by which a material can incorporate atomic-scale disorder, and at the same time, remain crystalline. While it has long been known that all condensed matter, even liquids and glasses, possess short-range order, the relation between fully-ordered, disordered, and aperiodic structures over multiple length scales is not well understood. For example, when defects are introduced (via pressure or irradiation) into materials adopting the pyrochlore structure, these complex oxides either disorder over specific crystallographic sites, remaining crystalline, ormore » become aperiodic. Here we present neutron total scattering results characterizing the irradiation response of two pyrochlores, one that is known to disorder (Er2Sn2O7) and the other to amorphize (Dy2Sn2O7) under ion irradiation. The results demonstrate that in both cases, the local pyrochlore structure is transformed into similar short range configurations that are best fit by the orthorhombic weberite structure, even though the two compositions have distinctly different structures, aperiodic vs. disordered-crystalline, at longer length scales. Thus, a material's resistance to amorphization may not depend primarily on local defect formation energies, but rather on the structure's compatibility with meso-scale modulations of the local order in a way that maintains long-range periodicity.« less

  1. Thermocapillary flow with evaporation and condensation at low gravity. Part 2: Deformable surface

    NASA Technical Reports Server (NTRS)

    Schmidt, G. R.; Chung, T. J.; Nadarajah, A.

    1995-01-01

    The free surface behavior of a volatile wetting liquid at low gravity is studied using scaling and numerical techniques. An open cavity model, which was applied in part 1 to investigate fluid flow and heat transfer in non-deforming pores, is used to evaluate the influence of convection on surface morphology with length scales and subcooling/superheating limits of 1 less than or equal to D less than or equal to 10(exp 2) microns and approximately 1 K, respectively. Results show that the menisci shapes of highly wetting fluids are sensitive to thermocapillary flow and to a lesser extent the recoil force associated with evaporation and condensation. With subcooling, thermocapillarity produces a suction about the pore centerline that promotes loss of mechanical equilibrium, while condensation exerts an opposing force that under some conditions offsets this destabilizing influence. With superheating, thermocapillarity and evaporation act in the same direction and mutually foster surface stability. All of these trends are magnified by high capillary and Biot numbers, and the stronger circulation intensities associated with small contact angles. These phenomena strongly depend on the thermal and interfacial equilibrium between the liquid and vapor, and have important ramifications for systems designed to maintain a pressure differential across a porous surface.

  2. Peroxyoxalate chemiluminescence detection of condensates of malondialdehyde with thiobarbituric acids using a flow system.

    PubMed

    Nakashima, K; Nagata, M; Takahashi, M; Akiyama, S

    1992-01-01

    The peroxyoxalate chemiluminescence(CL) detection method for the evaluation of the CL intensity of malondialdehyde(MDA) condensates with seven 2-thiobarbituric acid derivatives is described. The method consists of a flow injection technique together with a CL detection system using bis(2,4,6-trichlorophenyl) oxalate(TCPO) and hydrogen peroxide as chemiluminogenic reagents. Linear correlations between CL intensity and concentration are obtained for pmol levels of condensates. Among the condensates, 1,3-diethyl-2-thiobarbituric acid(DETBA)-MDA shows the largest CL intensity. High performance liquid chromatography (HPLC)/CL detection of DETBA-MDA and 1,3-diphenyl-2-thiobarbituric acid(DPTBA)-MDA using a mixture of TCPO and hydrogen peroxide in acetonitrile as a postcolumn reagent solution is also described. The detection limits for DETBA-MDA and DPTBA-MDA are 20 and 200 fmol, respectively, per 20 microL injection at a signal-to-noise ratio of 2. This HPLC/CL detection system was applied to the determination of MDA in rat brains by using DETBA as a fluorescent derivatizing reagent.

  3. Vapor-liquid coexistence of the Stockmayer fluid in nonuniform external fields.

    PubMed

    Samin, Sela; Tsori, Yoav; Holm, Christian

    2013-05-01

    We investigate the structure and phase behavior of the Stockmayer fluid in the presence of nonuniform electric fields using molecular simulation. We find that an initially homogeneous vapor phase undergoes a local phase separation in a nonuniform field due to the combined effect of the field gradient and the fluid vapor-liquid equilibrium. This results in a high-density fluid condensing in the strong field region. The system polarization exhibits a strong field dependence due to the fluid condensation.

  4. Liquid behavior of cross-linked actin bundles.

    PubMed

    Weirich, Kimberly L; Banerjee, Shiladitya; Dasbiswas, Kinjal; Witten, Thomas A; Vaikuntanathan, Suriyanarayanan; Gardel, Margaret L

    2017-02-28

    The actin cytoskeleton is a critical regulator of cytoplasmic architecture and mechanics, essential in a myriad of physiological processes. Here we demonstrate a liquid phase of actin filaments in the presence of the physiological cross-linker, filamin. Filamin condenses short actin filaments into spindle-shaped droplets, or tactoids, with shape dynamics consistent with a continuum model of anisotropic liquids. We find that cross-linker density controls the droplet shape and deformation timescales, consistent with a variable interfacial tension and viscosity. Near the liquid-solid transition, cross-linked actin bundles show behaviors reminiscent of fluid threads, including capillary instabilities and contraction. These data reveal a liquid droplet phase of actin, demixed from the surrounding solution and dominated by interfacial tension. These results suggest a mechanism to control organization, morphology, and dynamics of the actin cytoskeleton.

  5. Quantum simulation of strongly correlated condensed matter systems

    NASA Astrophysics Data System (ADS)

    Hofstetter, W.; Qin, T.

    2018-04-01

    We review recent experimental and theoretical progress in realizing and simulating many-body phases of ultracold atoms in optical lattices, which gives access to analog quantum simulations of fundamental model Hamiltonians for strongly correlated condensed matter systems, such as the Hubbard model. After a general introduction to quantum gases in optical lattices, their preparation and cooling, and measurement techniques for relevant observables, we focus on several examples, where quantum simulations of this type have been performed successfully during the past years: Mott-insulator states, itinerant quantum magnetism, disorder-induced localization and its interplay with interactions, and topological quantum states in synthetic gauge fields.

  6. Expressions for the Evaporation and Condensation Coefficients in the Hertz-Knudsen Relation.

    PubMed

    Persad, Aaron H; Ward, Charles A

    2016-07-27

    Although the Hertz-Knudsen (HK) relation is often used to correlate evaporation data, the relation contains two empirical parameters (the evaporation and condensation coefficients) that have inexplicably been found to span 3 orders of magnitude. Explicit expressions for these coefficients have yet to be determined. This review will examine sources of error in the HK relation that have led to the coefficients' scatter. Through an examination of theoretical, experimental, and molecular dynamics simulation studies of evaporation, this review will show that the HK relation is incomplete, since it is missing an important physical concept: the coupling between the vapor and liquid phases during evaporation. The review also examines a modified HK relation, obtained from the quantum-mechanically based statistical rate theory (SRT) expression for the evaporation flux and applying a limit to it in which the thermal energy is dominant. Explicit expressions for the evaporation and condensation coefficients are defined in this limit, with the surprising result that the coefficients are not bounded by unity. An examination is made with 127 reported evaporation experiments of water and of ethanol, leading to a new physical interpretation of the coefficients. The review concludes by showing how seemingly small simplifications, such as assuming thermal equilibrium across the liquid-vapor interface during evaporation, can lead to the erroneous predictions from the HK relation that have been reported in the literature.

  7. Waste Treatment and Immobilization Plant U. S. Department of Energy Office of River Protection Submerged Bed Scrubber Condensate Disposition Project - 13460

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yanochko, Ronald M.; Corcoran, Connie

    The Hanford Waste Treatment and Immobilization Plant (WTP) will generate an off-gas treatment system secondary liquid waste stream [submerged bed scrubber (SBS) condensate], which is currently planned for recycle back to the WTP Low Activity Waste (LAW) melter. This SBS condensate waste stream is high in Tc-99, which is not efficiently captured in the vitrified glass matrix [1]. A pre-conceptual engineering study was prepared in fiscal year 2012 to evaluate alternate flow paths for melter off-gas secondary liquid waste generated by the WTP LAW facility [2]. This study evaluated alternatives for direct off-site disposal of this SBS without pre-treatment, whichmore » mitigates potential issues associated with recycling. This study [2] concluded that SBS direct disposal is a viable option to the WTP baseline. The results show: - Off-site transportation and disposal of the SBS condensate is achievable and cost effective. - Reduction of approximately 4,325 vitrified WTP Low Activity Waste canisters could be realized. - Positive WTP operational impacts; minimal WTP construction impacts are realized. - Reduction of mass flow from the LAW Facility to the Pretreatment Facility by 66%. - Improved Double Shell Tank (DST) space management is a benefit. (authors)« less

  8. The structure of liquid metals probed by XAS

    NASA Astrophysics Data System (ADS)

    Filipponi, Adriano; Di Cicco, Andrea; Iesari, Fabio; Trapananti, Angela

    2017-08-01

    X-ray absorption spectroscopy (XAS) is a powerful technique to investigate the short-range order around selected atomic species in condensed matter. The theoretical framework and previous applications to undercooled elemental liquid metals are briefly reviewed. Specific results on undercooled liquid Ni obtained using a peak fitting approach validated on the spectra of solid Ni are presented. This method provides a clear evidence that a signature from close packed triangular configurations of nearest neighbors survives in the liquid state and is clearly detectable below k ≈ 5 Å-1, stimulating the improvement of data-analysis methods that account properly for the ensemble average, such as Reverse Monte Carlo.

  9. Confinement of anomalous liquids in nanoporous matrices.

    PubMed

    Strekalova, Elena G; Luo, Jiayuan; Stanley, H Eugene; Franzese, Giancarlo; Buldyrev, Sergey V

    2012-09-07

    Using molecular dynamics simulations, we investigate the effects of different nanoconfinements on complex liquids-e.g., colloids or protein solutions-with density anomalies and a liquid-liquid phase transition (LLPT). In all the confinements, we find a strong depletion effect with a large increase in liquid density near the confining surface. If the nanoconfinement is modeled by an ordered matrix of nanoparticles, we find that the anomalies are preserved. On the contrary, if the confinement is modeled by a disordered matrix of nanoparticles, we find a drastically different phase diagram: the LLPT shifts to lower pressures and temperatures, and the anomalies become weaker, as the disorder increases. We find that the density heterogeneities induced by the disordered matrix are responsible for the weakening of the LLPT and the disappearance of the anomalies.

  10. Drinking influences exhaled breath condensate acidity.

    PubMed

    Kullmann, Tamás; Barta, Imre; Antus, Balázs; Horváth, Ildikó

    2008-01-01

    Exhaled breath condensate analysis is a developing method for investigating airway pathology. Impact of food and drink on breath condensate composition has not been systematically addressed. The aim of the study was to follow exhaled breath condensate pH after drinking an acidic and a neutral beverage. Breath condensate, capillary blood, and urine of 12 healthy volunteers were collected before and after drinking either 1 l of coke or 1 l of mineral water. The pH of each sample was determined with a blood gas analyzer. The mean difference between the pH of two breath condensate samples collected within 15 min before drinking was 0.13+/-0.03. Condensate pH decreased significantly from 6.29+/-0.02 to 6.24+/-0.02 (p<0.03) after drinking coke and from 6.37+/-0.03 to 6.22+/-0.04 (p<0.003) after drinking water. Drinking coke induced significant changes in blood and urine pH as well. Drinking influences exhaled breath condensate composition and may contribute to the variability of exhaled breath condensate pH.

  11. Condensation of Refrigerants on Small Tube Bundles

    DTIC Science & Technology

    1988-12-01

    first comprehensive condensation model was developed by Nusselt in 1916 [Ref. 4] based on the assumption that a quiescent vapor at saturation...vapor is condensed by an auxiliary condenser . The auxiliary condenser is composed of five helically wound copper tubes of 9.53 mm diameter suspended...copper tubing located in the top center of the condenser chamber. The vapor is condensed in the storage cylinder by means of a helical copper coil

  12. Quasiparticles in condensed matter systems

    NASA Astrophysics Data System (ADS)

    Wölfle, Peter

    2018-03-01

    Quasiparticles are a powerful concept of condensed matter quantum theory. In this review, the appearence and the properties of quasiparticles are presented in a unifying perspective. The principles behind the existence of quasiparticle excitations in both quantum disordered and ordered phases of fermionic and bosonic systems are discussed. The lifetime of quasiparticles is considered in particular near a continuous classical or quantum phase transition, when the nature of quasiparticles on both sides of a transition into an ordered state changes. A new concept of critical quasiparticles near a quantum critical point is introduced, and applied to quantum phase transitions in heavy fermion metals. Fractional quasiparticles in systems of restricted dimensionality are reviewed. Dirac quasiparticles emerging in so-called Dirac materials are discussed. The more recent discoveries of topologically protected chiral quasiparticles in topological matter and Majorana quasiparticles in topological superconductors are briefly reviewed.

  13. Evaluation of Efficacy of Herbal Intrauterine Infusion Uterofix Liquid in Treatment of Various Reproductive Disorders in Cows: A Field Study.

    PubMed

    Verma, Satinder; Choudhary, Adarsh; Maini, Shivi; Ravikanth, K

    2016-01-01

    To evaluate the efficacy of herbal intrauterine infusion Uterofix liquid in the treatment of various reproductive disorders in cows. Based on symptoms of endometritis, anestrous, metritis, and repeat breeders, 28 cows were selected to study the efficacy of herbal intrauterine infusion Uterofix liquid (M/S Ayurvet Limited) in uterine infections study. Group T0 (n = 8) cows served as control group, no treatment was given to this group, Group T1 (n = 5) repeat breeder cows, Group T2 (n = 5) endometritis effected cows, Group T3 (n = 5) anoestrus cows, and Group T4 (n = 5) metritis suffered cows were treated with Uterofix liquid (25 ml as intrauterine infusion once a day for 3-5 days). Total observational period was 60 days. Number of treatments needed, nature of discharge in first posttreatment estrus (physical examination), after treatment number of animal showing heat/estrus out of total treated, and posttreatment conception rate were used as criteria to judge the success or failure of treatment. Results revealed that 18 out of 20 animals (90%) showed signs of heat with clear discharge, recovered completely without causing any irritation, or severe irritation/sloughing of genital mucous membrane after Uterofix liquid treatment. Herbal intrauterine infusion Uterofix liquid significantly treated the uterine infections in cows. Uterine infection is a major problem in reproductive management. A wide variety of genital tract diseases of female domestic animals are known to produce significant losses and responsible for poor fertility. Amongst these highly prevalent are metritis and repeat breeding in high-producing dairy cows which if remains untreated are associated with low conception rate per artificial insemination (AI), extended interval to pregnancy, increased culling, and economic losses. As herbal remedy the Uterofix liquid (Ayurvet Limited, India) was highly efficacious as an intrauterine infusion to treat different reproductive disorders.

  14. Liquid over-feeding refrigeration system and method with integrated accumulator-expander-heat exchanger

    DOEpatents

    Mei, V.C.; Chen, F.C.

    1997-04-22

    A refrigeration system is described having a vapor compression cycle utilizing a liquid over-feeding operation with an integrated accumulator-expander-heat exchanger. Hot, high-pressure liquid refrigerant from the condenser passes through one or more lengths of capillary tubing substantially immersed in a pool liquid refrigerant in the accumulator-expander-heat exchanger for simultaneously sub-cooling and expanding the liquid refrigerant while vaporizing liquid refrigerant from the pool for the return thereof to the compressor as saturated vapor. The sub-cooling of the expanded liquid provides for the flow of liquid refrigerant into the evaporator for liquid over-feeding the evaporator and thereby increasing the efficiency of the evaporation cycle. 4 figs.

  15. Self-Organization of Microscale Condensate for Delayed Flooding of Nanostructured Superhydrophobic Surfaces.

    PubMed

    Ölçeroğlu, Emre; McCarthy, Matthew

    2016-03-02

    Superhydrophobic surfaces enhance condensation by inhibiting the formation of an insulating liquid layer. While this produces efficient heat transfer at low supersaturations, superhydrophobicity has been shown to break down at increased supersaturations. As heat transfer increases, the random distribution and high density of nucleation sites produces pinned droplets, which lead to uncontrollable flooding. In this work, engineered variations in wettability are used to promote the self-organization of microscale droplets, which is shown to effectively delay flooding. Virus-templated superhydrophobic surfaces are patterned with an array of superhydrophilic islands designed to minimize surface adhesion while promoting spatial order. By use of optical and electron microscopy, the surfaces are optimized and characterized during condensation. Mixed wettability imparts spatial order not only through preferential nucleation but more importantly through the self-organization of coalescing droplets at high supersaturations. The self-organization of microscale droplets (diameters of <25 μm) is shown to effectively delay flooding and govern the global wetting behavior of larger droplets (diameters of >1 mm) on the surface. As heat transfer increases, the surfaces transition from jumping-mode to shedding-mode removal with no flooding. This demonstrates the ability to engineer surfaces to resist flooding and can act as the basis for developing robust superhydrophobic surfaces for condensation applications.

  16. Chromatin condensation during terminal erythropoiesis.

    PubMed

    Zhao, Baobing; Yang, Jing; Ji, Peng

    2016-09-02

    Mammalian terminal erythropoiesis involves gradual but dramatic chromatin condensation steps that are essential for cell differentiation. Chromatin and nuclear condensation is followed by a unique enucleation process, which is believed to liberate more spaces for hemoglobin enrichment and enable the generation of a physically flexible mature red blood cell. Although these processes have been known for decades, the mechanisms are still unclear. Our recent study reveals an unexpected nuclear opening formation during mouse terminal erythropoiesis that requires caspase-3 activity. Major histones, except H2AZ, are partially released from the opening, which is important for chromatin condensation. Block of the nuclear opening through caspase inhibitor or knockdown of caspase-3 inhibits chromatin condensation and enucleation. We also demonstrate that nuclear opening and histone release are cell cycle regulated. These studies reveal a novel mechanism for chromatin condensation in mammalia terminal erythropoiesis.

  17. Chemical and biological sensing using liquid crystals

    PubMed Central

    Carlton, Rebecca J.; Hunter, Jacob T.; Miller, Daniel S.; Abbasi, Reza; Mushenheim, Peter C.; Tan, Lie Na; Abbott, Nicholas L.

    2014-01-01

    The liquid crystalline state of matter arises from orientation-dependent, non-covalent interaction between molecules within condensed phases. Because the balance of intermolecular forces that underlies formation of liquid crystals is delicate, this state of matter can, in general, be easily perturbed by external stimuli (such as an electric field in a display). In this review, we present an overview of recent efforts that have focused on exploiting the responsiveness of liquid crystals as the basis of chemical and biological sensors. In this application of liquid crystals, the challenge is to design liquid crystalline systems that undergo changes in organization when perturbed by targeted chemical and biological species of interest. The approaches described below revolve around the design of interfaces that selectively bind targeted species, thus leading to surface-driven changes in the organization of the liquid crystals. Because liquid crystals possess anisotropic optical and dielectric properties, a range of different methods can be used to read out the changes in organization of liquid crystals that are caused by targeted chemical and biological species. This review focuses on principles for liquid crystal-based sensors that provide an optical output. PMID:24795857

  18. Dropwise condensation dynamics in humid air

    NASA Astrophysics Data System (ADS)

    Castillo Chacon, Julian Eduardo

    Dropwise condensation of atmospheric water vapor is important in multiple practical engineering applications. The roles of environmental factors and surface morphology/chemistry on the condensation dynamics need to be better understood to enable efficient water-harvesting, dehumidication, and other psychrometric processes. Systems and surfaces that promote faster condensation rates and self-shedding of condensate droplets could lead to improved mass transfer rates and higher water yields in harvesting applications. The thesis presents the design and construction of an experimental facility that allows visualization of the condensation process as a function of relative humidity. Dropwise condensation experiments are performed on a vertically oriented, hydrophobic surface at a controlled relative humidity and surface subcooling temperature. The distribution and growth of water droplets are monitored across the surface at different relative humidities (45%, 50%, 55%, and 70%) at a constant surface subcooling temperature of 15 °C below the ambient temperature. The droplet growth dynamics exhibits a strong dependency on relative humidity in the early stages during which there is a large population of small droplets on the surface and single droplet growth dominates over coalescence effects. At later stages, the dynamics of droplet growth is insensitive to relative humidity due to the dominance of coalescence effects. The overall volumetric rate of condensation on the surface is also assessed as a function of time and ambient relative humidity. Low relative humidity conditions not only slow the absolute rate of condensation, but also prolong an initial transient regime over which the condensation rate remains significantly below the steady-state value. The current state-of-the-art in dropwise condensation research indicates the need for systematic experimental investigations as a function of relative humidity. The improved understanding of the relative humidity

  19. Research Status of Evaporative Condenser

    NASA Astrophysics Data System (ADS)

    Wang, Feifei; Yang, Yongan

    2018-02-01

    Reducing energy consumption, saving water resources, recycling cool water are main directions of China’s development. Evaporative condenser using latent heat reduces water resources waste, with energy-saving advantages. This paper reviews the research status of evaporative condenser at home and abroad, and introduces the principle, classification, various influencing factors of evaporative condenser, and puts forward the future research direction.

  20. Investigation of Condensing Ice Heat Exchangers for MTSA Technology Development

    NASA Technical Reports Server (NTRS)

    Padilla, Sebastian; Powers, Aaron; Ball, Tyler; Lacomini, Christie; Paul, Heather L.

    2009-01-01

    Metabolic heat regenerated Temperature Swing Adsorption (MTSA) technology is being developed for thermal, carbon dioxide (CO2) and humidity control for a Portable Life Support Subsystem (PLSS). Metabolically-produced CO2 present in the ventilation gas of a PLSS is collected using a CO2-selective adsorbent via temperature swing adsorption. The temperature swing is initiated through cooling to well below metabolic temperatures. Cooling is achieved with a sublimation heat exchanger using water or liquid carbon dioxide (L CO2) expanded below sublimation temperature when exposed to low pressure or vacuum. Subsequent super heated vapor, as well as additional coolant, is used to further cool the astronaut. The temperature swing on the adsorbent is then completed by warming the adsorbent with a separate condensing ice heat exchanger (CIHX) using metabolic heat from moist ventilation gas. The condensed humidity in the ventilation gas is recycled at the habitat. The water condensation from the ventilation gas represents a significant source of potential energy for the warming of the adsorbent bed as it represents as much as half of the energy potential in the moist ventilation gas. Designing a heat exchanger to efficiently transfer this energy to the adsorbent bed and allow the collection of the water is a challenge since the CIHX will operate in a temperature range from 210K to 280K. The ventilation gas moisture will first freeze and then thaw, sometimes existing in three phases simultaneously.

  1. Bioanalysis of underivatized amino acids in non-invasive exhaled breath condensate samples using liquid chromatography coupled with tandem mass spectrometry.

    PubMed

    Konieczna, Lucyna; Pyszka, Magdalena; Okońska, Magdalena; Niedźwiecki, Maciej; Bączek, Tomasz

    2018-03-23

    Exhaled breath condensate (EBC) is receiving increased attention as a novel, entirely non-invasive technique for collecting biomarker samples. This increased attention is due to the fact that EBC is simple, effort independent, rapid, can be repeated frequently, and can be performed on young children and patients suffering from a variety of diseases. By having a subject breathe tidally through a cooling system for 15-20 min, a sufficient amount of condensate is collected for analysis of biomarkers in clinical studies. However, bioanalysis of EBC involves an unavoidable sample preparation step due to the low concentration of its components. Thus, there is a need for a new and more sensitive analytical method of assessing EBC samples. While researchers have considered analyses of single and small quantities of amino acids - for example, those connected with leukemia - no one has previously attempted to simultaneously analyze a panel of 23 amino acids. Moreover, the present study is well-justified, as prior studies focusing on single amino acids and leukemia at the moment of diagnosis and during chemotherapy (33 days of treatment) are inconsistent. In the present study, amino acids were separated using an XBridge Amide column (3 mm × 100 mm, 3.5 μm). The mobile phase consisted of 10 mM of ammonium buffer in water with a pH of 3 (Phase A) and 10 mM ammonium buffer in acetonitrile (Phase B) under gradient program elution. The analytes were detected in electrospray positive ionization mode. Under optimal conditions, the proposed method exhibited limits of quantification (LOQ) in the range of 0.05-0.5 ng/mL, and good linearity, with the determination coefficient (R 2 ) falling between 0.9904 and 0.9998. The accuracy in human exhaled breath condensate samples ranged between 93.3-113.3% for the 23 studied amino acids, with intra- and inter-day coefficient of variation (CVs) of 0.13-9.92% and 0.17-10.53%, respectively. To demonstrate the liquid

  2. Heat transfer in an evaporation-condensation system in simulated weightlessness conditions

    NASA Astrophysics Data System (ADS)

    Bologa, M. K.; Grosu, F. P.; Kozhevnikov, I. V.; Motorin, O. V.; Polikarpov, A. A.

    2017-10-01

    The process of heat transfer in an evaporation-condensation system (ECS) at circulation of dielectric liquid in a closed thermoelectrohydrodynamic (TEHD) loop consisting of an evaporator, a condenser and electrohydrodynamic (EHD) pump for pumping of heat carrier, is considered. Previously, the authors studied the dependence of heat transfer on the angle of rotation of TEHD loop in a vertical plane. The report contains the results of studies of heat transfer at electrohydrodynamic pumping of the heat carrier (8% solution of acetone in Freon 113) in the condenser area by means of EHD pump of “cone-cone” type. All elements of the ECS are arranged in a horizontal plane and the heat transfer from the heater to the condenser without EHD pumping is impossible. A pulsating heat carrier flow mode, depending on the heat input and the voltage applied to the pump, takes place at EHD pumping. As the input power is decreasing the frequency of the coolant pulsations as well as the departure diameter and number of vapour bubbles are also decreasing. At some critical heat input the pulsations disappear and the transition from turbulent mode to the laminar one takes place causing the decrease of the heat transfer coefficient. The increase of the pumping flow rate by raising the voltage applied to the EHD pump, results in a partial suppression of boiling. The maximum intensification of heat transfer is reached at pulsation frequency of 1.25 Hz. The maximum heat flow from the heater was 4.2·104 W/m2. Graphical representation and the physical interpretation of the results, which reflect the essence of the process, are given.

  3. Liquid hyperpolarized 129Xe produced by phase exchange in a convection cell

    NASA Astrophysics Data System (ADS)

    Su, T.; Samuelson, G. L.; Morgan, S. W.; Laicher, G.; Saam, B.

    2004-09-01

    We present a method for the production of liquid hyperpolarized Xe129 that employs spin-exchange optical pumping in the gas phase and subsequent phase exchange with a column of xenon liquid. A convection loop inside the sealed glass cell allows efficient transfer of magnetization between the gas and liquid phases. By condensing to liquid a large fraction of the sample, this scheme permits the polarization of many more Xe129 atoms in a given sealed-cell volume than would otherwise be possible. We have thus far produced a steady-state polarization of 8% in 0.1mL of liquid with a characteristic rise time of ≈15min.

  4. Condensation of ablation plumes in the irradiation of metals by high-intensity nanosecond laser pulses at atmospheric pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kozadaev, K V

    2016-01-31

    The Anisimov–Luk'yanchuk model is adapted for describing the condensation of vapour-plasma plumes produced in the irradiation of metal targets by high-intensity (10{sup 8} – 10{sup 10} W cm{sup -2}) nanosecond (10 – 100 ns) pulses at atmospheric pressure. The resultant data suggest that the initial stages of the development of metal ablation plumes correspond with a high degree of accuracy to the Zel'dovich–Raizer theory of dynamic condensation; however, at the stage of the ablation plume decay, the liquid-droplet phase is formed primarily by coalescence of 'nuclei'. (interaction of laser radiation with matter. laser plasma)

  5. Optimization of gas condensate Field A development on the basis of "reservoir - gathering facilities system" integrated model

    NASA Astrophysics Data System (ADS)

    Demidova, E. A.; Maksyutina, O. V.

    2015-02-01

    It is known that many gas condensate fields are challenged with liquid loading and condensate banking problems. Therefore, gas production is declining with time. In this paper hydraulic fracturing treatment was considered as a method to improve the productivity of wells and consequently to exclude the factors that lead to production decline. This paper presents the analysis of gas condensate Field A development optimization with the purpose of maintaining constant gas production at the 2013 level for 8 years taking into account mentioned factors . To optimize the development of the filed, an integrated model was created. The integrated model of the field implies constructing the uniform model of the field consisting of the coupling models of the reservoir, wells and surface facilities. This model allowed optimizing each of the elements of the model separately and also taking into account the mutual influence of these elements. Using the integrated model, five development scenarios were analyzed and an optimal scenario was chosen. The NPV of this scenario equals 7,277 mln RUR, cumulative gas production - 12,160.6 mln m3, cumulative condensate production - 1.8 mln tons.

  6. Analysis of Condensation Heat Transfer Performance in Curved Triangle Microchannels Based on the Volume of Fluid Method

    NASA Astrophysics Data System (ADS)

    Lei, Yuchuan; Chen, Zhenqian; Shi, Juan

    2017-12-01

    Numerical simulations of condensation heat transfer of R134a in curved triangle microchannels with various curvatures are proposed. The model is established on the volume of fluid (VOF) approach and user-defined routines which including mass transfer at the vapor-liquid interface and latent heat. Microgravity operating condition is assumed in order to highlight the surface tension. The predictive accuracy of the model is assessed by comparing the simulated results with available correlations in the literature. Both an increased mass flux and the decreased hydraulic diameter could bring better heat transfer performance. No obvious effect of the wall heat flux is observed in condensation heat transfer coefficient. Changes in geometry and surface tension lead to a reduction of the condensate film thickness at the sides of the channel and accumulation of the condensate film at the corners of the channel. Better heat transfer performance is obtained in the curved triangle microchannels over the straight ones, and the performance could be further improved in curved triangle microchannels with larger curvatures. The minimum film thickness where most of the heat transfer process takes place exists near the corners and moves toward the corners in curved triangle microchannels with larger curvatures.

  7. A perfluorochemical loss/restoration (L/R) system for tidal liquid ventilation.

    PubMed

    Libros, R; Philips, C M; Wolfson, M R; Shaffer, T H

    2000-01-01

    Tidal liquid ventilation is the transport of dissolved respiratory gases via volume exchange of perfluorochemical (PFC) liquid to and from the PFC-filled lung. All gas-liquid surface tension is eliminated, increasing compliance and providing lung protection due to lower inflation pressures. Tidal liquid ventilation is achieved by cycling fluid from a reservoir to and from the lung by a ventilator. Current approaches are microprocessor-based with feedback control. During inspiration, warmed oxygenated PFC liquid is pumped from a fluid reservoir/gas exchanger into the lung. PFC fluid is conserved by condensing (60-80% efficiency) vapor in the expired gas. A feedback-control system was developed to automatically replace PFC lost due to condenser inefficiency. This loss/restoration (L/R) system consists of a PFC-vapor thermal detector (+/- 2.5%), pneumatics, amplifiers, a gas flow detector (+/- 1%), a PFC pump (+/- 5%), and a controller. Gravimetric studies of perflubron loss from a flask due to evaporation were compared with experimental L/R results and found to be within +/- 1.4%. In addition, when L/R studies were conducted with a previously reported liquid ventilation system over a four-hour period, the L/R system maintained system perflubron volume to within +/- 1% of prime volume and 11.5% of replacement volume, and the difference between experimental PFC loss and that of the L/R system was 1.8 mL/hr. These studies suggest that the PFC L/R system may have significant economic (appropriate dosing for PFC loss) as well as physiologic (maintenance of PFC inventory in the lungs and liquid ventilator) impact on liquid ventilation procedures.

  8. Thermal Decomposition of Condensed-Phase Nitromethane from Molecular Dynamics from ReaxFF Reactive Dynamics

    DTIC Science & Technology

    2011-05-04

    pubs.acs.org/JPCB Thermal Decomposition of Condensed-Phase Nitromethane from Molecular Dynamics from ReaxFF Reactive Dynamics Si-ping Han,†,‡ Adri C. T. van...ABSTRACT: We studied the thermal decomposition and subsequent reaction of the energetic material nitromethane (CH3NO2) using molec- ular dynamics...with ReaxFF, a first principles-based reactive force field. We characterize the chemistry of liquid and solid nitromethane at high temperatures (2000

  9. The Effect of Condensate Inundation on Steam Condensation Heat Transfer to Wire-Wrapped Tubing.

    DTIC Science & Technology

    1983-06-01

    wrapped in a helical manner. The measured condensing coefficient was approximately three times that predicted by the Nusselt equation for a smooth tube...Du. Em0At Block 20 (continued) --"- condensing coefficient measured for 30 smooth tubes was 0.59 times the Nusselt coefficient calculated for the...of 0.029 was found, while it was 0.061 for the roped tubes. The average condensing coefficient measured for 30 smooth tubes was 0.59 times the Nusselt

  10. Enhanced condensation heat transfer with wettability patterning

    NASA Astrophysics Data System (ADS)

    Sinha Mahapatra, Pallab; Ghosh, Aritra; Ganguly, Ranjan; Megaridis, Constantine

    2015-11-01

    Condensation of water vapor on metal surfaces is useful for many engineering applications. A facile and scalable method is proposed for removing condensate from a vertical plate during dropwise condensation (DWC) in the presence of non-condensable gases (NCG). We use wettability-patterned superhydrophilic tracks (filmwise condensing domains) on a mirror-finish (hydrophilic) aluminum surface that promotes DWC. Tapered, horizontal ``collection'' tracks are laid to create a Laplace pressure driven flow, which collects condensate from the mirror-finish domains and sends it to vertical ``drainage tracks'' for gravity-induced shedding. An optimal design is achieved by changing the fractional area of superhydrophilic tracks with respect to the overall plate surface, and augmenting capillary-driven condensate-drainage by adjusting the track spatial layout. The design facilitates pump-less condensate drainage and enhances DWC heat transfer on the mirror-finish regions. The study highlights the relative influences of the promoting and retarding effects of dropwise and filmwise condensation zones on the overall heat transfer improvement on the substrate. The study demonstrated ~ 34% heat transfer improvement on Aluminum surface for the optimized design.

  11. Multi-scale study of condensation in water jets using ellipsoidal-statistical Bhatnagar-Gross-Krook and molecular dynamics modeling

    NASA Astrophysics Data System (ADS)

    Li, Zheng; Borner, Arnaud; Levin, Deborah A.

    2014-06-01

    Homogeneous water condensation and ice formation in supersonic expansions to vacuum for stagnation pressures from 12 to 1000 mbar are studied using the particle-based Ellipsoidal-Statistical Bhatnagar-Gross-Krook (ES-BGK) method. We find that when condensation starts to occur, at a stagnation pressure of 96 mbar, the increase in the degree of condensation causes an increase in the rotational temperature due to the latent heat of vaporization. The simulated rotational temperature profiles along the plume expansion agree well with measurements confirming the kinetic homogeneous condensation models and the method of simulation. Comparisons of the simulated gas and cluster number densities, cluster size for different stagnation pressures along the plume centerline were made and it is found that the cluster size increase linearly with respect to stagnation pressure, consistent with classical nucleation theory. The sensitivity of our results to cluster nucleation model and latent heat values based on bulk water, specific cluster size, or bulk ice are examined. In particular, the ES-BGK simulations are found to be too coarse-grained to provide information on the phase or structure of the clusters formed. For this reason, molecular dynamics simulations of water condensation in a one-dimensional free expansion to simulate the conditions in the core of a plume are performed. We find that the internal structure of the clusters formed depends on the stagnation temperature. A larger cluster of average size 21 was tracked down the expansion, and a calculation of its average internal temperature as well as a comparison of its radial distribution functions (RDFs) with values measured for solid amorphous ice clusters lead us to conclude that this cluster is in a solid-like rather than liquid form. In another molecular-dynamics simulation at a much lower stagnation temperature, a larger cluster of size 324 and internal temperature 200 K was extracted from an expansion plume and

  12. Electric field enhanced dropwise condensation on hydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Baratian, Davood; Hoek, Harmen; van den Ende, Dirk; Mugele, Frieder; Physics of Complex Fluids Team

    2016-11-01

    Dropwise condensation occurs when vapor condenses on a low surface energy surface, and the substrate is just partially wetted by the condensate. Dropwise condensation has attracted significant attention due to its reported superior heat transfer performance compared to filmwise condensation. Extensive research efforts are focused on how to promote, and enhance dropwise condensation by considering both physical and chemical factors. We have studied electrowetting-actuated condensation on hydrophobic surfaces, aiming for enhancement of heat transfer in dropwise condensation. The idea is to use suitably structured patterns of micro-electrodes that generate a heterogeneous electric field at the interface and thereby promote both the condensation itself and the shedding of condensed drops. Comforting the shedding of droplets on electrowetting-functionalized surfaces allows more condensing surface area for re-nucleation of small droplets, leading to higher condensation rates. Possible applications of this innovative concept include heat pipes for (micro) coolers in electronics as well as in more efficient heat exchangers. We acknowledge financial support by the Dutch Technology Foundation STW, which is part of the Netherlands Organization for Scientific Research (NWO), within the VICI program.

  13. IN SITU INFRARED MEASUREMENTS OF FREE-FLYING SILICATE DURING CONDENSATION IN THE LABORATORY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishizuka, Shinnosuke; Kimura, Yuki; Sakon, Itsuki

    2015-04-20

    We developed a new experimental system for infrared (IR) measurements on free-flying nucleating nanoparticles in situ and applied it to studies on silicate particles. We monitored the condensation of magnesium-bearing silicate nanoparticles from thermally evaporated magnesium and silicon monoxide vapor under an atmosphere of oxygen and argon. The IR spectrum of newly condensed particles showed a spectral feature for non-crystalline magnesium-bearing silicate that is remarkably consistent with the IR spectrum of astronomically observed non-crystalline silicate around oxygen-rich evolved stars. The silicate crystallized at <500 K and eventually developed a high crystallinity. Because of the size effects of nanoparticles, the silicatemore » would be expected to be like a liquid at least during the initial stages of nucleation and growth. Our experimental results therefore suggest decreasing the possible formation temperature of crystalline silicates in dust formation environments with relatively higher pressure.« less

  14. Decay of ultralight axion condensates

    DOE PAGES

    Eby, Joshua; Ma, Michael; Suranyi, Peter; ...

    2018-01-15

    Axion particles can form macroscopic condensates, whose size can be galactic in scale for models with very small axion massesmore » $$m\\sim10^{-22}$$ eV, and which are sometimes referred to under the name of Fuzzy Dark Matter. Many analyses of these condensates are done in the non-interacting limit, due to the weakness of the self-interaction coupling of axions. We investigate here how certain results change upon inclusion of these interactions, finding a decreased maximum mass and a modified mass-radius relationship. Further, these condensates are, in general, unstable to decay through number-changing interactions. We analyze the stability of galaxy-sized condensates of axion-like particles, and sketch the parameter space of stable configurations as a function of a binding energy parameter. As a result, we find a strong lower bound on the size of Fuzzy Dark Matter condensates which are stable to decay, with lifetimes longer than the age of the universe.« less

  15. Decay of ultralight axion condensates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eby, Joshua; Ma, Michael; Suranyi, Peter

    Axion particles can form macroscopic condensates, whose size can be galactic in scale for models with very small axion massesmore » $$m\\sim10^{-22}$$ eV, and which are sometimes referred to under the name of Fuzzy Dark Matter. Many analyses of these condensates are done in the non-interacting limit, due to the weakness of the self-interaction coupling of axions. We investigate here how certain results change upon inclusion of these interactions, finding a decreased maximum mass and a modified mass-radius relationship. Further, these condensates are, in general, unstable to decay through number-changing interactions. We analyze the stability of galaxy-sized condensates of axion-like particles, and sketch the parameter space of stable configurations as a function of a binding energy parameter. As a result, we find a strong lower bound on the size of Fuzzy Dark Matter condensates which are stable to decay, with lifetimes longer than the age of the universe.« less

  16. Heat transfer in condensing and evaporating two-component, two-phase flow inside a horizontal tube

    NASA Astrophysics Data System (ADS)

    Duval, W. M. B.

    The effect of adding a small amount of oil to condensing and evaporation refrigerant R-12 following inside a horizontal tube is investigated both experimentally and analytically. Analytically, the problem is addressed assuming annular flow inside the tube. The analysis is based on the momentum and energy equations with the heat transfer in the liquid film determined using the Reynolds analogy between turbulent heat and momentum transfer. Two separate methods are developed for extending this model to include the effects of the two-component nature of the flow. Experimentally, two-phase local heat transfer measurements and flow pattern visualization are made for both condensation and evaporation. From the measurements, correlations are developed to predict two-phase heat transfer for the range of 0%, 2% and 5% oil fraction by mass flow.

  17. Glass transition of aqueous solutions involving annealing-induced ice recrystallization resolves liquid-liquid transition puzzle of water

    PubMed Central

    Zhao, Li-Shan; Cao, Ze-Xian; Wang, Qiang

    2015-01-01

    Liquid-liquid transition of water is an important concept in condensed-matter physics. Recently, it was claimed to have been confirmed in aqueous solutions based on annealing-induced upshift of glass-liquid transition temperature, . Here we report a universal water-content, , dependence of for aqueous solutions. Solutions with vitrify/devitrify at a constant temperature, , referring to freeze-concentrated phase with left behind ice crystallization. Those solutions with totally vitrify at under conventional cooling/heating process though, of the samples annealed at temperatures   to effectively evoke ice recrystallization is stabilized at . Experiments on aqueous glycerol and 1,2,4-butanetriol solutions in literature were repeated, and the same samples subject to other annealing treatments equally reproduce the result. The upshift of by annealing is attributable to freeze-concentrated phase of solutions instead of ‘liquid II phase of water’. Our work also provides a reliable method to determine hydration formula and to scrutinize solute-solvent interaction in solution. PMID:26503911

  18. Condensation to a strongly correlated dark fluid of two dimensional dipolar excitons

    NASA Astrophysics Data System (ADS)

    Mazuz-Harpaz, Yotam; Cohen, Kobi; Rapaport, Ronen

    2017-08-01

    Recently we reported on the condensation of cold, electrostatically trapped dipolar excitons in GaAs bilayer heterostructure into a new, dense and dark collective phase. Here we analyze and discuss in detail the experimental findings and the emerging evident properties of this collective liquid-like phase. We show that the phase transition is characterized by a sharp increase of the number of non-emitting dipoles, by a clear contraction of the fluid spatial extent into the bottom of the parabolic-like trap, and by spectral narrowing. We extract the total density of the condensed phase which we find to be consistent with the expected density regime of a quantum liquid. We show that there are clear critical temperature and excitation power onsets for the phase transition and that as the power further increases above the critical power, the strong darkening is reduced down until no clear darkening is observed. At this point another transition appears which we interpret as a transition to a strongly repulsive yet correlated e-h plasma. Based on the experimental findings, we suggest that the physical mechanism that may be responsible for the transition is a dynamical final-state stimulation of the dipolar excitons to their dark spin states, which have a long lifetime and thus support the observed sharp increase in density. Further experiments and modeling will hopefully be able to unambiguously identify the physical mechanism behind these recent observations.

  19. Insoluble coatings for Stirling engine heat pipe condenser surfaces

    NASA Astrophysics Data System (ADS)

    Dussinger, Peter M.

    1993-09-01

    The work done by Thermacore, Inc., Lancaster, Pennsylvania, for the Phase 1, 1992 SBIR National Aeronautics and Space Administration Contract, 'Insoluble Coatings for Stirling Engine Heat Pipe Condenser Surfaces' is described. The work was performed between January 1992 and July 1992. Stirling heat engines are being developed for electrical power generation use on manned and unmanned earth orbital and planetary missions. Dish Stirling solar systems and nuclear reactor Stirling systems are two of the most promising applications of the Stirling engine electrical power generation technology. The sources of thermal energy used to drive the Stirling engine typically are non-uniform in temperature and heat flux. Liquid metal heat pipe receivers are used as thermal transformers and isothermalizers to deliver the thermal energy at a uniform high temperature to the heat input section of the Stirling engine. The use of a heat pipe receiver greatly enhances system efficiency and potential life span. One issue that is raised during the design phase of heat pipe receivers is the potential solubility corrosion of the Stirling engine heat input section by the liquid metal working fluid. This Phase 1 effort initiated a program to evaluate and demonstrate coatings, applied to nickel based Stirling engine heater head materials, that are practically 'insoluble' in sodium, potassium, and NaK. This program initiated a study of nickel aluminide as a coating and developed and demonstrated a heat pipe test vehicle that can be used to test candidate materials and coatings. Nickel 200 and nickel aluminide coated Nickel 200 were tested for 1000 hours at 800 C at a condensation heat flux of 25 W/sq cm. Subsequent analyses of the samples showed no visible sign of solubility corrosion of either coated or uncoated samples. The analysis technique, photomicrographs at 200X, has a resolution of better than 2.5 microns (.0001 in). The results indicate that the heat pipe environment is not directly

  20. Insoluble coatings for Stirling engine heat pipe condenser surfaces

    NASA Technical Reports Server (NTRS)

    Dussinger, Peter M.

    1993-01-01

    The work done by Thermacore, Inc., Lancaster, Pennsylvania, for the Phase 1, 1992 SBIR National Aeronautics and Space Administration Contract, 'Insoluble Coatings for Stirling Engine Heat Pipe Condenser Surfaces' is described. The work was performed between January 1992 and July 1992. Stirling heat engines are being developed for electrical power generation use on manned and unmanned earth orbital and planetary missions. Dish Stirling solar systems and nuclear reactor Stirling systems are two of the most promising applications of the Stirling engine electrical power generation technology. The sources of thermal energy used to drive the Stirling engine typically are non-uniform in temperature and heat flux. Liquid metal heat pipe receivers are used as thermal transformers and isothermalizers to deliver the thermal energy at a uniform high temperature to the heat input section of the Stirling engine. The use of a heat pipe receiver greatly enhances system efficiency and potential life span. One issue that is raised during the design phase of heat pipe receivers is the potential solubility corrosion of the Stirling engine heat input section by the liquid metal working fluid. This Phase 1 effort initiated a program to evaluate and demonstrate coatings, applied to nickel based Stirling engine heater head materials, that are practically 'insoluble' in sodium, potassium, and NaK. This program initiated a study of nickel aluminide as a coating and developed and demonstrated a heat pipe test vehicle that can be used to test candidate materials and coatings. Nickel 200 and nickel aluminide coated Nickel 200 were tested for 1000 hours at 800 C at a condensation heat flux of 25 W/sq cm. Subsequent analyses of the samples showed no visible sign of solubility corrosion of either coated or uncoated samples. The analysis technique, photomicrographs at 200X, has a resolution of better than 2.5 microns (.0001 in). The results indicate that the heat pipe environment is not directly

  1. Condensation and single-phase heat transfer coefficient and flow regime visualization in microchannel tubes for HFC-134A

    NASA Astrophysics Data System (ADS)

    Wang, Wei-Wen William

    This dissertation is to document experimental, local condensation and single-phase heat transfer and flow data of the minute diameter, microchannel tube and to develop correlation methods for optimizing the design of horizontal-microchannel condensers. It is essential to collect local data as the condensation progresses through several different flow patterns, since as more liquid is formed, the mechanism conducting heat transfer and flow is also changing. Therefore, the identification of the flow pattern is as important as the thermal and dynamic data. The experimental results were compared with correlation and flow regime maps from literature. The experiment using refrigerant HFC-134a in flat, multi-port aluminum tubing with 1.46mm hydraulic diameter was conducted. The characteristic of single-phase friction can be described with the analytical solution of square channel. The Gnielinski correlation provided good prediction of single-phase turbulent flow heat transfer. Higher mass fluxes and qualities resulted in increased condensation heat transfer and were more effective in the shear-dominated annular flow. The effect of temperature gradient from wall to refrigerant attributed profoundly in the gravity-dominated wavy/slug flow. Two correlation based on different flow mechanisms were developed for specified flow regimes. Finally, an asymptotic correlation was successfully proposed to account for the entire data regardless of flow patterns. Data taken from experiment and observations obtained from flow visualization, resulted in a better understanding of the physics in microchannel condensation, optimized designs in the microchannel condensers are now possible.

  2. Characterization of spacecraft humidity condensate

    NASA Technical Reports Server (NTRS)

    Muckle, Susan; Schultz, John R.; Sauer, Richard L.

    1994-01-01

    When construction of Space Station Freedom reaches the Permanent Manned Capability (PMC) stage, the Water Recovery and Management Subsystem will be fully operational such that (distilled) urine, spent hygiene water, and humidity condensate will be reclaimed to provide water of potable quality. The reclamation technologies currently baselined to process these waste waters include adsorption, ion exchange, catalytic oxidation, and disinfection. To ensure that the baseline technologies will be able to effectively remove those compounds presenting a health risk to the crew, the National Research Council has recommended that additional information be gathered on specific contaminants in waste waters representative of those to be encountered on the Space Station. With the application of new analytical methods and the analysis of waste water samples more representative of the Space Station environment, advances in the identification of the specific contaminants continue to be made. Efforts by the Water and Food Analytical Laboratory at JSC were successful in enlarging the database of contaminants in humidity condensate. These efforts have not only included the chemical characterization of condensate generated during ground-based studies, but most significantly the characterization of cabin and Spacelab condensate generated during Shuttle missions. The analytical results presented in this paper will be used to show how the composition of condensate varies amongst enclosed environments and thus the importance of collecting condensate from an environment close to that of the proposed Space Station. Although advances were made in the characterization of space condensate, complete characterization, particularly of the organics, requires further development of analytical methods.

  3. 46 CFR 56.50-35 - Condensate pumps.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... APPURTENANCES Design Requirements Pertaining to Specific Systems § 56.50-35 Condensate pumps. Two means shall be provided for discharging the condensate from the main condenser, one of which shall be mechanically... suction from the condenser and a discharge to the feed tank, it may be accepted as an independent...

  4. Electron-Hole Condensation in Semiconductors: Electrons and holes condense into freely moving liquid metallic droplets, a plasma phase with novel properties.

    PubMed

    Jeffries, C D

    1975-09-19

    In Ge and Si, and also in Ge-Si alloys (74), there is extensive evidence for the stable binding of electrons and holes into a cold plasma of constant density, which undergoes a phase separation. Liquid metallic drops 1 to 300 microm in size are formed, with lifetimes ranging from 0.1 to 600 microsec. For Ge a surprising amount is known: the phase diagram, the surface energy, the work function, the decay kinetics. Much less is known for Si. There is good agreement between theoretical and experimental values of the liquid density, the critical density, the critical temperature, and the binding energy. The stability of the liquid phase is strikingly dependent on band structure. The multivalley structure and mass anisotropy of Si, Ge, and Ge-Si, together with their indirect band gap, are no doubt responsible for the observed stability in these crystals. In the similar semiconductor gallium phosphide, drops have not yet been observed, most likely because the high impurity content traps the excitons. In gallium arsenide the existence of drops is controversial (75). Undoubtedly drops will be found to exist in other semiconductors, perhaps at even higher temperatures. This is an exciting field for the experimentalist; new phenomena are being rapidly discovered, usually before they are predicted. For the theorist, the electron-hole drop is of high intrinsic interest. It represents the first example of a quantum liquid of constant density in a periodic crystal lattice. A number of challenging experimental and theoretical problems remain.

  5. Intranuclear DNA density affects chromosome condensation in metazoans

    PubMed Central

    Hara, Yuki; Iwabuchi, Mari; Ohsumi, Keita; Kimura, Akatsuki

    2013-01-01

    Chromosome condensation is critical for accurate inheritance of genetic information. The degree of condensation, which is reflected in the size of the condensed chromosomes during mitosis, is not constant. It is differentially regulated in embryonic and somatic cells. In addition to the developmentally programmed regulation of chromosome condensation, there may be adaptive regulation based on spatial parameters such as genomic length or cell size. We propose that chromosome condensation is affected by a spatial parameter called the chromosome amount per nuclear space, or “intranuclear DNA density.” Using Caenorhabditis elegans embryos, we show that condensed chromosome sizes vary during early embryogenesis. Of importance, changing DNA content to haploid or polyploid changes the condensed chromosome size, even at the same developmental stage. Condensed chromosome size correlates with interphase nuclear size. Finally, a reduction in nuclear size in a cell-free system from Xenopus laevis eggs resulted in reduced condensed chromosome sizes. These data support the hypothesis that intranuclear DNA density regulates chromosome condensation. This suggests an adaptive mode of chromosome condensation regulation in metazoans. PMID:23783035

  6. Bose-Einstein Condensation and Bose Glasses in an S = 1 Organo-metallic quantum magnet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zapf, Vivien

    2012-06-01

    I will speak about Bose-Einstein condensation (BEC) in quantum magnets, in particular the compound NiCl2-4SC(NH2)2. Here a magnetic field-induced quantum phase transition to XY antiferromagnetism can be mapped onto BEC of the spins. The tuning parameter for BEC transition is the magnetic field rather than the temperature. Some interesting phenomena arise, for example the fact that the mass of the bosons that condense can be strongly renormalized by quantum fluctuations. I will discuss the utility of this mapping for both understanding the nature of the quantum magnetism and testing the thermodynamic limit of Bose-Einstein Condensation. Furthermore we can dope themore » system in a clean and controlled way to create the long sought-after Bose Glass transition, which is the bosonic analogy of Anderson localization. I will present experiments and simulations showing evidence for a new scaling exponent, which finally makes contact between theory and experiments. Thus we take a small step towards the difficult problem of understanding the effect of disorder on bosonic wave functions.« less

  7. The application of condensate water as an additional cooling media intermittently in condenser of a split air conditioning

    NASA Astrophysics Data System (ADS)

    Ardita, I. N.; Subagia, I. W. A.

    2018-01-01

    The condensate water produced by indoor a split air conditioning is usually not utilized and thrown away into the environment. The result of measurement shows that the temperature of condensate water produced by split air conditioning is quite low, that is 19-22 °C at the rate of 16-20 mL / min and it has PH balance. Under such conditions, Air Condensate produced by split air conditioning should still be recovered as an additional cooling medium on the condenser. This research will re-investigate the use of condensate water as an intermittent additional cooling of the condenser to increase the cooling capacity and performance of the air conditioning system. This research is done by experimental method whose implementation includes; designing and manufacturing of experimental equipment, mounting measuring tools, experimental data retrieval, data processing and yield analysis. The experimental results show that the use of condensate water as an intermittent additional cooling medium on split air conditioning condenser can increase the refrigeration effect about 2%, cooling capacity about 4% and 7% of COP system. Experimental results also show a decrease in power consumption in the system compressor about 3%

  8. Methodology for calculating the volume of condensate droplets on topographically modified, microgrooved surfaces.

    PubMed

    Sommers, A D

    2011-05-03

    Liquid droplets on micropatterned surfaces consisting of parallel grooves tens of micrometers in width and depth are considered, and a method for calculating the droplet volume on these surfaces is presented. This model, which utilizes the elongated and parallel-sided nature of droplets condensed on these microgrooved surfaces, requires inputs from two droplet images at ϕ = 0° and ϕ = 90°--namely, the droplet major axis, minor axis, height, and two contact angles. In this method, a circular cross-sectional area is extruded the length of the droplet where the chord of the extruded circle is fixed by the width of the droplet. The maximum apparent contact angle is assumed to occur along the side of the droplet because of the surface energy barrier to wetting imposed by the grooves--a behavior that was observed experimentally. When applied to water droplets condensed onto a microgrooved aluminum surface, this method was shown to calculate the actual droplet volume to within 10% for 88% of the droplets analyzed. This method is useful for estimating the volume of retained droplets on topographically modified, anisotropic surfaces where both heat and mass transfer occur and the surface microchannels are aligned parallel to gravity to assist in condensate drainage.

  9. Cryo-electron microscopy of vitrified SV40 minichromosomes: the liquid drop model.

    PubMed

    Dubochet, J; Adrian, M; Schultz, P; Oudet, P

    1986-03-01

    The structure of SV40 minichromosomes has been studied by cryo-electron microscopy of vitrified thin layers of solution. In high-salt buffer (130 mM NaCl), freshly prepared minichromosomes are condensed into globules 30 nm or more in diameter. On the micrograph, they appear to be formed by the close packing of 10 nm granules which give rise to a 10 nm reflection in the optical diffractogram. The globules can adopt many different conformations. At high concentration, they fuse into a homogeneous 'sea' of closely packed 10 nm granules. In low-salt buffer (less than 10 mM NaCl), the globules open, first into 10 nm filaments, and then into nucleosome-strings. The 'liquid drop' model is proposed to explain the condensed structure of the minichromosome in high-salt buffer: nucleosomes stack specifically on top of one another, thus forming the 10 nm filaments. 10 nm filaments in turn, tend to aggregate laterally. Optimizing both these interactions results in the condensation of 10 nm filaments or portions thereof into a structure similar to that of a liquid. Some implications of this model for the structure of cellular chromatin are discussed.

  10. Einstein–Bose condensation of Onsager vortices

    NASA Astrophysics Data System (ADS)

    Valani, Rahil N.; Groszek, Andrew J.; Simula, Tapio P.

    2018-05-01

    We have studied statistical mechanics of a gas of vortices in two dimensions. We introduce a new observable—a condensate fraction of Onsager vortices—to quantify the emergence of the vortex condensate. The condensation of Onsager vortices is most transparently observed in a single vortex species system and occurs due to a competition between solid body rotation (see vortex lattice) and potential flow (see multiple quantum vortex state). We propose an experiment to observe the condensation transition of the vortices in such a single vortex species system.

  11. Measurements of Surfactant Squeeze-out Using Magnetically-Levitated Liquid Bridges

    NASA Technical Reports Server (NTRS)

    Rosenblatt, Charles

    2004-01-01

    Liquid bridges: Columns of liquid supported by two solid surfaces. These are generally opposing right circular cylinders in 0g. For a cylindrical bridge of length L and diameter d, in zero g, the maximum slenderness ratio Lambda [L/d] = pi [Rayleigh]. In the presence of gravity the cylindrical shape of an axisymmetric bridge tends to deform. Fluid has a volumetric magnetic susceptibility X. Magnetic levitation has numerous applications in studies of fluids, "soft" and "hard" condensed matter physics, and biophysics

  12. Analysis of condensed and hydrolysable tannins from commercial plant extracts.

    PubMed

    Romani, A; Ieri, F; Turchetti, B; Mulinacci, N; Vincieri, F F; Buzzini, P

    2006-05-03

    High performance liquid chromatography (HPLC)/DAD and MS qualitative and quantitative analyses of polyphenols, hydrolysable and condensed tannins from Pinus maritima L. and tannic acid (TA) extracts were performed using normal and reverse phase. Normal-phase HPLC was more suitable for pine bark (PBE) and tannic acid extracts analysis. The chromatographic profile revealed that P. maritima L. extract was mainly composed by polymeric flavanols (containing from two to seven units) and tannic acid (characterized by a mixture of glucose gallates containing from three to seven units of gallic acid). Concerning their antimycotic properties, P. maritima L. extract exhibited a broad activity towards yeast strains of the genera Candida, Cryptococcus, Filobasidiella, Issatchenkia, Saccharomyces: MICs from 200 to 4000 microg/ml (corresponding to 140-2800 microg/ml of active polyphenols) were determined. Conversely, no activity of tannic acid was observed over the same target microorganisms. Taken into consideration the above results of HPLC analysis and on the basis of the current literature, we may conclude that only 70.2% of polyphenols (recognized as condensed tannins) occurring in P. maritima L. extract can be apparently considered responsible for its antimycotic activity.

  13. Design analysis of a Helium re-condenser

    NASA Astrophysics Data System (ADS)

    Muley, P. K.; Bapat, S. L.; Atrey, M. D.

    2017-02-01

    Modern helium cryostats deploy a cryocooler with a re-condenser at its II stage for in-situ re-condensation of boil-off vapor. The present work is a vital step in the ongoing research work of design of cryocooler based 100 litre helium cryostat with in-situ re-condensation. The cryostat incorporates a two stage Gifford McMahon cryocooler having specified refrigerating capacity of 40 W at 43 K for I stage and 1 W at 4.2 K for II stage. Although design of cryostat ensures thermal load for cryocooler below its specified refrigerating capacity at the second stage, successful in-situ re-condensation depends on proper design of re-condenser which forms the objective of this work. The present work proposes design of helium re-condenser with straight rectangular fins. Fins are analyzed for optimization of thermal performance parameters such as condensation heat transfer coefficient, surface area for heat transfer, re-condensing capacity, efficiency and effectiveness. The present work provides design of re-condenser with 19 integral fins each of 10 mm height and 1.5 mm thickness with a gap of 1.5 mm between two fins, keeping in mind the manufacturing feasibility, having efficiency of 80.96 % and effectiveness of 10.34.

  14. Structural colored liquid membrane without angle dependence.

    PubMed

    Takeoka, Yukikazu; Honda, Masaki; Seki, Takahiro; Ishii, Masahiko; Nakamura, Hiroshi

    2009-05-01

    We have demonstrated for the first time that condensed gel particle suspensions in amorphous-like states display structural color with low angle dependence. This finding is in contrast to the common understanding that a periodic dielectric structure is fundamental to photonic band gap (PBG) production, and it validates the theory that a "tight bonding model" that is applicable to semiconductor systems can also be applied to photonic systems. More practically, this structural colored suspension represents a promising new material for the manufacture of reflective full-color displays with a wide viewing angle and nonfading color materials. This liquid system shows promise as a display material because electronic equipment used for display systems can easily be filled with the liquid in the same way that liquid crystals are currently used.

  15. Capillary-Condenser-Pumped Heat-Transfer Loop

    NASA Technical Reports Server (NTRS)

    Silverstein, Calvin C.

    1989-01-01

    Heat being transferred supplies operating power. Capillary-condenser-pumped heat-transfer loop similar to heat pipe and to capillary-evaporator-pumped heat-transfer loop in that heat-transfer fluid pumped by evaporation and condensation of fluid at heat source and sink, respectively. Capillary condenser pump combined with capillary evaporator pump to form heat exchanger circulating heat-transfer fluids in both loops. Transport of heat more nearly isothermal. Thermal stress in loop reduced, and less external surface area needed in condenser section for rejection of heat to heat sink.

  16. Tachyon condensation due to domain-wall annihilation in Bose-Einstein condensates.

    PubMed

    Takeuchi, Hiromitsu; Kasamatsu, Kenichi; Tsubota, Makoto; Nitta, Muneto

    2012-12-14

    We show theoretically that a domain-wall annihilation in two-component Bose-Einstein condensates causes tachyon condensation accompanied by spontaneous symmetry breaking in a two-dimensional subspace. Three-dimensional vortex formation from domain-wall annihilations is considered a kink formation in subspace. Numerical experiments reveal that the subspatial dynamics obey the dynamic scaling law of phase-ordering kinetics. This model is experimentally feasible and provides insights into how the extra dimensions influence subspatial phase transition in higher-dimensional space.

  17. Ultra-low threshold polariton condensation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steger, Mark; Fluegel, Brian; Alberi, Kirstin

    Here, we demonstrate the condensation of microcavity polaritons with a very sharp threshold occurring at a two orders of magnitude pump intensity lower than previous demonstrations of condensation. The long cavity lifetime and trapping and pumping geometries are crucial to the realization of this low threshold. Polariton condensation, or 'polariton lasing' has long been proposed as a promising source of coherent light at a lower threshold than traditional lasing, and these results indicate some considerations for optimizing designs for lower thresholds.

  18. Ultra-low threshold polariton condensation

    DOE PAGES

    Steger, Mark; Fluegel, Brian; Alberi, Kirstin; ...

    2017-03-13

    Here, we demonstrate the condensation of microcavity polaritons with a very sharp threshold occurring at a two orders of magnitude pump intensity lower than previous demonstrations of condensation. The long cavity lifetime and trapping and pumping geometries are crucial to the realization of this low threshold. Polariton condensation, or 'polariton lasing' has long been proposed as a promising source of coherent light at a lower threshold than traditional lasing, and these results indicate some considerations for optimizing designs for lower thresholds.

  19. Design and optimization of integrated gas/condensate plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Root, C.R.; Wilson, J.L.

    1995-11-01

    An optimized design is demonstrated for combining gas processing and condensate stabilization plants into a single integrated process facility. This integrated design economically provides improved condensate recovery versus use of a simple stabilizer design. A selection matrix showing likely application of this integrated process is presented for use on future designs. Several methods for developing the fluid characterization and for using a process simulator to predict future design compositions are described, which could be useful in other designs. Optimization of flowsheet equipment choices and of design operating pressures and temperatures is demonstrated including the effect of both continuous and discretemore » process equipment size changes. Several similar designs using a turboexpander to provide refrigeration for liquids recovery and stabilizer reflux are described. Operating overthrust and from the P/15-D platform in the Dutch sector of the North Sea has proven these integrated designs are effective. Concerns do remain around operation near or above the critical pressure that should be addressed in future work including providing conservative separator designs, providing sufficient process design safety margin to meet dew point specifications, selecting the most conservative design values of predicted gas dew point and equipment size calculated with different Equations-of-State, and possibly improving the accuracy of PVT calculations in the near critical area.« less

  20. Zygmunt Bauman. Individual and society in the liquid modernity.

    PubMed

    Palese, Emma

    2013-01-01

    Starting from the postmodern, the philosophical and sociological speculation by Zygmunt Bauman, opens - through the analysis of the phenomenon of globalization - to the meta-level of life, and then circumscribes the most recent thinking on political life, until reaching the liquid modernity: overcoming postmodernity itself. As a result individual, society, ethics, power, religion become those words impregnated with a liquidity capable of condensing in itself the most significant aspects of the present reality: a dimension in which the lasting gives way to the transient, the need to the desire, and the necessity to the utility.

  1. Dielectric constant and low-frequency infrared spectra for liquid water and ice Ih within the E3B model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, L.; Ni, Y.; Drews, S. E. P.

    2014-08-28

    Two intrinsic difficulties in modeling condensed-phase water with conventional rigid non-polarizable water models are: reproducing the static dielectric constants for liquid water and ice Ih, and generating the peak at about 200 cm{sup −1} in the low-frequency infrared spectrum for liquid water. The primary physical reason for these failures is believed to be the missing polarization effect in these models, and consequently various sophisticated polarizable water models have been developed. However, in this work we pursue a different strategy and propose a simple empirical scheme to include the polarization effect only on the dipole surface (without modifying a model's intermolecularmore » interaction potential). We implement this strategy for our explicit three-body (E3B) model. Our calculated static dielectric constants and low-frequency infrared spectra are in good agreement with experiment for both liquid water and ice Ih over wide temperature ranges, albeit with one fitting parameter for each phase. The success of our modeling also suggests that thermal fluctuations about local minima and the energy differences between different proton-disordered configurations play minor roles in the static dielectric constant of ice Ih. Our analysis shows that the polarization effect is important in resolving the two difficulties mentioned above and sheds some light on the origin of several features in the low-frequency infrared spectra for liquid water and ice Ih.« less

  2. Dielectric constant and low-frequency infrared spectra for liquid water and ice Ih within the E3B model.

    PubMed

    Shi, L; Ni, Y; Drews, S E P; Skinner, J L

    2014-08-28

    Two intrinsic difficulties in modeling condensed-phase water with conventional rigid non-polarizable water models are: reproducing the static dielectric constants for liquid water and ice Ih, and generating the peak at about 200 cm(-1) in the low-frequency infrared spectrum for liquid water. The primary physical reason for these failures is believed to be the missing polarization effect in these models, and consequently various sophisticated polarizable water models have been developed. However, in this work we pursue a different strategy and propose a simple empirical scheme to include the polarization effect only on the dipole surface (without modifying a model's intermolecular interaction potential). We implement this strategy for our explicit three-body (E3B) model. Our calculated static dielectric constants and low-frequency infrared spectra are in good agreement with experiment for both liquid water and ice Ih over wide temperature ranges, albeit with one fitting parameter for each phase. The success of our modeling also suggests that thermal fluctuations about local minima and the energy differences between different proton-disordered configurations play minor roles in the static dielectric constant of ice Ih. Our analysis shows that the polarization effect is important in resolving the two difficulties mentioned above and sheds some light on the origin of several features in the low-frequency infrared spectra for liquid water and ice Ih.

  3. Benzoin Condensation: Monitoring a Chemical Reaction by High-Pressure Liquid Chromatography

    ERIC Educational Resources Information Center

    Bhattacharya, Apurba; Purohit, Vikram C.; Bellar, Nicholas R.

    2004-01-01

    High-pressure liquid chromatography (HPLC) is the preferred method of separating a variety of materials in complex mixtures such as pharmaceuticals, polymers, soils, food products and biological fluids and is also considered to be a powerful analytical tool in both academia and industry. The use of HPLC analysis as a means of monitoring and…

  4. String Theory Methods for Condensed Matter Physics

    NASA Astrophysics Data System (ADS)

    Nastase, Horatiu

    2017-09-01

    Preface; Acknowledgments; Introduction; Part I. Condensed Matter Models and Problems: 1. Lightning review of statistical mechanics, thermodynamics, phases and phase transitions; 2. Magnetism in solids; 3. Electrons in solids: Fermi gas vs. Fermi liquid; 4. Bosonic quasi-particles: phonons and plasmons; 5. Spin-charge separation in 1+1 dimensional solids: spinons and holons; 6. The Ising model and the Heisenberg spin chain; 7. Spin chains and integrable systems; 8. The thermodynamic Bethe ansatz; 9. Conformal field theories and quantum phase transitions; 10. Classical vs. quantum Hall effect; 11. Superconductivity: Landau-Ginzburg, London and BCS; 12. Topology and statistics: Berry and Chern-Simons, anyons and nonabelions; 13. Insulators; 14. The Kondo effect and the Kondo problem; 15. Hydrodynamics and transport properties: from Boltzmann to Navier-Stokes; Part II. Elements of General Relativity and String Theory: 16. The Einstein equation and the Schwarzschild solution; 17. The Reissner-Nordstrom and Kerr-Newman solutions and thermodynamic properties of black holes; 18. Extra dimensions and Kaluza-Klein; 19. Electromagnetism and gravity in various dimensions. Consistent truncations; 20. Gravity plus matter: black holes and p-branes in various dimensions; 21. Weak/strong coupling dualities in 1+1, 2+1, 3+1 and d+1 dimensions; 22. The relativistic point particle and the relativistic string; 23. Lightcone strings and quantization; 24. D-branes and gauge fields; 25. Electromagnetic fields on D-branes. Supersymmetry and N = 4 SYM. T-duality of closed strings; 26. Dualities and M theory; 27. The AdS/CFT correspondence: definition and motivation; Part III. Applying String Theory to Condensed Matter Problems: 28. The pp wave correspondence: string Hamiltonian from N = 4 SYM; 29. Spin chains from N = 4 SYM; 30. The Bethe ansatz: Bethe strings from classical strings in AdS; 31. Integrability and AdS/CFT; 32. AdS/CFT phenomenology: Lifshitz, Galilean and Schrodinger

  5. Generic Primary Mechanical Response of Viscous Liquids

    NASA Astrophysics Data System (ADS)

    Bierwirth, S. Peter; Böhmer, Roland; Gainaru, Catalin

    2017-12-01

    Four decades ago a seminal review by Jonscher [Nature (London) 267, 673 (1977), 10.1038/267673a0] revealed that the dielectric response of conducting materials is characterized by a "remarkable universality". Demonstrating that the same response pattern is exhibited also by shear rheological spectra of nonpolymeric viscous liquids, the present contribution connects two branches of condensed matter physics: Concepts developed for charge transport can be employed for the description of mass flow and vice versa. Based on the virtual equivalence of the two dynamics a connection is established between microscopic and macroscopic viscoelastic characteristics of liquids, resembling the Barton-Nakajima-Namikawa relation for conductivity.

  6. Investigation of Condensing Ice Heat Exchangers for MTSA Technology Development

    NASA Technical Reports Server (NTRS)

    Padilla, Sebastian; Powers, Aaron; Ball, Tyler; Iacomini, Christie; Paul, Heather, L.

    2008-01-01

    Metabolic heat regenerated Temperature Swing Adsorption (MTSA) technology is being developed for thermal, carbon dioxide (CO2) and humidity control for a Portable Life Support Subsystem (PLSS). Metabolically-produced CO2 present in the ventilation gas of a PLSS is collected using a CO2selective adsorbent via temperature swing adsorption. The temperature swing is initiated through cooling to well below metabolic temperatures. Cooling is achieved with a sublimation heat exchanger using water or liquid carbon dioxide (LCO2) expanded below sublimation temperature when exposed to low pressure or vacuum. Subsequent super heated vapor, as well as additional coolant, is used to further cool the astronaut. The temperature swing on the adsorbent is then completed by warming the adsorbent with a separate condensing ice heat exchanger (CIHX) using metabolic heat from moist ventilation gas. The condensed humidity in the ventilation gas is recycled at the habitat. The water condensation from the ventilation gas is a significant heat transfer mechanism for the warming of the adsorbent bed because it represents as much as half of the energy potential in the moist ventilation gas. Designing a heat exchanger to efficiently transfer this energy to the adsorbent bed and allow the collection of the water is a challenge since the CIHX will operate in a temperature range from 210K to 280K. The ventilation gas moisture will first freeze and then thaw, sometimes existing in three phases simultaneously. A NASA Small Business Innovative Research (SBIR) Phase 1 contract was performed to investigate condensing and icing as applied to MTSA to enable higher fidelity modeling and assess the impact of geometry variables on CIHX performance for future CIHX design optimization. Specifically, a design tool was created using analytical relations to explore the complex, interdependent design space of a condensing ice heat exchanger. Numerous variables were identified as having nontrivial contributions

  7. Supercooled and glassy water: Metastable liquid(s), amorphous solid(s), and a no-man's land

    NASA Astrophysics Data System (ADS)

    Handle, Philip H.; Loerting, Thomas; Sciortino, Francesco

    2017-12-01

    We review the recent research on supercooled and glassy water, focusing on the possible origins of its complex behavior. We stress the central role played by the strong directionality of the water-water interaction and by the competition between local energy, local entropy, and local density. In this context we discuss the phenomenon of polyamorphism (i.e., the existence of more than one disordered solid state), emphasizing both the role of the preparation protocols and the transformation between the different disordered ices. Finally, we present the ongoing debate on the possibility of linking polyamorphism with a liquid-liquid transition that could take place in the no-man's land, the temperature-pressure window in which homogeneous nucleation prevents the investigation of water in its metastable liquid form.

  8. Theory of the spin-1 bosonic liquid metal - Equilibrium properties of liquid metallic deuterium

    NASA Technical Reports Server (NTRS)

    Oliva, J.; Ashcroft, N. W.

    1984-01-01

    The theory of a two-component quantum fluid comprised of spin-1/2 fermions and nonzero spin bosons is examined. This system is of interest because it embodies a possible quantum liquid metallic phase of highly compressed deuterium. Bose condensation is assumed present and the two cases of nuclear-spin-polarized and -unpolarized systems are considered. A significant feature in the unpolarized case is the presence of a nonmagnetic mode with quadratic dispersion owing its existence to nonzero boson spin. The physical character of this mode is examined in detail within a Bogoliubov approach. The specific heat, bulk modulus, spin susceptibility, and thermal expansion are all determined. Striking contrasts in the specific heats and thermal-expansion coefficients of the liquid and corresponding normal solid metallic phase are predicted.

  9. 46 CFR 56.50-35 - Condensate pumps.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... provided for discharging the condensate from the main condenser, one of which shall be mechanically... suction from the condenser and a discharge to the feed tank, it may be accepted as an independent...

  10. The novel metallic states of the cuprates: Topological Fermi liquids and strange metals

    NASA Astrophysics Data System (ADS)

    Sachdev, Subir; Chowdhury, Debanjan

    2016-12-01

    We review ideas on the nature of the metallic states of the hole-doped cuprate high temperature superconductors, with an emphasis on the connections between the Luttinger theorem for the size of the Fermi surface, topological quantum field theories (TQFTs), and critical theories involving changes in the size of the Fermi surface. We begin with the derivation of the Luttinger theorem for a Fermi liquid, using momentum balance during a process of flux insertion in a lattice electronic model with toroidal boundary conditions. We then review the TQFT of the ℤ spin liquid, and demonstrate its compatibility with the toroidal momentum balance argument. This discussion leads naturally to a simple construction of "topological" Fermi liquid states: the fractionalized Fermi liquid (FL*) and the algebraic charge liquid (ACL). We present arguments for a description of the pseudogap metal of the cuprates using ℤ-FL* or ℤ-ACL states with Ising-nematic order. These pseudogap metal states are also described as Higgs phases of a SU(2) gauge theory. The Higgs field represents local antiferromagnetism, but the Higgs-condensed phase does not have long-range antiferromagnetic order: the magnitude of the Higgs field determines the pseudogap, the reconstruction of the Fermi surface, and the Ising-nematic order. Finally, we discuss the route to the large Fermi surface Fermi liquid via the critical point where the Higgs condensate and Ising nematic order vanish, and the application of Higgs criticality to the strange metal.

  11. Experimental Investigation of Jet-Induced Mixing of a Large Liquid Hydrogen Storage Tank

    NASA Technical Reports Server (NTRS)

    Lin, C. S.; Hasan, M. M.; Vandresar, N. T.

    1994-01-01

    Experiments have been conducted to investigate the effect of fluid mixing on the depressurization of a large liquid hydrogen storage tank. The test tank is approximately ellipsoidal, having a volume of 4.89 m(exp 3) and an average wall heat flux of 4.2 W/m(exp 2) due to external heat input. A mixer unit was installed near the bottom of the tank to generate an upward directed axial jet flow normal to the liquid-vapor interface. Mixing tests were initiated after achieving thermally stratified conditions in the tank either by the introduction of hydrogen gas into the tank or by self-pressurization due to ambient heat leak through the tank wall. The subcooled liquid jet directed towards the liquid-vapor interface by the mixer induced vapor condensation and caused a reduction in tank pressure. Tests were conducted at two jet submergence depths for jet Reynolds numbers from 80,000 to 495,000 and Richardson numbers from 0.014 to 0.52. Results show that the rate of tank pressure change is controlled by the competing effects of subcooled jet flow and the free convection boundary layer flow due to external tank wall heating. It is shown that existing correlations for mixing time and vapor condensation rate based on small scale tanks may not be applicable to large scale liquid hydrogen systems.

  12. US crude oil, natural gas, and natural gas liquids reserves 1996 annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-12-01

    The EIA annual reserves report series is the only source of comprehensive domestic proved reserves estimates. This publication is used by the Congress, Federal and State agencies, industry, and other interested parties to obtain accurate estimates of the Nation`s proved reserves of crude oil, natural gas, and natural gas liquids. These data are essential to the development, implementation, and evaluation of energy policy and legislation. This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1996, as well as production volumes for the US and selected States and State subdivisionsmore » for the year 1996. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1996 is provided. 21 figs., 16 tabs.« less

  13. Phase behaviour of disordered proteins underlying low density and high permeability of liquid organelles

    NASA Astrophysics Data System (ADS)

    Wei, Ming-Tzo; Elbaum-Garfinkle, Shana; Holehouse, Alex S.; Chen, Carlos Chih-Hsiung; Feric, Marina; Arnold, Craig B.; Priestley, Rodney D.; Pappu, Rohit V.; Brangwynne, Clifford P.

    2017-11-01

    Many intracellular membraneless organelles form via phase separation of intrinsically disordered proteins (IDPs) or regions (IDRs). These include the Caenorhabditis elegans protein LAF-1, which forms P granule-like droplets in vitro. However, the role of protein disorder in phase separation and the macromolecular organization within droplets remain elusive. Here, we utilize a novel technique, ultrafast-scanning fluorescence correlation spectroscopy, to measure the molecular interactions and full coexistence curves (binodals), which quantify the protein concentration within LAF-1 droplets. The binodals of LAF-1 and its IDR display a number of unusual features, including 'high concentration' binodal arms that correspond to remarkably dilute droplets. We find that LAF-1 and other in vitro and intracellular droplets are characterized by an effective mesh size of ∼3-8 nm, which determines the size scale at which droplet properties impact molecular diffusion and permeability. These findings reveal how specific IDPs can phase separate to form permeable, low-density (semi-dilute) liquids, whose structural features are likely to strongly impact biological function.

  14. Regulation of RNA granule dynamics by phosphorylation of serine-rich, intrinsically disordered proteins in C. elegans

    PubMed Central

    Wang, Jennifer T; Smith, Jarrett; Chen, Bi-Chang; Schmidt, Helen; Rasoloson, Dominique; Paix, Alexandre; Lambrus, Bramwell G; Calidas, Deepika; Betzig, Eric; Seydoux, Geraldine

    2014-01-01

    RNA granules have been likened to liquid droplets whose dynamics depend on the controlled dissolution and condensation of internal components. The molecules and reactions that drive these dynamics in vivo are not well understood. In this study, we present evidence that a group of intrinsically disordered, serine-rich proteins regulate the dynamics of P granules in C. elegans embryos. The MEG (maternal-effect germline defective) proteins are germ plasm components that are required redundantly for fertility. We demonstrate that MEG-1 and MEG-3 are substrates of the kinase MBK-2/DYRK and the phosphatase PP2APPTR−½. Phosphorylation of the MEGs promotes granule disassembly and dephosphorylation promotes granule assembly. Using lattice light sheet microscopy on live embryos, we show that GFP-tagged MEG-3 localizes to a dynamic domain that surrounds and penetrates each granule. We conclude that, despite their liquid-like behavior, P granules are non-homogeneous structures whose assembly in embryos is regulated by phosphorylation. DOI: http://dx.doi.org/10.7554/eLife.04591.001 PMID:25535836

  15. Slowing dynamics in supercooled liquids and other soft materials

    NASA Astrophysics Data System (ADS)

    Yardimci, Hasan

    The slow structural dynamics displayed by supercooled liquids and the transition to an out-of-equilibrium glass state that they engender are among the most challenging issues in condensed matter physics. This thesis reports experimental studies designed to elucidate central aspects of these slow dynamics and the nature of the glass state. The subjects of these studies include glass forming molecular liquids and other soft materials that have been advanced as model glassy systems such as clay suspensions and block copolymer micelle solutions. The main experimental techniques employed in these investigations have been dielectric susceptibility and neutron scattering. In the first half of this thesis, we report frequency-dependent dielectric susceptibility measurements characterizing the evolution in the dynamical properties, or aging, of two supercooled liquids, sorbitol and xylitol, quenched below their calorimetric glass transition temperatures, Tg. In addition to the alpha relaxation that tracks the structural dynamics, the susceptibilities of both liquids possess a secondary Johari-Goldstein relaxation at higher frequencies. Following a quench below Tg, the susceptibility slowly approaches equilibrium behavior. For both liquids features of the Johari-Goldstein relaxation display a dependence on the time since the quench, or aging time, that is very similar to the age dependence of the alpha peak. Implications of these findings for aging in glasses and the nature of Johari-Goldstein relaxation are discussed. Further investigation of the aging in sorbitol reveals that it displays memory strikingly similar to that of a variety of glassy materials, particularly spin glasses. During a temporary stop in cooling, the susceptibility changes with time due to aging. The memory is revealed upon reheating as the susceptibility retraces these changes. To investigate the out-of-equilibrium state of the liquid as it displays this memory, we have employed a set of intricate

  16. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT: NEW CONDENSATOR, INC.--THE CONDENSATOR DIESEL ENGINE RETROFIT CRANKCASE VENTILATION SYSTEM

    EPA Science Inventory

    EPA's Environmental Technology Verification Program has tested New Condensator Inc.'s Condensator Diesel Engine Retrofit Crankcase Ventilation System. Brake specific fuel consumption (BSFC), the ratio of engine fuel consumption to the engine power output, was evaluated for engine...

  17. Oliver E. Buckley Condensed Matter Prize: Quantum-topological phases of matter

    NASA Astrophysics Data System (ADS)

    Wen, Xiao-Gang

    For a long time, we thought that symmetry breaking patterns describe all phases and phase transitions. The featureless disordered liquids correspond to trivial phase. But in fact disordered liquids have very rich features, with amazing emergent phenomena, such as fractional quantum numbers, fractional and non-abelian statistics, perfect conducting boundary even in presence of magnetic impurities, etc. All those are due to many-body entanglement. In this talk, I will first discuss topological phases that have topological order (ie with long range entanglement). Then I will cover topological phases that have no topological order (ie with only short-range entanglement). I will stress on how to understand and describe many-body entanglement, which is a very new phenomenon. This research is supported by NSF Grant No. DMR-1506475.

  18. Electron transport in biomolecular gaseous and liquid systems: theory, experiment and self-consistent cross-sections

    NASA Astrophysics Data System (ADS)

    White, R. D.; Cocks, D.; Boyle, G.; Casey, M.; Garland, N.; Konovalov, D.; Philippa, B.; Stokes, P.; de Urquijo, J.; González-Magaña, O.; McEachran, R. P.; Buckman, S. J.; Brunger, M. J.; Garcia, G.; Dujko, S.; Petrovic, Z. Lj

    2018-05-01

    Accurate modelling of electron transport in plasmas, plasma-liquid and plasma-tissue interactions requires (i) the existence of accurate and complete sets of cross-sections, and (ii) an accurate treatment of electron transport in these gaseous and soft-condensed phases. In this study we present progress towards the provision of self-consistent electron-biomolecule cross-section sets representative of tissue, including water and THF, by comparison of calculated transport coefficients with those measured using a pulsed-Townsend swarm experiment. Water–argon mixtures are used to assess the self-consistency of the electron-water vapour cross-section set proposed in de Urquijo et al (2014 J. Chem. Phys. 141 014308). Modelling of electron transport in liquids and soft-condensed matter is considered through appropriate generalisations of Boltzmann’s equation to account for spatial-temporal correlations and screening of the electron potential. The ab initio formalism is applied to electron transport in atomic liquids and compared with available experimental swarm data for these noble liquids. Issues on the applicability of the ab initio formalism for krypton are discussed and addressed through consideration of the background energy of the electron in liquid krypton. The presence of self-trapping (into bubble/cluster states/solvation) in some liquids requires a reformulation of the governing Boltzmann equation to account for the combined localised–delocalised nature of the resulting electron transport. A generalised Boltzmann equation is presented which is highlighted to produce dispersive transport observed in some liquid systems.

  19. Organic condensation: a vital link connecting aerosol formation to cloud condensation nuclei (CCN) concentrations

    NASA Astrophysics Data System (ADS)

    Riipinen, I.; Pierce, J. R.; Yli-Juuti, T.; Nieminen, T.; Häkkinen, S.; Ehn, M.; Junninen, H.; Lehtipalo, K.; Petäjä, T.; Slowik, J.; Chang, R.; Shantz, N. C.; Abbatt, J.; Leaitch, W. R.; Kerminen, V.-M.; Worsnop, D. R.; Pandis, S. N.; Donahue, N. M.; Kulmala, M.

    2011-04-01

    Atmospheric aerosol particles influence global climate as well as impair air quality through their effects on atmospheric visibility and human health. Ultrafine (<100 nm) particles often dominate aerosol numbers, and nucleation of atmospheric vapors is an important source of these particles. To have climatic relevance, however, the freshly nucleated particles need to grow in size. We combine observations from two continental sites (Egbert, Canada and Hyytiälä, Finland) to show that condensation of organic vapors is a crucial factor governing the lifetimes and climatic importance of the smallest atmospheric particles. We model the observed ultrafine aerosol growth with a simplified scheme approximating the condensing species as a mixture of effectively non-volatile and semi-volatile species, demonstrate that state-of-the-art organic gas-particle partitioning models fail to reproduce the observations, and propose a modeling approach that is consistent with the measurements. We find that roughly half of the mass of the condensing mass needs to be distributed proportional to the aerosol surface area (thus implying that the condensation is governed by gas-phase concentration rather than the equilibrium vapour pressure) to explain the observed aerosol growth. We demonstrate the large sensitivity of predicted number concentrations of cloud condensation nuclei (CCN) to these interactions between organic vapors and the smallest atmospheric nanoparticles - highlighting the need for representing this process in global climate models.

  20. Satellite Testbed for Evaluating Cryogenic-Liquid Behavior in Microgravity

    NASA Technical Reports Server (NTRS)

    Putman, Philip Travis (Inventor)

    2017-01-01

    Provided is a testbed for conducting an experiment on a substance in a cryogenic liquid state in a microgravity environment. The testbed includes a frame with rectangular nominal dimensions, and a source section including a supply of the substance to be evaluated in the cryogenic liquid state. An experiment section includes an experiment vessel in fluid communication with the storage section to receive the substance from the storage section and condense the substance into the cryogenic liquid state. A sensor is adapted to sense a property of the substance in the cryogenic liquid state in the experiment vessel as part of the experiment. A bus section includes a controller configured to control delivery of the substance from the storage section to the experiment vessel, and receive property data indicative of the property sensed by the sensor for subsequent evaluation on Earth.

  1. Condensation heat transfer and flow friction in silicon microchannels

    NASA Astrophysics Data System (ADS)

    Wu, Huiying; Wu, Xinyu; Qu, Jian; Yu, Mengmeng

    2008-11-01

    An experimental investigation was performed on heat transfer and flow friction characteristics during steam condensation flow in silicon microchannels. Three sets of trapezoidal silicon microchannels, with hydraulic diameters of 77.5 µm, 93.0 µm and 128.5 µm respectively, were tested under different flow and cooling conditions. It was found that both the condensation heat transfer Nusselt number (Nu) and the condensation two-phase frictional multiplier (phi2Lo) were dependent on the steam Reynolds number (Rev), condensation number (Co) and dimensionless hydraulic diameter (Dh/L). With the increase in the steam Reynolds number, condensation number and dimensionless hydraulic diameter, the condensation Nusselt number increased. However, different variations were observed for the condensation two-phase frictional multiplier. With the increase in the steam Reynolds number and dimensionless hydraulic diameter, the condensation two-phase frictional multiplier decreased, while with the increase in the condensation number, the condensation two-phase frictional multiplier increased. Based on the experimental results, dimensionless correlations for condensation heat transfer and flow friction in silicon microchannels were proposed for the first time. These correlations can be used to determine the condensation heat transfer coefficient and pressure drop in silicon microchannels if the steam mass flow rate, cooling rate and geometric parameters are fixed. It was also found that the condensation heat transfer and flow friction have relations to the injection flow (a transition flow pattern from the annular flow to the slug/bubbly flow), and with injection flow moving toward the outlet, both the condensation heat transfer coefficient and the condensation two-phase frictional multiplier increased.

  2. Amine catalyzed condensation of tetraethylorthosilicate

    NASA Technical Reports Server (NTRS)

    Jones, S.

    2001-01-01

    The catalysis of the condensation of hydrolyzed metal alkoxides by amines has been mentioned in the literature, but there has been no systematic study of their influence on the rate of the condensation reaction of the alkoxide and the microstructure of the resultant gel.

  3. A two-dimensional algebraic quantum liquid produced by an atomic simulator of the quantum Lifshitz model

    NASA Astrophysics Data System (ADS)

    Po, Hoi Chun; Zhou, Qi

    2015-08-01

    Bosons have a natural instinct to condense at zero temperature. It is a long-standing challenge to create a high-dimensional quantum liquid that does not exhibit long-range order at the ground state, as either extreme experimental parameters or sophisticated designs of microscopic Hamiltonians are required for suppressing the condensation. Here we show that synthetic gauge fields for ultracold atoms, using either the Raman scheme or shaken lattices, provide physicists a simple and practical scheme to produce a two-dimensional algebraic quantum liquid at the ground state. This quantum liquid arises at a critical Lifshitz point, where a two-dimensional quartic dispersion emerges in the momentum space, and many fundamental properties of two-dimensional bosons are changed in its proximity. Such an ideal simulator of the quantum Lifshitz model allows experimentalists to directly visualize and explore the deconfinement transition of topological excitations, an intriguing phenomenon that is difficult to access in other systems.

  4. Condensed Matter Nuclear Science

    NASA Astrophysics Data System (ADS)

    Biberian, Jean-Paul

    2006-02-01

    into characteristics of X-ray emission laser beams from solidstate cathode medium of high-current glow discharge / A. B. Karabut. Charged particles from Ti and Pd foils / L. Kowalski ... [et al.]. Cr-39 track detectors in cold fusion experiments: review and perspectives / A. S. Roussetski. Energetic particle shower in the vapor from electrolysis / R. A. Oriani and J. C. Fisher. Nuclear reactions produced in an operating electrolysis cell / R. A. Oriani and J. C. Fisher. Evidence of microscopic ball lightning in cold fusion experiments / E. H. Lewis. Neutron emission from D[symbol] gas in magnetic fields under low temperature / T. Mizuno ... [et al.]. Energetic charged particle emission from hydrogen-loaded Pd and Ti cathodes and its enhancement by He-4 implantation / A. G. Lipson ... [et al.]. H-D permeation. Observation of nuclear transmutation reactions induced by D[symbol] gas permeation through Pd complexes / Y. Iwamura ... [et al.]. Deuterium (hydrogen) flux permeating through palladium and condensed matter nuclear science / Q. M. Wei ... [et al.]. Triggering. Precursors and the fusion reactions in polarized Pd/D-D[symbol]O system: effect of an external electric field / S. Szpak, P. A. Mosier-Boss, and F. E. Gordon. Calorimetric and neutron diagnostics of liquids during laser irradiation / Yu. N. Bazhutov ... [et al.]. Anomalous neutron capture and plastic deformation of Cu and Pd cathodes during electrolysis in a weak thermalized neutron field: evidence of nuclei-lattice exchange / A. G. Lipson and G. H. Miley. H-D loading. An overview of experimental studies on H/Pd over-loading with thin Pd wires and different electrolytic solutions / A. Spallone ... [et al.] -- 3. Transmutations. Photon and particle emission, heat production, and surface transformation in Ni-H system / E. Campari ... [et al.]. Surface analysis of hydrogen-loaded nickel alloys / E. Campari ... [et al.]. Low-energy nuclear reactions and the leptonic monopole / G. Lochak and L. Urutskoev. Results

  5. Bose-Einstein condensation of light: general theory.

    PubMed

    Sob'yanin, Denis Nikolaevich

    2013-08-01

    A theory of Bose-Einstein condensation of light in a dye-filled optical microcavity is presented. The theory is based on the hierarchical maximum entropy principle and allows one to investigate the fluctuating behavior of the photon gas in the microcavity for all numbers of photons, dye molecules, and excitations at all temperatures, including the whole critical region. The master equation describing the interaction between photons and dye molecules in the microcavity is derived and the equivalence between the hierarchical maximum entropy principle and the master equation approach is shown. The cases of a fixed mean total photon number and a fixed total excitation number are considered, and a much sharper, nonparabolic onset of a macroscopic Bose-Einstein condensation of light in the latter case is demonstrated. The theory does not use the grand canonical approximation, takes into account the photon polarization degeneracy, and exactly describes the microscopic, mesoscopic, and macroscopic Bose-Einstein condensation of light. Under certain conditions, it predicts sub-Poissonian statistics of the photon condensate and the polarized photon condensate, and a universal relation takes place between the degrees of second-order coherence for these condensates. In the macroscopic case, there appear a sharp jump in the degrees of second-order coherence, a sharp jump and kink in the reduced standard deviations of the fluctuating numbers of photons in the polarized and whole condensates, and a sharp peak, a cusp, of the Mandel parameter for the whole condensate in the critical region. The possibility of nonclassical light generation in the microcavity with the photon Bose-Einstein condensate is predicted.

  6. Anomalously slow relaxation of the system of liquid clusters in a disordered nanoporous medium according to the self-organized criticality scenario

    NASA Astrophysics Data System (ADS)

    Borman, V. D.; Tronin, V. N.; Byrkin, V. A.

    2016-04-01

    We propose a physical model of a relaxation of states of clusters of nonwetting liquid confined in a random nanoporous medium. The relaxation is occurred by the self-organized criticality (SOC) scenario. Process is characterized by waiting for fluctuation necessary for overcoming of a local energy barrier with the subsequent avalanche hydrodynamic extrusion of the liquid by surface forces of the nonwetting frame. The dependence of the interaction between local configurations on the number of filled pores belonging to the infinite percolation cluster of filled pores serves as an internal feedback initiating the SOC process. The calculations give a power-law time dependence of the relative volume θ of the confined liquid θ ∼t-ν (ν ∼ 0.2) as in the picture of relaxation in the mean field approximation. The model of the relaxation of the porous medium with the nonwetting liquid demonstrates possible mechanisms and scenarios of SOC for relaxation of other disordered systems.

  7. Condensation Enhancement by Surface Porosity: Three-Stage Mechanism.

    PubMed

    Yarom, Michal; Marmur, Abraham

    2015-08-18

    Surface defects, such as pores, cracks, and scratches, are naturally occurring and commonly found on solid surfaces. However, the mechanism by which such imperfections promote condensation has not been fully explored. In the current paper we thermodynamically analyze the ability of surface porosity to enhance condensation on a hydrophilic solid. We show that the presence of a surface-embedded pore brings about three distinct stages of condensation. The first is capillary condensation inside the pore until it is full. This provides an ideal hydrophilic surface for continuing the condensation. As a result, spontaneous condensation and wetting can be achieved at lower vapor pressure than on a smooth surface.

  8. PREFACE: Functionalized Liquid Liquid Interfaces

    NASA Astrophysics Data System (ADS)

    Girault, Hubert; Kornyshev, Alexei A.; Monroe, Charles W.; Urbakh, Michael

    2007-09-01

    optical study. Film formation goes a step beyond adsorption; some surfactants form monolayers or multilayers at the interface. A polymer microfilm or a polymer-particle matrix can be synthesized at the liquid-liquid boundary. Such films exhibit unique adsorption and ion-intercalation properties of their own. Electrowetting refers broadly to the phenomenon in which an applied voltage modulates the shape of a liquid-liquid interface, essentially by altering the surface tension. Electric fields can be used to induce droplets on solid substrates to change shape, or to affect the structure of liquid-liquid emulsions. Various chemical reactions can be performed at the liquid-liquid boundary. Liquid-liquid microelectrodes allow detailed study of ion-transfer kinetics at the interface. Photochemical processes can also be used to control the conformations of molecules adsorbed at the interface. But how much precise control do we actually have on the state of the interfacial region? Several contributions to this issue address a system which has been studied for decades in electrochemistry, but remains essentially unfamilar to physicists. This is the interface between two immiscible electrolytic solutions (ITIES), a progressing interdisciplinary field in which condensed-matter physics and physical chemistry meet molecular electrochemistry. Why is it so exciting? The reason is simple. The ITIES is chargeable: when positioned between two electrodes it can be polarized, and back- to-back electrical double layers form on both sides of the liquid-liquid interface. Importantly, the term immiscible refers not only to oil and water but also to the electrolytes. Inorganic electrolytes, such as alkali halides, tend to stay in water, whereas organic electrolytes, such as tetrabutylammonium tetraphenylborate, stay in oil. This behaviour arises because energies of the order of 0.2-0.3 eV are needed to drive ions across the interface. As long as these free energies of transfer are not exceeded by

  9. Nonequilibrium kinetic boundary condition at the vapor-liquid interface of argon

    NASA Astrophysics Data System (ADS)

    Ishiyama, Tatsuya; Fujikawa, Shigeo; Kurz, Thomas; Lauterborn, Werner

    2013-10-01

    A boundary condition for the Boltzmann equation (kinetic boundary condition, KBC) at the vapor-liquid interface of argon is constructed with the help of molecular dynamics (MD) simulations. The KBC is examined at a constant liquid temperature of 85 K in a wide range of nonequilibrium states of vapor. The present investigation is an extension of a previous one by Ishiyama, Yano, and Fujikawa [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.95.084504 95, 084504 (2005)] and provides a more complete form of the KBC. The present KBC includes a thermal accommodation coefficient in addition to evaporation and condensation coefficients, and these coefficients are determined in MD simulations uniquely. The thermal accommodation coefficient shows an anisotropic behavior at the interface for molecular velocities normal versus tangential to the interface. It is also found that the evaporation and condensation coefficients are almost constant in a fairly wide range of nonequilibrium states. The thermal accommodation coefficient of the normal velocity component is almost unity, while that of the tangential component shows a decreasing function of the density of vapor incident on the interface, indicating that the tangential velocity distribution of molecules leaving the interface into the vapor phase may deviate from the tangential parts of the Maxwell velocity distribution at the liquid temperature. A mechanism for the deviation of the KBC from the isotropic Maxwell KBC at the liquid temperature is discussed in terms of anisotropic energy relaxation at the interface. The liquid-temperature dependence of the present KBC is also discussed.

  10. Advances in modelling of condensation phenomena

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, W.S.; Zaltsgendler, E.; Hanna, B.

    1997-07-01

    The physical parameters in the modelling of condensation phenomena in the CANDU reactor system codes are discussed. The experimental programs used for thermal-hydraulic code validation in the Canadian nuclear industry are briefly described. The modelling of vapour generation and in particular condensation plays a key role in modelling of postulated reactor transients. The condensation models adopted in the current state-of-the-art two-fluid CANDU reactor thermal-hydraulic system codes (CATHENA and TUF) are described. As examples of the modelling challenges faced, the simulation of a cold water injection experiment by CATHENA and the simulation of a condensation induced water hammer experiment by TUFmore » are described.« less

  11. Crystalline Silicates in Comets: Modeling Irregularly-Shaped Forsterite Crystals and Its Implications on Condensation Conditions

    NASA Technical Reports Server (NTRS)

    Wooden, Diane H.; Lindsay, Sean S.

    2011-01-01

    Crystalline silicates in comets are a product of the condensation in the hot inner regions (T > or approx. equals 1400 K [1]) of our proto-planetary disk or annealing at somewhat lower temperatures (T > or approx. equals 1000-1200 K) [2, 3, 4] in shocks coupled with disk evolutionary processes that include radial transport of crystals from their formation locations out to the cold outer regions where comet nuclei formed. The grain shape of forsterite (crystals) could be indicative of their formation pathways at high temperatures through vapor-solid condensation or at lower temperatures through vapor-liquid-solid formation and growth [5, 6, 7]. Experiments demonstrate that crystals that formed from a rapidly cooled highly supersaturated silicate vapor are characterized by bulky, platy, columnar/needle and droplet shapes for values of temperature and supersaturation, T and sigma, of 1000-1450 C and < 97, 700-1000 C and 97-161, 580-820 C and 131-230, and <500 C and > 230, respectively [7]. The experimental columnar/needle shapes, which form by vapor-liquid-solid at lower temperatures (<820 C), are extended stacks of plates, where the extension is not correlated with an axial direction: columnar/needles may be extended in the c-axis or a-axis direction, can change directions, and/or are off-kilter or a bit askew extending in a combination of the a- and c-axis direction.

  12. Competition between Bose-Einstein Condensation and Spin Dynamics.

    PubMed

    Naylor, B; Brewczyk, M; Gajda, M; Gorceix, O; Maréchal, E; Vernac, L; Laburthe-Tolra, B

    2016-10-28

    We study the impact of spin-exchange collisions on the dynamics of Bose-Einstein condensation by rapidly cooling a chromium multicomponent Bose gas. Despite relatively strong spin-dependent interactions, the critical temperature for Bose-Einstein condensation is reached before the spin degrees of freedom fully thermalize. The increase in density due to Bose-Einstein condensation then triggers spin dynamics, hampering the formation of condensates in spin-excited states. Small metastable spinor condensates are, nevertheless, produced, and they manifest in strong spin fluctuations.

  13. Magnetofermionic condensate in two dimensions

    PubMed Central

    Kulik, L. V.; Zhuravlev, A. S.; Dickmann, S.; Gorbunov, A. V.; Timofeev, V. B.; Kukushkin, I. V.; Schmult, S.

    2016-01-01

    Coherent condensate states of particles obeying either Bose or Fermi statistics are in the focus of interest in modern physics. Here we report on condensation of collective excitations with Bose statistics, cyclotron magnetoexcitons, in a high-mobility two-dimensional electron system in a magnetic field. At low temperatures, the dense non-equilibrium ensemble of long-lived triplet magnetoexcitons exhibits both a drastic reduction in the viscosity and a steep enhancement in the response to the external electromagnetic field. The observed effects are related to formation of a super-absorbing state interacting coherently with the electromagnetic field. Simultaneously, the electrons below the Fermi level form a super-emitting state. The effects are explicable from the viewpoint of a coherent condensate phase in a non-equilibrium system of two-dimensional fermions with a fully quantized energy spectrum. The condensation occurs in the space of vectors of magnetic translations, a property providing a completely new landscape for future physical investigations. PMID:27848969

  14. 21 CFR 886.1380 - Diagnostic condensing lens.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Diagnostic condensing lens. 886.1380 Section 886...) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1380 Diagnostic condensing lens. (a) Identification. A diagnostic condensing lens is a device used in binocular indirect ophthalmoscopy (a procedure...

  15. Measuring order in disordered systems and disorder in ordered systems: Random matrix theory for isotropic and nematic liquid crystals and its perspective on pseudo-nematic domains

    NASA Astrophysics Data System (ADS)

    Zhao, Yan; Stratt, Richard M.

    2018-05-01

    Surprisingly long-ranged intermolecular correlations begin to appear in isotropic (orientationally disordered) phases of liquid crystal forming molecules when the temperature or density starts to close in on the boundary with the nematic (ordered) phase. Indeed, the presence of slowly relaxing, strongly orientationally correlated, sets of molecules under putatively disordered conditions ("pseudo-nematic domains") has been apparent for some time from light-scattering and optical-Kerr experiments. Still, a fully microscopic characterization of these domains has been lacking. We illustrate in this paper how pseudo-nematic domains can be studied in even relatively small computer simulations by looking for order-parameter tensor fluctuations much larger than one would expect from random matrix theory. To develop this idea, we show that random matrix theory offers an exact description of how the probability distribution for liquid-crystal order parameter tensors converges to its macroscopic-system limit. We then illustrate how domain properties can be inferred from finite-size-induced deviations from these random matrix predictions. A straightforward generalization of time-independent random matrix theory also allows us to prove that the analogous random matrix predictions for the time dependence of the order-parameter tensor are similarly exact in the macroscopic limit, and that relaxation behavior of the domains can be seen in the breakdown of the finite-size scaling required by that random-matrix theory.

  16. Quantitative analysis of chromosome condensation in fission yeast.

    PubMed

    Petrova, Boryana; Dehler, Sascha; Kruitwagen, Tom; Hériché, Jean-Karim; Miura, Kota; Haering, Christian H

    2013-03-01

    Chromosomes undergo extensive conformational rearrangements in preparation for their segregation during cell divisions. Insights into the molecular mechanisms behind this still poorly understood condensation process require the development of new approaches to quantitatively assess chromosome formation in vivo. In this study, we present a live-cell microscopy-based chromosome condensation assay in the fission yeast Schizosaccharomyces pombe. By automatically tracking the three-dimensional distance changes between fluorescently marked chromosome loci at high temporal and spatial resolution, we analyze chromosome condensation during mitosis and meiosis and deduct defined parameters to describe condensation dynamics. We demonstrate that this method can determine the contributions of condensin, topoisomerase II, and Aurora kinase to mitotic chromosome condensation. We furthermore show that the assay can identify proteins required for mitotic chromosome formation de novo by isolating mutants in condensin, DNA polymerase ε, and F-box DNA helicase I that are specifically defective in pro-/metaphase condensation. Thus, the chromosome condensation assay provides a direct and sensitive system for the discovery and characterization of components of the chromosome condensation machinery in a genetically tractable eukaryote.

  17. Quantitative Analysis of Chromosome Condensation in Fission Yeast

    PubMed Central

    Petrova, Boryana; Dehler, Sascha; Kruitwagen, Tom; Hériché, Jean-Karim; Miura, Kota

    2013-01-01

    Chromosomes undergo extensive conformational rearrangements in preparation for their segregation during cell divisions. Insights into the molecular mechanisms behind this still poorly understood condensation process require the development of new approaches to quantitatively assess chromosome formation in vivo. In this study, we present a live-cell microscopy-based chromosome condensation assay in the fission yeast Schizosaccharomyces pombe. By automatically tracking the three-dimensional distance changes between fluorescently marked chromosome loci at high temporal and spatial resolution, we analyze chromosome condensation during mitosis and meiosis and deduct defined parameters to describe condensation dynamics. We demonstrate that this method can determine the contributions of condensin, topoisomerase II, and Aurora kinase to mitotic chromosome condensation. We furthermore show that the assay can identify proteins required for mitotic chromosome formation de novo by isolating mutants in condensin, DNA polymerase ε, and F-box DNA helicase I that are specifically defective in pro-/metaphase condensation. Thus, the chromosome condensation assay provides a direct and sensitive system for the discovery and characterization of components of the chromosome condensation machinery in a genetically tractable eukaryote. PMID:23263988

  18. 40 CFR 721.639 - Amine aldehyde condensate.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Amine aldehyde condensate. 721.639... Substances § 721.639 Amine aldehyde condensate. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as an amine aldehyde condensate (PMN P-94-1810...

  19. 40 CFR 721.639 - Amine aldehyde condensate.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Amine aldehyde condensate. 721.639... Substances § 721.639 Amine aldehyde condensate. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as an amine aldehyde condensate (PMN P-94-1810...

  20. 40 CFR 721.639 - Amine aldehyde condensate.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Amine aldehyde condensate. 721.639... Substances § 721.639 Amine aldehyde condensate. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as an amine aldehyde condensate (PMN P-94-1810...

  1. 40 CFR 721.639 - Amine aldehyde condensate.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Amine aldehyde condensate. 721.639... Substances § 721.639 Amine aldehyde condensate. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as an amine aldehyde condensate (PMN P-94-1810...

  2. 40 CFR 721.639 - Amine aldehyde condensate.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Amine aldehyde condensate. 721.639... Substances § 721.639 Amine aldehyde condensate. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as an amine aldehyde condensate (PMN P-94-1810...

  3. Chiral liquid phase of simple quantum magnets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhentao; Feiguin, Adrian E.; Zhu, Wei

    2017-11-07

    We study a T=0 quantum phase transition between a quantum paramagnetic state and a magnetically ordered state for a spin S=1 XXZ Heisenberg antiferromagnet on a two-dimensional triangular lattice. The transition is induced by an easy-plane single-ion anisotropy D. At the mean-field level, the system undergoes a direct transition at a critical D=D c between a paramagnetic state at D>D c and an ordered state with broken U(1) symmetry at Dc. We show that beyond mean field the phase diagram is very different and includes an intermediate, partially ordered chiral liquid phase. Specifically, we find that inside the paramagnetic phasemore » the Ising (J z) component of the Heisenberg exchange binds magnons into a two-particle bound state with zero total momentum and spin. This bound state condenses at D>D c, before single-particle excitations become unstable, and gives rise to a chiral liquid phase, which spontaneously breaks spatial inversion symmetry, but leaves the spin-rotational U(1) and time-reversal symmetries intact. This chiral liquid phase is characterized by a finite vector chirality without long-range dipolar magnetic order. In our analytical treatment, the chiral phase appears for arbitrarily small J z because the magnon-magnon attraction becomes singular near the single-magnon condensation transition. This phase exists in a finite range of D and transforms into the magnetically ordered state at some Dc. In conclusion, we corroborate our analytic treatment with numerical density matrix renormalization group calculations.« less

  4. PREFACE: 14th General Conference of the Condensed Matter Division

    NASA Astrophysics Data System (ADS)

    de Segovia, José L.; Flores, F.; García-Moliner, F.

    1994-01-01

    This volume contains the proceedings of the 14th General Conference of the Condensed Matter Division, GCCMD-14, held on 28-31 March 1994, at the Faculty of Civil Engineering of the Polytechnical University of Madrid. The publication contains the Plenary and Invited Lectures of those authors who agreed to publish their presentations. The meeting was organized by the Spanish Vacuum Society, ASEVA, under the auspices of the Condensed Matter Division of the European Physical Society, CMD-EPS. The Conference was attended by 466 participants mostly from Europe. The emphasis of the Conference was mainly on: Semiconductors and Insulators Surfaces and Interfaces Liquids and Statistical Mechanics Magnetism and Metals Macromolecules and Chemical Physics The 554 contributions were presented as 6 plenary lectures, 67 invited lectures, 140 oral presentation and 341 poster presentation, in five parallel sessions. The guest Editors are grateful to those authors who sent their contribution for the publication, to the Organizing Committee, to the International Advisory and Programme Committee and to the Local Committee for their excellent work. We also wish to thank those colleagues who took on the hard task of helping in refereeing the papers. It is also a pleasure to thank the Physica Scripta Editor and Editorial Board of Physica Scripta.

  5. Flow condensation on copper-based nanotextured superhydrophobic surfaces.

    PubMed

    Torresin, Daniele; Tiwari, Manish K; Del Col, Davide; Poulikakos, Dimos

    2013-01-15

    Superhydrophobic surfaces have shown excellent ability to promote dropwise condensation with high droplet mobility, leading to enhanced surface thermal transport. To date, however, it is unclear how superhydrophobic surfaces would perform under the stringent flow condensation conditions of saturated vapor at high temperature, which can affect superhydrophobicity. Here, we investigate this issue employing "all-copper" superhydrophobic surfaces with controlled nanostructuring for minimal thermal resistance. Flow condensation tests performed with saturated vapor at a high temperature (110 °C) showed the condensing drops penetrate the surface texture (i.e., attain the Wenzel state with lower droplet mobility). At the same time, the vapor shear helped ameliorate the mobility and enhanced the thermal transport. At the high end of the examined vapor velocity range, a heat flux of ~600 kW m(-2) was measured at 10 K subcooling and 18 m s(-1) vapor velocity. This clearly highlights the excellent potential of a nanostructured superhydrophobic surface in flow condensation applications. The surfaces sustained dropwise condensation and vapor shear for five days, following which mechanical degradation caused a transition to filmwise condensation. Overall, our results underscore the need to investigate superhydrophobic surfaces under stringent and realistic flow condensation conditions before drawing conclusions regarding their performance in practically relevant condensation applications.

  6. Thermodynamics of interaction of ionic liquids with lipid monolayer.

    PubMed

    Bhattacharya, G; Mitra, S; Mandal, P; Dutta, S; Giri, R P; Ghosh, S K

    2018-06-01

    Understanding the interaction of ionic liquids with cellular membrane becomes utterly important to comprehend the activities of these liquids in living organisms. Lipid monolayer formed at the air-water interface is employed as a model system to follow this interaction by investigating important thermodynamic parameters. The penetration kinetics of the imidazolium-based ionic liquid 1-decyl-3-methylimidazolium tetrafluoroborate ([DMIM][BF4]) into the zwitterionic 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) lipid layer is found to follow the Boltzmann-like equation that reveals the characteristic time constant which is observed to be the function of initial surface pressure. The enthalpy and entropy calculated from temperature-dependent pressure-area isotherms of the monolayer show that the added ionic liquids bring about a disordering effect in the lipid film. The change in Gibbs free energy indicates that an ionic liquid with longer chain has a far greater disordering effect compared to an ionic liquid with shorter chain. The differential scanning calorimetric measurement on a multilamellar vesicle system shows the main phase transition temperature to shift to a lower value, which, again, indicates the disordering effect of the ionic liquid on lipid membrane. All these studies fundamentally point out that, when ionic liquids interact with lipid molecules, the self-assembled structure of a cellular membrane gets perturbed, which may be the mechanism of these molecules having adverse effects on living organisms.

  7. Numerical investigations on unstable direct contact condensation of cryogenic fluids

    NASA Astrophysics Data System (ADS)

    Jayachandran, K. N.; Arnab, Roy; Parthasarathi, Ghosh

    2017-02-01

    A typical problem of Direct Contact Condensation (DCC) occurs at the liquid oxygen (LOX) booster turbopump exit of oxidiser rich staged combustion cycle based semi-cryogenic rocket engines, where the hot gas mixture (predominantly oxygen and small amounts of combustion products) that runs the turbine mixes with LOX from the pump exit. This complex multiphase phenomena leads to the formation of solid CO2 & H2O, which is undesirable for the functioning of the main LOX turbopump. As a starting point for solving this complex problem, in this study, the hot gas mixture is taken as pure oxygen and hence, DCC of pure oxygen vapour jets in subcooled liquid oxygen is simulated using the commercial CFD package ANSYS CFX®. A two fluid model along with the thermal phase change model is employed for capturing the heat and mass transfer effects. The study mainly focuses on the subsonic DCC bubbling regime, which is reported as unstable with bubble formation, elongation, necking and collapsing effects. The heat transfer coefficients over a period of time have been computed and the various stages of bubbling have been analysed with the help of vapour volume fraction and pressure profiles. The results obtained for DCC of oxygen vapour-liquid mixtures is in qualitative agreement with the experimental results on DCC of steam-water mixtures.

  8. Quantification of chromatin condensation level by image processing.

    PubMed

    Irianto, Jerome; Lee, David A; Knight, Martin M

    2014-03-01

    The level of chromatin condensation is related to the silencing/activation of chromosomal territories and therefore impacts on gene expression. Chromatin condensation changes during cell cycle, progression and differentiation, and is influenced by various physicochemical and epigenetic factors. This study describes a validated experimental technique to quantify chromatin condensation. A novel image processing procedure is developed using Sobel edge detection to quantify the level of chromatin condensation from nuclei images taken by confocal microscopy. The algorithm was developed in MATLAB and used to quantify different levels of chromatin condensation in chondrocyte nuclei achieved through alteration in osmotic pressure. The resulting chromatin condensation parameter (CCP) is in good agreement with independent multi-observer qualitative visual assessment. This image processing technique thereby provides a validated unbiased parameter for rapid and highly reproducible quantification of the level of chromatin condensation. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.

  9. Excess Entropy Scaling Law for Diffusivity in Liquid Metals

    PubMed Central

    Jakse, N.; Pasturel, A.

    2016-01-01

    Understanding how dynamic properties depend on the structure and thermodynamics in liquids is a long-standing open problem in condensed matter physics. A very simple approach is based on the Dzugutov contribution developed on model fluids in which a universal (i.e. species-independent) connection relates the pair excess entropy of a liquid to its reduced diffusion coefficient. However its application to “real” liquids still remains uncertain due to the ability of a hard sphere (HS) reference fluid used in reducing parameters to describe complex interactions that occur in these liquids. Here we use ab initio molecular dynamics simulations to calculate both structural and dynamic properties at different temperatures for a wide series of liquid metals including Al, Au, Cu, Li, Ni, Ta, Ti, Zn as well as liquid Si and B. From this analysis, we demonstrate that the Dzugutov scheme can be applied successfully if a self-consistent method to determine the packing fraction of the hard sphere reference fluid is used as well as the Carnahan-Starling approach to express the excess entropy. PMID:26862002

  10. GENOTOXICITY OF TEN CIGARETTE SMOKE CONDENSATES IN FOUR TEST SYSTEMS: COMPARISONS BETWEEN ASSAYS AND CONDENSATES

    EPA Science Inventory

    What is the study?
    This the first assessment of a set of cigarette smoke condensates from a range of cigarette types in a variety (4) of short-term genotoxicity assays.
    Why was it done?
    No such comparative study of cigarette smoke condensates has been reported. H...

  11. Dual gauge field theory of quantum liquid crystals in two dimensions

    NASA Astrophysics Data System (ADS)

    Beekman, Aron J.; Nissinen, Jaakko; Wu, Kai; Liu, Ke; Slager, Robert-Jan; Nussinov, Zohar; Cvetkovic, Vladimir; Zaanen, Jan

    2017-04-01

    We present a self-contained review of the theory of dislocation-mediated quantum melting at zero temperature in two spatial dimensions. The theory describes the liquid-crystalline phases with spatial symmetries in between a quantum crystalline solid and an isotropic superfluid: quantum nematics and smectics. It is based on an Abelian-Higgs-type duality mapping of phonons onto gauge bosons (;stress photons;), which encode for the capacity of the crystal to propagate stresses. Dislocations and disclinations, the topological defects of the crystal, are sources for the gauge fields and the melting of the crystal can be understood as the proliferation (condensation) of these defects, giving rise to the Anderson-Higgs mechanism on the dual side. For the liquid crystal phases, the shear sector of the gauge bosons becomes massive signaling that shear rigidity is lost. After providing the necessary background knowledge, including the order parameter theory of two-dimensional quantum liquid crystals and the dual theory of stress gauge bosons in bosonic crystals, the theory of melting is developed step-by-step via the disorder theory of dislocation-mediated melting. Resting on symmetry principles, we derive the phenomenological imaginary time actions of quantum nematics and smectics and analyze the full spectrum of collective modes. The quantum nematic is a superfluid having a true rotational Goldstone mode due to rotational symmetry breaking, and the origin of this 'deconfined' mode is traced back to the crystalline phase. The two-dimensional quantum smectic turns out to be a dizzyingly anisotropic phase with the collective modes interpolating between the solid and nematic in a non-trivial way. We also consider electrically charged bosonic crystals and liquid crystals, and carefully analyze the electromagnetic response of the quantum liquid crystal phases. In particular, the quantum nematic is a real superconductor and shows the Meissner effect. Their special properties

  12. Dual gauge field theory of quantum liquid crystals in two dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beekman, Aron J.; Nissinen, Jaakko; Wu, Kai

    We present a self-contained review of the theory of dislocation-mediated quantum melting at zero temperature in two spatial dimensions. The theory describes the liquid-crystalline phases with spatial symmetries in between a quantum crystalline solid and an isotropic superfluid: quantum nematics and smectics. It is based on an Abelian-Higgs-type duality mapping of phonons onto gauge bosons (“stress photons”), which encode for the capacity of the crystal to propagate stresses. Dislocations and disclinations, the topological defects of the crystal, are sources for the gauge fields and the melting of the crystal can be understood as the proliferation (condensation) of these defects, givingmore » rise to the Anderson–Higgs mechanism on the dual side. For the liquid crystal phases, the shear sector of the gauge bosons becomes massive signaling that shear rigidity is lost. After providing the necessary background knowledge, including the order parameter theory of two-dimensional quantum liquid crystals and the dual theory of stress gauge bosons in bosonic crystals, the theory of melting is developed step-by-step via the disorder theory of dislocation-mediated melting. Resting on symmetry principles, we derive the phenomenological imaginary time actions of quantum nematics and smectics and analyze the full spectrum of collective modes. The quantum nematic is a superfluid having a true rotational Goldstone mode due to rotational symmetry breaking, and the origin of this ‘deconfined’ mode is traced back to the crystalline phase. The two-dimensional quantum smectic turns out to be a dizzyingly anisotropic phase with the collective modes interpolating between the solid and nematic in a non-trivial way. We also consider electrically charged bosonic crystals and liquid crystals, and carefully analyze the electromagnetic response of the quantum liquid crystal phases. In particular, the quantum nematic is a real superconductor and shows the Meissner effect. Furthermore

  13. Dual gauge field theory of quantum liquid crystals in two dimensions

    DOE PAGES

    Beekman, Aron J.; Nissinen, Jaakko; Wu, Kai; ...

    2017-04-18

    We present a self-contained review of the theory of dislocation-mediated quantum melting at zero temperature in two spatial dimensions. The theory describes the liquid-crystalline phases with spatial symmetries in between a quantum crystalline solid and an isotropic superfluid: quantum nematics and smectics. It is based on an Abelian-Higgs-type duality mapping of phonons onto gauge bosons (“stress photons”), which encode for the capacity of the crystal to propagate stresses. Dislocations and disclinations, the topological defects of the crystal, are sources for the gauge fields and the melting of the crystal can be understood as the proliferation (condensation) of these defects, givingmore » rise to the Anderson–Higgs mechanism on the dual side. For the liquid crystal phases, the shear sector of the gauge bosons becomes massive signaling that shear rigidity is lost. After providing the necessary background knowledge, including the order parameter theory of two-dimensional quantum liquid crystals and the dual theory of stress gauge bosons in bosonic crystals, the theory of melting is developed step-by-step via the disorder theory of dislocation-mediated melting. Resting on symmetry principles, we derive the phenomenological imaginary time actions of quantum nematics and smectics and analyze the full spectrum of collective modes. The quantum nematic is a superfluid having a true rotational Goldstone mode due to rotational symmetry breaking, and the origin of this ‘deconfined’ mode is traced back to the crystalline phase. The two-dimensional quantum smectic turns out to be a dizzyingly anisotropic phase with the collective modes interpolating between the solid and nematic in a non-trivial way. We also consider electrically charged bosonic crystals and liquid crystals, and carefully analyze the electromagnetic response of the quantum liquid crystal phases. In particular, the quantum nematic is a real superconductor and shows the Meissner effect. Furthermore

  14. Evolutionary games of condensates in coupled birth–death processes

    PubMed Central

    Knebel, Johannes; Weber, Markus F.; Krüger, Torben; Frey, Erwin

    2015-01-01

    Condensation phenomena arise through a collective behaviour of particles. They are observed in both classical and quantum systems, ranging from the formation of traffic jams in mass transport models to the macroscopic occupation of the energetic ground state in ultra-cold bosonic gases (Bose–Einstein condensation). Recently, it has been shown that a driven and dissipative system of bosons may form multiple condensates. Which states become the condensates has, however, remained elusive thus far. The dynamics of this condensation are described by coupled birth–death processes, which also occur in evolutionary game theory. Here we apply concepts from evolutionary game theory to explain the formation of multiple condensates in such driven-dissipative bosonic systems. We show that the vanishing of relative entropy production determines their selection. The condensation proceeds exponentially fast, but the system never comes to rest. Instead, the occupation numbers of condensates may oscillate, as we demonstrate for a rock–paper–scissors game of condensates. PMID:25908384

  15. Wettability Patterning for Enhanced Dropwise Condensation

    NASA Astrophysics Data System (ADS)

    Ghosh, Aritra; Ganguly, Ranjan; Megaridis, Constantine

    2014-11-01

    Dropwise condensation (DwC), in order to be sustainable, requires removal of the condensate droplets. This removal is frequently facilitated by gravity. The rate of DwC heat transfer depends strongly on the maximum departing droplet diameter. Based on wettability patterning, we present a facile technique designed to control the maximum droplet size in DwC within vapor/air atmospheres, and demonstrate how this approach can be used to enhance the corresponding heat transfer rate. We examine various hydrophilic-superhydrophilic patterns, which, respectively sustain DwC and filmwise (FwC) condensation on the substrate. The fabrication method does notemploy any hydrophobizing agent. By juxtaposing parallel lines of hydrophilic (CA ~ 78°) and superhydrophilic (CA ~ 0°) regions on the condensing surface, we create alternating domains of DwC and FwC. The average droplet size on the DwC domain is reduced by ~ 60% compared to the theoretical maximum, which corresponds to the line width. We compare heat transfer rate between unpatternend DwC surfaces and patterned DwC surfaces. Even after sacrificing 40% of condensing area, we achieve up to 20% improvement in condensate collection rate using an interdigitated superhydrophilic pattern, inspired by the vein network of plant leaves. The bioinspired interdigitated pattern is found to outperform the straight hydrophilic-superhydrophilic pattern, particularly under higher vapor loadings in an air/vapor ambient atmosphere. NSF STTR Grant 1331817 via NBD Nano.

  16. Scalable graphene coatings for enhanced condensation heat transfer.

    PubMed

    Preston, Daniel J; Mafra, Daniela L; Miljkovic, Nenad; Kong, Jing; Wang, Evelyn N

    2015-05-13

    Water vapor condensation is commonly observed in nature and routinely used as an effective means of transferring heat with dropwise condensation on nonwetting surfaces exhibiting heat transfer improvement compared to filmwise condensation on wetting surfaces. However, state-of-the-art techniques to promote dropwise condensation rely on functional hydrophobic coatings that either have challenges with chemical stability or are so thick that any potential heat transfer improvement is negated due to the added thermal resistance of the coating. In this work, we show the effectiveness of ultrathin scalable chemical vapor deposited (CVD) graphene coatings to promote dropwise condensation while offering robust chemical stability and maintaining low thermal resistance. Heat transfer enhancements of 4× were demonstrated compared to filmwise condensation, and the robustness of these CVD coatings was superior to typical hydrophobic monolayer coatings. Our results indicate that graphene is a promising surface coating to promote dropwise condensation of water in industrial conditions with the potential for scalable application via CVD.

  17. I. Excitonic Phase Diagram in Silicon: Evidence for Two Condensed Phases. I. Motion of Photoexcited Carriers in GALLIUM-ARSENIDE/ALUMINUM(X)GALLIUM(1-X)ARSENIDE Multiple Quantum Wells-Anomalous Confinement at High Densities.

    NASA Astrophysics Data System (ADS)

    Smith, Leigh Morris

    This thesis describes work on the thermodynamics and transport properties of photoexcited carriers in bulk and two-dimensional semiconductors. Two major topics are addressed. I. Photoluminescence experiments of excitons in unstressed silicon are presented which indicate the existence of a new non-degenerate condensed phase of plasma. This new liquid has a density one-tenth that of the ground state electron-hole liquid and is observed both above and below the liquid-gas critical point (~24.5K). A new phase diagram of excitons in silicon is presented which includes these two condensed plasmas. Consistent with the Gibbs phase rule, a triple point at 18.5 K is inferred from the luminescence data as the only temperature where the exciton gas, condensed plasma (CP) and electron-hole liquid (EHL) coexist. The low density condensed plasma persists up to a second critical point at 45 +/- 5K, above which the photoexcited carriers are observed to continuously decay into a partially ionized excitonic gas. II. We have measured the in-plane motion of photoexcited carriers in semiconductor quantum wells with 5 μm spatial and 10 ps temporal resolution and have discovered several surprising results. The effective diffusivity of the carriers at densities below n = 2 times 10^{11}cm ^{-2} is found to depend upon excitation level, possibly indicating defect-limited diffusion or phonon-wind effects. Above this density the spatial profiles exhibit two distinct components with widely differing diffusivities. This remarkable behavior may be understood with consideration of the interactions of non-equilibrium phonons with the photoexcited carriers. We postulate that the slowly diffusing component represents carriers which are "thermally confined" to a phonon hot spot, while the rapidly moving component is driven by the flux of non-equilibrium phonons away from the excitation region.

  18. 7 CFR 58.238 - Condensed storage tanks.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Condensed storage tanks. 58.238 Section 58.238... Procedures § 58.238 Condensed storage tanks. (a) Excess production of condensed product over that which the dryer will take continuously from the pans should be bypassed through a cooler into a storage tank at 50...

  19. 7 CFR 58.238 - Condensed storage tanks.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Condensed storage tanks. 58.238 Section 58.238... Procedures § 58.238 Condensed storage tanks. (a) Excess production of condensed product over that which the dryer will take continuously from the pans should be bypassed through a cooler into a storage tank at 50...

  20. 7 CFR 58.238 - Condensed storage tanks.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Condensed storage tanks. 58.238 Section 58.238... Procedures § 58.238 Condensed storage tanks. (a) Excess production of condensed product over that which the dryer will take continuously from the pans should be bypassed through a cooler into a storage tank at 50...

  1. 7 CFR 58.238 - Condensed storage tanks.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Condensed storage tanks. 58.238 Section 58.238... Procedures § 58.238 Condensed storage tanks. (a) Excess production of condensed product over that which the dryer will take continuously from the pans should be bypassed through a cooler into a storage tank at 50...

  2. Deepak Condenser Model (DeCoM)

    NASA Technical Reports Server (NTRS)

    Patel, Deepak

    2013-01-01

    Development of the DeCoM comes from the requirement of analyzing the performance of a condenser. A component of a loop heat pipe (LHP), the condenser, is interfaced with the radiator in order to reject heat. DeCoM simulates the condenser, with certain input parameters. Systems Improved Numerical Differencing Analyzer (SINDA), a thermal analysis software, calculates the adjoining component temperatures, based on the DeCoM parameters and interface temperatures to the radiator. Application of DeCoM is (at the time of this reporting) restricted to small-scale analysis, without the need for in-depth LHP component integrations. To efficiently develop a model to simulate the LHP condenser, DeCoM was developed to meet this purpose with least complexity. DeCoM is a single-condenser, single-pass simulator for analyzing its behavior. The analysis is done based on the interactions between condenser fluid, the wall, and the interface between the wall and the radiator. DeCoM is based on conservation of energy, two-phase equations, and flow equations. For two-phase, the Lockhart- Martinelli correlation has been used in order to calculate the convection value between fluid and wall. Software such as SINDA (for thermal analysis analysis) and Thermal Desktop (for modeling) are required. DeCoM also includes the ability to implement a condenser into a thermal model with the capability of understanding the code process and being edited to user-specific needs. DeCoM requires no license, and is an open-source code. Advantages to DeCoM include time dependency, reliability, and the ability for the user to view the code process and edit to their needs.

  3. Spatial Control of Condensation using Chemical Micropatterns

    NASA Astrophysics Data System (ADS)

    Murphy, Kevin; Hansen, Ryan; Nath, Saurabh; Retterer, Scott; Collier, Patrick; Boreyko, Jonathan; Nature-Inspired Fluids; Interfaces Team; CenterNanophase Materials Sciences Team

    2015-11-01

    Surfaces exhibiting wettability patterns can spatially control the nucleation of condensation to enable enhanced fog harvesting and phase-change heat transfer. To date, studies of patterned condensation have utilized a combination of chemical and topographical features, making it difficult to isolate the effects of intrinsic wettability versus surface roughness on spatially controlling the condensate. Here, we fabricate chemical micropatterns consisting of hydrophilic silicon oxide and a smooth hydrophobic silane monolayer to isolate the effects of changes in intrinsic wettability on the spatial control of condensation. Complete spatial control, defined as every nucleation and growth event occurring exclusively on the hydrophilic features, was observed even for supercooled droplets at high water vapor supersaturation. However, this complete spatial control was found to break down beyond a critical spacing that depended upon the extent of supersaturation. The average diameter of condensate was found to be smaller for the chemically micropatterned surfaces compared to a uniformly hydrophobic surface. Control of inter-droplet spacing between supercooled condensate through chemical patterning can be employed to minimize the growth of inter-droplet frost on cold surfaces.

  4. Systematic text condensation: a strategy for qualitative analysis.

    PubMed

    Malterud, Kirsti

    2012-12-01

    To present background, principles, and procedures for a strategy for qualitative analysis called systematic text condensation and discuss this approach compared with related strategies. Giorgi's psychological phenomenological analysis is the point of departure and inspiration for systematic text condensation. The basic elements of Giorgi's method and the elaboration of these in systematic text condensation are presented, followed by a detailed description of procedures for analysis according to systematic text condensation. Finally, similarities and differences compared with other frequently applied methods for qualitative analysis are identified, as the foundation of a discussion of strengths and limitations of systematic text condensation. Systematic text condensation is a descriptive and explorative method for thematic cross-case analysis of different types of qualitative data, such as interview studies, observational studies, and analysis of written texts. The method represents a pragmatic approach, although inspired by phenomenological ideas, and various theoretical frameworks can be applied. The procedure consists of the following steps: 1) total impression - from chaos to themes; 2) identifying and sorting meaning units - from themes to codes; 3) condensation - from code to meaning; 4) synthesizing - from condensation to descriptions and concepts. Similarities and differences comparing systematic text condensation with other frequently applied qualitative methods regarding thematic analysis, theoretical methodological framework, analysis procedures, and taxonomy are discussed. Systematic text condensation is a strategy for analysis developed from traditions shared by most of the methods for analysis of qualitative data. The method offers the novice researcher a process of intersubjectivity, reflexivity, and feasibility, while maintaining a responsible level of methodological rigour.

  5. Influence of condensation on heat flux and pressure measurements in a detonation-based short-duration facility

    NASA Astrophysics Data System (ADS)

    Haase, S.; Olivier, H.

    2017-10-01

    Detonation-based short-duration facilities provide hot gas with very high stagnation pressures and temperatures. Due to the short testing time, complex and expensive cooling techniques of the facility walls are not needed. Therefore, they are attractive for economical experimental investigations of high-enthalpy flows such as the flow in a rocket engine. However, cold walls can provoke condensation of the hot combustion gas at the walls. This has already been observed in detonation tubes close behind the detonation wave, resulting in a loss of tube performance. A potential influence of condensation at the wall on the experimental results, like wall heat fluxes and static pressures, has not been considered so far. Therefore, in this study the occurrence of condensation and its influence on local heat flux and pressure measurements has been investigated in the nozzle test section of a short-duration rocket-engine simulation facility. This facility provides hot water vapor with stagnation pressures up to 150 bar and stagnation temperatures up to 3800 K. A simple method has been developed to detect liquid water at the wall without direct optical access to the flow. It is shown experimentally and theoretically that condensation has a remarkable influence on local measurement values. The experimental results indicate that for the elimination of these influences the nozzle wall has to be heated to a certain temperature level, which exclusively depends on the local static pressure.

  6. Investigation of the effect of pressure increasing in condensing heat-exchanger

    NASA Astrophysics Data System (ADS)

    Murmanskii, I. B.; Aronson, K. E.; Brodov, Yu M.; Galperin, L. G.; Ryabchikov, A. Yu.; Brezgin, D. V.

    2017-11-01

    The effect of pressure increase was observed in steam condensation in the intermediate coolers of multistage steam ejector. Steam pressure increase for ejector cooler amounts up to 1.5 kPa in the first ejector stage, 5 kPa in the second and 7 kPa in the third one. Pressure ratios are equal to 2.0, 1.3 and 1.1 respectively. As a rule steam velocities at the cooler inlets do not exceed 40…100 m/s and are subsonic in all regimes. The report presents a computational model that describes the effect of pressure increase in the cooler. The steam entering the heat exchanger tears the drops from the condensate film flowing down vertical tubes. At the inlet of heat exchanger the steam flow capturing condensate droplets forms a steam-water mixture in which the sound velocity is significantly reduced. If the flow rate of steam-water mixture in heat exchanger is greater than the sound velocity, there occurs a pressure shock in the wet steam. On the basis of the equations of mass, momentum and energy conservation the authors derived the expressions for calculation of steam flow dryness degree before and after the shock. The model assumes that droplet velocity is close to the velocity of the steam phase (slipping is absent); drops do not come into thermal interaction with the steam phase; liquid phase specific volume compared to the volume of steam is neglected; pressure shock is calculated taking into account the gas-dynamic flow resistance of the tube bundle. It is also assumed that the temperature of steam after the shock is equal to the saturation temperature. The calculations have shown that the rise of steam pressure and temperature in the shock results in dryness degree increase. For calculated flow parameters the velocity value before the shock is greater than the sound velocity. Thus, on the basis of generally accepted physics knowledge the computational model has been formulated for the effect of steam pressure rise in the condensing heat exchanger.

  7. Electronically excited and ionized states in condensed phase: Theory and applications

    NASA Astrophysics Data System (ADS)

    Sadybekov, Arman

    Predictive modeling of chemical processes in silico is a goal of XXI century. While robust and accurate methods exist for ground-state properties, reliable methods for excited states are still lacking and require further development. Electronically exited states are formed by interactions of matter with light and are responsible for key processes in solar energy harvesting, vision, artificial sensors, and photovoltaic applications. The greatest challenge to overcome on our way to a quantitative description of light-induced processes is accurate inclusion of the effect of the environment on excited states. All above mentioned processes occur in solution or solid state. Yet, there are few methodologies to study excited states in condensed phase. Application of highly accurate and robust methods, such as equation-of-motion coupled-cluster theory EOM-CC, is limited by a high computational cost and scaling precluding full quantum mechanical treatment of the entire system. In this thesis we present successful application of the EOM-CC family of methods to studies of excited states in liquid phase and build hierarchy of models for inclusion of the solvent effects. In the first part of the thesis we show that a simple gasphase model is sufficient to quantitatively analyze excited states in liquid benzene, while the latter part emphasizes the importance of explicit treatment of the solvent molecules in the case of glycine in water solution. In chapter 2, we use a simple dimer model to describe exciton formation in liquid and solid benzene. We show that sampling of dimer structures extracted from the liquid benzene is sufficient to correctly predict exited-state properties of the liquid. Our calculations explain experimentally observed features, which helped to understand the mechanism of the excimer formation in liquid benzene. Furthermore, we shed light on the difference between dimer configurations in the first solvation shell of liquid benzene and in unit cell of solid

  8. Microscopy illumination engineering using a low-cost liquid crystal display.

    PubMed

    Guo, Kaikai; Bian, Zichao; Dong, Siyuan; Nanda, Pariksheet; Wang, Ying Min; Zheng, Guoan

    2015-02-01

    Illumination engineering is critical for obtaining high-resolution, high-quality images in microscope settings. In a typical microscope, the condenser lens provides sample illumination that is uniform and free from glare. The associated condenser diaphragm can be manually adjusted to obtain the optimal illumination numerical aperture. In this paper, we report a programmable condenser lens for active illumination control. In our prototype setup, we used a $15 liquid crystal display as a transparent spatial light modulator and placed it at the back focal plane of the condenser lens. By setting different binary patterns on the display, we can actively control the illumination and the spatial coherence of the microscope platform. We demonstrated the use of such a simple scheme for multimodal imaging, including bright-field microscopy, darkfield microscopy, phase-contrast microscopy, polarization microscopy, 3D tomographic imaging, and super-resolution Fourier ptychographic imaging. The reported illumination engineering scheme is cost-effective and compatible with most existing platforms. It enables a turnkey solution with high flexibility for researchers in various communities. From the engineering point-of-view, the reported illumination scheme may also provide new insights for the development of multimodal microscopy and Fourier ptychographic imaging.

  9. Thermodynamic entanglement of magnonic condensates

    NASA Astrophysics Data System (ADS)

    Yuan, H. Y.; Yung, Man-Hong

    2018-02-01

    Over the past decade, significant progress has been achieved to create Bose-Einstein condensates (BECs) of magnetic excitations, i.e., magnons, at room temperature, which is a novel quantum many-body system with a strong spin-spin correlation, and contains potential applications in magnonic spintronics. For quantum information science, the magnonic condensates can become an attractive source of quantum entanglement, which plays a central role in most of the quantum information processing tasks. Here we theoretically study the entanglement properties of a magnon gas above and below the condensation temperature. We show that the thermodynamic entanglement of the spins is a manifestation of the off-diagonal long-range order; the entanglement of the condensate does not vanish, even if the spins are separated by an infinitely long distance, which is fundamentally distinct from the normal magnetic ordering below the Curie temperature. In addition, the phase-transition point occurs when the derivative of the entanglement changes abruptly. These results provide a theoretical foundation for a future investigation of the magnon BEC in terms of quantum entanglement.

  10. Cloud Condensation Nuclei in FIRE III

    NASA Technical Reports Server (NTRS)

    Hudson, James G.; Delnore, Victor E. (Technical Monitor)

    2002-01-01

    Yum and Hudson showed that the springtime Arctic aerosol is probably a result of long-range transport at high altitudes. Scavenging of particles by clouds reduces the low level concentrations by a factor of 3. This produces a vertical gradient in particle concentrations when low-level clouds are present. Concentrations are uniform with height when clouds are not present. Low-level CCN (cloud condensation nuclei) spectra are similar to those in other maritime areas as found by previous projects including FIRE 1 and ASTEX, which were also supported on earlier NASA-FIRE grants. Wylie and Hudson carried this work much further by comparing the CCN spectra observed during ACE with back trajectories of air masses and satellite photographs. This showed that cloud scavenging reduces CCN concentrations at all altitudes over the springtime Arctic, with liquid clouds being more efficient scavengers than frozen clouds. The small size of the Arctic Ocean seems to make it more susceptible to continental and thus anthropogenic aerosol influences than any of the other larger oceans.

  11. Dynamics of inhomogeneous chiral condensates

    NASA Astrophysics Data System (ADS)

    Carlomagno, Juan Pablo; Krein, Gastão; Kroff, Daniel; Peixoto, Thiago

    2018-01-01

    We study the dynamics of the formation of inhomogeneous chirally broken phases in the final stages of a heavy-ion collision, with particular interest on the time scales involved in the formation process. The study is conducted within the framework of a Ginzburg-Landau time evolution, driven by a free energy functional motivated by the Nambu-Jona-Lasinio model. Expansion of the medium is modeled by one-dimensional Bjorken flow and its effect on the formation of inhomogeneous condensates is investigated. We also use a free energy functional from a nonlocal Nambu-Jona-Lasinio model which predicts metastable phases that lead to long-lived inhomogeneous condensates before reaching an equilibrium phase with homogeneous condensates.

  12. Liquid droplets of cross-linked actin filaments

    NASA Astrophysics Data System (ADS)

    Weirich, Kimberly; Banerjee, Shiladitya; Dasbiswas, Kinjal; Vaikuntanathan, Suriyanarayan; Gardel, Margaret

    Soft materials constructed from biomolecules self-assemble into a myriad of structures that work in concert to support cell physiology. One critical soft material is the actin cytoskeleton, a viscoelastic gel composed of cross-linked actin filaments. Although actin networks are primarily known for their elastic properties, which are crucial to regulating cell mechanics, the viscous behavior has been theorized to enable shape changes and flows. We experimentally demonstrate a fluid phase of cross-linked actin, where cross-linker condenses dilute short actin filaments into spindle-shaped droplets, or tactoids. Tactoids have shape dynamics consistent with a continuum model of liquid crystal droplets. The cross-linker, which acts as a long range attractive interaction, analogous to molecular cohesion, controls the tactoid shape and dynamics, which reports on the liquid's interfacial tension and viscosity. We investigate how the cross-linker properties and filament length influence the liquid properties. These results demonstrate a novel mechanism to control organization of the actin cytoskeleton and provide insight into design principles for complex, macromolecular liquid phases.

  13. Process for recovering organic components from liquid streams

    DOEpatents

    Blume, Ingo; Baker, Richard W.

    1991-01-01

    A separation process for recovering organic components from liquid streams. The process is a combination of pervaporation and decantation. In cases where the liquid stream contains the organic to be separated in dissolved form, the pervaporation step is used to concentrate the organic to a point above the solubility limit, so that a two-phase permeate is formed and then decanted. In cases where the liquid stream is a two-phase mixture, the decantation step is performed first, to remove the organic product phase, and the residue from the decanter is then treated by pervaporation. The condensed permeate from the pervaporation unit is sufficiently concentrated in the organic component to be fed back to the decanter. The process can be tailored to produce only two streams: an essentially pure organic product stream suitable for reuse, and a residue stream for discharge or reuse.

  14. Porous ionic liquids: synthesis and application.

    PubMed

    Zhang, Shiguo; Dokko, Kaoru; Watanabe, Masayoshi

    2015-07-15

    Solidification of fluidic ionic liquids into porous materials yields porous ionic networks that combine the unique characteristics of ionic liquids with the common features of polymers and porous materials. This minireview reports the most recent advances in the design of porous ionic liquids. A summary of the synthesis of ordered and disordered porous ionic liquid-based nanoparticles or membranes with or without templates is provided, together with the new concept of room temperature porous ionic liquids. As a versatile platform for functional materials, porous ionic liquids have shown widespread applications in catalysis, adsorption, sensing, actuation, etc. This new research direction towards ionic liquids chemistry is still in its early stages but has great potential.

  15. Time symmetry breaking in Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Mendonça, J. T.; Gammal, A.

    2017-09-01

    We consider different processes leading to time symmetry breaking in a Bose-Einstein condensate. Our approach provides a global description of time symmetry breaking, based on the equations of a thermal condensate. This includes quenching and expansion of the condensate, the Kibble-Zurek mechanism associated with the creation of vorticity, the dynamical Casimir effect and the formation of time crystals.

  16. Extreme-UV lithography condenser

    DOEpatents

    Sweatt, William C.; Sweeney, Donald W.; Shafer, David; McGuire, James

    2001-01-01

    Condenser system for use with a ringfield camera in projection lithography where the condenser includes a series of segments of a parent aspheric mirror having one foci at a quasi-point source of radiation and the other foci at the radius of a ringfield have all but one or all of their beams translated and rotated by sets of mirrors such that all of the beams pass through the real entrance pupil of a ringfield camera about one of the beams and fall onto the ringfield radius as a coincident image as an arc of the ringfield. The condenser has a set of correcting mirrors with one of the correcting mirrors of each set, or a mirror that is common to said sets of mirrors, from which the radiation emanates, is a concave mirror that is positioned to shape a beam segment having a chord angle of about 25 to 85 degrees into a second beam segment having a chord angle of about 0 to 60 degrees.

  17. Why double-stranded RNA resists condensation

    PubMed Central

    Tolokh, Igor S.; Pabit, Suzette A.; Katz, Andrea M.; Chen, Yujie; Drozdetski, Aleksander; Baker, Nathan; Pollack, Lois; Onufriev, Alexey V.

    2014-01-01

    The addition of small amounts of multivalent cations to solutions containing double-stranded DNA leads to inter-DNA attraction and eventual condensation. Surprisingly, the condensation is suppressed in double-stranded RNA, which carries the same negative charge as DNA, but assumes a different double helical form. Here, we combine experiment and atomistic simulations to propose a mechanism that explains the variations in condensation of short (25 base-pairs) nucleic acid (NA) duplexes, from B-like form of homopolymeric DNA, to mixed sequence DNA, to DNA:RNA hybrid, to A-like RNA. Circular dichroism measurements suggest that duplex helical geometry is not the fundamental property that ultimately determines the observed differences in condensation. Instead, these differences are governed by the spatial variation of cobalt hexammine (CoHex) binding to NA. There are two major NA-CoHex binding modes—internal and external—distinguished by the proximity of bound CoHex to the helical axis. We find a significant difference, up to 5-fold, in the fraction of ions bound to the external surfaces of the different NA constructs studied. NA condensation propensity is determined by the fraction of CoHex ions in the external binding mode. PMID:25123663

  18. Experimental investigation of condensation predictions for dust-enriched systems

    NASA Astrophysics Data System (ADS)

    Ustunisik, Gokce; Ebel, Denton S.; Walker, David; Boesenberg, Joseph S.

    2014-10-01

    Condensation models describe the equilibrium distribution of elements between coexisting phases (mineral solid solutions, silicate liquid, and vapor) in a closed chemical system, where the vapor phase is always present, using equations of state of the phases involved at a fixed total pressure (<1 bar) and temperature (T). The VAPORS code uses a CaO-MgO-Al2O3-SiO2 (CMAS) liquid model at T above the stability field of olivine, and the MELTS thermodynamics algorithm at lower T. Quenched high-T crystal + liquid assemblages are preserved in meteorites as Type B Ca-, Al-rich inclusions (CAIs), and olivine-rich ferromagnesian chondrules. Experimental tests of compositional regions within 100 K of the predicted T of olivine stability may clarify the nature of the phases present, the phase boundaries, and the partition of trace elements among these phases. Twenty-three Pt-loop equilibrium experiments in seven phase fields on twelve bulk compositions at specific T and dust enrichment factors tested the predicted stability fields of forsteritic olivine (Mg2SiO4), enstatite (MgSiO3), Cr-bearing spinel (MgAl2O4), perovskite (CaTiO3), melilite (Ca2Al2SiO7-Ca2Mg2Si2O7) and/or grossite (CaAl4O7) crystallizing from liquid. Experimental results for forsterite, enstatite, and grossite are in very good agreement with predictions, both in chemistry and phase abundances. On the other hand the stability of spinel with olivine, and stability of perovskite and gehlenite are quite different from predictions. Perovskite is absent in all experiments. Even at low oxygen fugacity (IW-3.4), the most TiO2-rich experiments do not crystallize Al-, Ti-bearing calcic pyroxene. The stability of spinel and olivine together is limited to a smaller phase field than is predicted. The melilite stability field is much larger than predicted, indicating a deficiency of current liquid or melilite activity models. In that respect, these experiments contribute to improving the data for calibrating thermodynamic

  19. Liquid Water Oceans in Ice Giants

    NASA Technical Reports Server (NTRS)

    Wiktorowicz, Sloane J.; Ingersoll, Andrew P.

    2007-01-01

    Aptly named, ice giants such as Uranus and Neptune contain significant amounts of water. While this water cannot be present near the cloud tops, it must be abundant in the deep interior. We investigate the likelihood of a liquid water ocean existing in the hydrogen-rich region between the cloud tops and deep interior. Starting from an assumed temperature at a given upper tropospheric pressure (the photosphere), we follow a moist adiabat downward. The mixing ratio of water to hydrogen in the gas phase is small in the photosphere and increases with depth. The mixing ratio in the condensed phase is near unity in the photosphere and decreases with depth; this gives two possible outcomes. If at some pressure level the mixing ratio of water in the gas phase is equal to that in the deep interior, then that level is the cloud base. The gas below the cloud base has constant mixing ratio. Alternately, if the mixing ratio of water in the condensed phase reaches that in the deep interior, then the surface of a liquid ocean will occur. Below this ocean surface, the mixing ratio of water will be constant. A cloud base occurs when the photospheric temperature is high. For a family of ice giants with different photospheric temperatures, the cooler ice giants will have warmer cloud bases. For an ice giant with a cool enough photospheric temperature, the cloud base will exist at the critical temperature. For still cooler ice giants, ocean surfaces will result. A high mixing ratio of water in the deep interior favors a liquid ocean. We find that Neptune is both too warm (photospheric temperature too high) and too dry (mixing ratio of water in the deep interior too low) for liquid oceans to exist at present. To have a liquid ocean, Neptune s deep interior water to gas ratio would have to be higher than current models allow, and the density at 19 kbar would have to be approx. equal to 0.8 g/cu cm. Such a high density is inconsistent with gravitational data obtained during the Voyager

  20. The VUV dimer spectra excited in condensed krypton

    NASA Astrophysics Data System (ADS)

    Gerasimov, Gennady N.; Krylov, Boris E.; Hallin, Reinhold

    2004-05-01

    The vacuum ultraviolet (VUV) emission spectra of krypton homonuclear molecules (dimers) were observed in the wavelength range 120-200 nm. The krypton dimers were excited in a DC capillary discharge and the wall of tube could be cooled with liquid nitrogen. The homogeneous DC discharge was a straight channel in the middle of capillary tube. The gas krypton pressure in the discharge channel could be stabilized in the pressure range from 3 hPa to 1000 hPa. The DC discharge current density and the electron concentration were ~ 10 A/cm2 and ~ 2-4 1014 cm-3, respectively. The VUV krypton spectra excited in vicinity of solid krypton were compared with the spectra recorded without condensed krypton. The VUV spectral lines intensities were observed as nonlinear function of the discharge length. This nonlinear increase of intensity with the length of the tube has still to be explained.

  1. Coherent quantum depletion of an interacting atom condensate

    PubMed Central

    Kira, M.

    2015-01-01

    Sufficiently strong interactions promote coherent quantum transitions in spite of thermalization and losses, which are the adversaries of delicate effects such as reversibility and correlations. In atomic Bose–Einstein condensates (BECs), strong atom–atom interactions can eject atoms from the BEC to the normal component, yielding quantum depletion instead of temperature depletion. A recent experiment has already been verified to overcome losses. Here I show that it also achieves coherent quantum-depletion dynamics in a BEC swept fast enough from weak to strong atom–atom interactions. The elementary coherent process first excites the normal component into a liquid state that evolves into a spherical shell state, where the atom occupation peaks at a finite momentum to shield 50% of the BEC atoms from annihilation. The identified coherent processes resemble ultrafast semiconductor excitations expanding the scope of BEC explorations to many-body non-equilibrium studies. PMID:25767044

  2. Silicon deposition in nanopores using a liquid precursor.

    PubMed

    Masuda, Takashi; Tatsuda, Narihito; Yano, Kazuhisa; Shimoda, Tatsuya

    2016-11-22

    Techniques for depositing silicon into nanosized spaces are vital for the further scaling down of next-generation devices in the semiconductor industry. In this study, we filled silicon into 3.5-nm-diameter nanopores with an aspect ratio of 70 by exploiting thermodynamic behaviour based on the van der Waals energy of vaporized cyclopentasilane (CPS). We originally synthesized CPS as a liquid precursor for semiconducting silicon. Here we used CPS as a gas source in thermal chemical vapour deposition under atmospheric pressure because vaporized CPS can fill nanopores spontaneously. Our estimation of the free energy of CPS based on Lifshitz van der Waals theory clarified the filling mechanism, where CPS vapour in the nanopores readily undergoes capillary condensation because of its large molar volume compared to those of other vapours such as water, toluene, silane, and disilane. Consequently, a liquid-specific feature was observed during the deposition process; specifically, condensed CPS penetrated into the nanopores spontaneously via capillary force. The CPS that filled the nanopores was then transformed into solid silicon by thermal decomposition at 400 °C. The developed method is expected to be used as a nanoscale silicon filling technology, which is critical for the fabrication of future quantum scale silicon devices.

  3. Silicon deposition in nanopores using a liquid precursor

    NASA Astrophysics Data System (ADS)

    Masuda, Takashi; Tatsuda, Narihito; Yano, Kazuhisa; Shimoda, Tatsuya

    2016-11-01

    Techniques for depositing silicon into nanosized spaces are vital for the further scaling down of next-generation devices in the semiconductor industry. In this study, we filled silicon into 3.5-nm-diameter nanopores with an aspect ratio of 70 by exploiting thermodynamic behaviour based on the van der Waals energy of vaporized cyclopentasilane (CPS). We originally synthesized CPS as a liquid precursor for semiconducting silicon. Here we used CPS as a gas source in thermal chemical vapour deposition under atmospheric pressure because vaporized CPS can fill nanopores spontaneously. Our estimation of the free energy of CPS based on Lifshitz van der Waals theory clarified the filling mechanism, where CPS vapour in the nanopores readily undergoes capillary condensation because of its large molar volume compared to those of other vapours such as water, toluene, silane, and disilane. Consequently, a liquid-specific feature was observed during the deposition process; specifically, condensed CPS penetrated into the nanopores spontaneously via capillary force. The CPS that filled the nanopores was then transformed into solid silicon by thermal decomposition at 400 °C. The developed method is expected to be used as a nanoscale silicon filling technology, which is critical for the fabrication of future quantum scale silicon devices.

  4. Near-infrared scintillation of liquid argon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexander, T.; Escobar, C. O.; Lippincott, W. H.

    2016-03-03

    Since the 1970s it has been known that noble gases scintillate in the near infrared (NIR) region of the spectrum (0.7more » $$\\mu$$m < $$\\lambda$$; < 1.5$$\\mu$$m). More controversial has been the question of the NIR light yield for condensed noble gases. We first present the motivation for using the NIR scintillation in liquid argon detectors, then briefly review early as well as more recent efforts and finally show encouraging preliminary results of a test performed at Fermilab.« less

  5. Bose-Einstein condensation and indirect excitons: a review.

    PubMed

    Combescot, Monique; Combescot, Roland; Dubin, François

    2017-06-01

    We review recent progress on Bose-Einstein condensation (BEC) of semiconductor excitons. The first part deals with theory, the second part with experiments. This Review is written at a time where the problem of exciton Bose-Einstein condensation has just been revived by the understanding that the exciton condensate must be dark because the exciton ground state is not coupled to light. Here, we theoretically discuss this missed understanding before providing its experimental support through experiments that scrutinize indirect excitons made of spatially separated electrons and holes. The theoretical part first discusses condensation of elementary bosons. In particular, the necessary inhibition of condensate fragmentation by exchange interaction is stressed, before extending the discussion to interacting bosons with spin degrees of freedom. The theoretical part then considers composite bosons made of two fermions like semiconductor excitons. The spin structure of the excitons is detailed, with emphasis on the crucial fact that ground-state excitons are dark: indeed, this imposes the exciton Bose-Einstein condensate to be not coupled to light in the dilute regime. Condensate fragmentations are then reconsidered. In particular, it is shown that while at low density, the exciton condensate is fully dark, it acquires a bright component, coherent with the dark one, beyond a density threshold: in this regime, the exciton condensate is 'gray'. The experimental part first discusses optical creation of indirect excitons in quantum wells, and the detection of their photoluminescence. Exciton thermalisation is also addressed, as well as available approaches to estimate the exciton density. We then switch to specific experiments where indirect excitons form a macroscopic fragmented ring. We show that such ring provides efficient electrostatic trapping in the region of the fragments where an essentially-dark exciton Bose-Einstein condensate is formed at sub-Kelvin bath

  6. Water interactions with condensed organic phases: a combined experimental and theoretical study of molecular-level processes

    NASA Astrophysics Data System (ADS)

    Johansson, Sofia M.; Kong, Xiangrui; Thomson, Erik S.; Papagiannakopoulos, Panos; Pettersson, Jan B. C.; Lovrić, Josip; Toubin, Céline

    2016-04-01

    Water uptake on aerosol particles modifies their chemistry and microphysics with important implications for air quality and climate. A large fraction of the atmospheric aerosol consists of organic aerosol particles or inorganic particles with condensed organic components. Here, we combine laboratory studies using the environmental molecular beam (EMB) method1 with molecular dynamics (MD) simulations to characterize water interactions with organic surfaces in detail. The over-arching aim is to characterize the mechanisms that govern water uptake, in order to guide the development of physics-based models to be used in atmospheric modelling. The EMB method enables molecular level studies of interactions between gases and volatile surfaces at near ambient pressure,1 and the technique may provide information about collision dynamics, surface and bulk accommodation, desorption and diffusion kinetics. Molecular dynamics simulations provide complementary information about the collision dynamics and initial interactions between gas molecules and the condensed phase. Here, we focus on water interactions with condensed alcohol phases that serve as highly simplified proxies for systems in the environment. Gas-surface collisions are in general found to be highly inelastic and result in efficient surface accommodation of water molecules. As a consequence, surface accommodation of water can be safely assumed to be close to unity under typical ambient conditions. Bulk accommodation is inefficient on solid alcohol and the condensed materials appear to produce hydrophobic surface structures, with limited opportunities for adsorbed water to form hydrogen bonds with surface molecules. Accommodation is significantly more efficient on the dynamic liquid alcohol surfaces. The results for n-butanol (BuOH) are particularly intriguing where substantial changes in water accommodation taking place over a 10 K interval below and above the BuOH melting point.2 The governing mechanisms for the

  7. Enhancing dropwise condensation through bioinspired wettability patterning.

    PubMed

    Ghosh, Aritra; Beaini, Sara; Zhang, Bong June; Ganguly, Ranjan; Megaridis, Constantine M

    2014-11-04

    Dropwise condensation (DWC) heat transfer depends strongly on the maximum diameter (Dmax) of condensate droplets departing from the condenser surface. This study presents a facile technique implemented to gain control of Dmax in DWC within vapor/air atmospheres. We demonstrate how this approach can enhance the corresponding heat transfer rate by harnessing the capillary forces in the removal of the condensate from the surface. We examine various hydrophilic-superhydrophilic patterns, which, respectively, sustain and combine DWC and filmwise condensation on the substrate. The material system uses laser-patterned masking and chemical etching to achieve the desired wettability contrast and does not employ any hydrophobizing agent. By applying alternating straight parallel strips of hydrophilic (contact angle ∼78°) mirror-finish aluminum and superhydrophilic regions (etched aluminum) on the condensing surface, we show that the average maximum droplet size on the less-wettable domains is nearly 42% of the width of the corresponding strips. An overall improvement in the condensate collection rate, up to 19% (as compared to the control case of DWC on mirror-finish aluminum) was achieved by using an interdigitated superhydrophilic track pattern (on the mirror-finish hydrophilic surface) inspired by the vein network of plant leaves. The bioinspired interdigitated pattern is found to outperform the straight hydrophilic-superhydrophilic pattern design, particularly under higher humidity conditions in the presence of noncondensable gases (NCG), a condition that is more challenging for maintaining sustained DWC.

  8. Cold Bose-Einstein condensates for surface reflection

    NASA Astrophysics Data System (ADS)

    Saba, M.; Leanhardt, A. E.; Pasquini, T. A.; Sanner, C.; Schirotzek, A.; Shin, Y.; Pritchard, D. E.; Ketterle, W.

    2004-05-01

    Atoms can be reflected from a solid surface in spite of the attraction provided by the Casimir-Polder potential if their de Broglie wavelength exceeds the range of the attractive potential, an effect known as quantum reflection and demonstrated for atomic beams hitting a surface at grazing angle [1]. Quantum reflection of atomic Bose-Einstein condensates would have important consequences for experiments and applications requiring manipulation of condensates close to surfaces. However, no matter how cold a condensate is when approaching a surface, the atoms will hit the surface with a kinetic energy appropriate to the healing length, an energy roughly equal to the chemical potential and determined by atom-atom interactions. We circumvented this limitation by building a loose trap for the condensate, so that the atomic cloud can be kept very dilute, reaching the large healing length required to observe quantum reflection [2]. The trap consisted of a small single coil with electric current running in it that pushes the atoms upward, balancing gravity downward. The gravito-magnetic trap had a mean trap frequency of 1 Hz, so that condensates could sit in the trap for several minutes and reach temperatures as low as 500 pK, the lowest temperature ever recorded. We will then discuss how these condensates, whose healing length equals the condensate size, behave when approached to a silicon surface. [1] F. Shimizu, Phys. Rev. Lett. 86, 987 (2001); [2] A. E. Leanhardt et al., Science 301, 1513 (2003)

  9. Liquid-Vapor Equilibrium of Multicomponent Cryogenic Systems

    NASA Technical Reports Server (NTRS)

    Thompson, W. Reid; Calado, Jorge C. G.; Zollweg, John A.

    1990-01-01

    Liquid-vapor and solid-vapor equilibria at low to moderate pressures and low temperatures are important in many solar system environments, including the surface and clouds of Titan, the clouds of Uranus and Neptune, and the surfaces of Mars and Triton. The familiar cases of ideal behavior are limiting cases of a general thermodynamic representation for the vapor pressure of each component in a homogeneous multicomponent system. The fundamental connections of laboratory measurements to thermodynamic models are through the Gibbs-Duhem relation and the Gibbs-Helmholtz relation. Using laboratory measurements of the total pressure, temperature, and compositions of the liquid and vapor phases at equilibrium, the values of these parameters can be determined. The resulting model for vapor-liquid equilibrium can then conveniently and accurately be used to calculate pressures, compositions, condensation altitudes, and their dependencies on changing climatic conditions. A specific system being investigated is CH4-C2H6-N2, at conditions relevant to Titan's surface and atmosphere. Discussed are: the modeling of existing data on CH4-N2, with applications to the composition of Titan's condensate clouds; some new measurements on the CH4-C2H6 binary, using a high-precision static/volumetric system, and on the C2H6-N2 binary, using the volumetric system and a sensitive cryogenic flow calorimeter; and describe a new cryogenic phase-equilibrium vessel with which we are beginning a detailed, systematic study of the three constituent binaries and the ternary CH4-C2H6-N2 system at temperatures ranging from 80 to 105 K and pressures from 0.1 to 7 bar.

  10. A MEMS Condenser Microphone-Based Intracochlear Acoustic Receiver.

    PubMed

    Pfiffner, Flurin; Prochazka, Lukas; Peus, Dominik; Dobrev, Ivo; Dalbert, Adrian; Sim, Jae Hoon; Kesterke, Rahel; Walraevens, Joris; Harris, Francesca; Roosli, Christof; Obrist, Dominik; Huber, Alexander

    2017-10-01

    Intracochlear sound pressure (ICSP) measurements are limited by the small dimensions of the human inner ear and the requirements imposed by the liquid medium. A robust intracochlear acoustic receiver (ICAR) for repeated use with a simple data acquisition system that provides the required high sensitivity and small dimensions does not yet exist. The work described in this report aims to fill this gap and presents a new microelectromechanical systems (MEMS) condenser microphone (CMIC)-based ICAR concept suitable for ICSP measurements in human temporal bones. The ICAR head consisted of a passive protective diaphragm (PD) sealing the MEMS CMIC against the liquid medium, enabling insertion into the inner ear. The components of the MEMS CMIC-based ICAR were expressed by a lumped element model (LEM) and compared to the performance of successfully fabricated ICARs. Good agreement was achieved between the LEM and the measurements with different sizes of the PD. The ICSP measurements in a human cadaver temporal bone yielded data in agreement with the literature. Our results confirm that the presented MEMS CMIC-based ICAR is a promising technology for measuring ICSP in human temporal bones in the audible frequency range. A sensor for evaluation of the biomechanical hearing process by quantification of ICSP is presented. The concept has potential as an acoustic receiver in totally implantable cochlear implants.

  11. Experimental Studies of Liquefaction and Densification of Liquid Oxygen

    NASA Technical Reports Server (NTRS)

    Partridge, Jonathan Koert

    2010-01-01

    The propellant combination that offers optimum performance is very reactive with a low average molecular weight of the resulting combustion products. Propellant combinations such as oxygen and hydrogen meet the above criteria, however, the propellants in gaseous form require large propellant tanks due to the low density of gas. Thus, rocketry employs cryogenic refrigeration to provide a more dense propellant stored as a liquid. In addition to propellant liquefaction, cryogenic refrigeration can also conserve propellant and provide propellant subcooling and propellant densification. Previous studies analyzed vapor conditioning of a cryogenic propellant, with the vapor conditioning by either a heat exchanger position in the vapor or by using the vapor in a refrigeration cycle as the working fluid. This study analyzes the effects of refrigeration heat exchanger located in the liquid of the common propellant oxidizer, liquid oxygen. This study predicted and determined the mass condensation rate and heat transfer coefficient for liquid oxygen.

  12. Effect of condensed tannins addition on the astringency of red wines.

    PubMed

    Soares, Susana; Sousa, André; Mateus, Nuno; de Freitas, Victor

    2012-02-01

    Astringency has been defined as a group of sensations involving dryness, tightening, and shrinking of the oral surface. It has been accepted that astringency is due to the tannin-induced interaction and/or precipitation of the salivary proline-rich proteins (PRPs) in the oral cavity, as a result of the ingestion of food products rich in tannins, for example, red wine. The sensory evaluation of astringency is difficult, and the existence of fast and reliable methods to its study in vitro is scarce. So, in this work, the astringency of red wine supplemented with oligomeric procyanidins (condensed tannins), and the salivary proteins (SP) involved in its development were evaluated by high-performance liquid chromatography analysis of human saliva after its interaction with red wine and by sensorial evaluation. The results show that for low concentration of tannins, the decrease of acidic PRPs and statherin is correlated with astringency intensity, with these families having a high relative complexation and precipitation toward condensed tannins comparatively to the other SP. However, for higher concentrations of tannins, the relative astringency between wines seems to correlate's to the glycosylated PRPs changes. This work shows for the first time that the several families of SP could be involved in different stages of the astringency development.

  13. Gas propagation in a liquid helium cooled vacuum tube following a sudden vacuum loss

    NASA Astrophysics Data System (ADS)

    Dhuley, Ram C.

    This dissertation describes the propagation of near atmospheric nitrogen gas that rushes into a liquid helium cooled vacuum tube after the tube suddenly loses vacuum. The loss-of-vacuum scenario resembles accidental venting of atmospheric air to the beam-line of a superconducting radio frequency particle accelerator and is investigated to understand how in the presence of condensation, the in-flowing air will propagate in such geometry. In a series of controlled experiments, room temperature nitrogen gas (a substitute for air) at a variety of mass flow rates was vented to a high vacuum tube immersed in a bath of liquid helium. Pressure probes and thermometers installed on the tube along its length measured respectively the tube pressure and tube wall temperature rise due to gas flooding and condensation. At high mass in-flow rates a gas front propagated down the vacuum tube but with a continuously decreasing speed. Regression analysis of the measured front arrival times indicates that the speed decreases nearly exponentially with the travel length. At low enough mass in-flow rates, no front propagated in the vacuum tube. Instead, the in-flowing gas steadily condensed over a short section of the tube near its entrance and the front appeared to `freeze-out'. An analytical expression is derived for gas front propagation speed in a vacuum tube in the presence of condensation. The analytical model qualitatively explains the front deceleration and flow freeze-out. The model is then simplified and supplemented with condensation heat/mass transfer data to again find the front to decelerate exponentially while going away from the tube entrance. Within the experimental and procedural uncertainty, the exponential decay length-scales obtained from the front arrival time regression and from the simplified model agree.

  14. Naturally occurring vapor-liquid-solid (VLS) Whisker growth of germanium sulfide

    USGS Publications Warehouse

    Finkelman, R.B.; Larson, R.R.; Dwornik, E.J.

    1974-01-01

    The first naturally occurring terrestrial example of vapor-liquid-solid (VLS) growth has been observed in condensates from gases released by burning coal in culm banks. Scanning electron microscopy, X-ray diffraction, and energy dispersive analysis indicate that the crystals consist of elongated rods (??? 100 ??m) of germanium sulfide capped by bulbs depleted in germanium. ?? 1974.

  15. The Development of Enhanced Heat Transfer Condenser Tubing

    DTIC Science & Technology

    1973-07-01

    side coeffic ient. The profiled tube condensing coefficient h’ is derived by analogy with the Nusselt ( 8 ) equation for the average condensing ... condensing coefficient value s = 0.925 was derived by Nusselt for laminar flow cnditions. It is well known that under turbulent film flow with waves...DTICSEL ECTE SEPA 0O1981ŕ jjH E DEVELOPME NTI OF ENHANCED HEAT TRANSFER CONDENSER TUBING! I H .EWSON T. D. AODGSON ! 0L L U I-.L V.i 1-- Chemical

  16. Why double-stranded RNA resists condensation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tolokh, Igor S.; Pabit, Suzette; Katz, Andrea M.

    2014-09-15

    The addition of small amounts of multivalent cations to solutions containing double-stranded DNA leads to attraction between the negatively charged helices and eventually to condensation. Surprisingly, this effect is suppressed in double-stranded RNA, which carries the same charge as the DNA, but assumes a different double helical form. However, additional characterization of short (25 base-pairs) nucleic acid (NA) duplex structures by circular dichroism shows that measured differences in condensation are not solely determined by duplex helical geometry. Here we combine experiment, theory, and atomistic simulations to propose a mechanism that connects the observed variations in condensation of short NA duplexesmore » with the spatial variation of cobalt hexammine (CoHex) binding at the NA duplex surface. The atomistic picture that emerged showed that CoHex distributions around the NA reveals two major NA-CoHex binding modes -- internal and external -- distinguished by the proximity of bound CoHex to the helical axis. Decreasing trends in experimentally observed condensation propensity of the four studied NA duplexes (from B-like form of homopolymeric DNA, to mixed sequence DNA, to DNA:RNA hybrid, to A-like RNA) are explained by the progressive decrease of a single quantity: the fraction of CoHex ions in the external binding mode. Thus, while NA condensation depends on a complex interplay between various structural and sequence features, our coupled experimental and theoretical results suggest a new model in which a single parameter connects the NA condensation propensity with geometry and sequence dependence of CoHex binding.« less

  17. Modeling of Kerena Emergency Condenser

    NASA Astrophysics Data System (ADS)

    Bryk, Rafał; Schmidt, Holger; Mull, Thomas; Wagner, Thomas; Ganzmann, Ingo; Herbst, Oliver

    2017-12-01

    KERENA is an innovative boiling water reactor concept equipped with several passive safety systems. For the experimental verification of performance of the systems and for codes validation, the Integral Test Stand Karlstein (INKA) was built in Karlstein, Germany. The emergency condenser (EC) system transfers heat from the reactor pressure vessel (RPV) to the core flooding pool in case of water level decrease in the RPV. EC is composed of a large number of slightly inclined tubes. During accident conditions, steam enters into the tubes and condenses due to the contact of the tubes with cold water at the secondary side. The condensed water flows then back to the RPV due to gravity. In this paper two approaches for modeling of condensation in slightly inclined tubes are compared and verified against experiments. The first approach is based on the flow regime map. Depending on the regime, heat transfer coefficient is calculated according to specific semi-empirical correlation. The second approach uses a general, fully-empirical correlation. The models are developed with utilization of the object-oriented Modelica language and the open-source OpenModelica environment. The results are compared with data obtained during a large scale integral test, simulating loss of coolant accident performed at Integral Test Stand Karlstein (INKA). The comparison shows a good agreement.Due to the modularity of models, both of them may be used in the future in systems incorporating condensation in horizontal or slightly inclined tubes. Depending on his preferences, the modeller may choose one-equation based approach or more sophisticated model composed of several exchangeable semi-empirical correlations.

  18. Pore diameter effects on phase behavior of a gas condensate in graphitic one-and two-dimensional nanopores.

    PubMed

    Welch, William R W; Piri, Mohammad

    2016-01-01

    Molecular dynamics (MD) simulations were performed on a hydrocarbon mixture representing a typical gas condensate composed mostly of methane and other small molecules with small fractions of heavier hydrocarbons, representative of mixtures found in tight shale reservoirs. The fluid was examined both in bulk and confined to graphitic nano-scale slits and pores. Numerous widths and diameters of slits and pores respectively were examined under variable pressures at 300 K in order to find conditions in which the fluid at the center of the apertures would not be affected by capillary condensation due to the oil-wet walls. For the bulk fluid, retrograde phase behavior was verified by liquid volumes obtained from Voronoi tessellations. In cases of both one and two-dimensional confinement, for the smallest apertures, heavy molecules aggregated inside the pore space and compression of the gas outside the solid structure lead to decreases in density of the confined fluid. Normal density/pressure relationships were observed for slits having gaps of above 3 nm and pores having diameters above 6 nm. At 70 bar, the minimum gap width at which the fluid could pass through the center of slits without condensation effects was predicted to be 6 nm and the corresponding diameter in pores was predicted to be 8 nm. The models suggest that in nanoscale networks involving pores smaller than these limiting dimensions, capillary condensation should significantly impede transmission of natural gases with similar composition.

  19. Frustration in Condensed Matter and Protein Folding

    NASA Astrophysics Data System (ADS)

    Li, Z.; Tanner, S.; Conroy, B.; Owens, F.; Tran, M. M.; Boekema, C.

    2014-03-01

    By means of computer modeling, we are studying frustration in condensed matter and protein folding, including the influence of temperature and Thomson-figure formation. Frustration is due to competing interactions in a disordered state. The key issue is how the particles interact to reach the lowest frustration. The relaxation for frustration is mostly a power function (randomly assigned pattern) or an exponential function (regular patterns like Thomson figures). For the atomic Thomson model, frustration is predicted to decrease with the formation of Thomson figures at zero kelvin. We attempt to apply our frustration modeling to protein folding and dynamics. We investigate the homogeneous protein frustration that would cause the speed of the protein folding to increase. Increase of protein frustration (where frustration and hydrophobicity interplay with protein folding) may lead to a protein mutation. Research is supported by WiSE@SJSU and AFC San Jose.

  20. Yield stress materials in soft condensed matter

    NASA Astrophysics Data System (ADS)

    Bonn, Daniel; Denn, Morton M.; Berthier, Ludovic; Divoux, Thibaut; Manneville, Sébastien

    2017-07-01

    A comprehensive review is presented of the physical behavior of yield stress materials in soft condensed matter, which encompasses a broad range of materials from colloidal assemblies and gels to emulsions and non-Brownian suspensions. All these disordered materials display a nonlinear flow behavior in response to external mechanical forces due to the existence of a finite force threshold for flow to occur: the yield stress. Both the physical origin and rheological consequences associated with this nonlinear behavior are discussed and an overview is given of experimental techniques available to measure the yield stress. Recent progress is discussed concerning a microscopic theoretical description of the flow dynamics of yield stress materials, emphasizing, in particular, the role played by relaxation time scales, the interplay between shear flow and aging behavior, the existence of inhomogeneous shear flows and shear bands, wall slip, and nonlocal effects in confined geometries.

  1. Self-pressurization of a spherical liquid hydrogen storage tank in a microgravity environment

    NASA Technical Reports Server (NTRS)

    Lin, C. S.; Hasan, M. M.

    1992-01-01

    Thermal stratification and self-pressurization of partially filled liquid hydrogen (LH2) storage tanks under microgravity condition is studied theoretically. A spherical tank is subjected to a uniform and constant wall heat flux. It is assumed that a vapor bubble is located in the tank center such that the liquid-vapor interface and tank wall form two concentric spheres. This vapor bubble represents an idealized configuration of a wetting fluid in microgravity conditions. Dimensionless mass and energy conservation equations for both vapor and liquid regions are numerically solved. Coordinate transformation is used to capture the interface location which changes due to liquid thermal expansion, vapor compression, and mass transfer at liquid-vapor interface. The effects of tank size, liquid fill level, and wall heat flux on the pressure rise and thermal stratification are studied. Liquid thermal expansion tends to cause vapor condensation and wall heat flux tends to cause liquid evaporation at the interface. The combined effects determine the direction of mass transfer at the interface. Liquid superheat increases with increasing wall heat flux and liquid fill level and approaches an asymptotic value.

  2. Local condensate depletion at trap center under strong interactions

    NASA Astrophysics Data System (ADS)

    Yukalov, V. I.; Yukalova, E. P.

    2018-04-01

    Cold trapped Bose-condensed atoms, interacting via hard-sphere repulsive potentials are considered. Simple mean-field approximations show that the condensate distribution inside a harmonic trap always has the shape of a hump with the maximum condensate density occurring at the trap center. However, Monte Carlo simulations at high density and strong interactions display the condensate depletion at the trap center. The explanation of this effect of local condensate depletion at trap center is suggested in the frame of self-consistent theory of Bose-condensed systems. The depletion is shown to be due to the existence of the anomalous average that takes into account pair correlations and appears in systems with broken gauge symmetry.

  3. Structure, Hydrodynamics, and Phase Transition of Freely Suspended Liquid Crystals

    NASA Technical Reports Server (NTRS)

    Clark, Noel A.

    2000-01-01

    Smectic liquid crystals are phases of rod shaped molecules organized into one dimensionally (1D) periodic arrays of layers, each layer being between one and two molecular lengths thick. In the least ordered smectic phases, the smectics A and C, each layer is a two dimensional (2D) liquid. Additionally there are a variety of more ordered smectic phases having hexatic short range translational order or 2D crystalline quasi long range translational order within the layers. The inherent fluid-layer structure and low vapor pressure of smectic liquid crystals enable the long term stabilization of freely suspended, single component, layered fluid films as thin as 30A, a single molecular layer. The layering forces the films to be an integral number of smectic layers thick, quantizing their thickness in layer units and forcing a film of a particular number of layers to be physically homogeneous with respect to its layer structure over its entire area. Optical reflectivity enables the precise determination of the number of layers. These ultrathin freely suspended liquid crystal films are structures of fundamental interest in condensed matter and fluid physics. They are the thinnest known stable condensed phase fluid structures and have the largest surface-to-volume ratio of any stable fluid preparation, making them ideal for the study of the effects of reduced dimensionality on phase behavior and on fluctuation and interface phenomena. Their low vapor pressure and quantized thickness enable the effective use of microgravity to extend the study of basic capillary phenomena to ultrathin fluid films. Freely suspended films have been a wellspring of new liquid crystal physics. They have been used to provide unique experimental conditions for the study of condensed phase transitions in two dimensions. They are the only system in which the hexatic has been unambiguously identified as a phase of matter, and the only physical system in which fluctuations of a 2D XY system and

  4. Enhanced Evaporation and Condensation in Tubes

    NASA Astrophysics Data System (ADS)

    Honda, Hiroshi

    A state-of-the-art review of enhanced evaporation and condensation in horizontal microfin tubes and micro-channels that are used for air-conditioning and refrigeration applications is presented. The review covers the effects of flow pattern and geometrical parameters of the tubes on the heat transfer performance. Attention is paid to the effect of surface tension which leads to enhanced evaporation and condensation in the microfin tubes and micro-channels. A review of prior efforts to develop empirical correlations of the heat transfer coefficient and theoretical models for evaporation and condensation in the horizontal microfin tubes and micro-channels is also presented.

  5. Simulation of Inviscid Compressible Multi-Phase Flow with Condensation

    NASA Technical Reports Server (NTRS)

    Kelleners, Philip

    2003-01-01

    Condensation of vapours in rapid expansions of compressible gases is investigated. In the case of high temperature gradients the condensation will start at conditions well away from thermodynamic equilibrium of the fluid. In those cases homogeneous condensation is dominant over heterogeneous condensation. The present work is concerned with development of a simulation tool for computation of high speed compressible flows with homogeneous condensation. The resulting ow solver should preferably be accurate and robust to be used for simulation of industrial flows in general geometries.

  6. 21 CFR 573.200 - Condensed animal protein hydrolysate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Condensed animal protein hydrolysate. 573.200... (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.200 Condensed animal protein hydrolysate. (a) Identity. The condensed...

  7. Confinement-Driven Phase Separation of Quantum Liquid Mixtures

    NASA Astrophysics Data System (ADS)

    Prisk, T. R.; Pantalei, C.; Kaiser, H.; Sokol, P. E.

    2012-08-01

    We report small-angle neutron scattering studies of liquid helium mixtures confined in Mobil Crystalline Material-41 (MCM-41), a porous silica glass with narrow cylindrical nanopores (d=3.4nm). MCM-41 is an ideal model adsorbent for fundamental studies of gas sorption in porous media because its monodisperse pores are arranged in a 2D triangular lattice. The small-angle scattering consists of a series of diffraction peaks whose intensities are determined by how the imbibed liquid fills the pores. Pure He4 adsorbed in the pores show classic, layer-by-layer film growth as a function of pore filling, leaving the long range symmetry of the system intact. In contrast, the adsorption of He3-He4 mixtures produces a structure incommensurate with the pore lattice. Neither capillary condensation nor preferential adsorption of one helium isotope to the pore walls can provide the symmetry-breaking mechanism. The scattering is consistent with the formation of randomly distributed liquid-liquid microdomains ˜2.3nm in size, providing evidence that confinement in a nanometer scale capillary can drive local phase separation in quantum liquid mixtures.

  8. Liquid propellant thermal conditioning system test program

    NASA Technical Reports Server (NTRS)

    Bullard, B. R.

    1972-01-01

    Results are presented from more than 1500 hours of testing on a liquid hydrogen thermal conditioning unit. Test parameters included: mixer and vent flow rates; tank size; ullage volume; pressurant gas; pressurant temperature; pressure level; and heat rate. Gaseous hydrogen and helium were used as pressurants. Analytical models were developed to correlate the test data and relate the performance to that anticipated in zero gravity. Experimental and theoretical results are presented which relate the variables controlling vapor condensation at a moving interface.

  9. Quantitative evaluation of colloidal stability of antibody solutions using PEG-induced liquid-liquid phase separation.

    PubMed

    Wang, Ying; Latypov, Ramil F; Lomakin, Aleksey; Meyer, Julie A; Kerwin, Bruce A; Vunnum, Suresh; Benedek, George B

    2014-05-05

    Colloidal stability of antibody solutions, i.e., the propensity of the folded protein to precipitate, is an important consideration in formulation development of therapeutic monoclonal antibodies. In a protein solution, different pathways including crystallization, colloidal aggregation, and liquid-liquid phase separation (LLPS) can lead to the formation of precipitates. The kinetics of crystallization and aggregation are often slow and vary from protein to protein. Due to the diverse mechanisms of these protein condensation processes, it is a challenge to develop a standardized test for an early evaluation of the colloidal stability of antibody solutions. LLPS would normally occur in antibody solutions at sufficiently low temperature, provided that it is not preempted by freezing of the solution. Poly(ethylene glycol) (PEG) can be used to induce LLPS at temperatures above the freezing point. Here, we propose a colloidal stability test based on inducing LLPS in antibody solutions and measuring the antibody concentration of the dilute phase. We demonstrate experimentally that such a PEG-induced LLPS test can be used to compare colloidal stability of different antibodies in different solution conditions and can be readily applied to high-throughput screening. We have derived an equation for the effects of PEG concentration and molecular weight on the results of the LLPS test. Finally, this equation defines a binding energy in the condensed phase, which can be determined in the PEG-induced LLPS test. This binding energy is a measure of attractive interactions between antibody molecules and can be used for quantitative characterization of the colloidal stability of antibody solutions.

  10. Disequilibrium condensation environments in space - A frontier in thermodynamics

    NASA Technical Reports Server (NTRS)

    De, B. R.

    1979-01-01

    The thermal-disequilibrium aspect of the problem of dust-particle formation from a gas phase in an open space environment is discussed in an effort to draw attention to the space condensation environment as an interesting arena for application and extension of the ideas and formalisms of nonequilibrium thermodynamics. It is shown that quasi-steady states with a disequilibrium between the gas-phase kinetic temperature and the condensed-phase internal temperature appear to be the norm of condensation environments in space. Consideration of the case of condensation onto a bulk condensed phase indicates that these quasi-steady states may constitute Prigogine dissipative structures. It is suggested that a proper study of the process of condensation in a space environment should include any effects arising from thermal disequilibrium.

  11. Process for hydrocracking carbonaceous material in liquid carrier

    DOEpatents

    Duncan, Dennis A.

    1980-01-01

    Solid carbonaceous material is hydrocracked to provide aliphatic and aromatic hydrocarbons for use as gaseous and liquid fuels or chemical feed stock. Particulate carbonaceous material such as coal in slurry with recycled product oil is preheated in liquid state to a temperature of 600.degree.-1200.degree. F. in the presence of hydrogen gas. The product oil acts as a sorbing agent for the agglomerating bitumins to minimize caking within the process. In the hydrocracking reactor, the slurry of oil and carbonaceous particles is heated within a tubular passageway to vaporize the oil and form a gas-solid mixture which is further heated to a hydropyrolysis temperature in excess of 1200.degree. F. The gas-solid mixture is quenched by contact with additional oil to condense normally liquid hydrocarbons for separation from the gases. A fraction of the hydrocarbon liquid product is recycled for quenching and slurrying with the carbonaceous feed. Hydrogen is recovered from the gas for recycle and additional hydrogen is produced by gasification of residual char.

  12. Tunable Magnetic Alignment between Trapped Exciton-Polariton Condensates.

    PubMed

    Ohadi, H; Del Valle-Inclan Redondo, Y; Dreismann, A; Rubo, Y G; Pinsker, F; Tsintzos, S I; Hatzopoulos, Z; Savvidis, P G; Baumberg, J J

    2016-03-11

    Tunable spin correlations are found to arise between two neighboring trapped exciton-polariton condensates which spin polarize spontaneously. We observe a crossover from an antiferromagnetic to a ferromagnetic pair state by reducing the coupling barrier in real time using control of the imprinted pattern of pump light. Fast optical switching of both condensates is then achieved by resonantly but weakly triggering only a single condensate. These effects can be explained as the competition between spin bifurcations and spin-preserving Josephson coupling between the two condensates, and open the way to polariton Bose-Hubbard ladders.

  13. Aerosol-based detectors for liquid chromatography.

    PubMed

    Magnusson, Lars-Erik; Risley, Donald S; Koropchak, John A

    2015-11-20

    Aerosol-based detectors developed within the last few decades have increasingly addressed the need for sensitive, universal liquid chromatography detection in a wide variety of applications. Herein, we review the operating principles, instrumentation, analytical characteristics, and recent applications of the three general types of such detectors: evaporative light scattering detection (ELSD), condensation nucleation light scattering detection (CNLSD); commercially known as the nano-quantity analyte detector (NQAD), and charged aerosol detection (CAD). Included is a comparative evaluation of the operational and analytical characteristics of these detectors. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Condensation Front Migration in a Protoplanetary Nebula

    NASA Technical Reports Server (NTRS)

    Davis, Sanford S.

    2004-01-01

    Condensation front dynamics are investigated in the mid-solar nebula region. A quasi-steady model of the evolving nebula is combined with equilibrium vapor pressure curves to determine evolutionary condensation fronts for selected species. These fronts are found to migrate inwards from the far-nebula to final positions during a period of 10(exp 7) years. The physical process governing this movement is a combination of local viscous heating and luminescent heating from the central star. Two luminescent heating models are used and their effects on the ultimate radial position of the condensation front are discussed. At first the fronts move much faster than the nebular accretion velocity, but after a time the accreting gas and dust overtakes the slowing condensation front.

  15. 40 CFR 405.90 - Applicability; description of the condensed milk subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... subpart are applicable to discharges resulting from the manufacture of condensed whole milk, condensed skim milk, sweetened condensed milk and condensed buttermilk. ... condensed milk subcategory. 405.90 Section 405.90 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...

  16. Microbial Characterization of Free Floating Condensate Aboard the Mir Space Station

    NASA Technical Reports Server (NTRS)

    Ott, C. M.; Bruce, R. J.; Pierson, D. L.

    2004-01-01

    Three samples of humidity condensate that had accumulated behind panels aboard the Russian space station Mir were collected and returned to earth for analysis. As these floating masses of liquid come into contact with the astronauts and the engineering systems, they have the potential to affect both crew health and systems performance. Using a combination of culturing techniques, a wide variety of organisms were isolated included Escherichia coli, Serratia marcescens, and a presumed Legionella species. In addition, microscopic analysis indicated the presence of protozoa, dust mites, and spirochetes. These findings suggest the need for more comprehensive microbial analysis of the environment through the use of new methodologies to allow a more thorough risk assessment of spacecraft. Copyright 2004 Springer-Verlag.

  17. Condensation of wet vapors in turbines

    NASA Technical Reports Server (NTRS)

    Kothman, R. E.

    1970-01-01

    Computer program predicts condensation point in wet vapor turbines and analyzes subsequent nucleation and growth processes to determine both moisture content and drop size and number distribution as a function of position. Program includes effects of molecular association on condensation and flow processes and handles both subsonic and supersonic flows.

  18. Condensates in quantum chromodynamics and the cosmological constant

    PubMed Central

    Brodsky, Stanley J.; Shrock, Robert

    2011-01-01

    Casher and Susskind [Casher A, Susskind L (1974) Phys Rev 9:436–460] have noted that in the light-front description, spontaneous chiral symmetry breaking is a property of hadronic wavefunctions and not of the vacuum. Here we show from several physical perspectives that, because of color confinement, quark and gluon condensates in quantum chromodynamics (QCD) are associated with the internal dynamics of hadrons. We discuss condensates using condensed matter analogues, the Anti de Sitter/conformal field theory correspondence, and the Bethe–Salpeter–Dyson–Schwinger approach for bound states. Our analysis is in agreement with the Casher and Susskind model and the explicit demonstration of “in-hadron” condensates by Roberts and coworkers [Maris P, Roberts CD, Tandy PC (1998) Phys Lett B 420:267–273], using the Bethe–Salpeter–Dyson–Schwinger formalism for QCD-bound states. These results imply that QCD condensates give zero contribution to the cosmological constant, because all of the gravitational effects of the in-hadron condensates are already included in the normal contribution from hadron masses.

  19. String theory, quantum phase transitions, and the emergent Fermi liquid.

    PubMed

    Cubrović, Mihailo; Zaanen, Jan; Schalm, Koenraad

    2009-07-24

    A central problem in quantum condensed matter physics is the critical theory governing the zero-temperature quantum phase transition between strongly renormalized Fermi liquids as found in heavy fermion intermetallics and possibly in high-critical temperature superconductors. We found that the mathematics of string theory is capable of describing such fermionic quantum critical states. Using the anti-de Sitter/conformal field theory correspondence to relate fermionic quantum critical fields to a gravitational problem, we computed the spectral functions of fermions in the field theory. By increasing the fermion density away from the relativistic quantum critical point, a state emerges with all the features of the Fermi liquid.

  20. An active drop counting device using condenser microphone for superheated emulsion detector

    NASA Astrophysics Data System (ADS)

    Das, Mala; Arya, A. S.; Marick, C.; Kanjilal, D.; Saha, S.

    2008-11-01

    An active device for superheated emulsion detector is described. A capacitive diaphragm sensor or condenser microphone is used to convert the acoustic pulse of drop nucleation to electrical signal. An active peak detector is included in the circuit to avoid multiple triggering of the counter. The counts are finally recorded by a microprocessor based data acquisition system. Genuine triggers, missed by the sensor, were studied using a simulated clock pulse. The neutron energy spectrum of C252f fission neutron source was measured using the device with R114 as the sensitive liquid and compared with the calculated fission neutron energy spectrum of C252f. Frequency analysis of the detected signals was also carried out.