Science.gov

Sample records for lithium 13

  1. Lithium

    USGS Publications Warehouse

    Jaskula, B.W.

    2011-01-01

    In 2010, lithium consumption in the United States was estimated to have been about 1 kt (1,100 st) of contained lithium, a 23-percent decrease from 2009. The United States was estimated to be the fourth largest consumer of lithium. It remained the leading importer of lithium carbonate and the leading producer of value-added lithium materials. Only one company, Chemetall Foote Corp. (a subsidiary of Chemetall GmbH of Germany), produced lithium compounds from domestic resources. In 2010, world lithium consumption was estimated to have been about 21 kt (22,000 st) of lithium contained in minerals and compounds, a 12-percent increase from 2009.

  2. Lithium

    USGS Publications Warehouse

    Jaskula, B.W.

    2010-01-01

    In 2009, lithium consumption in the United States was estimated to have been about 1.2 kt (1,300 st) of contained lithium, a 40-percent decrease from 2008. The United States was estimated to be the fourth largest consumer of lithium, and remained the leading importer of lithium carbonate and the leading producer of value-added lithium materials. Only one company, Chemetall Foote Corp. (a subsidiary of Chemetall GmbH of Germany), produced lithium compounds from domestic resources. In 2009, world lithium consumption was estimated to have been about 18.7 kt (20,600 st) of lithium contained in minerals and compounds.

  3. Lithium

    USGS Publications Warehouse

    Jaskula, B.W.

    2012-01-01

    In 2011, world lithium consumption was estimated to have been about 25 kt (25,000 st) of lithium contained in minerals and compounds, a 10-percent increase from 2010. U.S. consumption was estimated to have been about 2 kt (2,200 st) of contained lithium, a 100-percent increase from 2010. The United States was estimated to be the fourth-ranked consumer of lithium and remained the leading importer of lithium carbonate and the leading producer of value-added lithium materials. One company, Chemetall Foote Corp. (a subsidiary of Chemetall GmbH of Germany), produced lithium compounds from domestic brine resources near Silver Peak, NV.

  4. Lithium

    USGS Publications Warehouse

    Ober, J.A.

    2006-01-01

    In 2005, lithium consumption in the United States was at 2.5 kt of contained lithium, nearly 32% more than the estimate for 2004. World consumption was 14.1 kt of lithium contained in minerals and compounds in 2003. Exports from the US increased slightly compared with 2004. Due to strong demand for lithium compounds in 2005, both lithium carbonate plants in Chile were operating at or near capacity.

  5. Structure and reactivity of lithium amides. /sup 6/Li, /sup 13/C, and /sup 15/N NMR spectroscopic studies and colligative measurements of lithium diphenylamide and lithium diphenylamide-lithium bromide complex solvated by tetrahydrofuran

    SciTech Connect

    DePue, J.S.; Collum, D.B.

    1988-08-03

    /sup 6/Li, /sup 13/C, and /sup 15/N NMR spectroscopic studies of lithium diphenylamide in THF/hydrocarbon solutions (THF = tetrahydrofuran) detected two different species. /sup 6/Li and /sup 15/N NMR spectroscopic studies of (/sup 6/Li, /sup 15/N)lithium diphenylamide showed the species observed at low THF concentrations to be a cyclic oligomer. Structural analogies provided strong support for a dimer while colligative measurements at 0/degrees/C indicated the dimer to be di- or trisolvated. On the basis of the observed mass action effects, the species appearing at intermediate THF concentrations is assigned as a contact or solvent-separated ion-paired monomer. Lithium diphenylamide forms a 1:1 adduct with lithium bromide at low THF concentrations. A combination of /sup 6/Li-/sup 15/N double labeling studies and colligative measurements supports a trisolvated cyclic mixed dimer structure. Although detailed spectroscopic studies at elevated THF concentrations were precluded by high fluctionality, the similarity of the /sup 13/C chemical shifts of lithium diphenylamide in the presence and absence of lithium bromide provide indirect evidence that the mixed dimer undergoes a THF concentration dependent dissociation to the monomeric amide and free lithium bromide. 24 references, 9 figures, 2 tables.

  6. Lithium

    USGS Publications Warehouse

    Ober, J.

    1998-01-01

    The lithium industry can be divided into two sectors: ore concentrate producers and chemical producers. Ore concentrate producers mine lithium minerals. They beneficiate the ores to produce material for use in ceramics and glass manufacturing.

  7. Recent development of LiNi1/3Co1/3Mn1/3O2 as cathode material of lithium ion battery.

    PubMed

    Zhu, Ji-Ping; Xu, Quan-Bao; Yang, Hong-Wei; Zhao, Jun-Jie; Yang, Guang

    2011-12-01

    Layered LiNi1/3Co1/3Mn1/3O2, owing to its excellent electrochemical properties, has been used as cathode material for lithium-ion batteries, especially for hybrid electric vehicles. It has many merits such as high capacity, long cycle life, low cost and little harm to environment. Therefore, LiNi1/3Co1/3Mn1/3O2 has become a great concern by scholars on energy and material fields. However, the electronic conductivity and the charge-discharge capacity at high current should be enhanced before any materials modifications. Here, this paper summarizes the main synthetic technologies of LiNi1/3Co1/3Mn1/3O2 in recent years, including synthesis methods, doping, surface coating modification, and the future development trends discussed. PMID:22408910

  8. Lithium

    MedlinePlus

    ... bipolar disorder (manic-depressive disorder; a disease that causes episodes of depression, episodes of mania, and other abnormal moods). Lithium ... Lithium is also sometimes used to treat depression, schizophrenia (a mental ... emotions), disorders of impulse control (inability to resist the urge ...

  9. Lithium

    MedlinePlus

    ... mania (frenzied, abnormally excited mood) in people with bipolar disorder (manic-depressive disorder; a disease that causes episodes of depression, episodes of mania, and other abnormal moods). Lithium is in a ... antimanic agents. It works by decreasing abnormal activity in the brain.

  10. Experimental and simulated performance of lithium niobate 1-3 piezocomposites for 2 MHz non-destructive testing applications.

    PubMed

    Kirk, K J; Schmarje, N

    2013-01-01

    Lithium niobate piezocomposites have been investigated as the active element in high temperature resistant ultrasonic transducers for non-destructive testing applications up to 400°C. Compared to a single piece of lithium niobate crystal they demonstrate shorter pulse length by 3×, elimination of lateral modes, and resistance to cracking. In a 1-3 connectivity piezocomposite for high temperature use (200-400°C), lithium niobate pillars are embedded in a matrix of flexible high temperature sealant or high temperature cement. In order to better understand the design principles and constraints for use of lithium niobate in piezocomposites experiments and modelling have been carried out. For this work the lithium niobate piezocomposites were investigated at room temperature so epoxy filler was used. 1-3 connectivity piezocomposite samples were prepared with z-cut lithium niobate, pillar width 0.3-0.6mm, sample thickness 1-4mm, pillar aspect ratio (pillar height/width) 3-6, volume fraction 30 and 45%. Operating frequency was 1-2MHz. Experimental measurements of impedance magnitude and resonance frequency were compared with 3-D finite element modelling using PZFlex. Resonance frequencies were predicted within 0.05MHz and impedance magnitude within 2-5% for samples with pillar aspect ratio ≥3 for 45% volume fraction and pillar aspect ratio ⩾6 for 30% volume fraction. Laser vibrometry of pulse excitation of piezocomposite samples in air showed that the lithium niobate pillars and the epoxy filler moved in phase. Experiment and simulation showed that the thickness mode coupling coefficient k(t) of the piezocomposite was maintained at the lithium niobate bulk value of approximately 0.2 down to a volume fraction of 30%, consistent with calculations using the (Smith and Auld, 1991) model for piezocomposites. PMID:22784707

  11. 1-3 connectivity composite material made from lithium niobate and cement for ultrasonic condition monitoring at elevated temperatures.

    PubMed

    Shepherd, G; Cochran, A; Kirk, K J; McNab, A

    2002-05-01

    We have designed, manufactured and tested a piezoelectric composite material to operate at temperatures above 400 degrees C. The material is a 1-3 connectivity composite with pillars of Z-cut lithium niobate in a matrix of alumina cement. The composite material produced shorter pulses than a monolithic plate of lithium niobate and remained intact upon cooling. Results are presented from room temperature and high temperature testing. This material could be bonded permanently to a test object, making it possible to carry out condition monitoring over an extended period. A new excitation method was also developed to enable remote switching between array elements. PMID:12159936

  12. The impact of calendar aging on the thermal stability of a LiMn2O4-Li(Ni1/3Mn1/3Co1/3)O2/graphite lithium-ion cell

    NASA Astrophysics Data System (ADS)

    Röder, Patrick; Stiaszny, Barbara; Ziegler, Jörg C.; Baba, Nilüfer; Lagaly, Paul; Wiemhöfer, Hans-Dieter

    2014-12-01

    Aging of lithium-ion cells is an inevitable phenomenon limiting the lifetime. Undesirable side reactions during cycle or calendar aging may affect the performance of all components of the lithium-ion cell. This results in a decreased capacity and an increase in the overall cell impedance. Based on electrochemical and physical characterization methods, the aging behavior during calendar aging of a 18650-cell, containing a blend of LiMn2O4 and Li(Ni1/3Mn1/3Co1/3)O2 (NMC) as cathode material and graphite as anode material was systematically investigated. To understand how the safety behavior of a lithium-ion cell changes with aging, accelerating rate calorimetry (ARC) and differential scanning calorimetry (DSC) were applied. With these methods the thermal stability behavior of the complete lithium-ion cell and its respective cathode and anode material were investigated. The focus of this work was it to generate first cause-effect relations between the aging under one exemplary aging condition and the thermal stability of a lithium-ion battery both on cell and material level.

  13. Highly enhanced low temperature discharge capacity of LiNi1/3Co1/3Mn1/3O2 with lithium boron oxide glass modification

    NASA Astrophysics Data System (ADS)

    Tan, ShuangYuan; Wang, Lei; Bian, Liang; Xu, JinBao; Ren, Wei; Hu, PengFei; Chang, AiMin

    2015-03-01

    Although lithium ion battery is known to be an excellent renewable energy provider in electronic markets further application of it has been limited by its notoriously poor performance at low temperature, especially below -20 °C. In this paper, the electrochemical performance of the LiNi1/3Co1/3Mn1/3O2 cathode materials coated by lithium boron oxide (LBO) glass was investigated at a temperature range from 20 to -40 °C. The results show that the LBO coating not only helps to improve the discharge capacity of LiNi1/3Co1/3Mn1/3O2 at room temperature but also increase the discharge capacity retention of the LiNi1/3Co1/3Mn1/3O2 from 22.5% to 57.8% at -40 °C. Electrochemical impedance spectra results reveal that the LBO coating plays an important role in reducing the charge-transfer resistance on the electrolyte-electrode interfaces and improving lithium ion diffusion coefficients. The mechanism associated with the change of the structure and electrical properties are discussed in detail.

  14. Preparation and Electrochemical Performance of LiNi1/3Co1/3Mn1/3O2 Cathode Materials for Lithium-ion Batteries from Spent Mixed Alkaline Batteries

    NASA Astrophysics Data System (ADS)

    Yang, Li; Xi, Guoxi

    2016-01-01

    LiNi1/3Co1/3Mn1/3O2 cathode materials of lithium-ion batteries were successfully re-synthesized using mixed spent alkaline zinc-manganese batteries and spent lithium-ion batteries as the raw materials. These materials were synthesized by using a combination of dissolution, co-precipitation, calcination, battery preparation, and battery charge-discharge processes. The phase composition, morphology, and electrochemical performance of the products were determined by inductively coupled plasma optical emission spectroscopy, infrared spectra, x-ray diffraction, scanning electron microscopy-energy dispersive spectroscopy, and charge-discharge measurements. The results showed that LiNi1/3Co1/3Mn1/3O2 cathode materials could be successfully re-synthesized at optimal preparation conditions of: co-precipitation, pH value of 8, calcination temperature of 850°C, and calcination time of 10 h. Furthermore, the electrochemical results showed that the re-synthesized sample could deliver an initial discharge capacity of up to 160.2 mAh g-1 and Coulomb efficiency of 99.8%.

  15. Structural and Electrochemical Study of Hierarchical LiNi(1/3)Co(1/3)Mn(1/3)O2 Cathode Material for Lithium-Ion Batteries.

    PubMed

    Li, Li; Wang, Lecai; Zhang, Xiaoxiao; Xie, Man; Wu, Feng; Chen, Renjie

    2015-10-01

    In this study, a facile nanoetching-template route is developed to synthesize porous nanomicrohierarchical LiNi1/3Co1/3Mn1/3O2 microspheres with diameters below 1.5 μm, using porous CoMnO3 binary oxide microspheres as the template. The unique morphology of CoMnO3 template originates from the contraction effect during the oxidative decomposition of Ca0.2Mn0.4Co0.4CO3 precursors and is further improved by selectively removing calcium carbonate with a nanoetching process after calcination. The as-synthesized LiNi1/3Co1/3Mn1/3O2 microsphere, composed of numerous primary particles and pores with size of dozens of nanometers, illustrates a well-assembled porous nanomicrohierarchical structure. When used as the cathode material for lithium-ion batteries, the as-synthesized microspheres exhibit remarkably enhanced electrochemical performances with higher capacity, excellent cycling stability, and better rate capability, compared with the bulk counterpart. Specifically, hierarchical LiNi1/3Co1/3Mn1/3O2 achieves a high discharge capacity of 159.6 mA h g(-1) at 0.2 C with 98.7% capacity retention after 75 cycles and 133.2 mA h g(-1) at 1 C with 90% capacity retention after 100 cycles. A high discharge capacity of 135.5 mA h g(-1) even at a high current of 750 mA g(-1) (5 C) is also achieved. The nanoetching-template method can provide a general approach to improve cycling stability and rate capability of high capacity cathode materials for lithium-ion batteries. PMID:26371492

  16. A novel process for recycling and resynthesizing LiNi{sub 1/3}Co{sub 1/3}Mn{sub 1/3}O{sub 2} from the cathode scraps intended for lithium-ion batteries

    SciTech Connect

    Zhang, Xihua; Xie, Yongbing; Cao, Hongbin; Nawaz, Faheem; Zhang, Yi

    2014-09-15

    Highlights: • A simple process to recycle cathode scraps intended for lithium-ion batteries. • Complete separation of the cathode material from the aluminum foil is achieved. • The recovered aluminum foil is highly pure. • LiNi{sub 1/3}Co{sub 1/3}Mn{sub 1/3}O{sub 2} is directly resynthesized from the separated cathode material. - Abstract: To solve the recycling challenge for aqueous binder based lithium-ion batteries (LIBs), a novel process for recycling and resynthesizing LiNi{sub 1/3}Co{sub 1/3}Mn{sub 1/3}O{sub 2} from the cathode scraps generated during manufacturing process is proposed in this study. Trifluoroacetic acid (TFA) is employed to separate the cathode material from the aluminum foil. The effects of TFA concentration, liquid/solid (L/S) ratio, reaction temperature and time on the separation efficiencies of the cathode material and aluminum foil are investigated systematically. The cathode material can be separated completely under the optimal experimental condition of 15 vol.% TFA solution, L/S ratio of 8.0 mL g{sup −1}, reacting at 40 °C for 180 min along with appropriate agitation. LiNi{sub 1/3}Co{sub 1/3}Mn{sub 1/3}O{sub 2} is successfully resynthesized from the separated cathode material by solid state reaction method. Several kinds of characterizations are performed to verify the typical properties of the resynthesized LiNi{sub 1/3}Co{sub 1/3}Mn{sub 1/3}O{sub 2} powder. Electrochemical tests show that the initial charge and discharge capacities of the resynthesized LiNi{sub 1/3}Co{sub 1/3}Mn{sub 1/3}O{sub 2} are 201 mAh g{sup −1} and 155.4 mAh g{sup −1} (2.8–4.5 V, 0.1 C), respectively. The discharge capacity remains at 129 mAh g{sup −1} even after 30 cycles with a capacity retention ratio of 83.01%.

  17. Uncovering a facile large-scale synthesis of LiNi1/3Co1/3Mn1/3O2 nanoflowers for high power lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Hua, Wei-Bo; Guo, Xiao-Dong; Zheng, Zhuo; Wang, Yan-Jie; Zhong, Ben-He; Fang, Baizeng; Wang, Jia-Zhao; Chou, Shu-Lei; Liu, Heng

    2015-02-01

    Developing advanced electrode materials that deliver high energy at ultra-fast charge and discharge rates are very crucial to meet an increasing large-scale market demand for high power lithium ion batteries (LIBs). A three-dimensional (3D) nanoflower structure is successfully developed in the large-scale synthesis of LiNi1/3Co1/3Mn1/3O2 material for the first time. The fast co-precipitation is the key technique to prepare the nanoflower structure in our method. After heat treatment, the obtained LiNi1/3Co1/3Mn1/3O2 nanoflowers (NL333) pronouncedly present a pristine flower-like nano-architecture and provide fast pathways for the transport of Li-ions and electrons. As a cathode material in a LIB, the prepared NL333 electrode demonstrates an outstanding high-rate capability. Particularly, in a narrow voltage range of 2.7-4.3 V, the discharge capacity at an ultra-fast charge-discharge rate (20C) is up to 126 mAh g-1, which reaches 78% of that at 0.2C, and is much higher than that (i.e., 44.17%) of the traditional bulk LiNi1/3Co1/3Mn1/3O2.

  18. Regioselective Lithium-Iodine Exchange-Initiated Cleavage of 2-Iodomethyl-1,3-dioxanes: A Complex-Induced Proximity Effect.

    PubMed

    Bailey, William F; Fair, Justin D

    2016-05-01

    Lithium-iodine exchange-initiated fragmentation of a series of 4-substituted 2-iodomethyl-1,3-dioxanes proceeds rapidly and regioselectively to afford enol ether alcohols by preferential cleavage of the less congested C(2)-O(1) bond. The results demonstrate that a complex-induced proximity effect (CIPE) is likely responsible for the selectivity of the cleavage. PMID:27074433

  19. Study of the surface modification of LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion battery

    NASA Astrophysics Data System (ADS)

    Hashem, A. M. A.; Abdel-Ghany, A. E.; Eid, A. E.; Trottier, J.; Zaghib, K.; Mauger, A.; Julien, C. M.

    2011-10-01

    The surface of LiNi1/3Co1/3Mn1/3O2 (LNMCO) particles has been studied for material synthesized at 900 °C by a two-step process from a mixture of LiOH·H2O and metal oxalate [(Ni1/3Co1/3Mn1/3)C2O4] obtained by co-precipitation. Samples have been characterized by X-ray diffraction (XRD), high-resolution transmission electron microscope (HRTEM), Raman scattering (RS) spectroscopy, and magnetic measurements. We have investigated the effect of the heat treatment of particles at 600 °C with organic substances such as sucrose and starch. HRTEM images and RS spectra indicate that the surface of particles has been modified. The annealing does not lead to any carbon coating but it leads to the crystallization of the thin disordered layer on the surface of LiNi1/3Co1/3Mn1/3O2. The beneficial effect has been tested on the electrochemical properties of the LiNi1/3Co1/3Mn1/3O2 cathode materials. The capacity at 10C-rate is enhanced by 20% for post-treated LNMCO particles at 600 °C for half-an-hour.

  20. A novel process for recycling and resynthesizing LiNi1/3Co1/3Mn1/3O2 from the cathode scraps intended for lithium-ion batteries.

    PubMed

    Zhang, Xihua; Xie, Yongbing; Cao, Hongbin; Nawaz, Faheem; Zhang, Yi

    2014-09-01

    To solve the recycling challenge for aqueous binder based lithium-ion batteries (LIBs), a novel process for recycling and resynthesizing LiNi1/3Co1/3Mn1/3O2 from the cathode scraps generated during manufacturing process is proposed in this study. Trifluoroacetic acid (TFA) is employed to separate the cathode material from the aluminum foil. The effects of TFA concentration, liquid/solid (L/S) ratio, reaction temperature and time on the separation efficiencies of the cathode material and aluminum foil are investigated systematically. The cathode material can be separated completely under the optimal experimental condition of 15vol.% TFA solution, L/S ratio of 8.0 mL g(-1), reacting at 40°C for 180 min along with appropriate agitation. LiNi1/3Co1/3Mn1/3O2 is successfully resynthesized from the separated cathode material by solid state reaction method. Several kinds of characterizations are performed to verify the typical properties of the resynthesized LiNi1/3Co1/3Mn1/3O2 powder. Electrochemical tests show that the initial charge and discharge capacities of the resynthesized LiNi1/3Co1/3Mn1/3O2 are 201 mAh g(-)(1) and 155.4 mAh g(-1) (2.8-4.5 V, 0.1C), respectively. The discharge capacity remains at 129 mAh g(-1) even after 30 cycles with a capacity retention ratio of 83.01%. PMID:24973865

  1. Symposium on High Power, Ambient Temperature Lithium Batteries, 180th Meeting of the Electrochemical Society, Phoenix, AZ, Oct. 13-17, 1991, Proceedings

    NASA Technical Reports Server (NTRS)

    Clark, W. D. K. (Editor); Halpert, Gerald (Editor)

    1992-01-01

    Papers presented in these proceedings are on the state of the art in high-power lithium batteries, a design analysis of high-power Li-TiS2 battery, the performance and safety features of spiral wound lithium/thionyl chloride cells, the feasibility of a superhigh energy density battery of the Li/BrF3 electrochemical system, and an enhanced redox process of disulfide compounds and their application in high energy storage. Attention is also given to the structure and charge-discharge characteristics of mesophase-pitch based carbons, a study of carbons and graphites as anodes for lithium rechargeable cells, Li metal-free rechargeable Li(1+x)Mn2O4/carbon cells, and rechargeable lithium batteries using V6O13/V5O5 as the positive electrode material. Other papers discuss the electrochemical stability of organic electrolytes in contact with solid inorganic cathode materials, the electrochemical behavior of methyl formate solutions, and the interface between a solid polymer electrolyte and lithium anode.

  2. Synthesis and electrochemical properties of lithium non-stoichiometric Li 1+ x(Ni 1/3Co 1/3Mn 1/3)O 2+ δ prepared by a spray drying method

    NASA Astrophysics Data System (ADS)

    Kim, Jung-Min; Kumagai, Naoaki; Kadoma, Yoshihiro; Yashiro, Hitoshi

    Lithium non-stoichiometric Li[Li x(Ni 1/3Co 1/3Mn 1/3) 1- x]O 2 materials (0 ≤ x ≤ 0.17) were synthesized using a spray drying method. The electrochemical properties and structural stabilities of the synthesized materials were investigated. The synthesized materials exhibited a hexagonal structure in all the x-value and the lattice parameters of the materials were gradually decreased with increasing x-value due to an increasing amount of Ni 3+ ions for charge compensation. The capacity retention ability and rate capability of the stoichiometric Li(Ni 1/3Co 1/3Mn 1/3)O 2 material were improved by increasing x-value, the so-called overlithiation. We found that the overlithiated materials could keep more structural integrity than the stoichiometric one during electrochemical cyclings, which could be one of reasons for a better electrochemical properties of the overlithiated materials.

  3. Enhanced electrochemical performance of Ti-doped Li1.2Mn0.54Co0.13Ni0.13O2 for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Feng, Xin; Gao, Yurui; Ben, Liubin; Yang, Zhenzhong; Wang, Zhaoxiang; Chen, Liquan

    2016-06-01

    Lithium-rich manganese-based layer-structured oxides (xLi2MnO3ṡ(1-x)LiNi1/3Co1/3Mn1/3O2) have attracted great attention for their potential applications as cathode materials of high energy-density lithium ion batteries. However, these oxides suffer from inferior cycling and poor rate capability due to presence of the Li2MnO3 phase. Herein, the Li+ ions in the Li-layer of the Li1.2Mn0.54Co0.13Ni0.13O2 (or 0.5Li2MnO3ṡ0.5LiNi1/3Co1/3Mn1/3O2) are partially substituted with aliovalent Ti4+ ions to improve its long-term cycling stability and rate performance. The obtained oxide (Li1.2-xTixMn0.54Co0.13Ni0.13O2, x = 2.5%) exhibits an initial capacity of 320 mAh g-1 and a capacity retention of 71% after 300 cycles as well as good rate performance. In addition, although Ti doping cannot prevent the transformation from the layered to the spinel-like phase, it stabilizes the structure of the spinel-like phase below 3.0 V. Based on first-principles calculations and performance evaluation, these improvements are attributed to the Ti-doping induced enhancement in conductivity, diffusion, activation energy of Mn migration and Tisbnd O bonding. This novel design may furthermore open a door for the synthesis of lithium-rich materials with high rate performance.

  4. The effect of different binders on electrochemical properties of LiNi1/3Mn1/3Co1/3O2 cathode material in lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Xu, Jiantie; Chou, Shu-Lei; Gu, Qin-fen; Liu, Hua-Kun; Dou, Shi-Xue

    2013-03-01

    LiNi1/3Mn1/3Co1/3O2 (NMC) as a cathode material for lithium ion batteries has been synthesized by the sol-gel method. The X-ray diffraction Rietveld refinement results indicated that single-phase NMC with hexagonal layered structure was obtained. Scanning electron microscope images revealed well crystallized NMC with uniform particle size in the range of 100-200 nm. The performance of the NMC electrodes with sodium carboxylmethyl cellulose (CMC), poly(vinylidene fluoride) (PVDF), and alginate from brown algae as binders was compared. Constant current charge-discharge test results demonstrated that the NMC electrode using CMC as binder had the highest rate capability, followed by those using alginate and PVDF binders, respectively. Electrochemical impedance spectroscopy test results showed that the electrode using CMC as the binder had lower charge transfer resistance and lower apparent activation energy than the electrodes using alginate and PVDF as the binders. The apparent activation energies of NMC electrodes using CMC, alginate, and PVDF as binders were calculated to be 27.4 kJ mol-1, 33.7 kJ mol-1, and 36 kJ mol-1, respectively.

  5. Insight into the channel ion distribution and influence on the lithium insertion properties of hexatitanates A2Ti6O13 (A = Na, Li, H) as candidates for anode materials in lithium-ion batteries.

    PubMed

    Pérez-Flores, Juan Carlos; García-Alvarado, Flaviano; Hoelzel, Markus; Sobrados, Isabel; Sanz, Jesús; Kuhn, Alois

    2012-12-28

    Li(2)Ti(6)O(13) and H(2)Ti(6)O(13) were easily synthesized from Na(2)Ti(6)O(13) by successive Na(+)-Li(+)-H(+) ion exchange. The crystal structures of Na(2)Ti(6)O(13), Li(2)Ti(6)O(13) and H(2)Ti(6)O(13) were investigated using neutron powder diffraction. Monovalent A(+) cations (Na, Li and H) have been located using difference Fourier analysis. Although monoclinic lattice parameters (space group C2/m) of the three titanates remain almost unchanged with retention of the basic [Ti(6)O(13)(2-)] network, monovalent Na, Li and H cations occupy different sites in the tunnel space. By comparing the structural details concerning the A(+) oxygen coordination, i.e. NaO(8) square prismatic coordination, LiO(4) square planar coordination and covalently bond H atoms, with results from (23)Na, (7)Li and (1)H NMR spectroscopy we were able to obtain a more detailed insight into the respective local distortions and anharmonic motions. We were able to show that the site that the A(+) cation occupies in the hexatitanate channel structure strongly influences the lithium insertion properties of these compounds and therefore their usefulness as electrode materials for energy storage. PMID:23108296

  6. Lithium use in batteries

    USGS Publications Warehouse

    Goonan, Thomas G.

    2012-01-01

    Lithium has a number of uses but one of the most valuable is as a component of high energy-density rechargeable lithium-ion batteries. Because of concerns over carbon dioxide footprint and increasing hydrocarbon fuel cost (reduced supply), lithium may become even more important in large batteries for powering all-electric and hybrid vehicles. It would take 1.4 to 3.0 kilograms of lithium equivalent (7.5 to 16.0 kilograms of lithium carbonate) to support a 40-mile trip in an electric vehicle before requiring recharge. This could create a large demand for lithium. Estimates of future lithium demand vary, based on numerous variables. Some of those variables include the potential for recycling, widespread public acceptance of electric vehicles, or the possibility of incentives for converting to lithium-ion-powered engines. Increased electric usage could cause electricity prices to increase. Because of reduced demand, hydrocarbon fuel prices would likely decrease, making hydrocarbon fuel more desirable. In 2009, 13 percent of worldwide lithium reserves, expressed in terms of contained lithium, were reported to be within hard rock mineral deposits, and 87 percent, within brine deposits. Most of the lithium recovered from brine came from Chile, with smaller amounts from China, Argentina, and the United States. Chile also has lithium mineral reserves, as does Australia. Another source of lithium is from recycled batteries. When lithium-ion batteries begin to power vehicles, it is expected that battery recycling rates will increase because vehicle battery recycling systems can be used to produce new lithium-ion batteries.

  7. Layered P3-NaxCo1/3Ni1/3Mn1/3O2 versus Spinel Li4Ti5O12 as a Positive and a Negative Electrode in a Full Sodium-Lithium Cell.

    PubMed

    Ivanova, Svetlana; Zhecheva, Ekaterina; Kukeva, Rositsa; Nihtianova, Diana; Mihaylov, Lyuben; Atanasova, Genoveva; Stoyanova, Radostina

    2016-07-13

    The development of lithium and sodium ion batteries without using lithium and sodium metal as anodes gives the impetus for elaboration of low-cost and environmentally friendly energy storage devices. In this contribution we demonstrate the design and construction of a new type of hybrid sodium-lithium ion cell by using unique electrode combination (Li4Ti5O12 spinel as a negative electrode and layered Na3/4Co1/3Ni1/3Mn1/3O2 as a positive electrode) and conventional lithium electrolyte (LiPF6 salt dissolved in EC/DMC). The cell operates at an average potential of 2.35 V by delivering a reversible capacity of about 100 mAh/g. The mechanism of the electrochemical reaction in the full sodium-lithium ion cell is studied by means of postmortem analysis, as well as ex situ X-ray diffraction analysis, HR-TEM, and electron paramagnetic resonance spectroscopy (EPR). The changes in the surface composition of electrodes are examined by ex situ X-ray photoelectron spectroscopy (XPS). PMID:27315402

  8. Solid-state lithium battery

    SciTech Connect

    Ihlefeld, Jon; Clem, Paul G; Edney, Cynthia; Ingersoll, David; Nagasubramanian, Ganesan; Fenton, Kyle Ross

    2014-11-04

    The present invention is directed to a higher power, thin film lithium-ion electrolyte on a metallic substrate, enabling mass-produced solid-state lithium batteries. High-temperature thermodynamic equilibrium processing enables co-firing of oxides and base metals, providing a means to integrate the crystalline, lithium-stable, fast lithium-ion conductor lanthanum lithium tantalate (La.sub.1/3-xLi.sub.3xTaO.sub.3) directly with a thin metal foil current collector appropriate for a lithium-free solid-state battery.

  9. Enhanced electrochemical performance of Li-rich cathode Li[Li0.2Mn0.54Ni0.13Co0.13]O2 by surface modification with lithium ion conductor Li3PO4

    NASA Astrophysics Data System (ADS)

    Wang, Zhiyuan; Luo, Shaohua; Ren, Jie; Wang, Dan; Qi, Xiwei

    2016-05-01

    Li-rich layered cathode Li[Li0.2Mn0.54Ni0.13Co0.13]O2 is prepared via a co-precipitation followed with high-temperature calcination, and then successfully modified with nano-Li3PO4 by ball milling and annealing. The TEM and EDS reveal that Li3PO4 is homogeneously coated on the particle surface of Li[Li0.2Mn0.54Ni0.13Co0.13]O2. And the electrochemical performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 is significantly improved by coating with lithium ion conductor Li3PO4. The Li3PO4-coated sample delivers a high initial discharge capacity of 284.7 mAhg-1 at 0.05 C, and retains 192.6 mAhg-1 after 100 cycles at 0.5 C, which is higher than that of the pristine sample (244 mAhg-1 at 0.05 C and 168.2 mAhg-1 after 100 cycles at 0.5 C). The electrochemical impedance spectroscopy (EIS) demonstrates that the resistance for Li/Li3PO4-coated Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cell was reduced compared to Li/Li[Li0.2Mn0.54Ni0.13Co0.13]O2, which indicates the Li3PO4 coating layer with high ionic conductivity (6.6 × 10-8 S cm-1) facilitates the diffusion of lithium ions through the interface between electrode and electrolyte and accelerates the charge transfer process. What is more, the Li3PO4 coating layer can also act as a protection layer to protect the cathode material from encroachment of electrolyte. The two aspects account for the enhanced electrochemical performance of Li3PO4-coated Li[Li0.2Mn0.54Ni0.13Co0.13]O2.

  10. Synthesis and electrochemical performance of cathode material Li1.2Co0.13Ni0.13Mn0.54O2 from spent lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Li, Li; Zhang, Xiaoxiao; Chen, Renjie; Zhao, Taolin; Lu, Jun; Wu, Feng; Amine, Khalil

    2014-03-01

    Li-rich layered oxide Li1.2Co0.13Ni0.13Mn0.54O2 has been successfully re-synthesized using the ascorbic acid leaching solution of spent lithium-ion batteries as the raw materials. A combination of oxalic acid co-precipitation, hydrothermal and calcination processes was applied to synthesize this material. For comparison, a fresh sample with the same composition has been also synthesized from the commercial raw materials using the same method. X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and electrochemical measurements are carried out to characterize these samples. XRD results indicate that both samples have the layered α-NaFeO2 structures with a space group of R 3 bar m. No other crystalline phase was detected by XRD. The electrochemical results show that the re-synthesized and fresh-synthesized sample can deliver discharge capacities as high as 258.8 and 264.2 mAh g-1 at the first cycle, respectively. After 50 cycles, discharge capacities of 225.1 and 228 mAh g-1 can be obtained with capacity retention of 87.0 and 86.3%, respectively. This study suggests that the leaching solution from spent lithium ion batteries can be recycled to synthesize Li-rich cathode materials with good electrochemical performance.

  11. Lithium: for harnessing renewable energy

    USGS Publications Warehouse

    Bradley, Dwight; Jaskula, Brian

    2014-01-01

    Lithium, which has the chemical symbol Li and an atomic number of 3, is the first metal in the periodic table. Lithium has many uses, the most prominent being in batteries for cell phones, laptops, and electric and hybrid vehicles. Worldwide sources of lithium are broken down by ore-deposit type as follows: closed-basin brines, 58%; pegmatites and related granites, 26%; lithium-enriched clays, 7%; oilfield brines, 3%; geothermal brines, 3%; and lithium-enriched zeolites, 3% (2013 statistics). There are over 39 million tons of lithium resources worldwide. Of this resource, the USGS estimates there to be approximately 13 million tons of current economically recoverable lithium reserves. To help predict where future lithium supplies might be located, USGS scientists study how and where identified resources are concentrated in the Earth’s crust, and they use that knowledge to assess the likelihood that undiscovered resources also exist.

  12. The role of prop-1-ene-1,3-sultone as an additive in lithium-ion cells

    NASA Astrophysics Data System (ADS)

    Self, Julian; Hall, David S.; Madec, Lénaïc; Dahn, J. R.

    2015-12-01

    Density functional theory (DFT) is used in conjunction with experimental results to propose decomposition pathways that describe the role and ultimate fate of the PES additive in Li-ion batteries. Oxidation of PES produces carbonyl sulfide gas and ethene at the positive electrode, both experimentally observed byproducts. However, the calculated standard potential for simple PES oxidation, E0ox ∼ 6.7 V vs. Li/Li+, is quite high, suggesting this pathway is unlikely. A "reactive electrode model" is presented, in which the positive electrode material is a reagent in the pseudo-combustion of PES (and other solvents). This spontaneous process produces carbonyl sulfide, carbon dioxide, and a rock salt surface layer, all of which are experimentally observed. At the negative electrode, the reduction of PES occurs via two one-electron steps, where E0red,1 = 0.9 V and E0red,2 = 4.3 V. The reduced species, Li2PES, can react with hydrogen and methyl radicals to produce propene, methylpropene, propane and lithium sulfite. Nucleophilic Li2PES can also react with electrophilic PES, ethylene carbonate, or ethyl methyl carbonate. Eighteen possible organic sulphate 'building blocks' for the solid-electrolyte interphase (SEI) are presented. X-ray photoelectron spectroscopy (XPS) measurements demonstrate that PES reduction indeed results in both lithium sulfite and organic sulphate SEI components.

  13. Magnesium-Doped Li1.2[Co0.13Ni0.13Mn0.54]O2 for Lithium-Ion Battery Cathode with Enhanced Cycling Stability and Rate Capability.

    PubMed

    Wang, Yan X; Shang, Ke H; He, Wei; Ai, Xin P; Cao, Yu L; Yang, Han X

    2015-06-17

    Mg-doped Li[Li0.2-2xMgxCo0.13Ni0.13Mn0.54]O2 is synthesized by introducing Mg ions into the transition-metal (TM) layer of this layered compound for substituting Li ions through a simple polymer-pyrolysis method. The structural and morphological characterization reveals that the doped Mg ions are uniformly distributed in the bulk lattice, showing an insignificant impact on the layered structure. Electrochemical experiments reveal that, at a Mg doping of 4%, the Li[Li0.16Mg0.04Co0.13Ni0.13Mn0.54]O2 electrode can deliver a larger initial reversible capacity of 272 mAh g(-1), an improved rate capability with 114 mAh g(-1) at 8 C, and an excellent cycling stability with 93.3% capacity retention after 300 cycles. The superior electrochemical performances of the Mg-doped material are possibly due to the enhancement of the structural stability by substitution of Li by Mg in the TM layer, which effectively suppresses the cation mixing arrangement, leading to the alleviation of the phase change during lithium-ion insertion and extraction. PMID:26011097

  14. Electrochemical properties of Li[Li0.2Mn0.54Co0.13Ni0.13]O2 cathode thin film by RF sputtering for all-solid-state lithium battery

    NASA Astrophysics Data System (ADS)

    Yim, Haena; Yeon Kong, Woo; Chul Kim, Young; Yoon, Seok-Jin; Choi, Ji-Won

    2012-12-01

    The Li[Li0.2Mn0.56Ni0.13Co0.13]O2 thin films were prepared by radio frequency magnetron sputtering on Pt/Ti/SiO2/Si substrate with target contained a 5% excess of lithium precursor. Thin films were deposited under various deposition conditions such as working pressure, gas ratio of Ar and O2, and the temperature of in-situ annealing treatment. The thin films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and atomic force microscopy (AFM). The electrochemical property was estimated by a WBC3000 cycler with Li|Li[Li0.2Mn0.54Ni0.13Co0.13]O2 half-type cell at 1C charge/discharge rate. The (0 0 3) and (1 0 4) diffraction peaks which represent layered α-NaFeO2 type structure (space group R-3m) were observed. Optimal magnetron sputtering conditions were detected. The 500 °C annealed thin film after deposited at 10 m Torr in Ar:O2=3:1 shows a high discharge capacity of around 62 μAh/cm2 μm with a high cyclic retention.

  15. Synthesis and performance of Li[(Ni1/3Co1/3Mn1/3)(1-x)Mgx]O2 prepared from spent lithium ion batteries.

    PubMed

    Weng, Yaqing; Xu, Shengming; Huang, Guoyong; Jiang, Changyin

    2013-02-15

    To reduce cost and secondary pollution of spent lithium ion battery (LIB) recycling caused by complicated separation and purification, a novel simplified recycling process is investigated in this paper. Removal of magnesium is a common issue in hydrometallurgy process. Considering magnesium as an important additive in LIB modification, tolerant level of magnesium in leachate is explored as well. Based on the novel recycling technology, Li[(Ni(1/3)Co(1/3)Mn(1/3))(1-x)Mg(x)]O(2) (0 ≤ x ≤ 0.05) cathode materials are achieved from spent LIB. Tests of XRD, SEM, TG-DTA and so on are carried out to evaluate material properties. Electrochemical test shows an initial charge and discharge capacity of the regenerated LiNi(1/3)Co(1/3)Mn(1/3)O(2) to be 175.4 mAh g(-1) and 152.7 mAh g(-1) (2.7-4.3 V, 0.2C), respectively. The capacity remains 94% of the original value after 50 cycles (2.7-4.3 V, 1C). Results indicate that presence of magnesium up to x=0.01 has no significant impact on overall performance of Li[(Ni(1/3)Co(1/3)Mn(1/3))(1-x)Mg(x)]O(2). As a result, magnesium level as high as 360 mg L(-1) in leachate remains tolerable. Compared with conventional limitation of magnesium content, the elimination level of magnesium exceeded general impurity-removal requirement. PMID:23298741

  16. 3-D dumbbell-like LiNi1/3Mn1/3Co1/3O2 cathode materials assembled with nano-building blocks for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Ryu, Won-Hee; Lim, Sung-Jin; Kim, Won-Keun; Kwon, HyukSang

    2014-07-01

    Dumbbell-like microsphere carbonate precursors including multi-transition metal components (Ni1/3Mn1/3Co1/3CO3) assembled with nano-building blocks were synthesized by urea-assisted solvo/hydrothermal method, and layered cathode materials (LiNi1/3Mn1/3Co1/3O2) were subsequently prepared using the similarly shaped carbonate precursors for Li-ion batteries. For the synthesis of hierarchical microsphere structures, the partial addition of viscous organic solvent (e.g. ethylene glycol) in aqueous solution played a crucial role, not only in suppressing the sudden particle growth but also in regulating the directional crystallization of carbonate particles on the surface. The dumbbell-like LiNi1/3Mn1/3Co1/3O2 assembled with nanocubes prepared via the urea-assisted solvo/hydrothermal method exhibited better electrochemical characteristics, such as initial discharge capacity, cyclic performance, and rate-capability as a cathode material of Li-ion batteries, compared with the LiNi1/3Mn1/3Co1/3O2 materials prepared via the conventional co-precipitation method.

  17. Studies on the translational and rotational motions of ionic liquids composed of N-methyl-N-propyl-pyrrolidinium (P13) cation and bis(trifluoromethanesulfonyl)amide and bis(fluorosulfonyl)amide anions and their binary systems including lithium salts

    NASA Astrophysics Data System (ADS)

    Hayamizu, Kikuko; Tsuzuki, Seiji; Seki, Shiro; Fujii, Kenta; Suenaga, Masahiko; Umebayashi, Yasuhiro

    2010-11-01

    Room-temperature ionic liquids (RTIL, IL) are stable liquids composed of anions and cations. N-methyl-N-propyl-pyrrolidinium (P13, Py13, PYR13, or mppy) is an important cation and produces stable ILs with various anions. In this study two amide-type anions, bis(trifluoromethanesulfonyl)amide [N(SO2CF3)2, TFSA, TFSI, NTf2, or Tf2N] and bis(fluorosulfonyl)amide [N(SO2F)2, FSA, or FSI], were investigated. In addition to P13-TFSA and P13-FSA, lithium salt doped samples were prepared (P13-TFSA-Li and P13-FSA-Li). The individual ion diffusion coefficients (D) and spin-lattice relaxation times (T1) were measured by H1, F19, and L7i NMR. At the same time, the ionic conductivity (σ), viscosity (η), and density (ρ) were measured over a wide temperature range. The van der Waals volumes of P13, TFSA, FSA, Li(TFSA)2, and Li(FSA)3 were estimated by molecular orbital calculations. The experimental values obtained in this study were analyzed by the classical Stokes-Einstein, Nernst-Einstein (NE), and Stokes-Einstein-Debye equations and Walden plots were also made for the neat and binary ILs to clarify physical and mobile properties of individual ions. From the temperature-dependent velocity correlation coefficients for neat P13-TFSA and P13-FSA, the NE parameter 1-ξ was evaluated. The ionicity (electrochemical molar conductivity divided by the NE conductivity from NMR) and the 1-ξ had exactly the same values. The rotational and translational motions of P13 and jump of a lithium ion are also discussed.

  18. Synthesis and characterization of LiCo1/3Mn1/3Fe1/3PO4/C nanocomposite cathode of lithium batteries with high rate performance

    NASA Astrophysics Data System (ADS)

    Akimoto, Sou; Taniguchi, Izumi

    2013-11-01

    Olivine structured LiCo1/3Mn1/3Fe1/3PO4/C nanocomposites were prepared by a combination of spray pyrolysis at 300 °C and wet ball-milling followed by heat treatment at 500 °C for 4 h in a 3%H2 + N2 atmosphere. The formation of a solid solution between LiCoPO4, LiMnPO4, and LiFePO4 at this composition was confirmed by X-ray diffraction analysis. Scanning electron microscopy and transmission electron microscopy with equipped energy dispersive spectroscopy verified that the LiCo1/3Mn1/3Fe1/3PO4/C nanocomposites were agglomerates of LiCo1/3Mn1/3Fe1/3PO4 primary particles with a geometric mean diameter of 107 nm and a uniform chemical composition, and carbon was well distributed on the surface of the agglomerates. The LiCo1/3Mn1/3Fe1/3PO4/C nanocomposite cathode exhibited a high discharge capacity of 159 mAh g-1 at 0.05 C in the potential range of 2.0-5.0 V, corresponding to 94% of theoretical capacity. The capacity retention was 87% after 50 cycles at a charge-discharge rate of 1 C. Furthermore, the rate capability test showed that the high capacity still was retained even at 5 C and 20 C rate with 106 and 72 mAh g-1, respectively.

  19. Hydrogen, lithium, and lithium hydride production

    SciTech Connect

    Brown, Sam W; Spencer, Larry S; Phillips, Michael R; Powell, G. Louis; Campbell, Peggy J

    2014-03-25

    A method of producing high purity lithium metal is provided, where gaseous-phase lithium metal is extracted from lithium hydride and condensed to form solid high purity lithium metal. The high purity lithium metal may be hydrided to provide high purity lithium hydride.

  20. Lithium Diffusion Pathway in Li1.3Al0.3Ti1.7(PO4)3 (LATP) Superionic Conductor.

    PubMed

    Monchak, Mykhailo; Hupfer, Thomas; Senyshyn, Anatoliy; Boysen, Hans; Chernyshov, Dmitry; Hansen, Thomas; Schell, Karl G; Bucharsky, Ethel C; Hoffmann, Michael J; Ehrenberg, Helmut

    2016-03-21

    The Al-substituted LiTi2(PO4)3 powders Li1+xAlxTi2-x(PO4)3 (LATP) were successfully prepared by a water-based sol-gel process with subsequent calcination and sintering. The crystal structure of obtained samples was characterized at different temperatures using high-resolution synchrotron-based X-ray and neutron powder diffraction. Possible lithium diffusion pathways were initially evaluated using the difference bond-valence approach. Experimental 3D lithium diffusion pathway in LATP was extracted from the negative nuclear density maps reconstructed by the maximum entropy method. Evaluation of the energy landscape determining the lithium diffusion process in NASICON-type superionic conductor is shown for the first time. PMID:26930220

  1. Lithium nephrotoxicity.

    PubMed

    Azab, Abed N; Shnaider, Alla; Osher, Yamima; Wang, Dana; Bersudsky, Yuly; Belmaker, R H

    2015-12-01

    Reports of toxic effects on the kidney of lithium treatment emerged very soon after lithium therapy was introduced. Lithium-induced nephrogenic diabetes insipidus is usually self-limiting or not clinically dangerous. Some reports of irreversible chronic kidney disease and renal failure were difficult to attribute to lithium treatment since chronic kidney disease and renal failure exist in the population at large. In recent years, large-scale epidemiological studies have convincingly shown that lithium treatment elevates the risk of chronic kidney disease and renal failure. Most patients do not experience renal side effects. The most common side effect of polyuria only weakly predicts increasing creatinine or reduced kidney function. Among those patients who do experience decrease in creatinine clearance, some may require continuation of lithium treatment even as their creatinine increases. Other patients may be able to switch to a different mood stabilizer medication, but kidney function may continue to deteriorate even after lithium cessation. Most, but not all, evidence today recommends using a lower lithium plasma level target for long-term maintenance and thereby reducing risks of severe nephrotoxicity. PMID:26043842

  2. Fatigue in 0.5Li2MnO3:0.5Li(Ni1/3Co1/3Mn1/3)O2 positive electrodes for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Riekehr, Lars; Liu, Jinlong; Schwarz, Björn; Sigel, Florian; Kerkamm, Ingo; Xia, Yongyao; Ehrenberg, Helmut

    2016-09-01

    Two different Li-rich nickel-cobalt-manganese-oxide (Li-rich NCM) active materials with the same nominal composition 0.5Li2MnO3:0.5Li(Ni1/3Co1/3Mn1/3)O2 but different pristine nano structure have been analyzed structurally and electrochemically in different cycling states. For structural characterization, transmission electron microscopy (TEM) and high resolution synchrotron powder diffraction (S-XRD) experiments were conducted. The changes in structure with increasing cycle number are correlated with characteristic features in the corresponding electrochemical dQ/dV-profiles that were obtained by galvanostatically cycling the two different active materials. The presented data demonstrates that structural changes upon cycling, e.g. LiMnO2 and spinel formation, strongly depend on the degree oxygen is involved in the reversible charge compensation for delithiation/lithiation. According to our data, firstly a twin-like environment with nanometer dimensions is formed within the R-3m matrix during the initial cycle, which then gradually transforms into a spinel-like structure with increasing cycle number. As another result, we can show that Li2MnO3 to LiMnO2 transformation is not directly dependent in the irreversible oxygen loss in the first cycle but more importantly on transition metal migration. A model is presented explaining the dependency of LiMnO2 and spinel formation on the ability of Li-rich active materials to include oxygen in the charge compensation process.

  3. Synthesis and electrochemical properties of Li(1.3)Nb(0.3)V(0.4)O2 as a positive electrode material for rechargeable lithium batteries.

    PubMed

    Yabuuchi, Naoaki; Takeuchi, Mitsue; Komaba, Shinichi; Ichikawa, Shinnosuke; Ozaki, Tetsuya; Inamasu, Tokuo

    2016-02-01

    The binary system, xLi3NbO4-(1 - x)LiVO2, was first examined as an electrode material for rechargeable lithium batteries. The sample (x = 0.43) crystallizes into a cation-disordered rocksalt structure and delivers a reversible capacity of ca. 230 mA h g(-1), which originates from V(3+)/V(5+) redox with electrochemically inactive niobium ions. PMID:26686804

  4. A Lithium Superionic Sulfide Cathode for Lithium-Sulfur Batteries

    SciTech Connect

    Lin, Zhan; Liu, Zengcai; Dudney, Nancy J; Liang, Chengdu

    2013-01-01

    This work presents a facile synthesis approach for core-shell structured Li2S nanoparticles, which have Li2S as the core and Li3PS4 as the shell. This material functions as lithium superionic sulfide (LSS) cathode for long-lasting, energy-efficient lithium-sulfur (Li-S) batteries. The LSS has an ionic conductivity of 10-7 S cm-1 at 25 oC, which is 6 orders of magnitude higher than that of bulk Li2S (~10-13 S cm-1). The high lithium-ion conductivity of LSS imparts an excellent cycling performance to all-solid Li-S batteries, which also promises safe cycling of high-energy batteries with metallic lithium anodes.

  5. Growth of Lithium Lanthanum Titanate Nanosheets and Their Application in Lithium-Ion Batteries.

    PubMed

    Lin, Xi; Wang, Hongqiang; Du, Haiwei; Xiong, Xinrun; Qu, Bo; Guo, Zaiping; Chu, Dewei

    2016-01-20

    In this work, lithium-doped lanthanum titanate (LLTO) nanosheets have been prepared by a facile hydrothermal approach. It is found that with the incorporation of lithium ions, the morphology of the product transfers from rectangular nanosheets to irregular nanosheets along with a transition from La2Ti2O7 to Li0.5La0.5TiO3. The as-prepared LLTO nanosheets are used to enhance electrochemical performance of the LiCo1/3Ni1/3Mn1/3O2 (CNM) electrode by forming a higher lithium-ion conductive network. The LiCo1/3Ni1/3Mn1/3O2-Li0.5La0.5TiO3 (CNM-LLTO) electrode shows better a lithium diffusion coefficient of 1.5 × 10(-15) cm(2) s(-1), resulting from higher lithium-ion conductivity of LLTO and shorter lithium diffusion path, compared with the lithium diffusion coefficient of CNM electrode (5.44 × 10(-16) cm(2) s(-1)). Superior reversibility and stability are also found in the CNM-LLTO electrode, which retains a capacity at 198 mAh/g after 100 cycles at a rate of 0.1 C. Therefore, it can be confirmed that the existence of LLTO nanosheets can act as bridges to facilitate the lithium-ion diffusion between the active materials and electrolytes. PMID:26697735

  6. Synthesis and electrochemical properties of Li2/3Ni1/3Mn2/3O2 as a novel 5 V class positive electrode material for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Chiba, Kazuki; Shikano, Masahiro; Sakaebe, Hikari

    2016-02-01

    A lithium nickel manganese oxide, O3-Li2/3Ni1/3Mn2/3O2, is synthesized from the precursor, P3-Na2/3Ni1/3Mn2/3O2, by a Na+/Li+ ion exchange reaction using molten salt. Post-heating at 300, 400, 500, 600, and 700 °C is carried out for 5 h in air. The products are characterized by powder XRD, inductively coupled plasma-atomic emission spectroscopy (ICP-AES), SEM, 6Li-magic-angle-spinning-NMR, and electrochemical measurements. The charge/discharge profiles of O3-Li2/3Ni1/3Mn2/3O2, thermally treated at 500 °C, show a high-potential plateau region at 4.8 V. Furthermore, sloping voltage profiles are observed at an average voltage of 3.21 V. An initial discharge capacity of 257 mA h g-1 is obtained between 2.0 and 4.8 V with a current density of 15 mA g-1 at 25 °C. This capacity corresponds to 0.90 electron transfers per formula unit. This study shows that Post-heating of O3-Li2/3Ni1/3Mn2/3O2 is effective to improve its electrochemical properties.

  7. Lithium in 2012

    USGS Publications Warehouse

    Jaskula, B.W.

    2013-01-01

    In 2012, estimated world lithium consumption was about 28 kt (31,000 st) of lithium contained in minerals and compounds, an 8 percent increase from that of 2011. Estimated U.S. consumption was about 2 kt (2,200 st) of contained lithium, the same as that of 2011. The United States was thought to rank fourth in consumption of lithium and remained the leading importer of lithium carbonate and the leading producer of value-added lithium materials. One company, Rockwood Lithium Inc., produced lithium compounds from domestic brine resources near Silver Peak, NV.

  8. Transiting exoplanets from the CoRoT space mission . XIII. CoRoT-13b: a dense hot Jupiter in transit around a star with solar metallicity and super-solar lithium content

    NASA Astrophysics Data System (ADS)

    Cabrera, J.; Bruntt, H.; Ollivier, M.; Díaz, R. F.; Csizmadia, Sz.; Aigrain, S.; Alonso, R.; Almenara, J.-M.; Auvergne, M.; Baglin, A.; Barge, P.; Bonomo, A. S.; Bordé, P.; Bouchy, F.; Carone, L.; Carpano, S.; Deleuil, M.; Deeg, H. J.; Dvorak, R.; Erikson, A.; Ferraz-Mello, S.; Fridlund, M.; Gandolfi, D.; Gazzano, J.-C.; Gillon, M.; Guenther, E. W.; Guillot, T.; Hatzes, A.; Havel, M.; Hébrard, G.; Jorda, L.; Léger, A.; Llebaria, A.; Lammer, H.; Lovis, C.; Mazeh, T.; Moutou, C.; Ofir, A.; von Paris, P.; Pätzold, M.; Queloz, D.; Rauer, H.; Rouan, D.; Santerne, A.; Schneider, J.; Tingley, B.; Titz-Weider, R.; Wuchterl, G.

    2010-11-01

    We announce the discovery of the transiting planet CoRoT-13b. Ground-based follow-up in CFHT and IAC80 confirmed CoRoT's observations. The mass of the planet was measured with the HARPS spectrograph and the properties of the host star were obtained analyzing HIRES spectra from the Keck telescope. It is a hot Jupiter-like planet with an orbital period of 4.04 days, 1.3 Jupiter masses, 0.9 Jupiter radii, and a density of 2.34 g cm-3. It orbits a G0V star with T_eff = 5 945 K, M* = 1.09 M⊙, R_* = 1.01 R⊙, solar metallicity, a lithium content of + 1.45 dex, and an estimated age of between 0.12 and 3.15 Gyr. The lithium abundance of the star is consistent with its effective temperature, activity level, and age range derived from the stellar analysis. The density of the planet is extreme for its mass, implies that heavy elements are present with a mass of between about 140 and 300 {M}⊕. The CoRoT space mission, launched on December 27th 2006, has been developed and is operated by CNES, with the contribution of Austria, Belgium, Brazil, ESA (RSSD and Science Programme), Germany and Spain. Part of the observations were obtained at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii. Based on observations made with HARPS spectrograph on the 3.6-m European Organisation for Astronomical Research in the Southern Hemisphere telescope at La Silla Observatory, Chile (ESO program 184.C-0639). Based on observations made with the IAC80 telescope operated on the island of Tenerife by the Instituto de Astrofísica de Canarias in the Spanish Observatorio del Teide. Part of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics

  9. Lithium-associated hyperthyroidism.

    PubMed

    Siyam, Fadi F; Deshmukh, Sanaa; Garcia-Touza, Mariana

    2013-08-01

    Goiters and hypothyroidism are well-known patient complications of the use of lithium for treatment of bipolar disease. However, the occurrence of lithium-induced hyperthyroidism is a more rare event. Many times, the condition can be confused with a flare of mania. Monitoring through serial biochemical measurement of thyroid function is critical in patients taking lithium. Hyperthyroidism induced by lithium is a condition that generally can be controlled medically without the patient having to discontinue lithium therapy, although in some circumstances, discontinuation of lithium therapy may be indicated. We report on a patient case of lithium-associated hyperthyroidism that resolved after discontinuation of the medication. PMID:23948626

  10. Facile synthesis and enhanced electrochemical performances of Li2TiO3-coated lithium-rich layered Li1.13Ni0.30Mn0.57O2 cathode materials for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Zhao, Enyue; Liu, Xiangfeng; Hu, Zhongbo; Sun, Limei; Xiao, Xiaoling

    2015-10-01

    Li2TiO3-coated Li-rich layered Li1.13Ni0.30Mn0.57O2 (0.3Li2MnO3·0.7LiNi0.5Mn0.5O2) compound has been successfully synthesized for the first time through a syn-lithiation strategy. In this approach, Ni0.35Mn0.65C2O4·xH2O precursor is first prepared by a co-precipitation method, then it is coated with TiO2 through a reaction between Ni0.35Mn0.65C2O4·xH2O and Ti(OC4H9)4, and finally Ni0.35Mn0.65C2O4rad yH2O@TiO2 is simultaneously lithiated to form Li2TiO3-coated Li-rich layered oxide. Both the cyclability and high-rate capability of Li-rich layered cathode materials have been greatly improved by Li2TiO3 coating. Meanwhile, the Li2TiO3 coating layer also reduces the polarization of the electrode and retards voltage drop during cycling. The reversible capacity of the 3 mol% Li2TiO3-coated Li-rich layered cathode material at the 100th cycle at a large current density of 100 mA/g is significantly enhanced to105 mAh/g from 78 mAh/g of the un-coated sample. The enhancements of the electrochemical performance can be largely attributed to the stabilization of the interface between the cathode and electrolyte, the three-dimensional path for Li+-ion and better conductivity after Li2TiO3 coating. It is also disclosed that the amount of Li2TiO3 coating also has a large influence on the electrochemical performances and it is necessary to optimize the specific capacity, cycling stability and rate capability through tuning the content of Li2TiO3 coating.

  11. Li17Sb13S28: A New Lithium Ion Conductor and addition to the Phase Diagram Li2S-Sb2S3.

    PubMed

    Huber, Sebastian; Pfitzner, Arno

    2015-09-21

    Li17Sb13S28 was synthesized by solid-state reaction of stoichiometric amounts of anhydrous Li2S and Sb2S3. The crystal structure of Li17Sb13S28 was determined from dark-red single crystals at room temperature. The title compound crystallizes in the monoclinic space group C2/m (no. 12) with a=12.765(2) Å, b=11.6195(8) Å, c=9.2564(9) Å, β=119.665(6)°, V=1193.0(2) Å(3), and Z=4 (data at 20 °C, lattice constants from powder diffraction). The crystal structure contains one cation site with a mixed occupation by Li and Sb, and one with an antimony split position. Antimony and sulfur form slightly distorted tetragonal bipyramidal [SbS5E] units (E=free electron pair). Six of these units are arranged around a vacancy in the anion substructure. The lone electron pairs E of the antimony(III) cations are arranged around these vacancies. Thus, a variant of the rock salt structure type with ordered vacancies in the anionic substructure results. Impedance spectroscopic measurements of Li17Sb13S28 show a specific conductivity of 2.9×10(-9) Ω(-1) cm(-1) at 323 K and of 7.9×10(-6) Ω(-1) cm(-1) at 563 K, the corresponding activation energy is EA=0.4 eV below 403 K and EA=0.6 eV above. Raman spectra are dominated by the Sb-S stretching modes of the [SbS5] units at 315 and 341 cm(-1) at room temperature. Differential thermal analysis (DTA) measurements of Li17Sb13S28 indicate peritectic melting at 854 K. PMID:26267671

  12. How to Calculate Spin-Spin Coupling and Spin-Rotation Coupling Strengths and Their Uncertainties from Spectroscopic Data: Application to the c(1^3Σ_g^+) State of Diatomic Lithium

    NASA Astrophysics Data System (ADS)

    Dattani, Nikesh S.; Li, Xuan

    2013-06-01

    Recent high-resolution (± 0.00002 cm^{-1}) photo-association spectroscopy (PAS) data of seven previously unexplored vibrational levels of the 1^3Σ_g^+ state of Li_2 have allowed for the first ever experimental determination of the spin-spin (λ_v) and spin-rotation (γ_v) coupling constants in a diatomic lithium system. For triplet states of diatomic molecules such as the 1^3Σ_g^+ state of Li_2, the three spin-spin/spin-rotation resolved energies associated with a ro-vibrational state |v,N> were expressed explicity in terms of B_v, λ_v, and γ_v in 1929 by Kramer's first-order formulas and then in 1937 by Schlapp's more refined formulas. Given spectroscopic data, while it has never been difficult to extract λ_v and γ_v from Schlapp's formulas, it has been a challenge to reliably predict how accurate these extracted values are. This is for two reasons: (1) the lack of a rigorous method to estimate the uncertainty in B_v, (2) the non-linearity of Schlapp's coupled equations has meant that traditionally they have had to be solved numerically by Newton iterations which makes error propagation difficult. The former challenge has been this year solved by Le Roy with a modification of Hutson's perturbation theory of, and the latter problem has now been solved by symbolic computing software that solves Schlapp's coupled non-linear equations analytically for the first time since their introduction in 1937. M. Semczuk, X. Li, W. Gunton, M. Haw, N. Dattani, J. Witz, A. Mills, D. Jones, K. Madison, Physical Review A {87}, XX (2013) H. Kramers, Zeitschrift fur Physik {53}, 422 (1929) R. Schlapp, Physical Review {51}, 342 (1937) J. Hutson, J. Phys. B, {14}, 851 (1981)

  13. A comparative study on electrochemical cycling stability of lithium rich layered cathode materials Li1.2Ni0.13M0.13Mn0.54O2 where M = Fe or Co

    NASA Astrophysics Data System (ADS)

    Laisa, C. P.; Nanda Kumar, A. K.; Selva Chandrasekaran, S.; Murugan, P.; Lakshminarasimhan, N.; Govindaraj, R.; Ramesha, K.

    2016-08-01

    In this work we compare electrochemical cycling stability of Fe containing Li rich phase Li1.2Ni0.13Fe0.13Mn0.54O2 (Fe-Li rich) with the well-known Co containing Li rich composition Li1.2Ni0.13Co0.13Mn0.54O2 (Co-Li rich). During the first charge, the activation plateau corresponding to removal of Li2O from the structure is smaller (removal of 0.6 Li) in the case of Fe-Li rich compared to Co-Li rich composition (0.8 Li removal). Consequently, the Fe compound shows better capacity retention; for example, after 100 cycles Fe-Li rich compound exhibits 20% capacity degradation where as it is about 40% in the case of Co-Li rich phase. The electrochemical and microscopy studies support the fact that compared to Co-Li rich compound, the Fe-Li rich composition display smaller voltage decay and reduced spinel conversion. XPS studies on charged/discharged Fe-Li rich samples show participation of Fe+3/Fe+4 redox during electrochemical cycling which is further supported by our first principles calculations. Also the temperature dependent magnetic studies on charge-discharged samples of Fe-Li rich compound point out that magnetic behavior is sensitive to cation oxidation states and Ni/Li disorder.

  14. Molten salt lithium cells

    DOEpatents

    Raistrick, Ian D.; Poris, Jaime; Huggins, Robert A.

    1983-01-01

    Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and is operated in the temperature range of about 400.degree.-500.degree. C. Such high temperature operation accelerates corrosion problems and a substantial amount of energy is lost through heat transfer. The present invention provides an electrochemical cell (10) which may be operated at temperatures between about 100.degree.-170.degree. C. Cell (10) comprises an electrolyte (16), which preferably includes lithium nitrate, and a lithium or lithium alloy electrode (12).

  15. Molten salt lithium cells

    DOEpatents

    Raistrick, I.D.; Poris, J.; Huggins, R.A.

    1980-07-18

    Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and is operated in the temperature range of about 400 to 500/sup 0/C. Such high temperature operation accelerates corrosion problems and a substantial amount of energy is lost through heat transfer. The present invention provides an electrochemical cell which may be operated at temperatures between about 100 to 170/sup 0/C. The cell is comprised of an electrolyte, which preferably includes lithium nitrate, and a lithium or lithium alloy electrode.

  16. Molten salt lithium cells

    DOEpatents

    Raistrick, Ian D.; Poris, Jaime; Huggins, Robert A.

    1982-02-09

    Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and is operated in the temperature range of about 400.degree.-500.degree. C. Such high temperature operation accelerates corrosion problems and a substantial amount of energy is lost through heat transfer. The present invention provides an electrochemical cell (10) which may be operated at temperatures between about 100.degree.-170.degree. C. Cell (10) comprises an electrolyte (16), which preferably includes lithium nitrate, and a lithium or lithium alloy electrode (12).

  17. Crystal structure of di-μ-iodido-bis-{[1,3-bis-(2,6-diiso-propyl-phen-yl)imidazol-2-yl-idene]lithium}.

    PubMed

    Wan, Hui-Da; Hong, Jian-Quan

    2015-06-01

    In the title binuclear complex, [Li2(C27H36N2)2I2], the unique Li(I) cation is coordinated by two iodide anions and one yl-idene C atom from a 1,3-bis-(2,6-diiso-propyl-phen-yl)imidazol-2-yl-idene ligand in a distorted trigonal-planar geometry. The two symmetry-related iodide anions bridge two Li(I) cations, forming an inversion dimer in which the Li2I2 plane is nearly perpendicular to the imidazol-2-yl-idene ring, with a dihedral angle of 85.5 (3)°. No hydrogen bonding is observed in the crystal. PMID:26090170

  18. Fabrication and electrochemical properties of hemisphere structured 3D Li(Li0.2Mn0.54Co0.13Ni0.13)O2 cathode thin film for all-solid-state lithium battery.

    PubMed

    Yim, H; Kong, W Y; Yoon, S J; Kim, Y C; Choi, J W

    2013-05-01

    The Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode thin films were deposited on planar, hemisphere, linked hemisphere, and isolated hemisphere structured Pt current collector thin films to investigate the effect of 3-dimensional (3-D) structure for the electrochemical properties of active cathode thin films. The films of linked hemisphere structure shows the highest initial discharge capacity of 140 microA h/cm2-microm which is better than those of planar (62 microA h/cm2-microm), hemisphere (94.6 microA h/cm2-microm), and isolated hemisphere (135 microA h/cm2-microm) films due to increase of surface area for cathode thin films. Linked hemisphere shows the biggest capacity and the best retention rate because 6 nanobridges of each hemisphere bring strong connection. PMID:23858879

  19. Aluminum-lithium alloys in helicopters

    SciTech Connect

    Smith, A.F.

    1997-10-01

    Aluminium-lithium alloys are widely applied on the EH101 helicopter, designed and built jointly by GKN Westland Helicopters of England and Agusta S.p.A. of Italy. With the exception of the powder metallurgy alloy AA 5091, all the current commercially available aluminum-lithium alloys are produced by direct-chill casting, and require a precipitation-aging heat treatment to achieve the required properties. In aluminum-lithium alloys containing greater than 1.3% (by weight) of lithium, the intermetallic phase {delta}{prime}-Al{sub 3}Li precipitates upon natural or artificial aging, but the associated strengthening effect is insufficient to meet the medium or high strength levels usually required (the damage tolerant temper in AA 8090 is an exception).

  20. Lithium-induced hyperpolarization of the human rectum in vivo.

    PubMed

    Rask-Madsen, J; Baastrup, P C; Schwartz, M

    1972-05-27

    The transmucosal potential difference across the rectal mucosa was measured in 30 healthy subjects and in 13 psychiatric patients on lithium treatment for manic-depressive psychosis. It was significantly greater in the lithium-treated patients. A highly significant correlation was found between the potential difference and the serum lithium, and in all eight patients in whom it was measured before and one week after starting lithium treatment a rising potential difference was found. This phenomenon may possibly be explained in terms of resistance of the rectal mucosa to vasopressin. PMID:5031209

  1. Lithium1.3Aluminum0.3Titanium1.7Phosphate as a solid state Li-ion conductor: Issues with microcracking and stability in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Jackman, Spencer D.

    Lithium aluminum titanium phosphate (LATP) with formula Li1.3Al0.3Ti1.7(PO4)3 was analyzed and tested to better understand its applicability as a solid state ion conducting ceramic material for electrochemical applications. Sintered samples were obtained from Ceramatec, Inc. in Salt Lake City and characterized in terms of density, phase-purity, fracture toughness, Young's modulus, thermal expansion behavior, mechanical strength, a.c. and d.c. ionic conductivity, and susceptibility to static and electrochemical corrosion in aqueous Li salt solutions. It was shown that LATP is prone to microcrack generation because of high thermal expansion anisotropy. A.c. impedance spectra of high-purity LATP of varying grain sizes showed that microcracking had a negative impact on the ionic conduction of Li along grain boundaries, with fine-grained (1.7±0.7 µm) LATP having twice the ionic conductivity of the same purity of coarse-grained (4.8±1.9 µm) LATP at 50°C. LATP with detectible secondary phases had lower ionic conductivity for similar grain sizes, as would be expected. The Young's modulus of fine-grained LATP was measured to be 115 GPa, and the highest biaxial strength was 191±11 MPa when tested in mineral oil, 144±13 MPa as measured in air, and 26±7 MPa after exposure to deionized water, suggesting that LATP undergoes stress-corrosion cracking. After exposure to LiOH, the strength was 76±19 MPa. This decrease in strength was observed despite there being no measureable change in a.c. impedance spectra, X-ray diffraction, or sample mass, suggesting phosphate glasses at grain boundaries. The chemical and electrochemical stability of high-purity LATP in aqueous electrochemical cells was evaluated using LiOH, LiCl, LiNO3, and LiCOOCH3 salts as the Li source. LATP was found to be most stable between pH 8-9, with the longest cell operating continuously at 25 mA cm-2 for 625 hours at 40°C in LiCOOCH3. At pH values outside of the 7-10 range, eventual membrane degradation

  2. Lithium plating in lithium-ion batteries at sub-ambient temperatures investigated by in situ neutron diffraction

    NASA Astrophysics Data System (ADS)

    Zinth, Veronika; von Lüders, Christian; Hofmann, Michael; Hattendorff, Johannes; Buchberger, Irmgard; Erhard, Simon; Rebelo-Kornmeier, Joana; Jossen, Andreas; Gilles, Ralph

    2014-12-01

    Lithium plating in commercial LiNi1/3Mn1/3Co1/3O2/graphite cells at sub-ambient temperatures is studied by neutron diffraction at Stress-Spec, MLZ. Li plating uses part of the active lithium in the cell and competes with the intercalation of lithium into graphite. As a result, the degree of graphite lithiation during and after charge is lower. Comparison of graphite lithiation after a C/5 charging cycle fast enough to expect a considerable amount of Li plating with a much slower C/30 reference cycle reveals a lower degree of graphite lithiation in the first case; neutron diffraction shows less LiC6 and more LiC12 is present. If the cell is subjected to a 20 h rest period after charge, a gradual transformation of remaining LiC12 to LiC6 can be observed, indicating Li diffusion into the graphite. During the rest period after the C/5 charging cycle, the degree of graphite lithiation can be estimated to increase by 17%, indicating at least 17% of the active lithium is plated. Data collected during discharge immediately after C/5 charging give further evidence of the presence and amount of metallic lithium: in this case 19% of discharge capacity originates from the oxidation of metallic lithium. Also, lithium oxidation can be directly related to the high voltage plateau observed during discharge in case of lithium plating.

  3. The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth.

    PubMed

    Li, Weiyang; Yao, Hongbin; Yan, Kai; Zheng, Guangyuan; Liang, Zheng; Chiang, Yet-Ming; Cui, Yi

    2015-01-01

    Lithium metal has shown great promise as an anode material for high-energy storage systems, owing to its high theoretical specific capacity and low negative electrochemical potential. Unfortunately, uncontrolled dendritic and mossy lithium growth, as well as electrolyte decomposition inherent in lithium metal-based batteries, cause safety issues and low Coulombic efficiency. Here we demonstrate that the growth of lithium dendrites can be suppressed by exploiting the reaction between lithium and lithium polysulfide, which has long been considered as a critical flaw in lithium-sulfur batteries. We show that a stable and uniform solid electrolyte interphase layer is formed due to a synergetic effect of both lithium polysulfide and lithium nitrate as additives in ether-based electrolyte, preventing dendrite growth and minimizing electrolyte decomposition. Our findings allow for re-evaluation of the reactions regarding lithium polysulfide, lithium nitrate and lithium metal, and provide insights into solving the problems associated with lithium metal anodes. PMID:26081242

  4. The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth

    NASA Astrophysics Data System (ADS)

    Li, Weiyang; Yao, Hongbin; Yan, Kai; Zheng, Guangyuan; Liang, Zheng; Chiang, Yet-Ming; Cui, Yi

    2015-06-01

    Lithium metal has shown great promise as an anode material for high-energy storage systems, owing to its high theoretical specific capacity and low negative electrochemical potential. Unfortunately, uncontrolled dendritic and mossy lithium growth, as well as electrolyte decomposition inherent in lithium metal-based batteries, cause safety issues and low Coulombic efficiency. Here we demonstrate that the growth of lithium dendrites can be suppressed by exploiting the reaction between lithium and lithium polysulfide, which has long been considered as a critical flaw in lithium-sulfur batteries. We show that a stable and uniform solid electrolyte interphase layer is formed due to a synergetic effect of both lithium polysulfide and lithium nitrate as additives in ether-based electrolyte, preventing dendrite growth and minimizing electrolyte decomposition. Our findings allow for re-evaluation of the reactions regarding lithium polysulfide, lithium nitrate and lithium metal, and provide insights into solving the problems associated with lithium metal anodes.

  5. Method of recycling lithium borate to lithium borohydride through diborane

    DOEpatents

    Filby, Evan E.

    1976-01-01

    This invention provides a method for the recycling of lithium borate to lithium borohydride which can be reacted with water to generate hydrogen for utilization as a fuel. The lithium borate by-product of the hydrogen generation reaction is reacted with hydrogen chloride and water to produce boric acid and lithium chloride. The boric acid and lithium chloride are converted to lithium borohydride through a diborane intermediate to complete the recycle scheme.

  6. Performance Evaluation of a 4.5 kW (1.3 Refrigeration Tons) Air-Cooled Lithium Bromide/Water Solar Powered (Hot-Water-Fired) Absorption Unit

    SciTech Connect

    Zaltash, Abdolreza; Petrov, Andrei Y; Linkous, Randall Lee; Vineyard, Edward Allan

    2007-01-01

    During the summer months, air-conditioning (cooling) is the single largest use of electricity in both residential and commercial buildings with the major impact on peak electric demand. Improved air-conditioning technology has by far the greatest potential impact on the electric industry compared to any other technology that uses electricity. Thermally activated absorption air-conditioning (absorption chillers) can provide overall peak load reduction and electric grid relief for summer peak demand. This innovative absorption technology is based on integrated rotating heat exchangers to enhance heat and mass transfer resulting in a potential reduction of size, cost, and weight of the "next generation" absorption units. Rotartica Absorption Chiller (RAC) is a 4.5 kW (1.3 refrigeration tons or RT) air-cooled lithium bromide (LiBr)/water unit powered by hot water generated using the solar energy and/or waste heat. Typically LiBr/water absorption chillers are water-cooled units which use a cooling tower to reject heat. Cooling towers require a large amount of space, increase start-up and maintenance costs. However, RAC is an air-cooled absorption chiller (no cooling tower). The purpose of this evaluation is to verify RAC performance by comparing the Coefficient of Performance (COP or ratio of cooling capacity to energy input) and the cooling capacity results with those of the manufacturer. The performance of the RAC was tested at Oak Ridge National Laboratory (ORNL) in a controlled environment at various hot and chilled water flow rates, air handler flow rates, and ambient temperatures. Temperature probes, mass flow meters, rotational speed measuring device, pressure transducers, and a web camera mounted inside the unit were used to monitor the RAC via a web control-based data acquisition system using Automated Logic Controller (ALC). Results showed a COP and cooling capacity of approximately 0.58 and 3.7 kW respectively at 35 C (95 F) design condition for ambient

  7. Facile hydrothermal method synthesis of coralline-like Li{sub 1.2}Mn{sub 0.54}Ni{sub 0.13}Co{sub 0.13}O{sub 2} hierarchical architectures as superior cathode materials for lithium-ion batteries

    SciTech Connect

    Hou, Xianhua; Huang, Yanling; Ma, Shaomeng; Zou, Xiaoli; Hu, Shejun; Wu, Yuping

    2015-03-15

    Highlights: • A coralline-like Li{sub 1.20}Mn{sub 0.54}Ni{sub 0.13}Co{sub 0.13}O{sub 2} cathode was synthesized by hydrothermal method. • Initial discharge capacity of 250.2 mAh g{sup −1} for the cathode was obtained at 0.1 C. • A high reversible specific capacity of 210.2 mAh g{sup −1} after 100 cycles was acquired. • The high capacity retention of 84.5% was obtained even after 200 cycles at 10 C. - Abstract: A coralline-like lithium-rich layered cathode material with homogeneous composition of Li{sub 1.20}Mn{sub 0.54}Ni{sub 0.13}Co{sub 0.13}O{sub 2} has been successfully synthesized via a facile ethanolamine (EA)-mediated hydrothermal method route, with subsequent calcination at 850 °C. An initial specific discharge capacity of 250.2 mAh g{sup −1} and a reversible specific capacity of 210.2 mAh g{sup −1} after 100 cycles at a constant density of 25 mA g{sup −1} (1 C = 250 mA g{sup −1}) are acquired. Even at 10 C, it still delivers a discharge capacity of approximately 100 mA h g{sup −1}, thereby indicating its excellent high power performance. The sample also shows enhanced cycling performance with 88.5%, 79.9% and 90.5% of capacity retention after 100 cycles at 0.5, 5 and 10 C rates, respectively. Besides, 84.5% of initial capacity is retained even after 200 cycles at 10 C. Consequently, the fascinating electrochemical performance may facilitate the coralline-like LMNCO composite to be a promising alternative cathode for LIBs with a high application potential.

  8. Lithium Redistribution in Lithium-Metal Batteries

    SciTech Connect

    Ferrese, A; Albertus, P; Christensen, J; Newman, J

    2012-01-01

    A model of a lithium-metal battery with a CoO2 positive electrode has been modeled in order to predict the movement of lithium in the negative electrode along the negative electrode/separator interface during cell cycling. A finite-element approach was used to incorporate an intercalation positive electrode using superposition, electrode tabbing, transport using concentrated solution theory, as well as the net movement of the lithium electrode during cycling. From this model, it has been found that movement of lithium along the negative electrode/separator interface does occur during cycling and is affected by three factors: the cell geometry, the slope of the open-circuit-potential function of the positive electrode, and concentration gradients in both the solid and liquid phases in the cell. (C) 2012 The Electrochemical Society. [DOI: 10.1149/2.027210jes] All rights reserved.

  9. Lithium and symptomatic hyperparathyroidism.

    PubMed Central

    Ananth, J; Dubin, S E

    1983-01-01

    Hyperparathyroidism with or without adenoma has occasionally been reported in association with lithium treatment, and in symptomatic patients depression, psychosis and an exacerbation of existing psychopathology may occur. Three lithium-treated patients with hyperparathyroidism are reported, in whom discontinuation of lithium in one and removal of parathyroid adenomata in two led to both a reduction in plasma calcium levels and an improvement in their psychopathology. PMID:6423822

  10. Lithium purification technique

    DOEpatents

    Keough, R.F.; Meadows, G.E.

    1984-01-10

    A method for purifying liquid lithium to remove unwanted quantities of nitrogen or aluminum. The method involves precipitation of aluminum nitride by adding a reagent to the liquid lithium. The reagent will be either nitrogen or aluminum in a quantity adequate to react with the unwanted quantity of the impurity to form insoluble aluminum nitride. The aluminum nitride can be mechanically separated from the molten liquid lithium.

  11. Lithium purification technique

    DOEpatents

    Keough, Robert F.; Meadows, George E.

    1985-01-01

    A method for purifying liquid lithium to remove unwanted quantities of nitrogen or aluminum. The method involves precipitation of aluminum nitride by adding a reagent to the liquid lithium. The reagent will be either nitrogen or aluminum in a quantity adequate to react with the unwanted quantity of the impurity to form insoluble aluminum nitride. The aluminum nitride can be mechanically separated from the molten liquid lithium.

  12. Lithium batteries: Application of neutron radiography

    NASA Astrophysics Data System (ADS)

    Kamata, Masahiro; Esaka, Takao; Fujine, Shigenori; Yoneda, Kenji; Kanda, Keiji

    Several kinds of primary and secondary commercial lithium batteries, such as CR1/3 · 1H (Fujitsu), CR1220 and BR435 (Panasonic), ML1220 (Sanyo Excel) were investigated using neutron radiography; the variation of the lithium distribution inside these batteries upon discharging (and charging) were clarified by analyzing their visualized images. It was demonstrated that neutron radiography is a potential and useful method, especially in evaluating the reversibility of rechargeable batteries, which have been used under different discharging/charging conditions.

  13. Voltage and power relationships in lithium-containing solar cells.

    NASA Technical Reports Server (NTRS)

    Faith, T. J.

    1972-01-01

    Photovoltaic characteristics have been measured on a large number of crucible-grown lithium-containing solar cells irradiated by 1-MeV electrons to fluences ranging from 3 x 10 to the 13th power to 3 x 10 to the 15th power electrons per sq cm. These measurements have established empirical relationships between cell photovoltaic parameters and lithium donor density gradient. Short-circuit current and maximum power measured immediately after irradiation decrease logarithmically with lithium gradient. Open-circuit voltage increases logarithmically with lithium gradient both immediately after irradiation and after recovery, the degree of recovery being strongly gradient-dependent at high fluence. As a result, the maximum power and the power at 0.43 V after recovery from 3 x 10 to the 15th power electrons per sq cm increase with increasing lithium gradient.

  14. Metastable structure of Li13Si4

    NASA Astrophysics Data System (ADS)

    Gruber, Thomas; Bahmann, Silvia; Kortus, Jens

    2016-04-01

    The Li13Si4 phase is one out of several crystalline lithium silicide phases, which is a potential electrode material for lithium ion batteries and contains a high theoretical specific capacity. By means of ab initio methods like density functional theory (DFT) many properties such as heat capacity or heat of formation can be calculated. These properties are based on the calculation of phonon frequencies, which contain information about the thermodynamical stability. The current unit cell of "Li13Si4" given in the ICSD database is unstable with respect to DFT calculations. We propose a modified unit cell that is stable in the calculations. The evolutionary algorithm EVO found a structure very similar to the ICSD one with both of them containing metastable lithium positions. Molecular dynamic simulations show a phase transition between both structures where these metastable lithium atoms move. This phase transition is achieved by a very fast one-dimensional lithium diffusion and stabilizes this phase.

  15. Laminar Multicell Lithium Batteries

    SciTech Connect

    Bruder, A. H.

    1984-01-31

    Laminar batteries of series connected cells comprising lithium anodes and an electrolyte containing a passivating solvent reactive with lithium in which the cells are electrically connected in series by intercell barriers comprising outer layers of electrochemically inert electronically conducting material in contact with the electrochemically active anode and cathode of adjacent cells and a layer of metal foil between the electrochemically inert layers.

  16. Cathode material for lithium batteries

    DOEpatents

    Park, Sang-Ho; Amine, Khalil

    2015-01-13

    A method of manufacture an article of a cathode (positive electrode) material for lithium batteries. The cathode material is a lithium molybdenum composite transition metal oxide material and is prepared by mixing in a solid state an intermediate molybdenum composite transition metal oxide and a lithium source. The mixture is thermally treated to obtain the lithium molybdenum composite transition metal oxide cathode material.

  17. Cathode material for lithium batteries

    DOEpatents

    Park, Sang-Ho; Amine, Khalil

    2013-07-23

    A method of manufacture an article of a cathode (positive electrode) material for lithium batteries. The cathode material is a lithium molybdenum composite transition metal oxide material and is prepared by mixing in a solid state an intermediate molybdenum composite transition metal oxide and a lithium source. The mixture is thermally treated to obtain the lithium molybdenum composite transition metal oxide cathode material.

  18. Lithium and autophagy.

    PubMed

    Motoi, Yumiko; Shimada, Kohei; Ishiguro, Koichi; Hattori, Nobutaka

    2014-06-18

    Lithium, a drug used to treat bipolar disorders, has a variety of neuroprotective mechanisms, including autophagy regulation, in various neuropsychiatric conditions. In neurodegenerative diseases, lithium enhances degradation of aggregate-prone proteins, including mutated huntingtin, phosphorylated tau, and α-synuclein, and causes damaged mitochondria to degrade, while in a mouse model of cerebral ischemia and Alzheimer's disease autophagy downregulation by lithium is observed. The signaling pathway of lithium as an autophagy enhancer might be associated with the mammalian target of rapamycin (mTOR)-independent pathway, which is involved in myo-inositol-1,4,5-trisphosphate (IP3) in Huntington's disease and Parkinson's disease. However, the mTOR-dependent pathway might be involved in inhibiting glycogen synthase kinase-3β (GSK3β) in other diseases. Lithium's autophagy-enhancing property may contribute to the therapeutic benefit of patients with neuropsychiatric disorders. PMID:24738557

  19. Lithium metal oxide electrodes for lithium batteries

    DOEpatents

    Thackeray, Michael M.; Kim, Jeom-Soo; Johnson, Christopher S.

    2008-01-01

    An uncycled electrode for a non-aqueous lithium electrochemical cell including a lithium metal oxide having the formula Li.sub.(2+2x)/(2+x)M'.sub.2x/(2+x)M.sub.(2-2x)/(2+x)O.sub.2-.delta., in which 0.ltoreq.x<1 and .delta. is less than 0.2, and in which M is a non-lithium metal ion with an average trivalent oxidation state selected from two or more of the first row transition metals or lighter metal elements in the periodic table, and M' is one or more ions with an average tetravalent oxidation state selected from the first and second row transition metal elements and Sn. Methods of preconditioning the electrodes are disclosed as are electrochemical cells and batteries containing the electrodes.

  20. Electrochemical analysis of lithium polymer batteries

    NASA Astrophysics Data System (ADS)

    Han, Yong-Bong

    electrochemists. In order to solve this problem, we have developed a method to measure the kinetic parameters such as symmetry factor and exchange current density by AC impedance measurement based on porous electrode theory. One significant conclusion predicted from porous electrode theory is that the distribution of local reaction rate at the active particles is not uniform in the cathode during charge and discharge. In order to verify porous electrode theory experimentally, we have measured the lithium metal anode potential versus a lithium reference electrode during the discharge of Li/V 6O13 cells and then analyzed the data by using a mathematical model based on porous electrode theory. The results were explained by the nonuniform distribution of local reaction rate at the active particles and were consistent with porous electrode theory.

  1. Microstructure of Li(Mn{sub 1/3}Ni{sub 1/3}Co{sub 1/3})O{sub 2} cathode material for lithium ion battery: Dependence of crystal structure on calcination and heat-treatment temperature

    SciTech Connect

    Kabi, S.; Ghosh, A.

    2013-09-01

    Graphical abstract: TEM micrograph of Li(Mn{sub 1/3}Ni{sub 1/3}Co{sub 1/3})O{sub 2} compound calcined at 900 °C. - Highlights: • Synthesis condition of Li(Mn{sub 1/3}Ni{sub 1/3}Co{sub 1/3})O{sub 2} compound was optimized. • Effect of calcination and heat treatment on the structure was investigated. • Controlled heat-treatment reduced cation mixing and improved structural ordering. • Calcination and heat-treatment condition affected distribution of particle size. - Abstract: Cathode compounds of composition Li(Mn{sub 1/3}Ni{sub 1/3}Co{sub 1/3})O{sub 2} have been prepared by calcination of the precursor materials at 700, 800, 900 and 1000 °C for 24 h and by subsequent heat-treatments at 1100 °C for 4–6 h. It has been observed that the structural ordering and particle size increase with increasing calcination temperature. The compounds calcined at 700 °C and 800 °C are not well-crystallized, but the distribution of particles is uniform. However, the compounds calcined at 900 °C and 1000 °C are well-crystallized with a non-uniform distribution of particles. The compounds calcined at 900 °C are well-crystallized with a well-ordered hexagonal structure. The samples calcined at 800 °C and heat treated at 1100 °C for 4 h also show same structure. They have smooth surface morphology with uniform distribution of particles in the sub-micron (0.15–0.40 μm) range and less amount of cation mixing.

  2. Lithium cell test results

    NASA Technical Reports Server (NTRS)

    Bragg, B. J.

    1977-01-01

    Three lithium SO2 cells, two lithium CF cells, and a vinyl chloride cell, all with crimped seals, and all strictly experimental, were independently discharged on resistors. Three temperatures were used and several different storage temperatures. Discharge rate generally on the nominal discharges were 0.1 amp, 0.5 amp, and 1 amp. Tests results show that the crimp seals are inadequate, especially for the SO2 cells. Normal discharges present no hazards. All cells discharge to zero. The problem of lithium cell explosions, such as occurred during off-limits testing, is discussed.

  3. Lithium Dendrite Formation

    SciTech Connect

    2015-03-06

    Scientists at the Department of Energy’s Oak Ridge National Laboratory have captured the first real-time nanoscale images of lithium dendrite structures known to degrade lithium-ion batteries. The ORNL team’s electron microscopy could help researchers address long-standing issues related to battery performance and safety. Video shows annular dark-field scanning transmission electron microscopy imaging (ADF STEM) of lithium dendrite nucleation and growth from a glassy carbon working electrode and within a 1.2M LiPF6 EC:DM battery electrolyte.

  4. Lithium metal oxide electrodes for lithium batteries

    DOEpatents

    Thackeray, Michael M.; Johnson, Christopher S.; Amine, Khalil; Kang, Sun-Ho

    2010-06-08

    An uncycled preconditioned electrode for a non-aqueous lithium electrochemical cell including a lithium metal oxide having the formula xLi.sub.2-yH.sub.yO.xM'O.sub.2.(1-x)Li.sub.1-zH.sub.zMO.sub.2 in which 0lithium metal ion with an average trivalent oxidation state selected from two or more of the first row transition metals or lighter metal elements in the periodic table, and M' is one or more ions with an average tetravalent oxidation state selected from the first and second row transition metal elements and Sn. The xLi.sub.2-yH.sub.y.xM'O.sub.2.(1-x)Li.sub.1-zH.sub.zMO.sub.2 material is prepared by preconditioning a precursor lithium metal oxide (i.e., xLi.sub.2M'O.sub.3.(1-x)LiMO.sub.2) with a proton-containing medium with a pH<7.0 containing an inorganic acid. Methods of preparing the electrodes are disclosed, as are electrochemical cells and batteries containing the electrodes.

  5. Lithium drifted germanium system

    NASA Technical Reports Server (NTRS)

    Fjarlie, E. J.

    1969-01-01

    General characteristics of the lithium-drifted germanium photodiode-Dewar-preamplifier system and particular operating instructions for the device are given. Information is included on solving operational problems.

  6. APPARATUS FOR THE PRODUCTION OF LITHIUM METAL

    DOEpatents

    Baker, P.S.; Duncan, F.R.; Greene, H.B.

    1961-08-22

    Methods and apparatus for the production of high-purity lithium from lithium halides are described. The apparatus is provided for continuously contacting a molten lithium halide with molten barium, thereby forming lithium metal and a barium halide, establishing separate layers of these reaction products and unreacted barium and lithium halide, and continuously withdrawing lithium and barium halide from the reaction zone. (AEC)

  7. Scoping studies: behavior and control of lithium and lithium aerosols

    SciTech Connect

    Jeppson, D W

    1982-01-01

    The HEDL scoping studies examining the behavior of lithium and lithium aerosols have been conducted to determine and examine potential safety and environmental issues for postulated accident conditions associated with the use of lithium as a fusion reactor blanket and/or coolant. Liquid lithium reactions with air, nitrogen, carbon dioxide and concretes have been characterized. The effectiveness of various powder extinguishing agents and methods of application were determined for lithium-air reactions. The effectiveness of various lithium aerosol collection methods were determined and the volatilization and transport of radioactive metals potentially associated with lithium-air reactions were evaluated. Liquid lithium atmosphere reactions can be safely controlled under postulated accident conditions, but special handling practices must be provided. Lithium-concrete reactions should be avoided because of the potential production of high temperatures, corrosive environment and hydrogen. Carbon microspheres are effective in extinguishing well established lithium-air reactions for the lithium quantities tested (up to 10 kg). Large mass loading of lithium aerosols can be efficiently collected with conventional air cleaning systems. Potentially radioactive species (cobalt, iron and manganese) will be volatilized in a lithium-air reaction in contact with neutron activated stainless steel.

  8. Lithium to the Rescue.

    PubMed

    Jope, Richard S; Nemeroff, Charles B

    2016-01-01

    Lithium, an element that Mother Nature has put in some drinking water sources, has been used for its curative powers for centuries. Today, it's given in capsule form as a mood stabilizer for bipolar disorder and depression. New research, however, reveals its role as a neuroprotector, and suggests that a better understanding of the role enzymes modulated by lithium play could lead to new treatments for Alzheimer's disease, Parkinson's disease, multiple sclerosis, and other neurodegenerative disorders. PMID:27408673

  9. Lithium battery management system

    DOEpatents

    Dougherty, Thomas J.

    2012-05-08

    Provided is a system for managing a lithium battery system having a plurality of cells. The battery system comprises a variable-resistance element electrically connected to a cell and located proximate a portion of the cell; and a device for determining, utilizing the variable-resistance element, whether the temperature of the cell has exceeded a predetermined threshold. A method of managing the temperature of a lithium battery system is also included.

  10. Structural chemistry of new lithium bis(oxalato)borate solvates.

    PubMed

    Zavalij, Peter Y; Yang, Shoufeng; Whittingham, M Stanley

    2004-12-01

    Recently lithium bis(oxalato)borate, LiB(C2O4)2, has been proposed as an alternative lithium salt for the electrolyte in rechargeable batteries that do not contain explosive perchlorate, reactive fluoride or toxic arsenic. This lithium salt crystallizes in the form of solvates from such solvents as water, acetonitrile, acetone, dimethoxyethane, 1,3-dioxolane and ethylene carbonate. Their crystal structures were determined in order to explore the crystal chemistry of this lithium salt. It was found that most of the solvents consist of a lithium bis(oxalato)borate dimer in which the ligand acts as both a chelating and a bridging agent. Lithium has octahedral coordination that typically includes one or, less commonly, two solvent molecules. An exception to this rule is the ethylene carbonate solvate where the lithium is tetrahedrally surrounded exclusively by the solvent and bis(oxalato)borate plays the role of counter-ion only. The ethylene carbonate solvates were also studied for LiPF6 and LiAsF6 salts and they have similar structures to the bis(oxalato)borate tetrahedral complexes. PMID:15534382

  11. Lithium Polysulfidophosphates: A Family of Lithium-Conducting Sulfur-Rich Compounds for Lithium-Sulfur Batteries

    SciTech Connect

    Lin, Zhan; Liu, Zengcai; Fu, Wujun; Dudney, Nancy J; Liang, Chengdu

    2013-01-01

    Given the great potential for improving the energy density of state-of-the-art lithium-ion batteries by a factor of 5, a breakthrough in lithium-sulfur (Li-S) batteries will have a dramatic impact in a broad scope of energy related fields. Conventional Li-S batteries that use liquid electrolytes are intrinsically short-lived with low energy efficiency. The challenges stem from the poor electronic and ionic conductivities of elemental sulfur and its discharge products. We report herein lithium polysulfidophosphates (LPSP), a family of sulfur-rich compounds, as the enabler of long-lasting and energy-efficient Li-S batteries. LPSP have ionic conductivities of 3.0 10-5 S cm-1 at 25 oC, which is 8 orders of magnitude higher than that of Li2S (~10-13 S cm-1). The high Li-ion conductivity of LPSP is the salient characteristic of these compounds that impart the excellent cycling performance to Li-S batteries. In addition, the batteries are configured in an all-solid state that promises the safe cycling of high-energy batteries with metallic lithium anodes.

  12. Hydrogen Outgassing from Lithium Hydride

    SciTech Connect

    Dinh, L N; Schildbach, M A; Smith, R A; Balazs1, B; McLean II, W

    2006-04-20

    Lithium hydride is a nuclear material with a great affinity for moisture. As a result of exposure to water vapor during machining, transportation, storage and assembly, a corrosion layer (oxide and/or hydroxide) always forms on the surface of lithium hydride resulting in the release of hydrogen gas. Thermodynamically, lithium hydride, lithium oxide and lithium hydroxide are all stable. However, lithium hydroxides formed near the lithium hydride substrate (interface hydroxide) and near the sample/vacuum interface (surface hydroxide) are much less thermally stable than their bulk counterpart. In a dry environment, the interface/surface hydroxides slowly degenerate over many years/decades at room temperature into lithium oxide, releasing water vapor and ultimately hydrogen gas through reaction of the water vapor with the lithium hydride substrate. This outgassing can potentially cause metal hydriding and/or compatibility issues elsewhere in the device. In this chapter, the morphology and the chemistry of the corrosion layer grown on lithium hydride (and in some cases, its isotopic cousin, lithium deuteride) as a result of exposure to moisture are investigated. The hydrogen outgassing processes associated with the formation and subsequent degeneration of this corrosion layer are described. Experimental techniques to measure the hydrogen outgassing kinetics from lithium hydride and methods employing the measured kinetics to predict hydrogen outgassing as a function of time and temperature are presented. Finally, practical procedures to mitigate the problem of hydrogen outgassing from lithium hydride are discussed.

  13. Nonflammable perfluoropolyether-based electrolytes for lithium batteries

    PubMed Central

    Wong, Dominica H. C.; Thelen, Jacob L.; Fu, Yanbao; Devaux, Didier; Pandya, Ashish A.; Battaglia, Vincent S.; Balsara, Nitash P.; DeSimone, Joseph M.

    2014-01-01

    The flammability of conventional alkyl carbonate electrolytes hinders the integration of large-scale lithium-ion batteries in transportation and grid storage applications. In this study, we have prepared a unique nonflammable electrolyte composed of low molecular weight perfluoropolyethers and bis(trifluoromethane)sulfonimide lithium salt. These electrolytes exhibit thermal stability beyond 200 °C and a remarkably high transference number of at least 0.91 (more than double that of conventional electrolytes). Li/LiNi1/3Co1/3Mn1/3O2 cells made with this electrolyte show good performance in galvanostatic cycling, confirming their potential as rechargeable lithium batteries with enhanced safety and longevity. PMID:24516123

  14. Rechargeable ambient temperature lithium cells

    NASA Technical Reports Server (NTRS)

    Holleck, G. L.

    1980-01-01

    The cycling performance of a secondary lithium cell with a 2-methyl THF lithium hectofluorarsenate electrolyte is discussed. Stripping efficiency, dendritization, passivation on standing, and discharge efficiency are considered.

  15. Effects of maintenance lithium treatment on serum parathyroid hormone and calcium levels: a retrospective longitudinal naturalistic study

    PubMed Central

    Albert, Umberto; De Cori, David; Aguglia, Andrea; Barbaro, Francesca; Lanfranco, Fabio; Bogetto, Filippo; Maina, Giuseppe

    2015-01-01

    Objective The aim of this retrospective longitudinal naturalistic study was to evaluate the effects of maintenance lithium treatment on parathyroid hormone (PTH) and calcium levels. Methods A retrospective longitudinal naturalistic study design was used. Data were collected from the database of a tertiary psychiatric center covering the years 2010–2014. Included were bipolar patients who had never been exposed to lithium and had lithium started, and who had PTH, and total and ionized calcium levels available before and during lithium treatment. Paired t-tests were used to analyze changes in PTH and calcium levels. Linear regressions were performed, with mean lithium level and duration of lithium exposure as independent variables and change in PTH levels as dependent variable. Results A total 31 patients were included. The mean duration of lithium treatment was 18.6±11.4 months. PTH levels significantly increased during lithium treatment (+13.55±14.20 pg/mL); the rate of hyperparathyroidism was 12.9%. Neither total nor ionized calcium increased from baseline to follow-up; none of our patients developed hypercalcemia. Linear regressions analyses did not show an effect of duration of lithium exposure or mean lithium level on PTH levels. Conclusion Lithium-associated stimulation of parathyroid function is more common than assumed to date. Among parameters to be evaluated prior to lithium implementation, calcium and PTH should be added. PMID:26229473

  16. Reversibility of anodic lithium in rechargeable lithium-oxygen batteries.

    PubMed

    Shui, Jiang-Lan; Okasinski, John S; Kenesei, Peter; Dobbs, Howard A; Zhao, Dan; Almer, Jonathan D; Liu, Di-Jia

    2013-01-01

    Non-aqueous lithium-air batteries represent the next-generation energy storage devices with very high theoretical capacity. The benefit of lithium-air batteries is based on the assumption that the anodic lithium is completely reversible during the discharge-charge process. Here we report our investigation on the reversibility of the anodic lithium inside of an operating lithium-air battery using spatially and temporally resolved synchrotron X-ray diffraction and three-dimensional micro-tomography technique. A combined electrochemical process is found, consisting of a partial recovery of lithium metal during the charging cycle and a constant accumulation of lithium hydroxide under both charging and discharging conditions. A lithium hydroxide layer forms on the anode separating the lithium metal from the separator. However, numerous microscopic 'tunnels' are also found within the hydroxide layer that provide a pathway to connect the metallic lithium with the electrolyte, enabling sustained ion-transport and battery operation until the total consumption of lithium. PMID:23929396

  17. A review of lithium deposition in lithium-ion and lithium metal secondary batteries

    NASA Astrophysics Data System (ADS)

    Li, Zhe; Huang, Jun; Yann Liaw, Bor; Metzler, Viktor; Zhang, Jianbo

    2014-05-01

    Major aspects related to lithium deposition in lithium-ion and lithium metal secondary batteries are reviewed. For lithium-ion batteries with carbonaceous anode, lithium deposition may occur under harsh charging conditions such as overcharging or charging at low temperatures. The major technical solutions include: (1) applying electrochemical models to predict the critical conditions for deposition initiation; (2) preventions by improved battery design and material modification; (3) applying adequate charging protocols to inhibit lithium deposition. For lithium metal secondary batteries, the lithium deposition is the inherent reaction during charging. The major technical solutions include: (1) the use of mechanistic models to elucidate and control dendrite initiation and growth; (2) engineering surface morphology of the lithium deposition to avoid dendrite formation via adjusting the composition and concentration of the electrolyte; (3) controlling battery working conditions. From a survey of the literature, the areas that require further study are proposed; e.g., refining the lithium deposition criteria, developing an effective AC self pre-heating method for low-temperature charging of lithium-ion batteries, and clarifying the role the solid electrolyte interphase (SEI) plays in determining the deposition morphology; to facilitate a refined control of the lithium deposition.

  18. Lithium Dinitramide as an Additive in Lithium Power Cells

    NASA Technical Reports Server (NTRS)

    Gorkovenko, Alexander A.

    2007-01-01

    Lithium dinitramide, LiN(NO2)2 has shown promise as an additive to nonaqueous electrolytes in rechargeable and non-rechargeable lithium-ion-based electrochemical power cells. Such non-aqueous electrolytes consist of lithium salts dissolved in mixtures of organic ethers, esters, carbonates, or acetals. The benefits of adding lithium dinitramide (which is also a lithium salt) include lower irreversible loss of capacity on the first charge/discharge cycle, higher cycle life, lower self-discharge, greater flexibility in selection of electrolyte solvents, and greater charge capacity. The need for a suitable electrolyte additive arises as follows: The metallic lithium in the anode of a lithium-ion-based power cell is so highly reactive that in addition to the desired main electrochemical reaction, it engages in side reactions that cause formation of resistive films and dendrites, which degrade performance as quantified in terms of charge capacity, cycle life, shelf life, first-cycle irreversible capacity loss, specific power, and specific energy. The incidence of side reactions can be reduced through the formation of a solid-electrolyte interface (SEI) a thin film that prevents direct contact between the lithium anode material and the electrolyte. Ideally, an SEI should chemically protect the anode and the electrolyte from each other while exhibiting high conductivity for lithium ions and little or no conductivity for electrons. A suitable additive can act as an SEI promoter. Heretofore, most SEI promotion was thought to derive from organic molecules in electrolyte solutions. In contrast, lithium dinitramide is inorganic. Dinitramide compounds are known as oxidizers in rocket-fuel chemistry and until now, were not known as SEI promoters in battery chemistry. Although the exact reason for the improvement afforded by the addition of lithium dinitramide is not clear, it has been hypothesized that lithium dinitramide competes with other electrolyte constituents to react with

  19. Lithium overdosage and related tests.

    PubMed

    Pigatto, Paolo D; Dell'Osso, Bernardo; Guzzi, Gianpaolo

    2016-12-01

    Lithium acts biochemically through the inositol depletion in brain cortex. At low doses, however, it is partly effective and/or ineffective, whereas in high concentrations is toxic. We would like to make one point about this review. In fact, in our view, the patient should be given a support to correct hypernatremia and even sodium levels should be tested serially-along with serum lithium concentrations-because high sodium levels reduce the rate of elimination of lithium. Lithium is mainly a neurotoxicant. Lithium-related central nervous system toxicity as well as the cardiovascular and thyroid changes are most likely due to the cations (Na2 (+) and K(+)) competition. PMID:26753697

  20. Lithium Ion Batteries

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Lithium ion batteries, which use a new battery chemistry, are being developed under cooperative agreements between Lockheed Martin, Ultralife Battery, and the NASA Lewis Research Center. The unit cells are made in flat (prismatic) shapes that can be connected in series and parallel to achieve desired voltages and capacities. These batteries will soon be marketed to commercial original-equipment manufacturers and thereafter will be available for military and space use. Current NiCd batteries offer about 35 W-hr/kg compared with 110 W-hr/kg for current lithium ion batteries. Our ultimate target for these batteries is 200 W-hr/kg.

  1. LITHIUM PROPHYLAXIS IN AFFECTIVE DISORDER

    PubMed Central

    Rao, A. Venkoba; Hariharasubramanian, N.; Devi, S. Parvathi; Sugumar, A.; Srinivasan, V.

    1982-01-01

    SUMMARY Out of 108 patients on the rolls in the Lithium clinic, Madurai Medical College and Govt. Rajaji Hospital, Madurai, India, 47 patients suffering from affective disorders receiving lithium continuously for more than three years were analysed with a view to study the recurrences. Thirteen suffered no relapses while on lithium while nineteen experienced them while on lithium. Four were free from recurrences after lithium was withdrawn- Seven defaulted but suffered recurrences while in four the drug was withdrawn and in both the groups remission was achieved with re-administration of lithium. The study reveals that lithium besides averting the recurrences can reduce the frequency, number, duration, intensity of episodes and improve the amenability to drugs. Among the symptoms, suicidal ideas and behaviour and insight were found to be influenced favourably by lithium. Among the factors that help favourable response to lithium were a positive family history of affective disorder, in the first degree relatives and lesser frequency and number of episodes in the pre-lithium period. A reappraisal of the natural history of the illness is called for in the light of lithium prophylaxis of manic depressive psychosis. PMID:21965880

  2. 77 FR 28259 - Mailings of Lithium Batteries

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-14

    ... for mailpieces containing lithium metal or lithium-ion cells or batteries and applies regardless of...'' instead of ``lithium content'' for secondary lithium-ion batteries when describing maximum quantity limits...-ion (Rechargeable) Cells and Batteries Small consumer-type lithium-ion cells and batteries like...

  3. Diagnostics for liquid lithium experiments in CDX-U

    SciTech Connect

    Kaita, R.; Efthimion, P.; Hoffman, D.; Jones, B.; Kugel, H.; Majeski, R.; Munsat, T.; Raftopoulos, S.; Taylor, G.; Timberlake, J.

    2001-01-01

    A flowing liquid lithium first wall or divertor target could virtually eliminate the concerns with power density and erosion, tritium retention, and cooling associated with solid walls in fusion reactors. To investigate the interaction of a spherical torus plasma with liquid lithium limiters, large area divertor targets, and walls, discharges will be established in the Current Drive Experiment-Upgrade (CDX-U) where the plasma--wall interactions are dominated by liquid lithium surfaces. Among the unique CDX-U lithium diagnostics is a multilayer mirror (MLM) array, which will monitor the 13.5 nm LiIII line for core lithium concentrations. Additional spectroscopic diagnostics include a grazing incidence extreme ultraviolet (XUV) spectrometer (STRS) and a filterscope system to monitor D{sub {alpha}} and various impurity lines local to the lithium limiter. Profile data will be obtained with a multichannel tangential bolometer and a multipoint Thomson scattering system configured to give enhanced edge resolution. Coupons on the inner wall of the CDX-U vacuum vessel will be used for surface analysis. A 10000 frame per second fast visible camera and an IR camera will also be available.

  4. Tracking lithium transport and electrochemical reactions in nanoparticles.

    PubMed

    Wang, Feng; Yu, Hui-Chia; Chen, Min-Hua; Wu, Lijun; Pereira, Nathalie; Thornton, Katsuyo; Van der Ven, Anton; Zhu, Yimei; Amatucci, Glenn G; Graetz, Jason

    2012-01-01

    Expectations for the next generation of lithium batteries include greater energy and power densities along with a substantial increase in both calendar and cycle life. Developing new materials to meet these goals requires a better understanding of how electrodes function by tracking physical and chemical changes of active components in a working electrode. Here we develop a new, simple in-situ electrochemical cell for the transmission electron microscope and use it to track lithium transport and conversion in FeF(2) nanoparticles by nanoscale imaging, diffraction and spectroscopy. In this system, lithium conversion is initiated at the surface, sweeping rapidly across the FeF(2) particles, followed by a gradual phase transformation in the bulk, resulting in 1-3 nm iron crystallites mixed with amorphous LiF. The real-time imaging reveals a surprisingly fast conversion process in individual particles (complete in a few minutes), with a morphological evolution resembling spinodal decomposition. This work provides new insights into the inter- and intra-particle lithium transport and kinetics of lithium conversion reactions, and may help to pave the way to develop high-energy conversion electrodes for lithium-ion batteries. PMID:23149745

  5. Lithium-cation conductivity and crystal structure of lithium diphosphate

    SciTech Connect

    Voronin, V.I.; Sherstobitova, E.A.; Blatov, V.A.; Shekhtman, G.Sh.

    2014-03-15

    The electrical conductivity of lithium diphosphate Li{sub 4}P{sub 2}O{sub 7} has been measured and jump-like increasing of ionic conductivity at 913 K has been found. The crystal structure of Li{sub 4}P{sub 2}O{sub 7} has been refined using high temperature neutron diffraction at 300–1050 K. At 913 K low temperature triclinic form of Li{sub 4}P{sub 2}O{sub 7} transforms into high temperature monoclinic one, space group P2{sub 1}/n, a=8.8261(4) Å, b=5.2028(4) Å, c=13.3119(2) Å, β=104.372(6)°. The migration maps of Li{sup +} cations based on experimental data implemented into program package TOPOS have been explored. It was found that lithium cations in both low- and high temperature forms of Li{sub 4}P{sub 2}O{sub 7} migrate in three dimensions. Cross sections of the migrations channels extend as the temperature rises, but at the phase transition point have a sharp growth showing a strong “crystal structure – ion conductivity” correlation. -- Graphical abstract: Crystal structure of Li{sub 4}P{sub 2}O{sub 7} at 950 K. Red balls represent oxygen atoms; black lines show Li{sup +} ion migration channels in the layers perpendicular to [001] direction. Highlights: • Structure of Li{sub 4}P{sub 2}O{sub 7} has been refined using high temperature neutron diffraction. • At 913 K triclinic form of Li{sub 4}P{sub 2}O{sub 7} transforms into high temperature monoclinic one. • The migration maps of Li{sup +} implemented into program package TOPOS have been explored. • Cross sections of the migrations channels at the phase transition have a sharp growth.

  6. Bioavailability of lithium from lithium citrate syrup versus conventional lithium carbonate tablets.

    PubMed

    Guelen, P J; Janssen, T J; De Witte, T C; Vree, T B; Benson, K

    1992-10-01

    The bioavailability of lithium citrate syrup was compared with that of regular lithium carbonate tablets in 18 healthy male human volunteers. Blood samples were collected up to 48 h after dosing. Lithium serum concentrations were determined by means of AAS. The absorption rate following oral administration of the syrup was greater (tmax 0.8 h) than following administration of regular tablets (tmax 1.4 h). Maximum lithium serum concentrations, however, were only about 10 per cent higher after syrup dosing and serum concentrations resulting from syrup and tablets were almost superimposable from 2 h after dosing. The terminal half-life of lithium was found to be 22 h after syrup as well as after tablet dosing. No side-effects were observed during the study. The bioavailability of lithium from syrup relative to tablets was found to be bioequivalent with respect to the maximum lithium serum concentration and the extent of drug absorption (AUC). PMID:1489941

  7. Recovery of lithium and cobalt from waste lithium ion batteries of mobile phone

    SciTech Connect

    Jha, Manis Kumar Kumari, Anjan; Jha, Amrita Kumari; Kumar, Vinay; Hait, Jhumki; Pandey, Banshi Dhar

    2013-09-15

    Graphical abstract: Recovery of valuable metals from scrap batteries of mobile phone. - Highlights: • Recovery of Co and Li from spent LIBs was performed by hydrometallurgical route. • Under the optimum condition, 99.1% of lithium and 70.0% of cobalt were leached. • The mechanism of the dissolution of lithium and cobalt was studied. • Activation energy for lithium and cobalt were found to be 32.4 kJ/mol and 59.81 kJ/mol, respectively. • After metal recovery, residue was washed before disposal to the environment. - Abstract: In view of the stringent environmental regulations, availability of limited natural resources and ever increasing need of alternative energy critical elements, an environmental eco-friendly leaching process is reported for the recovery of lithium and cobalt from the cathode active materials of spent lithium-ion batteries of mobile phones. The experiments were carried out to optimize the process parameters for the recovery of lithium and cobalt by varying the concentration of leachant, pulp density, reductant volume and temperature. Leaching with 2 M sulfuric acid with the addition of 5% H{sub 2}O{sub 2} (v/v) at a pulp density of 100 g/L and 75 °C resulted in the recovery of 99.1% lithium and 70.0% cobalt in 60 min. H{sub 2}O{sub 2} in sulfuric acid solution acts as an effective reducing agent, which enhance the percentage leaching of metals. Leaching kinetics of lithium in sulfuric acid fitted well to the chemical controlled reaction model i.e. 1 − (1 − X){sup 1/3} = k{sub c}t. Leaching kinetics of cobalt fitted well to the model ‘ash diffusion control dense constant sizes spherical particles’ i.e. 1 − 3(1 − X){sup 2/3} + 2(1 − X) = k{sub c}t. Metals could subsequently be separated selectively from the leach liquor by solvent extraction process to produce their salts by crystallization process from the purified solution.

  8. Lithium disulfide battery

    DOEpatents

    Kaun, Thomas D.

    1988-01-01

    A negative electrode limited secondary electrochemical cell having dense FeS.sub.2 positive electrode operating exclusively on the upper plateau, a Li alloy negative electrode and a suitable lithium-containing electrolyte. The electrolyte preferably is 25 mole percent LiCl, 38 mole percent LiBr and 37 mole percent KBr. The cell may be operated isothermally.

  9. Lithium ion conducting electrolytes

    DOEpatents

    Angell, C. Austen; Liu, Changle

    1996-01-01

    A liquid, predominantly lithium-conducting, ionic electrolyte having exceptionally high conductivity at temperatures of 100.degree. C. or lower, including room temperature, and comprising the lithium salts selected from the group consisting of the thiocyanate, iodide, bromide, chloride, perchlorate, acetate, tetrafluoroborate, perfluoromethane sulfonate, perfluoromethane sulfonamide, tetrahaloaluminate, and heptahaloaluminate salts of lithium, with or without a magnesium-salt selected from the group consisting of the perchlorate and acetate salts of magnesium. Certain of the latter embodiments may also contain molecular additives from the group of acetonitrile (CH.sub.3 CN) succinnonitrile (CH.sub.2 CN).sub.2, and tetraglyme (CH.sub.3 --O--CH.sub.2 --CH.sub.2 --O--).sub.2 (or like solvents) solvated to a Mg.sup.+2 cation to lower the freezing point of the electrolyte below room temperature. Other particularly useful embodiments contain up to about 40, but preferably not more than about 25, mol percent of a long chain polyether polymer dissolved in the lithium salts to provide an elastic or rubbery solid electrolyte of high ambient temperature conductivity and exceptional 100.degree. C. conductivity. Another embodiment contains up to about but not more than 10 mol percent of a molecular solvent such as acetone.

  10. Lithium ion conducting electrolytes

    DOEpatents

    Angell, C.A.; Liu, C.

    1996-04-09

    A liquid, predominantly lithium-conducting, ionic electrolyte is described having exceptionally high conductivity at temperatures of 100 C or lower, including room temperature, and comprising the lithium salts selected from the group consisting of the thiocyanate, iodide, bromide, chloride, perchlorate, acetate, tetrafluoroborate, perfluoromethane sulfonate, perfluoromethane sulfonamide, tetrahaloaluminate, and heptahaloaluminate salts of lithium, with or without a magnesium-salt selected from the group consisting of the perchlorate and acetate salts of magnesium. Certain of the latter embodiments may also contain molecular additives from the group of acetonitrile (CH{sub 3}CN), succinnonitrile (CH{sub 2}CN){sub 2}, and tetraglyme (CH{sub 3}--O--CH{sub 2}--CH{sub 2}--O--){sub 2} (or like solvents) solvated to a Mg{sup +2} cation to lower the freezing point of the electrolyte below room temperature. Other particularly useful embodiments contain up to about 40, but preferably not more than about 25, mol percent of a long chain polyether polymer dissolved in the lithium salts to provide an elastic or rubbery solid electrolyte of high ambient temperature conductivity and exceptional 100 C conductivity. Another embodiment contains up to about but not more than 10 mol percent of a molecular solvent such as acetone. 2 figs.

  11. Lithium and Pregnancy

    MedlinePlus

    ... role in the rate of miscarriage, which include maternal age, gestational age, and history of previous miscarriage that ... Studies on children up to seven years of age who were exposed to lithium during pregnancy did not find significant physical, mental, or behavioral ...

  12. Lithium thionyl chloride battery

    SciTech Connect

    Saathoff, D.J.; Venkatasetty, H.V.

    1982-10-19

    The discharge rate and internal conductivity of electrochemical cell including a lithium anode, and a cathode and an electrolyte including LiAlCl4 and SOC2 is improved by the addition of an amount of a mixture containing AlCl3 and butyl pyridinium chloride.

  13. Lithium battery discharge tests

    NASA Technical Reports Server (NTRS)

    Johnson, C. J.

    1980-01-01

    The long term discharge of a variety of lithium cells was characterized and the susceptibility of the cells to chemical variation during the slow discharge was tested. A shunt resistor was set across the terminals to monitor the voltage as a function of time. Failures were identified by premature voltage drops.

  14. Lithium in rocks from the Lincoln, Helena, and Townsend areas, Montana

    USGS Publications Warehouse

    Brenner-Tourtelot, Elizabeth F.; Meier, Allen L.; Curtis, Craig A.

    1978-01-01

    In anticipation of increased demand for lithium for energy-related uses, the U.S. Geological Survey has been appraising the lithium resources of the United States and investigating occurrences of lithium. Analyses of samples of chiefly lacustrine rocks of Oligocene age collected by M. R. Mudge near Lincoln, Mont. showed as much as 1,500 ppm lithium. Since then we have sampled the area in greater detail, and have sampled rocks of similar ages in the Helena and Townsend valleys. The lithium-rich beds crop out in a band about 1.3 km long by 0.3 km wide near the head of Beaver Creek, about 14 km northwest of Lincoln, Mont. These beds consist of laminated marlstone, oil shale, carbonaceous shale, limestone, conglomerate, and tuff. Some parts of this sequence average almost 0.1 percent lithium. The lithium-bearing rocks are too low in grade and volume to be economic. Samples of sedimentary rocks of Oligocene age from the Helena and Townsend valleys in the vicinity of Helena, Mont. were generally low in lithium (3-40 ppm). However, samples of rhyolites from the western side of the Helena valley and from the Lava Mountain area were slightly above average in lithium content (6-200 ppm).

  15. Lithium-methomyl induced seizures in rats: A new model of status epilepticus?

    SciTech Connect

    Kaminski, Rafal M. . E-mail: kaminskr@mail.nih.gov; Blaszczak, Piotr; Dekundy, Andrzej; Parada-Turska, Jolanta; Calderazzo, Lineu; Cavalheiro, Esper A.; Turski, Waldemar A.

    2007-03-15

    Behavioral, electroencephalographic (EEG) and neuropathological effects of methomyl, a carbamate insecticide reversibly inhibiting acetylcholinesterase activity, were studied in naive or lithium chloride (24 h, 3 mEq/kg, s.c.) pretreated male Wistar rats. In naive animals, methomyl with equal potency produced motor limbic seizures and fatal status epilepticus. Thus, the CD50 values (50% convulsant dose) for these seizure endpoints were almost equal to the LD50 (50% lethal dose) of methomyl (13 mg/kg). Lithium pretreated rats were much more susceptible to convulsant, but not lethal effect of methomyl. CD50 values of methomyl for motor limbic seizures and status epilepticus were reduced by lithium pretreatment to 3.7 mg/kg (a 3.5-fold decrease) and 5.2 mg/kg (a 2.5-fold decrease), respectively. In contrast, lithium pretreatment resulted in only 1.3-fold decrease of LD50 value of methomyl (9.9 mg/kg). Moreover, lithium-methomyl treated animals developed a long-lasting status epilepticus, which was not associated with imminent lethality observed in methomyl-only treated rats. Scopolamine (10 mg/kg) or diazepam (10 mg/kg) protected all lithium-methomyl treated rats from convulsions and lethality. Cortical and hippocampal EEG recordings revealed typical epileptic discharges that were consistent with behavioral seizures observed in lithium-methomyl treated rats. In addition, convulsions induced by lithium-methomyl treatment were associated with widespread neurodegeneration of limbic structures. Our observations indicate that lithium pretreatment results in separation between convulsant and lethal effects of methomyl in rats. As such, seizures induced by lithium-methomyl administration may be an alternative to lithium-pilocarpine model of status epilepticus, which is associated with high lethality.

  16. The history of lithium therapy

    PubMed Central

    Shorter, Edward

    2013-01-01

    The use of lithium in psychiatry goes back to the mid-19th century. Early work, however, was soon forgotten, and John Cade is credited with reintroducing lithium to psychiatry for mania in 1949. Mogens Schou undertook a randomly controlled trial for mania in 1954, and in the course of that study became curious about lithium as a prophylactic for depressive illness. In 1970, the United States became the 50th country to admit lithium to the marketplace. Meanwhile, interest in lithium for the prophylaxis of depression was growing apace and today the agent is widely prescribed for that indication, even though it has not been accepted by the Food and Drug Administration. Lithium was almost derailed by a small group of opponents from the Maudsley Hospital and its status today is threatened by the “mood stabilizers.” PMID:19538681

  17. Experimental lithium system. Final report

    SciTech Connect

    Kolowith, R.; Berg, J.D.; Miller, W.C.

    1985-04-01

    A full-scale mockup of the Fusion Materials Irradiation Test (FMIT) Facility lithium system was built at the Hanford Engineering Development Laboratory (HEDL). This isothermal mockup, called the Experimental Lithium System (ELS), was prototypic of FMIT, excluding the accelerator and dump heat exchanger. This 3.8 m/sup 3/ lithium test loop achieved over 16,000 hours of safe and reliable operation. An extensive test program demonstrated satisfactory performance of the system components, including the HEDL-supplied electromagnetic lithium pump, the lithium jet target, the purification and characterization hardware, as well as the auxiliary argon and vacuum systems. Experience with the test loop provided important information on system operation, performance, and reliability. This report presents a complete overview of the entire Experimental Lithium System test program and also includes a summary of such areas as instrumentation, coolant chemistry, vapor/aerosol transport, and corrosion.

  18. Membranes in Lithium Ion Batteries

    PubMed Central

    Yang, Min; Hou, Junbo

    2012-01-01

    Lithium ion batteries have proven themselves the main choice of power sources for portable electronics. Besides consumer electronics, lithium ion batteries are also growing in popularity for military, electric vehicle, and aerospace applications. The present review attempts to summarize the knowledge about some selected membranes in lithium ion batteries. Based on the type of electrolyte used, literature concerning ceramic-glass and polymer solid ion conductors, microporous filter type separators and polymer gel based membranes is reviewed. PMID:24958286

  19. LITHIUM TOXICITY - A DESCRIPTIVE STUDY

    PubMed Central

    Kumar, Ratanendra; Deb, Jayant Kumar; Sinha, Baxi Neeraj Prasad; Sinha, Vinod Kumar

    2001-01-01

    Lithium is the treatment for acute mania and bipolar disorders. Ever since its introduction in the psychiatric arsenal, case reports of toxicity have been appearing in the literature at regular intervals. This study was thus carried out to study the presentation and associated features of lithium toxicity. In this retrospective study, case record files of all patients suspected to have developed lithium toxicity during a five year period were retrieved. It was found that toxicity presented most commonly with cerebellar symptoms and appeared at lower serum levels. Lithium could be restarted albeit at a lower dose and with a gradual titration in a number of cases. PMID:21407839

  20. Lithium batteries with laminar anodes

    SciTech Connect

    Bruder, A.H.

    1986-11-04

    This patent describes a laminar electrical cell, comprising an anode, a cathode, and an electrolyte permeable separator between the anode and the cathode. The anode consists essentially of a layer of lithium having at least one surface of unreacted lithium metal in direct contact with and adhered to a layer of conductive plastic with no intermediate adhesive promoting adjuncts. The cathode comprises a slurry of MnO/sub 2/ and carbon particles in a solution of a lithium salt in an organic solvent, the solution permeating the separator and being in contact with the lithium.

  1. Development of 'primary' hyperparathyroidism during lithium therapy: longitudinal study.

    PubMed

    Christiansen, C; Baastrup, P C; Transbøl, I

    1980-01-01

    The bone mineral content and the serum levels of immunoreactive parathyroid hormone (iPTH), and protein-corrected calcium and magnesium were measured in 13 manic depressive patients before and during treatment with lithium. Initially all four parameters were normal. During the treatment the bone mineral decreased and the serum levels of iPTH, calcium, and magnesium increased. Although altered metabolism of parathyroid hormone cannot be ruled out, these data, together with other observations, suggest that a mild 'primary' hyperparathyroidism sets in quite early after institution of lithium therapy. PMID:7413057

  2. Separator for lithium batteries and lithium batteries including the separator

    SciTech Connect

    Foster, D.L.

    1989-03-14

    A multilayer separator is described for preventing the internal shorting of lithium batteries, the multilayer separator including porous membranes and an electroactive polymeric material contained within the separator layers wherein the polymer is one that will react with any lithium dendrites that could penetrate the separator thus preventing an internal short circuit of the cell.

  3. A high performance ceramic-polymer separator for lithium batteries

    NASA Astrophysics Data System (ADS)

    Kumar, Jitendra; Kichambare, Padmakar; Rai, Amarendra K.; Bhattacharya, Rabi; Rodrigues, Stanley; Subramanyam, Guru

    2016-01-01

    A three-layered (ceramic-polymer-ceramic) hybrid separator was prepared by coating ceramic electrolyte [lithium aluminum germanium phosphate (LAGP)] over both sides of polyethylene (PE) polymer membrane using electron beam physical vapor deposition (EB-PVD) technique. Ionic conductivities of membranes were evaluated after soaking PE and LAGP/PE/LAGP membranes in a 1 Molar (1M) lithium hexafluroarsenate (LiAsF6) electrolyte in ethylene carbonate (EC), dimethyl carbonate (DMC) and ethylmethyl carbonate (EMC) in volume ratio (1:1:1). Scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques were employed to evaluate morphology and structure of the separators before and after cycling performance tests to better understand structure-property correlation. As compared to regular PE separator, LAGP/PE/LAGP hybrid separator showed: (i) higher liquid electrolyte uptake, (ii) higher ionic conductivity, (iii) lower interfacial resistance with lithium and (iv) lower cell voltage polarization during lithium cycling at high current density of 1.3 mA cm-2 at room temperature. The enhanced performance is attributed to higher liquid uptake, LAGP-assisted faster ion conduction and dendrite prevention. Optimization of density and thickness of LAGP layer on PE or other membranes through manipulation of PVD deposition parameters will enable practical applications of this novel hybrid separator in rechargeable lithium batteries with high energy, high power, longer cycle life, and higher safety level.

  4. Solid lithium-ion electrolyte

    DOEpatents

    Zhang, J.G.; Benson, D.K.; Tracy, C.E.

    1998-02-10

    The present invention relates to the composition of a solid lithium-ion electrolyte based on the Li{sub 2}O--CeO{sub 2}--SiO{sub 2} system having good transparent characteristics and high ion conductivity suitable for uses in lithium batteries, electrochromic devices and other electrochemical applications. 12 figs.

  5. Intercell connector for lithium batteries

    SciTech Connect

    Bruder, A.H.

    1984-10-16

    Laminar batteries of series connected cells comprising lithium anodes and an electrolyte containing a passivating solvent reactive with lithium in which the cells are electrically connected in series by intercell barriers comprising outer layers of electrochemically inert electronically conducting material in contact with the electrochemically active anode and cathode of adjacent cells and a layer of metal foil between the electrochemically inert layers.

  6. Solid lithium-ion electrolyte

    DOEpatents

    Zhang, Ji-Guang; Benson, David K.; Tracy, C. Edwin

    1998-01-01

    The present invention relates to the composition of a solid lithium-ion electrolyte based on the Li.sub.2 O--CeO.sub.2 --SiO.sub.2 system having good transparent characteristics and high ion conductivity suitable for uses in lithium batteries, electrochromic devices and other electrochemical applications.

  7. Progress in secondary lithium batteries

    NASA Technical Reports Server (NTRS)

    Holleck, G. L.

    1982-01-01

    The lithium/molybdenum trisulfide system is discussed. This system has a higher potential energy density than that of lithium/titanium disulfide. Possible energy densities and performance values for cells, projected from preliminary data obtained on small cells, are summarized. The electrode structure is emphasized as an important factor in the decreasing of capacity upon cycling.

  8. Improved Carbon Anodes For Rechargeable Lithium Cells

    NASA Technical Reports Server (NTRS)

    Huang, Chen-Kuo; Surampudi, Subbarao; Attia, Alan; Halpert, Gerald

    1994-01-01

    Carbon anodes for rechargeable lithium cells improved by choosing binder contents and fabrication conditions to achieve maximum porosity, uniform loading, and maximum reversible lithium capacity. Stacking electrodes under pressure during assembly of cells increases cyclability of lithium. Rechargeable, high-energy-density lithium cells containing improved carbon anodes find use in spacecraft, military, communications, automotive, and other demanding applications.

  9. Lithium Treatment for Psychiatric Disorders

    PubMed Central

    Maletzky, Barry M.; Shore, James H.

    1978-01-01

    Although used around the world since 1949, lithium has come into extensive use in psychiatry in the United States only within the past decade. Before initiating treatment with this drug, physicians must be familiar with the diagnostic scheme of the major affective disorders, the indications and contraindications to lithium's use, and its principles of treatment, including evaluation before lithium therapy, criteria for monitoring blood levels and signs of impending toxicity. Despite earlier reports about the toxicity of lithium when it was promoted as a salt substitute, lithium is a safe drug. Its use not only has revolutionized the treatment of the major affective disorders, but has opened up new and broad avenues of research into the regulation of man's emotions. PMID:664651

  10. HOW RELIABLE IS 24 HOUR SERUM LITHIUM LEVEL AFTER A TEST DOSE OF LITHIUM IN PREDICTING OPTIMAL LITHIUM DOSE?

    PubMed Central

    Kuruvilla, K.; Shaji, K.S.

    1989-01-01

    SUMMARY 57% of a group of 35 patients treated with Lithium Carbonate at dosages predicted by the nomogram suggested by Cooper et al (1973) failed to reach therapeutic levels of serum lithium. This finding casts serious doubts on the usefulness of the claim by Cooper et al (1973 & 1976) that 24 hour serum lithium level after a test dose of 600 mg. lithium can predict the daily lithium dose. PMID:21927360

  11. Lithium orotate, carbonate and chloride: pharmacokinetics, polyuria in rats.

    PubMed Central

    Smith, D F

    1976-01-01

    1 The pharmacokinetics of the lithium ion administered as lithium orotate were studied in rats. Parallel studies were carried out with lithium carbonate and lithium chloride. 2 No differences in the uptake, distribution and excretion of the lithium ion were observed between lithium orotate, lithium carbonate and lithium chloride after single intraperitoneal, subcutaneous or intragastric injections (0.5-1.0 mEq lithium/kg) or after administration of the lithium salts for 20 days in the food. 3 The findings oppose the notion that the pharmacokinetics of the lithium ion given as lithium orotate differ from lithium chloride or lithium carbonate. 4 Polyuria and polydipsia developed more slowly in rats given lithium orotate than in those given lithium carbonate or lithium chloride, perhaps due to an effect of the orotate anion. PMID:1260219

  12. Teaching Chemistry Using the Movie "Apollo 13."

    ERIC Educational Resources Information Center

    Goll, James G.; Woods, B. J.

    1999-01-01

    Offers suggestions for incorporating topics that relate to the Apollo 13 space mission into a chemistry course. Discusses connections between the study of chemistry and space exploration, including fuels and oxidants used, reasons for an oxygen tank rupture, and lithium hydroxide-containing carbon dioxide filters. Contains 11 references. (WRM)

  13. Lithium electric dipole polarizability

    SciTech Connect

    Puchalski, M.; KePdziera, D.; Pachucki, K.

    2011-11-15

    The electric dipole polarizability of the lithium atom in the ground state is calculated including relativistic and quantum electrodynamics corrections. The obtained result {alpha}{sub E}=164.0740(5) a.u. is in good agreement with the less accurate experimental value of 164.19(1.08) a.u. The small uncertainty of about 3 parts per 10{sup 6} comes from the approximate treatment of quantum electrodynamics corrections. Our theoretical result can be considered as a benchmark for more general atomic structure methods and may serve as a reference value for the relative measurement of polarizabilities of the other alkali-metal atoms.

  14. Lithium niobate explosion monitor

    DOEpatents

    Bundy, C.H.; Graham, R.A.; Kuehn, S.F.; Precit, R.R.; Rogers, M.S.

    1990-01-09

    Monitoring explosive devices is accomplished with a substantially z-cut lithium niobate crystal in abutment with the explosive device. Upon impact by a shock wave from detonation of the explosive device, the crystal emits a current pulse prior to destruction of the crystal. The current pulse is detected by a current viewing transformer and recorded as a function of time in nanoseconds. In order to self-check the crystal, the crystal has a chromium film resistor deposited thereon which may be heated by a current pulse prior to detonation. This generates a charge which is detected by a charge amplifier. 8 figs.

  15. Lithium niobate explosion monitor

    DOEpatents

    Bundy, Charles H.; Graham, Robert A.; Kuehn, Stephen F.; Precit, Richard R.; Rogers, Michael S.

    1990-01-01

    Monitoring explosive devices is accomplished with a substantially z-cut lithium niobate crystal in abutment with the explosive device. Upon impact by a shock wave from detonation of the explosive device, the crystal emits a current pulse prior to destruction of the crystal. The current pulse is detected by a current viewing transformer and recorded as a function of time in nanoseconds. In order to self-check the crystal, the crystal has a chromium film resistor deposited thereon which may be heated by a current pulse prior to detonation. This generates a charge which is detected by a charge amplifier.

  16. Halo Star Lithium Depletion

    SciTech Connect

    Pinsonneault, M. H.; Walker, T. P.; Steigman, G.; Narayanan, Vijay K.

    1999-12-10

    The depletion of lithium during the pre-main-sequence and main-sequence phases of stellar evolution plays a crucial role in the comparison of the predictions of big bang nucleosynthesis with the abundances observed in halo stars. Previous work has indicated a wide range of possible depletion factors, ranging from minimal in standard (nonrotating) stellar models to as much as an order of magnitude in models that include rotational mixing. Recent progress in the study of the angular momentum evolution of low-mass stars permits the construction of theoretical models capable of reproducing the angular momentum evolution of low-mass open cluster stars. The distribution of initial angular momenta can be inferred from stellar rotation data in young open clusters. In this paper we report on the application of these models to the study of lithium depletion in main-sequence halo stars. A range of initial angular momenta produces a range of lithium depletion factors on the main sequence. Using the distribution of initial conditions inferred from young open clusters leads to a well-defined halo lithium plateau with modest scatter and a small population of outliers. The mass-dependent angular momentum loss law inferred from open cluster studies produces a nearly flat plateau, unlike previous models that exhibited a downward curvature for hotter temperatures in the 7Li-Teff plane. The overall depletion factor for the plateau stars is sensitive primarily to the solar initial angular momentum used in the calibration for the mixing diffusion coefficients. Uncertainties remain in the treatment of the internal angular momentum transport in the models, and the potential impact of these uncertainties on our results is discussed. The 6Li/7Li depletion ratio is also examined. We find that the dispersion in the plateau and the 6Li/7Li depletion ratio scale with the absolute 7Li depletion in the plateau, and we use observational data to set bounds on the 7Li depletion in main-sequence halo

  17. Method of recycling lithium borate to lithium borohydride through methyl borate

    DOEpatents

    Filby, Evan E.

    1977-01-01

    This invention provides a method for the recycling of lithium borate to lithium borohydride which can be reacted with water to generate hydrogen for utilization as a fuel. The lithium borate by-product of the hydrogen generation reaction is reacted with hydrogen chloride and water to produce boric acid and lithium chloride. The boric acid and lithium chloride are converted to lithium borohydride through a methyl borate intermediate to complete the recycle scheme.

  18. Electrochemical properties and lithium ion solvation behavior of sulfone-ester mixed electrolytes for high-voltage rechargeable lithium cells

    NASA Astrophysics Data System (ADS)

    Watanabe, Yuu; Kinoshita, Shin-ichi; Wada, Satoshi; Hoshino, Keiji; Morimoto, Hideyuki; Tobishima, Shin-ichi

    2008-05-01

    Sulfone-ester mixed solvent electrolytes were examined for 5 V-class high-voltage rechargeable lithium cells. As the base-electrolyte, sulfolane (SL)-ethyl acetate (EA) (1:1 mixing volume ratio) containing 1 M LiBF4 solute was investigated. Electrolyte conductivity, electrochemical stability, Li+ ion solvation behavior and cycleability of lithium electrode were evaluated. 13C NMR measurement results suggest that Li+ ions are solvated with both SL and EA. Charge-discharge cycling efficiency of lithium anode in SL-EA electrolytes was poor, being due to its poor tolerance for reduction. To improve lithium charge-discharge cycling efficiency in SL-EA electrolytes, following three trials were carried out: (i) improvement of the cathodic stability of electrolyte solutions by change in polarization through modification of solvent structure; isopropyl methyl sulfone and methyl isobutyrate were investigated as alternative SL and EA, respectively, (ii) suppression of the reaction between lithium and electrolyte solutions by addition of low reactivity surfactants of cycloalkanes (decalin and adamantane) or triethylene glycol derivatives (triglyme, 1,8-bis(tert-butyldimethylsilyloxy)-3,6-dioxaoctane and triethylene glycol di(methanesulfonate)) into SL-EA electrolytes, and (iii) change in surface film by addition of surface film formation agent of vinylene carbonate (VC) into SL-EA electrolytes. These trials made lithium cycling behavior better. Lithium cycling efficiency tended to increase with a decrease in overpotential. VC addition was most effective for improvement of lithium cycling efficiency among these additives. Stable surface film is formed on lithium anode by adding VC and the resistance between anode/electrolyte interfaces showed a constant value with an increase in cycle number. When the electrolyte solutions without VC, the interfacial resistance increased with an increase in cycle number. VC addition to SL-EA was effective not only for Li/LiCoO2 cell with charge

  19. A lithium superionic conductor.

    PubMed

    Kamaya, Noriaki; Homma, Kenji; Yamakawa, Yuichiro; Hirayama, Masaaki; Kanno, Ryoji; Yonemura, Masao; Kamiyama, Takashi; Kato, Yuki; Hama, Shigenori; Kawamoto, Koji; Mitsui, Akio

    2011-09-01

    Batteries are a key technology in modern society. They are used to power electric and hybrid electric vehicles and to store wind and solar energy in smart grids. Electrochemical devices with high energy and power densities can currently be powered only by batteries with organic liquid electrolytes. However, such batteries require relatively stringent safety precautions, making large-scale systems very complicated and expensive. The application of solid electrolytes is currently limited because they attain practically useful conductivities (10(-2) S cm(-1)) only at 50-80 °C, which is one order of magnitude lower than those of organic liquid electrolytes. Here, we report a lithium superionic conductor, Li(10)GeP(2)S(12) that has a new three-dimensional framework structure. It exhibits an extremely high lithium ionic conductivity of 12 mS cm(-1) at room temperature. This represents the highest conductivity achieved in a solid electrolyte, exceeding even those of liquid organic electrolytes. This new solid-state battery electrolyte has many advantages in terms of device fabrication (facile shaping, patterning and integration), stability (non-volatile), safety (non-explosive) and excellent electrochemical properties (high conductivity and wide potential window). PMID:21804556

  20. Lithium ion conducting ionic electrolytes

    DOEpatents

    Angell, C.A.; Xu, K.; Liu, C.

    1996-01-16

    A liquid, predominantly lithium-conducting, ionic electrolyte is described which has exceptionally high conductivity at temperatures of 100 C or lower, including room temperature. It comprises molten lithium salts or salt mixtures in which a small amount of an anionic polymer lithium salt is dissolved to stabilize the liquid against recrystallization. Further, a liquid ionic electrolyte which has been rubberized by addition of an extra proportion of anionic polymer, and which has good chemical and electrochemical stability, is described. This presents an attractive alternative to conventional salt-in-polymer electrolytes which are not cationic conductors. 4 figs.

  1. Lithium ion conducting ionic electrolytes

    DOEpatents

    Angell, C. Austen; Xu, Kang; Liu, Changle

    1996-01-01

    A liquid, predominantly lithium-conducting, ionic electrolyte is described which has exceptionally high conductivity at temperatures of 100.degree. C. or lower, including room temperature. It comprises molten lithium salts or salt mixtures in which a small amount of an anionic polymer lithium salt is dissolved to stabilize the liquid against recrystallization. Further, a liquid ionic electrolyte which has been rubberized by addition of an extra proportion of anionic polymer, and which has good chemical and electrochemical stability, is described. This presents an attractive alternative to conventional salt-in-polymer electrolytes which are not cationic conductors.

  2. Anodes for rechargeable lithium batteries

    DOEpatents

    Thackeray, Michael M.; Kepler, Keith D.; Vaughey, John T.

    2003-01-01

    A negative electrode (12) for a non-aqueous electrochemical cell (10) with an intermetallic host structure containing two or more elements selected from the metal elements and silicon, capable of accommodating lithium within its crystallographic host structure such that when the host structure is lithiated it transforms to a lithiated zinc-blende-type structure. Both active elements (alloying with lithium) and inactive elements (non-alloying with lithium) are disclosed. Electrochemical cells and batteries as well as methods of making the negative electrode are disclosed.

  3. Comparative analysis of ex-situ and operando X-ray diffraction experiments for lithium insertion materials

    NASA Astrophysics Data System (ADS)

    Brant, William R.; Li, Dan; Gu, Qinfen; Schmid, Siegbert

    2016-01-01

    A comparative study of ex-situ and operando X-ray diffraction techniques using the fast lithium ion conductor Li0.18Sr0.66Ti0.5Nb0.5O3 is presented. Ex-situ analysis of synchrotron X-ray diffraction data suggests that a single phase material exists for all discharges to as low as 0.422 V. For samples discharged to 1 V or lower, i.e. with higher lithium content, it is possible to determine the lithium position from the X-ray data. However, operando X-ray diffraction from a coin cell reveals that a kinetically driven two phase region occurs during battery cycling below 1 V. Through monitoring the change in unit cell dimension during electrochemical cycling the dynamics of lithium insertion are explored. A reduction in the rate of unit cell expansion of 22(2)% part way through the first discharge and 13(1)% during the second discharge is observed. This reduction may be caused by a drop in lithium diffusion into the bulk material for higher lithium contents. A more significant change is a jump in the unit cell expansion by 60(2)% once the lithium content exceeds one lithium ion per vacant site. It is suggested that this jump is caused by damping of octahedral rotations, thus establishing a link between lithium content and octahedral rotations.

  4. Cyanoethylated Compounds as Additives in Lithium/Lithium Ion Batteries

    SciTech Connect

    Nagasubramanian, Ganesan

    1998-05-08

    The power loss of lithium/lithium ion battery cells is significantly reduced, especially at low temperatures, when about 1% by weight of an additive is incorporated in the electrolyte layer of the cells. The usable additives are organic solvent soluble cyanoethylated polysaccharides and poly(vinyl alcohol). The power loss decrease results primarily from the decrease in the charge transfer resistance at the interface between the electrolyte and the cathode.

  5. Lithium metal doped electrodes for lithium-ion rechargeable chemistry

    DOEpatents

    Liu, Gao; Battaglia, Vince; Wang, Lei

    2016-09-13

    An embodiment of the invention combines the superior performance of a polyvinylidene difluoride (PVDF) or polyethyleneoxide (POE) binder, the strong binding force of a styrene-butadiene (SBR) binder, and a source of lithium ions in the form of solid lithium metal powder (SLMP) to form an electrode system that has improved performance as compared to PVDF/SBR binder based electrodes. This invention will provide a new way to achieve improved results at a much reduced cost.

  6. Cyanoethylated compounds as additives in lithium/lithium batteries

    DOEpatents

    Nagasubramanian, Ganesan

    1999-01-01

    The power loss of lithium/lithium ion battery cells is significantly reduced, especially at low temperatures, when about 1% by weight of an additive is incorporated in the electrolyte layer of the cells. The usable additives are organic solvent soluble cyanoethylated polysaccharides and poly(vinyl alcohol). The power loss decrease results primarily from the decrease in the charge transfer resistance at the interface between the electrolyte and the cathode.

  7. Mixed solvent electrolytes for ambient temperature secondary lithium cells

    NASA Technical Reports Server (NTRS)

    Shen, David H. (Inventor); Surampudi, Subbarao (Inventor); Deligiannis, Fotios (Inventor); Halpert, Gerald (Inventor)

    1991-01-01

    The present invention comprises an improved electrolyte for secondary lithium-based cells as well as batteries fabricated using this electrolyte. The electrolyte is a lithium containing salt dissolved in a non-aqueous solvent, which is made from a mixture of ethylene carbonate, ethylene propylene diene terpolymer, 2-methylfuran, and 2-methyltetrahydrofuran. This improved, mixed solvent electrolyte is more conductive than prior electrolytes and much less corrosive to lithium anodes. Batteries constructed with this improved electrolyte utilize lithium or lithium alloy anodes and cathodes made of metal chalcogenides or oxides, such as TiS.sub.2, NbSe.sub.3, V.sub.6 O.sub.13, V.sub.2 O.sub.5, MoS.sub.2, MoS.sub.3, CoO.sub.2, or CrO.sub.2, dissolved in a supporting polymer matrix, like EPDM. The preferred non-aqueous solvent mixture comprises approximately 5 to 30 volume percent ethylene carbonate, approximately 0.01 to 0.1 weight percent ethylene propylene diene terpolymer, and approximately 0.2 to 2 percent 2-methylfuran, with the balance being 2-methyltetrahydrofuran. The most preferred solvent comprises approximately 10 to 20 volume percent ethylene carbonate, about 0.05 weight percent ethylene propylene diene terpolymer, and about 1.0 percent 2-methylfuran, with the balance being 2-methyltetrahydrofuran. The concentration of lithium arsenic hexafluoride can range from about 1.0 to 1.8 M; a concentration 1.5 M is most preferred. Secondary batteries made with the improved electrolyte of this invention have lower internal impedance, longer cycle life, higher energy density, low self-discharge, and longer shelf life.

  8. Operando Lithium Dynamics in the Li-Rich Layered Oxide Cathode Material via Neutron Diffraction

    DOE PAGESBeta

    Liu, Haodong; An, Ke; Venkatachalam, Subramanian; Qian, Danna; Zhang, Minghao; Meng, Ying Shirley

    2016-04-06

    Neutron diffraction under operando battery cycling is used to study the lithium and oxygen dynamics of high Li-rich Li(Lix/3Ni(3/8-3x/8)Co(1/4-x/4)Mn(3/8+7x/24)O2 (x = 0.6, HLR) and low Li-rich Li(Lix/3Ni(1/3-x/3)Co(1/3-x/3)Mn(1/3+x/3)O2 (x = 0.24, LLR) compounds that exhibit different degrees of oxygen activation at high voltage. The measured lattice parameter changes and oxygen position show largely contrasting changes for the two cathodes where the LLR exhibits larger movement of oxygen and lattice contractions in comparison to the HLR that maintains relatively constant lattice parameters and oxygen position during the high voltage plateau until the end of charge. Density functional theory calculations show the presencemore » of oxygen vacancy during the high voltage plateau; changes in the lattice parameters and oxygen position are consistent with experimental observations. Lithium migration kinetics for the Li-rich material is observed under operando conditions for the first time to reveal the rate of lithium extraction from the lithium layer, and transition metal layer is related to the different charge and discharge characteristics. At the beginning of charging, the lithium extraction predominately occurs within the lithium layer. The lithium extraction from the lithium layer slows down and extraction from the transition metal layer evolves at a faster rate once the high voltage plateau is reached.« less

  9. Silica Precipitation and Lithium Sorption

    SciTech Connect

    Jay Renew

    2015-09-20

    This file contains silica precipitation and lithium sorption data from the project. The silica removal data is corrected from the previous submission. The previous submission did not take into account the limit of detection of the ICP-MS procedure.

  10. 21 CFR 862.3560 - Lithium test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Lithium test system. 862.3560 Section 862.3560....3560 Lithium test system. (a) Identification. A lithium test system is a device intended to measure lithium (from the drug lithium carbonate) in serum or plasma. Measurements of lithium are used to...

  11. 21 CFR 862.3560 - Lithium test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Lithium test system. 862.3560 Section 862.3560....3560 Lithium test system. (a) Identification. A lithium test system is a device intended to measure lithium (from the drug lithium carbonate) in serum or plasma. Measurements of lithium are used to...

  12. 21 CFR 862.3560 - Lithium test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Lithium test system. 862.3560 Section 862.3560....3560 Lithium test system. (a) Identification. A lithium test system is a device intended to measure lithium (from the drug lithium carbonate) in serum or plasma. Measurements of lithium are used to...

  13. 21 CFR 862.3560 - Lithium test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Lithium test system. 862.3560 Section 862.3560....3560 Lithium test system. (a) Identification. A lithium test system is a device intended to measure lithium (from the drug lithium carbonate) in serum or plasma. Measurements of lithium are used to...

  14. Modeling the Lithium Ion Battery

    ERIC Educational Resources Information Center

    Summerfield, John

    2013-01-01

    The lithium ion battery will be a reliable electrical resource for many years to come. A simple model of the lithium ions motion due to changes in concentration and voltage is presented. The battery chosen has LiCoO[subscript 2] as the cathode, LiPF[subscript 6] as the electrolyte, and LiC[subscript 6] as the anode. The concentration gradient and…

  15. Air breathing lithium power cells

    DOEpatents

    Farmer, Joseph C.

    2014-07-15

    A cell suitable for use in a battery according to one embodiment includes a catalytic oxygen cathode; a stabilized zirconia electrolyte for selective oxygen anion transport; a molten salt electrolyte; and a lithium-based anode. A cell suitable for use in a battery according to another embodiment includes a catalytic oxygen cathode; an electrolyte; a membrane selective to molecular oxygen; and a lithium-based anode.

  16. Early North American research on lithium.

    PubMed

    Johnson, G; Gershon, S

    1999-12-01

    Research and clinical interest in lithium in the USA lagged behind that in Europe, largely because of the experience of deaths due to lithium in cardiac patients. The first American report on lithium was published in 1960 by Sam Gershon, the Australian psychiatrist who had undertaken lithium studies in Melbourne in conjunction with the physiologist Trautner. Major USA clinical trials originated in the 1960s; and the clinical significance of lithium was recognised in a special section in the American Journal of Psychiatry in 1968. The US Food and Drug Administration (FDA) approval of lithium for control of manic episodes was finally given in 1970. PMID:10622180

  17. Lithium compensation for full cell operation

    DOEpatents

    Xiao, Jie; Zheng, Jianming; Chen, Xilin; Lu, Dongping; Liu, Jun; Jiguang, Jiguang

    2016-05-17

    Disclosed herein are embodiments of a lithium-ion battery system comprising an anode, an anode current collector, and a layer of lithium metal in contact with the current collector, but not in contact with the anode. The lithium compensation layer dissolves into the electrolyte to compensate for the loss of lithium ions during usage of the full cell. The specific placement of the lithium compensation layer, such that there is no direct physical contact between the lithium compensation layer and the anode, provides certain advantages.

  18. Dendrite preventing separator for secondary lithium batteries

    NASA Technical Reports Server (NTRS)

    Shen, David H. (Inventor); Surampudi, Subbarao (Inventor); Huang, Chen-Kuo (Inventor); Halpert, Gerald (Inventor)

    1993-01-01

    Dendrites are prevented from shorting a secondary lithium battery by use of a first porous separator, such as porous polypropylene, adjacent to the lithium anode that is unreactive with lithium and a second porous fluoropolymer separator between the cathode and the first separator, such as polytetrafluoroethylene, that is reactive with lithium. As the tip of a lithium dendrite contacts the second separator, an exothermic reaction occurs locally between the lithium dendrite and the fluoropolymer separator. This results in the prevention of the dendrite propagation to the cathode.

  19. Dendrite preventing separator for secondary lithium batteries

    NASA Technical Reports Server (NTRS)

    Shen, David H. (Inventor); Surampudi, Subbarao (Inventor); Huang, Chen-Kuo (Inventor); Halpert, Gerald (Inventor)

    1995-01-01

    Dendrites are prevented from shorting a secondary lithium battery by use of a first porous separator such as porous polypropylene adjacent the lithium anode that is unreactive with lithium and a second porous fluoropolymer separator between the cathode and the first separator such as polytetrafluoroethylene that is reactive with lithium. As the tip of a lithium dendrite contacts the second separator, an exothermic reaction occurs locally between the lithium dendrite and the fluoropolymer separator. This results in the prevention of the dendrite propagation to the cathode.

  20. Secondary lithium batteries for space applications

    NASA Technical Reports Server (NTRS)

    Carter, B.; Khanna, S. K.; Yen, S. P. S.; Shen, D.; Somoano, R. B.

    1981-01-01

    Secondary lithium cells which use a LiAsF6-2-Me-THF electrolyte and a TiS2 intercalatable cathode exhibit encouraging cycle life at ambient temperature. Electrochemical and surface analytical studies indicate that the electrolyte is unstable in the presence of metallic lithium, leading to the formation of a lithium passivating film composed of lithium arsenic oxyfluorides and lithium fluorsilicates. The lithium cyclability remains as the most important problem to solve. Different electrolyte solvents, such as sulfolane, exhibit promising characteristics but lead to new compatibility problems with the other cell component materials.

  1. Lithium peroxide primary element

    SciTech Connect

    Winsel, A.

    1982-05-04

    In a galvanic primary element of the system Li/H/sub 2/O/sub 2/, the aqueous cathode depolarizer H/sub 2/O/sub 2/ is fixated as a polyurethane gel. It can thereby be controlled and caused to react with the anode metal in accordance with the current drain requirements. This is accomplished using a ram to press the gel toward a conductor which covers the lithium anode, which may take the form of a metal grid and/or a gas diffusion electrode. The oxygen which forms in the working layer through catalytic decomposition of hydrogen peroxide creates a gas bubble when the current is interrupted or the ram is stopped, thereby interrupting the further supply of hydrogen peroxide to the catalyst.

  2. Chemical Shuttle Additives in Lithium Ion Batteries

    SciTech Connect

    Patterson, Mary

    2013-03-31

    The goals of this program were to discover and implement a redox shuttle that is compatible with large format lithium ion cells utilizing LiNi{sub 1/3}Mn{sub 1/3}Co{sub 1/3}O{sub 2} (NMC) cathode material and to understand the mechanism of redox shuttle action. Many redox shuttles, both commercially available and experimental, were tested and much fundamental information regarding the mechanism of redox shuttle action was discovered. In particular, studies surrounding the mechanism of the reduction of the oxidized redox shuttle at the carbon anode surface were particularly revealing. The initial redox shuttle candidate, namely 2-(pentafluorophenyl)-tetrafluoro-1,3,2-benzodioxaborole (BDB) supplied by Argonne National Laboratory (ANL, Lemont, Illinois), did not effectively protect cells containing NMC cathodes from overcharge. The ANL-RS2 redox shuttle molecule, namely 1,4-bis(2-methoxyethoxy)-2,5-di-tert-butyl-benzene, which is a derivative of the commercially successful redox shuttle 2,5-di-tert-butyl-1,4-dimethoxybenzene (DDB, 3M, St. Paul, Minnesota), is an effective redox shuttle for cells employing LiFePO{sub 4} (LFP) cathode material. The main advantage of ANL-RS2 over DDB is its larger solubility in electrolyte; however, ANL-RS2 is not as stable as DDB. This shuttle also may be effectively used to rebalance cells in strings that utilize LFP cathodes. The shuttle is compatible with both LTO and graphite anode materials although the cell with graphite degrades faster than the cell with LTO, possibly because of a reaction with the SEI layer. The degradation products of redox shuttle ANL-RS2 were positively identified. Commercially available redox shuttles Li{sub 2}B{sub 12}F{sub 12} (Air Products, Allentown, Pennsylvania and Showa Denko, Japan) and DDB were evaluated and were found to be stable and effective redox shuttles at low C-rates. The Li{sub 2}B{sub 12}F{sub 12} is suitable for lithium ion cells utilizing a high voltage cathode (potential that is higher

  3. Development of a liquid lithium thin film for use as a heavy ion beam stripper

    NASA Astrophysics Data System (ADS)

    Momozaki, Y.; Nolen, J.; Reed, C.; Novick, V.; Specht, J.

    2009-04-01

    A series of experiments was performed to investigate the feasibility of a liquid lithium thin film for a charge stripper in a high-power heavy ion linac. Various preliminary experiments using simulants were first conducted to determine the film formation scheme, to investigate the film stability, and to obtain the design parameters for a liquid lithium thin film system. Based on the results from these preliminary studies, a prototypical, high pressure liquid lithium system was constructed to demonstrate liquid lithium thin film formation. This system was capable of driving liquid lithium at lesssim300 °C and up to 13.9 MPa (2000 psig) through a nozzle opening as large as 1 mm (40 mil) in diameter. This drive pressure corresponds to a Li velocity of >200 m/s. A thin lithium film of 9 mm in width at velocity of ~58 m/s was produced. Its thickness was estimated to be roughly lesssim13 μm. High vacuum was maintained in the area of the film. This type of liquid metal thin film may also be used in other high power beam applications such as for intense X-ray or neutron sources.

  4. A new lithium salt with dihydroxybenzene and lithium tetrafluoroborate for lithium battery electrolytes

    NASA Astrophysics Data System (ADS)

    Xue, Zhao-Ming; Sun, Bin-Bin; Zhou, Wei; Chen, Chun-Hua

    2011-10-01

    A new unsymmetrical lithium salt containing F-, C6H4O22- [dianion of 1,2-benzenediol], lithium difluoro(1,2-benzene-diolato(2-)-o,o‧)borate (LDFBDB) is synthesized and characterized. Its thermal decomposition in nitrogen begins at 170 °C. The cyclic voltammetry study shows that the LDFBDB solution in propylene carbonate (PC) is stable up to 3.7 V versus Li+/Li. It is soluble in common organic solvents. The ionic dissociation properties of LDFBDB are examined by conductivity measurements in PC, PC+ ethyl methyl carbonate (EMC), PC + dimethyl ether (DME), PC + ethylene carbonate (EC) + EMC solutions. The conductivity values of the 0.564 mol dm-3 LDFBDB electrolyte in PC + DME solution is 3.90 mS cm-1. All these properties of the new lithium salt including the thermal characteristics, electrochemical stabilities, solubilities, ionic dissociation properties are studied and compared with those of its derivatives, lithium difluoro(3-fluoro-1,2-benzene-diolato(2-)-o,o‧)borate (FLDFBDB), lithium [3-fluoro-1,2-benzenediolato(2-)-o,o‧ oxalato]borate (FLBDOB), and lithium bis(oxalate)borate (LBOB).

  5. Lithium sputtering from lithium-coated plasma facing components in the NSTX divertor

    NASA Astrophysics Data System (ADS)

    Scotti, F.; Soukhanovskii, V. A.; Ahn, J.-W.; Bell, R. E.; Gerhardt, S. P.; Jaworski, M. A.; Kaita, R.; Kugel, H. W.; McLean, A. G.; Meier, E. T.; Podestà, M.; Roquemore, A. L.

    2015-08-01

    Lithium sputtering yields and gross impurity influxes from lithium-coated graphite and molybdenum plasma facing components (PFCs) have been analyzed for the first time in the National Spherical Torus Experiment (NSTX) divertor during H-mode NBI-heated discharges. Motivated by the beneficial effects of lithium conditioning on discharge performance and reproducibility, evaporative lithium coatings were the routine wall conditioning technique in NSTX. Neutral lithium sputtering yields from solid lithium coatings in NSTX were found to be consistent with values reported from test stand experiments from deuterium-saturated lithium (with sputtering yields YLi ∼ 0.03- 0.07). Temperature-enhanced lithium sputtering was observed on lithium-coated graphite and molybdenum as a result of PFC heating by both embedded heaters and incident plasma heat flux, leading to YLi ∼ 0.1- 0.2 for surface temperatures above the lithium melting point.

  6. Protective lithium ion conducting ceramic coating for lithium metal anodes and associate method

    DOEpatents

    Bates, John B.

    1994-01-01

    A battery structure including a cathode, a lithium metal anode and an electrolyte disposed between the lithium anode and the cathode utilizes a thin-film layer of lithium phosphorus oxynitride overlying so as to coat the lithium anode and thereby separate the lithium anode from the electrolyte. If desired, a preliminary layer of lithium nitride may be coated upon the lithium anode before the lithium phosphorous oxynitride is, in turn, coated upon the lithium anode so that the separation of the anode and the electrolyte is further enhanced. By coating the lithium anode with this material lay-up, the life of the battery is lengthened and the performance of the battery is enhanced.

  7. High performance discharges in the Lithium Tokamak eXperiment with liquid lithium walls

    SciTech Connect

    Schmitt, J. C.; Bell, R. E.; Boyle, D. P.; Esposti, B.; Kaita, R.; Kozub, T.; LeBlanc, B. P.; Lucia, M.; Maingi, R.; Majeski, R.; Merino, E.; Punjabi-Vinoth, S.; Tchilingurian, G.; Capece, A.; Koel, B.; Roszell, J.; Biewer, T. M.; Gray, T. K.; Kubota, S.; Beiersdorfer, P.; and others

    2015-05-15

    The first-ever successful operation of a tokamak with a large area (40% of the total plasma surface area) liquid lithium wall has been achieved in the Lithium Tokamak eXperiment (LTX). These results were obtained with a new, electron beam-based lithium evaporation system, which can deposit a lithium coating on the limiting wall of LTX in a five-minute period. Preliminary analyses of diamagnetic and other data for discharges operated with a liquid lithium wall indicate that confinement times increased by 10× compared to discharges with helium-dispersed solid lithium coatings. Ohmic energy confinement times with fresh lithium walls, solid and liquid, exceed several relevant empirical scaling expressions. Spectroscopic analysis of the discharges indicates that oxygen levels in the discharges limited on liquid lithium walls were significantly reduced compared to discharges limited on solid lithium walls. Tokamak operations with a full liquid lithium wall (85% of the total plasma surface area) have recently started.

  8. Non-aqueous electrolytes for lithium batteries

    SciTech Connect

    Bakos, V.W.; Steklenski, D.J.

    1989-02-14

    An electrochemical cell is described comprising a lithium anode, a cathode and an electrolyte having a conductivity, and reciprocal ohms per cm, of at least 3.5 in, comprising a lithium salt, propylene carbonate and 1,2-dimethoxypropane.

  9. Michael Thackeray on Lithium-air Batteries

    SciTech Connect

    Thackeray, Michael

    2009-01-01

    Michael Thackeray, Distinguished Fellow at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries.

  10. Michael Thackeray on Lithium-air Batteries

    ScienceCinema

    Thackeray, Michael

    2013-04-19

    Michael Thackeray, Distinguished Fellow at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries.

  11. Khalil Amine on Lithium-air Batteries

    ScienceCinema

    Khalil Amine

    2010-01-08

    Khalil Amine, materials scientist at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries.

  12. Khalil Amine on Lithium-air Batteries

    SciTech Connect

    Khalil Amine

    2009-09-14

    Khalil Amine, materials scientist at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries.

  13. Comparison of radioiodine with radioiodine plus lithium in the treatment of Graves' hyperthyroidism.

    PubMed

    Bogazzi, F; Bartalena, L; Brogioni, S; Scarcello, G; Burelli, A; Campomori, A; Manetti, L; Rossi, G; Pinchera, A; Martino, E

    1999-02-01

    Effectiveness of radioiodine for Graves' hyperthyroidism depends also on its intrathyroidal persistence. The latter is enhanced by lithium by blocking iodine release from the thyroid. One hundred ten patients with Graves' hyperthyroidism were randomly assigned to treatment with radioiodine or radioiodine plus lithium, stratified according to goiter size (< or =40 or >40 mL) and evaluated for changes in thyroid function and goiter size, at monthly intervals, for 12 months. Cure of hyperthyroidism occurred in 33 of 46 patients (72%) treated with radioiodine and in 45 of 54 patients (83%) treated with radioiodine plus lithium. The probability of curing hyperthyroidism was higher and its control prompter (P = 0.02) in the radioiodine-plus-lithium group. Patients with < or =40-mL goiters had similar persistence of hyperthyroidism (13%), but lithium-treated patients had hyperthyroidism controlled earlier (P = 0.04). Among patients with >40-mL goiters, hyperthyroidism was cured in 6 of 15 patients (40%) treated with radioiodine alone and in 12 of 16 patients (75%) treated with radioiodine plus lithium (P = 0.07), and cure occurred earlier in the latter (P = 0.05). Goiters shrank in both groups (P < 0.0001), more effectively and promptly (P < 0.0005) in the radioiodine-plus-lithium group. Serum free T4 and T3 levels increased shortly after therapy only in the radioiodine group (P < 0.01). Lithium carbonate enhances the effectiveness of radioiodine therapy, in terms of prompter control of hyperthyroidism, in patients with small or large goiters. In the latter group, lithium also increases the rate of permanent control of hyperthyroidism. PMID:10022407

  14. Multi-layered, chemically bonded lithium-ion and lithium/air batteries

    SciTech Connect

    Narula, Chaitanya Kumar; Nanda, Jagjit; Bischoff, Brian L; Bhave, Ramesh R

    2014-05-13

    Disclosed are multilayer, porous, thin-layered lithium-ion batteries that include an inorganic separator as a thin layer that is chemically bonded to surfaces of positive and negative electrode layers. Thus, in such disclosed lithium-ion batteries, the electrodes and separator are made to form non-discrete (i.e., integral) thin layers. Also disclosed are methods of fabricating integrally connected, thin, multilayer lithium batteries including lithium-ion and lithium/air batteries.

  15. Complete atrioventricular block secondary to lithium therapy.

    PubMed

    Shiraki, Teruo; Kohno, Kunihisa; Saito, Daiji; Takayama, Hiroki; Fujimoto, Akira

    2008-05-01

    Sinus node dysfunction has been reported most frequently among the adverse cardiovascular effects of lithium. In the present case, complete atrioventricular (AV) block with syncopal attacks developed secondary to lithium therapy, necessitating permanent pacemaker implantation. Serum lithium levels remained under or within the therapeutic range during the syncopal attacks. Lithium should be used with extreme caution, especially in patients with mild disturbance of AV conduction. PMID:18441470

  16. Novel Electrolytes for Lithium Ion Batteries

    SciTech Connect

    Lucht, Brett L

    2014-12-12

    We have been investigating three primary areas related to lithium ion battery electrolytes. First, we have been investigating the thermal stability of novel electrolytes for lithium ion batteries, in particular borate based salts. Second, we have been investigating novel additives to improve the calendar life of lithium ion batteries. Third, we have been investigating the thermal decomposition reactions of electrolytes for lithium-oxygen batteries.

  17. Cardiovascular malformations with lithium use during pregnancy.

    PubMed

    Weinstein, M R; Goldfield, M

    1975-05-01

    The 143 cases of lithium use during pregnancy collected by the Register of Lithium Babies show that infants exposed to lithium appear to have a higher than expected ratio of cardiovascular anomalies to all anomalies and may have an increased risk of congenital heart disease. The authors believe that these findings justify a conservative policy on the use of lithium with fertile and pregnant women. PMID:1119612

  18. Rechargeable lithium battery technology - A survey

    NASA Technical Reports Server (NTRS)

    Halpert, Gerald; Surampudi, Subbarao

    1990-01-01

    The technology of the rechargeable lithium battery is discussed with special attention given to the types of rechargeable lithium cells and to their expected performance and advantages. Consideration is also given to the organic-electrolyte and polymeric-electrolyte cells and to molten salt lithium cells, as well as to technical issues, such as the cycle life, charge control, rate capability, cell size, and safety. The role of the rechargeable lithium cell in future NASA applications is discussed.

  19. Primary lithium batteries, some consumer considerations

    NASA Technical Reports Server (NTRS)

    Bro, P.

    1983-01-01

    In order to determine whether larger size lithium batteries would be commercially marketable, the performance of several D size lithium batteries was compared with that of an equivalent alkaline manganese battery, and the relative costs of the different systems were compared. It is concluded that opportunities exist in the consumer market for the larger sizes of the low rate and moderate rate lithium batteries, and that the high rate lithium batteries need further improvements before they can be recommended for consumer applications.

  20. The role of plasma volume, plasma renin and the sympathetic nervous system in the posture-induced decline in renal lithium clearance in man.

    PubMed

    Smith, D F; Shimizu, M

    1978-01-01

    Excretion of lithium in urine was studied in 2 healthy males while recumbent and while upright, either walking or standing quietly. An oral dose of 24.3 mmol of Lit was taken as three lithium carbonate tablets 13 h before clearance tests. Renal lithium clearance decreased and lithium fractional reabsorption increased while upright. Standing immersed to the neck in water, which prevents the fall in plasma volume upon changing posture from recumbent to upright, prevented the fall in renal lithium clearance as well as the rise in lithium fractional reabsorption while upright. Oral doses of guanethidine (total dose of 200 mg) or oxprenolol (total dose of 140 mg) taken to prevent high levels of sympathetic nervous system activity and plasma renin, respectively, failed to prevent the fall in renal lithium clearance or the rise in lithium fractional reabsorption upon changing posture from recumbent to upright. The findings indicate that the fall in renal lithium clearance and the rise in lithium fractional reabsorption upon changing posture from recumbent to upright is related to the fall in plasma volume but not to high levels of sympathetic nervous system activity or plasma renin activity. PMID:692834

  1. Towards Stable Lithium-Sulfur Batteries with a Low Self-Discharge Rate: Ion Diffusion Modulation and Anode Protection.

    PubMed

    Xu, Wen-Tao; Peng, Hong-Jie; Huang, Jia-Qi; Zhao, Chen-Zi; Cheng, Xin-Bing; Zhang, Qiang

    2015-09-01

    The self-discharge of a lithium-sulfur cell decreases the shelf-life of the battery and is one of the bottlenecks that hinders its practical applications. New insights into both the internal chemical reactions in a lithium-sulfur system and effective routes to retard self-discharge for highly stable batteries are crucial for the design of lithium-sulfur cells. Herein, a lithium-sulfur cell with a carbon nanotube/sulfur cathode and lithium-metal anode in lithium bis(trifluoromethanesulfonyl)imide/1,3-dioxolane/dimethyl ether electrolyte was selected as the model system to investigate the self-discharge behavior. Both lithium anode passivation and polysulfide anion diffusion suppression strategies are applied to reduce self-discharge of the lithium-sulfur cell. When the lithium-metal anode is protected by a high density passivation layer induced by LiNO3 , a very low shuttle constant of 0.017 h(-1) is achieved. The diffusion of the polysulfides is retarded by an ion-selective separator, and the shuttle constants decreased. The cell with LiNO3 additive maintained a discharge capacity of 97 % (961 mAh g(-1) ) of the initial capacity after 120 days at open circuit, which was around three times higher than the routine cell (32 % of initial capacity, corresponding to 320 mAh g(-1) ). It is expected that lithium-sulfur batteries with ultralow self-discharge rates may be fabricated through a combination of anode passivation and polysulfide shuttle control, as well as optimization of the lithium-sulfur cell configuration. PMID:26079671

  2. Aplastic anemia associated with lithium therapy

    PubMed Central

    Hussain, M. Z.; Khan, A. G.; Chaudhry, Z. A.

    1973-01-01

    A case is reported of fatal aplastic anemia developing in a 50-year-old woman who received lithium carbonate in the generally accepted dosage for a manic-depressive disorder. The serum lithium had been determined at regular intervals and never exceeded what is considered a safe level. Patients for whom lithium is prescribed should have periodic hematologic examinations. PMID:4691107

  3. Solid composite electrolytes for lithium batteries

    DOEpatents

    Kumar, Binod; Scanlon, Jr., Lawrence G.

    2000-01-01

    Solid composite electrolytes are provided for use in lithium batteries which exhibit moderate to high ionic conductivity at ambient temperatures and low activation energies. In one embodiment, a ceramic-ceramic composite electrolyte is provided containing lithium nitride and lithium phosphate. The ceramic-ceramic composite is also preferably annealed and exhibits an activation energy of about 0.1 eV.

  4. Anode materials for lithium-ion batteries

    DOEpatents

    Sunkara, Mahendra Kumar; Meduri, Praveen; Sumanasekera, Gamini

    2014-12-30

    An anode material for lithium-ion batteries is provided that comprises an elongated core structure capable of forming an alloy with lithium; and a plurality of nanostructures placed on a surface of the core structure, with each nanostructure being capable of forming an alloy with lithium and spaced at a predetermined distance from adjacent nanostructures.

  5. Army position on lithium battery safety

    NASA Technical Reports Server (NTRS)

    Reiss, E.

    1982-01-01

    User requirements for lithium sulfur batteries are presented. They include careful analysis of design and quality control, along with certain equipment specifications. Some of the specifications include: hermetically sealed cells; lithium limited cells with stoichiometry of lithium to sulfur dioxide as a ratio of one; low moisture content in the cells; and battery capacity.

  6. NASA/Marshall's lithium battery applications

    NASA Technical Reports Server (NTRS)

    Paschal, L. E.

    1980-01-01

    A general lithium battery is described and a summary of lithium battery applications is presented. Four aspects of a particular lithium battery, the inducement environmental contamination monitoring battery, are discussed-design and construction details, thermal vacuum tests, projection tests, and acceptance tests.

  7. Magnetism in lithium-oxygen discharge product.

    PubMed

    Lu, Jun; Jung, Hun-Ji; Lau, Kah Chun; Zhang, Zhengcheng; Schlueter, John A; Du, Peng; Assary, Rajeev S; Greeley, Jeffrey; Ferguson, Glen A; Wang, Hsien-Hau; Hassoun, Jusef; Iddir, Hakim; Zhou, Jigang; Zuin, Lucia; Hu, Yongfeng; Sun, Yang-Kook; Scrosati, Bruno; Curtiss, Larry A; Amine, Kahlil

    2013-07-01

    Nonaqueous lithium-oxygen batteries have a much superior theoretical gravimetric energy density compared to conventional lithium-ion batteries, and thus could render long-range electric vehicles a reality. A molecular-level understanding of the reversible formation of lithium peroxide in these batteries, the properties of major/minor discharge products, and the stability of the nonaqueous electrolytes is required to achieve successful lithium-oxygen batteries. We demonstrate that the major discharge product formed in the lithium-oxygen cell, lithium peroxide, exhibits a magnetic moment. These results are based on dc-magnetization measurements and a lithium-oxygen cell containing an ether-based electrolyte. The results are unexpected because bulk lithium peroxide has a significant band gap. Density functional calculations predict that superoxide-type surface oxygen groups with unpaired electrons exist on stoichiometric lithium peroxide crystalline surfaces and on nanoparticle surfaces; these computational results are consistent with the magnetic measurement of the discharged lithium peroxide product as well as EPR measurements on commercial lithium peroxide. The presence of superoxide-type surface oxygen groups with spin can play a role in the reversible formation and decomposition of lithium peroxide as well as the reversible formation and decomposition of electrolyte molecules. PMID:23670967

  8. Conductive lithium storage electrode

    DOEpatents

    Chiang, Yet-Ming; Chung, Sung-Yoon; Bloking, Jason T.; Andersson, Anna M.

    2008-03-18

    A compound comprising a composition A.sub.x(M'.sub.1-aM''.sub.a).sub.y(XD.sub.4).sub.z, A.sub.x(M'.sub.1-aM''.sub.a).sub.y(DXD.sub.4).sub.z, or A.sub.x(M'.sub.1-aM''.sub.a).sub.y(X.sub.2D.sub.7).sub.z, and have values such that x, plus y(1-a) times a formal valence or valences of M', plus ya times a formal valence or valence of M'', is equal to z times a formal valence of the XD.sub.4, X.sub.2D.sub.7, or DXD.sub.4 group; or a compound comprising a composition (A.sub.1-aM''.sub.a).sub.xM'.sub.y(XD.sub.4).sub.z, (A.sub.1-aM''.sub.a).sub.xM'.sub.y(DXD.sub.4).sub.z(A.sub.1-aM''.sub.a).s- ub.xM'.sub.y(X.sub.2D.sub.7).sub.z and have values such that (1-a).sub.x plus the quantity ax times the formal valence or valences of M'' plus y times the formal valence or valences of M' is equal to z times the formal valence of the XD.sub.4, X.sub.2D.sub.7 or DXD.sub.4 group. In the compound, A is at least one of an alkali metal and hydrogen, M' is a first-row transition metal, X is at least one of phosphorus, sulfur, arsenic, molybdenum, and tungsten, M'' any of a Group IIA, IIIA, IVA, VA, VIA, VIIA, VIIIA, IB, IIB, IIIB, IVB, VB, and VIB metal, D is at least one of oxygen, nitrogen, carbon, or a halogen, 0.0001lithium phosphate that can intercalate lithium or hydrogen. The compound can be used in an electrochemical device including electrodes and storage batteries and can have a gravimetric capacity of at least about 80 mAh/g while being charged/discharged at greater than about C rate of the compound.

  9. Conductive lithium storage electrode

    DOEpatents

    Chiang, Yet-Ming; Chung, Sung-Yoon; Bloking, Jason T.; Andersson, Anna M.

    2012-04-03

    A compound comprising a composition A.sub.x(M'.sub.1-aM''.sub.a).sub.y(XD.sub.4).sub.z, A.sub.x(M'.sub.1-aM''.sub.a).sub.y(DXD.sub.4).sub.z, or A.sub.x(M'.sub.1-aM''.sub.a).sub.y(X.sub.2D.sub.7).sub.z, and have values such that x, plus y(1-a) times a formal valence or valences of M', plus ya times a formal valence or valence of M'', is equal to z times a formal valence of the XD.sub.4, X.sub.2D.sub.7, or DXD.sub.4 group; or a compound comprising a composition (A.sub.1-aM''.sub.a).sub.xM'.sub.y(XD.sub.4).sub.z, (A.sub.1-aM''.sub.a).sub.xM'.sub.y(DXD.sub.4).sub.z (A.sub.1-aM''.sub.a).sub.xM'.sub.y(X.sub.2D.sub.7).sub.z and have values such that (1-a).sub.x plus the quantity ax times the formal valence or valences of M'' plus y times the formal valence or valences of M' is equal to z times the formal valence of the XD.sub.4, X.sub.2D.sub.7 or DXD.sub.4 group. In the compound, A is at least one of an alkali metal and hydrogen, M' is a first-row transition metal, X is at least one of phosphorus, sulfur, arsenic, molybdenum, and tungsten, M'' any of a Group IIA, IIIA, IVA, VA, VIA, VIIA, VIIIA, IB, IIB, IIIB, IVB, VB, and VIB metal, D is at least one of oxygen, nitrogen, carbon, or a halogen, 0.0001lithium phosphate that can intercalate lithium or hydrogen. The compound can be used in an electrochemical device including electrodes and storage batteries and can have a gravimetric capacity of at least about 80 mAh/g while being charged/discharged at greater than about C rate of the compound.

  10. Advances in ambient temperature secondary lithium cells

    NASA Technical Reports Server (NTRS)

    Subbarao, S.; Shen, D. H.; Deligiannis, F.; Huang, C-K.; Halpert, G.

    1989-01-01

    The goal is to develop secondary lithium cells with a 100 Wh/kg specific energy capable of 1000 cycles at 50 percent DOD. The approach towards meeting this goal initially focused on several basic issues related to the cell chemistry, selection of cathode materials and electrolytes and component development. The performance potential of Li-TiS2, Li-MoS3, Li-V6O13 and Li-NbSe3 electrochemical systems was examined. Among these four, the Li-TiS2 system was found to be the most promising system in terms of achievable specific energy and cycle life. Major advancements to date in the development of Li-TiS2 cells are in the areas of cathode processing technology, mixed solvent electrolytes, and cell assembly. A summary is given of these advances.

  11. The lithium vapor box divertor

    NASA Astrophysics Data System (ADS)

    Goldston, R. J.; Myers, R.; Schwartz, J.

    2016-02-01

    It has long been recognized that volumetric dissipation of the plasma heat flux from a fusion power system is preferable to its localized impingement on a material surface. Volumetric dissipation mitigates both the anticipated very high heat flux and intense particle-induced damage due to sputtering. Recent projections to a tokamak demonstration power plant suggest an immense upstream parallel heat flux, of order 20 GW m-2, implying that fully detached operation may be a requirement for the success of fusion power. Building on pioneering work on the use of lithium by Nagayama et al and by Ono et al as well as earlier work on the gas box divertor by Watkins and Rebut, we present here a concept for a lithium vapor box divertor, in which lithium vapor extracts momentum and energy from a fusion-power-plant divertor plasma, using fully volumetric processes. At the high powers and pressures that are projected this requires a high density of lithium vapor, which must be isolated from the main plasma in order to avoid lithium build-up on the chamber walls or in the plasma. Isolation is achieved through a powerful multi-box differential pumping scheme available only for condensable vapors. The preliminary box-wise calculations are encouraging, but much more work is required to demonstrate the practical viability of this scheme, taking into account at least 2D plasma and vapor flows within and between the vapor boxes and out of the vapor boxes to the main plasma.

  12. Lithium metal oxide electrodes for lithium cells and batteries

    DOEpatents

    Thackeray, Michael M.; Johnson, Christopher S.; Amine, Khalil; Kim, Jaekook

    2006-11-14

    A lithium metal oxide positive electrode for a non-aqueous lithium cell is disclosed. The cell is prepared in its initial discharged state and has a general formula xLiMO.sub.2.(1-x)Li.sub.2M'O.sub.3 in which 0

  13. Lithium metal oxide electrodes for lithium cells and batteries

    DOEpatents

    Thackeray, Michael M.; Johnson, Christopher S.; Amine, Khalil; Kim, Jaekook

    2004-01-13

    A lithium metal oxide positive electrode for a non-aqueous lithium cell is disclosed. The cell is prepared in its initial discharged state and has a general formula xLiMO.sub.2.(1-x)Li.sub.2 M'O.sub.3 in which 0

  14. Carbon and lithium spectra from a vacuum spark

    NASA Astrophysics Data System (ADS)

    Podder, N. K.; Clothiaux, E. J.

    1999-07-01

    Carbon and lithium spectra are obtained from vacuum spark discharges using a grazing-incidence flat-field spectrometer. Hydrogen and helium-like lines are identified in the carbon spectrum, where only the hydrogen-like lines are found in the lithium spectrum. The absence of the helium intercombination line in the carbon plasma indicates that the electron density is greater than 1×1019cm-3. The electron density is found to be 2.8-4.4×1020cm-3 for carbon and 7.3-10.2×1018cm-3 for lithium plasma using the method of Stark width analysis for hydrogen-like carbon and lithium lines of the Lyman β and Lyman δ of each element. This method was developed and implemented earlier by E. V. Aglitskii, P. S. Antsiferov, I. M. Gaisinskii, E. A. Oks, and A. M. Panin (Institute of Spectroscopy Preprint #13, Troitzk, Moskow region, USSR, 1985). The Lyman β and Lyman δ lines are chosen for our analysis because these two lines do not have the central Stark components. A pinhole picture is obtained for the carbon plasma, and the pinch diameter is measured to be 100 μm from the equal density profile scan of the pinhole photograph. The optical depth and the escape factor are incorporated into the intensity calculation of the lines using an effective plasma size of 50 μm. In this calculation, the intensity ratio of the Lyman α to the helium-like γ line (1s4p→1s2) yields an electron temperature of about 90-95 eV for the carbon plasma. No temperature for the lithium was possible due to the unavailability of the helium-like lines.

  15. Characterization of lithium coordination sites with magic-angle spinning NMR

    NASA Astrophysics Data System (ADS)

    Haimovich, A.; Goldbourt, A.

    2015-05-01

    Lithium, in the form of lithium carbonate, is one of the most common drugs for bipolar disorder. Lithium is also considered to have an effect on many other cellular processes hence it possesses additional therapeutic as well as side effects. In order to quantitatively characterize the binding mode of lithium, it is required to identify the interacting species and measure their distances from the metal center. Here we use magic-angle spinning (MAS) solid-state NMR to study the binding site of lithium in complex with glycine and water (LiGlyW). Such a compound is a good enzyme mimetic since lithium is four-coordinated to one water molecule and three carboxylic groups. Distance measurements to carbons are performed using a 2D transferred echo double resonance (TEDOR) MAS solid-state NMR experiment, and water binding is probed by heteronuclear high-resolution proton-lithium and proton-carbon correlation (wPMLG-HETCOR) experiments. Both HETCOR experiments separate the main complex from impurities and non-specifically bound lithium species, demonstrating the sensitivity of the method to probe the species in the binding site. Optimizations of the TEDOR pulse scheme in the case of a quadrupolar nucleus with a small quadrupole coupling constant show that it is most efficient when pulses are positioned on the spin-1/2 (carbon-13) nucleus. Since the intensity of the TEDOR signal is not normalized, careful data analysis that considers both intensity and dipolar oscillations has to be performed. Nevertheless we show that accurate distances can be extracted for both carbons of the bound glycine and that these distances are consistent with the X-ray data and with lithium in a tetrahedral environment. The lithium environment in the complex is very similar to the binding site in inositol monophosphatase, an enzyme associated with bipolar disorder and the putative target for lithium therapy. A 2D TEDOR experiment applied to the bacterial SuhB gene product of this enzyme was designed

  16. Lithium-6 foil neutron detector

    SciTech Connect

    Young, C.A.

    1982-12-21

    A neutron detection apparatus is provided which includes a selected number of flat surfaces of lithium-6 foil, and which further includes a gas mixture in contact with each of the flat surfaces for selectively reacting to charged particles emitted by or radiated from the lithium foil. A container is provided to seal the lithium foil and the gas mixture in a volume from which water vapor and atmospheric gases are excluded, the container having one or more walls which are transmissive to neutrons. Monitoring equipment in contact with the gas mixture detects reactions taking place in the gas mixture, and, in response to such reactions, provides notice of the flux of neutrons passing through the volume of the detector.

  17. Lithium ion rechargeable systems studies

    SciTech Connect

    Levy, S.C.; Lasasse, R.R.; Cygan, R.T.; Voigt, J.A.

    1995-02-01

    Lithium ion systems, although relatively new, have attracted much interest worldwide. Their high energy density, long cycle life and relative safety, compared with metallic lithium rechargeable systems, make them prime candidates for powering portable electronic equipment. Although lithium ion cells are presently used in a few consumer devices, e.g., portable phones, camcorders, and laptop computers, there is room for considerable improvement in their performance. Specific areas that need to be addressed include: (1) carbon anode--increase reversible capacity, and minimize passivation; (2) cathode--extend cycle life, improve rate capability, and increase capacity. There are several programs ongoing at Sandia National Laboratories which are investigating means of achieving the stated objectives in these specific areas. This paper will review these programs.

  18. Nanomaterials for rechargeable lithium batteries.

    PubMed

    Bruce, Peter G; Scrosati, Bruno; Tarascon, Jean-Marie

    2008-01-01

    Energy storage is more important today than at any time in human history. Future generations of rechargeable lithium batteries are required to power portable electronic devices (cellphones, laptop computers etc.), store electricity from renewable sources, and as a vital component in new hybrid electric vehicles. To achieve the increase in energy and power density essential to meet the future challenges of energy storage, new materials chemistry, and especially new nanomaterials chemistry, is essential. We must find ways of synthesizing new nanomaterials with new properties or combinations of properties, for use as electrodes and electrolytes in lithium batteries. Herein we review some of the recent scientific advances in nanomaterials, and especially in nanostructured materials, for rechargeable lithium-ion batteries. PMID:18338357

  19. Lithium ion rechargeable systems studies

    NASA Astrophysics Data System (ADS)

    Levy, Samuel C.; Lasasse, Robert R.; Cygan, Randall T.; Voigt, James A.

    Lithium ion systems, although relatively new, have attracted much interest worldwide. Their high energy density, long cycle life and relative safety, compared with metallic lithium rechargeable systems, make them prime candidates for powering portable electronic equipment. Although lithium ion cells are presently used in a few consumer devices, e.g., portable phones, camcorders, and laptop computers, there is room for considerable improvement in their performance. Specific areas that need to be addressed include: (1) carbon anode-increase reversible capacity, and minimize passivation; (2) cathode-extend cycle life, improve rate capability, and increase capacity. There are several programs ongoing at Sandia National Laboratories which are investigating means of achieving the stated objectives in these specific areas. This paper will review these programs.

  20. Thin-film Rechargeable Lithium Batteries

    DOE R&D Accomplishments Database

    Dudney, N. J.; Bates, J. B.; Lubben, D.

    1995-06-01

    Thin film rechargeable lithium batteries using ceramic electrolyte and cathode materials have been fabricated by physical deposition techniques. The lithium phosphorous oxynitride electrolyte has exceptional electrochemical stability and a good lithium conductivity. The lithium insertion reaction of several different intercalation materials, amorphous V{sub 2}O{sub 5}, amorphous LiMn{sub 2}O{sub 4}, and crystalline LiMn{sub 2}O{sub 4} films, have been investigated using the completed cathode/electrolyte/lithium thin film battery.

  1. Phthalocyanine cathode materials for secondary lithium cells

    SciTech Connect

    Tamaki, J.; Yamaji, A.

    1982-01-01

    Discharge and charge characteristics of various phthalocyanine cathodes coupled with lithium metal are studied. The best capacity based only on cathode active material weight is 1440 A-hr/kg in the lithium/iron phthalocyanine system, and the cycle life of the lithium/Cu phthalocyanine system is more than 100 times at the discharge depth of 157 A-hr/kg. The cathode reaction mechanism is supposed to be lithium intercalation between phthalocyanine molecules. The results indicate that these phthalocyanines are promising cathode active materials for lithium secondary batteries.

  2. Thin-film rechargeable lithium batteries

    SciTech Connect

    Dudney, N.J.; Bates, J.B.; Lubben, D.

    1995-06-01

    Thin-film rechargeable lithium batteries using ceramic electrolyte and cathode materials have been fabricated by physical deposition techniques. The lithium phosphorous oxynitride electrolyte has exceptional electrochemical stability and a good lithium conductivity. The lithium insertion reaction of several different intercalation materials, amorphous V{sub 2}O{sub 5}, amorphous LiMn{sub 2}O{sub 4}, and crystalline LiMn{sub 2}O{sub 4} films, have been investigated using the completed cathode/electrolyte/lithium thin-film battery.

  3. Spatial periphery of lithium isotopes

    SciTech Connect

    Galanina, L. I. Zelenskaja, N. S.

    2013-12-15

    The spatial structure of lithium isotopes is studied with the aid of the charge-exchange and (t, p) reactions on lithium nuclei. It is shown that an excited isobaric-analog state of {sup 6}Li (0{sup +}, 3.56MeV) has a halo structure formed by a proton and a neutron, that, in the {sup 9}Li nucleus, there is virtually no neutron halo, and that {sup 11}Li is a Borromean nucleus formed by a {sup 9}Li core and a two-neutron halo manifesting itself in cigar-like and dineutron configurations.

  4. Lithium synthesis in microquasar accretion.

    PubMed

    Iocco, Fabio; Pato, Miguel

    2012-07-13

    We study the synthesis of lithium isotopes in the hot tori formed around stellar mass black holes by accretion of the companion star. We find that sizable amounts of both stable isotopes 6Li and 7Li can be produced, the exact figures varying with the characteristics of the torus and reaching as much as 10(-2) M⊙ for each isotope. This mass output is enough to contaminate the entire Galaxy at a level comparable with the original, pregalactic amount of lithium and to overcome other sources such as cosmic-ray spallation or stellar nucleosynthesis. PMID:23030150

  5. Problem of the lithium peroxide thermal stability

    NASA Astrophysics Data System (ADS)

    Nefedov, R. A.; Ferapontov, Yu A.; Kozlova, N. P.

    2016-01-01

    The behavior of lithium peroxide and lithium peroxide monohydrate samples under heating in atmospheric air was studied by the method of thermogravimetric analysis (TGA) and differential thermal analysis (DTA). It was found that in the temperature range of 32°C to 82°C the interaction of lithium peroxides and steam with the formation of lithium peroxide monohydrate occurs, which was confirmed chemically and by X-ray Single-qualitative analysis. It was experimentally found that lithium peroxide starts to decompose into the lithium oxide and oxygen in the temperature range of 340 ÷ 348°C. It was established that the resulting thermal decomposition of lithium oxide, lithium peroxide at the temperature of 422°C melts with lithium carbonate eutecticly. The manifestation of polymorphism was not marked(seen or noticed) under the heating of studied samples of lithium peroxide and lithium peroxide monohydrate in the temperature range of 25°C ÷ 34°C.

  6. Solid solution lithium alloy cermet anodes

    DOEpatents

    Richardson, Thomas J.

    2013-07-09

    A metal-ceramic composite ("cermet") has been produced by a chemical reaction between a lithium compound and another metal. The cermet has advantageous physical properties, high surface area relative to lithium metal or its alloys, and is easily formed into a desired shape. An example is the formation of a lithium-magnesium nitride cermet by reaction of lithium nitride with magnesium. The reaction results in magnesium nitride grains coated with a layer of lithium. The nitride is inert when used in a battery. It supports the metal in a high surface area form, while stabilizing the electrode with respect to dendrite formation. By using an excess of magnesium metal in the reaction process, a cermet of magnesium nitride is produced, coated with a lithium-magnesium alloy of any desired composition. This alloy inhibits dendrite formation by causing lithium deposited on its surface to diffuse under a chemical potential into the bulk of the alloy.

  7. Lithium Abundance in Planet Search Stars

    NASA Astrophysics Data System (ADS)

    Myles, Justin; Yale Exoplanets

    2016-01-01

    Since most lithium in the universe is primordial and is destroyed in stars, lithium abundance can be used as a stellar age indicator. Some research seems to show that planet formation may also affect lithium abundance in exoplanet host stars (EHS). However, small and heterogenous samples have made both of these phenomena unclear. Further study of lithium abundance in EHS is needed to better understand possible physical roles of lithium in planet formation theory. We use a large homogenous sample with accurate stellar parameters on which we will use equivalent width analysis to determine precise lithium abundances. From these abundance values we determine an age vs. abundance relation. Additionally, we aim to explore correlation between lithium abundance and planet formation.

  8. Surface protected lithium-metal-oxide electrodes

    DOEpatents

    Thackeray, Michael M.; Kang, Sun-Ho

    2016-04-05

    A lithium-metal-oxide positive electrode having a layered or spinel structure for a non-aqueous lithium electrochemical cell and battery is disclosed comprising electrode particles that are protected at the surface from undesirable effects, such as electrolyte oxidation, oxygen loss or dissolution by one or more lithium-metal-polyanionic compounds, such as a lithium-metal-phosphate or a lithium-metal-silicate material that can act as a solid electrolyte at or above the operating potential of the lithium-metal-oxide electrode. The surface protection significantly enhances the surface stability, rate capability and cycling stability of the lithium-metal-oxide electrodes, particularly when charged to high potentials.

  9. Identification of a new lithium oxide, Li3O2

    NASA Technical Reports Server (NTRS)

    Stecura, S.

    1973-01-01

    Lithium oxide (Li3O2) was prepared by decomposing anhydrous lithium hydroxide at 360 C in 48 hours and between 640 and 730 C in times up to 1.3 hours and pressures of about 0.00001 torr. Decompositions were done in nickel, molybdenum, niobium, tantalum, and the T-111 tantalum alloy (Ta - 8-wt.% W - 2 wt.% Hf) containers. This oxide probably belongs to the simple orthorhombic system with the following lattice parameters: a = 108.4 + or - 0.4 nm (10.84 + or - 0.04 A), b = 128.4 + or - 0.5 nm (12.84 + or - 0.05 A), and c = 103.6 + or - 0.4 nm (10.36 + or - 0.04 A).

  10. Measured and calculated fast neutron spectra in a depleted uranium and lithium hydride shielded reactor

    NASA Technical Reports Server (NTRS)

    Lahti, G. P.; Mueller, R. A.

    1973-01-01

    Measurements of MeV neutron were made at the surface of a lithium hydride and depleted uranium shielded reactor. Four shield configurations were considered: these were assembled progressively with cylindrical shells of 5-centimeter-thick depleted uranium, 13-centimeter-thick lithium hydride, 5-centimeter-thick depleted uranium, 13-centimeter-thick lithium hydride, 5-centimeter-thick depleted uranium, and 3-centimeter-thick depleted uranium. Measurements were made with a NE-218 scintillation spectrometer; proton pulse height distributions were differentiated to obtain neutron spectra. Calculations were made using the two-dimensional discrete ordinates code DOT and ENDF/B (version 3) cross sections. Good agreement between measured and calculated spectral shape was observed. Absolute measured and calculated fluxes were within 50 percent of one another; observed discrepancies in absolute flux may be due to cross section errors.

  11. Polymer electrolytes containing guanidinium-based polymeric ionic liquids for rechargeable lithium batteries

    NASA Astrophysics Data System (ADS)

    Li, Mingtao; Yang, Li; Fang, Shaohua; Dong, Siming; Hirano, Shin-ichi; Tachibana, Kazuhiro

    2011-10-01

    The electrochemical properties of solvent-free, quaternary polymer electrolytes based on a novel polymeric ionic liquid (PIL) as polymer host and incorporating 1g13TFSI ionic liquid, LiTFSI salt and nano-scale silica are reported. The PIL-LiTFSI-1g13TFSI-SiO2 electrolyte membranes are found to be chemically stable even at 80 °C in contact with lithium anode and thermally stable up to 320 °C. Particularly, the quaternary polymer electrolytes exhibit high lithium ion conductivity at high temperature, wide electrochemical stability window, time-stable interfacial resistance values and good lithium stripping/plating performance. Batteries assembled with the quaternary polymer electrolyte at 80 °C are capable to deliver 140 mAh g-1 at 0.1C rates with very good capacity retention.

  12. Photodisintegration of Lithium Isotopes

    NASA Astrophysics Data System (ADS)

    Wurtz, Ward Andrew

    We have performed a measurement of the photodisintegration of the lithium isotopes, 6Li and 7Li, using a monochromatic, polarised photon beam and a segmented neutron detector array which covers approximately ¼ of 4pi srad. Using time-of-flight and scintillator light-output spectra we separate the data into individual reaction channels. This work is motivated by the need to compare with recent theoretical predictions and to provide data for future theoretical work. For the photodisintegration of 6Li we took data at 12 photon energies between 8 and 35 MeV. We describe the data using a model consisting of two-body reaction channels and obtain angular distributions and absolute cross sections for many of these reaction channels. We compare our results with a recent Lorentz integral transform calculation (Bacca et al. Phys. Rev. C 69, 057001 (2004)). Our results are in reasonable agreement with the calculation, in contradiction with previous experimental results. For the photodisintegration of 7Li, we took data at 9 photon energies between 10 and 35 MeV. We obtain cross sections for the reaction channel 7Li + gamma → n + 6 Li(g.s.) at all photon energies with angular distributions at all but the highest energy. We obtain angular distributions and total cross sections for reaction channels involving excited states of the daughter nucleus, 6Li, at select energies. We hope that these measurements will provide incentive for new theoretical calculations. We observe neutrons that can only be described by the reaction channel 7Li + gamma → n + 6Li(10.0) which necessitates an excited state of 6Li with excitation energy Ex = 10.0 +/- 0.5 MeV that is not in the standard tables of excited states. ii

  13. Lithium-Induced Motor Neuropathy: An Unusual Presentation

    PubMed Central

    Mohapatra, Satyakam; Sahoo, Manas Ranjan; Rath, Neelmadhav

    2016-01-01

    Peripheral neuropathy secondary to lithium is under-recognized. Most cases of polyneuropathy were reported with lithium intoxication. However, very few cases were reported without lithium toxicity. We present a case of motor neuropathy due to the use of lithium in a 26-year-old male with a therapeutic lithium level. PMID:27335523

  14. 49 CFR 173.185 - Lithium cells and batteries.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Lithium cells and batteries. 173.185 Section 173... Class 7 § 173.185 Lithium cells and batteries. (a) Cells and batteries. A lithium cell or battery, including a lithium polymer cell or battery and a lithium-ion cell or battery, must conform to all of...

  15. 49 CFR 173.185 - Lithium cells and batteries.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Lithium cells and batteries. 173.185 Section 173... Class 7 § 173.185 Lithium cells and batteries. (a) Cells and batteries. A lithium cell or battery, including a lithium polymer cell or battery and a lithium-ion cell or battery, must conform to all of...

  16. 49 CFR 173.185 - Lithium cells and batteries.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Lithium cells and batteries. 173.185 Section 173... Class 7 § 173.185 Lithium cells and batteries. (a) Cells and batteries. A lithium cell or battery, including a lithium polymer cell or battery and a lithium-ion cell or battery, must conform to all of...

  17. An experimental study on burning behaviors of 18650 lithium ion batteries using a cone calorimeter

    NASA Astrophysics Data System (ADS)

    Fu, Yangyang; Lu, Song; Li, Kaiyuan; Liu, Changchen; Cheng, Xudong; Zhang, Heping

    2015-01-01

    Numerous of lithium ion battery fires and explosions enhance the need of precise risk assessments on batteries. In the current study, 18650 lithium ion batteries at different states of charge are tested using a cone calorimeter to study the burning behaviors under an incident heat flux of 50 kW m-2. Several parameters are measured, including mass loss rate, time to ignition, time to explosion, heat release rate (HRR), the surface temperature and concentration of toxic gases. Although small quantities of oxygen are released from the lithium ion battery during burning, it is estimated that the energy, consuming oxygen released from the lithium ion battery, accounts for less than 13% of total energy released by a fully charged lithium ion battery. The experimental results show that the peak HRR and concentration of toxic gases rise with the increasing the states of charge, whereas the time to ignition and time to explosion decrease. The test results of the fully charged lithium ion batteries at three different incident heat fluxes show that the peak HRR increases from 6.2 to 9.1 kW and the maximum surface temperature increases from 662 to 934 °C as the incident heat flux increases from 30 to 60 kW m-2.

  18. Mass effect on the lithium abundance evolution of open clusters: Hyades, NGC 752, and M 67

    NASA Astrophysics Data System (ADS)

    Castro, M.; Duarte, T.; Pace, G.; do Nascimento, J.-D.

    2016-05-01

    Lithium abundances in open clusters provide an effective way of probing mixing processes in the interior of solar-type stars and convection is not the only mixing mechanism at work. To understand which mixing mechanisms are occurring in low-mass stars, we test non-standard models, which were calibrated using the Sun, with observations of three open clusters of different ages, the Hyades, NGC 752, and M 67. We collected all available data, and for the open cluster NGC 752, we redetermine the equivalent widths and the lithium abundances. Two sets of evolutionary models were computed, one grid of only standard models with microscopic diffusion and one grid with rotation-induced mixing, at metallicity [Fe/H] = 0.13, 0.0, and 0.01 dex, respectively, using the Toulouse-Geneva evolution code. We compare observations with models in a color-magnitude diagram for each cluster to infer a cluster age and a stellar mass for each cluster member. Then, for each cluster we analyze the lithium abundance of each star as a function of mass. The data for the open clusters Hyades, NGC 752, and M 67, are compatible with lithium abundance being a function of both age and mass for stars in these clusters. Our models with meridional circulation qualitatively reproduce the general trend of lithium abundance evolution as a function of stellar mass in all three clusters. This study points out the importance of mass dependence in the evolution of lithium abundance as a function of age. Comparison between models with and without rotation-induced mixing shows that the inclusion of meridional circulation is essential to account for lithium depletion in low-mass stars. However, our results suggest that other mechanisms should be included to explain the Li-dip and the lithium dispersion in low-mass stars.

  19. Anode material for lithium batteries

    DOEpatents

    Belharouak, Ilias; Amine, Khalil

    2008-06-24

    Primary and secondary Li-ion and lithium-metal based electrochemical cell system. The suppression of gas generation is achieved through the addition of an additive or additives to the electrolyte system of respective cell, or to the cell itself whether it be a liquid, a solid- or plastized polymer electrolyte system. The gas suppression additives are primarily based on unsaturated hydrocarbons.

  20. Anode material for lithium batteries

    DOEpatents

    Belharouak, Ilias; Amine, Khalil

    2011-04-05

    Primary and secondary Li-ion and lithium-metal based electrochemical cell systems. The suppression of gas generation is achieved through the addition of an additive or additives to the electrolyte system of respective cell, or to the cell itself whether it be a liquid, a solid- or plasticized polymer electrolyte system. The gas suppression additives are primarily based on unsaturated hydrocarbons.

  1. Anode material for lithium batteries

    DOEpatents

    Belharouak, Ilias; Amine, Khalil

    2012-01-31

    Primary and secondary Li-ion and lithium-metal based electrochemical cell systems. The suppression of gas generation is achieved through the addition of an additive or additives to the electrolyte system of respective cell, or to the cell itself whether it be a liquid, a solid- or plasticized polymer electrolyte system. The gas suppression additives are primarily based on unsaturated hydrocarbons.

  2. Gelled Electrolytes For Lithium Batteries

    NASA Technical Reports Server (NTRS)

    Nagasubramanian, Ganesan; Attia, Alan; Halpert, Gerald

    1993-01-01

    Gelled polymer electrolyte consists of polyacrylonitrile (PAN), LiBF4, and propylene carbonate (PC). Thin films of electrolyte found to exhibit stable bulk conductivities of order of 10 to the negative 3rd power S/cm at room temperature. Used in thinfilm rechargeable lithium batteries having energy densities near 150 W h/kg.

  3. Lithium-loaded liquid scintillators

    DOEpatents

    Dai, Sheng; Kesanli, Banu; Neal, John S.

    2012-05-15

    The invention is directed to a liquid scintillating composition containing (i) one or more non-polar organic solvents; (ii) (lithium-6)-containing nanoparticles having a size of up to 10 nm and surface-capped by hydrophobic molecules; and (iii) one or more fluorophores. The invention is also directed to a liquid scintillator containing the above composition.

  4. Tradeoff analysis with lithium cells

    NASA Technical Reports Server (NTRS)

    Bennett, C.

    1978-01-01

    Characteristic data, primarily on high rate lithium sulfur dioxide design (basically in the D and DD cell configuration), both before and after much exposure to environmental conditions are discussed. The environmental as opposed to signle cells. Discussion was generated among the Workshop participants and comments and questions are reported. Graphical representations of the test data are presented.

  5. Lithium in the Kidney: Friend and Foe?

    PubMed

    Alsady, Mohammad; Baumgarten, Ruben; Deen, Peter M T; de Groot, Theun

    2016-06-01

    Trace amounts of lithium are essential for our physical and mental health, and administration of lithium has improved the quality of life of millions of patients with bipolar disorder for >60 years. However, in a substantial number of patients with bipolar disorder, long-term lithium therapy comes at the cost of severe renal side effects, including nephrogenic diabetes insipidus and rarely, ESRD. Although the mechanisms underlying the lithium-induced renal pathologies are becoming clearer, several recent animal studies revealed that short-term administration of lower amounts of lithium prevents different forms of experimental AKI. In this review, we discuss the knowledge of the pathologic and therapeutic effects of lithium in the kidney. Furthermore, we discuss the underlying mechanisms of these seemingly paradoxical effects of lithium, in which fine-tuned regulation of glycogen synthase kinase type 3, a prime target for lithium, seems to be key. The new discoveries regarding the protective effect of lithium against AKI in rodents call for follow-up studies in humans and suggest that long-term therapy with low lithium concentrations could be beneficial in CKD. PMID:26577775

  6. Biologically enhanced cathode design for improved capacity and cycle life for lithium-oxygen batteries

    PubMed Central

    Oh, Dahyun; Qi, Jifa; Lu, Yi-Chun; Zhang, Yong; Shao-Horn, Yang; Belcher, Angela M.

    2014-01-01

    Lithium-oxygen batteries have a great potential to enhance the gravimetric energy density of fully packaged batteries by 2–3 times that of lithium-ion cells. Recent studies have focused on finding stable electrolytes to address poor cycling capability and improve practical limitations of current lithium-oxygen batteries. In this study, the catalyst electrode, where discharge products are deposited and decomposed, was investigated since it plays a critical role in the operation of rechargeable lithium-oxygen batteries. Here we report the electrode design principle to improve specific capacity and cycling performance of lithium-oxygen batteries by utilizing high efficiency nanocatalysts assembled by M13 virus with earth abundant elements, such as manganese oxides. By incorporating only 3–5 wt % of palladium nanoparticles in the electrode, this hybrid nanocatalyst achieves 13,350 mAh g−1c (7,340 mAh g−1c+catalyst) of specific capacity at 0.4 A g−1c and a stable cycle life up to 50 cycles (4,000 mAh g−1c, 400 mAh g−1c+catalyst) at 1 A g−1c. PMID:24220635

  7. 78 FR 55773 - Fourteenth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-11

    ... Battery and Battery Systems--Small and Medium Size AGENCY: Federal Aviation Administration (FAA), U.S... Lithium Battery and Battery Systems--Small and Medium Size. SUMMARY: The FAA is issuing this notice to... Battery and Battery Systems--Small and Medium Size DATES: The meeting will be held October 1-3, 2013,...

  8. Identification of electron and hole traps in lithium tetraborate (Li2B4O7) crystals: Oxygen vacancies and lithium vacancies

    NASA Astrophysics Data System (ADS)

    Swinney, M. W.; McClory, J. W.; Petrosky, J. C.; Yang, Shan; Brant, A. T.; Adamiv, V. T.; Burak, Ya. V.; Dowben, P. A.; Halliburton, L. E.

    2010-06-01

    Electron paramagnetic resonance (EPR) and electron-nuclear double resonance (ENDOR) are used to identify and characterize electrons trapped by oxygen vacancies and holes trapped by lithium vacancies in lithium tetraborate (Li2B4O7) crystals. Our study includes a crystal with the natural abundances of B10 and B11 and a crystal highly enriched with B10. The as-grown crystals contain isolated oxygen vacancies, lithium vacancies, and copper impurities, all in nonparamagnetic charge states. During an irradiation at 77 K with 60 kV x-rays, doubly ionized oxygen vacancies trap electrons while singly ionized lithium vacancies and monovalent copper impurities trap holes. The vacancies return to their preirradiation charge states when the temperature of the sample is increased to approximately 90 K. Hyperfine interactions with B10 and B11 nuclei, observed between 13 and 40 K in the radiation-induced EPR and ENDOR spectra, provide models for the two vacancy-related defects. The electron trapped by an oxygen vacancy is localized primarily on only one of the two neighboring boron ions while the hole stabilized by a lithium vacancy is localized on a neighboring oxygen ion with nearly equal interactions with the two boron ions adjacent to the oxygen ion.

  9. Lithium cell technology and safety report of the Tri-Service Lithium Safety Committee

    NASA Technical Reports Server (NTRS)

    Reiss, E.

    1980-01-01

    The organization of the Tri-Service Lithium Safety Committee is described. The following areas concerning lithium batteries are discussed: transportation--DOT Exemption 7052, FAA; disposal; storage; individual testing/test results; and battery design and usage.

  10. Lithium ferrate and lithium cobaltate cathodes for molten carbonate fuel cells

    SciTech Connect

    Krumpelt, M.; Roche, M.; Bloom, I.; Indacochea, J.E.; Kucera, G.

    1994-08-01

    The objective of this research is to develop cathodes for the molten carbonate fuel cells (MCFC) having a performance approaching that of the lithiated nickel oxide cathode and a significantly greater life, particularly in pressurized MCFCs. To meet this objective, cathodes containing either doubly doped lithium ferrate or lithium cobaltate are being developed. In this project, the authors are optimizing the composition, microstructure, and loading density of the doubly doped lithium ferrate cathode and the lithium cobaltate cathodes.

  11. Measuring nanocurie quantities of tritium bred in metallic lithium and lithium oxide samples

    SciTech Connect

    Bertone, P.C.

    1985-07-01

    The LBM program requires that nanocurie quantities of tritium, bred in both lithium oxide pellets and lithium samples, be measured with an uncertainty not exceeding + or - 6%. Two methods of accurately measuring nanocurie quantities of tritium bred in LBM lithium oxide pellets and one method of accurately measuring nanocurie quantities of tritium bred in lithium samples are described. Potential errors associated with these tritium measurement techniques are also discussed.

  12. Lithium borate cluster salts as novel redox shuttles for overcharge protection of lithium-ion cells.

    SciTech Connect

    Chen, Z.; Liu, J.; Jansen, A. N.; Casteel, B.; Amine, K.; GirishKumar, G.; Air Products and Chemicals, Inc.

    2010-01-01

    Redox shuttle is a promising mechanism for intrinsic overcharge protection in lithium-ion cells and batteries. Two lithium borate cluster salts are reported to function as both the main salt for a nonaqueous electrolyte and the redox shuttle for overcharge protection. Lithium borate cluster salts with a tunable redox potential are promising candidates for overcharge protection for most positive electrodes in state-of-the-art lithium-ion cells.

  13. Lithium: Sources, Production, Uses, and Recovery Outlook

    NASA Astrophysics Data System (ADS)

    Talens Peiró, Laura; Villalba Méndez, Gara; Ayres, Robert U.

    2013-08-01

    The demand for lithium has increased significantly during the last decade as it has become key for the development of industrial products, especially batteries for electronic devices and electric vehicles. This article reviews sources, extraction and production, uses, and recovery and recycling, all of which are important aspects when evaluating lithium as a key resource. First, it describes the estimated reserves and lithium production from brine and pegmatites, including the material and energy requirements. Then, it continues with a description about the current uses of lithium focusing on its application in batteries and concludes with a description of the opportunities for recovery and recycling and the future demand forecast. The article concludes that the demand of lithium for electronic vehicles will increase from 30% to almost 60% by 2020. Thus, in the next years, the recovery and recycling of lithium from batteries is decisive to ensure the long-term viability of the metal.

  14. Lithium-aluminum-iron electrode composition

    DOEpatents

    Kaun, Thomas D.

    1979-01-01

    A negative electrode composition is presented for use in a secondary electrochemical cell. The cell also includes an electrolyte with lithium ions such as a molten salt of alkali metal halides or alkaline earth metal halides that can be used in high-temperature cells. The cell's positive electrode contains a a chalcogen or a metal chalcogenide as the active electrode material. The negative electrode composition includes up to 50 atom percent lithium as the active electrode constituent in an alloy of aluminum-iron. Various binary and ternary intermetallic phases of lithium, aluminum and iron are formed. The lithium within the intermetallic phase of Al.sub.5 Fe.sub.2 exhibits increased activity over that of lithium within a lithium-aluminum alloy to provide an increased cell potential of up to about 0.25 volt.

  15. Lithium metal oxide electrodes for lithium cells and batteries

    DOEpatents

    Thackeray, Michael M.; Johnson, Christopher S.; Amine, Khalil

    2008-12-23

    A lithium metal oxide positive electrode for a non-aqueous lithium cell is disclosed. The cell is prepared in its initial discharged state and has a general formula xLiMO.sub.2.(1-x)Li.sub.2M'O.sub.3 in which 0

  16. Lithium Metal Oxide Electrodes For Lithium Cells And Batteries

    DOEpatents

    Thackeray, Michael M.; Johnson, Christopher S.; Amine, Khalil; Kim, Jaekook

    2004-01-20

    A lithium metal oxide positive electrode for a non-aqueous lithium cell is disclosed. The cell is prepared in its initial discharged state and has a general formula xLiMO.sub.2.(1-x)Li.sub.2 M'O.sub.3 in which 0

  17. Trisomy 13

    MedlinePlus

    ... artery at birth. There are often signs of congenital heart disease , such as: Abnormal placement of the heart toward ... almost immediately. Most infants with trisomy 13 have congenital heart disease. Complications may include: Breathing difficulty or lack of ...

  18. Improving electrolytes for lithium-ion and lithium oxygen

    NASA Astrophysics Data System (ADS)

    Chalasani, Dinesh

    There is an ever increasing demand for fossil fuels. Lithium ion batteries (LIBs) can effectively reduce the production of greenhouse gases and lessen the need for fossil fuels. LIBs also have great potential in electric vehicle applications as an alternative to petroleum modes of transportation. Understanding the chemical reactions between the electrolyte and electrodes in LIBs is very crucial in developing batteries which can work over a wide temperature range and also give a wide potential window. The Solid Electrolyte Interface (SEI), formed by the reduction of solvent molecules on the surface of electrodes, is an important component of LIBs. The SEI is very essential to the performance of LIBs. One electron reduction pathway products of solvent molecules was investigated using lithium-naphthalenide. Methylene ethylene carbonate, a high temperature additive has been synthesized and its performance has been tested at 60°C. Lithium-Oxygen batteries have an energy density ten times greater than that of LIBs. However, lithium-oxygen batteries have rechargability problems associated with them. The most common electrolyte used in this type of batteries is LiPF6 in carbonate or ether based solvents. LiPF6 inherently decreases electrolyte stability, since LiPF 6 can undergo thermal dissociation into PF5 and LiF. PF 5 being a strong Lewis acid, can react with electron rich species. The thermal decomposition reactions of LiPF6 based electrolytes are studied in detail with regard to LIBs. The comprehensive study has been conducted on the thermal degradation of several electrolyte systems in the presence of Li2O2.

  19. Electrode materials and lithium battery systems

    DOEpatents

    Amine, Khalil; Belharouak, Ilias; Liu, Jun

    2011-06-28

    A material comprising a lithium titanate comprising a plurality of primary particles and secondary particles, wherein the average primary particle size is about 1 nm to about 500 nm and the average secondary particle size is about 1 .mu.m to about 4 .mu.m. In some embodiments the lithium titanate is carbon-coated. Also provided are methods of preparing lithium titanates, and devices using such materials.

  20. Lithium-Ion Cell Storage Study

    NASA Technical Reports Server (NTRS)

    Lee, Leonine; Rao, Gopalkrishna M.

    2000-01-01

    This viewgraph presentation reviews the issues concerning storage of lithium ion batteries. The presentation outlines tests used to establish a best long term storage for the lithium ion cells. Another objective of the study was to determine the preferred solstice condition for the lithium ion chemistry (polymer and liquid electrolyte). It also compared voltage clamped with trickle charge storage. The tests and results are reviewed

  1. New guidelines for δ13C measurements

    USGS Publications Warehouse

    Coplen, Tyler B.; Brand, Willi A.; Gehre, Matthias; Groning, Manfred; Meijer, Harro A. J.; Toman, Blaza; Verkouteren, R. Michael

    2006-01-01

    Consistency of δ13C measurements can be improved 39−47% by anchoring the δ13C scale with two isotopic reference materials differing substantially in 13C/12C. It is recommended thatδ13C values of both organic and inorganic materials be measured and expressed relative to VPDB (Vienna Peedee belemnite) on a scale normalized by assigning consensus values of −46.6‰ to L-SVEC lithium carbonate and +1.95‰ to NBS 19 calcium carbonate. Uncertainties of other reference material values on this scale are improved by factors up to two or more, and the values of some have been notably shifted:  the δ13C of NBS 22 oil is −30.03%.

  2. Lithium-sulfur hexafluoride magnetohydrodynamic power system

    SciTech Connect

    Dobran, F.

    1987-02-24

    A method is described to operate a two-phase flow magnetohydrodynamic electric power generation system with liquid lithium and gaseous sulfur-hexafluoride flowing through a diverging channel, with side electrodes to remove the electric current generated in the flowing liquid lithium, across the applied magnetic field that is perpendicular to both the flow velocity and electrodes. Sulfur-hexafluoride is dispersed in the form of small bubbles and reacts with liquid lithium that forms a continuous phase to conduct the current between the electrodes so as to produce a near isothermal two-phase flow mixture and provides for an expansion of lithium across the magnetic field in the generator.

  3. Ternary compound electrode for lithium cells

    DOEpatents

    Raistrick, Ian D.; Godshall, Ned A.; Huggins, Robert A.

    1982-01-01

    Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and of light weight. One type of lithium-based cell utilizes a molten salt electrolyte and normally is operated in the temperature range of about 350.degree.-500.degree. C. Such high temperature operation accelerates corrosion problems. The present invention provides an electrochemical cell in which lithium is the electroactive species. The cell has a positive electrode which includes a ternary compound generally represented as Li-M-O, wherein M is a transition metal. Corrosion of the inventive cell is considerably reduced.

  4. Ternary compound electrode for lithium cells

    DOEpatents

    Raistrick, I.D.; Godshall, N.A.; Huggins, R.A.

    1980-07-30

    Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and of light weight. One type of lithium-based cell utilizes a molten salt electrolyte and normally is operated in the temperature range of about 350 to 500/sup 0/C. Such high temperature operation accelerates corrosion problems. The present invention provides an electrochemical cell in which lithium is the electroactive species. The cell has a positive electrode which includes a ternary compound generally represented as Li-M-O, wherein M is a transition metal. Corrosion of the inventive cell is considerably reduced.

  5. Secondary lithium cells for space applications

    NASA Technical Reports Server (NTRS)

    Surampudi, S.; Shen, D. H.; Huang, C.-K.; Narayanan, S. R.; Attia, A.; Halpert, G.

    1992-01-01

    It is concluded that secondary lithium batteries are suitable for planetary missions requiring high specific energy, long active shelf life, and limited cycle life. Titanium disulfide cathode material meet all the requirements for rechargeable lithium cell, including high intrinsic reversibility and realizable specific energy. Secondary lithium technology is still evolving, although low capacity cells have been demonstrated and greater than 700 cycle life was achieved. Work is in progress to improve the cycle life and safety of the electrolytes, alternate lithium anode, and the separators.

  6. Lithium Metal Anodes for Rechargeable Batteries

    SciTech Connect

    Xu, Wu; Wang, Jiulin; Ding, Fei; Chen, Xilin; Nasybulin, Eduard N.; Zhang, Yaohui; Zhang, Jiguang

    2013-10-29

    Rechargeable lithium metal batteries have much higher energy density than those of lithium ion batteries using graphite anode. Unfortunately, uncontrollable dendritic lithium growth inherent in these batteries (upon repeated charge/discharge cycling) and limited Coulombic efficiency during lithium deposition/striping has prevented their practical application over the past 40 years. With the emerging of post Li-ion batteries, safe and efficient operation of lithium metal anode has become an enabling technology which may determine the fate of several promising candidates for the next generation of energy storage systems, including rechargeable Li-air battery, Li-S battery, and Li metal battery which utilize lithium intercalation compounds as cathode. In this work, various factors which affect the morphology and Coulombic efficiency of lithium anode will be analyzed. Technologies used to characterize the morphology of lithium deposition and the results obtained by modeling of lithium dendrite growth will also be reviewed. At last, recent development in this filed and urgent need in this field will also be discussed.

  7. Lithium in Medicine: Mechanisms of Action.

    PubMed

    Mota de Freitas, Duarte; Leverson, Brian D; Goossens, Jesse L

    2016-01-01

    In this chapter, we review the mechanism of action of lithium salts from a chemical perspective. A description on how lithium salts are used to treat mental illnesses, in particular bipolar disorder, and other disease states is provided. Emphasis is not placed on the genetics and the psychopharmacology of the ailments for which lithium salts have proven to be beneficial. Rather we highlight the application of chemical methodologies for the characterization of the cellular targets of lithium salts and their distribution in tissues. PMID:26860311

  8. Review of lithium-ion technology

    SciTech Connect

    Levy, S.C.; Cieslak, W.R.

    1993-12-31

    The first practical use of graphite intercalation compounds (GIC) as battery anodes was reported in a 1981 patent by Basu in which a molten salt cell was described having a negative electrode that consisted of lithium intercalated in graphite. A second patent by Basu, issued in 1983, described an ambient temperature rechargeable system which also utilized lithium intercalated in graphite as the anode. Work in this area progressed at a low level, however, until interest was sparked in 1990 when Sony Corporation announced a new ``lithium-ion`` rechargeable cell containing a lithium ion intercalating carbon anode. These cells have the advantages of metallic lithium systems; i.e., high energy density, high voltage, and light weight, without the disadvantages of dendrite formation on charge and the safety considerations associated with metallic lithium. Materials other than carbon have been studied as intercalation anodes. Examples are Fe{sub 2}O{sub 3}, WO{sub 2} and TiS{sub 2}. Although these alternate anode materials are of interest academically and for specialty applications, they do not hold much promise for widespread general use due to their increased weight and lower cell voltage. Studies of cathode materials for lithium-ion systems have centered on the transition metal chalcogenides. A number of these materials are capable of reversibly intercalating lithium ions at a useful potential versus lithium. Both organic liquids and polymers are candidate electrolytes for this technology.

  9. Recovery and recycling of lithium value from spent lithium titanate (Li2TiO3) pebbles

    NASA Astrophysics Data System (ADS)

    Mandal, D.

    2013-09-01

    Hydrochloric acid was used. The reasons to use hydrochloric acid are discussed below. Sodium carbonate (Na2CO3) analytical grade, procured form Merck Chemicals, Mumbai, India. To precipitate lithium as lithium carbonate from lithium hydroxide solution sodium carbonate was used. Distilled water. Distilled was used in the experiments, primarily to dilute hydrochloric acid to the desired molar solution. Leaching agent. Concentration of the leaching agent. Temperature. Speed of agitation. Solid to liquid ratio, and Particle Size. In the experimental work spherical Li2TiO3 pebbles of size 1.0 was used as mentioned above. To study the effect of particle size on the recovery of lithium from fine Li2TiO3 particles of size range 100-200 μm were used. These fines were obtained by pulverizing 1.0 mm Li2TiO3 pebbles in a planetary ball mill and classified standard sieves.It is reported that both HNO3 and HCl give relatively more recovery of lithium compared to H2SO4[11-13]. Though the handling of HCl is difficulties due to the chloride corrosion, it is preferred to HNO3 because the deposal of nitrate waste which will generate due to the latter's use viz. sodium nitrate is a problem as per the norms of pollution control standard [11,12].The leaching of Li2TiO3 pebbles were carried out in a 1000 ml three necked and flat bottom glass reactor. The flux was fitted with a reflux condenser to reduce the loss of solution by evaporation and a thermometer. The solid was suspended in the solution by stirring the solution using a magnetic stirrer. The flux was kept on a hot plate with a temperature controller to heat the slurry at constant temperature. The temperature of the solution was controlled within ±3 °C and the temperature of the slurry was noted at an interval of 5 min and the average temperature of each run is determined by time average of the noted readings.A known of volume of HCl solution with known concentration was added to the flux. After the desired stirring speed and reaction

  10. Interaction of cyclic ageing at high-rate and low temperatures and safety in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Fleischhammer, Meike; Waldmann, Thomas; Bisle, Gunther; Hogg, Björn-Ingo; Wohlfahrt-Mehrens, Margret

    2015-01-01

    The differences in the safety behaviour between un-aged and aged high-power 18650 lithium-ion cells were investigated at the cell and material level by Accelerating Rate Calorimetry (ARC) and Simultaneous Thermal Analysis (STA). Commercial cells containing a LixNi1/3Mn1/3Co1/3O2/LiyMn2O4 blend cathode, a carbon/graphite anode and a PP/PE/PP trilayer separator were aged by high-rate and low temperature cycling, leading to (i) mechanical deformation of the jelly roll and (ii) lithium plating on the anode. The results show a strong influence of the ageing history on the safety behaviour. While cycling at high current does not have a strong influence on the cell safety, lithium plating leads to a significant increase of heat formation during thermal runaway and thus to a higher hazard of safety.

  11. On Atomic Diffusion and the Cosmological Lithium Abundance

    NASA Astrophysics Data System (ADS)

    Gruyters, Pieter; Korn, Andreas J.; Barklem, Paul S.

    2014-01-01

    When it comes to lithium in late-type stars, atomic diffusion (AD) refers to the slow gravitational settling below the convective zone. Richard, Michaud & Richter, J. (2005) computed the influence of diffusion on the lithium abundance with different additional mixing (AddMix) parameters, after 13.5 Gyr with an initial Li abundance compatible with BBN. Without AddMix the abundance of lithium would decrease when the temperature of the star increases. This is depicted by the dashed green line in the left panel of Fig. 1 and is in contradiction with the existence of a lithium plateau. But with a model including ad-hoc AddMix, where the AddMix diffusion coefficient is given by D T and is connected to D He(AD) at a reference temperature of log T 0=6.25, it is possible to reproduce the plateau as seen in the figure (solid green line). AD with AddMix has so far been shown to be at work in two globular clusters (GC) with different metallicities. Korn et al. (2007) showed the effects in NGC 6397 at [Fe/H] = -2.1. More recently Gruyters et al. (2013) have shown smaller effects, but similar in nature, in NGC 6752 at [Fe/H] = -1.6. The Li abundance for both clusters can be brought in to agreement with predictions from the cosmic microwave background radiation and Big Bang nucleosynthesis (CMB+BBN) by using stellar structure models including AD and AddMix, although with different efficiencies of AddMix. It seems there is an evolution of AddMix with metallicity which renders AD less efficient. As AddMix acts only in the outer regions, helium settling in the core is not affected, and so the overall evolution (e.g. T eff-age relation) will be similar regardless of this parameter.

  12. Lithium-Air Cell Development

    NASA Technical Reports Server (NTRS)

    Reid, Concha M.; Dobley, Arthur; Seymour, Frasier W.

    2014-01-01

    Lithium-air (Li-air) primary batteries have a theoretical specific capacity of 11,400 Wh/kg, the highest of any common metal-air system. NASA is developing Li-air technology for a Mobile Oxygen Concentrator for Spacecraft Emergencies, an application which requires an extremely lightweight primary battery that can discharge over 24 hours continuously. Several vendors were funded through the NASA SBIR program to develop Li-air technology to fulfill the requirements of this application. New catalysts and carbon cathode structures were developed to enhance the oxygen reduction reaction and increase surface area to improve cell performance. Techniques to stabilize the lithium metal anode surface were explored. Experimental results for prototype laboratory cells are given. Projections are made for the performance of hypothetical cells constructed from the materials that were developed.

  13. Growth energizes lithium ion interest

    SciTech Connect

    D`Amico, E.

    1996-03-20

    The prospects for big growth in the US for lithium ion batteries (LIBs) has sparked the interest of potential domestic suppliers. {open_quotes}The money that can be made in this market is staggering,{close_quotes} says one industry expert. {open_quotes}Everybody who is remotely related to this industry is interested.{close_quotes} The size of the market, still in its infancy, is difficult to gauge, say consultants, who estimate that leading Japanese producers are each making millions of lithium ion cells/month. {open_quotes}The market is not too measurable right now because the only production is really limited to prototypes being sampled,{close_quotes} says Ward Seitz, a consultant with SRI International (Menlo Park, CA), {open_quotes}but there is phenomenal interest.{close_quotes}

  14. Electrolytes for lithium ion batteries

    SciTech Connect

    Vaughey, John; Jansen, Andrew N.; Dees, Dennis W.

    2014-08-05

    A family of electrolytes for use in a lithium ion battery. The genus of electrolytes includes ketone-based solvents, such as, 2,4-dimethyl-3-pentanone; 3,3-dimethyl 2-butanone(pinacolone) and 2-butanone. These solvents can be used in combination with non-Lewis Acid salts, such as Li.sub.2[B.sub.12F.sub.12] and LiBOB.

  15. Solid polymer electrolyte lithium batteries

    DOEpatents

    Alamgir, Mohamed; Abraham, Kuzhikalail M.

    1993-01-01

    This invention pertains to Lithium batteries using Li ion (Li.sup.+) conductive solid polymer electrolytes composed of solvates of Li salts immobilized in a solid organic polymer matrix. In particular, this invention relates to Li batteries using solid polymer electrolytes derived by immobilizing solvates formed between a Li salt and an aprotic organic solvent (or mixture of such solvents) in poly(vinyl chloride).

  16. Solid polymer electrolyte lithium batteries

    DOEpatents

    Alamgir, M.; Abraham, K.M.

    1993-10-12

    This invention pertains to Lithium batteries using Li ion (Li[sup +]) conductive solid polymer electrolytes composed of solvates of Li salts immobilized in a solid organic polymer matrix. In particular, this invention relates to Li batteries using solid polymer electrolytes derived by immobilizing solvates formed between a Li salt and an aprotic organic solvent (or mixture of such solvents) in poly(vinyl chloride). 3 figures.

  17. Crystallization of lithium borate glasses

    NASA Technical Reports Server (NTRS)

    Goktas, A. A.; Neilson, G. F.; Weinberg, M. C.

    1992-01-01

    The glass-forming ability and crystallization behavior of lithium borate compositions, in the diborate-to-metaborate-range, were studied. In particular, the nature and sequence of formation of crystalline phases and the tendency toward devitrification were investigated as functions of temperature, thermal history and batch composition. It was found that the sequence of crystalline phase formation was sensitive to all of the three latter factors, and it was observed that under certain conditions metastable defect structures of the metaborate can appear.

  18. Aluminum-lithium target behavior

    SciTech Connect

    McDonell, W.R.

    1989-10-01

    Information on physical properties and irradiation behavior of aluminum-lithium target alloys employed for the production of tritium in Savannah River reactors has been reviewed to support development of technology for the New Production Reactor (NPR). Phase compositions and microstructures, thermal conductivity, mechanical properties, and constituent diffusion phenomena of the alloys, established in prior site studies, are presented. Irradiation behavior, including distributions of product tritium and helium and related exposure limits due to swelling and cracking of the target alloys is discussed, along with gas release processes occurring during subsequent product recovery operations. The property review supports designation of the aluminum-lithium alloys as ideally well-suited target materials for low-temperature, tritium-producing reactors, demonstrated over 35 years of Savannah River reactor operation. Low temperature irradiation and reaction with lithium in the alloy promotes tritium retention during reactor exposure, and the aluminum provides a matrix from which the product is readily recovered on heating following irradiation. 33 refs., 26 figs., 8 tabs.

  19. Lithium batteries for pulse power

    SciTech Connect

    Redey, L.

    1990-01-01

    New designs of lithium batteries having bipolar construction and thin cell components possess the very low impedance that is necessary to deliver high-intensity current pulses. The R D and understanding of the fundamental properties of these pulse batteries have reached an advanced level. Ranges of 50--300 kW/kg specific power and 80--130 Wh/kg specific energy have been demonstrated with experimental high-temperature lithium alloy/transition-metal disulfide rechargeable bipolar batteries in repeated 1- to 100-ms long pulses. Other versions are designed for repetitive power bursts that may last up to 20 or 30 s and yet may attain high specific power (1--10 kW/kg). Primary high-temperature Li-alloy/FeS{sub 2} pulse batteries (thermal batteries) are already commercially available. Other high-temperature lithium systems may use chlorine or metal-oxide positive electrodes. Also under development are low-temperature pulse batteries: a 50-kW Li/SOCl{sub 2} primary batter and an all solid-state, polymer-electrolyte secondary battery. Such pulse batteries could find use in commercial and military applications in the near future. 21 refs., 8 figs.

  20. Ether-functionalized ionic liquid electrolytes for lithium-air batteries

    NASA Astrophysics Data System (ADS)

    Nakamoto, Hirofumi; Suzuki, Yushi; Shiotsuki, Taishi; Mizuno, Fuminori; Higashi, Shougo; Takechi, Kensuke; Asaoka, Takahiko; Nishikoori, Hidetaka; Iba, Hideki

    2013-12-01

    Ionic liquids composed of N,N-diethyl-N-methyl-N-(2-methoxyethyl)ammonium (DEME), N-methyl-N-methoxyethylpiperidinium (PP1.1o2) cations functionalized with ethers, N-methyl-N-propylpiperidinium (PP13), and N-butyl-N-methylpyrrolidinium (P14) cations and the bis(trifluoromethanesulfonyl)amide (TFSA) anion are investigated for application as electrolytes in non-aqueous lithium-oxygen (Li-O2) batteries. The PP13-TFSA, P14-TFSA and DEME-TFSA ionic liquids have high oxygen radical stability. A comparison of the lithium supply capacity measured using pulse-gradient spin-echo NMR for 7Li nuclei and the oxygen supply capacity measured using electrochemical methods indicates that the oxygen supply is the rate-limiting step for the generation of lithium-oxygen compounds (LiOx) in these ionic liquids with supporting electrolytes. The DEME-TFSA system has the highest LiOx generation activity among the ionic liquid systems examined. We demonstrate the improved performance (output power, discharge-charge capacity and coulombic efficiency) of a Li-O2 battery using the DEME-TFSA system compared with that using the PP13-TFSA system. The improvements observed for the DEME-TFSA system are attributed to the high LiOx generation properties and lithium ion supply.

  1. A Lithium-Ion Battery with Enhanced Safety Prepared using an Environmentally Friendly Process.

    PubMed

    Mueller, Franziska; Loeffler, Nicholas; Kim, Guk-Tae; Diemant, Thomas; Behm, R Jürgen; Passerini, Stefano

    2016-06-01

    A new lithium-ion battery chemistry is presented based on a conversion-alloying anode material, a carbon-coated Fe-doped ZnO (TMO-C), and a LiNi1/3 Mn1/3 Co1/3 O2 (NMC) cathode. Both electrodes were fabricated using an environmentally friendly cellulose-based binding agent. The performance of the new lithium-ion battery was evaluated with a conventional, carbonate-based electrolyte (ethylene carbonate:diethyl carbonate-1 m lithium hexafluorophosphate, EC:DEC 1 m LiPF6 ) and an ionic liquid (IL)-based electrolyte (N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide-0.2 m lithium bis(trifluoromethanesulfonyl)imide, Pyr14 TFSI 0.2 m LiTFSI), respectively. Galvanostatic charge/discharge tests revealed a reduced rate capability of the TMO-C/Pyr14 TFSI 0.2 m LiTFSI/NMC full-cell compared to the organic electrolyte, but the coulombic efficiency was significantly enhanced. Moreover, the IL-based electrolyte substantially improves the safety of the system due to a higher thermal stability of the formed anodic solid electrolyte interphase and the IL electrolyte itself. While the carbonate-based electrolyte shows sudden degradation reactions, the IL exhibits a slowly increasing heat flow, which does not constitute a serious safety risk. PMID:27159254

  2. Equivalent circuit model analysis on electrochemical impedance spectroscopy of lithium metal batteries

    NASA Astrophysics Data System (ADS)

    Gao, Peng; Zhang, Cuifen; Wen, Guangwu

    2015-10-01

    Lithium metal electrode is pretreated with 1,3-dioxolane or 1,4-dioxane to improve its properties. The components and morphology of the surface films formed in the above two pretreatment liquids are studied using FTIR and SEM respectively. Li-LiCoO2 coin cells are then fabricated and their cycle and discharge performance are tested. It is found that the battery performance is greatly improved by such pretreatment. Interestingly, the 1,4-dioxane pretreatment is more effective than 1,3-dioxolane in improving the lithium metal electrode performance. To explore the mechanism(s) behind, the electrochemical impedance spectroscopy (EIS) is employed and an equivalent circuit model is designed for EIS analysis. The fitting curves are aligned well with the experimental curves, suggesting that the proposed equivalent circuit model is an ideal model for lithium battery. Next, the corresponding relationship between the impedance components and every individual semicircle in the Nyquist curves is inferred theoretically and the result is satisfying. Based on the analysis using this model, we conclude that the structural stability of SEI film is increased and the interfacial compatibility between the lithium substrate and the SEI film is improved by 1,3-dioxolane or 1,4-dioxane pretreatment.

  3. Lithium plating in a commercial lithium-ion battery - A low-temperature aging study

    NASA Astrophysics Data System (ADS)

    Petzl, Mathias; Kasper, Michael; Danzer, Michael A.

    2015-02-01

    The formation of metallic lithium on the negative graphite electrode in a lithium-ion (Li-ion) battery, also known as lithium plating, leads to severe performance degradation and may also affect the cell safety. This study is focused on the nondestructive characterization of the aging behavior during long-term cycling at plating conditions, i.e. low temperature and high charge rate. A commercial graphite/LiFePO4 Li-ion battery is investigated in order to elucidate the aging effects of lithium plating for real-world purposes. It is shown that lithium plating can be observed as a loss of cyclable lithium which affects the capacity balance of the electrodes. In this way, lithium plating counteracts its own occurrence during prolonged cycling. The capacity losses due to lithium plating are therefore decreasing at higher cycle numbers and the capacity retention curve exhibits an inflection point. It is further shown that the observed capacity fade is partly reversible. Electrochemical impedance spectroscopy (EIS) reveals a significant increase of the ohmic cell resistance due to electrolyte consumption during surface film formation on the plated lithium. Additional cell opening provides important quantitative information regarding the thickness of the lithium layer and the corresponding mass of the plated lithium.

  4. Increased Beta Frequency (15-30 Hz) Oscillatory Responses in Euthymic Bipolar Patients Under Lithium Monotherapy.

    PubMed

    Tan, Devran; Özerdem, Ayşegül; Güntekin, Bahar; Atagün, M Ilhan; Tülay, Elif; Karadağ, Figen; Başar, Erol

    2016-04-01

    The effect of lithium on neurocognition is not still fully explored. Brain oscillatory activity is altered in bipolar disorder. We aimed to assess the oscillatory responses of euthymic bipolar patients and how they are affected by lithium monotherapy. Event-related oscillations in response to visual target stimulus during an oddball paradigm in 16 euthymic drug-free and 13 euthymic lithium-treated bipolar patients were compared with 16 healthy controls. The maximum peak-to-peak amplitudes were measured for each subject's averaged beta (15-30 Hz) responses in the 0- to 300-ms time window over frontal (F3, Fz, F4), central (C3, Cz, C4), temporal (T7, T8), temporo-parietal (TP7, TP8), parietal (P3, Pz, P4), and occipital (O1, Oz, O2) areas. Patients under lithium monotherapy had significantly higher beta responses to visual target stimuli than healthy controls (P=.017) and drug-free patients (P=.015). The increase in beta response was observed at all electrode locations, however, the difference was statistically significant for the left (T7; P=.016) and right (T8; P=.031) temporal beta responses. Increased beta responses in drug-free patients and further significant increase in lithium-treated patients may be indicative of a core pathophysiological process of bipolar disorder and how it is affected by lithium. Whether the finding corresponds to lithium's corrective effect on the underlying pathology or to its neurocognitive side effect remains to be further explored. In either case, the finding is a sign that the oscillatory activity may be useful in tracking medication effect in bipolar disorder. PMID:25465436

  5. The observation of damage regions produced by neutron irradiation in lithium-doped silicon solar cells.

    NASA Technical Reports Server (NTRS)

    Ghosh, S.; Sargent, G. A.

    1972-01-01

    Study regions of lattice disorder produced in lithium-doped float-zone melted n/p-type silicon solar cells by irradiation with monoenergetic neutrons at doses between 10 to the 10th and 10 to the 13th per cu cm. The defect regions were revealed by chemically etching the surface of the solar cells and by observing carbon replicas in an electron microscope. It was found that the defect density increased with increasing irradiation dose and increased lithium content, whereas the average defect diameter was found to decrease. From thermal annealing experiments it was found that in the lithium-doped material the defect structure was stable at temperatures between 300 and 1200 K. This was found to be in contrast to the undoped material where at the lowest doses considerable annealing was observed to occur. These results are discussed in terms of the theoretical predictions and models of defect clusters proposed by Gossick (1959) and Crawford and Cleland (1959).

  6. Effects of solutes on thermodynamic activity of tritium in liquid lithium blanket of fusion reactor

    SciTech Connect

    Lyublinski, I.E.; Evtikhin, V.A.; Krassine, V.P.

    1995-10-01

    The study of tritium dissolved in liquid lithium systems containing metallic impurities is of technological interest for tritium removal processes and suppression of the tritium leakages from the blanket in a fusion reactor. The interaction parameter formalism and coordination cluster theory have been used to calculate the tritium activity coefficients in Li-T-Al, Li-T-Mg, Li-T-Si, Li-T-Y and Li-T-La systems. Calculations performed demonstrated that silicon, aluminum and magnesium have no influence on the tritium activity coefficients in dilute lithium solutions within the temperature range 400-800{degree}C, but yttrium and lanthanum may be used to effectively decrease this coefficient in lithium melts. 13 refs., 3 figs., 2 tabs.

  7. Manufacturing of Protected Lithium Electrodes for Advanced Lithium-Air, Lithium-Water & Lithium-Sulfur Batteries

    SciTech Connect

    Visco, Steven J

    2015-11-30

    The global demand for rechargeable batteries is large and growing rapidly. Assuming the adoption of electric vehicles continues to increase, the need for smaller, lighter, and less expensive batteries will become even more pressing. In this vein, PolyPlus Battery Company has developed ultra-light high performance batteries based on its proprietary protected lithium electrode (PLE) technology. The Company’s Lithium-Air and Lithium-Seawater batteries have already demonstrated world record performance (verified by third party testing), and we are developing advanced lithium-sulfur batteries which have the potential deliver high performance at low cost. In this program PolyPlus Battery Company teamed with Corning Incorporated to transition the PLE technology from bench top fabrication using manual tooling to a pre- commercial semi-automated pilot line. At the inception of this program PolyPlus worked with a Tier 1 battery manufacturing engineering firm to design and build the first-of-its-kind pilot line for PLE production. The pilot line was shipped and installed in Berkeley, California several months after the start of the program. PolyPlus spent the next two years working with and optimizing the pilot line and now produces all of its PLEs on this line. The optimization process successfully increased the yield, throughput, and quality of PLEs produced on the pilot line. The Corning team focused on fabrication and scale-up of the ceramic membranes that are key to the PLE technology. PolyPlus next demonstrated that it could take Corning membranes through the pilot line process to produce state-of-the-art protected lithium electrodes. In the latter part of the program the Corning team developed alternative membranes targeted for the large rechargeable battery market. PolyPlus is now in discussions with several potential customers for its advanced PLE-enabled batteries, and is building relationships and infrastructure for the transition into manufacturing. It is likely

  8. Lithium barium titanate: A stable lithium storage material for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Lin, Xiaoting; Li, Peng; Shao, Lianyi; Shui, Miao; Wang, Dongjie; Long, Nengbing; Ren, Yuanlong; Shu, Jie

    2015-03-01

    A series of Li2BaTi6O14 samples are synthesized by a traditional solid-state method by calcining at different temperatures from 800 to 1000 °C. Structural analysis and electrochemical evaluation suggest that the optimum calcining temperature for Li2BaTi6O14 is 950 °C. The Li2BaTi6O14 calcined at 950 °C exhibits a high purity phase with an excellent reversible capacity of 145.7 mAh g-1 for the first cycle at a current density of 50 mA g-1. After 50 cycles, the reversible capacity can be maintained at 137.7 mAh g-1, with the capacity retention of 94.51%. Moreover, this sample also shows outstanding rate property with a high reversible capacity of 118 mAh g-1 at 300 mA g-1. The excellent electrochemical performance is attributed to the stable lithium storage host structure, decreased electrochemical resistance and improved lithium-ion diffusion coefficient. In-situ and ex-situ structure analysis shows that the electrochemical reaction of Li2BaTi6O14 with Li is a highly reversible lithiation-delithiation process. Therefore, Li2BaTi6O14 may be a promising alternative anode material for lithium-ion batteries.

  9. Characterization of reactive tracers for C-wells field experiments 1: Electrostatic sorption mechanism, lithium

    SciTech Connect

    Fuentes, H.R.; Polzer, W.L.; Essington, E.H.; Newman, B.D.

    1989-11-01

    Lithium (Li{sup +}) was introduced as lithium bromide (LiBr), as a retarded tracer for experiments in the C-wells complex at Yucca Mountain, Nevada Test Site, Nevada. The objective was to evaluate the potential of lithium to sorb predominately by physical forces. lithium was selected as a candidate tracer on the basis of high solubility, good chemical and biological stability, and relatively low sorptivity; lack of bioaccumulation and exclusion as a priority pollutant in pertinent federal environmental regulations; good analytical detectability and low natural background concentrations; and a low cost Laboratory experiments were performed with suspensions of Prow Pass cuttings from drill hole UE-25p{number_sign}1 at depths between 549 and 594 m in J-13 water at a pH of approximately 8 and in the temperature range of 25{degree}C to 45{degree}C. Batch equilibrium and kinetics experiments were performed; estimated thermodynamic constants, relative behavior between adsorption and desorption, and potentiometric studies provided information to infer the physical nature of lithium sorption.

  10. Irradiation of lithium zirconate pebble-bed in BEATRIX-II Phase II

    NASA Astrophysics Data System (ADS)

    Verrall, R. A.; Slagle, O. D.; Hollenberg, G. W.; Kurasawa, T.; Sullivan, J. D.

    1994-09-01

    BEATRIX-II was an in-situ tritium recovery experiment that was designed to characterize the behavior of lithium ceramics irradiated to a high burnup, and to assess their suitability for use in a fusion reactor blanket. This paper describes the results from the vented canister containing 29.47 g of lithium zirconate spheres packed in a bed 13.2 mm OD, 2.3 mm ID and 103 mm long. The enriched lithium spheres (85% 6Li) were irradiated to a burnup of 5.2% (total lithium) in a steep temperature profile -400°C edge, 1100°C center. The sweep gas was He-O.1% H 2, with systematic tests using alternate compositions: He-0.01% H 2 and pure He (maximum duration 8 days). Tritium recovery decreased slightly at lower H 2 concentrations; for example, the buildup of inventory during a 4-day test in pure He was 0.8 Ci, approximately 6.5% of the tritium generated in the lithium zirconate during that period. The steadiness of the bed central temperature and the tritium release rate, together with low moisture release indicate good performance of the zirconate bed.

  11. Improved analysis of picomole quantities of lithium, sodium, and potassium in biological fluids.

    PubMed

    Shalmi, M; Kibble, J D; Day, J P; Christensen, P; Atherton, J C

    1994-10-01

    The analysis of picomolar lithium, sodium, and potassium by electrothermal atomic absorption spectrophotometry was studied using a Perkin-Elmer Zeeman 3030 spectrophotometer. With ordinary pyrolytically coated graphite tubes, a number of interference effects associated with the sample matrix were observed. In particular, the lithium and potassium absorbance signal was depressed by chloride, an effect shown to be dependent on the preatomization heating. When an in situ tantalum-coated atomization surface was used, matrix interferences observed in lithium and potassium analyses were abolished, and the linear range for the potassium assay was extended. Technical difficulties encountered during sodium analysis at the primary wavelength were effectively circumvented by analysis at a less-sensitive wavelength (303.3 nm), at which tantalum coating also prevented significant chloride interference. The improved microanalyses were employed to reevaluate the handling of lithium, sodium, and potassium along the proximal convoluted tubule (PCT) of the anesthetized rat. The average tubular fluid-to-plasma concentration ratios for lithium [(TF/P)Li] and sodium [(TF/P)Na] were 1.13 +/- 0.08, n = 26, and 0.99 +/- 0.07 (n = 26), respectively. The tubular fluid-to-plasma ultrafiltrate concentration ratio for potassium [(TF/UF)K] was 1.09 +/- 0.05 (n = 13). Ratios did not change significantly with puncture site along the PCT for any of the ions. (TF/P)Li and (TF/UF)K were significantly greater than (TF/P)Na, indicating that lithium and potassium reabsorption do not directly parallel sodium reabsorption in the PCT. PMID:7943365

  12. Neutron Depth Profiling benchmarking and analysis of applications to lithium ion cell electrode and interfacial studies research

    NASA Astrophysics Data System (ADS)

    Whitney, Scott M.

    at different current rates. The results conclude that NDP is a valuable asset to the characterization of the Solid Electrolyte Interface (SEI) growth as a function of storage time. The NDP results were able to conclude that LiFePO4 cell anodes have a factor of 21 times slower rate of SEI growth than anodes from LiFePSO 4. This indicates that the capacity fade of the LiFePO4 cell will be less than that of the LiFePSO4 cell due to storage at 50°C. Furthermore, NDP was able to conclude that cycling of cells had little effect on the lithium concentration within the cathode materials. The lithium concentration was found to be uniform throughout the first 10 mum of the LiFePO4 and LiNi1/3Mn1/3Co1/3O 2 cathodes. These measurements agreed with the initial hypothesis. However, NDP analysis of cells charged at different current rates found that lithium was concentrating within the first 2 mum of the cathode's surface at the electrode-electrolyte interface. This was an unexpected conclusion, but the results also concluded that effect of the lithium concentrating near the surface is amplified by charging the cells at higher current rates. The ultimate conclusion of this research was that NDP is capable of providing invaluable insight to the behavior of lithium within the electrodes of lithium ion cells. It is the author's conclusion that NDP may be most useful in the investigation of SEI layers and their variation according to electrode composition, electrolyte compositions, and the conditions, such as temperature, to which the cells are exposed.

  13. Lithium-mediated protection against ethanol neurotoxicity.

    PubMed

    Luo, Jia

    2010-01-01

    Lithium has long been used as a mood stabilizer in the treatment of manic-depressive (bipolar) disorder. Recent studies suggest that lithium has neuroprotective properties and may be useful in the treatment of acute brain injuries such as ischemia and chronic neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease and amyotrophic lateral sclerosis. One of the most important neuroprotective properties of lithium is its anti-apoptotic action. Ethanol is a neuroteratogen and fetal alcohol spectrum disorders (FASD) are caused by maternal ethanol exposure during pregnancy. FASD is the leading cause of mental retardation. Ethanol exposure causes neuroapoptosis in the developing brain. Ethanol-induced loss of neurons in the central nervous system underlies many of the behavioral deficits observed in FASD. Excessive alcohol consumption is also associated with Wernicke-Korsakoff syndrome and neurodegeneration in the adult brain. Recent in vivo and in vitro studies indicate that lithium is able to ameliorate ethanol-induced neuroapoptosis. Lithium is an inhibitor of glycogen synthase kinase 3 (GSK3) which has recently been identified as a mediator of ethanol neurotoxicity. Lithium's neuroprotection may be mediated by its inhibition of GSK3. In addition, lithium also affects many other signaling proteins and pathways that regulate neuronal survival and differentiation. This review discusses the recent evidence of lithium-mediated protection against ethanol neurotoxicity and potential underlying mechanisms. PMID:20661453

  14. Jeff Chamberlain on Lithium-air batteries

    SciTech Connect

    Chamberlain, Jeff

    2009-01-01

    Jeff Chamberlain, technology transfer expert at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries. More information at http://www.anl.gov/Media_Center/News/2009/batteries090915.html

  15. Convective Stirring in Liquid Lithium (LTX)

    NASA Astrophysics Data System (ADS)

    Cassin, Margaret; Kearns, Eugene; Majeski, Richard

    2011-10-01

    LTX is a spherical tokamak with R=0.4 m, a=0.26 m, and elongation=1.5. LTX has a heated (300 - 400 C) liner, designed to be coated with lithium. During experiments in 2010, oxidation of the lithium surface was observed when the liner was heated to 300 C, above the melting point of lithium (182 C). A pumping system is being installed to absorb and pump background gasses which react with lithium, similar to a getter pump, using liquid and solid lithium. Lithium will be loaded into a yttria crucible heated from below by a small, HeatWave model TB175 300W cartridge heater to produce convective currents in order to maintain a clean lithium surface and decrease the time for oxide formation. This system was tested in an argon glove box using a copper heat concentrator - instead of the HeatWave vacuum-compatible unit. Infrared thermometry and thermocouples were used to monitor the surface temperature of the molten lithium, and convective flow patterns. A 200 FPS high speed camera was also employed to monitor flows, using the motion of residual oxide patches. Results from the measurements will be presented. Supported by US DOE contract DE-AC02-09CH11466.

  16. Neuroleptic malignant syndrome and lithium carbonate.

    PubMed Central

    Fava, S; Galizia, A C

    1995-01-01

    The authors describe a case of neuroleptic malignant syndrome that occurred in a patient on amitriptyline and lithium carbonate. They suggest that lithium-antidepressant combination can precipitate this syndrome. Intestinal pseudo-obstruction was a prominent feature in the patient in this study. PMID:7647084

  17. Lithium Ion Battery Design and Safety

    NASA Technical Reports Server (NTRS)

    Au, George; Locke, Laura

    2001-01-01

    This viewgraph presentation makes several recommendations to ensure the safe and effective design of Lithium ion cell batteries. Large lithium ion cells require pressure switches and small cells require pressure disconnects and other safety devices with the ability to instantly interrupt flow. Other suggestions include specifications for batteries and battery chargers.

  18. Anode for rechargeable ambient temperature lithium cells

    NASA Technical Reports Server (NTRS)

    Huang, Chen-Kuo (Inventor); Surampudi, Subbarao (Inventor); Attia, Alan I. (Inventor); Halpert, Gerald (Inventor)

    1994-01-01

    An ambient room temperature, high density, rechargeable lithium battery includes a Li(x)Mg2Si negative anode which intercalates lithium to form a single crystalline phase when x is up to 1.0 and an amorphous phase when x is from 1 to 2.0. The electrode has good reversibility and mechanical strength after cycling.

  19. Jeff Chamberlain on Lithium-air batteries

    ScienceCinema

    Chamberlain, Jeff

    2013-04-19

    Jeff Chamberlain, technology transfer expert at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries. More information at http://www.anl.gov/Media_Center/News/2009/batteries090915.html

  20. TREATMENT OF MANIA WITH CARBAMAZEPINE AND LITHIUM

    PubMed Central

    Desai, Nimesh G.; Gangadhar, B.N.; Pradhan, N.; Channabasavanna, S.M.

    1983-01-01

    SUMMARY A young manic patient who showed poor response to lithium, neuroleptics and ECT and developed severe cxtrapyramidal side effects restricting the use of neuroleptics in high doses; showed marked clinical improvement with a combination of carbamazepine and lithium with sustained recovery. The case reported to illustrate the possible synergistic action suggested earlier, encouraging the authors to take up a crossover trial. PMID:21847260

  1. Characterization of prototype secondary lithium battery

    NASA Technical Reports Server (NTRS)

    Somoano, R.

    1980-01-01

    The performance characteristics of ambient temperature secondary lithium batteries were determined through continuous cycle tests with periodic current and voltage measurements. Cycle life of the lithium anode was found to be an important problem area as was the formation of dentrite breakage and subsequent shorting. Energy density was increased by using more efficient cathode structures.

  2. A lithium-oxygen battery based on lithium superoxide

    NASA Astrophysics Data System (ADS)

    Lu, Jun; Jung Lee, Yun; Luo, Xiangyi; Chun Lau, Kah; Asadi, Mohammad; Wang, Hsien-Hau; Brombosz, Scott; Wen, Jianguo; Zhai, Dengyun; Chen, Zonghai; Miller, Dean J.; Sub Jeong, Yo; Park, Jin-Bum; Zak Fang, Zhigang; Kumar, Bijandra; Salehi-Khojin, Amin; Sun, Yang-Kook; Curtiss, Larry A.; Amine, Khalil

    2016-01-01

    Batteries based on sodium superoxide and on potassium superoxide have recently been reported. However, there have been no reports of a battery based on lithium superoxide (LiO2), despite much research into the lithium-oxygen (Li-O2) battery because of its potential high energy density. Several studies of Li-O2 batteries have found evidence of LiO2 being formed as one component of the discharge product along with lithium peroxide (Li2O2). In addition, theoretical calculations have indicated that some forms of LiO2 may have a long lifetime. These studies also suggest that it might be possible to form LiO2 alone for use in a battery. However, solid LiO2 has been difficult to synthesize in pure form because it is thermodynamically unstable with respect to disproportionation, giving Li2O2 (refs 19, 20). Here we show that crystalline LiO2 can be stabilized in a Li-O2 battery by using a suitable graphene-based cathode. Various characterization techniques reveal no evidence for the presence of Li2O2. A novel templating growth mechanism involving the use of iridium nanoparticles on the cathode surface may be responsible for the growth of crystalline LiO2. Our results demonstrate that the LiO2 formed in the Li-O2 battery is stable enough for the battery to be repeatedly charged and discharged with a very low charge potential (about 3.2 volts). We anticipate that this discovery will lead to methods of synthesizing and stabilizing LiO2, which could open the way to high-energy-density batteries based on LiO2 as well as to other possible uses of this compound, such as oxygen storage.

  3. A lithium-oxygen battery based on lithium superoxide.

    PubMed

    Lu, Jun; Lee, Yun Jung; Luo, Xiangyi; Lau, Kah Chun; Asadi, Mohammad; Wang, Hsien-Hau; Brombosz, Scott; Wen, Jianguo; Zhai, Dengyun; Chen, Zonghai; Miller, Dean J; Jeong, Yo Sub; Park, Jin-Bum; Fang, Zhigang Zak; Kumar, Bijandra; Salehi-Khojin, Amin; Sun, Yang-Kook; Curtiss, Larry A; Amine, Khalil

    2016-01-21

    Batteries based on sodium superoxide and on potassium superoxide have recently been reported. However, there have been no reports of a battery based on lithium superoxide (LiO2), despite much research into the lithium-oxygen (Li-O2) battery because of its potential high energy density. Several studies of Li-O2 batteries have found evidence of LiO2 being formed as one component of the discharge product along with lithium peroxide (Li2O2). In addition, theoretical calculations have indicated that some forms of LiO2 may have a long lifetime. These studies also suggest that it might be possible to form LiO2 alone for use in a battery. However, solid LiO2 has been difficult to synthesize in pure form because it is thermodynamically unstable with respect to disproportionation, giving Li2O2 (refs 19, 20). Here we show that crystalline LiO2 can be stabilized in a Li-O2 battery by using a suitable graphene-based cathode. Various characterization techniques reveal no evidence for the presence of Li2O2. A novel templating growth mechanism involving the use of iridium nanoparticles on the cathode surface may be responsible for the growth of crystalline LiO2. Our results demonstrate that the LiO2 formed in the Li-O2 battery is stable enough for the battery to be repeatedly charged and discharged with a very low charge potential (about 3.2 volts). We anticipate that this discovery will lead to methods of synthesizing and stabilizing LiO2, which could open the way to high-energy-density batteries based on LiO2 as well as to other possible uses of this compound, such as oxygen storage. PMID:26751057

  4. Steady-state pharmacokinetics of lithium carbonate in healthy subjects.

    PubMed Central

    Hunter, R

    1988-01-01

    1. The pharmacokinetics of lithium in six healthy volunteers stabilised on lithium were investigated and appropriate pharmacokinetic parameters calculated. 2. The results illustrate important differences in single and multiple dose lithium pharmacokinetics; the implications for minimising lithium-induced renal damage are discussed. PMID:3129009

  5. 49 CFR 173.185 - Lithium cells and batteries.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) includes both lithium metal and lithium ion chemistries. Equipment means the device or apparatus for which... ion cells or batteries packed with the equipment must be packaged in accordance with paragraph (b)(3... 20 Wh for a lithium ion cell or 100 Wh for a lithium ion battery. After December 31, 2015,...

  6. 76 FR 53056 - Outbound International Mailings of Lithium Batteries

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-25

    ... requirements established for mailpieces containing equipment with lithium metal or lithium-ion batteries in... exposure of the contents during normal handling in the mail. 135.63 Secondary Lithium-ion (Rechargeable) Cells and Batteries. Small consumer-type lithium-ion cells and batteries like those used to power...

  7. 77 FR 21714 - Hazardous Materials: Transportation of Lithium Batteries

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-11

    ... Safety Administration, telephone (202) 366-1074. Background On January 11, 2010 (75 FR 1302), PHMSA, in... Assessment of Bulk-Packed, Rechargeable Lithium-Ion Cells in Transport Category Aircraft; April 2006 (DOT/FAA... configurations of lithium batteries: 1. Lithium ion batteries (PI 965). 2. Lithium ion batteries packed...

  8. Stable and high-rate overcharge protection for rechargeable lithium batteries.

    PubMed

    Wang, Bin; Richardson, Thomas J; Chen, Guoying

    2013-05-14

    Rechargeable lithium or lithium-ion cells can be overcharge-protected by an electroactive polymer composite separator. The use of non-woven fibrous membranes instead of conventional microporous membranes as the composite substrates allowed better distribution of the electroactive polymer, which led to improved utilization and a 40-fold increase in sustainable current density. For the first time, stable overcharge protection for hundreds of cycles was demonstrated in several cell chemistries, including LiNi1/3Co1/3Mn1/3O2, LiFePO4, and spinel Li1.05Mn1.95O4 half-cells. Protection at a charging rate as high as 5 C was achieved at a steady state cell potential below 4.85 V. PMID:23545568

  9. Impact of tripropyl borate on life and impedance of lithium-ion cells.

    SciTech Connect

    Chen, Z.; Liu, J.; Amine, K.; Chemical Sciences and Engineering Division

    2008-03-10

    Tripropyl borate was investigated as a low cost anion receptor to improve the performance of lithium-ion cells. The impact of tripropyl borate was examined using lithium-ion cells comprising a negative electrode of mesocarbon microbeads, a positive electrode of Li{sub 1.1}[Mn{sub 1/3}Ni{sub 1/3}Co{sub 1/3}]{sub 0.9}O{sub 2} and an LiPF{sub 6}-based electrolyte. It was found that the performance of the cells was improved by adding a proper amount of tripropyl borate ({le} 0.1 wt%) to the LiPF{sub 6}-based electrolyte. However, a small amount of gas was observed from cells with high contents of tripropyl borate when cycled at 55 C, and as a result, the performance of the cells deteriorated.

  10. Lithium ion batteries based on nanoporous silicon

    DOEpatents

    Tolbert, Sarah H.; Nemanick, Eric J.; Kang, Chris Byung-Hwa

    2015-09-22

    A lithium ion battery that incorporates an anode formed from a Group IV semiconductor material such as porous silicon is disclosed. The battery includes a cathode, and an anode comprising porous silicon. In some embodiments, the anode is present in the form of a nanowire, a film, or a powder, the porous silicon having a pore diameters within the range between 2 nm and 100 nm and an average wall thickness of within the range between 1 nm and 100 nm. The lithium ion battery further includes, in some embodiments, a non-aqueous lithium containing electrolyte. Lithium ion batteries incorporating a porous silicon anode demonstrate have high, stable lithium alloying capacity over many cycles.

  11. A preliminary deposit model for lithium brines

    USGS Publications Warehouse

    Bradley, Dwight; Munk, LeeAnn; Jochens, Hillary; Hynek, Scott; Labay, Keith A.

    2013-01-01

    This report is part of an effort by the U.S. Geological Survey to update existing mineral deposit models and to develop new ones. The global transition away from hydrocarbons toward energy alternatives increases demand for many scarce metals. Among these is lithium, a key component of lithium-ion batteries for electric and hybrid vehicles. Lithium brine deposits account for about three-fourths of the world’s lithium production. Updating an earlier deposit model, we emphasize geologic information that might directly or indirectly help in exploration for lithium brine deposits, or for assessing regions for mineral resource potential. Special attention is given to the best-known deposit in the world—Clayton Valley, Nevada, and to the giant Salar de Atacama, Chile.

  12. Structure of lithium-doped polyacetylene

    NASA Astrophysics Data System (ADS)

    Murthy, N. S.; Shacklette, L. W.; Baughman, R. H.

    1989-12-01

    A trigonal structure with three polymer chains per lithium column is proposed for lithium-doped polyacetylene. A calculation of the x-ray diffraction profile, using the unit-cell dimension and the lithium concentration as the only variables, is in good agreement with the observed data. The proposed structure optimizes the electrostatic interactions by maximizing both the Li+-Li+ separations and the coordination of negatively charged carbons and positively charged lithiums. Unlike the tetragonal lattice found in polyacetylene complexed with larger alkali-metal ions (K+, Rb+, and Cs+), the trigonal structure permits the undoped and the doped phases to coexist without any significant lattice mismatch at the boundary between the two phases. While the chain axis expands by ~1% upon doping with lithium, the projected area per chain remains essentially unchanged.

  13. Chemical feasibility of lithium as a matrix for structural composites

    NASA Technical Reports Server (NTRS)

    Swann, R. T.; Esterling, D. M.

    1984-01-01

    The chemical compatibility of lithium with tows of carbon and aramid fibers and silicon carbide and boron monofilaments was investigated by encapsulating the fibers in liquid lithium and also by sintering. The lithium did not readily wet the various fibers. In particular, very little lithium infiltration into the carbon and aramid tows was achieved and the strength of the tows was seriously degraded. The strength of the boron and silicon carbide monofilaments, however, was not affected by the liquid lithium. Therefore lithium is not feasible as a matrix for carbon and aramid fibers, but a composite containing boron or silicon carbide fibers in a lithium matrix may be feasible for specialized applications.

  14. Decomposition of lithium amide and imide films on nickel

    NASA Astrophysics Data System (ADS)

    Engbæk, Jakob; Nielsen, Gunver; Nielsen, Jane H.; Chorkendorff, Ib

    2007-02-01

    Thin films of lithium hydride, lithium amide and lithium imide were grown from lithium and ammonia under controlled conditions in an ultra high vacuum chamber. By making thin films instead of bulk or powder samples, it was possible to study the stability and the release of hydrogen without influence of transport phenomena. Surprisingly, lithium amide and lithium imide were seen to decompose at higher temperatures than lithium hydride. Furthermore, it was seen that hydrogen reversibly could be removed by heat treatment and subsequently refilled.

  15. Lithium Insertion Chemistry of Some Iron Vanadates

    SciTech Connect

    Patoux, Sebastien; Richardson, Thomas J.

    2007-02-02

    Lithium insertion into various iron vanadates has been investigated. Fe{sub 2}V{sub 4}O{sub 13} and Fe{sub 4}(V{sub 2}O{sub 7}){sub 3} {center_dot} 3H{sub 2}O have discharge capacities approaching 200 mAh/g above 2.0 V vs. Li{sup +}/Li. Although the potential profiles change significantly between the first and subsequent discharges, capacity retention is unexpectedly good. Other phases, structurally related to FeVO{sub 4}, containing copper and/or sodium ions were also studied. One of these, {beta}-Cu{sub 3}Fe{sub 4}(VO{sub 4}){sub 6}, reversibly consumes almost 10 moles of electrons per formula unit (ca. 240 mAh g{sup -1}) between 3.6 and 2.0 V vs. Li{sup +}/Li, in a non-classical insertion process. It is proposed that both copper and vanadium are electrochemically active, whereas iron(III) reacts to form LiFe{sup III}O{sub 2}. The capacity of the Cu{sub 3}Fe{sub 4}(VO{sub 4}){sub 6}/Li system is nearly independent of cycling rate, stabilizing after a few cycles at 120-140 mAh g{sup -1}. Iron vanadates exhibit better capacities than their phosphate analogues, whereas the latter display more constant discharge potentials.

  16. Stable Lithium Deposition Generated from Ceramic-Cross-Linked Gel Polymer Electrolytes for Lithium Anode.

    PubMed

    Tsao, Chih-Hao; Hsiao, Yang-Hung; Hsu, Chun-Han; Kuo, Ping-Lin

    2016-06-22

    In this work, a composite gel electrolyte comprising ceramic cross-linker and poly(ethylene oxide) (PEO) matrix is shown to have superior resistance to lithium dendrite growth and be applicable to gel polymer lithium batteries. In contrast to pristine gel electrolyte, these nanocomposite gel electrolytes show good compatibility with liquid electrolytes, wider electrochemical window, and a superior rate and cycling performance. These silica cross-linkers allow the PEO to form the lithium ion pathway and reduce anion mobility. Therefore, the gel not only features lower polarization and interfacial resistance, but also suppresses electrolyte decomposition and lithium corrosion. Further, these nanocomposite gel electrolytes increase the lithium transference number to 0.5, and exhibit superior electrochemical stability up to 5.0 V. Moreover, the lithium cells feature long-term stability and a Coulombic efficiency that can reach 97% after 100 cycles. The SEM image of the lithium metal surface after the cycling test shows that the composite gel electrolyte with 20% silica cross-linker forms a uniform passivation layer on the lithium surface. Accordingly, these features allow this gel polymer electrolyte with ceramic cross-linker to function as a high-performance lithium-ionic conductor and reliable separator for lithium metal batteries. PMID:27247991

  17. Investigating the First-Cycle Irreversibility of Lithium Metal Oxide Cathodes for Li Batteries

    SciTech Connect

    Kang,S.; Yoon , W.; Nam, K.; Yang, X.; Abraham, D.

    2008-01-01

    Layered lithium metal oxide cathodes typically exhibit irreversibility during the first cycle in lithium cells when cycled in conventional voltage ranges (e.g., 3-4.3 V vs. Li+/Li). In this work, we have studied the first-cycle irreversibility of lithium cells containing various layered cathode materials using galvanostatic cycling and in situ synchrotron X-ray diffraction. When cycled between 3.0 and 4.3 V vs. Li+/Li, the cells containing LiCoO2, LiNi0.8Co0.15Al0.05O2, and Li1.048(Ni1/3Co1/3Mn1/3)0.952O2 as cathodes showed initial coulombic efficiencies of 98.0, 87.0, and 88.6%, respectively, at relatively slow current (8 mA/g). However, the 'lost capacity' could be completely recovered by discharging the cells to low voltages (<2 V vs Li+/Li). During this deep discharge, the same cells exhibited voltage plateaus at 1.17, 1.81, and 1.47 V, respectively, which is believed to be associated with formation of a Li2MO2-like phase (M = Ni, Co, Mn) on the oxide particle surface due to very sluggish lithium diffusion in LieMO2 with {var_epsilon}{yields} 1 (i.e., near the end of discharge). The voltage relaxation curve and in situ X-ray diffraction patterns, obtained from a Li/Li1.048(Ni1/3Co1/3Mn1/3)0.952O2 cell, showed that the oxide cathode reversibly returned to its original state [i.e., Li1.048(Ni1/3Co1/3Mn1/3)0.952O2] during relaxation following the deep discharge to achieve 100% cycle efficiency.

  18. Process for recovering tritium from molten lithium metal

    DOEpatents

    Maroni, Victor A.

    1976-01-01

    Lithium tritide (LiT) is extracted from molten lithium metal that has been exposed to neutron irradiation for breeding tritium within a thermonuclear or fission reactor. The extraction is performed by intimately contacting the molten lithium metal with a molten lithium salt, for instance, lithium chloride - potassium chloride eutectic to distribute LiT between the salt and metal phases. The extracted tritium is recovered in gaseous form from the molten salt phase by a subsequent electrolytic or oxidation step.

  19. Electrophoretic lithium iron phosphate/reduced graphene oxide composite for lithium ion battery cathode application

    NASA Astrophysics Data System (ADS)

    Huang, Yuan; Liu, Hao; Lu, Yi-Chun; Hou, Yanglong; Li, Quan

    2015-06-01

    A binder/additive free composite electrode of lithium iron phosphate/reduced graphene oxide with ultrahigh lithium iron phosphate mass ratio (91.5 wt% of lithium iron phosphate) is demonstrated using electrophoresis. The quasi-spherical lithium iron phosphate particles are uniformly connected to and/or wrapped by three-dimensional networks of reduced graphene oxide nanosheets, with intimate contact formed between the two. Enhanced capacity is achieved in the electrophoretic composite cathode, when compared to either the conventional one or composite cathode formed by mechanically mixing lithium iron phosphate and reduced graphene oxide. The present methodology is simple and does not disturb the active material growth process. It can be generally applied to a variety of active material systems for both cathode and anode applications in lithium ion batteries.

  20. Lithium protects ethanol-induced neuronal apoptosis

    SciTech Connect

    Zhong Jin . E-mail: jizhong@iupui.edu; Yang Xianlin; Yao Weiguo; Lee Weihua

    2006-12-01

    Lithium is widely used for the treatment of bipolar disorder. Recent studies have demonstrated its neuroprotective effect. Ethanol is a potent neurotoxin that is particularly harmful to the developing nervous system. In this study, we evaluated lithium's neuroprotection against ethanol-induced apoptosis. Transient exposure of infant mice to ethanol caused apoptotic cell death in brain, which was prevented significantly by administering a low dose of lithium 15 min later. In cultured cerebellar granule neurons, ethanol-induced apoptosis and activation of caspase-3/9, both of which were prevented by lithium. However, lithium's protection is not mediated by its commonly known inhibition of glycogen synthase3{beta}, because neither ethanol nor lithium has significant effects on the phosphorylation of Akt (ser473) or GSK3{beta} (ser9). In addition, the selective GSK-3{beta} inhibitor SB-415286 was unable to prevent ethanol-induced apoptosis. These data suggest lithium may be used as a potential preventive measure for ethanol-induced neurological deficits.

  1. Lithium Manganese Silicate Positive Electrode Material

    NASA Astrophysics Data System (ADS)

    Yang, Qiong

    As the fast development of the electronic portable devices and drastic fading of fossil energy sources. The need for portable secondary energy sources is increasingly urgent. As a result, lithium ion batteries are being investigated intensely to meet the performance requirements. Among various electrode materials, the most expensive and capacity limiting component is the positive materials. Based on this, researches have been mostly focused on the development of novel cathode materials with high capacity and energy density and the lithium transition metal orthosilicates have been identified as possible high performance cathodes. Here in, we report the synthesis of a kind of lithium transition metal orthosilicates electrode lithium manganese silicate. Lithium manganese silicate has the advantage of high theoretical capacity, low cost raw material and safety. In this thesis, lithium manganese silicate are prepared using different silicon sources. The structure of silicon sources preferred are examined. Nonionic block copolymers surfactant, P123, is tried as carbon source and mophology directing agent. Lithium manganese silicate's performances are improved by adding P123.

  2. A Molecular Model for Lithium's Bioactive Form.

    PubMed

    Briggs, Katharine T; Giulian, Gary G; Li, Gong; Kao, Joseph P Y; Marino, John P

    2016-07-26

    Lithium carbonate, a drug for the treatment of bipolar disorder, provides mood stability to mitigate recurrent episodes of mania and/or depression. Despite its long-term and widespread use, the mechanism by which lithium acts to elicit these psychological changes has remained unknown. Using nuclear magnetic resonance (NMR) methods, in this study we characterized the association of lithium with adenosine triphosphate (ATP) and identified a bimetallic (Mg·Li) ATP complex. Lithium's affinity to form this complex was found to be relatively high (Kd ∼1.6 mM) compared with other monovalent cations and relevant, considering lithium dosing and physiological concentrations of Mg(2+) and ATP. The ATP·Mg·Li complex reveals, for the first time, to the best of our knowledge, that lithium can associate with magnesium-bound phosphate sites and then act to modulate purine receptor activity in neuronal cells, suggesting a molecular mode for in vivo lithium action. PMID:27463132

  3. JPL lithium doped solar cell development program

    NASA Technical Reports Server (NTRS)

    Berman, P. A.

    1972-01-01

    One of the most significant problems encountered in the use of silicon solar cells in space is the sensitivity of the device to electron and proton radiation exposure. The p-diffused-into-n-base solar cells were replaced with the more radiation tolerant n-diffused-into-p-base solar cells. Another advancement in achieving greater radiation tolerance was the discovery that the addition of lithium to n-base silicon resulted in what appeared to be annealing of radiation-induced defects. This phenomenon is being exploited to develop a high efficiency radiation resistant lithium-doped solar cell. Lithium-doped solar cells fabricated from oxygen-lean and oxygen-rich silicon were obtained with average initial efficiencies of 11.9% at air mass zero and 28 C, as compared to state-of-the-art n-p cells fabricated from 10 ohm cm silicon with average efficiencies of 11.3% under similar conditions. Lithium-doped cells demonstrated the ability to withstand three to five times the fluence of 1-MeV electrons before degrading to a power equivalent to state-of-the-art solar cells. The principal investigations are discussed with respect to fabrication of high efficiency radiation resistant lithium-doped cells, including starting material, p-n junction diffusion, lithium source introduction, and lithium diffusion.

  4. Apollo 13 LiOH canister breakthrough test

    NASA Technical Reports Server (NTRS)

    Leblanc, J. C.

    1970-01-01

    The Apollo 13 lithium hydroxide canister test was conducted to evaluate emergency measures designed to enable the Apollo 13 crew to use command module lithium hydroxide canisters in the lunar module. The test verified the effectiveness of the emergency system and established that the canisters in the command module would provide ample carbon dioxide removal for the return of the Apollo 13 crew. The time interval between canister changes on the flight was also determined in the test. This reduced power demand on the lunar module by eliminating the need for telemetry in determining canister replacement times. Details of the canister modifications were relayed to the flight crew and a replica of the test system was assembled in the flight vehicle. Graphs of the parameters which were measured during the simulation are presented.

  5. High Performance Discharges in the Lithium Tokamak eXperiment (LTX) with Liquid Lithium Walls

    NASA Astrophysics Data System (ADS)

    Schmitt, John

    2014-10-01

    The possibility of a liquid metal first wall for a fusion reactor has been extensively discussed. Small-area liquid lithium limiters and divertor targets have been installed in tokamaks, but no confinement device has ever operated with a large-area liquid lithium wall. Here we report the first-ever successful operation of a tokamak with a large area (2 m2, or 40% of the total plasma surface area) liquid lithium wall in the Lithium Tokamak eXperiment (LTX). These results were obtained with a new, electron beam-based lithium evaporation system, which can deposit a lithium coating on the hot (300 C) wall of LTX in a five-minute period. Preliminary analyses of diamagnetic and other data for discharges operated with a liquid lithium wall indicate that confinement times increased by 10 × compared to discharges with helium-dispersed solid lithium coatings. Ohmic confinement times exceeded ITER98P(y,2) scaling by up to a factor of four. LTX lacks auxiliary heating, so these confinement improvements represent changes in electron confinement. Spectroscopic analysis of the discharges using the John Hopkins University transmission grating extreme ultraviolet spectrometer indicates that oxygen levels in the discharges run against liquid walls were significantly reduced compared to discharges operated against solid lithium walls. This differs strongly from earlier trials of molten lithium walls in LTX, which showed evidence for strong oxygen influx from walls operated at similar temperatures. At present, the Thomson scattering system is undergoing upgrades and realignment, after which confinement times obtained with magnetic diagnostics will be compared with kinetic measurements. A second electron beam will be installed to extend liquid lithium wall operation to 4 m2 coverage, or >80% of the total plasma surface area. Results with expanded liquid lithium wall area will be presented. Supported by US DOE Contracts DE-AC02-09CH11466 and DE-AC52-07NA27344.

  6. Lithium D-cell study

    NASA Technical Reports Server (NTRS)

    Size, P.; Takeuchi, Esther S.

    1993-01-01

    The purpose of this contract is to evaluate parametrically the effects of various factors including the electrolyte type, electrolyte concentration, depolarizer type, and cell configuration on lithium cell electrical performance and safety. This effort shall allow for the selection and optimization of cell design for future NASA applications while maintaining close ties with WGL's continuous improvements in manufacturing processes and lithium cell design. Taguchi experimental design techniques are employed in this task, and allow for a maximum amount of information to be obtained while requiring significantly less cells than if a full factorial design were employed. Acceptance testing for this task is modeled after the NASA Document EP5-83-025, Revision C, for cell weights, OCV's and load voltages. The performance attributes that are studied in this effort are fresh capacity and start-up characteristics evaluated at two rates and two temperatures, shelf-life characteristics including start-up and capacity retention, and iterative microcalorimetry measurements. Abuse testing includes forced over discharge at two rates with and without diode protection, temperature tolerance testing, and shorting tests at three rates with the measurement of heat generated during shorting conditions.

  7. The Lithium Vapor Box Divertor

    NASA Astrophysics Data System (ADS)

    Goldston, Robert; Hakim, Ammar; Hammett, Gregory; Jaworski, Michael; Myers, Rachel; Schwartz, Jacob

    2015-11-01

    Projections of scrape-off layer width to a demonstration power plant suggest an immense parallel heat flux, of order 12 GW/m2, which will necessitate nearly fully detached operation. Building on earlier work by Nagayama et al. and by Ono et al., we propose to use a series of differentially pumped boxes filled with lithium vapor to isolate the buffering vapor from the main plasma chamber, allowing stable detachment. This powerful differential pumping is only available for condensable vapors, not conventional gases. We demonstrate the properties of such a system through conservation laws for vapor mass and enthalpy, and then include plasma entrainment and ultimately an estimate of radiated power. We find that full detachment should be achievable with little leakage of lithium to the main plasma chamber. We also present progress towards solving the Navier-Stokes equation numerically for the chain of vapor boxes, including self-consistent wall boundary conditions and fully-developed shocks, as well as concepts for an initial experimental demonstration-of-concept. This work supported by DOE Contract No. DE-AC02-09CH11466.

  8. Lithium D-cell study

    NASA Astrophysics Data System (ADS)

    Size, P.; Takeuchi, Esther S.

    1993-03-01

    The purpose of this contract is to evaluate parametrically the effects of various factors including the electrolyte type, electrolyte concentration, depolarizer type, and cell configuration on lithium cell electrical performance and safety. This effort shall allow for the selection and optimization of cell design for future NASA applications while maintaining close ties with WGL's continuous improvements in manufacturing processes and lithium cell design. Taguchi experimental design techniques are employed in this task, and allow for a maximum amount of information to be obtained while requiring significantly less cells than if a full factorial design were employed. Acceptance testing for this task is modeled after the NASA Document EP5-83-025, Revision C, for cell weights, OCV's and load voltages. The performance attributes that are studied in this effort are fresh capacity and start-up characteristics evaluated at two rates and two temperatures, shelf-life characteristics including start-up and capacity retention, and iterative microcalorimetry measurements. Abuse testing includes forced over discharge at two rates with and without diode protection, temperature tolerance testing, and shorting tests at three rates with the measurement of heat generated during shorting conditions.

  9. Improved Separators For Rechargeable Lithium Cells

    NASA Technical Reports Server (NTRS)

    Shen, David; Surampudi, Subbarao; Huang, Chen-Kuo; Halpert, Gerald

    1994-01-01

    Improved pairs of separators proposed for use in rechargeable lithium cells operating at ambient temperature. Block growth of lithium dendrites and help prevent short circuits. Each cell contains one separator made of microporous polypropylene placed next to anode, and one separator made of microporous polytetrafluoroethylene (PTFE) next to cathode. Separators increase cycle lives of secondary lithium cells. Cells to which concept applicable those of Li/TiS(2), Li/NbSe(3), Li/CoO(2), Li/MoS(2), Li/VO(x), and Li/MnO(2) chemical systems. Advantageous in spacecraft, military, communications, automotive, and other applications in which high energy density and rechargeability needed.

  10. Lithium in Stellar Atmospheres: Observations and Theory

    NASA Astrophysics Data System (ADS)

    Lyubimkov, L. S.

    2016-09-01

    Of all the light elements, lithium is the most sensitive indicator of stellar evolution. This review discusses current data on the abundance of lithium in the atmospheres of A-, F-, G-, and K-stars of different types, as well as the consistency of these data with theoretical predictions. The variety of observed Li abundances is illustrated by the following objects in different stages of evolution: (1) Old stars in the galactic halo, which have a lithium abundance logɛ(Li)=2.2 (the "lithium plateau") that appears to be 0.5 dex lower than the primordial abundance predicted by cosmological models. (2) Young stars in the galactic disk, which have been used to estimate the contemporary initial lithium abundance logɛ(Li)=3.2±0.1 for stars in the Main sequence. Possible sources of lithium enrichment in the interstellar medium during evolution of the galaxy are discussed. (3) Evolving FGK dwarfs in the galactic disk, which have lower logɛ(Li) for lower effective temperature T eff and mass M. The "lithium dip" near T eff ~6600 K in the distribution of logɛ(Li) with respect to T eff in old clusters is discussed. (4) FGK giants and supergiants, of which most have no lithium at all. This phenomenon is consistent with rotating star model calculations. (5) Lithium rich cold giants with logɛ(Li) ≥ 2.0, which form a small, enigmatic group. Theoretical models with rotation can explain the existence of these stars only in the case of low initial rotation velocities V 0 <50 km/s. In all other cases it is necessary to assume recent synthesis of lithium (capture of a giant planet is an alternative). (6) Magnetic Ap-stars, where lithium is concentrated in spots located at the magnetic poles. There the lithium abundance reaches logɛ(Li)=6. Discrepancies between observations and theory are noted for almost all the stars discussed in this review.

  11. Diffusion of lithium in titanium oxide

    NASA Astrophysics Data System (ADS)

    Shea, Patrick; Ye, Jianchao; Wood, Brandon; Bonev, Stanimir

    Titanium oxide has generated interest lately as a promising anode candidate for use in lithium-ion batteries. We report first principles calculations on the mobility of lithium atoms in both crystalline and amorphous phases of titanium oxide. Density functional theory calculations of structural properties and diffusion energy barriers are combined with rate theory and a lattice gas model to study diffusion of lithium over a range of concentrations. A summary of results, including significant differences in the mobility between amorphous and crystalline phases, will be presented and discussed.

  12. Lithium electronic environments in rechargeable battery electrodes

    NASA Astrophysics Data System (ADS)

    Hightower, Adrian

    This work investigates the electronic environments of lithium in the electrodes of rechargeable batteries. The use of electron energy-loss spectroscopy (EELS) in conjunction with transmission electron microscopy (TEM) is a novel approach, which when coupled with conventional electrochemical experiments, yield a thorough picture of the electrode interior. Relatively few EELS experiments have been preformed on lithium compounds owing to their reactivity. Experimental techniques were established to minimize sample contamination and control electron beam damage to studied compounds. Lithium hydroxide was found to be the most common product of beam damaged lithium alloys. Under an intense electron beam, halogen atoms desorbed by radiolysis in lithium halides. EELS spectra from a number of standard lithium compounds were obtained in order to identify the variety of spectra encountered in lithium rechargeable battery electrodes. Lithium alloys all displayed characteristically broad Li K-edge spectra, consistent with transitions to continuum states. Transitions to bound states were observed in the Li K and oxygen K-edge spectra of lithium oxides. Lithium halides were distinguished by their systematic chemical shift proportional to the anion electronegativity. Good agreement was found with measured lithium halide spectra and electron structure calculations using a self-consistant multiscattering code. The specific electrode environments of LiC6, LiCoO2, and Li-SnO were investigated. Contrary to published XPS predictions, lithium in intercalated graphite was determined to be in more metallic than ionic. We present the first experimental evidence of charge compensation by oxygen ions in deintercalated LiCoO2. Mossbauer studies on cycled Li-SnO reveal severely defective structures on an atomic scale. Metal hydride systems are presented in the appendices of this thesis. The mechanical alloying of immiscible Fe and Mg powders resulted in single-phase bcc alloys of less than 20

  13. Lithium batteries with organic slurry cathodes

    SciTech Connect

    Bruder, A.H.

    1986-04-01

    This patent describes a laminar electrical cell. This cell consists of a sheet of conductive plastic, a separator, a cathode consisting essentially of a slurry of dewatered MnO/sub 2/ and carbon particles in a solution of a lithium salt in a substantially anhydrous organic solvent between and in contact with the conductive plastic sheet and the separator with the solution permeating the separator. The slurry is free of any binder material, and a thin sheet of lithium is in contact with the separator. The separator being interposed between the cathode and the lithium sheet.

  14. Preventing Overcharge And Overdischarge Of Lithium Cells

    NASA Technical Reports Server (NTRS)

    Huang, Chen-Kuo; Surampudi, Subbarao; Shen, David H.; Deligiannis, Fotios; Attia, Alan I.; Halpert, Gerald

    1995-01-01

    Secondary lithium cells operating at ambient temperature protected against overcharge and overdischarge by use of cathode additives acting as sources and sinks of electroactive chemical species, which is lithium. Additive in cathode limits excursion of voltage of cell during both overcharge and overdischarge. In addition to protecting cell, also serves as part of state-of-charge indicator: attainment of greater or lesser limiting voltage indicates end of charge or end of discharge, respectively. Concept applied to Li/TiS2 system, and also applicable to such other lithium systems as Li/MoS2, Li/NbSe3, and Li/V2O5.

  15. Water structure in concentrated lithium chloride solutions

    NASA Astrophysics Data System (ADS)

    Tromp, R. H.; Neilson, G. W.; Soper, A. K.

    1992-06-01

    The radial pair distribution functions gHH(r) and gOH(r) (to a good approximation) of 1 and 10 m solutions of lithium chloride in water have been obtained from neutron diffraction. It turns out that the intermolecular water structure in a solution of 10 m is affected considerably by the presence of ions—the number of hydrogen bonds is about 70% lower than in pure water. The intermolecular water structure in 1 m lithium chloride as well as the intramolecular water structure in both 1 and 10 m lithium chloride is not distinguishable from that of pure water in any measurable extent.

  16. Lithium iodide cardiac pacemakers: initial clinical experience.

    PubMed Central

    Burr, L. H.

    1976-01-01

    A new long-life cardiac pacemaker pulse generator powered by a lithium iodide fuel cell was introduced in Canada in 1973. The compact, hermetically sealed unit is easily implanted and reliable, has excellent patient acceptance and has an anticipated battery life of almost 14 years. Among 105 patients who received a lithium iodide pacemaker, complications occurred in 18. The lithium iodide pacemaker represents a significant advance in pacemaker generator technology and is recommended for long-term cardiac pacing; the manufacturer guarantees the pulse generator for 6 years. Images FIG. 1 PMID:974965

  17. Possible nephotoxic interaction of lithium and metronidazole

    SciTech Connect

    Teicher, M.H.; Altesman, R.I.; Cole, J.O.; Schatzberg, A.F.

    1987-06-26

    Several classes of drugs can promote renal retention of lithium and, occasionally, can induce lithium intoxication. The antimicrobial agent metronidazole hydrochloride (Flagyl I.V.) was also implicated in producing such a reaction in one woman. The authors describe two patients who experienced toxic reactions to lithium following brief use of metronidazole. However, in these two patients, in contrast to the previous case, the degree of acute intoxication was less severe and treatment with metronidazole was completed without apparent suspicion, but persistent signs of renal damage later emerged.

  18. ASSESSMENT OF LITHIUM USING THE IEHR EVALUATIVE PROCESS FOR ASSESSING HUMAN DEVELOPMENTAL AND REPRODUCTIVE TOXICITY OF AGENTS

    EPA Science Inventory

    This document presents an evaluation of the reproductive and developmental effects of lithium and reviews toxicologic information on several specific lithium salts: ithium carbonate, lithium chloride, lithium citrate, and lithium hypochlorite. ithium (Li), an alkali metal, is a n...

  19. Unrecognized delayed toxic lithium peak concentration in an acute poisoning with sustained release lithium product.

    PubMed

    Borrás-Blasco, Joaquín; Sirvent, Ana Esther; Navarro-Ruiz, Andrés; Murcia-López, Ana; Romero-Crespo, Isabel; Enriquez, Ricardo

    2007-03-01

    A 32-year-old female with a history of bipolar disorder was admitted after taking approximately 16 g of an extended-release lithium carbonate formulation in an attempted suicide. Five hours after consumption, the lithium serum level was 3.2 mEq/L. Fourteen hours after consumption, the lithium level was 5.1 mEq/L and the patient was asymptomatic. Due to a level > 4 mEq/L, the patient was transferred to a renal medicine service for hemodialysis. The lithium concentration 6 hours after the hemodialysis was 2.54 mEq/L. Thirty seven hours after the consumption (15 hours after hemodialysis), lithium levels increased up to 6.09 mEq/L. A second hemodialysis session was performed, which successfully reduced the serum lithium concentration to 1.86 mEq/L. Lithium levels 85 hours after the consumption were 0.61 mEq/L and the patient was transferred to the Psychiatry Department. Unrecognized delayed toxic peak lithium concentration may appear in an acute poisoning with a sustained release lithium product. Therefore, patients presenting with acute intoxication with extended release formulations should be managed with caution, and continued drug monitoring is suggested. PMID:17396741

  20. Modeling Lithium Movement over Multiple Cycles in a Lithium-Metal Battery

    SciTech Connect

    Ferrese, A; Newman, J

    2014-04-11

    This paper builds on the work by Ferrese et al. [J. Electrochem., 159, A1615 (2012)], where a model of a lithium-metal battery with a LiyCoO2 positive electrode was created in order to predict the movement of lithium in the negative electrode along the negative electrode/separator interface during cell cycling. In this paper, the model is expanded to study the movement of lithium along the lithium-metal anode over multiple cycles. From this model, it is found that when a low percentage of lithium at the negative electrode is utilized, the movement of lithium along the negative electrode/separator interface reaches a quasi steady state after multiple cycles. This steady state is affected by the slope of the open-circuit-potential function in the positive electrode, the rate of charge and discharge, the depth of discharge, and the length of the rest periods. However, when a high percent of the lithium at the negative electrode is utilized during cycling, the movement does not reach a steady state and pinching can occur, where the lithium nearest the negative tab becomes progressively thinner after cycling. This is another nonlinearity that leads to a progression of the movement of lithium over multiple cycles. (C) 2014 The Electrochemical Society.

  1. Electrolytic method for the production of lithium using a lithium-amalgam electrode

    DOEpatents

    Cooper, John F.; Krikorian, Oscar H.; Homsy, Robert V.

    1979-01-01

    A method for recovering lithium from its molten amalgam by electrolysis of the amalgam in an electrolytic cell containing as a molten electrolyte a fused-salt consisting essentially of a mixture of two or more alkali metal halides, preferably alkali metal halides selected from lithium iodide, lithium chloride, potassium iodide and potassium chloride. A particularly suitable molten electrolyte is a fused-salt consisting essentially of a mixture of at least three components obtained by modifying an eutectic mixture of LiI-KI by the addition of a minor amount of one or more alkali metal halides. The lithium-amalgam fused-salt cell may be used in an electrolytic system for recovering lithium from an aqueous solution of a lithium compound, wherein electrolysis of the aqueous solution in an aqueous cell in the presence of a mercury cathode produces a lithium amalgam. The present method is particularly useful for the regeneration of lithium from the aqueous reaction products of a lithium-water-air battery.

  2. Lithium in drinking water and suicide mortality: interplay with lithium prescriptions

    PubMed Central

    Helbich, Marco; Leitner, Michael; Kapusta, Nestor D.

    2015-01-01

    Background Little is known about the effects of lithium intake through drinking water on suicide. This intake originates either from natural rock and soil elution and/or accumulation of lithium-based pharmaceuticals in ground water. Aims To examine the interplay between natural lithium in drinking water, prescribed lithium-based pharmaceuticals and suicide in Austria. Method Spatial Bayesian regressions for males, females and pooled suicide mortality rates were estimated. Results Although the expected inverse association between lithium levels in drinking water and suicide mortality was confirmed for males and for total suicide rates, the relationship for females was not significant. The models do not indicate that lithium from prescriptions, assumed to accumulate in drinking water, is related to suicide risk patterns either as an individual effect or as a moderator of lithium levels in drinking water. Gender-specific differences in risk factors and local risk hot spots are confirmed. Conclusions The findings do not support the hypotheses that lithium prescriptions have measureable protective effects on suicide or that they interact with lithium in drinking water. PMID:25953888

  3. Mo/sub 6/Se/sub 6/: A new solid-state electrode for secondary lithium batteries

    SciTech Connect

    Tarascon, J.M.

    1985-09-01

    The practical utilization of nonaqueous secondary lithium cells has never been realized, mainly because of electrode problems such as the absence of suitable cathode materials or dendritic regrowth of the lithium on the anode short circuiting the cell. Over the last few years, the cathode problem has been overcome by the discovery of new materials such as TiS/sub 2/, NbSe/sub 3/, V/sub 6/O/sub 13/, etc. The crystallographic structural feature that makes these compounds attractive for batteries is that they can act as ''hosts,'' incorporating lithium atoms between the layers (TiS/sub 2/), chains (NbSe/sub 3/), or into the channels (V/sub 6/O/sub 13/) without a irreversible change in crystal structure. However, in spite of intensive research, the anode problem still remains. We have undertaken research in this direction. Initial results of this early work are the subject of this paper. This study reports a new solid-state electrode material (Mo/sub 6/Se/sub 6/) which can be used both as cathode and anode in secondary lithium cells. Mo/sub 6/Se/sub 6/ can take up reversibly nine lithium atoms per Mo/sub 6/Se/sub 6/ without losing its linear chain structure, leading to a theoretical volume energy density of about 1.1 Wh/cm/sup 3/, compared to 1.2 for TiS/sub 2/ cathodes. Another important promising possibility which arises from this work is the use of the lithiated compounds LiMo/sub 6/Se/sub 6/ as the anode instead of lithium metal in secondary lithium cells.

  4. A high power beam-on-target test of liquid lithium target for RIA.

    SciTech Connect

    Nolen, J.; Reed, C.; Novick, V.; Specht, J.; Plotkin, P.; Momozaki,Y.; Gomes, I.

    2005-08-29

    Experiments were conducted to demonstrate the stable operation of a windowless liquid lithium target under extreme thermal loads that are equivalent to uranium beams from the proposed Rare Isotope Accelerator (RIA) driver linac. The engineering and safety issues accompanying liquid lithium systems are first discussed. The liquid metal technology knowledge base generated primarily for fast reactors, and liquid metal cooled fusion reactors, was applied to the development of these systems in a nuclear physics laboratory setting. The use of a high energy electron beam for simulating a high power uranium beam produced by the RIA driver linac is also described. Calculations were performed to obtain energy deposition profiles produced by electron beams at up to a few MeV to compare with expected uranium beam energy deposition profiles. It was concluded that an experimental simulation using a 1-MeV electron beam would be a valuable tool to assess beam-jet interaction. In the experiments, the cross section of the windowless liquid lithium target was 5 mm x 10 mm, which is a 1/3rd scale prototype target, and the velocity of the liquid lithium was varied up to 6 m/s. Thermal loads up to 20 kW within a beam spot diameter of 1mm were applied on the windowless liquid lithium target by the 1-MeV electron beam. The calculations showed that the maximum power density and total power deposited within the target, from the electron beam, was equivalent to that of a 200-kW, 400-MeV/u uranium beam. It was demonstrated that the windowless liquid lithium target flowing at velocities as low as 1.8 m/s stably operated under beam powers up to 20 kW without disruption or excessive vaporization.

  5. 14 CFR 13.13 - Consent orders.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Consent orders. 13.13 Section 13.13 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PROCEDURAL RULES INVESTIGATIVE AND ENFORCEMENT PROCEDURES Legal Enforcement Actions § 13.13 Consent orders. (a) At any...

  6. 14 CFR 13.13 - Consent orders.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Consent orders. 13.13 Section 13.13 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PROCEDURAL RULES INVESTIGATIVE AND ENFORCEMENT PROCEDURES Legal Enforcement Actions § 13.13 Consent orders. (a) At any...

  7. 14 CFR 13.13 - Consent orders.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Consent orders. 13.13 Section 13.13... INVESTIGATIVE AND ENFORCEMENT PROCEDURES Legal Enforcement Actions § 13.13 Consent orders. (a) At any time before the issuance of an order under this subpart, the official who issued the notice and the...

  8. A rapid method for the determination of lithium transference numbers

    SciTech Connect

    Zawodzinski, T.A. Jr.; Dai, H.; Sanderson, S.; Davey, J.; Uribe, F.

    1997-05-01

    Lithium ion-conducting polymer electrolytes are of increasing interest for use in lithium-polymer batteries. Lithium transference numbers, the net fraction of current carried by lithium in a cell, are key figures of merit for potential lithium battery electrolytes. The authors describe the Electrophoretic NMR (ENMR) method for the determination of lithium ion transference numbers (T{sub Li}). The work presented is a proof-of-concept of the application of the ENMR method to lithium ion transference measurements for several different lithium salts in gelled electrolytes. The NMR method allows accurate determination of T{sub Li} values, as indicated by the similarity of T{sub Li} in the gelled electrolytes to those in aqueous electrolyte solutions at low salt concentration. Based on calculated tradeoffs of various experimental parameters, they also discuss some conclusions concerning the range of applicability of the method to other electrolytes with lower lithium mobility.

  9. Lithium-Based High Energy Density Flow Batteries

    NASA Technical Reports Server (NTRS)

    Bugga, Ratnakumar V. (Inventor); West, William C. (Inventor); Kindler, Andrew (Inventor); Smart, Marshall C. (Inventor)

    2014-01-01

    Systems and methods in accordance with embodiments of the invention implement a lithium-based high energy density flow battery. In one embodiment, a lithium-based high energy density flow battery includes a first anodic conductive solution that includes a lithium polyaromatic hydrocarbon complex dissolved in a solvent, a second cathodic conductive solution that includes a cathodic complex dissolved in a solvent, a solid lithium ion conductor disposed so as to separate the first solution from the second solution, such that the first conductive solution, the second conductive solution, and the solid lithium ionic conductor define a circuit, where when the circuit is closed, lithium from the lithium polyaromatic hydrocarbon complex in the first conductive solution dissociates from the lithium polyaromatic hydrocarbon complex, migrates through the solid lithium ionic conductor, and associates with the cathodic complex of the second conductive solution, and a current is generated.

  10. Test results of lithium pool-air reaction suppression systems

    SciTech Connect

    Jeppson, D.W.

    1987-02-01

    Engineered reaction suppression systems were demonstrated to be effective in suppressing lithium pool-air reactions for lithium quantities up to 100 kg. Lithium pool-air reaction suppression system tests were conducted to evaluate suppression system effectiveness for potential use in fusion facilities in mitigating consequences of postulated lithium spills. Small-scale perforated and sacrificial cover plate suppression systems with delayed inert gas purging proved effective in controlling the lithium-air interaction for lithium quantities near 15 kg at initial temperatures up to 450/sup 0/C. A large-scale suppression system with a sacrificial cover, a diverter plate, an inert gas atmosphere, and remotely retrievable catch pans proved effective in controlling lithium pool-air interaction for a 100-kg lithium discharge at an initial temperature of 550/sup 0/C. This suppression system limited the maximum pool temperature to about 600/sup 0/C less than that expected for a similar lithium pool-air reaction without a suppression system. Lithium aerosol release from this large-scale suppression system was a factor of about 10,000 less than that expected for a lithium pool-air reaction with no suppression system. Remote retrieval techniques for lithium cleanup, such as (1) in-place lithium siphoning and overhead crane dismantling, and (2) lithium catch pan removal by use of an overhead crane, were demonstrated as part of this large-scale test.

  11. A Polymer Lithium-Oxygen Battery.

    PubMed

    Elia, Giuseppe Antonio; Hassoun, Jusef

    2015-01-01

    Herein we report the characteristics of a lithium-oxygen battery using a solid polymer membrane as the electrolyte separator. The polymer electrolyte, fully characterized in terms of electrochemical properties, shows suitable conductivity at room temperature allowing the reversible cycling of the Li-O2 battery with a specific capacity as high as 25,000 mAh gC(-1) reflected in a surface capacity of 12.5 mAh cm(-2). The electrochemical formation and dissolution of the lithium peroxide during Li-O2 polymer cell operation is investigated by electrochemical techniques combined with X-ray diffraction study, demonstrating the process reversibility. The excellent cell performances in terms of delivered capacity, in addition to its solid configuration allowing the safe use of lithium metal as high capacity anode, demonstrate the suitability of the polymer lithium-oxygen as high-energy storage system. PMID:26238552

  12. Dosimetric properties of activated lithium tetraborate

    NASA Astrophysics Data System (ADS)

    Majchrowski, Andrzej; Malecki, M.; Zmija, Jozef; Warkocki, Stanislaw; Warkocki, Wodzislaw

    1993-10-01

    This paper describes preliminary investigations of Li2B4O7 thermoluminescent phosphors as candidates for gamma radiation dosimetry materials. Single crystals, glasses, and polycrystals of lithium tetraborate activated with different dopants have been investigated.

  13. Drug Interactions with Lithium: An Update.

    PubMed

    Finley, Patrick R

    2016-08-01

    Lithium has been used for the management of psychiatric illnesses for over 50 years and it continues to be regarded as a first-line agent for the treatment and prevention of bipolar disorder. Lithium possesses a narrow therapeutic index and comparatively minor alterations in plasma concentrations can have significant clinical sequelae. Several drug classes have been implicated in the development of lithium toxicity over the years, including diuretics and non-steroidal anti-inflammatory compounds, but much of the anecdotal and experimental evidence supporting these interactions is dated, and many newer medications and medication classes have been introduced during the intervening years. This review is intended to provide an update on the accumulated evidence documenting potential interactions with lithium, with a focus on pharmacokinetic insights gained within the last two decades. The clinical relevance and ramifications of these interactions are discussed. PMID:26936045

  14. Shock Induced Birefringence in Lithium Fluoride

    SciTech Connect

    Holmes, N C

    2001-06-01

    We have used an ellipsometer to measure the birefringence of lithium fluoride in shock compression experiments. In previous x-ray diffraction experiments, single crystal [100] LiF has been reported to remain cubic at moderate pressures.

  15. Lithium Circuit Test Section Design and Fabrication

    SciTech Connect

    Godfroy, Thomas; Garber, Anne; Martin, James

    2006-01-20

    The Early Flight Fission -- Test Facilities (EFF-TF) team has designed and built an actively pumped lithium flow circuit. Modifications were made to a circuit originally designed for NaK to enable the use of lithium that included application specific instrumentation and hardware. Component scale freeze/thaw tests were conducted to both gain experience with handling and behavior of lithium in solid and liquid form and to supply anchor data for a Generalized Fluid System Simulation Program (GFSSP) model that was modified to include the physics for freeze/thaw transitions. Void formation was investigated. The basic circuit components include: reactor segment, lithium to gas heat exchanger, electromagnetic (EM) liquid metal pump, load/drain reservoir, expansion reservoir, instrumentation, and trace heaters. This paper discusses the overall system design and build and the component testing findings.

  16. Lithium batteries: Status, prospects and future

    NASA Astrophysics Data System (ADS)

    Scrosati, Bruno; Garche, Jürgen

    Lithium batteries are characterized by high specific energy, high efficiency and long life. These unique properties have made lithium batteries the power sources of choice for the consumer electronics market with a production of the order of billions of units per year. These batteries are also expected to find a prominent role as ideal electrochemical storage systems in renewable energy plants, as well as power systems for sustainable vehicles, such as hybrid and electric vehicles. However, scaling up the lithium battery technology for these applications is still problematic since issues such as safety, costs, wide operational temperature and materials availability, are still to be resolved. This review focuses first on the present status of lithium battery technology, then on its near future development and finally it examines important new directions aimed at achieving quantum jumps in energy and power content.

  17. Lithium Circuit Test Section Design and Fabrication

    NASA Technical Reports Server (NTRS)

    Godfroy, Thomas; Garber, Anne

    2006-01-01

    The Early Flight Fission - Test Facilities (EFF-TF) team has designed and built an actively pumped lithium flow circuit. Modifications were made to a circuit originally designed for NaK to enable the use of lithium that included application specific instrumentation and hardware. Component scale freeze/thaw tests were conducted to both gain experience with handling and behavior of lithium in solid and liquid form and to supply anchor data for a Generalized Fluid System Simulation Program (GFSSP) model that was modified to include the physics for freeze/thaw transitions. Void formation was investigated. The basic circuit components include: reactor segment, lithium to gas heat exchanger, electromagnetic (EM) liquid metal pump, load/drain reservoir, expansion reservoir, instrumentation, and trace heaters. This paper will discuss the overall system design and build and the component testing findings.

  18. Cells containing solvated electron lithium negative electrodes

    NASA Astrophysics Data System (ADS)

    Uribe, Francisco A.; Semkow, Krystyna W.; Sammells, Anthony F.

    1989-12-01

    This paper presents results obtained on cells based on solvated electron lithium negative electrodes, which may have application in high-energy-density secondary or reserve battery systems. The approach uses Li initially dissolved in liquid ammonia to give a solvated electron lithium/ammonia solution. This liquid negative active material is protected from direct contact with the liquid nonaqueous electrolyte in the positive electrode compartment by a lithium-intercalated electronically conducting ceramic membrane possessing Li(x)WoO2 composition with x values between 0.1 and 1.0. Depending upon initial lithium activity in the negative electrode compartments, the experimental cell was found to possess an initial open-circuit potential between 2.1 and 2.5 V.

  19. Lightweight magnesium-lithium alloys show promise

    NASA Technical Reports Server (NTRS)

    Adams, W. T.; Cataldo, C. E.

    1964-01-01

    Evaluation tests show that magnesium-lithium alloys are lighter and more ductile than other magnesium alloys. They are being used for packaging, housings, containers, where light weight is more important than strength.

  20. Catastrophic event modeling. [lithium thionyl chloride batteries

    NASA Technical Reports Server (NTRS)

    Frank, H. A.

    1981-01-01

    A mathematical model for the catastrophic failures (venting or explosion of the cell) in lithium thionyl chloride batteries is presented. The phenomenology of the various processes leading to cell failure is reviewed.

  1. NSTX Plasma Response to Lithium Coated Divertor

    SciTech Connect

    H.W. Kugel, M.G. Bell, J.P. Allain, R.E. Bell, S. Ding, S.P. Gerhardt, M.A. Jaworski, R. Kaita, J. Kallman, S.M. Kaye, B.P. LeBlanc, R. Maingi, R. Majeski, R. Maqueda, D.K. Mansfield, D. Mueller, R. Nygren, S.F. Paul, R. Raman, A.L. Roquemore, S.A. Sabbagh, H. Schneider, C.H. Skinner, V.A. Soukhanovskii, C.N. Taylor, J.R. Timberlak, W.R. Wampler, L.E. Zakharov, S.J. Zweben, and the NSTX Research Team

    2011-01-21

    NSTX experiments have explored lithium evaporated on a graphite divertor and other plasma facing components in both L- and H- mode confinement regimes heated by high-power neutral beams. Improvements in plasma performance have followed these lithium depositions, including a reduction and eventual elimination of the HeGDC time between discharges, reduced edge neutral density, reduced plasma density, particularly in the edge and the SOL, increased pedestal electron and ion temperature, improved energy confinement and the suppression of ELMs in the H-mode. However, with improvements in confinement and suppression of ELMs, there was a significant secular increase in the effective ion charge Zeff and the radiated power in H-mode plasmas as a result of increases in the carbon and medium-Z metallic impurities. Lithium itself remained at a very low level in the plasma core, <0.1%. Initial results are reported from operation with a Liquid Lithium Divertor (LLD) recently installed.

  2. Regenerable hydrogen storage in lithium amidoborane.

    PubMed

    Tang, Ziwei; Tan, Yingbin; Chen, Xiaowei; Yu, Xuebin

    2012-09-25

    Regenerable hydrogen storage of lithium amidoborane is firstly achieved through the routes of direct thermal dehydrogenation and subsequent chemical hydrogenation of its dehydrogenated products by treatment with hydrazine in liquid ammonia. PMID:22875287

  3. Layered electrodes for lithium cells and batteries

    DOEpatents

    Johnson; Christopher S. , Thackeray; Michael M. , Vaughey; John T. , Kahaian; Arthur J. , Kim; Jeom-Soo

    2008-04-15

    Lithium metal oxide compounds of nominal formula Li.sub.2MO.sub.2, in which M represents two or more positively charged metal ions, selected predominantly and preferably from the first row of transition metals are disclosed herein. The Li.sub.2MO.sub.2 compounds have a layered-type structure, which can be used as positive electrodes for lithium electrochemical cells, or as a precursor for the in-situ electrochemical fabrication of LiMO.sub.2 electrodes. The Li.sub.2MO.sub.2 compounds of the invention may have additional functions in lithium cells, for example, as end-of-discharge indicators, or as negative electrodes for lithium cells.

  4. Lithium ion battery with improved safety

    DOEpatents

    Chen, Chun-hua; Hyung, Yoo Eup; Vissers, Donald R.; Amine, Khalil

    2006-04-11

    A lithium battery with improved safety that utilizes one or more additives in the battery electrolyte solution wherein a lithium salt is dissolved in an organic solvent, which may contain propylene, carbonate. For example, a blend of 2 wt % triphenyl phosphate (TPP), 1 wt % diphenyl monobutyl phosphate (DMP) and 2 wt % vinyl ethylene carbonate additives has been found to significantly enhance the safety and performance of Li-ion batteries using a LiPF6 salt in EC/DEC electrolyte solvent. The invention relates to both the use of individual additives and to blends of additives such as that shown in the above example at concentrations of 1 to 4-wt % in the lithium battery electrolyte. This invention relates to additives that suppress gas evolution in the cell, passivate graphite electrode and protect it from exfoliating in the presence of propylene carbonate solvents in the electrolyte, and retard flames in the lithium batteries.

  5. A Polymer Lithium-Oxygen Battery

    PubMed Central

    Elia, Giuseppe Antonio; Hassoun, Jusef

    2015-01-01

    Herein we report the characteristics of a lithium-oxygen battery using a solid polymer membrane as the electrolyte separator. The polymer electrolyte, fully characterized in terms of electrochemical properties, shows suitable conductivity at room temperature allowing the reversible cycling of the Li-O2 battery with a specific capacity as high as 25,000 mAh gC−1 reflected in a surface capacity of 12.5 mAh cm−2. The electrochemical formation and dissolution of the lithium peroxide during Li-O2 polymer cell operation is investigated by electrochemical techniques combined with X-ray diffraction study, demonstrating the process reversibility. The excellent cell performances in terms of delivered capacity, in addition to its solid configuration allowing the safe use of lithium metal as high capacity anode, demonstrate the suitability of the polymer lithium-oxygen as high-energy storage system. PMID:26238552

  6. Lithium Circuit Test Section Design and Fabrication

    NASA Astrophysics Data System (ADS)

    Godfroy, Thomas; Garber, Anne; Martin, James

    2006-01-01

    The Early Flight Fission - Test Facilities (EFF-TF) team has designed and built an actively pumped lithium flow circuit. Modifications were made to a circuit originally designed for NaK to enable the use of lithium that included application specific instrumentation and hardware. Component scale freeze/thaw tests were conducted to both gain experience with handling and behavior of lithium in solid and liquid form and to supply anchor data for a Generalized Fluid System Simulation Program (GFSSP) model that was modified to include the physics for freeze/thaw transitions. Void formation was investigated. The basic circuit components include: reactor segment, lithium to gas heat exchanger, electromagnetic (EM) liquid metal pump, load/drain reservoir, expansion reservoir, instrumentation, and trace heaters. This paper discusses the overall system design and build and the component testing findings.

  7. Solid state lithium-iodine primary battery

    SciTech Connect

    Sekido, S.; Ninomiya, Y.; Sotomura, T.

    1984-01-10

    A solid-state primary cell comprising a lithium anode, an iodine cathode containing a charge transfer complex and a solid lithium iodide electrolyte doped with a 1-normal-alkyl-pyridinium iodide. The anode surface can be coated with LiOH or Li/sub 3/N. The iodine cathode comprises a complex of iodine and 1-normal-alkyl-pyridinium iodide and preferably contains titanium dioxide powder, alumina gel powder or silica gel powder admixed with the complex.

  8. Lithium in sediments and rocks in Nevada

    USGS Publications Warehouse

    Bohannon, Robert G.; Meier, Allen L.

    1976-01-01

    The purpose of the sampling program was to determine if areas of anonalous lithium could be recognized by reconnaissance surface sampling. The results, however, have been indeterminate because most large lithium deposits occur at depth and appear to be formed when deeply buried. Many may not manifest themselves at the surface at all . Nonetheless, the data derived during the surface sampling program will be presented in this report.

  9. Issues and challenges facing rechargeable lithium batteries.

    PubMed

    Tarascon, J M; Armand, M

    2001-11-15

    Technological improvements in rechargeable solid-state batteries are being driven by an ever-increasing demand for portable electronic devices. Lithium-ion batteries are the systems of choice, offering high energy density, flexible and lightweight design, and longer lifespan than comparable battery technologies. We present a brief historical review of the development of lithium-based rechargeable batteries, highlight ongoing research strategies, and discuss the challenges that remain regarding the synthesis, characterization, electrochemical performance and safety of these systems. PMID:11713543

  10. Design and simulation of lithium rechargeable batteries

    SciTech Connect

    Doyle, C.M.

    1995-08-01

    Lithium -based rechargeable batteries that utilize insertion electrodes are being considered for electric-vehicle applications because of their high energy density and inherent reversibility. General mathematical models are developed that apply to a wide range of lithium-based systems, including the recently commercialized lithium-ion cell. The modeling approach is macroscopic, using porous electrode theory to treat the composite insertion electrodes and concentrated solution theory to describe the transport processes in the solution phase. The insertion process itself is treated with a charge-transfer process at the surface obeying Butler-Volmer kinetics, followed by diffusion of the lithium ion into the host structure. These models are used to explore the phenomena that occur inside of lithium cells under conditions of discharge, charge, and during periods of relaxation. Also, in order to understand the phenomena that limit the high-rate discharge of these systems, we focus on the modeling of a particular system with well-characterized material properties and system parameters. The system chosen is a lithium-ion cell produced by Bellcore in Red Bank, NJ, consisting of a lithium-carbon negative electrode, a plasticized polymer electrolyte, and a lithium-manganese-oxide spinel positive electrode. This battery is being marketed for consumer electronic applications. The system is characterized experimentally in terms of its transport and thermodynamic properties, followed by detailed comparisons of simulation results with experimental discharge curves. Next, the optimization of this system for particular applications is explored based on Ragone plots of the specific energy versus average specific power provided by various designs.

  11. A Cable-Shaped Lithium Sulfur Battery.

    PubMed

    Fang, Xin; Weng, Wei; Ren, Jing; Peng, Huisheng

    2016-01-20

    A carbon nanostructured hybrid fiber is developed by integrating mesoporous carbon and graphene oxide into aligned carbon nanotubes. This hybrid fiber is used as a 1D cathode to fabricate a new cable-shaped lithium-sulfur battery. The fiber cathode exhibits a decent specific capacity and lifespan, which makes the cable-shaped lithium-sulfur battery rank far ahead of other fiber-shaped batteries. PMID:26585740

  12. Polymer Electrolytes for Lithium/Sulfur Batteries

    PubMed Central

    Zhao, Yan; Zhang, Yongguang; Gosselink, Denise; Doan, The Nam Long; Sadhu, Mikhail; Cheang, Ho-Jae; Chen, Pu

    2012-01-01

    This review evaluates the characteristics and advantages of employing polymer electrolytes in lithium/sulfur (Li/S) batteries. The main highlights of this study constitute detailed information on the advanced developments for solid polymer electrolytes and gel polymer electrolytes, used in the lithium/sulfur battery. This includes an in-depth analysis conducted on the preparation and electrochemical characteristics of the Li/S batteries based on these polymer electrolytes. PMID:24958296

  13. Design Evaluation of High Reliability Lithium Batteries

    NASA Technical Reports Server (NTRS)

    Buchman, R. C.; Helgeson, W. D.; Istephanous, N. S.

    1985-01-01

    Within one year, a lithium battery design can be qualified for device use through the application of accelerated discharge testing, calorimetry measurements, real time tests and other supplemental testing. Materials and corrosion testing verify that the battery components remain functional during expected battery life. By combining these various methods, a high reliability lithium battery can be manufactured for applications which require zero defect battery performance.

  14. Preparation, characterization of LiNi{sub 1/3}Mn{sub 1/3}Co{sub 1/3}O{sub 2} film cathode.

    SciTech Connect

    Kang, S. H.; Abraham, D. P.; Chemical Engineering

    2006-01-01

    Positive electrodes based on the LiNi{sub 1/3}Mn{sub 1/3}Co{sub 1/3}O{sub 2} material are being evaluated in high-power lithium-ion cells for hybrid-electric vehicle applications. To determine performance degradation mechanisms that are associated with the active material, we prepared carbon- and binder-free LiNi{sub 1/3}Mn{sub 1/3}Co{sub 1/3}O{sub 2} film cathode on a Pt substrate using a sol-gel spin coating technique. The material was characterized by X-ray diffraction, scanning electron microscopy, and X-ray photoelectron spectroscopy. Initial data from cyclic voltammetry, galvanostatic cycling, and electrochemical impedance spectroscopy measurements conducted on the electrodes are reported.

  15. THE SUPER LITHIUM-RICH RED GIANT RAPID ROTATOR G0928+73.2600: A CASE FOR PLANET ACCRETION?

    SciTech Connect

    Carlberg, Joleen K.; Majewski, Steven R.; Rood, Robert T.; Smith, Verne V.; Cunha, Katia

    2010-11-01

    We present the discovery of a super lithium-rich K giant star, G0928+73.2600. This red giant (T {sub eff} = 4885 K and log g = 2.65) is a fast rotator with a projected rotational velocity of 8.4 km s{sup -1} and an unusually high lithium abundance of A(Li) = 3.30 dex. Although the lack of a measured parallax precludes knowing the exact evolutionary phase, an isochrone-derived estimate of its luminosity places the star on the Hertzsprung-Russell diagram in a location that is not consistent with either the red bump on the first ascent of the red giant branch or with the second ascent on the asymptotic giant branch, the two evolutionary stages where lithium-rich giant stars tend to cluster. Thus, even among the already unusual group of lithium-rich giant stars, G0928+73.2600 is peculiar. Using {sup 12}C/{sup 13}C as a tracer for mixing-more mixing leads to lower {sup 12}C/{sup 13}C-we find {sup 12}C/{sup 13}C = 28, which is near the expected value for standard first dredge-up mixing. We can therefore conclude that 'extra' deep mixing has not occurred. Regardless of the ambiguity of the evolutionary stage, the extremely large lithium abundance and the rotational velocity of this star are unusual, and we speculate that G0928+73.2600 has been enriched in both lithium and angular momentum from a sub-stellar companion.

  16. Glass for sealing lithium cells

    DOEpatents

    Leedecke, C.J.

    1981-08-28

    Glass compositions resistant to corrosion by lithium cell electrolyte and having an expansion coefficient of 45 to 85 x 10/sup -70/C/sup -1/ have been made with SiO/sub 2/, 25 to 55% by weight; B/sub 2/O/sub 3/, 5 to 12%; Al/sub 2/O/sub 3/, 12 to 35%; CaO, 5 to 15%; MgO, 5 to 15%; SrO, 0 to 10%; and La/sub 2/O/sub 3/, 0 to 5%. Preferred compositions within that range contain 3 to 8% SrO and 0.5 to 2.5% La/sub 2/O/sub 3/.

  17. The cosmological lithium problem revisited

    NASA Astrophysics Data System (ADS)

    Bertulani, C. A.; Mukhamedzhanov, A. M.; Shubhchintak

    2016-07-01

    After a brief review of the cosmological lithium problem, we report a few recent attempts to find theoretical solutions by our group at Texas A&M University (Commerce & College Station). We will discuss our studies on the theoretical description of electron screening, the possible existence of parallel universes of dark matter, and the use of non-extensive statistics during the Big Bang nucleosynthesis epoch. Last but not least, we discuss possible solutions within nuclear physics realm. The impact of recent measurements of relevant nuclear reaction cross sections for the Big Bang nucleosynthesis based on indirect methods is also assessed. Although our attempts may not able to explain the observed discrepancies between theory and observations, they suggest theoretical developments that can be useful also for stellar nucleosynthesis.

  18. Magnesium-lithium casting alloys

    NASA Technical Reports Server (NTRS)

    Latenko, V. P.; Silchenko, T. V.; Tikhonov, V. A.; Maltsev, V. P.; Korablin, V. P.

    1974-01-01

    The strength properties of magnesium-lithium alloys at room, low, and high temperatures are investigated. It is found that the alloys may have practical application at ambient temperatures up to 100 C, that negative temperatures have a favorable influence on the alloy strength, and that cyclic temperature variations have practically no effect on the strength characteristics. The influence of chemical coatings on corrosion resistance of the MgLi alloys is examined. Several facilities based on pressure casting machines, low-pressure casting machines, and magnetodynamic pumps were designed for producing MgLi alloy castings. Results were obtained for MgLi alloys reinforced with fibers having a volumetric content of 15%.

  19. Predissociation dynamics of lithium iodide

    SciTech Connect

    Schmidt, H.; Vangerow, J. von; Stienkemeier, F.; Mudrich, M.; Bogomolov, A. S.; Baklanov, A. V.; Reich, D. M.; Skomorowski, W.; Koch, C. P.

    2015-01-28

    The predissociation dynamics of lithium iodide (LiI) in the first excited A-state is investigated for molecules in the gas phase and embedded in helium nanodroplets, using femtosecond pump-probe photoionization spectroscopy. In the gas phase, the transient Li{sup +} and LiI{sup +} ion signals feature damped oscillations due to the excitation and decay of a vibrational wave packet. Based on high-level ab initio calculations of the electronic structure of LiI and simulations of the wave packet dynamics, the exponential signal decay is found to result from predissociation predominantly at the lowest avoided X-A potential curve crossing, for which we infer a coupling constant V{sub XA} = 650(20) cm{sup −1}. The lack of a pump-probe delay dependence for the case of LiI embedded in helium nanodroplets indicates fast droplet-induced relaxation of the vibrational excitation.

  20. Electrode for a lithium cell

    DOEpatents

    Thackeray, Michael M.; Vaughey, John T.; Dees, Dennis W.

    2008-10-14

    This invention relates to a positive electrode for an electrochemical cell or battery, and to an electrochemical cell or battery; the invention relates more specifically to a positive electrode for a non-aqueous lithium cell or battery when the electrode is used therein. The positive electrode includes a composite metal oxide containing AgV.sub.3O.sub.8 as one component and one or more other components consisting of LiV.sub.3O.sub.8, Ag.sub.2V.sub.4O.sub.11, MnO.sub.2, CF.sub.x, AgF or Ag.sub.2O to increase the energy density of the cell, optionally in the presence of silver powder and/or silver foil to assist in current collection at the electrode and to improve the power capability of the cell or battery.

  1. Rechargeable lithium-ion cell

    DOEpatents

    Bechtold, Dieter; Bartke, Dietrich; Kramer, Peter; Kretzschmar, Reiner; Vollbert, Jurgen

    1999-01-01

    The invention relates to a rechargeable lithium-ion cell, a method for its manufacture, and its application. The cell is distinguished by the fact that it has a metallic housing (21) which is electrically insulated internally by two half shells (15), which cover electrode plates (8) and main output tabs (7) and are composed of a non-conductive material, where the metallic housing is electrically insulated externally by means of an insulation coating. The cell also has a bursting membrane (4) which, in its normal position, is located above the electrolyte level of the cell (1). In addition, the cell has a twisting protection (6) which extends over the entire surface of the cover (2) and provides centering and assembly functions for the electrode package, which comprises the electrode plates (8).

  2. Predictors of Lithium Response in Bipolar Disorder

    PubMed Central

    Tighe, Sarah K.; Mahon, Pamela B.; Potash, James B.

    2011-01-01

    While lithium is generally regarded as the first-line agent for patients with bipolar disorder, it does not work for everyone, which raises the question: can we predict who will be most likely to respond? In this paper, we review the most compelling clinical, biologic, and genetic predictors of lithium response in bipolar disorder. Among clinical factors, the strongest predictors of good response are fewer hospitalizations preceding treatment, an episodic course characterized by an illness pattern of mania followed by depression, and a later age at onset of bipolar disorder. While several biologic predictors have been studied, the results are preliminary and require replication with studies of larger patient samples over longer observation periods. Neuroimaging is a particularly promising method given that it might concurrently illuminate pathophysiologic underpinnings of bipolar disorder, the mechanism of action of lithium, and potential predictors of lithium response. The first genome-wide association study of lithium response was recently completed. No definitive results emerged, perhaps because the study was underpowered. With major new initiatives in progress aiming to identify genes and genetic variations associated with lithium response, there is much reason to be hopeful that clinically useful information might be generated within the next several years. This could ultimately translate into tests that could guide the choice of mood-stabilizing medication for patients. In addition, it might facilitate pharmacologic research aimed at developing newer, more effective medications that might act more quickly and yield fewer side effects. PMID:23251751

  3. Lithium pinacolone enolate solvated by hexamethylphosphoramide.

    PubMed

    Guang, Jie; Liu, Qiyong Peter; Hopson, Russell; Williard, Paul G

    2015-06-17

    We report the crystal structure of a substoichiometric, HMPA-trisolvated lithium pinacolone enolate tetramer (LiOPin)4·HMPA3 abbreviated as T3. In this tetramer one HMPA binds to lithium more strongly than the other two causing a reduction in spatial symmetry with corresponding loss of C3 symmetry. A variety of NMR experiments, including HMPA titration, diffusion coefficient-formula weight (D-FW) analysis, and other multinuclear one- and two-dimensional NMR techniques reveal that T3 is the major species in hydrocarbon solution when more than 0.6 equiv of HMPA is present. Due to a small amount of moisture from HMPA or air leaking into the solution, a minor complex was identified and confirmed by X-ray diffraction analysis as a mixed aggregate containing enolate, lithium hydroxide, and HMPA in a 4:2:4 ratio, [(LiOPin)4·(LiOH)2·HMPA4], that we refer to as pseudo-T4. A tetra-HMPA-solvated lithium cyclopentanone enolate tetramer was also prepared and characterized by X-ray diffraction, leading to the conclusion that steric effects dominate the formation and solvation of the pinacolone aggregates. An unusual mixed aggregate consisting of pinacolone enolate, lithium diisopropyl amide, lithium oxide, and HMPA in the ratio 5:1:1:2 is also described. PMID:25933508

  4. Lithium brines: A global perspective: Chapter 14

    USGS Publications Warehouse

    Munk, LeeAnn; Hynek, Scott; Bradley, Dwight C.; Boutt, David; Labay, Keith A.; Jochens, Hillary

    2016-01-01

    Lithium is a critical and technologically important element that has widespread use, particularly in batteries for hybrid cars and portable electronic devices. Global demand for lithium has been on the rise since the mid-1900s and is projected to continue to increase. Lithium is found in three main deposit types: (1) pegmatites, (2) continental brines, and (3) hydrothermally altered clays. Continental brines provide approximately three-fourths of the world’s Li production due to their relatively low production cost. The Li-rich brine systems addressed here share six common characteristics that provide clues to deposit genesis while also serving as exploration guidelines. These are as follows: (1) arid climate; (2) closed basin containing a salar (salt crust), a salt lake, or both; (3) associated igneous and/or geothermal activity; (4) tectonically driven subsidence; (5) suitable lithium sources; and (6) sufficient time to concentrate brine. Two detailed case studies of Li-rich brines are presented; one on the longest produced lithium brine at Clayton Valley, Nevada, and the other on the world’s largest producing lithium brine at the Salar de Atacama, Chile.

  5. Rechargeable Thin-film Lithium Batteries

    DOE R&D Accomplishments Database

    Bates, J. B.; Gruzalski, G. R.; Dudney, N. J.; Luck, C. F.; Yu, Xiaohua

    1993-08-01

    Rechargeable thin film batteries consisting of lithium metal anodes, an amorphous inorganic electrolyte, and cathodes of lithium intercalation compounds have recently been developed. The batteries, which are typically less than 6 {mu}m thick, can be fabricated to any specified size, large or small, onto a variety of substrates including ceramics, semiconductors, and plastics. The cells that have been investigated include Li TiS{sub 2}, Li V{sub 2}O{sub 5}, and Li Li{sub x}Mn{sub 2}O{sub 4}, with open circuit voltages at full charge of about 2.5, 3.6, and 4.2, respectively. The development of these batteries would not have been possible without the discovery of a new thin film lithium electrolyte, lithium phosphorus oxynitride, that is stable in contact with metallic lithium at these potentials. Deposited by rf magnetron sputtering of Li{sub 3}PO{sub 4} in N{sub 2}, this material has a typical composition of Li{sub 2.9}PO{sub 3.3}N{sub 0.46} and a conductivity at 25{degrees}C of 2 {mu}S/cm. The maximum practical current density obtained from the thin film cells is limited to about 100 {mu}A/cm{sup 2} due to a low diffusivity of Li{sup +} ions in the cathodes. In this work, the authors present a short review of their work on rechargeable thin film lithium batteries.

  6. Modified lithium borohydrides for reversible hydrogen storage.

    PubMed

    Au, Ming; Jurgensen, Arthur

    2006-04-01

    In an attempt to develop lithium borohydrides as reversible hydrogen storage materials with high hydrogen storage capacities, the feasibility of reducing the dehydrogenation temperature of the lithium borohydride and moderating rehydrogenation conditions was explored. The lithium borohydride was modified by ball milling with metal oxides and metal chlorides as additives. The modified lithium borohydrides released 9 wt % hydrogen starting from 473 K. The dehydrided modified lithium borohydrides absorbed 7-9 wt % hydrogen at 873 K and 7 MPa. The modification with additives reduced the dehydriding starting temperature from 673 to 473 K and moderated the rehydrogenation conditions from 923 K/15 MPa to 873 K/7 MPa. XRD and SEM analysis revealed the formation of an intermediate compound that might play a key role in changing the reaction path, resulting in the lower dehydriding temperature and reversibility. The reversible hydrogen storage capacity of the oxide-modified lithium borohydrides decreased gradually during hydriding/dehydriding cycling. One of the possible reasons for this effect might be the loss of boron during dehydrogenation, but this can be prevented by changing the dehydriding path using appropriate additives. The additives reduced the dehydriding temperature and improved the reversibility, but they also reduced the hydrogen storage capacity. The best compromise can be reached by selecting appropriate additives, optimizing the additive loading, and using new synthesis processes other than ball milling. PMID:16571023

  7. Kinetics of aluminum lithium alloys

    NASA Astrophysics Data System (ADS)

    Pletcher, Ben A.

    2009-12-01

    Aluminum lithium alloys are increasingly used in aerospace for their high strength-to-weight ratio. Additions of lithium, up to 4.2 wt% decrease the alloy density while increasing the modulus and yield strength. The metastable, second phase Al3Li or delta' is intriguing, as it remains spherical and coherent with the matrix phase, alpha, well into the overaged condition. Small interfacial strain energy allows these precipitates to remain spherical for volume fractions (VV ) of delta' less than 0.3, making this alloy system ideal for investigation of late-stage coarsening phenomena. Experimental characterization of three binary Al-Li alloys are presented as a critical test of diffusion screening theory and multi-particle diffusion simulations. Quantitative transmission electron microscopy is used to image the precipitates directly using the centered dark-field technique. Images are analyzed autonomously within a novel Matlab function that determines the center and size of each precipitate. Particle size distribution, particle growth kinetics, and maximum particle size are used to track the precipitate growth and correlate with the predictions of screening theory and multi-particle diffusion simulations. This project is the first extensive study of Al-Li alloys, in over 25 years, applying modern transmission electron microscopy and image analysis techniques. Previous studies sampled but a single alloy composition, and measured far fewer precipitates. This study investigates 3 alloys with volume fractions of the delta precipitates, VV =0.1-0.27, aged at 225C for 1 to 10 days. More than 1000 precipitates were sampled per aging time, creating more statistically significant data. Experimental results are used to test the predictions based on diffusion screening theory and multi-particle aging simulations. (Full text of this dissertation may be available via the University of Florida Libraries web site. Please check http://www.uflib.ufl.edu/etd.html)

  8. The Lithium Isotopic Signature of Hawaiian Basalts

    NASA Astrophysics Data System (ADS)

    Harrison, L.; Weis, D.; Hanano, D. W.

    2013-12-01

    Recycling of oceanic crust and sediment is a common mechanism to account for the presence of chemical heterogeneities observed in oceanic island basalts (OIBs). On Hawai';i, a mantle plume-sourced OIB with a high mass flux, sampling of deep mantle heterogeneities accounts for the presence of two unique geochemical and geographical trends called the Loa and Kea trends. The Loa trend overlaps the Pacific large low shear velocity province and is distinctly more enriched [1] than the Kea trend with average Pacific mantle compositions [2]. Because of the sizeable fractionation of lithium isotopes in low temperature environments, lithium serves as a tracer for the presence of recycled material in OIB sources, including Hawai'i. In this study, we analyzed 87 samples of Hawaiian basalt from the pre-shield, shield, post-shield, and rejuvenated volcanic stages and 10 samples of altered oceanic crust from ODP Site 843 for lithium isotopes using a multi-collector inductively coupled plasma mass spectrometer. Correlations of lithium isotopes with the radiogenic isotopes Pb, Hf, Nd, and Sr indicate lithium isotopes may be used to trace components in mantle plumes such as Hawai';i. The measured range of lithium isotopes for shield stage lavas is δ7Li = 1.8 - 5.7‰ and for post-shield lavas is δ7Li = 0.8 - 4.7‰. Pre-shield stage lavas (Lo'ihi volcano only) and rejuvenated lavas are the least and most homogeneous volcanic stages, respectively, in lithium isotopes. The Loa and Kea geochemical trends have different lithium isotopic signatures, with Loa trend shield volcanoes exhibiting lighter lithium isotopic signatures (δ7Li = 3.5‰ [N=43]) than Kea trend shield volcanoes (δ7Li = 4.0‰ [N=31]) [3]. Similarly, post-shield lavas have systematically lighter δ7Li than shield lavas. The presence of systematic differences in lithium isotopic signatures may indicate: 1) the sampling of distinct components in the deep source, to account for variations between Kea and Loa trend

  9. Selective Recovery of Lithium from Cathode Materials of Spent Lithium Ion Battery

    NASA Astrophysics Data System (ADS)

    Higuchi, Akitoshi; Ankei, Naoki; Nishihama, Syouhei; Yoshizuka, Kazuharu

    2016-07-01

    Selective recovery of lithium from four kinds of cathode materials, manganese-type, cobalt-type, nickel-type, and ternary-type, of spent lithium ion battery was investigated. In all cathode materials, leaching of lithium was improved by adding sodium persulfate (Na2S2O8) as an oxidant in the leaching solution, while the leaching of other metal ions (manganese, cobalt, and nickel) was significantly suppressed. Optimum leaching conditions, such as pH, temperature, amount of Na2S2O8, and solid/liquid ratio, for the selective leaching of lithium were determined for all cathode materials. Recovery of lithium from the leachate as lithium carbonate (Li2CO3) was then successfully achieved by adding sodium carbonate (Na2CO3) to the leachate. Optimum recovery conditions, such as pH, temperature, and amount of Na2CO3, for the recovery of lithium as Li2CO3 were determined for all cases. Purification of Li2CO3 was achieved by lixiviation in all systems, with purities of the Li2CO3 higher than 99.4%, which is almost satisfactory for the battery-grade purity of lithium.

  10. Magnesium oxide doping reduces acoustic wave attenuation in lithium metatantalate and lithium metaniobate crystals

    NASA Technical Reports Server (NTRS)

    Croft, W.; Damon, R.; Kedzie, R.; Kestigian, M.; Smith, A.; Worley, J.

    1970-01-01

    Single crystals of lithium metatantalate and lithium metaniobate, grown from melts having different stoichiometries and different amounts of magnesium oxide, show that doping lowers temperature-independent portion of attenuation of acoustic waves. Doped crystals possess optical properties well suited for electro-optical and photoelastic applications.

  11. Rechargeable lithium sulfide electrode for a polymer tin/sulfur lithium-ion battery

    NASA Astrophysics Data System (ADS)

    Hassoun, Jusef; Sun, Yang-Kook; Scrosati, Bruno

    In this work we investigate the electrochemical behavior of a new type of carbon-lithium sulfide composite electrode. Results based on cyclic voltammetry, charge (lithium removal)-discharge (lithium acceptance) demonstrate that this electrode has a good performance in terms of reversibility, cycle life and coulombic efficiency. XRD analysis performed in situ in a lithium cell shows that lithium sulfide can be converted into sulfur during charge and re-converted back into sulfide during the following discharge process. We also show that this electrochemical process can be efficiently carried out in polymer electrolyte lithium cells and thus, that the Li 2S-C composite can be successfully used as cathode for the development of novel types of rechargeable lithium-ion sulfur batteries where the reactive and unsafe lithium metal anode is replaced by a reliable, high capacity tin-carbon composite and the unstable organic electrolyte solution is replaced by a composite gel polymer membrane that is safe, highly conductive and able to control dendrite growth across the cell. This new Sn-C/Li 2S polymer battery operates with a capacity of 600 mAh g -1 and with an average voltage of 2 V, this leading to a value of energy density amounting to 1200 Wh kg -1.

  12. Response of NSTX Liquid Lithium divertor to High Heat Loads

    SciTech Connect

    Abrams, Tyler; Kallman, J; Kaitaa, R; Foley, E L; Grayd, T K; Kugel, H; Levinton, F; McLean, A G; Skinner, C H

    2012-07-18

    Samples of the NSTX Liquid Lithium Divertor (LLD) with and without an evaporative Li coating were directly exposed to a neutral beam ex-situ at a power of ~1.5 MW/m2 for 1-3 seconds. Measurements of front face and bulk sample temperature were obtained. Predictions of temperature evolution were derived from a 1D heat flux model. No macroscopic damage occurred when the "bare" sample was exposed to the beam but microscopic changes to the surface were observed. The Li-coated sample developed a lithium hydroxide (LiOH) coating, which did not change even when the front face temperature exceeded the pure Li melting point. These results are consistent with the lack of damage to the LLD surface and imply that heating alone may not expose pure liquid Li if the melting point of surface impurities is not exceeded. This suggests that flow and heat are needed for future PFCs requiring a liquid Li surface. __________________________________________________

  13. Lithium-end-capped polylactide thin films influence osteoblast progenitor cell differentiation and mineralization.

    PubMed

    Gomillion, Cheryl T; Lakhman, Rubinder Kaur; Kasi, Rajeswari M; Weiss, R A; Kuhn, Liisa T; Goldberg, A Jon

    2015-02-01

    End-capping by covalently binding functional groups to the ends of polymer chains offers potential advantages for tissue engineering scaffolds, but the ability of such polymers to influence cell behavior has not been studied. As a demonstration, polylactide (PLA) was end-capped with lithium carboxylate ionic groups (hPLA13kLi) and evaluated. Thin films of the hPLA13kLi and PLA homopolymer were prepared with and without surface texturing. Murine osteoblast progenitor cells from collagen 1α1 transgenic reporter mice were used to assess cell attachment, proliferation, differentiation, and mineralization. Measurement of green fluorescent protein expressed by these cells and xylenol orange staining for mineral allowed quantitative analysis. The hPLA13kLi was biologically active, increasing initial cell attachment and enhancing differentiation, while reducing proliferation and strongly suppressing mineralization, relative to PLA. These effects of bound lithium ions (Li(+) ) had not been previously reported, and were generally consistent with the literature on soluble additions of lithium. The surface texturing generated here did not influence cell behavior. These results demonstrate that end-capping could be a useful approach in scaffold design, where a wide range of biologically active groups could be employed, while likely retaining the desirable characteristics associated with the unaltered homopolymer backbone. PMID:24733780

  14. Effect of cobalt incorporation and lithium enrichment in lithium nickel manganese oxides.

    SciTech Connect

    Deng, H.; Belharouak, I.; Wu, H.; Dambournet, D.; Amine, K.

    2010-05-10

    Candidate cathode materials of cobalt-incorporated and lithium-enriched Li{sub (1+x)}Ni{sub 0.25}Co{sub 0.15}Mn{sub 0.6}O{sub (2.175+x/2)} (x=0.225-0.65) have been prepared by a coprecipitation method and a solid-state reaction. We systematically investigated the effect of both cobalt presence and lithium concentration on the structure, physical properties, and electrochemical behavior of the studied samples. The electrochemical performance of the cobalt-containing compounds showed much less dependence on the variation in the lithium amounts compared to the cobalt-free counterpart. The study demonstrated that even with cobalt incorporation, proper lithium content is the key to desirable cathode materials with nanostructured primary particles that are indispensable to achieve high capacity and high rate capability and, therefore, both improved energy and power densities for lithium-ion batteries.

  15. Dependence of structure and temperature for lithium-rich layered-spinel microspheres cathode material of lithium ion batteries

    PubMed Central

    Wang, Di; Yu, Ruizhi; Wang, Xianyou; Ge, Long; Yang, Xiukang

    2015-01-01

    Homogeneous lithium-rich layered-spinel 0.5Li2MnO3·0.5LiMn1/3Ni1/3Co1/3O2 microspheres (~1 μm) are successfully prepared by a solvothermal method and subsequent high-temperature calcinations process. The effects of temperature on the structure and performance of the as-prepared cathode material are systemically studied by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), galvanostatical charge/discharge and electrochemical impedance spectra. The results show that a spinel Li4Mn5O12 component can be controllably introduced into the lithium-rich layered material at 750°C. Besides, it has been found that the obtained layered-spinel cathode material represents excellent electrochemical characteristics. For example, it can deliver a high initial discharge capacity of 289.6 mAh g−1 between 2.0 V and 4.6 V at a rate of 0.1 C at room temperature, and a discharge capacity of 144.9 mAh g−1 at 5 C and 122.8 mAh g−1 even at 10 C. In addition, the retention of the capacity is still as high as 88% after 200 cycles, while only 79.9% for the single-phase layered material. The excellent electrochemical performance of the as-prepared cathode material can probably be attributed to the hybrid structures combining a fast Li-ion diffusion rate of 3D spinel Li4Mn5O12 phase and a high capacity of the layered Li-Mn-Ni-Co-O component. PMID:25672573

  16. Monitoring the Electrochemical Processes in the Lithium-Air Battery by Solid State NMR Spectroscopy.

    PubMed

    Leskes, Michal; Moore, Amy J; Goward, Gillian R; Grey, Clare P

    2013-12-27

    A multi-nuclear solid-state NMR approach is employed to investigate the lithium-air battery, to monitor the evolution of the electrochemical products formed during cycling, and to gain insight into processes affecting capacity fading. While lithium peroxide is identified by (17)O solid state NMR (ssNMR) as the predominant product in the first discharge in 1,2-dimethoxyethane (DME) based electrolytes, it reacts with the carbon cathode surface to form carbonate during the charging process. (13)C ssNMR provides evidence for carbonate formation on the surface of the carbon cathode, the carbonate being removed at high charging voltages in the first cycle, but accumulating in later cycles. Small amounts of lithium hydroxide and formate are also detected in discharged cathodes and while the hydroxide formation is reversible, the formate persists and accumulates in the cathode upon further cycling. The results indicate that the rechargeability of the battery is limited by both the electrolyte and the carbon cathode stability. The utility of ssNMR spectroscopy in directly detecting product formation and decomposition within the battery is demonstrated, a necessary step in the assessment of new electrolytes, catalysts, and cathode materials for the development of a viable lithium-oxygen battery. PMID:24489976

  17. Lithium and strontium isotopic systematics in playas in Nevada, USA: constraints on the origin of lithium

    NASA Astrophysics Data System (ADS)

    Araoka, Daisuke; Kawahata, Hodaka; Takagi, Tetsuichi; Watanabe, Yasushi; Nishimura, Koshi; Nishio, Yoshiro

    2014-03-01

    Lithium-rich brine in playas is a major raw material for lithium production. Recently, lithium isotopic ratios (δ7Li) have been identified as a tool for investigating water-rock interactions. Thus, to constrain the origin of lithium in playas by the use of its isotopes, we conducted leaching experiments on various lacustrine sediment and evaporite deposit samples collected from playas in Nevada, USA. We determined lithium and strontium isotopic ratios and contents and trace element contents of the leachate, estimated the initial δ7Li values in the water flowing into the playas, and examined the origin of lithium in playas by comparison with δ7Li values of the possible sources. In samples from the playas, δ7Li values show some variation, reflecting differences both in isotopic fractionation during mineral formation and in initial δ7Li value in water flowing into each playa. However, all δ7Li values in this study are much lower than those in river water and groundwater samples from around the world, but they are close to those of volcanic rocks. Considering the temperature dependence of lithium isotopic fractionation between solid and fluid, these results indicate that the lithium concentrated in playas in Nevada was supplied mainly through high-temperature water-rock interaction associated with local hydrothermal activity and not directly by low-temperature weathering of surface materials. This study, which is the first to report lithium isotopic compositions in playas, demonstrates that δ7Li may be a useful tracer for determining the origin of lithium and evaluating its accumulation processes in playas.

  18. Lithium Resources for the 21st Century

    NASA Astrophysics Data System (ADS)

    Kesler, S.; Gruber, P.; Medina, P.; Keolian, G.; Everson, M. P.; Wallington, T.

    2011-12-01

    Lithium is an important industrial compound and the principal component of high energy-density batteries. Because it is the lightest solid element, these batteries are widely used in consumer electronics and are expected to be the basis for battery electric vehicles (BEVs), hybrid electric vehicles (HEVs) and plug-in hybrid electric vehicles (PHEVs) for the 21st century. In view of the large incremental demand for lithium that will result from expanded use of various types of EVs, long-term estimates of lithium demand and supply are advisable. For GDP growth rates of 2 to 3% and battery recycling rates of 90 to 100%, total demand for lithium for all markets is expected to be a maximum of 19.6 million tonnes through 2100. This includes 3.2 million tonnes for industrial compounds, 3.6 million tonnes for consumer electronics, and 12.8 million tonnes for EVs. Lithium-bearing mineral deposits that might supply this demand contain an estimated resource of approximately 39 million tonnes, although many of these deposits have not been adequately evaluated. These lithium-bearing mineral deposits are of two main types, non-marine playa-brine deposits and igneous deposits. Playa-brine deposits have the greatest immediate resource potential (estimated at 66% of global resources) and include the Salar de Atacama (Chile), the source of almost half of current world lithium production, as well as Zabuye (China/Tibet) and Hombre Muerto (Argentina). Additional important playa-brine lithium resources include Rincon (Argentina), Qaidam (China), Silver Peak (USA) and Uyuni (Bolivia), which together account for about 35% of the estimated global lithium resource. Information on the size and continuity of brine-bearing aquifers in many of these deposits is limited, and differences in chemical composition of brines from deposit to deposit require different extraction processes and yield different product mixes of lithium, boron, potassium and other elements. Numerous other brines in playas

  19. Lithium-ion batteries having conformal solid electrolyte layers

    SciTech Connect

    Kim, Gi-Heon; Jung, Yoon Seok

    2014-05-27

    Hybrid solid-liquid electrolyte lithium-ion battery devices are disclosed. Certain devices comprise anodes and cathodes conformally coated with an electron insulating and lithium ion conductive solid electrolyte layer.

  20. Aftereffects of Lithium-Conditioned Stimuli on Consummatory Behavior

    ERIC Educational Resources Information Center

    Domjan, Michael; Gillan, Douglas J.

    1977-01-01

    To complement investigations of the direct effects of lithium toxicosis on consummatory behavior, these experiments were designed to determine the aftereffects on drinking of exposure to a conditioned stimulus previously paired with lithium. (Author/RK)

  1. Magnesium-lithium alloys developed for low temperature use

    NASA Technical Reports Server (NTRS)

    Dunkerley, F. J.; Leavenworth, H. W., Jr.

    1967-01-01

    Three new magnesium-lithium alloys have been developed for application at cryogenic temperatures. These lightweight alloys have approximately doubled the tensile and yield strengths at room temperature of previously described magnesium-lithium alloys.

  2. Improved Fabrication of Lithium Films Having Micron Features

    NASA Technical Reports Server (NTRS)

    Whitacre, Jay

    2006-01-01

    An improved method has been devised for fabricating micron-dimension Li features. This approach is intended for application in the fabrication of lithium-based microelectrochemical devices -- particularly solid-state thin-film lithium microbatteries.

  3. Chemical and morphological characteristics of lithium electrode surfaces

    NASA Technical Reports Server (NTRS)

    Yen, S. P. S.; Shen, D.; Vasquez, R. P.; Grunthaner, F. J.; Somoano, R. B.

    1981-01-01

    Lithium electrode surfaces were analyzed for chemical and morphological characteristics, using electron spectroscopy chemical analysis (ESCA) and scanning electron microscopy (SEM). Samples included lithium metal and lithium electrodes which were cycled in a 1.5 M lithium arsenic hexafluoride/two-methyl tetrahydrofuran electrolyte. Results show that the surface of the as-received lithium metal was already covered by a film composed of LiO2 and an Li2O/CO2 adduct with a thickness of approximately 100-200 A. No evidence of Ni3 was found. Upon exposure of the lithium electrode to a 1.5 M LiAsF6/2-Me-THF electrochemical environment, a second film was observed to form on the surface, consisting primarily of As, Si, and F, possibly in the form of lithium arsenic oxyfluorides or lithium fluorosilicates. It is suggested that the film formation may be attributed to salt degradation.

  4. 78 FR 1119 - Hazardous Materials: Transportation of Lithium Batteries

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-07

    ... Materials: Transportation of Lithium Batteries AGENCY: Pipeline and Hazardous Materials Safety... Hazardous Materials Regulations (HMR) on the transportation of lithium cells and batteries, including.... 78, No. 4 / Monday, January 7, 2013 / Proposed Rules#0;#0; ] DEPARTMENT OF TRANSPORTATION...

  5. Lithium isotope fractionation during uptake by gibbsite

    NASA Astrophysics Data System (ADS)

    Wimpenny, Josh; Colla, Christopher A.; Yu, Ping; Yin, Qing-Zhu; Rustad, James R.; Casey, William H.

    2015-11-01

    The intercalation of lithium from solution into the six-membered μ2-oxo rings on the basal planes of gibbsite is well-constrained chemically. The product is a lithiated layered-double hydroxide solid that forms via in situ phase change. The reaction has well established kinetics and is associated with a distinct swelling of the gibbsite as counter ions enter the interlayer to balance the charge of lithiation. Lithium reacts to fill a fixed and well identifiable crystallographic site and has no solvation waters. Our lithium-isotope data shows that 6Li is favored during this intercalation and that the solid-solution fractionation depends on temperature, electrolyte concentration and counter ion identity (whether Cl-, NO3- or ClO4-). We find that the amount of isotopic fractionation between solid and solution (ΔLisolid-solution) varies with the amount of lithium taken up into the gibbsite structure, which itself depends upon the extent of conversion and also varies with electrolyte concentration and in the counter ion in the order: ClO4- < NO3- < Cl-. Higher electrolyte concentrations cause more rapid expansion of the gibbsite interlayer and some counter ions, such as Cl-, are more easily taken up than others, probably because they ease diffusion. The relationship between lithium loading and ΔLisolid-solution indicates two stages: (1) uptake into the crystallographic sites that favors light lithium, in parallel with adsorption of solvated cations, and (2) continued uptake of solvated cations after all available octahedral vacancies are filled; this second stage has no isotopic preference. The two-step reaction progress is supported by solid-state NMR spectra that clearly resolve a second reservoir of lithium in addition to the expected layered double-hydroxide phase.

  6. Microwave Plasma Chemical Vapor Deposition of Carbon Coatings on LiNi1/3Co1/3Mn1/3O2 for Li-Ion Battery Composite Cathodes

    SciTech Connect

    Doeff, M.M.; Kostecki, R.; Marcinek, M.; Wilcoc, J.D.

    2008-12-10

    In this paper, we report results of a novel synthesis method of thin film conductive carbon coatings on LiNi{sub 1/3}Co{sub 1/3}Mn{sub 1/3}O{sub 2} cathode active material powders for lithium-ion batteries. Thin layers of graphitic carbon were produced from a solid organic precursor, anthracene, by a one-step microwave plasma chemical vapor deposition (MPCVD) method. The structure and morphology of the carbon coatings were examined using SEM, TEM, and Raman spectroscopy. The composite LiNi{sub 1/3}Co{sub 1/3}Mn{sub 1/3}O{sub 2} electrodes were electrochemically tested in lithium half coin cells. The composite cathodes made of the carbon-coated LiNi{sub 1/3}Co{sub 1/3}Mn{sub 1/3}O{sub 2} powder showed superior electrochemical performance and increased capacity compared to standard composite LiNi{sub 1/3}Co{sub 1/3}Mn{sub 1/3}O{sub 2} electrodes.

  7. Lithium-Induced Downbeat Nystagmus and Horizontal Gaze Palsy.

    PubMed

    Jørgensen, Jesper Skovlund; Landschoff Lassen, Lisbeth; Wegener, Marianne

    2016-01-01

    We report a case of lithium-induced downbeat nystagmus and horizontal gaze palsy in a 62-year-old woman who was treated for a bipolar affective disorder with lithium carbonate for one month. At presentation serum lithium was within therapeutic range. No alternative causes of the ocular motility disturbances were found, and the patient improved significantly as lithium carbonate was discontinued. PMID:27347248

  8. Methods for making lithium vanadium oxide electrode materials

    DOEpatents

    Schutts, Scott M.; Kinney, Robert J.

    2000-01-01

    A method of making vanadium oxide formulations is presented. In one method of preparing lithium vanadium oxide for use as an electrode material, the method involves: admixing a particulate form of a lithium compound and a particulate form of a vanadium compound; jet milling the particulate admixture of the lithium and vanadium compounds; and heating the jet milled particulate admixture at a temperature below the melting temperature of the admixture to form lithium vanadium oxide.

  9. State of the art in high power lithium batteries

    NASA Astrophysics Data System (ADS)

    Chenebault, P.; Planchat, J. P.

    The features of liquid cathode systems used in high-power lithium batteries are reviewed. Practical examples representing the state of the art in the field of high-power lithium batteries are presented, illustrating the advantages and limitations of high-power lithium batteries. Other potentially substitute systems are examined. It is concluded that the high-rate lithium/sulfur oxychloride couples remain the most interesting systems in terms of energy density and specific power, especially in the reserve configuration.

  10. Antiproliferative Potential of Officinal Forms and Nanoparticles of Lithium Salts.

    PubMed

    Lykov, A P; Poveshchenko, O V; Bondarenko, N A; Bogatova, N P; Makarova, O P; Konenkov, V I

    2016-04-01

    We studied the effect of officinal forms and nanoparticles of lithium carbonate and lithium citrate on proliferative activity of hepatoma-29 cells. Lithium carbonate nanoparticles suppressed proliferation of hepatoma-29 cells in lower concentrations than officinal form of this salt. The antiproliferative effect of lithium salts i activation of apoptosis and arrest of hepatoma-29 cells in the G2/M phase of the cell cycle. PMID:27165073

  11. Lithium-Induced Downbeat Nystagmus and Horizontal Gaze Palsy

    PubMed Central

    Jørgensen, Jesper Skovlund; Landschoff Lassen, Lisbeth; Wegener, Marianne

    2016-01-01

    We report a case of lithium-induced downbeat nystagmus and horizontal gaze palsy in a 62-year-old woman who was treated for a bipolar affective disorder with lithium carbonate for one month. At presentation serum lithium was within therapeutic range. No alternative causes of the ocular motility disturbances were found, and the patient improved significantly as lithium carbonate was discontinued. PMID:27347248

  12. Inhomogeneous degradation of graphite anodes in automotive lithium ion batteries under low-temperature pulse cycling conditions

    NASA Astrophysics Data System (ADS)

    Burow, Daniel; Sergeeva, Kseniya; Calles, Simon; Schorb, Klaus; Börger, Alexander; Roth, Christina; Heitjans, Paul

    2016-03-01

    The aging of graphite anodes in prismatic lithium ion cells during a low temperature pulse charging regime was studied by electrical tests and post-mortem analysis. The capacity decrease and impedance increase mainly occurs in the beginning of cycling and lithium plating was identified as the major aging mechanism. The degradation and the local states of charge show an inhomogeneous distribution over the anode, which is confirmed from spatially resolved XRD studies and SEM combined with EDX performed on electrode cross sections. Comparing a charged cell with a discharged cell reveals that ca. 1/3 of the lithium is plated reversibly at the given SOH of 60%. It is proposed that high charge rates at low temperatures induce inhomogeneities of temperature and anode utilization resulting in inhomogeneous aging effects that accumulate over lifetime.

  13. Field Trial on a Rack-mounted DC Power Supply System with 80-Ah Lithium-ion Batteries

    NASA Astrophysics Data System (ADS)

    Matsushima, Toshio

    Using an industrial lithium-ion battery that has higher energy density than conventional valve-regulated lead-acid batteries, a rack-mounted DC-power-supply system was assembled and tested at a base transceiver station (BTS) offering actual services. A nominal output voltage and maximum output current of the system is 53.5V and 20A, respectively. An 80-Ah lithium-ion battery composed of 13 cells connected in series was applied in the system and maintained in a floating charge method. The DC-power-supply system was installed in a 19-inch power rack in the telecommunications equipment box at BTS. The characteristics of the 80Ah lithium-ion battery, specifications of the DC-power-supply system and field-test results were shown in this paper.

  14. Doping-Enhanced Lithium Diffusion in Lithium-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Wu, Gang; Wu, Shunnian; Wu, Ping

    2011-09-01

    We disclose a distortion-assisted diffusion mechanism in Li3N and Li2.5Co0.5N by first-principles simulations. A B2g soft mode at the Γ point is found in α-Li3N, and a more stable α'-Li3N (P3¯m1) structure, which is 0.71 meV lower in energy, is further derived. The same soft mode is inherited into Li2.5Co0.5N and is enhanced due to Co doping. Consequently, unlike the usual Peierls spin instability along Co-N chains, large lithium-ion displacements on the Li-N plane are induced by a set of soft modes. Such a distortion is expected to offer Li atoms a route to bypass the high diffusion barrier and promote Li-ion conductivity. In addition, we further illustrate abnormal Born effective charges along Co-N chains which result from the competition between the motions of electrons and ion cores. Our results provide future opportunities in both fundamental understanding and structural modifications of Li-ion battery materials.

  15. Secondary electron emission from lithium and lithium compounds

    DOE PAGESBeta

    Capece, A. M.; Patino, M. I.; Raitses, Y.; Koel, B. E.

    2016-07-06

    In this work, measurements of electron-induced secondary electron emission ( SEE) yields of lithium as a function of composition are presented. The results are particularly relevant for magnetic fusion devices such as tokamaks, field-reversed configurations, and stellarators that consider Li as a plasma-facing material for improved plasma confinement. SEE can reduce the sheath potential at the wall and cool electrons at the plasma edge, resulting in large power losses. These effects become significant as the SEE coefficient, γe, approaches one, making it imperative to maintain a low yield surface. This work demonstrates that the yield from Li strongly depends onmore » chemical composition and substantially increases after exposure to oxygen and water vapor. The total yield was measured using a retarding field analyzer in ultrahigh vacuum for primary electron energies of 20-600 eV. The effect of Li composition was determined by introducing controlled amounts of O2 and H2O vapor while monitoring film composition with Auger electron spectroscopy and temperature programmed desorption. The results show that the energy at which γe = 1 decreases with oxygen content and is 145 eV for a Li film that is 17% oxidized and drops to less than 25 eV for a fully oxidized film. This work has important implications for laboratory plasmas operating under realistic vacuum conditions in which oxidation significantly alters the electron emission properties of Li walls. Published by AIP Publishing.« less

  16. Secondary electron emission from lithium and lithium compounds

    NASA Astrophysics Data System (ADS)

    Capece, A. M.; Patino, M. I.; Raitses, Y.; Koel, B. E.

    2016-07-01

    In this work, measurements of electron-induced secondary electron emission (SEE) yields of lithium as a function of composition are presented. The results are particularly relevant for magnetic fusion devices such as tokamaks, field-reversed configurations, and stellarators that consider Li as a plasma-facing material for improved plasma confinement. SEE can reduce the sheath potential at the wall and cool electrons at the plasma edge, resulting in large power losses. These effects become significant as the SEE coefficient, γe, approaches one, making it imperative to maintain a low yield surface. This work demonstrates that the yield from Li strongly depends on chemical composition and substantially increases after exposure to oxygen and water vapor. The total yield was measured using a retarding field analyzer in ultrahigh vacuum for primary electron energies of 20-600 eV. The effect of Li composition was determined by introducing controlled amounts of O2 and H2O vapor while monitoring film composition with Auger electron spectroscopy and temperature programmed desorption. The results show that the energy at which γe = 1 decreases with oxygen content and is 145 eV for a Li film that is 17% oxidized and drops to less than 25 eV for a fully oxidized film. This work has important implications for laboratory plasmas operating under realistic vacuum conditions in which oxidation significantly alters the electron emission properties of Li walls.

  17. Nanostructured lithium sulfide materials for lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Kyu; Lee, Yun Jung; Sun, Yang-Kook

    2016-08-01

    Upon the maturation and saturation of Li-ion battery technologies, the demand for the development of energy storage systems with higher energy densities has surged to meet the needs of key markets such as electric vehicles. Among the many next generation high-energy storage options, the Lisbnd S battery system is considered particularly close to mass commercialization because of its low cost and the natural abundance of sulfur. In this review, we focus on nanostructured Li2S materials for Lisbnd S batteries. Due to a lithium source in its molecular structure, Li2S can be coupled with various Li-free anode materials, thereby giving it the potential to surmount many of the problems related with a Li-metal anode. The hurdles that impede the full utilization of Li2S materials include its high activation barrier and the low electrical conductivity of bulk Li2S particles. Various strategies that can be used to assist the activation process and facilitate electrical transport are analyzed. To provide insight into the opportunities specific to Li2S materials, we highlight some major advances and results that have been achieved in the development of metal Li-free full cells and all-solid-state cells based on Li2S cathodes.

  18. A study of aluminum-lithium alloys: Strength profile in 2090 aluminum-lithium-copper-magnesium-zirconium alloy

    SciTech Connect

    Soepriyanto, S.

    1991-01-01

    Aluminum-containing lithium alloys are undergoing intensive development as replacements for conventional aluminum alloys 2024 and 7075 in aircraft structural applications. Lithium is a very reactive metal so that an elevated temperature heat treatments can cause lithium diffusion to the surface and reaction with the atmosphere. Solid state diffusion of lithium within the 2090 alloy and subsequent surface oxidation during solution heat treatment were investigated. Thermodynamic and kinetic analyses were used to evaluate the alloy's thermal oxidation behavior. A mathematical model based on simultaneous diffusion and surface oxidation of lithium was developed to predict lithium concentration profiles across the specimen. Agreement was obtained between the predicted lithium concentration profiles and their corresponding experimental results. Microhardness and yield strength profiles were found also to follow the corresponding lithium concentration profiles. Various heat treatment procedures were studied on this 2090 alloy to give a greater understanding of precipitate strengthening.

  19. 40 CFR 721.10201 - Cobalt lithium manganese nickel oxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Cobalt lithium manganese nickel oxide... Specific Chemical Substances § 721.10201 Cobalt lithium manganese nickel oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as cobalt lithium...

  20. 40 CFR 721.10201 - Cobalt lithium manganese nickel oxide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Cobalt lithium manganese nickel oxide... Specific Chemical Substances § 721.10201 Cobalt lithium manganese nickel oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as cobalt lithium...

  1. 40 CFR 721.10201 - Cobalt lithium manganese nickel oxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Cobalt lithium manganese nickel oxide... Specific Chemical Substances § 721.10201 Cobalt lithium manganese nickel oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as cobalt lithium...

  2. LONG-LASTING LITHIUM NEUROTOXICITY IN AN ADOLESECENT

    PubMed Central

    Khanna, Rakesh; Sethi, Sujata

    1993-01-01

    SUMMARY Acute lithium intoxication is well known. A case of long tasting lithium neurotoxicity in an adolescent male is reported, who showed signs of cerebellar as well as brain stem involvement. Persistent lithium neurotoxicity is discussed and the recommendation made that this condition be considered irreversible only if no substantial recovery occurs in the first six months. PMID:21743620

  3. Adverse reactions in treatment with lithium carbonate and haloperidol.

    PubMed

    Baastrup, P C; Hollnagel, P; Sorensen, R; Schou, M

    1976-12-01

    Hospital records of 425 patients who had been treated simultaneously with lithium carbonate and haloperidol were examined. Adverse reactions in these patients were the same as in patients given lithium alone or haloperidol alone. None of the patients developed a syndrome resembling that described by others in patients treated with a lithium and haloperidol combination. PMID:1036539

  4. 78 FR 19024 - Lithium Ion Batteries in Transportation Public Forum

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-28

    ... SAFETY BOARD Lithium Ion Batteries in Transportation Public Forum On Thursday and Friday, April 11-12, 2013, the National Transportation Safety Board (NTSB) will convene a forum titled, ``Lithium Ion... Inquiry. The forum is organized into three topic areas: Lithium ion battery design, development, and...

  5. 75 FR 9147 - Hazardous Materials: Transportation of Lithium Batteries

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-01

    ... equipment (HM-224F; 75 FR 1302). The proposed changes are intended to enhance safety by ensuring that all... for lithium metal batteries and lithium ion batteries were adopted into the UN Recommendations. The... regulations were revised to reflect this change. Adopt shipping descriptions for lithium ion...

  6. 40 CFR 721.9668 - Organotin lithium compound.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Organotin lithium compound. 721.9668... Substances § 721.9668 Organotin lithium compound. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as an organotin lithium compound (PMN...

  7. 40 CFR 721.9668 - Organotin lithium compound.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Organotin lithium compound. 721.9668... Substances § 721.9668 Organotin lithium compound. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as an organotin lithium compound (PMN...

  8. 40 CFR 721.9668 - Organotin lithium compound.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Organotin lithium compound. 721.9668... Substances § 721.9668 Organotin lithium compound. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as an organotin lithium compound (PMN...

  9. 40 CFR 721.9668 - Organotin lithium compound.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Organotin lithium compound. 721.9668... Substances § 721.9668 Organotin lithium compound. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as an organotin lithium compound (PMN...

  10. 40 CFR 721.9668 - Organotin lithium compound.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Organotin lithium compound. 721.9668... Substances § 721.9668 Organotin lithium compound. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as an organotin lithium compound (PMN...

  11. Superacid-Based Lithium Salts For Polymer Electrolytes

    NASA Technical Reports Server (NTRS)

    Nagasubramanian, Ganesan; Prakash, Surya; Shen, David H.; Surampudi, Subbarao; Olah, George

    1995-01-01

    Solid polymer electrolytes exhibiting high lithium-ion conductivities made by incorporating salts of superacids into thin films of polyethylene oxide (PEO). These and other solid-polymer electrolytes candidates for use in rechargeable lithium-based electrochemical cells. Increases in room-temperature lithium-ion conductivities of solid electrolytes desirable because they increase achievable power and energy densities.

  12. 40 CFR 721.10332 - Lithium metal phosphate (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Lithium metal phosphate (generic). 721... Substances § 721.10332 Lithium metal phosphate (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as lithium metal phosphate (PMN...

  13. RECOVERY AND SEPARATION OF LITHIUM VALUES FROM SALVAGE SOLUTIONS

    DOEpatents

    Hansford, D.L.; Raabe, E.W.

    1963-08-20

    Lithium values can be recovered from an aqueous basic solution by reacting the values with a phosphate salt soluble in the solution, forming an aqueous slurry of the resultant aqueous insoluble lithium phosphate, contacting the slurry with an organic cation exchange resin in the acid form until the slurry has been clarified, and thereafter recovering lithium values from the resin. (AEC)

  14. 40 CFR 721.10332 - Lithium metal phosphate (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Lithium metal phosphate (generic). 721... Substances § 721.10332 Lithium metal phosphate (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as lithium metal phosphate (PMN...

  15. 40 CFR 721.10332 - Lithium metal phosphate (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Lithium metal phosphate (generic). 721... Substances § 721.10332 Lithium metal phosphate (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as lithium metal phosphate (PMN...

  16. Electrolytes for rechargeable lithium batteries. Research and development technical report

    SciTech Connect

    Hunger, H.F.

    1981-09-01

    Theoretical considerations predict increased stability of cyclic ethers and diethers against reductive cleavage by lithium if the ethers have 2 methyl substitution. Diethers are solvents with low viscosity which are desirable for high rate rechargeable lithium batteries. Synergistic, mixed solvent effects increase electrolyte conductance and rate capability of lithium intercalating cathodes.

  17. Lithium Enolates Derived from Pyroglutaminol: Aggregation, Solvation, and Atropisomerism.

    PubMed

    Houghton, Michael J; Biok, Naomi A; Huck, Christopher J; Algera, Russell F; Keresztes, Ivan; Wright, Stephen W; Collum, David B

    2016-05-20

    Lithium enolates derived from protected pyroglutaminols were characterized by using (6)Li, (13)C, and (19)F NMR spectroscopies in conjunction with the method of continuous variations. Mixtures of tetrasolvated dimers and tetrasolvated tetramers in different proportions depend on the steric demands of the hemiaminal protecting group, tetrahydrofuran concentration, and the presence or absence of an α-fluoro moiety. The high steric demands of the substituted bicyclo[3.3.0] ring system promote dimers to an unusual extent and allow solvents and atropisomers in cubic tetramers to be observed in the slow-exchange limit. Pyridine used as a (6)Li chemical shift reagent proved useful in assigning solvation numbers. PMID:27035057

  18. Reactive oxygen species formed in organic lithium-oxygen batteries.

    PubMed

    Schwager, Patrick; Dongmo, Saustin; Fenske, Daniela; Wittstock, Gunther

    2016-04-20

    Li-oxygen batteries with organic electrolytes are of general interest because of their theoretically high gravimetric energy density. Among the great challenges for this storage technology is the generation of reactive oxygen species such as superoxides and peroxides that may react with the organic solvent molecules and other cell components. The generation of such species has been assumed to occur during the charging reaction. Here we show that superoxide is formed also during the discharge reaction in lithium ion-containing dimethyl sulfoxide electrolytes and is released into the solution. This is shown independently by fluorescence microscopy after reaction with the selective reagent 4-chloro-7-nitrobenzo-2-oxa-1,3-diazole and by local detection using a microelectrode of a scanning electrochemcial microscope positioned in a defined distance of 10 to 90 μm above the gas diffusion electrode. PMID:26911793

  19. Diffusive Fractionation of Lithium Isotopes in Olivine

    NASA Astrophysics Data System (ADS)

    Homolova, V.; Richter, F. M.; Watson, E. B.; Chaussidon, M.

    2014-12-01

    Systematic lithium isotope variations along concentration gradients found in olivine and pyroxene grains from terrestrial, lunar and martian rocks have been attributed to diffusive isotopic fractionation [Beck et al., 2006; Tang et al., 2007]. In some cases, these isotopic excursions are so large that a single grain may display isotopic variability that spans almost the entire range of documented terrestrial values [Jeffcoate et al., 2007]. In this study, we present the results of experiments to examine diffusive isotopic fractionation of lithium in olivine. The experiments comprised crystallographically oriented slabs of San Carlos olivine juxtaposed with either spodumene powder or a lithium rich pyroxene crystal. Experiments were conducted at 1 GPa and 0.1MPa over a temperature range of 1000 to 1125⁰C. Oxygen fugacity in the 0.1MPa experiments was controlled using the wustite-magnetite and nickel-nickel oxide solid buffer assemblages. Lithium concentrations generally decrease smoothly away from the edges of the grains; however, experiments involving diffusion parallel to the a-axis consistently show peculiar wavy or segmented concentration profiles. Lithium diffusivity parallel to the c-axis is on the order of 1E-14m2/s at 1100⁰C. The diffusivity parallel to the c-axis is more than an order of magnitude faster than diffusion parallel to the b-axis and correlates positively with oxygen fugacity. The lithium isotopic composition, δ7Li = 1000‰ * ((δ7Lisample- δ7Ligrain center)/ δ7Ligrain center), shows a decrease away from the edge of the grain to a minimum value (up to 70‰ lighter) and then an abrupt increase back to the initial isotopic composition of the olivine grain. This isotopic profile is similar to those found in natural grains and an experimental study on diffusive fractionation of lithium isotopes in pyroxene [Richter et al., 2014]. Results from the present study are modeled using the approach of Dohmen et al. [2010], which assumes lithium

  20. Elaboration and characterization of a free standing LiSICON membrane for aqueous lithium-air battery

    NASA Astrophysics Data System (ADS)

    Puech, Laurent; Cantau, Christophe; Vinatier, Philippe; Toussaint, Gwenaëlle; Stevens, Philippe

    2012-09-01

    In order to develop a LISICON separator for an aqueous lithium-air battery, a thin membrane was prepared by a tape-casting of a Li1.3Al0.3Ti1.7 (PO4)3-AlPO4 based slip followed by a sintering step. By optimizing the grain sizes, the slip composition and the sintering treatment, the mechanical properties were improved and the membrane was reduced to a thickness of down to 40 μm. As a result, the ionic resistance is relatively low, around 38 Ω for a 55 μm membrane of 1 cm2. One side of the membrane was coated with a lithium oxynitrured phosphorous (LiPON) thin film to prevent lithium metal attack. Lithium metal was electrochemically deposited on the LiPON surface from a saturated aqueous solution of LiOH. However, the ionic resistance of the LiPON film, around 67 Ω for a 1.2 μm film of 1 cm2, still causes an important ohmic loss contribution which limits the power performance of a lithium-air battery.

  1. Lithium-vanadium advanced blanket development. ITER final report on U.S. contribution: Task T219/T220

    SciTech Connect

    Smith, D.L.; Mattas, R.F.

    1997-07-01

    The objective of this task is to develop the required data base and demonstrate the performance of a liquid lithium-vanadium advanced blanket design. The task has two main activities related to vanadium structural material and liquid lithium system developments. The vanadium alloy development activity included four subtasks: (1.1) baseline mechanical properties of non irradiated base metal and weld metal joints; (1.2) compatibility with liquid lithium; (1.3) material irradiation tests; and (1.4) development of material manufacturing and joining methods. The lithium blanket technology activity included four subtasks: (2.1) electrical insulation development and testing for liquid metal systems; (2.2) MHD pressure drop and heat transfer study for self-cooled liquid metal systems; (2.3) chemistry of liquid lithium; and (2.4) design, fabrication and testing of ITER relevant size blanket mockups. A summary of the progress and results obtained during the period 1995 and 1996 in each of the subtask areas is presented in this report.

  2. Three-dimensional mapping of hippocampal anatomy in unmedicated and lithium-treated patients with bipolar disorder.

    PubMed

    Bearden, Carrie E; Thompson, Paul M; Dutton, Rebecca A; Frey, Benício N; Peluso, Marco A M; Nicoletti, Mark; Dierschke, Nicole; Hayashi, Kiralee M; Klunder, Andrea D; Glahn, David C; Brambilla, Paolo; Sassi, Roberto B; Mallinger, Alan G; Soares, Jair C

    2008-05-01

    Declarative memory impairments are common in patients with bipolar illness, suggesting underlying hippocampal pathology. However, hippocampal volume deficits are rarely observed in bipolar disorder. Here we used surface-based anatomic mapping to examine hippocampal anatomy in bipolar patients treated with lithium relative to matched control subjects and unmedicated patients with bipolar disorder. High-resolution brain magnetic resonance images were acquired from 33 patients with bipolar disorder (21 treated with lithium and 12 unmedicated), and 62 demographically matched healthy control subjects. Three-dimensional parametric mesh models were created from manual tracings of the hippocampal formation. Total hippocampal volume was significantly larger in lithium-treated bipolar patients compared with healthy controls (by 10.3%; p=0.001) and unmedicated bipolar patients (by 13.9%; p=0.003). Statistical mapping results, confirmed by permutation testing, revealed localized deficits in the right hippocampus, in regions corresponding primarily to cornu ammonis 1 subfields, in unmedicated bipolar patients, as compared to both normal controls (p=0.01), and in lithium-treated bipolar patients (p=0.03). These findings demonstrate the sensitivity of these anatomic mapping methods for detecting subtle alterations in hippocampal structure in bipolar disorder. The observed reduction in subregions of the hippocampus in unmedicated bipolar patients suggests a possible neural correlate for memory deficits frequently reported in this illness. Moreover, increased hippocampal volume in lithium-treated bipolar patients may reflect postulated neurotrophic effects of this agent, a possibility warranting further study in longitudinal investigations. PMID:17687266

  3. Single-Ion Block Copoly(ionic liquid)s as Electrolytes for All-Solid State Lithium Batteries.

    PubMed

    Porcarelli, Luca; Shaplov, Alexander S; Salsamendi, Maitane; Nair, Jijeesh R; Vygodskii, Yakov S; Mecerreyes, David; Gerbaldi, Claudio

    2016-04-27

    Polymer electrolytes have been proposed as replacement for conventional liquid electrolytes in lithium-ion batteries (LIBs) due to their intrinsic enhanced safety. Nevertheless, the power delivery of these materials is limited by the concentration gradient of the lithium salt. Single-ion conducting polyelectrolytes represent the ideal solution since their nature prevents polarization phenomena. Herein, the preparation of a new family of single-ion conducting block copolymer polyelectrolytes via reversible addition-fragmentation chain transfer polymerization technique is reported. These copolymers comprise poly(lithium 1-[3-(methacryloyloxy)propylsulfonyl]-1-(trifluoromethylsulfonyl)imide) and poly(ethylene glycol) methyl ether methacrylate blocks. The obtained polyelectrolytes show low Tg values in the range of -61 to 0.6 °C, comparatively high ionic conductivity (up to 2.3 × 10(-6) and 1.2 × 10(-5) S cm(-1) at 25 and 55 °C, respectively), wide electrochemical stability (up to 4.5 V versus Li(+)/Li), and a lithium-ion transference number close to unity (0.83). Owing to the combination of all mentioned properties, the prepared polymer materials were used as solid polyelectrolytes and as binders in the elaboration of lithium-metal battery prototypes with high charge/discharge efficiency and excellent specific capacity (up to 130 mAh g(-1)) at C/15 rate. PMID:27043201

  4. Rotation, inflation, and lithium in the Pleiades

    NASA Astrophysics Data System (ADS)

    Somers, Garrett; Pinsonneault, Marc H.

    2015-06-01

    The rapidly rotating cool dwarfs of the Pleiades are rich in lithium relative to their slowly rotating counterparts. Motivated by observations of inflated radii in young, active stars, and by calculations showing that radius inflation inhibits pre-main-sequence (pre-MS) Li destruction, we test whether this pattern could arise from a connection between stellar rotation rate and radius inflation on the pre-MS. We demonstrate that pre-MS radius inflation can efficiently suppress lithium destruction by rotationally induced mixing in evolutionary models, and that the net effect of inflation and rotational mixing is a pattern where rotation correlates with lithium abundance for M* < M⊙, and anticorrelates with lithium abundance for M* > M⊙, similar to the empirical trend in the Pleiades. Next, we adopt different prescriptions for the dependence of inflation on rotation, and compare their predictions to the Pleiades lithium/rotation pattern. We find that if a connection between rotation and radius inflation exists, then the important qualitative features of this pattern naturally and generically emerge in our models. This is the first consistent physical model to date that explains the Li-rotation correlation in the Pleiades. We discuss plausible mechanisms for inducing this correlation and suggest an observational test using granulation.

  5. Magnetic diagnostics for the lithium tokamak experiment.

    PubMed

    Berzak, L; Kaita, R; Kozub, T; Majeski, R; Zakharov, L

    2008-10-01

    The lithium tokamak experiment (LTX) is a spherical tokamak with R(0)=0.4 m, a=0.26 m, B(TF) approximately 3.4 kG, I(P) approximately 400 kA, and pulse length approximately 0.25 s. The focus of LTX is to investigate the novel low-recycling lithium wall operating regime for magnetically confined plasmas. This regime is reached by placing an in-vessel shell conformal to the plasma last closed flux surface. The shell is heated and then coated with liquid lithium. An extensive array of magnetic diagnostics is available to characterize the experiment, including 80 Mirnov coils (single and double axis, internal and external to the shell), 34 flux loops, 3 Rogowskii coils, and a diamagnetic loop. Diagnostics are specifically located to account for the presence of a secondary conducting surface and engineered to withstand both high temperatures and incidental contact with liquid lithium. The diagnostic set is therefore fabricated from robust materials with heat and lithium resistance and is designed for electrical isolation from the shell and to provide the data required for highly constrained equilibrium reconstructions. PMID:19044600

  6. Size effects in lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Hu-Rong, Yao; Ya-Xia, Yin; Yu-Gao, Guo

    2016-01-01

    Size-related properties of novel lithium battery materials, arising from kinetics, thermodynamics, and newly discovered lithium storage mechanisms, are reviewed. Complementary experimental and computational investigations of the use of the size effects to modify electrodes and electrolytes for lithium ion batteries are enumerated and discussed together. Size differences in the materials in lithium ion batteries lead to a variety of exciting phenomena. Smaller-particle materials with highly connective interfaces and reduced diffusion paths exhibit higher rate performance than the corresponding bulk materials. The thermodynamics is also changed by the higher surface energy of smaller particles, affecting, for example, secondary surface reactions, lattice parameter, voltage, and the phase transformation mechanism. Newly discovered lithium storage mechanisms that result in superior storage capacity are also briefly highlighted. Project supported by the National Natural Science Foundation of China (Grant Nos. 51225204 and 21303222), the Shandong Taishan Scholarship, China, the Ministry of Science and Technology, China (Grant No. 2012CB932900), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA09010000).

  7. Mechanochemistry of lithium nitride under hydrogen gas.

    PubMed

    Li, Z; Zhang, J; Wang, S; Jiang, L; Latroche, M; Du, J; Cuevas, F

    2015-09-14

    Hydrogen uptake during the mechanochemistry of lithium nitride under 9 MPa hydrogen pressure has been analyzed by means of in situ solid-gas absorption and ex situ X-ray diffraction (XRD) measurements. In situ hydrogenation curves show two H-sorption steps leading to an overall hydrogen uptake of 9.8 wt% H after 3 hours of milling. The milled end-products consist of nanocrystalline (∼10 nm) LiNH2 and LiH phases. The first reaction step comprises the transformation of the polymorph α-Li3N (S.G. P6/mmm) into the β-Li3N (S.G. P63/mmc) metastable phase and the reaction of the latter with hydrogen to form lithium imide: β-Li3N + H2→ Li2NH + LiH. Reaction kinetics of the first step is zero-order. Its rate-limiting control is assigned to the collision frequency between milling balls and Li3N powder. In the second absorption step, lithium imide converts to lithium amide following the reaction scheme Li2NH + H2→ LiNH2 + LiH. Reaction kinetics is here limited by one-dimensional nucleation and the growth mechanism, which, in light of structural data, is assigned to the occurrence of lithium vacancies in the imide compound. This study provides new insights into the reaction paths and chemical kinetics of light hydrogen storage materials during their mechanochemical synthesis. PMID:26234206

  8. Lithium-Ion Cell Charge Control Unit

    NASA Technical Reports Server (NTRS)

    Reid, Concha; Button, Robert; Manzo, Michelle; McKissock, Barbara; Miller, Thomas; Gemeiner, Russel; Bennett, William; Hand, Evan

    2006-01-01

    Life-test data of Lithium-Ion battery cells is critical in order to establish their performance capabilities for NASA missions and Exploration goals. Lithium-ion cells have the potential to replace rechargeable alkaline cells in aerospace applications, but they require a more complex charging scheme than is typically required for alkaline cells. To address these requirements in our Lithium-Ion Cell Test Verification Program, a Lithium-Ion Cell Charge Control Unit was developed by NASA Glenn Research Center (GRC). This unit gives researchers the ability to test cells together as a pack, while allowing each cell to charge individually. This allows the inherent cell-to-cell variations to be addressed on a series string of cells and results in a substantial reduction in test costs as compared to individual cell testing. The Naval Surface Warfare Center at Crane, Indiana developed a power reduction scheme that works in conjunction with the Lithium-Ion Cell Charge Control Unit. This scheme minimizes the power dissipation required by the circuitry to prolong circuit life and improve its reliability.

  9. Lithium mass transport in ceramic breeder materials

    SciTech Connect

    Blackburn, P.E.; Johnson, C.E.

    1990-01-01

    The objective of this activity is to measure the lithium vaporization from lithium oxide breeder material under differing temperature and moisture partial pressure conditions. Lithium ceramics are being investigated for use as tritium breeding materials. The lithium is readily converted to tritium after reacting with a neutron. With the addition of 1000 ppM H{sub 2} to the He purge gas, the bred tritium is readily recovered from the blanket as HT and HTO above 400{degree}C. Within the solid, tritium may also be found as LiOT which may transport lithium to cooler parts of the blanket. The pressure of LiOT(g), HTO(g), or T{sub 2}O(g) above Li{sub 2}O(s) is the same as that for reactions involving hydrogen. In our experiments we were limited to the use of hydrogen. The purpose of this work is to investigate the transport of LiOH(g) from the blanket material. 8 refs., 1 fig., 3 tabs.

  10. Lithium Release Experiment in the Thermosphere

    NASA Astrophysics Data System (ADS)

    Watanabe, Shigeto; Abe, Takumi; Habu, Hiroto; Nakamura, Masato; Ono, Takayuki; Otsuka, Yuichi; Saito, Akinori; Yamamoto, Mamoru; Yamamoto, Masa-Yuki

    Though the ionization rate is less than 1% in the region of thermosphere, the dynamics of neutral atmosphere is strongly controlled by the plasma. However, the direct observation is not yet performed in detail. JAXA/ISAS launched successfully S-520-23 sounding rocket from Kagoshima Space Center (KSC) in the evening of September 2, 2007. The rocket experiment is called WIND (Wind measurement for Ionized and Neutral atmospheric Dynamics study). The purpose is to investigate the neutral atmosphere - plasma coupling process in F-region through the measurements of atmospheric circulation and super rotation in the low latitude thermosphere, and a medium scale traveling ionospheric disturbance (MS-TID) occurring in the mid-latitude ionosphere. The rocket installed Lithium Release Canisters as well as instruments for plasma drift velocity, plasma density and temperature and its fluctuations, and electric and magnetic fields. The Lithium gas was released at altitudes between 150km and 300km, and the Lithium scattered sunlight by resonance scattering with wavelength of 670nm. The neutral winds in the thermosphere were estimated from the movements of Lithium Clouds observed by CCD imagers on ground. From the diffusion of Lithium Clouds, we estimated neutral density and temperature in the thermosphere.

  11. Evaporated Lithium Surface Coatings in NSTX

    SciTech Connect

    Kugel, H. W.; Mansfield, D.; Maingi, R.; Bel, M. G.; Bell, R. E.; Allain, J. P.; Gates, D.; Gerhardt, S.; Kaita, R.; Kallman, J.; Kaye, S.; LeBlanc, B.; Majeski, R.; Menard, J.; Mueller, D.; Ono, M.

    2009-04-09

    Two lithium evaporators were used to evaporate more than 100 g of lithium on to the NSTX lower divertor region. Prior to each discharge, the evaporators were withdrawn behind shutters, where they also remained during the subsequent HeGDC applied for periods up to 9.5 min. After the HeGDC, the shutters were opened and the LITERs were reinserted to deposit lithium on the lower divertor target for 10 min, at rates of 10-70 mg/min, prior to the next discharge. The major improvements in plasma performance from these lithium depositions include: 1) plasma density reduction as a result of lithium deposition; 2) suppression of ELMs; 3) improvement of energy confinement in a low-triangularity shape; 4) improvement in plasma performance for standard, high-triangularity discharges; 5) reduction of the required HeGDC time between discharges; 6) increased pedestal electron and ion temperature; 7) reduced SOL plasma density; and 8) reduced edge neutral density.

  12. Role of Constituent Hard Polymer in Enhancing Lithium Transference Number of Lithium Salt-Polymer Complexes

    NASA Astrophysics Data System (ADS)

    Jo, Gyuha; Park, Moon Jeong

    2015-03-01

    Lithium polymer batteries have been projected as promising energy storage systems, owing to their unique advantages such as long cycle life, high specific capacity, and high cell potential. While the polymer electrolytes such as poly(ethylene oxide) (PEO) employed in lithium polymer batteries have high ionic conductivity and low volatility, the PEO-lithium salt complexes indicated immense shortcomings of concentration polarization, ascribed to the motion of free anions within PEO. This has limited charge/discharge rate of lithium batteries. In this study, we present a new methodology for improving the ionic conductivity and lithium transference number of PEO, by block copolymerization with a hard polymer, namely poly(dithiooxamide) (PDTOA). Compared to a simple PEO/PDTOA blend, lithium-salt doped PEO-b-PDTOA block copolymers exhibited significantly improved ionic conductivity values. Further, lithium transference numbers as high as 0.66 were observed, which are much higher than the corresponding values for conventional PEO-salt electrolytes (~ 0 . 25).

  13. LITHIUM IN AFFECTIVE DISORDERS : A SEVEN YEAR OBSERVATION OF LITHIUM CLINIC

    PubMed Central

    Sethi, B.B.; Dalal, P.K.; Trivedi, J.K.

    1984-01-01

    SUMMARY Out of 692 patients registered in the lithium clinic, King George's Medical College, Lucknow, 122 patients suffering from affective disorders, receiving lithium for at least 6 months continuously, having had at least 5 serum lithium estimations done and having been evaluated at least once in 6 months while on follow-up, were analysed with a view to study the relapses. About one-third patients suffered no relapse while on lithium. The study revealed that longer the duration of lithium treatment lesser were the frequency, number, intensity and duration of manic/depressive relapses. Majority of patients were maintained on the lower side (0.5-0.8 mEq/L) of the usually recommended therapeutic range (0.6-1.2 mEq/L) for lithium prophylaxis. Commonly observed side effects include fine tremors, muscular weakness, polyuria, polydipsia and constipation. All the side effects were easily managed and none had a fatal sides-effect. A reappraisal in the light of existing literature of lithium prophylaxis on manic depressive psychosis is done. PMID:21966016

  14. Method for fabricating carbon/lithium-ion electrode for rechargeable lithium cell

    NASA Technical Reports Server (NTRS)

    Huang, Chen-Kuo (Inventor); Surampudi, Subbarao (Inventor); Attia, Alan I. (Inventor); Halpert, Gerald (Inventor)

    1995-01-01

    The method includes steps for forming a carbon electrode composed of graphitic carbon particles adhered by an ethylene propylene diene monomer binder. An effective binder composition is disclosed for achieving a carbon electrode capable of subsequent intercalation by lithium ions. The method also includes steps for reacting the carbon electrode with lithium ions to incorporate lithium ions into graphitic carbon particles of the electrode. An electrical current is repeatedly applied to the carbon electrode to initially cause a surface reaction between the lithium ions and to the carbon and subsequently cause intercalation of the lithium ions into crystalline layers of the graphitic carbon particles. With repeated application of the electrical current, intercalation is achieved to near a theoretical maximum. Two differing multi-stage intercalation processes are disclosed. In the first, a fixed current is reapplied. In the second, a high current is initially applied, followed by a single subsequent lower current stage. Resulting carbon/lithium-ion electrodes are well suited for use as an anode in a reversible, ambient temperature, lithium cell.

  15. Extreme ultraviolet source using a forced recombination process in lithium plasma generated by a pulsed laser

    NASA Astrophysics Data System (ADS)

    Nagano, Akihisa; Inoue, Takahiro; Nica, Petru-Edward; Amano, Sho; Miyamoto, Shuji; Mochizuki, Takayasu

    2007-04-01

    An extreme ultraviolet source having a tamper has been studied. This target scheme recombines forcedly lithium ions by low temperature electrons from the tamper, converting Li3+ rapidly to excited Li2+ which emit intense 1s-2p Lyman α emissions at 13.5nm. A strong 13.5nm emission appeared at 20-30ns after the time of laser peak within a small space volume near the tamper. The authors obtained an enhancement of extreme ultraviolet conversion efficiency by a factor of about 2 with the tamper against that of a target without the tamper at the same laser irradiation condition.

  16. Enabling LiTFSI-based electrolytes for safer lithium-ion batteries by using linear fluorinated carbonates as (Co)solvent.

    PubMed

    Kalhoff, Julian; Bresser, Dominic; Bolloli, Marco; Alloin, Fannie; Sanchez, Jean-Yves; Passerini, Stefano

    2014-10-01

    In this Full Paper we show that the use of lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) as conducting salt in commercial lithium-ion batteries is made possible by introducing fluorinated linear carbonates as electrolyte (co)solvents. Electrolyte compositions based on LiTFSI and fluorinated carbonates were characterized regarding their ionic conductivity and electrochemical stability towards oxidation and with respect to their ability to form a protective film of aluminum fluoride on the aluminum surface. Moreover, the investigation of the electrochemical performance of standard lithium-ion anodes (graphite) and cathodes (Li[Ni1/3 Mn1/3 Co1/3 ]O2 , NMC) in half-cell configuration showed stable cycle life and good rate capability. Finally, an NMC/graphite full-cell confirmed the suitability of such electrolyte compositions for practical lithium-ion cells, thus enabling the complete replacement of LiPF6 and allowing the realization of substantially safer lithium-ion batteries. PMID:25138922

  17. Electronic structure of lithium amide

    NASA Astrophysics Data System (ADS)

    Kamakura, N.; Takeda, Y.; Saitoh, Y.; Yamagami, H.; Tsubota, M.; Paik, B.; Ichikawa, T.; Kojima, Y.; Muro, T.; Kato, Y.; Kinoshita, T.

    2011-01-01

    The electronic structure of the insulator lithium amide (LiNH2), which is a lightweight complex hydride being considered as a high-capacity hydrogen storage material, is investigated by N 1s soft x-ray emission spectroscopy (XES) and absorption spectroscopy (XAS). The XES and XAS spectra show a band gap between the valence and conduction bands. The valence band in the XES spectrum consists of three peaks, which extend up to ~-8 eV from the valence band top. The band calculation within the local-density approximation (LDA) for LiNH2shows energetically separated three peaks in the occupied N 2p partial density of states (pDOS) and the band gap. The energy distribution of three peaks in the XES spectrum agrees with that in the calculated pDOS except for the peak at the highest binding energy, which is attributed to the strongly hybridized state between N 2p and H 1s. The XES experiment has clarified that the strongly hybridized state with H 1s in LiNH2is located at binding energy higher than that of the LDA calculation, while the overall feature of the electronic structure of LiNH2experimentally obtained by XES and XAS is consistent with the calculated result.

  18. Lithium-ion polymer cells assembled with a reactive composite separator containing vinyl-functionalized SiO2 particles

    NASA Astrophysics Data System (ADS)

    Yoo, Ji-Hyun; Shin, Won-Kyung; Koo, Sang Man; Kim, Dong-Won

    2015-11-01

    Vinyl-functionalized SiO2 particles of different sizes are synthesized and coated onto both sides of a polyethylene separator to prepare a reactive composite separator for lithium-ion polymer cells. The SiO2-coated composite separators exhibit excellent thermal stability due to the presence of heat-resistant silica particles. By using these reactive composite separators and a gel electrolyte precursor, lithium-ion polymer cells composed of a graphite negative electrode and a LiNi1/3Co1/3Mn1/3O2 positive electrode are assembled by in-situ chemical cross-linking, and their cycling performance is evaluated. The cells assembled with a reactive composite separator exhibit superior cycling performance to cell prepared with a conventional polyethylene separator due to the strong interfacial adhesion between the electrodes and separator, as well as suppression of deleterious reactions during cycling.

  19. Synthetic applications of aqueous accelerated [3,3] sigmatropic rearrangements of allyl vinyl ethers. [1,3] sigmatropic rearrangements of allyl vinyl ethers in 3 M lithium perchlorate-diethyl ether at ambient temperature. New methods to effect the retro Diels-Alder reaction of N-alkyl-2-azanorbornenes

    SciTech Connect

    Clark, J.D.

    1992-01-01

    Claisen rearrangements employed in the synthesis of natural and unnatural products that were heretofore difficult or impossible using conventional means are realized through the agency of water. Allyl vinyl ether 35, the unprotected form of McMurry's aphidicolin intermediate 7, rearranged after 24 h in 2.5:1 water/methanol at 80[degrees]C, affording aldehyde 40 in 70--85% yield. Acetaldehyde elimination witnessed using conventional reaction conditions was suppressed when employing water. The application of a Claisen rearrangement within the molecular framework of fenestranes was realized for the first time. Fenestrene vinyl ethers 28 and 30 rearranged to form the fenestrenes 29 and 31, respectively. Noteworthy is fenestrene 29, the first fenestrane synthesized possessing a trans-ring fusion common to two five-membered rings. The medium of 3.0 M lithium perchlorate-diethyl ether has been found to induce the rarely witnessed rearrangement of allyl vinyl ethers, despite the fact that the corresponding sigmatropic rearrangement is energetically more favorable. Yields are very good; however, in some instances the sigmatropic rearrangement and elimination processes compete slightly. Results from the observed stereoselectivities, concentration effects on reaction rate, and a crossover study indicate that these shifts take place via dissociated ions followed by recombination, and that the observed stereoselectivities are a result of unequal steric effects in the transition states for recombination. Copper(II) and sulfonic acid ion exchange resins have been found to readily catalyze the heterocycloreversion of N-alkyl-2-azanorbornenes to the corresponding primary amines, eliminating the necessity of employing a reactive dienophile to trap out the released cyclopentadiene.

  20. Analysis of lithium driven electron density peaking in FTU liquid lithium limiter experiments

    NASA Astrophysics Data System (ADS)

    Szepesi, G.; Romanelli, M.; Militello, F.; Peeters, A. G.; Camenen, Y.; Casson, F. J.; Hornsby, W. A.; Snodin, A. P.; Wágner, D.; the FTU Team

    2013-03-01

    The impact of lithium impurities on the microstability and turbulent transport characteristics in the core of a typical FTU liquid lithium limiter (LLL) (Mazzitelli et al 2011 Nucl. Fusion 51 073006) discharge during the density ramp-up phase is studied. A non-linear gyrokinetic analysis performed with GKW (Peeters et al 2009 Comput. Phys. Commun. 180 2650) accompanied by a quasi-linear fluid analysis is presented. We show that a centrally peaked, high concentration lithium profile contributes to the electron peaking by reducing the outward electron flux, and that it leads to inward turbulent deuterium transport through ion flux separation.

  1. Lithium Ion Electrolytes and Lithium Ion Cells With Good Low Temperature Performance

    NASA Technical Reports Server (NTRS)

    Smart, Marshall C. (Inventor); Bugga, Ratnakumar V. (Inventor)

    2014-01-01

    There is provided in one embodiment of the invention an electrolyte for use in a lithium ion electrochemical cell. The electrolyte comprises a mixture of an ethylene carbonate (EC), an ethyl methyl carbonate (EMC), an ester cosolvent, and a lithium salt. The ester cosolvent comprises methyl propionate (MP), ethyl propionate (EP), methyl butyrate (MB), ethyl butyrate (EB), propyl butyrate (PB), or butyl butyrate (BB). The electrochemical cell operates in a temperature range of from about -60 C to about 60 C. In another embodiment there is provided a lithium ion electrochemical cell using the electrolyte of the invention.

  2. A Stable Fluorinated and Alkylated Lithium Malonatoborate Salt for Lithium Ion Battery Application

    SciTech Connect

    Dai, Sheng; Sun, Xiao-Guang

    2015-01-01

    A new fluorinated and alkylated lithium malonatoborate salt, lithium bis(2-methyl-2-fluoromalonato)borate (LiBMFMB), has been synthesized for lithium ion battery application. A 0.8 M LiBMFMB solution is obtained in a mixture of ethylene carbonate (EC) and ethyl methyl carbonate (EMC) (1:2 by wt.). The new LiBMFMB based electrolyte exhibits good cycling stability and rate capability in LiNi0.5Mn1.5O4 and graphite based half-cells.

  3. A Stable Fluorinated and Alkylated Lithium Malonatoborate Salt for Lithium Ion Battery Application

    DOE PAGESBeta

    Wan, Shun; Jiang, Xueguang; Guo, Bingkun; Dai, Sheng; Goodenough, John B.; Sun, Xiao-Guang

    2015-04-27

    A new fluorinated and alkylated lithium malonatoborate salt, lithium bis(2-methyl-2-fluoromalonato)borate (LiBMFMB), has been synthesized for lithium ion battery application. A 0.8 M LiBMFMB solution is obtained in a mixture of ethylene carbonate (EC) and ethyl methyl carbonate (EMC) (1:2 by wt.). The new LiBMFMB based electrolyte exhibits good cycling stability and rate capability in LiNi0.5Mn1.5O4 and graphite based half-cells.

  4. Solid state and solution studies of lithium tris(n-butyl)magnesiates stabilised by Lewis donors.

    PubMed

    Zaragoza-Calero, Silvia; Francos, Javier; Kennedy, Alan R; O'Hara, Charles T

    2015-04-28

    Several Lewis base adducts of the synthetically important lithium tris(n-butyl)magnesiate LiMg((n)Bu)3 have been prepared and structurally characterised. The complexes were prepared by a co-complexation approach i.e., by combining the monometallic (n)BuLi and (n)Bu2Mg reagents in hydrocarbon solution before adding a molar equivalent of a donor molecule (a bidentate amine, tridentate amine or cyclic ether). The lithium magnesiates all adopt variants of the "Weiss motif" structure, i.e., contacted ion pair dimers with a linear arrangement and metals connected by butyl anions, where tetrahedral magnesium ions are in the central positions and the lithiums occupy the outer region, solvated by a neutral Lewis donor [(donor)Li(μ-(n)Bu)2Mg(μ-(n)Bu)2Mg(μ-(n)Bu)2Li(donor)]. When TMPDA, PMDETA or (R,R)-TMCDA [TMPDA = N,N,N'N'-tetramethylpropanediamine; PMDETA = N,N,N',N'',N''-pentamethyldiethylenetriamine; and (R,R)-TMCDA = (R,R)-N,N,N',N'-tetramethylcyclohexane-1,2-diamine], are employed, dimeric tetranuclear lithium magnesiates are produced. Due to the tridentate nature of the ligand, the PMDETA-containing structure (2) has an unusual 'open'-motif. When TMEDA (TMEDA = N,N,N',N'-tetramethylethylenediamine) is employed, a n-butoxide-containing complex [(TMEDA)Li(μ-(n)Bu)(μ-O(n)Bu)Mg2((n)Bu)2(μ-(n)Bu)(μ-O(n)Bu)Li(donor)] has been serendipitously prepared and adopts a ladder conformation which is commonly observed in lithium amide chemistry. This complex has also been prepared using a rational methodology. When 1,4-dioxane is employed, the donor stitches together a polymeric array of tetranuclear dimeric units (6). The hydrocarbon solution structures of the compounds have been characterised by (1)H, (7)Li, (13)C NMR spectroscopy; 2 has been studied by variable temperature and DOSY NMR. PMID:25791270

  5. Thermal Aspects of Lithium Ion Cells

    NASA Technical Reports Server (NTRS)

    Frank, H.; Shakkottai, P.; Bugga, R.; Smart, M.; Huang, C. K.; Timmerman, P.; Surampudi, S.

    2000-01-01

    This viewgraph presentation outlines the development of a thermal model of Li-ion cells in terms of heat generation, thermal mass, and thermal resistance. Intended for incorporation into battery model. The approach was to estimate heat generation: with semi-theoretical model, and then to check accuracy with efficiency measurements. Another objective was to compute thermal mass from component weights and specific heats, and to compute the thermal resistance from component dimensions and conductivities. Two lithium batteries are compared, the Cylindrical lithium battery, and the prismatic lithium cell. It reviews methodology for estimating the heat generation rate. Graphs of the Open-circuit curves of the cells and the heat evolution during discharge are given.

  6. Deuterium Retention in NSTX with Lithium Conditioning

    SciTech Connect

    C.H. Skinner, J.P. Allain, W. Blanchard, H.W. Kugel, R. Maingi, L. Roquemore, V. Soukhanovskii, C.N. Taylor

    2010-06-02

    High (≈ 90%) deuterium retention was observed in NSTX gas balance measurements both withand without lithiumization of the carbon plasma facing components. The gas retained in ohmic discharges was measured by comparing the vessel pressure rise after a discharge to that of a gasonly pulse with the pumping valves closed. For neutral beam heated discharges the gas input and gas pumped by the NB cryopanels were tracked. The discharges were followed by outgassing of deuterium that reduced the retention. The relationship between retention and surface chemistry was explored with a new plasma-material interface probe connected to an in-vacuo surface science station that exposed four material samples to the plasma. XPS and TDS analysis showed that the binding of D atoms is fundamentally changed by lithium - in particular atoms are weakly bonded in regions near lithium atoms bound to either oxygen or the carbon matrix.

  7. Thermoelectric magnetohydrodynamic (TEMHD) stirring of liquid lithium

    NASA Astrophysics Data System (ADS)

    Jaworski, M. A.; Xu, Wenyu; Kim, Jason; Lee, Matt; Neumann, Martin; Surla, Vijay; Ruzic, David

    2009-11-01

    The Solid/Liquid Lithium Divertor Experiment (SLiDE) was constructed to examine passive flows in liquid lithium under an applied heat load and external magnetic field. The offered explanation for the results of the CDX-U experiment, where liquid lithium was capable of transporting >50[MW/m^2] of incident heat flux without rapid evaporation, was thermocapillary (Marangonic) driven flows. The SLiDE apparatus utilizes a line-stripe heat source and external magnetic fields to mimic a divertor scenario to test the thermocapillary hypothesis. Instead of thermocapillary induced flows, TEMHD flows are observed on the order of 10 [cm/s]. The thermoelectric effect was confirmed through a series of qualitative experiments in the apparatus which will be described. A quantitative scaling matching the measured target temperatures and heat fluxes is compared to the measured velocities. A novel plasma facing component based on porous material TEMHD is also presented.

  8. Electrochemical Lithium Ion Battery Performance Model

    Energy Science and Technology Software Center (ESTSC)

    2007-03-29

    The Electrochemical Lithium Ion Battery Performance Model allows for the computer prediction of the basic thermal, electrical, and electrochemical performance of a lithium ion cell with simplified geometry. The model solves governing equations describing the movement of lithium ions within and between the negative and positive electrodes. The governing equations were first formulated by Fuller, Doyle, and Newman and published in J. Electrochemical Society in 1994. The present model solves the partial differential equations governingmore » charge transfer kinetics and charge, species, heat transports in a computationally-efficient manner using the finite volume method, with special consideration given for solving the model under conditions of applied current, voltage, power, and load resistance.« less

  9. Annealing kinetics of electrodeposited lithium dendrites.

    PubMed

    Aryanfar, Asghar; Cheng, Tao; Colussi, Agustin J; Merinov, Boris V; Goddard, William A; Hoffmann, Michael R

    2015-10-01

    The densifying kinetics of lithium dendrites is characterized with effective activation energy of Ea ≈ 6 - 7 kcal mol(-1) in our experiments and molecular dynamics computations. We show that heating lithium dendrites for 55 °C reduces the representative dendrites length λ¯(T,t) up to 36%. NVT reactive force field simulations on three-dimensional glass phase dendrites produced by our coarse grained Monte Carlo method reveal that for any given initial dendrite morphology, there is a unique stable atomic arrangement for a certain range of temperature, combined with rapid morphological transition (∼10 ps) within quasi-stable states involving concurrent bulk and surface diffusions. Our results are useful for predicting the inherent structural characteristics of lithium dendrites such as dominant coordination number. PMID:26450322

  10. Enhanced lithium ion storage in nanoimprinted carbon

    NASA Astrophysics Data System (ADS)

    Wang, Peiqi; Chen, Qian Nataly; Xie, Shuhong; Liu, Xiaoyan; Li, Jiangyu

    2015-07-01

    Disordered carbons processed from polymers have much higher theoretical capacity as lithium ion battery anode than graphite, but they suffer from large irreversible capacity loss and have poor cyclic performance. Here, a simple process to obtain patterned carbon structure from polyvinylpyrrolidone was demonstrated, combining nanoimprint lithography for patterning and three-step heat treatment process for carbonization. The patterned carbon, without any additional binders or conductive fillers, shows remarkably improved cycling performance as Li-ion battery anode, twice as high as the theoretical value of graphite at 98 cycles. Localized electrochemical strain microscopy reveals the enhanced lithium ion activity at the nanoscale, and the control experiments suggest that the enhancement largely originates from the patterned structure, which improves surface reaction while it helps relieving the internal stress during lithium insertion and extraction. This study provides insight on fabricating patterned carbon architecture by rational design for enhanced electrochemical performance.

  11. Enhanced lithium ion storage in nanoimprinted carbon

    SciTech Connect

    Wang, Peiqi; Chen, Qian Nataly; Li, Jiangyu; Xie, Shuhong; Liu, Xiaoyan

    2015-07-27

    Disordered carbons processed from polymers have much higher theoretical capacity as lithium ion battery anode than graphite, but they suffer from large irreversible capacity loss and have poor cyclic performance. Here, a simple process to obtain patterned carbon structure from polyvinylpyrrolidone was demonstrated, combining nanoimprint lithography for patterning and three-step heat treatment process for carbonization. The patterned carbon, without any additional binders or conductive fillers, shows remarkably improved cycling performance as Li-ion battery anode, twice as high as the theoretical value of graphite at 98 cycles. Localized electrochemical strain microscopy reveals the enhanced lithium ion activity at the nanoscale, and the control experiments suggest that the enhancement largely originates from the patterned structure, which improves surface reaction while it helps relieving the internal stress during lithium insertion and extraction. This study provides insight on fabricating patterned carbon architecture by rational design for enhanced electrochemical performance.

  12. Spinel electrodes for rechargeable lithium batteries.

    SciTech Connect

    Thackeray, M. M.

    1999-11-10

    This paper gives a historical account of the development of spinel electrodes for rechargeable lithium batteries. Research in the late 1970's and early 1980's on high-temperature . Li/Fe{sub 3}O{sub 4} cells led to the evaluation of lithium spinels Li[B{sub 2}]X{sub 4} at room temperature (B = metal cation). This work highlighted the importance of the [B{sub 2}]X{sub 4}spinel framework as a host electrode structure and the ability to tailor the cell voltage by selection of different B cations. Examples of lithium-ion cells that operate with spinel anode/spinel cathode couples are provided. Particular attention is paid to spinels within the solid solution system Li{sub 1+x}Mn{sub 2-x}O{sub 4} (0 {le} x {le} 0.33).

  13. Characterization of lithium phosphorous oxynitride thin films

    SciTech Connect

    Yu, Xiaohua; Bates, J.B.; Jellison, G.E. Jr.

    1996-01-01

    Electrical and electrochemical properties of an amorphous thin-film lithium electrolyte, lithium phosphorous oxynitride (Lipon), have been studied with emphasis on the stability window vs Li metal and the behavior of the Li/Lipon interface. Ion conductivity of Lipon exhibits Arrhenius behavior at {minus}26 to +140 C, with a conductivity of 1.7 {times} 10{sup {minus}6}S/cm at 25 C and an activity energy of 0.50 {plus_minus} 0.01 eV. A stability window of 5.5 V was observed with respect to a Li{sup +}/Li reference, and no detectable reaction or degradation was evident at the Li/Lipon interface upon lithium cycling.

  14. Lithium chloride and avoidance of novel places.

    PubMed

    Kurz, E M; Levitsky, D A

    1983-06-01

    Rats were exposed to a distinctive chamber (chamber A, part of a two-chamber apparatus), which was novel for half of the rats but familiar for the other half. Each rat was subsequently injected with lithium chloride or saline. In a test trial conducted 24 hr later, all rats were given a choice between chamber A and a second chamber (B), which was novel for all rats. The main result was that the group made familiar with chamber A and then given lithium showed a significant preference for that side or an avoidance of the novel side, a "spatial neophobia." A second experiment confirmed the spatial neophobia effect and demonstrated that it was not dependent on the particular conditioning procedure used in the first experiment. The spatial neophobia effect was related to similar effects in the taste aversion literature, and to the results of research on lithium-induced decreases in exploratory behavior. PMID:6307325

  15. Determination of lithium in rocks by distillation

    USGS Publications Warehouse

    Fletcher, M.H.

    1949-01-01

    A method for the quantitative extraction and recovery of lithium from rocks is based on a high temperature volatilization procedure. The sample is sintered with a calcium carbonate-calcium chloride mixture at 1200?? C. for 30 minutes in a platinum ignition tube, and the volatilization product is collected in a plug of Pyrex glass wool in a connecting Pyrex tube. The distillate, which consists of the alkali chlorides with a maximum of 5 to 20 mg. of calcium oxide and traces of a few other elements, is removed from the apparatus by dissolving in dilute hydrochloric acid and subjected to standard analytiaal procedures. The sinter residues contained less than 0.0005% lithium oxide. Lithium oxide was recovered from synthetic samples with an average error of 1.1%.

  16. Safety considerations for fabricating lithium battery packs

    NASA Technical Reports Server (NTRS)

    Ciesla, J. J.

    1986-01-01

    Lithium cell safety is a major issue with both manufacturers and end users. Most manufacturers have taken great strides to develop the safest cells possible while still maintaining performance characteristics. The combining of lithium cells for higher voltages, currents, and capacities requires the fabricator of lithium battery packs to be knowledgable about the specific electrochemical system being used. Relatively high rate, spirally wound (large surface area) sulfur oxychloride cells systems, such as Li/Thionyl or Sulfuryl chloride are considered. Prior to the start of a design of a battery pack, a review of the characterization studies for the cells should be conducted. The approach for fabricating a battery pack might vary with cell size.

  17. Lithium-aluminum-magnesium electrode composition

    DOEpatents

    Melendres, Carlos A.; Siegel, Stanley

    1978-01-01

    A negative electrode composition is presented for use in a secondary, high-temperature electrochemical cell. The cell also includes a molten salt electrolyte of alkali metal halides or alkaline earth metal halides and a positive electrode including a chalcogen or a metal chalcogenide as the active electrode material. The negative electrode composition includes up to 50 atom percent lithium as the active electrode constituent and a magnesium-aluminum alloy as a structural matrix. Various binary and ternary intermetallic phases of lithium, magnesium, and aluminum are formed but the electrode composition in both its charged and discharged state remains substantially free of the alpha lithium-aluminum phase and exhibits good structural integrity.

  18. Lithium reprocessing technology for ceramic breeders

    NASA Astrophysics Data System (ADS)

    Tsuchiya, Kunihiko; Kawamura, Hiroshi; Saito, Minoru; Tatenuma, Katuyashi; Kainose, Mitsuru

    1995-03-01

    Lithium ceramics have been receiving considerable attention as tritium breeding materials for fusion reactors. Reprocessing technology development for these materials is proposed to recover lithium, as an effective use of resources and to remove radioactive isotopes. Four potential ceramic breeders (Li 2O, LiAlO 2, Li 2ZrO 3 and Li 4SiO 4) were prepared in order to estimate their dissolution properties in water and various acids (HCl, HNO 3, H 2SO 4, HF and aqua regia). The dissolution rates were determined by comparing the weight of the residue with that of the starting powder (the weight method). Recovery properties of lithium were examined by the precipitation method.

  19. Lithium metal reduction of plutonium oxide to produce plutonium metal

    DOEpatents

    Coops, Melvin S.

    1992-01-01

    A method is described for the chemical reduction of plutonium oxides to plutonium metal by the use of pure lithium metal. Lithium metal is used to reduce plutonium oxide to alpha plutonium metal (alpha-Pu). The lithium oxide by-product is reclaimed by sublimation and converted to the chloride salt, and after electrolysis, is removed as lithium metal. Zinc may be used as a solvent metal to improve thermodynamics of the reduction reaction at lower temperatures. Lithium metal reduction enables plutonium oxide reduction without the production of huge quantities of CaO--CaCl.sub.2 residues normally produced in conventional direct oxide reduction processes.

  20. Lithium Toxicity Following Vertical Sleeve Gastrectomy: A Case Report.

    PubMed

    Alam, Abdulkader; Raouf, Sherief; Recio, Fernando O

    2016-08-31

    We are presenting the first documented case of lithium toxicity after vertical sleeve gastrectomy surgery in an 18 year-old female with psychiatric history of bipolar disorder who was treated with lithium. This case illustrates the need for closer monitoring of lithium levels following bariatric surgery. Both psychiatrists and surgeons should be aware of the potential risk of lithium toxicity following bariatric surgery, as well as the need to judiciously monitor lithium level and possibly adjust the dose of some medications. PMID:27489390

  1. Lithium Toxicity Following Vertical Sleeve Gastrectomy: A Case Report

    PubMed Central

    Alam, Abdulkader; Raouf, Sherief; Recio, Fernando O.

    2016-01-01

    We are presenting the first documented case of lithium toxicity after vertical sleeve gastrectomy surgery in an 18 year-old female with psychiatric history of bipolar disorder who was treated with lithium. This case illustrates the need for closer monitoring of lithium levels following bariatric surgery. Both psychiatrists and surgeons should be aware of the potential risk of lithium toxicity following bariatric surgery, as well as the need to judiciously monitor lithium level and possibly adjust the dose of some medications. PMID:27489390

  2. Lithium oxides precipitation in nonaqueous Li-air batteries.

    PubMed

    Hou, Junbo; Yang, Min; Ellis, Michael W; Moore, Robert B; Yi, Baolian

    2012-10-21

    Lithium-air/oxygen battery is a rising star in the field of electrochemical energy storage as a promising alternative to lithium ion batteries. Nevertheless, this alluring system is still at its infant stage, and the breakthrough of lithium-air batteries into the energy market is currently constrained by a combination of scientific and technical challenges. Targeting at the air electrode in nonaqueous lithium-air batteries, this review attempts to summarize the knowledge about the fundamentals related to lithium oxides precipitation, which has been one of the vital and attractive aspects of the research communities of science and technology. PMID:22968061

  3. Nanoscale Surface Modification of Lithium-Rich Layered-Oxide Composite Cathodes for Suppressing Voltage Fade.

    PubMed

    Zheng, Fenghua; Yang, Chenghao; Xiong, Xunhui; Xiong, Jiawen; Hu, Renzong; Chen, Yu; Liu, Meilin

    2015-10-26

    Lithium-rich layered oxides are promising cathode materials for lithium-ion batteries and exhibit a high reversible capacity exceeding 250 mAh g(-1) . However, voltage fade is the major problem that needs to be overcome before they can find practical applications. Here, Li1.2 Mn0.54 Ni0.13 Co0.13 O2 (LLMO) oxides are subjected to nanoscale LiFePO4 (LFP) surface modification. The resulting materials combine the advantages of both bulk doping and surface coating as the LLMO crystal structure is stabilized through cationic doping, and the LLMO cathode materials are protected from corrosion induced by organic electrolytes. An LLMO cathode modified with 5 wt % LFP (LLMO-LFP5) demonstrated suppressed voltage fade and a discharge capacity of 282.8 mAh g(-1) at 0.1 C with a capacity retention of 98.1 % after 120 cycles. Moreover, the nanoscale LFP layers incorporated into the LLMO surfaces can effectively maintain the lithium-ion and charge transport channels, and the LLMO-LFP5 cathode demonstrated an excellent rate capacity. PMID:26335589

  4. New class of nonaqueous electrolytes for long-life and safe lithium-ion batteries.

    PubMed

    Chen, Zonghai; Ren, Yang; Jansen, Andrew N; Lin, Chi-Kai; Weng, Wei; Amine, Khalil

    2013-01-01

    Long-life and safe lithium-ion batteries have been long pursued to enable electrification of the transportation system and for grid applications. However, the poor safety characteristics of lithium-ion batteries have been the major bottleneck for the widespread deployment of this promising technology. Here, we report a novel nonaqueous Li(2)B(12)F(12-x)H(x) electrolyte, using lithium difluoro(oxalato)borate as an electrolyte additive, that has superior performance to the conventional LiPF(6)-based electrolyte with regard to cycle life and safety, including tolerance to both overcharge and thermal abuse. Cells tested with the Li(2)B(12)F(9)H(3)-based electrolyte maintained about 70% initial capacity when cycled at 55 °C for 1,200 cycles, and the intrinsic overcharge protection mechanism was active up to 450 overcharge abuse cycles. Results from in situ high-energy X-ray diffraction showed that the thermal decomposition of the delithiated Li(1-x)[Ni(1/3)Mn(1/3)Co(1/3)](0.9)O(2) cathode was delayed by about 20 °C when using the Li(2)B(12)F(12)-based electrolyte. PMID:23443541

  5. Countering the Segregation of Transition-Metal Ions in LiMn1/3 Co1/3 Ni1/3 O2 Cathode for Ultralong Life and High-Energy Li-Ion Batteries.

    PubMed

    Luo, Dong; Fang, Shaohua; Tamiya, Yu; Yang, Li; Hirano, Shin-Ichi

    2016-08-01

    High-voltage layered lithium transition-metal oxides are very promising cathodes for high-energy Li-ion batteries. However, these materials often suffer from a fast degradation of cycling stability due to structural evolutions. It seriously impedes the large-scale application of layered lithium transition-metal oxides. In this work, an ultralong life LiMn1/3 Co1/3 Ni1/3 O2 microspherical cathode is prepared by constructing an Mn-rich surface. Its capacity retention ratio at 700 mA g(-1) is as large as 92.9% after 600 cycles. The energy dispersive X-ray maps of electrodes after numerous cycles demonstrate that the ultralong life of the as-prepared cathode is attributed to the mitigation of TM-ions segregation. Additionally, it is discovered that layered lithium transition-metal oxide cathodes with an Mn-rich surface can mitigate the segregation of TM ions and the corrosion of active materials. This study provides a new strategy to counter the segregation of TM ions in layered lithium transition-metal oxides and will help to the design and development of high-energy cathodes with ultralong life. PMID:27389965

  6. Brain Lithium Levels and Effects on Cognition and Mood in Geriatric Bipolar Disorder: A Lithium-7 Magnetic Resonance Spectroscopy Study

    PubMed Central

    Forester, Brent P.; Streeter, Chris C.; Berlow, Yosef A.; Tian, Hua; Wardrop, Megan; Finn, Chelsea T.; Harper, David; Renshaw, Perry F.; Moore, Constance M.

    2014-01-01

    Objectives The authors investigated the relationship between brain lithium, serum lithium and age in adult subjects treated with lithium. In addition, the authors investigated the association between brain lithium and serum lithium with frontal lobe functioning and mood in a subgroup of older subjects. Design Cross-sectional assessment. Setting McLean Hospital’s Geriatric Psychiatry Research Program and Brain Imaging Center; The Division of Psychiatry, Boston University School of Medicine. Participants Twenty-six subjects, 20 to 85 years, with Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition–TR bipolar disorder (BD), currently treated with lithium. Measurements All subjects had measurements of mood (Hamilton Depression Rating Scale [HDRS] and Young Mania Rating Scale) and serum and brain lithium levels. Brain lithium levels were assessed using lithium Magnetic Resonance Spectroscopy. Ten subjects older than 50 years also had assessments of frontal lobe functioning (Stroop, Trails A and B, Wis. Card Sorting Task). Results Brain lithium levels correlated with serum lithium levels for the group as a whole. However, this relationship was not present for the group of subjects older than 50. For these older subjects elevations in brain (but not serum) lithium levels were associated with frontal lobe dysfunction and higher HDRS scores. The higher HDRS were associated with increased somatic symptoms. Conclusion Frontal lobe dysfunction and elevated depression symptoms correlating with higher brain lithium levels supports conservative dosing recommendations in bipolar older adults. The absence of a predictable relationship between serum and brain lithium makes specific individual predictions about the “ideal” lithium serum level in an older adult with BD difficult. PMID:18626002

  7. Cosmis Lithium-Beryllium-Boron Story

    NASA Astrophysics Data System (ADS)

    Vangioni-Flam, E.; Cassé, M.

    Light element nucleosynthesis is an important chapter of nuclear astrophysics. Specifically, the rare and fragile light nuclei Lithium, Beryllium and Boron (LiBeB) are not generated in the normal course of stellar nucleosynthesis (except Lithium-7) and are, in fact, destroyed in stellar interiors. This characteristic is reflected in the low abundance of these simple species. Up to recently, the most plausible interpretation was that galactic cosmic rays (GCR) interact with interstellar CNO to form LiBeB. Other origins have been also identified, primordial and stellar (Lithium-7) and supernova neutrino spallation (Lithium-7 and Boron-11). In contrast, Beryllium-9, Boron-10 and Lithium-6 are pure spallative products. This last isotope presents a special interest since the Lithium-7/Lithium-6 ratio has been measured in a few halo stars offering a new constraint on the early galactic evolution. However, in the nineties, new observations prompted astrophysicists to reassess the question. Optical measurements of the beryllium and boron abundances in halo stars have been achieved by the 10 meters KECK telescope and the Hubble Space Telescope. These observations indicate a quasi linear correlation between Be and B vs Fe, at least at low metallicity, unexpected on the basis of GCR scenario, predicting a quadratic relationship. As a consequence, the origin and the evolution of the LiBeB nuclei has been revisited. This linearity implies the acceleration of C and O nuclei freshly synthesized and their fragmentation on the the interstellar Hydrogen and Helium. Wolf-Rayet stars and supernovae via the shock waves induced, are the best candidates to the acceleration of their own material enriched into C and O; so LiBeB is produced independently of the Interstellar Medium chemical composition. Moreover, neutrinos emitted by the newly born neutron stars interacting with the C layer of the supernova could produce specifically Lithium-7 and Boron-11. This process is supported by the

  8. Hazards of lithium thionyl chloride batteries

    NASA Technical Reports Server (NTRS)

    Parry, J. M.

    1978-01-01

    Two different topics which only relate in that they are pertinent to lithium thionyl chloride battery safety are discussed. The first topic is a hazards analysis of a system (risk assessment), a formal approach that is used in nuclear engineering, predicting oil spills, etc. It is a formalized approach for obtaining assessment of the degree of risk associated with the use of any particular system. The second topic is a small piece of chemistry related to the explosions that can occur with lithium thionyl chloride systems. After the two topics are presented, a discussion is generated among the Workshop participants.

  9. Model potential calculations of lithium transitions.

    NASA Technical Reports Server (NTRS)

    Caves, T. C.; Dalgarno, A.

    1972-01-01

    Semi-empirical potentials are constructed that have eigenvalues close in magnitude to the binding energies of the valence electron in lithium. The potentials include the long range polarization force between the electron and the core. The corresponding eigenfunctions are used to calculate dynamic polarizabilities, discrete oscillator strengths, photoionization cross sections and radiative recombination coefficients. A consistent application of the theory imposes a modification on the transition operator, but its effects are small for lithium. The method presented can be regarded as a numerical generalization of the widely used Coulomb approximation.

  10. Electrolytes for high-energy lithium batteries

    NASA Astrophysics Data System (ADS)

    Schaefer, Jennifer L.; Lu, Yingying; Moganty, Surya S.; Agarwal, Praveen; Jayaprakash, N.; Archer, Lynden A.

    2012-06-01

    From aqueous liquid electrolytes for lithium-air cells to ionic liquid electrolytes that permit continuous, high-rate cycling of secondary batteries comprising metallic lithium anodes, we show that many of the key impediments to progress in developing next-generation batteries with high specific energies can be overcome with cleaver designs of the electrolyte. When these designs are coupled with as cleverly engineered electrode configurations that control chemical interactions between the electrolyte and electrode or by simple additives-based schemes for manipulating physical contact between the electrolyte and electrode, we further show that rechargeable battery configurations can be facilely designed to achieve desirable safety, energy density and cycling performance.

  11. Solid composite electrolytes for lithium batteries

    DOEpatents

    Kumar, Binod; Scanlon, Jr., Lawrence G.

    2001-01-01

    Solid composite electrolytes are provided for use in lithium batteries which exhibit moderate to high ionic conductivity at ambient temperatures and low activation energies. In one embodiment, a polymer-ceramic composite electrolyte containing poly(ethylene oxide), lithium tetrafluoroborate and titanium dioxide is provided in the form of an annealed film having a room temperature conductivity of from 10.sup.-5 S cm.sup.-1 to 10.sup.-3 S cm.sup.-1 and an activation energy of about 0.5 eV.

  12. Polarization Labeling Spectroscopy of Hollow Lithium

    NASA Astrophysics Data System (ADS)

    Huang, M.-T.; Wehlitz, R.; Cherepkov, N. A.; Azuma, Y.; Depaola, B. D.; Nagata, T.; Hasegawa, S.; Levin, J. C.; Sellin, I. A.

    1998-05-01

    Utilization of polarized or aligned targets can provide valuable information on atomic photoionization and excitation processes. (M. Meyer et al.), Phys. Rev. Lett. 59, 2963 (1987) We measured numerous even-parity doubly core excited ``hollow lithium'' resonances using monchromatized synchrotron radiation derived from an undulator, and laser excited lithium targets. The excited 1s^22p ^2Po targets, were aligned or polarized by laser pumping, and measurements were made with various combinations with the polarization of synchrotron radiation. The intensity pattern of the photoion spectrum shows clear polarization dependence and provides useful clues to the analysis.

  13. Electrolytic orthoborate salts for lithium batteries

    DOEpatents

    Angell, Charles Austen; Xu, Wu

    2008-01-01

    Orthoborate salts suitable for use as electrolytes in lithium batteries and methods for making the electrolyte salts are provided. The electrolytic salts have one of the formulae (I). In this formula anionic orthoborate groups are capped with two bidentate chelating groups, Y1 and Y2. Certain preferred chelating groups are dibasic acid residues, most preferably oxalyl, malonyl and succinyl, disulfonic acid residues, sulfoacetic acid residues and halo-substituted alkylenes. The salts are soluble in non-aqueous solvents and polymeric gels and are useful components of lithium batteries in electrochemical devices.

  14. Electrolytic orthoborate salts for lithium batteries

    DOEpatents

    Angell, Charles Austen [Mesa, AZ; Xu, Wu [Tempe, AZ

    2009-05-05

    Orthoborate salts suitable for use as electrolytes in lithium batteries and methods for making the electrolyte salts are provided. The electrolytic salts have one of the formulae (I). In this formula anionic orthoborate groups are capped with two bidentate chelating groups, Y1 and Y2. Certain preferred chelating groups are dibasic acid residues, most preferably oxalyl, malonyl and succinyl, disulfonic acid residues, sulfoacetic acid residues and halo-substituted alkylenes. The salts are soluble in non-aqueous solvents and polymeric gels and are useful components of lithium batteries in electrochemical devices.

  15. Properties of lead-lithium solutions

    SciTech Connect

    Hoffman, N.J.; Darnell, A.; Blink, J.A.

    1980-10-01

    Lead-lithium solutions are of interest to liquid metal wall ICF reactor designers because Pb may be present to some extent in both heavy ion beam and laser-driven ICF targets; therefore, Pb will be present as an impurity in a flowing lithium wall. In addition, Pb-Li solutions containing approx. 80 a/o Pb are a strong candidate for a heavy ion beam driven HYLIFE converter and a viable alternative to a pure Li wall for a laser driven converter. The properties of Pb-Li solutions including the effect of hydrogen impurities are reviewed, and the reactor design implications are discussed.

  16. Lithium intercalation in porous carbon anodes

    SciTech Connect

    Tran, T.D.; Pekala, R.W.; Mayer, S.T.

    1994-11-23

    Carbon foams derived from the phase separation of polyacrylonitrile/solvent mixtures were investigated as lithium intercalation anodes for rechargeable lithium-ion batteries. The carbon foams have a bulk density of 0.35--0.5 g/cm{sup 3}, low surface area (< 50 m{sup 2}/g), and an average cell size of 5--10 {mu}m. Polyacrylonitrile-based carbon foams doped with phosphoric acid had capacity as high as 450 mAh/g. Carbon capacity increased with increasing phosphoric acid concentration in the doping solution. The doped porous carbon anodes exhibited good cyclability and excellent coulombic efficiency.

  17. Brain oscillations in bipolar disorder and lithium-induced changes

    PubMed Central

    Atagün, Murat İlhan

    2016-01-01

    Electroencephalography (EEG) studies in patients with bipolar disorder have revealed lower amplitudes in brain oscillations. The aim of this review is to describe lithium-induced EEG changes in bipolar disorder and to discuss potential underlying factors. A literature survey about lithium-induced EEG changes in bipolar disorder was performed. Lithium consistently enhances magnitudes of brain oscillations in slow frequencies (delta and theta) in both resting-state EEG studies as well as event-related oscillations studies. Enhancement of magnitudes of beta oscillations is specific to event-related oscillations. Correlation between serum lithium levels and brain oscillations has been reported. Lithium-induced changes in brain oscillations might correspond to lithium-induced alterations in neurotransmitters, signaling cascades, plasticity, brain structure, or biophysical properties of lithium. Therefore, lithium-induced changes in brain oscillations could be promising biomarkers to assess the molecular mechanisms leading to variability in efficacy. Since the variability of lithium response in bipolar disorder is due to the genetic differences in the mechanisms involving lithium, it would be highly promising to assess the lithium-induced EEG changes as biomarkers in genetic studies. PMID:27022264

  18. Association of maternal lithium exposure and premature delivery.

    PubMed

    Troyer, W A; Pereira, G R; Lannon, R A; Belik, J; Yoder, M C

    1993-01-01

    Lithium is widely used and the treatment of choice for patients with manic-depressive illness. For pregnant patients with manic-depressive illness, however, the use of lithium during the first trimester of pregnancy may present an increased risk for fetal maldevelopment. We have recently cared for several large-for-gestational-age, prematurely born infants whose mothers were treated with lithium throughout pregnancy. To determine whether maternal lithium use during pregnancy may predispose to the onset of premature labor and fetal macrosomia, we reviewed records from the International Register of Lithium Babies and from a cohort of manic-depressive pregnant women. More than one third (36%) of infants reported to the International Register were born prematurely, and 37% of the premature infants were large for gestational age; 15% of the term infants were born large for gestational age. In the cohort group, manic-depressive mothers who received lithium during pregnancy had a 2.5-fold higher incidence of premature births than manic-depressive pregnant patients who did not receive lithium treatment. The incidence of large-for-gestational-age births in lithium-treated women in the cohort was not different from that of the general population or from manic-depressive women not treated with lithium. In summary, an association between maternal lithium therapy and premature delivery is reported. We recommend that women receiving lithium therapy during pregnancy be closely monitored for the onset of premature labor. PMID:8515304

  19. Ionic Pathways in Li13Si4 investigated by (6)Li and (7)Li solid state NMR experiments.

    PubMed

    Dupke, Sven; Langer, Thorsten; Winter, Florian; Pöttgen, Rainer; Winter, Martin; Eckert, Hellmut

    2015-02-01

    Local environments and dynamics of lithium ions in the binary lithium silicide Li13Si4 have been studied by (6)Li MAS-NMR, (7)Li spin-lattice relaxation time and site-resolved (7)Li 2D exchange NMR measurements as a function of mixing time. Variable temperature experiments result in distinct differences in activation energies characterizing the transfer rates between the different lithium sites. Based on this information, a comprehensive picture of the preferred ionic transfer pathways in this silicide has been developed. With respect to local mobility, the results of the present study suggests the ordering Li6/Li7>Li5>Li1>Li4 >Li2/Li3. Mobility within the z=0.5 plane is distinctly higher than within the z=0 plane, and the ionic transfer between the planes is most facile via Li1/Li5 exchange. The lithium ionic mobility can be rationalized on the basis of the type of the coordinating silicide anions and the lithium-lithium distances within the structure. Lithium ions strongly interacting with the isolated Si(4-) anions have distinctly lower mobility than those the coordination of which is dominated by Si2(6-) dumbbells. PMID:25524128

  20. Lithium toxicity after Roux-en-Y bariatric surgery.

    PubMed

    Musfeldt, Deanna; Levinson, Andrew; Nykiel, Jennifer; Carino, Gerardo

    2016-01-01

    A 61-year-old woman with medical history significant for morbid obesity, type II diabetes mellitus, nephrogenic diabetes insipidus and bipolar disorder, had been stable on lithium carbonate therapy for several years. She had undergone a Roux-en-Y bypass surgery and, at the time of her surgery, her lithium level was found to be 0.61 mEq/L on a maintenance dose of 600 mg orally twice per day. She was discharged 8 days postoperatively on the same lithium dose, but presented to the emergency department 12 days postoperatively with signs of lithium toxicity. Her lithium level was elevated to 1.51 mEq/L and she was treated for lithium toxicity with supportive care and, ultimately, reduction of her lithium dose. Clinicians should be aware that dramatic and poorly understood changes in drug absorption may occur after bariatric surgery. PMID:26994048

  1. Development of a psoriasis-like syndrome following lithium therapy.

    PubMed

    Hanada, K; Tasaki, M; Hashimoto, I; Sone, M; Yamaguchi, T

    1987-12-01

    A correlation between lithium and psoriasis has been observed. In this paper, the case of a 17-yr-old girl is reported who developed psoriatic lesions after administration of lithium carbonate. Further-more, serum lithium levels in some psoriatic patients are disclosed, and induction of psoriasis by lithium in experimental animals is described. Serum lithium levels in 27 patients were significantly higher (p<0.025) than those of controls. Uninvolved parts of skin tissues obtained from three cases of psoriasis were transplanted to nude mice. After supplementing lithium as the chloride, these skin grafts developed the histologic change characteristic of psoriasis. However, the lithium compound by itself did not increase superoxide production of polymorphonuclear leukocytes in psoriasis. PMID:24254819

  2. Sinus Node Dysfunction After Acute Lithium Treatment at Therapeutic Levels

    PubMed Central

    Nakatsu, Keigo; Nagamine, Takahiko

    2015-01-01

    Lithium carbonate (lithium) has been used extensively for the treatment of a variety of psychiatric conditions. It requires close monitoring of serum concentration due to its narrow therapeutic window. Cardiac toxicity range from asymptomatic electrocardiographic changes to fatal arrhythmias may occur even at the therapeutic levels. We report a case of psychiatric inpatient who developed asymptomatic severe bradycardia most likely related to sinus node dysfunction due to acute lithium treatment at therapeutic level. After withdrawal of lithium, a time sequential improvement of severe bradycardia examined by repeated electrocardiogram, including Holter monitoring, suggested a relationship between the lithium toxicity and sinus node dysfunction. Other factors such as baseline sinus bradycardia and lower limit of normal thyroid function might be associated with severe bradycardia. This case emphasizes the need, when prescribing lithium, for clinicians to regularly monitor their patients’ electrocardiogram and serum lithium levels to prevent serious or fatal complications, such as cardiac arrest. PMID:27222761

  3. Lithium mass flow control for high power Lorentz Force Accelerators

    NASA Astrophysics Data System (ADS)

    Kodys, Andrea D.; Emsellem, Gregory; Cassady, Leonard D.; Polk, James E.; Choueiri, Edgar Y.

    2001-02-01

    A lithium feeding system has been developed to measure and control propellant flow for 30-200 kW Lithium Lorentz Force Accelerators (LiLFAs). The new, mechanically actuated, liquid lithium feed system has been designed and tested as a central component of a campaign to obtain basic data and establish scaling laws and performance relations for these thrusters. Calibration data are presented which demonstrate reliable and controllable feed of liquid lithium to the vaporizer hollow cathode of the thruster at flow rates between 10 and 120 mg/s. The ability to thermally track the liquid lithium through the system by the use of external temperature measurements is demonstrated. In addition, recent developments are presented in the establishment and successful testing of a lithium handling facility and safety procedures allowing for the in-house loading of the feed system and the neutralization, cleaning and disposal of up to 300 g of lithium. .

  4. Lithium Surface Coatings for Improved Plasma Performance in NSTX

    SciTech Connect

    Kugel, H W; Ahn, J -W; Allain, J P; Bell, R; Boedo, J; Bush, C; Gates, D; Gray, T; Kaye, S; Kaita, R; LeBlanc, B; Maingi, R; Majeski, R; Mansfield, D; Menard, J; Mueller, D; Ono, M; Paul, S; Raman, R; Roquemore, A L; Ross, P W; Sabbagh, S; Schneider, H; Skinner, C H; Soukhanovskii, V; Stevenson, T; Timberlake, J; Wampler, W R

    2008-02-19

    NSTX high-power divertor plasma experiments have shown, for the first time, significant and frequent benefits from lithium coatings applied to plasma facing components. Lithium pellet injection on NSTX introduced lithium pellets with masses 1 to 5 mg via He discharges. Lithium coatings have also been applied with an oven that directed a collimated stream of lithium vapor toward the graphite tiles of the lower center stack and divertor. Lithium depositions from a few mg to 1 g have been applied between discharges. Benefits from the lithium coating were sometimes, but not always seen. These improvements sometimes included decreases plasma density, inductive flux consumption, and ELM frequency, and increases in electron temperature, ion temperature, energy confinement and periods of MHD quiescence. In addition, reductions in lower divertor D, C, and O luminosity were measured.

  5. Lithium inclusion in indium metal-organic frameworks showing increased surface area and hydrogen adsorption

    SciTech Connect

    Bosch, Mathieu; Zhang, Muwei; Feng, Dawei; Yuan, Shuai; Wang, Xuan; Chen, Ying-Pin; Zhou, Hong-Cai

    2014-12-01

    Investigation of counterion exchange in two anionic In-Metal-Organic Frameworks (In-MOFs) showed that partial replacement of disordered ammonium cations was achieved through the pre-synthetic addition of LiOH to the reaction mixture. This resulted in a surface area increase of over 1600% in (Li [In(1,3 − BDC){sub 2}]){sub n} and enhancement of the H{sub 2} uptake of approximately 275% at 80 000 Pa at 77 K. This method resulted in frameworks with permanent lithium content after repeated solvent exchange as confirmed by inductively coupled plasma mass spectrometry. Lithium counterion replacement appears to increase porosity after activation through replacement of bulkier, softer counterions and demonstrates tuning of pore size and properties in MOFs.

  6. Heterogeneous microring and Mach-Zehnder modulators based on lithium niobate and chalcogenide glasses on silicon.

    PubMed

    Rao, Ashutosh; Patil, Aniket; Chiles, Jeff; Malinowski, Marcin; Novak, Spencer; Richardson, Kathleen; Rabiei, Payam; Fathpour, Sasan

    2015-08-24

    Thin films of lithium niobate are wafer bonded onto silicon substrates and rib-loaded with a chalcogenide glass, Ge(23)Sb(7)S(70), to demonstrate strongly confined single-mode submicron waveguides, microring modulators, and Mach-Zehnder modulators in the telecom C band. The 200 μm radii microring modulators present 1.2 dB/cm waveguide propagation loss, 1.2 × 10(5) quality factor, 0.4 GHz/V tuning rate, and 13 dB extinction ratio. The 6 mm long Mach-Zehnder modulators have a half-wave voltage-length product of 3.8 V.cm and an extinction ratio of 15 dB. The demonstrated work is a key step towards enabling wafer scale dense on-chip integration of high performance lithium niobate electro-optical devices on silicon for short reach optical interconnects and higher order advanced modulation schemes. PMID:26368243

  7. Spectroscopic investigation of the 3d 2D → nf 2F transitions in lithium

    NASA Astrophysics Data System (ADS)

    Shahzada, S.; Shah, M.; Haq, S. U.; Nawaz, M.; Ahmed, M.; Nadeem, Ali

    2016-05-01

    We report term energies and effective quantum numbers of the odd parity 3d 2D → nf 2F series of lithium using multi-step and multi-photon laser excitation schemes. The experiments were performed using three dye lasers simultaneously pumped by the second harmonic (532 nm) of a Q-switched Nd:YAG laser in conjunction with an atomic beam apparatus and thermionic diode ion detector. The first ionization potential of lithium has been determined as 43,487.13 ± 0.02 cm- 1 from the much extended 3d 2D → nf 2F (17 ≤ n ≤ 70) series. In addition, the oscillator strengths of the 3d 2D → nf 2F (15 ≤ n ≤ 48) transitions have been determined, showing a decreasing trend with the increase in principal quantum number n.

  8. Lithium pellet production (LiPP): A device for the production of small spheres of lithium

    SciTech Connect

    Fiflis, P.; Andrucyzk, D.; McGuire, M.; Curreli, D.; Ruzic, D. N.; Roquemore, A. L.

    2013-06-15

    With lithium as a fusion material gaining popularity, a method for producing lithium pellets relatively quickly has been developed for NSTX. The Lithium Pellet Production device is based on an injector with a sub-millimeter diameter orifice and relies on a jet of liquid lithium breaking apart into small spheres via the Plateau-Rayleigh instability. A prototype device is presented in this paper and for a pressure difference of {Delta}P= 5 Torr, spheres with diameters between 0.91 < D < 1.37 mm have been produced with an average diameter of D= 1.14 mm, which agrees with the developed theory. Successive tests performed at Princeton Plasma Physics Laboratory with Wood's metal have confirmed the dependence of sphere diameter on pressure difference as predicted.

  9. Lithium pellet production (LiPP): A device for the production of small spheres of lithium

    NASA Astrophysics Data System (ADS)

    Fiflis, P.; Andrucyzk, D.; Roquemore, A. L.; McGuire, M.; Curreli, D.; Ruzic, D. N.

    2013-06-01

    With lithium as a fusion material gaining popularity, a method for producing lithium pellets relatively quickly has been developed for NSTX. The Lithium Pellet Production device is based on an injector with a sub-millimeter diameter orifice and relies on a jet of liquid lithium breaking apart into small spheres via the Plateau-Rayleigh instability. A prototype device is presented in this paper and for a pressure difference of ΔP = 5 Torr, spheres with diameters between 0.91 < D < 1.37 mm have been produced with an average diameter of D = 1.14 mm, which agrees with the developed theory. Successive tests performed at Princeton Plasma Physics Laboratory with Wood's metal have confirmed the dependence of sphere diameter on pressure difference as predicted.

  10. Nanostructured lithium-aluminum alloy electrodes for lithium-ion batteries.

    SciTech Connect

    Hudak, Nicholas S.; Huber, Dale L.

    2010-12-01

    Electrodeposited aluminum films and template-synthesized aluminum nanorods are examined as negative electrodes for lithium-ion batteries. The lithium-aluminum alloying reaction is observed electrochemically with cyclic voltammetry and galvanostatic cycling in lithium half-cells. The electrodeposition reaction is shown to have high faradaic efficiency, and electrodeposited aluminum films reach theoretical capacity for the formation of LiAl (1 Ah/g). The performance of electrodeposited aluminum films is dependent on film thickness, with thicker films exhibiting better cycling behavior. The same trend is shown for electron-beam deposited aluminum films, suggesting that aluminum film thickness is the major determinant in electrochemical performance regardless of deposition technique. Synthesis of aluminum nanorod arrays on stainless steel substrates is demonstrated using electrodeposition into anodic aluminum oxide templates followed by template dissolution. Unlike nanostructures of other lithium-alloying materials, the electrochemical performance of these aluminum nanorod arrays is worse than that of bulk aluminum.

  11. Lithium storage mechanisms in purpurin based organic lithium ion battery electrodes

    PubMed Central

    Reddy, Arava Leela Mohana; Nagarajan, Subbiah; Chumyim, Porramate; Gowda, Sanketh R.; Pradhan, Padmanava; Jadhav, Swapnil R.; Dubey, Madan; John, George; Ajayan, Pulickel M.

    2012-01-01

    Current lithium batteries operate on inorganic insertion compounds to power a diverse range of applications, but recently there is a surging demand to develop environmentally friendly green electrode materials. To develop sustainable and eco-friendly lithium ion batteries, we report reversible lithium ion storage properties of a naturally occurring and abundant organic compound purpurin, which is non-toxic and derived from the plant madder. The carbonyl/hydroxyl groups present in purpurin molecules act as redox centers and reacts electrochemically with Li-ions during the charge/discharge process. The mechanism of lithiation of purpurin is fully elucidated using NMR, UV and FTIR spectral studies. The formation of the most favored six membered binding core of lithium ion with carbonyl groups of purpurin and hydroxyl groups at C-1 and C-4 positions respectively facilitated lithiation process, whereas hydroxyl group at C-2 position remains unaltered. PMID:23233879

  12. 77 FR 28488 - Outbound International Mailings of Lithium Batteries and Other Dangerous Goods

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-15

    ... accordance with additional requirements listed in the Technical Instructions. Lithium-ion cells and lithium... for mailpieces containing lithium metal or lithium-ion cells or batteries and applies regardless of... lithium-ion cells and batteries (rechargeable), regardless of quantity, size, watt hours, and...

  13. Review of lithium effects on brain and blood.

    PubMed

    Young, Wise

    2009-01-01

    Clinicians have long used lithium to treat manic depression. They have also observed that lithium causes granulocytosis and lymphopenia while it enhances immunological activities of monocytes and lymphocytes. In fact, clinicians have long used lithium to treat granulocytopenia resulting from radiation and chemotherapy, to boost immunoglobulins after vaccination, and to enhance natural killer activity. Recent studies revealed a mechanism that ties together these disparate effects of lithium. Lithium acts through multiple pathways to inhibit glycogen synthetase kinase-3beta (GSK3 beta). This enzyme phosphorylates and inhibits nuclear factors that turn on cell growth and protection programs, including the nuclear factor of activated T cells (NFAT) and WNT/beta-catenin. In animals, lithium upregulates neurotrophins, including brain-derived neurotrophic factor (BDNF), nerve growth factor, neurotrophin-3 (NT3), as well as receptors to these growth factors in brain. Lithium also stimulates proliferation of stem cells, including bone marrow and neural stem cells in the subventricular zone, striatum, and forebrain. The stimulation of endogenous neural stem cells may explain why lithium increases brain cell density and volume in patients with bipolar disorders. Lithium also increases brain concentrations of the neuronal markers n-acetyl-aspartate and myoinositol. Lithium also remarkably protects neurons against glutamate, seizures, and apoptosis due to a wide variety of neurotoxins. The effective dose range for lithium is 0.6-1.0 mM in serum and >1.5 mM may be toxic. Serum lithium levels of 1.5-2.0 mM may have mild and reversible toxic effects on kidney, liver, heart, and glands. Serum levels of >2 mM may be associated with neurological symptoms, including cerebellar dysfunction. Prolonged lithium intoxication >2 mM can cause permanent brain damage. Lithium has low mutagenic and carcinogenic risk. Lithium is still the most effective therapy for depression. It "cures" a third

  14. Reaction between Lithium Anode and Polysulfide Ions in a Lithium-Sulfur Battery.

    PubMed

    Zheng, Dong; Yang, Xiao-Qing; Qu, Deyang

    2016-09-01

    The reaction between polysulfides and a lithium anode in a Li-S battery was examined using HPLC. The results demonstrated that the polysulfide species with six sulfur atoms or more were reactive with regard to lithium metal. Although the reaction can be greatly inhibited by the addition of LiNO3 in the electrolyte, LiNO3 cannot form a stable protection layer on the Li anode to prevent the reaction during storage. PMID:27535337

  15. Lithium-Ion Performance and Abuse Evaluation Using Lithium Technologies 9Ah cell

    NASA Technical Reports Server (NTRS)

    Hall, Albert Daniel; Jeevarajan, Judith A.

    2006-01-01

    Lithium-ion batteries in a pouch form offer high energy density and safety in their designs and more recently they are offering performance at higher rates. Lithium Technologies 9Ah high-power pouch cells were studied at different rates, thermal environments, under vacuum and several different conditions of abuse including overcharge, over-discharge and external short circuit. Results of this study will be presented.

  16. Lanthanum Nitrate As Electrolyte Additive To Stabilize the Surface Morphology of Lithium Anode for Lithium-Sulfur Battery.

    PubMed

    Liu, Sheng; Li, Guo-Ran; Gao, Xue-Ping

    2016-03-01

    Lithium-sulfur (Li-S) battery is regarded as one of the most promising candidates beyond conventional lithium ion batteries. However, the instability of the metallic lithium anode during lithium electrochemical dissolution/deposition is still a major barrier for the practical application of Li-S battery. In this work, lanthanum nitrate, as electrolyte additive, is introduced into Li-S battery to stabilize the surface of lithium anode. By introducing lanthanum nitrate into electrolyte, a composite passivation film of lanthanum/lithium sulfides can be formed on metallic lithium anode, which is beneficial to decrease the reducibility of metallic lithium and slow down the electrochemical dissolution/deposition reaction on lithium anode for stabilizing the surface morphology of metallic Li anode in lithium-sulfur battery. Meanwhile, the cycle stability of the fabricated Li-S cell is improved by introducing lanthanum nitrate into electrolyte. Apparently, lanthanum nitrate is an effective additive for the protection of lithium anode and the cycling stability of Li-S battery. PMID:26981849

  17. Phase II screening trial of lithium carbonate in amyotrophic lateral sclerosis

    PubMed Central

    Moore, D.H.; Forshew, D.A.; Katz, J.S.; Barohn, R.J.; Valan, M.; Bromberg, M.B.; Goslin, K.L.; Graves, M.C.; McCluskey, L.F.; McVey, A.L.; Mozaffar, T.; Florence, J.M.; Pestronk, A.; Ross, M.; Simpson, E.P.; Appel, S.H.

    2011-01-01

    Objective: To use a historical placebo control design to determine whether lithium carbonate slows progression of amyotrophic lateral sclerosis (ALS). Methods: A phase II trial was conducted at 10 sites in the Western ALS Study Group using similar dosages (300–450 mg/day), target blood levels (0.3–0.8 mEq/L), outcome measures, and trial duration (13 months) as the positive trial. However, taking riluzole was not a requirement for study entry. Placebo outcomes in patients matched for baseline features from a large database of recent clinical trials, showing stable rates of decline over the past 9 years, were used as historical controls. Results: The mean rate of decline of the ALS Functional Rating Scale–Revised was greater in 107 patients taking lithium carbonate (−1.20/month, 95% confidence interval [CI] −1.41 to −0.98) than that in 249 control patients (−1.01/month, 95% CI −1.11 to −0.92, p = 0.04). There were no differences in secondary outcome measures (forced vital capacity, time to failure, and quality of life), but there were more adverse events in the treated group. Conclusions: The lack of therapeutic benefit and safety concerns, taken together with similar results from 2 other recent trials, weighs against the use of lithium carbonate in patients with ALS. The absence of drift over time and the availability of a large database of patients for selecting a matched historical control group suggest that use of historical controls may result in more efficient phase II trials for screening putative ALS therapeutic agents. Classification of evidence: This study provided Class IV evidence that lithium carbonate does not slow the rate of decline of function in patients with ALS over 13 months. Neurology® 2011;77:973–979 PMID:21813790

  18. Hybrid Lithium-Sulfur Batteries with a Solid Electrolyte Membrane and Lithium Polysulfide Catholyte.

    PubMed

    Yu, Xingwen; Bi, Zhonghe; Zhao, Feng; Manthiram, Arumugam

    2015-08-01

    Lithium-sulfur (Li-S) batteries are receiving great attention as the most promising next-generation power source with significantly high charge-storage capacity. However, the implementation of Li-S batteries is hampered by a critical challenge because of the soluble nature of the intermediate polysulfide species in the liquid electrolyte. The use of traditional porous separators unavoidably allows the migration of the dissolved polysulfide species from the cathode to the lithium-metal anode and results in continuous loss of capacity. In this study, a LiSICON (lithium super ionic conductor) solid membrane is used as a cation-selective electrolyte for lithium-polysulfide (Li-PS) batteries to suppress the polysulfide diffusion. Ionic conductivity issue at the lithium metal/solid electrolyte interface is successfully addressed by insertion of a "soft", liquid-electrolyte integrated polypropylene interlayer. The solid LiSICON lithium-ion conductor maintains stable ionic conductivity during the electrochemical cycling of the cells. The Li-PS battery system with a hybrid solid/liquid electrolyte exhibits significantly enhanced cyclability relative to the cells with the traditional liquid-electrolyte integrated porous separator. PMID:26161547

  19. A review of lithium and non-lithium based solid state batteries

    NASA Astrophysics Data System (ADS)

    Kim, Joo Gon; Son, Byungrak; Mukherjee, Santanu; Schuppert, Nicholas; Bates, Alex; Kwon, Osung; Choi, Moon Jong; Chung, Hyun Yeol; Park, Sam

    2015-05-01

    Conventional lithium-ion liquid-electrolyte batteries are widely used in portable electronic equipment such as laptop computers, cell phones, and electric vehicles; however, they have several drawbacks, including expensive sealing agents and inherent hazards of fire and leakages. All solid state batteries utilize solid state electrolytes to overcome the safety issues of liquid electrolytes. Drawbacks for all-solid state lithium-ion batteries include high resistance at ambient temperatures and design intricacies. This paper is a comprehensive review of all aspects of solid state batteries: their design, the materials used, and a detailed literature review of various important advances made in research. The paper exhaustively studies lithium based solid state batteries, as they are the most prevalent, but also considers non-lithium based systems. Non-lithium based solid state batteries are attaining widespread commercial applications, as are also lithium based polymeric solid state electrolytes. Tabular representations and schematic diagrams are provided to underscore the unique characteristics of solid state batteries and their capacity to occupy a niche in the alternative energy sector.

  20. Electrohydrodynamic ion emission from molten lithium nitrate

    SciTech Connect

    Panitz, J.A.; Pregenzer, A.L.; Gerber, R.A.

    1989-01-01

    Positive ions have been generated at the surface of molten lithium nitrate by applying a high electrostatic field to a thin layer of the molten salt on the apex of a field emitter tip. The ion emission process is characteristic of electrohydrodynamic ion formation, usually observed when a high electric field is applied to the surface of a liquid metal or alloy. With molten lithium nitrate, a single emission site appears at threshold. The divergence of the ion beam is several degrees. At higher field strengths multiple emission sites are observed. An ion species at m/e = 76 amu dominates the mass spectrum at all field strengths. This species is identified as a cluster ion (LiNO/sub 3/ )Li/sup +/ . At low source temperatures, (LiNO/sub 3/ )/sub 2/ Li/sup +/ is also observed. Despite the low ionization potential of lithium (5.4 eV), Li/sup +/ accounts for <8% of the total ion current generated by the source under all operating conditions. Multiply charged lithium is not detected in the mass spectra, suggesting the electric field at the Taylor cone apex is not sufficient to field-ionize singly charged species by a postionization process.